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Preface

Nobel Prize Winner Prof. Roald Hoffmann forewarding a recently published book
by Dronskowski [1] on computational chemistry of solid-state materials wrote that
one is unlikely to understand new materials with novel properties if one is wearing
purely chemical or physical blinkers. He prefers a coupled approach – a chemical
understanding of bonding merged with a deep physical description. The quantum
chemistry of solids can be considered as a realization of such a coupled approach.

It is traditional for quantum theory of molecular systems (molecular quantum
chemistry) to describe the properties of a many–atom system on the grounds of in-
teratomic interactions applying the linear combination of atomic orbitals (LCAO)
approximation in the electronic-structure calculations. The basis of the theory of the
electronic structure of solids is the periodicity of the crystalline potential and Bloch-
type one-electron states, in the majority of cases approximated by a linear combina-
tion of plane waves (LCPW). In a quantum chemistry of solids the LCAO approach
is extended to periodic systems and modified in such a way that the periodicity of the
potential is correctly taken into account, but the language traditional for chemistry
is used when the interatomic interaction is analyzed to explain the properties of the
crystalline solids. At first, the quantum chemistry of solids was considered simply as
the energy-band theory [2] or the theory of the chemical bond in tetrahedral semi-
conductors [3]. From the beginning of the 1970s the use of powerful computer codes
has become a common practice in molecular quantum chemistry to predict many
properties of molecules in the first-principles LCAO calculations. In the condensed-
matter studies the accurate description of the system at an atomic scale was much
less advanced [4].

During the last 10 years this gap between molecular quantum chemistry and the
theory of the crystalline electronic structure has become smaller. The concepts of
standard solid-state theory are now compatible with an atomic-scale description of
crystals. There are now a number of general-purpose computer codes allowing predic-
tion from the first-principles LCAO calculations of the properties of crystals. These
codes are listed in Appendix C. Nowadays, the quantum chemistry of solids can be
considered as the original field of solid-state theory that uses the methods of molec-
ular quantum chemistry and molecular models to describe the different properties of
solid materials including surface and point-defect modeling.
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1

Introduction

Prof. P. Fulde wrote in the preface to the first edition of his book [5]: Monographs
are required that emphasize the features common to quantum chemistry and solid-
state physics. The book by Fulde presented the problem of electron correlations in
molecules and solids in a unified form. The common feature of these fields is also
the use of the LCAO (linear combination of atomic orbitals) approximation: being
from the very beginning the fundamental principle of molecular quantum chemistry
LCAO only recently became the basis of the first-principles calculations for periodic
systems. The LCAO methods allow one to use wavefunction-based (Hartree–Fock),
density-based (DFT) and hybrid Hamiltonians for electronic- structure calculations
of crystals. Compared to the conventional plane-waves (PW) or muffin-tin orbitals
(MTO) approximations the LCAO approach has proven to be more flexible. To an-
alyze the local properties of the electronic structure the LCAO treatment may be
applied to both periodic- and molecular-cluster (nonperiodic) models of solid. Fur-
thermore, post-Hartree–Fock methods can be extended to periodic systems exhibiting
electron correlation. LCAO methods are able to avoid an artificial periodicity typi-
cally introduced in PW or MTO for a slab model of crystalline surfaces. The LCAO
approach is a natural way to extend to solid-state procedures of the chemical bonding
analysis developed for molecules. With recent advances in computing power LCAO
first-principles calculations are possible for systems containing many (hundreds) atoms
per unit cell. The LCAO results are comparable with the traditional PW or MTO
calculations in terms of accuracy and variety of accessible physical properties. More
than 30 years ago, it was well understood that the quantum theory of solids based
on LCAO enabled solid-state and surface chemists to follow the theoretically based
papers that appeared ( [2]). As an introduction to the theory of the chemical bond
in tetrahedral semiconductors the book [3](translation from the Russian edition of
1973) appeared. Later other books [6] and [7] appeared. These books brought to-
gether views on crystalline solids held by physicists and chemists. The important step
in the computational realization of the LCAO approach to periodic systems was made
by scientists from the Theoretical Chemistry Group of Turin University (C. Pisani,
R. Dovesi, C. Roetti) and the Daresbury Computation Science Department in Eng-
land (N.M. Harrison, V.R. Saunders) with their coworkers from different countries
who developed several versions of the CRYSTAL computer code–(88, 92, 95, 98, 03,
06) for the first- principles LCAO calculations of periodic systems. This code is now
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used by more than 200 scientific groups all over the world. Many results applying the
above code can be found in the book published about ten years ago by Springer: [4].
The publication includes review articles on the Hartree–Fock LCAO approach for
application to solids written by scientists actively working in this field. The book
by Fulde mentioned earlier takes the next step to bridge the gap between quantum
chemistry and solid-state theory by addressing the problem of electron correlations.
During the next ten years many new LCAO applications were developed for crys-
tals, including the hybrid Hartree–Fock–DFT method, full usage of the point and
translational symmetry of periodic system, new structure optimization procedures,
applications to research related to optical and magnetic properties, study of point
defects and surface phenomena, generation of the localized orbitals in crystals with
application to the correlation effects study. Also, LCAO allowed the development of
O(N) methods that are efficient for large-size many-atom periodic systems. Recently
published books including [8–11] may be considered as the high-quality modern text
books. The texts provide the necessary background for the existing approaches used in
the electronic-structure calculations of solids for students and researchers. Published
in the Springer Series in Solid State Sciences (vol. 129) a monograph [12] introduces
all the existing theoretical techniques in materials research (which is confirmed by the
subtitle of this book: From Ab initio to Monte Carlo Methods). This book is written
primarily for materials scientists and offers to materials scientists access to a whole
variety of existing approaches. However, to our best knowledge a comprehensive ac-
count of the main features and possibilities of LCAO methods for the first-principles
calculations of crystals is still lacking. We intend to fill this gap and suggest a book
reflecting the state of the art of LCAO methods with applications to the electronic-
structure theory of periodic systems. Our book is written not only for the solid-state
and surface physicists, but also for solid-state chemists and material scientists. Also,
we hope that graduate students (both physicists and chemists) will be able to use
it as an introduction to the symmetry of solids and for comparison of LCAO meth-
ods for solids and molecules. All readers will find the description of models used for
perfect and defective solids (the molecular-cluster, cyclic-cluster and supercell mod-
els, models of the single and repeating slabs for surfaces, the local properties of the
electronic-structure calculations in the theory of the chemical bonding in crystals).
We hope that the given examples of the first-principles LCAO calculations of dif-
ferent solid-state properties will illustrate the efficiency of LCAO methods and will
be useful for researchers in their own work. This book consists of two parts: theory
and applications. In the first part (theory) we give the basic theory underlying the
LCAO methods applied to periodic systems. The translation symmetry of solids and
its consequency is discussed in connection with a so-called cyclic (with periodical
boundary conditions) model of an infinite crystal. For chemists it allows clarification
of why the k-space introduction is necessary in the electronic-structure calculations
of solids. The site-symmetry approach is considered briefly (it is given in more detail
in [13]). The analysis of site symmetry in crystals is important for understanding the
connection between one-particle states (electron and phonon) in free atoms and in a
periodic solid. To make easier the practical LCAO calculations for specific crystalline
structures we explain how to use the data provided on the Internet sites for crystal
structures of inorganic crystals and irreducible representations of space groups. In the
next chapters of Part I we give the basics of Hartree–Fock and Kohn–Sham methods
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for crystals in the LCAO representation of crystalline orbitals. It allows the main dif-
ferences between the LCAO approach realization for molecules and periodic systems
to be seen. The hybrid Hartee–Fock–DFT methods were only recently extended from
molecules to solids, and their advantages are demonstrated by the LCAO results on
bandgap and atomic structure for crystals.

In the second part (applications) we discuss some recent applications of LCAO
methods to calculations of various crystalline properties. We consider, as is traditional
for such books the results of some recent band-structure calculations and also the
ways of local properties of electronic- structure description with the use of LCAO or
Wannier-type orbitals. This approach allows chemical bonds in periodic systems to
be analyzed, using the well-known concepts developed for molecules (atomic charge,
bond order, atomic covalency and total valency). The analysis of models used in
LCAO calculations for crystals with point defects and surfaces and illustrations of
their applications for actual systems demonstrate the efficiency of LCAO approach in
the solid-state theory. A brief discussion about the existing LCAO computer codes is
given in Appendix C.
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Space Groups and Crystalline Structures

2.1 Translation and Point Symmetry of Crystals

2.1.1 Symmetry of Molecules and Crystals: Similarities and Differences

Molecules consist of positively charged nuclei and negatively charged electrons moving
around them. If the translations and rotations of a molecule as a whole are excluded,
then the motion of the nuclei, except for some special cases, consists of small vi-
brations about their equilibrium positions. Orthogonal operations (rotations through
symmetry axes, reflections in symmetry planes and their combinations) that trans-
form the equilibrium configuration of the nuclei of a molecule into itself are called the
symmetry operations of the molecule. They form a group F of molecular symmetry.
Molecules represent systems from finite (sometimes very large) numbers of atoms, and
their symmetry is described by so-called point groups of symmetry. In a molecule it is
always possible to so choose the origin of coordinates that it remains fixed under all
operations of symmetry. All the symmetry elements (axes, planes, inversion center)
are supposed to intersect in the origin chosen. The point symmetry of a molecule is
defined by the symmetry of an arrangement of atoms forming it but the origin of
coordinates chosen is not necessarily occupied by an atom.

In modern computer codes for quantum-chemical calculations of molecules the
point group of symmetry is found automatically when the atomic coordinates are
given. In this case, the point group of symmetry is only used for the classification of
electronic states of a molecule, particularly for knowledge of the degeneracy of the
one-electron energy levels . To make this classification one needs to use tables of ir-
reducible representations of point groups. The latter are given both in books [13–15]
and on an Internet site [16] Calculation of the electronic structure of a crystal ( for
which a macroscopic sample contains 1023 atoms ) is practically impossible with-
out the knowledge of at least the translation symmetry group. The latter allows the
smallest possible set of atoms included in the so-called primitive unit cell to be consid-
ered. However, the classification of the crystalline electron and phonon states requires
knowledge of the full symmetry group of a crystal (space group). The structure of the
irreducible representations of the space groups is essentially more complicated and
use of existing tables [17] or the site [16] requires knowledge of at least the basics of
space-group theory.
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Discussions of the symmetry of molecules and crystals are often limited to the
indication that under operations of symmetry the configuration of the nuclei is trans-
formed to itself. The symmetry group is known when the coordinates of all atoms in
a molecule are given. Certainly, the symmetry of a system is defined by a geometrical
arrangement of atomic nuclei, but operations of symmetry translate all equivalent
points of space to each other. In equivalent points the properties of a molecule or a
crystal (electrostatic potential, electronic density, etc.) are all identical. It is neces-
sary to remember that the application of symmetry transformations means splitting
all space into systems of equivalent points irrespective of whether there are atoms
in these points or not. In both molecules and in crystals the symmetry group is the
set of transformations in three dimensional space that transforms any point of the
space into an equivalent point. The systems of equivalent points are called orbits of
points (This has nothing to do with the orbitals – the one-electron functions in many-
electron systems). In particular, the orbits of equivalent atoms in a molecule can be
defined as follows. Atoms in a molecule occupy the positions q with a certain site
symmetry described by some subgroups Fq of the full point symmetry group F of a
molecule. The central atom (if one exists) has a site-symmetry group Fq = F . Any
atom on the principal symmetry axis of a molecule with the symmetry groups Cn,
Cnv, Sn also has the full symmetry of the molecule (Fq = F ). Finally, Fq = F for any
atom lying in the symmetry plane of a molecule with the symmetry group F = Cs.
In other cases Fq is a subgroup of F and includes those elements R of point group F
that satisfy the condition Rq = q. Let F1 be a site-symmetry group of a point q1 in
the molecular space. This point may not be occupied by an atom. Let the symmetry
group of a molecule be decomposed into left cosets with respect to its site-symmetry
subgroup Fq:

F =
∑
j

RjFj, R1 = E, j=1,2,...,t (2.1)

The set of points qj = Rjq1 , j=1,2,...,t, forms an orbit of the point q1.
The point qj of the orbit has a site-symmetry group Fj=RjFR−1

j isomorphic to
F1. Thus, an orbit may be characterized by a site group F1, (or any other from the
set of groups Fj). The number of points in an orbit is equal to the index t=nF /nFj of
the group Fj in F.

If the elements Rj in (2.1) form a group P then the group F may be factorized
in the form F = PFj. The group P is called the permutation symmetry group of an
orbit with a site-symmetry group Fj (or orbital group).

In a molecule, all points of an orbit may be either occupied by atoms of the same
chemical element or vacant. Only the groups Cn, Cnv, Cs may be site-symmetry
groups in molecules. A molecule with a symmetry group F may have F as a site-
symmetry group only for one point of the space (for the central atom, for example).
For any point-symmetry group a list of possible orbits (and corresponding site groups)
can be given. In this list some groups may be repeated more than once. This occurs if
in F there are several isomorphic site-symmetry subgroups differing from each other
by the principal symmetry axes Cn, two-fold rotation axes U perpendicular to the
principal symmetry axis or reflection planes. All the atoms in a molecule may be
partitioned into orbits.
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Example. The list of orbits in the group F = C4v is

Fq = C4v(1), Cs(4), C1(8) (2.2)

The number of atoms in an orbit is given in brackets. For example, in a molecule
XY4Z (see Fig. 2.1) the atoms are distributed over three orbits: atoms X and Z occupy

σ

σ

σ

σ

Fig. 2.1. Tetrahedral molecule XY4Z

positions on the main axis with site-symmetry F=C4v and four Y atoms occupy one
of the orbits with site-symmetry group Cs. The symmetry information about this
molecule may be given by the following formula:

C4v[C4v(X,Z), Cs(Y)] (2.3)

which indicates both the full symmetry of the molecule (in front of the brackets) and
the distribution of atoms over the orbits. For molecules IF5 and XeF4O (having the
same symmetry C4v) this formula becomes

C4v[C4v(I,F), Cs(F)] and C4v[C4v(Xe,O), Cs(F)] (2.4)

As we can see, atoms of the same chemical element may occupy different orbits, i.e.
may be nonequivalent with regard to symmetry.

In crystals, systems of equivalent points (orbits) are called Wyckoff positions. As
we shall see, the total number of possible splittings of space of a crystal on systems
of equivalent points is finite and for the three-dimensional periodicity case equals 230
(number of space groups of crystals).The various ways of filling of equivalent points by
atoms generate a huge (hundreds of thousands) number of real crystalline structures.

As well as molecules, crystals possess point symmetry, i.e. equivalent points of
space are connected by the point-symmetry transformations. But in a crystal the
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number of the point-symmetry elements (the rotation axis or reflection planes) is
formally infinite. Therefore, it is impossible to find such a point of space where all the
point-symmetry elements intersect. It is connected by the fact that, unlike molecules,
in crystals among operations of symmetry there are translations of a group of rather
small number of atoms to space. The presence of translation symmetry means the
periodicity of the perfect crystals structure: translations of the primitive unit cell
reproduce the whole crystal.

In real crystals of macroscopic sizes translation symmetry, strictly speaking, is
absent because of the presence of borders. If, however, we consider the so-called bulk
properties of a crystal (for example, distribution of electronic density in the volume of
the crystal, determining the nature of a chemical bond) the influence of borders can
not be taken into account (number of atoms near to the border is small, in comparison
with the total number of atoms in a crystal) and we consider a crystal as a boundless
system, [13].

In the theory of electronic structure two symmetric models of a boundless crystal
are used: or it is supposed that the crystal fills all the space (model of an infinite
crystal), or the fragment of a crystal of finite size (for example, in the form of a
parallelepiped) with the identified opposite sides is considered. In the second case we
say, that the crystal is modeled by a cyclic cluster which translations as a whole are
equivalent to zero translation (Born–von Karman Periodic Boundary Conditions –
PBC). Between these two models of a boundless crystal there exists a connection:
the infinite crystal can be considered as a limit of the sequence of cyclic clusters with
increasing volume. In a molecule, the number of electrons is fixed as the number of
atoms is fixed. In the cyclic model of a crystal the number of atoms ( and thus the
number of electrons) depends on the cyclic-cluster size and becomes infinite in the
model of an infinite crystal. It makes changes, in comparison with molecules, to a one-
electron density matrix of a crystal that now depends on the sizes of the cyclic cluster
chosen (see Chap. 4). As a consequence, in calculations of the electronic structure of
crystals it is necessary to investigate convergence of results with an increase of the
cyclic cluster that models the crystal. For this purpose, the features of the symmetry
of the crystal, connected with the presence of translations also are used.

In the theory of electronic structure of crystals, we also use the molecular-cluster
model: being based on physical reasons we choose a molecular fragment of a crys-
tal and somehow try to model the influence of the rest of a crystal on the cluster
chosen (for example, by means of the potential of point charges or a field of atomic
cores). From the point of view of symmetry such a model possesses only the sym-
metry of point group due to which it becomes impossible to establish a connection
of molecular-cluster electronic states with those of a boundless crystal. At the same
time, with a reasonable molecular-cluster choice it is possible to describe well enough
the local properties of a crystal (for example, the electronic structure of impurity or
crystal imperfections). As an advantage of this model it may also be mentioned an
opportunity of application to crystals of those methods of the account of electronic
correlation that are developed for molecules (see Chap. 5).

The set of operations of symmetry of a crystal forms its group of symmetry G
called a space group of symmetry. Group G includes both translations, operations
from point groups of symmetry, and also the combined operations. The structure of
space groups of symmetry of crystals and their irreducible representations is much



2.1 Translation and Point Symmetry of Crystals 11

more complex than in the case of point groups of symmetry of molecules. Without
knowledge of some basic data from the theory of space groups it is impossible even to
prepare inputs for computer codes to calculate the electronic structure of a crystal.
These data will be briefly stated in the following sections.

2.1.2 Translation Symmetry of Crystals. Point Symmetry
of Bravais Lattices. Crystal Class

Translation symmetry of a perfect crystal can be defined with the aid of three non-
coplanar vectors: a1,a2,a3 basic translation vectors. Translation ta through the lat-
tice vector

a = n1a1 + n2a2 + n3a3 (2.5)

where n1, n2, n3 are integers, relates the equivalent points r and r′ of the crystal:

r′ = r + a (2.6)

Translations ta are elements of the translation group T . If we draw all the vectors a
from a given point (the origin), then their endpoints will form the Bravais lattice, or
“empty” lattice, corresponding to the given crystal. The endpoints of the vectors in
this construction are the lattice points (lattice nodes). Three of the basic translation
vectors define the elementary parallelepiped called the primitive unit cell (PUC). The
PUC contains lattice points only at the eight corners of the parallelepiped. Each
corner belongs to eight PUC, so that by fixing the PUC by one lattice point at the
corner we refer the remaining of the corners to the nearest seven PUC’s. We note
that the basic translation vectors cannot be chosen uniquely. However, whatever the
choice of these vectors, the volume of the PUC is always the same. The PUC defines
the smallest volume whose translations form the whole Bravais lattice (direct lattice).
Usually, the basic vectors are chosen to be the shortest of all those possible. Atoms
of a crystal are not necessarily located in the direct lattice points. In the simplest
case when all the crystal is obtained by translations of one atom (such crystals are
termed monoatomic, many metals belong to this type) all atoms can be placed in
direct lattice points.

As a set of points, the direct lattice possesses not only translation but also point
symmetry, i.e. lattice points are interchanged when rotations around one of the axes
of symmetry, reflections in planes of symmetry and their combinations are applied.
All the point-symmetry operations of the Bravais lattice are defined when the origin
of the coordinate system is chosen in one of the lattice points. The corresponding
PUC can be defined as the reference unit cell (it is obtained by a zeroth translation
(n1 = n2 = n3 = 0 in (2.5)). Among point-symmetry operations of a direct lattice it
is obligatory to include inversion I in the origin of coordinates since, together with
translation on a vector a the group of translations T also includes translation on a
vector −a. The identity element of group T is t0 – a zeroth translation. Elements R
of point group F 0 transform each lattice vector into a lattice vector: Ra = a′. The
point group F 0 of symmetry of the direct lattice determines the crystal system (or
syngony). There are seven systems (syngonies) of direct lattices. It turns out that not
all point groups can be lattice symmetry groups F 0. The requirement that both a
and Ra can simultaneously be lattice vectors restricts the number of possible point
groups. Let us now establish these limitations [18].
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To establish the rotations of the group F 0, let us take the basic lattice vectors
a1,a2,a3 as the basis unit vectors in the space of the lattice vectors a, and write down
the matrix D(R) of the transformation R in the new basis, in which all the lattice
vectors have integer components. If the matrix of the orthogonal transformation R
in this basis is denoted by D′(R), then D′(R) = U−1D(R)U , where U is a matrix of
the transformation from the initial orthonormal basis to the basis a1,a2,a3. If R is a
rotation (or mirror rotation) through an angle ϕ the traces of the matrices D(R) and
D′(R) are equal:

SpD′(R) = SpD(R) = ±1 + 2 cos(ϕ) (2.7)

Since, however, R should transform the lattice vector a into the lattice vector a′ =
R′a it follows that all the elements of D′(R) and hence its trace, must be integers.
It follows that cos(ϕ) = cos(2π m

n ) = ±1,±2, 0. Consequently, the group F 0 can
contain only two-, three-, four- and sixfold axes. Finally, it can be shown that if
the group F 0 contains the subgroup Cn, n > 2, it will also contain the subgroup
Cnv. The above three limitations ensure that the point group of the lattice can only
be one of the seven point groups: S2, C2h, D2h, D3h, D4h, D6h, Oh. This is why there
are only seven syngonies: namely, triclinic, monoclinic, orthorhombic, rhombohedral,
tetragonal, hexagonal and cubic. It is seen that, unlike molecules, in point groups of
symmetry of crystals there is no axis of symmetry of the fifth order (rotations around
such axes are incompatible with the presence of translations).

Two Bravais lattices with the same group of point symmetry F 0 fall into one type
if they can be transferred to each other by the continuous deformation that is not
decreasing the point symmetry of a lattice. In three-dimensional space there are 14
types of direct lattices whose distribution on syngonies is shown in Table 2.1. In addi-
tion to the translational subgroup T , the space group contains other transformations
whose form depends on the symmetry of the Bravais lattice and the symmetry of
the components of the crystal, i.e. on the symmetry of the PUC as the periodically
repeating set of particles forming the crystal. This last fact frequently ensures that
not all the transformations in the point group F 0 are included in the symmetry group
of the crystal. Not all transformations that map the sites on each other need result in
a corresponding mapping of the crystal components. It is therefore possible that the
point group of a crystal F (crystal class) will only be a subgroup of a point group of
an empty lattice. So the real crystal structure point-symmetry group F may coincide
with the lattice point symmetry group F 0 or be its subgroup. The distribution of
crystal classes F and Bravais lattices on syngonies is given in Table 2.1.

The lattice types are labeled by P (simple or primitive), F (face-centered), I
(body-centered) and A(B, C) (base-centered). Cartesian coordinates of basic trans-
lation vectors written in units of Bravais lattice parameters are given in the third
column of Table 2.1. It is seen that the lattice parameters (column 4 in Table 2.1) are
defined only by syngony, i.e. are the same for all types of Bravais lattices with the
point symmetry F 0 and all the crystal classes F of a given syngony.

The point symmetry group of a triclinic lattice Γt (Fig. 2.2) consists of only
inversion in the coordinates origin.

Therefore this lattice is defined by 6 parameters – lengths a, b, c of basic translation
vectors and angles α, β, γ between their pairs a2−a3,a1−a3 and a1−a2, respectively.

In simple Γm and base-centered Γ b
m monoclinic lattices one of the vectors (with

length c, for example) is orthogonal to the plane defined by two vectors with length
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Table 2.1. Distribution of crystal classes F and Bravais lattices on singonies F 0

Syngony F 0: Direct Basic translation vectors Bravais

crystal classes F: lattice lattice

types param.

Triclinic S2: P Any noncoplanar a, b, c,

C1, S2(Ci) α, β, γ

Monoclinic C2h: P (0,−b, 0), (a sin γ,−a cos γ, 0), (0, 0, c) a, b, c, γ

Cs, C2, C2h A, B, C (0,−b, 0), (1/2)(a sin γ,−a cos γ,−c),

(1/2)(a sin γ,−a cos γ, c)

Orthorhombic D2h: P (0,−b, 0), (a, 0, 0), (0, 0, c) a, b, c

C2v, D2, D2h A, B, C (1/2)(a,−b, 0), (1/2)(a, b, 0), (0, 0, c)

F (1/2)(a, 0, c), (1/2)(0,−b, c), (1/2)(a,−b, 0)

I (1/2)(a, b, c), (1/2)(−a,−b, c), (1/2)(a,−b,−c)

Tetragonal D4h: P (a, 0, 0), (0, a, 0), (0, 0, c) a, c

S4, D2d, C4, C4v, I (l/2)(−a, a, c), (1/2)(a,−a, c), (1/2)(a, a,−c)

C4h, D4, D4h

Hexagonal D6h: H (a/2,−a/2, 0), (0, a, 0), (0, 0, c) a, c

C3, S6, C3v, C3h, D3,

D3d, D3h, C6, C6h,

C6v, D6, D6h

Rhombohedral D3d: R (a, 0, c), (−a/2, a/2, c), (−a/2,−a/2, c) a, c

C3, S6, C3v, D3, D3d

Cubic Oh: P (a, 0, 0), (0, a, 0), (0, 0, a) a

T, Td, Th, O, Oh F (1/2)(0, a, a), (1/2)(a, 0, a), (1/2)(a, a, 0)

I (1/2)(−a, a, a), (1/2)(a,−a, a)(1/2)(a, a,−a)

a and b (γ is the angle between these vectors not equal to 90 or 120 degrees). In
lattice Γ b

m the centered face can be formed by a pair of nonorthogonal lattice vectors.
For example, in a C centered monoclinic lattice the lattice point appears on the face
formed by a1 and a2 basic translation vectors. In the base-centered lattice one can
consider so-called conventional unit cell – the parallelepiped, reflecting the monoclinic
symmetry of the lattice. For a simple monoclinic lattice Γm the conventional and
primitive unit cells coincide, for a base-centered monoclinic lattice Γ b

m the conventional
unit cell contains 2 primitive unit cells (see Fig. 2.2).

All the three translation vectors of a simple orthorhombic lattice Γo are orthogonal
to each other, so that the conventional cell coincides with the primitive cell and
is defined by three parameters – lengths of the basic translation vectors. For base-
centered Γ b

o , face-centered Γ f
o and body-centered Γ v

o lattices the conventional unit
cell contains two, four and two primitive cells, respectively (see Fig. 2.2).
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Fig. 2.2. Three-dimensional Bravais lattices

The tetragonal lattices Γq (simple) and Γ v
q (body-centered) are defined by two

parameters, as two of the three orthogonal translation vectors of a conventional unit
cell have the same length a.

The hexagonal lattice is defined by two parameters: a – length of two equal basic
translation vectors (with the angle 120 degree between them) and c – length of the
third basic translation vector orthogonal two the plane of first two vectors.

In a rhombohedral(triclinic) lattice all three translation vectors have the same
length a, all three angles α between them are equal (but differ from 90 degree), so
this lattice is defined by two parameters. There are two possibilities to define the
rhombohedral lattice parameters. In the first case the parameters a and γ are given
directly. In the second case the lengths a and c of the hexagonal unit-cell translation
vectors are given: this cell consists of three primitive rhombohedral cells (so-called
hexagonal setting for rhombohedral Bravais lattice)

Three cubic lattices (simple Γc, face-centered Γ f
c and body-centered Γ v

c ) are de-
fined by one lattice parameter a – the length of conventional cubic cell edge (see
Table 2.1 and Fig. 2.2).
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The unit cell of a crystal is defined as that volume of space that its translations
allow all the space without intervals and superpositions to be covered. The PUC is
the minimal volume Va = a1[a2 × a3] unit cell connected with one Bravais lattice
point. Conventional unit cells are defined by two, four and two lattice points, for the
base-, face- and body-centered lattices, respectively.

The 32 point groups, enumerated in Table 2.2, are known as crystallographic
point groups and are given in Schönflies (Sch) notation. The Sch notation is used for
molecules. In describing crystal symmetry the international notation (or Hermann–
Mauguin notation) is also of use. In the latter, the point-group notation is determined
from the principal symmetry elements: an n fold axis is denoted by the symbol n, a
reflection mirror plane by symbol m. The symbols n/m and nm are used for the
combinations of an n fold axis with the reflection plane perpendicular to the axis or
containing the axis, respectively. Instead of mirror rotation axes, the international
system uses inversion axes n when a rotation through an angle 2π/n is followed by
the inversion operation. The full international notation of a point group consists of
the symbols of group generators. Abbreviated international notations are also used.
The Schoenflies and international full and abbreviated notations of crystallographic
point groups are given in Table 2.2.

Table 2.2. Crystallographic point groups: Schoenflies and International notations

International International

Schoenflies Full Abbreviated Schoenflies Full Abbreviated

Cn n n D2 32 32

Cs(C1h) m m D4 422 422

Ci(S2) I T D6 622 622

S4 4 4 D2h 2/m 2/m 2/m mmm

S6 3 3 D3h 6m2 6m2

C2h 2/m 2/m D4h 4/m 2/m 2/m 4/mmm

Cih 6 6 D6h 6/m 2/m 2/m 6/mmm

C4h 4/m 4/m D2d 42m 42m

C6h 6/m 6/m D3d 32/m 3m

C2v 2mm 2mm T 23 23

C3v 3m 3m Th 2/m3 m3

C4v 4mm 4mm Td 43m 43m

C6v 6mm 6mm O 432 432

D2 222 222 Oh 4/m 3 2/m m3m

Let us make a linear transformation of PUC translation vectors:

Aj =
3∑

i=1

ljiai, |det l| = L (2.8)

where the integer coefficients lji form the matrix l. Vectors Aj and their integer linear
combinations
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An =
3∑

j=1

njAj (2.9)

define for L > 1 new, “rare” Bravais lattice for which it is possible to consider various
unit cells also. The primitive cell of a new lattice with volume VA = L×Va will be the
so-called large unit cell (supercell), in relation to an initial primitive unit cell. At L = 1
transformation (2.8) means transferring to other vectors of the basic translations, to
another under the form, but not on the volume primitive cell (see Fig. 2.3).

Fig. 2.3. Different primitive unit cell choices

The crystallographic(conventional) unit cell is defined as the minimal volume unit
cell in the form of a parallelepiped constructed on vectors of translations and possess-
ing the point symmetry of the lattice. For simple lattices P of all syngonies, except for
hexagonal (H), the vectors of the basic translations can be chosen in such a manner
that the primitive cell constructed on them is crystallographic. For the centered lat-
tices the crystallographic unit cells consist of 2,4 and 2 primitive cells for base-, face-
and body-centered lattices, respectively (Fig. 2.2). In the description of symmetry
of a trigonal crystal both rhombohedral and hexagonal cells are used. The latter is
defined by transformation (2.8) with a matrix

l =

⎛⎝ 2 1 0
−1 1 0
1 1 1

⎞⎠ (2.10)

and L = 3. As L = 3 for this matrix the hexagonal unit cell contains 3 rhombohedral
unit cells.

2.2 Space Groups

2.2.1 Space Groups of Bravais Lattices. Symmorphic
and Nonsymmorphic Space Groups

As considered in the previous section Bravais lattices define the group T of lattice
translations. The general symmetry transformation of a Bravais lattice “empty” lat-
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tice) can be written in the form taR. Operations R transform any translation vector
a to another translation vector Ra and form point group F0 (holohedric point group).
The combined operation taR transforms the point of space with radius-vector r to an
equivalent point r′ = Rr + a. The identity element of the Bravais lattice symmetry
group is t0E. The multiplication law for operations taR is:

ta1R1ta2R2r = R1R2r + a1 + R1a2 = ta1+R1a2R1R2r (2.11)

so that
(taR)−1r = R−1r − R−1a = t−R−1aR−1r (2.12)

The operations ta and R do not commute. Indeed

taRr = Rr + a; Rtar = R(r + a) = Rr + tRa = tRaRr (2.13)

so that
taR = RtR−1a (2.14)

Operations taR form the space group G0 of an “empty” Bravais lattice. As lattice
translations ( also called proper translations) ta and point-symmetry operations R
do not commute the space groups G0 = T ∧ F0 are a semidirect product of the
translation and point groups of lattice symmetry. The point symmetry operations
R form subgroup F0 of space group G0 (such space groups are termed symmorphic
space groups). The group T of pure translations forms an invariant subgroup of G0.
As t−1

a = t−a we have (taR)−1
ta′taR = (taR)−1

ta+a′R = tRa′ .
The group of translations T is a subgroup of the full group symmetry G that

also contains operations of point group F and their combinations with translations.
Groups of symmetry of crystals are called space groups. The space groups do not nec-
essarily contain translations in three-dimensional space. In two-periodic space groups
translations only in a plane appear (such groups are used, for example, in the crys-
talline surface modeling, see Chap. 11). One-periodic space-group elements include
translations only along an axis (for example, symmetry groups of polymers). There is
difference between two-periodic and plane groups: in the former, the symmetry oper-
ations are transformations in a whole three-dimensional space, in the latter – only in
plane (there are known 80 two-periodic groups, and 17 plane groups [19]).

Any symmetry operation g of a crystal with space group G can be written in
the form of gi = tvi+aRi where vi is the so-called improper (fractional) translation,
depending on element Ri of a point group of a crystal and satisfying the requirements
described below. The operation gi transforms the point of space with radius-vector
r to an equivalent point r′ = gir = Rir + vi. The operations ta are elements of
the group of translations T – translations on the corresponding vector of the Bravais
lattice.

In crystals, unlike molecules, together with rotations through axes of symmetry
and reflections in planes there exist rotations through screw axes (rotation followed
by translation along a rotation axis on a part of a vector of translation) and reflections
in planes with partial translation in a plane (such planes are termed glide planes).
Translation along a screw axis of symmetry cannot be arbitrary and depends on the
order of this axis. Let the order of an axis be equal to n (n rotations through axis
are equivalent to an identity operation). Thus, n translations along an axis should
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give a vector of translation of a lattice, i.e. an element of group T that forms a
subgroup of a space group of a crystal. Otherwise, rotation through a screw axis
will not be an operation of symmetry. For example, rotation through an axis of the
fourth order can be accompanied by translation along this axis on a quarter or half
of the vector of translation. A similar requirement is imposed on the operation of
sliding reflection: two sequential reflections in a glide plane should be equivalent to
translation on a vector of a lattice. By definition, any symmetry operation g of a space
group transforms any atom of a crystal to equivalent atom. The equivalent atoms are
always the atoms of the same chemical identity but the latter can be nonequivalent
(see Chap. 3). Therefore, fractional (improper) translations can appear only in those
crystals that contain several equivalent atoms in the primitive unit cell. The presence
of identical atoms in a primitive cell – a condition necessary, but insufficient for the
occurrence of fractional translations in the space-group elements. As an example, we
consider in Sect. 2.3 the perovskite CaTiO3 structure with three equivalent oxygen
atoms in a primitive unit cell and symmorphic space group O1

h.
The set of fractional translations v in the space-group elements g = tvR depends

on the choice of origin (with respect to which the space-group elements are written)
and on the labeling of axes (choice of setting) [19].

By definition, the symmorphic space groups contain, together with each element
taR, the elements R and ta of the point group F and translation group T, respectively.
This means that for a symmorphic space group the origin of the coordinate system may
be chosen in such a way that the local (site) symmetry group of origin coincides with
the point group of the crystal F. This means that all fractional translations v are zero.
Such a choice of origin is accepted for symmorphic space groups in the International
tables [19]. For nonsymmorphic space groups some fractional translations will be
nonzero for any choice of origin.

In the next subsection we discuss 73 symmorphic and 157 nonsymmorphic space
groups.

2.2.2 Three-periodic Space Groups

The full information on space groups is given in the International Tables for Crystal-
lography [19] and presented on a site [16]. The knowledge of general principles of the
space-group designations is necessary to use the crystal-structure databases correctly.

Table 2.3 gives the list of 230 three-periodic space groups (two-periodic space
groups are considered in Chap. 11). The point-group F symbols are underlined for
the space groups that appear as the first ones in the list of a given crystal class.

The seven holohedric point groups F 0 and all their subgroups form 32 crystal-
lographic point groups (32 crystalline classes). By combining these 32 point groups
with the translation groups of 14 Bravais lattices, 73 symmorphic space groups are
obtained, including 14 space groups of the symmetry of empty Bravais lattices (see
Table 2.3). The remaining 157 space groups include point-symmetry operations with
improper (partial) translations, i.e. rotations through screw axes and reflections in
glide planes.

There are three systems of designations of space groups. First, all groups are
numbered from 1 up to 230 in order of increasing point symmetry of the corresponding
Bravais lattice (syngonies from triclinic to cubic). For fixed syngony the ordering is
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Table 2.3. 230 three-periodic space groups

NG G IG NG G IG NG G IG

Triclinic:

1 C1
1 P1 2 C1

i P1

Monoclinic:

3 C1
2 P2 4 C2

2 P21 5 C3
2 C2

6 C1
s Pm 7 C2

s Pc 8 C3
s Cm

9 C4
s Cc 10 C1

2h P2/m 11 C2
2h P21/m

12 C3
2h C2/m 13 C4

2h P2/c 14 C5
2h P21/c

15 C6
2h C2/c

Orthorhombic:

16 D1
2 P222 17 D2

2 P2221 18 D3
2 P21212

19 D4
2 P212121 20 D5

2 C2221 21 D6
2 C222

22 D7
2 F222 23 D8

2 I222 24 D9
2 I212121

25 C1
2v Pmm2 26 C2

2v Pmc21 27 C3
2v Pcc2

28 C4
2v Pma2 29 C5

2v Pca21 30 C6
2v Pnc2

31 C7
2v Pmn21 32 C8

2v Pba2 33 C9
2v Pna21

34 C10
2v Pnn2 35 C11

2v Cmm2 36 C12
2v Cmc21

37 C13
2v Ccc2 38 C14

2v Amm2 39 C15
2v Abm2

40 C16
2v Ama2 41 C17

2v Aba2 42 C18
2v Fmm2

43 C19
2v Fdd2 44 C20

2v Imm2 45 C21
2v Iba2

46 C22
2v Ima2 47 D1

2h Pmmm 48 D2
2h Pnnn

49 D3
2h Pccm 50 D4

2h Pban 51 D5
2h Pmma

52 D6
2h Pnna 53 D7

2h Pmna 54 D8
2h Pcca

55 D9
2h Pbam 56 D10

2h Pccn 57 D11
2h Pbcm

58 D12
2h Pnnm 59 D13

2h Pmmn 60 D14
2h Pbcn

61 D15
2h Pbca 62 D16

2h Pnma 63 D17
2h Cmcm

64 D18
2h Cmca 65 D19

2h Cmmm 66 D20
2h Cccm

67 D21
2h Cmma 68 D22

2h Ccca 69 D23
2h Fmmm

70 D24
2h Fddd 71 D25

2h Immm 72 D26
2h Ibam

73 D27
2h Ibca 74 D28

2h Imma

Tetragonal:

75 C1
4 P4 76 C2

4 P41 77 C3
4 P42

78 C4
4 P43 79 C5

4 I4 80 C6
4 I41

81 S1
4 P4 82 S2

4 I4 83 C1
4h P4/m

84 C2
4h P42/m 85 C3

4h P4/n 86 C4
4h P42/n

87 C5
4h I4/m 88 C6

4h I41/a 89 D1
4 P422

90 D2
4 P4212 91 D3

4 P4122 92 D4
4 P41212

to be continued
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NG G IG NG G IG NG G IG

Tetragonal:

93 D5
4 P4222 94 D6

4 P42212 95 D7
4 P4322

96 D8
4 P43212 97 D9

4 I422 98 D10
4 I4122

99 C1
4v P4mm 100 C2

4v P4bm 101 C3
4v P42cm

102 C4
4v P42nm 103 C5

4v P4cc 104 C6
4v P4nc

105 C7
4v P42mc 106 C8

4v P42bc 107 C9
4v I4mm

108 C10
4v I4cm 109 C11

4v I41md 110 C12
4v I41cd

111 D1
2d P42m 112 D2

2d P42c 113 D3
2d P421m

117 D7
2d P4b2 118 D8

2d P4n2 119 D9
2d I4m2

120 D10
2d I4c2 121 D11

2d I42m 122 D12
2d I42d

123 D1
4h P4/mmm 124 D2

4h P4/mcc 125 D3
4h P4/nbm

126 D4
4h P4/nnc 127 D5

4h P4/mbm 128 D6
4h P4/mnc

129 D7
4h P4/nmm 130 D8

4h P4/ncc 131 D9
4h P42/mmc

132 D10
4h P42/mcm 133 D11

4h P42/nbc 134 D12
4h P42/nnm

135 D13
4h P42/mbc 136 D14

4h P42/mnm 137 D15
4h P42/nmc

138 D16
4h P42/ncm 139 D17

4h I4/mmm 140 D18
4h I4/mcm

141 D19
4h I41/amd 142 D20

4h I41/acd

Rhombohedral:

143 C1
3 P3 144 C2

3 P31 145 C3
3 P32

146 C4
3 R3 147 C1

3i P3 148 C2
3i R3

149 D1
3 P312 150 D2

3 P321 151 D3
3 P3112

152 D4
3 P3121 153 D5

3 P3212 154 D6
3 P3221

155 D7
3 R32 156 C1

3v P3m1 157 C2
3v P31m

158 C3
3v P3c1 159 C4

3v P31c 160 C5
3v R3m

161 C6
3v R3c 162 D1

3d P31m 163 D2
3d P31c

164 D3
3d P3m1 165 D4

3d P3c1 166 D5
3d R3m

167 D6
3d R3c

Hexagonal:

168 C1
6 P6 169 C2

6 P61 170 C3
6 P65

171 C4
6 P62 172 C5

6 P64 173 C6
6 P63

174 C1
3h P6 175 C1

6h P6/m 176 C2
6h P63/m

177 D1
6 P662 178 D2

6 P6122 179 D3
6 P6522

180 D4
6 P6222 181 D5

6 P6422 182 D6
6 P6322

183 C1
6v P6mm 184 C2

6v P6cc 185 C3
6v P63cm

186 C4
6v P63mc 187 D1

3h P6m2 188 D2
3h P6c2

189 D3
3h P62m 190 D4

3h P62c 191 D1
6h P6/mmm

192 D2
6h P6/mcc 193 D3

6h P63/mcm 194 D4
6h P63/mmc

to be continued
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NG G IG NG G IG NG G IG

Cubic:

195 T 1 P23 196 T 2 F23 197 T 3 I23

198 T 4 P213 199 T 5 I213 200 T 1
h Pm3

201 T 2
h Pn3 202 T 3

h Fm3 203 T 4
h Fd3

204 T 5
h Im3 205 T 6

h Pa3 206 T 7
h Ia3

207 O1 P432 208 O2 P4232 209 O3 F432

210 O4 F4132 211 O5 I432 212 O6 P4332

213 O7 P4132 214 O8 I4132 215 T 1
d P43m

216 T 2
d F43m 217 T 3

d I43m 218 T 4
d P43n

219 T 5
d F43c 220 T 6

d I43d 221 O1
h Pm3m

222 O2
h Pn3n 223 O3

h Pm3n 224 O4
h Pn3m

225 O5
h Fm3m 226 O6

h Fm3c 227 O7
h Fd3m

228 O8
h Fd3c 229 O9

h Im3m 230 O10
h Ia3d

made over Bravais lattice types and for the fixed Bravais lattice type – over crystal
classes (point group F ) beginning from the symmorphic space group. In this list,
the space groups of “empty” lattices appear as the first ones for fixed type of the
lattice. Secondly, the more informative Schönflis symbol is used for space groups.
This contains the Schönflis symbol of point group F of a crystal class and the upper
numerical index distinguishing space groups within the limits of one crystal class.

Thirdly, the most detailed information on a space group is contained in so-called
international designations. In these is there both a symbol of the Bravais lattice type,
and a symbol of a crystal class with the indication of the elements of symmetry (axes
and planes). For a designation of types of Bravais lattices the following symbols (see
Table 2.3) are used: P simple (or primitive); A, B, C – one face (base-) centered; F –
face-centered; I – body-centered. For hexagonal and trigonal (rhombohedral) lattices
symbols H and R are accepted. The letter is followed by a set of characters indicating
the symmetry elements. These sets are organized in the following way.

There exist only two triclinic space groups (1, 2) with symbols P1 (no point-
symmetry operations) and P1 (the inversion operation appears, this is the symmetry
group of triclinic Bravais lattice). For monoclinic space groups (3 – 15) one symbol
is needed that gives the nature of the twofold axis (rotation axis 2 or screw axis
21) or reflection plane (mirror plane m or glide plane c). Two settings are used for
monoclinic space groups: y-axis unique, or, used in Table 2.3, z-axis unique. Primitive
and base-centered (z-axis unique) monoclinic Bravais lattices symmetry groups are
P2/m (10) and C2/m (11), respectively.

The symbols of orthorhombic space groups (16 – 74) contain the three sets. For
symmorphic groups as a symbol of a crystal class the international designation of point
groups corresponding to it serves. In Table 2.3 conformity of Schönflies’s symbols
(applied for molecules) and international symbols for point groups of symmetry of
crystals is given. For example, N225, O5

h and Fm3m – three symbols of the same
space groups of symmetry of a crystal with NaCl structure.
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For nonsymmorphic groups in a symbol of the point group it is underlined also,
which axes are screw and which planes are planes of the sliding reflections. For ex-
ample, for the group of symmetry of rutile structure it is possible to use designations
N136, D14

4h or P42/mnm, where the symbol 42 means that an axis of the fourth order
is a screw axis, with translation on half a period along this axis on rotation by angle
π/2, and a symbol n means that two of the four vertical planes are planes of sliding
reflection. A more detailed explanation of the principles of international designations
can be found in [19]. In Table 2.3 are given the list of 230 space groups with the
indication of all three mentioned designations for each of them.

2.2.3 Site Symmetry in Crystals. Wyckoff Positions

To characterize a space group G an analytical description may be employed, which
states for a space group the coordinates of all points that are equivalent to a chosen
point q with coordinates (xyz). An analytical description of all 230 space groups is
given in the International Tables for Crystallography [19] and is based on the fact
that for a given space group G all points of a three-dimensional space are subdivided
into sets of symmetrically equivalent points called crystallographic orbits.

All the points of a given crystallographic orbit may be obtained from one (arbi-
trary) crystallographic orbit point q (generating point) by applying to the latter all
the operations of space group G. Due to the infinite number of translations (in the
model of an infinite crystal) there is an infinite number of points in each space group
crystallographic orbit. Any one of the crystallographic orbit points may represent the
whole crystallographic orbit, i.e. may be a generating point q of the crystallographic
orbit.

All symmetry operations tvi+aRi = (Ri|vi + a), i = 1, 2, . . . , nq of a space group
G that satisfy the condition tv+aRq = q form a finite site-symmetry group Gq of
q with respect to G. The site-symmetry group Gq is isomorphic to one of the 32
crystallographic point groups. If the origin of the space group is at the position q, the
elements of the site-symmetry group Gq will be of the form t0R.

The site-symmetry groups Gj of different points qj of the same crystallographic
orbit are conjugate groups of G1 = Gq, i.e. the site-symmetry groups G1 and Gj of
points q1 = q and qj of the same orbit are related by gjG1g

−1
j = Gj(gj ∈ G, gj �∈

Gj , gjq1 = qj). For a point q at a general position the site-symmetry group Gq

consists of only the identity operation t0E = (E|0); the site-symmetry group of a
point at a special position includes at least one other symmetry operation in addition
to the identity operation.

An infinite number of crystallographic orbits for a given space group G can be
subdivided into sets of so-called Wyckoff positions of G. All the crystallographic
orbits that have the same (not only isomorphic but the same) site-symmetry group
belong to the same Wyckoff position. If the coordinates of the generating point of
a crystallographic orbit do not contain free parameters, the corresponding Wyckoff
position consists of only one crystallographic orbit; in other cases an infinite number of
crystallographic orbits belongs to the same Wyckoff position with variable parameters.

The different Wyckoff positions are labeled by small Roman letters. The max-
imum number of different Wyckoff positions of a space group is 27 (in the group
D1

2h − Pmmm). The various possible sets of Wyckoff positions for all the space
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groups are given in the International Tables for Crystallography [19] and reproduced
on an Internet site [16]. As an example, Table 2.4 lists those for the space group
D14

4h(P42/m2l/n2/m), the symmetry group of a rutile structure (see Sect. 2.3.3)

Table 2.4. Wyckoff Positions of Space Group 136 (P42/mnm) *

Multipl. Wyck. Site Coordinates

letter symm.

(x, y, z)(−x,−y, z)(−y + 1/2, x + 1/2, z + 1/2)

(y + 1/2,−x + 1/2, z + 1/2)(−x + 1/2, y + 1/2,−z + 1/2)

(x + 1/2,−y + 1/2,−z + 1/2)(y, x,−z)(−y,−x,−z)

16 k 1 (−x,−y,−z)(x, y,−z)(y + 1/2,−x + 1/2,−z + 1/2)

(−y + 1/2, x + 1/2,−z + 1/2)(x + 1/2,−y + 1/2, z + 1/2)

(−x + 1/2, y + 1/2, z + 1/2)(−y,−x, z)(y, x, z)

(x, x, z)(−x,−x, z)(−x + 1/2, x + 1/2, z + 1/2)

8 j ..m (x + 1/2,−x + 1/2, z + 1/2)(−x + 1/2, x + 1/2,−z + 1/2)

(x + 1/2,−x + 1/2,−z + 1/2)(x, x,−z)(−x,−x,−z)

(x, y, 0)(−x,−y, 0)(−y + 1/2, x + 1/2, 1/2)

8 i m.. (y + 1/2,−x + 1/2, 1/2)(−x + 1/2, y + 1/2, 1/2)

(x + 1/2,−y + 1/2, 1/2)(y, x, 0)(−y,−x, 0)

(0, 1/2, z)(0, 1/2, z + 1/2)(1/2, 0,−z + 1/2)

8 h 2.. (1/2, 0,−z)(0, 1/2,−z)(0, 1/2,−z + 1/2)

(1/2, 0, z + 1/2)(1/2, 0, z)

(x,−x, 0)(−x, x, 0)(x + 1/2, x + 1/2, 1/2)

4 g m.2 m (−x + 1/2,−x + 1/2, 1/2)

(x, x, 0)(−x,−x, 0)(−x + 1/2, x + 1/2, 1/2)

4 f 2.m m (x + 1/2,−x + 1/2, 1/2)

(0, 0, z)(1/2, 1/2, z + 1/2)(1/2, 1/2,−z + 1/2)

4 e 2.m m (0, 0,−z)

(0, 1/2, 1/4)(0, 1/2, 3/4)(1/2, 0, 1/4)

4 d 4.. (1/2, 0, 3/4)

4 c 2/m.. (0, 1/2, 0)(0, 1/2, 1/2)(1/2, 0, 1/2)(1/2, 0, 0)

2 b m.m m (0, 0, 1/2)(1/2, 1/2, 0)

2 a m.m m (0, 0, 0)(1/2, 1/2, 1/2)

∗Equivalent sets of Wyckoff positions

(ab)(c)(d)(e)(fg)(h)(i)(j)(k)

For this group there are 11 different Wyckoff positions denoted by letters from a to
k. The number of crystallographic orbit points in the primitive unit cell (multiplicity)
equals nF /nq where nF = 16 is the order of the point group D4h and nq is the order
of the site symmetry group Gq. The number of points in a Wyckoff position and their
coordinates are given in the International Tables with respect to the conventional
unit cell of the lattice (for the space group D14

4h with a simple Bravais lattice, the
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conventional unit cell coincides with the primitive unit cell). Use of the Wyckoff
general position k(xyz) points allows one to determine the appropriate Seitz space-
group symbols for the coset representatives in the decomposition

G =
nF∑
i=1

(Ri|vi)T =
nF∑
i=1

tvi
RiT (2.15)

of space group G with respect to the translation group T. In Table 2.4 these symbols
are written under the coordinates of the points obtained from the point r(x, y, z) by
performing the space-group operation tvR. The orientation of the symmetry elements
with respect to the tetragonal lattice translation vectors a1(a, 0, 0),a2(0, a, 0) and
a3(0, 0, c) is shown in Fig. 2.4. In the point group D4h there are four rotations around

σ

σ

σ

σ

Fig. 2.4. Orientation of the symmetry elements with respect to the tetragonal lattice trans-
lations

twofold axes (Ux, Uy, Uxy, Ux̄y) and four rotations (including the identity operation)
around the main fourfold z-axis (E,C4z, C

2
4z = C2z, C

3
4z = C−1

4z ).
The remaining 8 symmetry operations are all products of inversion I with ro-

tations: I, reflections σx, σy, σxy, σx̄y, σz in the planes perpendicular to the corre-
sponding twofold axes and z-axis; mirror rotations S−1

4z , S4z. It is seen from Table
2.4 that the elements of the point group D2h(E,C2z, Uxy, Ux̄y, I, σz, σxy, σx̄y) appear
in the cosets decomposition (2.15) without fractional translations. These elements
form the site symmetry group of the coordinate system origin placed at the point of
Wyckoff position a(0, 0, 0). The second point of this position (1/2, 1/2, 1/2) is ob-
tained from the first one by application of any symmetry operation from these eight
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(C4z, C
−1
4z , S4z, S

−1
4z , Ux, Uy, σx, σy) that come into the coset representatives in (2.15)

with fractional translation v = (1/2, 1/2, 1/2). We therefore write the space group
D14

4h (for the case when the Wyckoff position a is taken as the origin) as

D14
4h =

∑
R∈D2h

[
(R|0)T + (Ux|12

1
2

1
2
)(R|0)T

]
(2.16)

Considering the full international symbol P42/m21/n2/m of the space group D14
4h,

we see that the coset representatives in the decomposition of (2.15) with respect to the
translation group T correspond to this symbol. Indeed, in our example of a tetragonal
lattice the three positions in this symbol correspond to the symmetry directions [001];
[100], [010]; and [11̄0], [110], respectively. Rotation through the angle π/2 about the
z-axis is followed by translation along this axis by one-half of the translation vector a3

as is seen from the symbol for the element (C4z|l/2, 1/2, 1/2). The notations 2l and 2
for twofold x- and xy-rotation axes agree with the fourfold symbols for (Ux| 12 1

2
1
2 ) and

(Uxy|000). Finally, the notations m, n, m for the reflection planes perpendicular to the
corresponding symmetry directions in the international symbol for the space group
agree with the Seitz symbols σz|000), (σx| 12 1

2
1
2 ), and (σxy|000), respectively. The space

group D14
4h may also be described by its six generators: three primitive translations

tai
= (E|ai)(i = 1, 2, 3) of the simple tetragonal lattice and three generating elements

(C4z|l/2, 1/2, 1/2), (Ux|l/2, 1/2, 1/2), (I|0, 0, 0).
The coordinates of Wyckoff positions a, b, c, d do not contain free parameters

(Table 2.4); those of e, f, g, h positions contain one free parameter; the coordinates of
the positions i and j contain two free parameters. This means that an infinite number
of Wyckoff sets e – f exists in the crystal but the sets a, b, c, d consist of only one crys-
tallographic orbit. Pairs of Wyckoff positions a – b, f – g, and i – j have isomorphic site
symmetry groups (D2h, C2v and Cs, respectively). As is seen from the Table pairs of
points a – b and f – g not only have isomorphic but also equivalent Wyckoff positions.
The equivalent sites have the same point-group symmetry and the same orientations
of symmetry elements with respect to the lattice. The equivalent sets of Wyckoff posi-
tions for all the space groups can be found on the Internet site [16]. This information
will be used in the next section for the description of different crystal lattice struc-
tures. This means that if equivalent points are occupied by atoms in the crystal lattice
there are possible equivalent descriptions of this structure. For example, rutile TiO2

structure with two formula units in the primitive cell can be given in two equivalent
descriptions: Ti(2a)O(4f) or Ti(2b)O(4g). For NbOCl3 structure (Z = 4) with the
same space group two equivalent descriptions can be given: Nb(4f)O(4g)Cl(4g)Cl(8i)
and Nb(4g)O(4f)Cl(4f)Cl(8i). In this case, the Cl(8i) position is the same but Cl(4f)
and Cl(4g) positions interchange.

The difference between oriented site-symmetry groups of different Wyckoff posi-
tions is due to different orientations of the elements of the site-symmetry group Gq

with respect to the lattice. The difference arises when similar symmetry elements
(reflections in planes and rotations about twofold axes of symmetry) occur in more
than one class of elements of the point group F. Only eleven site groups [C2(2),
Cs(m), C2h(2/m), C2v(2mm), C3v(3mm), D2(222), D3(322), D2d(42m), D3d(32m),
D2h(mmm), and D3A(62m)] can have different orientations with respect to the Bra-
vais lattice. Oriented site- symmetry symbols show how the symmetry elements at
a site are related to the symmetry elements of a space group. The site-symmetry
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symbols display the same sequence of symmetry directions as the space-group inter-
national symbol. Sets of equivalent symmetry directions that do not contribute any
element to the site- symmetry group Gq are represented by a dot. In our example of
the space group D14

4h the site-symmetry groups Ga, Gb do not contain reflection in the
planes σx, σy (the dot is at the second position) and the site group Ge = 2.mm does
not contain reflection in the plane σz (a dot is at the first position, Table 2.3).

In the next section we consider 15 types of crystal structures belonging to different
space groups. As will be seen, the different crystal structures can be considered as
one or another means of the distribution of the atoms between the Wyckoff positions
of the corresponding space group.

2.3 Crystalline Structures

2.3.1 Crystal-structure Types. Structure Information
for Computer Codes

The Bravais lattice is an infinite set of points generated by three nonparallel basic
translation vectors, such that each point is identical in itself and its surroundings,
see Sect. 2.1.2. With each Bravais lattice point may be associated a number of atoms
(so-called basis). If atomic coordinates relative to the lattice point are given, together
with the lengths and directions of the lattice vectors chosen to define the axes of
reference, the complete structure (crystal lattice) is defined. The Internet page [20]
currently contains links to about 300 structures in more than 90 of the 230 space
groups. A graphical representation as well as useful information about these crystal
lattices can be obtained. Other sources of information can be found at various sites
linked with [21]. The crystal-structure type is specified when one states which sets
of Wyckoff positions for the corresponding space group are occupied by atoms. To
distinguish different structures of the same type one needs the numerical values of
lattice parameters and additional data if Wyckoff positions with free parameters in
the coordinates are occupied. When describing the crystal-structure type one also
gives the value of Z (the number of formula units in the conventional unit cell). This
information is, in principle, not necessary as Z is defined by the chemical formula of
the compound and the multiplicity of Wyckoff positions in the unit cell occupied by
atoms. It is also necessary to take into account that the primitive unit cell of any
crystal contains half the number of atoms in a body-centered cell, one-quarter the
number in a face-centered, and half the number in an A,B, or C base-centered cell.
Trigonal cells contain one-third the number of atoms in the corresponding hexagonal
cell. The Wyckoff-site description of a crystal-structure type is also origin dependent
(see Sect. 2.2.3 ). It was shown that equivalent alternatives often arise if two or more
sets of sites are physically equivalent (see Sect. 2.2.3). The crystal lattice structure
types can be indexed in different ways [20]. In Strukturbericht designation symbols
A and B are used for monoatomic and diatomic (with equal numbers of atoms of
each type) crystal types, symbols C and D – for AB2 and AnBm compounds, respec-
tively. Symbols E, F, G, . . . , K specify more complex compounds, symbols L, O, and
S specify alloys, organic compounds and silicates. The The Pearson symbol indicates
the crystal symmetry and the number of atoms in the conventional unit cell. For
example, rocksalt NaCl structure has a face-centered (F) cubic (c) structure with 8
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atoms in the cubic (nonprimitive!) unit cell, so it is designated cF8. The letters m, o,
t, h, c are used in Pearson symbols for monoclinic, orthorhombic, tetragonal, hexag-
onal, trigonal and cubic Bravais lattice-types, respectively. Pearson symbols do not
necessarily specify a unique structure: diamond, NaCl and zincblende cF8 structures
differ by symbols A,B1 and B3 (numbers in symbols B1 and B3 were assigned in
roughly the historical order of the study of crystal lattices). The prototype index is an
index of the various crystal structures by prototype compound (diamond, rocksalt,
zincblende structures). Some compounds can be associated with more than one proto-
type: ZnS compound can be found in zincblende and wurtzite structure. Finally, the
space group index of a structure can be used. Space groups are listed in the order they
appear in the International Tables [19]. As space groups refer to one of seven syngo-
nies the structures are ordered as triclinic (space groups 1 and 2), monoclinic (3–15),
orthorhombic (16–74), tetragonal (75–142), trigonal (143–167), hexagonal (168–194)
and cubic (195–230). For example, cubic structures correspond to the three Pearson
symbols cPn, cFn and cIn. In the next subsections we give short descriptions of 15
types of crystal structures. We use space-group and prototype indexes in subsection
titles. In the corresponding tables we give for each structure all the mentioned indexes.
These tables show that the same compound can be found in different structures (C –
diamond, graphite, ZnS – sphalerite, wurtzite, CaTiO3 – cubic perovskite, distorted
(orthorhombic) perovskite, TiO2 – rutile, anatase). Different structures can have the
same Bravais lattice (diamond, NaCl, fluorite, sphalerite) or even the same space
group (rocksalt NaCl – fluorite CaF2). For any structure type we give the prototype,
space group (number and international symbol), number of formula units in the prim-
itive and conventional unit cells, the occupation of Wyckoff positions by atoms and
the equivalent Wyckoff-site description.

This possibility of different equivalent descriptions of the crystal-structure types
has to be taken into account when the symmetry of electron and phonon states in crys-
tals is analyzed. Furthermore, when preparing the input data for modern computer
codes (see Appendix C) one usually takes crystal-structure data from the database
or original papers. These data often contain information about the structure in the
form accepted in ICSD (Inorganic Crystal Structure Database), see site [22].

As an example, we take the data for rutile structure given in this database (in
brackets some clarifications are given).

COL ICSD Collection Code 82656
DATE Recorded June 26, 1998; updated Nov 30, 1999
NAME Titanium dioxide
MINERAL Rutile – synthetic at 1573 K
REFERENCE Journal of Solid State Chemistry 127 (1996) 240 – 247
CELL (lattice parameters for simple tetragonal lattice, unit cell volume and num-

ber of formula units in conventional cell): a = 4.594(0) b = 4.594(0) c = 2.959(0)
α = 90.0 β = 90.0 γ = 90.0 V = 62.4 Z = 2

SGR (space group) P 42/m n m (136) – tetragonal
CLAS (point symmetry group F of crystal) 4/mmm (Hermann–Mauguin) – D4h

(Schoenflies)
PRS (Pearson symbol) tP6
PARM (Wyckoff positions occupied by atoms and their parameters)
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Atom No OxStat Wyck −−−X −−− −−−Y −−− −−−Z −−−
Ti 1 4.000 2a 0. 0. 0.
O 1 −2.000 4f 0.3047(2) 0.3047(2) 0.

As Z = 2 (two formula units in primitive unit cell, the conventional unit cell
coincides with the primitive one as the Bravais lattice is simple tetragonal) one needs
2 sets of coordinates for Ti atom (2a) and four sets for O atom (4f). As is seen for
each Wyckoff position occupied by an atom there are given coordinates of only one
representative. The others can be found on the site [16] for space group 136:

2a : (0, 0, 0)(
1
2
,
1
2
,
1
2
); 4f : (x, x, 0)(−x,−x, 0)(−x +

1
2
, x +

1
2

,
1
2

)(x +
1
2
,−x +

1
2
,
1
2
)

In this case, x = 0.3047 as follows from the structure data. To the best of our knowl-
edge only computer code CRYSTAL [23] allows one to include the space-group infor-
mation in input data so that any occupied Wyckoff position can be presented by one
representative. In the other computer codes the coordinates of all atoms in the PUC
are introduced and the point symmetry of the structure is found by the code itself
and used in calculations. From this example it is seen that the necessary information
for structures requires the use not only of the database but also IT.

Obviously, atoms of different chemical elements are always nonequivalent in a
crystal, i.e cannot be connected by operations of symmetry. But atoms of one chemical
element in a crystal can not to be connected by operations of symmetry. These atoms
are not equivalent in a crystal structure even when they occupy the same Wyckoff
position with different free parameters (examples of such the structures can be found
in the next sections).

In the next sections we briefly discuss the 15 crystal structures ordered by space-
group index.There are included structures with both symmorphic and nonsymmorphic
space groups, the structures with the same Bravais lattice and crystal class but dif-
ferent space groups, structures described by only lattice parameters or by the lattice
parameters and free parameters of the Wyckoff positions occupied by atoms.

A nonmathematical introduction to the key elements of the crystal-structure de-
scription can be found in the recently published book by Tilley [24]. As well as cover-
ing the basics this book contains an introduction to areas of crystallography, such as
modulated structures, quasicrystals, protein crystallography, which are the subject of
important and acive research.

2.3.2 Cubic Structures: Diamond, Rocksalt, Fluorite, Zincblende, Cesium
Chloride, Cubic Perovskite

In Table 2.5 we give general information about all the cubic structures under consid-
eration: prototype name, Pearson and strukturbericht designations, space group and
Wyckoff positions occupations, and possible equivalent description of the structure.
All these structures contain one formula unit in the primitive unit cell (Z=1). For the
structures cF with a face-centered cubic lattice the number of atoms is given for the
cubic unit cell consisting of four primitive unit cells (this is traditional for crystal-
structure databases). In computer calculations only the atoms inside the primitive
unit cell have to be included: two atoms for diamond, rocksalt, zincblende and cesium
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Table 2.5. Cubic structures∗

Prototype Pearsons Strukturbericht Space Wyckoff Equivalent

symbol designation group positions description

Diamond cF8 A4 Fd3m(227) C(8a) C(8b)

(C)

Rocksalt cF8 B1 Fm3m (225) Na(4a) Na(4b)

(NaCl) Cl(4b) Cl(4a)

Fluorite cF12 C1 Fm3m (225) Ca(4a) Ca(4b)

(CaF2 ) F(8c) F(8c)

Zincblende cF8 B3 F43m(216) Zn(4a) Zn(4b)

(ZnS) S(4c) S(4d)

Cesium cP2 B2 Pm3m(221) Cs(1a) Cs(1b)

Chloride Cl(1b) Cl(1a)

(CsCl)

Perovskite cP5 E21 Pm3m(221) Ca(1a) Ti(1a)

(cubic ) Ti(1b) Ca(1b)

(CaTiO3) O(3c) O(3d)

∗Equivalent sets of Wyckoff positions for space groups [16]

216 (abcd)(e)(fg)(h)(i)

221 (ab)(cd)(ef)(g)(h)(ij)(kl)(m)(n)

225 (ab)(c)(d)(e)(f)(g)(hi)(j)(k)(l)

227 (ab)(cd)(e)(f)(g)(h)(i)

chloride structures, three and five atoms for fluorite and cubic perovskite structures,
respectively.

Diamond structure(Fig. 2.5) is described by nonsymmorphic space group N227
with the face-centered cubic lattice: the macroscopic cubic symmetry of this crystal
appears as the direct product of the first carbon atom site symmetry group Td and
inversion I at the center of C–C bond moving the first carbon to the equivalent second
carbon atom in the primitive unit cell.

The coordinates of the carbon atoms can be given in fractions of primitive lat-
tice vectors (these vectors are nonorthogonal for a face-centered cubic lattice) or in
Cartesian coordinates. The primitive vectors themselves are usually given in Carte-
sian coordinates that for cubic lattices are directed along the translation vectors of
the conventional (cubic) unit cell (see Fig. 2.2). To describe the diamond structure
it is enough to give the numerical value of one parameter – the length of the cubic
unit-cell translation vector (cubic lattice parameter a). One can find [20] the follow-
ing numerical data for diamond structure (for an experimental value of 3.57 Å of the
lattice parameter) in the form:

Primitive vectors a1 = (0.000, 1.785, 1.785) a2 = (1.785, 0.000, 1.785) a3 =
(1.785, 1.785, 0.000) Volume = 11.37482325
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Fig. 2.5. Diamond structure

Atom Lattice coordinates Cartesian coordinates
C 0.12500 0.12500 0.12500 0.44625 0.44625 0.44625
C –0.12500 –0.12500 –0.12500 –0.44625 –0.44625 –0.44625

These numerical data correspond to the origin choice 2 for the space group N227
in [19] and the diamond structure description C(8a) with the shifted origin.

Rocksalt NaCl structure (see Fig. 2.6) has the symmetry of symmorphic space
group N225 and is typical of alkali halide crystals (Li, Na, K fluorides, chlorides and
bromides) and some oxides (MgO, CaO, SrO).

Fig. 2.6. NaCl structure

The structure is defined also by only the face-centered cubic lattice parameter a
(for NaCl crystal the experimental value of a=5.63 Å):

Primitive vectors
a1 = (0.000, 2.815, 2.815)
a2 = (2.815, 0.000, 2.815)
a3 = (2.815, 2.815, 0.000)
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Volume = 44.61338675
Atom Lattice coordinates Cartesian coordinates
Na 0.000 0.000 0.000 0.000 0.000 0.000
Cl 0.500 0.500 0.500 2.815 2.815 2.815

This description Na(4a)Cl(4b) is equivalent to the description in which the coor-
dinates of atoms are interchanged.

The same space group N225 is the symmetry group of the fluorite CaF2 structure
(Fig. 2.7).

Fig. 2.7. Fluorite structure

Some compounds with this structure are the following: CO2, CdF2, CeO2, SrCl2,
SrF2, TiO2, ZrO2. For the experimental lattice parameter a=5.46295 Å the structure
data are the following (Ca(4a)F(8c)):

Primitive vectors
a1 = (0.000000, 2.731475, 2.731475)
a2 = (2.731475, 0.000000, 2.731475)
a3 = (2.731475, 2.731475, 0.000000)
Volume = 40.75882781

Atom Lattice coordinates Cartesian coordinates
Ca 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
F 0.2500000 0.2500000 0.2500000 1.3657375 1.3657375 1.3657375
F 0.7500000 0.7500000 0.7500000 4.0972125 4.09721250 4.09721250

The Ca atom in the fluorite structure can be placed also in Wyckoff position b
(0.5,0.5,0.5). The same space group describes the symmetry of crystals (Li2O,Na2O)
with so-called antifluorite structure: two cations occupy the Wyckoff position c and
oxygen – the Wyckoff position a. The symmorphic space group N225 is given in [19]
for one origin choice (in Wyckoff position a with the site symmetry group Oh).

The point symmetry of the zincblende ZnS (Fig. 2.8) structure is tetrahedral, but
the lattice is cubic face-centered.



32 2 Space Groups and Crystalline Structures

Fig. 2.8. Zincblende structure

This structure can be obtained from the diamond structure by exchanging two
carbon atoms with Zn and S atoms, so that the operation of interchange of two atoms
in the primitive unit cell disappears. The zincblende structure is known for different
compounds (AgI, AlAs, AlP, AlSb, BAs, BN, BP, BeS, BeSe, BeTe, CdS, CuBr, CuCl,
CuF, CuI, GaAs, GaP, GaSb, HgS, HgSe, HgTe, INAs, InP, MnS, MnSe, SiC, ZnSe,
ZnTe). For a=5.4093 Å the ZnS structure data are the following:

Primitive vectors
a1 = (0.00000, 2.70465, 2.70465)
a2 = (2.70465, 0.00000, 2.70465)
a3 = (2.70465, 2.70465, 0.00000)
Volume = 39.56974149

Atom Lattice coordinates Cartesian coordinates
Zn 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S 0.250000 0.250000 0.250000 1.352325 1.352325 1.352325

For an equivalent description of the structure the Zn and S atoms can be inter-
changed.

For the next two structures the Bravais lattice is simple cubic.
Cesium chloride CsCl structure (Fig. 2.9) has the symmetry of symmorphic space

group N221 and two equivalent descriptions Cs(1a)Cl(1b) and Cs(1b)Cl(1a). This
structure was found for crystals CsBr, CsI, RbCl, AlCo, AgZn, BeCu, MgCe, RuAl,
SrTl.

For a simple cubic lattice parameter a=4.11 Å the CsCl crystal data are the
following:

Primitive vectors
a1 = (4.11, 0.00, 0.00)
a2 = (0.00, 4.11, 0.00)
a3 = (0.00, 0.00, 4.11)
Volume = 69.42653100
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Fig. 2.9. CsCl structure

Atom Lattice coordinates Cartesian coordinates
Cs 0.000 0.000 0.000 0.000 0.000 0.000
Cl 0.500 0.500 0.500 2.055 2.055 2.055

In the equivalent description of this structure the Cs and Cl atoms can be inter-
changed.

The cubic perovskite CaTiO3 structure (Fig. 2.10) is more complicated and found
as the high-temperature modification of different crystals (SrTiO3, BaTiO3, PbTiO3,
SrZrO3, PbZrO3).

Fig. 2.10. Perovskite structure

The structure is defined by one simple cubic lattice parameter and for a=3.795 Å
five atoms in the CaTiO3 unit cell have the coordinates:

Primitive vectors
a1 = (3.795, 0.000, 0.000)
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a2 = (0.000, 3.795, 0.000)
a3 = (0.000, 0.000, 3.795)
Volume =54.65568

Atom Lattice coordinates Cartesian coordinates
Ca 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ti 0.5000 0.5000 0.5000 1.8975 1.8975 1.8975
O 0.5000 0.0000 0.0000 1.8975 0.0000 0.0000
O 0.0000 0.5000 0.0000 0.0000 1.8975 0.0000
O 0.0000 0.0000 0.5000 0.0000 0.0000 1.8975

In the cubic perovskite structure the Ti–O distance is equal to one half of the
translation vector length. In the equivalent structure description (when Ca and Ti
atoms are interchanged) the three oxygen atoms positions need to be taken as (0.5
0.5 0), (0.5,0,0.5) and (0,0.5,0.5).

The considered different cubic structures are defined by one numerical parameter
– the cubic lattice constant. This is due to the fact that in these structures atoms
occupy Wyckoff positions that have no free parameters. The definition of the more
complicated structures requires the knowledge of both the lattice constants and the
numerical values of the free parameters for the free-parameter-dependent Wyckoff
positions occupied by atoms.

2.3.3 Tetragonal Structures: Rutile, Anatase and La2CuO4

In Table 2.6 we give general information about three tetragonal structures: two
modifications (rutile and anatase) of titanium dioxide TiO2 and lanthanum cuprate
La2CuO4.

Table 2.6. Tetragonal structures*

Prototype Pearsons Strukturbericht Space Wyckoff Equivalent

symbol designation group positions description

Rutile tP6 C4 P42/mnm(136) Ti(2a) Ti(2b)

(TiO2) O(4f) O(4g)

Anatase tI12 C5 I41/amd(141) Ti(2a) Ti(2b)

(TiO2) O(4e) O(4e)

Lanthanum tI14 - I4/mmm(139) La(2e) La(2e)

cuprate Cu(1a) Cu(1b)

(La2CuO4) O1(2c) O1(2c)

O2(2e) O2(2e)

∗Equivalent sets of Wyckoff positions for space groups [16]

136 (ab)(c)(d)(e)(fg)(h)(i)(j)(k)

141 (ab)(cd)(e)(f)(g)(h)(i)

139 (ab)(c)(d)(f)(e)(g)(h)(ij)(k)(l)(m)(n)(o)
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The rutile and anatase phases of titanium dioxide have been widely studied in
recent years. The rutile form is used as a white pigment and opacifier, the anatase
phase finds applications in photo catalysts and nanostructured solar cells. La2CuO4

has attracted considerable research efforts as it was found to become a high-Tc su-
perconductor (Tc = 35 K) when properly doped with Sr or Ba atoms. Both TiO2

modifications contain 6 atoms (two formula units) in the primitive cell.
The rutile structure (Fig. 2.11) belongs to the P42/mnm nonsymmorphic space

group.

Fig. 2.11. Rutile structure

The unit cell of the primitive tetragonal lattice is defined by the lattice vectors
a1 = a2 (in the xy-plane) and c (along z-axis). The rotations through a fourth-order
axis are followed by the improper translations along the z-axis of one half of the c-
vector length to ensure transformation of any of the oxygen atoms to another one,
see Table 2.4. As is seen from Table 2.6 two Ti atoms of the primitive cell occupy
Wyckoff position a(000;1/2,1/2,1/2), four oxygen atoms occupy Wyckoff position f
with one free parameter u: (±(u, u, 0); ±(u+1/2, 1/2−u, 1/2)). The Wyckoff positions
coordinates are given in units of a, a, c. Thus, the rutile structure is defined by three
parameters: a, c and u. The following numerical data for rutile structure are given
in [20]:

Primitive vectors
a1 = (4.59373, 0.00000, 0.00000)
a2 = (0.00000, 4.59373, 0.00000)
a3 = (0.00000, 0.00000, 2.95812)
Volume = 62.42329930

Atom Lattice coordinates Cartesian coordinates
Ti 0.0000 0.0000 0.0000 0.00000000 0.00000000 0.00000
Ti 0.5000 0.5000 0.5000 2.29686500 2.29686500 1.47906
O 0.3053 0.3053 0.0000 1.40246577 1.40246577 0.00000
O –0.3053 –0.3053 0.0000 –1.40246577 –1.40246577 0.00000
O 0.8053 0.1947 0.5000 3.69933077 0.89439923 1.47906
O 0.1947 0.8053 0.5000 0.89439923 3.69933077 1.47906
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The anatase structure (Fig. 2.12) belongs to the I4/amd nonsymmorphic space
group.

Fig. 2.12. Anatase structure

The tetragonal unit cell of a body-centered tetragonal lattice is defined by the
lattice vectors a1 = a2 (in the xy-plane) and c (along the z-axis) and contains 2
primitive unit cells (see Fig. 2.2). To describe the primitive unit cell the translation
vectors a1(a, 0, 0),a2(0, a, 0),a3(1/2a, 1/2a, 1/2c) are used. As is seen from Table 2.6.
two Ti atoms of the primitive cell occupy Wyckoff position 2a(0 ,0 ,0; 0, 1/2, 1/4),
four oxygen atoms occupy Wyckoff position 4e (0, 0, u; 1/2, 0,−u + 1/2; 0, 1/2, u +
1/4;1/2, 1/2,−u + 1/2). The anatase structure is defined by three parameters: a, c, u.
The numerical data for anatase structure, given in [20] are the following:

Primitive vectors
a1 = (3.7850, 0.0000, 0.0000)
a2 = (0.0000, 3.7850, 0.0000)
a3 = (1.8925, 1.8925, 4.7570)
Volume = 68.14985232
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Atom Lattice coordinates Cartesian coordinates
Ti 0.125 –0.125 –0.25 0.0000 –0.94625 –1.18925
Ti 0.125 0.125 0.25 0.0000 0.94625 1.18925
O 0.08159975 0.33159975 –0.16319950 0.0000 0.94625 –0.77634
O –0.08159975 –0.33159975 0.16319950 0.0000 –0.94625 0.77634
O 0.33159975 0.08159975 0.33680050 1.8925 0.94625 1.602160
O –0.33159975 –0.08159975 –0.33680050 –1.8925 –0.94625 –1.60216

These data correspond to the coordinate system origin shifted by (1/8,–1/8,–1/4)
(in the units of primitive translations), in comparison with the origin choice made
in [19].

The lanthanum cuprate structure (Fig. 2.13) belongs to the symmorphic space
group I4/mmm with the body-centered tetragonal lattice and contains 7 atoms in the
primitive unit cell.

The Cu atom occupies Wyckoff position 1a(000), two La atoms and two oxygen
atoms O2 occupy Wyckoff position 2e ±(0, 0, z) with different numerical values of
the z-parameter for La and oxygen atoms; the two remaining oxygen atoms occupy
Wyckoff position 2c(0, 1/2, 0; 1/2,0,0). The structure is defined by two tetragonal
lattice parameters ( lengths of a1 = a2 primitive translations and c – translation
vector of the tetragonal unit cell containing two primitive cells) and two z-parameters
defining the positions of the La and O2 atoms. The numerical data for this structure
are taken from [20]. The primitive translation vector a3(1/2,1/2,1/2) is given in units
of a, a, c.

Primitive vectors
a1 = (3.78730, 0.00000, 0.00000)
a2 = (0.00000, 3.78730, 0.00000)
a3 = (1.89365, 1.89365, 6.64415)
Volume = 95.30130

Atom Cartesian coordinates Free parameter z
Cu 0.00000000 0.00000000 0.00000000
La 0.00000000 0.00000000 4.79176098 0.3606
La 0.00000000 0.00000000 8.49653902

O1 1.89365000 0.00000000 0.00000000
O1 0.00000000 1.89365000 0.00000000
O2 0.00000000 0.00000000 2.42910124 0.1828
O2 0.00000000 0.00000000 10.85919876

The La2CuO4 structure (see Fig. 2.13) consists of CuO2–La–O–O–La planes re-
peated along the z-axis (translation vector c).

The electronic structure calculations show (see Chap. 9): the highest occupied band
states in the lathanum cuprate are O1 − 2px, 2py states strongly mixed with Cu −
3dx2−y2 states. This result agrees with the hypothesis that the high-Tc conductivity
can be explained by CuO2-plane consideration as is done in most theoretical models.

2.3.4 Orthorhombic Structures: LaMnO3 and YBa2Cu3O7

In Table 2.7 we give the information about two orthorhombic structures: lanthanum
manganite LaMnO3 (Fig. 2.14) and yttrium cuprate YBa2Cu3O7 (Fig. 2.15).
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Fig. 2.13. La2CuO4 structure

Among the manganese oxides, LaMnO3 is important as it is the parent sys-
tem in the family of manganites, that show colossal magneto resistance effects. In
the low-temperature phase this crystal belongs to the nonsymmorphic space group
N62 with the simple orthorhombic lattice. There are four formula units (20 atoms)
in the primitive unit cell. The structure parameters can be found in the litera-
ture in two different settings used for the nonsymmorphic space group N62 de-
scription. In the standard setting Pnma (accepted in [19]) the primitive orthorhom-
bic lattice vectors a, b, c define the following Wyckoff positions occupied by atoms:
La 4c(x, 1/4, z), Mn 4a( 0,0,0;1/2,0,1/2;0,1/2,0;1/2,1/2,1/2), O1 4c(x, 1/4, z;1/2 −
x,−1/4, 1/2 + z;−x,−1/4,−z; x + 1/2, 1/4, 1/2 − z) and O2 8d (x, y, z). The Pbnm
setting means the cyclic transposition of basic translation vectors a, b, c to c, a, b
and the corresponding changes in the Wyckoff positions coordinates: c(z, x, 1/4) and



2.3 Crystalline Structures 39

Fig. 2.14. Orthorhombic LaMnO3 structure

Table 2.7. Orthorhombic structures.*

Prototype Space Wyckoff Equivalent

group positions description

LaMnO3 Pnma(62) La(4c) La(4c)

Mn(4a) Mn(4b)

O1(4c) O1(4c)

O2(8d) O2(8d)

YBa2Cu3O7 Pmmm(47) Y(1h) Y(1a)

Ba(2t) Ba(2q)

Cu1(1a) Cu1(1h)

Cu2(2q) Cu2(2t)

O1(1e) O1(1d)

O2(2r) O2(2s)

O3(2s) O3(2r)

O4(2q) O4(2t)

∗Equivalent sets of Wyckoff positions for space groups [16]

62 Pnma (ab)(c)(d)

47 Pmmm (abcdefgh)(ijklmnopqrst)(uvwxyz)

d(z, x, y). When using the structure data from the literature one has to take into
account the setting chosen. The structure is defined by three orthorhombic lattice pa-
rameters and 7 internal parameters: two parameters x, z for La and O1 atoms and 3
parameters for O2 atoms. The equivalent description of LMO structure given in Table
2.7 for the fixed setting means in fact the change of the coordinate system origin -
moving the Mn atom position from a(000) to b(001/2). The coordinates of c and d
points has to be also changed to (x, 1/4, z + 1/2), d(x, y, z + 1/2). In this case, the
structure parameters do not change.
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Fig. 2.15. YBa2Cu3O7 structure

Taken from [20] the structure data are given in the Pnma setting.
Primitive vectors
a1 = (5.6991, 0.0000, 0.0000)
a2 = (0.0000, 7.7175, 0.0000)
a3 = (0.0000, 0.0000, 5.5392)
Volume = 243.62954930
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Atom Lattice coordinates Cartesian coordinates
Mn 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Mn 0.50000000 0.00000000 0.50000000 2.84955000 0.00000000 2.76960000
Mn 0.00000000 0.50000000 0.00000000 0.00000000 3.85875000 0.00000000
Mn 0.50000000 0.50000000 0.50000000 2.84955000 3.85875000 2.76960000
La 0.54349985 0.25 0.00636915 3.09746000 1.92938000 0.03528000
La –0.04349985 0.75 0.50636915 –0.24791000 5.78812000 2.80488000
La –0.54349985 0.75 –0.00636915 –3.09746000 5.78812000 –0.03528000
La 1.04349985 0.25 0.49363085 5.94701000 1.92938000 2.73432000
O1 –0.01069994 0.25 –0.07329939 –0.06098000 1.92938000 –0.40602000
O1 0.51069994 0.75 0.42670061 2.91053000 5.78812000 2.36358000
O1 0.01069994 0.75 0.07329939 0.06098000 5.78812000 0.40602000
O1 0.48930006 0.25 0.57329939 2.78857000 1.92938000 3.17562000
O2 0.30140022 0.03849951 0.22570046 1.71771000 0.29712000 1.25020000
O2 0.19859978 –0.03849951 0.72570046 1.13184000 –0.29712000 4.01980000
O2 –0.30140022 0.53849951 –0.22570046 –1.71771000 4.15587000 –1.25020000
O2 0.80140022 0.46150049 0.27429954 4.56726000 3.56163000 1.51940000
O2 –0.30140022 –0.03849951 –0.22570046 –1.71771000 –0.29712000 –1.25020000
O2 0.80140022 0.03849951 0.27429954 4.56726000 0.29712000 1.51940000
O2 0.30140022 0.46150049 0.22570046 1.71771000 3.56163000 1.25020000
O2 0.19859978 0.53849951 0.72570046 1.13184000 4.15587000 4.01980000

The Y–Ba–Cu–O systems are known as high-Tc superconductors (Tc =93 K) when
oxygen atoms in the YBa2Cu3O7 system are partly replaced by vacancies or fluorine
atoms to synthesize ceramic oxides YBa2Cu3O7−x. The atomic structure of this com-
pound is described by symmorphic space group Pmmm, the primitive unit cell of the
orthorhombic lattice consists of one formula unit with the atoms distributed over sev-
eral planes (see Fig. 2.15). The three copper atoms form two nonequivalent groups:
Cu1 atom occupies Wyckoff position 1a(0,0,0), forming Cu–O chains and two Cu2

atoms – Wyckoff position 2q(0,0,±z)(see Table 2.7), forming CuO2 planes. Two Ba
atoms occupy 2t(1/2,1/2,±z) position. The seven oxygens form four nonequivalent
atomic systems: O1 – 1e(0,1/2,0), O2 – 2r(0,1/2,±z), O3 – 2s(1/2,0,±z) and O4 –
2q(0,0,±z). The structure requires 8 parameters for its definition: three orthorhombic
lattice parameters and five internal parameters of Ba, Cu2 and O2, O3, O4 atomic
positions. All the structural data from [20] are the following.

Primitive vectors
a1 = (3.8227, 0.0000, 0.0000)
a2 = (0.0000, 3.8872, 0.0000)
a3 = (0.0000, 0.0000, 11.6802)
Volume = 173.56308
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Atom Cartesian coordinates Free parameter z
(in |a3| units)

Cu1 0.00000000 0.00000000 0.00000000
Cu2 0.00000000 0.00000000 4.15347912 0.3556
Cu2 0.00000000 0.00000000 7.52672088
O1 0.00000000 1.94360000 0.00000000
O2 0.00000000 1.94360000 4.42679580 0.3790
O2 0.00000000 1.94360000 7.25340420
O3 1.91135000 0.00000000 4.41394758 0.3779
O3 1.91135000 0.00000000 7.26625242
O4 0.00000000 0.00000000 1.85715180 0.1590
O4 0.00000000 0.00000000 9.82304820
Ba 1.91135000 1.94360000 2.15266086 0.1843
Ba 1.91135000 1.94360000 9.52753914

2.3.5 Hexagonal and Trigonal Structures: Graphite, Wurtzite, Corundum
and ScMnO3

In this section we consider three hexagonal (graphite, wurtzite and ScMnO3, see
Figures 2.16–2.18, respectively) and one trigonal (corundum) structure, see Fig. 2.19

Fig. 2.16. Graphite structure

The latter structure can also be described in hexagonal axes.
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Fig. 2.17. Wurtzite structure

Fig. 2.18. ScMnO3 structure

The graphite structure belongs to the nonsymmorphic space group P63/mmc,
the primitive unit cell of the hexagonal lattice contains 4 carbon atoms occupy-
ing two nonequivalent Wyckoff positions: 2a (0,0,0;0,0,1/2) and 2b(0,0,1/4;0,0,–1/4).
The structure is described by two hexagonal lattice parameters a and c. The graphite
structure consists of atomic layers separated by a distance larger than the interatomic
distance in one layer. Therefore, the one-layer approximation is in some cases used for
graphite: only two carbon atoms in the primitive cell of the plane hexagonal lattice
are included in the structure.

The numerical values of the graphite structure data from [20] are the following:
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Fig. 2.19. Corundum structure

Table 2.8. Hexagonal structures*

Prototype Pearsons Strukturbericht Space Wyckoff Equivalent

symbol designation group positions description

Graphite hP4 A9 P63/mmc(194) C(2a) -

C C(2b)

Wurtzite hP4 B4 P63mc(186) Zn(2b) -

(ZnS) S(2b)

ScMnO3 hP30 - P63cm(185) Sc1(2a) -

Sc2(4b)

Mn(6c)

O1, O2(6c)

O3(2a)

O4(4b)

Corundum hR10 D51 R3c(167) Al(4c) -

(Al2O3) O(6e)

∗Equivalent sets of Wyckoff positions for space groups [16]

194 (a)(b)(cd)(e)(f)(g)(h)(i)(j)(k)(l)

186 (a)(b)(c)(d)

185 (a)(b)(c)(d)

167 (a)(b)(c)(d)(e)(f)

Primitive vectors
a1 = (1.22800000,−2.12695839, 0.00000000)
a2 = (1.22800000, 2.12695839, 0.00000000)
a3 = (0.00000000, 0.00000000, 6.69600000)
Volume = 34.97863049

Atom Lattice coordinates Cartesian coordinates
C 0.00000000 0.00000000 0.25000000 0.00000000 0.00000000 1.67400000
C 0.00000000 0.00000000 0.75000000 0.00000000 0.00000000 5.02200000
C 0.33333333 0.66666667 0.25000000 1.22800000 0.70898613 1.67400000
C 0.66666667 0.33333333 0.75000000 1.22800000 –0.70898613 5.02200000
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The wurtzite structure of ZnS is the hexagonal analog of the zincblende structure
of ZnS (see Sect. 3.2.2) and belongs to the nonsymmorphic space group P63mc with
a hexagonal lattice. The primitive unit cell contains two formula units, both Zn and
S atoms occupy the same Wyckoff position 2b(1/3, 2/3, z; 2/3, 1/3, z + 1/2) with the
different values of internal parameter z. Thus, the wurtzite structure is defined by 4
parameters – two lattice and two internal ones. The numerical values of the structure
data from [20] are the following:

Primitive vectors
a1 = (1.91135000,−3.31055531, 0.00000000)
a2 = (1.91135000, 3.31055531, 0.00000000)
a3 = (0.00000000, 0.00000000, 6.26070000)
Volume = 79.23078495

Atom Lattice coordinates Cartesian coordinates
Zn 0.33333333 0.66666667 0.00000000 1.91135000 1.10351844 0.00000000
Zn 0.66666667 0.33333333 0.50000000 1.91135000 –1.10351844 3.13035000
S 0.33333333 0.66666667 0.37480000 1.91135000 1.10351844 2.34651036
S 0.66666667 0.33333333 –0.12520000 1.91135000 –1.10351844 –0.78383964

RMnO3 rare-earth manganites show a wide variety of physical properties. For
R3+ cations with large ionic size RMnO3 oxides crystallize in a perovskite-type struc-
ture, with orthorhombic symmetry, as was illustrated in Sect. 2.3.4 by the exam-
ple of LaMnO3 manganite. For R = Y, Sc, Ho–Lu the perovskite structure be-
comes metastable and a new hexagonal polytype stabilizes. The hexagonal man-
ganites are an interesting group of compounds because of their unusual combina-
tion of electrical and magnetic properties: at low temperatures they show coexis-
tence of ferroelectric and magnetic orderings. ScMnO3 plays a prominent role in
this series. It has the highest Neel temperature and the smallest distance between
magnetic ions Mn3+ along the hexagonal axis direction. At temperatures below
1200 K ScMnO3 structure belongs to space group P63cm with hexagonal lattice
and six formula units (30 atoms) per cell. The six Mn atoms occupy Wyckoff po-
sition 6c(x, 0, z;0, x, z;−x,−x, z;−x, 0, z + 1/2;0,−x, z + 1/2;x, x, z + 1/2). The six
Mn atoms are distributed in the z = 0 and z = 1/2 planes. Each Mn atom oc-
cupies the center of a triangular bipyramid whose vertices are oxygen atoms (see
Fig. 2.18). As a result, each Mn atom is coordinated by five oxygen atoms in a
bipyramidal configuration. The same Wyckoff position 6c is occupied by nonequiva-
lent (with the different internal parameters x, z) oxygens O1, O2. Sc1 and O3 atoms
occupy Wyckoff position 2a (0, 0, z;0, 0, z+1/2), Sc2 and O4 atoms – Wyckoff position
4b(1/3, 2/3, z;2/3, 1/3, z +1/2;1/3, 2/3, z +1/2;2/3, 1/3, z). One O3 atom and two O4

atoms are in the equatorial plane of the bipyramid, whereas the O1 and O2 atoms
are at the apices. Sc atoms occupy two crystallographic positions Sc1 and Sc2, both
of them bonded to seven oxygen atoms. Both RO7 polyhedra can be described as
monocapped octahedra. The capping oxygens are O3 for Sc1 and O4 for Sc2. Along
the axis z , the structure consists of layers of corner-sharing MnO5 bipyramids sep-
arated by layers of edge-sharing RO7 polyhedra. The structure is defined by two
hexagonal lattice parameters and 10 internal parameters – two for each type of atoms
Mn, O1, O2, and one for each type of atoms Sc1, Sc2, O3 and O4. The numerical values
of all the structure parameters can be found, for example in [25]. The description of
the ScMnO3 shows it as a very complicated one with many atoms in the primitive cell.
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Nevertheless, the first-principles LCAO calculations of ScMnO3 were recently made
(see Chap. 9).

Aluminum oxide (α − Al2O3, corundum) has a large number of technological ap-
plications. Due to its hardness, its chemical and mechanical stability at high tempera-
tures and its electronic properties as a widegap insulator it is used for the fabrication
of abrasives, as a carrier for thin metal films in heterogeneous catalysis and in optical
and electronic devices. α − Al2O3 crystallizes in a rhombohedral structure with the
space group R3c. The primitive rhombohedral unit cell consists of two Al2O3 units
with experimental lattice parameters a = 5.128 Åand α = 55.333 Å. Four Al atoms
occupy Wyckoff position 4c: ±(x, x, x;−x+1/2,−x+1/2,−x+1/2). Six oxygen atoms
occupy Wyckoff position 6e: ±(x,−x+1/2, 1/4;1/4, x,−x+1/2;−x+1/2, 1/4, x). Us-
ing the transformation of the rhombohedral lattice vectors with the matrix (2.10) one
obtains the hexagonal setting of the α − Al2O3 structure. Its unit cell consists of 3
primitive unit cells (the determinant of the transformation matrix equals 3). The lat-
tice parameters in this hexagonal setting are a = 4.763 Å, c = 13.003 Å. In hexagonal
axes the positions occupied by atoms are written in the form 4c ±(0, 0, z;0, 0,−z+1/2)
and 6e ±(x, 0, 1/4;0, x, 1/4;−x,−x, 1/4). The two internal parameters of the corun-
dum structure define the Al and O atoms positions; in terms of the hexagonal lattice,
xAl(hex) = 0.35228 and xO(hex) = 0.306. On the rhombohedral lattice this translates
to z1 = xAl(hex) = 0.35228 and x1 = 1/4 − xO(hex) = −0.0564. In rhombohedral
axes the numerical data for corundum structure are given, for example, in [20]:

Primitive rhombohedral vectors
a1 = (0.256984, 3.621398, 3.621398)
a2 = (3.621398, 0.256984, 3.621398)
a3 = (3.621398, 3.621398, .256984)
Volume = 84.89212148

Atom Lattice coordinates Cartesian coordinates
Al 0.35228000 0.35228000 0.35228000 2.64202250 2.64202250 2.64202250
Al –0.35228000 –0.35228000 –0.35228000 –2.64202250 –2.64202250 –2.64202250
Al 0.14772000 0.14772000 0.14772000 1.10786750 1.10786750 1.10786750
Al –0.14772000 –0.14772000 –0.14772000 –1.10786750 –1.10786750 –1.10786750
O –0.05640000 0.55640000 0.25000000 2.90580145 0.84408855 1.87494500
O 0.05640000 –0.55640000 –0.25000000 –2.90580145 –0.84408855 –1.87494500
O 0.55640000 0.25000000 –0.05640000 0.84408855 1.87494500 2.90580145
O –0.55640000 –0.25000000 0.05640000 –0.84408855 –1.87494500 –2.90580145
O 0.25000000 –0.05640000 0.55640000 1.87494500 2.90580145 0.84408855
O –0.25000000 0.05640000 –0.55640000 –1.87494500 –2.90580145 –0.84408855

By consideration of the hexagonal and trigonal structures we conclude the discus-
sion of the structure definitions by space groups and Wyckoff positions. In the next
chapter we consider the symmetry of crystalline orbitals, both canonical and localized.
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Symmetry and Localization of Crystalline Orbitals

3.1 Translation and Space Symmetry of Crystalline Orbitals.
Bloch Functions

3.1.1 Symmetry of Molecular and Crystalline Orbitals

In a previous chapter we considered the symmetry of a crystalline structure for fixed
nuclei positions. The aim of the first-principles approaches in quantum chemistry is
to calculate the properties of molecules and crystals without the use of empirical
parameters. In principle, all the particles–electrons and nuclei–should be involved in
such calculations. In fact, the solution of this complicated task is simplified in the
Born–Oppenheimer approximation ( also called the adiabatic approximation). In the
first stage the electronic subsystem is studied for different nuclear configurations to
calculate the potential-energy surface and to find the optimized atomic positions cor-
responding to the minimal total energy per primitive cell. The nuclear motion can be
studied a posteriori, by considering the electronic energy surface as an external poten-
tial. Quantum chemistry of solids concerns mainly those physical and chemical proper-
ties of solids that depend on the electronic structure. The problem of nuclear motion is
solved in approaches using molecular-dynamics methods [26]. These approaches (not
considered in this book) allow the study of thermodynamic and transport properties
of solids and deserve a separate monograph. The calculations of the electronic sub-
system in the adiabatic approximation are always connected with the choice of the
electronic Hamiltonian. Formally, the symmetry of the electronic Hamiltonian may
differ from the symmetry of the nuclear configuration. However, in the case of crys-
talline solids the approximate electronic Hamiltonians are usually chosen in such a
way that the translational and point symmetry of a crystal is maintained. In Chapters
4–6 we consider in more detail two of the mostly popular approximate methods of
many-electron systems description – Hartree–Fock method and the density-functional
theory. In both approaches the approximate many-electron function is introduced in
such a way that the electron subsystem calculations are made for one-electron wave-
functions. The latter are known as molecular orbitals in molecules and crystalline
orbitals in crystals. The symmetry of the electronic Hamiltonian ensures that orbitals
(one-electron functions for many-electron systems) transform according to the irre-
ducible representations of point groups for molecules and space groups for crystals.
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Let the wavefunction ϕ(r) depend on the coordinates of only one electron, Ĥ is a
Hamiltonian operator and E the energy of the eigenstate ϕ(r). The function ϕ(r)
satisfies the time-independent equation

Ĥ(r)ϕ(r) = Eϕ(r) (3.1)

The transformation g is said to be a symmetry operation of the Hamiltonian Ĥ if
Ĥ(g−1r) = Ĥ(gr), i.e. if Ĥ is invariant under g. Symmetry operations g that leave Ĥ
invariant form a group. This group is called the symmetry group of the Hamiltonian
or of the Schrodinger equation (3.1).

We introduce in the linear vector space L of functions ϕ(r) the operators ĝ = D̂(g)
as

D̂(g)ϕ(r) = ĝϕ(r) = ϕ(g−1r) (3.2)

The operators ĝ are linear and the correspondence g → ĝ is preserved in the
composition law:

ĝ2ĝ1ϕ(r) = ĝ2ϕ(g−1
1 r) = ϕ(g−1

1 g−1
2 r) = ϕ((g2g1)−1r) (3.3)

Hence, the set of operators D̂(g) = ĝ(g ∈ G) is a rep of G and L is the space of this
rep. If g ∈ G is a symmetry operation of the Hamiltonian operator Ĥ then

Ĥ(r)ĝϕ(r) = Ĥ(r)ϕ(g−1r) = Eϕ(g−1r) = ĝEϕ(r) = ĝĤϕ(r) (3.4)

This relation holds for any eigenfunction of Ĥ and for all linear combinations of
the eigenfunctions, i.e. for any function in the linear vector space L. Therefore, the
following operator relation may be written:

ĝĤ = Ĥĝ, D̂(g)Ĥ = ĤD̂(g), g ∈ G (3.5)

This expresses in mathematical form the symmetry properties of the Hamiltonian of
a quantum mechanical system.

We choose in the space L a symmetry-adapted basis ϕα
iµ(r), where the index

i = 1, 2, . . . , n labels the basis functions of the irrep α and the index µ distinguishes
independent basis functions of equivalent irreps. The matrices of the operators D̂(g)
have in this basis a quasidiagonal structure

Diαµ;jβν(g) = D
(α)
ij δαβδµν (3.6)

We write the operator relation (3.5) in the chosen basis using the quasidiagonal
form (3.6) of matrices∑

i′
Hiαµ,i′βνD

(β)
i′j (g) =

∑
i′

D
(α)
ii′ (g)Hi′αµ,jβν (3.7)

or
Hαµ,βνD(β)(g) = D(α)(g)Hαµ,βν (3.8)

where the notation Hαµ,βν is introduced for matrices with matrix elements (Hαµ,βν)ii′
= Hiαµ,i′βν .

In accordance with Schur’s Lemmas for irreducible representations
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Hαµ,βν = H(α)
µν E for β = α (3.9)

and
Hαµ,βν = 0 for β �= α (3.10)

where E is an nα ×nα unit matrix. Hence, in the symmetry-adapted basis the matrix
H of the Hamiltonian has quasidiagonal structure (Wigner’s theorem)

Hiαµ,jβν = H(α)
µν δijδαβ (3.11)

The block H(α) is composed of matrix elements

H(α)
µν =

∫ (
ϕα

iµ(r)
)∗ Ĥϕα

iν(r)dr (3.12)

does not depend on the index i = 1, 2, . . . , nα and is repeated nα times in the matrix
H of the Hamiltonian Ĥ.

In the symmetry-adapted basis the diagonalizing of the matrix H is reduced to the
diagonalizing of its diagonal blocks. Every eigenvalue of the matrix H(α) is repeated nα

times in the total list of the eigenvalues of the operator Ĥ. From the above discussion
it also follows that the eigenfunctions of the Hamiltonian Ĥ corresponding to the
same eigenvalue are the basis functions of an irrep of the symmetry group G of Ĥ
(in the absence of accidental degeneracy that is not due to the symmetry) and the
degeneracies of eigenvalues are equal to dimensions of the irreps of G (also in the
absence of accidental degeneracy). Thus, the eigenstates ϕ(r) and their eigenvalues
may be labeled by the irreps of the symmetry group G of the Hamiltonian Ĥ.

The symmetry properties of molecular orbitals and the degeneracy of the corre-
sponding eigenvalues are defined by the irreducible representations of the point groups.
The tables of these irreps characters are published in many books [13, 27] and their
notations are well known and as a rule unambiguous. The energy-level degeneracy is
usually 1 (a, b irreps), 2 (e irreps) and 3 (t irreps). As an exclusion, the icosahedral
point symmetry group of the fullerene molecule C60 has 4- and 5-dimensional repre-
sentations (g and h irreps, respectively). The first-principles LCAO calculations of the
molecular systems are usually made directly without the application of the Wigner
theorem, the symmetry of molecular orbitals is used mainly for their classification and
interpretation of the results obtained. However for a large number of basis functions
the diagonalizing of the matrix H becomes difficult, time-consuming work. Use of a
symmetry-adapted basis in such a case can be useful even for molecular systems.

For crystalline solids the translation symmetry of the Hamiltonian is taken into
account in any electronic-structure calculations as it allows calculations to be made
for the basis connected only with the primitive unit cell. In the translation-symmetry-
adapted basis the matrix H has a quasidiagonal structure with identical blocks related
to an irrep k of the translation symmetry group T. As the latter is Abelian its irreps
are one-dimensional. The translation symmetry adapted functions are known as Bloch
functions and numbered by wavevector k. Use of the point symmetry of a crystal
allows the number of Bloch functions calculated to be decreased and further block-
diagonalization of Hamiltonian of a crystal to be made.

The space symmetry of crystalline orbitals is defined by irreducible representations
of space groups. As will be shown in the next sections the structure of these irreps is
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more complicated than in the case of point groups. The dimensions of the space-group
irreps and the corresponding degeneracy of energy levels are also different from those
for point groups. In versions CRYSTASL–98,03,06 computer codes the automatic full
space group symmetry adaptation of LCAO is included [28]. It is particularly efficient
for crystals with high symmetry containing many atoms in the primitive unit cell, for
example, a cubic crystal of pyrope with 80 atoms in the cell [29].

The time-reversal symmetry of the crystalline Hamiltonian introduces an addi-
tional energy-level degeneracy.Let the Hamiltonian operator Ĥ be real. The transi-
tion in the time-dependent Schrodinger equation to a complex-conjugate equation
with simultaneous time-inversion substitution

i
∂ϕ(r, t)

∂t
= Ĥϕ(r, t), i

∂ϕ∗(r,−t)
∂t

= Ĥϕ∗(r,−t) (3.13)

shows that the functions ϕ(r, t) and ϕ∗(r,−t) are solutions of the same time-
dependent Schrodinger equation. This combined operation (complex conjugation
+ time inversion) is called the time-reversal transformation. Applying this opera-
tion to the time-independent Schrödinger equation for the time-independent part of
stationary-state wavefunctions

Ĥϕ(r) = Eϕ(r), Ĥϕ∗(r) = Eϕ∗(r) (3.14)

we see that ϕ(r) and ϕ∗(r) are the eigenfunctions of the same real operator Ĥ be-
longing to the same eigenvalue E. So with respect to the time-independent part of
stationary states ϕ(r) the time-reversal operator reduces to a simple complex conju-
gation

K̂ϕ(r) = ϕ∗(r) (3.15)

Let ϕi (i = 1, 2, . . . , n) be eigenfunctions of a real Hamiltonian Ĥ belonging to
an eigenvalue E and also be the basis of a unitary irrep D(g) of its symmetry group
G(g ∈ G). The functions K̂ϕi = ϕ∗

i are also eigenfunctions of Ĥ belonging to the same
eigenvalue E, but transforming according to the irrep D∗(g) [13]. The irreps D(g)
and D∗(g) may be either equivalent or inequivalent. The functions ϕi and ϕ∗

i may be
linearly dependent or linearly independent. There are three cases: 1) the functions ϕi

and ϕ∗
i are linearly dependent and are bases of equivalent irreps ; 2) the functions ϕi

and ϕ∗
i are linearly independent and transform according to inequivalent irreps; 3)

the functions ϕi and ϕ∗
i are linearly independent and are bases of equivalent irreps.

In cases 2 and 3 the eigenvalue E belongs to 2n states ϕi and ϕ∗
i . They form a

basis of the rep of the group G that is the sum of two irreps D(g) and D∗(g) of the
same dimension n. Thus, the degeneracy of the eigenvalue E doubles with respect
to that caused by the symmetry group in the space. In case 1, there is no additional
degeneracy. In tables of irreps of space groups the complex conjugate irreps are usually
united in one so-called physically irreducible rep. When analyzing the degeneracy of
one-electron energy levels in crystals it is necessary to take into account the time-
reversal symmetry. In particular, even in the case when the point-symmetry group
F of a crystal does not include inversion the complex conjugated crystalline orbitals
with wavevectors k and −k correspond to the same energy eigenvalue.
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3.1.2 Irreducible Representations of Translation Group. Brillouin Zone

The group T of pure translations ta of an infinite lattice is a group of infinite order. By
introducing cyclic boundary conditions one assumes that the infinite crystal consists
of equivalent blocks in the form of parallelepipeds having sides A1 = N1a1,A2 =
N2a2,A3 = N3a3. It is assumed that the points of different blocks connected by
translations are physically equivalent, i.e. t

Nj

Aj
= t0. The large positive number N =

N1N2N3 defines the size of each block, also called the main region of a crystal (this
block contains N primitive unit cells in the cyclic model of a crystal). Only the finite-
order group T(N) (modulo translations Al,A2,A3) of N translations an =

∑3
i=1 niai

inside the main region is considered when generating the irreps of the translation
group. Because this group is Abelian all its irreps are one-dimensional. Moreover, the
group T(N) is a direct product of groups T(N1), T(N2) and T(N3), as all the translations
tan

commute. Each group T(Ni) of Ni translations tnian
has Ni one-dimensional

irreps Dj(tniai
), j = 1, 2, . . . , Ni, satisfying the condition

[
Dj(tan

)
]Nj = Dj(tNjan

) =
Dj(t0) = 1. Taking Dj(tai

) = exp(−2πipj/Nj) (where pj is an integer) one satisfies
this condition. The integer pj = 0, 1, . . . , Nj − 1(i = 1, 2, 3) denotes different irreps of
the translation group T(Ni). The irrep D(p1p2p3)(tan

) of the translation group T(N)

can be written as

D(p1p2p3)(tan) = exp [−2πi(p1n1/N1 + p2n2/N2 + p3n3/N3)] (3.16)

There are N = N1N2N3 sets of integers p1, p2, p3 (pi = 0, 1, . . . , Ni − 1) that are used
to label N different irreps of the translation group T(N).

Introducing the primitive translation vectors B1,B2,B3 of the reciprocal lattice
by

(ai · Bj) = 2πδij , (i, j = 1, 2, 3) (3.17)

one may define allowed k vectors (wavevectors) by k = κ1B1 + κ2B2 + κ3B3, where
κi = pi/Ni(i = 1, 2, 3). Thus

(k · an) = 2π(n1p1/N1 + n2p2/N2 + n3p3/N3) (3.18)

so that
D(k)(tan

) = exp(−ik · an) (3.19)

The N irreps of T(N) are now labeled by the N allowed k vectors.The point symme-
try of reciprocal lattice coincides with that of the direct one. However, the type of
reciprocal lattice may differ from that of the direct lattice.

Adding the reciprocal lattice vector

Bm =
∑

i

miBi (3.20)

to the allowed k vector we have

exp(−i(k + Bm) · an)) = exp(−ik · an) exp(−iBm · an)
= exp(−ik · an) (3.21)

A pair of vectors k and k′ = k + Bm is said to be equivalent since the irrep of
T(N) described by k can be equally well described by k′. Therefore, the label k is
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determined up to within a reciprocal lattice vector and can be changed by vectors
Bm of the reciprocal lattice.

The basis functions for the irreps of the translation group T(N) are known as Bloch
functions ϕ(k, r) and may be written in the form

ϕ(k, r) = exp(ik · r)U(k, r) (3.22)

where U(k, r) = U(k, r + an). Indeed

tnϕ(k, r) = exp(−ik · an) exp(ik · r)U(k, r − an)
= exp(−ik · an)ϕ(k, r). (3.23)

The Bloch functions are also called the k basis.
Applying a space group operator g ≡ tvR(g ∈ G) to the Bloch function ϕ(k, r)

we obtain a Bloch function ϕ̃(k, r). Indeed

tantvRϕ(k, r) = tvRtR−1an
ϕ(k, r)

= exp(−ik · R−1an)tvRϕ(k, r)
= exp(−iRk · an)tvRϕ(k, r) (3.24)

i.e.
tvRϕ(k, r) = ϕ̃(Rk, r) (3.25)

As follows from (3.21) from the point of view of determining all the irreducible
representations of a space group it is only necessary to consider the wavevectors in
one unit cell of reciprocal space (k space) and the unit cell that is chosen is referred
to as the first Brillouin zone (BZ). For most space groups it is not a primitive unit
cell in k space. Instead, the unit cell of k space is the Wigner–Seitz unit cell. The
latter is defined as consisting of all those points of k space that lie closer to k = 0
than to any other reciprocal lattice point. Its boundaries are therefore the planes that
are the perpendicular bisectors of the lines joining the point k = 0 to the nearest and
sometimes to the next-nearest reciprocal lattice nodes (the planes bisecting the line
from k = 0 to k = Bm have the equation kBm = |Bm|2/2). For some direct lattices
(simple cubic, for example, see Fig. 3.1) only nearest-neighbor reciprocal lattice points
are involved in the construction of the Brillouin zone but for others (face-centered
cubic for example, see Fig. 3.2) next-nearest neighbors are involved as well.

The advantage of this choice is that the Wigner–Seitz unit cell manifests the point-
group symmetry F0 of the appropriate crystal system. The disadvantage is that for
certain Bravais lattices the appearance of BZ may be different for different values of
lattice parameters. For all Bravais lattices except those of extremely low symmetry
the advantage of this definition outweighs the disadvantage [17]. For monoclinic and
triclinic space groups the problem of drawing of Brillouin zones for all possible rela-
tive values of lattice parameters is so complicated that the primitive unit cell of the
reciprocal lattice is used for the Brillouin zone. In [30] one can find Brillouin zones
representations for all the Bravais lattices and for each set of possible restrictions on
the lattice parameters. For cubic, hexagonal, simple tetragonal and simple orthorhom-
bic lattices the shape of the Brillouin zone is unique, while for trigonal, body-centered
tetragonal, body-, base- and face-centered orthorhombic lattices there are two or more
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Fig. 3.1. Primitive unit cell and Brillouin zone for simple cubic lattice

Fig. 3.2. Primitive unit cells (a, c) and Brillouin zones (b, d) for face-centered and body-
centered cubic lattices
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possible shapes depending on the relative lengths of the primitive translations and
the angles between them.

By construction, the BZ contains N allowed k vectors when N primitive unit
cells are included in the main region of a crystal. As the number N is assumed to be
arbitrarily large, in the limiting case of N = ∞ the allowed k vectors take all values
inside the BZ. In the electronic- structure calculations of crystals finite (and relatively
small) numbers of k points are considered. However, the interpolation procedure used
after calculation allows the one-electron energies to be shown as continuous functions
of wavevectors (see, for example, Figures 3.3 – 3.5 for band structures of SrZrO3, MgO
and Si crystals, respectively).
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Fig. 3.3. Hartree–Fock energy bands for SrZrO3 crystal

Two vectors k and k′ are said to be equivalent if k′ = k + Bm. By definition, no
two interior points of a Brillouin zone can be equivalent; but every point on the surface
of the Brillouin zone has at least one equivalent also on the surface of the Brillouin
zone. For each BZ there is a basic domain Ω such that

∑
R RΩ is equal to the whole

BZ, where R are the elements of the holosymmetric point group F0 (F0 is the point-
symmetry group of the Bravais lattice and defines the appropriate crystal system).
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Fig. 3.4. Hartree–Fock energy bands for MgO crystal

For each space group there is a representation domain Φ of the appropriate BZ (it is
also called the irreducible part of the Brillouin zone), such that

∑
R RΦ is equal to the

whole BZ, where the sum over R runs through the elements of the point-symmetry
group F ⊆ F0 (F is also called the isogonal point group and is obtained by taking all
the distinct elements R that are found in the elements tvR of space group G). For
each holosymmetric space group (for which the set of all the distinct rotational parts
of the space-group symmetry operations forms the holosymmetric point group F0 of
the appropriate crystal system) Φ can be taken to be identical with Ω. But for the
remaining space groups the volume of Φ is some small-integer multiple of the volume
of Ω. This multiple is equal to nF0/nF, i.e. is defined by orders nF0 and nF of the
holosymmetric point group nF0 and crystal structure point group F. The majority
of crystal structures considered in Sect. 2.3 have holosymmetric point groups. The
exclusions refer to the structures of sphalerite and wurtzite with point groups Td and
C6v being subgroups of cubic and hexagonal lattices point groups Oh and D6h. In two
cases under consideration (BZ for face-centered and hexagonal lattices, Figures 3.2
and 3.6) the basic domain volumes are equal to 1/48 and 1/24 of the Brillouin-zone
volume, the representation domains are two times larger.
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Fig. 3.5. Hartree–Fock energy bands for silicon crystal

Fig. 3.6. Primitive unit cell and Brillouin zone for hexagonal lattice
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Those elements of the point-symmetry group F0 of the reciprocal lattice that
transform a point k into itself or into some equivalent k point form the wavevector
point-symmetry group Fk ⊂ F0. For example, for the direct face-centered cubic lattice
(F0 = Oh) BZ points Γ (0,0,0), X (1/2,1/2,0), L(1/2,1/2,1/2),W(1/4,1/2,3/4) (see Fig.
3.2) have point symmetry groups Oh, D4h, D3d, D2d, respectively. The point group
Fk of the k vectors F,Z,M,A (Fig. 3.7) for a simple tetragonal lattice coincides with
the D4h point group of the tetragonal lattice itself; the point group D2h of the k
vectors X and R is a subgroup of D4h.

Fig. 3.7. Primitive unit cell and Brillouin zone for simple tetragonal lattice

All the mentioned points of the BZ are called points of symmetry. By definition, k
is a point of symmetry if there exists a neighborhood of k in which no point k′ has the
same symmetry group Fk and Fk′ ⊂ Fk. The Γ (k = 0) point of the Brillouin zone is
usually a symmetry point; exceptions here are the space groups of the crystallographic
classes Cs, Cnv, Cn. All the other symmetry points are situated on the surface of the
Brillouin zone and are usually denoted in a more or less unique way by capital Roman
letters as in Fig. 3.7 for a simple tetragonal lattice. Kovalev [31], however, used ordinal
numbers to denote k vectors.

If, in any sufficiently small neighborhood of k, there is a line (plane) of points
passing through k and having the same point group Fk then k is said to be on a
line (plane) of symmetry. The lines of symmetry are denoted both by Roman (on the
surface of the Brillouin zone) and Greek (inside the Brillouin zone) capital letters.
A symmetry line may be denoted by two symmetry points at the ends of this line:
Λ − ΓL(C3v), Σ − ΓM(C2v),∆ − ΓX(C2v) (Fig. 3.2a); the corresponding Fk groups
are in parentheses. It is evident that the point groups C2v of different wavevectors,
being isomorphic to each other, do not coincide for all symmetry lines. For example,
the second-order symmetry axis C2 is along the X-coordinate axis for the ΓX line
and along the XY symmetry axis for the ΓM line.

Tables 3.1, 3.2 and 3.3 of k vector types for BZ symmetry points and symmetry
lines (space groups 221, 225 and 136) are taken from the site [16]. In fact, for all the
space groups referring to the same crystal class and the same lattice type the k vector
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types are the same (groups 221 – 224 with simple cubic lattice, groups 225 – 228 with
face-centered cubic lattice and groups 123 – 138 for a simple tetragonal lattice). This
follows from the fact that in reciprocal space only the point-symmetry operations R
transform the k vectors. In the space-group sets mentioned the difference in symmetry
operations appears only in the direct lattice where the improper translations are
different. The columns labeled CDML and ITA in Tables 3.1–3.3 mean the k points
notations used in [17] (accepted in solid-state theory) and in [16] as Wyckoff positions
of the reciprocal lattice space group. The latter notations are practically not used as
the k points labels. In the next section we discuss the generation of the space-group
irreps from those of translation group.

Table 3.1. The k-vector types of group 221 [Pm3m] (Table for arithmetic crystal class
m3mP, Pm3m-O1

h (221) to Pn3m-O4
h (224)). Reciprocal-space group (Pm3m)-O1

h (221)

k-vector label Wyckoff position Parameters

CDML ITA ITA

Γ 0, 0, 0 1 a m3m 0, 0, 0

R 1/2, 1/2, 1/2 1 b m3m 1/2, 1/2, 1/2

M 1/2, 1/2, 0 3 c 4/mm.m 1/2, 1/2, 0

X 0, 1/2, 0 3 d 4/mm.m 0, 1/2, 0

∆ 0,u,0 6 e 4m.m 0, y, 0 : 0 < y < 1/2

T 1/2,1/2,u 6 f 4m.m 1/2, 1/2, z : 0 < z < 1/2

Λ u,u,u 8 g .3m x, x, x : 0 < x < 1/2

Z u,1/2,0 12 h mm2.. x, 1/2, 0 : 0 < x < 1/2

Σ u,u,0 12 i m.m2 x, x, 0 : 0 < x < 1/2

S u,1/2,u 12 j m.m2 x, 1/2, x : 0 < x < 1/2

3.1.3 Stars of Wavevectors. Little Groups. Full Representations
of Space Groups

The representation theory of space groups uses a theorem that the translation group
T is an invariant subgroup of G (T � G see Sect. 2.1.2). Therefore, the little-group
method [13] may be used for the generation of irreps of space group G from irreps
of translation subgroup T. As was shown in Sect. 3.1.2, the one-dimensional irreps of
translation group T transform under point-symmetry operations R of space group G
according to relation (3.25) i.e. the Bloch function with wave vector k transforms to
a Bloch function with wavevector Rk.

Let us suppose that D(g) is an irrep of G acting in a space L of dimension n.
The operators D(g) for g = ta ∈ T form a rep of T that is in general reducible. Let
it contain irreps of T characterized by the vectors k = k1,k2, . . . ,kn. Therefore a
basis can be found in space L that consists of Bloch functions ϕ(k1, r), . . . , ϕ(kn, r).
With respect to this basis, the elements of T are represented in the irrep D(g) by
diagonal matrices with elements exp(−ikpa), p = 1, 2, . . . , n. The fact that D(g) is
a rep of G implies that if we start with ϕ(k, r) and generate the Bloch functions
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Table 3.2. The k-vector types of group 225 [Fm3m] (Table for arithmetic crystal class
m3mF, Fm3m−O5

h(225) to Fd3c−O8
h(228)). Reciprocal-space group (Im3m)−O9

h(229)

k-vector label Wyckoff position Parameters

CDML ITA ITA

Γ 0, 0, 0 2 a m3m 0, 0, 0

X 1/2, 0, 1/2 6 b 4/mm.m 0, 1/2, 0

L 1/2, 1/2, 1/2 8 c .3m 1/4, 1/4, 1/4

W 1/2, 1/4, 3/4 12 d 4m.2 1/4, 1/2, 0

∆ u, 0, u 12 e 4m.m x, 0, 0 : 0 < x < 1/2

Λ u, u, u 16 f .3m x, x, x : 0 < x < 1/4

V 1/2, u, 1/2 + u 24 g mm2.. x, 1/2, 0 : 0 < x < 1/4

Σ u, u, 2u 24 h m.m2 x, x, 0 : 0 < x < 3/8

S 1/2 + u, 2u, 1/2 + u 24 h m.m2 x, 1/2, x : 0 < x < 1/8

S ∼ S1[KM] 24 h m.m2 x, x, 0 : 3/8 < x < 1/2

SM + S1[GMM] 24 h m.m2 x, x, 0 : 0 < x < 1/2

Q 1/2, 1/4 + u, 3/4 − u 48 i ..2 1/4, 1/2 − y, y : 0 < y < 1/4

Table 3.3. The k-vector types of group 136 [P42/mnm] (Table for arithmetic crys-
tal class 4/mmmP, P4/mmm–D1

4h (123) to P42/ncm–D16
4h (138)). Reciprocal-space group

(P4/mmm)-D1
4h (123)

k-vector label Wyckoff position Parameters

CDML ITA ITA

Γ 0, 0, 0 1 a 4/mmm 0, 0, 0

Z 0, 0, 1/2 1 b 4/mmm 0, 0, 1/2

M 1/2, 1/2, 0 1 c 4/mmm 1/2, 1/2, 0

A 1/2, 1/2, 1/2 1 d 4/mmm 1/2, 1/2, 1/2

R 0, 1/2, 1/2 2 e mmm. 0, 1/2, 1/2

X 0, 1/2, 0 2 f mmm. 0, 1/2, 0

Λ 0, 0, u 2 g 4mm 0, 0, z : 0 < z < 1/2

V 1/2, 1/2, u 2 h 4mm 1/2, 1/2, z : 0 < z < 1/2

W 0, 1/2, u 4 i 2mm. 0, 1/2, z : 0 < z < 1/2

Σ u, u, 0 4 j m.2m x, x, 0 : 0 < x < 1/2

S u, u, 1/2 4 k m.2m x, x, 1/2 : 0 < x < 1/2

∆ 0, u, 0 4 l m2m. 0, y, 0 : 0 < y < 1/2

U 0, u, 1/2 4 m m2m. 0, y, 1/2 : 0 < y < 1/2

Y u, 1/2, 0 4 n m2m. x, 1/2, 0 : 0 < x < 1/2

T u, 1/2, 1/2 4 o m2m. x, 1/2, 1/2 : 0 < x < 1/2
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tvRϕ(k, r) = ϕ̃(Rk, r), where tvR ∈ G then we obtain some linear combination
of n Bloch functions of the initial basis. This means that Rk is one of the vectors
k,k2, . . . ,kn.

In n-dimensional space L there are no nonzero subspaces invariant with respect to
D(g) for all g ∈ G.

Therefore, as we run over all elements of G operating on ϕ(k, r) by D(g), we gen-
erate the entire space L, i.e. each of the vectors k1, . . . ,kn appears as the transform
of k under some element of the point group F (point group of the space group G). It
may be that the vectors k1, . . . ,kn are not all different. A set of ns distinct (nonequiv-
alent) k vectors chosen from the set k1, . . . ,kn is called the star of wavevector k and
is denoted as ∗k. A star can be generated from one of its members by operating on
it by elements of point group F. The Γ point of BZ forms one-ray star for any space
group as it is a coordinate system origin for all the point- symmetry group F trans-
formations in reciprocal space. The stars ∗X, ∗L and ∗W (see Fig. 3.2 of the Brillouin
zone for the fcc direct lattice) consist of 3, 4 and 6 rays, respectively.

The point group of the wavevector k (little cogroup of k) Fk ⊆ F , by definition,
consists of all the rotations or reflections Rk(i = 1, 2, ..., nk) that rotate k into itself
or an equivalent vector Rk = k + Bm.

In Sect. 3.1.2 points and lines of symmetry in the Brillouin zone were defined for
the case when F = F0 (holosymmetric space groups, in particular O5

h and D14
4h). In

the same manner the points and lines of symmetry may be defined for the point group
F ⊆ F0. Then, instead of the basic domain of the Brillouin zone the representation
domain is introduced.

We can write F as a sum of left cosets with respect to the subgroup Fk:

F =
ns∑
i=1

RiFk (3.26)

where ns = nF /nk is the number of k-vectors in the star ∗k. If Rik = ki then all
elements of the left coset RiFk transform k into ki.

By definition, the little group Gk of wavevector k consists of all elements gk
j =

t
v

(k)
j +a

R
(k)
j , j = 1, 2, . . . , nk, where R

(k)
j ∈ Fk. The group Gk ⊆ G is a space group

of order N · nj
k so that we can write G as a sum of left cosets with respect to the

subgroup Gk:

G =
ns∑

j=1

gjGk, gj = tvj Rj /∈ Gk (3.27)

Any element of coset gjGk transforms a Bloch function ϕ(k, r) into a Bloch func-
tion ϕ(kj , r). Thus, if the vectors k,k2, . . . ,kn characterizing the rep D(g) of dimen-
sion n = nαns are not all unique, then the star k,k2, . . . ,kns is repeated exactly nα

times in the set k1,k2, . . . ,kn.
Let the basis set of space L(1) be formed by Bloch functions ϕ

(α)
i (k, r), (i =

1, 2, . . . , nα).
These functions form a basis of the so-called small (allowed) irrep of the space

group Gk:

D(g)ϕ(α)
i (k, r) =

nα∑
i=1

D
(k,α)
ii′ (g)ϕ(α)

i′ (k, r), g ∈ Gk (3.28)
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The wavevector k is called a canonical wavevector.
Not all the irreps of space group Gk are small irreps of this group since the small

irrep basis functions ϕ
(α)
i (k, r), (i = 1, 2, . . . , nα) have an additional property: they

are Bloch functions with the same vector k, i.e. the matrices of the small irrep are
diagonal for the pure translations ta and have nα equal diagonal elements exp(−ika).
The Bloch functions ϕi(kj , r) = tvj Rjϕi(k, r) form the basis set of irrep kj = Rjk of
the translation group T. The space group elements g(kj) = gjg

(k)g−1
j form the group

Gk of the wavevector kj . The point group F j
k consists of elements R(kj) = RjR

(k)R−1
j .

The basis functions ϕ
(α)
i (kj , r), (i = 1, 2, . . . , nα) of a space L(j) transform over the

irrep D(k,α)(g−1
j g(kj)gj)

ĝ(kj)ϕi(kj , r) = ĝj ĝ
(k)ϕi(k, r) =

∑
i′

D
(k,α)
ii′

(
g(k)

)
ϕi′(kj , r)

=
∑
i′

D
(k,α)
ii′

(
g−1g(k)gj

)
ϕi′(kj , r) (3.29)

The space L =
∑
j

L(j) of nsnα functions ϕi(kj , r), (i = 1, . . . , nα, j = 1, . . . , ns) is

irreducible under G. These functions form a basis of the so-called full irrep D(∗k,α)(g)
of the space group. The full irrep D(∗k,α)(g) of G is induced by the small irrep D(k,α)(g)
of the little group Gk ⊆ G: D(∗k,α)(g) = D(k,α)(g) ↑ G,

D
(∗k,α)

i′ j′ ,ij
(g) = D

(kα)
ii′

(
g−1

j′′ ggj

)
δj′′j′ (3.30)

The little group Gk is itself a space group. The small irreps of Gk can be found if
projective irreps of the point group Fk are known.

3.1.4 Small Representations of a Little Group. Projective
Representations of Point Groups

The small reps of little groups are sufficient for many purposes in solid-state the-
ory, such as classifying states within electron energy bands and vibration frequencies
within phonon band spectra, and for generating the symmetry-adapted wavefunctions.

The little group Gk is itself a space group. Whereas in the reps of G the translation
ta is represented by a diagonal matrix, in the small irreps D(k,α) of Gk that we are
looking for ta is represented by a scalar matrix

D(k,α)(ta) = exp(−ik · a)Enkα
(3.31)

where nkα is the dimension of the small irrep D(k,α) and Enkα
is the unit matrix of

order nkα.
We decompose Gk into left cosets with respect to the translation group T :

Gk =
∑

j

gjT, gj = tvj
Rj (3.32)

The coset representatives in (3.32) obey the multiplication rule
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tvi
Ritvj

Rj = RiRjtvi+Rivj
= taij+vs

Rs (3.33)

where
taij

∈ T and aij = vi + Rivj − vi (3.34)

Because aij is a translation it follows that

D(k,α)(gi)D(k,α)(gj) = exp(−ik · aij)D(k,α)(gs) (3.35)

If we now set for all g ∈ Gk

D(k,α)(g) = exp(−ik · v)D̃(k,α)(R) (3.36)

then from (3.35) we obtain

D̃(k,α)(Ri)D̃(k,α)(Rj) = exp(−iBi · vj)D̃(k,α)(Rs) (3.37)

where the reciprocal lattice vector Bi is defined by the relation

R−1
i k = k + Bi (3.38)

Equations (3.36) together imply that the matrices D̃(k,α)(R) are the same for all
members of any fixed coset in (3.32), i.e. these matrices are in correspondence with
the elements of the factor group Gk/T . The factor group Gk/T is isomorphic with
the little cogroup Fk so that D̃(k,α) is a matrix-valued function on the elements of the
point group of wavevector k with the multiplication law

D̃(k,α)(Ri)D̃(k,α)(Rj) = exp(−iBi · vj)D̃(k,α)(RiRj) (3.39)

Matrices D̃(k,α) form a so-called projective rep of the point group Fk with the
factor system

ω(Ri, Rj) = exp(−iBi · vj) (3.40)

where Bi is defined by (3.38).
We see from (3.36) that the small irreps D(k,α) of a little group are found if the

projective irreps D̃(k,α)(R) of the point group Fk with the factor system (3.40) are
known.

A factor system is specified by n2
Fk

coefficients ω(Ri, Rj), where nFk
is the order

of the point group of wave vector Fk. These coefficients must satisfy the following
identities for any Ri, Rj , Rk:

(Ri, RjRk)(Rj , Rk) = (RiRj , Rk)(Ri, Rj) (3.41)

implied by the associative law of group multiplication Ri(RjRk) = (RiRj)Rk. How-
ever, conditions (3.41) do not define a factor system uniquely [27]. If D(R) is a pro-
jective representation of the group belonging to the factor system ω(Ri, Rj) then
any other representation D′(R) = D(R)/u(R) where u(R) is an arbitrary single-
valued function on the group, |u(R)| = 1, also defines a projective representation
of the group, but with factor system ω′(Ri, Rj)= ω(Ri, Rj)u(Ri, Rj)/u(Ri)u(Rj).
The factor systems ω(Ri, Rj) and ω′(Ri, Rj) representations satisfying (3.41) are
said to be projectively equivalent or p equivalent. The set of all p equivalent fac-
tor systems is called a class of factor systems. Note that two different p equivalent
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representations may belong to the same factor system. For this to occur it is nec-
essary that u(Ri)u(Rj) = u(RiRj), i.e. function u(R) defines some ordinary (with
all ω(Ri, Rj) = 1) one-dimensional representation of the group. The group may have
several classes of factor systems. It can be shown [27] that if ω(Ri, Rj) = ω(Rj , Ri)
for any pair of commuting elements (RiRj = RjRi) the factor system ω(Ri, Rj) is
p equivalent to identity factor system ω(Ri, Rj) = 1 and the corresponding repre-
sentation is p equivalent to ordinary representation. Although the total number of
possible factor systems is infinite, it can be shown that for a finite group the number
of classes K of factor systems is finite [27]. For every group there is class K0 with
all ω(Ri, Rj) = 1, which is called vector or ordinary representation. The other rep-
resentations of the class K0 with ω(Ri, Rj) �= 1 are projectively equivalent to vector
representations. The dimensions of all p equivalent representations are the same, the
factor systems may differ. If a group has several classes of factor systems then only
the class K0 may correspond to one-dimensional representations and there will be no
one-dimensional representations for classes K0 �= Kp.

Projective representations were first introduced by Shur [32], who developed a
general theory of projective representations and worked out methods for constructing
projective representations of finite groups. The connection between projective rep-
resentations of point groups and representations of space groups was demonstrated
by Lyubarskii, Kovalev, Bir [27, 31, 33]. To find D(k,α) with the factor system (3.40)
Herring’s approach [34] may be useful. In this approach the problem is reduced to
finding ordinary irreps of abstract groups with order greater than that of Fk but not
very large.

In [30] it is shown that these groups for different wavevectors in the Brillouin zone
of one space group or for the same wavevector in the Brillouin zone of different space
groups may be isomorphic. In [30] all the irreps of all the abstract groups that occur
among reps of space groups are completely identified. In [17] the small irreps of little
groups are found from those of the translation group by successive augmentations,
each augmenting operator being chosen so that the augmented group contains the
unaugmented one as an invariant subgroup.

The classes of all factor systems and the corresponding projective representations
characters can be found in [27] for all 32 crystallographic point groups. Ten groups
(C1, S2, Cs, C2, S4, C4, C3, S6, C6, C3h) are cyclic, only one factor system K0 belongs
to these groups, i.e. for these groups all the projective representations are p equivalent
to ordinary representations.

This short description of projective representations of point groups allows us to
understand information given in different tables and on the site [16]. When using
different existing tables for small representations of little groups one has to remember
that the projective representations of point groups can be ordered in different ways
and may appear to be p equivalent to each other.

When the space group G is symmorphic all the fractional translations vi may be
chosen to be zero (Sect. 3.3) so that all the factors ω(Ri, Rj) = 1 and D̃k,α)(Ri)
coincide with the αth irrep of the point group Fk. When k is an interior point of
the Brillouin zone (R−1

i k − k) = 0 for all Ri in the group Fk. It can also be that
at some points of the Brillouin zone on its surface (R−1

i k − k)vj = 0 for all Ri and
vj in the group Gk. In both these cases the projective irreps Dk,α(R) also coincide
with the usual irreps of the point group of a wavevector. However, for some points
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on the surface of the Brillouin zone in the case of nonsymmorphic space groups the
projective irreps Dk,α(R) are not the usual irreps of the point group Fk.

As an example, we consider nonsymmorphic space group O7
h – the symmetry group

of diamond structure. The Brillouin zone for the face-centered-cubic lattice and the
symmetry points and the symmetry directions are shown in Fig. 3.2. The small rep-
resentations of little groups GΓ and GL are p equivalent to the ordinary irreducible
representations of the corresponding wavevector point groups Oh and D3d. For the Γ
point it is evident as this point is inside (at the center) of the Brillouin zone. For the
L point it can be easily shown. Indeed the point group of L(1/2, 1/2, 1/2) consists
of rotations C31 , C−1

31 through one of four third-order rotation axes, three rotations
through second-order axes U−

xy, U−
yz and U−

xz (these operations and identity operation
form point group D3). All the remaining operations of the D3d point group are ob-
tained from relation D3d = D3×Ci (direct product of D3 and inversion group Ci). As
can be seen from [16] these point-symmetry operations are included in space group O7

h

(origin choice 2) with proper translations, so that for any two elements Ri and Rj of
point group D3d the multipliers ω(Ri, Rj) = 1. For X and W points the small repre-
sentations are not p equivalent to ordinary representations of wavevector point groups
D4h and D2d, respectively. To show this it is enough to find in the corresponding little
cogroups at least one pair of commuting elements for which ω(Ri, Rj) �= ω(Rj , Ri).
The point group D4h = D4×Ci of X(1/2, 1/2, 0) includes rotations C4z, C2z and C−1

4z

through fourth-order z axis, rotations C2x and C2y through x- and y-coordinate axes
and rotations Ux−y, Uxy through second-order axes. The space group O7

h includes com-
muting elements C2y and IC2y = σy with improper translations (1/4, 1/2, /3/4) and
(1/2, 3/4, 1/4), respectively, given in basic translation vectors a1,a2,a3 (see [16,19]).
For the transformation C2y and k = X we have C2yk−k = b1 +b2 (sum of two basic
reciprocal lattice vectors), for the transformation IC2y = σy we have σyk − k = 0.
Therefore ω(C2y, σy) = exp(iπ/2) = i and ω(σy, C2y) = 1. Considering the commut-
ing elements C2y and σx = IC2x from point group D2d of wavevector W it is easy to
show that ω(C2y, σx) = −i and ω(σx, C2y) = i. In Table 3.4 are given for space group
O7

h labels of the corresponding projective irreducible representations of point groups
FX and FW and their dimensions. The point-symmetry group FZ of the symmetry
direction XW (12 rays in the star) on the surface of the Brillouin zone (see Fig. 3.2)
consists of elements being common for both point groups FX and FW : E,C2y, σx, σz.
It was seen that ω(C2y, σx) �= ω(σx, C2y) so that the only wavevector point group
C2v two-dimensional irreducible representation is not p equivalent to any of the four
ordinary one-dimensional representations of point group C2v (see Table 3.4).

The numbering of some small representations of space groups is different in differ-
ent tables. For example, four small two- dimensional representations at the X point
are ordered in different ways on the site [16] and in tables [17]. The ray of stars L, X
and W chosen for the small-representation generation can also be different, as can
the origin choice for space-group description. All these differences do not change the
full representations of space groups.

The dimension of a space-group full representation (degeneracy of energy levels
in a crystal) for a given k is equal to the product of the number of rays in the star
k∗ and the dimension of the point group Fk irreducible representation (ordinary or
projective). In particular, for the space group under consideration at the X point the
dimensions of full representations are 6 and at the W point – 12. As to each of the
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degenerated states corresponds the same one-electron energy it is enough to identify
energy levels only for one ray of the wavevector star as it is made in the figures show-
ing the electronic band structure. The degeneracy of levels at the symmetry points
of the BZ is defined by the dimensions of wavevector point-group representations
(ordinary or projective). To identify the one-electron energies at the symmetry lines
the compatibility relations are used. In Sect. 3.2.6 we discuss the band structure of
some crystals using the considered information.

When the space group is realized in a crystalline structure the atomic states in-
cluded in the LCAO basis define the symmetry of crystalline orbitals appearing in the
electronic-structure calculations. The symmetry connection of atomic and crystalline
orbitals is given by induced representations of space groups considered in the next
subsection.

3.2 Site Symmetry and Induced Representations of Space
Groups

3.2.1 Induced Representations of Point Groups.
Localized Molecular Orbitals

In the previous section we examined the use of space-group irreducible representa-
tions for the classification of the delocalized (Bloch-type) crystalline states. In this
traditional approach the crystal is considered as a whole system and the symmetry
properties of the environment of constituent atoms are ignored. This results in a loss
of information about the connection between the atomic and crystalline states. This
information is widely used in the quantum chemistry of solids as it allows the crys-
talline properties to be explained from the knowledge of the chemical nature of the
constituent atoms and their interactions. In the plane-waves methods of electronic-
structure calculations the Bloch-type delocalized states are not directly connected
with the states of the separate atoms. However, in the LCAO methods the Bloch-type
delocalized functions are represented as the linear combination of the functions of sep-
arate atoms. Therefore, the symmetry connection between the delocalized Bloch and
localized atomic states appears to be important. If we use not only the space symme-
try of a crystal as a whole but also the site symmetry of different groups of constituent
atoms we can considerably extend the possibilities of the group-theory applications.
To study this in more detail the reader is referred to our previous book [13] where
we examined the theory and the applications of the site-symmetry approach to the
electron, phonon, magnetic properties of crystals and in the theory of phase transi-
tions. In this section, we examine only those theoretical aspects of the site-symmetry
approach that concern the electron states and allow analysis of the symmetry connec-
tion between the delocalized Bloch-type and localized Wannier-type electron states in
crystals. We begin from the short description of the site (local) symmetry approach
in molecular quantum chemistry.

In the molecular systems with the point symmetry group G the site-symmetry
subgroup Hq includes those symmetry operations that keep the point q fixed: hq = q.
As an example, we consider a tetrahedral molecular ion [MnO4]− (see Fig. 3.8). The
Mn atom site-symmetry group coincides with the whole symmetry group Td. The
site-symmetry group of any of the four oxygens is C3v ⊂ Td.
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x

y

z

Fig. 3.8. MnO−
4 ion

Let D̂(g) be a rep of a group G (g ∈ G ). A set of operators D̂(h)(h ∈ H ⊂ G) is a
rep of H subduced by rep D̂(g) of G. The subduced irrep is denoted as D̂ ↓ H. Even if
D̂(g) = D̂(α)(g), g ∈ G is an irrep of G the subduced rep is, in general, reducible and
may be decomposed into irreps d(γ) of H:

D(α) ↓ H =
∑

γ

r(α)
γ d(γ)(h) (3.42)

The multiplicities are equal to

r(α)
γ = n−1

H

∑
h

χ(α)(h)
[
X(γ)(h)

]∗
(3.43)

where χ(α)(h) and χ(γ)(h) are the characters of irreps Dα(h) and d(γ)(h) of the groups
G and H ⊂ G respectively.

Subducing the irreps of the group G with respect to its subgroup H and decom-
posing the subduced rep over the irreps of a subgroup one obtains a correlation table.
The rows of this table are labeled by irreps of a group G; the columns denote different
subgroups H of this group G. The frequencies of subduction by each irrep of G for the
irreps of these subgroups are listed in the body of the table. One also has to take into
account the possibility of different orientations of isomorphic subgroups with respect
to the group G.

As an example we consider the correlation table for the point group Td (Table
3.5).

The subduction of the subgroup irreps by the group irrep can be considered as the
reciprocal operation to the induction of the group reps by the irreps of the subgroup
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Table 3.5. Correlation table for the point group Td

Td C2v C3v

a1 a1 a1

a2 a2 a2

e a1 a2 e

t1 a2 b1 b2 a2 e

t2 a1 b1 b2 a1 e

H. Let group G be decomposed into left cosets with respect to H:

G =
t∑

j′′
gj′′H, g1 = E, t = nG/nH (3.44)

and L be a basis space of some rep of a group G. It is also a rep of its subgroup H. Let
L(1) be a subspace of L with the basis e

(γ)
i1 , (i = 1, 2, . . . , nγ) transforming according

to an irrep dγ(h) of H:

D(h)e(γ)
i1 =

∑
i′

dii′(h)e(γ)
i′i , i = 1, 2, . . . , nγ (3.45)

To express the invariance of L(1) under D̂(h)(h ∈ H) independently of a particular
choice of basis we write

D̂(h)L(1) = L(1) (3.46)

The linearly independent basis set

e
(γ)
ij = D̂(gj)e

(γ)
i1 , j = 1, . . . , t; i = 1, 2, . . . , nγ (3.47)

spans a space L(n) of the dimension n = t · nγ . This space is invariant under the
operators D̂(g), g ∈ G and is defined as the space of the group G induced by the irrep
d(γ) of its subgroup H and is written as d(γ) ↑ G. The matrices D[γ](g) of the induced
rep d(γ) ↑ G have a block structure. Nonzero blocks are matrices of the irrep d(γ) of
H. Every row and every column of D[γ](g) has only one nonzero block. In the general
case, a rep d(γ) ↑ G is reducible

d(γ) ↑ G =
∑
α

r[γ]
α D(α)(g) (3.48)

The Frobenius reciprocity theorem is proved [13]: the multiplicity of an irrep
D(α)(g) of G in a rep d[γ] ↑ G induced by an irrep d(γ) of H ⊂ G is equal to the
multiplicity of an irrep d(γ) of H in the rep D(α) ↓ H subduced by D(α) of H.

Using the Frobenius theorem one can also write the reciprocal correlation table in
which the irreps of the point group induced by irreps of its different point subgroups
are given. Representations of the point group Td induced by irreps of its point sub-
groups C2v and C3v are given in Table 3.6. The latter subgroup may be considered
as the site-symmetry group of the oxygen atom in the molecular ion (MnO4)−.
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Table 3.6. Induced irreps of the point group Td

C2v Td C3v Td

a1 a1 e t2 a1 a1 t2

a2 a2 e t1 a1 a2 t1

b1 t1 t2 e e t1 t2

b2 t1 t2

The first and third columns in Table 3.6 contain the symbols of the point subgroups
C2v and C3v and their irreps. The rest of the columns give the symbols of the induced
representations of point group Td decomposed over the irreps of this group.

The comparison of Tables 3.5 and 3.6 allows the Frobenius theorem to be checked.
The tables of induced representations of the point groups are given in [13] and are the
reciprocal correlation tables. The latter are given in [14]. In MO LCAO calculations
the canonical MO (delocalized over the whole space) are found. Their symmetry
is defined by the irreps of the symmetry group of the whole molecule induced by
the irreps of the site-symmetry groups of the constituent atoms. Use of the induced
representations of point groups allows the canonical MO to be divided into sets,
connected with the localized MO (LMO) and find the possible center of localization.
In many cases this procedure can be done in several ways. Let us examine MO and
LMO in the (MnO4)− molecular ion. The 4s-, 4p- and 3d-functions of the Mn atom
span the space of the irreps a1, t2, e + t2 of the molecular symmetry group Td. The
site symmetry group of the O atom is C3v. As follows from Table 3.6 the 2s and
2pz functions of the oxygen atom contribute to the canonical orbitals of a1 and t2
symmetry, and oxygen 2px, 2pyfunctions contribute to functions with the symmetries
e, t1, t2. The site group C3v may correspond to localized functions centered on oxygen
atoms as well as on the Mn–O bond axis. The site group C2v may be related to a two-
centered O–O bond or to a three-centered O–Mn–O bond. The latter may also have
Cs symmetry. Table 3.7 lists one-electron energies of the (MnO4)− ion valence orbitals
calculated by a) the nonempirical MO LCAO method, b) the SWXα method, c) a
semiempirical CNDO method (see Chap. 6). The weights of valence atomic orbitals
in molecular orbitals are also given in cases a) and c) (in parentheses).

The valence canonical MO given in Table 3.7 may be distributed over sets accord-
ing to their symmetry. There are three possible variants of distribution compatible
with the symmetry requirements:

1 ) C3v(a1) − 5a1, 4t2; C3v(a1) − 6a1, 6t2; C3v(e) − 1e, 1t1, 5t2

2 ) C3v(a1) − 5a1, 4t2; C2v(a1) − 6a1, 1e, 5t2; C2v(b1) − 1t1, 6t2 (3.49)
3 ) C3v(a1) − 5a1, 4t2; Cs(a′) − 6a1, 1e, 5t2, 6t2, 1t1

The first variant is the most preferable as it corresponds to two-centered bonds,
whereas the second and the third possibilities contain sets with bonds of more than
two centers. The greater the number of centers participating in a bond, the less
localized it seems to be. Table 3.7 shows that the sets C3v(a1) correspond to orbitals
localized near the oxygen atoms, the s-type is the lowest in energy and the 2pz-type
(directed along the O–Mn line) is higher. The localized functions of symmetry contain
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Table 3.7. Electronic structure of (MnO4)
−

One-electron energies [eV] Atomic contributions [%]

State SWXα CNDO HF LCAO 3d 4s 4p 2s 2p

symmetry

1 –9.28 –7.01 –7.62 - 100

(100)

6a1 –10.53 –8.95 –8.03 8 4 88

(5) (2) (93)

6t2 –10.37 –9.68 –9.06 3 7 2 88

(17) (2) (5) (76)

1e –12.24 –10.15 –11.48 29 72

(23) (77)

5t2 –12.43 –11.26 –12.82 53 2 6 39

(18) (2) (4) (72)

4t2 –24.30 –32.68 –29.44 7 4 87.5 15

(2) (17) (79) (2)

5a1 –24.65 –36.43 –30.01 7.5 91.5 -

(21) (78) (1)

a considerable admixture of Mn 3d states. So the center of localization is apparently
displaced along the bond line towards the Mn atom.

Each of the three sets (3.50) contains states of t2 symmetry and in two sets there
are states of a1 symmetry. When generating localized orbitals it is possible to take
the linear combinations of initial canonical functions of the same symmetry and to
vary the coefficients to get the orbitals with the best spatial localization. However,
in the case of (MnO4)− the orbitals 5a1 and 6a1 have considerably different energies.
Therefore, the linear combinations must be used only for orbitals of t2 symmetry
(especially 5t2 and 6t2).

The analysis of the calculated one electron-states is often made only according
to the weights of the atomic functions, and symmetry considerations are not taken
into account. As a result, the 6t2, 6a1, 1t1 states can be treated as being in the set
corresponding to the localized functions of 2p-type centered on oxygen atoms. As
follows from Table 3.7, these states do not span the space of the rep induced by some
irrep of the site group of the oxygen atom. Therefore, it is impossible to generate
any function localized on the oxygen atom. Hence, simply the analysis of the atomic
orbital contributions in molecular states with close energies does not permit one to
correctly relate the canonical orbitals to the localized ones.

As we can see, induced reps of point groups, in combination with an analysis of the
atomic contributions in molecular eigenfunctions, are a good tool to find the regions
of localization of electron density on atoms and bonds in a molecule. Of course the
energy criterion must also be taken into consideration: a set is chosen so as to unite
states with close energies.
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Table 3.7 shows that the symmetry of localized orbitals does not depend in prac-
tice on the method of calculation of electronic structure. In particular, the method
described here is equally applicable to results of SWXα calculations where the atomic
basis is not used at all. The change in energy ordering of the 6a1 and 6t2 levels from
that of the nonempirical method does not change the symmetry found for the localized
orbitals.

The localized orbitals generation from the set of canonical MO allowed by sym-
metry requires additional choice of the localization criteria. The different orbital lo-
calization methods are implemented in molecular computer codes [35]. All of them
are connected with the search for the coefficients connecting LMO with the canonical
MO to satisfy the localization criteria.

The method due to Edmiston and Ruedenberg [36] works by maximizing the sum
of the localized orbitals two-electron self-repulsion integrals. The method requires the
two-electron integrals, transformed into the MO basis. Because only the orbitals to be
localized are needed, the integral transformation is actually not very time consuming.
However, the extension of this method to crystals is practically difficult as this requires
the transformations of lattice sums of two electron integrals.

The population method due to Pipek and Mezey [37] maximizes a certain sum of
gross atomic Mulliken populations. The latter are not realistic when the LCAO basis
includes diffuse atomic orbitals as is necessary for crystalline solids.

The most appropriate for the extension to crystal appears to be the Boys method.
The Boys method [38] minimizes the sum of spreads of the localized orbitals φi(r)

min I =
N∑

i=1

[〈r2〉i − 〈r〉2i
]
,

(
〈rm〉i ≡

∫
rm|φi(r)|2dr

)
(3.50)

The summation in (3.50) is made over N occupied canonical MO found in LCAO
self-consistent calculations.

N∑
i=1

〈r2〉i is invariant with respect to any unitary transformation among functions

φi:

φ
′
i =

N∑
i′

Ui′iφi′ (3.51)

The minimum of the functional I corresponds to the maximum of the functionals:

Ĩ =
N∑

i=1

〈r2〉i, or ˜̃I =
N∑

i>j=1

[〈r〉i − 〈r〉j ]2 (3.52)

Thus, the Boys method can also be considered as maximization of the sum of distances
between the orbital centroids ˜̃I. The modifications of the Boys method are necessary
to extend it for the localized crystalline orbitals generation. These modifications are
considered in Sect. 3.3

3.2.2 Induced Representations of Space Groups in q-basis

Any subgroup rep can generate some induced rep of a group (see Sect. 3.2.1). In the
particular case of a space group G the small irreps of the little group Gk ⊂ G induce
its full irreps.
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In this and the next subsections we consider induced reps of space groups generated
by the irreps β of the site-symmetry subgroup Gq of point q in the direct lattice space
(β ↑ G). This type of induced rep of space groups was considered in [13]. In [39] a
more general concept of band reps was introduced. All elements of the space group
G can be written in the form tvR+anR, where vR is a fractional lattice translation
associated with the F point-group element R and an is a direct lattice translation
vector.

The elements of the site-symmetry group Gq ⊆ G of the point q in the direct
lattice space are those elements of G for which gqq = tvR+an

Rqq = q. The space-
group elements gq are supposed to be given in the coordinate system whose origin
is at one of the Wyckoff positions. The site-symmetry group elements for the other
Wyckoff positions are mapped by the space-group elements with the point-symmetry
operators R. Thus the site-symmetry group Gq ⊆ G is isomorphic with the point
group Fq formed by Rq. When the coordinate system origin is moved to the other
Wyckoff position q1 the site-symmetry group elements of this new origin are elements
of the point group Fq1 but the site-symmetry group elements gq of the former origin q
contain translations. As an example we consider the space group O7

h for the two origin
choices given in the International Tables for Crystallography [19]. The site-symmetry
group of Wyckoff position a(000) is mapped to the pure point-symmetry operations of
the group for the first origin choice and to the set of operations with the translational
part for the second origin choice.

Let the representatives gjn(j = 1, 2, . . . , nq = nG/nF ) in the decomposition

G =
∑
j,n

gjnGq, gjn = tvj+an
Rj (3.53)

be chosen so that the points
qj = tvj

Rjq (3.54)

occupy the positions within the smallest unit cell (primitive or Wigner–Seitz). The
operations gjn generate from the point q sublattices qj + an(j = 1, 2, . . . , nq).

Let the local functions W
(β)
i1 (r) ≡ Wi(r−q), (i = 1, 2, . . . , nβ) be centered at point

q of the direct lattice and span the space of the irrep β of the site-symmetry group
Gq ⊂ G with matrices d(β)(gq) and characters χ(β)(gq)(gq ∈ Gq). The nature of these
functions depends on the physical problem under consideration. In the electron-band
theory of crystals W

(β)
i (r − qA) are atomic functions of atom A. In phonon spec-

troscopy applications W
(β)
i (r−qA) mean the components of atomic displacements of

an atom A, in magnetically ordered crystals these functions are the magnetic moments
of atoms [13].

Functions W
(β)
i1 (r) transform as

ĝqW
(β)
i1 (r) = W

(β)
i

(
R−1

q (r − vq − an − Rqq)
)

= W
(β)
i

(
R−1

q (r − q)
)

=
nβ∑

i′=1

d
(β)
i′i (Rq)W (β)

i′1 (r) (3.55)

since the vector q remains invariant under the operations of the site group Gq. All
the functions W

(β)
i1 (r)(i = 1,2, . . . ,nβ) are associated with the site q.
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The local functions associated with the smallest unit cell are obtained from local
functions W

(β)
i1 (r) through

W
(β)
ij (r) = t̂vj

RjW
(β)
i1 (r) = W(β)

i

(
R−1

j (r − q)
)

, (3.56)

i = 1, 2, . . . , nβ ; j = 1, 2, . . . , nq

Functions in other unit cells are obtained through

W
(β)
ij (r − an) = t̂an

W
(β)
ij (r) = W

(β)
ij

(
R−1

j (r − qj − an)
)

(3.57)

The local functions W
(β)
ij (r− an) form the basis of an induced rep β ↑ G of space

group G. Indeed, let the element tvR
R transform the jth sublattice into the j′th one

and be written in the form

tvR
R = tajj′ tvj′ Rj′tvq

Rq(tvj
Rj)−1 (3.58)

where R = Rj′RqR
−1
j (Rq ∈ Fq) and ajj′ is the lattice vector. Equation (3.58) may

be checked directly. From (4.2.6) we get for the local functions

tVR
RW

(β)
ij (r − an) =

∑
i′

(
R−1

j′ RRj

)
W

(β)
i′j′ (r − Ran − aj′j) (3.59)

The dimension of the rep β ↑ G is infinite for the model of an infinite crystal.
In a cyclic model, the infinite crystal is replaced by a main region consisting of N
smallest unit cells and periodic boundary conditions are introduced. The total number
of local functions W

(β)
ij (r−an) becomes finite and equals nβnqN(i = 1, 2, . . . , nβ , j =

1, 2, . . . , nq; n takes N values). These functions form an nβnqN−dimensional space
of the rep of the space group G. This rep matrix consists of nβnq blocks arising from
d(β).

To specify the induced rep β ↑ G in the basis of local functions W
(β)
ij (r− an) one

has to indicate the symmetry center q of local functions by its Wyckoff position and
the irrep β of the site-symmetry point group Gq. Thus, in the q basis the induced
rep β ↑ G is specified by the index (q, β).

As an example, we consider oxygen atom 2s functions in the perovskite CaTiO3

structure. The oxygen atoms occupy Wyckoff position c of the space group O1
h with

the site-symmetry D4h. The 2s-functions of an oxygen atom transform over a1g irrep
of the point group D4h. Thus, the induced representation in q basis (c, a1g) is three-
dimensional at each k point (d(β) = a1g, nβ = 1, nq = 3).

3.2.3 Induced Representations of Space Groups in k-basis.
Band Representations

In Sect. 3.1 we have considered the space-group irreps D(k,α)(g) defined by stars ∗k
of wavevectors k from the first Brillouin zone and by irreps D(α) of little groups Gk.
Let us construct in the space of induced rep (q, β) new basis functions that span the
space of irreps of the translation group T (Bloch functions)

Ψ
(β)
ij (k, r) =

∑
n

exp(ikan)W (β)
ij (r − an), (i = 1, 2, . . . , nβ ; j = 1, 2, . . . , nq) (3.60)
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and vice versa

W
(β)
ij (r − an) =

Va

(2π)3

∫
exp(−ikan)Ψ (β)

ij (k, r)dk

W
(β)
ij (r − an) = N−1

∑
k

exp(−ikan)Ψ (β)
ij (k, r) (3.61)

for infinite and cyclic models of a crystal, respectively. Using (3.24), (3.28) and (3.59)
one obtains

tvR
RΨ

(β)
ij (k, r) = exp(−iRk · ajj′)

∑
i′

d
(β)
i′i

(
R−1

j′ RRj

)
Ψi′j′(Rk, r) (3.62)

Let the wavevector k be fixed and tV R
R ∈ Gk. Then p = nβnq functions Ψ

(β)
ij (k, r)

span the space of the small representation of the little group Gk with the character

χ
(β)
k (g) =

nq∑
j=1

exp(−ik · ajj′)χ̃(β)(R−1
j RRj) (3.63)

where

χ̃(β)(R−1
j RRj) =

{
0, if R−1

j RRj �= Rq

χ(β)(Rq), if R−1
j RRj = Rq

(3.64)

Knowing the characters (3.63) of the induced rep one can easily calculate the number
of times the small irrep D(k,γ) of the group Gk with characters χ(k,γ)(g), g ∈ Gk is
contained in the induced rep (q, β).

This procedure gives the labels of the induced rep (q, β) in the k basis correspond-
ing to those in the q basis, i.e. the results of the reduction of the induced rep over
irreps of the group Gk. All the information obtained can be specified by listing the
symmetry (the labels of irreps) of the Bloch states with wavevectors k correspond-
ing only to a relatively small number of k points in the Brillouin zone forming a set
K. The set K contains the inequivalent symmetry points of the Brillouin zone and
one representative point from each inequivalent symmetry element (symmetry line or
symmetry plane) if the latter does not contain the points of higher symmetry.

The symmetry properties of basis functions with other vectors k can be determined
with the use of the compatibility relations.

The set K for the space groups with high-symmetry classes consists only of the
symmetry points. For instance, the set K for the space groups O5

h, O7
h contains the

points Γ, X, L, W (Fig. 3.2); for the space group O4
h - the points Γ, X, M,R (Fig. 3.2).

The symmetry points can be absent in the Brillouin zone of space groups with low
symmetry classes.

The symmetry properties of basis functions of an induced rep are described by
the full group irreps (∗k, γ) or by the small irreps (k, γ) of the wavevector groups Gk

unambiguously related to them. Thus, as an index of an induced rep we shall use the
symbols of those small irreps of the little groups Gk with wavevectors from the set K
that correspond to basis functions of a given induced rep

k1(γ
(1)
1 , γ

(1)
2 , . . .),k2(γ

(2)
1 , γ

(2)
2 , . . .), . . . ,ki ∈ K (3.65)
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The index of the induced rep (3.65) can also be considered as the set of so-called
subduction frequencies r

(q,β)
(∗k,γ). The latter give the number of times the irrep (∗k, γ) of

G is contained in the induced rep (q, β). From the Frobenius theorem the subduction
frequencies r

(q,β)
(∗k,γ) are equal to the number of times the irrep (∗k, γ) subduces the

irrep β of G(∗k,γ)
k

r
(∗k,γ)
β = r

(q,β)
(∗k,γ) =

∑
g∈Gq

(
χ(β)∗(g)

)
χ(∗k,γ)(g) (3.66)

where χ(∗k,γ)(g) and χ(β)(g) are the characters of the irreps (∗k, γ) of G and β of Gq,
respectively.

To calculate the subduction frequencies (3.66) one may use different procedures
[13]. The first uses (3.63) and does not require knowledge of the full irrep (∗k, γ)
characters. Indeed, one obtains, according to (3.63), the characters χ

(β)
k (g) of the rep

of a little group Gk. Reducing this rep requires the characters of the irreps of the
little group Gk (tabulated in [17] and on site [16]) and gives the induced rep index
(3.66) in the k−basis. The second procedure for calculating subduction frequencies
uses (3.66) and requires the character χ(∗k,γ) of full irreps of space groups.

Comparing the two ways of finding the induced rep index in the k basis one may
conclude:

1. the first one is more appropriate for q sets consisting of only one Wyckoff
position in the unit cell (this is possible only in symmorphic space groups);

2. the second one is more appropriate for those wavevector stars that consist of
one ray so that the full and small irreps coincide.

In [39] the concept of a band rep of a space group, which may be an induced rep,
was introduced. Band reps were used to define the symmetry of an electron energy
band as a whole entity.

From the group-theoretical point of view a band rep of a space group is a direct
sum of its irreps that have the following properties:

1) the space of the band rep contains the basis vectors with all the k vector stars
in the Brillouin zone;

2) the compatibility relations are fulfilled throughout the Brillouin zone in the
model of an infinite crystal or for N points in the cyclic model.

It is obvious that at every k point there is the same number p of Bloch-type basis
states.

In a cyclic model of a crystal with N primitive cells in the main region a band rep
is an Np dimensional reducible rep of a space group. An induced rep is a particular
case of a band rep as it satisfies both properties 1 and 2 with p = nqnβ (nβ is the
dimension of the site-symmetry group irrep for a point q belonging to the set of nq

points in the unit cell).
The index of a band rep in the k basis has the form given by (3.65). By analogy

with the same index for an induced rep, all informaton about the band rep can be given
by specifying the symmetry (the labels of irreps) of the basis vectors with wavevectors
k ∈ K.

It is seen now that band reps (induced reps included) of space groups can be
specified by the index (3.65) in the k basis, and only those band reps that are induced
ones can also be specified in the q basis in the form (q, β).
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Let us return to our example of the induced representation (c, a1g) of the space
group O1

h formed by 2s functions of oxygen atoms in the perovskite structure. Using
the full group irreps from the site [16] we calculate the subduction frequencies (3.66)
for belonging to K set points of Brillouin zone and write the induced band repre-
sentation (c, a1g) in the k basis in the form Γ (1+3+)R(5+)M(4+5−)X(1+3−4−). The
labels of the small irreps of the little groups are taken from [17].

3.2.4 Simple and Composite Induced Representations

The use of the q basis of induced reps allows one to introduce the concept of simple
induced reps, that facilitates the analysis of all possible types of induced reps for a
given space group. An induced rep is called simple if it is impossible to split up the
space of this rep into subspaces that are invariant under operators ĝ (g ∈ G) and are
also the spaces of some induced reps.

By definition, a composite induced rep is a direct sum of the simple ones. As a
group rep, a simple induced rep is reducible, so we prefer to avoid the expression “ir-
reducible induced rep” used in [39]. The term introduced in [40], “elementary induced
rep”, is equivalent to the term simple induced rep used in this book.

All simple induced reps may be generated by induction from the irreps of site-
symmetry groups Gq′ , of a relatively small number of q′ points forming the set Q in
the Wigner–Seitz unit cell of the direct lattice. The set Q consists of

1) all the inequivalent symmetry points of the Wigner–Seitz unit cell;
2) one representative point from all the inequivalent symmetry lines and symmetry

planes that do not contain the symmetry points.
The site groups Gq for all q ∈ Q are called maximal isotropy subgroups in [40].

The set Q in the Wigner–Seitz unit cell is determined in the same way as the set K
in the Brillouin zone. However, the action of symmetry operations in the direct and
reciprocal spaces is different.

A reducible rep d(g) =
∑
β

rβd(β)(g) of the site group Gq induces a composite

induced rep that is the direct sum of reps induced by the irreps d(β)(g). As an example,
we can consider a composite rep induced by d functions of a transition metal atom
(Wyckoff position a) in the perovskite structure: these functions span the reducible
5-dimensional rep of the the site-symmetry group Oh subducing t2g and e2g irreps.
Therefore the induced irrep in q basis is composite: b(eg) + b(t2g).

Now let us show that if the q-point does not belong to the set Q, the rep (q, β)
induced from the irrep of the site group Gq is composite.

Let q′ be one of the points in the set Q for which the site group Gq′ contains Gq

as a subgroup (Gq ⊂ Gq′).
This condition may be satisfied for several points q′ of the set Q. The decompo-

sition of the site group Gq′ into left cosets with respect to the subgroup Gq has the
form

Gq′ =
n∑

j=1

tvj RjGq (3.67)

If the functions W
(β)
i1 (r)(i = 1, 2, . . . , nβ) span the space of an irrep β of the group

Gq then n · nβ functions
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W
(β)
ij (r) = tvj RjW

(β)
i1 (r) (3.68)

form the space of the site group Gq rep β ↑ Gq induced from the irrep β of its
subgroup Gq′ . Let us decompose the rep β ↑ Gq′ into the irreps α′ of the group Gq′

β ↑ Gq′ =
∑
α′

rα′α′ (3.69)

The irrep β of the group Gq′ and rep β ↑ Gq′ of the group Gq′ generate the same
induced rep

(q, β) = (q′, β ↑ Gq′) =
∑
α′

rα′(q′, α′) (3.70)

which is obviously composite. Thus, we have proved that all the possible simple in-
duced reps of a given space group G may be generated by induction from the irreps
of the subgroups Gq′ for q′ ∈ Q.

In [40] a complete classification of the inequivalent simple induced reps is given
and all the cases when the reps induced from the irreps of maximal isotropy subgroups
can be equivalent to one another are considered. First, equivalent induced reps at the
same site q′ ∈ Q arise.

1) by induction from one-dimensional irreps forming an orbit of the normalizer
NG(Gq′); there are 23 pairs of them belonging to 15 space groups; and

2) four types of isotropy subgroups (C2v, D2, D2h, T ) may generate reps induced
by irreps that do not form an orbit of NG(Gq′). There are 34 pairs of them belonging
to 25 space groups.

Second, there are 17 pairs of different maximal isotropy subgroups (belonging to
14 space groups) yielding 63 pairs of equivalent induced reps by induction from one-
dimensional irreps. When inducing from two-dimensional irreps of isotropy subgroups,
33 pairs of equivalent induced reps are obtained, belonging to 23 space groups. In total,
there are 153 pairs of equivalent induced reps (57 at the same site and 96 at different
sites) induced from different irreps of maximal isotropy subgroups. In [40] it was also
shown that 40 reps belonging to 25 space groups and induced from irreps of maximal
isotropy groups are composite.

There is a formal analogy between simple induced reps and reps irreducible in
the usual group-theoretical sense. However, this analogy is not complete. Indeed, the
composite induced rep decomposition into simple ones is not always unique. This
occurs whenever the site-symmetry group Gq is not the maximal isotropy one (q �∈
Q). In this case, the group Gq is a subgroup of several maximal isotropy groups
Gq′(q′ ∈ Q). Consequently, the induced rep decomposition (3.70) will be different for
different points.

The theory of induced representations of space groups gives the answer to the
question of whether it is possible to generate in the space of states of a given energy
band the basis of localized functions? The answer to this question allows the symme-
try connection between delocalized Bloch-type and localized Wannier-type crystalline
orbitals to be obtained. This point is discussed in Sect. 3.3.

The following qualitative discussion should explain some features of band reps
corresponding to real energy bands in crystals. Let a crystal be formed from isolated
constituent atoms by decreasing the interatomic distances from very large ones to
those corresponding to real crystalline structure. The crystal field may split the de-
generate one-electron atomic levels due to symmetry requirements, leading to quite
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narrow energy bands, because of the interatomic interactions. The interatomic dis-
tances are sufficiently large that the crystalline orbitals corresponding to these bands
are localized quite well at the atomic sites and are close to atomic functions. The Bloch
states of these narrow energy bands span the spaces of some band reps that certainly
have q basis, i.e. are induced representations. These reps are induced by those ir-
reps of site-symmetry groups of atoms that describe the transformation properties of
atomic states generating the energy bands. The further decrease of the interatomic
distances may considerably transform the energy bands (join them together into more
complicated ones and later split them up again into other simple ones) but a new elec-
tronic state of arbitrary symmetry cannot arise nor can any state disappear. At the
same time, the wavefunctions of all possible symmetry types may change and cor-
responding one-electron energies may shift along the energy scale. Thus, an energy
band corresponding to a band rep without a q basis (i.e. that is not an induced rep)
may arise. However, this band, in joining with one or several neighboring ones, forms
an energy band corresponding to a composite induced rep with q basis. In the joint
space of these band states one can generate the basis of localized functions. Thus, the
calculated one-electron energy band spectra of crystals may always be divided into
bands connected with some simple or composite induced reps. When the interatomic
distances are decreased to those in a real crystal the atomic functions undergo more
or less extensive modifications and become the Wannier functions of a crystal (see
Sect. 3.3). When the latter arise directly from atomic functions one can use for them
the same notation (s, p, d and so on). Let the atoms be at Wyckoff positions with the
site summetry group Gq. Localized functions transforming according to irreps of the
group Gq correspond to the bands arising from atomic levels split by a crystalline
field. If these Wyckoff positions belong to the set Q, the band states usually form
the space of a simple induced rep. When atoms are at positions that do not belong
to the set Q the band states form the basis of a composite induced rep. If, when
the interatomic distances are decreased, the energy bands cross one another then the
states of the resultant composite band also span the space of a composite induced
rep. However, it may happen that this new band splits into several subbands related
to localized functions that have centers of localization somewhat displaced from the
atomic positions for further decreases in the interatomic distances. This case is typical
for the electronic structure of crystals with covalent chemical bonding.

The information about the simple induced representations of the space groups can
be given in the form of tables, shown in the next section for the space groups O5

h, O7
h

and O1
h.

3.2.5 Simple Induced Representations for Cubic Space Groups
O1

h, O5
h and O7

h

The correspondence between symbols of simple induced reps in q- and k-basis for
q ∈ Q and k ∈ K is usually given in tables of simple induced reps having the following
structure (e.g. Tables 3.8–3.10 for the space groups O1

h, O5
h and O7

h, respectively).
The first two columns of the table contain the labels of the induced reps in the

q-basis (these labels number the rows of the table): the international symbols (Ro-
man letters a, b, c and so on) of the Wyckoff positions (sites in direct space) and the
Mulliken symbols of the irreps of the site-symmetry groups for these Wyckoff posi-
tions. For example, d(a2u) and d(eu) are the labels of induced reps in q-basis for space
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Table 3.8. Simple induced representations of the O1
h - Pm3m space group

q β Γ R M X

a b a b a b

a1g 1+ 1+ 2− 1+ 4+ 1+ 3−

a1u 1− 1− 2+ 1− 4− 1− 3+

a2g 2+ 2+ 1− 2+ 3+ 2+ 4−

a a2u 2− 2− 1+ 2− 3− 2− 4+

eg 3+ 3+ 3− 1+2+ 3+4+ 1+2+ 3−4−

b eu 3− 3− 3+ 1−2− 3−4− 1−2− 3+4+

t1g 4+ 4+ 5− 3+5+ 2+5+ 3+5+ 1−5−

t1u 4− 4− 5+ 3−5− 2−5− 3−5− 1+5+

t2g 5+ 5+ 4− 4+5+ 1+5+ 4+5+ 2−5−

t2u 5− 5− 4+ 4−5− 1−5− 4−5− 2+5+

c d c d c d

a1g 1+3+ 5+ 4− 4+5− 1+5− 1+3−4− 1+2+3−

a1u 1−3− 5− 4+ 4−5+ 1−5+ 1−3+4+ 1−2−3+

b1g 2+3+ 4+ 5− 3+5− 2+5− 2+3−4− 1+2+4−

c b1u 2−3− 4− 5+ 3−5+ 2−5+ 2−3+4+ 1−2−4+

a2g 4+ 2+3+ 1−3− 2+3−4− 1−2−3+ 3+5− 1−5+

d a2u 4− 2−3− 1+3+ 2−3+4+ 1+2+3− 3−5+ 1+5−

b2g 5+ 1+3+ 2−3− 1+3−4− 1−2−4+ 4+5− 2−5+

b2u 5− 1−3− 2+3+ 1−3+4+ 1+2+4− 4−5+ 2+5−

eg 4+5+ 4+5+ 4−5− 1−2−5+5− 3−4−5+5− 1−2−5+5− 3+4+5+5−

eu 4−5− 4−5− 4+5+ 1+2+5−5+ 3+4+5−5+ 1+2+5−5+ 3−4−5−5+

In (aaa) units: a1(100), a2(010), a3(001)

Q: Oh(m3m) – a(000), b(1/2, 1/2, 1/2);

D4h(4/mmm) – c(1/2, 1/2, 0), d(1/2, 0, 0)

In (2π/a, 2π/a, 2π/a) units: b1(100), b2(010), b3(001)

K: Oh – Γ (000), R(1/2, 1/2, 1/2); D4h – M(1/2, 1/2, 0), X(1/2, 0, 0) .

group O1
h (Table 3.8). The remaining columns give the labels of induced reps in the

k-basis, with the symbols of k-points (wavevectors) in the first row of the table and
the indices of small irreps of little groups in subsequent rows. For example, 4− in the
column Γ means small irrep Γ4− . Below the table supplementary information is given
– the primitive translations, the coordinates and site-symmetry groups of Wyckoff
positions in the direct lattice and the analogous data for the reciprocal lattice. The
correspondence between small representations of little groups for symmetry points in
BZ is given in Table 3.11 (space group O1

h) and in Table 3.12 (space group O5
h ).

In Tables 3.8–3.10 of simple induced reps the labeling of the space-group irreps is
that of [17], the labeling of the point group irreps is that of [30] and the site points q
are indexed as Wyckhoff positions from [19].
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Table 3.9. Simple induced representations of the O5
h - Fm3m space group

q β Γ L X W

a b a b

a1g 1+ 1+ 2− 1+ 1 2

a1u 1− 1− 2+ 1− 1 2

a2g 2+ 2+ 1− 2+ 2 1

a a2u 2− 2− 1+ 2− 2 1

eg 3+ 3+ 3− 1+2+ 1 2 1 2

b eu 3− 3− 3+ 1−2− 3 4 3 4

t1g 4+ 2+3+ 1−3− 3+5+ 3 5 4 5

t1u 4− 2−3− 1+3+ 3−5− 2 5 1 5

t2g 5+ 1+3+ 2−3− 4+5+ 4 5 3 5

t2u 5− 1−3− 2+3+ 4−5− 1 5 2 5

c a1 1+2− 1+2− 4+3− 5

a2 2+1− 2+1− 3+4− 5

e 3+3− 3+3− 3+4+3−4− 5 5

t1 4+5− 2+3+1−3− 2+5+1−5− 1 2 3 4 5

t2 5+4− 1+3+2−3− 1+5+2−5− 1 2 3 4 5

d ag 1+3+5+ 1+3+2−3− 1+4+3−4−5− 1 2 5 5

au 1−3−5− 1−3−2+3+ 1−4−3+4+5+ 3 4 5 5

b1g 2+3+4+ 2+3+1−3− 2+3+3−4−5− 1 2 5 5

b1u 2−3−4− 2−3−1+3+ 2−3−3+4+5+ 3 4 5 5

b2g 4+5+ 1+3+1−3− 1−2−5+5− 1 3 4 4 5

b2u 4−5− 1−3−1+3+ 1+2+5−5+ 1 1 2 4 5

b3g 4+5+ 2+3+2−3− 5+1−2−5− 2 3 3 4 5

b3u 4−5− 2−3−2+3+ 5−1+2+5+ 1 2 2 3 5

In (aaa) units: a1(0, 1/2, 1/2), a2(1/2, 0, 1/2), a3(1/2, 1/2, 0)

Q: Oh(m3m) – a(000), b(1/2, 1/2,−1/2);

Td(43m) – c(1/4, 1/4, 1/4); D4h(mmm) – d(1/2, 0, 0).

In (2π/a, 2π/a, 2π/a) units: b1(–111), b2(1–11), b3(11–1)

K: Oh – Γ (000); D4h – X(0, 1/2, 1/2)

D3d – L(1/2, 1/2, 1/2); D2d – W (1/4, 1/2, 3/4).

According to the theory developed in previous sections, all the information about
the induced reps of a given space group is contained in the table of its simple induced
reps. Using these tables one can solve the following two purely mathematical problems:

1) Finding the irreducible components of the space-group reps induced by the
irreps of all the possible site-symmetry subgroups for a given space group.

2) Finding the irreducible components of the site-symmetry group reps subduced
by the irreps of the corresponding space group.

To solve these two problems one also needs:
a) the compatibility relation tables for the irreps of space groups [17];
b) tables of induced reps of crystallographic point groups [13].
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Table 3.10. Simple induced representations of the O7
h – Fd3m space group

q β Γ X L W

a b

a1 1+2− 1 1+2− 1 2

a a2 1−2+ 2 1−2+ 2 1

e 3+3− 1 2 3+3− 1 2 1 2

b t1 4+5− 2 3 4 1−2+3+3− 1 1 2 1 2 2

t2 4−5+ 1 3 4 1+2−3+3− 1 2 2 1 1 2

c d

a1g 1+5+ 1 3 1+2−3− 1+2−3+ 1 2

c a1u 1−5− 2 3 1−2+3+ 1−2+3− 1 2

a2g 2+4+ 2 4 1−2+3− 1−2+3+ 1 2

d a2u 2−4− 1 4 1+2−3+ 1+2−3− 1 2

eg 3+4+4+ 1 2 3 4 1−2−3+3−3− 1−2+3+3+3− 1 1 2 2

eu 3−4−4− 1 2 3 4 1+2+3−3+3+ 1+2−3−3−3+ 1 1 2 2

For the direct and reciprocal lattice translation vectors and coordinates

of K-set points see Table 3.9.

Q: Td(43m) – a(000), b(1/2, 1/2,−1/2);

D3d(3m – c(1/8, 1/8, 1/8), d(−3/8,−3/8, 5/8).

Table 3.11. Space group O1
h: correspondence between small representations of little groups

GΓ , GR, GX and GM and irreducible representations of point groups Oh and D4h

Γ , R Oh X, M D4h

1+ a1g 1+ a1g

1− a1u 1− a1u

2+ a2g 2+ a2g

2− a2u 2− a2u

3+ eg 3+ b1g

3− eu 3− b1u

4+ t1g 4+ b2g

4− t1u 4− b2u

5+ t2g 5+ eg

5− t2u 5− eu

We consider now in more detail the application of the tables of simple induced
reps for the solution of the two problems mentioned above. Suppose one needs to find,
for a given space-group, the irreducible components of the space group reps induced
by some irrep of the site-symmetry subgroup Gq ⊂ G. One has to consider four cases.

la) q ∈ Q and k ∈ K. All the irreps in question can be found immediately from
the table of simple induced reps. For example, all the irreps (∗k, β) of the space group
O1

h with k ∈ K contained in the simple induced rep d(a1g) are enumerated in the row
d(a1g) of Table 3.8: Γ (1+3+)R(4−)M(1+5−)X(1+2+3−).
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Table 3.12. Space group O5
h: correspondence between small representations of little groups

GΓ, Gx, GL, Gw and irreducible representations of point groups Oh, D4h, D3d and D2d

Γ Oh X D4h L D3d W D2d

1+ a1g 1+ a1g 1+ a1g 1 a

1− a1u 1− a1u 1− a1u 2 b

2+ a2g 2+ a2g 2+ a2g 3,4 e

2− a2u 2− a2u 2− a2u

3+ eg 3+ b1g 3+ eg

3− eu 3− b1u 3− eu

4+ t1g 4+ b2g

4− t1u 4− b2u

5+ t2g 5+ eg

5− t2u 5− eu

lb) q ∈ Q and k �∈ K. After using the table of simple induced reps it is necessary to
use the tables of compatibility relations. As an example the latter are given in Table
3.13 for the R and M points of the BZ. For example, the simple induced rep d(a1g)
of the group O1

h contains the irreps R4− and, according to Table 3.13 of compatibility
relations, the irreps Λ1, Λ2 with k �∈ K since R4−↓Gd = Λ1 + Λ2.

Table 3.13. Compatibility relations for space group O1
h. For the Γ and X points the com-

patibility relations for the space group O1
h coincide with those for the space group O5

h (see
Table 3.12)

R 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5−

Λ (Γ L) 1 2 2 1 3 3 2, 3 1, 3 1, 3 2, 3

S (R X) 1 2 4 3 1, 4 2, 3 2, 3, 4 1, 3, 4 1, 2, 3 1, 2, 4

T (R M) 1 2 4 1, 3 2, 4 2, 5 1, 5 4, 5 3, 5

M 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5−

Σ (Γ M) 1 2 4 3 4 3 1 2 2, 3 1, 4

Z (X M) 1 2 4 3 1 2 3 4 2, 4 1, 3

T (R M) 1 2 2 1 3 4 4 3 5 5

1c) q �∈ Q and k ∈ K. First, the table of induced representations of point groups
is used to obtain the decomposition (3.75) and then the table of simple induced reps
may be used.

1d) q �∈ Q and k �∈ K. All three tables (simple induced reps of a space group,
induced representations of point groups and compatibility relations) are necessary. All
the four cases are considered in detail in [13] on the example of the space group D14

4h

(symmetry group of rutile structure). If we now seek the irreducible components of
the site-symmetry group reps subduced by a given space group irrep (∗k, γ) (problem
2) we also have four cases to consider.
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2a) k ∈ K and q ∈ Q. One finds the irrep (∗k, γ) in question in the rows of the
table of simple induced reps corresponding to the irreps of the site group. According
to the Frobenius reciprocity theorem the irrep β is contained in the reducible rep of
the group Gq subduced by the irrep (∗k, γ) of the space group G as many times as
the symbol (∗k, γ) is repeated in the corresponding row of the table of simple induced
reps. For example, the rep of the site group Gd=D4h subduced by the irrep M5− of
the space group O1

h consists of the irreps a1g and eu (Table 3.13).
2b) k ∈ K and q �∈ Q. First one finds the irreps α

′
contained in the decomposition

of the rep of the group Gg
′ (Gq ⊂ Gg

′ subduced by the irrep (∗k, γ) (as is done in
2a). Then, using the table of induced representations of point groups one decomposes
the reps of the group Gg subduced by the irreps α

′
of the group Gg

′ .
2c) k �∈ K and q ∈ Q. Using the compatibility-relations perovskite table one

completes the simple induced reps table by one additional column only in the rows
corresponding to the irreps of the group Gg. Then one proceeds as in case 2a.

2d) k �∈ K and q �∈ Q. The irreducible components of the subduced rep can be
found in two steps: first, the compatibility-relations table is used as in case 2c, and
then the table of induced representations of point groups as in case 2b.

Unfortunately simple induced reps for 230 space groups can not be found on any
Internet site. One can find them in the book by Kovalev [31], but the irreps notations
in this book sometimes differ from those used by Miller and Love [17] and on the
site [16]. The latter notations are introduced in tables of simple induced reps of 25
frequently used space groups given in [13]. In this section we reproduce from [13]
the simple induced tables for three cubic space groups belonging to the crystal class
Oh: O1

h (simple cubic lattice, see the Brillouin zone in Fig. 3.1) and O5
h, O7

h (face-
centered cubic lattices, the Brillouin zone in Fig. 3.2). The symmetry of the perovskite
form of SrZrO3, MgO and silicon crystals is described by the groups O1

h, O5
h and O7

h,
respectively. These crystals are examples of systems with different types of chemical
bonding: the mixed ionic-covalent bonding (in SrZrO3 the Sr atom is in the Sr2+ state,
the Zr–O bonding is essentially covalent), ionic bonding (MgO) and covalent bonding
(Si). In the next subsection we illustrate the use of the simple induced representations
in the electronic-structure theory for these relatively simple structures.

3.2.6 Symmetry of Atomic and Crystalline Orbitals
in MgO, Si and SrZrO3 Crystals

The space symmetry of crystalline orbitals generated by atomic orbitals of the LCAO
basis can be found from the tables of induced representations of space groups con-
sidered in previous section. The knowledge of space symmetry of crystalline orbitals
allows the pictures of electronic bands given as a result of electronic-structure calcu-
lations to be understood. It is also useful in localized crystalline orbitals generation
(see Sect. 3.3). As an example, we show the energy bands for MgO (Fig. 3.4), sili-
con (Si) (Fig. 3.5) and SrZrO3 crystals (Fig. 3.3). The LCAO calculations of these
crystals were made using the Hartree–Fock LCAO method (see Chap. 4). MgO crys-
tal has rocksalt structure with symmorphic space group O5

h, Si crystal has diamond
structure with nonsymmorphic space group O7

h and SrZrO3 crystal has perovskite
structure with symmorphic space group O1

h, see Sect. 2.3.2. The translation symme-
try of the first two crystals is described by the same face-centered cubic lattice, of
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the third one – by the simple cubic lattice. The point group F = Oh of all the three
crystals is holosymmetric (coincides with point group F 0 of the cubic lattice). For
the first two crystals the wavevector belongs to the same Brillouin zone (Fig. 3.2),
the representation domain coincides with the basic domain, the symmetry points of
BZ are the same: Γ (0, 0, 0), X(1/2, 1/2, 0), L(1/2, 1/2, 1/2) and W (1/4, 1/2, 3/4) with
the wavevector point groups Oh, D4h, D3d and D2d, respectively. For the third crys-
tal, the wavevector belongs to the simple cubic lattice Brillouin zone (Fig. 3.1), the
representation domain also coincides with basic domain, the symmetry points of BZ
are: Γ (0, 0, 0), R(1/2, 1/2, 1/2), X(1/2, 0, 0) and M(1/2, 1/2, 0) with the wavevector
point groups Oh, Oh, D4h and D4h, respectively. For the symmorphic space groups O5

h

and O1
h the small representations of little groups of symmetry points of BZ coincide

with the ordinary (vector) irreducible representations of the corresponding wavevector
point groups. For nonsymmorphic space group O7

h the small representations of little
groups GΓ , GX , GL and GW were considered in Sect. 3.1.4. For the Γ and L points
the notations given in Table 3.12 are used as the corresponding small representations
are p-equivalent to ordinary representations of point groups Oh and D3d. For the X
and W points the small representations are not p-equivalent to ordinary irreducible
representations of point groups D4h and D2d, respectively. The notations for these
representations were given in Sect. 3.4.

Let us connect the pictures of the calculated band structures with the symmetry
of crystalline orbitals. As for MgO and silicon crystals the dimensions of the corre-
sponding small representations are different at the X and W points, the splitting of
the valence band to one-sheet and three-sheet subbands takes place for MgO, but for
Si crystal the valence band is not split. In the symmetry directions of the Brillouin
zone the compatibility relations are used to explain the energy-level splittings. The
compatibility relations for space groups O5

h and O7
h are given in Table 3.14 and in

Table 3.13 for space group O1
h.

For the symmetry directions in the Brillouin zone ∆(ΓX), Λ(ΓL), Σ (see Fig. 3.2)
the small representations of both space groups are p-equivalent to ordinary irreducible
representations of point groups C4v, C3v and C2v. The notations of these represen-
tations are taken from [17]. For symmetry directions on the surface of the Brillouin
zone Z(XW ), S small representations of space group O5

h are p-equivalent to ordinary
irreducible representations of point group C2v, for the symmetry direction Q – to or-
dinary irreducible representations of group Cs. For the nonsymmorphic space group
O7

h small representations in the symmetry direction Z are not p-equivalent to ordinary
irreducible representations of point group C2v (see Sect. 3.2.2).

In Tables 3.15 and 3.16 we give the notations of induced representations in k-basis
for symmetry points of the Brillouin zone. We include only the band representations
for upper valence bands of all the crystals under consideration.

These bands are induced by the oxygen atom 2s, 2p states in MgO, by the silicon
atom 3s, 3p states in silicon, by the strontium atom 4p states and oxygen atom 2s, 2p
states in SrZrO3. The symmetry of the corresponding crystalline orbitals is given in
Figures 3.3–3.5 and was extracted directly from the tables of the simple induced rep-
resentations of the corresponding space groups given in Sect. 3.2.5 as the Wyckoff
positions occupied by atoms belong to the Q sets in all three structures under con-
sideration For all three crystals the short symbol of the BR in k -basis contains only
the indices of the small IR s for the most symmetrical points of the BZ, because the
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Table 3.14. Compatibility relations for space groups O5
h and O7

h

Γ (O5
h ,O7

h ) 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5−

∆(ΓX) 1 2 3 4 1,3 2,4 2,5 4,5 1,5 3,5

∆(ΓL) 1 2 2 1 3 3 2,3 1,3 1, 3 2,3

Σ 1 2 4 3 1,4 2,3 2,3,4 1,3,4 1,2,3 1,2,4

X (O5
h ) 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5−

∆ 1 2 2 1 3 4 4 3 5 5

Z(XW ) 1 2 3 4 1 2 4 3 2,3 1,4

S 1 2 4 3 4 3 1 2 2,3 1,4

X (O7
h ) 1 2 3 4

∆ 1,4 2,3 5 5

Z(XW ) 1 1 1 1

S 1,3 2,4 3,4 1,2

L(O5
h ,O7

h ) 1+ 1− 2+ 2− 3+ 3−

Λ 1 2 2 1 3 3

Q 1 1 2 2 1,2 1,2

W (O5
h ) 1 2 3 4 5 W (O7

h ) 1 2

Z 1 2 2 1 3,4 1 1

Q 1 2 1 2 1,2 1,2 1,2

Table 3.15. Band representations of space groups O5
h and O7

h for upper valence bands of
MgO and Si crystals

Γ X L W

MgO − O5
h

b(1/2, 1/2, 1/2) a1g 1+ 1+ 2− 4

t1u 5− 2−5− 1+3+ 1 5

Si − O7
h

a(0 0 0) a1 1+2− 1 1+2− 1

t2 4−5+ 1 3 4 1+2−3+3− 1 2 2

Table 3.16. Band representations of upper valence bands in SrZrO3 crystal induced from
Sr 4p -, O 2s - and O 2p - atom-like states

Atom states q-basis Γ R M X

Sr 4p− (b, t1u) 4− 5+ 2−5− 1+5+

O 2s− (d, a1g) 1+3+ 4− 1+5− 1+2+3−

O 2pz− (d, a2u) 4− 1+3+ 1+2+3− 1+5−

O 2px,y− (d, eu) 4−5− 4+5+ 3+4+5± 3−4−5±
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indices for all other IR s contained in the BR are determined with the help of com-
patibility relations. These are the states responsible for four-sheet valence bands in
the first two crystals (Fig. 3.4 and Fig. 3.5) and for the 6- and 9-sheet valence bands
in SrZrO3 crystal (Fig. 3.3)

Due to the considered symmetry difference of crystalline orbitals in MgO and
Si crystals the nature of chemical bonding in these crystals is also different. Indeed,
in ionic MgO crystal the splitting of the valence band allows the crystalline orbitals
localized on an oxygen atom to be generated and transformed over a1g and t1u irre-
ducible representations of the oxygen site-symmetry group Oh. In covalent Si crystal
all four sheets of the valence band have to be included in localization so that the
localized orbitals found are centered at the middle of the Si − Si bond.

In SrZrO3 crystal oxygen 2s functions transform according to β = a1g IR of the
oxygen site-symmetry group Gq = D4h and generate a 3-sheeted BR. The symmetry
of states in this band is fully determined by the 2s function of one of three oxygens in
the primitive cell and may be labeled by the symbol (d, a1g) as oxygen atoms occupy
Wyckoff position d in space group O1

h. In Table 3.16 this band, with the symbol of
the BR (d, a1g), is given in k-basis (Γ,R,M,X are the symmetry points of the BZ).

In Sect. 3.2.4 we defined simple and composite BR s. A BR is simple if it does not
consist of two or more BR s of a smaller dimension. All simple BR s for a given space
group are generated by the IR s of site-symmetry groups of just a few points in the
Wigner–Seitz cell of the direct lattice.

In our examples, all the induced irreps are simple, excluding the BR correspond-
ing to the 6-sheeted lower valence subband (see Fig. 3.3). This band representation
is a composite one as it is formed by two simple band representations (d, a1g) and
(b, t1u) induced by O 2s- and Sr 4pstates, respectively. Analysis of the space sym-
metry of crystalline orbitals is used to consider the possible centers of localization of
chemical bonding in crystals. This task requires the Wannier-function definition and
is considered in the next section.

3.3 Symmetry of Localized Crystalline Orbitals.
Wannier Functions

3.3.1 Symmetry of Localized Orbitals and Band Representations
of Space Groups

The localized molecular orbitals (LMO) are extensively used not only for the chemical-
bonding analysis in molecules but also in the local correlation methods [41](we con-
sider the problem of electron correlation in molecules and crystals in Chap. 5). The
LMO are generated from the canonical MO occupied by electrons and found in the
Hartree–Fock or DFT calculations. This generation is based on one or other localiza-
tion criteria [42].

Localized crystalline orbitals (LCO) are generated from a canonical delocalized
Bloch functions (CO). As in the case of the molecules one or other localization cri-
teria is used. The orthonormalized LCO in crystals are known as Wannier functions.
Wannier functions (WFs) have attracted much attention in solid-state physics since
their first introduction in 1937 [43] and up to now. The analytical behavior of Bloch
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functions of energy bands in k-space determines the degree of localization of the cor-
responding Wannier functions in r-space [44,45]. A useful concept of band (induced)
representations has been introduced in the theory of crystals, according to which the
position of symmetry localization and the symmetry properties of Wannier functions
for a given energy band define unambiguously the symmetry properties of the corre-
sponding Bloch functions [13]. But the last decade has been marked by an outburst
of interest in WFs, owing to the development of new theories related to them, and
effective methods for their generation [5,46–48].

Due to their high localization, WFs are especially beneficial when applied in the
following areas of solid-state theory.

1. Linear scaling (so-called O(N)) algorithms for calculation of crystalline elec-
tronic structure are based on the concept of WFs [50].

2. WFs play an important role in the theory of electronic polarization in insulators
[51]. The electronic polarization itself and related properties can be expressed simply
via the centroids of WFs, connected with the valence-band states.

3. Wannier functions are often used as a convenient basis for describing the local
phenomena in solids, such as point defects, excitons, surfaces, etc. [52].

4. They can serve as a useful tool in the solution of the problem of electron
correlation in crystals [41].

5. WFs, being spatially localized combinations of Bloch functions, thus form a
natural basis for analysis of chemical bonding in crystals [47,53,54].

The background of LO s symmetry analysis is the theory of BR s of space groups
G. This analysis is equally applicable to localized Wannier orbitals (LWO s) i.e. to an
orthonormal set of LO s. We describe the main principles of this theory related to the
examined problem.

The LO s V
(β)
i1p (r) ≡ V

(β)
i (r − q(p)

1 ) are the basis functions of the irreducible rep-
resentation (IR) β of the site-symmetry group Gq(p) ⊂ G corresponding to their
centering point (centroid) q(p)

1 (index p distinguishes the symmetry nonequivalent
points in the space of the crystal):

(R|̂vR)V (β)
i1p (r) =

∑
i′

d
(β)

i′ i
(R)V (β)

i′1p
(r) (3.71)

where (R|̂vR) ∈ Gq(p) , d(β)(R) is the matrix mapping the element (R|̂vR) in the IR
β. For example, in crystal SrZrO3 index p = 1, 2, 3 numbers symmetry nonequivalent
Sr, Zr and one of the three oxygen atoms. Applying symmetry operations from the
decomposition of the group G into the left cosets with respect to the site group Gq(p)

G =
∑

j

(Rj |vj + an) · Gq(p) (3.72)

to the functions V
(β)
i1p (r)

V
(β)
ijp (r − an) ≡ (Rj |vj + an)V (β)

i1p (r) (3.73)

one can obtain the complete basis in the space Ω
(β)
p of the reducible representation of

the group G induced from the IR β of the group Lq(p) . The functions V
(β)
ijp (r − an) ≡
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V
(β)
i (r − q(p)

j,n−an) are centered at the points q(p)
j,n ≡ (Rj |vj +an)q(p)

1 = Rjq
(p)
1 +vj +

an. Such a basis consisting of the LO s V
(β)
ijp (r − an) ≡ Vτ (r − an) ≡ Vt(r) is called

the q -basis (Sect. 3.2.2). The index τ replaces i, j, β, p, and the index t replaces τ,n
to simplify a traditional group-theoretical notation. This basis is fully determined
by its single representative (for example, V

(β)
11p (r)). All the other basis functions of

the same BR can be obtained from it by the symmetry operations, (3.73). A BR is
characterized in q -basis by the site q(p) (the centroid of V

(β)
i1p (r)) and the IR β of the

site group Gq(p) : (q(p), β) is a symbol of the BR in q -basis. For example, in MgO
crystal oxygen 2s -functions transform according to β = a1g IR of the site-symmetry
group Gq(1) = Oh and decomposition (3.72) consists of 1 term as the point group

of the crystal is Oh. The functions V
(a1g)
i1p (r − an) are centered at the oxygens in a

whole direct lattice. Silicon crystal has space group O7
h, diamond-type lattice with

two atoms per unit cell, occupying the Wyckoff position a with the site-symmetry
group Ga = Td. The calculated upper valence and lower conduction bands shown in
Fig. 3.5 are composite (for each wavevector value there are 4 + 4 = 8 Bloch states).
The corresponding induced representation is engendered by a1, t2 irreps of the point
group Ga, corresponding by symmetry to the s, p states of Si atom. The upper valence
band in silicon crystal is connected with the one-electron states localized not on the Si
atom but on the Si−Si bond middle (Wyckoff position c with the site-symmetry group
D3d). This can be found by inducing the four-sheet upper valence band states from
the identity representation a1g of the point group D3d. The lower conduction-band
states symmetry is defined by the induction from the irrep a2u of the same point
group. Therefore, these two band representations may be labeled by the symbols
(c, a1g),(c, a2u).

As the third example of the band representations generated we consider SrZrO3

crystal. The configurations of valence electrons in free atoms are:

O – 2s22p4, Sr – 4p65s2, Zr – 4d25s2 (3.74)

The semicore 4p -states of Sr atom are included in (3.74) as they take part in the
valence-band structure. The cubic phase of SrZrO3 with the space group

Pm3m

(O1
h, a simple cubic lattice) consists of one formula unit (5 atoms) in the primitive unit

cell. Atoms Sr, Zr and O occupy Wyckoff positions (Cartesian coordinates are given
in units of lattice constant of the crystal) b (1/2,1/2,1/2), a (0,0,0) (site group Oh for
both), and d (0,0,1/2) (site group D4h), respectively. Fig. 3.3 shows the valence energy
bands of this crystal calculated by HF LCAO method with the help of CRYSTAL03
code [23]. 30 electrons per primitive unit cell of SrZrO3 crystal occupy 15 one-electron
levels for each k-point in the BZ. The 15-sheeted valence band consists of two subbands
(6 and 9 sheets). The analysis of the projected densities of states shows that the lower
6-sheeted subband is formed by Sr 4p - and O 2s -states, the upper 9-sheeted band is
connected mainly with O 2p -states. These free-atom electron states are transformed
by the interatomic interaction in crystalline LO s. The latter basis (just as the basis of
canonical Bloch one-electron states) may be used to describe the electronic structure
of the crystal and calculate its properties. In the SrZrO3 crystal, two induced BR s
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correspond to six- and nine-sheeted bands. As is seen from Table 3.16, the states of
six-sheeted band are induced by LO of the symmetry a1g of oxygen site-symmetry
group D4h (Wyckoff position d) and by LO s of the symmetry t1u of Sr-atom site-
symmetry group Oh (Wyckoff position b), i.e. by O 2s- and Sr 4p-atomic-like states.
The states of the nine-sheeted band are induced by LO s of the symmetry a2u and eu

of oxygen site-symmetry group D4h, i.e. by O 2p-atomic-like states. In SrZrO3 crystal
oxygen 2s -functions transform according to β = a1g IR of the site-symmetry group
Gq = D4h and decomposition consists of 3 terms as the point group of the crystal is
Oh. The functions V

(a1g)
ijp (r − an) are centered on the oxygens in a whole direct lattice

(j = 1, 2, 3 numbers oxygens in one primitive cell). This is an example of the q-basis
corresponding to a 3-sheeted BR, induced by O 2s -type atomic states. This basis is
fully determined by a 2s-function of one of the three oxygens in the primitive cell and
may be labeled by the symbol (d, a1g) as oxygen atoms occupy Wyckoff position d in
space group O1

h.
Resolving this BR into IR s of the space group G, one gets the indices of the BR

in k -basis (Bloch basis). The short symbol of the BR in k -basis contains only the
indices of the small IR s for the most symmetrical points of the BZ, because the indices
for all other IR s contained in the BR are determined with the help of compatibility
relations. For example, in Table 3.16 the BR (d, a1g) is given in k-basis (Γ,R,M,X
are the symmetry points of the BZ).

In our example, the BR corresponding to the 6-sheeted valence band is a composite
one as it is formed by two simple band representations (d, a1g) and (b, t1u) induced
by O 2s- and Sr 4p-states, respectively.

From the theory of the band representations of space groups, it follows that the
generation of LO s corresponding to a given simple or composite energy band is pos-
sible only if the canonical (Bloch) orbitals of this band form the basis of some simple
or composite BR. This analysis permits not only to establish the principal possibility
to construct LO s, but also to define the possible positions of their centroids q(p) and
their symmetry with respect to the site-symmetry group Gq(p) . The latter is not al-
ways unambiguous due to the fact that there are the BR s that have different symbols
in q -basis, but the same index in k -basis or there are the composite BR s that can
be decomposed into simple ones by several ways (see Sect. 3.2.4).

Thus, the symmetry analysis consists of a procedure of identifying the localized-
orbitals symmetry from the symmetry of the canonical orbitals of the energy band
under consideration, or of establishing the fact that the construction of LO s from the
canonical orbitals chosen is impossible for the reasons of symmetry.

When calculating the electronic structure of a crystal its cyclic model is used
i.e. the model of a finite crystal with periodic boundary conditions – a supercell,
consisting of N unit cells. Generally, when a numerical integration over the BZ is
carried out as a summation over a set of special points of the BZ, it means that a
cyclic model of a certain size is introduced for the crystal. The relation between the
symmetry group G of the model of an infinite crystal and the symmetry group G(N)

of a corresponding cyclic model and their IR s and BR s has been studied in detail
in [55]. The localized orbitals of the model of an infinite crystal are well approximated
by the localized orbitals of a cyclic models with a size slightly exceeding the region of
their localization.
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We assume that the canonical delocalized orbitals ϕ
(γ)
mµ(k, r) ≡ ϕσ(k, r) ≡ ϕs(r)

(the index m numbers the basis vectors of IR γ with wavevector k, µ discriminates
between the independent bases of equivalent IR s; the index σ replaces γ, m, µ, and s
replaces σ,k) of an energy band under consideration form a basis in the space Ω of
some simple BR of the group G(N) of a crystal (index p is omitted for simplicity). The
same space Ω is spanned also by the set of LO s V

(β)
ij (r − an) ≡ Vt(r). The delocalized

and localized bases are bounded by a linear transformation in the space Ω:

Vτ (r − an) =
∑
k

exp(−ikan)
∑

σ

Uσ,τ (k)ϕσ(k, r), or (3.75)

Vt(r) =
∑

s

Ust · ϕs(r) with Ust = Uσ,τ (k)· exp(−ikan) (3.76)

If the matrix U is unitary and the functions ϕs(r) are orthonormalized, the func-
tions Vt(r) form an orthonormal system of LWOs Vt(r) = Wt(r).

Their localization extent depends on the choice of the matrix Uσ,τ (k) in (3.76).
The existence of Wannier functions decreasing exponentially at infinity (for the model
of an infinite crystal) is established in many cases. The different localization criteria
used for the generation of localized orbitals in crystals are considered in the next
subsection.

3.3.2 Localization Criteria in Wannier-function Generation

The general method of the most localized Wannier-function (WF) generation exists
only for the one-dimensional case and was offered by Kohn [57].

It is a variational method based on the first-principles approach, i.e. without pre-
liminary knowledge of Bloch-type delocalized functions. The localized functions with
the symmetry of Wannier functions and depending on some number of parameters
are used.

If spin variables are ignored the one determinant wavefunction for the system of
M electrons occupying M Bloch-type states can be written as

Ψ0 = (M !)−1/2 det
∣∣∣∣(Φ(ϕ)

)
τk,i

∣∣∣∣ = (M !)−1/2 det
∣∣∣(ΦW

)
sn,i

∣∣∣ (3.77)

where Φ(ϕ) and ΦW are Bloch and Wannier functions, respectively(
Φ(ϕ)

)
τk,i

= ϕτk,i(ri) (3.78)(
ΦW

)
sn,i

= Ws(ri − an) (3.79)

and ri – coordinate of the ith electron (i = 1, 2, . . . , M).
The total energy E0 per cell, is

E0 = M−1

(
Ψ0,

M∑
i=1

HiΨ0

)
= M−1

∑
τ,k

Eτ,k =
∑

s

(Ws(r), HWs(r)) (3.80)

The better the initial modeling localized functions approximate WF Ws(r), the
closer to the minimal value E0 is the value of the total energy calculated on these
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modeling functions. Thus, the variational principle assuming a variation of parameters
of modeling functions is used to minimize the value of the total energy calculated on
such functions.

Before calculation of the total energy on the basis of the trial localized functions
fs(r, α, β, . . .) (where α, β, . . . are variational parameters), their orthonormalization
is made. Functions fs(r − an) are orthogonalized by means of a procedure suggested
by Des Cloizeaux [56]. This procedure consists of construction of the orthonormalized
trial Bloch functions ψs(r,k):

ψs(r,k) = M−1/2
∑
n

exp(ikan)

{∑
s′

fs′(r − an)
[
S(ψ)−1/2

(k)
]

s′s

}
(3.81)

where S(ψ)(k) is an overlap matrix of trial Bloch functions, directly constructed of
trial localized functions fs(r − an):[

S(ψ)(k)
]

s′s
=
∑
n

(fs′(r), fs(r − an)) exp(ikan) (3.82)

Then the modeling localized functions W
(m)
s (r)=W

(m)
s (r, α, β, . . .) are defined. These

functions depend on the same parameters as function fs(r, α, β, . . .) does:

W (m)
s (r) = M−1/2

∑
k

ψs(r,k) (3.83)

and are substituted in (3.83) with the purpose of minimization of the total energy E0.
The advantages of the method are the following: WF generation does not require

preliminary Bloch-function calculation, the WF symmetry is taken into account at a
stage of choice of trial modeling functions. Disadvantages of the method: the proce-
dure is laborconsuming in realization; the WF obtained are approximate and their
differences from the exact WF depend on the choice of the trial modeling functions;
there is no universal procedure of a choice of basis of trial functions for different
crystals; use of the one-determinant approximation for vacant states WF is not quite
correct.

The method of WF generation using the Slater–Koster interpolation procedure was
suggested in [58]. In this method a group of one-electron energy bands is chosen and
described by model Hamiltonian matrices H(k):∑

µ

Hνµ(k)eµτ (k) = Eτkeντ (k) (3.84)

where e(k) and Eτk are eigenvectors and eigenvalues of a matrix model Hamiltonian
H(k) that should coincide with the eigenvalues of the exact Hamiltonian matrix in
the given point k. For the model Hamiltonian Fourier decomposition is used

H(k) =
∑
n

ε(an) exp(−ikan) (3.85)

The WF is defined as



92 3 Symmetry and Localization of Crystalline Orbitals

Ws(ran) =
Va

(2π)3

∫
dk exp(−ikan)

∑
τ

eτs(k)ϕτ (r,k) (3.86)

so that Fourier coefficients εs′s(an) (Slater–Koster parameters) are elements of a
Hamiltonian matrix in the basis of WF:

εs′s(an) =
∫

W ∗
s′(r − an)HWs(r)dr (3.87)

For well-localized WF values εs′s(an) quickly decrease with increase of |an|. There-
fore, in this case in decomposition (3.90) it is enough to consider a small amount of
the matrices ε(an) corresponding to small values of translation vectors. Additional
reduction of the number of independent Slater–Koster parameters is possible when
the symmetry is taken into account. The remaining independent elements of matri-
ces ε(an) can be found by means of a least squares method, adjusting eigenvalues
of a matrix H(k) to the calculated band structure. Matrices of eigenvectors e(k) for
well-adjusted modeling Hamiltonian are matrices of the unitary transformation U(k)
connecting Bloch functions with localized WF.

There is still an uncertainty in the choice of relative phase multipliers for matrices
U(k) (or) e(k) at different k (this problem can be solved only in crystals with inversion
symmetry [59]). Let us(r,k) be periodic parts of Bloch functions ψs(r,k):

us(r,k) = exp(−ik · r)ψs(r,k) (3.88)

Phase multipliers at matrices U(k) need to be chosen so that decomposition coeffi-
cients Vj(s,k) of functions us(r,k) on plane waves:

us(r,k) =
∑

j

Vj(s,k) exp(iKj · r) (3.89)

remained real (this is possible if the space group of symmetry of a crystal contains an
inversion).

Advantages of the method: for WF generation it is possible to choose any groups
of energy band – occupied, vacant or both; the use of expected WF symmetry reduces
the number of independent Slater–Koster parameters.

Disadvantages of the method: an efficient procedure for the case when the lattice
has no the center of inversion it is not developed; the WF maximal localization criteria
is not formulated; the method is complex enough in realization.

The recently developed WF generation method of Marzari and Vanderbilt [46,60]
extends to crystalline solids the Boys [38] criteria of localized MO generation (see
Sect. 3.3.1). The localized WF (let their number be N for the primitive unit cell) are
found by the minimization of the functional

I =
N∑

s=1

[〈
r2
〉

s
− 〈r〉2s

]
(3.90)

where 〈
r2
〉

s
=
∫

r2 |Ws(r)|2 dr (3.91)

〈r〉s =
∫

r |Ws(r)|2 dr (3.92)
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Minimization of (3.90) is made in reciprocal space, for which expressions (3.91)
and (3.92) can be rewritten in the form:

〈r〉s = i
Va

(2π)3

∫
dk 〈us(r,k) |∇k|us(r,k)〉 (3.93)

〈
r2
〉

s
= − Va

(2π)3

∫
dk

〈
us(r,k)

∣∣∇2
k

∣∣us(r,k)
〉

(3.94)

where us(r,k) are periodic parts of the Bloch functions defined by (3.89).
The gradient in k-space, used in (3.93) and (3.94) is correctly defined only in

the model of an infinite crystal when a variable k is continuous. In a cyclic model
of a crystal the gradient of the function is replaced with the approximate finite-
differences expressions, and integration on the Brillouin zone is made by summation
over a discrete set of wavevectors k. Let M

(k,b)
mn be defined as the scalar product:

M
(k,b)
s′s = 〈us′(r,k) | us(r,k + b)〉 (3.95)

where b is a vector connecting each k-point from a discrete set, corresponding to the
considered cyclic model, with one of its nearest neighbors. Then

〈
r2
〉

s
and 〈r〉s can

be approximately calculated using (3.93) and (3.94):

〈r〉s = − 1
L

∑
k,b

wbb Im lnM (k,b)
ss (3.96)

〈
r2
〉

s
=

1
L

∑
k,b

wb

{[
1 −

∣∣∣M (k,b)
ss

∣∣∣2]+
[
Im lnM (k,b)

ss

]2}
(3.97)

The multiplier wb depends on the type of Bravais lattice.
Let δUrs be the changes of functional (3.90) value at infinitesimal transformation

δU(k) of matrices U(k):
δUrs(k) = δrs + d∆rs(k) (3.98)

Here, d∆(k) is the antihermitian matrix of infinitesimal transformation. It is possible
to show that the gradient of functional (3.91) in the space of matrices U is expressed
by the following formula:

G(k) =
dI

d∆(k)
= 4

∑
b

wb

(
A
{

R(k,b)
}
− S

{
T (k,b)

})
(3.99)

where

R
(k,b)
s′s = M

(k,b)
s′s

[
M (k,b)

ss

]∗
(3.100)

T
(k,b)
s′s =

M
(k,b)
s′s

M
(k,b)
ss

(
Im lnM (k,b)

ss + b〈r〉
)

(3.101)

and A and S are superoperators:

A{B} ≡ B − B†

2

S{B} ≡ B + B†

2i
(3.102)
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The algorithm of functional (3.90) minimization is based on expression (3.99) and
consists in an iterative procedure of the steepest descent. For this purpose, on each
iteration the matrix d∆(k) is chosen in the form of:

d∆(k) = εG(k) (3.103)

where ε is a positive small constant. As is seen from (3.99), a matrix G(k) is anti-
hermitian (G† = −G), and for this choice the functional change:

dI = −ε
∑

k

∑
ss′

|Gss′(k)|2 (3.104)

is less than zero. Hence, on each step of the iterative procedure the value of the sum
of WF dispersions (3.90) decreases.

Thus, the method consists in a choice of initial approximation to WF and the
subsequent iterative procedure of construction as much as possible localized WF (in
sense of a minimality of the sum of their dispersions). Subsequently, this method has
been advanced and generalized to the case of entangled energy bands [61].

Advantages of the method: the method is universal and can practically be applied
for any system; the method is efficient and can be automated to apply in computer
code [62]. Disadvantages of the method: in the method the criterion of localization is
fixed as the Boys localization criterion, therefore there is no opportunity to receive
WF as much as possible localized concerning any another criterion; the symmetry
use is not included, in some cases the number of iterations strongly depends on the
initial approximation; the use of a sufficiently dense grid of wavevectors is necessary
to obtain a good accuracy in the gradient calculation.

This method of WF generation is now widely used in PW DFT calculations of
Bloch functions. In the next two sections we consider the LCAO approach to maxi-
mally localized WF generation.

3.3.3 Localized Orbitals for Valence Bands: LCAO approximation

The method of the localized WF generation for occupied energy bands was suggested
in [53, 63, 64] and implemented with the CRYSTAL code for LCAO calculations of
periodic systems. In this method, WFs are sought in the form of a linear combination
of atomic orbitals (AO):

Ws(r) =
∑

µ

∑
n

cn
µsφµ(r − sµ − an) (3.105)

where φµ(r−sµ−an) is the µth AO, centered in a point sµ+an , the index s numbers
the localized functions in one primitive cell, and cn

µs are the coefficients connecting
WF and AO. Construction of the localized functions is made by means of an iterative
procedure where each step consists of two basic stages.

Let us designate WF after the (n − 1)th step through W
(n−1)
s (r). At the first

stage, named by authors “Wannierization”, the localized functions W
(n−1)

s (r) that
maximize the functional are sought
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I
(n)
W =

N∑
s=1

〈
W

(n)

s (r)
∣∣∣V (n−1)

s

∣∣∣W (n−1)
s (r)

〉
(3.106)

where the operator V
(n−1)
s cuts off the tails of functions W

(n−1)
s (r):

VsWs(r) =
∑
A

pA,s

∑
µ∈A

cGA,s
µs (3.107)

Here, index A runs over atoms in a cell, multipliers pA,s are equal to unity only for
those atoms on which the Mulliken populations of WF Ws(r) are more than the,
fixed in advance, chosen threshold (for other atoms they are supposed to be equal to
zero), and the vector GA,s defines a cell in which this population is maximal. Thus,
the application of the operator V

(n−1)
s leaves in the sum (3.107) only the members

corresponding to atomic functions of one cell and not necessarily over all the atoms
of this cell. The renormalization of functions V

(n−1)
s

∣∣∣W (n−1)
s (r)

〉
makes them, and,

hence, the functions W
(n)

s (r), more localized. To carry out the Wannierization step
at the first cycle of the iterative procedure an initial guess built up from Γ point
coefficients in Bloch functions is used in (3.106)

At the second stage termed by “localization”, the linear combination of WF, be-
longing to one cell is searched:

W (n)
s (r) =

∑
s′s

Os′sW
(n)

s′ (r) (3.108)

to maximize the functional (similar to that offered by Boys for molecules)

I
(n)
B =

∑
s<t

[
〈r〉(n)

s − 〈r〉(n)
t

]2
(3.109)

Here 〈r〉(n)
s is a point of W

(n)
s (r) centering (centroid position). In other words, this

procedure as much as possible “moves apart” WF centroids positions that promotes
greater efficiency on the following step of the iterative procedure.

Advantages of the method: the algorithm is efficient and universal, it allows one
to construct quickly well localized WF; the procedure is completely automated and
included in the computer code CRYSTAL. The applications of this method to actual
crystals are discussed in Chap. 9. Disadvantages of the method: in this method it is
possible to use only Bloch functions calculated in LCAO approximation (PW-based
Bloch functions can not be used); there is no possibility to apply different localization
criteria in WF generation; the Mulliken atomic populations used in the iteration
procedure are essentially dependent on the AO basis chosen and for diffuse AO are
sometimes unrealistic.

The analysis of the basic methods of WF generation shows that though these
methods are effective enough, all of them possess those or other disadvantages. It is
possible to specify three basic types of these disadvantages:

i) WF symmetry is not considered at all, or if it is considered, it is not formulated
in the mechanism of definition of this symmetry. It leads, first, to an increase in time
of calculations, and, secondly, to loss of the control over properties of WF symmetry
during their construction.
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ii) The criterion of WF localization ensuring the generation of maximally localized
WF is fixed or not defined. In the framework of the same method it is impossible to
compare WF generated for different localization criteria.

An attempt to overcome the disadvantages mentioned was made in [42] where a
variational method of Wannier-type function generation was suggested. This method
is applicable with the different localization criteria, the Bloch functions can be cal-
culated both in LCAO and in PW basis, the full symmetry is taken into account. In
the next section we consider it in more detail.

3.3.4 Variational Method of Localized Wannier-function Generation on
the Base of Bloch Functions

The background of Wannier-function symmetry analysis is the theory of representa-
tions (reps) of a space group G induced from the irreducible representations (irreps)
of its site subgroup Gq ⊂ G called, for brevity, induced representations (indreps).
From the theory of indreps of space groups it follows that the construction of local-
ized functions corresponding to a given simple or composite energy band is possible
only if canonical orbitals of this band form the basis of some simple or composite
indrep. This analysis permits us not only to establish the principle possibility to con-
struct localized orbitals but also to define the possible positions of their symmetry
localization center q and their symmetry with respect to site-symmetry group Gq.

Thus, the symmetry analysis consists of a procedure of identifying localized func-
tions symmetry from the symmetry of the canonical orbitals of the considered energy
band, or of establishing the fact that the construction of localized functions is impos-
sible for the reasons of symmetry.

We assume that the canonical orbitals ϕ
(γ)
mµ(k, r) ≡ ϕσ(k, r) ≡ ϕs(r) (the index

m numbers the basis vectors of irrep γ with wavevector k, µ discriminates between
the independent bases of equivalent irreps; the index σ replaces γ, m, µ and s replaces
σ,k) of an energy band under consideration form a basis in the space Q(q,β) of some
indrep of the group G(N) of a crystal. The localized functions are defined by a unitary
transformation in the space of indrep:

W
(β)
ij (r − an) = N − 1

2

∑
k

exp(−ikan)ψ(β)
ij (k, r) (3.110)

or
W (β)

τ (r − an) = N − 1
2

∑
k

exp(−ikan)ψ(β)
τ (k, r) (3.110a)

In (3.110, 3.110a) the summation is over the set of N special points in the BZ,
which corresponds to the cyclic model considered [55], and the quasi-Bloch functions
ψ

(β)
ij (k, r) ≡ ψ

(β)
τ (k, r) are linear combinations of the canonical orbitals ϕ

(γ)
mµ(k, r) ≡

ϕσ(k, r) with the same k belonging to the considered energy band:

ψ
(β)
ij (k, r) =

∑
γmµ

Uγmµ , ij(k)ϕ(γ)
mµ(k, r) (3.111)

or
ψ(β)

τ (k, r) =
∑

σ

Uσ , τ (k)ϕσ(k, r) (3.111a)
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where Uγmµ , ij(k) ≡ Uσ , τ (k) is a unitary matrix, which in the case of a nondegenerate
band is reduced to a phase factor exp(iα(k)). It follows from (3.110) and (3.111)

W
(β)
ij (r − an) = N − 1

2

∑
k

∑
γmµ

Uγmµ, ij(k)· exp(−ikan) · ϕ(γ)
mµ(k, r) (3.112)

or

Wt(r) = N − 1
2

∑
s

Ust · ϕs(r) with Ust = Uγmµ, ij(k)· exp(−ikan) (3.112a)

If the functions ψ
(β)
ij (k, r) satisfy the conditions of orthonormality

Va

(2π)3

∫
(ψ(β)

ij (k, r))∗ψ(β)

i′ j′ (k′, r)dr = δii′ δjj′ δ(k − k′) (3.113)

the functions W
(β)
ij (r − an) form an orthonormal system:

(W (β)
ij (r − an),W (β)

i′ j′ (r − an′ )) = δii′ δjj′ δnn′ or (Wt(r),Wt′(r)) = δtt′ (3.114)

Let Q(q,β) be the space of a simple indrep (q, β) (for simplicity). The space Q(q,β) is
spanned by both the set of orthonormal functions W

(β)
ij (r − an) ≡ W

(β)
t (r) and the set

of Bloch functions ϕ
(γ)
mµ(k, r), = ϕs(r), see (3.112). The orthonormal functions W

(β)
t (r)

in (3.112) can be chosen real (if irrep β is real) and transform according to the irrep
β of the site groups Lqj,n of the points qj,n. Their localization depends on the choice
of the matrix Uγmµ, ij(k) in (3.112). The existence of Wannier functions decreasing
exponentially at infinity (for the model of an infinite crystal) is established in many
cases. The uniqueness of these functions for nondegenerate bands in crystals with
centers of inversion was proved [44,57]. In this case Wannier functions correspond to a
special choice of phase factors Uγmµ, ij(k) = exp(iα(k)) of Bloch orbitals ϕ

(γ)
mµ(k, r) =

ϕs(r) in (3.112). Any other choice of phase factors destroys either the symmetry
properties of the Wannier functions, or their reality, or both [42]. Obviously these
functions are as well localized as possible (fall off exponentially in the model of infinite
crystal). If the choice of phase factors is not correct the Wannier functions lose the
exponential character of their decrease and, therefore, are not maximally localized
according to any reasonable criterion of localization. Unfortunately, the uniqueness
of Wannier functions is not yet proved for the more general case of the degenerate
bands in crystals with centers of inversion, where it apparently exists.

As a criterion of localization for a localized function W (r) one uses the value of
the integral over the whole space of the crystal [42]

I =
∫

ρ(r)|W (r)|2dr (3.115)

with the weight function ρ(r) ≥0, which is supposed to be invariant under the op-
erations from the site-symmetry group Gq. Particular choices of the weight function
are:
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1.
ρ(r) = (r − q)2 Boys localization criteria (3.115a)

2.

ρ(r) =

{
1, if r ∈ ∆;
0, if r /∈ ∆

(3.115b)

where ∆ is some region surrounding the point q of symmetry localization of the
function W

(β)
0 (r);

3.

ρ(r) = (πr2
o)−3/2 exp(− (r − q)2

r2
o

) (3.115c)

which underlines the contribution in (3.115) of the values of the function |W (β)
0 (r)|2

inside the sphere of radius ro. As a special case of (3.115c) for ro → 0 one has
ρ(r) = δ(r − q).

One searches for the set of nonorthogonal localized functions V
(β)
ij (r − an) in the

form

V
(β)
ij (r − an) = N − 1

2

∑
k

∑
γmµ

Cγmµ, ij(k)· exp(−ikan) · ϕ(γ)
mµ(k, r) (3.116)

or
V

(β)
t (r) = N − 1

2

∑
s

Cst · ϕs(r) (3.116a)

The system of functions V
(β)
t (r) ≡ V

(β)
ij (r − an) can be obtained from the function

V
(β)
11 (r) ≡ V

(β)
0 (r) in the same way as the functions W

(β)
ij (r − an) from the function

W
(β)
11 (r) (see above). Therefore, it is sufficient to find only one function, for example

V
(β)
0 (r) = N − 1

2

∑
s

Cs0 · ϕs(r) (3.117)

The coefficients Cs0 can be found from the following variational problem: to find
the coefficients Cs0 in (3.117), maximizing (or minimizing) the functional (3.115) and
satisfying the supplementary condition:∫

|V (β)
0 (r)|2dr =1 (3.118)

This variational problem is equivalent to the eigenvalues and eigenvectors problem
for the matrix:

Ass′ =
1
N

∫
ρ(r)ϕ∗

s(r)ϕs′(r)dr (3.119)

The eigenvalues of the matrix A are stationary values of the localization criterion
(3.115), and the eigenvectors corresponding to these values are required coefficients
of the expansion (3.117). In our case, it is necessary to search for the eigenvector
corresponding to the highest eigenvalue for the choices (3.115b) and (3.115c) of the
weight function ρ(r) and to the lowest one for the case (3.115a). Let us note that it is
sufficient to use the variational procedure in the subspace of the first basis vectors of
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the irrep β of the site group Lq instead of the whole space of the canonical orbitals
of the energy band under consideration.

Though the set of the functions Vt(r) is not orthogonal, these functions are close
to the accurate localized Wannier functions W

(β)
t (r) ≡ W

(β)
ij (r − an). They can be

chosen real (for real irrep β of the site group Lq) and satisfy all the symmetry re-
quirements for the functions W

(β)
t (r). The orthonormal system W̃

(β)
t (r) is generated

from the functions V
(β)
t (r) by a suitable symmetrical orthogonalization procedure for

periodic systems:
W̃

(β)
t (r) =

∑
t′

(S− 1
2 )t′ tV

(β)

t′
(r) (3.120)

where S is the overlapping matrix of the functions V
(β)
t (r):

Stt′ ≡ (V (β)
t (r),V (β)

t′
(r)) (3.121)

Combining (3.116a) and (3.120) we get

W̃
(β)
t (r) = N − 1

2

∑
t′s

Cst′ · (S− 1
2 )t′ t·ϕs(r) (3.122)

As the symmetrical orthogonalization procedure (3.122) leaves unchanged the re-
ality and symmetry properties of the functions, the set of orthonormalized functions
W̃

(β)
t (r) satisfy all the requirements to the localized Wannier functions (reality, sym-

metry requirements and orthonormality) and (in the case when this set of functions
is unique) has to coincide with the latter:

W̃
(β)
t (r) = W

(β)
t (r) (3.123)

The weight function ρ(r) in the functional I, see (3.115), can be varied. In partic-
ular, one can choose for the region ∆ in (3.115b) a muffin-tin sphere, some part of
a Wigner–Seitz cell (even very small),etc . The functions Vt(r) depend on the choice
of ρ(r), but, according to calculations, after the procedure of symmetric orthogo-
nalization we always have the same result even for degenerated bands in crystals
with a center of inversion. Apparently, the proposed method gives, in these cases,
the orthonormal set of maximally localized Wannier functions. Thus, the numerical
calculations imply constructing matrix Ass′ (3.119), diagonalization of this matrix,
then obtaining the overlap matrix Stt′ (3.121), taking the matrix square root of it and
other operations of linear algebra.

To demonstrate the reliability of the proposed variational method let us consider
two examples of its applications given in [42] – the Wannier-function generation in
silicon and MgO crystals.

In accordance with the theory of induced (band) representations the corresponding
Wannier functions in the silicon crystal (four per unit cell) are centered at the middle
of the bonds between the nearest Si atoms (Wyckoff position c with site group Gc =
D3d) and transform according to the irrep a1g of the site group D3d, see Sect. 3.3.1.

For the variational procedure two sets of Bloch functions were used (both obtained
with the help of CRYSTAL code [23]). The first set (S1) corresponds to the full elec-
tron Hartree–Fock LCAO calculations, the second one (S2) – to the pseudopotential
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Hartree–Fock LCAO method. A model of a finite crystal with periodical boundary
conditions (cyclic model) with the main region composed of 4 × 4 × 4 = 64 primitive
cells was adopted. The first basis consists of 13 s- and p- atomic-like functions per
atom, the pseudopotential basis consists of 2 s-, 6 p- and 5 d-functions per atom. The
weight function ρ(r) = δ(r − q) has been taken in (3.115).

Table 3.17. Localized states for the upper valence band of Si crystal along [1,1,1] direction
(the origin is taken in the middle of the bond, x in a

√
3/96 units, a being the conventional

lattice constant), [42]

x W1(x) W8(x) W64(x) W
(no)
64 (x)

0 -0.2300 -0.2036 -0.1982 -0.1988

3 -0.2190 -0.1975 -0.1926 -0.1930

6 -0.1566 -0.1465 -0.1436 -0.1437

9 0.1204 0.1216 0.1199 0.1196

11 0.4116 0.3840 0.3725 0.3747

12 -0.5831 -0.7333 -0.7579 -0.7406

15 -0.0596 -0.0401 -0.0354 -0.0373

18 0.0497 0.0336 0.0288 0.0307

22 0.0620 0.0501 0.0453 0.0471

27 0.0250 0.0327 0.0317 0.0321

33 -0.0099 0.0097 0.0127 0.0121

39 -0.0098 -0.0002 0.0040 0.0030

45 0.0045 -0.0017 0.0011 0.0004

51 0.0045 -0.0002 0.0006 0.0003

57 -0.0098 0.0005 0.0003 0.0003

63 -0.0099 0.0000 0.0000 -0.0001

69 0.0250 -0.0006 -0.0002 -0.0002

75 0.0649 -0.0015 -0.0002 -0.0001

81 -0.0596 0.0008 0.0000 -0.0001

84 -0.5831 -0.0082 -0.0005 0.0000

87 0.1204 -0.0001 0.0000 0.0000

90 -0.1566 -0.0002 -0.0001 -0.0002

93 -0.2190 -0.0006 -0.0002 -0.0004

96 -0.2300 -0.0008 -0.0003 -0.0006

The bigger the cyclic model of a crystal, the closer are its Wannier functions
to those of the model of an infinite crystal. In [42] the convergence of the Wannier-
functions W (r) (for the set S1) for different sizes of cubic cells defining the cyclic model
of a crystal was studied. The smallest cubic cell consists of four primitive cells, the
larger ones consist of 8 and 64 smallest cubic cells. The total number of wavevectors
used in BZ summation is four times larger than the number of smallest cubic cells in
the supercel. The localized functions W1(x), W8(x), W64(x) were calculated according
to (3.112) as a linear combinations of 4 (supercell coincides with a smallest cubic
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cell), 32 (2 × 2 × 2 = 8 cubic cells in a supercell) and 256 (4 × 4 × 4 = 64 cubic
cells in a supercell) Bloch states. Table 3.17 gives the values of the Wannier functions
W1(x), W8(x), W64(x) and W

(no)
64 (x) (the latter is nonorthogonalized) in some points

along the [1, 1, 1] direction. As is seen from the table the function W
(no)
64 (x) is very

close to W64(x). So the orthogonalization procedure changes the Wannier function
insignificantly. When comparing the functions W1(x), W8(x), W64(x) it is necessary
to take into account that these functions are normalized differently, in the volume of
1, 8 and 64 cubic cells, respectively. The fact that their values are relatively close to
each other from x = 0 to x = 48 (in units of a

√
3/96, the translational period in the

[1, 1, 1] direction is equal to a
√

3) shows a good localization of the Wannier function
under consideration.

Figure 3.9 gives the W64(x) and pseudopotential(pp) Wannier function W
(pp)
64 (x)

in the [111] direction.
The functions differ significantly at the atom cores. Outside the cores the behavior

of the functions is alike. This is quite natural, since the pseudopotential Wannier func-
tions are constructed from smooth pseudowave Bloch functions, that are nonorthog-
onal to the core states. Orthogonalization of these smooth Wannier functions to the
localized core functions would lead to an increase of oscillations at atom cores observed
in the Wannier functions W64(x). The differences between the Wannier functions in
the interatomic space are due to the normalization.

In this case, the method reveals a very good stability with respect to the choice of
the weight function ρ(r) form. The computations give the same resulting orthogonal-
ized Wannier functions, whereas the intermediate nonorthogonalized functions Vt(r)
turn out to be different. An amazing feature was noted. Even if one uses the weight
functions ρ(r) centered at any point in the localization region of the Wannier function
and so the functions Vt(r) do not have the symmetry compatible with the site group
Gq, the same orthogonalized Wannier functions arise after the symmetrical orthog-
onalization procedure. The latter not only conserves the symmetry of the localized
orbitals, but reconstructs(!) it up to an appropriate level. The cause of such flexibil-
ity is the fact that the most localized Wannier functions corresponding to a certain
energy band are unique and just these functions arise without fail as the result of the
proposed variational procedure [42]).

To construct the Wannier functions for the upper valence bands of the perfect
MgO crystal a set of MgO Bloch functions has been applied [42], that were obtained
in pseudopotential Hartree–Fock LCAO calculations with the CRYSTAL code [23].
The 4 × 4 × 4 cyclic system has been used in the calculations. The valence band
of MgO represents two separated bands, and thus it is possible to construct two
independent sets of Wannier functions (for each of the bands). The method of induced
representations gives all the Wannier functions being centered on O atoms (Wyckoff
position b with site group Gc = Oh) and transforming – according to the irrep ag of the
site group Oh for the lower band (one Wannier function per unit cell) and according to
the irrep t1u – for the upper band (three Wannier functions per unit cell). The weight
function ρ(r) = δ(r − q) was taken in (3.115) located some distance away from the
centering point of the corresponding Wannier function – as the Wannier functions of
the upper band are antisymmetric and thus equal zero in their centering points, while,
as stated above, the symmetrical centering of ρ(r) function is not necessarily needed.

Figure 3.10 shows the Wannier functions for both the bands in the [111] direction.
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Fig. 3.9. Wannier functions for the silicon upper valence band along the [111] direction: a)
full electron calculation; b) pseudopotential calculation

The function corresponding to the upper band (dashed curve) is determined up
to a linear combination of the three functions transforming via t1u irrep. One can
see that both Wannier functions are almost completely localized around one of the
oxygen atoms, which confirms the ionic character of MgO compound.

The character of the localization of Wannier functions depends on the analytical
properties of Bloch states (as a function of the wavevector) that are essentially deter-
mined by the nature of the system under consideration. One can arbitrary change only
the form of an unitary transformation of Bloch functions. It is just this arbitrariness
that is used in the variational approach [42] to assure the best localization of Wannier
functions. The accuracy of the Wannier functions obtained by the proposed method is
determined solely by the accuracy of the Bloch functions and the size of the supercell
used. As the calculations have shown, the proposed method is reliable and useful in
the problem of generation of the localized Wannier functions. In the two examples
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Fig. 3.10. Wannier functions for the MgO upper valence band along [111] direction: solid
line for WF of a1g symmetry, dotted line – for one of the three WFs of t1u symmetry

considered the Bloch states of only occupied bands were used for WF generation.
Inclusion of the vacant band states of the appropriate symmetry allows Wannier-type
atomic orbitals (WTAO) to be generated. WTAO are used for the chemical-bonding
analysis in crystals. We consider WTAO applications in Chap. 9.



4

Hartree–Fock LCAO Method for Periodic Systems

4.1 One-electron Approximation for Crystals

4.1.1 One-electron and One-determinant Approximations
for Molecules and Crystals

The complex quantum-mechanical systems that are molecules and crystals, consisting
of a great number of atomic nuclei and electrons, can in many cases be modeled by
the nonrelativistic Hamiltonian having the form

Ĥ = −1
2

2Ne∑
i=1

∆ri
− 1

2

Na∑
j=1

1
Mj

∆Rj
+ V (r,R) (4.1)

where ri are the coordinates of electrons (i = 1, 2, ..., 2Ne), Rj are the coordinates
of nuclei (j = 1, 2, ..., Na) and V (r,R) is the energy of the Coulomb interaction of
electrons and nuclei:

V (r,R) =
∑
j<j′

ZjZj′

|Rj − Rj′ | +
∑
i<i′

1
|ri − ri′ | −

∑
ij

Zj

|ri − Rj | (4.2)

The Hamiltonian (4.1) is approximate as it does not take into account the spin-
orbit interaction and other relativistic effects. The calculation of eigenfunctions and
eigenvalues of the operator (4.1), i.e. the solution of the time-independent Schrodinger
equation

ĤΦ = EΦ (4.3)

is possible only after applying some approximations. The first of them is the adiabatic
approximation. It permits the motion of electrons and nuclei to be considered sepa-
rately and is based on the large difference in electron and nuclear masses (me << Mj).

In the adiabatic approximation, first the problem of electronic motion is solved
for fixed positions of nuclei[

−1
2

∑
i=1

∆ri
+ V (r,R)

]
ψ(r,R) = W (R)ψ(r,R) (4.4)



106 4 Hartree–Fock LCAO Method for Periodic Systems

The wavefunctions ψ(r,R) and the eigenvalues W (R) in (4.4) depend on the
nuclear coordinates R as parameters. Then, the found eigenvalues W (R) are used as
the operators of potential energy in the equation determining the nuclear motion:⎡⎣−1

2

∑
j=1

1
Mj

∆Rj
+ W (R)

⎤⎦χ(R) = εχ(R) (4.5)

This way of solving (4.3) is equivalent to the representation of the wavefunction Φ in
the form of the product

Φ(r,R) = ψ(r,R)χ(R) (4.6)

Further corrections of this reasonable approximation may be obtained from adiabatic
perturbation theory by using, as the small parameter, the value ( 1

M )1/4 where M is
the average mass of the nuclei. Equation (4.4) is often considered as an independent
problem without any relation to the more general problem (4.3). This is motivated
by the following reasoning. If the temperature is not very high, the nuclei vibrate
about some equilibrium positions R(0). Thus, in calculating the electronic structure,
only the configuraton with the nuclei fixed at their equilibrium positions R(0) is con-
sidered. The latter are typically known from experimental data (e.g., from X-ray or
neutron-scattering crystallographic data). This means of electronic-structure calcu-
lation without using any other experimental data (except the equilibrium positions
of nuclei) is often considered as made from first-principles. Often, the first-principle
calculations are made with the geometry optimization when the positions of nuclei are
found from the total-energy minimization. Formally, the results of such calculations
correspond to zeroth temperature. We write the equation for the electronic function
of the system in the form

Ĥeψ =

⎡⎣∑
i

Ĥ0(ri) +
∑
i,i′

1
|ri − ri′ |

⎤⎦ψ = Eψ (4.7)

where
Ĥ0(ri) = −1

2
∆ri −

∑
j

Zj

|ri − R
(0)
j |

+
∑
j<j′

ZjZj′

|R(0)
j − R

(0)
j′ |

(4.8)

We assume here that there is a finite number of electrons in the system. This is
certainly true for molecules, but for crystals it implies that we are using the model of
a finite but boundless crystal (cyclic model), i.e. we consider the bulk of a crystal with
cyclic boundary conditions imposed on opposite sides. The Hamiltonian Ĥe, being an
operator acting on the functions depending on the electron coordinates ri is invariant
under symmetry operations transforming the nuclear equilibrium configuration into
itself. Later, we call it the symmetry group of a crystal.

Equation (4.7) is still very complex. Its solution is not yet possible without further
simplifying approximations. The variables (electron coordinates) cannot be separated
in (4.7) because of the terms describing the mutual Coulomb repulsion between elec-
trons. This is why the exact many-electron wavefunction ψ may not be represented
as a product (or the finite sum of products) of one-electron functions. However, the
approximate wavefunction ψ̃ may be taken as a sum of the products of one-electron
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functions, which have to be chosen so that the approximate function ψ̃ is as close as
possible to the exact solution ψ.

The Hamiltonian Ĥe does not contain the spin operators. Therefore the one-
electron functions may be expressed in the form of the product ϕ(ri)α±(σi) of func-
tions ϕ(ri) depending on the spatial coordinates of electrons and functions α±(σi)
depending on spin variables only (α, β notations are also used for α±(σi)). The func-
tion ψ has to be antisymmetric under the exchange of any pair of electrons. This
requirement is satisfied by the antisymmetric product of one-electron functions

ψ = [(2Ne)!]
−1/2 det [ϕ1(r1)α+(σ1) . . . ϕNe

(rNe
)α−(σNe

)] (4.9)

The function ψ has to transform according to one of the irreps of the symmetry
group G (point group for molecules or space group for crystals) We restrict ourselves
to calculation of the ground state of the system. The latter is assumed to be invariant
under the elements of the symmetry group G and to correspond to a total spin equal to
zero. In this case, the wavefunction may be written in the form of a single determinant
(one-determinant approximation).

In the Hartree–Fock method (also known as the one-electron approximation or
self-consistent field (SCF) method) the system of equations for one-electron functions
is obtained from the variational principle minimizing the functional

E =
∫

ψ∗Ĥeψdτ (4.10)

provided ∫
ϕ∗

i (r)ϕi′(r)dr = δii′ (4.11)

The supplementary conditions (4.11) are not the primary restriction of generality.
Indeed, the orthogonalization procedure of one-electron functions may be fulfilled
directly in the determinant (4.9) without any change in its value. The same condition
(4.11) assures the normalization of the function to 1. The one-electron functions satisfy
the following system of Hartree–Fock equations:

F̂ϕi(r) =
∑
i′

εi′iϕi′(r) (4.12)

or
F̂ϕi = ϕiε (4.13)

where the Hartree–Fock operator

F̂ = Ĥ0 + Ĵ − K̂ (4.14)

is defined below, ϕ is a row of functions ϕi and ε is the matrix of coefficients εi′i.
In the Hartree–Fock operator F̂ the term Ĥ0 is the one-electron operator (4.8).

The action on the function ϕi(r) of the Coulomb operator Ĵ and exchange operator
K̂ is determined in the following way. Denote by ρ(r, r′) the mixed electron density
with fixed spin (spinless electron-density matrix)

ρ(r, r′) =
Ne∑
i=1

ϕi(r)ϕ∗
i (r

′) = ϕ(r)ϕ† (4.15)
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where ϕ† is the column of functions ϕ∗
i (r

′). Then

Ĵϕi(r) = 2
∫

ρ(r′, r′)
|r − r′| dr′ϕi(r) (4.16)

K̂ϕi(r) =
∫

ρ(r, r′)
|r − r′|ϕi(r′)dr′ (4.17)

The operator Ĵ is the potential energy operator of an electron in the Coulomb
field created by all the electrons of the system, with the electron in question included.
This is a normal multiplication operator. It acts on the functions depending on the
space coordinates of an electron. The Coulomb operator is determined if the electron
density ρ(r′, r′) is known. The operator K̂ is an integral nonlocal operator with the
nucleus ρ(r, r′)/|r − r′|. To calculate the function K̂ϕi it is necessary to know the
function values in the entire domain of its determination. The operator F̂ (4.14) is
self-adjoint, as ρ(r, r′) = ρ∗(r′, r).

Multiplying both sides of (4.12) by ϕ∗
j (r), integrating over dr and using the or-

thonormality of the functions ϕ∗
i (r), we obtain

εji =
∫

ϕ∗
j F̂ϕidr =

(∫
ϕ∗

j F̂ϕidr

)∗
= ε∗ij (4.18)

The matrix ε in (4.18) is Hermitian. It may be diagonalized with the help of a unitary
transformaton U:

F̂(ϕU) = ϕεU = (ϕU)(U−1εU), (4.19)

where U−1εU is a diagonal matrix. The unitary transformation U (UU† = 1) does
not change the electron-density matrix

ρ(r, r′) = ϕ(r)ϕ†(r′) = ϕUU†ϕ† = (ϕU)(ϕU)† (4.20)

Then, this transformation keeps the Coulomb Ĵ and exchange K̂ operators invariant
(and the total F̂). Therefore, without any restriction on the generality the matrix ε
in the right-hand side of (4.13) may be considered as diagonal

F̂ϕi = εiϕi (4.21)

The system of Hartree–Fock equations (4.21) is nonlinear. To solve it, an iterative
method is usually used. In the course of the pth iteration the electron-density matrix
ρ(p)(r, r′) and hence the operators Ĵ and K̂ are considered to be fixed. The system
(4.21) then transforms into one linear equation with a fixed self-adjoint operator

F̂(p) = Ĥ0 + Ĵ(p) − K̂(p) (4.22)

The eigenstates of this operator corresponding to the lower eigenvalues are populated
with electrons. The occupied states are used to construct ρ(p+1)(r, r′) according to
(4.20) and then Ĵ(p+1) and K̂(p+1) according to (4.16) and (4.17). Then, the subsequent
iteration is performed. The procedure of solution is stopped when the functions ϕ

(p)
j

approach ϕ
(p−1)
j (r) (within the desired accuracy). In practice, other criteria are also
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used to estimate the accuracy of the obtained solution (total energy, electron-density
convergence criteria).

Thus, by an iterative method a self-consistent solution of the nonlinear equations
(4.21) may be obtained. The rate of convergence of the iterative procedure depends on
the nature of the physical system as well as on the choice of the initial approximation.

The calculation of the eigenfunctions of the operator F̂ during the pth iteration is
itself a difficult problem that may be solved only approximately. To simplify it, the
nonlocal exchange potential K̂ is often replaced by a local potential. The one possible
form of the local exchange potential is (especially for crystals)

K̂ϕi = −3α
[
(3/4π)ρ(r, r)1/3

]
ϕi (4.23)

proposed by Slater. The constant α in crystal electronic-structure calculations is an
adjustable parameter. The widely used local density approximation (LDA) is con-
sidered in Chap. 7. If no iterative procedure is performed the electron structure ob-
tained is said to be nonself-consistent. This kind of calculation is justified only when
the one-electron Hamiltonian F̂(0) correctly reflects the main features of the exact
(self-consistent) energy operator. It is very difficult to guess such a potential without
involving some empirical data. The sum of atomic (or ionic) potentials is the sim-
plest and most natural form of the molecular or crystal potential in nonself-consistent
calculations. It is also used as an initial approximation in self-consistent electronic-
structure calculations. The one-electron Hamiltonian approximation using the LCAO
form of crystalline orbitals is known as the tight-binding (TB) method. This nonself-
consistent approach was popular in the 1970s when the self-consistent Hartree–Fock
calculations were possible only for simple crystals. At the present time the TB scheme
is mainly used as the interpolation scheme: LCAO Hamiltonian parameters are found
by fitting to the band structure calculated self-consistently, for example, using a plane-
waves basis. Comparing calculation schemes of molecular quantum chemistry with
those of quantum chemistry of solids one can say that the TB scheme is a semiem-
pirical extended Hückel theory with periodical boundary conditions. The considered
one-electron and one-determinant approximations are applied both for molecules and
crystals. The symmetry of the one-electron Hamiltonian in both cases coincides with
the symmetry of the nuclei configuration only for the case of closed-shell molecules or
nonconducting crystalline solids. This is shown in next section.

4.1.2 Symmetry of the One-electron Approximation Hamiltonian

The many-electron Hamiltonian Ĥe in (4.7), acting in the space of functions depending
on the coordinates of all the electrons, is invariant under the operators ĝ of the equi-
librium nuclear configuration symmetry group G. The operators of electron kinetic
energy in (4.8) and the Coulomb repulsion between electrons in (4.7) remain un-
changed under any transformation belonging to the point- or space-group operations
since, according to the definition, the elements of theses groups are the transforma-
tions that do not change the distances between any two points of the space. As to
the operators of electron–nuclear interaction in (4.8), the operations ĝ permute the
members of the sum, leaving the sum as a whole invariant. Indeed, the coordinate ri

transforms under g in
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r′
i = gri (4.24)

and the denominator in (4.8) becomes equal to

|r′
i − R

(0)
j | = |gri − R

(0)
j | = |g(ri − g−1R

(0)
j )| = |ri − g−1R

(0)
j | (4.25)

i.e. to the denominator of other members in the sum in (4.8). This reasoning also
proves the invariance of the one-electron operator Ĥ0 (4.8) under the transformations
g from the group G.

The set of one-electron functions transforming according to the nβ–dimensional
irrep D(β) is called the shell. For molecules, these shells are connected with irreps of
the point-symmetry group. For a crystal, β = (∗k, γ) – full irreducible representation
of space group G, defined by the star of wavevector ∗k and irrep γ of the point
group of this vector. Taking into consideration the spin states α±(σ) we have 2nβ

one-electron states in the shell. The functions ϕ
(β)
i (r)α±(σ) span the space of the rep

D(β) × D1/2, where D1/2 is the rep according to which the spin functions transform.
For the systems with closed shells (molecules in the ground state and nonconducting
crystals) the determinant (4.9) consisting of the functions of filled shells describes
the state invariant under the operations of the group G (transforms over unity irrep
of G). In fact any transformation of G replaces the columns of the determinant by
their linear combinations, which does not change the value of the determinant, i.e.
does not change the many-electron wave function ψ. In the case of open-shell systems
(molecular radicals or metallic solids) the ground state of the system is described
by a linear combination of determinants, appearing under the symmetrization over
the identity irrep of group G. For crystals, the one-determinant approximation is
practically the only way to make the electronic-structure calculations.

Now we check that for the closed-shell systems the group G is a symmetry group
of the Hartree–Fock equations (4.21). First we note that the sum

nβ∑
i=1

[ϕ(β)
i (r′)]∗ϕ(β)

i (r) (4.26)

is invariant under the group G, i.e. transforms over identity irrep of G. This follows
from the well-known property for finite groups of the direct product of irreps D(β) ×[
D(β)

]∗
. The electron-density matrix ρ(r, r′) is also invariant under G because for

filled shells it is the sum of terms like (4.26)

ρ(gr, gr′) = ρ(r, r′) (4.27)

The operators F̂ (4.21) and F̂(p), (4.22) are one-electron, i.e. they are determined
in the space of functions depending on the coordinates of one electron.

The invariance of the operator Ĥ is already proved. For Coulomb Ĵ and exchange
K̂ operators and for an arbitrary function ϕ(r) we have

ĝĴϕ(r) = 2
∫

ρ(r′, r′)
|g−1r − r′|dr′ϕ(g−1r)

= 2
∫

ρ(g−1r′, g−1r′)
|g−1r − g−1r′| d(g−1r′)ϕ(g−1r)

= 2
∫

ρ(r′, r′)
|r − r′| dr′ϕ(g−1r) = Ĵĝϕ(r) (4.28)
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ĝK̂ϕ(r) =
∫

ρ(g−1r, r′)
|g−1r − r′|ϕ(r′)dr′

=
∫

ρ(r′, r′)
|r − r′| ϕ(g−1r′)dr′ = K̂ĝϕ(r) (4.29)

The relation (4.27) and the equality |g−1r − g−1r′| = |r − r′| and d(g−1r′) = dr′

are used to prove the invariance of F̂. As (4.28) and (4.29) hold for an arbitrary
function ϕ(r)

ĝĴ = Ĵĝ, ĝK̂ = K̂ĝ (4.30)

and therefore
ĝF̂ = F̂ĝ, ĝF̂(p) = F̂(p)ĝ (4.31)

Thus, the operator F̂(F̂(p)) in the electron equation (4.21) has the symmetry group G
of the equilibrium nuclear configuration if the electron-density matrix ρ(r, r′)[ρ(p)(r, r′)]
is invariant under G. The eigenfunctions of the operator F̂(F̂(p)) form the bases of
irreps of G. The invariance of ρ(r, r′)[ρ(p)(r, r′)] is assured for the system with closed
shells.

Thus, taking as the initial approximation that the electron density ρ(0)(r, r′) is in-
variant under the group G we have, during any iteration step and in the self-consistent
limit, the one-electron functions classified according to the irreps of the group G –
the symmetry group of the equilibrium nuclear configuration.

In the absence of external fields the realness of the one-electron approximation
Hamiltonian is assured at all stages of the self-consistent calculations, at least for
a system with closed shells. The realness of the Hamiltonian F̂(p) leads to the real
electron-density matrix ρ(p+1)(r, r′) generated by the eigenfunctions of F̂(p). Indeed,
let the functions ϕ

(β)
i (r) and (ϕ(β)

i (r))∗ belong to the same one-electron energy and
describe the occupied electron states. If they span the space of the same irrep D(β) of
G (D(β) is real) then the partial sum (4.26 ) formed by these functions and involved in
ρ(p+1)(r, r′) is obviously real. If they are the independent bases of the irreps D(β) and(
D(β)

)∗
(equivalent or inequivalent) then the sum of two terms of the type (4.26) is

also real. This is the case of additional degeneracy due to the Hamiltonian being real.
Thus, the electron-density matrix is the sum of real members and is real itself. The real
density matrix ρ(p+1)(r, r′) generates the real Coulomb Ĵ (p+1) and exchange K̂(p+1)

operators and therefore the real one-electron Hamiltonian F̂ (p+1) for the (p + 1)th
iteration of the self-consistent calculations. The realness of the one-electron approxi-
mation Hamiltonian of molecular systems causes additional degeneracy of the energy
levels in cyclic point-symmetry groups Cn. In the case of crystals degenerated energy
levels appear corresponding to k and −k even for the case when the inversion is ab-
sent in the point group Fk. In the next sections we consider the Hartree–Fock LCAO
approach for periodic systems in comparison with that for molecular systems.

4.1.3 Restricted and Unrestricted Hartree–Fock LCAO Methods
for Molecules

The solution of Hartree–Fock equations without any additional approximations is
practically possible only for atoms. Due to the high symmetry of atomic systems
these equations can be solved numerically or by using analytical representation of
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atomic orbitals (AO). The tables of Roothaan–Hartree–Fock atomic wavefunctions
by Clementi and Roetti [65] give atomic functions expanded in terms of Slater-type
orbitals with integer quantum numbers. In molecular quantum chemistry the molec-
ular orbital (MO) is expanded in terms of Gaussian-type orbitals (GTO). Different
atomic functions used in calculations of molecules and crystals are considered in Chap.
8. For the moment, we restrict ourselves by representation of MO ϕi(r) as a linear
combination of atomic orbitals χµA(r) (MO LCAO approximation):

ϕi(r) =
∑
µA

CiµχµA(r) (4.32)

where µ numbers all basis functions centered on atom A and summation is made over
all the atoms in the molecular system. The MO LCAO approximation (also known as
the Hartree–Fock–Roothaan approximation [66]) is practically the only way to make
first-principles calculations for molecular systems. In the standard derivation of the
Hartree–Fock equations relative to a closed-shell system, the constraint that each
molecular orbital is populated by two electrons or vacant is introduced (Restricted
Hartree–Fock theory – RHF).

In the MO LCAO approximation RHF method (4.21) transform to the matrix
equations

FC = SCE (4.33)

where F and S are the Fock and the overlap matrices, C and E are the matrices of
eigenvectors and eigenvalues. The dimension M of square matrices F,S,C is equal
to the number of items in the sum (4.32), i.e. the total number of AO used in the
calculation.

The Fock matrix F is the sum of one-electron H and two-electron G parts. The
former includes the kinetic (T) and nuclear attraction (Z) energy, the latter is con-
nected with the electron–electron interactions. The matrix elements Hµν are written
in the form

Hµν = −1/2
∫

χ∗
µ(r)∇2

rχν(r)dV +
∑
A

∫
χ∗

µ(r)
ZA

|r − RA|χν(r)dV = Tµν + Zµν

(4.34)
The one-electron matrix H is independent of the density matrix and therefore does not
change during the self-consistent solution of Hartree–Fock-Rooothaan equations. The
two-electron matrix G includes Coulomb (C) and exchange (X) parts of interelectron
interaction:

Gµν = Cµν + Xµν =
∑
λσ

Pλσ(µν|λσ) − 1
2

∑
λσ

Pλσ(µλ|νσ) (4.35)

where
(µν|λσ) =

∫ ∫
χ∗

µ(r)χ∗
ν(r)|r − r′|−1χλ(r′)χσ(r′)dV dV ′ (4.36)

are two-electron integrals calculated with basis atomic orbitals. The one-electron ki-
netic energy and nuclear attraction integrals and two-electron integrals can be cal-
culated at the beginning of solution of these equations and stored in the external
memory of a computer. In some cases, this integrals calculation is more efficient at
each step of the self-consistent process.
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The two-electron part (4.35) contains one-electron density matrix elements

Pλσ = 2
∑

i

C∗
iµCiν (4.37)

The one-electron density matrix P in AO basis is calculated self-consistently after the
initial set of coefficients C is known. The simple one-electron Hamiltonian of Huckel
type is often used as an intial approximation to the Hartree–Fock Hamiltonian. It is
important to remember that the one-electron approximation is made when the many-
electron wavefunction is written as the Slater determinant or their linear combination.
For bound states, precise solution of Schrodinger equation can be expressed as a (in
general infinite) linear combination of Slater determinants.

The approximation of the one-electron Hamiltonian is the next step in the frame-
work of the one-electron approximation – the electron–electron interactions are ex-
cluded from the Hamiltonian. In solid-state theory the LCAO one-electron Hamil-
tonian approximation is known as the tight binding method. In molecular quantum
chemistry the one-electron Hamiltonians of Hückel or Mulliken–Rüdenberg types (see
Chap. 6) were popular in the 1950s and the beginning of the 1960s when the first-
principles, Hartree–Fock LCAO calculations were practically impossible.

The total electron energy Ee in the Hartree–Fock LCAO method is calculated
from the relation

Ee =
1
2

∑
µν

Pµν(Fµν + Tµν + Zµν) (4.38)

The total energy E = Ee + EN is the sum of electron energy and nuclear repulsion
energy

EN =
∑
j<j′

ZjZj′

|Rj − Rj′ | (4.39)

The energy EN is fixed for fixed nuclei configuration {R1, . . . ,Rj , . . . ,RN}. When
the optimization of molecular atomic configuration is made, the different nuclei con-
figurations are considered to find that which gives the total energy minima. For each
such configuration the self-consistent electron-energy calculation is made. By defini-
tion, in the molecular states with closed shells all MO are fully occupied by electrons
(by 2, 4 and 6 electrons for nondegenerated, two- and three-times degenerated irreps
of point groups, respectively) or empty. The corresponding many-electron wavefunc-
tion can be written as a single Slater determinant, each MO is occupied by an equal
number of electrons with α and β spins. Such a function describes the ground state
of a molecule with total spin S=0 and with the symmetry of identity representation
of the point-symmetry group.

In the case of open-shell molecular systems a single Slater determinant describes
a state with the fixed spin-projection (equal to the difference of nα and nβ electrons)
but is not the correct spin eigenfunction. Indeed, let in the open-shell configuration
the highest one-electron energy level be occupied by one electron with α spin. As there
are no spin interactions in the Hartree–Fock Hamiltonian the same electron energy
corresponds to the function with β-spin electrons on the highest occupied level. This
means that in order to get the correct total spin eigenfunction transforming over
the identity representation of the point group it is necessary to use a sum of Slater
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determinants. The molecules with an odd number of electrons, the radicals and the
magnetic systems have the open shells in the ground state.

The restricted open-shell Hartree–Fock (ROHF) and the unrestricted Hartree–
Fock Method ( UHF) approximations permit, however, open-shell systems to be de-
scribed, while maintaining the simplicity of the single-determinant approximation.
This is made at the stage of self-consistent electronic-structure calculations. After-
wards, the obtained spin-orbitals can be used to get the correct total spin many-
determinant wavefunction and to calculate the corresponding electron energy.

The ROHF [67] many-electron wavefunction is, in the general case, a sum of Slater
determinants; each determinant contains a closed-shell subset, with doubly occupied
orbitals and an open-shell subset, formed by orbitals occupied by a single electron.

In one particular case, the ROHF wavefunction reduces to a single determinant:
this is the so-called half-closed- shell cases, where it is possible to define two sets of
orbitals, the first nd occupied by paired electrons and the second ns, by electrons with
parallel spins. The total number of electrons n = nd + ns. In all molecular programs
ROHF means a single-determinant wavefunction with maximal spin projection that
is automatically eigenfunctions of S2 with the maximal spin projecton value S =
ns/2. So, for the ROHF method projection on a pure spin state is not required. The
space symmetry of the Hamiltonian in the ROHF method remains the same as in
the RHF method, i.e. coincides with the space symmetry of nuclei configuration.
The double-occupancy constraint allows the ROHF approach to obtain solutions that
are eigenfunctions of the total spin operator. The molecular orbitals diagram for the
ROHF half-closed shell is given in Fig. 4.1, (left).
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Fig. 4.1. The one-electron levels filling in (a) ROHF and (b) UHF methods

In the UHF method, keeping a single-determinant description, the constraint of
double occupancy of molecular orbitals is absent as α electrons are allowed to oc-
cupy orbitals other than those occupied by the β electrons, see Fig. 4.1 (right). The
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greater variational freedom allows the UHF method to produce wavefunctions that
are energetically more stable, i.e. give lower electron energy. Another advantage of
the UHF method is that it allows solutions with locally nonzero negative or positive
spin density (i.e. ferromagnetic or antiferromagnetic systems). However, UHF solu-
tions are formed by a mixture of spin states and are eigenfunctions only of the total
spin-projection operator Sz.

In the UHF approach, the single-determinant wavefunction is computed using nα

MOs ϕα(r) and nβ MOs ϕβ(r), corresponding to the electrons with α and β spin,
respectively. The wavefunction of the system with n electrons (n = nα + nβ) has the
following form:

Ψ = (N !)−1/2 det
{
ϕα

1 (r1)α(1) . . . ϕα
nα

(rnα
)α(nα)

ϕβ
1 (rnα+1)β(nα + 1) . . . ϕβ

nβ
(rn)β(n)

}
(4.40)

The energy expression is given by the following formula:

E = 〈Ψ |Ĥ|Ψ〉 =
∑

i

〈ϕα
i |Ĥ + 1/2(Ĵ − K̂α)|ϕα

i 〉 +
∑

j

〈ϕβ
j |Ĥ − 1/2(Ĵ − K̂β)|ϕβ

i 〉 (4.41)

where the Coulomb Ĵ and the exchange K̂α, K̂β operators are defined as in the stan-
dard RHF equations, that is:

Ĵ(r)ϕ(r) =
∑

i

(∫
dr′ϕ∗

i (r
′)|r − r′|−1ϕi(r′)

)
ϕ(r) (4.42)

K̂α(r)ϕ(r) =
∑

i

(∫
dr′(ϕα

i )∗(r′)|r − r′|−1ϕ(r′)
)

ϕα
i (r) (4.43)

K̂β(r)ϕ(r) =
∑

i

(∫
dr′(ϕβ

i )∗(r′)|r − r′|−1ϕ(r′)
)

ϕβ
i (r) (4.44)

In the LCAO approximation we write now MO for α- and β-spins with different
coefficients

ϕα
i (r) =

∑
µA

Cα
iµχµA(r); ϕβ

i (r) =
∑
µA

Cβ
iµχµA(r) (4.45)

and introduce the total density Ptot and spin density matrices Pspin

Ptot = Pα + Pβ , Pspin = Pα − Pβ

Pα
λσ =

∑
i

Cα∗
iλ Cα

iσ, Pβ
λσ =

∑
j

Cβ∗
jλ Cβ

jσ (4.46)

The total density matrix is used to get the expectation value of one-electron operators
that are spin independent

〈Ô〉 =
∑

µ

∑
ν

Ptot
µν 〈χµ|Ô|χν〉 (4.47)

To get the equations for the optimal UHF orbitals we proceed as in the standard
RHF case: we compute the first energy variation, then we introduce the orthonormality
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constraint of the basis set by means of the Lagrange multipliers method [68]. The
Pople–Nesbet equations

FαCα = SCαEα (4.48)
FβCβ = SCβEβ (4.49)

of the UHF LCAO method can be considered as the extension of the RHF LCAO
method equations (4.33) to the case when MO occupied by α and β spins are varied
independently. However, (4.48) and (4.49) can not be solved independently as the
Fock matrix depends not only on the total density Ptot and has the form:

Fα = F − 1
2
K[Pspin], Fβ = F +

1
2
K[Pspin] (4.50)

where the matrices F and G are defined as

F = H + G; G = J[Ptot] − 1
2
K[Ptot] (4.51)

The total electron energy expression now has the form

E = Sp PtotH +
1
2
Sp PtotG − 1

4
Sp PspinK[Pspin] (4.52)

To solve the UHF method equations the iterative procedure is necessary as was
already discussed for the RHF method. At first, an initial guess at the density matrices
Pα and Pβ is made. Then, the Fock matrices Fα and Fβ are calculated from (4.46).
The matrices of coefficients Cα and Cβ are determined by diagonalization of the Fock
matrices for α- and β-spins and the density matrix for the next iteration is built. The
whole process must be repeated to self-consistency; the convergence criteria consider
either the density matrix or the total electron energy. In order to get spin-polarized
solutions from an UHF calculation, it is necessary that the initial density matrices
Pα and Pβ are chosen to be different and this difference maintained during the whole
SCF process [69]. The RHF closed-shell solution can be considered as a special case
of the UHF method, where the number of α electrons coincide with the number of β
electrons (nα = nβ). In the RHF method Pα = Pβ for the whole SCF process. In the
UHF method (when initial matrices Pα �= Pβ) we could have either spin-polarized
solutions at the end of the SCF cycle or the spin polarization will vanish in the course
of the SCF process. Reaching a closed-shell solution from a spin-polarized starting
point is favored when the latter solution has lower energy.

The extension of the RHF, ROHF and UHF LCAO methods to periodic systems
is considered in the next sections. We begin this consideration from the discussion
of specific features of these methods when instead of a molecular system the cyclic
model of a crystal is introduced.

4.1.4 Specific Features of the Hartree–Fock Method
for a Cyclic Model of a Crystal

The extension of the HF method to a model of an infinite crystal leads to difficulties
connected with the one-electron Bloch functions (BF) behavior since they do not fall
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off to zero at infinity and therefore can not be normalized to unity in a space [70]. To
overcome this difficulty, periodic boundary conditions (PBC) are introduced for the
BF normalized in the main region of volume of the crystal containing a large number
N of primitive unit cells of volume.

In the HF method for molecular systems a many-electron wavefunction in the
form of a Slater determinant is written for the system containing a fixed number
of electrons. PBC introduction for the infinite crystal allows the system of infinite
number of electrons to be replaced by the system of a finite number of electrons (a
cyclic cluster). But, in a cyclic cluster containing a large number N of primitive unit
cells the number of electrons remains huge and from the very beginning it is necessary
to take into account the translation symmetry that is an opportunity to generate a
whole cyclic cluster by translations of a primitive unit cell. The concept of the cyclic
cluster helps to understand why, on calculation of the Fock matrix for a crystal, it is
necessary to make summations on a direct lattice and on the Brillouin zone. Thus,
the dimension of the Fock matrix is determined by the number of the basis atomic
functions referring not to an infinite crystal or its main region but to its small part –
the primitive unit cell.

Let the infinite crystal be replaced with a cyclic system (cyclic cluster) from
N = N1 × N2 ×N3 primitive cells, i.e. replaced with a parallelepiped with edges
Niai(i = 1, 2, 3). Periodic boundary conditions mean that opposite sides of a par-
allelepiped are identified, i.e. translations on vectors Niai(i = 1, 2, 3) are equivalent
to zero translation. The number of electrons in a cyclic system is equal N × n, where
n is the number of electrons on a primitive unit cell. In the HF method the cyclic sys-
tem under consideration can be considered as a huge molecular system with periodical
boundary conditions imposed on molecular orbitals. The matrix elements of the Fock
operator for the cyclic cluster in the LCAO basis have to include the summation on
all atoms in the cyclic cluster. To calculate the one-electron density matrix elements
the summation has to be performed on all the molecular orbitals occupied by N × n
electrons. We shall notice that for essentially ionic systems the cyclic cluster under
consideration should be placed in a Madelung field of the rest of an infinite crystal.
This means that in the diagonal elements of the Fock matrix contributions should
be added from the field of point charges of those atoms that are not included in the
cyclic cluster. With such an approach interatomic interactions in a crystal are actually
separated into short-range and long-range ones. The former are taken into account
directly in the cyclic-cluster calculation, the latter are approximated by inclusion of
the Madelung field acting on every atom of the cyclic cluster under consideration. The
efficient techniques of the Madelung field calculation are developed in the solid-state
theory [71] and we do not discuss them here. In [55] the symmetry group of the cyclic
model of a crystal was examined and the connection of this group with the symmetry
group of an infinite crystal was discussed. In particular, it was shown that the inner
translations of a cyclic system form a subgroup of the translation group of an infinite
crystal. This allows calculation of the electronic structure of the cyclic system using
the atomic basis symmetrized over the operations of this translation subgroup. This
means use of LCAO Bloch functions for those wavevectors that are connected with
the group T(N) of inner translations of cyclic system. By this the Fock matrix is split
up into blocks whose dimension is determined by number of different one-dimensional
representations of the translation group T(N), i.e. those nonequivalent wavevectors
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in the Brillouin zone that correspond to these representations. These wavevectors
are defined by the relation exp(−ikA) = 1, where A is the translation vector of
the cyclic system as a whole. Comparing the HF method for crystals with that for
molecules we conclude that instead of one the system of HF equations the separate
equations for any of nonequivalent wavevectors is necessary to solve at each iteration
of the self-consistent procedure. The preliminary atomic basis symmetrization in the
Hartree–Fock calculations of molecular systems can also be carried out to split up the
Fock matrix into blocks of smaller dimensions. However, the gain of such a splitting,
as a rule, is insignificant especially for those point groups that have many dimensional
irreducible representations. For a crystal, the direct account of translation symmetry
is a unique way to calculate the electronic structure. The summation over a direct
lattice in the Fock matrix appears as the sum over atoms included in the cyclic clus-
ter. The use of the translation symmetry allows one to calculate only those matrix
elements of the Fock matrix that are connected with the AOs of the reference primi-
tive unit cell (the zero translation vector corresponds to the reference primitive cell).
In the density-matrix calculation for a cyclic system the summation over wavevector
appears. This summation means the use of an atomic basis symmetrized over the
translation subgroup of a cyclic system symmetry group and replaces the summa-
tion over the occupied MO of a cyclic system by summation over occupied crystalline
orbitals for different wavevectors. Their number is determined by the number of elec-
trons in a primitive unit cell. The further splitting of the Fock matrix can be made
using the connection between the irreducible representations of the symmetry group
of a cyclic system and those of an infinite-crystal symmetry group. For each wavevec-
tor only the one ray of its star can be considered, and summation on a star is carried
out by application of operations of the point group of a crystal to that crystalline
orbital calculated for this ray. The full space group symmetry inclusion in the HF
LCAO method is considered in [28,29] and realized in the CRYSTAL code [23].

Naturally, there is a question: what size is it possible to be limited to in cyclic sys-
tem modeling of each an actual crystal? This depends on the character of localization
of electronic density in a crystal: in ionic crystals and semiconductors with a large
energy gap (5–10 eV) the electronic density is well-enough localized on ions or inter-
atomic bonds so the cyclic system of rather small sizes describes a short-range part
of the interatomic interactions. This means that on calculation of the one-electron
density for such crystals it is possible to be limited to summation on a rather small
number of points of the Brillouin zone. In crystals with a small energy gap, or metals,
the size of the needed cyclic system becomes essentially larger as the one-electron
states are more delocalized (in metals these states are practically delocalized over the
whole infinite crystal). Therefore, the summation over the Brillouin zone in calcu-
lations of crystals with a small energy gap requires many k-points to be included.
We see that one-to-one correspondence between the cyclic system size in direct lat-
tice and the finite set of wavevectors in the Brillouin zone allows an investigation of
the convergence of the results of electronic-structure calculations on the size of the
cyclic system sufficient to describe short-range interatomic interactions in a crystal.
Nevertheless, such an investigation is made by the primitive unit cell calculations.

In the next sections we consider in more detail the HF LCAO method for periodic
systems.
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4.1.5 Restricted Hartree–Fock LCAO Method for Crystals

The reformulation of Hartree–Fock LCAO molecular equations (4.33) to make them
suitable for periodic systems was proposed in [74] about forty years ago. However,
the first HF LCAO calculations were made mainly for the simple solids [72] or for
one-periodic systems (polymers) [73, 74] in which the direct lattice summations are
essentially simpler than in the two- or three-periodic systems. The periodic HF LCAO
method for the systems with any periodicity (polymers, surfaces, bulk crystals) was
implemented in the CRYSTAL code [23] after the detailed theoretical study of the
exact-(nonlocal) exchange Hamiltonian for the periodic systems. The following main
aspects were examined [75]: (i) the point and translational symmetry properties of
the HF LCAO Hamiltonian and the transformation of all relevant monoelectronic
and bielectronic terms under the symmetry operators, (ii) the use of general yet
powerful criteria for the truncation of infinite sums of Coulomb and exchange integrals,
(iii) the use of a procedure for performing integrals over wavevector k as needed in
the reconstruction of the Fock matrix in the SCF calculation. The first successful
applications of the CRYSTAL code to the calculations of the ground-state properties
of the two-periodic [76] (hexagonal boron nitride) and three-periodic [77](cubic boron
nitride and silicon) have opened a more than 25-year ab-initio HF LCAO study of the
bulk electronic properties of crystals, both perfect and defective, the extension of the
method to the surface modeling and magnetic systems. The density functional theory
(DFT) LCAO and hybrid (HF-DFT) calculation schemes were implemented in the
later versions of the CRYSTAL code [78]. The next step was made when the EMBED
code [79] appeared with the implementation of the perturbed cluster model of point
defects in crystals. The detailed discussion of many results obtained by HF and DFT
LCAO methods we postpone until Chapters 9–11. The reader interested in the list of
the actual systems calculations is referred to the Internet sites [80] and [81]. Recently,
periodic boundary conditions were included in the molecular code Gaussian [82] and
the first-principles HF and DFT calculations were made with the use of this code [83].
In Appendix C we give brief information about these two and some other HF and
DFT LCAO computer codes for crystals.

In this section, we examine the main modifications in the Hartree–Fock–Roothaan
equations (4.33), it being necessary to take into account the translation symmetry of
periodic systems. The first most important difference appears in the LCAO represen-
tation of the crystalline crbitals (CO) compared to the molecular orbitals (MO).

For the periodic system the AO symmetrization over the translation subgroup of
the space group is made giving the Bloch sums of AOs:

χµk(r) =
1√
N

∑
Rn

exp(ikRn)χµ(r − Rn) (4.53)

In (4.53), the index µ labels all AOs in the reference primitive unit cell (µ =
1, 2, . . . , M) and Rn is the translation vector of the direct lattice (for the reference
primitive cell Rn = 0). The summation in (4.53) is supposed to be made over the
infinite direct lattice (in the model of the infinite crystal) or over the inner primitive
translations R0

n of the cyclic cluster (in the cyclic model of a crystal). In the latter
case, the sum of the two inner translation vectors R0

n + R0
m = Rl may appear not to

be the inner translation of the cyclic cluster. However, the subtraction of the trans-
lation vector A of the cyclic cluster as a whole (in the cyclic model the vector A is
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supposed to be equivalent to the zero translation) gives the inner translation again:
R0

l = Rl − A.
The Bloch sum of AO (4.53) satisfies the Bloch theorem. To check this let us apply

the translation operator t̂Rm (for the fixed translation Rm) to the sum (4.53)

t̂Rmχµk(r) = χµk(r − Rm)

= exp(−ikRm)
1√
N

∑
Rn

exp(ik(Rn + Rm))χµ(r − Rm − Rn)

= exp(−ikRm)
∑

Rn′=Rn+Rm

exp(kRn′)χµ(r − Rn′) = exp(−ikRm)χµ(r) (4.54)

The replacing of the sum over translation vectors (Rn + Rm) by the sum over trans-
lation vectors Rn′ is evidently possible for the infinite crystal. In the cyclic cluster
this replacement means the subtraction of the translation vector A.

In the LCAO approximation CO is the Bloch function as it is expanded over the
Bloch sums of AOs:

ϕik(r) =
∑

µ

Ciµ(k)χµk(r) (4.55)

In the MO LCAO approximation the index i in the expansion (4.32) numbers the
MOs (their total number M is equal to the number of atomic orbitals used in the
expansion (4.32)). In the case of closed shells the Ne electrons of the molecule occupy
Ne/2 MOs and (M − Ne/2) MOs are empty. The total number of COs of the cyclic
cluster equals M ×N (N is the number of the primitive unit cells in the cyclic cluster;
M is the number of AO basis functions per primitive unit cell). For the cyclic cluster
containing Ne = N ×n electrons (n is the number of electrons per primitive unit cell)
Ne/2 crystalline orbitals are occupied by electrons and (M × N − Ne/2) orbitals are
empty. The numbering of crystalline orbitals is made by two indices i and k: the one-
electron states of a crystal form the energy bands numbered by index i and joining the
N states with the same i. The closed-shell case (the nonconducting crystals) means
that all the energy bands are filled or empty (there are no partly filled energy bands).
For N → ∞ the total number of COs also becomes infinite, the one-electron energy
levels form the continious energy bands, but the total number of energy bands remains
finite and is equal to M . For the closed-shell case n/2 electrons occupy the lowest-
energy bands for each k-vector. As discussed in Sect. 3.2.5 MgO and Si crystals are
examples of nonconducting systems with different values of the forbidden energy gap
(Figs. 3.4–3.5). The latter is the crystalline analog of the HOMO (highest-occupied
MO)–LUMO(lowest-unoccupied MO) one-electron energies difference. In both cases,
n = 8 (there are 8 valence electrons per primitive cell), 8 electrons occupy 4 valence
energy bands (for MgO crystal the whole valence band is split into two subbands).

On the basis of Bloch functions, the Fock and overlap matrices F and S become

Fµν(k) =
∑
Rn

exp(ikRn)Fµν(Rn); Sµν(k) =
∑
Rn

exp(ikRn)Sµν(Rn) (4.56)

where Fµν(Rn) is the matrix element of the Fock operator between the µth AO located
in the reference (zero) cell and the ν-th AO located in the Rn cell. The matrix element
Sµν(Rn) is the overlap integral of the same AOs. The row index can be limited to the
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reference cell for translational symmetry. Matrices represented on the Bloch basis (or
in k-space) take a block-diagonal form, as Bloch functions are bases for irreducible
representations of the translation group T (T(N) for the cyclic cluster of N primitive
cells); each block has the dimensions of the AO basis in the primitive cell, M ,

F(k)C(k) = S(k)C(k)E(k) (4.57)

In the HF LCAO method, (4.57) for the periodic systems replaces (4.33) written for
the molecular systems. In principle, the above equation should be solved at each SCF
procedure step for all the (infinite) k-points of the Brillouin zone. Usually, a finite set
{kj}(j = 1, 2, . . . , L) of k-points is taken (this means the replacing the infinite crystal
by the cyclic cluster of L primitive cells). The convergence of the results relative to the
increase of the k-points set is examined in real calculations, for the convergent results
the interpolation techniques are used for eigenvalues and eigenvectors as these are
both continuous functions of k [84]. The convergence of the SCF calculation results
is connected with the density matrix properties considered in Sect. 4.3

The overlap matrix elements in the AO basis are the lattice sums of the overlap
integrals between AOs, numbered now by indices of AO in the zero cell and of the
cell defined by the translation vector Rn:

Sµν(Rn) =
∫

χ∗
µ(r)χν(r − Rn)d3r (4.58)

The Fock matrix elements (as in the case of molecules) are the sums of one-electron
(the kinetic energy T and the nuclear attraction energy Z) and two-electron (Coulomb
J and exchange energies) parts. The difference of these matrices from the molecular
analogs is the appearance of the sums over a direct lattice, containing one-electron
(kinetic energy and nuclear attraction) and two-electron integrals:

Fµν(Rn) = Tµν(Rn) + Zµν(Rn) + Jµν(Rn) + Xµν(Rn) (4.59)

Tµν(Rn) = −1
2

∫
χ∗

µ(r)∇2
rχν(r − Rn)d3r (4.60)

Zµν(Rn) =
NA∑
A=1

∑
Rm

∫
χ∗

µ(r)
ZA

|r − A − Rm|χν(r − Rn)d3r (4.61)

(A numbers atoms in the primitive cell)

Jµν(Rn) =
M∑
λσ

∑
Rm′

Pλσ(Rm′)
∑
Rm

(µ0νRn|λRmσ(Rm + Rm′)) (4.62)

Xµν(Rn) = −1
2

M∑
λσ

∑
Rm′

Pλσ(Rm′)
∑
Rm

(µ0λRm|νRnσ(Rm + Rm′)) (4.63)

The two-electron integrals in (4.62) and (4.63) are defined as

(µ0νRn|λRmσ(Rm + Rm′)) =
∫ ∫

χ∗
µ(r)χν(r − Rn)|r − r′|−1

χ∗
λ(r′ − Rm)χσ(r − Rm − Rm′)d3rd3r′ (4.64)
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The comparison of (4.36) and (4.64) shows the difference in the two-electron integrals
definitions for crystals and molecules.

The spinless one-electron density matrix (DM) elements are defined in the LCAO
approximation as

Pλσ(Rm′) = 2
∫

dkeikRm′
∑

i

C∗
iλ(k)Ciσ(k)θ(εF − εi(k)) (4.65)

where εF is the Fermi energy, the integration in (4.65) extends to the first Brillouin
zone and corresponds to the model of the infinite crystal. In the cyclic-cluster model
the integration is replaced by the summation over k-points numbering the irreps of
the group of the inner cyclic-cluster translations. The DM elements depend on the
eigenvectors Ci(k) of the F(k) matrix. The integration or summation over k in DM
elements makes it impossible to solve (4.57) for different k independently.

The electron energy of the crystal (per primitive unit cell) as calculated within
the HF LCAO approximation can be expressed in terms of the one-electron density
matrix (DM) and includes the lattice sums

Ee =
1
2

M∑
µν

∑
Rn

Pµν(Rn) (Fµν(Rn) + Tµν(Rn) + Zµν(Rn)) (4.66)

The direct lattice summations in the Fock matrix elements and the k dependence of
the one-electron DM, energy levels and COs are the main difficulties of the HF LCAO
method for periodic systems, compared with molecules. A special strategy must be
specified for the treatment of the infinite Coloumb and exchange series as well as for
the substitution of the integral that appears in DM with a weighted sum extended to
a finite set of k-points. The efficient solution of these problems has been implemented
in the CRYSTAL code [23]. These problems are also valid for UHF and ROHF LCAO
methods for periodic systems considered in the next subsection.

4.1.6 Unrestricted and Restricted Open-shell Hartree–Fock Methods for
Crystals

The unrestricted and restricted open-shell Hartree–Fock Methods (UHF and ROHF)
for crystals use a single-determinant wavefunction of type (4.40) introduced for
molecules. The differences appearing are common with those examined for the RHF
LCAO method: use of Bloch functions for crystalline orbitals, the dependence of the
Fock matrix elements on the lattice sums over the direct lattice and the Brillouin-
zone summation in the density matrix calculation. The use of one-determinant ap-
proaches is the only possibility of the first-principles wavefunction-based calculations
for crystals as the many-determinant wavefunction approach (used for molecules) is
practically unrealizable for the periodic systems. The UHF LCAO method allowed
calculation of the bulk properties of different transition-metal compounds (oxides,
perovskites) – the systems with open shells due to the transition-metal atom. We dis-
cuss the results of these calculations in Chap. 9. The point defects in crystals in many
cases form the open-shell systems and also are interesting objects for UHF LCAO
calculations (see Chap. 10).
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In the UHF or ROHF cases two sets of matrix equations are solved self-consistently
for α and β spins [69]:

Fα(k)Cα(k) = S(k)Cα(k)Eα(k) (4.67)
Fβ(k)Cβ(k) = S(k)Cβ(k)Eβ(k) (4.68)

where the Fα(k),Fβ(k) and S(k) matrices are obtained by Fourier transform from
the corresponding direct space equivalent quantities as in (4.56).

The Fourier components of the density matrix for α and β spins are different as
they are obtained by using the Cα(k) and Cβ(k) eigenvectors obtained from (4.67)
and (4.68), respectively:

Pα
λσ(Rm) =

∫
dkeikRm

∑
i

nα
i C∗α

iλ (k)Cα
iσ(k) (4.69)

P β
λσ(Rm) =

∫
dkeikRm

∑
i

nβ
i C∗β

iλ (k)Cβ
iσ(k) (4.70)

where nα,β
i are the occupations of CO by electrons with α and β spins.

The total density P(Rm) and spin density Pspin(Rm) Fourier components are
defined as

P(Rm) = Pα(Rm) + Pβ(Rm) (4.71)
Pspin(Rm) = Pα(Rm) − Pβ(Rm) (4.72)

The Fα(Rm) and Fβ(Rm) matrices are defined as follows:

Fα
µν(Rm) = Fµν(Rm) + Xspin

µν (Rm) (4.73)

F β
µν(Rm) = Fµν(Rm) − Xspin

µν (Rm) (4.74)

The F(Rm) matrix is defined as in (4.59), where the total density matrix P(Rm)
defined in (4.71) is used in the Coulomb and exchange terms; Xspin

µν (Rm) is defined
as Xµν(Rm) in (4.63), where, however, the spin density matrix Pspin(Rm) is used
instead of the total density matrix P(Rm).

The ROHF LCAO method for crystals differs from the UHF method in the equa-
tions defining the CO. Let n = nα +nβ electrons per primitive unit cell be considered
(nα > nβ). For the nβ CO the closed-shell RHF LCAO equations are solved, the CO
of nα + nβ electrons with α spin are found from the equation analogous to (4.57). In
the ROHF method the total density P(Rm) and spin density Pspin(Rm) matrices are
defined as

P(Rm) = Pα,β(Rm) + Pα(Rm) (4.75)
Pspin(Rm) = P(α−β)(Rm) (4.76)

In (4.75) Pα,β is the DM calculated with the doubly occupied COs and in (4.76)
P(α−β) is DM calculated for COs with α spin.

The UHF method many-electron wavefunction is the eigenfunction of the spin pro-
jection operator Ŝz with zero eigenvalue, the ROHF method many-electron function
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describes the spin state with the maximally possible spin projection Sz = 1
2 (nα−nβ).

If we compare the UHF scheme with the RHF scheme for the closed-shell case, we
see that the most relevant quantities (Fock and density matrices, eigenvalues and
eigenvectors) are duplicated, so that it is possible to differentiate α orbitals from β
orbitals. As in the case of molecules it is important that at the starting guess Pα and
Pβ density matrices are different. In the CRYSTAL code there exists an option to
construct a DM formed by the superposition of atomic solutions, where it is possible
to assign a specific polarization (or no polarization) to each atom of the system [69].
Once the SCF process is started, it is often useful to introduce some constraints on
the populations of the α and β orbitals. This is performed in the CRYSTAL code
by ad-hoc translations of the eigenvalues spectrum in such a way that the difference
between the number of α and β electrons is equal to the value introduced in the input.

It is well known from Hartree–Fock studies of molecular systems, that it is very
common to have problems of SCF convergence when studying open-shell systems;
similarly, convergence problems are not rare in the Hartree–Fock treatment of spin-
polarized crystals. A well-known technique for the solution of convergence problems,
in the case of open-shell molecules, is the so-called level-shifting method [85]; this
approach has shown its effectiveness in the periodic HF context also, especially in the
case of crystals containing transition elements.

4.2 Special Points of Brillouin Zone

4.2.1 Supercells of Three-dimensional Bravais Lattices

Let ai(Γ1) (i=1,2,3) be the basic translation vectors of the initial direct lattice of
type Γ1 and aj(Γ2) (j = 1, 2, 3) be the basic translation vectors of a new lattice of
type Γ2 with the same point symmetry (symmetrical transformation) but composed
of supercells. Then

aj(Γ2) =
∑

i

lji(Γ2Γ1) ai(Γ1) |det l| = L, j = 1, 2, 3 (4.77)

where lji(Γ2Γ1) are integer elements of the matrix l(Γ2Γ1) defining the transition from
the lattice of type Γ1 to the lattice of type Γ2.

The vectors aj(Γ2) have well-defined orientation with respect to point-symmetry
elements of the lattices that are the same for both lattices because of the symmetrical
character of the transformation (4.77). Let us define the components of the vectors
aj(Γ2) by the parameters sk assuring their correct orientation relative to the lat-
tice symmetry elements and the correct relations between their lengths (if there are
any). Then three vector relations (4.77) give nine linear nonhomogeneous equations
to determine nine matrix elements lij(Γ2Γ1) as functions of the parameters sk. The
requirements that these matrix elements must be integers define the possible values
of the parameters sk giving the solution of the problem.

Let us demonstrate the procedure of finding the matrix of a symmetrical trans-
formation (4.77) by the example of the rhombohedral crystal system where there is
only one lattice type (R). The basic translation vectors of the initial lattice are the
following:



4.2 Special Points of Brillouin Zone 125

a1 = (a, 0, c) a2,3 = (−a/2,±a
√

3/2, c)

The basic translation vectors of the new lattice composed of supercells for symmetri-
cal transformation (4.77) have the same form (the parameters a and c of the initial
lattice are replaced with the parameters s1a, s2c)

a1 = (s1a, 0, s2c) a2,3 = (−s1a/2,±s1a
√

3/2, s2c)

Inserting them in (4.77) one obtains nine equations for nine elements of the matrix l.
The solution of this system is

lij =
s2 + 2s1

3
δij +

s2 − s1

3
(1 − δij)

where i,j=1,2,3. As the matrix elements lij must be integers let us assign (s2−s1)/3 =
n2 and (s2 + 2s1)/3 = n1 + n2. The matrix of the symmetrical transformation for
a rhombohedral lattice with the corresponding value of L may be found in Ap-
pendix A and [86] where the matrices of the symmetrical transformations for all
three-dimensional crystal lattices are given. Let us explain the peculiarities of the
consideration made for each of the seven possible crystal systems.

In the triclinic crystal system an arbitrary matrix with integer elements defines a
symmetrical transformation (any transformation seems to be symmetrical because of
the low point symmetry of the lattice).

In the monoclinic crystal system there are two lattices: simple (P) and base-
centered (A) each of which is defined by five parameters. Therefore the matrices
of symmetrical transformations are determined by five integers.

In the hexagonal crystal system there is only one lattice type (P), but the basic
translation vectors may be oriented in two different ways relative to the basic transla-
tion vectors of the initial lattice: either parallel to them or rotated through an angle of
π/6 about the z-axis. Therefore, two types of symmetrical transformation are possible
in this case (with two parameters for each).

In the orthorhombic crystal system the base-centered lattice merits special atten-
tion because of different possible settings. Let the initial base-centered lattice have
the setting C. The transition to base-centered lattices with settings C and A (or B)
gives different results (see Appendix A). The change of setting for the transition to
other types of lattice does not give new supercells.

In the tetragonal crystal system there are two types of Bravais lattice (P and
I). All their symmetrical transformations may be obtained from the symmetrical
transformations for orthorhombic lattices if one sets n1 = n2 and takes into account
that base-centered and face-centered orthorhombic lattices become simple and body-
centered tetragonal ones, respectively.

The matrices of symmetrical transformations for all the types (P, F, I) of cubic
lattices may also be obtained from the matrices of symmetrical transformations for
orthorhombic lattices if one sets n1 = n2 = n3 = n.

4.2.2 Special Points of Brillouin-zone Generating

In self-consistent calculations of the electronic structure of crystals both in the basis
of plane waves and in the basis of localized atomic-type functions, one needs in every
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stage of the self-consistent procedure to evaluate an approximate electron-density
matrix by integration over the Brillouin zone (BZ):

ρ(r, r′) =
∫

BZ

Qr,r′(k)dk, Qr,r′(k) =
∑

v

ψ∗
v(k, r′)ψv(k, r) (4.78)

where the sum is over occupied electronic states of the crystal. In practice, ψ(k, r)
(and ϕ(k) ≡ Qr,r′(k)) are calculated in some finite meshes of k-points. Therefore, one
needs for the evaluation of the integral (4.78) to construct the interpolation formula
of the numerical integration based on an interpolation procedure by means of some
set of interpolation functions.

The functions ϕ(k) ≡ Qr,r′(k)) are periodic in the reciprocal space with periods
determined by the basic translation vectors bi of the reciprocal lattice and having the
full point symmetry of the crystal (F is a point group of order nF of the crystal).

ϕ(k + bm) = ϕ(k) = ϕ(fk), f ∈ F, bm =
3∑

i=1

mibi (4.79)

The plane waves exp(ik · an) seem to be the most convenient as interpolation
functions for the integrand in the BZ integration, where an =

∑3
i=1 niai are direct

lattice translation vectors and ai are primitive translations. It is easy with plane waves
to take into account the translational and point symmetry of the crystal.

In the problem of BZ integration, nodes for the interpolation (k-points of the BZ)
were called special points (SP).

Many procedures for special points generation have been proposed [87–90]. The
supercell (large unit cell–small Brillouin zone) method appears to be the most general
and fruitful in practical applications [86,87] as it gives as a rule the most efficient sets
of special points.

Let Bi(Γ1) (i = 1, 2, 3) and bj(Γ̃2) (j = 1, 2, 3) be basic translation vectors of
the reciprocal lattices corresponding to direct ones determined by basic translation
vectors ai(Γ1) and aj(Γ2), respectively. The transformation (4.77) of the direct lattices
is accompanied by the following transformation of reciprocal lattices:

bj(Γ̃2) =
∑

i

(l−1(Γ2Γ1))ijBi(Γ̃1) (4.80)

For the symmetrical transformation (4.77) the transformation (4.80) is also symmetri-
cal as it does not change the point symmetry of the reciprocal lattice. The symmetrical
transformation is compatible with the change of the reciprocal-lattice type in the lim-
its of the same crystal system too. The vectors bj defining the small Brillouin zone are
very important in the theory of special points [86]. Let f(K) be the function with a
point symmetry F to be integrated over the initial Brillouin zone where the wavevec-
tor K varies. Usually, the point-symmetry group F either coincides with the crystal
class F̃ of the crystal (if F̃ contains the inversion I) or F = F̃ × Ci (otherwise) [86].
The function f(K) may be expanded in Fourier series over symmetrized plane waves
Pm(K)

f(K) =
∑
m

fmPm(K) (4.81)
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Pm(K) =
1

nG

∑
g∈G

exp(iK · gam) (4.82)

where am =
∑3

i=1 miai is some translation vector of the direct lattice, the integer
m = 0, 1, 2, . . . numerates the stars of vectors gam (g ∈ F ) in order of increasing
length. The functions Pm(K) have the properties [88]

1
VBZ

∫
BZ

Pm(K)dK = δm0, m = 0, 1, 2 · · · (4.83)

Let m be a subset of m corresponding to the stars of vectors gam (g ∈ F ). As is
proved in [86], for symmetrical transformation (4.77) L points in the initial Brillouin
zone (related to the initial basic translation vectors ai)

K
(k)
t = k +

∑
j

qtjbj (4.84)

where qtj are integers and k is an arbitrary vector in the small Brillouin zone (related
to the basic translation vectors aj), satisfy the relation:

L∑
t=1

Pm(K(k)
t ) = L

∑
m

Pm(k)δmm (4.85)

or
N∑

s=1

wsPm(K(k)
s ) =

∑
m

Pm(k)δmm (4.86)

In the latter relation s numbers the different irreducible wavevector K stars that
contain the points (4.84) and ws = Ls/L (Ls is the number of points (4.84) belonging
to the sth star,

∑N
s=1 Ls = L). The points K(k)

s are usually chosen in the irreducible
part of the Brillouin zone.

Relations (4.81)–(4.83) give the following formula of the appoximative numerical
integration:

1
VBZ

∫
BZ

f(K)dK ≈
N∑

s=1

wsf(K(k)
s ) (4.87)

Let M = so be the number denoting the set of vectors gam with the smallest (nonzero)
lengths. If f(K) is some linear combination of Pm(K) with m < M , then the formula
(4.87) appears to be exact. The number M characterizes the accuracy of the numerical
integration formula. The special choice of k can either increase the accuracy M , or
change the number N of points K(k)

s (or both), [89].
To generate the set of points K(k)

s for any of the 14 Bravais lattices it is sufficient to
find the inverse of the corresponding matrix from Appendix A, to pick out according
to (4.84) L points in the Brillouin zone related to basic translation vectors ai and to
distribute them over stars. The distribution of these points over stars depends on the
symmetry group F of the function f(K) and can not be made in general form.

The sets of special points for numerical integration over the Brillouin zone of cubic
crystals are given in Tables 4.1–4.3. They are obtained by symmetrical increasing of
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the unit cells of cubic lattices for L ≤ 32. The tables contain the sets (4.84) with k = 0
and some efficient sets with k �= 0. Some sets were found earlier in [87,89]. The types of
lattices (TL) composed of supercells are indicated in the second columns. The symbols
of the matrices Q = l−1 of the transformation of basic vectors of reciprocal lattices
are given in the third column. The matrices Qi themselves are given in Appendix B.

The system of symmetrized plane waves Pm(K) depends on the crystal class.
Therefore, the number M that characterizes the efficiency of the set of special points
may be different for different crystal classes [86]. In Tables 4.1–4.3 the numbers M
are given for crystal classes Td, O, Oh and T, Th (in parentheses).

In addition, in Table 4.1 for L = 4 two special points (1/2, 0, 1/4) and (1/2, 1/4, 0)
are related to different stars in crystal classes T, Th and each of them is a special
point with the weight 1/4; in crystal classes Td, O, Oh they are related to the same
star and this three-special-point set contains only one of these points with the weight
1/2.

Table 4.1. Special points of the Brillouin zone for the simple cubic lattice generated by
the symmetrical transformation; B1 = 2π

a
(1, 0, 0), B2 = 2π

a
(0, 1, 0), B3 = 2π

a
(0, 0, 1); Ks =

α1B1 + α2B2 + α3B3 ≡ (α1, α2, α3)

L TL l(−1) M Special points Ks and weights ws in {}

2 F 1
2
Q2 2 (0, 0, 0) { 1

2
} ( 1

2
, 1

2
, 1

2
) { 1

2
}

4 I 1
2
Q3 3 (0, 0, 0) { 1

4
} ( 1

2
, 1

2
, 0) { 3

4
}

4 ( 1
4
, 0, 0) { 1

4
} [( 1

2
, 0, 1

4
) { 1

4
} ( 1

2
, 1

4
, 0) { 1

4
}] ( 1

2
, 1

2
, 1

4
) { 1

4
}

8 P 1
2
Q1 4 (0, 0, 0) { 1

8
} ( 1

2
, 0, 0) { 3

8
} ( 1

2
, 1

2
, 0) { 3

8
} 1

2
, 1

2
, 1

2
) { 1

8
}

15(19) ( 1
8
, 1

8
, 1

8
) { 1

8
} ( 3

8
, 1

8
, 1

8
) { 3

8
} ( 3

8
, 3

8
, 1

8
) { 3

8
} ( 3

8
, 3

8
, 3

8
) { 1

8
}

16 F 1
4
Q2 7 (0, 0, 0) { 1

16
} ( 1

4
, 1

4
, 1

4
) { 1

2
} ( 1

2
, 0, 0) { 3

16
} ( 1

2
, 1

2
, 0) { 3

16
}

(1, 1, 1) { 1
16
}

27 P 1
3
Q1 9 (0, 0, 0) { 1

27
} ( 1

3
, 0, 0) { 2

9
} ( 1

3
, 1

3
, 0) { 4

9
} ( 1

3
, 1

3
, 1

3
) { 8

27
}

32 I 1
4
Q3 12 (0, 0, 0) { 1

32
} ( 1

4
, 1

4
, 0) { 3

8
} ( 1

2
, 0, 0) { 3

32
} ( 1

2
, 1

4
, 1

4
) { 3

8
}

( 1
2
, 1

2
, 0) { 3

32
} ( 1

2
, 1

2
, 1

2
) { 1

32
}

4.2.3 Modification of the Monkhorst–Pack Special-points Meshes

The most popular special-points (SP) sets are meshes obtained by a very simple
algorithm proposed by Monkhorst and Pack (MP) in [90]:

k(n)
p =

3∑
i=1

u(n)
pi

bi, n = 1, 2, ..., pi = 1, 2, . . . , n, u(n)
pi

=
2pi − n − 1

2n
(4.88)
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Table 4.2. Special points of the Brillouin zone for the face-centered cubic lattice ∗)

generated by the symmetrical transformation

L TL l(−1) M Special points Ks and weights ws in {}

4 P 1
2
Q3 2 (0, 0, 0) { 1

4
} (0, 1

2
, 1

2
) { 3

4
}

2 ( 1
4
, 1

4
, 1

2
) {1}

2 ( 1
2
, 1

2
, 1

2
) {1}

8 F 1
2
Q1 4 (0, 0, 0) { 1

8
} ( 1

2
, 1

2
, 1

2
) { 1

2
} (0, 1

2
, 1

2
) { 3

8
}

4 (0, 1
4
, 1

4
) { 1

4
} ( 1

4
, 1

4
, 1

2
) { 1

2
} ( 1

4
, 1

4
, 1

2
) { 1

4
}

8(10) ( 1
4
, 1

4
, 1

4
) { 1

4
} ( 1

2
, 1

2
, 1

4
) { 3

4
}

16 I 1
4
Q4 6(7) (0, 0, 0) { 1

16
} ( 1

4
, 1

4
, 1

2
) { 3

4
} (0, 1

2
, 1

2
) { 3

16
}

6(7) (0, 1
4
, 1

4
) { 3

8
} ( 1

2
, 1

2
, 1

2
) { 1

4
} ( 1

4
, 1

4
, 1

2
) { 3

8
}

27 F 1
3
Q1 9 (0, 0, 0) { 1

27
} ( 1

3
, 1

3
, 1

3
) { 8

27
} (0, 1

3
, 1

3
) { 2

9
} ( 1

3
, 1

3
, 2

3
) { 4

9
}

32 P 1
4
Q3 8 (0, 0, 0) { 1

32
} (0, 1

4
, 1

4
) { 3

16
} ( 1

4
, 1

4
, 1

2
) { 3

8
} ( 1

2
, 1

2
, 1

2
) { 1

8
}

(0, 1
2
, 1

2
) { 3

32
} ( 1

4
, 1

2
, 3

4
) { 3

16
}

8 ( 1
4
, 1

4
, 1

4
) { 1

4
} ( 1

2
, 1

2
, 1

4
) { 3

4
}

∗)B1 = 2π
a

(−1, 1, 1), B2 = 2π
a

(1,−1, 1), B3 = 2π
a

(1, 1,−1)

Ks = α1B1 + α2B2 + α3B3 ≡ (α1, α2, α3)

These meshes are widespread in modern Hartree–Fock and density-functional the-
ory calculations of crystals and are automatically generated in the corresponding
computer codes. But MP meshes of SP have at least one shortcoming, which may be
understood if one oversees the problem from the point of view of the more general
large unit cell–small Brillouin zone (LUC–SBZ) method of SP generation.The MP
method is a particular case of the LUC–SBZ method. In [91] the modification of the
MP meshes was suggested that makes faster and more regular convergence of the
results of the self-consistent calculations of the electronic structure of crystals.

MP meshes (4.88) are a particular case of the meshes (4.84), which corresponds
to the transformation (4.77) with the diagonal matrices

l
(n)
ji = nδji, L = n3, n = 1, 2, ..., i, j = 1, 2, 3 (4.89)

and a special choice of k in (4.84):

k =

⎧⎨⎩
1
2n

(b1 + b2 + b3)

0
=

⎧⎨⎩
(

1
2n

(1, 1, 1)
)

for even n

0 for odd n

(4.90)

The k-vector choice (4.90) is not the best one. As an example, we demonstrate
this for cubic crystals. In this case, transformation (4.89) assures at least the cutoff
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Table 4.3. Special points of the Brillouin zone for the body-centered cubic lattice ∗)

generated by the symmetrical transformation

L TL l(−1) M Special points Ks and weights ws in {}

2 P 1
2
Q2 2 (0, 0, 0) { 1

2
} ( 1

2
, 1

2
, 1

2
) { 1

2
}

2 ( 1
4
, 1

4
, 1

4
) {1}

2 (0, 0, 1
2
) {1}

2 ( 1
4
, 1

4
, 1

4
) {1}

3 ( 1
12

, 1
4
, 1

4
) {1}

4 F 1
4
Q5 3 (0, 0, 0) { 1

4
} ( 1

4
, 1

4
, 1

4
) { 1

2
} ( 1

2
, 1

2
, 1

2
) { 1

4
}

3 ( 1
4
, 1

4
, 1

4
) { 1

2
} (0, 0, 1

2
) { 1

2
}

6 ( 1
8
, 1

8
, 1

8
) { 1

2
} ( 3

8
, 3

8
, 3

8
) { 1

2
}

8 I 1
2
Q1 5 (0, 0, 0) { 1

8
} (0, 0, 1

2
) { 3

4
} ( 1

2
, 1

2
, 1

2
) { 1

8
}

5 ( 1
4
, 1

4
, 1

4
) { 3

4
} ( 1

4
, 1

4
, 1

4
) { 1

4
}

6 (0, 0, 1
4
) { 1

4
} (0, 1

4
, 1

4
) { 1

2
} ( 1

4
, 1

4
, 1

2
) { 1

4
}

16 P 1
4
Q2 6 (0, 0, 0) { 1

16
} ( 1

4
, 1

4
, 1

4
) { 3

8
} (0, 0, 1

2
) { 3

8
} ( 1

4
, 1

4
, 1

4
) { 1

8
}

( 1
2
, 1

2
, 1

2
) { 1

16
}

6 ( 1
8
, 1

8
, 1

8
) { 1

8
} ( 1

8
, 1

8
, 3

8
) { 1

2
} ( 5

8
, 3

8
, 3

8
) { 1

8
} ( 3

8
, 1

8
, 1

8
) { 1

4
}

27 I 1
3
Q1 10(11) (0, 0, 0) { 1

27
} (0, 0, 1

3
) { 4

9
} ( 1

3
, 1

3
, 1

3
) { 2

9
} (0, 1

3
, 1

3
) { 8

27
}

32 F 1
8
Q5 12 (0, 0, 0) { 1

32
} ( 1

8
, 1

8
, 1

8
) { 1

4
} ( 1

4
, 1

4
, 1

4
) { 3

16
} (0, 0, 1

2
) { 3

16
}

( 1
8
, 3

8
, 3

8
) { 1

4
} ( 1

4
, 1

4
, 1

4
) { 1

16
} ( 1

2
, 1

2
, 1

2
) { 1

32
}

∗)B1 = 2π
a

(0, 1, 1), B2 = 2π
a

(1, 0, 1), B3 = 2π
a

(1, 1, 0)

Ks = α1B1 + α2B2 + α3B3 ≡ (α1, α2, α3)

length Rcut = n · |ai| whatever the k. The k-vector choice (4.90) increases slightly the
cutoff length Rcut for even n in an fcc lattice (see Table 4.4).

In all the other cases of cubic crystals (in bcc and sc lattices and for odd n in fcc
lattice) the meshes MP (4.88) do not increase the standard cut-off length Rcut = n·|ai|
and are equivalent to the meshes with k=0 that contain the point Γ and consist of
the whole k-stars.

In [91] another choice of the k-point in (4.88) was proposed and the corresponding
SP sets were called modified MP (MMP) meshes. They depend on the type of cubic
crystal lattice.

1. k̃ =
1
4n

(1, 1, 1) for sc lattice (MMP1=MMP2);
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Table 4.4. Characteristics of MP, MMP1 and MMP2 k-points meshes for sc and bcc cubic
lattices (Rcut and M are the cutoff length and the precision of the meshes, N is the number
of k-points in the IBZ; Rcut is in a units, a is a cubic lattice constant)

4R2
cut (in a2), M, N

sc bcc

n ΓM=MP MMP1=MMP2 ΓM = MP MMP1 MMP2

1 4 1 1 16 4 1 3 1 1 4 2 1 8 3 1
2 16 4 4 64 15 4 12 5 3 16 6 2 32 12 6
3 36 9 4 144 40 10 27 10 4 36 14 5 72 30 18
4 64 15 10 256 79 20 48 19 8 64 26 8 128 59 40
5 100 25 10 400 141 35 75 32 10 100 45 14 200 104 75
6 144 40 20 576 224 56 108 51 16 144 70 20 288 163 126
7 196 56 20 784 341 84 147 72 20 196 102 30 392 221 196
8 256 79 35 1024 488 120 192 99 29 256 143 40 512 265 288

2. k̃ =
1
4n

(1, 1, 1) (MMP1) and k̃ =
1
4n

(−1/3, 1, 1) (MMP2) for bcc lattice;

3. k̃ =
1
2n

(1, 1, 1) (MMP1) and k̃ =
1
2n

(0.4588, 0.3112, 0.1477) (MMP2) for fcc
lattice.

The main characteristics of the proposed meshes for sc and bcc lattices are given
in Table 4.4 and for fcc lattice in Table 4.5.

Table 4.5. Characteristics of ΓM, MP, MMP1 and MMP2 k-points meshes for fcc cubic
lattice and convergence of PW DFT binding energy E per unit cell (in ev) for SiC crystal
for ΓM, MP and MMP2 k-points meshes, [91](Rcut and M are the cutoff length and the
precision of the meshes, N is the number of k-points in the IBZ; Rcut is in a units, a is a
cubic lattice constant).

ΓM MP MMP1 MMP2

n 4R2
cut M N E 4R2

cut M N E 4R2
cut M N E 4R2

cut M N

1 2 1 1 −2.931 2 1 1 −2.931 4 2 1 12.843 6 3 1
2 8 4 3 12.236 16 8 2 14.990 16 8 2 14.990 24 13 6
3 18 9 4 14.615 18 9 4 14.615 36 20 6 15.100 54 33 18
4 32 17 8 14.987 64 40 10 15.110 64 40 10 15.110 96 67 40
5 50 29 10 15.076 50 29 10 15.076 100 71 19 15.111 150 121 75
6 72 47 16 15.100 144 113 28 15.111 144 113 28 15.111 216 180 126
7 98 68 20 15.108 98 68 20 15.108 196 163 44 15.111 294 227 196
8 128 98 29 15.110 256 207 60 15.111 256 207 60 15.111 384 253 288
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MMP2 meshes are the best ones as they give the maximal value of the cutoff
length Rcut and the precision M for the given transformation (4.89). MMP1 meshes
for bcc and fcc lattices give the smaller value of the cutoff length and the precision,
but at the same time consist of the smaller number of points in the IBZ. The one-SP
meshes MMP2 (for n = 1) are mean value points of Baldereschi, [92].

The idea of the proposed modification of the MP meshes can be also used to
generate MMP meshes for all noncubic lattices.

The efficiency of MMP k-points meshes is demonstrated for an fcc lattice in Table
4.5, where PW DFT binding energies E per unit cell (in eV) for SiC crystal (fcc lattice)
are given for different choices of k-meshes.

DFT-PW calculations [91] were performed on a SiC crystal for different SP meshes
to investigate which one corresponds to the best convergence of the results for the
total energy per unit cell. The experimental value a = 4.35 Å was taken for the
fcc lattice constant of SiC, the electron–ion interaction was described by ultrasoft,
Vandebildt-type pseudopotentials [93] , the cutoff energy for the plane-wave basis set
was taken to be 1000 eV. The generalized gradient corrections (GGA) DFT method
was used (see Chap. 7).

In Table 4.5 are given the calculated binding energy values (defined as the dif-
ference between the sum of Si and C atomic energies with Vanderbildt-type pseu-
dopotentials and the total energy per primitive unit cell) for three types of meshes
mentioned above and used in calculations.

As is seen, the faster convergence takes place for the modified Monkhorst–Pack
schemes. For comparison, the experimental 13.0 eV and Hartree–Fock 9.0 eV may be
found in [94].

The suggested modification of Monkhorst–Pack special-points meshes for Brillouin-
zone integration is essentially useful for crystals with many atoms in a primitive unit
cell or for point-defect calculations in a supercell model. In these cases each step of
the self-consistent procedure in Hartree–Fock or DFT calculations is time consuming,
so that the higher efficiency of k-point meshes shortens the computing time. It is
also important for the lattice parameters or atom-position optimization in crystals,
when the self-consistent procedure is repeated for different atomic structures. The
special point set generation considered can be applied both in LCAO and plane-wave
calculations to approximate the DM of a crystal.

4.3 Density Matrix of Crystals in the Hartree–Fock Method

4.3.1 Properites of the One-electron Density Matrix of a Crystal

As is well known, the energy of a system within the single-determinant Hartree–Fock
approximation can be expressed in terms of the one-electron density matrix (DM).
The one-electron spinless DM ρ(R,R ′) is defined as

ρ(R,R ′) =
∫

VN

ψ(R,R2, ...RM ) ψ∗(R ′,R2, ...RM ) d3R2, d
3R3...d

3RM (4.91)

where the electron position vectors R and R′ vary within the basic domain of a crystal
of volume VN , i.e. a cyclic cluster consisting of N primitive unit cells. The DM of
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the infinite crystal is obtained from the DM of the basic domain by taking the limit
N → ∞. In its translational symmetry, the DM is periodic on the direct lattice:

ρ(R,R ′) = ρ(R + Rn,R ′ + Rn) (4.92)

where Rn is an arbitrary translation vector of the Bravais lattice.
We will represent the electron position vector R in the form (r,Rn), where Rn

specifies the primitive cell within which the end of the vector R lies and r is the
position vector of an electron within this primitive cell. Therefore, we have R =
r + Rn. Using (4.92), the density matrix can be written in the form

ρ(R,R ′) = ρ(r +Rn, r ′ +Rn′) = ρ(r, r ′ +Rn′ −Rn) = ρr,r′(Rn′ −Rn) (4.93)

The notation ρr,r′(Rn) for the one-electron DM in the coordinate representation
implies that the indices r and r′ of the matrix vary continuously only within the
primitive cell. Therefore, there is an analogy between the properties of the DM in the
coordinate representation and the properties of the DM represented in terms of a set
of basis functions, for example, in terms of Bloch sums of atomic orbitals (AOs) or
plane waves.

As is known, the diagonal elements of the one-electron DM in the coordinate
representation are equal to the electron density:

ρ(R) = ρ(R,R) = ρr,r(0) (4.94)

From the normalization condition for the many-electron wavefunction within the basic
domain, it follows that∫

VN

ρ(R,R) d3R = N n =
∑
Rn

∫
Va

ρr,r(0) d3r = N

∫
Va

ρr,r(0) d3r (4.95)

Therefore, the electron density is normalized to the number of electrons per primitive
cell, ∫

Va

ρr,r(0) d3r = n (4.96)

By using the single-determinant approximation to the many-electron wavefunction,
the DM can be expressed through the one-electron wavefunctions (crystalline orbitals):

ρ(R,R ′) =
∑

i

∑
k

ni(k) ϕik(R) ϕ∗
ik(R ′) (4.97)

where the index i specifies the energy bands and ni(k) are the occupation numbers.
In nonconducting crystals, the energy bands are either completely filled or empty;
therefore, ni(k) are independent of k and ni = 0, 2.

The one-electron DM is invariant under any orthogonal transformation in the space
of occupied states. In particular, in nonconducting crystals, we can go over from the
orthonormal set of extended Bloch states ϕik(R) to the orthonormal set of localized
Wannier functions (see Chap. 3):
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Wi(R − Rn) =

√
1
N

∑
k

exp(ikRn) ϕik(R) (4.98)

In this case, (4.97) for the DM takes the form

ρ(R,R ′) =
∑

i

ni

∑
Rm

Wi(R − Rm) W ∗
i (R ′ − Rm) (4.99)

or
ρr,r′(Rn) =

∑
i

ni

∑
Rm

Wi(r − Rm) W ∗
i (r ′ − Rm + Rn) (4.100)

It is well known that the Wannier functions Wi(R) vanish exponentially as |R| →
∞ in crystals with completely filled bands. Since the vectors r and r′ lie in the
reference (zeroth) primitive unit cell, the products of the Wannier functions on the
right-hand side of (4.100) fall off exponentially with increasing |Rn|. Therefore, we
may expect the total lattice sum in (4.100) for the offdiagonal elements ρr,r′(Rn) of
the DM to also vanish exponentially with increasing |Rn|. It should be noted that in
metals, the DM decays according to a power law.

Under translation through a lattice vector, according to Bloch’s theorem, the crys-
tal orbitals transform according to irreducible representations of the translation group

ϕik(R + Rn) = exp(−ikRn) ϕik(R) (4.101)

This condition is satisfied for both the infinite crystal and the basic domain; only
the sets of values of the wavevector k for which (4.101) is satisfied are different in
these two cases. By applying Bloch’s theorem (4.101) to the wavefunctions in (4.97)
for the one-electron DM of the basic domain, we obtain

ρr,r′(Rn) =
∑

i

∑
k

ni(k) ϕik(r) ϕ∗
ik(r ′ + Rn) =

1
N

∑
k

exp(−ikRn)Pr,r′(k)

(4.102)
where Pr,r′(k) is the density matrix in k-space, which is defined as

Pr,r′(k) = N
∑

i

ni(k) ϕik(r) ϕ∗
ik(r ′) (4.103)

From the familiar orthogonality relations for columns and rows of the matrices in the
irreducible representations of the Abelian translation group, it follows that

1
N

∑
Rn

exp(ikRn) = δk,b;
1
N

∑
k

exp(ikRn) = δRn,A (4.104)

where b is a reciprocal lattice vector and A is a primitive translation of the basic
domain as a whole. Using (4.104), it is easy to derive an inverse relation of (4.102)

Pr,r′(k) =
∑
Rn

exp(ikRn)ρr,r′(Rn) (4.105)

It follows from (4.105) that Pr,r′(k) is a periodic function in the reciprocal space
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Pr,r′(k + bm) = Pr,r′(k) (4.106)

Using the hermiticity of the DM

ρ(R,R ′) = ρ∗(R ′,R) (4.107)

we find that

ρr,r′(Rn) = ρ∗r′,r(−Rn); Pr,r′(k) = P ∗
r′,r(−k) (4.108)

From (4.96), the normalization condition for the DM in k-space can easily be found
to be ∫

Va

Pr,r(k) d3r = n (4.109)

Here, the integration is performed over a primitive cell of volume Va.
In the case where the many-electron wavefunction is calculated in the single-

determinant approximation, the spinless DM is duodempotent:∫
VN

ρ(R,R ′′)ρ(R ′′,R ′)d3R ′′ = 2ρ(R,R ′) (4.110)

Similar relations also hold for the matrices ρr,r′(Rn) and Pr,r′(k)∑
Rm

∫
Va

d3r′′ ρr,r′′(Rm)ρr′′,r′(Rn − Rm) = 2ρr,r′(Rn) (4.111)

∫
Va

d3r′′ Pr,r′′(k) Pr′′,r′(k) = 2Pr,r′(k) (4.112)

The one-electron density matrix has the same point-symmetry group F as the crystal
structure.

Let operator ĝ = tvR correspond to the coset representative tvR in the coset
decomposition of the crystal structure space group G over translation subgroup T
(see (2.15)). In this notation the density matrix point symmetry can be written in the
form

ĝρ(R,R′) = ρ(ĝ−1R, ĝ−1R′) = ρ(R,R′) (4.113)

For the density matrix ρrr′(Rn) in the direct space, we can write

ĝρrr′(Rn) = ρĝ−1r+Rn,ĝ−1r′+R′
n
(R−1Rn + Rm − R′

n) = ρrr′(Rn) (4.114)

where Rm is the translation vector that returns ĝ−1r back to the reference unit cell.
In a similar manner, the R′

n vector returns R−1r′ back to the reference cell. Using
relation (4.105) for the DM in the reciprocal space, we obtain

ĝPrr′(k) = exp
[
iR−1k(r′ − Rn)

]
PR−1r+Rn,R−1r′+R′

n
(R−1k) = Prr′(k) (4.115)

Hence, we have a useful relation between matrix elements of the DM for the star of
the wavevector k:
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Prr′(Rk) = exp
[
ik(R′

n − R))
]
PR−1r+Rn,R−1r′+R′

n
(4.116)

In practical calculations of the band structure of crystals by the Hartree–Fock
method, the one-electron density matrix Prr′(k) in the reciprocal space can be calcu-
lated only for a rather small finite set of special points (see Sect. 4.2). Let us consider
such a set of special points {kj}, j = 1, 2, . . . , N0. Then, in the calculation of the
density matrix of the infinite crystal the integration over the Brillouin-zone volume
VB is changed by the sum over the special points chosen

1
VB

∫
VB

d3kPrr′(k) ∼= 1
N0

∑
kj

Prr′(kj) (4.117)

Thus the the approximate density matrix ρ̃(R,R′) is introduced

ρ̃(R,R′) =
1

N0

∑
kj

Prr′(kj)

ρ̃r,r′(Rn) =
1

N0

∑
kj

exp (−ikRn) Pr,r′(kj) (4.118)

The approximate density matrix ρ̃(R,R′) satisfies the translation-symmetry condi-
tions. This matrix also satisfies the point-symmetry condition, provided that the whole
star of each vector kj is included in the set of special points {kj}. However, the ap-
proximate density matrix ρ̃(R,R′) does not satisfy other properties of the exact DM.
It is easy to see that an arbitrary finite sum over vectors kj , of delocalized Bloch
functions ϕikj (r) does not decrease with |r| → ∞. Therefore, provided that the R
vector in expression (4.97) for the DM is fixed, the approximate density matrix ρ̃ does
not decrease and does not approach zero as |R−R′| → ∞. This incorrect asymptotics
of the approximate DM is the reason for the divergence in the calculation of ρ2 and
for the violation of the idempotency conditions. Indeed, using the orthonormality of
the set of Bloch functions ϕik, it is easy to verify [95] that

ˆ̄ρ2 = 2
N

N0

ˆ̄ρ → ∞ at N → ∞ (4.119)

The incorrect asymptotic behavior of the approximate density matrix ρ̃ gives rise
to divergences in calculations of the average values of some physical quantities. In
particular, for the exchange energy per unit cell Kex, we obtain the divergence

Kex =
1
N

∫
VN

d3R

∫
VN

d3R′ |ρ̃(R,R′)|2
|R − R′| → ∞ at N → ∞ (4.120)

It was empirically found that, in a calculation of the electron structure of crystals
with nonlocal exchange, the integration of the Hartree–Fock exchange potential over
the direct lattice requires a so-called exchange-interaction radius to be introduced.
The exchange-interaction radius cannot be arbitrarily large but must correspond to
the used number of points k in the Brillouin zone.

This fact was explained in [95]. It was shown that the use of a finite number of
special points and simple cubature formulas for integration over the Brillouin zone
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leads to an incorrect behavior of the offdiagonal matrix elements of the DM at large
distances. This leads to nonphysical divergences in the calculation of the Hartree–
Fock nonlocal exchange potential and the Hartree–Fock exchange energy of a crys-
tal. Similar divergences take place in the calculation of the square of the DM. This
naturally violates the idempotency of the exact one-electron matrix required of the
Hartree–Fock one-determinant method. In the theory of special points, the divergence
problem arises only in the cases where the total exchange energy and the exchange
potential of the crystal depend on offdiagonal elements of the DM. Thus, in contrast
to the Hartree–Fock method, this problem is nonexistent in methods based on density-
functional theory; it is precisely the approximation where the theory of special points
was first applied. In calculations of the electron structure with nonlocal exchange, this
theory must be modified to avoid the above-mentioned divergences (see Sect. 4.3.3).
The considered properties of DM (translation and point symmetry, duodempotency
and normalization properties) do not depend on the basis choice (LCAO or plane
waves). In the next section we consider the density matrix of a crystal in the LCAO
approximation.

4.3.2 The One-electron Density Matrix of the Crystal
in the LCAO Approximation

In Sect. 4.1.5 the Hartree–Fock LCAO approximation for periodic systems was con-
sidered. The main difference of the CO LCAO method (crystalline orbitals as linear
combination of atomic orbitals) from that used in molecular quantum chemistry, the
MO LCAO (molecular orbitals as linear combination of atomic orbitals) method was
explained. In the CO LCAO approximation the one-electron wavefunction of a crystal
(CO - ϕik(R)) is expanded in Bloch sums χµk(R) of AOs:

ϕik(R) =
∑

µ

Ciµ(k)χµk(R) (4.121)

where
χµk(R) =

1√
N

∑
Rn

exp(ikRn)χµ(R − Rn) (4.122)

In (4.121) and (4.122), the index µ labels all AOs in the reference primitive cell
(µ = 1, 2, . . . , M) and the index i numbers the energy bands (i = 1, 2, . . . , M). The
appeaance of energy bands for periodic systems is the result of translation repeating
of the primitive unit cells AO over the infinite crystal of the cyclic system modeling
the infinite crystal. In the calculation of the molecular electronic structure the MOs
are filled by electrons, taking into account the degeneracy of levels due to the point-
symmetry group. In crystals, COs are filled by electrons and the degeneracy of one-
electron states is defined by irreps of the space-symmetry group of a crystal. This
means that the one-electron energy bands are filled by electrons and for nonconducting
crystals the valence bands are filled and the conduction bands are empty.

The Bloch sums (4.121) of AOs, as well as the AOs, do not constitute an orthonor-
mal basis; that is, the overlap integrals
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Sµν(k) =
∫

d3Rχ∗
µk(R)χνk(R)

sµν(Rn) =
∫

d3Rχ∗
µ(R)χν(R − Rn) (4.123)

are not equal to δµν .
The crystalline orbitals ϕik(r) compose an orthonormal set from which the fol-

lowing orthonormality relations can be derived for the elements of the matrix C(k)
involved in (4.57):

{C(k)S(k)C(k)}ij = δij (4.124)

In terms of the Bloch sums of AOs, the DM elements Pµν(k) can be expressed as

Pµν(k) =
∑

i

ni(k)Ciµ(k)C∗
iν(k) (4.125)

Within the LCAO approximation, the DM elements in the coordinate space are given
by an expression similar to (4.101),

ρµν(Rn) =
1
N

∑
k

exp(−ikRn)Pµν(k) (4.126)

and the DM in the reciprocal space is related to the DM in the direct (coordinate)
space through a relation similar to (4.105)

Pµν(k) =
∑
Rn

exp(ikRn)ρµν(Rn) (4.127)

In the reciprocal space, the analog of the normalization condition (4.109) for the
DM in the AO representation is the relation

Sp (P(k)S(k)) =
∑
µν

Pµν(k)Sµν(k) = n (4.128)

The normalization condition for the DM in the coordinate space (analog of (4.95)) is∑
Rn

Sp [ρ(Rn)s(−Rn)] = n (4.129)

The idempotency relation for the density matrix P(k) in the reciprocal space (with
allowance for the nonorthogonality of the basis) has the form (ni(k) = 0, 2)

P(k)S(k)P(k) = 2P(k) (4.130)

In the coordinate space, the idempotency relation for the DM is written as∑
Rm,R′

m

ρ(Rm)S(R
′
m − Rm)ρ(Rn − R

′
m) = 2ρ(Rn) (4.131)

In various semiempirical versions of the Hartree–Fock approximation (see Chap. 6),
the orthonormal set of Löwdin atomic orbitals (LAOs) rather than the nonorthogonal
AO basis is used; the LAOs are defined as
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χL
µk(R) =

∑
ν

S−1/2
µν (k)χνk(R) (4.132)

In this basis, the normalization condition for the density matrix PL(k) is simplified;
instead of (4.129) we have

Sp PL(k) = n, Sp ρL(0) = n (4.133)

In the LCAO basis, the idempotency relations for the DM in the coordinate and
reciprocal spaces are similar to (4.128) and (4.129) for the DM in the coordinate
representation; in the reciprocal space, we have

PL(k)PL(k) = 2PL(k) (4.134)

and in the coordinate space, the relation has the form∑
Rm

ρL(Rm)ρL(Rn − Rm) = 2ρL(Rn) (4.135)

In particular, for the reference primitive cell (Rn = 0), with allowance for the her-
miticity of the DM, we have∑

Rn

ρL(Rn)ρL∗(Rn) = 2ρL(0) (4.136)

The offdiagonal elements of the DM in the AO basis determine the quantities

WAB(Rn) =
∑

µ∈A,ν∈B

|ρL
µν(Rn)|2 (4.137)

that can be considered as the extension to the crystals of the Wiberg indices in-
troduced for molecules [96]. The Wiberg indices WAB(Rn) can be interpreted as
chemical-bond indices (orders) between atoms A and B, belonging to the reference
and Rnth primitive cells, respectively [97,98]. These indices are subject to a relation
that is a consequence of the idempotency of the DM. To derive this relation, we con-
sider the diagonal matrix elements of (4.136) and carry out summation over all AO
indices of atom A. The result is∑

B �=A

∑
Rn

WAB(Rn) = 2ρL
A −

∑
µ∈A

ρL
µµ(0) (4.138)

Here, ρL
A is the total electron population (in Lowdin’s sense) of atom A,

ρL
A =

∑
µ

ρL
µµ(0) (4.139)

Let us define the covalence CA of atom A as the sum of the chemical-bond or-
ders (Wiberg indices) between atom A and all other atoms of the crystal. Using the
idempotency relation (4.138), we have

CA =
∑

B,Rn �=A,0

WAB(Rn) = 2ρL
A −

∑
µ∈A

ρL
µµ(0) (4.140)
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It follows from (4.140) that the covalence of atom A in the crystal can be calculated
either by summing the bond indices between atom A and all other atoms of the crystal
or by using only single-center DM elements related to atom A. This property of the
covalence is a consequence of the idempotency of the DM.

The Wiberg indices (4.137) and atomic covalence (4.140) are called the local prop-
erties of the electronic structure of periodic systems. These properties also include
AO populations, atomic charges (electrovalencies) and total atomic valences [97]. The
analysis of the local properties of the electronic structure in molecular quantum chem-
istry is very popular as it gives useful information about the chemical bonding. The
local properties of the electronic structure of crystals are considered in more detail in
Chap. 9. The above consideration holds for the density matrix of the basic domain of
the crystal; that is, it is assumed that the number N of primitive cells in this domain
is so large that the introduction of cyclic boundary conditions virtually does not affect
the density matrix of the infinite crystal.

In actual practice, the SCF calculations of periodic systems are made with the
approximate DM ρ̃(R,R′), which is calculated by summation in (4.102) over a finite
(relatively small) number of k-points. As a result, the divergence of the summation in
the direct lattice can appear in the nonlocal exchange part of the Fock matrix. This
problem is considered in the next section.

4.3.3 Interpolation Procedure for Constructing an Approximate Density
Matrix for Periodic Systems

Let the electronic structure of a crystal be calculated using the one-electron wave-
functions found at a finite number L of points {kj} in the BZ (j = 1, 2, . . . , L). This
raises the question of how the sum over k points in the BZ should be approximately
calculated in (4.102) for the one-electron DM of the crystal.

We consider a set of points {kj} generated by the large- unit- cell (LUC) – small
brillouin zone (SBZ) method, see Sect. 4.2.2. In this method, the primitive lattice
vectors ai(i = 1, 2, 3) are transformed with the aid of a matrix l whose elements are
integers (see (4.77)):

AL
j =

3∑
i=1

ljiai, L = |det l| (4.141)

The basis vectors AL
j determine an LUC and a new Bravais superlattice. The LUC

thus constructed has volume VL = LVa and consists of L primitive cells. The superlat-
tice vectors A are linear combinations (with integral-valued coefficients) of the basis
vectors AL

j . The matrix l in (4.141) is chosen such that the point symmetry of the
new superlattice is identical to that of the original lattice (the corresponding trans-
formation (4.141) is called a symmetric transformation, see Sect. 4.2.1). The type of
direct lattice can be changed if there are several types of lattice with the given point
symmetry. The LUC is conveniently chosen in the form of a Wigner–Seitz (WS) cell,
which possesses the point symmetry of the lattice.

We introduce the periodic boundary conditions for the crystal domain coinciding
with the LUC; that is, we assume that all translations through the superlattice vectors
A are equivalent to the identity translation. Thus, we have a system of finite size,
i.e. a cyclic cluster belonging to the symmetry group GL = TLF, see Sect. 2.2.3



4.3 Density Matrix of Crystals in the Hartree–Fock Method 141

(we consider only symmetric transformations). Here, the subgroup TL includes L
translations through the vectors R0

n of inner translations of the original direct lattice
that lie within the LUC or fall on its boundary. The lattice sites lying on the boundary
of the LUC are connected by superlattice vectors A. These lattice sites should be
counted only once, because they belong simultaneously to several LUCs.

For the cyclic cluster thus constructed, the following orthogonality relations hold:

1
L

∑
R0

n

exp(ikjR
0
n) = δk,b (4.142)

1
L

∑
kj

exp(−ikjR
0
n) = δR0

n,A (4.143)

These relations are a generalization of the analogous equations for the basic domain
of the crystal because the cyclic cluster is obtained with the help of transformation
(4.141), in which the matrix l can be nondiagonal. The vectors kj in (4.142) and(4.143)
label L different irreducible representations of the group TL and can be found from
the relation

exp(ikjA) = 1, (j = 1, 2, . . . , L) (4.144)

Equation (4.142) is a consequence of the orthogonality of the characters of irre-
ducible representations of the translation group to the character of the unit represen-
tation (k = 0), while (4.143) means that the characters of a regular representation
of the group are equal to zero for all elements of the group except for the identity
element (i.e. except for the identity translation and equivalent translations through
the superlattice vectors A).

Let the density matrix P(k) be known at a finite set of points determined by the
LUC-SBZ method and, therefore, satisfying (4.144). Our aim is to approximate the
DM at an arbitrary point k in the BZ. The interpolation procedure suggested in [70]
and discussed in this subsection is appropriate for calculations in both the coordinate
representation and the AO basis. For this reason, we drop the indices on the DM,
keeping in mind that these indices are r and r′ in the coordinate representation and
µ and ν in the AO or orthogonalized-AO representation.

The expansions of the density matrix P(k) given by (4.105) and (4.127) can be
rewritten in the form

P(k) =
∑
R0

n

exp(ikR0
n)ρ(R0

n) +
∑
A�=0

∑
R0

n

exp(ik(R0
n + A))ρ(R0

n + A) (4.145)

where the translations (R0
n + A) lie in the basic domain of the crystal. As mentioned

in Sect. 4.3.2, the offdiagonal elements of the density matrix ρ(R0
n + A) fall off with

distance as Wannier functions (exponentially in the case of insulators). Therefore,
as the LUC grows in size and the values of |A| become sufficiently large, the second
term in (4.145) will be small in magnitude. With this in mind we will approximate the
density matrix P̃(k) of the crystal as follows [70]. In the expansion given by (4.145),
we drop the sum over the superlattice sites with A �= 0 and take the remaining
expression as an interpolation formula for determining the DM at any k point in the
BZ; we rewrite this expression in the form
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P̃(k) =
∑
R0

n

exp(ikR0
n)ρ0(R0

n) (4.146)

This formula was proposed in [70] for the interpolation of an arbitrary periodic func-
tion f(k). The interpolation coefficients ρ0(R0

n) (the number of which is L) can be
found from the condition

P̃(kj) =
∑
R0

n

exp(ikjR
0
n)ρ0(R0

n) = P(kj) (4.147)

Using the orthogonality relation (4.143), the interpolation coefficients can be found
to be

ρ0(R0
n) =

1
L

∑
kj

exp(−ikjR
0
n)P(kj) (4.148)

The coefficients ρ0(R0
n) can also be represented as a sum of the DM elements ρ(R0

n)
over the superlattice sites. Indeed, substituting (4.146) for P(kj) into (4.148) and
using (4.143), we have

ρ0(R0
n) =

∑
A

ρ(R0
n + A) (4.149)

It should be noted that the matrix ρ0(R0
n) can be defined for all vectors Rn of the

Bravais lattice by using the appropriate extensions of (4.148) and (4.149). It is easy
to see that ρ0(R0

n) is a periodic function of period A. Substituting (4.148) for the
coefficients ρ0(R0

n) into (4.149), we obtain an interpolation formula for the DM in the
reciprocal space,

P̃(k) =
∑
kj

P(kj)Ωj(k) (4.150)

Ωj(k) =
1
L

∑
R0

n

exp(i(k − kj)R0
n) (4.151)

Here, Ωj(k) are interpolation weights, the sum of which is equal to unity (the nor-
malization natural for weighting factors). Indeed, using (4.143), we find

∑
kj

Ωj(k) =
∑
R0

n

exp(ikR0
n)

⎡⎣ 1
L

∑
kj

exp(−ikjR
0
n)

⎤⎦ =
∑
R0

n

exp(ikR0
n)δR0

n,0 = 1

(4.152)
For the appropriate DM in the coordinate space, one can write equations similar to
(4.118) and (4.133):

ρ̃(Rn) =
1
N

∑
k

exp(−ikRn)P̃(k) =
∑
R0

n

ρ0(R0
n)

[
1
N

∑
k

exp(ik(R0
n − Rn))

]
(4.153)

According to (4.143), the expression in the square brackets on the right-hand side of
(4.153) is equal to unity if the vector Rn belongs to the set of vectors {R0

n} (i.e. if
this vector lies within the LUC or on its boundary) and vanishes otherwise. Therefore,
the appropriate DM can be represented in the form
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ρ̃(Rn) = ω(Rn)ρ0(Rn) (4.154)

where ω(Rn) is the so-called weighting function,

ω(Rn) =
1
N

∑
k

exp(ik(R0
n − Rn)) =

{
1, if Rn ∈ {R0

n}
0, if Rn /∈ {R0

n}
(4.155)

We note that the procedure described above for interpolating the DM in the
BZ is not uniquely determined, because the LUC (i.e. the set of vectors {R0

n}) can
be variously chosen for the same superlattice. Furthermore, the LUC can be chosen
differently for the pairs of DM indices r, r′ and µ, ν. In this book, the LUC is taken to
be the Wigner–Seitz cell, because only this cell has a symmetry identical to the point
symmetry of the superlattice in all cases. In order to correlate the LUC with a cyclic
cluster, we choose the LUC to be dependent on the pair of DM indices as follows. In
the coordinate representation, the LUC (VA-region) is centered at the point (r − r′);
therefore, we have

ωrr′(Rn) = ω(Rn + r′ − r) =

{
1, if Rn + r′ − r ∈ VA

0, if Rn + r′ − r /∈ VA

(4.156)

In the AO representation, the LUC is centered at the point dµ −dν where dµ and
dν are the position vectors of the two atoms to which the AOs with indices µ and ν
belong, respectively. Thus, we have

ωµν(Rn) = ω(Rn + dν − dµ) =

{
1, if Rn + dν − dµ ∈ VA

0, if Rn + dν − dµ /∈ VA

(4.157)

The weighting function ωµν(Rn) of (4.157) introduced into expressions for the DM
specifies the cyclic boundary conditions and the cyclic cluster. Indeed, let an arbi-
trarily chosen LUC be fixed and let us consider the orbitals of atoms A and B in this
LUC (µ ∈ A, ν ∈ B ). Out of all matrix elements ρ̃µν(Rn + A) with indices µ and ν
kept fixed and the vector A running over the superlattice, only one matrix element
is nonzero. For this matrix element, the vector (dν + Rn + A) (the position vector of
atom B) falls into the Wigner–Seitz cell centered at atom A site. This matrix element
exactly equals the matrix element ρ0

µν(Rn).
According to (4.154), the approximate density matrix ρ̃(Rn) found by interpola-

tion in the BZ contains the weighting function of (4.155)–(4.157) as a factor. This
function ensures the proper behavior of the offdiagonal elements of the approximate
DM as |Rn| → ∞. As already mentioned, the matrix without a weighting factor is a
periodic (not vanishing at infinity) function

ρ0(Rn + A) = ρ0(Rn) (4.158)

However, this DM is frequently used in many calculations based on the Hartree–Fock
approximation or its semiempirical (with nonlocal exchange) versions for crystals (the
CNDO and INDO methods, see Chap. 6). In those calculations, all summations over
the lattice sites are usually truncated by introducing artificially interaction ranges.
The non decaying density matrix ρ0(Rn) gives rise to a divergent exchange term in
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the Fock matrix. In other words, as the corresponding interaction range increases in
size at a fixed number of involved k points, the results do not converge to a certain
limit and the total energy of the system sharply decreases.

In order to avoid these divergences,the exchange interaction range should be chosen
such that the corresponding sphere differs only slightly from the Wigner–Seitz cell of
the superlattice, which generates precisely the set of k points used in the calculations.
In this case, the size of the summation domain in the coordinate space is in accord
with the number of k points used in the calculations and the exchange term in the
HF operator does not diverge. The approximate density matrix ρ̃0(Rn) is not subject
to these drawbacks, and the balance between the size of the summation domain in
the coordinate space and the number of {kj} points involved occurs automatically.

It should be noted that in the versions of the density-functional theory in which
the exchange-correlation term depends on the electron density alone, both approaches
are equivalent. Indeed, the electron density ρ(R,R) = ρrr(0) depends only on the
diagonal elements of the DM; therefore, the weighting function of (4.155) and (4.156)
is equal to unity in this case.

In general, the approximate DM does not satisfy all the conditions to which the
exact DM is subject. Let us elucidate which of the relations presented in Sect. 4.2.2
holds for the approximate DM and which do not.

The normalization conditions (4.95), (4.128), and (4.129) are very important. The
approximate DM in the coordinate representation and in the LAO basis meets these
conditions because the weighting function for the diagonal elements of the DM is equal
to unity. In the nonorthogonal basis, a modified normalization condition is satisfied,∑

Rn

Sp [ρ̃(Rn)s̃(−Rn)] = n (4.159)

where s̃(Rn) is an approximate overlap-integral matrix, which is obtained by inter-
polating in the BZ in much the same way as the approximate DM was obtained and
has the form

s̃µν(Rn) = ω(Rn + dν − dµ)s0
µν(Rn) (4.160)

s0
µν(Rn) =

1
L

∑
kj

exp(−kjRn)S(kj) =
∑
A

s(Rn + A) (4.161)

It is easy to verify that in all cases the approximate DM is Hermitian, i.e. it obeys
relations identical to (4.107) and (4.108).

In general, the approximate DM is not idempotent, because (4.112) holds only
at points k = kj (j = 1, 2, . . . , L) and is not satisfied at other points of the BZ.
For this reason, (4.111) and (4.136) in the coordinate space do not generally hold.
However, in the important particular case where the vector Rn in these equations is
zero, the idempotency relation is satisfied. In the coordinate space and in the LAO
representation, we have ∑

Rm

ρ̃(Rm)ρ̃(−Rm) = 2ρ̃(0) (4.162)

Therefore, the important relation for the Wiberg indices (4.140) is also satisfied. We
note that the matrix ρ0(Rn) obeys the relation



4.3 Density Matrix of Crystals in the Hartree–Fock Method 145∑
R0

m

ρ0(R0
m)ρ0(R0

n − R0
m) = 2ρ0(R0

n) (4.163)

In the strict sense, (4.162) is not an idempotency relation, because summation is
carried out only over the vectors R0

m, lying within the LUC, whereas the vector
difference (R0

n − R0
m) can lie outside the LUC. If we perform summation over all

Bravais lattice vectors, the right-hand side of (4.162) will diverge, because ρ0(R0
n)

does not vanish at infinity.
For the approximate DM to have the proper point symmetry, the LUC should be

taken to be the Wigner–Seitz (WS) cell. In this case, however, the symmetry can be
broken if on the boundary of the WS cell, there are atoms of the crystal. Indeed, if
an atom lies on the WS cell boundary, then there is one or several equivalent atoms
that also lie on the boundary of the cell and their position vectors differ from that
of the former atom by a superlattice vector A. When constructing the approximate
density matrix ρ̃ we assigned only one of several equivalent atoms to the WS cell. In
other words, in the set {R0

n}, there are no two vectors that differ from each other by a
superlattice vector A. In this case, if a point-symmetry operation takes one boundary
atom into another atom assigned to another WS cell, then the point symmetry of the
density matrix ρ̃ is broken, because the symmetry of the weighting function ωµν(Rn)
of (4.157) is broken.

Since it is desirable to preserve the point symmetry when calculating the electronic
structure, the approximate DM can be replaced by an averaged density matrix (see
also [99,100]):

ρs =
1

Ns

Ns∑
α=1

ρ̃α(Rn) = ωs(Rn)ρ0(Rn) (4.164)

Here, the index α = 1, 2, . . . , Ns labels all Ns possible ways in which one of the
equivalent boundary atoms can be assigned to a given WS cell and the symmetrical
weighting function is defined as

ωs
µν(Rn) =

1
Ns

Ns∑
α=1

ωα
µν(Rn) =

{
1

ns
µν

, if Rn + dν − dµ ∈ VA

0, if Rn + dν − dµ /∈ VA

(4.165)

where ns
µν is the number of atoms in the WS cell (including its boundary) that

are translationally equivalent to atom B (ν ∈ B) in the case where the WS cell is
centered at the atom-A site (µ ∈ A). In other words, ns

µν is the number of WS cells
that have atom B in common. If atom B is strictly inside the WS cell, then ns

µν = 1
and (4.165) is identical to (4.157). We note that the density matrix ρs(Rn) does not
satisfy idempotency relation (4.162) and corresponds to a mixed state of the system,
However, as the LUC enlarges, the effect of the boundary atoms decreases and the
density matrix ρs(Rn) approaches the idempotent density matrix ρ(Rn).

The above consideration can be interpreted as deduction of the cyclic cluster model
of the infinite crystal when the Hartree–Fock LCAO method (or its semiempirical
version with nonlocal exchange) is applied.

The study of the approximate density matrix properties allowed the implementa-
tion of the cyclic cluster model in the Hartree–Fock LCAO calculations of crystalline
systems [100] based on the idempotency relations of the density matrix. The results
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obtained for cyclic-cluster modeling the rutile TiO2 structure are discussed in Chap.
9.

The consideration presented allows one to better understand the features of
Hartree–Fock self-consistent calculations of the electronic structure of an infinite crys-
tal with a nonlocal exchange potential determined by the offdiagonal elements of the
one-electron density matrix. It has been shown that the number of k points cho-
sen in the BZ for calculations should be in accord with the size of the interaction
range in the coordinate space. In other words, there should be a correlation between
summations over the Bravais lattice in the coordinate space and over the BZ in the
reciprocal space. It was also shown that when the Fock operator (or the Kohn–Sham
operator in hybrid DFT methods, see Chap. 7) contains offdiagonal DM elements, the
BZ special-point technique should be modified: weighting-function introduction in the
direct-lattice sums entering the exchange term establishes the necessary balance and
removes the artificial divergences. The HF LCAO method is a well-defined starting
point for more sophisticated techniques allowing inclusion of the electron correlation.
We consider this problem in the next chapter.



5

Electron Correlations in Molecules and Crystals

5.1 Electron Correlations in Molecules: Post-Hartree–Fock
Methods

5.1.1 What is the Electron Correlation ?

Electrons in molecules and crystals repel each other according to Coulomb’s law, with
the repulsion energy depending on the interelectron distance as r−1

12 . This interaction
creates a correlation hole around any electron, i.e. the probability to find any pair of
electrons at the same point of spin-coordinate space is zero. From this point of view
only the Hartree product ΨH of molecular or crystalline spin-orbitals ψi(x):

ΨH(x1,x2, . . . ,xNe
) = ψ1(x1)ψ2(x2) . . . ψNe

(xNe
) (5.1)

is a completely uncorrelated function. The Hartree product (5.1) describes the system
of Ne electrons in an independent particle model. This independence means that the
probability of simultaneously finding electron 1 at x1, electron 2 at x2, etc. (x means
the set of coordinate r and spin σ variables) is given by

|ΨH(x1,x2, . . . ,xNe)|2dx1dx2 . . . dxNe

= |ψ1(x1)|2dx1|ψ2(x2)|2dx2 . . . |ψNe(xNe)|2dxNe (5.2)

which is the probability of finding electron 1 at x1 times the probability of finding
electron 2 at x2, etc., i.e. product of probabilities.

The well-known Extended Hückel semiempirical method for molecules and the
tight-binding approach to crystals are examples of the models with full absence of
electron correlation in the wavefunction. The Hamiltonian in these methods does not
include explicitly electron–electron interactions (such a Hamiltonian was defined in
Chap. 4 as the one-electron Hamiltonian) so that the total many-electron wavefunc-
tion is a simple product (5.1) of the one-electron functions and the total electron
energy is a sum of one-electron energies. The semiempirical parameters used in these
methods allow one to take the correlation into account at least partly. The differ-
ence between the one-electron Hamiltonian and the Hamiltonian of the one-electron
approximation (HF method) is the following. The former does not include electron–
electron interaction so that the calculation of its eigenvalues and eigenvectors does not
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require a self-consistent procedure. The Hamiltonian of the one-electron approxima-
tion includes explicitly the interelectron interactions, the one-electron approximation
is made only in the many-electron wavefunction. The one-electron approximation
Hamiltonian depends on the one-electron wavefunctions unknown at the beginning of
the calculation (for example, the Coulomb and exchange parts of the Hamiltonian in
the Hartree–Fock method, see Chap. 4) and the self-consistent calculation is required.

As considered in Chap. 4 the Hartree–Fock (SCF) method replaces the instanta-
neous electron–electron repulsion with the repulsion of each electron with an average
electron charge cloud. The HF method assumes that the many-electron wavefunction
can be written as one Slater determinant (4.9). The Hartree–Fock method is usually
defined as “uncorrelated”. However, the electron motions are no longer completely
independent.

For two electrons with different spins, |ϕ1(r1)α(σ1)ϕ2(r2)β(σ2)| the probability
of finding electron 1 at r1 and electron 2 at r2 is

P (r1, r2)dr1dr2 = dr1dr2

∫
dσ1

∫
dσ2|Ψ |2

=
1
2
[|ϕ1(r1)|2|ϕ2(r2)|2 + |ϕ1(r2)|2|ϕ2(r1)|2

]
dr1dr2 (5.3)

The electrons are uncorrelated.
For two electrons with the same spin |ϕ1(r1)α(σ1)ϕ2(r2)α(σ2)| the probability of

finding electron 1 at r1 and electron 2 at r2 is

P (r1, r2)dr1dr2 =
1
2
(|ϕ1(r1)|2|ϕ2(r2)|2 + |ϕ1(r2)|2|ϕ2(r1)|2

− [ϕ∗
1(r1)ϕ2(r1)ϕ∗

2(r2)ϕ1(r2) + ϕ1(r1)ϕ∗
2(r1)ϕ2(r2)ϕ∗

1(r2)]) dr1dr2 (5.4)

Now, P (r1, r2) = 0. No two electrons with the same spin can be at the same place.
This is called the Fermi hole. Thus, same-spin electrons are correlated in Hartree–
Fock, different-spin electrons are not. Sometimes, it is said that HF methods take
into account the so-called spin correlation.

The HF methods are also called by the independent electrons approximation [5]
but this independence is restricted by the Pauli principle.

The exact solution of Hartree–Fock–Roothaan equations (4.33) for molecular sys-
tems means use of a complete set of basis functions (such a solution corresponds to the
Hartree–Fock limit and in practice can be achieved mainly for the simple molecules).

In modern molecular quantum chemistry the correlation energy is defined as the
difference between the exact energy and the HF energy in a complete basis (Hartree–
Fock limit). As one does not know the exact energy one uses the experimental total
energy (the sum of the experimental cohesive energy and free-atom energies) or cal-
culates the exact energy for a given one-electron basis set and defines the basis set
correlation energy as the difference between the exact and HF energies calculated for
the same one-electron basis set. In molecular systems, the correlation energy is about
1 eV per electron pair in a bond or lone pair.

The HF method is usually defined as uncorrelated, however, as we see, the electron
motions are no longer completely independent. One of the first attempts to include
the electron-correlation in calculations was made by Fock et al. [101], who suggested
the incomplete separation of variables for two-valent atoms.
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The key distinction between the Hamiltonian operator and the Fock operator is
the following, [102]: the former returns the electronic energy for the many-electron
system, the latter is really not a single operator, but the set of all of the interdependent
one-electron operators that are used to find the one-electron functions (molecular
or crystalline orbitals) from which the HF wavefunction is constructed as a Slater
determinant (4.9). The HF wavefunction corresponds to the lowest possible energy
for a single-determinant many-electron wavefunction formed from the chosen basis
set.

Including electron-correlation in MO theory means an attempt to modify the HF
wavefunction to obtain a lower electronic energy when we operate on that modified
wavefunction with the Hamiltonian. This is why the name post-Hartree–Fock methods
is traditionally used for the methods including the electron-correlation.

As was mentioned in Sect. 4.1.3 in the unrestricted Hartree–Fock approximation
(where the coordinate dependence of spin-up and spin-down MOs was allowed to
differ) the one-determinant many-electron wavefunction is, in the general case, not an
eigenfunction of the total spin operator S2. To repair that deficiency the technique of
projection is used [103] so that the resulting wavefunction becomes a sum of several
Slater determinants and therefore partly takes into account electron-correlation, i.e.
goes beyond the one-derminant HF approximation. However, the coefficients in the
sum of Slater determinants are defined only by the projection procedure, i.e. the total
spin-symmetry requirements introduced for the many-electron wavefunction.

The sum of Slater determinants

Ψ = C0ΨHF + C1Ψ1 + C2Ψ2 + . . . (5.5)

is used also in other post-HF approaches: configuartion interaction (CI), multiple-
configuration SCF (MCSCF) and coupled-cluster (CC) methods applied to include
the electron-correlation in molecules.

Often, the HF approximation provides an accurate description of the system and
the effects of the inclusion of correlations with CI or MCSCF methods are of secondary
importance. In this case, the correlation effects may be considered as a smaller per-
turbation and as such treated using the perturbation theory. This is the approach of
Möller–Plesset [104] or many-body perturbation theory for the inclusion of correlation
effects. In the MP2 approximation only the second-order many-body perturbations
are taken into account.

The above-mentioned quantum-chemical approaches to electron-correlations in
molecules (also called wavefunction-based correlation methods) are described in detail
in monographs [5,102], recent review articles [105,106] and are implemented in mod-
ern computer codes [35, 107, 108]. The main disadvantage of the wavefunction-based
correlation methods is the high scaling of the computational cost with the number of
atoms N in a molecule [109], at least when the canonical MOs are used. The scal-
ing of the computational complexity is O(N5) for the simplest and cheapest method
– second-order perturbation theory MP2. For the CC theory the computational cost
scales are O(N6) and even O(N7) for the truncated beyond doubles and triples substi-
tutions, respectively. Such a high “scaling wall” [109] restricts the application range of
the wavefunction-based correlation methods to molecules of rather modest size. For
this reason the density-functional-based correlation methods (see Chap. 7) remain
until now the main way to treat large molecular systems. The main disadvantages
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of the latter methods are the principal impossibility for systematic improvements,
the underestimation of transition-state energies, and the inability to describe weak
interactions (dispersive forces).

The essential progress in the correlation effects inclusion was achieved in the so-
called local correlation methods [109,110] taking into account the short-range nature of
the correlation. In these methods, the localized MOs are generated from the occupied
canonical MOs using different localization criteria, see Sect. 3.3.1. For the virtual
space the atomic-orbital basis is projected out of the occupied MO space.

As compared to the molecules the wavefunction-based correlation methods for
periodic systems are practically reliable only when the molecular cluster model is
used. Unfortunately, the well-known problems of the cluster choice and the influence
of the dangling bonds on the numerical results restricts the application range of the
molecular cluster model to the essentially ionic systems.

The more sophisticated incremental scheme [111–114] maintains the infinite na-
ture of periodic systems but the correlation effects are calculated incrementally using
standard quantum-chemical codes.

Only recently was the MP2 theory applied to the periodic systems based on the
local correlation methods and use of Wannier functions [109,115].

While for the molecules the local correlation methods are already implemented in
the MOLPRO code [116] the implementation of this approach to the periodic systems
is the main goal of the new CRYSCOR project [117].

In the next sections we briefly discuss the basic ideas of CI, MCSCF and CC
post-HF methods for molecules as they are directly extended to the crystalline solids
in the framework of the molecular cluster model. In more detail, the local correlation
and MP2 methods are considered both for the molecules and the periodic systems.

5.1.2 Configuration Interaction and Multi-configuration
Self-consistent Field Methods

Methods designed to account for electron correlation in molecules are divided into two
classes: wavefunction(WF)-based methods and density-functional (DF)-based meth-
ods. The former use, in one or another way, the HF(noncorrelated) orthonormal MOs
and therefore are also called post-HF (PHF) methods. In the majority of cases RHF
orbitals are used. The latter are based on the density-functional theory (DFT), con-
sidered in Chap. 7.

PHF methods can, in turn, be classified as the variational and nonvariational ones.
In the former group of methods the coefficients in linear combination of Slater deter-
minants and in some cases LCAO coefficients in HF MOs are optimized in the PHF
calculations, in the latter such an optimization is absent. To the former group of PHF
methods one refers different versions of the configuration interaction (CI) method,
the multi-configuration self-consistent field (MCSCF) method, the variational cou-
pled cluster (CC) approach and the rarely used valence bond (VB) and generalized
VB methods. The nonvariational PHF methods include the majority of CC realiza-
tions and many-body perturbation theory (MBPT), called in its molecular realization
the Möller-Plessett (MP) method. In MP calculations not only RHF but UHF MOs
are also used [107].

In this section, we discuss CI and MCSCF methods, CC and MP approaches are
considered in the next sections.
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The concept of the electron configuration has sense only when the one-electron
functions of space and spin coordinates are used to approximate the correspond-
ing many-electron wavefunction. The latter is called the configuration-state function
(CSF) when the basis of spin-adapted many-electron functions is used. The config-
uration is specified by fixing the occupation numbers of the molecular spin-orbitals
(MSO) and the molecular spin state. For the closed-shell singlets (the ground-state
configuration) CSF can always be represented as a single determinant and transforms
over identity representation of the molecular point-symmetry group. As the degen-
eracy of the molecular one-electron states is defined by the dimensions of the irreps
of the corresponding point-symmetry group the closed-shell configuration occupation
numbers are zero or twice these dimensions (α and β electron-spin projections are al-
lowed). In the majority of open-shell systems (excited-states configurations or ground
states of radicals) proper CSFs can only be represented by a combination of two or
more Slater determinants. Let the Hartree–Fock–Roothaan (MO LCAO) equations
(4.33) be solved and the Slater determinant Φ0 = ΨHF = |ψ1, ψ2, . . . , ψN | in (5.5) is
obtained. Solving MO LCAO equations will give M > N orthonormal MSOs (M is
the total number of AOs used in the calculation and N is the number of electrons).
For the ground state the N energetically lowest MSOs are occupied, which results in
the HF determinant. To construct Slater determinants for excited states we may also
use energetically higher orbitals, being vacant in the HF solution. It should be added
that all MSOs (both those that for the ground state are occupied and those that are
empty) are orthonormal as the eigenfunctions to the same Hartree–Fock operator.
This represents an important simplification in the calculations.

In the full CI (FCI) method (precise with respect to the basis chosen) M HF MOs

ϕi (i = 1, 2, . . . , M) generate NCI=C
1
2 N+MS

M C
1
2 N−MS

M determinants for the system
with N electrons and fixed total spin projection MS .

Let us rewrite the many-determinant wavefunction (5.5) in the form

Φ =
NCI−1∑

I=0

CIΦI (5.6)

where index I numbers different configurations. The HF approximation corresponds
to I = 0 and C0 = 1 and CI = 0 for I > 0 in (5.6).

In the FCI method all MSOs are usually supposed to be fixed as the solutions of
HF MO LCAO equations but the parameters CI are varied in the expression

L = 〈Φ|Ĥe|Φ〉 − λ [〈Φ|Φ〉 − 1] (5.7)

We find [8]

∂

∂C∗
K

[
〈
∑

I

CIΦI |Ĥe|
∑

J

CJΦJ〉 − λ〈
∑

I

CIΦI |
∑

J

CJΦJ〉
]

=
∂

∂C∗
K

∑
I,J

C∗
I CJ

[
〈ΦI |Ĥe|ΦJ〉 − λ〈ΦI |ΦJ〉

]
=
∑

J

CJ

[
〈ΦK |Ĥe|ΦJ〉 − λ〈ΦK |ΦJ〉

]
= 0 (5.8)
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This gives the matrix eigenvalue problem

HC = λSC (5.9)

where
HKJ = 〈ΦK |Ĥe|ΦJ〉, SKJ = 〈ΦK |ΦJ〉 (5.10)

and the eigenvalue in (5.9) is equal to

λ =
〈Φ|Ĥe|Φ〉
〈Φ|Φ〉 (5.11)

The Hamiltonian operator Ĥ = ĥ+ ĝ consists of the single-electron ĥ =
N∑

i=1

ĥ(ri) and

two-electron ĝ = 1
2

N∑
i �=j=1

1
|ri−rj | parts. Calculating for operators ĥ and ĝ the matrix

elements 〈Φ|ĥ|Φ〉, 〈Φ|ĝ|Φ〉 and taking into account the orthonormality of MSOs it can
be shown [8] that:

1. Different configurations are orthonormal;
2. For any single-electron operator ĥ there will be nonvanishing matrix elements

only between configurations that differ at most in one MSO;
3. For any two-electron operator ĝ there will be nonvanishing matrix elements only

between configurations that differ at most in two MSOs. The MOs ϕi are solutions
to the HF equations

F̂ϕi = εiϕi (5.12)

where

F̂ = ĥ +
N∑

j=1

(
Ĵj − K̂j

)
(5.13)

The j summation in (5.13) runs over all those orbitals that for the ground-state
configuration Φ0 are occupied. The Coulomb Ĵj and exchange K̂j operators were
defined in (4.16) and (4.17).

Let now the matrix elements 〈ΦJ |Ĥe|ΦI〉 be calculated, where ΦI = Φ0 and ΦJ =
Φν

n (in the Φν
n configuration one electron has been excited from the nth occupied

spin-orbital to the νth empty spin-orbital). It can be shown [8] that both overlap and
Hamiltonian matrix elements vanish between the ground-state configuration Φ0 and
any single-excited one. Having determined all the relevant matrix elements of (5.9)
one may obtain the wavefunction (5.6) as well as the corresponding total electron
energy of the FCI method. Notice that in contrast to the HF calculations, the FCI
calculations do not require any self-consistency with respect to MOs. Diagonalization
of the N -electron Hamiltonian in the basis of Slater determinants gives us energies
and WFs of the ground and excited states of the system. It is pertinent to note that
for the FCI method the choice of MO basis is not important because any unitary
transformation of the MO basis induces unitary transformation of the determinant
basis.

The FCI method is the most general of several theories for treating electron corre-
lations. As a variational method it provides upper bounds for the correlation energy.
By definition the FCI calculation means that all NCI configurations (possible for a
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given number of electrons N and M AO basis functions) are included in the sum (5.6).
FCI calculations can be practically realized only for small molecules and small ba-
sis sets as the number of possible configurations drastically increases with increasing
number of atoms in a molecule and large-scale CI calculations become very expensive.

As an example, the CH4 molecule with 10 electrons can be taken [5]. Using a min-
imal basis set of 9 AOs (1s, 2s, 2p for the C atom and 1s for each of four H atoms) one
can construct NCI = 43758 Slater determinants (configurations). When the tetrahe-
dral point-symmetry restrictions are taken into account this number considerably
reduces (NCI = 5292 for singlet states). Enlarging the basis set to 35 functions
(double-zeta plus polarization basis, see Chap. 8) increases the number of singlets
to 2 × 1010. When larger molecules are considered and larger basis sets are used, the
restriction of the chosen configurations is required. There are several ways of achieving
this restriction.

1. Develop some procedure for selection of the most important configurations. In its
most general form this method is called GenCI. Frequently used are CIS, CID, CISD,
CISDT etc. methods where 1-electron, 2-electron, 1+2-electron, 1+2+3-electron ex-
citations of electrons from occupied HF states to virtual ones are taken into account.
These methods can be called restricted CI (RCI) methods. In some computer codes
for molecular calculations automatic selection of the most important configurations
is performed [119].

2. Subdivide one-electron MOs into several groups. The most primitive subdivision
is in three groups: inactive MOs, active MOs, and virtual MOs. Inactive MOs have
occupancy 2 in all determinants in CI expansion, virtual MOs have occupancy 0 in all
determinants in CI expansion, and occupancies of active MOs are between 0 and 2.
It is supposed that in CI wavefunction only excitations within active MOs are taken
into account.

3. Combination of 1 and 2, that is subdivision of MOs into groups and use of RCI
in the active space.

If RCI expansions are used or orbitals are subdivided into inactive and active
groups, or both, then variation of the orbitals themselves may lead to an essential
energy decrease (in contrast to the FCI method where it does not happen). Such
combined methods that require both optimization of CI coefficients and LCAO co-
efficients in MOs are called MCSCF methods. Compared with the CI method, the
calculation of the various expansion coefficients is significantly more complicated,
and, as for the Hartree–Fock–Roothaan approximation, one has to obtain these using
an iterative approach, i.e. the solution has to be self-consistent (this gives the label
SCF).

One of the most popular methods of MCSCF class is the complete active space
SCF (CASSCF) method by Roos [118] where FCI is performed in active space and op-
timization of MOs is also done. Note that active–active orbital rotations are irrelevant
in the framework of this method.

The most popular version of the RCI method application is to restrict by only
single- and double-excited configurations (CISD method). It is well known that the
CI single (CIS) method finds no use for ground states as the ground-state HF energy
is unaffected by inclusion of single excitations (Brillouin theorem, [102]). In the CISD
method the singly excited determinants mix with doubles and thus can have some in-
fluence on the lowest eigenvalue [102]. What about triple excitations? While there are
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no nonzero matrix elements between the ground state and triply excited states, the
triplets do mix with the doubles, and can through them influence the lowest-energy
eigenvalue (CISDT method). So, here is some motivation for including them. On the
other hand, there are a lot of triples, making their inclusion difficult in a practical
sense. As a result, triples and higher-level excitations, are usually not accounted for in
the RCI methods so that the CISD approximation dominates in CI calculations. The
scaling for CISD with respect to system size, in the large-basis limit, is on the order
of N6. It poses a limit on the sizes of systems that can be practically addressed. For-
tunately, the symmetry restrictions allow significant reduction in the computational
effort. Similarly, the core orbitals can be frozen in the generation of the excited state.

5.1.3 Coupled-cluster Methods

The CC method [120] is one of the mathematically elegant techniques for estimating
the electron correlation [102,121]. In this method, the FCI wavefunction is represented
as

ΨCC = exp(T̂ )ΨHF (5.14)

The cluster operator T̂ is defined in terms of standard creation–annihilation operators
as

T̂ =
≤N∑

j

>N∑
i

tija
†
iaj +

≤N∑
j1<j2

>N∑
i1<i2

ti1i2
j1j2

a†
i1

a†
i2

aj1aj1 + . . . (5.15)

Coefficients t in the last expansion are called the CC amplitudes and they can be
defined either variationally or by solving a system of linear equations. The total num-
ber of items in (5.15) equals the number of electrons N because no more than N
excitations are possible. In most computer codes the nonvariational CC method is
implemented since the variational one is technically very complicated. Formally oper-
ating on the ΨHF with (1 + T̂ ) gives, in essence, the FCI wavefunction. However, the
advantage of the CC representation (5.14) lies in the consequences associated with
truncation of T̂ [102]. When, in (5.15), only single or double excitations are involved,
the method is called CCS or CCD, respectively, when single and double excitations –
then CCSD, etc. Let us consider as an example the CCD approximation when T̂ =
T̂2 and the expansion (5.15) has the form

ΨCCD = exp(T̂2)ΨHF = (1 + T̂2 +
T̂ 2

2

2!
+

T̂ 3
2

3!
+ · · · )ΨHF (5.16)

Note that the first two terms in parentheses of (5.16) define the CID method. However,
the remaining terms involve products of excitation operators. Each application of T̂2

generates double excitations, so the product of two applications generates quadruple
excitations. Similarly, the cube of T̂2 generates hextuple substitutions, etc. Such high-
level excitations can not be practically included in CI calculations (in this sense the
RCI method is called nonsize consistent).

The computational problem of the CC method is determination of the cluster
amplitudes t for all of the operators included in the particular approximation. In the
standard implementation, this task follows the usual procedure of left-multiplying
the Schrodinger equation by trial wavefunctions expressed as determinants of the HF
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orbitals. This generates a set of coupled, nonlinear equations in the amplitudes that
must be solved, usually by some iterative technique. With the amplitudes in hand,
the coupled-cluster energy is computed as

ECC = 〈ΨHF |Ĥ| exp(T̂ )ΨHF 〉 (5.17)

In practice, the cost of including single excitations T̂1 in addition to doubles is worth
the increase in accuracy, and this defines the CCSD model. The scaling behavior
of CCSD is on the order of N6. Inclusion of connected triple excitations (i.e. those
arising with their own unique amplitudes from T̂3, not the disconnected triples arising
as products of T̂1 and T̂2) defines CCSDT, but this is very computationally costly
scaling as N8, and making it intractable for all but the smallest of molecules. Various
approaches to estimating the effects of the connected triples using perturbation theory
have been proposed (each with its own acronym). Of these, the most robust, and
thus most commonly used, is that in the so-called CCSD(T) method, which also
includes a singles/triples coupling term [122]. The (T) approach, in general, slightly
overestimates the triples correction, and does so by an amount about equal to the
ignored quadruples, i.e. there is a favorable cancelation of errors [123]. This makes
the CCSD(T) model extremely effective in most instances. Analytic gradients [124]
and second derivatives [125] are available for CCSD and CCSD(T), which further
increases the utility of these methods. Note, however, that truncated coupled-cluster
theory is not variational.

5.1.4 Many-electron Perturbation Theory

We follow in this subsection the many-electron perturbation theory description given
in [8]. Often, the Hartree–Fock approximation provides an accurate description of the
system and the effects of the inclusion of correlations as, e.g., with the CI or MCSCF
methods, may be considered as important but small corrections. Accordingly, the
correlation effects may be considered as a small perturbation and as such treated using
the perturbation theory. This is the approach of [126] for the inclusion of correlation
effects.

For the sake of simplification we shall here consider the ground state but mention
that the method in principle can be applied for any state, i.e. also for an excited state.

Our starting point is the Hartree–Fock equations (4.13) where the HF operator F̂ ,
(4.14) is a single-electron operator, being a sum of the one-electron operator ĥ, (4.8),
local Coulomb Ĵ , (4.16) and nonlocal exchange K̂, (4.17) operators.

Solving HF equations (4.13) gives not only the N occupied orbitals, but – in
principle – a complete set of M (total number of AO basis functions) orbitals, since
F̂ is a Hermitian operator.

The operator F̂ is a single-electron operator, which we formally wrote as F̂ (i),
where i numbers electrons. We define now first the N -electron operator

Ĝ′ =
N∑

i=1

F̂ (i) (5.18)

This is also a Hermitian operator, and the N -electron Slater determinants
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|ψi1 , ψi2 , . . . , ψiN
| (5.19)

define a complete set of eigenfunctions with

Ĝ′|ψi1 , ψi2 , . . . , ψiN
| = (εi1 + εi2 + . . . + εiN

)|ψi1 , ψi2 , . . . , ψiN
| (5.20)

In particular, for the ground state we have

Ĝ′|ψ1, ψ2, . . . , ψN | =

[
N∑

i=1

εi

]
|ψ1, ψ2, . . . , ψN | (5.21)

It follows from (4.38) that

N∑
i=1

εi = EHF +
1
2

N∑
i,j=1

[
〈ψiψj | 1

|r1 − r2| |ψiψj〉 − 〈ψjψi| 1
|r1 − r2| |ψiψj〉

]
= EHF + E′

(5.22)
where

E′ =
1
2

N∑
i,j=1

[
〈ψiψj | 1

|r1 − r2| |ψiψj〉 − 〈ψjψi| 1
|r1 − r2| |ψiψj〉

]
(5.23)

Since the total electronic energy from the Hartree–Fock approximation is the starting
point in the perturbation calculation, we see from (5.22) that it is convenient to
consider the operator

Ĝ = Ĝ′ − E′ (5.24)

Operator Ĝ has the same eigenfunctions as Ĝ′ but the eigenvalues have been shifted
by E′. The precise form of Ĝ is

Ĝ =
N∑

i=1

F̂ (i) − E′ =
N∑

i=1

ĥ(i) +
N∑

i,j=1

[
Ĵj(i) − K̂j(i)

]
− E′ (5.25)

This can be compared with the true N -electron Hamilton operator,

Ĥe =
N∑

i=1

ĥ(i) +
1
2

∑
i �=j

1
|ri − rj | (5.26)

In order to apply perturbation theory we write

Ĥe = Ĝ + ∆Ĥ (5.27)

with

∆Ĥ =
1
2

∑
i �=j

1
|ri − rj | −

N∑
i,j=1

[
Ĵj(i) − K̂j(i)

]
+ E′ (5.28)

First-order perturbation theory gives that the ground-state energy changes by

〈Φ0|∆Ĥ|Φ0〉 (5.29)

By using the precise form of the operators in (5.28) one may now show that this term
vanishes. The proof of this is very similar to the one showing that the Hamiltonian
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matrix elements between the ground state and any single-excited configuration vanish
[8]. First, the second-order term is nonvanishing. This term is∑

i,j

∑
α,β

〈Φ0|∆Ĥ|Φα,β
i,j 〉〈Φα,β

i,j |∆Ĥ|Φ0〉
E0 − Eα,β

i,j

(5.30)

where we have used the fact that only those configurations Φα,β
i,j where exactly two

electrons have been excited from the ground state Φ0 have nonvanishing matrix el-
ements in the denominator. To prove this, one uses the fact that ∆Ĥ consists of
two-electron operators and that there will be nonvanishing elements only when the
two determinants differ by at most two orbitals. It can also be proved that there is
no contribution from single-excited configurations. Furthermore,

E0 =
N∑

i=1

εi − E′ = EHF (5.31)

and
Eα,β

i,j = EHF + εα + εβ − εi − εj (5.32)
are the eigenvalues of G′. The most important aspect is now that the denominator in
(5.30) equals

−εα − εβ + εi + εj (5.33)
due to (5.32). The two first energies are energies of orbitals that for the ground state
are vacant, whereas the last two are those of occupied orbitals. This means that
the denominator is small (and, hence, the correlation effects are large) when there
is a small energy difference between occupied and unoccupied orbitals. This partly
explains the results for the H + H system where the correlation is important for large
interatomic distances, when the energies of the occupied and unoccupied orbitals
approach each other. The result tells us also that, e.g., for compounds containing
transition-metal atoms, where there are many (empty and occupied) d orbitals close to
each other, we will expect that correlation effects are important, or, alternatively, that
the Hartree–Fock approximation (i.e. the single-Slater-determinant approximation) is
not a very good one. Turning to the cyclic model of a crystalline solid we conclude
that the smaller the bandgap the larger the correlation effects on the ground-state
energy.

The higher-order terms to the perturbation series can also be calculated. These
will become increasingly complex, but already second-order MP2 perturbation theory
provides a very important improvement over the pure Hartree–Fock approximation,
and in very many cases results from this method are highly accurate. The higher-order
calculations are given the labels MP3, MP4. We do not discuss here many numerical
results for the ground state of molecular systems obtained in CI, MCSCF, CC or
perturbation theory calculations, rather we refer the reader to monographs [5,8,102].
Meanwhile it is clear that direct extension of CI or CC methods to the molecular
cluster models of periodic systems is a difficult task. The molecular cluster reasonably
models the periodic system when it is chosen sufficiently large to suppress the dangling
bonds influence. Even for ionic crystals such a cluster can consist of up to 50–100
atoms. The one possibility of the calculation efforts decreasing is connected with
the use of localized MOs in the Slater determinants. The local electron correlation
methods are considered in the next subsection.
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5.1.5 Local Electron-correlation Methods

In the wavefunction-based improvements upon mean-field HF method to account for
electron correlation (CI, CC, MP) the demands on the computational resources (CPU
time, memory or disk space) exhibit a strong dependence on the system size. Let the
system consist of N atoms. If we assume a given basis set, the cost of MP2 calculations
scales between N3 and N5 (asymptotic limit) [127]. Higher correlation methods CCSD
and CCSD(T) scale as N6 and N7, respectively. The latter means that doubling the
size of the molecular system increases the computational costs by a factor of 64 and
128! This high scaling behavior restricts the application range for these accurate and
reliable methods to only small molecules, a traditional dilemma in quantum chemistry
for a long time (especially, since density-functional theory became available).

Local electron-correlation methods are ab-initio wavefunction-based electronic-
structure methods that exploit the short-range nature of dynamic correlation effects
and in this way allow linear scaling O(N) in the electron-correlation calculations
[128, 129, 131–135] to be attained. O(N) methods are applied to the treatment of
extended molecular systems at a very high level of accuracy and reliability as CPU
time, memory and disk requirements scale linearly with increasing molecular size N .

Linear-scaling electron-correlation methods were developed by: 1) combining the
Pulay–Saebo local correlation variant [136] with integral-direct techniques [131]
and consequently exploiting the spatial locality of the electron-correlation effect; 2)
Laplace-transform techniques suggested in [137] and applied in [129].

In a first step, a linear-scaling local MP2 (LMP2) algorithm was implemented
[129, 131, 132]. With this algorithm, MP2 calculations on spatially extended molec-
ular systems including more than 200 atoms and 2000 basis functions can easily be
performed on a current low-cost Pentium PC. The linear-scaling approach was also
developed for high-level correlation methods, i.e. linear-scaling, local CCSD with (T)
correction ( [133, 134, 142, 143]). In particular, for the CCSD(T) method, reductions
in required CPU time were obtained by more than a factor of 1000 compared to the
conventional (T) method.

The chemical systems well beyond 1000 basis functions, 100 atoms and some
hundred correlated electrons are now within reach of the local electron-correlation
methods. It is clear that these methods still are considerably more expensive than
modern, linear-scaling DFT algorithms (see Chap. 7), but this now is just due to a
higher prefactor, and no longer due to less favorable scaling behavior. Thus, the long-
standing scaling problem of ab-initio electronic-structure theory clearly is defeated.
On the other hand, local correlation methods combine all the well-known advantages
of wavefunction-based methods over DFT, like reliability, possibilities for systematic
improvements, etc.

At first, all these methods were developed for closed-shell systems only. Later
research in this area was directed towards local methods for open-shell systems
and excited states, local triples corrections beyond (T) (triples included in coupled
cluster iterations), [138], local energy gradients for geometry optimizations of large
molecules [139], combination of the local correlation method with explicitly correlated
wavefunctions. It is evident from the discussion that these local O(N) methods open
the applications of coupled-cluster theory to entirely new classes of molecules, which
were far out-of-scope for such an accurate treatment before. Possible applications
lie, for example, in the determination of the thermochemistry of reactions involving
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large closed-shell (or singlet biradiaclic) organic molecules including the computation
of accurate barrier heights (which is an area, where DFT often fails badly). Further-
more, once local MP2 NMR shifts become available, NMR spectra of extended organic
molecules could reliably be predicted, which might be helpful in the determination of
the structure of such molecules.

Another potential application field are intermolecular complexes and clusters [140].
Here, the local correlation method has some conceptual advantages, insofar that it
eliminates the notorious basis-set superposition error (BSSE) [141]. This allows for
the BSSE-free calculation of interaction energies structures of large molecular clusters
(i.e. involving many monomers) without the expensive counterpoise correction that
is required in conjuction with canonical methods. There are many more application
areas one could think of.

One of the most impressive applications of the local correlation methods is their
extension to the periodic systems. Having in mind to discuss this extension on the
MP2 level in the next section we restrict the discussion here to the consideration of
local MP2 methods for molecular systems with closed shells, referring the reader to
the papers discussing local CC methods [128,133,134,142,143].

In the local MP2 method [131] the occupied canonical MOs of the preceding
HF calculation are localized using the Pipek–Mezey [37] localization procedure and
keeping the localized orbitals orthonormal. Even though the localization is formally
an O(N3) step, the localization time is negligible for all the local MP2 calculations.

The use of local orbital bases opens the way for two distinct approximations.
First, for the correlation of each electron pair ij an individual subset (domain) of the
virtual orbitals that is independent of the molecular size can be selected. This reduces
the scaling of the number of configuration-state functions (CSFs) and corresponding
amplitudes from O(N4) to O(N2). Secondly, a hierarchical treatment of different
electron pairs depending on the minimum distance R of the two correlated localized
occupied MOs (LMOs) i and j can be devised. In implementation [131], a subset of
atoms is assigned to each LMO according to the procedure of [144]. The pairs (ij)
are then classified according to the minimum distance between any atoms in the two
different subsets. Strong pairs (R ≤ 1 Bohr) are treated at the highest level, e.g., local
CCSD. These involve pairs of local orbitals that share at least one atom and typically
account for more than 90% of the correlation energy. Weak pairs (1 < R ≤ 8 Bohr)
and distant pairs (8 < R ≤ 15 Bohr) are (optionally) treated by local MP2, while very
distant pairs (R > 15 Bohr) can be entirely neglected (in [131], strong and weak pairs
are both treated by LMP2). For the distant pairs, the required two-electron integrals
can be obtained using multipole approximations [145] leading to substantial savings.
The numbers of strong, weak, and distant pairs scale only linearly with molecular size
N whereas the number of very distant pairs scales quadratically with N . The neglect
of very distant pairs leads to an overall linear dependence of the number of CSFs and
of the corresponding transformed integrals. The multipole treatment of distant pairs
further reduces the number of integrals that must be constructed via the four-index
integral transformation; this fact can be exploited to devise an integral transformation
algorithm for which all computational resources (CPU, memory, and disk) scale only
linearly with N [131].

In the basis {χµ} with overlap matrix Sµν = 〈χµ|χν〉 the localized occupied
orbitals |φi〉 are represented by a coefficient matrix L
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|φi〉 =
∑

µ

|χµ〉Lµi (5.34)

The virtual space is spanned by a set of nonorthogonal functions {φ̃r} that are ob-
tained directly from the AOs {χµ} by projecting out the occupied space, i.e.

|φ̃r〉 =

(
1 −

m∑
i=1

|φi〉〈φi|
)
|χµ〉 =

∑
µ

|χµ〉Pµν (5.35)

where the projection matrix is defined as

P = I − LL†S (5.36)

Here indices i, j, . . . , are used for the occupied LMOs, r, s, . . . , for projected AOs, and
µ, ν, ρ, σ for AOs. Quantities in the projected basis are capped by a tilde.

To each LMO |φi〉, a subset [i] (orbital domain) of the projected AOs |φ̃r〉 is
assigned. The orbital domains are selected in [131] as described by Boughton–Pulay
[144] using a threshold of 0.02, but in addition discarding centers with a Mulliken
gross charge below 0.01 (0.03 for H atoms). The electron pairs (ij) were classified
as strong, weak or distant and very distant pairs (R > 15 Bohr) were neglected.
The correlation space for the strong and weak electron pairs (ij) was spanned by pair
domains [ij] = [i]∪[j], which are the union of the two related orbital domains. Distant
pairs were treated by a multipole approximation, as described in [145]. This requires
the use of asymmetric pair domains r ∈ [i], s ∈ [j] for this class of configurations, i.e.
long-range ionic excitations are neglected. The error of this approximation is negligible
if the cutoff distance is chosen to be R > 8 Bohr. The linear dependencies are removed
for each individual pair domain separately, as described in detail in [128].

In the local basis, the first-order wavefunction takes the form

|Ψ (1)〉 =
1
2

∑
ij∈P

∑
rs∈[ij]

T̃ ij
rs|Φrs

ij 〉 with T̃ ij
rs = T̃ ji

sr (5.37)

where P represents the pair list and it is implicitly assumed that the pair domains
[ij] are defined as described above. Note that the number of projected functions
r, s ∈ [ij] for a given pair (ij) is independent of the molecular size. Therefore, the
individual amplitude matrices T̃ ij

rs are very compact and their sizes are independent
of the molecular size. The total number of amplitudes T̃ ij

rs depends linearly on the
molecular size and it is assumed that they can be stored in high-speed memory.

Since the local orbital basis does not diagonalize the zeroth-order HF Hamiltonian,
an iterative procedure is required to determine the amplitudes T̃ ij . By minimizing
the Hylleraas functional, one obtains the linear equations [130]

R̃ij = K̃ij + F̃ T̃ ijS̃ + S̃T̃ ijF̃ −
∑

k

S̃
[
FikT̃ kj + Fkj T̃

ik
]
S̃ (5.38)

For the desired solution, the residuals
(
R̃ij

)
rs

must vanish for r, s ∈ [ij]. The quan-

tities S̃ and F̃ are the overlap and Fock matrices in the projected basis, respectively,



5.1 Electron Correlations in Molecules: Post-Hartree–Fock Methods 161

and the exchange matrices
(
K̃ij

)
rs

= (ri|sj) represent a small subset of the trans-

formed two-electron integrals. For a given pair (ij), only the local blocks
(
K̃ij

)
rs

,

F̃rs, and T̃rs for r, s ∈ [ij] are needed in the first three terms, while for the over-
lap matrices in the sum only the blocks connecting the domain [ij] with [ik] or [jk]
are required. The sizes of all these matrix blocks are independent of the molecular
size. Taking further into account that for a given pair (ij) the number of terms k
in the summation becomes asymptotically independent of the molecular size if very
distant pairs are neglected, it follows that the computational effort scales linearly with
molecular size. Further savings are possible by skipping terms with coupling matrix
elements Fik or Fkj falling below a certain threshold, which can be progressively re-
duced as the iteration proceeds. In the calculations [131] the initial threshold was set
to 10−2, and reduced in each iteration by a constant factor until the final value of
10−5 was reached. This threshold yields the energy to an accuracy better than 10−7

Hartree. This screening reduces the iteration time, but is not essential for achieving
linear-scaling. There are two possible algorithms to compute the terms in the sum.
In the first algorithm (I) the matrix multiplications S̃ × T̃ kj × S̃ are performed inside
the summation, which seems wasteful at first glance but has the advantage that all
matrix multiplications are over small local blocks only. Alternatively, in the second
algorithm (II) the matrix multiplications are performed outside the summation, but
then the accumulated matrix in the square brackets has a much larger dimension,
which is the union of all pair domains having either the orbital i or j in common. If
very distant pairs are neglected, these united-pair domains (UP2) also become inde-
pendent of molecular size, and therefore algorithm II scales linearly with molecular
size as well. A comparison of the measured CPU times for both algorithms for linear
chains of polyglycine peptides as a function of the number of monomers [131] shows
that both algorithms closely approach linear-scaling. It was found that Algorithm I
has a significantly lower prefactor than Agorithm II, and has therefore been chosen
as the default in the MOLPRO program [116]. Note that both algorithms would lead
to O(N3) scaling if the very distant pairs were not neglected. Typically, 5–7 itera-
tions are needed to converge the energy to better than 10−7 Hartree, the number of
iterations has been found to be essentially independent of the molecular size.

The potential bottleneck is the following: the overlap and Fock matrices are stored
in memory as full M × M matrices, where M is the number of AOs. The subblocks
needed for a given matrix multiplication are extracted on the fly from these matrices.
Full square matrices are also needed for computing and storing the projected orbitals.
Thus, the memory requirement formally scales with O(M2) but since only very few
full matrices are needed, the prefactor is so small that this causes no bottleneck in
practice for up to 2000–3000 basis functions. In principle, this bottleneck could be
avoided by storing for each pair only the local subblocks needed. This would lead to
strict linear-scaling of the memory (or disk) requirements.

Once the amplitudes have converged, the second-order correlation energy is ob-
tained by tracing the amplitudes with the exchange matrices, i.e.

E2 =
∑
ij∈P

∑
rs∈[ij]

(
2T̃ ij

rs − T̃ ij
sr

)
K̃ij

rs (5.39)
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The overall cost to solve the linear equations (5.38) and to compute the second-order
energy (5.39) depends linearly on the molecular size and does not constitute any
computational or storage bottleneck, once the necessary quantities are available. As
in the canonical case, the computational effort of a local MP2 calculation is entirely
dominated by the integral transformation required to construct the exchange matrices
K̃ij . The linear scaling integral transformation is considered in detail in [131,132].

The optimization of atomic structures requires the availability of analytic en-
ergy gradients. In the LMP2 method, the bottleneck is the calculation of the 4-index
electron-repulsion integrals (ERIs) and their transformation from the atomic orbitals
into the local orbital basis. The computational effort for this step scales with the fourth
power of the basis-set size (for fixed molecular size), and therefore the cost quickly
increases with basis-set quality. The same is true for the computation of LMP2 (or
MP2) energy gradients, which requires a reverse transformation of the amplitudes
from the molecular orbitals into the atomic orbital basis. It has been demonstrated
for LMP2 [146] and LCCSD [147] that the computational effort for ERI evaluation
and transformation can be reduced by 1–2 orders of magnitude using density-fitting
(DF) methods. In the DF approach the one-electron charge densities in the ERIs,
which are binary products of orbitals, are approximated by linear expansions in an
auxiliary basis set. This leads to a decomposition of the 4-index ERIs in terms of
2- and 3-index ERIs, and the O(M4) AO dependence of the computational cost is
reduced to O(M3). linear-scaling of the computational cost with molecular size in the
context of DF can be achieved by employing the concept of locality also for the fitting
functions. The key here is the use of local fitting domains, as discussed in [146, 147].
Furthermore, local-density fitting can be used to speed up the calculation of the ex-
change part to the Fock matrix in Hartree–Fock calculations [146]. The fitting errors
introduced by the DF approximation are systematic and substantially smaller than
any other typical errors of the calculation (like basis-set truncation or the error due
to the local approximation), provided that a suitable auxiliary basis set is employed.
Energy gradients for canonical DF-MP2 on top of an ordinary Hartree–Fock (HF) ref-
erence function, i.e. without invoking the DF approximation already at the HF level,
were first implemented in [148]. An efficient method to compute analytical energy
derivatives for the local MP2 approach was presented in [139] where the advantages
of the local and density-fitting approximations in the calculation of analytic energy
gradients were combined. All 4-index integrals and their derivatives were replaced
by products of 2-index and 3-index quantities, which can be manipulated very ef-
ficiently. Moreover, the expensive backtransformation of the effective second-order
density matrix into the basis was avoided. As a consequence, the method has a much
lower prefactor than conventional MP2 gradient programs, and the effort scales only
cubically with the basis-set size for a given molecule.

Many applications of local MP2 and local CCSD methods to molecular systems
can be found in [132–134,139,142,149].

Another linear-scaling MP2 algorithm was proposed in [129] that is based on
the atomic-orbitals Laplace-transform (LT) MP2 method [137]. In this method, the
energy denominators (5.32) in (5.30) are eliminated by Laplace-transformation, which
paves the way to express the MP2 energy directly in the basis. The price to pay is
the additional Laplace integration, which is carried out by quadrature over a few
(8–10) points. For each of the quadrature points an integral transformation has to
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be performed, but the transformation matrices are much sparser than the canonical
MO coefficients; therefore, more efficient prescreening is possible. In this respect, the
algorithm [137] is related to the local MP2 method. It appears, however, that due
to the multiple transformations the LT-MP2 method has a higher prefactor than the
LMP2 method, which requires only a single transformation. On the other hand, the
LT-MP2 method does not involve any truncation of the virtual space and therefore
yields the exact canonical MP2 energy within a certain accuracy, which is primarily
determined by the number of quadrature points and the prescreening thresholds used
[131]. An LT linear-scaling coupled-cluster (LTCC) method was also developed and
implemented for closed [143] and open [138] shells.

In Sections 5.3 and 5.4 we consider Laplace-transform MP2 (LTMP2) and lo-
cal MP2 (LMP2) methods extensions to periodic systems, implemented in computer
codes GAUSSIAN03 [107] and CRYSCOR [117], respectively. These two extensions
are similar to their molecular counterparts in the preliminary calculation of delocal-
ized canonical orbitals (Bloch functions for periodic systems) and further construction
of localized crystalline orbitals (Wannier functions for periodic systems). However the
correlation effects for periodic systems may be taken into account in another way
when the SCF calculations are made in Wannier-functions basis. Such an approach
was named the incremental scheme [5,49,110] and is considered in the next section.

5.2 Incremental Scheme for Local Correlation in Periodic
Systems

5.2.1 Weak and Strong Electron-correlation

In both molecules and solids the electron-correlation effects may be strong or weak.
Let us consider an example of a H2 molecule. For the two electrons involved, Heitler
and London [150] suggested the following correlated ground-state wavefunction

ΨHL(r1σ, r2σ) =
1
N

[χa(r1)χb(r2) + χb(r1)χa(r2)] [α1β2 − α2β1] (5.40)

where the AOs χa(r) and χb(r) are centered on atoms a and b of the molecule, and the
spin functions α and β denote spin-up and spin-down states, respectively. One notes
that this wavefunction does not contain ionic configurations in which two electrons are
in the same atomic orbital χa(r) or χb(r). Therefore, their mutual Coulomb repulsion
is minimal at the expense of the kinetic energy. The Heitler–London ansatz should
work well when the Coulomb repulsion completely dominates the kinetic-energy gain
caused by spreading an electron over both atoms. In this case we speak of the strong
correlation limit and we expect it to be applicable, e.g. when we stretch the H–H
bond length to large values.

A very different ansatz applies when the opposite limit holds, i.e. when the kinetic-
energy gain due to spreading an electron over both atoms dominates the mutual
electron repulsions. The molecular-orbital theory describes the two electrons within
the independent electron approximation and the bonding molecular orbital of an H2

molecule is
ϕ(r) =

1
N

[χa(r) + χb(r)] (5.41)
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and it is occupied by the two electrons with opposite spins. Thus, the antisymmetric
wavefunction is

ΨMO(r1, σ, r2, σ) =
1
N

[χa(r1)χa(r2) + χb(r1)χb(r2)

+χa(r1)χb(r2) + χb(r1)χa(r2)] [α1β2 − α2β1] (5.42)

Contrary to (5.40), the wavefunction (5.42) contains, with considerable weight, ionic
configurations in which both electrons are at one H site. These configurations imply
a large Coulomb repulsion between the two electrons. Therefore, the MO LCAO ap-
proximation will be a reasonable description of the true or exact wavefunction only
when the energy gain due to hybridization of the atomic wavefunction is large as
compared with the Coulomb repulsions. In reality, the ground-state wavefunction of
H2 has a form between (5.40) and (5.42). There are ionic configurations present, but
their weight is partially suppressed as compared with (5.42). The partial suppression
of charge fluctuations, i.e. a reduction of the mean-square deviations of the electronic
charges is a hallmark of electronic correlations. Charge fluctuations imply configu-
rations in which the electronic charges deviate from the average charge distribution.
When in a configuration of the H2 molecule both electrons are on one atomic site so
that the other site is empty, the deviation from the average charge is as large as possi-
ble. In fact, we may use the degree of suppression of charge fluctuations as a measure
of the strength of electron correlations. A complete suppression of charge fluctuations,
as in the Heitler–London wavefunction, implies the strong correlation limit. From the
above it is obvious that we can learn much about electron correlations and their
influence by studying the wavefunction of a system.

The solids with weak and with strong correlations require different methods of
treatment. For example, when the correlations are weak, a wavefunction of indepen-
dent electrons, i.e. a self-consistent field (SCF) or Hartree–Fock (HF) wavefunction
seems a good starting point for the implementation of correlation corrections. In a
solid, the molecular orbitals are replaced by crystalline (Bloch) orbitals. The latter
are solutions of the SCF(HF) equations (4.57).

As we have pointed out above, a possible measure of the strength of electronic
correlations is the degree of suppression of charge fluctuations in the true or correlated
ground-state wavefunction as compared with those in a corresponding SCF or HF
wavefunction. In order to obtain a feeling of how strong those suppressions are, we
can calculate them for different chemical bonds [110]. Let Σ denote the ratio

Σ =
〈ΦSCF |δn2|ΦSCF 〉 − 〈Ψ0|δn2|Ψ0〉

〈ΦSCF |δn2|ΦSCF 〉 − 〈ΨPC |δn2|ΨPC〉 (5.43)

where δn2 = n2 − n̄2 and n̄ is the average electron number in an orbital being part
of a bond, e.g. n̄ = 1 in a carbon sp3 orbital of a C–C σ-bond. The wavefunctions
|ΦSCF 〉, |Ψ0〉 and |ΨPC〉 denote the HF ground state, the correlated or true ground
state and the ground state we would have if the energy gain due to delocalization, i.e.
moving an electron from atom to atom, were arbitrarily small. In |ΨPC〉 the charge
fluctuations are reduced by the largest amount that is compatible with the charge
distribution, i.e. with the one-particle density matrix. A value of Σ = 0 implies
no suppression of charge fluctuations and hence the limit of uncorrelated electrons,
while Σ = 1 corresponds to the limit of strong electron correlations. For the H2
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molecule Σ = 0.15, while for a C–C σ-bond Σ ∼ 0.2, indicating that electrons in
diamond are weakly correlated. The same holds true for silicon. For a C–C π-bond
instead one finds Σ ∼ 0.5 and correlations, e.g. in polyacetylene are fairly strong.
When we consider the Cu–O planes of the perovskite-like La2CuO4, we find that for
a Cu site ΣCu = 0.8, while for an O site ΣO = 0.7. Therefore, all Cu configurations
different from 3d10 and 3d9 are essentially suppressed in |Ψ0〉, while they still have
an appreciable weight in |ΨSCF 〉. More examples can be found in [5]. Reductions of
electronic charge fluctuations as quantified by Σ can be described within a minimal
basis set, e.g. a set of s and p functions for the valence electrons of atoms of the second
row. They are caused by interatomic correlations, and we refer to the latter when we
speak of weakly or strongly correlated electrons. They should be distinguished from
intraatomic correlations that influence electrons on a given atomic site. They require
a larger basis set for their description. At least one set of polarization functions must
be included in this set, e.g. a set of d functions in the case of atoms of the second row.
For more details on these different types of correlations we refer to reference [5]. In
order to determine the correlated ground-state wavefunction |Ψ0〉 for the solids with
relatively weak correlations one may start from the HF wavefunction |ΦSCF 〉.

The wavefunction-based (post-Hartree–Fock) methods have received little atten-
tion in the electron-correlation theory for crystals compared with those for molecular
systems [110]. The progress in the electron-correlation study in solids is connected
mainly with density-functional theory (DFT), determining directly various physical
properties of a system without a knowledge of the many-electron wavefunction. This
feature makes DFT theory simpler and more attractive in the calculations of the
electronic structure of crystals. Unfortunately, for the density-functional-based meth-
ods there is no procedure for systematic improvement of the calculated results when
a higher accuracy is desired. Although often ground-state properties of unexpected
accuracy are obtained, this is not always the case, in particular when electron cor-
relations in a crystal are strong. Various improvements that have been applied, like
self-interaction corrections (SIC) or LDA + U [151–153], show that they remain es-
sentially uncontrolled. On the other hand, today we can calculate electronic ground-
state wavefunctions for small molecules with high precision and there are controlled
approximation schemes available for various degrees of accuracy. There is no reason
why similar calculations cannot be done for solids; in fact it has been demonstrated
that they can [110]. It was already mentioned in Chap. 4, that accurate HF solutions
for a variety of crystalline systems have been available for many years now [4, 154].
The clever exploitation of the full symmetry of the crystal and implementation of spe-
cial algorithms for the exact or approximate estimate of infinite lattice sums, permit
the solution of big systems like faujasite (144 atoms, 1728 AOs per unit cell) [155]
to be obtained at quite low computational cost. However, the limitations of the HF
approximation are well known, essentially due to its neglecting dynamical electron-
correlation.

The practical methods of post-HF calculations for solids were discussed during
the workshop “Local correlation methods: from molecules to crystals” [156]. Compu-
tational strategies were considered and new developments suggested in this area of
research (the texts of invited speaker talks are published on an Internet site [156]).
In particular, it was stated that the development of post-HF methods for crystals
is essentially connected with the progress in the localized Wannier-function (LWF)



166 5 Electron Correlations in Molecules and Crystals

generation. In the last decade, LWF have been very intensively used in practical cal-
culations of solids, see [157] and references therein. LWF for correlation calculations
can be derived from Bloch states by a localization method as long as one does not
have to deal with partially filled bands as in metals. There is also the possibility
to generate LWFs directly from HF calculations, as is done in the computer code
WANNIER [158].

In order to calculate the correlated ground state |Ψ0〉 and its energy E0, we split
the many-electron Hamiltonian H into

H = HSCF + Hres (5.44)

where HSCF is the SCF part of the Hamiltonian and Hres is the residual interaction
part. We may write

E0 =
〈ΦSCF |H|Ψ0〉
〈ΦSCF |Ψ0〉 (5.45)

provided 〈ΦSCF |Ψ0〉 �= 0. This will be the case as long as we deal with finite systems.
It is worth mentioning that instead of dividing H as in (5.44) we could have split

it also into a one-electron part HKS corresponding to the Kohn-Sham equation in
density-functional theory (see Chap. 7) and a remaining part. This has the advantage
that the energy of the related ground state ΨKS , a Slater determinant constructed
from solutions of the Kohn–Sham equation, is much closer to the true ground-state
energy than is E0. Such a scheme may appear useful for the solids with the strong
electron correlations and is used, for example, in the SIC and LDA+U approaches
mentioned above. But, treating the remaining part Hres would not be interpretative as
an correlation-energy calculation in the sense that is traditional for molecular systems.

Treating a solid implies dealing with essentially infinitely many-electrons. However,
in practice, we can correlate only a relatively small number of them. Therefore, we
first have to reduce the calculations to a small number of electrons. This can be done
by means of the method of increments considered in the next section.

5.2.2 Method of Increments: Ground State

A method of increments [111, 159, 160] is a wavefunction-based ab-initio correlation
method for solids. This method is closely related to the ideas of the local ansatz
(LA), [5] where local operators acting on the SCF wavefunction are used to admix
suitable one- and two-particle excitations to the mean-field HF ground state. The
many-electron Hamiltonian is split according to (5.44) and the ground-state Hamil-
tonian HSCF and the corresponding wavefunction ΦSCF = Φ0 are assumed to be
known.

A product of two operators A and B in the Liouville space is defined as follows:

(A|B) = 〈Φ0|A†B|Φ0〉c = (A†B〉c (5.46)

The superscript c indicates that the cumulant of the expectation value is taken, which
is given by

(A〉c = 〈A〉 (5.47)
〈AB〉c = (AB〉 − 〈A〉〈B〉 (5.48)

...
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By using (5.46) the exact ground-state energy E is written in the following way:

E = (H|Ω) = EHF + (HI |Ω) (5.49)

where Ω plays the role of the wave operator that describes the transformation from
the HF ground-state to the exact ground-state. For a solid with well-defined bonds,
one can express the HF ground-state Φ0 in terms of localized orbitals and label those
orbitals by a bond index i. For ionic systems this index numbers the ions whose states
form the occupied bands (for example, oxygen ions in MgO crystal).

The following operators are defined: Ai, where i should be considered as a compact
index that includes the bond i as well as the one- and two-particle excitations of bond
i, and Aij , which describes the two-particle excitations where one excitation is out
of bond i while the other is out of bond j. Within the restricted operator subspace
spanned by Ai and Aij the operator Ω can be written in the form

|Ω) =

∣∣∣∣∣∣∣1 +
∑

i

niAi +
∑

ij
(i�=j)

nijAij

⎞⎟⎠ (5.50)

The parameters ni and nij in (5.50) are determined from the set of equations

0 = (Ak|H) +
∑

i

ni(Ak|HAi) +
∑

ij
(i�=j)

nij(Ak|HAij)

0 = (Akl|H) +
∑

i

ni(Akl|HAi) +
∑

ij
(i�=j)

nij(Akl|HAij) (5.51)

where (5.50) was used.
The method of increments provides a scheme in which the set of equations (5.51)

and hence the correlation energy is evaluated in a hierarchical order [159].
(a) First, all electrons are kept frozen except for those, e.g., in bond i. The op-

erators Ai describe the corresponding excitations of these two electrons and (5.51)
reduces to

0 = (Ai|H) + n
(1)
i (Ai|HAi) (5.52)

Within this approximation, the n
(1)
i are independent of each other and the correlation

energy becomes
E(1)

corr =
∑

i

εi (5.53)

with
εi = n

(1)
i (HI |Ai) (5.54)

(b) In the next step the electrons in two bonds, e.g., i and j are correlated. The
corresponding n(2) parameters are determined from the coupled equations

0 = (Ai|H) + n
(2)
i (Ai|HAi) + n

(2)
j (Ai|HAj) + n

(2)
ij (Ai|HAij)

0 = (Aj |H) + n
(2)
i (Aj |HAi) + n

(2)
j (Aj |HAj) + n

(2)
ij (Aj |HAij)

0 = (Aij |H) + n
(2)
i (Aij |HAi) + n

(2)
j (Aij |HAj) + n

(2)
ij (Aij |HAij) (5.55)
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Again, the increments δni = n
(2)
i −n

(1)
i and δnj = n

(2)
j −n

(1)
j are treated as indepen-

dent of each other in this approximation, and we have

E(2)
corr =

∑
i

εi +
1
2

∑
ij

(i�=j)

∆εij (5.56)

where
∆εij = εij − (εi + εj) (5.57)

and
εij = (HI |n(2)

i Ai + n
(2)
j Aj + n

(2)
ij Aij) (5.58)

(c) Analogously, one calculates the three-bond energy increment, which is defined
as

∆εijk = εijk − (∆εi + ∆εj + ∆εk) + (∆εij + ∆εjk + ∆εik) (5.59)

The correlation energy εijk is that obtained when all electrons are kept frozen ex-
cept those in bonds i, j, and k. Again, the increments ∆εijk are treated as being
independent of each other.

The total correlation energy within this approximation is the sum of all increments,

Esolid
corr =

∑
i

εi +
1
2

∑
ij

(i�=j)

∆εij +
1
6

∑
ijk

(i�=j �=k)

∆εijk + · · · (5.60)

It is obvious that by calculating higher and higher increments the exact correlation
energy within the coupled electron-pair approximation at level zero [161] is obtained.

The method of increments is useful only if the incremental expansion is well con-
vergent, i.e. if increments up to, say, triples are sufficient, and if increments become
rapidly small with increasing distance between localized orbitals. These conditions
were shown to be well met in the case of different solids [110,162]. Ideally, the incre-
ments should be local entities not sensitive to the surroundings.

The theory described above has been applied to a great variety of materials, thus
demonstrating the feasibility of calculations of that kind. They include the elemental
semiconductors [159], III-V [163] and II-VI compounds [164], ionic crystals like MgO
[165], CaO [166], NiO [167], alkali halides [168], TiO2 (with a sizeable amount of
covalency) [169], rare-gas crystals [170, 171], solid mercury [172, 173] and the rare-
earth compound GdN [174] with the 4f electrons kept within the core. The method
of increments allows the CCSD local correlation scheme to be extended from molecules
to solids. In most cases the program package CRYSTAL [23] was used for the SCF
part including a localization procedure for determining the Wannier functions.

An alternative approach to CRYSTAL is an embedded-cluster approach called
WANNIER, where the localization procedure is part of the SCF calculations. Thereby,
the solid is modeled by a central cluster embedded in a field created by the remaining
part of the infinite solid [158]. Test calculations at the SCF level for LiH agree very
well with those obtained from CRYSTAL. For example, the difference in the SCF
ground-state energy is only 0.05 eV per Li when a Li Wannier function extending
over four and over three nearest-neighbors is used. Embedded-cluster calculations
seem to be a very promising scheme for the future in order to perform high-quality
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electronic-structure calculations not only for solids, but also for very large molecules.
In the CeO2 coupled-cluster calculations [175] several embeddings were tested: from
purely point charges up to pseudopotential – surrounding of oxygens to imitate the
Ce ions. Embedded large nearly neutral clusters (Ce4O7) as well as several individual
clusters, each of which consists of only correlated parts of the solid, were used in the
calculations. Analysis of the obtained results allowed the conclusion that all tested
embedding schemes should result in the same value of correlation energy. At the same
time a large neutral cluster seems to be the best choice for the embedding.

A third way of obtaining the SCF ground-state wavefunction is by means of an
ordinary cluster calculation. In this case, a fragment of the crystal lattice is used. Its
dangling bonds are saturated with hydrogen atoms when dealing with covalent solids
and it is surrounded by a large number of point charges when an ionic solid is treated.
The wavefunction of the innermost bond or ion can be used to a good approximation
for every bond or ion of the solid. An example is X35H36 (X = C, Si, Ge, Sn), where
the localized orbital for the central bond agrees with that obtained from CRYSTAL,
after a localization procedure has been applied [110].

5.2.3 Method of Increments: Valence-band Structure
and Bandgap

The valence-band energies for solids can be regarded as energy differences between
the N electron ground-state and a state with (N −1) electrons, where one delocalized
Bloch electron has been removed. The bandgap can be regarded as the energy differ-
ence between the N -electron ground state and the state with (N +1) electrons, where
one delocalized Bloch electron has been added. Fixing the number of electrons N in
the ground-state means that PBC are introduced for the main region of a crystal, i.e.
that the finite size system is considered.

At the SCF level, Koopmans’ theorem holds, and the task of determining the
band energies and energy gap can be reduced to finding the one-electron energies
of the respective Bloch states. It is well known that SCF (HF) calculations tend to
overestimate the energy gap, giving too low an energy for the top of the upper valence
band and too high an energy of the conduction-band bottom. DFT, on the other hand,
yields gaps that are far too small when using the common functionals such as LDA or
GGA. To overcome this problem, several DFT-based or hybrid HF-DFT approaches
were developed (see Chap. 7). As was already mentioned, DFT-based approaches do
not provide clear concepts of systematically improving accuracy and the numerical
results essentially depend on the density-functional chosen.

The incremental scheme based on the wavefunction HF method was extended to
the calculation of valence-band energies when the electron-correlation is taken into
account. In [176, 177] an effective Hamiltonian for the (N − 1)-electron system was
set up in terms of local matrix elements derived from multireference configuration-
interaction (MRCI) calculations for finite clusters. This allowed correlation corrections
to a HF band structure to be expressed and reliable results obtained for the valence-
band structure of covalent semiconductors. A related method based on an effective
Hamiltonian in localized Wannier-type orbitals has also been proposed and applied to
polymers [178, 179]. Later, the incremental scheme was used to estimate the relative
energies of valence-band states and also yield absolute positions of such states [180].
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This is important as a prerequisite for the determination of bandgaps. Unfortunately,
a further extension of the formalism to also cover conduction-band states (which
would complete the information on bandgaps) is not possible along the same lines.

This is because an effective Hamiltonian for (N + 1)-particle states cannot be ex-
tracted from finite-cluster calculations (which do not lead to stable states for the extra
electron). Instead, a scheme for the calculation of localized states in infinite periodic
surroundings is necessary [112, 181]. However, the information on the correlation-
induced shift of the absolute position of the upper valence-band edge, already allows
for an estimate of correlation effects on bandgaps. In a reasonable approximation, one
can assume that correlation effects for the process of removing one electron, and the
inverse process of adding an extra electron, are almost symmetric. This approximation
seems plausible in view of the fact that the dominant effect of correlations caused by
an added electron (hole) is the generation of a long-ranged polarization cloud. The
latter moves with the added particle and together with it forms a quasiparticle. A
simple estimate of the corresponding gap correction is obtained by calculating the
classical polarization-energy gain in a continuum approximation. This is given in [5]:

δE =
1
2

∫
d3rP · E = −ε0 − 1

2ε0

e2

lc
(5.61)

where P is the macroscopic polarization, E is the electric field generated by the extra
particle and ε0 is the dielectric constant of the medium. The cutoff lc is approximately
equal to the length at which the dielectric function, ε(r), reaches its asymptotic value,
ε0, as a function of the distance, r, from the extra particle. The contribution, δE is
approximately the same for an added electron and an added hole because lc should be
nearly equal in both cases. Therefore, this assumption can be considered as physically
justified, and indeed final estimates for the correlation-induced reduction of bandgaps
compare reasonably well with experiment [180].

The incremental scheme for the valence band rests on the observation that a HF-
hole can be either described in reciprocal or in direct space. In reciprocal space, the
(N -1)-electron states are introduced

|kνσ〉 = akνσ|Φscf 〉 (5.62)

where akνσ annihilates an electron with wave vector k and spin σ in band ν of the HF-
determinant |Φscf 〉 of the neutral system in the ground state (the spin index will be
suppressed as the spinless HF Hamiltonian is supposed to be considered). According
to Koopmans’ Theorem, its HF one-electron energies can be written in the form

εscf
kν = Escf

0 − 〈kν|H|kν〉 (5.63)

where Escf
0 is the HF-ground-state energy.

The states |kν〉 can be approximated in terms of basis functions adapted to trans-
lational symmetry, with creation – annihilation operators b†kn, bkn:

akν =
∑

n

dνnbkn (5.64)

The coefficients, dνn are found by diagonalizing the matrix
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Hscf
nn′ (k) = 〈kn|Escf

0 − H|kn′〉 (5.65)

where |kn〉 = bkn|Φscf 〉 are assumed to be orthogonal, for simplicity.
To base considerations on states with localized extra electrons or holes, the

Wannier-type transformation is introduced, yielding localized states within each unit
cell. The number of these states equals the number of bands included in the Wannier
transformation. In the case of elemental semiconductors such as diamond or silicon
these are one-electron states localized at the middle of the nearest atoms bonds so
that n=1,2,3,4 (see Chap. 3 for the discussion of the connection between Bloch and
Wannier states). A local description arises through the decomposition of the bkn into
a sum of local operators marked with a cell index R (translation vector of the direct
lattice):

bkn =
1√
N

∑
R

exp(−ikR)cRn (5.66)

The operator cRn annihilates an electron in a local basis function centered in cell R.
The sum in (5.66) is precisely the projector onto the irreducible representation k of
the translation group. In this basis the matrix (5.65) becomes

Hscf
nn′ (k) =

∑
R

exp(−ikR)〈0n|Escf
0 − H|Rn′〉 (5.67)

which can be obtained by the direct-space quantities 〈0n|H|Rn′〉. Without loss of
generality, the functions annihilated by the cRn can be chosen as localized orbitals
spanning the occupied HF space of the neutral system, i.e. as localized two-center
bond orbitals for covalent semiconductors. In this case, 〈0n|H|Rn′〉 represents the
hopping matrix element between a HF-hole located in the central cell in bond n to a
bond n′ in cell R. The direct lattice formalism allows for inclusion of local correlation
effects. Such effects are obtained when the HF states |Rn′〉 are replaced by their
correlated counterparts |Rn′}, and Escf

0 is replaced by the true ground-state energy,
E0.

An incremental scheme application to valence bands requires computing the cor-
related nondiagonal matrix elements 〈0n|H|Rn′〉 in terms of a rapidly converging
series of approximations. Figure (5.1) shows the correlated valence-band structure for
Si with and without correlation, taken from [177]. The energy at the top of the valence
band in both cases has been set to zero. The local matrix elements were extracted
from calculations of a set of small molecules XnHm and used to set up an incremental
expansion of the bulk band structure.

For computing the absolute shift of the valence bands one needs to consider also
the diagonal matrix element

{0n|H|0n′} (5.68)

Such a calculation is discussed in detail in [180]. First, a HF-hole is considered in a
specific localized bond orbital Bi of a finite cluster simulating the crystalline semi-
conductor, with Bi representing |0i〉.

Let εscf
i denote the HF-value of a hole in this particular bond Bi:

εscf
i = 〈Bi|Escf

0 − H|Bi〉 (5.69)



172 5 Electron Correlations in Molecules and Crystals

E
ne

rg
y,

 e
V

-20.0

-15.0

-10.0

-5.0

 0.0

 5.0

L Γ X

Fig. 5.1. The SCF (dashed lines) and correlated (solid lines) band structure for silicon, [177].

As a first step correlation calculations are performed both for the neutral cluster and
for the cluster with a hole in bond Bi by restricting electron excitations to excitations
out of this bond only. The energy difference, εintra

i between the correlated energies
of the neutral and the charged cluster is then an excitation energy improved with
respect to the HF-value (5.69) by the inclusion of correlation effects. The difference,

∆in
i = εintra

i − εscf
i (5.70)

constitutes the “intrabond” increment of the correlation corrections to the diagonal
element. In the next step, correlations are taken into account by releasing electrons
out of two bonds, namely the one that contains the hole, Bi, and one additional bond
Bj . Again, a reference calculation is needed for the neutral cluster, where electrons
are excited out of these two bonds. Let us denote the corresponding energy with E0

i;j .
For the case with a hole, a multireference configuration-interaction (MRCI) calcula-
tion is perfomed where the two HF-determinants that contain the HF-hole in bond
Bi and bond Bj , respectively, are the reference functions forming the model space.
The calculation results in a diagonal (2 × 2)-eigenenergy matrix with eigenvalues λ1

and λ2 and corresponding eigenvectors |Ψ1〉 and |Ψ2〉. Due to the diagonalization in
the course of the correlation treatment the two eigenvectors are delocalized over the
region spanned by the two bonds considered. To get the matrix element of the Hamil-
tonian between the local states, as in (5.69), the diagonal representation of H given
by the eigenenergies is rotated back into a local matrix representation. To do so,
the eigenvectors are projected onto the model space to give the reduced eigenvector
matrix, D :

D =
( 〈Bi|Ψ1〉 〈Bi|Ψ2〉
〈Bj |Ψ1〉 〈Bj |Ψ2〉

)
(5.71)
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Due to this projection, the two eigenvectors contained in (5.71) are not strictly or-
thonormal, but can be made so by means of Löwdin symmetric orthonormalization
(D → D̃). The matrix

M = D̃
(

E0
i;j − λ1 0

0 E0
i;j − λ2

)
D̃

†
(5.72)

gives the matrix representation of H in local states. The diagonal element of this
matrix corresponding to the bond Bi is the correlated value of one-electron energy
(5.69) taking into account the effect of correlation of one additional bond Bj . The
procedure can be extended to include further increments. Double-bond increments
contain the effect of considering two additional bonds Bj , Bk, while the triple-bond
increments include three further bonds and Bj , Bk, Bl.

The mainly local character of the correlation effects manifests itself in a rapid
decrease of the magnitude of the increments, both with regard to the number of bonds
and distances between them. This allows the numerical effort for the calculation to
be reduced to just a few increments, which can be evaluated for a finite (embedded)
cluster. In [180] it is demonstrated that for diamond and silicon crystals the largest
correlation correction comes from the single excitations of the increment called SB1
that takes into account 66% and 64% of the overall correlation effect, respectively.
Thus the polarization of the first coordination sphere, stabilizing the ionized system,
gives by far the most important separate correlation effect.

The bonds Bi used in the formulation of the incremental scheme above, can be
obtained by a HF-calculation for such a finite cluster with an a-posteriori Boys local-
ization [38], which directly yields the bonds as localized HF-orbitals. All increments
were derived in [180] from the cluster calculations. C and Si clusters dangling bonds
were suppressed by the introduction of hydrogen atoms. The electron correlations dra-
matically reduce the diagonal elements from their HF eigenvalues –0.68, –0.51 hartree
to –0.45, –0.34 Hartree, for C and Si, respectively. When these values of the diago-
nal matrix element are fed into a band-structure calculation the absolute shift of the
valence bands due to electronic correlations is obtained. The above results lead to a
shift of the upper valence band at the Γ -point of 3.90 eV for C and 2.63 eV for Si. To
compare these results with experiment, we note that in diamond the HF-gap at the
Γ -point has been calculated as 13.8 eV [182], while the experimental one is 7.3 eV.
If one attributes the reduction of 6.5 eV in equal parts to the shift of the conduction
and the valence band, each shift should amount to 3.3 eV, so we overestimate the
shift by 0.6 eV. In the case of Si the (direct) HF-gap at the Γ -point of 8.4 eV [182], is
too large by 5.0 eV, as compared to the corresponding experimental value of 3.4 eV,
which would attribute a share of 2.5 eV to the valence band shift. The result obtained
in [180] of 2.6 eV nearly coincides with this shift. The deviation of these estimates for
diamond from the experimental value can be explained by the crude assumption of
a symmetric contribution, both for the valence and for the conduction band, to the
closing of the direct HF-gap.

Different approaches to the problem of excitations in correlated electron systems
are considered in [183]. They are based on a quasiparticle description when electron
correlations are weak and on a Green’s function or projection operator approach when
they are strong. In both cases, intersite correlation contributions to the energy bands
require special attention.
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It is shown that for both small and large correlation-energy contributions the
method of increments reduces the amount of computations decisively.

In [162] a critical review of the incremental scheme of obtaining the energetic
properties of extended systems from wavefunction-based ab-initio calculations of small
(embedded) building blocks is given, which has been applied to a variety of van der
Waals-bound (solid Xe), ionic (MgO), and covalent (C and Si) solids in the past
few years. Its accuracy is assessed by means of model calculations for finite systems,
and the prospects for applying it to delocalized systems are given. The individual
determination of the increments of the many-body expansion leads, on the other
hand, to the possibility of determining these increments in small finite model systems
where a suitable embedding makes the orbitals of a given building block (or pairs,
triples, etc. of building blocks) similar to those of the extended one. This efficiently
reduces the computational effort and obviates the necessity of restricting excitations
to the virtual space (by introducing a domain structure) as in the local-correlation
methods. This also means that the many-body expansion approach can be used with
every quantum-chemical program package.

The correlated band structure of the one-periodic systems (polymers) was effi-
ciently studied using the AO Laplace-transformed MP2 theory discussed in next sec-
tion.

5.3 Atomic Orbital Laplace-transformed MP2 Theory
for Periodic Systems

5.3.1 Laplace MP2 for Periodic Systems:
Unit-cell Correlation Energy

In [184] explicit expressions were presented for electron-correlation at the MP2 level
and implemented for the total energy per unit cell and for the band structure of
extended systems. Using MP2 for EN , EN−1, EN+1 (the total energies of one deter-
minant states for N , (N − 1)- and (N +1)-electron systems) a formula was presented
for a direct evaluation of the bandgap rather than obtaining it as a difference of two
large numbers. The formulation was given in the conventional crystalline orbitals de-
localized over the whole extended system. Later [185] this theory for periodic systems
was reformulated. The unit cell MP2 energy was evaluated by Laplace transforming
the energy denominator and heavily screening negligible contributions in the AO for-
mulation. This is the extension to periodic systems of the AO Laplace-transformed
formulation applied earlier for molecules in [186, 187]. This Laplace MP2 real-space
approach avoids the high computational cost of multidimensional wavevector k inte-
grations that is critical in order to obtain accurate estimates. It is efficient to treat
one-, two and three-periodic crystals (1D, 2D, and 3D systems, respectively). The
benchmark calculations [185, 188] were carried out for polymers (1D) and hexagonal
BN plane (2D) as well as stacked 1D polymers. The HF portion of calculations was
carried out using a PBC option of the molecular computer code Gaussian03 [107].

Here, we briefly present the main points of Laplace MP2 theory for periodic sys-
tems.

Equation (5.30) for the correlation energy in the MP2 approximation for molecules
can be written in the form
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E2 = −
Occ,V ir∑

ij,ab

(ia|jb)[2(ia|jb) − (ib|ja)]∗

εa + εb − εi − εj
(5.73)

where εi and εa are HF energies of the canonical occupied and virtual MOs, respec-
tively. The two-electron integrals in the canonical MO basis, (ia|jb), are obtained by
transformation of the Coulomb two-electron integrals in the atom-centered Gaussian-
type orbital basis,

(ia|jb) =
∫

i(1)j(2)
1

r12
a(1)b(2)dr1dr2

=
∑
µνλσ

(µν|λσ)C∗
µiCνaC∗

λjCσb (5.74)

For periodic systems the MP2 correlation energy correction is given by an expression
very similar to the molecular case [184]; the only difference is the use of the crystalline
Bloch (canonical) orbitals instead of MOs:

E2 = −Re

[
1

V 4
k

∫
dk1dk2dk3dk4

∑
(i(k1)a(k3)|j(k2)b(k4))

×2(i(k1)a(k3)|j(k2)b(k4)) − (i(k1)b(k4)|j(k2)b(k3))∗

εa(k3) + εb(k4) − εi(k1) − εj(k2)

]
(5.75)

The generalization to a spin unrestricted formalism is done in a similar fashion as in
the molecular case.

The two-electron integrals in the energy formula are now complex and given by

(i(k1)a(k3)|j(k2)b(k4)) =
∑
pqrs

∑
µνλσ

(µpνq|λrσs)C∗
µiCνaC∗

λjCσb

× exp [i(−k1p + k3q − k2r + k4s) · g] (5.76)

Here, the subscripts p, q, r, s indicate which cell the particular AO belongs to.
Provided that the energy denominator is a strictly positive quantity, the Laplace-

transform can be used to write

1
εa(k3) + εb(k4) − εi(k1) − εj(k2)

=
∫

exp [(−εa(k3) − εb(k4))t] exp [(εi(k1) + εj(k2))t] dt (5.77)

The central feature of the transformed energy denominator is that the indices and
attached quantities that were coupled by the denominator are now decoupled, allow-
ing a reordering of the summations. In particular, the four different k-integrations
can be carried out independently of each other, yielding the following unit-cell MP2
correlation energy formula (where repeated greek indices are contracted):

E2 =
∫ ∑

prs

T
νpσs

µ0λr
(t) [2(µ0νp|λrσs) − (µ0σs|λrνp)] dt

=
∫ ∑

prs

T
νpσs

µ0λr
(t)vµ0λr

νpσs
dt (5.78)



176 5 Electron Correlations in Molecules and Crystals

where the amplitudes T of the Coulomb integrals transformed by the Fourier-
transformed weighted density and complimentary matrices X and Y , respectively:

T
νpσs

µ0λr
(t) = Xµ0γt

Yνpδu
(γtδu|κvεw)Xλrκv

Yσsεw

= (µ
0
νp|λrσs) (5.79)

where

Xµpγs
=

1
Vk

∫ ∑
j

C(k)µj exp(−εj(k)t)C(k)γj

× exp [ik · (p − s)] dk,

Yµpγs
=

1
Vk

∫ ∑
a

C(k)µa exp(εa(k)t)C(k)γa

× exp [ik · (p − s)] dk (5.80)

In matrix elements (5.80) the summation runs over the occupied states (j) and
virtual states (a), respectively. C(k)µj and C(k)µa are the expansion coefficients on
the atomic basis for states j and a at point k. Vk is the volume of the first Brillouin
zone, where integration over k is performed.

By comparing the expression (5.78) for the MP2 correlation energy to the canonical
reciprocal-space expression (5.75), it becomes clear that the multidimensional quasi-
momentum integration has been reduced to a series of independent Fourier transforms
(5.80). For all practical purposes, the computational cost of calculating the MP2 cor-
relation energy in the AO basis is independent of the number of k-points used in
the Brillouin-zone integration. Very dense k-point meshes can be used at little extra
cost and thus, convergence issues found in earlier [184] reciprocal-space MP2 imple-
mentations are avoided. As was shown in [189] the interactions between atoms in the
central cell (cell 0) and atoms in the neighboring cells can be quantified by considering
the atoms the basis functions in (5.78) are centered on. In the case of periodic MP2
theory, it is particularly interesting to consider a cell-pair partitioning,

E2 =
∑

r

e0r
2 (5.81)

e0r
2 =

∫ ∑
ps

T
νpσs

µ0λr
(t) [2(µ0νp|λrσs) − (µ0σs|λrνp)] dt (5.82)

Whereas for e0r
2 the contributions from cells p and s decay exponentially with intercell

distance between 0 and r, the correlation contribution from e0r
2 itself decays quickly,

with respect to |o − r| distance.
It has been shown for molecules [189] that the expected 1/R6 decay of distant

correlation contributions is closely modeled by the atom-pair partitioning. The same
type of decay is also observed in the periodic case and e0r

2 decays as 1/|o − r|6. Of
course, the extent of the lattice summations over prs in (5.78) greatly affects both
the computational cost and the accuracy of the calculation. By taking advantage of
the spatial decay properties mentioned above, the energy contraction can be carried
out only for cells such that |o − r| ≤ rmax, while the p and s lattice summation
truncations must be controlled [185].
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The smooth decay of the energy contributions in the contraction can, of course,
be used to safely truncate the lattice summation. For example, the central cell energy
contribution e0r

2 provides a good estimate for the contribution from distant cells. In
most cases, the magnitude e0r

2 is reasonably well approximated by e00
2 /|o − r|6. A

system with a unit-cell translation length of 2.5 Å can, thus, be expected to have no
significant contribution to the correlation energy contraction beyond approximately
the fifth or sixth neighboring cell. However, although relatively few cells need to be
considered in the energy contraction (rmax=4–6 cells for 1D systems such as polyacety-
lene, typically), the spatial framework of duplicated cells needs to be large enough
so that all significant charge distributions, including the ones centered near the edge,
are properly expanded.

5.3.2 Laplace MP2 for Periodic Systems:
Bandgap

To correct the HF bandgap at the MP2 level the quasiparticle energy formalism was
applied [185, 188]. The quasiparticle (MP2) energies for a given state g is given by
(closed-shell case):

εMP2
g = εg + U(g) + V (g) = εg + ∆εMP2

g (5.83)

U(g) = −
∑
i,ab

(ia|gb) [2(ia|gb) − (ib|ga)]
εa + εb − εi − εg

(5.84)

V (g) =
∑
ij,a

(ia|jb) [2(ia|jb) − (ig|ja)]
εa + εg − εi − εj

(5.85)

where i and j are occupied, and a and b are unoccupied HF orbitals of the system.
Consequently, εi, εj and εa, εb are occupied and unoccupied HF orbital energies, re-
spectively. In a finite-basis calculation, the number of virtual orbitals is finite and
determined by the basis set. The Laplace-transform of the energy denominators is
applied to Eqs.(5.84) and (5.85) and using an AO-basis formulation one obtains

∆εMP2
g =

∫ ∞

0

dt
∑

µ0λrνpσs

G
νpσs

µ0λr
(t)vνpσs

µ0λr
(5.86)

where

v
νpσs

µ0λr
= 2(µ0λr|νpσs) − (µ0σs|νpλr)

(µ0λr|νpσs) =
∫

dr1dr2|r1 − r2|−1µ0(r1)λr(r1)|νp(r2)σs(r2) (5.87)

are two-electron integrals of AOs, for orbitals centered on cells with real-space coor-
dinates 0, r,p, and s, respectively. All real-space integrations are performed over all
space. ∆εMP2

g is the MP2 correction to the HF eigenvalue as defined in (5.83). The
other required quantity in (5.86) is

G
νpσs

µ0λr
(t) =

∑
γtδuκvεw

Xt
µ0γt

Y t
νpδu

(γtδu|κvεw)

× [
W t

λrκv
Y t

σsεw
+ Xt

λrκv
Zt

σsεw

]
(5.88)
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The elements of the X and Y matrices are given in (5.80). The elements of the W and
Z matrices are defined by

W t
µpγs

= C(k†)µg exp[−εg(k†)t]C(k†)γg exp[k†(p − s)] (5.89)

Zt
µpγs

= −C(k†)µg exp[εg(k†)t]C(k†)γg exp[k†(p − s)] (5.90)

where for evaluating the correction to the bandgap, W and Z are constructed from
the highest-occupied crystal orbitals (HOCO) and lowest-unoccupied crystal orbitals
(LUCO) at point k at which the bandgap is minimum. Note that adding a constant
value (e.g., the Fermi energy) to all occupied orbital energies, and subtracting the
same value from all virtual orbital energies does not affect the denominators of (5.84)
and (5.85) nor the MP2 corrections, but they guarantee that all the integrals contain-
ing terms such as exp[−εi(k)t] and exp[−εa(k)t] are finite. Depending on whether g
is the HOCO or the LUCO, U(g(k))+V (g(k))(g(k)) corresponds to the MP2 correc-
tion to the ionization potential or the electron affinity. The subtraction of these two
corrections, in the spirit of Koopman’s theorem, yields the correction to the bandgap.
Indirect bandgaps are obtained in a similar fashion by considering two different k
points.

Finally, (5.86) is approximated by numerical Gauss–Legendre quadrature after a
logarithmic transform of the t variable

∆εMP2
g ≈

∑
n

ωn

∑
µ0λrνpσs

G
νpσs

µ0λr
(tn)vνpσs

µ0λr
(5.91)

where tn and ωn are the quadrature points and weights, respectively. Usually 3–5
points are enough to evaluate the gap corrections, although more are necessary for
the energy [188].

The Laplace MP2 method is applied in [185] for the calculation of the correlation
corrections to the bandgap in 1D and 2D systems. Let us consider the results for a
2D system – hexagonal boron nitride in a one-layer model. Like graphite, BN can
exist in the form of nanotubes. Because these nanotubes can be viewed as hexagonal
BN sheets rolled onto themselves, hexagonal boron nitride has been the object of
renewed interest. The main absorption of a thin film of hexagonal BN is found at
6.2 eV and a sharp fall at about 5.8 eV was attributed to the direct bandgap on
the basis of semiempirical calculations [190]. The quasiparticle band energy structure
at both the Hartree–Fock and the correlated level was calculated in [191] using a
method very similar to MP2, the second-order many-body Green-function approach.
Hexagonal BN was shown to have a rather complex band structure. Points P and Q
are two high-symmetry points within a Brillouin zone with hexagonal symmetry –
the hexagon corner and center of edge, respectively. The HF bandgap is minimum at
k-point P and was evaluated to be 12.46 eV and the quasiparticle gap to be 2.88 eV.
At point Q, the HF gap is 16.45 eV and correlation was said to decrease it to 6.48
eV.

PBC MP2 calculations [185] have been unable to corroborate these results. In
these calculations, the HF band structure was shown to have a minimum bandgap of
13.73 eV at a point that is neither P nor Q, but rather in between, at a point of higher
symmetry still. After examination of the phases of the Bloch orbitals at these points,
one can say that point P is best characterized as corresponding to a trans alternation,
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whereas Q corresponds to a cis alternation. Laplace MP2 calculation, thus, seems to
indicate first, that the Hartree–Fock method favors a form that is a mixture of these
two distinct alternations, and second, that for a meaningful calculation, great care
should be taken in the convergence of the HF density by using an appropriate k-mesh
and spatial framework. The correlation correction to the bandgap is very important,
as suggested by the MP2 studies. Using 5 Laplace quadrature points and 49 cells to
carry out the final contraction, the MP2 gap correction is –6.25 eV. The direct MP2
bandgap can be thus estimated to be at most 7.5 eV, approximately 1.5 eV above the
experimental absorption peak. This constitutes a rather good agreement given that
much larger basis sets would be needed to properly describe the conduction band that
is thought to have a very large extent into the vacuum region.

The Laplace MP2 algorithm of a correlated band-structure calculation is discussed
in [188] and applied to trans-polyacetilene.

The post-HF methods for periodic systems were discussed in Sections 5.2 and
5.3. The incremental technique and the Laplace MP2 approach can be mentioned as
the most successful approaches to the correlation in solids [5, 192]. The former uses
standard molecular codes with clusters of various shapes and sizes to calculate the
correlation energy, the latter adopts a formulation of correlation directly in AO basis.

The incremental scheme can be realized using the different post-Hartree–Fock
methods (MP2, coupled-cluster CCSD(T)). This scheme is applicable both for non-
conducting crystals and metals. The use of finite clusters allows modern sophisticated
molecular codes to be applied (like MOLPRO code [116]). The incremental scheme
can be used not only for calculation of the energy but also for the energy gradients
necessary in the atomic-structure optimization. Unfortunately, the application of the
incremental scheme requires some “hand” work when choosing the cluster size and
shape for any new system. To the best of our knowledge the code WANNIER (for
crystals) [158] allows consideration only of the crystals with a small number of atoms
in the unit cell. If clusters are used instead of crystals – the finite nature of the system
under consideration affects the results. It is not so easy to set a reasonable cluster to
approximate a crystal, especially when there are many atoms in the unit cell. We do
not think that these disadvantages are intrinsic features of the incremental scheme,
but are mainly connected with the necessity of some standard code generation.

The essential advantage of the Laplace MP2 method is its incorporation in publicly
available Gaussian03 [107] computer code with PBC introduction for HF calculations.
Due to the Laplace-transform the dense grids of k-points can be afforded, the virtual
space is not truncated so the method gives the true MP2 energy. The Laplace MP2
band structure can be calculated, including the correlation correction to the bandgap.
As no results of its application to 3D systems were published it is difficult to judge
how reliable this method is for three-dimensional crystals.

In the next section we consider a local MP2 scheme for periodic systems that is
now incorporated in more or less “standard” CRYSCOR correlation computer code
for nonconducting crystals [109].
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5.4 Local MP2 Electron-correlation Method
for Nonconducting Crystals

5.4.1 Local MP2 Equations for Periodic Systems

The local MP2 electron-correlation method for nonconducting crystals [109] is an
extension to crystalline solids of the local correlation MP2 method for molecules
(see Sect. 5.1.5), starting from a local representation of the occupied and virtual HF
subspaces. The localized HF crystalline orbitals of the occupied states are provided
in the LCAO approximation by the CRYSTAL program [23] and based on a Boys
localization criterion. The localization technique was considered in Sect. 3.3.3. The
label im of the occupied localized Wannier functions (LWF) Wim = Wi(r − Rm)
includes the type of LWF and translation vector Rm, indicating the primitive unit
cell, in which the LWF is centered (m = 0 for the reference cell). The index i runs
from 1 to Nb, the number of filled electron bands used for the localization procedure;
the correlation calculation is restricted usually to valence bands LWFs. The latter
are expressed as a linear combination of the Gaussian-type atomic orbitals (AOs)
χµ(r −Rn) = χµn numbered by index µ = 1, . . . , M (M is the number of AOs in the
reference cell) and the cell n translation vector Rn:

Wim(r) =
∑
µn

lµn,imχµn(r) (5.92)

AOs constitute the nonorthogonal basis set used for the solution of the HF crystalline
equations. To exploit the translation invariance property of LWFs the matrix Li

µn =
lµn,i0 has been introduced.

As in the molecular case (Sect. 5.1.5) for the virtual space the projected AOs
(PAOs) are used. To generate PAOs the projector P̂ =

∑occ
l |l〉〈l| onto the occupied

HF space is expressed in terms of the density matrix in an AO representation, P ,
which is calculated very accurately by the CRYSTAL program via Brillouin-zone
integration over all canonical occupied crystalline orbitals |l〉:

P̂ =
∑
µν

|ν〉Pµν〈µ| (5.93)

The projector onto the virtual space is hence obtained: Q̂ = 1− P̂ . By acting with Q̂
on any one of the local functions χµn ≡ χβ of the original AO set, a Q-projected AO
is obtained, or simply PAO:

Q̂χβ(r) =
∑
µn

Qνµχµn = χ̃β(r) (5.94)

In what follows, PAOs are identified with the Latin letter corresponding to the Greek
letter labeling the AOs from which they are generated, χ̃β(r) ↔ |b〉 ≡ |bn〉.

The set of all PAOs so generated (the standard PAO set) constitutes a nonorthog-
onal, linearly dependent, incomplete set of local functions, strictly orthogonal to all
WFs. The problem of the adequacy of the standard set to describe excitations is
a delicate issue, because the basis sets usually adopted to solve the HF problem for
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crystals are calibrated so as to describe accurately only the occupied subspace. In-
dications from molecular experience could not be easily transferable to the periodic
case, especially in the case of dense crystals.

An essential feature of O(N) local techniques is the introduction of some metric
expressing the “distance“ between local functions, and the approximate treatment or
total neglect of terms entering the exact equations, according to the distance between
the functions on which they depend. The wealth of experience gained in molecular
studies can be exploited to this end.

A preliminary step is the definition of WF domains. According to the standard
convention, the domain of the ith WF, Di ≡ {χα}i is the set of all AOs associated with
the smallest and most compact set of atoms such that Di “spans” Wi, it is clearly
sufficient to define this set for WFs in the reference cell (im = i0). The criterion
adopted to select the spanning set is based on the one proposed by Boughton and
Pulay [193]. Briefly, one includes in the set, step by step, all AOs belonging to a group
of symmetry-equivalent atoms (that is, atoms that are carried into each other by a
symmetry operation that reproduces the LWF into itself). At each step, the norm
NBP of the difference between Wi and the best possible linear combination of AOs in
the set is determined. The process is stopped when NBP is below a certain threshold
TBP , for instance, 0.02; TBP will be called the Boughton-Pulay (BP) parameter. The
sequence according to which atoms are introduced in the domain is as follows. First,
a “kernel” is selected including atoms A that contribute a Mulliken population QA

i

larger than a certain threshold, e.g., 0.2 (QA
i = | ∑

β∈A

∑
α

Pn
i,βPn

i,α(νn|µm)|;β ≡ νm);

next, groups of symmetry-related atoms are introduced in order of increasing distance
from the kernel (if the distance is the same, atoms with larger QA

i are included first).
After defining the domains, it is expedient to introduce, for any two WFs, i and

j, a measure dij of the distance between them: the standard definition was adopted,
namely, the minimum distance between any two atoms belonging to the respective
kernels. A classification of LWF pairs by distance is then possible, based on the idea
(strongly supported by the results of molecular calculations) that excitations from two
local occupied orbitals become progressively less important with increasing distance d
between the two centers. Strong (d = 0), weak (0 < d ≤ d1), distant (d1 < d < d2) and
very distant (d2 < d) pairs can be so termed, and the respective excitations are treated
in a progressively less accurate way; in molecular calculations a standard choice is
d1 = 8 Bohr, d2 = 15 Bohr (see Sect. 5.1.5). The total neglect of contributions from
very distant pairs is crucial to the realization of O(N) computational schemes. In the
following, two WFs will be said to be “close-by” each other, if they do not form a very
distant pair. For each WF pair, a pair-excitation domain or simply, “pair domain”,
can be defined, which is the union of the respective domains (Di,j ∈ Di ∪Dj). Given
the biunivocal correspondence between AOs and PAOs (see (5.94), χ̃β will be said
to “belong to” Dij (briefly, |b〉 ∈ Dij), if χβ does. Excitations from i, j are usually
restricted to PAOs belonging to Dij .

The use of distance criteria in the definition of the shape of the LWF domains
and for controlling the level of the approximation is certainly not the only possibility,
even if it is the simplest one; for instance, some “topological” index might be used
instead, as is already possible in the MOLPRO program [116].
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Definitions and conventions introduced are not specific of any given level of local
correlation theory and can be used both in CC and MP theory. In [109] the MP2, the
simplest local correlation method, was considered.

The first-order perturbative correction to the HF wavefunction (5.37) is written
as a combination of contravariant doubly excited configurations

|Ψ (1)〉 =
∑
ij

|Ψ〉(ij) (5.95)

where
|Ψ〉(ij) =

∑
ab

T ij
ab|Φij

ab〉 (5.96)

The exact equations that determine the excitation amplitudes T ij
ab are

0 = Rij
ab = Kij

ab +
∑
cd

{
FacT

ij
cdSdb + SacT

ij
cdFdb

−Sac

[∑
l

(
FilT

lj
cd + T il

cdFlj

)]
Sdb

}
(5.97)

Here, Kij
ab is the two-electron “exchange” integral,

Kij
ab = (ia|jb) (5.98)

Fil and Fdb are elements of the WF or PAO representation of the Fock operator,
respectively, and Sab is the overlap between PAOs. Equation (5.97) must be solved
iteratively in the unknown amplitudes until all residuals Rij

ab are zero. For any given
set of amplitudes, the Hylleraas functional can be calculated:

E2 =
∑
(ij)

Eij
2 =

∑
ij

∑
ab

(Kij
ab + Rij

ab)(2T ij
ab − T ij

ba) (5.99)

It is easily shown that E2 ≥ E(2) (the MP2 estimate of the correlation energy),
the equality sign holding true only at convergence, when all residuals are zero. In
the above equations, the locality assumption is introduced according to the vicinity
criteria, by restricting the sums over (ij) to close-by WF pairs, and those over (ab)
to PAOs∈ Dij .

For the case of a crystalline application, the fact that all two-index quantities (Fock
matrix in the PAO and in the WF representation, overlap matrix in the PAO repre-
sentation) and all four-index quantities (amplitudes, residuals, two-electron integrals)
are translationally invariant was used. For instance,

T
im,j(n+m)
an′+m,bm′+n = T 0,jn

an′,bm′ (5.100)

Furthermore, the total correction energy can be written as a sum of correction energies
per cell: E2 = LEcell

2 , where L is the total number of cells in the crystal with periodic
boundary conditions, and the expression for Ecell

2 is the same as in (5.99), but with
the sum restricted to “zero-cell” WF pairs, that is, with the first WF in the reference
zero cell:



5.4 Local MP2 Electron-correlation Method for Nonconducting Crystals 183

Ecell
2 =

∑
ijn

Ei0,jn
2

So, finally, it is confined to a local problem, in the vicinity of the zero cell. The
computation becomes O(0) with respect to the size L of the macroscopic crystal and
(asymptotically) O(N) with respect to the size N of its unit cell.

In order to reformulate (5.97) for a given zero-cell WF pair (i0, jn) in the periodic
case, the following notation is introduced,

Rab = Kab + Aab + Bab (5.101)

where a, b ≡ |am〉, |bn〉 and the apex i0, jn is implicit in all four terms. This allows
an “internal” contribution, Aab (second and third terms in (5.97), which depends on
the amplitudes referring to the same i0, jn pair, and an “external” Bab contribution
(last two terms in (5.97)), which depends on amplitudes involving other WF pairs, to
be distinguished.

The most computationally demanding step in the implementation of the local MP2
method is the evaluation of the two-electron integrals K12 = (i1a1|i2a2). The straight-
forward solution is to express them as a linear combination of analytical KA integrals
over AOs, with coefficients depending on the four local functions. Other techniques are
possible, however. In [157] the technique of fitted LWF for local electron-correlation
methods was suggested. A very promising one is the so-called density-fitting approx-
imation [146]. Exchange integral K is obtained in terms of two-center repulsion in-
tegrals JF1F2 between two AO-like functions F1(r) and F2(r), after expressing each
product distribution as a linear combination of a suitable set of “fitting functions”
Fn(r).

In the problem of the four-index transformation from {KA} to {K} advantage
can be taken, as is customary in molecular calculations, of the fact that the same
KA is needed for many K integrals. When the involved LWF are sufficiently distant
the approximate multipolar evaluation of K integrals is used. For an efficient use of
this technique, a number of parameters must be accurately calibrated: the distance
between WFs beyond which the multipolar technique substitutes the exact one; the
value of the parameter defining the truncation of the AO expansion of WFs and
PAOs, according to the value of the coefficient or of the distance of the AO from the
LWF center. The last two aspects are interrelated: almost negligible tails at very large
distance may give enormous high-order multipoles, leading to unphysical values of the
interaction.

The possibility to eliminate the WFs’ tails may have a significant impact on the
efficiency of LMP2 methods. For these methods the most expensive step is the evalua-
tion and transformation of four-index two-electron integrals, where the computational
cost is governed by the spatial extent of the AO support of the individual WFs. The
details of the evaluation of these integrals can be found in [109].

To improve the efficiency of the local correlation methods in nonconducting crys-
tals the technique for constructing compact (fitted) WFs in AO basis sets was sug-
gested [157]. Nevertheless, the results are general and can also be applied to other
cases where the LCAO expansion of WFs is a critical issue.
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5.4.2 Fitted Wannier Functions for Periodic Local Correlation Methods

Although WFs are spatially localized, the localization region can be relatively large.
As an illustration one can consider the case of diamond [157]. In the LCAO approx-
imation, the WFs are represented by the AO expansion coefficients. The coefficients
of the four translationally inequivalent WFs (which correspond to the four upper va-
lence bands of the HF reference) larger (in absolute value) than a threshold of 10−4

comprise the atomic functions centered in as much as 435(!) unit cells. Such a wide
extent of WFs makes accurate calculations, in particular local MP2 calculations, for
solids, computationally difficult.

The slow decay of WFs is often related to their mutual orthogonality, which gives
rise to long-range oscillating tails, containing no physically relevant information. For
quite sometime now, the possibility to avoid these tails by sacrificing orthogonality
has been discussed. Many important results concerning the localization properties of
WFs and nonorthogonal localized orbitals (NOLO) (following most of the authors,
we do not use the term “Wannier functions” for nonorthogonal localized functions)
were obtained for the one-dimensional (1D) case, [194–197]. It was shown that in the
1D case the spread of the NOLOs can be lower than that of the WFs and the term
“ultralocalized” was introduced for NOLO [195]. The LCAO expansion of the WF
Wi0(r) is defined as

Wi(r) =
∑
µR

CµR,iχµ(r − R) ≡
∑

µ

Cµiχµ(r) (5.102)

where χµ(r − R) represents the atomic function centered in the Rth unit cell, CµR,i

is the corresponding AO-WF coefficient and index µ combines the indices µ and R.
Equation (5.102) defines WFs for the reference unit cell. In [157] it was suggested to
maximize the variational functional that defines the Löwdin population of the given
localized function on a set of atoms surrounding the center of the localization:

Ino
i =

∑
i∈S

(loc)
i

(
C

(no−Lw)
µi

)2

=
(

W
(no)
i |P̂ (LW )

S
(loc)
i

|W (no)
i

)
(5.103)

where C
(no−Lw)
µi are the expansion coefficients of the NOLO W

(no)
i (r) over the Löwdin-

orthogonolized atomic basis set functions φ
(LW )
µ (r)

W
(no)
i (r) =

∑
µ

C
(no−Lw)
µi φ(LW )

µ (r) (5.104)

φ(LW )
µ (r) =

∑
µ′

(
S

(AO)
µ′µ

)−1/2

φµ′(r) (5.105)

Here S
(AO)
µ′µ is the AO overlap matrix, and P̂

(LW )

S
(loc)
i

is an operator projecting onto the

space of the Löwdin-orthogonalized AOs from the given set of atoms:

P̂
(LW )

S
(loc)
i

=
∑

µ∈S
(loc)
i

|φ(LW )
µ 〉〈φ(LW )

µ | (5.106)
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The set of atomic orbitals S
(loc)
i determines the region (or the set of atoms), the

corresponding localized functions W
(no)
i (r) should concentrate within.

Maximization of the functional (5.103) with a constraint of normalization of the
functions W

(no)
i (r) can be carried out by diagonalizing the matrix of the operator

P̂
(LW )

S
(loc)
i

(5.106). The eigenvector of this matrix, corresponding to the highest eigen-

value, holds the coefficients of the expansion (5.104), providing the most localized
NOLO in the sense of the functional (5.103). The basis for this matrix could be
formed by the Bloch functions of the occupied bands, WFs or even atomic orbitals,
projected onto the occupied space.

During generation of the nonorthogonal functions one should not lose the rank
of the space spanned by these functions (i.e. the linear independency of the func-
tions should be kept). For the crystals of sufficiently high symmetry the rank can
be preserved automatically, if the basis used for the variational procedure is sym-
metrized [198]. The localized functions are basis functions of irreducible representa-
tions (irreps) of the site groups related to the centroids of these functions [13]. Thus,
if the basis for the functional (5.103) is symmetrized according to these site group and
irrep, the centering site of the localized function cannot change [13,198]. So, when the
localized functions are centered on an isolated symmetry point, the symmetrization of
the basis keeps the functions linearly independent. Moreover, even if the centroid of
the localized function is not an isolated symmetry point (lies on the symmetry axis or
in the symmetry plane), but the symmetry of the crystal is still high enough, the rank
still may be kept by just taking symmetry into account. Yet, in this case the latter
is not guaranteed. If preservation of rank cannot be assured by applying symmetry,
one may have to apply some additional constraints – e.g., as suggested in [199], the
constraint of the nonsingularity for the localized functions overlap matrix, or in [200],
the constraint of freezing the centroids of the localized functions. However, the latter
constraint might collide with the requirement of higher localization, if the centers of
the functions are not fixed by the symmetry.

The variational procedure should be performed in the space of the first vectors of
the corresponding irreps. In other words, only symmetry-unique localized functions
are to be obtained variationally. The remaining functions can be generated by applying
the appropriate symmetry operators [13, 198]. If there is more than one independent
set of localized functions centered on the same site and transforming according to
the same irrep, one can obtain all of them in the variational procedure either by
taking the eigenfunctions of the diagonalized matrix corresponding to several of the
highest eigenvalues instead of just one, or by performing independent procedures for
their generation. In the latter case, the variational procedure should be run in the
WF-basis, and only one out of several WFs with the considered symmetry, which are
centered on the same site, should be included in this basis. The symmetry proper-
ties of the WFs and localized functions can be determined in high-symmetry cases
without the actual construction of WFs, by analyzing the symmetry of the Bloch
functions corresponding to the valence bands. The symmetry information on the NO-
LOs (the site groups of the WF centroids and the irreps of the site groups) can be
extracted using the induced representation theory. Let the symmetry of the WFs be
defined unumbiguosly by the symmetry of Bloch states forming the occupied crys-
talline orbitals. For example, as was seen in Chap. 3, the four upper valence-band
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Bloch states in diamond-type crystals are connected with four WFs centered at the
center of the atom–atom bond with the site-symmetry group D3d and transforming
over the one-dimensional a1g-irrep of this group. The coset representatives in the de-
composition of space group O7

h in cosets over subgroup D3d transform this WF into
another three equivalent WFs directed along the interatomic bonds. In MgO crystal
four upper valence bands, nondegenerated and triple degenerated, correspond to four
WFs centered at the oxygen site (site symmetry group Oh coincides with the point
group of a crystal) and transforming over irreps a1g and t1u of Oh group. This is the
case when NOLOs different by symmetry are centered at the same atom.

In low-symmetry cases one needs to know also the centering points of the initial
orthogonal symmetry-adapted WFs. Let instead of the diamond structure one consider
ZnS (sphalerite) structure. The centering of four WFs corresponding to four upper
valence bands, is defined by symmetry as C3v, i.e. WFs centers are at the atom–atom
bond. The actual centering can not be found only from symmetry considerations.
In this case, the additional information is necessary to fix the WFs centers. One
possibility – to use the nonsymmetry-adapted WFs generated by CRYSTAL code [23]
and a posteriori to apply the technique of Casassa et al. [201] to nonsymmetrized WFs.
This technique is considered in the next section. If the WFs centers are not fixed
the method under consideration can give highly localized, but linearly dependent
functions, which of course are of no use.

In some special low-symmetry cases, when there are several independent WFs
of the same symmetry (like s- and pz-WFs of oxygen in rutile structure TiO2), the
method also requires the orthogonal WFs themselves to use them as a basis for con-
struction NOLOs. In other cases one can also use Bloch functions as such a basis.

Let the symmetry-adapted localized orthogonal WF be constructed and used fur-
thermore in the post-Hartree–Fock calculations. In numerical local MP2 calculations
the sum (5.102) has to be truncated according to some threshold. It is possible to
make a truncation based on the magnitude of the calculated WFs coefficients in this
sum. In effect, all contributions due to WF coefficients below some threshold could be
disregarded. Unfortunately, only relatively loose thresholds can presently be afforded
in practical calculations [109] and the numbers of translation vectors R taken into
account may become a critical parameter significantly influencing the accuracy of the
calculation. For example, the four-index transformation of the two-electron integrals
in the CRYSCOR computer code [117] uses tolerances for the LCAO coefficients of
the WFs of 10−2–10−3. Such loose thresholds can hardly guarantee sufficient accuracy
for reliable results, yet tighter thresholds render the calculations too expensive.

In order to treat the truncation of the WFs’ tails in an improved way the fitting
of WFs was suggested [157]. The localization criterion is introduced

I
(fit)
i =

∫ (
W̃i(r) − Wi(r)

)2

dr (5.107)

where the function W̃i(r) is the truncated (fitted) localized function

W̃i(r) =
∑

µ∈S
(fit)
i

Cµiφµ(r) (5.108)

The sum (5.108) differs from the infinite sum (5.102) because the summation is made
over S

(fit)
i containing an incomplete set of atomic functions centered only on atoms,
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which are in a way close to the centroid of the WF Wi(r). The criterion (5.107)) is
utilized to fit the WF spanned by the basis functions within S

(fit)
i (the WF-AO fit

domain) in a least-squares sense with respect to the untruncated function. Hence,
minimizing the functional (5.107) the fitted WFs are

W̃
(fit)
i (r) =

∑
µ∈S

(fit)
i

C
(fit)
µi φµ(r) (5.109)

with the fitted coefficients C
(fit)
µi , obtained by solving the linear equations∑

µ′∈S
(fit)
i

S
(AO)
µ′µ C

(fit)
µ′i =

∑
µ′

S
(AO)
µ′µ Cµ′i (5.110)

The fitting according to (5.110) is formally equivalent to other fitting techniques like
density fitting [146,147], with the AOs from the WF-AO fit domain in the role of the
auxiliary basis functions.

By successively adding coordination spheres of atoms and thus their atomic func-
tions to the set S

(fit)
i and refitting the coefficients C

(fit)
µ′i one can finally obtain the

fitted WF W̃
(fit)
i (r) that to a given tolerance, approximates the exact WF Wi(r).

Within a chosen tolerance the number of atoms contributing significantly to the fitted
WFs W̃

(fit)
i (r) is essentially smaller than that of the functions W̃i(r).

The fitting procedure can be applied also to the NOLOs, once they are constructed.
The localization-fitting process for the NOLOs is most efficient when the set of atomic
orbitals and WF-AO fit domain S

(fit)
i at both stages are chosen to be the same.

Indeed, small values of the fitting functional I
(fit)
i can be expected, if all the sites

with a relatively large value of the NOLO are included in the corresponding WF-AO
fit domain. Thus, it does not make sense to use domains S

(fit)
i smaller than S

(loc)
i , since

the latter guarantees small values for localized functions only outside its region. On the
other hand, if the value for the fitting functional within the chosen WF-AO fit domain
is not sufficiently small, it is more efficient, when one does not just enlarge it (as in the
case of WFs), but recalculates beforehand the reference NOLOs with the new set S

(loc)
i

enlarged accordingly. Actually, only the LCAO coefficients of the NOLO (or WFs) Cµi

can be refitted by minimizing the functional (5.107). The Löwdin coefficients cannot
be modified by the fitting (5.110), since the corresponding AO overlap matrix involved
is the identity matrix. This means that the Löwdin coefficients within the WF-AO
fit domain are optimal with respect to the functional (5.107) providing its minimum.
For orthogonal atomic-like basis sets (such as Löwdin-orthogonalized AOs), the fitting
process just corresponds to the truncation of the WF coefficients according to the
chosen WF-AO fit domain. Constructing the NOLO in the case of orthogonal basis
sets might be more efficient, since the localization functional (5.103) addresses the
coefficients relative to the orthogonalized basis-set functions directly. The efficiency
of the fitting procedure for the localized functions depends on redundancies carried
in the corresponding basis sets, which are large in the case of highly overlapping basis
sets. Summarizing the above, the method for obtaining ultralocalized nonorthogonal
fitted functions implies the following. Once the symmetry of the localized orbitals
has been determined, for every symmetry-unique function the variational procedure
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in the symmetrized basis according to the functional (5.103) is performed, followed
by generating the fitted functions with limited support from the former by solving
(5.110). The sets of the atomic orbitals S

(loc)
i and S

(fit)
i in these two steps are to be

taken as the same. If the value of the fitting functional (5.107) does not drop below
a predefined threshold, a new star of atoms is added and the process is repeated.

The atomic functions projected onto the orthogonal complement of the occupied
space (PAOs), which represent in the framework of local correlation methods the vir-
tual states (see Sect. 5.4.1) are also localized functions. Therefore, similar techniques
could also be used to restrict the spatial extent of these PAOs. However, since PAOs
are to be constructed by projecting out the space spanned by the fitted WFs or NO-
LOs (rather than the untruncated parental WFs or NOLOs), one can anticipate that
PAOs will automatically possess a limited support, determined basically by the WF
AO fit domains.

The efficiency of the method suggested was demonstrated in diamond crystal local
MP2 calculations [157]. Since in the present version of the CRYSCOR code [117] a
possible nonorthogonality of the localized functions, representing the occupied mani-
fold is not taken into account, the local MP2 energy in diamond has been calculated
using only orthogonal WFs with and without fitting. The weak- and distant-pair dis-
tances were set to 2 Å. The threshold for PAOs coefficients was set to 10−2. Only
the coefficients for the AOs from the first three stars of atoms were included in the
transformation of the 4-index integrals (WF fitting was also performed within the
first three stars of atoms). Local MP2 correlation energy and timings were then com-
pared with the corresponding values of a reference calculation, which were obtained
by employing quite a low screening threshold of 5 × 10−4 for the WF coefficients
(smaller thresholds are hardly manageable, presently [109]). Evidently, the fitting of
WF coefficients can improve the accuracy and/or reduce the computational cost of
the local MP2 calculations for solids. The results of these calculations show: if fitted
WFs are used, the estimate of the error in the calculated MP2 energy (the difference
between the calculated and reference energies) becomes substantially smaller, while
the CPU time of the calculation remains about the same.

5.4.3 Symmetry Exploitation in Local MP2 Method for Periodic Systems

In local MP2 calculations of solids it is important to exploit the point symmetry,
in order to confine calculations to an irreducible subset; savings of computer time
and storage can be substantial in a number of cases of importance. As was discussed
in the preceding subsection, the WFs symmetry can be taken into account on the
step of WFs generation using the theory of induced representations of space groups
and symmetry information about the Bloch states involved in the WFs generation.
However, there is another possibility – a symmetrization of a set of constructed LWF
before starting the local MP2 calculations. A set of LWF is a posteriori symmetrized
and symmetry-adapted localized WFs (SALWF) are constructed. A rapid account of
this technique was given in [109], while a more detailed analysis can be found in [201].

SALWFs are partitioned into subsets (f) belonging to a class b, each transforming
into itself under the operators of a local symmetry point-subgroup Ff of the full point
group F, while the operations of the associated left- or right-cosets transform subset
f into another equivalent one in the same class. As an example in the diamond crystal
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case (F = Oh) subset f consists of one LWF centered in the middle of the atom–atom
bond (Ff = D3d). The LWFs class consists of four LWFs describing the upper valence
band of four subbands. Formally, the symmetrization and the localization procedures
are in principle independent: for a chosen localization criteria the LWFs symmetrized
before construction have to be close to those symmetrized a posteriori their construc-
tion. In fact, the real localization of electron density may be sufficiently complicated.
In a-posteriori symmetrization the choice of Ff is generally not unique (in the simple
case of diamond it was unique) and two possible cases may be mentioned: (i) The
subsets are chosen so as to minimize the order of Ff ; (ii) Ff is chosen so that the rep-
resentation of its elements in the SALWF basis set is maximally factorized according
to the irreducible representations of Ff . Functions optimally localized under a given
criterion may feature both properties (as is the case when a regular representation is
possible), any one of them, or none of them [201]. For example, let us consider four
nonsymmetrized LWFs defined by Bloch states of four upper valence bands in MgO
crystal (the valence electron pairs related to the anions are supposed to be localized
according to the Boys criterion [38]). In that situation, the localization criterion is
just compatible with an sp3 hybridization but, as the local point-symmetry group
of the atom is cubic and not tetrahedral, the set of orbitals is constrained to form
a reducible representation of Oh with no privileged orientation. The LWFs fall into
a situation not described by the previously mentioned cases. A similar behavior is
displayed by “banana” orbitals in triple bonds, or core electrons in a variety of highly
symmetric crystals.

For the scope of numerical applications, even in those cases where localization
gives rise to definite symmetry properties (as in the diamond case), accurate symme-
try equivalences are only reached under strong numerical conditions in the localization
algorithm. This can be, in several cases, very computationally demanding and a more
efficient shortcut to obtain accurate symmetry equivalence together with a good lo-
calization character is therefore desirable.

Due to the previously mentioned difficulties of an a priori prediction of what kind
of symmetry behavior will be compatible with good localization properties under
efficient criteria, in [201] an a-posteriori strategy was adopted based on a “chemical”
analysis of the problem, which is made easier by the fact that WFs are expressed as
a linear combination of atomic orbitals (AOs); it represents a compromise between
the two criteria previously mentioned. Starting from a set of localized WFs, the main
steps of the presented scheme are:

(1) recognize if classes of symmetry-related single-WF subsets already exist;
(2) classify the remaining WFs, if possible, into atomic or bond WFs, according

to the Mulliken population analysis. The extension to periodic systems of Mulliken
population analysis introduced for molecules is considered in Chap. 9. The electron
density of LWF Wi0 is partitioned into atomic populations Qi

AM , assigned to different
atoms in the primitive cells M . One can preclassify Wi0 as

a) Atomic LWF: an atom AM exists for which QAM > 0.9. This category includes
“core” LWFs, but also LWFs associated with valence AOs in anions of very ionic
systems. “Lone-pair” or “hydrogen-bond” LWFs may also enter this category.

b) Bond LWF: two near-by atoms AM,BN exist such that Qi
AM +Qi

BN ≥ 0.9, and
the ratio Qi

AM/Qi
BN is comprised between 1 (pure covalency) and 1/4 (high ionicity).

c) Atypical LWF: Wi0 does not enter the previous categories.
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(3) using the previous information recognize the subsets, the site-symmetry sub-
groups Ff and the irreducible representations to which they belong;

(4) generate, and orthonormalize the new SALWFs.
A criterion based on a Mulliken analysis is adopted again to subdivide atomic

LWFs associated to the same irreducible atom A into shell-subsets (without loss
of generality, A can be assumed to be in reference 0 cell). The bond LWFs are the
representatives of double and triple bonds, and are assigned to the (AO−BM)-subset.
Thus, part of the LWFs, classified as SALWFs, only require numerical refinement, or
the subset including all the atypical ones. All others are grouped in subsets S, either
of a “shell” or of a “bond” type, each one comprising ns members.

Bond and atomic LWFs are characterized by one and two atomic centers, respec-
tively. Using this information the subgroup Gf that leaves invariant the corresponding
symmetry element (either a center or an axis in real space) is found. The irreducible
representations of Gf are found and for each of them the representative matrices are
first constructed and, then, used to build up the idempotent projector operators for
the first row and the shift operators for all other rows. The details of this procedure
can be found in [201,202].

Finally, when all atomic and bond subsets have been symmetry adapted, they are
orthonormalized. Orthonormalization is performed in two steps. Using a given net in
reciprocal space, the nonorthogonal functions generated in the previously described
steps are transformed into Bloch functions, orthonormalized using a Löwdin scheme in
each k-point of the net, and backtransformed into Wannier functions. This is accom-
plished using a straightforward modification of the Wannierization scheme reported
in [203]. At this step,the resulting SALWFs are orthonormal just under Born–Von
Karman cyclic conditions. If necessary, the functions can be corrected to satisfy ac-
curate orthonormalization by integration over the whole real space. We discussed a
method [201] for generating from a set of (generally nonsymmetric) localized Wannier
functions (LWF), an equivalent set of orthonormal functions that are adapted not
only to the translational, but also to the point symmetry of the crystalline structure,
while maintaining good locality features. They are called therefore SALWFs (symme-
try adapted localized Wannier functions). At variance with other methods based on
the induced representations theory this method is largely based on a chemical analysis
of the structure of LWFs: despite this somewhat empirical character, it performs very
well with a variety of molecular and crystalline systems.

The effectiveness of this procedure was demonstrated [201] by way of examples,
with reference to four test cases: the CH3Cl molecule (with C3v symmetry), linear
polyacetylene, lithium bromide with the rocksalt structure (symmorpic space group
O5

h) and crystalline silicon (nonsymmorphic space group O7
h). SALWFs generated

appear well suited for use in the local correlation methods. In future, the symmetrized
fitted LWFs can be used to have more a efficient computational procedure of LMP2
calculations.

Concluding the consideration of the modern electron-correlation methods for pe-
riodic systems we see that the first-principles LCAO post-HF methods for solids are
essentially more difficult compared with those for the molecular systems. This is why
until now the simpler semiempirical approaches have been popular for crystals. These
approaches allow the intra-atomic and partly interatomic correlation effects to be
taken into account by introduction of semiempirical parameters calibrated on the ba-
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sis of first-principles calculations or experimental data. In many cases these methods
give correct qualitative characteristics of the crystalline electronic structure that may
be later corrected in the first-principles calculations.

The semiempirical LCAO methods for periodic systems are considered in the next
chapter.



6

Semiempirical LCAO Methods for Molecules and
Periodic Systems

6.1 Extended Hückel and Mulliken–Rüdenberg
Approximations

6.1.1 Nonself-consistent Extended Hückel–Tight-binding Method

During the early days of molecular quantum chemistry, when computational power
was minimal, the semiempirical LCAO methods were applied even for small molecules
[204, 205]. Later, at the beginning of the 1970s, these approaches were extended to
crystalline solids [206–208] and allowed calculations of their properties to be made
in the period when the first-principles HF LCAO calculations for solids were prac-
tically unreliable. The limitations of the first-principles HF LCAO calculations are
caused mainly the by necessity of evaluation of multicenter two-electron integrals
whose number grows proportionally as N4 (N is the number of AOs used). Therefore,
in the quantum chemistry of large molecules and solids the semiempirical calculations
continue to appear in large numbers in chemical literature. We refer the reader to
the recently published book [102], Chap.5, where the corresponding bibliography of
semiempirical methods for molecules can be found.

In this chapter we discuss the extension of LCAO semiempirical methods of
molecular quantum chemistry to periodic systems and provide a comparison between
semiempirical Hamiltonians for molecules and crystals.

The approximate LCAO methods of quantum chemistry can be divided on empir-
ical (semiquantitative) and semiempirical grounds.

The empirical (semiquantitative) methods are based on a one-electron effective
Hamiltonian and may be considered as partly intuitive: extended Hückel theory (EHT)
for molecules [204] and its counterpart for periodic systems – the tight-binding (TB)
approximation. As, in these methods, the effective Hamiltonian is postulated there
is no necessity to make iterative (self-consistent) calculations. Some modifications of
the EHT method introduce the self-consistent charge-configuration calculations of the
effective Hamiltonian and are known as the method of Mulliken–Rüdenberg [209].

The semiempirical methods are based on the simplification of the HF LCAO
Hamiltonian and require the iterative (self-consistent) density matrix calculations:
complete and intermediate neglect of differential overlap (CNDO and INDO – ap-
proximations), neglect of diatomic differential overlap (NDDO) and others, using the
neglect of differential overlap (NDO) approximation.
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Both groups of methods use the valence-electron approximation, i.e. all core elec-
trons are ignored. It is assumed that core electrons are sufficiently invariant to differing
chemical environments so that changes in their orbitals as a function of environment
are of no chemical consequence, energetic or otherwise. The valence atomic orbitals
are represented by a so-called Slater-type orbital (STO). The mathematical form of
a normalized STO (in atom-centered polar coordinates) is

χµ(r) = Rµ(r)Ylm(θ, ϕ) = Nµrn−1 exp(−ζµr)Ylm(θ, ϕ) (6.1)

The radial part Rµ(r) of STO χµ(r) depends on n (the principal quantum number
for the valence orbital) and an orbital exponent ζµ that can be chosen according to
a simple set of rules developed by Slater [210], (see Sect. 8.1.1), in EHT and TB
methods or considered as semiempirical parameters. The angular parts are spherical
harmonic functions Ylm(θ, ϕ) depending on the angular momentum quantum numbers
l and m (in the majority of cases their real combinations Ylm(θ, ϕ) ± Yl−m(θ, ϕ) are
used, giving for l = 1, 2, 3 the angular part of p, d, f atomic functions, respectively).
STOs have a number of features that make them attractive. The orbital has the
correct exponential decay with increasing r, the angular component is hydrogen-like,
and the 1s orbital has, as it should, a cusp at the nucleus (i.e. is not smooth). More
importantly, from a practical point of view, overlap integrals between two STOs as a
function of interatomic distance are readily computed. In simple Hückel theory (SHT)
all STOs in a molecule are supposed to be orthogonal, in EHT the AOs overlap matrix
S is computed directly.

In EHT for molecules the MOs and the corresponding one-electron energies are
found as the eigenfunctions and eigenvalues of the effective Hamiltonian H:

det |Hµν − Sµνεi| = 0 (6.2)

The dimension of the matrices H and S is equal to the whole number of the atomic
STOs.

The values for diagonal elements Hµµ are taken as the negative of the average
ionization potential for an electron in the appropriate valence orbital. Of course in
many-election atoms, the valence-shell ionization potential (VSIP) for the ground-
state atomic term may not necessarily be the best choice for the atom in a molecule,
so this term is best regarded as an adjustable parameter, although one with a clear,
physical basis. VSIPs have been tabulated for most of the atoms in the periodic
table [211,212].

The nondiagonal elements (for the nearest neighbors known as resonance inte-
grals) are more difficult to approximate. Wolfsberg and Helmholz [213] suggested the
following convention:

Hµν =
K

2
(Hµµ + Hνν) Sµν (6.3)

where K is an empirical constant and Sµν is the overlap integral. Thus, the energy
associated with the matrix element is proportional to the average of the VSIPs for
the two orbitals µ and ν times the extent to which the two orbitals overlap in space
(note that, by symmetry of angular parts the overlap between different valence STOs
on the same atom is zero). Originally, the constant K was given a different value
for matrix elements corresponding to σ- and π-type bonding interactions. In modern
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EHT calculations, it is typically taken as 1.75 for all matrix elements, although it can
still be viewed as an adjustable parameter when such adjustment is warranted.

Because the matrix elements do not depend on the final MOs in any way (unlike
HF- theory), the process is not iterative, so it is very fast, even for very large molecules.

The very approximate nature of the resonance integrals in EHT makes it inaccurate
for the calculation of the atomic positions in molecules so that use of EHT is best
restricted to systems for which experimental geometries are available. For such cases
EHT tends to be used today to generate qualitatively correct MOs in much the same
fashion as it was used 50 years ago [102]. In the 21st century, such a molecular problem
has become amenable to more accurate treatments (HF and post-HF methods, see
Chapters 4 and 5), so the province of EHT is now primarily very large systems, like
extended solids, where its speed makes it a practical option for understanding the
band structure of bulk and surface states [214].

In the EHT method for solids, crystalline orbitals (4.55) are expanded over the
Bloch sums (4.53) of valence AOs and the secular equation

det |Hµν(k) − Sµν(k)εi(k)| = 0 (6.4)

is solved where Hµν(k) and Sµν(k) are, respectively, the matrix elements of the effec-
tive one-electron Hamiltonian and of the overlap integrals between two LCAO Bloch
sums expressed as

Hµν(k) =
∑
Rn

exp(ikRn)Hµν(r − Rn), Sµν(k) =
∑
Rn

exp(ikRn)Sµν(r − Rn) (6.5)

The difference between the matrix elements Hµν(k) (6.5) and Fµν(k) (4.56) is due to
the difference between HF and EHT Hamiltonians: the former includes one-electron
and two-electron parts and depends on the crystalline density matrix (4.65), the latter
are assumed to be proportional to the overlap matrix elements. The explicit form of
Hµν(r − Rn) is given as follows

Hµν(r − Rn) =
1
2
Kµν (Hµµ + Hνν) Sµν(r − Rn) (6.6)

where the proportionality constant Kµν = 1 for µ = ν and otherwise Kµν is an
empirically adjustable parameter, Hµν is the valence-state ionization potential (VSIP)
of AO χµ. These matrix elements are fixed at the beginning of EHT calculations so
that the seqular equations (6.4) are solved independently for different wavevector k
values and the calculation does not require the self-consistency. Due to the translation
symmetry the order of secular equation (6.4) is equal to the number of valence AOs
per primitive cell. The field of lattice summations in matrix elements Hµν(k), Sµν(k)
depends on the model chosen. In the infinite-crystal model the summations are made
up to the distance when the overlap integrals Sµν(r − Rn) become less than some
threshhold. In the cyclic-cluster model these summations are made in such a way
that the lattice summation is restricted by the cyclic-cluster translation vector. As
was already mentioned the shape and size of the cyclic cluster chosen defines the k-
vectors set, for which the calculation is in fact made. As EHT is a nonself-consistent
method (the matrix elements are calculated independently for different k-vectors)
the choice of one or another restriction for summation in the direct lattice is mainly
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a conceptual point. The EHT approach to solids (known also as the tight-binding
(TB) approximation) is applied in many cases as an interpolation method, to be
used in connection with more accurate calculation schemes or experimental data [58].
As an example, we consider the EHT band structure of Si crystal, fitted in [214] to
reproduce the experimental bandgap and optical properties. The lattice summation
was taken over all atoms within the sixth-nearest neighbors. In order to reproduce
optical properties it turned out that four proportionality constants (Kss,Kspσ

,Kppσ

and Kppπ
) are required for each shell of neighbors resulting in 24 fitting parameters.

Adding the ionization potentials Is, Ip and orbital exponents ζs, ζp for the Slater-
type AOs (which are also treated as fitting parameters), this amounts to a total
28 adjustable fitting parameters. These parameters have been determined by fitting
to the pseudopotential band-structure calculations for the experimental value of the
cubic lattice constant [215] and experimental data. The best-fit parameters are listed
in Table 6.1.

Table 6.1. Fitted parameters for Si crystal, [214]

Neighbors

Si 1 2 3 4 5 6

Kss 1.403 1.523 0.955 1.355 5.450 4.550

Kspσ 1.409 1.931 2.095 0.375 2.485 0.000

Kppσ 1.890 3.050 3.780 1.750 0.000 1.800

Kppπ 2.290 2.570 0.150 2.150 1.000 4.500

In fitting the bands, special weight has been given to the valence and conduction
bands at Γ , the conduction bands at L and K, and the conduction-band minima at
+0.85(2π/a0) along the (001) directions, which may influence the optical properties.
These band states are somewhat sensitive to the change in the individual values of
the fitting parameters and special attention has been paid to their determination. The
energy eigenvalues at high-symmetry points of the BZ (see Fig. 3.2) are compared to
the Hartree–Fock LCAO calculation and experimental values in Table 6.2.

The energies in eV are measured relative to the top of the valence band with
the symmetry Γ5+ . As is seen from Table 6.2 an excellent description of the valence
and conduction bands has been achieved throughout the Brillouin zone. The main
features of the bands are reproduced quite accurately. More specifically, the highest
valence and lowest conduction bands run parallel along the Λ, ∆, and Σ lines and
the indirect bandgap of Si, the ∆ minima of which lie at 85% of the way along the
Γ − X directions, has been exactly reproduced. It is seen from Table 6.1 that the
fitted values of EHT parameters are essentially different compared to those used for
molecules. The orbital exponent value ζs = ζp = 1.385 found with Slater rules differs
from the fitted values ζs = 1.656, ζp = 1.728. The neutral Si atom ionization potentials
Is = 16.34 eV, Ip = 8.15 eV also differ from the corresponding fitted values 15.55 eV
and 7.62 eV, respectively. Analyzing the data given in Table 6.1 one sees that the
proportionality constant is not the same for 2s and 2p orbitals (its value, 1.75, is
taken in molecular calculations) and essentially depends on the interatomic distance.
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Table 6.2. EHT fitted, HF and experimental eigenvalues (in eV) for Si crystal at Γ , X, and
L-points relative to the valence-band maxima

Level Fitted HF Experimental

Γ 0.00 0.00

Γ –12.32 –12.36 –12.4, –12.5

Γ 3.43 3.43 3.45, 3.41

Γ 4.08 4.10 4.15

L –10.82 –9.55 –9.3

L –6.20 –6.96 –6.4, –6.8

L –1.12 –1.23 –1.2

L 2.26 2.23 2.2, 2.3

L 4.43 4.34 3.9

X –7.92 –7.69

X –2.95 –2.86 –2.5, –2.9

X 1.33 1.17

∆ 1.13 1.10 1.13

K 1.62 1.66

The fitted EHT parameters were used in [214] for the EHT calculations to study
the molecular oxygen chemisorption and hydrogen-terminated Si(001) ultrathin films.
Even when using modern computer codes and facilities the first-principles calculations
would be, in this case, very complicated as is seen from the examples given in Chap. 11.
In the example considered the remarkable fit for Si crystal has been achieved within
the EHT formalism by defining a rather large parameter basis set that resembled a
typical Slater–Koster (tight-binding) parametrization. However, it is surprising that,
to our knowledge, a systematic quantitative study on the accuracy attainable with the
EHT when applied to different bulk materials has been attempted only recently [216].
It was shown how the simple EHT method can be easily parametrized in order to
yield accurate band structures for bulk materials, while the resulting optimized atomic
orbital basis sets present good transferability properties. The number of parameters
involved is exceedingly small, typically ten or eleven per structural phase. A new
EHT parametrization scheme was applied to almost fifty elemental and compound
bulk phases. An orthonormal AO basis set was chosen for each inequivalent atom
M . Generally, the basis involves rather extended radial wavefunctions, although any
other type of basis set may be employed as well. In this work, the Hamiltonian matrix
elements HµM,νN were taken in the form

HµM,νN = KEHT (IµM + IνN ) /2 (6.7)

where KEHT is a constant traditionally set to a value of 1.75 and IµM , IνN are onsite
energies of both elements M,N . From the above formula it follows that the strength
of the Hamiltonian matrix elements is weighted by the mean value of the onsite en-
ergies, so that a shift in energy of these onsite parameters does not translate into a
rigid shift in energy of the EHT-derived band structure. Therefore, and in order to
avoid any arbitrariness in the origin of the energy scales, the Fermi level for transition
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metals to –10 eV was fixed and the top of the valence band for semiconductors at –13
eV. It was then found that increasing KEHT to 2.3 consistently provided better fits
for all elements, although similar good fits may be obtained with KEHT = 1.75 if the
Fermi level is lowered to around –20 eV. A minimal spd basis set per element was em-
ployed, while each AO is described by a double Slater wavefunction. Apart from the
onsite energies (Is, Ip, and Id), this leads to three parameters per l quantum number:
the exponents ζ1 and ζ2 (with ζ1 < ζ2), and the coefficient for the former, C1. The
second coefficient C2 is determined by imposing normalization of the wavefunction.
For transition metals the optimization of the three AO parameters was found to be
redundant for the s and p orbitals, and equally good fits could be obtained by fixing
ζ2 to a rather large value: ζ2 > 20.0. Since such a highly localized term gives a negli-
gible contribution to the overlaps with neighboring orbitals, it was explicitly omitted,
while allowing the coefficient C1 to take values smaller than 1.0 (i.e. the ζ2 Slater
orbital only contributes to the normalization of the wavefunction). For the d orbitals,
on the contrary, it was found necessary to include the ζ2 contribution. Hence, the
transition-metal fits comprise 10 parameters per elemental phase. In order to improve
the transferability of the EHT, the AO basis set of a given element simultaneously
for different structural phases (e.g. Ti-fcc, -bcc, and -hex) has also been optimized,
while the onsite energies have been treated as independent parameters for each phase.
For the spin-polarized phases of Fe, Co, and Ni, the coefficient of the d orbitals was
additionally varied independently for each spin, since the d bandwidths are larger for
the spin minority bands than for the majority ones. The main difference from tradi-
tional TB schemes is clear – explicit definition of the AOs. This might look at first
glance as a disadvantage, since it requires the calculation of the overlap matrix ele-
ments. However, the computational effort involved in constructing the actual overlap
S(k) and Hamiltonian H(k) matrices is minimal (only two-center integrals plus the
simple EHT formula are involved) and more importantly, for a fixed cutoff radius, it
scales linearly with the number of orbitals in the unit cell. The explicit use of AOs
can be regarded as advantageous, particularly in what concerns the transferability
of the EHT parameters, since the dependence of the overlap terms SµM,νN on the
interatomic distance dMN readily provides a natural scaling law that is not restricted
to small variations of dMN . A further advantage is the possibility to obtain the local
density of states, while the traditional TB methods only provide real space-integrated
quantities.

The empirically adjusted and consistent set of EHT valence orbital parameters
for molecular calculations, based on the Hartree–Fock–Slater (see (4.23)) model of
atoms, was recently suggested in [217] for all elements of the periodic table. The
parametrization scheme uses individual values of the exchange parameter, α, for each
atom. Each value of α was adjusted to reproduce the empirical value of the first ion-
ization energy of the atom considered. The expectation values, energies and radial
functions for all elements of the periodic table have been evaluated on the basis of
the Hartree–Fock–Slater model and individual exchange parameters. A consistent set
of Slater-type orbital single ζ valence atomic orbital exponents and energies for all
elements of the periodic table, suitable for orbital interaction analysis, was presented.
These exponents were calculated by fitting the 〈r〉STO moments to numerical empir-
ically adjusted 〈r〉HFS results. In future, these parameters may appear to be useful
for TB method calculations of solids after some modifications.
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The process in the EHT and TB methods does become iterative if VSIPs are
not included in the set of fitted parameters but are adjusted as a function of partial
atomic charge as described in the next subsection, since the partial atomic charge
depends on the occupied orbitals. Such a scheme is applied for more ionic systems
than those studied by the EHT method. The self-consistent one-electron Hamiltonian
Mulliken–Rüdenberg calculation scheme is considered in the next subsection.

6.1.2 Iterative Mulliken–Rüdenberg Method for Crystals

The Rüdenberg’s integrals approximations for molecules has been described in [209]
and in more detail in [218]. This approximation was introduced by Rüdenberg [219]
to simplify the calculation of two-electron four-center integrals

(µM, νN |σP, λL) =
∫

dr1

∫
dr2χµM (r1)χνN (r1)

1
r12

χσP (r2)χλL(r2) (6.8)

where χµM (r) is the µth AO on the Mth atom in a molecule. Let χ1M , χ2M , . . . be
a complete set of orthogonal real orbitals on center M and analogously χ1N , χ2N . . .,
χ1P , χ2P . . . and χ1L, χ2L . . . - on centers N, P , and L, respectively. If SµM,νN =∫

drχµM (r)χνN (r) denotes the overlap integrals between the orbitals χµM (r) and
χνN (r), then we have the expansions

χµM (r1) =
∑
ω

SµM,ωNχωN (r1) (6.9)

χνN (r2) =
∑
ω

SωM,νNχωM (r2) (6.10)

whence

χµM (r1)χνN (r2) =
1
2

∑
ω

[SµM,ωNχνN (r1)χωN (r2)

+SνN,ωMχµM (r1)χωM (r2)] (6.11)

Insertion of (6.11) and the analogous formula for the centers L,K in (6.8) expresses the
four-center integral in terms of two-center Coulomb integrals and overlap integrals:

(µM, νN |σP, λL) =
1
4

∑
ω

∑
ω′

[SµM,ωNSσP,ω′L(ωN, νN |ω′L, λL)

+SµM,ωNSλL,ω′P (ωN, νN |σP, ω′P ) + SνN,ωMSσP,ω′L(µM, ωM |ω′L, νL)
+SνN,ωMSλL,ω′P (µM, ωM |σP, ω′P )] (6.12)

In the Mulliken approximation [220] only the first term in expansion (6.12) is taken
so that the one-electron distribution is approximated by

χµM (r1)χνN (r1) ∼= 1
2
SµM,νN

[
χ2

µM (r1) + χ2
νN (r1

]
(6.13)

Using expansions (6.9) and (6.10) for the two-electron distribution and the Mulliken
approximation we obtain
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χµM (r1)χνN (r2) ∼= 1
2
SµM,νN [χµM (r1)χµM (r2) + χνN (r1)χνN (r2)] (6.14)

In the Mulliken approximation the HF operator can be written in the form [221]

F̂ = −∆

2
+
∑
M

V̂M (6.15)

where

V̂M =
M∑
µ

Pµ [2(. . . |χµMχµM ) − (. . . χµM | . . . χµM )] − ZM

RM
(6.16)

The summation in (6.16) is made over AOs of atom M , Pµ is the Mulliken population
of the µth AO, defined as

Pµ =
occ∑
i

C2
i,µM +

∑
N �=M

N∑
ν

occ∑
i

Ci,µMCi,νNSµM,νN (6.17)

The action of operator V̂M on the MO ϕ is defined by relations

(. . . |χµMχµM )ϕ = (ϕϕ|χµMχµM ) (6.18)

(. . . χµM | . . . χµM )ϕ = (ϕχµM |ϕχµM ) (6.19)

As in (6.8) the functions depending on coordinates of the first electron are up to
the vertical line, those depending on coordinates of the second electron – after the
vertical line.

As the valence-electron approximation is supposed to be introduced, the term
ZM/RM in (6.16) means the electron interaction with the core of atom M in the point-
charge approximation. As AO χµM (r) can be considered as an eigenfunction of opera-
tor (−∆

2 +V̂M ) and introducing the point-charge approximation for ZM/RN (N �= M),
we obtain the matrix elements of operator (6.15) in the form [222]

FµM,µM = εµM (qM ) −
∑

N �=M

qN (χµM | 1
rN

|χµM ) (6.20)

FµM,νN = SµM,νN (εµM (qM ) + ενN (qN ))

−1
2
SµM,νN

∑
L�=M,N

qL

[
(χµM | 1

rL
|χµM ) + (χνN | 1

rL
|χνN )

]
− TµM,νN (6.21)

In these expressions, χµM is the µth atomic orbital on the Mth atom; εµM (qM ) is
the ionization potential of the µth valence orbital on the Mth atom with charge qM ;
SµM,νN and TµM,νN are the overlap and kinetic energy integrals of the µth and νth
orbitals on the Mth and Nth atom, respectively; (χµM | 1

rL
|χµM ) is the core-attraction

integral. The effective charge qM is calculated using the Mulliken population analysis,
i.e. qM =

∑
µ

Pµ where the AO population Pµ is defined by (6.17).

The application of the Mulliken–Rüdenberg (MR) approximation to calculate the
electronic structure not of the free molecule, but of a fragment of an ionic crystal (also
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called a molecular cluster), requires the summation over an infinite number of lattice
sites in terms corresponding to the interaction of the fragment atoms with those of the
remaining crystal. For the Nth atom in a binary crystal the field of ions surrounding
the considered fragment can be calculated in the point-charge approximation using
the formula

V N = −
(

Mc

a
+
∑
L

sgn(qL)
RNL

)
|qR| (6.22)

Here Mc is the Madelung constant, a the nearest-neighbor distance in crystal, qR

the charge ascribed to the lattice ions beyond the fragment under consideration, L
numbers atoms in the fragment considered.

Taking into account (6.22) one can write expressions (6.20) and (6.21) in the form

FµM,µM = εµM (qM ) −
∑

L�=M

qL(χµM | 1
rL

|χµM ) + V M (6.23)

FµM,νN = SµM,νN (εµM (qM ) + ενN (qN ))

−1
2
SµM,νN

⎧⎨⎩ ∑
L�=M,N

qL

[
(χµM | 1

rL
|χµM ) + (χνN | 1

rL
|χνN )

]

+V M + V N

⎫⎬⎭− TµM,νN (6.24)

The MR approximation was extended to the periodic systems in [222,223].
To describe the band structure of an infinite perfect crystal in the framework of

the LCAO method one should calculate the matrix elements of operator (6.15) using
the Bloch sums of atomic orbitals (AO), defined in (4.53):

ϕµk(r) = L−1/2
∑

j

exp(ikRj)χµ(r − Rj)

≡ L−1/2
∑

j

exp(ikRj)χµj(r) (6.25)

Here, k is the wavevector, µ numbers the AOs in the unit cell, ϕµk(r) is the µth
crystal orbital, χµj(r) is the µth AO in the jth unit cell, and L the number of unit
cells in the fundamental region of the crystal.

It is obvious that summation of core-attraction integrals over the whole lattice is
very complicated. The values of these integrals decrease as 1/RMN with increasing
distance, i.e. special methods are required to estimate their sums. As the values
of core-attraction integrals approximate rapidly the value 1/R when increasing the
interatomic distance one can hope that the substitution of the Madelung energy for
the sums of integrals would turn out to be a quite satisfactory approximation, at least
for ionic crystals.

Using the Mulliken approximation in the three-center integrals, and the point-
charge approximation for VM it is shown in [222, 224] that the MR operator matrix
elements for a periodic system are given by
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FµM,νN (k) =
1
2

[2εµ(qM , nM ) − MEM (qM ) + 2εν(qn, nN ) − MEN (qN )]

·
∑

j

exp(ikRj)SµMj,νN0 +
1
2
(qM + qN )

∑
j

exp(ikRj)SµMj,νN0
1

RMj,N0

−
∑

j

exp(ikRj)TµMj,νN0 − δMNδµνεµ(qM , nM ) (6.26)

Here, the indices µMj denote the element of the µth AO on atom M from primitive
unit cell j, defined by translation vector Rj ; εµ(qM , nM ) is the ionization potential
of the orbital on atom M with the atomic charge qM and orbital population nM ,
SµMj,νN0 and TµMj,νN0 are overlap and kinetic energy integrals, respectively. The
iteration procedure continues until self-consistent effective atomic charges qM and
electronic configuration nM are obtained. The Madelung energy MEM at the site of
atom M is recalculated at each step of the iterative calculation. It is worth noting
that the population-analysis scheme developed for molecules should be applied with
caution to calculate the effective charges of atoms in crystals. Thus, according to the
Mulliken population analysis that is widespread in molecular calculations, the contri-
bution to the total atomic population is computed proportional to the atomic orbital
overlap integrals. In the case of crystals the overlap integrals should be computed with
the Bloch sums and, generally speaking, have some meaning other than the molecular
ones. To avoid this difficulty Löwdin’s population analysis [225] can be used [224]
that is based on a symmetrically orthogonalized basis set and that has therefore no
problems connected with the distribution of the overlap population.

In the cyclic-cluster model the matrix elements (6.26) should be modified, [222].
The AOs χµ(r) have to belong now not only to the atoms in the reference cell but
to all the atoms included in the cyclic-cluster. Matrix elements (6.26) are calculated
only for k = 0, the summation over the crystal is changed by the summation over the
cyclic-cluster atoms. For ionic systems the Madelung field of the surrounding crystal
can be taken into account by subtracting from the Madelung energy at the site of
an atom the part due to the interaction with atoms directly included in the cyclic
cluster. To satisfy the PBC introduction for the cyclic cluster the overlap integrals
have to satisfy the condition (χµM (r − Rj + A)χνN (r)) = SµMj,νN where A is the
translation vector of the cyclic cluster as a whole (see Chap. 3).

The MR approximation was applied for electronic structure calculations of both
perfect crystals (alkali halides [222], MgO and CaO [226], PbO [227], corundum [228]),
point defects in solids ( [229–234]) and surfaces [224].

The general analysis of Rüdenberg’s approximation in the HF LCAO method for
molecules [218] and solids [223] has shown that EHT and zero differential overlap
(ZDO) approximations can be considered as particular cases of Rüdenberg’s integral
approximation. ZDO methods, considered in the next section, were applied to a wide
class of molecules and solids, from purely covalent to purely ionic systems. Therefore,
they are more flexible compared to the MR approximation, which is more appropriate
for ionic systems.
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6.2 Zero-differential Overlap Approximations
for Molecules and Crystals

6.2.1 Zero-differential Overlap Approximations for Molecules

As was seen in Sec.6.1 in EHT the AO basis functions are only used for the calculation
of overlap integrals (molecules) or lattice sums of overlap integrals (crystals). In the
MR method kinetic energy integrals or their lattice sums are also included. These
integrals in fact can be expressed through overlap integrals. All other contributions
to the one-electron Hamiltonian matrix elements are based on empirical parameters.

As we have seen, EHT is a nonself-consistent method but the self-consistency over
charge and configuration is included in the MR approximation. The Ab-initio HF SCF
method requires the self-consistent calculation of the density matrix (see Chap. 4).
This feature of the HF approach is maintained in the semiempirical methods, based
on the zero differential overlap (ZDO) approximation. This approximation is used to
reduce the number of multicenter integrals appearing in HF LCAO calculations.

In the ZDO approximation the differential overlap χµ(r1)χν(r2)dr1dr2 of valence
AO basis functions is supposed to be zero for any µ �= ν both for r1 = r2 and
r1 �= r2. The ZDO approximation means that the AO basis is assumed to be or-
thogonal (Sµν =

∫
χµ(r)χν(r)dr = δµν). A recent review by Bredow and Jug [235]

gives a brief summary of the basis features of ZDO semiempirical methods together
with examples of their use. These authors are convinced that “the development of
semiempirical methods and their extension to a growing number of research areas
has been a continuous process over the last 4 decades and there is apparently no end
to be seen”. This is demonstrated by the large number of semiempirical studies in
organic, inorganic and physical chemistry, biochemistry, drug design, crystallography
and surface science.

Depending on the level of the approximations used for other integrals ZDO meth-
ods differ. In the CNDO (complete neglect of differential overlap) method [205, 236]
all two-electron integrals are approximated by Coulomb integrals according to

(µν|λσ) =
∫

χµ(r1)χν(r1)
1

r12
χλ(r2)χσ(r2)dr1dr2 = δµνδλσ(µµ|λλ) (6.27)

and only two-center electron-repulsion integrals (µµ|λλ) = γMN are retained (M
and N are the atoms on which basis functions χµ(r) and χν(r) reside, respectively).
The independence of this integral on the angular part of AOs restores the AOs hy-
bridization invariance of the original HF operator matrix elements, i.e. it is supposed
that (SMSM |SNSN ) = (PMPM |PNPN ) = (PMSM |PNSN ) = γMN . The two-center
Coulomb integral γMN can either be computed explicitly from s-type STOs (6.1) or it
can be treated as a parameter. The one-center Coulomb integral γM is parametrized
using a so-called Pariser–Parr [237] approximation γM = IM −AM , where IM and AM

are the atomic ionization potential and electron affinity, respectively. The parameter
γM can be expressed with a commonly tabulated semiempirical parameter Uµµ (the
energy of interaction of electron-occupying AO χµ(r) with the core of atom M):

Uµµ = −Iµ − (Zµ − 1)γM (6.28)
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Uµµ = −0.5(Iµ + Aµ) − (ZA − 1/2)γM (6.29)

Equations (6.28) and (6.29) are used in CNDO/1 and CNDO/2 methods, respectively.
For the two-center integral γMN , the Mataga–Nishimoto [238]

γMN (eV ) =
14.3986
RAB + δ

, δ(eV ) =
14.3986

(γAA + γBB)1/2
(6.30)

or Ohno [239]

γAB(eV ) =
14.3986√
RAB + δ

(6.31)

formulas are adopted, where RAB(Å) is the interatomic distance. At large distance,
γAB in both cases goes to 1/RAB , as expected for widely separated charge clouds,
while at short distances, it approaches the average of the two one-center parameters.

The one-electron terms for offdiagonal matrix elements are defined as

hµν = βµν = 0.5(βM + βN )Sµν (6.32)

where Sµν is the overlap matrix element computed using Slater-type basis functions
χµ(r) and χν(r), centered on atoms M and N , respectively; the βM , βN values are
semiempirical parameters. Note that computation of the overlap is carried out for
every combination of basis functions, even though in the secular equation FC = CE
itself S is defined in ZDO approximation as Sµν = δµν . There are, in effect, two
different S matrices, one for each purpose. The β parameters are entirely analogous
to the parameters β in EHT – they provide a measure of the strength of through-space
interactions between atoms [240]. As β parameters are intended for completely general
use it is not necessarily obvious how to assign them a numerical value, unlike the
situation that obtains in EHT. Instead, β values for CNDO were originally adjusted
to reproduce certain experimental quantities.

The diagonal Fµµ and nondiagonal Fµν matrix elements in the CNDO approxi-
mation for molecules are defined by

Fµµ = Uµµ + (PM − 1/2Pµµ) γM +
∑

N �=M

(PN − ZN ) γMN (6.33)

Fµµ′ = −0.5Pµµ′γM (6.34)

Fµν = βMNSµν − 0.5PµνγMN (6.35)

AOs χµ and χµ′ in (6.34) are supposed to belong to the same atom M . In (6.34)
ZM is the atomic-core charge, Pµν are the density matrix elements in the LCAO
approximation (see (4.37)), PM =

∑A
µ Pµµ is the electron population of atom M , the

resonance integral βµν is taken as βMN , i.e. depends only on the atom type, but not on
a particular orbital of this atom. The CNDO method represents a vast simplification of
HF theory, reducing the number of two-electron integrals having nonzero values from
formally N4 to N2. Furthermore, these integrals are computed by trivial algebraic
formulae, not by explicit integration, and between any pair of atoms all of the integrals
have the same value irrespective of the atomic orbitals involved. Similarly, evaluation
of one-electron integrals is also entirely avoided (excluding overlap integrals), with
numerical values for those portions of the relevant matrix elements coming from easily
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evaluated formulae. Historically, a number of minor modifications to the conventions
outlined above were explored, and the different methods had names like CNDO/1,
CNDO/2. CNDO/BW, etc. [205].

The computational simplifications inherent in the CNDO method are not without
chemical cost, as might be expected. Like EHT, CNDO is quite incapable of accurately
predicting good molecular structures. Furthermore, the electronic interactions on a
single atom are not correctly reproduced due to the ZDO approximation for the dif-
ferent AOs of the same atom. In an attempt to overcome this deficiency of the CNDO
scheme the intermediate neglect of differential overlap (INDO) approximation was in-
troduced [241] to permit a more flexible handling of electron–electron interactions on
the same center. In this case, the different values of one-center two-electron integrals
are used for different AOs: (ss|ss) = Gss, (ss|pp) = Gsp, (pp|pp) = Gpp, (sp|sp) =
Lsp. These integrals are in practice estimated from spectroscopic data. In the INDO
scheme the valence bond angles are predicted with much greater accuracy than is the
case for CNDO. Nevertheless, overall molecular geometries predicted from INDO tend
to be rather poor. Preliminary efforts to address this problem have been reported only
recently [242]. A careful parametrization of INDO for spectroscopic problems [243] was
described in an INDO/S calculation scheme whose parametrization was later extended
to most of the elements in the periodic table [244]. In a purely terminological sense one
can make a destinction between the INDO semiempirical method and the INDO/S
model [102]. The latter is a particular parametrization of the INDO method designed
for spectroscopic applications. The MINDO/3 model [245], the third version of the
modified INDO method, included some modifications: different orbital exponents were
used for s- and p- orbitals on the same atom, resonance integrals βMN between two
atoms were split into pairs corresponding to s − s, s − p, p − p orbital interactions,
some empirical modifications to the nuclear repulsion energy were introduced. The
MINDO/3 model allowed prediction of heats of formation with the mean absolute
error of 11 kcal/mole, 0.7 eV for ionization potentials, 0.022 Åfor bond lengths.

In both CNDO and INDO methods the two-center two-electron integral takes
the value (µµ|νν) = βMN , irrespective of which orbitals on atoms M and N are
considered.

The neglect of diatomic differential overlap (NDDO) method [236] is an improve-
ment over the INDO approximation, since the ZDO approximation is applied only
for orbital pairs centered at different atoms. Thus, all integrals (µν|λσ) are retained
provided µ and ν are on the same atomic center and λ and σ are on the same atomic
center, but not necessarily the center hosting µ and ν. In principle, the NDDO approx-
imation should describe long-range electrostatic interactions more accurately than
INDO. Most modern semiempirical models (MNDO, AM1, PM3) are NDDO models.

The modified neglect of the diatomic overlap (MNDO) method [246] led to im-
proved agreement with experiment. In the two-electron integrals calculation the con-
tinuous charge clouds were replaced with classical multipoles. Thus, an ss product was
replaced with a point charge, an sp product was replaced with a classical dipole (rep-
resented by two point charges slightly displaced from the nucleus along the p orbital
axis), and a pp product was replaced with a classical quadrupole (again represented
by point charges). The magnitudes of the moments, being one-center in nature, are
related to the parameterized integrals appearing in the INDO method. By adopting
such a form for the integrals, their evaluation is made quite simple, and so too is
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evaluation of their analytic derivatives with respect to nuclear motion. To complete
the energy evaluation by the MNDO method, the nuclear repulsion energy is added
to the SCF energy. The parameters of the MNDO model were optimized against a
large test set of molecular properties (within the assumption of a valence orbital set
comprised only of s and p orbitals).

In addition, a modified MNDO model explicitly adding electron-correlation effects
(MNDOC) by second-order perturbation theory was described by Thiel [247]. By
explicitly accounting for electron correlation in the theory, the parameters do not
have to absorb the effects of its absence from HF theory in some sort of average way.

Later, two modifications of MNDO were introduced [102,235]. The most prominent
of these are the Austin model 1 (AM1) by Dewar et al. [246] and the parametric
method 3 (PM3) by Stewart [248]. In principle MNDO, AM1 and PM3 methods
differ only in the parametrization and in the empirical function fMN in the core–core
repulsion

Vnn =
∑

M>N

Z∗
MZ∗

NγMN + fMN (6.36)

where
fMN = Z∗

MZ∗
NγMN (exp(−αMRMN ) + exp(−αNRMN ))

and Z∗ is the effective core charge.
A variety of modifications of the original methods is now available. AM1 and

PM3 have been extended for the treatment of transition-metal compounds by in-
clusion of d orbitals in the valence basis; the Green’s function technique has been
implemented in MNDO-type methods for the calculation of ionization potentials and
electron affinities; a parameterized variational technique is used for the calculation of
molecular polarizabilities and hyperpolarizabilities within the MNDO, AM1 and PM3
methods [235].

The most important modifications of the MNDO method are the use of effective
core potentials for the inner orbitals and the inclusion of orthogonalization corrections
in a way as was suggested and implemented a long time ago in the SINDO1 method
[249] at first developed for organic compounds of first-row elements and later extended
to the elements of the second and third row [250,251].

The most important feature of the SINDO1 method is that an orthogonalization
transformation of the basis functions is taken into account explicitly in solving the
HF LCAO equations. The one-electron integral matrix H is transformed to Löwdin
symmetrically orthogonalized [225] AOs χλ = S−1/2χ

Hλ = S−1/2HS−1/2 (6.37)

Matrix S−1/2 can be expanded in a series

S = I + σ

S−1/2 = I − 1/2σ + 3/8σ2 − · · · (6.38)

where I is the unit matrix and σ the remaining two-center overlap matrix. The ex-
pansion is truncated in such a way that only terms up to second order in the overlap
are retained.
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Another special feature of SINDO1 is the treatment of inner orbitals by a local
pseudopotential introduced in [252]. Two-center one-electron integrals Hλ

µν are calcu-
lated by the following empirical formula:

Hλ
µν = Lµν + ∆Hµν , µ ∈ M, ν ∈ N (6.39)

Here, L is a correction to the Mulliken approximation for the kinetic energy, and ∆H
is entirely empirical and contains adjustable bond parameters. These are optimized
in order to minimize the deviation from experiment for a set of reference compounds.
Two sets of Slater-orbital exponents are used. One (ζU ) for intra-atomic integrals, and
the other (ζ) for interatomic integrals. Experimental heats of formation are calculated
from binding energies EB , which are corrected by the zero-point energies obtained
from vibration analyses. This is theoretically more sound than in MNDO, AM1 and
PM3, where binding energies are parameterized directly to reproduce experimental
heats of formation without reference to zero-point energies.

Recently, a new version MSINDO was developed by substantial modifications in
the SINDO1 formalism. The parameters are now available for the elements H, C–F,
Na–Cl, Sc–Zn, and Ga–Br [253–256] for Li–B and K–Ca, [257].

In MSINDO the standard basis set for elements Al–Cl has been changed from
{3s, 3p} to {3s, 3p, 3d} in order to account for hypervalent compounds [253]. For com-
pounds containing Na and Mg an inclusion of 3d functions was considered inconsistent,
because these atoms already contain 3p functions for polarization. Moreover, test cal-
culations showed that the 3d functions on these atoms had only insignificant effects
on the molecular properties. As for SINDO1 the H basis set can be augmented with a
2p shell for the treatment of hydrogen bonds. All Slater–Condon atomic parameters
are calculated analytically for the one-center two-electron integrals and one-electron
integrals Uµµ. For the higher multipole terms, this differs from SINDO1, where these
terms were taken from experimental spectra. The MSINDO procedure is more consis-
tent since all parameters are derived at the same level of theory. To maintain rotational
invariance a number of one-center hybrid integrals have to be included in the case of d
functions [258]. This was already implemented in SINDO1 and was kept in MSINDO.
The core integrals U3d of second- and third-row elements were scaled by a screening
potential Ksc in order to avoid unrealistically high populations for the 3d shell:

U ′
3d = (1 − Ksc)U3d (6.40)

For second-row elements a fixed value of Ksc = 0.15 is used. For third-row elements
U3d, U4s and U4p were scaled with different screening potentials [256].

The most important change in MSINDO with respect to SINDO1 is a modification
of the approximate Löwdin orthogonalization of the basis [253]. Only the first-order
terms in overlap are retained in (6.38). In SINDO1 the expansion was to second order.
If only first-order terms are taken into account, no transformation of the two-electron
integrals is necessary. The one-electron integrals are transformed

H̃λ
µµ′ = Hλ

µµ′ − fM 1
2

∑
N �=M

∑
ν

N
(Lµν′Sνµ′ + Sµν′Lνµ′) (6.41)

The correction factor, fM , accounts for the neglect of higher-order terms in the trun-
cated expansion (6.38). Its value depends on the number of basis functions on atom
M . fM is 1 for an {s} basis, 0.75 for an {s, p} basis and 0.5 for an {s, p, d} basis.
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We considered SINDO1-MSINDO methods in more detail as these methods were
successfully applied in calculations of bulk solids and surfaces in the embedded and
cyclic-cluster models (see Sect. 6.3). The role of long-range interactions in solids in-
creases, compared to the case of molecules. In order to better describe long-range
interactions, in particular at surfaces, dipole–monopole and dipole–dipole terms were
added to the MSINDO formalism following an early suggestion by Voigt [259]. After
modification of the formalism a complete reparameterization of all elements had to
be performed. The new version, called MSINDO+, was tested for some cases where
SINDO1 and MSINDO gave results in disagreement with experiment.

It should be noted that an analysis of some systematic errors of the ZDO approx-
imation [260] allowed an improved semiempirical approach to be developed [261]. In
this approach the Rüdenberg approximation is used for diatomic overlap densities ap-
pearing in Coulomb integrals, the Fock matrix is simplified such that its construction
scales with N2 instead of N4 in ab-initio methods, if N is the dimension of the basis
set. Thus, the one-electron and two-electron Coulomb parts of the Fock matrix are for-
mulated explicitly in an atomic orbital (AO) basis, whereas the ZDO approximation
is restricted to the two-electron exchange part. The complete two-electron Coulomb
part of the Fock matrix is explicitly subjected to the Löwdin transformation. The
proposed formalism is not necessarily an empirical one because, in principle, all ma-
trix elements can be calculated exactly. Since only two-center integrals appear one
can use a Slater instead of the Gaussian basis of ab-initio methods. However, if the
formalism is restricted to the valence electrons as in normal semiempirical methods
some parametrization is unavoidable. In this case, an additional pseudopotential ac-
counting for the effects of core-valence orthogonality should be implemented. It may
also be useful to absorb possible errors arising from the Rüdenberg approximation
into the parametrization of the two-electron integrals.

Hybrid approaches combining ab-initio or DFT and semiempirical approaches have
become popular. As an example, we can refer to LEDO (limited expansion of differen-
tial overlap) densities application to the density-functional theory of molecules [262].
This LEDO-DFT method should be well suited to the electronic-structure calcula-
tions of large molecules and in the authors’ opinion its extension to Bloch states for
periodic structures is straightforward. In the next sections we discuss the extension
of CNDO and INDO methods to periodic structures – models of an infinite crystal
and a cyclic cluster.

6.2.2 Complete and Intermediate Neglect of Differential Overlap
for Crystals

The first applications of ZDO methods for extended systems refer to the electronic-
structure calculations of regular polymer chains when the one-dimensional (1D) pe-
riodicity is taken into account. The corresponding modifications of molecular ZDO
equations can be found in the literature: for the CNDO method in [263–266], for the
INDO and MINDO methods in [267, 268], for the MNDO, PM3 and AM1 methods
in [269–272].

The CNDO method extended to the two-dimensional (2D) periodicity case was
applied in regular chemisorption studies of hydrogen and oxygen on a graphite surface
[207,273–275]. The equations of the CNDO method for three-dimensional (3D) solids
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were given in [207,273,275–281]; the periodic MINDO method is considered in [282–
284].

The main features of the CNDO and INDO approaches to periodic systems are
similar to those used for molecules. A valence-electron approximation is adopted,
which implies that only the valence electrons are in the bonding region and are po-
larized by the presence of neighboring atoms [277]. For periodic systems the LCAO
approximation is based on use of the Bloch sums (4.53) of AOs χµn(r) = χµ(r−Rn)
numbered by index µ (labels all AOs in the reference primitive unit cell) and by the
direct lattice translation vector Rn (n = 0 for the reference cell).

In the ZDO approximation AOs are supposed to be orthogonal both in the intracell
and intercell overlap integrals

Sµ0,νn =
∫

χµ0(r)χνn(r)dr = δ0nδµν (6.42)

The two-electron integrals are approximated by Coulomb integrals γ0n
MN , calculated

with s functions of the Mth atom from reference cell and the Nth atom from the cell
n:

(µ0, νn|λi, σi′) = δ0nδµνδii′δλσγ0i
MN (6.43)

The one-electron matrix elements Hµ0,νn are approximated by βMNS0µ,νn, where the
resonance integrals βMN depend only on the type of atoms M and N to which the
AOs µ and ν refer. In particular, in the CNDO/2 version of the CNDO method for
the crystal the diagonal one-electron matrix elements are taken in the form

Hµ0,µ0 = Uµµ + ZMγ00
MN −

∑
n,N

ZNγ0n
MN (6.44)

The difference of (6.44) from its molecular analog is defined by the lattice summation
over all atoms N (including M = N) in the reference cell and in different unit cells
of a crystal. In the model of an infinite crystal these lattice sums are infinite. All the
simplifications mentioned are introduced in the Fock and overlap matrices (4.56) and
HF LCAO equations (4.57) for periodic systems so that one obtains instead of (4.56)
and (4.57):

SZDO
µν (k) =

∑
n

δ0nδµν exp(ikRn) = exp(ikR0) (6.45)

∑
ν

{
FZDO

µν (k) exp(ik(Rn − R0)) − Ei(k)Ciµ(k)
}

= 0 (6.46)

Let R0, the lattice vector of the reference cell, correspond to the origin of the
coordinate system. Then the core (H) and Fock (F) matrix elements have the following
form within the CNDO formalism

Hµµ(k) = Uµµ + ZMγ00
MM −

∑
N

L−1∑
n=0

ZNγ0n
MN +

L−1∑
n=1

β0
MS0n

µµ exp(ikRn)

Hµν =
L−1∑
n=0

β00
MNS0n

µν exp(ikRn) (6.47)
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Fµµ(k) = Hµµ(k) +
1
L

∑
N,ν

L−1∑
n=0

∑
k′

Pνν(k′)γ0n
MN

− 1
2L

L−1∑
n=0

∑
k′

Pµµ(k′)γ0n
MN exp(i(k − k′)Rn)

Fµν(k) = Hµν(k) − 1
2L

L−1∑
n=0

∑
k′

Pµν(k′)γ0n
MN exp(i(k − k′)Rn) (6.48)

As in the HF LCAO method the calculation of the wavevector of the k-dependent
density matrix

Pµν(k) = 2
∑

i

occ
C∗

iµ(k)Ciν(k) (6.49)

requires the summation over occupied crystalline orbitals (i) that are themselves
defined as a linear combination of the basis atomic orbitals. The HF method allows
both an all-electron calculation and a valence-electron approximation when the atomic
cores pseudopotentials are introduced. In both cases the AOs are represented by GTO.
In the CNDO method for crystals only the valence atomic orbitals are included and
represented by a minimal Slater basis set. We return to the basis-sets consideration
in Chap. 8.

Equations (6.47) and (6.48) contain an explicit k dependence via the phase fac-
tors exp(ikRn) and an implicit k-dependence via summations over k′. Invoking the
special k-points theory (see Sect. 4.2.2) one need only use a small set of k′-points to
approximate the integral over BZ.

In (6.48) and (6.49), S0n
µν and γ0n

MN are the overlap and Coulomb integrals for
atomic orbital µ on atom M in the primitive unit cell 0 and atomic orbital ν on
atom N in the cell Rn. Uµµ describes the interaction of an electron with the atomic
core of the atom M with the core charge ZM (this is equal to the number of valence
electrons of atom M). The Coulomb integrals γMN and the bonding parameters βMN

are assumed to be orbitally independent.
It follows from (6.49) that in the CNDO approximation the nonlocal exchange is

taken into account as nondiagonal elements of the Fock matrix contain nondiagonal
elements Pµν(k′) of the density matrix. This means that lattice sums in this case are
divergent, see Sect. 4.3.3. Indeed for sufficiently large Rn the two-electron integrals
γ0m

MN in the exchange part of (6.48) may be approximated by 1/|rM +rN −Rn| where
rM , rN are the vectors defining the positions of atoms M and N in the reference cell.
Therefore, the convergence of the lattice sum over n is defined by the convergence of
the lattice sum

Sj(k) =
∑

n

exp(i(k − kj)Rn)
|Rn + rm − rN | (6.50)

The sum (6.50) can be calculated for k �= kj , for example, by the Ewald method.
However, for k = kj the series (6.50) appears to be divergent [95]. This divergence
is the result of the general asymptotic properties of the approximate density ma-
trix calculated by the summation over the special poits of BZ (see Sect. 4.3.3). The
difficulties connected with the divergence of lattice sums in the exchange part have
been resolved in CNDO calculations of solids by introduction of an interaction radius
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for exchange [276, 277] or of distance-dependent modulating functions that weight
certain Coulomb interaction terms [280]. Detailed studies of the HF LCAO density
matrix properties (see Sect. 4.3.3) allow an interpolation procedure to be suggested
for constructing an approximate density matrix for periodic systems, which ensures a
balance between the direct lattice and BZ summations. Furthermore, this analysis is
important for the cyclic-cluster ZDO calculations as it allows an additional parameter
(exchange radius) introduction to be omitted (see Sect. 6.3).

The extension of INDO and MINDO semiempirical methods to periodic systems
has no principal differences compared with the CNDO method. The advantage of
these methods is the possibility to make spin-dependent calculations as is done in the
UHF method.

The considered CNDO method for periodic systems formally corresponds to the
model of an infinite crystal or its main region consisting of L primitive cells. This
semiempirical scheme was also applied for the cyclic-cluster model of a crystal allowing
the BZ summation to be removed from the two-electron part of matrix elements. In
the next section we consider ZDO methods for the model of a cyclic cluster.

6.3 Zero-differential overlap Approximation in Cyclic-cluster
Model

6.3.1 Symmetry of Cyclic-cluster Model of Perfect Crystal

In Sect. 4.2.1 we introduced supercell transformation (4.77) in the direct lattice allow-
ing generation of special points of the BZ in the calculation of the one-electron density
matrix of the perfect crystal. In this consideration, the perfect crystal was supposed
to be infinite or represented by its main region. The latter was defined as a block on
which opposite-sides periodic boundary conditions are imposed. The main region of a
crystal can be called a cyclic cluster of huge size (in the shape of a parallelepiped with
large edges) modeling the infinite crystal and maintaining its translation symmetry.

The idea to use relatively small cyclic clusters for comparative perfect-crystal and
point-defect calculations appeared as an alternative to the molecular-cluster model in
an attempt to handle explicitly the immediate environment of the chemisorbed atom
on a crystalline surface [285] and the point defects in layered solids [286, 287] or in a
bulk crystal [288,289,292,293]. The cluster is formed by a manageable group of atoms
around the defect and the difference between the molecular-cluster model (MCM)
and the cyclic cluster model (CCM) is due to the choice of boundary conditions for
the one-electron wavefunctions (MOs). Different notations of CCM appeared in the
literature: molecular unit cell approach [288], small periodic cluster [286], large unit
cell [289,290]. We use here the cyclic cluster notation.

In MCM (as in molecules) MOs are supposed to be orthonormalized in the whole
space; this condition is also fulfilled for the molecular clusters embedded by some or
another means into the crystalline environment. Recent applications of the molecular-
cluster model and MO calculations for materials design in the Hartree–Fock–Slater
method are discussed in [291].

In the CCM model the periodic boundary conditions are introduced for MOs
of a cluster having the shape of a supercell of a perfect crystal so that MOs are
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orthonormal in the field of the cyclic cluster chosen. Postponing to Chap. 10 the more
detailed discussion of molecular models of defective crystals we would like to note
here the difference between the supercell model (SCM) and CCM for point defects.
In the former, PBC are introduced for the main region of a crystal so that the point
defect is periodically repeated over the crystalline lattice, in the latter the single point
defect is considered. This means that CCM is conceptually a supercell-type approach
but is technically more closely related to the simple MCM [294].

We discuss here the symmetry of CCM for perfect crystal [13,295–299]. The sym-
metry of defective crystal in CCM is considered in Chap. 10.

To define a finite cyclic system, let us make a linear transformation of the primitive-
lattice translation vectors

Aj =
∑

i

ljiaj , L = |det l| ≥ 1 (6.51)

where the integer coefficients lji form the matrix l. The transformation (6.51) for L > 1
determines a supercell (large unit cell) of the direct lattice. It may be chosen in the
form of a parallelepiped with vectors Aj as edges or in the form of the corresponding
Wigner–Seitz unit cell.

The particular form of the matrix l in (6.51) defines the supercell shape and its
volume (which is L times larger than that of a primitive unit cell) and the symmetry
of the direct lattice based on the group TA of the translations

An =
3∑

j=1

njAj , nj are arbitrary integers (6.52)

The group TA is an invariant subgroup of Ta (translation group of the infinite lattice
with primitive translation vectors ai) so that the cosets (E|a(i))TA(i = 1, 2, . . . , L)
in the decomposition

Ta =
L∑

i=1

(E|a(i))TA (6.53)

form the factor group Ta/TA = T (A) of order L. The so-called inner translations of
the supercell are assumed to be chosen as a(i) in (6.53).

Figure 6.1a shows the supercell of the plane hexagonal lattice of boron nitride,

BN, formed by the diagonal l =
(

3 0
0 3

)
matrix, with L = 9.

A cyclic cluster C(A) is defined as a supercell with identical opposite faces, i.e.
the periodic boundary conditions are introduced for the chosen supercell itself (not
for the main region of a crystal!). In particular, in the supercell, shown on Fig. 6.1a,
the atoms with the primed numbers are supposed to be identical with the atoms of
the supercell, having the same unprimed numbers. This means that the translation
of a supercell as a whole is equivalent to the zero translation.

The translation symmetry of C(A) is characterized by a three-dimensional cyclic
group T̃ (A) of order L with the elements (E|a(i)) from (6.53) and multiplication law
modulo TA. In our example, this group consists of 9 inner translations of the B9N9

supercell, i.e. translations of the BN primitive unit cell, consisting of one formula
unit. The group T̃ (A) is isomorphic to the factor group T (A).
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Fig. 6.1. Supercell (a) and small Brillouin zone (b) for hexagonal plane lattice of boron
nitride BN. Atoms 1–18 belong to the supercell, the atoms with the primed numbers are
supposed to be identical with the corresponding atoms, belonging to the supercell.

Let l(a)(R) be the transformation matrix of the translation vectors ai under the
point-symmetry operation R ∈ F

Rai =
∑
i′

l
(a)
i′i (R)ai′ (6.54)

The corresponding transformation matrix for the translation vectors Aj in (6.51) is

RAj =
∑
j′

l
(A)
j′j (R)Aj′ , l(A)(R) = l−1l(a)(R)l (6.55)

The operation (R′|v′ + an) ∈ G is compatible with the translation symmetry of the
lattice composed of supercells, if the vectors R′Aj are integer linear combinations of
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the vectors Aj , i.e. the matrix l(A)(R′) is integer. All these operations (R′|v′ + an)
form a group G′ ⊂ G. The rotations R′ form a point group F′ ⊂ F of order nF′ ≤ nF.
As

(R′|v′ + an)(E|Aj)(R′|v′ + an)−1 = (E|R′Aj) (6.56)

the translation group TA is an invariant subgroup of the group G′. The cosets in the
decomposition

G′ =
L∑

i=1

nF′∑
s=1

(R′
s|v′

s + a(i))TA (6.57)

form the factor group G(A) = G′/TA of the order nF′L.
The coset representatives (R′

s|v′
s + a(i)) in (6.57) contain the inner translations

a(i) of the supercell (i = 1, 2, . . . , L) and rotational parts R′ ∈ F′ forming the point
group of the space group G′.

Let us introduce a modified multiplication law modulo TA, which does not distin-
guish between the translations of the group TA. The set of nF′L elements (R′

s|v′
s+a(i))

forms a group G̃(A) (modulo TA), which is the symmetry group of the cyclic cluster
C(A). The group G̃(A) is isomorphic to the factor group G(A). Both groups (G̃(A) and
G(A) are homomorphic images of the space group G′. The translation group TA is the
kernel of this homomorphism. If the space group G′ coincides with the space group
G the transformation (6.51) is called symmetric. In this case, the point symmetry of
a cyclic cluster coincides with that of an infinite crystal. In our example, the cyclic
cluster consisting of 9 primitive unit cells of hexagonal BN (see Fig. 6.1a) has the
same point symmetry as the hexagonal BN in the one-layer model. The symmetric
transformation (6.51) retains the point symmetry of the Bravais lattice, but it is com-
patible with a change of its type in the framework of the same crystalline system.
As an example, one can consider the cyclic cluster defined by a crystallographic unit
cell for face-centered cubic lattice (see Chap. 2) or the supercell of a hexagonal lat-

tice, generated by the transformation with nondiagonal matrix l =
(

2 1
−1 1

)
, with

L = 3. In the first case, the translation vectors of the cubic cluster of 4 primitive

unit cells (l =

⎛⎝−1 1 1
1 −1 1
1 1 −1

⎞⎠ , L = 4) form a simple cubic lattice. In the second

case the lattice of supercells remains hexagonal. The nonsymmetric transformation
(6.51) leads to a cyclic cluster with the point-symmetry group F′ that is lower than
that of an infinite crystal. The smallest possible cyclic cluster C(A) is a primitive
unit cell with the symmetry group G̃(a) of the order nF (F̃(a) ↔ F). The so-called
main region of a crystal is also a cyclic cluster corresponding to the transformation
(6.51) with very large L = N1N2N3; it is assumed that there are Ni primitive unit
cells in direction ai (i = 1, 2, 3) (where Ni is a very large number). When the cyclic
boundary conditions are introduced for the main region of a crystal, the translation
group TA consists of translations Ai = Niai(i = 1, 2, 3), i.e. the transformation ma-
trix l in (6.51) is assumed to be diagonal. Usually no attention is paid to the fact
that the main region possesses the point symmetry of an infinite crystal only if the
corresponding transformation (6.51) is symmetric. For example, the main region for a
cubic crystal has to be defined with N1 = N2 = N3. The space group G of the infinite
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crystal may be obtained as a limit of the symmetry groups of a sequence of increasing
cyclic systems.

As is seen, the symmetry operations in the cyclic-cluster symmetry group are
defined with the modified multiplication law modulo TA. These groups were named
by Stewart [299] “ the symmetry groups of unit cells in solids” and interpreted as a
new type of group being intermediate between point-symmetry groups of molecules
and space groups of infinite crystals. The irreducible representations of these groups
are defined by those of space groups for the points of the BZ satisfying the condition
exp(ikAj) = 1 where Aj are the translation vectors of the cyclic-cluster as a whole.
These points are given by (4.84) for k = 0 and can be easily found. All the possible
transformation matrices, given in Appendix A, can be used to generate the symmetric
cyclic clusters of any of the 14 Bravais lattices. In the cyclic-cluster calculations both
the point and inner translation symmetry can be taken into account [300].

The CCM model allows real-space calculations (formally corresponding to the BZ
center for the infinite crystal composed of the supercells). From this point of view the
cyclic cluster was termed a quasimolecular large unit cell [289] or a molecular unit
cell [288].

The practical cyclic-cluster calculations for crystals were made by EHT, MR and
different ZDO methods. In these calculations one has to take into account the mul-
tiplication law of the cyclic-cluster symmetry group. This requires the modifications
(compared with molecules) of Fock matrix elements in the LCAO approximation.
These modifications are considered in the next sections.

6.3.2 Semiempirical LCAO Methods in Cyclic-cluster Model

In cyclic-cluster calculations we return to the molecular level without the loss of the
symmetry, replacing a whole crystal by one supercell (multiple of the primitive unit
cell), applying to it PBC and embedding a cyclic cluster in the Madelung field of
the surrounding crystal. Instead of the system of coupled LCAO equations (4.57) for
different wavevectors in the BZ we have one equation to be solved in each iteration
as in the case of molecules.

In EHT for crystals the one-electron Hamiltonian and overlap integrals matrix
elements (6.4) and (6.5) depend on wavevector k and are the sums over a direct
lattice. The order M of the corresponding matrices H and S is equal to the number
of AOs in the primitive unit cell.

In the CCM the supercell is introduced so that the order of the matrices in the
secular equation (6.4) is equal to L × M , where L is defined in (6.51) and means the
number of primitive cells in a supercell. The calculation is made only for k = 0 so
that instead of (6.4) we obtain the molecular-type seqular equation

det |Hµν − εiSµν | = 0 (6.58)

where µ, ν, i change from 1 to L × M . The difference between the Hamiltonian and
overlap matrices in (6.58) from the molecular analog (when the supercell atoms are
taken as a free molecular cluster) is due to the introduction of PBC for the supercell
chosen. Instead of lattice sums (6.5) we have now the matrix elements calculated for all
L×M AOs of a supercell. PBC are taken into account by modification of these matrix
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elements. To show this modification let us consider a cyclic cluster B9N9 of the one-
layer model of hexagonal boron nitride BNhex, see Fig.6.1. The primitive unit cell in
this case contains one formula unit BN, the cyclic cluster chosen is formed by threefold
increase in both translation vectors of the primitive unit cell. The central cyclic cluster
and the nearest translated atoms are shown in Fig. 6.1. The primed B and N atoms
are not included in the cyclic cluster explicitly but are translation equivalent (with
the supercell translation vectors) to the corresponding nonprimed atoms inside the
cyclic cluster. As was shown in Sect. 6.3.1, due to PBC introduction the cyclic-cluster
translations are multiplied modulo the translation group TA of supercell as a whole
(in our example this group consists of two supercell basic translations A1 = 3a1,A2 =
3a2 and all their combinations An =

∑2
i=1niAi with integer coefficients ni). As a

result the matrix elements of H and S matrices are modified. The interactions between
atoms in the supercell and those outside are then used to replace their weaker analog
within the supercell [285]. For example, boron atom 1 interacts with nitrogen atoms
14 and 6 in the supercell as with the nearest neighbors because in atomic pairs 14–
14’,6–6’ two atoms are connected by the translation vectors of a cyclic cluster as a
whole (see Fig. 6.1). Thus, we have no more “central” and “boundary” atoms in the
cyclic cluster – for all of them the interactions with the nearest, next-nearest and
next-next-nearest neighbors are taken into account.

The cyclic cluster can be chosen in the form of the Wigner–Seitz unit cell (shown
by the dotted line in Fig. 6.1 with the center at boron atom 1). A connection of the
interaction range to this cells atoms was discussed in [301].

PBC introduction for the cyclic cluster chosen allows connection by of symmetry
the MOs of the cyclic cluster with some COs of a whole crystal [297]. Let a perfect
crystal be described in terms of supercells composed of L primitive unit cells. Corre-
spondingly, the reduced (small) BZ of the supercell is a factor of L smaller than the
original BZ of the primitive unit cell. If wavevectors in the original BZ are denoted by
K and wavevectors in the reduced (small) BZ by k, a calculation at a single k-point
is equivalent to a calculation at a particular set of K-points satisfying relation (4.84)
determined by the translation vectors An of the supercell chosen. This “folding back”
of information was used to generate special points of BZ in the model of an infinite
crystal, see Sect. 4.2.2 and also forms the basis of the cyclic-cluster model. When the
whole crystal is replaced by a cyclic cluster, the k′ = 0 approximation in the reduced
BZ is made and (4.84) can be written in the form

K̄
(0)
t =

∑
j

qtjbj (6.59)

where qtj are integers, bj are translation vectors of a reduced BZ and K̄
(0)
t form the set

of K-points of the original BZ folding down onto the k = 0 point of a reduced BZ. Due
to the relation (Aibj) = 2πδij between supercell translation vectors Ai, i = 1, 2, 3
and small BZ translation vectors bj , j = 1, 2, 3 , (6.59) becomes equivalent to the
condition

exp(iK̄(0)
t Aj) = 1, j = 1, 2, 3 (6.60)

that has to be satisfied for those K-points of the original BZ that fold down on k = 0
point of the reduced BZ.

In our example of a hexagonal lattice supercell with L = 9 (Fig. 6.1b) the relation
(6.60) is satisfied for three points of the plane hexagonal BZ, Γ (0, 0), 2P (1/3, 1/3),
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6G(1/3, 0) (the integer numbers mean the number of rays in the stars, the coordinates
of stars representatives from the irreducible part of the BZ are given in brackets).
These points formally become equivalent to the Γ (k = 0) point of the primitive-cell
BZ [289].

Therefore, the cyclic-cluster energy level degeneration differs from that which
would be for the corresponding free cluster of the same atoms. In the latter case,
the point symmetry of the cluster is C3v, so that only the degeneracy of levels can be
one or two (dimensions of irreps of point group C3v). In the former case, the degener-
acy of MOs remains at 1, 2 only at the Γ point of the BZ. The one-electron states at
P and G points are 2-, 4- and 6-times degenerate, respectively. It becomes clear when
one takes into account that the space-group irrep dimension is the product of the
dimension of the irrep of the wavevector point group (C3 for P point, C1 for G point)
times the number of rays in wavevector star (2, 6 for P and G points, respectively,
see Chap. 3). It is also necessary to take into account the time-inversion symmetry
making additional degeneracy for k and −k values of the wavevector.

What happens when the cyclic cluster is increased? Depending on its shape and
size different sets of k-points are reproduced, but in the EHT matrix elements the
number of interactions included (interaction radius) increases as the periodically re-
produced atomic sites distance is defined by the translation vector of a cyclic cluster
as a whole. It is important to reproduce in the cyclic-cluster calculations the states
defining the bandgap. As the overlap matrix elements decay exponentially with the
interatomic distance one obtains the convergence of results with increasing cyclic clus-
ter. Of course, this convergence is slower the more diffuse are the AOs in the basis.
From band-structure calculations it is known that for BNhex in the one-layer model
the top of the valence band and the bottom of the conduction band are at the point
P of the BZ reproduced in the cyclic cluster considered.

We note that the symmetry connection of crystal and cyclic-cluster one-electron
states is defined only by the supercell choice and therefore does not depend on the
method used in the Hamiltonian matrix-elements calculations.

The EHT method is noniterative so that the results of CCM application depend
only on the overlap interaction radius. The more complicated situation takes place
in iterative Mulliken–Rüdenberg and self-consistent ZDO methods. In these methods
for crystals, the atomic charges or the whole of the density matrix are calculated by
summation over k points in the BZ and recalculated at each iteration step. The direct
lattice summations have to be made in the surviving integrals calculation before the
iteration procedure. However, when the nonlocal exchange is taken into account (as is
done in the ZDO methods) the balance between direct lattice and BZ summations has
to be ensured. This balance is automatically ensured in cyclic-cluster calculations as
was shown in Chap. 4. Therefore, in iterative MR and self-consistent ZDO methods the
increase of the cyclic cluster ensures increasing accuracy in the direct lattice and BZ
summation simultaneously. This advantage of CCM is in many cases underestimated.

In the MR method the matrix elements of a cyclic cluster are obtained from those
for the crystal, taking k = 0 in (6.26). The modification of matrix elements due to
PBC introduction has to be introduced in overlap and kinetic-energy integral calcula-
tion. The latter are expressed through overlap integrals so that there are no principal
differences in the EHT and MR methods in the matrix-element modification, ensuring
periodicity of the cluster chosen. The only difference is connected with the iterative
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procedure of atomic charge and configuration self-consistency in the MR method, re-
quiring the calculation of diagonal elements of the density matrix. In this calculation
the summation over occupied MOs of the cyclic cluster is made that is equivalent to
summation over those K-points of the original BZ that satisfy relation (6.60). The
diagonal elements of the MR method Hamiltonian are corrected by the point-charge
(Madelung) field of the surrounding crystal acting on cyclic-cluster atoms, see (6.26).
In fact, the embedded cyclic cluster is considered. For ionic systems such a correction
of CCM is necessary both in the ZDO and SINDO methods [301, 302]. In CCM the
iterative calculations the atomic charges are used at any step of the iterative proce-
dure to recalculate the Madelung energy for all atoms of a cyclic cluster and at the
next step the atomic charges are recalculated with the matrix elements corrected by
a recalculated Madelung energy.

Within the k = 0 approximation the CNDO Hamiltonian for the supercell becomes

Fµµ(0) = Uµµ + ZMγ00
MM +

∑
N

(
1
L′

∑
k′

PN (k′) − ZN

)
L′−1∑
n=0

γ0n
MN

+
L′−1∑
n=0

β0
M

(
S0n

µµ − δ0n

)− 1
2L′

L′−1∑
n=0

∑
k′

Pµµ(k′) exp(−ik′Rn)γ0n
MM (6.61)

Fµν(0) =
L′−1∑
n=0

β0
MNS0n

µν − 1
2L′

L′−1∑
n=0

∑
k′

Pµν(k′) exp(−ik′Rn)γ0n
MN (6.62)

where L′ is the number of supercells in the main region of a crystal and k′-summation
is made over the reduced BZ.

A calculation performed solely at the Γ (k′ = 0) point of the supercell BZ would
become entirely equivalent to special K-points (6.59) calculation if all the direct
lattice summations were be made over the whole crystal. However, in CCM the inter-
action range depends on the cyclic-cluster size. To determine the k′ = 0 Fock matrix
elements we need the full k′ dependence of the supercell density matrices Pµν(k′), see
(6.61) and (6.62). Meanwhile, each iteration in a cyclic-cluster calculation only pro-
vides the eigenvector coefficients Ciµ(0) at k′ = 0, and hence only Pµν(0). Therefore,
it is necessary to relate the reduced BZ integrals over the fully k′-dependent density
matrices, namely

∑
k′

PN (k′) and
∑
k′

Pµν(k′) exp(−ik′Rn) to PN (0) and Pµν(0), re-

spectively [280]. For sufficiently large supercells all the values of k′ in the reduced BZ
will lie near k′ = 0, so that it should be valid to ignore the effect of the phase factor
and use the fact that the reduced BZ is spanned by L k-points to obtain

1
L′

∑
k′

Pµν exp(−ik′Rn) → Pµν(0) (6.63)

Simple substitution of (6.63) into (6.61) and (6.62) would introduce divergent lattice
sums of γ0n

MN integrals. Therefore, a distance-dependent modulating function ω(R0n
MN )

was introduced [280] such that

1
L′

∑
k′

Pµν(k′) exp(−ik′Rn) = ω(R0n
MN )Pµν(0) (6.64)
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(orbital µ on atom M is in cell 0 and orbital ν is on atom N in cell n).
To find an approximate form of this modulating function a tight-binding descrip-

tion of a one-dimensional chain of atoms possessing one atom per primitive unit cell
and two orbitals per atom was studied [280]. The sinc2(π

a R0n
MN ) function found was

simply extended to the three-dimensional cubic lattice case. Unfortunately, the form of
this modulating function depends on the direct lattice of supercells and its extension
to noncubic lattices is nontrivial.

In some cases the modulating function ω(R0n
MN ) is taken as the simple step function

ω(R0n
MN ) =

{
1 if R0n

MN ≤ Rc

0 if R0n
MN > Rc

(6.65)

where the exchange cutoff radius Rc in (6.65) was a variable parameter or taken
intuitively to be about a half of the cyclic cluster smallest translation vector length.
As was shown in Sect. 4.3.3, the modulating (weighting) function explicit form (4.157)
can be found in the interpolation procedure for constructing an approximate density
matrix. The modulating step function suggested in (4.157) is easily applied to any type
of lattice and was incorporated into both HF and CNDO cyclic-cluster calculations
[70]. It was shown that the exchange interaction range should be chosen such that
the corresponding sphere of radius Rc differs only slightly from the Wigner–Seitz
supercell, corresponding to the cyclic cluster. This gave a theoretical background to
the former intuitive choice (6.65) of the exchange interaction radius Rc.

Cyclic-cluster CNDO Hamiltonian matrix elements may be written in the following
form

Fµµ(0) = Uµµ + ZMγ00
MM +

∑
N

L′−1∑
n=0

∑
ν∈N

(Pµµ(0) − ZN ) γ0n
MN

+
L′−1∑
n=0

β0
MS0n

µµ − 1
2

L′−1∑
n=0

Pµµ(0)ω(R0n
MN )γ0n

MM (6.66)

Fµν(0) =
L′−1∑
n=0

β0
MNS0n

µν − 1
2

L′−1∑
n=0

Pµν(0)ω(R0n
MN )γ0n

MN (6.67)

Comparing CCM Hamiltonian matrix elements (6.66) and (6.67) with those for a free
molecule, Equations (6.33)–(6.35), one can see the differences. Equations (6.66) and
(6.67) formally include summation over the main region of a crystal composed of the
equivalent supercells. The lattice sums containing overlap integrals are truncated for
a cyclic cluster in the CNDO method in the same way as is done in the EHT and MR
methods. For the Coulomb interaction sums (third item in (6.66)) the Ewald method
can be used to calculate the Madelung energy of a crystal surrounding the cyclic
cluster. The modulating function ω(R0n

MN ) ensures the truncation of the diverging
lattice sums appearing in the nonlocal exchange interactions (last items in (6.66) and
(6.67)).

CCM has been implemented in various ZDO methods: CNDO-INDO [276,277,280,
303–310], MINDO/3 [311], MNDO [271], NDDO(AM1, PM3), [312]. All the semiem-
pirical methods stand or fall by their parameter set. The ZDO methods parameter
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sets suitable for molecular calculations will not necessarily be suitable for the solid
state. The parametrization scheme may be dependent on the chemical bonding in
the crystal (different sets of parameters are suitable for ionic and covalent crystals),
introducing additional difficulties.

The main ZDO parameters for each orbital type are: the orbital exponent ζ en-
tering the radial part of Slater-type AOs, the diagonal matrix elements Uµµ of the
interaction of an electron occupying AO χµ with its own core expressed through elec-
tronegativity EM

neg = −1/2(Iµ + Aµ) of this AO, the resonance integrals β depending
only on the atom type. Additional parameters appear in the matrix elements of an in-
teraction of an electron on the µth AO belonging to atom M with the core of another
atom N , [313]:

VµN = ZN

{
1

RMN
+
[
(µµ|νν) − 1

RMN

]
exp(−αNRMN )

}
(6.68)

where RMN is the distance between M and N , ZN is the core charge of atom N , αN

is an adjustable parameter characterizing the nonpoint nature of the atom N core.
AOs χµ and χν belong to atoms M and N , respectively, the two-center Coulomb
integral (µµ|νν) may be calculated with STOs or considered as γMN depending only
on atoms types. The detailed discussion of parameter choice in CCM ZDO methods
can be found for different types of crystalline solids: ionic crystals of alkali halides
[300, 304, 314, 315] and simple oxides MgO,CaO [313], covalent and partly covalent
semiconductors [276,293,310,312,316,317], crystalline oxides with different structure
[318], including high-Tc superconductors [318].

In the next section we discuss MSINDO semiempirical and HF nonempirical meth-
ods implementation of CCM for the calculation of bulk properties of rutile crystal.
The efficiency of the MSINDO method will be demonstrated that gives reasonable
agreement with the results of HF calculations and at the same time is essentially
simpler in practical realization.

6.3.3 Implementation of the Cyclic-cluster Model in MSINDO
and Hartree–Fock LCAO Methods

The cyclic-cluster approach was implemented in the semiempirical SCF-MO method
SINDO1 [319] and its recent modification MSINDO [301] and has been successfully
applied for bulk and surface properties of oxides [302,320].

The underlying strategy of the CCM implementation in MSINDO was to start
from a molecular system and to introduce PBC in such a way that both local point
symmetry and stoichiometry of the system are conserved. Within this approach the
local invironment of each cyclic-cluster atom is replaced by that of a fictitious cyclic ar-
rangement. A cluster of n atoms in one dimension is treated in the same way as a cyclic
arrangement of the same number of atoms on a ring. Two- and three-dimensional
systems are treated as arrangements on a torus and a hypertorus, respectively. All
interactions for each atom M are then calculated within an interaction region around
that atom, corresponding to its Wigner–Seitz cell (WSC). For two-center integrals
(overlap, nuclear attraction, electron repulsion) between the M atom of the inter-
action region and atoms at the boundaries of its WSC [301] weighting factors are
used to retain the proper symmetry. In this approach, the cyclicity and summation
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regions are the same and not dependent on integral thresholds as for periodic LCAO
methods [23]. Long-range Coulomb interactions have been taken into account by ad-
ditional finite point charge fields outside the cyclic cluster [302]. A scheme for the
calculation of analytical gradients has been developed for structure optimization of
cyclic clusters [301].

In MSINDO only two-center two-electron integrals of the form (µMµM |νN νN)
are taken into account. Atomic orbitals χµ and χν are taken as s-type functions.
Therefore, these integrals have no angular dependence and an averaging over integrals
between different atoms on the same radius around the considered atom causes no
problems.

In MSINDO also two-center one-electron integrals are replaced by empirical for-
mulas that do not contain any angular dependence, so that the two-center elements
of the Fock matrix have the following form [249]:

Fµν = Hµν + Pµν(µµ|νν) = ∆Hµν + Lµν + Pµν(µµ|νν) (µ ∈ M,ν ∈ N) (6.69)

with the two parametrized empirical functions

∆Hµν =
1
4

(KM + KN ) Sµν (fMhµµ + fNhνν) , fM = 1 − exp(−αMRMN )

Lµν = −1
2
(
ζ2
µ + ζ2

ν

) Sµν(1 − Sµν)
1 + 1/2(ζµ + ζν)RMN

(6.70)

where ζµ, ζν are orbital exponents, KM ,KN , and αM are empirical parameters opti-
mized for a given set of reference molecules. In CCM calculations these matrix ele-
ments remain unchanged when atom N is in the inner part of the interaction region of
atom M . In the case that N is on the border of the interaction region around M , the
contributions from all nMN ′ atoms N ′ that are translationally equivalent to N and
appear at the same radius are summed up into one matrix element with weighting
coefficient [301]:

Hµν =
equiv∑

N ′
ωMN ′Hµν′ , ν′ ∈ N

Gµν =
equiv∑

N ′
ωMN ′(µµ|ν′ν′) (6.71)

The construction of the Fock matrix and the SCF procedure to obtain a converged
density matrix of the cyclic system are essentially identical to the molecular case. The
only extension is the inclusion of an external point charge field that is added to the
diagonal terms of F. As the calculations for the cyclic clusters are performed in real
space, no Bloch functions are used as the basis set. This strategy makes a direct
comparison between calculations for free and cyclic clusters possible. Because of the
quadratic increase of the number of two-center integrals with the number of cluster
atoms a special technique can be used to reduce the computational effort [321]. This
technique is based on the sorting of the interatomic distances because equal atom
pairs with the same distance have identical integrals in a local coordinate system.
With this technique the number of calculated integrals can be decreased by a factor of
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1000 or more. All features available in the molecular version of MSINDO, for example,
configuration interaction, geometry optimization, or vibration analysis, can also be
used for the cyclic clusters. This also includes the treatment of charged systems that
are generally difficult to treat with periodic methods.

Interactions of an ion M with ions N ′′ at a distance beyond the borders of the
WSC will decrease rapidly with increasing interatomic distance in covalent systems.
This does not hold for ionic systems, since Coulomb-type interactions fall off slowly.
If the ions N ′′ are approximated as point charges with a net charge q, the Madelung
potential due to these charges, which can be calculated by the Ewald summation
technique as shown in [302], will modify the Fock matrix and the total energy in the
following way

FMAD(P) = F(P) + VMAD(P) (6.72)

Etot =
1
2
Tr
[
P(H + FMAD)

]
+ VNN + EMAD (6.73)

Here F denotes the Fock matrix, FMAD the Madelung-corrected Fock matrix, P the
density matrix, H is the core Hamiltonian matrix, Etot the total energy of the system
and VNN the nuclear repulsion term. The terms VMAD(P) and EMAD denote the
Madelung correction of the Fock matrix and of the nuclear repulsion, respectively. Due
to the application of the ZDO approximation in MSINDO, VMAD(P) is a diagonal
matrix,

V MAD
µMµM = ΦmD(d̄M ) −

∑
N ′′

ωMN ′′
qN ′′

|d̄M − d̄N ′′ | (6.74)

EMAD =
1
2

∑
M

Z∗
M

[
ΦmD(d̄M ) −

∑
N ′′

ωMN ′′
qN ′′

|d̄M − d̄N ′′ |

]
(6.75)

Z∗
M is the effective nuclear charge of atom M . The corrections are implemented in

a self-consistent manner, since the net charges qN ′′ are calculated from the cluster
density matrix P using a Löwdin population analysis. The electrostatic interactions
of the ion M with the ions in its WSC must be subtracted from the Madelung potential
ΦmD, because these interactions are already considered in the unmodified Fock matrix
F (P ). To avoid double counting of interactions the factor 1/2 is introduced in (6.75).

It has to be mentioned that the simple procedure used in CCM MSINDO of an
averaging of two-center integrals between the central atom of the interaction region
and atoms at the boundaries of its WSC is not possible for ab-initio Hartree–Fock
methods due to the presence of three- and four-center integrals.

The implementation of the CCM in the HF LCAO method is based on the use
of the idempotency property of a one-electron density matrix (DM) of crystalline
systems [100]. The underlying strategy in this case was to start from a periodic system
and to make small modifications in the corresponding LCAO computer codes. It has
to be mentioned that the CCM realization in PW basis seems to be impossible as the
interaction region in this case can not be defined.

The idempotency of the DM is a consequence of the orthonormality of the one-
electron Bloch functions that are the basis of the crystalline orbitals. In the CCM
the DM has to be idempotent when a one-determinant wavefunction is used and
convergence with cluster size is achieved. The infinite DM of a solid formally does not
have this property, but the infinite solid itself is modeled by a very large cyclic cluster
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describing the main region of the crystal when Born–von Karman PBC are introduced
to ensure macroscopic periodicity of a crystal model. In Sect. 4.3.3 the CCM of the
infinite crystal was deduced from the study of the approximate DM (4.164). The
supercell corresponding to the cyclic cluster under consideration was taken as the
Wigner–Seitz supercell; to have the proper point symmetry the weighting function
(4.165) was introduced. Defining an atomic covalence as the sum of Wiberg indices
for an atom in the cyclic cluster or all the other atoms of a crystal the relation (4.140)
was obtained. This relation means that the atomic covalence in a cyclic cluster may
be calculated as a lattice sum C

(2)
M of Wiberg indices and as an expression C

(1)
M ,

containing only those DM elements that refer to atom M :∑
M

C
(2)
M =

∑
M

∑
M �=N

ωN (R̄N )WMN (R̄n) +
∑
M

WMM (0) = NC
e

∑
M

C
(1)
M =

∑
M

⎛⎝2
∑
µ∈M

PL
µµ(0) − WMM (0)

⎞⎠ = Ne (6.76)

where NC
e , Ne is the number of electrons in the primitive unit cell. For each cyclic

cluster there are certain weighting coefficients ωN (R̄N ) of neighbor atoms in spheres
around atom M . For the inner atoms of a cyclic cluster ωN = 1, while for border
atoms ωN < 1.

Relation (6.76) provides a simple way to check the idempotency property of the
DM. Therefore, it can be used to implement the CCM in HF LCAO calculations.

This implementation requires simple modifications in the property part of the
CRYSTAL program [23]. A Löwdin population analysis is introduced for self-consistent
DM and the bond-order sums are calculated for atoms of the crystal. The lattice sum-
mation in (6.76) is made over the same part of the lattice that has been used in the
integrals calculation for the self-consistent procedure (the lattice summation field is
defined by the most severe tolerance used in the two-electron exchange integrals cal-
culation).

In order to receive results for a cyclic cluster, relation (6.76) is checked for different
choices of tolerances in the integrals calculations and Q sets of wavevectors in the BZ,
corresponding to those K- sets that satisfy (6.60). The implementation of a cyclic
cluster for perfect crystals is realized in most cases by using the primitive unit cell
and taking into account that the cyclicity field of the DM is defined by the choice of
Q. The implementation of the CCM in HF LCAO calculations is demonstrated for
the rutile structure.

The tetragonal rutile structure belongs to space group P42/mnm(D14
4h) and con-

tains two TiO2 units per cell. The two Ti atoms are located at the Wyckoff 2a sites
(0, 0, 0) and (1/2, 1/2, 1/2) with D2h site symmetry, while the four O atoms are lo-
cated at the 4f sites ±(u, u, 0) and ±(u + 1/2, 1/2 − u, 1/2) with site symmetry C2v

(see Sect. 2.3.3). The primitive unit cell of rutile is illustrated in Fig. 6.2. Each Ti
atom is surrounded by a slightly distorted octahedron of O atoms with two differ-
ent Ti–O distances. In connection with the cyclic-cluster choice it is useful to label
the atoms surrounding Ti(1) and O(3) in the primitive cell (000) by the translation
vectors of the corresponding unit cells (see Fig. 6.2). From Fig. 6.2 it is seen that
the inclusion of all nearest neighbors for a Ti atom requires at least a cyclic cluster
with translation vectors a1(0, 0, a),a2(0, a, 0), 2a3(0, 0, 2c). The smallest cyclic cluster
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Fig. 6.2. Labeling of atoms in the rutile bulk unit cell; selected atoms of neighboring unit
cells are also given

that contains the nearest neighbors to an O atom is formed by translation vectors
2a1(2a, 0, 0), 2a2(0, 2a, 0), 2a3(0, 0, 2c). For simple tetragonal lattices the symmetric
supercells can be made in four different ways while maintaining tetragonal symmetry:

1. By simple extension of translation vectors (n1a1, n2a2, n3a3). The correspond-
ing transformation matrix is given in Table 6.1 at the bottom of the first column.

2. By rotation of vectors a1 and a2 by 45◦ in their plane and extension of the
vector. The transformation matrix is given in the second column of Table 6.1.

3. By changing from a simple to a body-centered tetragonal lattice. This can be
achieved in two different ways. The corresponding transformation matrices are given
in columns 3 and 4 of Table 6.3.

In Table 6.3 cyclic clusters representing the rutile bulk structure are given that
are generated from the primitive bulk unit cell by applying the above-mentioned four
types of LUC transformations. The cluster size was restricted to L = 24 (144 atoms).

As it was noted in Sect. 6.3.2 CCM allows us to connect by symmetry the MOs
of cyclic cluster with those COs of a whole crystal for which (6.60) is satisfied.

The BZ for the simple tetragonal lattice was shown in Fig. 3.7. The K symmetry
points and K-points in symmetry lines (in units of the basic translation vectors
of the reciprocal simple tetragonal lattice) are the following (for lines of symmetry
the parameter p < 1 has to be introduced). Symmetry points Γ (0, 0, 0), M( 1

2 , 1
2 , 0),

Z(0, 0, 1
2 ), A( 1

2 , 1
2 , 1

2 ), 2X(0, 1
2 , 0), 2R(0, 1

2 , 1
2 ); symmetry lines Γ − X = ∆(0, p, 0),

Γ − M = Σ(p, p, 0), Γ − Z = Λ(0, 0, p), M − X = Y (p, 1
2 , 0), A − R = T (p, 1

2 , 1
2 ),

Z − A = S(p, p, 1
2 ), M − A = V ( 1

2 , 1
2 , p), Z − R = U(0, p, 1

2 ), X − R = W (0, 1
2 , p),

Γ − A = ε(p, p, p).
In Table 6.3 are given K-point sets of the primitive cell BZ satisfying (6.60) and

folding down on the k = 0 point of the reduced BZ. The interaction region in CCM
may be defined by WSC around each atom of a cyclic cluster or by the number J
of spheres of direct lattice translation vectors An with smallest nonzero length, also
given in Table 6.3.

To implement CCM into the HF LCAO calculations [100] the periodic crystalline-
orbital program CRYSTAL95 [322] was used with the modifications [97] allow the
DM idempotency (6.76) to be checked. In rutile TiO2 calculations the AO bases,
lattice parameters and effective core potentials were taken to be the same as those
used in [323] to calculate the optimized lattice parameters. In the CRYSTAL code
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[23] the lattice sums of the integrals are truncated when the integrals values are
smaller than 10−ti . The tolerances ti(i = 1 − 5) define the accuracy of the lattice-
sums calculation. The band-structure calculations using the primitive unit cell of the
rutile, the tolerances t1 = t2 = t3 = t4 = 6, t5 = 12 (the latter is used for exchange
interactions) and shrinking factor IS=6 (216 k-points of 6 × 6 × 6 Monkhorst–Pack
special points in the BZ) ensure the converged results for the total energy per primitive
cell, top of the valence band and Löwdin charge on the Ti–atom (–69.7758 a.u., –0.3028
a.u and q=1.73, respectively).

The cyclic-cluster calculations were performed using the SUPERCELL option of
CRYSTAL95 and setting the shrinking factors IS to unity (corresponding to the k = 0
point in the BZ), defining the DM cyclicity region as the cyclic-cluster region itself.
For the calculation of the total number of electrons per primitive cell (6.76) can to be
used. For each cyclic cluster there are certain weighting coefficients of neighbor atoms
in spheres i around Ti(ωTi(i)) and O(ωO(i)). At the same time the above-mentioned
tolerance t5 defines the interaction radius for the exchange-integral truncation. For the
given structural parameters and basis sets this radius is 8.16 Å around a Ti atom and
7.84 Å around an O atom, respectively (for rutile TiO2 with the optimized structures
parameters a=4.555 Å, c=2.998 Å, u=0.306). The total number of electrons per unit
cell Ne within the interaction radius calculated by summing bond orders over spheres
i, containing a total number N(i) of atoms as given in the second line of Table 6.4.
An analysis of Table 6.4 allows a cyclic cluster of relatively small size to be chosen in
such a way that it still reproduces bulk properties with reasonable accuracy.

For the small-size clusters (L = 4, 8) the imbalance of the cyclicity region and the
interaction radius causes a huge difference between NC

e and Ns
e as the sum of bond

orders inside the interaction radius includes the neighboring cyclic clusters around
the central cyclic cluster. The PBCs force atoms outside the central cyclic cluster
to be equivalent to the corresponding atoms inside the cluster. At the same time
the summation of bond orders inside a cyclicity region gives NC

e values that are
largely model-size independent, as the DM is calculated for the cyclic cluster under
consideration.

From Table 6.4 one concludes also that even for the same size L of a cyclic cluster
the difference of the calculated properties Etot, εtop, and atomic charges q strongly
depends on the “compactness” of a cluster. The compactness is defined by the num-
ber of spheres i of neighboring atoms with ω(i) = 1 inside the cyclic cluster. This
property of cyclic clusters is important as, for example, the more compact cluster
C4.3 gives results closer to the band calculation limit than the larger but less com-
pact cluster C8.2. In order to construct more compact clusters, the anisotropy of the
rutile structure (a ≈ 1.5c) has to be taken into account.

Table 6.5 shows the effect of integral thresholds on the calculated properties of
cyclic clusters.

For the cyclic cluster C12.1 the calculated properties are close to those for C16.3,
but the difference Ns

e −NC
e is much larger, 3.2, i.e. the DM is nonidempotent. It is well

known that small changes of only the most severe integral threshold do not essentially
affect the results [324]. Therefore, its decrease may restore the DM idempotency while
the calculated properties are only slightly changed. It is demonstrated in Table 6.5
that by using t5 = 9 instead of 12, the difference Ns

e − NC
e decreases drastically to

0.10 for the same cluster, C12.1. For C16.1 the influence of t5 is also small. For a
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Table 6.5. Effect of integral thresholds on calculated properties of cyclic clusters CL12.1
and CL16.3; total energy E and top of valence band ε (a.u.), Löwdin charge qTi of Ti, total
number of electrons per unit cell calculated using (6.76) within the corresponding cyclic
cluster (NC

e ) and within the interaction radius defined by the integral thresholds (NS
e )

Cluster Integral thresholds E ε qTi NC
e NS

e

CL12.1 6 12 –69.7744 –0.3029 1.73 63.77 70.17
6 9 –69.7747 –0.3032 1.73 63.81 64.01
6 9a –69.7760 –0.3029 1.73 63.74 63.75
6 8 –69.7746 –0.3034 1.73 63.75 63.94
6 8a –69.7758 –0.3028 1.73 63.72 63.73

CL16.3 6 12 –69.7740 –0.3030 1.73 63.83 63.86
6 12a –69.7758 –0.3029 1.73 63.83 63.83
6 13 –69.7740 –0.3030 1.73 63.83 64.05
6 13a –69.7758 –0.3029 1.73 63.79 63.79

band calculationb 6 12 –69.7758 –0.3028 1.73 63.79 63.79

aincreased by a factor of 8 with shrinking factors s1 = s2 = s3 = 2
bprimitive unit cell with shrinking factors s1 = s2 = s3 = 6

cyclic cluster that has been chosen properly, an increase of the cyclicity region has to
give only small changes in the calculated results.

Table 6.6. MSINDO CCM results for bulk rutile; total energy per unit cell Etot (a.u.),
binding energy per unit EB (kJ/mol), HOMO energy εtop (a.u.), atomic Löwdin charge on
Ti qTi.

Cluster Etot EB εtop qTi

CL8.1 −70.2164 1880 −0.2947 1.74

CL12.1 −70.0959 1722 −0.2910 1.77

CL24.2 −70.3774 2092 −0.2898 1.77

CL32.2 −70.3428 2046 −0.2885 1.77

In CCM calculations of defective crystals such an increase of the cyclicity region
allows investigation of the convergence of the results with cluster size. As is seen
from Table 6.4, the k-sets accuracy J is important to reproduce the total energy.
The cyclic-cluster increase without change of J (clusters C4.1 and C8.2 with J = 1,
clusters C8.1, C16.1 and C16.4 with J = 4) gives only small changes in total energy.
The cyclic clusters C12.1 and C16.3 generate highly accurate SP-sets (J = 9 and
J = 15, respectively) and therefore the corresponding total energies are close to that
of the infinite crystal. The same applies to the one-electron energy at the top of the
valence band.
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The idempotency of the DM in MSINDO cyclic-cluster calculations is guaranteed
for all cases as the periodic boundary conditions were introduced into the molecular
code. This was tested in [100] for the cyclic cluster C12.1 in two ways:

1. by calculating the difference C
(1)
M − C

(2)
M obtained with relation (6.76);

2. by directly calculating P2 − 2P and summing the absolute values of the differ-
ences over all matrix elements, ∆ =

∑
µν

|P 2
µν − 2Pµν |.

By both ways of calculation it was clearly demonstrated that the MSINDO CCM
density matrix is exactly idempotent. The differences of covalencies C

(1)
M and C

(2)
M

as well as ∆ are in the same order of magnitude as the SCF threshold, 10−8. At
the same time the symmetry of the crystalline system was correctly reproduced as
checked by counting the degenerate one-electron levels in the oxygen 2s valence-band
region and comparison with the results of a symmetry analysis. The symmetry of the
cyclic cluster is different from the molecular cluster due to the presence of additional
translation symmetry elements. Therefore, highly degenerate (8,4 degenerated) one-
electron levels appear that are not present in any molecular model of rutile.

The calculated binding energies per unit cell EB , HOMO orbital energies εtop,
and atomic Löwdin charges q for a number of cyclic clusters embedded in an infinite
Madelung field, C8.1, C12.1, C24.2, and C32.2, are given in Table 6.6 [321].

The geometry of the four clusters has been optimized in terms of the three struc-
tural parameters c,RTiO(5) and RTiO(3) . At low temperatures, the experimental ref-
erences are c = 2.954 Å, RTiO(5) == 1.946 Å, and RTiO(3) = 1.976 Å. For the largest
cyclic cluster, C32.3, the corresponding MSINDO values are 2.96 Å, 1.90 Å, and 1.91
Å, which are in reasonable agreement with experiment. From Table 6.6 it can be seen
that the convergence of Etot is much slower than for the periodic HF calculations, see
Table 6.3. On the other hand, εtop and qTi show a similar convergence behavior. The
MSINDO binding energies per TiO2 unit EB vary between 1722 and 2096 kJ/mol and
are close to the experimental value of 1900 kJ/mol. The calculated HOMO orbital
energies for MSINDO (Table 6.6) and HF (Table 6.5) are similar. The MSINDO εtop

is only 0.6 eV less negative than the HF result.
The density matrix idempotency relations described here may be easily extended

to the unrestricted Hartree–Fock (UHF) method when the orbitals for α and β spins
are treated independently.

As it is seen from the HF calculations of bulk rutile structure the CCM technique
produces a good representation of the perfect crystal, which is essential for point-
defect studies.
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Kohn–Sham LCAO Method for Periodic Systems

7.1 Foundations of the Density-functional Theory

7.1.1 The Basic Formulation of the Density-functional Theory

Density-functional theory has its conceptual roots in the Thomas–Fermi model of a
uniform electron gas [325, 326] and the Slater local exchange approximation [327].
A formalistic proof for the correctness of the Thomas–Fermi model was provided by
Hohenberg–Kohn theorems, [328]. DFT has been very popular for calculations in solid-
state physics since the 1970s. In many cases DFT with the local-density approximation
and plane waves as basis functions gives quite satisfactory results, for solid-state
calculations, in comparison to experimental data at relatively low computational costs
when compared to other ways of solving the quantum-mechanical many-body problem.

It took a long time for quantum chemists to recognize the possible contribution of
DFT. A possible explanation of this is that the molecule is a very different object to
the solid as the electron density in a molecule is very far from uniform [329]. DFT was
not considered accurate enough for calculations in molecular quantum chemistry until
the 1990s, when the approximations used in the theory were greatly refined to better
model the exchange and correlation interactions. DFT is now a leading method for
electronic-structure calculations in both fields. In quantum chemistry of solids DFT
LCAO calculations now have become popular especially with the use of so-called
hybrid functionals including both HF and DFT exchange.

Traditional quantum chemistry starts from the electronic Schrödinger equation
(SE) and attempts to solve it using increasingly more accurate approaches (Hartree–
Fock and different post-Hartree–Fock methods, see Chapters 4 and 5). These ap-
proaches are based on the complicated many-electron wavefunction (and are there-
fore called wavefunction-based methods) and in these ab-initio methods no semiem-
pirical parameters arise. Such an approach can be summarized by the following se-

quence [330]: V (r) SE−−→ Ψ(r1, r2, . . . , rN )
〈Ψ |...|Ψ〉−−−−−→ observables, i.e. one specifies the

system by choosing potential V (r), plugs it into the Schrödinger’s equation, solves
that equation for the wavefunction Ψ(r1, r2, . . . , rN ), and then calculates observables
by taking the expectation values of operators with this wavefunction. One among the
observables that are calculated in this way is the one-electron density
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ρ(r) = N

∫
d3r2

∫
d3r3 . . .

∫
d3rNΨ∗(r, r2, . . . , rN )Ψ(r, r2, . . . , rN ) (7.1)

In DFT, the density (7.1) becomes the key variable: DFT can be summarized by the
sequence

ρ(r) → Ψ(r1, r2, . . . , rN ) → V (r)

i.e. knowledge of ρ(r) implies knowledge of the wavefunction and the potential, and
hence of all other observables. This also represents the fact that ultimately the electron
density and not a wavefunction is the observable. Although this sequence describes
the conceptual structure of DFT, it does not really represent what is done in actual
applications of it and does not make explicit the use of many-body wavefunctions.
Some chemists until now consider DFT as a containing “ semiempirism”(not ab-initio)
method but recognize that the small number of semiempirical parameters are used in
DFT and these parameters are “universal to the whole chemistry” [329].

Two core elements of DFT are the Hohenberg–Kohn (HK) theorems [328,331] and
the Kohn–Sham equations [332]. The former is mainly conceptual, but via the second
the most common implementations of DFT have been done.

Whereas the many-electron wavefunction is dependent on 3N variables, three spa-
tial variables for each of the N electrons, the density is only a function of three
variables and is a simpler quantity to deal with both conceptually and practically.

The literature on DFT and its applications is large. Some representative examples
are the following: books [333–337], separate chapters of monographs [8, 10, 102] and
review articles [330,338–340].

We give here basic formulation of DFT and the Kohn–Sham method in the spirit
of a “bird’s-eye view of DFT ” [330], referring the reader for the mathematical details
to the original papers. The original Hohenberg–Kohn (HK) theorems [328] held only
for the ground state in the absence of a magnetic field, although they have since
been generalized. The theorems can be extended to the time-dependent domain DFT
(TDDFT), which can also be used to determine excited states [341]. Nevertheless, the
inability of the DFT method to describe for molecular systems the spin and space
degenerate states [342], as the diagonal element of the full density matrix is invariant
with respect to all operations of the symmetry group, was proven.

The first HK theorem demonstrates the existence of a one-to-one mapping between
the ground-state electron density (7.1) and the ground-state wavefunction of a many-
particle system. The first Hohenberg–Kohn theorem is only an existence theorem,
stating that the mapping exists, but does not provide any such exact mapping. It is
in these mappings that approximations are made. Let us rewrite (4.7) for the many-
electron function of the system in the form

HΨ = [T + V + U ] Ψ =

⎡⎣−1
2

N∑
i=1

∆i +
N∑

i=1

V (ri) +
∑
i<j

U(ri, rj)

⎤⎦Ψ = EΨ (7.2)

where H is the electronic Hamiltonian, N is the number of electrons and U is the
electron–electron interaction. The operators T and U are so-called universal operators
as they are the same for any system, while V is system dependent (nonuniversal). The
potential V is called the external potential. This may be not only that of nuclei but
also for cases when the system is exposed to an external electrostatic or magnetic field.
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We can write it as a sum of one-electron potentials
N∑

i=1

V (ri) but we do not know this

potential in advance. The actual difference between a single-electron problem and the
much more complicated many-electron problem just arises from the electron–electron
interaction term U .

Hohenberg and Kohn proved [328] that the relation (7.1) can be reversed, i.e. to
a given ground-state density ρ(r) it is in principle possible to calculate the corre-
sponding ground-state wavefunction Ψ0(r1, r2, . . . , rN ). This means that for a given
ground-state density for some system we cannot have two different external potentials
V . This means that the electron density ρ(r) defines all terms in the Hamiltonian (7.2)
and therefore we can, in principle, determine the complete N electron wavefunction for
the ground-state by only knowing the electron density. The HK theorem shows only
that it is possible to calculate any ground-state property when the electron density is
known but does not give the means to do it. Since the wavefunction is determined by
the density, we can write it as Ψ0 = Ψ0[ρ], which indicates that Ψ0 is a function of its
N spatial variables, but a functional of ρ(r). More generally, a functional F [n] can be
defined as a rule for going from a function to a number, just as a function y = f(x)
is a rule (f) for going from a number (x) to a number (y). A simple example of a
functional is the total number of electrons in a system N

N =
∫

d3rρ(r) = N [ρ(r)] (7.3)

which is a rule for obtaining the number N , given the function ρ(r). Note that the
name given to the argument of ρ is completely irrelevant, since the functional depends
on the function itself, not on its variable. Hence we do not need to distinguish F [ρ(r)]
from, e.g., F [ρ(r′)]. Another important case is that in which the functional depends
on a parameter, such as in

VH [ρ(r)] =
∫

d3r′ ρ(r′)
|r − r′| (7.4)

that is a rule that for any value of the parameter r associates a value VH [ρ(r)] with
the function ρ(r′). This term is the so-called Hartree potential, introduced in (4.16)
and is a potential of the Coulomb field created by all electrons of the system, with
the electron in question included.

DFT explicitly recognizes that nonrelativistic Coulomb systems differ only by their
external potential V (r), and supplies a prescription for dealing with the universal
operators T and U once and for all. This is done by promoting the electron density
ρ(r) from just one of many observables to the status of the key variable, on which
the calculation of all other observables can be based. In other words, Ψ0 is a unique
functional of ρ, i.e. Ψ0[ρ] and consequently all other ground-state observables O are
also functionals of ρ

〈O〉[ρ] = 〈Ψ0[ρ]|Ô|Ψ0[ρ]〉 (7.5)

From this it follows, in particular, that also the ground-state energy is a functional of
ρ

E0 = E[ρ] = 〈Ψ0[ρ]|T + V + U |Ψ0[ρ]〉 (7.6)

where the contribution of the external potential can be written explicitly in terms of
the density



234 7 Kohn–Sham LCAO Method for Periodic Systems

V [ρ] =
∫

V (r)ρ(r)d3r (7.7)

The functionals T [ρ] and U [ρ] are called universal functionals, while V [ρ] is obviously
nonuniversal, as it depends on the system under study. Having specified a system, i.e.
V is known, one then has to minimize the functional

E[ρ] = T [ρ] + U [ρ] +
∫

V (r)ρ(r)d3r (7.8)

with respect to ρ(r), assuming one has got reliable expressions for T [ρ] and U [ρ]. The
second HK theorem proves that the ground-state density minimizes the total electronic
energy of the system. It states that once the functional that relates the electron den-
sity with the total electronic energy is known, one may calculate it approximately by
inserting approximate densities ρ′. Furthermore, just as for the variational method
for wavefunctions, one may improve any actual calculation by minimizing the en-
ergy functional E[ρ′]. A successful minimization of the energy functional will yield
the ground-state density ρ0 and thus all other ground-state observables. A practical
scheme for calculating ground-state properties from electron density was provided by
the approach of Kohn and Sham [332] considered in the next section.

7.1.2 The Kohn–Sham Single-particle Equations

Within the framework of Kohn–Sham (KS) DFT, the intractable many-body problem
of interacting electrons in a static external potential is reduced to a tractable problem
of noninteracting electrons moving in an effective potential. The functional in (7.8) is
written as a fictitious density functional of a noninteracting system

Eeff [ρ] = 〈Ψeff [ρ]|Teff + Veff |Ψeff [ρ]〉 (7.9)

where Teff denotes the noninteracting electrons’ kinetic energy and Veff is an external
effective potential in which the electrons are moving. It is assumed that the fictitious
(model) system has the same energy as the real system. Obviously, ρeff (r) = ρ(r) if
Veff is chosen to be

Veff = V + U + (T − Teff ) (7.10)

Thus, one can solve the so-called Kohn–Sham equations of this auxiliary noninteract-
ing system with the effective Hamiltonian

Heff =
N∑

i=1

[
−1

2
∆i + Veff (ri)

]
=

N∑
i=1

heff (ri) (7.11)

that yields the orbitals ϕi(r) that reproduce the density ρ(r) of the original many-
electron system ρ(r) = ρeff (r) =

∑N
i=1|ϕ(r)|2. The effective single-electron potential

Veff (r) can be written as

Veff (r) = V +
∫

ρeff (r′)
|r − r′| d3r′ + VXC [ρeff (r)] (7.12)

where the second term denotes the so-called Hartree term describing the electron–
electron Coulomb repulsion, while the last term VXC is called the exchange correlation
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potential and includes all the many-electron interactions. Since the Hartree term
and VXC depend on ρ(r) that depends on the ϕi, which in turn depend on Veff ,
the problem of solving the Kohn–Sham equation has to be done in a self-consistent
(i.e. iterative) way. Usually, one starts with an initial guess for ρ(r), then calculates
the corresponding Veff and solves the Kohn–Sham equations for the ϕi. From these
one calculates a new density and starts again. This procedure is then repeated until
convergence is reached.

There are only single-particle operators in (7.11). Therefore, the solution to the
Schrödinger equation for a model system of noninteracting electrons can be written
exactly as a single Slater determinant Ψ = |ϕ1, ϕ2, . . . , ϕN |, where the single-particle
orbitals ϕi are determined as solutions of the single-particle equation

heffϕi = εiϕi (7.13)

Furthermore, ρ(r) =
∑N

i=1|ϕi(r)|2, where the summation runs over the N orbitals
with the lowest eigenvalues εi.

The main problem is that we do not know the exact form of the effective potential
Veff , i.e. the so-called exchange-correlation energy and potential. There exist approx-
imations to these (see Sections 7.1.3 and 7.1.4) that are good approximations in very
many cases. On the other hand, by introducing an approximation in the Schrödinger
equation for the model noninteracting particles, we do not know whether improved
calculations (e.g., using larger basis sets) also lead to improved results (compared
with, e.g., experiment or other calculations). The success of the Kohn–Sham ap-
proach is based on the assumption that it is possible to construct the model system
of noninteracting particles moving in an effective external potential. Thus, it is indi-
rectly assumed that for any ground-state density there exists an effective potential
(the corresponding density matrix is called V representative). There exist (specifically
constructed) examples where this is not the case, but in most practical applications,
this represents no problem [8].

HK theorems and KS equations can be extended to the spin-polarized systems
where the electron- density components ρα(r), ρβ(r) for spin-up and spin-down or-
bitals differ i.e. the spin-density ρs(r) = ρα(r) − ρβ(r) is nonzero.

The result is that the total energy and any other ground-state properties become
a functional not only of ρ(r) but also of spin-density ρs(r), i.e. Eeff = E[ρ(r), ρs(r)].
Spin-density-functional theory (SDFT) is a widely implemented and applied formal-
ism of DFT.

Alternative DFT formulations that use other variables in addition to (or instead
of) the spin densities are also useful [343].

The single-particle orbitals and complete N -electron wavefunctions in KS DFT
belong to irreducible representations of the group for the symmetry operations of the
system of interest (point-symmetry group for molecules and space-symmetry group for
crystals). This means that we can consider each irreducible representation separately.
For each of these, the variational principle will apply (since any state of a given
irreducible representation will only contain contributions from exactly that irreducible
representation). We can use this in generalizing the HK theorems that then apply for
the energetically lowest state of each irreducible representation. This means that if
we have the representations Dα, Dβ for a given system symmetry group then we can
apply DFT in studying the energetically lowest state for the Dα representation, that
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for the Dβ representation and so on, but not energetically higher ones of any of the
representations.

Since 1990 there has been an enormous amount of comparison for molecules be-
tween DFT KS and HF (MO) theory. Such a comparison is easily extended to crystals
when we consider CO instead of MO. The discussion of advantages and disadvantages
of DFT compared to MO theory can be found for example, in [102] and is briefly re-
produced here. The most fundamental difference between DFT and MO theory is the
following: DFT optimizes an electron density, while MO theory optimizes a wavefunc-
tion. So, to determine a particular molecular property using DFT, we need to know
how that property depends on the density, while to determine the same property us-
ing a wavefunction, we need to know the correct quantum- mechanical operator. As a
simple example, consider the total energy of interelectronic repulsion. Even if we had
the exact density for some system, we do not know the exact exchange-correlation
energy functional, and thus we cannot compute the exact interelectronic repulsion.
However, with the exact wavefunction it is a simple matter of evaluating the expec-
tation value for the interelectronic repulsion operator to determine this energy. Thus,
it is easy to become confused about whether there exists a KS “wavefunction”. For-
mally, the KS orbitals are pure mathematical constructs useful only in construction
of the density. In practice, however, the shapes of KS orbitals tend to be remarkably
similar to canonical HF MOs and they can be quite useful in qualitative analysis of
chemical properties. If we think of the procedure by which they are generated, there
are indeed a number of reasons to prefer KS orbitals to HF orbitals. For instance, all
KS orbitals, occupied and virtual, are subject to the same external potential. HF or-
bitals, on the other hand, experience varying potentials, and, in particular, HF virtual
orbitals experience the potential that would be felt by an extra electron being added
to the molecule. As a result, HF virtual orbitals tend to be too high in energy and
anomalously diffuse compared to KS virtual orbitals. This fact is especially important
for crystalline solids and explains why HF bandgaps are overestimated compared to
those in DFT and experiment. Unfortunately, for some choices of exchange-correlation
potential DFT bandgaps are too small in comparison with the experimental data. In
exact DFT, it can also be shown that the eigenvalue of the highest KS MO is the exact
first ionization potential, i.e. there is a direct analogy to Koopmans’ theorem for this
orbital – in practice, however, approximate functionals are quite poor at predicting
IPs in this fashion without applying some sort of correction scheme, e.g. an empirical
linear scaling of the eigenvalues.

The Slater determinant formed from the KS orbitals is the exact wavefunction
for the fictitious noninteracting system having the same density as the real system.
This KS Slater determinant has certain interesting properties by comparison to its
HF analogs. It is an empirical fact that DFT is generally much more robust in dealing
with open-shell systems where UHF methods show high spin contamination, i.e. incor-
porates some higher spin states (doublets are contaminated by quartets and sextets,
while triplets are contaminated by pentets and heptets). The degree of spin contami-
nation can be estimated by inspection of 〈S2〉, which should be 0.0 for a singlet, 0.75
for a doublet, 2.00 for a triplet, etc. Note, incidentally, that the expectation values
of S2 are sensitive to the amount of HF exchange in the functional. A “pure” DFT
functional nearly always shows very small spin contamination, and each added per
cent of HF exchange tends to result in a corresponding percentage of the spin con-
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tamination exhibited by the HF wavefunction. This behavior can make the hybrid
HF-DFT functionals useful for open-shell systems (see Sect. 4.1.2).

The formal scaling behavior of DFT is, in principle, no worse than N3, where N
is the number of basis functions used to represent the KS orbitals. This is better than
HF by a factor of N , and very substantially better than other methods that include
electron correlation (see Chap. 5).

The most common methods for solving KS equations proceed by expanding the
Kohn–Sham orbitals in a basis set. DFT has a clear advantage over HF in its ability
to use basis functions that are not necessarily contracted Gaussians. The motivation
for using contract GTOs is that arbitrary four-center two-electron integrals can be
solved analytically. In the electronic-structure programs where DFT was added as a
new feature to an existing HF code the representation of the density in the classical
electron-repulsion operator is carried out using the KS orbital basis functions. Thus,
the net effect is to create a four-index integral and these codes inevitably continue to
use contracted GTOs as basis functions. In particular, such a scheme is used in the
CRYSTAL code [23]. However, if the density is represented using an auxiliary basis
set, or even represented numerically, other options are available for the KS orbital
basis set, including Slater-type functions. The SIESTA density-functional code [344]
for crystalline solids uses numerical AO basis instead of GTO. Slater-type orbitals
(STO) enjoy the advantage that fewer of them are required (since they have the correct
cusp behavior at the nuclei) and certain advantages associated with symmetry can
more readily be taken, so they speed up calculations considerably. The Amsterdam
density-functional code and its BAND version for solids [345] makes use of STO
basis functions covering atomic numbers 1 to 118. Some information about the three
mentioned computer LCAO codes for solids is given in Appendix C.

Another interesting possibility is the use of plane waves as basis sets in periodic
infinite systems (crystalline solids) represented using periodic boundary conditions.
While it takes an enormous number of plane waves to properly represent the decidedly
aperiodic densities that are possible within the unit cells of interesting chcmical sys-
tems, the necessary integrals are particularly simple to solve, and thus this approach
has found wide use in solid-state physics.

Meanwhile, plane-wave basis use excludes the possibility of calculations with hy-
brid DFT-HF functionals.

7.1.3 Exchange and Correlation Functionals
in the Local Density Approximation

The effective potential (7.10) includes the external potential and the effects of the
Coulomb interactions between the electrons, e.g. the exchange and correlation in-
teractions. In principle, it also includes the difference in kinetic energy between the
fictitious noninteracting system and the real system. In practice, however, this dif-
ference is ignored in many modern functionals as the empirical parameters appear,
which necessarily introduce some kinetic-energy correction if they are based on ex-
periment [102].

Modeling the exchange and correlation interactions becomes difficult within KS
DFT as the exact functionals for exchange and correlation are not known except for
the homogeneous (uniform) electron gas. However, approximations exist that permit
the calculation of real systems.
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The simplest approximation is the local-density approximation (LDA), based upon
the exact exchange energy for a uniform electron gas, which can be obtained from
the Thomas–Fermi (TF) model, and from fits to the correlation energy for a uniform
electron gas.

In the TF model it is suggested that the number of electrons is so large that
the system could be treated using quantum-statistical arguments. The approximation
in the TF model concerns the kinetic energy. For the homogeneous interaction-free
electron gas the density is constant and the average kinetic energy per particle is
εhom

t = Cn5/3. The kinetic energy per unit volume in this model is nεhom
t . If the

electron density varies sufficiently slowly in space TLDA =
∫

d3rεhom
t (ρ(r)) may serve

as a workable approximation for the kinetic-energy functional.
If this is combined with the expression for the nuclei–electron attractive potential

and the electron–electron Hartree repulsive potential we have the TF expression for
the energy of a homogeneous gas of electrons in a given external potential:

ETF [ρ(r)] = CF

∫
ρ5/3(r)d3r−

∑
j

Zj

|r − Rj |ρ(r)+
1
2

∫ ∫
ρ(r)ρ(r′)
|r − r′| d3rd3r′ (7.14)

The importance of this equation is not so much how well it is able to really describe
the energy even of an atom, but that the energy is given completely in terms of the
electron density ρ(r).

This is an example of a density-functional for energy allowing us to map a density
ρ(r) onto an energy E without any additional information required. Furthermore, the
TF model employs the variational principle assuming that the ground state of the
system is connected to the electron density for which the energy (7.14) is minimized
under the constraint of N =

∫
d3rρ(r).

Before the KH theorems were proved it was not known either whether expressing
the energy as a density-functional is physically justified or whether employing the
variational principle on the density is really allowed [337].

Slater’s approximation of HF exchange [346] is another example of exploiting the
electron density as the central quantity. In this case, the nonlocal HF exchange energy
is approximated by α · C · ∫ ρ(r)4/3dr.

This approximate expression depends only on the local values of the electron
density ρ(r) representing a density-functional for the exchange energy (in the TF
model exchange and correlation effects are completely neglected). This formula was
originally derived as an approximation to the HF exchange, without any reference to
the density-functional theory but it is conceptually connected with this theory. The
4/3 power law for dependence of the exchange interaction on the electron density was
also obtained from a completely different approach using the concept of the uniform
electron gas [347]. Combined with the TF energy this approximation is known as
the Thomas–Fermi–Dirac model having conceptual importance for DFT methods. In
particular, it seems natural that the exchange-correlation energy EXC is approximated
by sum of the exchange EX and correlation EC energies.

In LDA for the exchange energy calculation the Dirac–Slater exchange energy is
used

EX [ρ] = CX

∫
ρ4/3(r)d3r (7.15)

or the more complicated suggested by Barth and Hedin [348].
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For the correlation energy functional EC [ρ(r)] the situation is more complicated
since even for a homogeneous electron gas it is not known exactly. Early approx-
imate expressions for correlation in homogeneous systems were based on applying
the perturbation theory and were suggested by Barth and Hedin [348], Gunnarsson
and Lundqvist [349]. With the advent of highly precise calculations of correlation
energy for the electron liquid by Ceperley and Alder (CA) [350] the approximations
for the correlation energy in a homogeneous system are made by parametrization
of CA data for a free-electron gas. There are known parametrizations of Vosko–
Wilk–Nisair [351], Perdew–Zunger [352] and Perdew–Wang [353]. The three latter
parametrizations of the LDA are implemented in most standard DFT program pack-
ages (both for molecules and solids) and in many cases give almost identical results.
On the other hand, the earlier parametrizations of the LDA, based on perturbation
theory can deviate substantially and are better avoided.

The functional dependence of EXC on the electron density is expressed as an in-
teraction between the electron density and “an energy density” εXC that is dependent
on the electron density

EXC [ρ(r)] =
∫

ρ(r)εXC [ρ(r)]d3r (7.16)

The energy density εXC is treated as a sum of individual exchange and correlation
contributions. Two different kinds of densities are involved [102]: the electron density
is a per unit volume density, while the energy density is a per particle density. The
LDA for EXC formally consists in

ELDA
XC [ρ(r)] =

∫
d3r

[
εhom

X [ρ(r)] + εhom
C [ρ(r)]

]
=
∫

d3rεhom
XC [ρ(r)] (7.17)

The energy densities εhom
X , εhom

C refer to a homogeneous system, i.e. the exchange-
correlation energy is simply an integral over all space with the exchange-correlation
energy density at each point assumed to be the same as in a homogeneous electron
gas with that density. Nevertheless, LDA has proved amazingly successful, even when
applied to systems that are quite different from the electron liquid that forms the
reference system for the LDA.

In the local spin-density approximation (LSDA) the exchange-correlation energy
can be written in terms of either of two spin densities ρα(r) and ρβ(r)

ELSDA
XC [ρα(r), ρβ(r)] =

∫
d3rρ(r)εhom

XC [ρα(r), ρβ(r)]

=
∫

d3rρ(r)
[
εhom

X

[
ρα(r), ρβ(r)

]
+ εhom

C

[
ρα(r), ρβ(r)

]]
(7.18)

or the total density ρ(r) and the fractional spin polarization ζ(r) = (ρα(r)−
−ρβ(r))/ρ(r).

For many decades the LDA has been applied in, e.g., calculations of band struc-
tures and total energies in solid-state physics. The LDA provides surprisingly good
results for metallic solids with delocalized electrons, i.e. those that most closely re-
semble the uniform electron gas (jellium). At the same time, there are well-known
disadvantages of LDA for solids. LDA revealed systematic shortcomings in the de-
scription of systems with localized electrons and as a result the underestimation of
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bond distances and overestimation of binding energies. LDA calculations as a rule
give calculated bandgaps that are too small. In quantum chemistry of molecules LDA
is much less popular because the local formulation of the energy expression does not
account for the electronic redistribution in bonds. For well-localized electrons the
nonexact cancellation of the self-energy part (self-interaction) of the Hartree term in
the LDA exchange functional is important (in HF energy the self-energy part in the
Hartree term is cancelled by the corresponding part of the exchange term). LDA fails
to provide results that are accurate enough to permit a quantitative discussion of the
chemical bond in molecules (so-called “chemical accuracy” requires calculations with
an error of not more than about 1 kcal/mol per particle). LDA exploits knowledge
of the density at point ρ(r). The real systems, such as molecules and solids, are in-
homogeneous (the electrons are exposed to spatially varying electric fields produced
by the nuclei) and interacting (the electrons interact via the Coulomb interaction).
The way density-functional theory, in the local-density approximation, deals with this
inhomogeneous many-body problem is by decomposing it into two simpler (but still
highly nontrivial) problems: the solution of a spatially uniform many-body problem
(the homogeneous electron liquid) yields the uniform exchange-correlation energy, and
the solution of a spatially inhomogeneous noninteracting problem (the inhomogeneous
electron gas) yields the particle density. Both steps are connected by the local-density
approximation, which shows how the exchange-correlation energy of the uniform in-
teracting system enters the equations for the inhomogeneous noninteracting system.

We note that both the local density approximation and the local exchange approx-
imation use only the diagonal part of the density matrix ρ(r, r′), i.e. ρ(r) = ρ(r, r).
However these approximations are different by their nature. In LDA the local density
is used to include both the exchange and correlation of electrons, in the local exchange
approximation to HF exchange the electron correlation is not taken into account at
all.

The particular way in which the inhomogeneous many-body problem is decom-
posed, and the various possible improvements on the LDA, are behind the success
of DFT in practical calculations, in particular, materials. The most important im-
provement of LDA is connected with the attempt to introduce a spatially varying
density and include information on the rate of this variation in the functional. The
corresponding functionals, known as semilocal functionals [330], are considered in the
next section.

7.1.4 Beyond the Local Density Approximation

The first successful extensions for the LDA were developed in the early 1980s when it
was suggested to supplement the density ρ(r) at a particular point r with information
about the gradient of the electron density at this point in order to account for the
nonhomogeneity of the true electron density [337]. LDA was interpreted as the first
term of a Taylor expansion of the uniform density, the form of the functional was
termed the gradient expansion approximation (GEA). It was expected to obtain better
approximations of the exchange-correlation functional by extending the series with the
next lowest term. In practice, the inclusion of low-order gradient corrections almost
never improves on the LDA, and often even worsens it. The reason for this failure
is that for GEA the exchange-correlation hole has lost many of the properties that
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made the LDA whole physically meaningful [337]. Higher-order corrections, on the
other hand, are exceedingly difficult to calculate, and little is known about them.

It was a major breakthrough when it was realized, in the early 1980s, that instead
of power-series-like systematic gradient expansions one could experiment with more
general functions of ρ(r) and ∇ρ(r), which need not proceed order by order. Such
functionals, of the general form

EGGA
XC [ρα, ρβ ] =

∫
d3rf(ρα, ρβ ,∇ρα,∇ρβ) (7.19)

have become known as generalized-gradient approximations (GGAs), [355]. GGA
functionals are the workhorses of current density-functional theory. Different GGAs
differ in the choice of the function f(ρ,∇ρ). Note that this makes different GGAs much
more different from each other than the different parametrizations of the LDA: essen-
tially there is only one correct expression for εhom

XC (ρ) and the various parametrizations
of the LDA are merely different ways of writing it [330]. On the other hand, depending
on the method of construction employed for obtaining f(ρ,∇ρ) one can obtain very
different GGAs. In particular, GGAs used in molecular quantum chemistry typically
proceed by fitting parameters to test sets of selected molecules. On the other hand, the
GGAs used in physics tend to emphasize exact constraints on the density-functional
for the exchange-correlation energy [357]. In this approach, the density-functional ap-
proximations are assigned to various rungs according to the number and kind of their
local ingredients [357].

The lowest rung is the local spin-density approximation LSDA, the second rung
is the generalized gradient approximation GGA (semilocal functionals). More accu-
rate functionals of higher rungs can be called “beyond-GGA functionals” or nonlocal
functionals. Third-rung Meta-GGA (MGGA) functionals depend, in addition to the
density and its derivatives, also on the kinetic-energy density [362]. Fourth-rung hybrid
functionals mix a fraction of the Hartree–Fock exchange into the DFT exchange func-
tional (see Sect. 4.2). MGGA and hybrid functionals can be called orbital functionals
because they are represented not only in terms of the electron density, but also contain
parts represented in single-particle Kohn–Sham orbitals ϕi(r). In MGGA function-
als kinetic energy density τ(r) = 1/2

∑
i|∇ϕi(r)|2 is included. In hybrid functionals

the nonlocal HF exchange energy is also orbital functional. Still another type of or-
bital functional is the self-interaction correction (SIC) (see Sect. 7.4). Higher-rung
density-functionals are increasingly more complex.

The semiempirical functionals are fitted to selected data from experiment or from
the ab-initio calculations. The higher the rung of the functional the larger is the
number of parameters (functionals with as many as 21 fit parameters are popular in
chemistry). Is DFT ab-initio or semiempirical? As was suggested in [357] it can fall
in between as a nonempirical theory when the functionals are constructed without
empirical fitting.

The best nonempirical functional for a given rung is constructed to satisfy as
many exact theoretical constraints as possible while providing satisfactory numerical
predictions for real systems [357]. Once a rung has been selected, there remains lit-
tle choice about which constraints to satisfy (but greater freedom in how to satisfy
them), [357]. Accuracy is expected to increase up the ladder of rungs as additional
local ingredients enable the satisfaction of additional constraints. A short summary of
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exact constraints on EXC [ρ] can be found in [357]. In this paper some useful recom-
mendations for users of DFT are also given. Users should not randomly mix and match
functionals, but should use exchange and correlation pieces designed to work together,
with their designer-recommended local parts. They should not shop indiscriminately
for the functional that “works best”. Users should always say which functional they
used, with its proper name and literature reference, and why they chose it. State-
ments like “we used density-functional theory” or “we used the generalized gradient
approximation” are almost useless to a reader or listener who wants to reproduce the
results.

Nowadays, the most popular (and most reliable) GGA functionals are PBE (denot-
ing the functional proposed in 1996 by Perdew, Burke and Ernzerhof [356] in physics,
and BLYP (denoting the combination of Becke’s 1988 exchange functional [358] with
the 1988 correlation functional of Lee, Yang and Parr [359]) in chemistry. PWGGA
denotes the GGA functional, suggested by Perdew and Wang [354, 355] and should
be allowed to retire gradually. Many other GGA-type functionals are also available,
and new ones continue to appear. The new meta-GGA (MGGA) functional TPSS
(Tao–Perdew–Staroverov–Scuseria) [360] supersedes an older one the PKZB (Perdew–
Kurth–Zupan–Blaha) functional [363]. The known functionals are modified as has
been done recently for the PBE functional to improve its accuracy for thermody-
namic and electronic properties of molecules [361,362].

We close this subsection with more detailed consideration of the PBE functional
[363]. It has two nonempirical derivations based on exact properties of the XC hole
[364] and energy [356]. In discussion of the PBE functional we follow [365]. The
exchange-correlation (XC) energy in the LSD approximation is given by

ELSD
XC [ρα, ρβ ] =

∫
d3rρ(r)[εX(ρ(r))f(ζ, r) + εC(rs(r), ζ(r))] (7.20)

where ζ = ρα−ρβ

ρα+ρβ
is the relative spin polarization and f(ζ) is given by

f(ζ) =
1
2

[
(1 + ζ)4/3 + (1 − ζ)4/3

]
(7.21)

The exchange energy per electron εX(ρ) of the unpolarized uniform electron gas
of density ρ(r) depends on rs =

[
3
4π ρ

]1/3 as εX(ρ) = − C
rs

and the correlation energy
εC per electron in a spin-polarized uniform electron gas depends on rs and ζ [354].
The PBE functional EPBE

XC is a sum of PBE exchange EPBE
X and PBE correlation

EPBE
C functionals. The exchange PBE functional is written in the form

EPBE
X (ρ) =

∫
d3rρεX(ρ)FX(s) (7.22)

with
FX(s) = 1 + k − k

1 + µs2/k
(7.23)

and k = 0.804, µ = 0.21951. This functional is found from the exact spin-scaling
relation

EX [ρα, ρβ ] =
1
2
EX [2ρα] +

1
2
EX [2ρβ ] (7.24)
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The PBE correlation energy functional is

EPBE
C [ρα, ρβ ] =

∫
d3rρ[εC(rs, ζ) + H(rs, ζ, t)] (7.25)

where the nonlocal part H(rs, ζ, t) depends on the parameter t including the density
gradient:

H = γΦ3 ln
{

1 +
β

γ
t2
[

1 + At2

1 + At2 + A2t4

]}
(7.26)

where β = 0.066725, γ = 0.03191, and

t =
(π

4

)1/2
(

9π

4

)1/6
s

Φr
1/2
s

(7.27)

s =
|∇ρ|

2(3π2)1/3ρ4/3
=

3
2

(
9
4π

)1/3

|∇rs| (7.28)

Φ(ζ) =
1
2

[
(1 + ζ)2/3 + (1 − ζ)2/3

]
(7.29)

A =
(

β

γ

)
1

exp[−εC(rs, ζ)/γΦ3] − 1
(7.30)

The PBE GGA correctly reduces to LSD for uniform electron densities, its corre-
lation component recovers the slowly varying (t → 0) and rapidly varying (t → ∞)
limits of numerical GGA. Under uniform scaling (ρ(r) → λ3ρ(λr)), the PBE exchange
energy scales like λ (as does the exact exchange functional) and the PBE correlation
energy correctly scales to a constant as λ → ∞. For small-amplitude density variations
around a uniform density, LSD is a very good approximation. The PBE functional
recovers this limit. The PBE functional satisfies the Lieb–Oxford bound [366]:

EPBE
X [ρα, ρβ ] ≥ EPBE

XC [ρα, ρβ ] ≥ 2.273ELDA
X [ρ] (7.31)

A useful form to compare GGA functionals is to write

EGGA
XC [ρα, ρβ ] ≈

∫
d3rρεX(ρ)FXC(rs, ζ, s) (7.32)

where the enhancement factor FXC(rs, ζ, s) over local exchange depends upon the
local radius rs(rs � 1 for core electrons and rs � 1 for valence electrons), spin
polarization ζ and inhomogeneity s. The s-dependence of FXC is the nonlocality of
the GGA. We see that the nonempirical PBE functional best fulfils many of the
physical and mathematical requirements of DFT. We will consider some applications
of the PBE functional in LCAO calculations of crystals in Chapters 9–11. At the same
time, there are some failures of the PBE functional essential for extended systems.
For example, the exact exchange-correlation hole in crystals may display a diffuse
long-range tail that is not properly captured by GGA (such a diffuse hole arises in
the calculation of the surface energy of a metal). Neither LSD nor GGA describe
correctly the long-range tail of the van der Waals interaction. Corrections of these
failures might be possible by using orbital-dependent hybrid functionals considered
in the next section.



244 7 Kohn–Sham LCAO Method for Periodic Systems

7.1.5 The Pair Density. Orbital-dependent Exchange-correlation
Functionals

Density-functional theory, even with rather crude approximations such as LDA and
GGA, is often better than Hartree–Fock: LDA is remarkably accurate, for instance,
for geometries and frequencies, and GGA has also made bond energies quite reliable.
Therefore, “the aura of mystery” appeared around DFT (see discussion of this by
Baerends and Gritsenko [367]). The simple truth is not that LDA/GGA is particu-
larly good, but that Hartree–Fock is rather poor in the two-electron chemical-bond
description. This becomes clear when one considers the statistical two-electron distri-
bution, which is usually cast in terms of the exchange-correlation hole: the decrease
in probability to find other electrons in the neighborhood of a reference electron,
compared to the (unconditional) one-electron probability distribution [337].

The concept of electron density (7.1), which provides an answer to the question
“how likely is it to find one electron of arbitrary spin within a particular volume
element while all other electrons may be anywhere” can be extended to the probability
of finding not one but a pair of two electrons with spins σ1 and σ2 simultaneously
within two volume elements dr1 and dr2, while the remaining N − 2 electrons have
arbitrary positions and spins. The quantity that contains this information is the pair-
electron density ρ2(x1,x2) which is defined as

ρ2(x1,x2) = N(N − 1)
∫

. . .

∫
Ψ(x1, . . . ,xN )2dx3 . . . dxN (7.33)

The pair-electron density actually contains all the information about electron corre-
lation. The pair density is a nonnegative quantity, symmetric in the coordinates and
normalized to the total number of nondistinct electron pairs N(N − 1). Obviously,
if electrons would not interact, the probability of finding one electron at a particular
point of coordinate-spin space would be completely independent of the position and
spin of the second electron and it would be possible that both electrons are simulta-
neously found in the same volume element. In this case, pair density would reduce to
a simple product of the individual probabilities, i.e.

ρ2(x1,x2) =
N − 1

N
ρ(x1)ρ(x2) (7.34)

The N(N − 1) factor enters because the particles are identical. From the antisym-
metry of the many-electron wavefunction Ψ(x1, . . . ,xN ) it follows that ρ2(x1,x2) =
−ρ2(x2,x1), i. e. the probability of finding two electrons with the same spin at the
same point in space is zero.

This effect is known as exchange or Fermi correlation and is a direct consequence
of the Pauli principle. The Fermi hole is in no way connected to the charge of electrons
and applies equally to neutral fermions. This kind of correlation is included in the HF
approach due to the antisymmetry of the Slater determinant [337]. The electrostatic
repulsion of electrons (the 1/r12 term in the Hamiltonian) prevents the electrons from
coming too close to each other and is known as Coulomb correlation. This effect is
independent of the spin and is called simply electron correlation, and is completely
neglected in the HF method.
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The conditional probability Ω(x1,x2) = ρ(x1,x2)/ρ(x1) defines the probability
of finding any electron at position 2 in coordinate-spin space if there is one already
known to be at position 1.

The exchange-correlation (xc) hole is defined as the difference between Ω(x1,x2)
and the uncorrelated probability of finding an electron at x2:

hxc(x1,x2) =
ρ2(x1,x2)

ρ(x1)
− ρ(x2) = ρ(x2)f(x1,x2) (7.35)

and contains exactly the charge of one electron
∫

hxc(x1,x2)dx2 = −1, [337]. The
function f(x1,x2) is the correlation factor, being zero for the completely uncorrelated
case.

The exchange-correlation hole describes the change in conditional probability
caused by the correction for self-interaction, exchange and Coulomb correlation, com-
pared to the completely uncorrelated situation. It can formally be split into the Fermi
hole, hσ1=σ2

x (r1, r2) and the Coulomb hole hσ1,σ2
c (r1, r2)

hxc(x1,x2) = hσ1=σ2
x (r1, r2) + hσ1,σ2

c (r1, r2) (7.36)

The exchange hole hx applies only to electrons with the same spin, the correlation hole
hc has contributions for electrons of either spin and is the hole resulting from the 1/r12

electrostatic interaction. This separation is convenient but only the total xc hole has
a real physical meaning. In the HF method the Fermi hole is accounted for through
the use of a single Slater determinant whereas the Coulomb hole is neglected. Like the
total hole, the Fermi hole contains exactly the charge of one electron

∫
hx(r1, r2)dr2 =

−1 and takes care of the self-interaction correction (SIC). The exchange hole hx is
negative everywhere hx(r1, r2) < 0 and its actual shape depends not only on the
Fermi correlation factor but also on the density at r2. As a consequence, hx is not
spherically symmetric.

The Coulomb hole must be normalized to zero and this result is independent of
the positions of electrons with σ′ �= σ:

∫
hc(r1, r2)dr2 = 0.

The essential error of Hartree–Fock arises from the fact that in the HF model the
exchange-correlation hole in a two-electron bond is not centered around the reference
electron, but is too delocalized, having considerable amplitude on both atoms involved
in the bond. The LDA and GGA models incorporate, simply by using an electron-
centered hole, an important part of the effect of the interelectron Coulomb repulsion.

To improve the LDA and GGA models the orbital-dependent functionals are in-
troduced. The introduction of orbital dependence, not only density and gradient de-
pendence, into the functionals can be realized in different ways [330]. Hybrid HF-DFT
functionals are the most popular beyond-GGA functionals. These functionals mix a
fraction of HF exchange into the DFT exchange functional and use the DFT corre-
lation part. But why is the exact HF exchange mixed with the approximate DFT
exchange part? How can one find the weights of this mixing? May be it would be
possible to use the exact HF exchange and rely on approximate functionals only for
the part missing in the HF model, i.e. the electron correlation: Exc = EHF

x + EKS
c

(EXX – orbital-dependent exact exchange functional). The HF exchange is calculated
using KS orbitals so that EXX energy will be slightly higher than the HF energy. The
orbital-dependent exact-exchange (EXX) group of methods has received much atten-
tion in the literature. Two advantages of the EXX functional are often mentioned:
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(a) the self-interaction correction is incorporated in this functional; (b) it is natural
to break up the total problem of electron–electron interaction in the large (due to
self-interaction correction) exchange part and the small correlation part. The hope is
of course that it will be simpler to find an accurate density-functional for the small
correlation energy.

A critique of the EXX method in DFT can be found, for example, in [337,367]. It is
clear that the EXX method does not offer any advantage over HF for energies. On the
contrary, starting with EXX actually undermines the very basis of the success of DFT,
which has been the breaking away from the quantum-chemistry paradigm of dividing
up the full electron–electron interaction problem into two steps: first Hartree–Fock (or
exchange only) and next the remaining correlation problem. That this is indeed the
case is masked by the DFT terminology that still uses the names “exchange” (e.g.,
Becke exchange, Perdew exchange) and “correlation” (e.g., Perdew–Wang correlation,
Lee–Yang–Parr (LYP) correlation). One should be aware that, while correlation is in-
deed much smaller than exchange in for instance (heavy) atoms, this is not true in
the electron-pair bond. Both Hartree–Fock and the use of the exact-exchange func-
tional in Kohn–Sham DFT are very deficient models for the description of chemical
bonding. They both use a two-particle probability distribution that is wrong, as can
be seen from the shape of the “hole” a reference electron creates around itself: the
hole is not centered around the reference electron, but is delocalized over the atoms
forming the bond. From this wrong hole shape one can understand the deficiencies of
this model, such as too diffuse orbitals and density, hence wrong kinetic energy and
electron–nuclear attraction energy. The true xc hole is substantially more localized
around the reference electron. That is why rough localized model holes, like those of
GGA, which approximate this total hole, are so successful.

This can be illustrated for the prototype electron-pair bond, the H2 molecule, at
the equilibrium H–H distance [337, 367]: in the H2 case HF and EXX are identical.
The Hartree–Fock (EXX) model is a poor zero-order approximation for the electron-
pair bond. It is also extremely size inconsistent, in the sense that when we introduce
a second H atom in the universe, remote from a given H atom, the HF/EXX model
totally fails to deliver the sum of the energies of two H atoms. However, when we
add the Coulomb hole (or correlation hole) to the Fermi (exchange) hole, we obtain a
total hole that is localized at the nucleus where the reference electron is located. This
will provide the right potential, and therefore the right density and kinetic energy.
The localized hole does not require any knowledge of where the other H atom is
located, it is the unphysical breaking up of this total hole into a delocalized exchange
part and an equally delocalized Coulomb part that complicates the electron–electron
interaction treatment and requires knowledge of the position of the second nucleus
in order to build accurate holes. Actually, this example illustrates that the division
in exchange and correlation holes creates one of the largest problems of DFT. The
problem basically is that the total density ρ(r) around each H nucleus is identical at
large H–H distances to that in a free H atom. However, the exchange and correlation
energies in the stretched H2 are very different from those in two isolated H atoms.
In particular, the correlation energy is zero in individual H atoms, in contrast to
the strong left-right nondynamical correlation in the dissociating H2 molecule. It is
virtually impossible to devise functionals that use only local information (local density
and derivatives of the density) and still recognize the position of the other H atom and



7.1 Foundations of the Density-functional Theory 247

build correctly the individual exchange and correlation holes, the shape of which is
determined by the positions of the nuclei. The LDA and GGA total holes are localized
around the reference electron, which is a definite advantage, the EXX approximation
can not be regarded to be the next improvement beyond GGA. There are other
possibilities of such an improvement: 1) to develop orbital-dependent functionals,
which represent exchange and correlation simultaneously; 2) use HF-DFT exchange
mixing.

The first possibility was realized recently in [367–370] where the virtual orbital-
dependent xc functional EBB

xc (BB, Buijse–Baerends) is suggested:

EBB
xc [{ϕj}, {ϕa}] = −1

2

M∑
i

M∑
j

√
wiwj

∫
dr1dr2

ϕi(r1)ϕi(r2)ϕj(r1)ϕ∗
j (r2)

r12
(7.37)

and applied in calculations of hydrogen chains Hn and small molecules. Here wi[ρ] is
the xc orbital weight, which governs the involvement of the occupied/virtual orbital
ϕi in the xc functional. It is important that the summation in (7.37) is made over
M = Nocc + Nv orbitals where Nocc and Nv are the numbers of occupied and virtual
KS orbitals. By giving weights to the virtual orbitals one can incorporate the effect
of correlation. In [368] the functional form of wi has been approximated with the
Fermi-type distribution

wi =
2

1 + exp(f(εi − εF ))
(7.38)

where εi are the KS orbital energies and εF is the Fermi-level parameter. We do not
consider the EBB

xc functional in more detail as its possibilities for crystals are not well
studied.

The second possibility of GGA improvement – mixing of HF and DFT exchange – is
used in the well-known B3LYP, B3PW and PBE0 hybrid functionals. The performance
of hybrid density-functionals (HDF) in solid-state chemistry is examined in a review
[371] and many original publications. It is demonstrated that the HDF methods allow
calculation of different properties of solids in good agreement with the experiment.
We return to this point in Sect. 7.2. In Kohn–Sham density-functional theory, the
exchange-correlation energy is rigorously given by

Exc =
1
2

∫
ρ(r)

∫
hxc(r, r′)
|r′ − r| d3r′d3r (7.39)

hxc(r, r′) =

1∫
0

hλ
xc(r, r′)dλ (7.40)

known as the “adiabatic connection” or “coupling strength integration”. In this most
fundamental of DFT formulas, hxc is an effective exchange-correlation hole, and λ is a
coupling-strength parameter that switches on interelectronic 1/r12 repulsion, subject
to a fixed electronic density (achieved, in principle, by suitably adjusting the external
potential as a function of λ). The Kohn–Sham hxc is therefore a coupling strength
average of hλ

xc as it evolves from λ = 0 through λ = 1 [372].
In an atom, the size of the hole is relatively insensitive to λ and remains of roughly

atomic size. In a molecule, the changes in the character and size of the hole occur as λ
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varies from its noninteracting λ = 0 to its fully interacting λ = 1 limits. At λ = 0 (pure
exchange with no correlation whatsoever) delocalization of the hole over two or more
centers is characteristic. Accurate DFTs must recognize this λ = 0 nonlocality. As λ
increases, the hole is localized by the long-range, nondynamical, left–right correlations
that are absent in atoms but operative in molecules. At the fully interacting limit (λ =
1), the hole has been localized to roughly atomic size. To incorporate the necessary
nonlocality Becke [373] proposed so-called hybrid functionals

Ehyb
xc = EKS

xc + amix

(
EHF

x − EKS
x

)
(7.41)

The difference from the EXX functional is the following: the exact HF exchange EHF
x

is mixed with the DFT (LDA,GGA) exchange-correlation energy in hybrid functionals
and with the DFT correlation energy in EXX functionals. The mixing parameter amix

is used to patch an appropriate amount of HF exchange into the exchange-correlation
energy. Even the simplest “half-half” hybrid functional (amix = 0.5) greatly improves
the calculated properties, compared with the pure DFT results. Becke developed the
3-parameter functional expressions known as B3PW and B3LYP hybrid functionals:

EB3PW
xc = ELSDA

xc + a
(
EHF

x − ELSDA
x

)
+ b∆EBecke

x + c∆EPW
x (7.42)

EB3LY P
xc = ELSDA

xc + a
(
EHF

x − ELSDA
x

)
+ b∆EBecke

x + c∆ELY P
x (7.43)

The B3PW functional (7.42) uses in Exc the Becke [358] exchange and Perdew–Wang
exchange-correlation [355], while in the B3LYP functional (7.43) the correlation part
is that suggested by Lee–Yang–Parr [359]. The a, b, c parameters were optimized to
fit the experimental data and do not depend on the molecule under consideration.
It is clear that the choice of hybrid functionals is motivated by reasonable physical
arguments. The term a

(
EHF

x − ELSDA
x

)
replaces some electron-gas exchange with

the exact exchange to capture the proper small-λ limit in (7.39). The coefficient a
reflects the rate of onset correlation as it increases from zero. The other terms allow
optimum admixtures of exchange and correlation-type gradient corrections. These
hybrid functionals are the simplest mixture of exact exchange, the LSDA for exchange-
correlation, and gradient corrections of exchange and correlation type, that exactly
recovers the uniform electron-gas limit. The B3LYP functional is the most popular
in molecular quantum chemistry. Nevertheless, the correct amount of HF exchange
included in any hybrid functional cannot be a constant over all species or even all
geometries of a single species [374]. The rationale for mixing exact exchange with
DFT approximation is discussed in [375]. The authors write the hybrid functional in
the form

Exc
∼= EKS

xc +
1
n

(
Ex − EKS

x

)
(7.44)

where the optimum integer n can be found from the perturbation theory and n = 4
for atomization energies of typical molecules. Such a formally parameter-free hybrid
functional with a PBE exchange-correlation part is known as the PBE0 hybrid func-
tional. The simplification of hybrid exchange-correlation functionals was suggested
by Becke [372] based on simulation of delocalized exact exchange by local density-
functionals. A simple model was introduced that detects exchange hole delocalization
in molecules through a local variable related to kinetic-energy density.
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Is it possible to use for extended systems (crystalline solids) the same hybrid
functionals that are used in molecular DFT calculations? This problem is discussed
in the next section.

7.2 Density-functional LCAO Methods for Solids

7.2.1 Implementation of Kohn–Sham LCAO Method
in Crystals Calculations

Although the same fundamental theory underlies the density-functional approach in
both solid-state physics and molecular quantum chemistry, and the same exchange-
correlation functionals can be used in both disciplines (see Sect. 7.2.4), the detailed im-
plementation is usually quite different [376]. First, this difference concerns the basis-set
choice. Since the electronic charge density of an isolated molecule is necessarily local-
ized in a finite region of space, the traditional quantum-chemical method is LCGTO
(MOs are expanded in a basis of localized Gaussian-type orbitals, centered on the
atomic nuclei). In contrast, the tradition in solid-state physics is to use plane waves
(PW) as a basis set for expanding the one-particle Kohn–Sham wavefunctions (crys-
talline orbitals). These can be used in their pure form in the first-principles pseudopo-
tential method [377] or modified near the atomic cores (augmented plane waves [378]).
The all-electron (termed also full potential – FP) PW calculations are practically dif-
ficult as the core-states description requires a huge number of plane waves. The plane
waves are a reasonable first approximation to conduction-band eigenfunctions and
permit many formal simplifications and computational economies. Nevertheless, PW
methods have the disadvantage that very localized or inhomogeneous systems may
require excessive numbers of waves for their representation. This problem can be es-
pecially serious in surface calculations, where the requirement of periodicity in three
dimensions leads to a model with slabs repeating periodically along the surface nor-
mal. If the space between the slabs is wide enough to make interactions between
them negligible, the “lattice constant” normal to the surface has to be quite large and
the corresponding reciprocal lattice vector quite short, resulting in a large number
of plane waves within a given kinetic-energy cutoff and hence a relatively expensive
calculation. This problem is discussed in Chap. 11 in more detail.

The distance between the slabs needs to be even larger if adsorbate molecules are
to be added to the surface, since these molecules also should not interact across the
space between the slabs. Localized-basis approaches to periodic systems do not suffer
from this disadvantage. Very localized states, including core states if desired, can
be represented by a suitable choice of atom-centered basis functions. The electronic
charge density goes naturally to zero in regions of space where there are no atoms,
and the lack of basis functions in such regions is not a problem unless a detailed
description of energetic excitations, scattering states, or tunneling is required [376].
For surface modeling there is no need for periodicity normal to the surface; a single
slab of sufficient finite thickness can be used, since these methods can be formulated
equally easily for systems periodic in one, two or three dimensions. This facilitates the
accurate treatment of molecule–surface interactions, especially when the molecules are
relatively far from the surface. Also, if the basis functions are carefully constructed
and optimized for the crystalline environment (we discuss this problem in Chap.
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8) it is possible to represent the valence-electron eigenstates with a relatively small
number of basis functions: just enough to accommodate all the electrons, plus a few
more functions to give the Kohn–Sham orbitals sufficient variational freedom. Thus,
only a few tens of basis functions per atom are typically needed, versus hundreds per
atom in typical plane-wave approaches. The auxiliary basis sets needed to represent
the charge density and, if desired, the exchange-correlation potential are also fairly
modest in size. Once the basis set has been constructed and the required overlap and
Hamiltonian matrices formed, the small (compared to plane wave) size of the basis
can greatly reduce the computational cost of solving the Kohn–Sham equations.

Also, especially in systems with large unit cells, one can exploit sparcity in these
matrices, since basis functions on distant centers will have negligible overlap and
interaction (except for certain long-range Coulomb multipole interactions that can be
summed according to Ewald’s convention or screened). Advanced techniques can be
applied to calculate multicenter integrals in LCGTO methods for solids. For example,
in the implementation of periodic boundary conditions in the MO LCAO program
[379, 380] all terms contributing to the KS Hamiltonian are evaluated in real space,
including the infinite Coulomb summations, which are calculated with the aid of the
fast multipole method [381, 382]. In LCGTO methods with PBC the O(N) linear-
scaling DFT calculations for large and complex systems are possible [379, 383]. For
example, carbon nanostructures up to C540 were calculated [384] using DFT LCAO
with the numerical atomic basis. Below, we present the basic formalism for DFT KS
equations for periodic systems using a basis set of atomic orbitals. For more details of
DFT LCAO methods the reader is referred to the original publications [376,385–389].

The HF LCAO method for periodic systems was considered in Sections 4.1.5 and
4.1.6. We discuss here the KS LCAO method for crystals in comparison with the HF
LCAO approach. The electronic energy of the crystal (per primitive cell) as calculated
within the HF approximation (EHF ) and DFT (EDFT ) can be expressed in terms of
the one-electron density matrix (DM) of the crystal defined as P (k) in terms of Bloch
sums of AOs, (4.125) or as ρ(R,R′) in coordinate space, (4.126). These expressions
are:

EHF [ρ] = E0[ρ] + EH [ρ] + EX [ρ] (7.45)

EDFT [ρ] = E0[ρ] + EH [ρ] + EXC [ρ] (7.46)

where E0[ρ] is defined as the expectation value of the one-electron operator ĥ(R)

E0[ρ] =
1
N

∫
VN

d3R[ĥ(R)ρ(R,R′)]R′=R (7.47)

EH [ρ] is the Coulomb (Hartree) energy,

EH [ρ] =
1
N

∫
VN

d3R

∫
VN

d3R′ ρ(R,R)ρ(R′,R′)
|R − R′| (7.48)

EX [ρ] is the HF exchange energy,

EX [ρ] = − 1
2N

∫
VN

d3R

∫
VN

d3R′ |ρ(R,R′)|2
|R − R′| (7.49)
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and EXC [ρ] in (7.46) is the exchange-correlation energy functional of density ρ(R,R) =
ρ(R) (different expressions for this functional depend on the DFT version and were
discussed in Sect. 7.1). As in Sect. 4.3.1 the electron position vector R is supposed to
be written as the sum R = r + Rn, where Rn specifies the primitive cell and r is the
position vector of an electron within this primitive cell. The difference between the HF
exchange energy EX and DFT exchange-correlation energy EXC is the following: the
former depends on the total DM ρ(R,R′), the latter only on DM diagonal elements
ρ(R), i.e. electron density.

In the HF approximation and DFT, the crystal orbitals are solutions to the equa-
tions

F̂ (k)ϕi(k) = εi(k)ϕi(k) (7.50)

where the one-electron operator F̂ (k) is either the HF operator, F̂HF (k)

F̂HF (k) = Ĥ(k) + Ĵ(k) + X̂(k) (7.51)

or the Kohn–Sham operator F̂KS(k),

F̂KS(k) = Ĥ(k) + Ĵ(k) + V̂XC(k) (7.52)

Here, Ĥ(k) is a one-electron operator that describes the motion of an electron in
the crystal and is equal to the sum of the kinetic-energy operator and the Coulomb
interaction operator between the electron and fixed atomic nuclei and Ĵ(k) and X̂(k)
are the Coulomb and exchange operators, respectively, which describe the interaction
of the given electron with the other electrons of the crystal.

In the LCAO basis, both the Hartree–Fock and Kohn–Sham equations are the
same (see (4.57)):

F (k)C(k) = S(k)C(k)E(k) (7.53)

The HF and KS operators in the reciprocal space are represented by the Fock matrices
FHF

µν (k) and Kohn–Sham matrices FKS
µν (k), which are related to the matrices in the

coordinate space by the relations

FHF
µν (k) =

∑
Rn

exp(ikRn) [hµν(Rn) + jµν(Rn) + xµν(Rn)] (7.54)

FKS
µν (k) =

∑
Rn

exp(ikRn)
[
hµν(Rn) + jµν(Rn) + vXC

µν (Rn)
]

(7.55)

where hµν(Rn), jµν(Rn) and xµν(Rn) are the one-electron, Coulomb, and exchange
parts of the Fock matrix in the coordinate space, respectively (see (4.59)–(4.63)). In
the DFT, instead of the nonlocal-exchange interaction matrix xµν(Rn), the exchange-
correlation matrix vXC

µν (Rn) is used, with different exchange-correlation functional
approximations being employed in various versions of the DFT. In particular, in the
local-density approximation (LDA), it is assumed that

vXC
µν (Rn) =

∫
d3Rϕµ(R)vXC(R)ϕν(R − Rn)

vXC(R) =
∂

∂ρ
ε[ρ(R)] (7.56)
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The CO-LCAO calculations based on both the HF method and DFT allow one not
only to make a comparison between the results obtained within these two approx-
imations but also to employ a combination of these approximations used in hybrid
HF-DFT methods. The HF self-consistent electron density of the crystal can be used
to calculate correlation corrections to the total HF energy a posteriori [390]. In some
cases it is useful to use the HF self-consistent density matrix to make the convergence
of the DFT LCAO self-consistent procedure faster [23].

The extension of the existing HF-LCAO computer codes to DFT-LCAO ones
allows a very direct comparison between these methods using the same code, the
same basis set, and the same computational conditions. The modification of the HF
LCAO code with PBC to perform DFT calculations is straightforward in principle. It
is required only to delete the HF exchange and instead to evaluate the matrix elements
of exchange-correlation operator, that is, to solve KS rather than HF equations in each
iteration of the SCF procedure [389]. These modifications were made in the PBC HF
codes Crystal95 [23] and Gaussian03 [107]. The main difficulty of this modification
arises in the calculations of matrix elements of the exchange-correlation operator.
Different approaches to this problem were suggested.

The principal merit of the HF LCAO scheme is the possibility to calculate the ma-
trix elements of the Fock matrix analytically. This merit may be retained in the DFT
LCAO calculation if the exchange-correlation potential is expanded in an auxiliary
basis set of Gaussian-type functions, with even-tempered exponents. At each SCF
iteration the auxiliary basis set is fitted to the actual analytic form of the exchange-
correlation potential, which changes with the evolving charge density [391].

The numerical integration also can be used to calculate the matrix elements of the
exchange-correlation potential. For the numerical integration, the atomic partition
method proposed by Savin [392] and Becke [393] has been adopted and combined
with Gauss–Legendre (radial) and Lebedev (angular) quadratures [394]. The Kohn–
Sham LCAO periodic method based on numerical integration at each cycle of the self-
consistent-field process is computationally more expensive than the periodic LCAO
Hartree–Fock method that is almost fully analytical.

In conclusion of this section we give some comments concerning the meaning of
the KS eigenvalues and orbitals [11]. Strictly speaking, the KS eigenvalues and eigen-
vectors do not have the physical meaning of one-electron energies and wavefunctions
as in the HF theory. Also, the single-determinant many-electron wavefunction con-
structed out of the KS orbitals does not correspond to the exact wavefunction of the
system of interacting electrons; it is merely a wavefunction of the corresponding fic-
titious noninteracting system. The HF eigenvalues for occupied and empty states are
calculated with different potentials, but KS eigenvalues with the same. Therefore, one
should be careful with the KS eigenvalues of the states lying above the “occupied”
ones. For example, the energy gap between the uppermost valence and the lowermost
conduction bands in a solid is strongly underestimated in the majority versions of
DFT. Note that the gap is always overestimated in the HF theory. It can be shown
that similarly to Koopman’s theorem in the HF theory, the ionization energy in the
KS theory is given by the KS energy in the highest-occupied state. But this result
cannot be applied to other occupied KS states since in the KS theory all states must
be occupied sequentially from the bottom to the top: one cannot remove an electron
below the highest-occupied state leaving a hole there.
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As an advantage of the DFT LCAO method one can mention the possibility of
linear scaling in calculations of complex molecules and crystals, considered in next
next section.

7.2.2 Linear-scaling DFT LCAO Methods for Solids

The increase in computer power and the progress in the methodology have allowed
the ab-initio calculations of increasingly more complex and larger systems with an
increasing number of atoms N (for periodic systems N is the number of atoms in
the primitive unit cell). In the HF LCAO and DFT PW methods the computer time
and memory scales with N like N2−3 [377, 399]. inner only recently that two linear
system-size scaling O(N) DFT LCAO methods for periodic systems were developed
that resulted in general purpose, flexible DFT computer codes, [107,344].

The Siesta (Spanish Initiative for Electronic Simulations with Thousands of
Atoms) method [383, 384, 400] achieves linear scaling by the explicit use of localized
Wannier-like functions and numerical pseudoatomic orbitals confined by a spherical
infinite-potential wall [401]. As the restriction of the Siesta method we mention the dif-
ficulty of the all-electron calculations and use of only LDA/GGA exchange-correlation
functionals.

The second DFT LCAO linear-scaling method by Scuseria and Kudin (SK method)
[379] uses Gaussian atomic orbitals and a fast multipole method, which achieves not
only linear-scaling with system size, but also very high accuracy in all infinite summa-
tions [397]. This approach allows both all-electron and pseudopotential calculations
and can be applied also with hybrid HF-DFT exchange-correlation functionals.

The first step in the Siesta method calculation is the choice of pseudopotentials.
In Chap. 8 we discuss in more detail the pseudopotenials used in periodic HF and
KS LCAO calculations. The Siesta method relies on the use of strictly confined basis
atomic orbitals, i.e. orbitals that are zero beyond a certain radius. This keeps the
energy strictly variational, thus facilitating the test of the convergence with respect
to the radius of confinement. In addition to the atomic valence orbitals polarization
pseudoatomic orbitals are added to account for the deformation induced by bond
formation. The different AO choices in HF and DFT LCAO calculations are discussed
in Chap. 8. In calculations of silicon crystal it was shown [400] that the standard basis
already offers quite well converged results, comparable to those used in practice in
most plane-wave calculations. The study of the dependence of the lattice constant,
bulk modulus and cohesive energy of bulk silicon on the range of the basis orbitals
shows that a cutoff radius of 3 Å for both s and p orbitals already yields very well
converged results.

Within the pseudopotential approximation, the standard KS one-electron Hamil-
tonian is written as

Ĥ = T̂ +
∑

I

V̂loc
I +

∑
I

V̂nonloc
I + V̂H + V̂xc (7.57)

where T̂ is the kinetic energy operator, I is an atom index, V̂H and V̂xc are the
total Hartree and xc potentials. The pseudopotential operator is the sum of the local
V̂loc

I and nonlocal V̂nonloc
I parts of the pseudopotential of atom I. The nonlocal part

uses a different radial potential Vl(r) for each angular momentum l (see Chap. 8). In
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order to eliminate the long range of Vloc
I it is screened with the potential Vat

I , created
by an atomic electron density ρat

I , constructed by populating the basis functions
with appropriate valence atomic charges. Notice that, since the atomic basis orbitals
are zero beyond the cutoff radius rc

I , the screened “neutral-atom” (NA) potential
VNA

I = Vloc
I +Vnonloc

I is also zero beyond this radius. Now, let δρ(r) be the difference
between the self-consistent electron density ρ(r) and the sum of atomic densities
ρat =

∑
Iρ

at
I , and let δVH(r) be the electrostatic potential generated by δρ(r) that

integrates to zero and is usually much smaller than ρ(r). Then the total Hamiltonian
may be rewritten as

Ĥ = T̂ +
∑

I

V̂nonloc
I + δVH + Vxc (7.58)

The matrix elements of the first two terms involve only two-center integrals that are
calculated in reciprocal space and tabulated as a function of interatomic distance.
The remaining terms involve potentials that are calculated on a three-dimensional
real-space grid.

In the Brillouin sampling a supercell around the unit cell (and comprising the unit
cell itself) is defined large enough to contain all the atoms whose basis orbitals are
nonzero at any of the grid points of the unit cell, or that overlap with any of the basis
orbitals in it. All the nonzero two-center integrals between the unit-cell basis orbitals
and the supercell orbitals are calculated without any complex phase factors. Also
calculated are the grid integrals between all the supercell basis orbitals ϕµ′ and ϕν′

(primed indices run over all the supercell), but within the unit cell only. These integrals
are accumulated in the corresponding matrix elements. Once all the real overlap and
Hamiltonian matrix elements are calculated, they are multiplied, at every k point, by
the corresponding phase factors and accumulated by folding the supercell orbital to
its unit-cell counterpart. The resulting N × N complex eigenvalue problem, with N
the number of orbitals in the unit cell, is then solved at every sampled k-point, finding
the Bloch-state expansion coefficients over AOs and the density at a grid point of the
unit cell. The fineness of this grid is controlled by a k-grid cutoff (see Sect. 4.2), a
real-space radius that plays a role equivalent to the plane-wave cutoff of the real-space
grid [89]. The origin of the k-grid may be displaced from k = 0 in order to decrease
the number of inequivalent k-points (see Sect. 4.2.3). If the unit cell is large enough to
allow a Γ -point-only calculation, the multiplication by phase factors is skipped and a
single real-matrix eigenvalue problem is solved (in this case, the real matrix elements
are accumulated directly in the first stage, if multiple overlaps occur).

To solve the KS equations in O(N) operations the localized, Wannier-like states
are used as they are constrained by their own localization region. Each atom I is
assigned a number of states equal to int(Zcore

I /2 + 1) so that, if doubly occupied,
they can contain at least one excess electron (they can also become empty during
the minimization of the energy functional). These states are confined to a sphere of
radius Rc (common to all states) centered at nuclei I. Irrespective of whether the
O(N) functional or the standard diagonalization is used, an outer self-consistency
iteration is required, in which the density matrix is updated. Even when the code is
strictly O(N), the CPU time may increase faster if the number of iterations required
to achieve the solution increases with N . In fact, it is a common experience that the
required number of self-consistency iterations increases with the size of the system.
This is mainly because of the “charge-sloshing” effect, in which small displacements
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of charge from one side of the system to the other give rise to larger changes of the
potential as the size increases. Fortunately, the localized character of the Wannier-like
wavefunctions used in the O(N) method also helps to solve this problem, by limiting
the charge sloshing. Figure 7.1 shows the essentially perfect O(N) behavior of the
overall CPU time and memory in silicon supercells of 64, 512, 1000, 4096 and 8000
atoms calculations [400].
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Fig. 7.1. O(N) behavior of the overall CPU time and memory in silicon supercell calculations
[400]

The SIESTA method provides a very general scheme to perform a range of cal-
culations from very fast to very accurate, depending on the needs and stage of the
simulation, of all kinds of molecule, material and surface. It allows DFT simulations
of more than a thousand atoms in modest PC workstations, and over a hundred thou-
sand atoms in parallel platforms [400]. The numerious applications of the Siesta DFT
LCAO method can be found on the Siesta code site [344]. These applications include
nanotubes, surface phenomena and amorphous solids.

The Scuseria–Kudin method of O(N) scaling is due to the use of efficient direct
lattice summation. The simulations of systems with periodic boundary conditions
include the long-range Coulomb potential. To properly converge the resulting infinite
Coulomb sum the Ewald summation method is adequate [71]. In this approach one
part of the Coulomb contribution is computed in direct space and another in reciprocal
space. The Ewald summation method yields O(N3/2) or O(N log N) with the fast
Fourier transform [382]. Alternatively, the infinite summation can be done using the
periodic fast multipole method (FMM) [395,396], carried out entirely in direct space.
The periodic FMM was extended to energy calculations for periodic systems with
Gaussian charge distributions [382, 397] and demonstrated O(N) scaling properties
for the algorithm. In this particular situation, the FMM has certain advantages over
the Ewald summation such as its universal applicability to systems periodic in one,
two, and three dimensions. The FMM method was extended also to the analytic
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calculation of the stress tensor whose components are required for energy optimization
with respect to particle positions in the unit cell and the lattice dimensions [398]. The
FMM partitions all pair interactions into near-field and far-field, and evaluates these
contributions in CPU times that are approximately constant per particle, yielding
an O(N) algorithm. In the FMM, the system under consideration is embedded in a
hierarchy of 8n cubic boxes at the finest mesh level, where n specifies the total number
of tiers [402, 403]. All charge distributions located in a given box are represented by
multipole expansions about the center of the box. For highly accurate results, the
near-field (NF) portion of the problem, which is defined by interactions inside a given
box and neighboring boxes, is treated exactly. Interactions in the far-field (FF) are
treated through multipole expansions. The distinctive characteristic of the FMM is
that translation techniques allow these multipole expansions to interact at different
mesh levels (depending on the distance between their centers) through an upward and
downward pass of the tree hierarchy, yielding a method with effective linear-scaling.

In the Gaussian FMM (GFMM) implementation, a given interaction is included
in the FF only if the number of boxes separating the edge of the boxes containing
the two charge distributions is larger than the sum of the ranges of the distributions.
For Gaussian functions, the range definition can be derived from the basic Coulomb
integral between two s-type distributions as r = (2s)−1/2erfc−1(ε) where s is the
exponent of the product Gaussian distribution, erfc−1 is the inverse of the comple-
mentary error function, and ε is the desired error in the approximation. The real
number is rounded up to the nearest integer, thus guaranteeing an error smaller than
ε. The electron–electron near-field (NF) interactions were treated exactly through
six-dimensional analytic integration of Gaussian functions. The maximum l of a given
multipole expansion was truncated to an effective value leff based on ε = k(a/R)leff ,
where ε is the desired accuracy, a is a constant whose optimum value is 0.63, and k
is adjusted such that leff = lmax, when R = 3 boxes. This simple formula is straight-
forward, substantially improves the speed of the GFMM (which asymptotically scales
as N), and still yields very accurate results. This “very fast” approach is partially
responsible for the good scaling properties of the GFMM used in the SK O(N) ap-
proach. The use of the GFMM for electrostatic interactions allows the infinite lattice
sums to be computed exactly for systems of any periodicity. Calculations of energy
derivatives with the FMM in periodic systems are similar to those in molecules.

In the SK DFT PBC implementation as much work as possible is done in real space.
Consequently, all matrices are stored in real-space form and transformed into k space
only when needed. In the iterative part of the code, first the entire real-space Fock
matrix F oRn

µν is constructed, it is transformed into several k-space matrices, which
are diagonalized to obtain orbital coefficients and energies, and then the reciprocal-
space density matrices are constructed. The latter are integrated by numerical means
to yield the real-space density matrix that is used in the following SCF cycle. The
gradient part of the code also deals with real-space quantities only. Overall, k-space
integration adds just a few extra steps to the PBC calculation when compared to the
molecular case.

All the transformations between real and reciprocal spaces are computationally
inexpensive and simple to implement. An extremely important feature of the SK
direct-space Gaussian PBC method is that once the real-space matrices are available,
the major cost of any additional k-point calculation is just the transformation into
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an orthonormal basis set plus the diagonalization. This is drastically different from
the PW implementations where one computes the Fock matrix for each k point sepa-
rately. Even though the cost of such matrix formation may be considerably lower for
PWs than for the real-space Fock matrix, the relatively low cost of additional k-point
calculations when using Gaussians permits denser k-point meshes in reciprocal space
even for systems of medium size. Furthermore, the derivatives of the band energies
with respect to the k vector are also rather straightforward to compute. Such informa-
tion may be very useful in the Brillouin-zone integration for systems with complicated
band structures. In order to reduce the number of SCF cycles, the direct inversion of
the iterative subspace method (DIIS) developed by Pulay [404], has been used. DIIS
requires formation of error matrices R = (FPS−SPF ) (F, P, S are Fock, density and
overlap matrices, respectively) for each SCF cycle. The matrix R approaches zero as
the calculation proceeds toward convergence. During the DIIS procedure, one evalu-
ates the inner products of the error matrices from different SCF cycles, Bij = RiRj

and uses these Bij products to determine the DIIS mixing coefficients. A simple way
to incorporate the DIIS procedure into a PBC code is to employ F, P, and S matrices
just for one point in reciprocal space, for example the Γ (k = 0) point. For this point,
the F, P, and S matrices are real, and all the DIIS steps are then the same as in the
case of molecular calculations. The DIIS mixing coefficients, evaluated from matrices
at k = 0, are used to form the extrapolated real-space Fock matrix F̃ 0Rn

µν and Fock
matrices in all k points through the extrapolation of the real-space F̃ 0Rn

µν matrix.
In periodic calculations, large basis sets with diffuse functions may cause instabili-

ties in the SCF procedure due to the limited accuracy of the Fock-matrix construction,
and much more rarely due to the limited accuracy of the diagonalization The usual
prescription for restoring the stability of the SCF procedure is to project out the
orbitals with small overlap eigenvalues from the basis set, which can be done dur-
ing the orthonormalization. In order to transform GTOs to an orthonormal basis,
one may employ symmetric orthogonalization and use the S−1/2 matrix. Another
way to orthonormalize the basis set is called canonical orthogonalization and uses
the matrix U = V S−1/2 (V is the eigenvector matrix of the overlap matrix S). In
calculations with PBC the instabilities arise mainly from numerical inaccuracies on
the Hamiltonian-matrix formation rather than true linear dependences in the basis
set [379]. Therefore, it is important in the SK method implemented in code [107],
that kinetic and electrostatic contributions to the Fock matrix are evaluated exactly
(the latter via FMM), while the DFT exchange-correlation quadrature is also carried
out with high accuracy. Therefore, one might expect that the SCF instabilities would
occur only for very small overlap matrix eigenvalues, somewhere in the 10−6–10−7

range. Indeed, this is the behavior observed in all the calculations [379].
The key issue in PBC calculations seems to be the Hamiltonian matrix evaluation,

which needs to be done to very high accuracy, especially in the infinite Coulomb sums.
This goal is achieved by means of the GFMM without resorting to any truncation.
There are three major contributions to the Fock-matrix formation: the kinetic-energy
term, the electrostatic term, and the exchange-correlation contribution. In large sys-
tems, the kinetic-energy matrix is sparse, computed only once, and is therefore easy
to deal with. The electrostatic part of our code uses the periodic FMM, so its scaling
is very close to linear. The periodic exchange-correlation quadrature is a straightfor-
ward extension of the one used in molecular calculations whose linear-scaling has also
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been demonstrated [405]. Furthermore, the analytic gradient code resembles the Fock-
matrix formation, and, therefore, the force calculation also has O(N) computational
cost. The density-matrix update is done in the conventional way, by diagonalizing the
Kohn–Sham Hamiltonian matrix and constructing the density matrix from its eigen-
vectors. Although this procedure scales as O(N3), it has such a small scaling prefactor
that the diagonalization cost for systems with up to a few thousand Gaussian basis
functions is rather small compared to other steps in the PBC code.

For very large systems, the DIIS procedure uses sparse matrices and therefore its
cost also becomes close to linear. In order to demonstrate the actual scaling properties
of SK DFT PBC code [107], a series of calculations have been carried out for PPV
(paraphenylenevinylene) with a different number of monomers in the unit cell [379].
The results of these LSDA calculations are presented in Table 7.1. The SCF took
10 cycles to converge the density to a rms deviation of 10−8. As is seen from Table
7.1 in the SCF part of the calculations, the CPU time required for the evaluation of
electrostatic and exchange-correlation terms scales linearly for all practical purposes.
On the other hand, the complex diagonalizations and the DIIS procedure scale as
O(N3). The relative cost of all these O(N3) steps is such that for the largest system
in Table 7.1 (224 atoms, 1344 basis functions) the total CPU time is roughly similar
to the CPU time required for the Fock-matrix formation.

Table 7.1. IBM Power3 CPU times (scc) for PPV LSDA/3-21G [379]

(C8H6)x, x 1 2 4 8 16

No. atoms 14 28 56 112 224

No. basis 84 168 336 672 1344

No. k points 16 8 4 2 1

No. FMM levels 3 4 5 6 7

Timings

Form S−1a 0.6 2.0 7 28 115

FMM, FF 1.3 2.5 5 10 20

FMM, NF 6.3 12.1 25 48 98

XC quad 13.0 26.4 54 109 223

DIIS 0.03 0.13 0.9 7.9 73

Γ diag 0.04 0.21 1.3 9.9 78

Diag a 0.91 3.2 12.3 52 198

Total SCF 197 416 935 2342 7285

Forces

FMM, FF 2.7 5.4 11 21 43

FMM, NF 28.4 57.4 115 232 446

XC quad 24.1 49.4 106 243 621

Total force 55 113 233 500 1123

aTimings reported include all k points
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The references to the recent applications of the SK method implemented in the
GAUSSIAN03 code [107] can be found on the site [406] and in original papers.

The important advantage of the Scuseria–Kudin implementation of the DFT
LCAO O(N) method for solids is the possibility to use hybrid HF-DFT exchange-
correlation functionals, including the recently developed screened Coulomb hybrid
functional, discussed in the next subsection.

7.2.3 Heyd–Scuseria–Ernzerhof Screened Coulomb Hybrid
Functional

In Sect. 7.1.5 we briefly discussed hybrid density-functionals, which contain a portion
of HF exchange and are popular in molecular quantum chemistry since they provide
higher accuracy than LDA and GGA functionals. The idea of hybrid functionals
is related to the adiabatic connection method (ACM), (7.40), which connects the
noninteracting KS reference system to the fully interacting real system. The ACM
(hybrid) functionals (7.41) include the coefficient amix of mixing HF and KS exchange.
Perdew and coworkers have also shown [375] that this mixing coefficient value can be
fixed a priori (amix = 0.25) taking into account that fourth-order perturbation theory
is sufficient to get accurate numerical results for molecular systems. This leads to a
family of adiabatic connection method functionals with the same number of adjustable
parameters as their GGA’s constituents (ACM0 functionals, (7.44)). In particular
the PB0LYP variant gives results comparable to those of 3-parameter hybrids in
B3LYP, whereas the modified mPW0PW functional gives results competitive with
the B0LYP results [407]. The PBE0 hybrid functional [375] does not contain any
adjustable parameter and proved to be successful in molecular calculations.

In solid-state calculations, however, the use of hybrid functionals is not a common
practice because of the high computational cost that exact exchange involves. A recent
alternative to conventional hybrid functionals is a screened exchange hybrid functional
developed by Heyd, Scuseria, and Ernzerhof (HSE) [408, 409]. This functional uses a
screened Coulomb potential for the exact exchange interaction, drastically reducing
its computational cost, and providing results of similar quality to traditional hy-
brid functionals. It was demonstrated that the screened HF exchange (neglect of the
computationally demanding long-range part of HF exchange) exhibits all physically
relevant properties of the full HF exchange.

We discuss here the main features of the HSE hybrid functional and its application
in solid-state LCAO calculations.The HSE functional for solids is much faster than
regular hybrids and can be used in metals also.

The range of the exchange interaction in insulators decays exponentially as a func-
tion of the bandgap [410]. In metallic systems the decay is algebraic. To render the
HF exchange tractable in extended systems, either the exchange interactions need
to be truncated artificially or their spatial decay accelerated [409]. Various trunca-
tion schemes have been proposed to exploit the exponential decay in systems with
sizable bandgaps [413–415]. Truncation schemes are very useful for systems with lo-
calized charge distributions where the HF exchange decays rapidly over distance.
However these approaches fail to significantly decrease the computational effort in
systems with small or no gaps. In delocalized systems truncation leads to severe con-
vergence problems in the self-consistent-field (SCF) procedure as well as uncertainties
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in the predicted energy of the system. The second option, accelerating the spatial de-
cay, circumvents both of these problems but still neglects interactions that might be
physically important. The HSE hybrid density-functional includes the spatial decay
acceleration using a screened Coulomb potential and attempts to compensate for the
neglected interactions.

A screened Coulomb potential is based on a splitting of the Coulomb operator into
short-range (SR) and long-range (LR) components. The choice of splitting function is
arbitrary as long as SR and LR components add up to the original Coulomb operator.
HSE use the error function to accomplish this split since it leads to computational
advantages in evaluating the short-range HF exchange integrals: the error function
can be integrated analytically when using Gaussian basis functions. The following
partitioning is used for the full 1/r Coulomb potential:

1
r

=
(

erfc(ωr)
r

)
SR

+
(

erf(ωr)
r

)
LR

(7.59)

where the complementary error function erfc(ωr) = 1−erf(ωr) and ω is an adjustable
parameter. For ω = 0, the long-range term becomes zero and the short-range term
is equivalent to the full Coulomb operator. The opposite is the case for ω → ∞. In
the HSE approach the screened Coulomb potential is applied only to the exchange
interaction. All other Coulomb interactions of the Hamiltonian, such as the Coulomb
repulsion of the electrons, do not use a screened potential. The exchange energy in the
PBE0 functional EPBE0

x = amixEHF
x + (1 − amix)EPBE

x + EPBE
c is split into short-

and long-range components

EPBE0
x = amixEHF,SR

x (ω) + amixEHF,LR
x (ω) + (1 − amix)EPBE,SR

x (ω)
+ EPBE,LR

x (ω) − amixEPBE,LR
x (ω) (7.60)

where ω is an adjustable parameter governing the extent of short-range interactions.
For the exchange-mixing parameter value amix = 0.25 and ω = 0 (7.60) is equal
to the exchange part of the PBE0 parameter-free functional. Numerical tests based
on realistic ω values (ω ≈ 0.15) indicate that the HF and PBE long-range exchange
contributions of this functional are rather small (just a few per cent), and that these
terms tend to cancel each other [408].

Thus, if we neglect them and work under the assumption that this approximation
may be compensated by other terms in the functional, one obtains a screened Coulomb
potential hybrid density-functional of the form:

EωPBE
xc = amixEHF,SR

x (ω) + (1 − amix)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (7.61)

where ω is an adjustable parameter governing the extent of short-range interactions.
The hybrid functional (7.61) is equivalent to PBE0 for ω = 0 and asymptotically
reaches PBE for ω → ∞.

The short-range component of the HF exchange can be obtained by using the
SR Coulomb potential when calculating the electron-repulsion integrals for the HF
exchange energy:

(µν|λσ)SR =
∫ ∫

dr1dr2ϕµ(r1)ϕν(r1)
erfc(ωr12)

r12
ϕλ(r2)ϕσ(r2) (7.62)
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over contracted Gaussian-type functions. For these calculations the algorithm of Gill
and Pople [416] was modified [408] so that the evaluation of integrals (7.62) is only
slightly more time consuming than the regular electron-repulsion integrals.

To calculate the screened Coulomb exchange PBE functional the exchange model
hole JPBE

x of the PBE functional constructed in a simple analytical form by Ernzer-
hof and Perdew [417] is used. The model hole reproduces the exchange energy density
of the PBE approximation for exchange and accurately describes the change in the
exchange hole upon the formation of single bonds. In the HSE functional this PBE ex-
change hole is screened by employing the short-range Coulomb potential from (7.59).

The PBE long-range exchange contribution is then defined as the difference of the
exchange-hole-based PBE and the SR PBE exchange energy densities.

In the so-called revised HSE03 hybrid functional [409] the improvement was in-
troduced in the calculation in the integration procedure of the PBE exchange hole.
This modification made the calculations numerically more stable and ensures that the
HSE03 hybrid functional for ω = 0 is closer to the PBE0 hybrid. The HSE03 (de-
noted also as EωPBE) functional was incorporated into the development version of the
GAUSSIAN code [418]. It was demonstrated for molecular systems that the HSE03
hybrid functional delivers results (bond lengths, atomization energies, ionization po-
tentials, electron affinities, enthalpies of formation, vibrational frequencies), that are
comparable in accuracy to the nonempirical PBE0 hybrid functional [409,411,412].

The HSE03 hybrid functional was extended to periodic systems [409]. The calcula-
tions were made for 21 metallic, semiconducting and insulating solids. The examined
properties included lattice constants, bulk moduli and bandgaps. The results obtained
with HSE03 exhibit significantly smaller errors than pure DFT calculations.

The preliminary screening of the integrals is necessary to take advantage of the
rapid decay of short-range exchange integrals for periodic systems [409]. Two different
screening techniques are used. In the first technique (Schwarz screening) substituting
the SR integrals in place of the 1/r integrals yields an upper bound of the form

|(µν|λσ)SR| ≤
√

(µν|µν)SR

√
(λσ|λσ)SR (7.63)

The (µν|λσ) integrals are then evaluated for each batch of integrals and only batches
with nonnegligible contributions are used in calculating the HF exchange. The SR
screening integrals are evaluated by the same procedure as the SR exchange integrals.

The second – distance-based multipole screening technique – uses multipole mo-
ments introducing the following screening criterion

Tn =
∑

M∈µν

∑
M∈λσ

Cmax
µν

1

rl+M low
µν +M low

λσ

Cmax
λσ (7.64)

where Tn is an estimate for the contribution of a shell quartet and M is a multipole
in the multipole expansion of a given shell pair. M low

ij are the lowest-order multipoles
that can contribute to the integral and Cmax

ij are the maximum coefficients in each
order of multipoles. Replacing the 1/r potential with the erfc(ωr)/r short-range
potential yields

TSR
n =

∑
M∈µν

∑
M∈λσ

Cmax
µν

erf(ωrl+M low
µν +M low

λσ )

rl+M low
µν +M low

λσ

(7.65)
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This provides a distance-based upper bound for the SR exchange contribution of a
given shell quartet.

The implementation of periodic boundary conditions relies on evaluating all terms
of the Hamiltonian in real space [379]. The HF exchange is evaluated using replicated
density matrices. All interactions within a certain radius from a central reference cell
are calculated and the rest are neglected. This so-called near-field exchange (NFX)
method [413] allows calculation of the HF exchange in time, scaling linearly with sys-
tem size. It works reasonably well for insulating solids since the corresponding density
matrix elements decay rapidly. In systems with smaller bandgaps, however, the spa-
tial extent of nonnegligible contributions to the exchange energy is large. This large
extent results in a large number of significant interactions. To render the computa-
tion tractable, the truncation radius must be decreased. Thus, significant interactions
are neglected that leads to errors in the total energy of the system and introduces
instabilities into the self-consistent field procedure.

Screened Coulomb hybrid functionals do not need to rely on the decay of the
density matrix to allow calculations in extended systems [409]. The SR HF exchange
interactions decay rapidly and without noticeable dependence on the bandgap of the
system. The screening techniques do not rely on any truncation radius and provide
much better control over the accuracy of a given calculation. In addition, the thresh-
olds can be set very tightly, without resulting in extremely long alculations.

A series of benchmark calculations [409] on three-dimensional silicon (6-21G basis
was used, see Chap. 8) demonstrates the effectiveness of the screening techniques. The
time per SCF cycle was studied given as a function of the distance up to which ex-
change interactions were included in the calculation. As this radius grows, the number
of replicated cells grows as O(N3). The PBE0 curve tracks this growth since regular
HF exchange has a large spatial extent. The relatively small bandgap of silicon (1.9
eV in this calculation) is insufficient for density matrix elements to decay noticeably.
HSE, on the other hand, only shows a modest increase in CPU time as the system
becomes larger. Beyond 10 Å, the CPU time only increases due to the time spent on
screening. The HSE calculation of the total energy converges very rapidly and only
cells up to 10 Å from the reference cell contribute to the exchange energy. PBE0, by
comparison, converges significantly slower. Thus, HSE not only reduces the CPU time
drastically, but also decreases the memory requirements of a given calculation since
fewer replicated density matrices need to be stored in memory. In practice, HSE calcu-
lations can be performed with the same amount of memory as pure DFT calculations,
whereas traditional hybrid methods have larger memory demands. Given the fast de-
cay of the SR HF exchange interactions and the high screening efficiency, the HSE
hybrid functional was efficiently applied to a variety of three-dimensional solids. We
mention only some of these applications: 1) 21 metallic, semiconducting and insulat-
ing solids [409]; 2) semiconductor set of 40 solids, containing 13 group IIA-VI systems,
6 group IIB-VI systems, 17 group III-V systems, and 4 group IV systems [419]; 3) the
zinc-blende and rocksalt phases of platinum nitride [420] and platinum monoxide [421];
4) lattice defects and magnetic ordering in plutonium oxides PuO2 and Pu2O3 [422];
5) carbon nanotubes [423]; 6) actinide oxides UO2, PuO2 and Pu2O3 [424]. It was
demonstrated that the screened Coulomb hybrid density-functional HSE not only re-
duces the amounts of memory and CPU time needed, when compared to its parent
functional PBE0, but it is also at least as accurate as the latter for structural, optical
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and magnetic properties of solids. The PBE0 functional and other hybrid functionals
are transferred from molecules to solids. The possibility of such a transfer we discuss
in the next section.

7.2.4 Are Molecular Exchange-correlation Functionals Transferable to
Crystals?

The question in the title of this subsection arises due to the well-known fact that the
properties of crystals are quite often different from those of molecular systems. The
difference is particularly evident for ionic and semi-ionic solids, in which the long-
range electrostatic forces provide a strong localizing field for the electronic states
that is not present in molecules. In this situation the shortcomings of standard LDA
and GGA functionals, linked to the missing electronic self-interaction, are likely to be
most severe [371]. This explains why the electronic-structure calculations in molecular
quantum chemistry and solid-state physics were for a long time developing along two
independent lines. While in the molecular quantum chemistry the wavefunction-based
approaches (HF and post-HF) in the LCAO approximation were mainly used, in solid-
state physics DFT-based methods with plane wave (PW) basis were popular. These
two standard approaches were for a long time poorly transferable between the two
fields [371]: early DFT functionals underperform post-HF techniques in reproducing
the known properties of small molecules, while the extension of accurate post-HF
methods to solid-state systems is difficult or has prohibitive computational expense.

The formulation of hybrid HF/DFT exchange-correlation functionals and their
extension to periodic systems changed the situation; the combined HF-DFT approach
has adequate accuracy for most needs in both quantum chemistry of molecules and
solids, retaining a tractable computational cost and even allowing the system-size
linear-scaling. One appealing feature of this approach is that it can readily exploit
the progress and tools available to the quantum chemists for calculating the HF
exchange, as it was demonstrated in Sections 7.2.2 and 7.2.3.

For molecules, the first hybrid functionals have been coded into GAUSSIAN94
in the MO LCAO approximation traditional for molecules. The DFT PW computer
codes, existing for solids, can be modified to include HF method and hybrid exchange-
correlation functionals [425]. However, the practical realization of HF method was
made in LCAO approximation. The application of hybrid functionals to crystalline
compounds (described under periodic boundary conditions (PBC)) was not possible
until the late 1990s, when they were coded in CRYSTAL98 [426]. Numerous solid-state
studies have been performed with molecular hybrid functionals, providing valuable ex-
perience on their accuracy and applicability. In the review article [371] the results are
summarized of publications in which hybrid exchange functionals have been applied
under PBC to represent crystalline solids. The list of later publications can be found
on the site http://www.crystal.unito.it. The next step in the HF/DFT extension to
solids was made by Scuseria and coworkers who coded the HF/DFT method with PBC
in GAUSSIAN03 code [107] and included a linear-scaling hybrid exchange-correlation
HSE functional.

The extension of HF-DFT methods to the crystalline solids encounters difficul-
ties [371]. In molecular chemistry, very accurate thermochemical and structural data
exist for a selection of simple species. These data have been effectively used to define
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representative sets against which to measure the results of calculations. The availabil-
ity of these representative sets has enabled the empirical derivation of hybrid DFT
functionals for molecules (for example, B3LYP and B3PW functionals). Comparison
to experiment in the solid state is often indirect: most reliable experimental results
on crystalline solids are not directly related to the equilibrium structure, energy and
electronic density (as for molecules), but to the response of the solid to a pertur-
bation, for instance to elastic distortions or to external electromagnetic fields. As
an additional complexity, some fundamental electronic properties of solids cannot be
measured directly; bandgaps, for instance, can be readily calculated as edge-to-edge
differences between specific filled and unfilled bands, but they cannot be measured
directly. What experiments furnish are absorption edges and activation energies cor-
responding to processes that are often speculative. As another example, magnetic
coupling constants can be neither measured nor calculated directly. Their extraction
from calculations requires a mapping onto a phenomenological model of some sort,
which by its very nature is inexact, while comparisons are made with indirect quan-
tities such as disorder-transition temperatures, which in turn have to be expressed in
terms of the phenomenological model.

The second difficulty is the lack for solids of a reference theoretical method. Post-
HF techniques in molecular quantum chemistry can yield results with a controlled
degree of accuracy. In the absence of experimental data, the results obtained with
different DFT functionals could be compared against those calculated with the ref-
erence computational technique. Recent developments in wavefunction methods for
solid-state systems (Chap. 5), GW perturbation theory [427], and quantum Monte
Carlo (QMC) [428] are promising for future work, but at present they still suffer from
a limited applicability.

In most solids, HF/DFT calculations with the CRYSTAL code [23] the B3LYP
hybrid functional was used with the standard molecular formulation (with the mixing
parameter amix=0.2) and its results graded against a set of other Hamiltonians (HF,
LDA, PWGGA, PBE). In some calculations of oxides the different mixing parameter
values were used [429–432]. These studies point to the need specific formulations of
the hybrid functionals for solids, in particular systematic investigations on the effect
of changing the mixing parameter. Such a systematic investigation on the effect of
changing the mixing parameter from 0% to 100% was performed [371] for perovskite-
structured transition-metal oxides AMO3 (including ferroelectric materials BaTiO3

and KNbO3), rocksalt-structured oxides and fluorides and open-shell defects in these
matrices. All these systems share the fact that standard DFT calculations, in either
LDA or GGA formulations, fail to reproduce with sufficient accuracy the correct elec-
tronic ground-state and/or the structural and electronic properties of the material.
Several observables have been examined (structural parameters, elastic constants and
bulk moduli, phonon spectra, bandgaps, thermochemical data, point defects and sur-
faces, magnetic ordering). We refer the reader to the review article [371] for comments
on each observable separately. The details of the LCAO basis and an auxiliary Gaus-
sians for exchange-correlation calculation choice are given in [371]. The truncation
threshholds and BZ summation parameters are also given, ensuring convergence of
the total energies to within 0.1 meV. As an example of observables calculations we
show in Table 7.2 some results obtained in [371] for structural properties (lattice con-
stants and bulk moduli) of cubic perovskites. The first line of the Table gives the
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exchange-correlation functional type. For the HF-DFT hybrid functional both the
standard molecular B3LYP functional and the BLYP exchange-correlation functional
with a fraction amix of HF exchange (the numerical values of amix are given in the
first line of Table 7.2) were used. For comparison, the available experimental data
are given in the last column of this table. The following trends can be observed from
the results given in Table 7.2. The lattice constant a increases systematically on in-
creasing the mixing parameter amix and has a variation of approximately 3% in the
series 0 < amix < 1. The bulk modulus also increases with increasing amix, with a
change for most materials of about 80% between amix = 0 and amix = 1. Increasing
the percentage of the HF exchange in the functional, therefore, makes the structure
more compact and harder, and one may expect this feature to influence the behavior
of the material towards structural distortions.

The lattice constant and bulk modulus are the ground-state properties defined by
the total energy and its derivatives. The measured bandgap is defined by the excitation
energies and its calculation includes the eigenvalues corresponding to the bottom of
the conduction band. Nevertheless, recent calculations with hybrid functionals show
that the observed bandgaps are reliably reproduced in a wide variety of materials. As
an example, we give in Table 7.3 the results of B3LYP LCAO bandgap calculations
[433] in comparison with the experimental data.

To establish the reliability of the hybrid functional the different types of ma-
terials have been studied: semiconductors (diamond and GaAs), semi-ionic oxides
(ZnO, Al2O3, TiO2), sulfides (FeS2, ZnS), an ionic oxide MgO and the transition-metal
oxides (MnO, NiO). For each system the AO basis sets were developed and full struc-
tural optimization of the cell and internal coordinates was performed [433]. Typically,
the optimized structural parameters are within ±2% of the experimental values. The
bandgaps were determined from the band structure of the optimized system as the
difference in the converged eigenvalues. As is seen from Table 7.3 even the molecu-
lar version of the B3LYP exchange correlation functional is capable of reproducing
bandgaps for a wide variety of materials in good agreement with the experimental

Table 7.3. A comparison of observed bandgaps with those calculated using the B3LYP
functional for a wide range of materials (all values are given in eV) [433]

Material Expt B3LYP

Diamond 5.5 5.8

GaAs 1.4 1.5

ZnO 3.4 3.2

Al2O3 9.0 8.5

Cr2O3 3.3 3.4

MgO 7.8 7.3

MnO 3.6 3.8

NiO 3.8 3.9

TiO2 3.0 3.4

FeS2 1.0 2.0

ZnS 3.7 3.5
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data (the latter even measured under well-controlled conditions are reliable to about
5%, [433]). This agreement is at least as good as that obtained with more sophisticated
correlated calculations or perturbation theories.

The latter studies confirmed the efficiency of HF/DFT approach for solids and
also use of the HSE hybrid functional. In [419] a set of 40 semiconductors was chosen
based on the following criteria: all considered systems were both closed shell and
of simple or binary composition; the majority of them have simple zincblende or
rocksalt structures but also several systems with wurtzite structure were included. In
addition, the availability of experimental data for lattice constants (and to a lesser
extent bandgaps) was an important factor (the references to the experimental data
can be found in [419]). These criteria led to the semiconductor/40 (SC/40) set of 40
solids containing 13 group IIA-VI systems, 6 group IIB-VI systems, 17 group III-V
systems, and 4 group IV systems.

Table 7.4 contains a full list of all compounds and the calculated lattice constants
and bandgaps. Based on the results of previous calculation with the HSE screened
hybrid functional [409] the short-range – long-range splitting parameter was chosen
as system independent and equal to 0.15, the PBE0 functional mixing parameter was
taken to be 0.25. The results in Table 7.4 are given for the LSDA, PBE, meta-GGA
TPSS (Tao–Perdew–Staroverov–Scuseria, [360]) and HSE hybrid functionals. All cal-
culations employed the PBC option of the GAUSSIAN03 code, total energies are
accurate to 10−6 a.u. All basis sets used are modified molecular Gaussian basis sets
(all diffuse basis functions with exponents below 0.12 were removed). The modifica-
tion of the atomic basis sets for solids is discussed in Chap. 8 in more detail. For 31 of
40 systems the inclusion of relativistic effects in the pseudopotential was examined.
In Chap. 8 we discuss relativistic pseudopotentials in more detail. Table 7.4 gives in
comparison with the experimental data the calculated lattice constants and bandgaps
for 40 semiconductors (with optical bandgaps ranging from 0.2 to 7.2 eV). The com-
parison of results is given for three nonhybrid (LSDA, PBE and TPSS) functionals
and hybrid HSE functional. Table 7.5 contains the error statistics for predicting lattice
constants a (in Å) and bandgaps (in eV).

As is seen from Table 7.2.4 LSDA underestimates lattice constants in nearly all
cases, while PBE and TPSS always overestimate them. The screened hybrid functional
HSE reduces the overestimation of PBE (on which it is based) drastically, leading to
the best predictions overall. The 20% accuracy improvement of HSE over LSDA is
noteworthy since LSDA is the most widely used method for lattice optimizations in
solids. In addition, the overestimation of lattice constants by using the pesudopoten-
tials (instead of all-electron calculations) is partly responsible for the observed errors
with HSE. It is possible to expect that all-electron calculations yield even better
results with HSE while the underestimation exhibited by LSDA would only be exag-
gerated. Bandgaps calculated with all three nonhybrid density-functionals are severely
underestimated (mean absolute errors are about 1 eV, see Table 7.5), in extreme cases
such as MgO, by as much as 2.88 eV. In addition, several small-bandgap systems (Ge,
GaSb, InN, InAs, and InSb) are predicted to be quasimetallic. All bandgaps corre-
spond to lattices optimized with the respective functional. The HSE hybrid functional
yields a drastically reduced mean absolute error of only 0.26 eV and predicts even
small-bandgap systems correctly. The HSE errors for bandgaps are comparable to
those obtained with the GW approximation [434]. However, these calculations do not
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Table 7.4. Lattice constants (Å) and bandgaps (eV) for the set of 40 simple and binary
semiconductors ( [419]), a–sphalerite structure, c–wurtzite structure

Lattice constants Bandgaps

Solid LSDA PBE TPSS HSE Expt. LSDA PBE TPSS HSE Expt.

C 3.537 3.579 3.579 3.553 3.567 4.23 4.17 4.21 5.49 5.48

Si 5.410 5.479 5.466 5.444 5.430 0.59 0.75 0.82 1.28 1.17

Ge 5.634 5.776 5.744 5.701 5.658 0.00 0.00 0.00 0.56 0.74

SiC 4.355 4.404 4.394 4.372 4.358 1.40 1.46 1.42 2.39 2.42

BN 3.584 3.629 3.629 3.603 3.616 4.45 4.51 4.52 5.98 6.22

BP 4.509 4.567 4.566 4.543 4.538 1.31 1.41 1.45 2.16 2.40

BAs 4.750 4.829 4.821 4.794 4.777 1.16 1.27 1.29 1.92 1.46

BSb 5.201 5.291 5.280 5.251 n/a 0.80 0.88 0.81 1.37 n/a

AlN (a) 3.112 3.153 3.147 3.127 3.111 4.9 4.95 5.01 6.45 6.13

(c) 4.974 5.045 5.028 5.000 4.981

AlP 5.436 5.508 5.497 5.472 5.463 1.60 1.83 1.90 2.52 2.51

AlAs 5.639 5.733 5.713 5.691 5.661 1.40 1.62 1.71 2.24 2.23

AlSb 6.079 6.188 6.172 6.146 6.136 1.29 1.40 1.63 1.99 1.68

GaN (a) 3.167 3.233 3.224 3.198 3.189 2.09 1.70 1.73 3.21 3.50

(c) 5.165 5.272 5.244 5.204 5.185

β − GaN 4.476 4.569 4.552 4.518 4.523 1.93 1.55 1.56 3.03 3.30

GaP 5.418 5.534 5.522 5.484 5.451 1.59 1.71 1.98 2.47 2.35

GaAs 5.626 5.771 5.745 5.705 5.648 0.43 0.19 0.52 1.21 1.52

GaSb 6.043 6.208 6.183 6.140 6.096 0.09 0.00 0.08 0.72 0.73

InN (a) 3.523 3.599 3.589 3.555 3.537 0.02 0.01 0.00 0.71 0.69

(c) 5.684 5.807 5.765 5.729 5.704

InP 5.839 5.970 5.961 5.909 5.869 0.83 0.68 0.90 1.64 1.42

InAs 6.038 6.195 6.170 6.120 6.058 0.00 0.00 0.00 0.39 0.41

InSb 6.430 6.608 6.585 6.535 6.479 0.00 0.00 0.00 0.29 0.23

ZnS 5.319 5.467 5.465 5.432 5.409 2.25 2.16 2.39 3.42 3.66

ZnSe 5.588 5.751 5.736 5.707 5.668 1.21 1.19 1.48 2.32 2.70

ZnTe 6.017 6.195 6.174 6.150 6.089 1.28 1.14 1.45 2.19 2.38

CdS 5.776 5.934 5.944 5.896 5.818 1.01 1.11 1.34 2.14 2.55

CdSe 6.025 6.210 6.195 6.152 6.052 0.34 0.48 0.73 1.39 1.90

CdTe 6.422 6.626 6.610 6.568 6.480 0.61 0.62 0.88 1.52 1.92

MgO 4.178 4.268 4.247 4.218 4.207 4.92 4.34 4.56 6.50 7.22

MgS 5.618 5.721 5.719 5.681 5.622 3.54 3.57 3.88 4.78 5.4

MgSe 5.417 5.532 5.520 5.499 5.40 1.70 1.76 2.07 2.62 2.47

MgTe 6.381 6.517 6.517 6.478 6.42 2.74 2.68 3.12 3.74 3.6

CaS 5.572 5.715 5.710 5.698 5.689 2.16 2.56 2.69 3.59 n/a

CaSe 5.799 5.962 5.955 5.946 5.916 1.74 2.11 2.23 3.02 n/a

CaTe 6.209 6.387 6.386 6.381 6.348 1.25 1.60 1.72 2.37 n/a

to be continued
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Solid LSDA PBE TPSS HSE Expt. LSDA PBE TPSS HSE Expt.

SrS 5.926 6.066 6.052 6.037 5.99 2.27 2.68 2.79 3.59 n/a

SrSe 6.151 6.306 6.290 6.282 6.234 1.89 2.26 2.37 3.09 n/a

SrTe 6.543 6.714 6.703 6.701 6.64 1.51 1.89 2.00 2.57 n/a

BaS 6.303 6.436 6.433 6.413 6.389 2.05 2.44 2.61 3.28 3.88

BaSe 6.517 6.671 6.659 6.649 6.595 1.76 2.12 2.26 2.87 3.58

BaTe 6.897 7.062 7.062 7.051 7.007 1.49 1.87 2.01 2.50 3.08

Table 7.5. Lattice constant a ( in Å) and bandgap (in eV) error statistics for the set of 40
simple and binary semiconductors( [419])

LSDA PBE TPSS HSE

Mean error a –0.046 0.076 0.063 0.035

bandgap –1.14 –1.13 –0.98 –0.17

Mean absolute error a 0.047 0.076 0.063 0.037

bandgap 1.14 1.13 0.98 0.26

Root-mean-square error a 0.058 0.084 0.071 0.044

bandgap 1.24 1.25 1.12 0.34

Maximum positive deviation a 0.017 0.158 0.143 0.100

bandgap ... ... ... 0.32

Maximum negative deviation a 0.139 ... ... –0.014

bandgap –2.30 –2.88 –2.66 –0.72

include any excitonic or quasiparticle effects. While these effects are small for some
systems, they can be nonnegligible for others. Some systems in the SC/40 test set
exhibit significant spin-orbit coupling effects that can split the bandgap by 1 eV, for
example ZnTe. For these systems, the comparison is made to the weighted average
of the split experimental bandgap, but a better description of the systems is highly
desirable. As follows from [419] the computational effort involved in HSE calculations
presents only a modest increase (a factor of less than 2) over pure DFT calculations
giving a vast improvement in accuracy.

Concludig the discussion of hybrid functionals we stress that the HSE functional
is universally applicable and does not contain any system-dependent parameter. It
yields excellent results, in molecules and solids, for many different properties. In con-
trast to other methods, HSE can be employed for both structural and electronic
properties; HSE provides a unique and powerful alternative for the study of large
complex systems, such as chemisorption at surfaces and three-dimensional impurities
in semiconductors. These fields of HSE functional applications await future study.

In the next subsection we consider two orbital-dependent exchange-correlation
functionals used for solids with the strong electron correlation. These functionals are
used mainly with non-LCAO (PW, LMTO) basis and from this point of view are not
quantum-chemical approaches. Therefore, we discuss them only briefly.
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7.2.5 Density-functional Methods for Strongly Correlated Systems: SIC
DFT and DFT+U Approaches

DFT (LDA, GGA approximations) have a great predictive power for solids only as long
as one is treating electronic states extended over the whole system, so that electrons
can be considered completely delocalized [151]. In the case of 3d-states in transition-
metal atoms and 4f -states in rare-earth atoms and their compounds the metal-atom
electrons partially preserve their atomic-like (localized) nature. The Coulomb correla-
tions between localized electrons are strong, so that DFT results in many cases are in
disagreement with experiment. A well-known example of such a disagreement is repre-
sented by some insulating transition-metal oxides, which LDA predicts to be metallic.
The DFT methods are in serious trouble for the strongly correlated electrons as these
methods describe noninteracting electrons moving in an effective self-consistent mean
field. For the strongly correlated molecular systems post-HF methods in the LCAO ap-
proximation are traditionally applied(see Chap. 5). In solids with strong correlations
approaches based on LDA (GGA) approximations are applied as a starting point and
additional terms intended to treat strong Coulomb correlations between electrons are
introduced. As a rule, the LCAO approximation is not used in these approaches. More
traditional for solid-state physics localized muffin tin orbitals (LMTO) or augmented
plane waves (APW) are popular in the calculations of strongly correlated systems.
Various methods have been developed to extend the DFT approach to the strongly
correlated systems. The best suited for strongly correlated systems is the so-called
GW approximation, which is formally the first term in the perturbation expansion of
the self-energy operator in powers of the screened Coulomb interaction (we return to
the Coulomb-screening problem later). The reader can find the detailed description of
GW method in the review article by Aryasetiawan [435] and other publications. The
GW approximation is computationally very heavy and some simpler methods were
proposed. Two of these methods (self-interaction corrected (SIC) DFT and DFT +
U) are briefly discussed in this subsection.

The HF operator for a system of N electrons includes Coulomb Ĵjψi(x1) =∫ |ψi(x2)|2
|r2−r1| dx2ψi(x1) and exchange K̂jψi(x1) =

∫ ψ∗
j (x2)ψi(x2)

|r2−r1| dx2ψj(x1) operators
(here, ψi(x) are spin-orbitals and x = r, σ – the space r and spin σ coordinates).
From the definitions of these operators it follows that Ĵiψi = K̂iψi. Without this

identity the HF operator would have been orbital dependent F̂ = Ĥ +
N∑

j �=i

(
Ĵj − K̂j

)
,

i.e. we would have different HF operators for different orbitals. By including the
i = j term we obtain the same HF operator for all orbitals and allow the electron
to interact with itself, in the Coulomb part and also in the exchange part. But these
two self-interaction terms cancel. The HF approximation uses the exact expression
of the exchange energy, but omits the correlation energy, and the resulting effective
potential is nonlocal (it depends on the electron-density matrix ρ(r, r′)). The DFT
(LDA, GGA approaches) uses an approximate local form of the exchange-correlation
energy and the Kohn–Sham effective potential is local (depends on the electron den-
sity ρ(r, r) = ρ(r)). In particular, the LDA is exact for a completely uniform system
of noninteracting particles, and thus is self-interaction-free in this limit. In other ver-
sions of DFT the approximate exchange-correlation energy functionals are used so
that the self-interaction terms may not cancel. The self-interaction-corrected (SIC)
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DFT functionals must fulfill the equations, which describe their values in the limit of
a single-electron system (hydrogen atom, for example) with density ρσ(r), where σ
may be α,

∫
ρα(r) = 1, and ρβ(r) = 0, [440]. The first equation

EJ [ρ] + EX [ρα, 0] = 0 (7.66)

expresses that a single electron does not interact with itself, i.e. the self-repulsion
energy (Hartree energy) EJ [ρ] is canceled by the self-exchange energy covered by the
exchange functional EX [ρ]. The second equation

Ec[ρσ, 0] = 0 (7.67)

clarifies that a single electron does not possess any correlation energy (self-correlation
is zero). The next two equations

vJ([ρ]; r) + vσ
x ([ρσ, 0]; r) = const (7.68)

vσ
c ([ρσ, 0]; r) = 0 (7.69)

make sure that the single electron moves under the influence of the external poten-
tial v(r) rather than the Coulomb potential vJ , the exchange potential vx or the
correlation potential vc. An approximate exchange-correlation functional may violate
all or some of the equations (7.66)–(7.69) and, therefore, has to be corrected. The
common LDAs, GGAs or Meta-GGAs have a remaining self-interaction error in their
exchange part [436]. This self-interaction error is particularly critical for localized one-
electron states in molecules and crystals. The delocalized electrons move fast, thus
experiencing mainly the LDA (LSDA) mean-field potential; this is why LDA methods
are so fruitful for metals. The localized electrons reside on each atomic site for so
long that the surroundings must respond to their presence [437]. Therefore, the LDA
theory problems are the most severe in systems where the electrons tend to be local-
ized and strongly interacting (strongly correlated systems). As was already noted, the
well-known examples of such systems are the crystalline transition-metal oxides (with
localized d-electron states) and rare earth elements and compounds (with localized f -
electrons). These systems exhibit phenomena associated with strong correlation effects
(metal–insulator transitions, high temperature superconductivity, etc.). The already
discussed hybrid DFT methods are most popular both in molecules and solids. The
hybrid exchange-correlation functionals include HF exchange with some mixing coef-
ficient and in this way partly compensate the self-interaction error. Other possibilities
of DFT extension to the strongly correlated systems are known: the self-interaction-
corrected (SIC) DFT method by Perdew–Zunger [352] (PZ-SIC approach) and the
LDA+U method by Anisimov–Zaanen–Anderson [153]. The SIC-LSDA and LDA+U
methods are described in many publications and applied to different molecules and
solids. We refer the reader to reviews [438–441].

Let the many-electron system consist of N = Nα+Nβ electrons, where Nα and Nβ

are the number of electrons with spin α and spin β, respectively. The total density of
electrons with spin σ is a sum of orbital densities ρiσ(r) = |ψiσ(r)|2. The total density

of the N -electron system is ρ(r) =
∑
σ

Nσ∑
i=1

ρiσ(r). In the KS method the energy of a

many-electron system is expressed as
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EKS [ρα, ρβ ] =
∑

σ=α,β

Nσ∑
i=1

〈ψiσ| − 1
2
∆|ψiσ〉+

∫
ρ(r)v(r)dr + J [ρ] + Exc[ρα, ρβ ] (7.70)

The first two terms in (7.70) are the kinetic energy of a system of noninteracting
electrons and the interaction between the electron density ρ(r) and external potential
v(r). The Hartree energy J [ρ] = 1

2

∫ ∫ ρ(r)ρ(r′)
|r−r′| drdr′ is the Coulomb interaction of an

electron density with itself, Exc is the exchange-correlation density-functional. The
SIC corrected density-functional

ESIC KS = EKS −
∑

σ=α,β

Nσ∑
i=1

(J [ρiσ] + Exc[ρiσ, 0]) = EKS + ESIC (7.71)

includes the self-interaction correction ESIC for all occupied spin-orbitals, which elim-
inates all spurious self-interaction terms orbital by orbital. In the SIC-DFT we have
Ec[ρα, 0] = 0 and Ex[ρα, 0] = −EJ [ρ], i.e. an approximate exchange-correlation func-
tional fulfills the exact conditions (7.67)–(7.68). The energy of equation (7.71) must
be made stationary with regard to a mixing of occupied with occupied and occupied
with virtual orbitals, which is accomplished by solving self-consistent KS equations
for the SIC-DFT method. The SIC method gives significant improvements over the
LSDA (SGGA) results [438], but there are also significant difficulties in applying the
method. The SIC exchange-correlation potential becomes orbital dependent, and since
the KS orbitals thereby are not solutions to the exact same Hamiltonian, one can not
in general be sure that the orbitals become orthogonal. Due to the mixing of occupied
orbitals in the SCF-SIC-DFT procedure, the energy functional is no longer invariant
with regard to unitary transformations of the orbitals. To circumvent these problems
the Optimized Potential Method was suggested [151, 339] allowing the local single-
particle potential in the scheme that is both self-interaction free and orbital indepen-
dent to be found. The simplest approximate implementation of the SIC-DFT method
in molecular codes is the SIC correction applied after a self-consistent KS calculation
is done [442]. The references to other SIC DFT method applications for molecules
can be found in [443], where the SIC-DFT method was implemented self-consistently
using a direct minimization approach. This approach was applied to calculate ion-
ization potentials and electron affinities of atoms and small molecules [444]. It was
concluded that this method works for molecules worse than for atoms, in particular
it significantly overcorrects the one-electron energy for the highest-occupied MO.

In condensed matter studies the SIC DFT calculations have been extensively used.
A review of solid-state SIC DFT techniques can be found in [438,445,446]. The well-
known most serious failure of LSDA is an underestimation of energy gaps for semicon-
ductors and insulators and the suppression of magnetic ordering for antiferromagnetic
insulators. For transition-metal monoxide insulators with the sodium chloride struc-
ture (MnO, CoO, FeO, and NiO) the relative positions of transition-metal d bands
and oxygen p bands are important to clarify whether they are Mott–Hubbard insu-
lators or charge-transfer insulators. In Mott–Hubbard insulators the occupied bands
of transition-metal atoms appear at higher energy than the occupied p bands of oxy-
gen atoms, while the relative positions are reversed in charge-transfer insulators. The
lowest-unoccupied band is, in both cases, transition-metal d states. In the LSDA, the
transition-metal d bands appear at higher energy than oxygen p bands and therefore
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they were considered as Mott–Hubbard-type materials. Such LSDA results do not
agree with those by experiments and with the cluster calculations including corre-
lation effects by the configuration interaction (CI) method. It was shown that the
SIC removes unphysical self-interaction for occupied orbitals and decreases their en-
ergies [438,447]. As in the case of molecules, the application of the LSDA SIC to solids
has severe problems. Since the LSDA SIC energy functional is not invariant under the
unitary transformation of the occupied orbitals one can construct many solutions in
the LSDA SIC. If one chooses delocalized Bloch orbitals, the orbital charge densities
vanish in the infinite-volume limit so that the SIC energy is exactly zero for such or-
bitals. But the localized Wannier orbitals constructed from Bloch orbitals have finite
SIC energies. In many calculations for solids, the SIC was adapted to the localized
orbitals, which are selected under some physical assumption. The criterion to choose
these orbitals was carefully examined in [447], trying both solutions with localized
and extended oxygen 2p orbitals. In solutions of types 1 (LSDA) and 2 all valence-
state orbitals were extended or localized, respectively. In the solution of type 3 the
transition-metal d-orbitals were localized and the oxygen p-orbitals were Bloch-type
functions from the SIC potentials. In Table 7.6 are given bandgaps and magnetic mo-
ments of transition-metal monoxides for all the three types of LDA-SIC solution. The
LDA+U results are discussed later. The type-1 solution is just the LSD result where
all orbitals are extended, narrow d-bands appear at higher energy than the oxygen
p-bands for all compounds. The bandgap of MnO is about 30% of the experimental
value, there is no gap for other compounds. For the type 2 solution the transition-metal
orbitals are more localized than those of oxygen p-orbitals so that the SIC potentials
are larger in transition-metal d orbitals and the energies of d orbitals are pulled down
significantly. The d- and p-bands become strongly hybridized, in good agreement with
the observed results. As is seen from Table 7.6, the energy gaps are overestimated but
the magnetic moments are well estimated. In type-3 solutions the transition-metal
d-orbitals are localized and the oxygen p-orbitals are Bloch-type functions free from
the SIC potential, so that the p-orbitals energies do not shift from the position of
the LSDA results. On the contrary, the transition-metal d-orbitals energies are pulled
down below those of the oxygen p-orbitals. Therefore, the highest-occupied band has
the character of the oxygen p-band and the lowest-unoccupied band keeps mainly
a character of the transition-metal d-orbitals. Then, the transition-metal monoxides
are the charge-transfer type. As is seen from Table 7.6 the LDA-SIC values of the
bandgaps and magnetic moments are in good agreement with the experiment. Unfor-
tunately, the hybridization of p- and d-bands for occupied states, which appeared in
the type-2 solution, is not reproduced in the type-3 solution. At the same time the
type-2 solution overestimates the bandgaps. It was cleared up [438] that this overesti-
mation is due to the overestimate in LSD- SIC the Coulomb repulsion U of localized
d-electron states in the solid (the SIC splits the occupied and unoccupied d-bands
by the Coulomb repulsion U or slightly less than that). In condensed systems, the
electron–electron Coulomb interaction is screened and the Coulomb repulsion should
be much reduced. The “bare” (HF) value of the Coulomb interaction parameter U is
15–20 eV, while the screening in a solid to a much smaller value 8 eV or less [438].
This means that the LSDA-SIC functional form should be reformulated to include
this screening. This is confirmed by investigations of f -electron bands in rare-earth
element compounds [437].
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The unscreened nature of Coulomb interaction is a serious problem of the Hartree–
Fock approximation also – due to the neglect of screening, the HF energy gap values
are a factor of 2–3 larger than the experimental values. A combination of the LDA
and HF-type approximation called the LDA+U method was proposed [153]. The
DFT+U solution can be obtained either at the LDA or GGA levels, giving rise to
what have been called the LDA+U and the GGA+U formulations, respectively. In
this approach the contribution of the interaction to U is added to the LDA energy.
Instead of the energy-dependent interaction the averaged static Coulomb interaction
between localized orbitals is used. This approach can be viewed as a way of connecting
the theory of strongly correlated systems, which is based on such models, with the ab-
initio electronic-structure calculation methods like the HF method [151]. In contrast
to the GW approximation, where the screened Coulomb interaction is used in the
form of a nonlocal energy-dependent operator, in the DFT+U method a set of site-
centered atomic-type orbitals is introduced and the Coulomb interaction is present
only between electrons on such orbitals. This can be called the “orbital-restricted”
solution because the DFT-potential is the same for all orbitals (for example, for all five
3d-orbitals of a transition-metal ion). The DFT+U method can reproduce the splitting
of d- (or f -) bands into occupied lower and unoccupied upper bands, which was the
main problem of LDA. This leads to the possibility of investigating the influence
of correlation effects on structural properties, such as Jahn–Teller distortions. The
orbital dependence of the DFT+U potential allows one to treat orbital and charge
ordering in transition-metal compounds, which is very important for modern materials
with anomalous magnetic and electronic properties.

In the LDA+U method electrons are separated into two subsystems: localized d- or
f -electrons for which Coulomb d–d (f–f) interaction is taken into account by a term
1
2U

∑
i �=j

ninj(ni are d- or f -orbital occupancies) as in a mean-field (HF) approximation

and delocalized s, p-electrons that could be described by using an orbital-independent
one-electron LDA potential.

In the LDA+U method the total Coulomb-interaction energy expression E =
UN(N − 1)/2(N =

∑
i

ni) is substracted from the LDA total energy and the orbital-

dependent Coulomb-interaction energy is added:

ELDA+U = ELDA − UN(N − 1)/2 +
1
2
U
∑
i �=j

ninj (7.72)

The orbital energies ε are derivatives of (7.72) with respect to the orbital occupations

εi =
∂E

∂ni
= εLDA + U(

1
2
− ni) (7.73)

This simple formula shifts the LDA orbital energy by −U/2 for occupied orbitals
(ni = 1) and by +U/2 for unoccupied orbitals (ni = 0). A similar formula is found for
the orbital-dependent potential (Vi(r) = δE[ρ]

δρi(r) ) where a variation is taken not on the
total charge density ρ(r) but on the charge density of a particular ith orbital ρi(r)

Vi(r) = VLDA(r) + U(
1
2
− ni) (7.74)
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Such an approach introduces, in fact, the self-interaction correction for these orbitals.
Therefore DFT-SIC and DFT+U methods give close results in many cases.

The LDA+U orbital-dependent potential (7.74) gives the energy separation be-
tween the upper valence and lower conduction bands equal to the Coulomb parameter
U, thus reproducing qualitatively the correct physics for Mott–Hubbard insulators. To
construct a calculation in the LDA+U scheme one needs to define an orbital basis set
and to take into account properly the direct and exchange Coulomb interactions inside
a partially filled d-(f -) electron subsystem [439]. To realize the LDA+U method one
needs the identification of regions in a space where the atomic characteristics of the
electronic states have largely survived (“atomic spheres”). The most straightforward
would be to use an atomic-orbital-type basis set such as LMTO [448].

As is seen from Table 7.6 the SIC LSDA (type-3) and LSDA+U calculations give
close results both for bandgaps and magnetic moments in transition-metal crystalline
oxides. In both cases the agreement with the experiment appears to be essentially
better than in pure DFT LSDA calculations.

The deficiency of the DFT+U method is the necessity to define explicitly the set of
localized orbitals for interacting electrons. While for rare-earth and transition-metal
ions the good approximation is to use atomic-type f - or d-orbitals and LMTO basis,
for more extended systems like, for example, semiconductors, some more complicated
Wannier-type orbitals are needed. Furthermore, the DFT+U method does not neces-
sarily provide a reliable way of treating the U term, while, in a sense, all the important
effects of strong correlation are defined by this term. Another problem of this method
is that the estimate of U may depend on the choice of the basis [449]. Different choices
of local orbitals such as the LMTO and LCAO give different U because the defini-
tion of the orbital becomes ambiguous whenever there is strong hybridization. In this
situation the U value fitted to experimental data can also be used. Recently, [450]
the DFT+U method was implemented in the computer code VASP [451], which uses
the pseudopotential description for core electrons (see Chap. 8) and plane waves as
the basis in the Bloch-functions calculations. Use of this modified code allows the
systematic DFT+U study of correlation effects in different solids. In particular, ap-
plication of DFT+U method for transition-metal sulfides yielded improved predictions
for volume, magnetic moment, exchange splitting and bandgap [450]. In these calcu-
lations the dependence of results on the U parameter is studied. It was shown that
the observed width of the semiconducting gap is reached at U=5 eV in the LDA
+U method and U=3 eV in the GGA+U method. The comparative DFT study with
B3LYP (LCAO basis) and GGA+U (PW basis) of electronic-structure and magnetic
coupling in FeSbO4 crystal [452] allows the differences due to the different choice of
exchange-correlation functional and basis to be estimated. In Table 7.7 we give the
electronic bandgap values obtained in [452].

These results correspond to the experimentally found antiferromagnetic ordering
of Fe ions in two dimensions. Such an ordering is correctly reproduced giving for
the B3LYP functional the magnetic coupling constant value –21 K (experimental
value is –25 K). From experimental studies, FeSbO4 is known to be a charge-transfer
semiconductor (with an O2p-Fe3d bandgap), with an activation energy of 0.75 eV
for n-type conduction. This value represents a lower limit for the bandgap, as is the
energy required to excite electrons from the donor levels to the conduction band.
In DFT+U calculations the parameter Ueff is defined as the difference U–J (J is
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Table 7.7. Electronic bandgap values (in eV) in FeSbO4 crystal, obtained for the antifer-
romagnetic solutions using different methods∗, [452]

LCAO Bandgap Plane Waves Bandgap

GGA(BLYP) 0.2 GGA(PW91) 0.2

B3LYP 3.0 GGA+U (Ueff =4eV) 1.6

HF 12.8 GGA+U (Ueff =9eV) 1.7

∗Experimental value is estimated as being greater than 0.75 eV

(see explanations to this table in the text)

a parameter representing the screened exchange energy, being almost constant at 1
eV). It was concluded [452] that the bandgap and the relative positions of the bands
are affected in similar ways by the inclusion of 20% Hartree–Fock exchange and by
the GGA+U correction with Ueff = 4 eV. In particular, the occupied Fe-3d levels
shift down in the valence-band region for both methods, in comparison with the GGA
solutions. However, increasing the HF exchange up to 100% and using higher values of
Ueff do not have equivalent effects on the band structure, due to the local character
of the GGA+U correction.

As a main conclusion of these calculations we note the consistency between B3LYP
and GGA+U results. This means that LCAO calculations with hybrid functionals
can play the same role in quantum chemistry of solids as DFT+U and SIC DFT
calculations in solid-state physics.

Recent LDA+U calculations were made on different solids: ZnX( X=O, S, Se,
Te), [453], NiO [454] and other transition-metal oxides (Cu2O [455], ReO2 [456], TiO2

[457]). The results of these calculations confirm the efficiency of the DFT+U approach
for strongly correlated systems. We hope that future LCAO calculations with the
hybrid exchange-correlation functionals will discover the same efficiency.

This chapter concludes Part I (Theory) of our book. In Part II (Applications)
we consider the applications in the quantum chemistry of solids of the theoretical
methods described in Part I.



Part II

Applications



8

Basis Sets and Pseudopotentials in Periodic LCAO
Calculations

8.1 Basis Sets in the Electron-structure Calculations of
Crystals

8.1.1 Plane Waves and Atomic-like Basis Sets. Slater-type Functions

The choice of the basis set is of particular importance when treating periodic sys-
tems where a large variety of chemical bonding can be found. The following three
approaches to the basis-set choice define three types of methods of the electronic-
structure calculations in crystals [10]: atomic-sphere (AS) methods, plane-wave (PW)
methods, localized atomic-like orbitals (LCAO) methods. Each method has its ad-
vantages and disadvantages.

The basic idea of AS methods is to divide the electronic-structure problem, pro-
viding efficient representation of atomic-like features that are rapidly varying near
each nucleus and smoothly varying functions between atoms [10]. The smooth func-
tions are augmented near each nucleus by solving the Schrödinger equation in the
sphere at each energy and matching to the outer wave function. The resulting APW
(augmented plane waves) or KKR (Kohn–Korringa–Rostoker) methods are powerful
but require solution of nonlinear equations. The linear modifications of AS methods
(LAPW, LMTO) use the familiar form of a secular equation involving a Hamiltonian
and overlap matrix. The full-potential linear methods (FPLAPW) provide the most
precise solutions of the Kohn–Sham equations.

The simpler PW methods are the most popular in the Kohn–Sham periodic-
systems calculations. Plane waves are an orthonormal complete set; any function
belonging to the class of continuous normalizable functions can be expanded with
arbitrary precision in such a basis set. Using the Bloch theorem the single-electron
wavefunction ϕi(r) can be written as a product of a wave-like part and a cell-periodic
part ϕik = exp(ikr)ui(r) (see Chap. 3). Due to its periodicity in a direct lattice ui(r)
can be expanded as a set of plane waves ui(r) =

∑
B

CiB exp(iBr), where B is the

reciprocal lattice vector. Thus, in the PW basis the single-electron wavefunction can
be written as a linear combination of plane waves

ϕik(r) =
∑
B

CiB exp(i(k + B)r) (8.1)
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The number of basis functions used is controlled by the largest wavevector in the
expansion (8.1). This is equivalent to imposing a cutoff on the kinetic energy as the
kinetic energy of an electron with wavevector (k + B) is given by |k+B|2

2 . Thus, the
size of the PW basis set is defined by the so-called cutoff energy, i.e. the kinetic energy
for the largest reciprocal lattice vector included in the PW basis. The Kohn–Sham
equations take on a very simple form using plane waves [377]{∑

B′
(
1
2
|k + B|2δBB′ + VeN (B − B′) + Vee(B − B′)

+VXC(B − B′))
}

Ci,k+B′ = Ci,k+Bεik (8.2)

where VeN (B−B′), Vee(B−B′), and VXC(B−B′) are the Fourier transforms of the
electronic–nuclei, electron–electron Coulomb, and exchange-correlation potentials.

The PW basis set is universal, in the sense that it does not depend on the positions
of the atoms in the unit cell, nor on their nature [458]. One does not have to construct
a new basis set for every atom in the periodic table nor modify them in different
materials, as is the case with localized atomic-like functions and the basis can be made
better (and more expensive) or worse (and cheaper) by varying a single parameter –
the number of plane waves defined by the cutoff energy value. This characteristic is
particularly valuable in the molecular-dynamics calculations, where nuclear positions
are constantly changing. It is relatively easy to compute forces on atoms. Finally,
plane-wave calculations do not suffer from the basis-set superposition error (BSSE)
considered later. In practice, one must use a finite set of plane waves, and this in fact
means that well-localized core electrons cannot be described in this manner. One must
either augment the basis set with additional functions (as in linear combination of
augmented plane waves scheme), or use pseudopotentials to describe the core states.
Both AS and PW methods, developed in solid-state physics are used to solve Kohn–
Sham equations. We refer the reader to recently published books for the detailed
description of these methods [9–11].

In the quantum chemistry of solids the LCAO methods are preferable [458]. These
methods are more flexible as they allow both Hartree–Fock and Kohn–Sham equations
to be solved, are applicable in the correlated wavefunction approaches (post-Hartree–
Fock methods, see Chap. 5) and in Kohn–Sham theory based on hybrid exchange-
correlation functionals (see Chap. 7). In comparison with plane waves, the use of all-
electron LCAO calculations allows us to describe accurately electronic distributions
both in the valence and the core region with a limited number of basis functions. The
local nature of the basis allows a treatment both of finite systems and of systems with
periodic boundary conditions in one, two or three dimensions. This has an advantage
over plane-wave calculations of molecules, polymers or surfaces that work by imposing
artificial periodicity: the calculation must be done on, e.g. a three-dimensional array
of molecules with a sufficiently large distance between them (the molecule is placed
at the center of a periodic supercell). LCAO total energies can be made very precise
(i.e. reliable to many places of decimals) since all integrals can be done analytically
(in practice, this is only true for Hartree–Fock calculations; density-functional the-
ory LCAO calculations require a numerical integration of the exchange-correlation
potential that reduces the attainable precision). Having an “atomic-like” basis facili-
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tates population analyses, the computation of properties such as projected densities
of states, and “pre-SCF alteration of orbital occupation” making the convergence of
SCF calculations faster. As was already noted the LCAO basis allows easy compar-
ison of the results obtained for molecules and solids at the same precision level of
calculations.

The molecular basis set atomic-like orbitals can be considered as a starting point
to generate atomic basis sets to be used in crystalline compounds. Therefore, we begin
with the molecular basis-sets description.

In molecular quantum chemistry two types of atomic-like basis sets are used:
Slater-type orbitals (STO) and Gaussian-type orbitals (GTO). In fact, it is not really
correct to call them “orbitals”. They are better described as basis-set functions, since
they are Slater-type or Gaussian-type functions used to approximate the shapes of
the orbitals defined as one-electron wavefunctions. Using the acronyms accepted in
solid-state theory it would be possible even call LCAO methods for crystals to “all-
electron or full potential linear combination of Slater (Gaussian)-type functions – FP
LS(G)TF method” [458], compare with the acronym FP LAPW (full potential linear
combination of augmented plane waves).

The mathematical form of the normalized primitive Slater-type function (STF) in
atom-centered polar coordinates is

χSTF
nlm (r) = Nnl(ζ)rn−1 exp(−ζr)Ylm(θ, ϕ) = Rnl(r)Ylm(θ, ϕ) (8.3)

where ζ is an orbital exponent, n is the principal quantum number, Ylm(θ, ϕ) are the
spherical harmonics, depending on the angular momentum quantum numbers l and
m. STF have a number of features that make them attractive, see Sect. 6.1.1. We
note the difference between Slater-type orbitals (8.3) and Slater orbitals introduced
by Slater [210] and used in semiempirical LCAO methods, see Chap. 6. The radial
part of the Slater orbitals R∗

nl(r) depends on two parameters: the effective quantum
number n∗ and screening parameter constant s. The values of these parameters are
given by the following rules:

(1) n∗ is assigned by the following table, in terms of the real principal quantum
number n: for n = 1, 2, 3, 4, 5, 6 – n∗ = 1, 2, 3, 3.7, 4.0, 4.2.

(2) For determining (Z − s), the electrons are divided into the following groups,
each having a different screening constant: 1s; 2s, 2p; 3s, 3p; 3d; 4s, 4p; 4d; 4f ; 5s, 5p; 5d;
etc. That is, the s and p of a given n are grouped together but the d and f are sepa-
rated. The shells are considered to be arranged from inside out in the order named.

(3) The screening constant s is formed, for any group of electrons, from the fol-
lowing contributions: (a) Nothing from any shell outside the one considered, (b) an
amount 0.35 from each other electron in the group considered (except in the 1s group,
where 0.30 is used instead).

(c) If the shell considered is an s, p shell, an amount 0.85 from each electron
with total quantum number less by one, and an amount 1.00 from each electron
still further in; but if the shell is a d or f , an amount 1.00 from every electron
inside it. As an example, we take the carbon atom C, Z = 6. Here, we have two
1s electrons, four 2s, 2p electrons. For the effective nuclear charge, Z − s, we have
1s : 6 − 0.30 = 5.70; 2s, p : 6 − 3(0.35) − 2(0.85) = 3.25. As a second example,
we take the iron atom Fe, Z = 26. There are two 1s, eight (2s, p), eight (3s, p),
six (3d), two (4s). The effective nuclear charges are: 1s : 26 − 0.30 = 25.70; 2s, p :
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26 − 7(0.35) − 2(0.85) = 21.85; 3s, p : 26 − 7(0.35) − 8(0.85) − 2(1.00) = 14.75; 3d :
26 − 5(0.35) − 18(1.00) = 6.25; 4s : 26 − 1(0.35) − 14(0.85) − 10(1.00) = 3.75. These
simple rules give approximate Slater analytic atomic wavefunctions for all the atoms
and ions.

The Slater orbitals can be written in the form (8.3) with the orbital exponent
ζ = Z−s

n∗ and n = n∗.
The Slater-type functions (STF) with the radial part in the form (8.3) and integer

n can be used as the basis functions in Hartree–Fock–Roothaan calculations of atomic
wavefunctions. The radial dependence of the atomic orbitals is an expansion in the
radial Slater-type basis functions ϕlmp whose indices are l, running over s, p, d, f, . . .
symmetries, and p counting serially over basis-set members for a given symmetry:

ϕlmi =
∑

p

ClmpRlp(r)Ylm(θ, ϕ) (8.4)

The radial expansion is independent of m; all electrons with a given l, i have the same
radial dependence. The orbital angular dependence Ylm(θ, ϕ) is a normalized spherical
harmonic. The expansion coefficients Clmp of the ith orbital, for the occupied atomic
orbitals, are tabulated for elements with Z=1–54 in [65] and with Z=55–92 in [459].
Relatively few primitive STOs are needed to closely approximate HF solutions of
atoms (the latter are known as the contracted Slater-type orbitals). For example,
six s-functions and four p-functions are enough to give seven-figure accuracy in total
energy for the ground states of the first-row atoms. In Table 8.1 we give the results
of Hartree–Fock–Roothaan carbon atom ground-state calculations. The one-electron
energies ε of occupied 1s, 2s and 2p AOs and the corresponding primitive STFs orbital
exponents ζ and coefficients Clmp are shown. The STF basis set for the carbon atom
can be denoted as 6s-6s4p, meaning that the core 1s AO is represented by six s-
orbitals and the valence 2s- and 2p-orbitals are represented by six s- and four p-
orbitals, respectively.

The Slater-type orbitals were the first to be used in the molecular quantum chem-
istry semiempirical calculations. Unfortunately, such functions are not suitable for fast
calculations of multicenter integrals in ab-initio calculations. Gaussian-type functions
(GTFs) were introduced to remedy the difficulties. GTFs are used in basis sets in prac-
tically all modern codes for LCAO calculations of molecules. We know two exclusions

Table 8.1. HF SCF occupied atomic orbitals for the ground state of a carbon atom given
as linear combinations of s and p STOs [65]. The one-electron energies are given in a.u.

s 1s : C 2s : C p 2p : C

basis ζ ε –11.32554 –0.70563 basis ζ ε –0.43335

1s 5.43599 0.93262 –0.20814 2p 0.98073 0.28241

1s 9.48256 0.06931 –0.01071 2p 1.44361 0.54697

2s 1.05749 0.00083 0.08099 2p 2.60051 0.23195

2s 1.52427 –0.00176 0.75045 2p 6.51003 0.0.1025

2s 2.68435 0.00559 0.33549

2s 4.20096 0.00382 –0.14765
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from this rule – KS LCAO codes SIESTA [344] and ADF [345]. The SIESTA code
uses a numerical AO basis set, the ADF code uses Slater-type basis set orbitals (see
Appendix C). In the next section we consider the GTF used in molecular quantum
chemistry.

8.1.2 Molecular Basis Sets of Gaussian-type Functions

A primitive Gaussian-type function can be written in a local Cartesian coordinate
system in the form

χGTF = xlymzn exp(−αr2) (8.5)

where α is the orbital exponent, and the l,m, n are not quantum numbers but simply
integral exponents of Cartesian coordinates. Gaussian primitives (8.5) can be fac-
torized into their Cartesian components, i.e. χGTF = χGTF

x χGTF
y χGTF

z , where each
Cartesian component has the form (introducing an origin such that the Gaussian is
located at position A),

χGTF
x = (x − xA) exp

(−α(x − xA)2
)

(8.6)

This simplifies considerably the calculation of integrals. If we write the exponential
part of an STF, exp(−αr) in Cartesian components we get exp(−α

√
x2 + y2 + x2)

that is not so separable. Note that the absence of the STO pre-exponential factor rn−1

restricts single Gaussian primitives to approximating only 1s, 2p, 3d etc. orbitals and
not, e.g. 2s, 3p, 4d, etc. However, combinations of Gaussians are able to approximate
correct nodal properties of atomic orbitals if the primitives are included with different
signs. The sum of exponents of Cartesian coordinates L = l+m+n is used analogously
to the angular-momentum quantum number for atoms to mark Gaussian primitives as
s-type (L = 0), p-type (L = 1), d-type (L = 2), f -type (L = 3) etc. From six 3d GTFs
(x2, xy, xz, yz, y2, z2) there are only five linearly independent and orthogonal atomic d-
orbitals being linear combinations of Cartesian Gaussians (3z2−r2, xz, yz, x2−y2, xy),
the sixth combination x2 + y2 + x2 = r2 is Gaussian primitive of s-type.

It is clear that the behavior of a Gaussian is qualitatively wrong both at the
nuclei and in the long-distance limit for a Hamiltonian with point-charge nuclei and
Coulomb interaction. From this point of view STFs would be preferable.

In so-called Pople basis sets, the basis functions are made to look more like Slater-
type functions by representing each STF χSTF as a linear combination of Gaussian
primitives:

χSTF =
N∑

i=1

Ciχ
GTF
i (8.7)

where Ci is a fixed coefficient and N is the number of Gaussian primitives used to
represent the Slater-type basis function. The sums (8.7) are known as the contracted
Gaussian basis set. Linear combinations of Gaussian primitives allow the representa-
tion of the electron density close to the nucleus to be improved. Recall that STF has a
cusp at the nucleus, while GTF does not. By taking linear combinations of Gaussian
primitives, the cusplike behavior is better reproduced.

The Gaussian basis set can also be used without any connection with the Slater-
type orbitals: HF equations solutions for atoms are reached by Roothaan’s expansion
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method with Gaussian-type functions as was done with STFs (see Sect. 8.1.1). The
details of both procedures – Gaussian expansion of Slater-type orbitals and atomic
SCF calculations with Gaussian-type basis – are well known in molecular quantum
chemistry [460]. It was found that GTF expansions require inclusion of more primitives
than STF expansions for the same accuracy in the total and one-electron SCF energies
for atoms. For example, in the case of the carbon atom the inclusion of 10 s-type
primitive GTFs and 6 p-type primitive GTFs is necessary (10s − 10s6p) to obtain
only six-figure accuracy in the total energy (in the STF case seven-figure accuracy
was obtained for 6 and 4 STF s-type and p-type primitives, respectively).

In molecular quntum chemistry Gaussian-type basis functions are expanded as a
linear combination (contraction) of individually normalized Gaussian primitives gj(r)
characterized by the same center and angular quantum numbers but with different
exponents

χi(r) =
N∑

j=1

djgj(r), gj(r) = g(r; α, l, m) = Nlm(α)rlYlm(θ, φ) exp(−αjr
2) (8.8)

where N is the length of the contraction, the αj are the contraction exponents, the
dj are contraction coefficients. Gaussian primitives can be written in terms of real
spherical harmonics including a normalization constant.

If accurate solutions for an atom are desired, they can be obtained to any de-
sired accuracy in practice by expanding the “core” basis functions in a sufficiently
large number of Gaussians to ensure their correct behavior. Furthermore, properties
related to the behavior of the wavefunction near nuclei can often be predicted cor-
rectly, even without an accurately “cusped” wavefunction [461]. In most molecular
applications the asymptotic behavior of the density far from the nuclei is considered
much more important than the nuclear cusp [458]. The molecular wavefunction for
a bound state must fall off exponentially with distance, whenever the Hamiltonian
contains Coulomb electrostatic interaction between particles. However, even though
an STFs basis would, in principle, be capable of providing such a correct exponen-
tial decay, this occurs in practice only when the smallest exponent in the basis set
is ζmin =

√
2Imin, where Imin is the first ionization potential. Such a restriction on

the range of exponent values, while acceptable for atomic SCF calculations, is far too
restrictive for molecular and solid-state work. Some of these formal limitations have
thus turned out to be of relatively little importance in practice.

By proper choice of the N , αj , and dj in the contraction (8.8) the “contracted
Gaussians” may be made to assume any functional form consistent with the primitive
functions used. One may therefore choose the exponents of the primitives and the
contraction coefficients so as to lead to basis functions with desired properties, such
as reasonable cusp-like behavior at the nucleus (e.g. approximate Slater functions or
HF atomic orbitals). Integrals involving such basis functions reduce to sums of inte-
grals involving the Gaussian primitives. Even though many primitive integrals may
need to be calculated for each basis function integral, the basis function integrals will
be rapidly calculated provided the method of calculating primitive integrals is fast,
and the number of orbital coefficients in the wavefunction will have been considerably
reduced. The exponents and contraction coefficients are normally chosen on the basis
of relatively cheap atomic SCF calculations so as to give basis functions suitable for
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describing exact Hartree–Fock atomic orbitals. An approximate atomic basis function,
whose shape is suitable for physical and chemical reasons, is thus expanded in a set
of primitive Gaussians, whose mathematical properties are attractive from a compu-
tational point of view. Note that the physical motivation for this procedure is that,
while many primitive Gaussian functions may be required to provide an acceptable
representation of an atomic orbital, the relative weights of many of these primitives
are almost unchanged when the atoms are formed into molecules or crystals. The rel-
ative weights of the primitives can therefore be fixed from a previous calculation and
only the overall scale factor for this contracted Gaussian function need be determined
in the extended calculation. It is clear that contraction will in general significantly
reduce the number of basis functions.

For molecular basis sets of Gaussian-type functions (GTF) general acronyms and
notations are used that are well known in molecular quantum chemistry.

A Minimal-basis sets are constructed by using one Slater-type orbital basis func-
tion of each type occupied in the separated atoms that comprise a molecule. If at least
one p-type, d-type or f -type orbital is occupied in the atom, then the complete set (3
p-type, 5 d-type, 7 f -type) of functions must be included in the basis set. The sim-
plest of these basis sets is that designated STO-3G, an acronym for Slater-type-orbitals
simulated by 3 primitive Gaussians added together. The coefficients of the Gaussian
functions are adjusted to give as good a fit as possible to the Slater orbitals. To illus-
trate this, let us consider a 1s Slater-type orbital radial part exp(−ζr) (for ζ = 1.0
it is an exact hydrogen atom atomic orbital). A plot of this STO function is given in
Fig. 8.1b, taken from [458]. A plot of Gauusian-type orbitals exp(−ζr2) for different
orbital exponents is shown in Fig. 8.1a. Note the cusp at the origin for the Slater-type
orbital while the Gaussian-type orbital has no cusp at the origin. In addition, the
shape of the Gaussian-type orbital is different due to the squared distance that ap-
pears in its exponent. In Fig. 8.1a are shown individually three 1s-Gaussian primitives
with orbital exponents 0.1098, 0.4058 and 2.2277. When the Gaussian primitives are
combined using the coefficients 0.4446, 0.5353 and 0.1543, a new STO-3G function is
produced, which is shown in Fig. 8.1b. It is seen that the new basis function resem-
bles the Slater-type orbital much more closely than any of the single Gaussian-type
orbitals. The only slight variation is observed near the cusp. The new basis function,
because it consists of Gaussian primitive functions, does not have a cusp. However,
the overall shape even close to the nucleus is very much like the Slater-type orbital.
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Only one best fit to a given type of Slater orbital is possible for a given number
of Gaussian functions. Hence, all STO-3G basis sets for any row of the periodic table
are the same, except for the exponents of the Gaussian functions. The exponents
are expressed as scale factors, the squares of which are used as multipliers of the
adjusted exponents in the original best-fit Gaussian functions. In this way, the ratios of
exponents remain the same while the effective exponent of each orbital can be varied,
[458]. The STO-3G basis set, and other minimal basis sets, usually do reasonably
well at reproducing geometries of only simple organic molecules. The minimal basis
sets do not allow alteration of the basis orbitals in response to a changing molecular
environment and therefore make comparison between charged and uncharged species
unreliable. Anisotropic environments are another problem for minimal basis sets [458].

Because the core electrons of an atom are less affected by the chemical environment
than the valence electrons, the core electrons can be treated with a minimal basis set
while the valence electrons are treated with a larger basis set. This is known as a
split-valence basis set. In these bases, the AOs are split into two parts: an inner,
compact orbital and an outer, more diffuse one. The coefficients of these two kinds
of orbitals can be varied independently during construction of the MOs. Thus, the
size of the AO can be varied between the limits set by the inner and outer functions.
Basis sets that similarly split the core orbitals are called double zeta, DZ (implying
two different exponents) or triple zeta, TZ (implying three different exponents). For
example, the 3-21G notation of split valence basis set means that the core orbitals are
represented by three Gaussians, whereas the inner and outer valence orbitals consist of
two and one Gaussians, respectively. If we were to name bases consistently, of course,
this one would be labeled STO-3-21G, but the STO is customarily omitted from all
split-valence descriptors. Two other split-valence bases are the 6-31G and the 6-311G.
Both have six Gaussian cores. The 6-311G is a triply split basis, with an inner orbital
represented by three Gaussians, and middle and outer orbitals represented as single
Gaussians. The triple split improves the description of the outer valence region.

Further improvement of the basis set is achieved including polarization functions in
the basis set. For example, this is done by adding d-orbitals to the basis of all atoms
having no d-electrons. For typical organic compounds these are not used in bond
formation, as are the d-orbitals of transition metals. They are used to allow a shift of
the center of an orbital away from the position of the nucleus. For example, a p-orbital
on carbon can be polarized away from the nucleus by mixing into it a d-orbital of
lower symmetry. One obvious place where this can improve results is in the modeling
of small rings; compounds of second-row elements also are more accurately described
by the inclusion of polarization. The presence of polarization functions is indicated
in the Pople notation by appending an asterisk to the set designator. Thus, 3-21G*
implies the previously described split valence basis with polarization added. Typically,
six d-functions (x2, y2, z2, xy, xz, and yz), equivalent to five d-orbitals and one s, are
used (for computational convenience). Most programs can also use five real d-orbitals.
An alternative description of this kind of basis is DZP: double zeta, polarization. A
second asterisk, as in the 6-31G** basis set, implies the addition of a set of p-orbitals to
each hydrogen to provide for their polarization. Again, an alternative notation exists:
DZ2P(double zeta 2 polarization). An asterisk in parentheses signals that polarization
functions are added only to second-row elements. Another alternative to the asterisk
for specifying polarization functions is (d), placed after the G.
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To provide more accurate descriptions of anions, or neutral molecules with un-
shared pairs, basis sets may be augmented with so-called diffuse functions. These are
intended to improve the basis set at large distances from the nuclei, thus better de-
scribing the barely bound electrons of anions. Processes that involve changes in the
number of unshared pairs, such as protonation, are better modeled if diffuse functions
are included.

The augmentation takes the form of a single set of very diffuse (exponents from
0.1 to 0.01) s and p orbitals. The presence of diffuse functions is symbolized by the
addition of a plus sign, +, to the basis set designator: 6-31+G. (Since these are s-
and p-orbitals, the symbol goes before the G.)

Again, a second + implies diffuse functions added to hydrogens; however, little
improvement in results is noted for this addition unless the system under investigation
includes hydride ions.

All of the codes for molecular ab-initio calculations offer at least one set of diffuse
functions. Still more extensive basis sets exist, and are described by more complicated
notation.

Let us summarize the notations used for molecular GTO basis sets. Basis sets
denoted by the general nomenclature N-M1G or N-M11G, where N and M are integers,
are called Pople basis sets. The first, N-MlG, is a split-valence double-zeta basis set
while the second, N-M11G is a split-valence triple-zeta basis set. The integers N and
M in the basis set name give the number of Gaussian primitives used. For example,
in the split-valence double-zeta basis set 6-31G for a carbon atom, the first number
(N=6) represents the number of Gaussian primitives used to construct the core orbital
basis function (the 1s function). The second two numbers (M=3 and 1) represent the
valence orbitals, 2s, 2s′, 2p(3) and 2p′(3). The first number after the dash in the
basis set name (3 in this case) indicates the number of Gaussian primitives used to
construct the 2s and 2p(3) basis functions. The second number after the dash (1 in this
case) gives the number of Gaussian primitives used to construct the 2s′ and 2p′(3)
basis functions. There are two common methods for designating that polarization
functions are included in a basis set. The first method is to use * or ** after the
Pople basis set name; for example, 6-31G* or 6-31G**. The single * means that
one set of d-type polarization functions is added to each nonhydrogen atom in the
molecule. The double ** means that one set of d-type polarization functions is added to
nonhydrogens and one set of p-type polarization functions is added to hydrogens. The
second method for including polarization functions in the basis-set designation is more
general. It is indicated by the notation (ll,l2) following the Pople basis-set name; for
example, 6-31G(d) or 6-31G(d, p). The first label indicates the polarization functions
added to nonhydrogen atoms in the molecule. The notations 6-31G(d) and 631G(d, p)
mean that one set of d-type polarization functions is added to all nonhydrogens. The
notation 6-31 l(2df) means that two sets of d-type and one set of f -type polarization
functions are added to nonhydrogens. The second label in the notation (ll,l2) indicates
the polarization functions added to hydrogen atoms. The basis set 6-31G(d) has no
polarization functions added to hydrogen, while the basis 6-31G(d, p) has one set of
p-type polarization functions added to hydrogen atoms. The basis set 6-31 1G(2df ,
2pd) has two sets of p-type and one set of d-type polarization functions added to
hydrogen atoms. The use of diffuse functions in a Pople basis set is indicated by the
notation + or ++. The + notation, as in 6-3l+G(d), means that one set of sp-type
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diffuse basis functions is added to nonhydrogen atoms (4 diffuse basis functions per
atom). The ++ notation, as in 6-31++G(d), means that one set of sp-type diffuse
functions is added to each nonhydrogen atom and one s-type diffuse function is added
to hydrogen atoms.

In Table 8.2 we give a list of basis sets of orbitals that are commonly used in
modern MO calculations. The H and C atomic orbitals that are included are listed.
The first set contains “Gaussian-like orbitals”. Outside of the STO-3G basis set, most
Gaussian basis sets are “split-valence”, which means that they use different numbers
of Gaussian functions to describe core and valence atomic orbitals. Thus, a 6-31G
basis set uses 6 Gaussians for the core orbitals, and two sets of Gassians for the
valence orbitals, one with 3 Gaussians and another with one. Adding more Gaussians
allows more flexibility in the basis set so as to give a better approximation of the true
orbitals. Therefore, although some of the basis sets incorporate the same AOs, the
larger ones provide a much better description of them. For each basis set, polarization
(*), and diffuse functions (+) can also be added, which add flexibility into the basis
set.

Table 8.2. The basis sets and orbitals they include

Basis AOs on C* AOs on H

STO-3G 1s, 2s, 2px, 2py2pz 1s

3-21G* 1s, 2s, 2p, 3s, 3p 1s, 2s

3-21+G* 1s, 2s, 2p, 3s, 3p, 4s, 4p 1s, 2s

6-31G 1s, 2s, 2p, 3s, 3p 1s, 2s

6-31G* 1s, 2s, 2p, 3s, 3p, 3d 1s, 2s

6-31G** 1s, 2s, 2p, 3s, 3p, 3d 1s, 2s, 2p

6-31+G* 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p 1s, 2s

6-311G* 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p 1s, 2s, 3s

6-11++G(2df, 2pd) 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f 1s, 2s, 2p, 3s, 3p, 3d, 4s

Alternate basis sets that are commonly used are the Dunning correlation-consistent
polarized valence X zeta basis sets, denoted cc-pVXZ, see Table 8.3. Dunning pointed
out that basis sets optimized at the Hartree–Fock level might not be ideal for corre-
lated computations [462]. The “correlation consistent” basis sets are optimized using
correlated wavefunctions and cc-pVXZ means a Dunning correlation-consistent, po-
larized valence, X-zeta basis; X=D,T,Q,5,6,7. In particular, the cc-pVDZ for C atom

Table 8.3. Correlation-consistent polarized valence X zeta (XZ) basis sets

Basis AOs on C AOs on H

cc-pVDZ 1s, 2s, 2p, 3s, 3p, 3d 1s, 2s, 2p

cc-pVTZ 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f 1s, 2s, 2p, 3s, 3p, 3d

cc-pVQZ 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p,

5d, 5f, 5g 4d, 4f

cc-pV6Z total of 7s, 6p, 5d, 4f, 3g, 2h, i



8.1 Basis Sets in the Electron-structure Calculations of Crystals 291

consists of 3s2p1d, cc-pVTZ would be 4s3p2d1f , cc-pVQZ would be 5s4p3d2f1g (see
Table 8.3). The advantage of these is that increasing basis-set size is systematic.
In fact, if energies are calculated with the cc-pVDZ, cc-pVTZ and cc-pVQZ basis
sets, then there is an analytical function that can be used to extrapolate to cc-pVmZ
(the complete basis-set limit). Unfortunately, cc-pVQZ calculations are not commonly
doable. Moreover, cc-VXZ functions are more difficult to integrate than the Gaussian
functions and these calculations take longer even for comparably sized basis sets. Dun-
ning basis sets already contain polarization functions, but they can be augmented with
diffuse functions.

The EMSL (the environmental molecular sciences laboratory) [463] library sup-
plies a wide selection of atomic basis sets optimized for molecules. This library allows
extraction of Gaussian basis sets, and any related effective core potentials (the effec-
tive core potentials are considered in the next sections), from the Molecular Science
Research Center’s Basis Set Library. A user may request the basis set be formatted
appropriately for a wide variety of popular molecular electronic-structure packages.
In addition to the exponents and contraction coefficients that define the basis set, the
user can obtain descriptive data that include the overall philosophy behind the basis
literature citations, the angular momentum composition of the basis and many other
pieces of information.

Molecular AO basis sets can formally be used in periodic LCAO calculations but
their adequacy must be carefully checked [23]. We discuss in the next section the
modification of molecular basis sets to the study of crystals.

8.1.3 Molecular Basis Sets Adaptation for Periodic Systems

In the periodic systems the basis sets are chosen in such a way that they satisfy the
Bloch theorem. Let a finite number mA of contracted GTFs be attributed to the atom
A with coordinate rA in the reference unit cell. The same GTFs are then formally
associated with all translationally equivalent atoms in the crystal occupying positions
rA + an (an is the direct lattice translation vector). For the crystal main region
of N primitive unit cells there are N

∑
A

mA Gaussian-type Bloch functions (GTBF)

constructed according to

χki(r) =
1√
N

∑
an

exp(ikan)χi(r − rA − an) (8.9)

The total number M of GTBFs equals M =
∑
A

mA where the summation is made

over atoms of the reference cell. Thus, in solids the basis-set functions are modulated
over the infinite lattice: any attempt to use large uncontracted molecular or atomic
basis sets, with very diffuse functions can result in the wasting of computational re-
sources [23]. Therefore exponents and contraction coefficients in the molecular and
periodic systems are generally rather different, and with some exceptions, such as
molecular crystals and certain covalent solids, molecular basis sets are not directly
transferable to the study of crystalline solids. As in the case of molecules, basis func-
tions in solids are grouped into shells. In general, a shell contains all functions char-
acterized by the same n and l quantum numbers (e.g. all the different d-functions in
a 3d shell); this allows the partitioning of the total charge density into “shell charge
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distributions” and is useful in the selection of bielectronic integrals and in the evalua-
tion of long-range interactions. A feature of the contraction schemes originally used in
the basis sets of the Pople type (and often useful in calculations with the CRYSTAL
code [23]) is the additional grouping of basis functions with only the same principle
quantum number into shells; e.g. a 2sp shell, in which both 2s and 2p functions have
the same set of exponents αj but different contraction coefficients dj . For STF this
is illustrated by Table 8.1. This procedure reduces the number of auxiliary functions
to be calculated in the evaluation of electron integrals. Note that if the basis set is
restricted to s, p and d basis functions only sp shells may be formed in this way. In
certain circumstances it may actually represent an important constraint on the form
of the basis functions. For relatively small calculations where the time and storage lim-
itations are not an important factor, some consideration should be given to describing
the s and p functions with separate sets of exponents. Most standard molecular codes
use what is known as a segmented contraction scheme, in which the transformation
from the larger primitive set to the smaller contracted set is restricted in such a way
that each Gaussian primitive gj(r) contributes to exactly one contracted GTF. In
contrast, the general contraction scheme makes no such assumptions, and allows each
Gaussian primitive to contribute to several contracted GTFs. A considerable advan-
tage of the general scheme is that the contracted GTFs reproduce exactly the desired
combinations of primitive functions. For example, if an atomic SCF calculation is used
to define the contraction coefficients in a general contraction, the resulting minimal
basis will reproduce the SCF energy obtained in the primitive basis. This is not the
case with segmented contractions. There are other advantages with a general con-
traction: for example, it is possible to contract inner-shell orbitals to single functions
with no error in the atomic energy, making calculations on heavy elements much eas-
ier. Another advantage is a conceptual one: using a general contraction, it is possible
to perform calculations in which the one-particle space is a set of atomic orbitals, a
true LCAO scheme, rather than being a segmented grouping of a somewhat arbitrary
expansion basis. The MOs or COs can then be analyzed very simply, just as for the
original qualitative MO LCAO or CO LCAO approach, but in terms of “exact AOs”
rather than relatively crude approximations to them.

We describe here in more detail some computational aspects of GTFs use in the
CRYSTAL code [23], following [458]. The important reason for the usefulness of a
Gaussian basis set is embodied in the Gaussian product theorem (GPT), which in
its simplest form states that the product of two primitive Gaussian functions with
exponents α and β, located at centers A and B, is itself a primitive Gaussian with
exponent γ = α + β, multiplied by a constant factor F , located at a point C along
the line segment A − B, where C = αA+βB

γ and F = exp
(
−αβ

γ (A − B)2
)
.

The product of two polynomial GTF, of degree µ and ν and located at points A
and B is therefore another polynomial GTF located at C of degree µ + ν in xC , yC

and zC , which can be expressed as a short expansion of one-center Gaussians:

χ
Ax

(x)χ
Bx

(x) =
µ+ν∑
i=0

Cµ+ν
i ϕCi(x − xC) (8.10)

where ϕCi(x) = xi exp(−αp(x − xc)2) and xc = αxA+βxB

α+β .
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The product of two Gaussians that are functions of the coordinates of the same
electron is referred to as an overlap distribution, and all the integrals that must
be calculated involve at least one such overlap distribution. The most important
consequence of the GPT is that all four-center two-electron integrals can be expressed
in terms of two-center quantities. CRYSTAL code actually uses a common and more
efficient approach for the evaluation of integrals over Gaussian basis functions, in
which Hermite Gaussian functions (HGFs) are used instead of the usual Cartesian
Gaussians in the re-expansion (8.10). Hermite Gaussians are defined as derivatives of
an s-type Gaussian:

Λ(ξ) = Hi(ξ) exp
(−αp(x − xp)2

)
= (−1)i di

dξi
exp(−ξ2) (8.11)

where Hi(ξ) is a polynomial of order i, and ξ = α
1/2
p (x− xp). The set of HGFs spans

the same space as the expansion functions in (8.10) and as a consequence they can
be used for expanding the basis function products:

χAx(x)χBx(x) =
lA+lB∑

i=0

ClA+lB
i Λi(ξ) (8.12)

where the expansion coefficients must now be redefined. Because of the natural rela-
tions between Hermite polynomials and Gaussians, the necessary two-center integrals
can be evaluated with very high efficiency. Basis functions with higher quantum num-
bers can be generated through repeated differentiation of an s-type Gaussian. Even
though the four-center bielectronic integrals can be written in terms of two-center
quantities, the cost of evaluating them still scales nominally as N4, where N is the
number of functions in the expansion. This scaling must be reduced in order to treat
large systems. One way of doing this that is used in CRYSTAL is the method of
prescreening where, rather than attempting to calculate the integrals more efficiently,
one seeks, where possible, to avoid their evaluation altogether. The expression for an
integral over primitive Gaussians can be formally written as

(ab|cd) = SabScdTabcd (8.13)

where Sab is a radial overlap between functions χa and χb, and Tabcd is a slowly varying
angular factor. In many situations the product SabScd thus constitutes a good estimate
of the magnitude of the integral whose product is used as an estimate in screening out
small integrals. In order to estimate these overlaps quickly, a single, normalized s-type
Gaussian called an adjoined Gaussian is associated with each shell, whose exponent α
is the smallest of the exponents in the shell contraction. This function thus reproduces
approximately the absolute value of the corresponding AOs at intermediate and long
range. The adjoined Gaussian is used in fast algorithms for estimating overlaps on
the basis of which integrals are either evaluated exactly, approximately, or not at all.
The level of approximation is user-definable through a set of tolerances given in the
input. Such algorithms, and a consideration of the crystalline symmetry, mean that the
integrals part of CRYSTAL code scales at between N and N2, depending on the size of
the system. The most unpleasant scaling in this code is thus the SCF part that, since
it involves diagonalization of the Fock matrix, scales as approximately N3. It requires
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a special consideration of the role of diffuse basis-set functions in crystalline systems.
Very diffuse functions can yield numerical instabilities and risk of linear-dependent
catastrophes [458]. Furthermore, due to the truncation criteria of the infinite sums,
based on the overlap, decreasing the exponents of the primitive Gaussians the number
of integrals to be calculated increases very rapidly. Too extended basis sets are not
needed in periodic calculations because the complete basis-set limit is reached quicker
than in molecular calculations. Furthermore, the risk of linear dependence problems
increases. The choice of the AO basis set is a compromise between accuracy and costs.
As the accuracy must be the main goal of ab-initio calculations, the good-quality basis
sets should always be used in spite of their computational cost to avoid producing
meaningless numbers.

The choice of the basis set (BS) is one of the critical points, due to the large variety
of chemical bonding that can be found in a periodic system. For example, carbon can
be involved in covalent bonds (polyacetylene, diamond) as well as in strongly ionic
situations (Be2C, where the Mulliken charge of carbon is close to –4). Some general
principles of the basis-set choice for periodic systems are formulated [23,458] and we
briefly reproduce them here. Much experience gained in the molecular computational
chemistry can be used in the selection of basis sets for studies of crystalline solids.
However, the molecular quantum chemists do not, in general, optimize basis sets by
varying the exponents or contraction coefficients to minimize the energy. Rather, there
is a hierarchy of basis sets with perceived qualities, and for a difficult problem where
accuracy is important, one would use a “good-quality” standard basis set from a li-
brary without modification. In crystalline systems by contrast, basis-set optimization
is usually necessary, essentially for two reasons. First, there is a much larger variety of
binding than in molecules and basis sets are thus less transferable. Secondly, hierar-
chical libraries of basis sets comparable to those available for molecules do not really
exist for solids. For certain types of compounds, such as molecular crystals or many
covalent materials, the molecular sets can sometimes be used largely unmodified, but
this has to be done carefully. However, for strongly ionic crystals and metals the basis
sets, particularly the valence states, need to be redefined completely. In essentially all
cases, the core states may be described using the solutions of atomic calculations, as
even in the presence of strong crystal fields the core states are barely perturbed and
may be described by the linear variation parameters in the SCF calculation.

Redefining basis sets in this way is obviously time consuming and even more ob-
viously rather boring, and so over recent years various workers involved with the
CRYSTAL code have contributed to an effort to develop libraries of basis sets to be
made available on the Internet. The URL of the official site is: www.crystal.unito.it
/Basis sets /Ptable.html. We recommend to the reader to use the information given
on this site. The site shows a periodic table. Clicking on the symbol for the re-
quired element will reveal a text file containing various different basis sets that may
have been used in different materials containing that element type. Accompanying
each basis set is a list of authors, a list of materials where the set has been used,
references to publications and hints on optimization where relevant. This table is
obviously not complete (in particular lanthanides and actinides are not practically
represented as the calculations with f -electrons are not included even in the CRYS-
TAL06 code). Additional information can be found on the site of Cambridge basis set
library: www.tcm.phy.cam.ac.uk/ mdt26/crystal.html.
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We follow [458] in discussion of optimization strategies for the basis sets given in
the libraries mentioned and also the adaptation of molecular bases for various types
of solids. First, a number of general principles are given that should be taken into
account when choosing a basis set for a periodic system.

The diffuse basis functions are used in atoms and molecules to describe the tails of
the wavefunction, which are poorly described by the long-range decay of the Gaussian
function. In periodic systems the cost of HF/DFT calculations can more essentially
increase when the diffuse basis functions are included (in the silicon and diamond
crystals, for example, the number of bielectronic integrals, can increase by a factor of
10 simply by changing the exponent of the most diffuse single Gaussian from 0.168 to
0.078 (Si) and from 0.296 to 0.176 (C), [458]. Fortunately, in crystalline compounds
in contrast to molecules, particular in nonmetallic systems, the large overlap between
neighbors in all directions drastically reduces the contribution of low-exponent Gaus-
sians to the wavefunction. This has the consequence that a small “split-valence” basis
set such as 6-21G is closer to the Hartree–Fock limit in crystals than in molecules.

The number of primitives is an important feature of the basis set. A typical basis
set for all electron calculations includes “core functions” with higher exponents and a
relatively large number of primitives – these will have a large weight in the expansion
of the core states. The “valence functions” with a large weight in the outer orbitals
will have lower exponents and contractions of only a very few primitives. It is possible
to get away with putting a lot of primitives in the core since core states have very
little overlap with neighboring atoms. The use of many primitives in the valence shells
would add significantly to the cost of a calculation, but in many cases it is necessary.

There are several ways to improve a basis set [458]: 1) reoptimize the more dif-
fuse exponents (and contraction coefficients if necessary; 2) decontract i.e. convert
the more diffuse contractions into single Gaussian primitives; 3) convert sp func-
tions into separate s and p functions; 4) add polarization functions if not already
present; 5) add more primitives (watch out for linear dependence problems); 6) use
a better starting point for the basis set. Optimization in this sense means varying
an appropriate subset of the basis-set parameters until the energy is minimized. In
principle, this is a reasonably complex multidimensional minimization, but there are
various standard shell scripts available. Two of them can be downloaded from the
Internet sites: BILLY code www.tcm.phy.cam.ac.uk/ mdt26/downloads/billy.tar.gz)
and LoptCG code (www.crystal.unito.it/LoptCG/LoptCG.html).

The adequacy of the starting molecular basis sets depends on the type of crystalline
compound.

To describe covalent crystals the small molecular split-valence basis sets can be
used with confidence and essentially without modification. It is enough to reoptimize
the exponent of the most diffuse shell, which produces a slightly improved basis, while
reducing the cost of the calculation. That said, 6-21G* is not really all that good and
a larger better basis set with more variation freedom is quite easy to make for these
cases (see web libraries).

For fully-ionic crystals (like alkali halides, LiH or MgO) with an almost completely
empty cation valence shell it often proves convenient to use a basis set containing
only “core” functions plus an additional sp shell with a relatively high exponent. It
is usually difficult, and often impossible, to optimize the exponents of functions that
only have appreciable weight in almost empty orbitals. Anions present a different
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problem. Reference to isolated ion solutions is possible only for halides, because in
such cases the ions are stable even at the Hartree–Fock level. For other anions, which
are stabilized by the crystalline field, the basis set must be redesigned with reference
to the crystalline environment. Consider, for example, the optimization of the oxygen
basis set in Li2O [458]. The difficulty is to allow the valence distribution to relax in the
presence of two more electrons. We can begin from a standard STO-6G basis set, i.e.
six contracted primitive Gaussians for the 1s shell, and six more to describe the 2sp
shell. First , two more Gaussians were introduced into the 1s contraction, in order to
improve the virial coefficient and total energy. The two outer Gaussians of the valence
sp shell were then removed from the contraction and allowed to vary independently.
The exponents of the two outer independent Gaussians and the coefficients of the four
contracted ones were optimized in Li2O. The best outer exponents of the ion were
found to be 0.45 and 0.15 and are therefore considerably more diffuse than the neutral
isolated atom, where the best exponents are 0.54 and 0.24. The rest of the oxygen
valence shell is unchanged with respect to the atomic situation. The introduction of
d functions in the oxygen basis set gives only a minor improvement in the energy,
with a population of 0.02 electrons/atom/cell (d functions may be important in the
calculation of certain properties, however). Thus, for anions, reoptimization of the
most diffuse valence shells is mandatory when starting from a standard basis set.

The majority of crystals can be classified as semi-ionic (with chemical bonding
being intermediate between covalent and purely ionic limits). For such crystals the
adequacy of selected basis sets must be carefully tested as is discussed in [458], for
example, for semi-ionic compounds SiO2 (quartz) and Al2O3 (corundum). The expo-
nents of the outer shell for the two cations (Si and Al) used in molecular calculations
prove to be too diffuse. For the Si atom in quartz, reoptimization in the bulk gives
α = 0.15 (instead of the molecular value 0.09). Corundum is more ionic than quartz,
and in this case it is better to eliminate the most diffuse valence shell of Al, and to
use two Gaussians of the inner valence shells as independent functions (α = 0.94 and
α = 0.3, respectively).

For metals very diffuse Gaussians are required to reproduce the nearly uniform
density so that it was often stated that the plane waves are a more appropriate
basis for these systems. It is generally impossible to optimize atomic-like basis set
in Hartree–Fock calculations of metallic systems. However, Gaussian DFT studies
indicate that GTFs are able to provide a reliable and efficient description of simple
metallic systems (see, for example, metallic lithium calculations [464]). Thus, the
effects of basis set and Hamiltonian were separated.

UHF and hybrid DFT calculations for strongly correlated transition-element mag-
netic compounds require the reasonably good basis sets for the transition elements.
These are not that widely available even to molecular quantum chemists since most of
the effort in developing molecular GTF basis sets has been for first- and second-row
atoms. One reason for this may be that molecules containing transition metal atoms
tend to be very badly described at the Hartree–Fock level. Molecular bonds tend
to have a fairly high degree of “covalency” and the existence of partially-occupied
d states leads to a great many nearly degenerate levels, and thus to a large “static
correlation” (i.e. the weight of the HF determinant in a CI expansion would be small,
and a multideterminant treatment is more appropriate). Basis sets to describe the
correlation using quantum chemistry correlated wavefunction techniques need to be
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much richer than those for systems well described at the HF level since they need to
treat all of the unoccupied levels. It may seem surprising that single-determinant HF
could be so successful in periodic crystalline magnetic insulators containing transition
elements, but this is an important characteristic of these ionic materials. The highly
symmetric environment and long-range Coulomb forces tend to separate the orbitals
into well-defined subsets with a significant gap between occupied and unoccupied
states. Hence, the ground state of NiO (for example) is rather well described by a
single determinant. In this sense, a strongly correlated magnetic insulator is in many
ways a “simpler system” than many molecules. The success of UHF calculations in
these materials (and also hybrid DFT schemes) is now well known. We consider some
examples of such calculations in Chap. 9. Molecular GTF basis sets for transition
elements have been reoptimized in the solid state and are available on the Torino and
Cambridge Gaussian basis set library web sites referred to earlier.

In the final part of this section we shall discuss a rather serious problem, associated
with Gaussian basis sets – basis-set superposition error (BSSE). A common response
to this problem is to ignore it, since it will go away in the limit of a complete basis but
to achieve this limit one needs calculations that are seldom performed. The problem of
BSSE is a simple one: in a system comprising interacting fragments A and B, the fact
that in practice the basis sets on A and B are incomplete means that the fragment
energy of A will necessarily be improved by the basis functions on B, irrespective
of whether there is any genuine binding interaction in the compound system or not.
The improvement in the fragment energies will lower the energy of the combined
system giving a spurious increase in the binding energy. It is often stated that BSSE
is an effect that one needs to worried about only in calculations on very weakly
interacting systems. This is not really true [458]. BSSE is an ever-present phenomenon
and accurate calculations should always include an investigation of BSSE. Examples
of areas in which one should be particularly worried are the study of the binding
energy of molecules adsorbed on surfaces (see, for example [465] for an interesting
discussion) or the calculation of defect-formation energies.

The approach most commonly taken to estimate the effect of BSSE is the counter-
poise correction of Boys [466]: the separated fragment energies are computed not in
the individual fragment basis sets, but in the total basis set for the system including
“ghost functions” for the fragment that is not present. These energies are then used to
define a counterpoise-corrected (CPC) interaction energy, which by comparison with
perturbation theory, has been shown to converge to the BSSE-free correct value [467].

Linear dependencies of Gaussian-type orbital basis sets employed in the framework
of the HF SCF method for periodic structures, which occur when diffuse basis func-
tions are included in a basis set in an uncontrolled manner, were investigated [468].The
basis sets constructed avoid numerical linear dependences and were optimized for a
number of periodic structures. The numerical AO basis sets for solids were generated
in [469] by confining atoms within spheres and smoothing the orbitals so that the first
and second derivatives go to zero at the boundary. This forms small atomic-like basis
sets that can be applied to solid-state problems and are efficient for treating large
systems.

We considered the basis sets for all-electron calculations in which all the core elec-
trons are involved explicitly. Both in molecular and solid-state quantum chemistry the
core states can be treated implicitly as creating an effective core potential (pseudopo-
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tential). The pseudopotential approximation becomes the most efficient for crystalline
compounds of heavy elements. Simultaneously, the relativistic effects on the electronic
structure play an important role. In the next sections we consider nonrelativistic and
relativistic pseudopotentials used in modern LCAO calculations of periodic systems.
The choice of the corresponding valence basis sets is also discussed.

8.2 Nonrelativistic Effective Core Potentials and Valence Basis
Sets

8.2.1 Effective Core Potentials: Theoretical Grounds

It is well established from chemical experience that most chemical properties of
molecules and solids are determined by the valence electrons of the constituent atoms.
The core states are weakly affected by changes in chemical bonding. The effect of core
electrons is principally to shield the nuclear charges and to provide an effective po-
tential for the valence electrons. The main reason for the limited role of the core
electrons is the spatial separation of the core and valence shells that originates from
the comparatively strong binding of the core electrons to the nucleus. This effect is
illustrated in Fig. 8.2, [470], where the radial orbitals of the oxygen atom are plot-
ted. The spatial separation of the 1s core state from the valence 2s, 2p states and
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Fig. 8.2. Radial orbitals of oxygen atom in the ground state, [470]

unoccupied (excited) 3s state is seen. The HF eigenvalues of 1s, 2s and 2p states (for
the ground state of free oxygen atom) are –20.6687 a.u., –1.2443 a.u., –0.6319 a.u.,
respectively [65], i.e. the valence and core eigenvalues differ by an order of magnitude.
The precise decomposition of electrons into core and valence becomes more difficult
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when the spatial and/or energetic separation between two shells breaks down. This is,
for instance, the case for the 3d transition metal elements, for which the most weakly
bound 4s-state is not well separated from the 3d-states and the latter are not well
separated from 3s, 3p states (for example, in the case of Ti atom, HF one-electron en-
ergies are –0.2208 a.u. (4s), –0.4407 a.u (3d), –1.7952 a.u (3p), –2.8735 a.u (3s), [65]).
As a result, the overlap of the 3d-orbitals (and even 3s, 3p orbitals) with the orbitals
from neighboring atoms is too large to be ignored. In this situation large core and
small core effective potentials can be introduced; the former differs from the latter by
exclusion of the 3s, 3p electrons from the core.

The idea behind effective core potentials (ECPs), also called pseudopotentials
(PP), is to treat the core electrons as creating effective averaged potentials rather than
actual particles. Effective core potentials are based on the frozen-core approximation
and serve to represent the potential generated by core electrons, also incorporating
relativistic effects. ECP application can introduce significant computational efficien-
cies as it allows formulation of a theoretical method for dealing only with the valence
electrons, while retaining the accuracy of all-electron methods. Fock, Veselow and Pe-
trashen were the first to formulate the approach for treating a subset of the electrons,
such as the valence electrons, in the field of the remaining electrons. They considered
the special case of atoms with two valence electrons outside a closed shell [101].

As we already noted, the pseudopotentials are essentially mandatory in plane-
wave calculations of solids since the core orbitals have very sharp features in the
region close to the nucleus and too many plane waves would be required to expand
them if they were included. In atomic-like basis-set calculations pseudopotentials are
formally not mandatory and have different characteristics from those designed for
plane waves since localized basis functions actually have necessary sharp features in
the core region. Nevertheless, ECP methods are also used in LCAO calculations of
molecules and solids since the difficulty of the standard LCAO methods rises rapidly
with the number of electrons. If the CPU time in LCAO calculations were dominated
by the integrals calculation, PP introduction would not give very much since the
number of integrals is controlled by more diffuse functions that overlap strongly with
neighboring atoms. These diffuse functions are introduced mainly to describe the
change of atomic valence states. However, the use of ECP will decrease the number of
coefficients in the one-electron wavefunctions and might give significant savings in the
SCF part. It is also quite easy to incorporate relativistic effects into pseudopotentials,
which is increasingly important for heavy atoms. All electron relativistic calculations
are very expensive and in many cases are practically difficult.

The parameters and the underlying basis set of so-called energy-consistent ECPs
can be adjusted in accordance with representative experimental data, not only for
the ground state, but also for excited states, electron affinities, ionization potentials
and so on. Being of semiempirical origin, they can perform remarkably well for a
given system, but their transferability to other environments can be poorer than that
of shape-consistent ECPs. So-called shape-consistent ECPs (known in computational
condensed matter as the norm conserving ECPs) are rather easy to derive and contain
no adjustable parameters, i.e. these are ab-initio ECPs. The construction of shape-
consistent ECPs for molecules is based on the original proposal of Christiansen et
al. [471] where shape consistency was introduced. Simultaneously, norm conserving
ECP were introduced in computational condensed-matter physics by Hamann et al.
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[472]. This example demonstrates practically independent development of ECPs for
molecules and crystals when for the same ECP property different terms are used.
The work by Phillips and Kleinman (PK) [473] is an important step in the ECP
applications for solids. PK developed the pseudopotential formalism as a rigorous
formulation of the earlier “empirical potential” approach. They showed that ECP
that has the plane-wave pseudo wavefunctions as its eigenstates could be derived
from the all-electron potential and the core-state wavefunctions and energies. Thus a
nonempirical approach to finding ECP was introduced.

The PK pseudopotential shortcomings are well known [474]: it depends explicitly
on the one-electron eigenvalue and outside the core region the normalized pseudo
orbital (PO) is proportional but not equal to the true orbital. Typically, generation of
a pseudopotential proceeds as follows. First, a cutoff distance rc for the core is chosen
(in the case of our example, the oxygen atom, rc can be taken as 0.5 a.u., see Fig.
8.2). In a PP approach all radial Rnl(r) orbitals of the valence shell must be nodeless,
as for each l all lower-lying states have to be projected out by the PP. In the case
of oxygen, for instance, the 2s-PO must be nodeless. An example of such a nodeless
Rnl(r) that, nevertheless, agrees with the corresponding true AO in the relevant part
of space, is shown in Fig. 8.3a.

It is, however, impossible to produce two (or more) nodeless orbitals in the same
energy range with only a single spherical PP, as for fixed PP only the angular momen-
tum term can generate differences. Since PP replaces the potential of a nucleus and
the core electrons, it is spherically symmetric and each angular momentum l can be
treated separately, which leads to nonlocal l-dependent PP Vl(r). Consequently, the
total atomic PP usually consists of several components, one for each angular momen-
tum present in the valence space. The PP dependence upon l means that, in general,
PP is a nonlocal operator, that can be written in semilocal (SL) form

V̂ PS =
∑
lm

|Ylm(θ, ϕ)〉Vl(r)〈Y ∗
lm(θ, ϕ)| (8.14)

where Ylm(θ, ϕ) are spherical harmonics and Vl(r) is the pseudopotential for the lth
angular-momentum component. This is termed semilocal because it is nonlocal in
the angular variables, but local in the radial variable: when operating on a function
f(r, θ′, ϕ′), V̂ PS has the effect [10]
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V̂ PSf

]
r,θ,ϕ

=
∑
lm

Ylm(θ, ϕ)Vl(r)
∫

d(cos θ′)dϕ′Ylm(θ′, ϕ′)f(r, θ′, ϕ′) (8.15)

All the PP information is in the radial functions Vl(r). (We note that the HF exchange
operator is fully nonlocal both in the angular and in the radial variables.) To generate
PP an all-electron calculation (HF or DFT) of a free atom is performed. The DFT
PP Hamiltonian includes the local (Hartree and exchange-correlation) and semilocal
(PP) parts; the HF PP Hamiltonian includes local (Hartree), nonlocal (exchange) and
semilocal (PP) parts. The set of PP parameters is chosen to accurately reproduce
the eigenvalues and eigenfunctions of valence states. Clearly, in the region of space
in which most of the electronic norm is concentrated both orbitals must be very
close, if not identical. On the other hand, the form of the valence orbitals in the core
region, where the core electrons are moving, is less relevant. Otherwise, the core states
themselves would play a more important role. In the core region one can thus allow
the pseudo-orbital (PO) to differ from the all-electron orbital (AO) without losing too
much accuracy [470].

The calculations of real systems (for example, color centers in ionic crystals, [475])
were made based on the model potential of Abarenkov and Heine [476]:

VM =

⎧⎨⎩Vval(r) −
∑
lm

|Ylm〉Al(E)〈Ylm|, r < rc

−Z
r + Vval(r), r > rc

(8.16)

where Vval is the Coulomb and exchange potential due to the valence electrons, Z is the
valence charge, and Al(E) is a constant (in space) function of energy E chosen to make
the PO logarithmic derivative equal that of the true eigenfunction at several atomic
eigenvalues. To a high degree of accuracy Al(E) may be linearized: Al(E) = Al+BlE.

A giant step forward in pseudopotentials was taken by Hamann et al. [472], who
introduced norm conserving pseudopotentials (NCPP). NCCP for angular momentum
l is chosen so that

(1) the resulting atomic valence PO agrees with the corresponding all-electron
(AE) AO for all r larger than some l-dependent cutoff (core) radius

RPS
nl (r) = RAE

nl (r) (8.17)

(2) the norm of the orbital is conserved,

rc,l∫
0

|RPS
nl (r)|2dr =

rc,l∫
0

|Rae
nl (r)|2dr (8.18)

(3) The logarithmic derivatives of the true and pseudowavefunctions and their first
energy derivatives agree for r > rc.

Condition 1 automatically implies that the real and pseudovalence eigenvalues
agree for a chosen “prototype” configuration, as the eigenvalue determines the asymp-
totic decay of the orbitals.

Properties (2) and (3) are crucial for the pseudopotential to have optimum trans-
ferability among a variety of chemical environments [470].

The PP concept has been motivated by the inertness of the atomic core states
in binding so that the ionic core of the atom provides a fixed potential in which the
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valence electrons are moving, independently of the system (atom, molecule or solid)
that is considered. However, in polyatomic systems the valence states undergo obvious
modifications compared to the atomic valence orbitals, even if the polyatomic core
potential is given by a simple linear superposition of atomic core potentials. Most no-
tably, the eigenenergies change when packing atoms together, which leads to bonding
and antibonding states in molecules and to energy bands in solids. Thus, while PPs
are designed to reproduce the valence AOs of some chosen atomic reference configu-
ration (usually the ground state), it is not clear a priori that they will have the same
property for all kinds of polyatomic systems and for other atomic configurations. Con-
sequently, one has to make sure that the PP is transferable from its atomic reference
state to the actually interesting environment. To check the transferability of PP one
has to analyze the sensitivity of the agreement between atomic POs and AOs to the
specific eigenenergy in the single-particle equation. One finds that the variation of the
logarithmic derivative RPS

nl (r)/Rae
nl (r) with the single-particle energy is determined by

the norm contained in the sphere between the origin and r. This is true in particular in
the neighborhood of one of the actual atomic eigenvalues εnl, i.e. for a bound atomic
eigenstate. Thus, as soon as normconservation is ensured, the POs exactly reproduce
the energy dependence of the logarithmic derivative of the AOs for r > rc,l. Conse-
quently, one expects the POs to react as the AOs when the valence states experience
some energy shift in a polyatomic environment – provided the underlying PPs are
normconserving. This argument supporting the transferability of PPs emphasizes the
importance of normconservation in a very explicit way. In practice, it is, nevertheless,
always recommended to check the transferability explicitly by examination of some
suitable atomic excitation process and of the binding properties of simple molecular
or crystalline systems [470]. In the next section we consider pseudopotentials used in
modern periodic calculations.

8.2.2 Gaussian Form of Effective Core Potentials
and Valence Basis Sets in Periodic LCAO Calculations

The form of ECP used in the condensed-matter applications depends on the basis
chosen – PW or LCAO. The numeric pseudopotentials in plane-wave calculations
must be used with the density functional that was employed to generate them from a
reference atomic state. This is a natural and logical choice whenever one of the plane-
wave DFT codes is used. In PW calculations the valence functions are expanded in
Fourier components, and the cost of the calculation scales as a power of the number
of Fourier components needed in the calculation. One goal of PP is to create POs
that are as smooth as possible and yet are accurate. In PW calculations maximizing
smoothness is to minimize the range of Fourier space needed to describe the valence
properties to a given accuracy [10]. Normconserving PPs achieve the goal of accuracy,
usually at some sacrifice of smoothness. A different approach by Vanderbilt, known as
“ultrasoft pseudopotentials”(US) [477] reaches the goal of accurate PW calculations
by a transformation that re-expresses the problem in terms of a smooth function and
an auxiliary function around each core that represents the rapidly varying part of the
density. The generation code for Vanderbilt US pseudopotentials and their library can
be found on site http://www.physics.rutgers.edu/ dhv/uspp.

Ab-initio pseudopotentials for PW calculations of solids can be generated also by
the fhiPP package [478], see also site http://www.fhi-berlin.mpg.de/th/fhimd/.
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The numerical AO-based DFT code SIESTA [344] employs the same numeric
pseudopotentials as plane-wave-based codes. An alternative approach is used in the
Slater-orbital-based DFT code ADF [345], where so-called core functions are intro-
duced. They represent the core-electron charge distribution, but are not variational
degrees of freedom and serve as fixed core charges that generate the potential expe-
rienced by valence electrons [479].

In molecular quantum chemistry Gaussian-function-based computations, effective
core potentials were originally derived from a reference calculation of a single atom
within the nonrelativistic Hartree–Fock or relativistic Dirac–Fock (see Sect. 8.3) ap-
proximations, or from some method including electron correlations (CI, for instance).
A review of these methods, as well as a general theory of ECPs is provided in [480,481].

In this section we discuss those effective core potentials and the corresponding
valence basis sets that are used for Gaussian-function-based LCAO periodic compu-
tations implemented in the computer codes CRYSTAL [23] and GAUSSIAN [107].

The ECP general form is a sum of a Coulomb term, a local term and a semilocal
term

VPS(r) = C + Vloc + Vsl = −ZN

r
+

M∑
k=1

rnkCk exp(−αkr2)

+
3∑

l=0

[
Ml∑
k=1

rnkl−2Ckl exp(−αklr
2)

]
P̂l (8.19)

where ZN in a Coulomb term is the effective nuclear charge (total nuclear charge
minus the number of electrons represented by ECP). The local term is a sum of
products of polynomial and Gaussian radial functions. A semilocal term is a sum
of products of polynomial radial functions, Gaussian radial functions and angular-
momentum projection operators P̂l. Therefore, to specify semilocal ECP one needs to
include a collection of triplets (coefficient, power of r and exponent) for each term in
each angular momentum of ECP.

Hay and Wadt (HW) ECP [483] are of the general form (8.19). The procedure
employed for generation of ECPs includes the following sequence of steps: 1) the
“core” orbitals to be replaced and the remaining “valence” orbitals are defined. This
step defines whether the small-core (the outermost core electrons are explicitly treated
along with the valence electrons) or a large-core HW pseudopotential is generated; 2)
the true numerical valence orbitals are obtained from self-consistent nonrelativistic
Hartree–Fock (or relativistic Dirac–Fock) calculations for l = 0, 1, . . . , L, where L,
in general, is one greater than the highest angular-momentum quantum number of
any core orbital; 3) smooth, nodeless pseudo-orbitals (PO) are derived from the true
Hartree–Fock (Dirac–Fock) orbitals in a manner so that PO behave as closely as
possible to HF orbitals in the outer, valence region of the atom; 4) numerical effective
core potentials V PS

l are derived for each l by demanding that PO is a solution in the
field of Vl with the same orbital energy ε as the Hartree–Fock (Dirac–Fock) orbital;
5) the numerical potentials are fit in analytic form with Gaussian functions, the total
potential is represented as (8.19); 6) the numerical POs are also fit with Gaussian
functions to obtain basis sets for molecular or periodic calculations. In the case of
large-core ECP the primitive Gaussian bases (3s2p5d), (3s3p4d) and (3s3p3d) are
tabulated for the first, second, and third transition series atoms, respectively. The
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figures in brackets mean the number of primitive of Gaussians in ns, np and (n− 1)d
contracted AOs for n = 4, 5, 6. In the case of small-core ECP (n − 1)s, (n − 1)p
contracted AOs are added and given as the linear combinations of primitive Gaussians.
Hay-Wadt ECPs and valence-electron basis sets are also generated for main-group
elements: large core – for Na to Xe, and Cs to Bi, small core – for K, Ca, Rb, Sr, Cs,
Ba.

The other known ECP and valence-electron basis sets were generated using the
procedure, described for Hay–Wadt ECP generation. Durand–Barthelat large-core
semilocal ECP [484] and corresponding valence-electron basis sets are generated for
3d-transition elements and the main-group elements Li to Kr.

Compact one- and two-Gaussian expansions for the components of the effective
potentials of atoms in the first two rows are presented by Stevens–Basch–Krauss [485].
Later, the list of ECP was extended to the third-, fourth- and fifth-row atoms [486]
and includes relativistic ECP (RECP). The pseudo-orbital basis-set expansions for
the first two rows of atoms consist of four Gaussian primitives using a common set
of exponents for the s and p functions. Analytic SBK RECP are generated in order
to reproduce POs and eigenvalues as closely as possible. The semilocal SBK ECP are
given by

r2Vl(r) =
∑

k

Alkrnl,k exp(−Bl,kr2) (8.20)

The potentials and basis sets have been used to calculate the equilibrium structures
and spectroscopic properties of several molecules. The results compare extremely fa-
vorably with the corresponding all-electron calculations.

Stuttgart–Dresden (SD)ECP (formerly Stoll and Preuss ECP) are under constant
development [487]. SD semilocal ECPs are written in the form

Vsl =
3∑

l=0

[
µk∑

k=1

rnkl−2Ckl exp(−αkr2)

]
P̂l (8.21)

Note the different convention for the factor rnkl−2 compared to (8.19). The database
of SD ECP include relativistic ECP (RECP) generated by solving the relativistic
Dirac–Fock equation for atoms. Improved SD pseudopotentials exist for many of the
main-group elements, and the pseudopotentials are also available for 5d and other
heavier elements. The most recent ECP parameters, optimized valence-electron basis
sets, a list of references and guidelines for the choice of the pseudopotentials can be
found at site http://www.theochem.uni-stuttgart.de. SD ECP can be used in periodic
LCAO CRYSTAL and GAUSSIAN codes [23,107].

Pseudopotentials are also used as embedding potentials when some special region
of a covalently bonded solid or very large molecule is modeled by a modest-size cluster.
The embedding pseudopotentials are considered in the next section.

8.2.3 Separable Embedding Potential

As was noted in the preceding section the use of atomic pseudopotentials (or effective
core potentials–ECPs) considerably simplifies the quantum-mechanical description of
polyatomic systems (molecules and crystals) as the much more localized and chemi-
cally inert core electrons are simulated by ECP introduction. The choice of the norm
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conserving and transferable ECPs ensures that the valence states are reproduced in
the majority of cases as accurately as would be done in all-electron calculations.

The second important application of pseudopotentials is connected with the so-
called embedded-cluster model. This model is applied when one is interested in the
electronic structure and properties of some small region of a large system such as a
localized point defect in a solid, an adsorbed molecule on a solid surface or an active
site in a very large biological molecule. In such a case one may model the region of
interest by cutting a modest-sized but finite cluster out of the larger system and per-
forming the calculation on it. For ionic solids the surrounding crystal can be modeled
by the system of point charges. More difficult is the case when the environment is
a covalently bonded system and the boundary between the cluster and environment
passes through chemical bonds (covalent or partly covalent). In this case, the distant
and nearest parts of an environment should be treated separately [488]. In the distant
part, only the electrostatic potential representing the ionic component of an environ-
ment should be retained. The nearest part, corresponding to the “broken or dangling
bonds”, needs special consideration. Each atom of the cluster boundary surface has
unsaturated “dangling bonds” that cause spurious effects unless saturated in some
way, usually by adding a hydrogen or pseudoatoms there [489]. This is better than
leaving the dangling bond but clearly the termination is still imperfect in the sense
that the bond to the attached atom is different from the bond to whatever atom
is situated there in the real system [488]. Use of the embedding potentials (EP) to
saturate dangling bonds of the cluster gives a cluster surface bond identical to that
in the real large system.

Recently introduced new separable potentials [488, 490] have several kinds of ap-
plications: 1) when some special region of a covalently bonded solid or very large
molecule is modeled by a modest-sized cluster, each dangling bond at the cluster
surface can be saturated in a way that exactly reproduces the bond in the complete
system; 2) a similar approach can be used at the matching surface in an embedding
scheme for calculations on the same type of systems; 3) application to atomic effec-
tive core potentials where the new potential operator avoids the possibility of “ghost”
states that sometimes plague the widely used pseudopotentials.

The important property of the introduced embedding potential is its separability.
Let the nonlocal operator V̂ (r) depend on the space variable r only and be represented
by the integral operator V̂ :

V̂ ψ(r) =
∫

v(r, r′)ψ(r′)dr′ (8.22)

with the kernel v(r, r′). Expanding the kernel in both arguments with the complete
orthonormal set of functions ϕi(r)(i = 1, 2, 3, . . .) the following representation of the
potential can be obtained:

V̂ =
∞∑

i,j=1

|ϕi〉Vij〈ϕj | (8.23)

where Vij is the infinite Hermitian matrix. If this matrix has a finite rank k, then
only k of its eigenvalues are not equal to zero and the corresponding potential has the
form

V̂sep =
k∑

i=1

|χi〉µi〈χi| (8.24)
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where χi(r) and µi are eigenfunctions and eigenvalues of the potential. Equation (8.24)
defines the separable potential as a finite sum of single-state projectors (|χi〉〈χi|) with
constant weights µi. A separable operator is an operator with a finite-dimensional
functional space for its range. If one employs another orthonormal basis set ϕi(i =
1, 2, . . . , k) that spans the same functional space as the set χi(r)(i = 1, 2, . . . , k), the
separable potential will have the nondiagonal form

V̂sep =
k∑

i,j=1

|ϕi〉Vij〈ϕj | (8.25)

but with finite sum over i, j. The difference between the separable potential and the
potential of the general form is that the separable potential with a suitable choice of
the basis could be transformed to the form (8.24) or (8.25) and the potential of the
general form could not.

As an example of separable potentials we mention the semilocal ECP, see (8.14),
which have a form similar to (8.24), but where µi = Vi(r) are functions of the radial
variable. These semilocal potentials are separable only in the angular variables (in
which these potentials are nonlocal) as the separability is the property of nonlocal
potentials.

Separable nonlocal ECPs were extensively studied [474, 491–494]. The nonlocal
separable potentials application is complicated by the problem of “ghost states” [495]
i.e. extra bound states with levels, under the reference atomic eigenenergy. For semilo-
cal ECPs, used in modern computer LCAO codes, this problem does not occur [493],
for the embedding potential this problem has to be taken into account.

Let us consider a Hamiltonian Ĥ0 with eigenfunctions Ψ0
i and eigenvalues E0

i .
Suppose we have an arbitrary set of orthonormal functions Ψp and an arbitrary set of
real numbers Ep(p = 1, . . . , n). The aim is to develop another Hamiltonian

Ĥsep = Ĥ0 + V̂sep (8.26)

with separable potential V̂sep so that n eigenfunctions and eigenvalues of Ĥsep are
exactly Ψp and Ep, whereas all other eigenvalues Ei, i > n of Ĥsep are equal to
eigenvalues of Ĥ0.

Of course, eigenfunctions Ψi, (i > n) of Ĥsep will differ from eigenfunctions Ψ0
i of

Ĥ0 because the former are orthogonal to Ψp, (p ≤ n) and the latter to Ψ0
p .

The transformation Ĥ0 into Ĥsep could be done in two steps.
In the first step the similarity transformation Ĥ ′ = ÛĤ0Û

† with a unitary operator
Û is made, which changes the eigenfunctions and leaves eigenvalues unchanged. To find
the desired similarity transformation the following auxiliary problem is considered: a
unitary operator Û is found that transforms one set of orthonormal functions Ψ0

p into
another set of orthonormal functions Ψp:

ÛΨ0
p = αpΨp, |αp| = 1, p = 1, 2, . . . , n (8.27)

and there is no linear dependence among functions Ψ0
p and Ψp, i.e. the dimension

of functional space spanned by both sets of functions together is equal to 2n. The

operator Û is taken in the form Û = Î − R̂ and R̂ =
n∑

p,q=1
|χp〉Tpq〈χq| is a separable
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operator with the smallest possible dimension. Dropping the mathematical details
given in [488], we write the explicit form of the operator R̂:

R̂ =
n∑

p,q=1

|Ψ0
p − αpΨp〉

{
Q−1

}
pq

〈Ψ0
q − αqΨq| (8.28)

where χp = Ψ0
p − αpΨp and Qpq = 〈χp|Ψ0

q 〉 = δpq − α∗
p〈Ψp|Ψ0

q 〉. The second step is the
energy-shift transformation that changes specified eigenvalues only:

Ĥsep = Ĥ ′ +
n∑

p=1

|Ψp〉(Ep − E0
p)〈Ψp|

= ÛĤ0Û
† +

n∑
p=1

|Ψp〉(Ep − E0
p)〈Ψp| (8.29)

Hence the potential V̂sep can be written as

V̂sep = Ĥsep − Ĥ0 = R̂Ĥ0R̂
† − R̂Ĥ0 − Ĥ0R̂

† +
n∑

p=1

|Ψp〉(Ep − E0
p)〈Ψp| (8.30)

This potential is separable with dimension n, i.e. can be represented in the form

V̂sep =
3n∑
i,j

|fi〉Vij〈fj | (8.31)

where the expression for Vij can be found from expressions of R̂Ĥ0, Ĥ0R̂
† and R̂Ĥ0R̂

†.
Although all equations were developed for arbitrary phase factors αp, in applications
the real orbitals are used. For the sake of simplicity all the phase factors αp can be
selected to be real, which makes the separable potential real as well. The signs of Ψp

and Ψ0
p are selected so that 〈Ψp|Ψ0

p 〉 ≥ 0 and all αp = −1 to make V̂sep → 0 when
G → G0 (G is a collection of ΨP , Ep, p = 1, 2, . . . , and G0 is a similar collection of
Ψ0

p , E0
p).

The separable embedding potential (8.31) was applied to model the single chemical
bond between the atom A of the cluster and the atom B of the cluster environment
[488]. To simulate the effect of the cluster environment the atom B is replaced by a
pseudoatom BPS at the same position as the actual atom B. The influence of the
pseudoatom on the cluster is described by the potential that was assumed to have the
following form:

V̂psat = V̂H + V̂sl + V̂sep (8.32)

Here, V̂H = −1/r is the hydrogen potential (in a.u.), responsible for the asymptotic
behavior of the potential, V̂sl is a semilocal potential

V̂sl =
∑
lm

Vl(r)|Ylm〉〈Ylm| (8.33)

and V̂sep is a case n = 1 separable potential (8.31) defined by the Hamiltonian Ĥ0,
the energy E0

1 and the wavefunction Ψ0
1 of this Hamiltonian ground state, and by the
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energy E1 and the wavefunction Ψ1 of the operator Ĥ0 + V̂sl. As Ĥ0 was taken the
following

Ĥ0 = −1
2
∆ + V̂H + V̂sl (8.34)

where V̂sl is selected so as to reproduce the spectrum of the excited states of the
atom B similarly to what is usually done in the calculation of the effective atomic
core potentials. The wavefunction Ψ0

1 of the ground state of this Hamiltonian is a
spherically symmetrical 1s function and it is not at all a directed hybrid orbital of
the atom B that makes the single bond with the atom A. The separable potential
V̂sep being added to Ĥ0 will change the ground-state wavefunction Ψ0

1 for function Ψ1

without changing the excited-state spectrum. Therefore, Ψ1 should be considered as a
hybrid orbital of the atom B that is not known. However, the bond orbital ϕbond can
be found. The new localization criterion was proposed to calculate the localized on
bond A − B orbital ϕbond. This criterion is based on the maximization of the single-
orbital contribution to the Wiberg index WAB defined by (4.137). The one-electron
density matrix is calculated in the bases of AOs orthogonalized according to Löwdin
procedure [225]. This bond orbital depends on Ψ1 implicitly and in [488] a method to
calculate ϕbond and its effective energy Ebond was developed.

The transferability of the separable embedding potential used seems very likely as
the developed method of pseudopotential calculation results in the one-center poten-
tial (all the components of this potential, including V̂sep, are centered on the atom
B). This is demonstrated by use of the proposed separable potential (8.32) for the
pseudosilicon atom that is to substitute the −SiH3 radical in X–SiH3 molecules (X
was taken to be H, F, Cl, Br, and I). In all these molecules the hydrogen or halogen
constitute the single chemical bond with Si. This bond is broken when the radical
−SiH3 is removed and it could be saturated with the pseudosilicon atom so that the
original five-atom molecule would be replaced by the diatomic molecule X–Sips. The
angles between bonds in SiH3X molecules vary only a little and the perfect tetrahe-
dron angle was used for all molecules. The Si–H bond length in these molecules is also
approximately equal to that in the SiH4 molecule, and silicon–halogen bond length
varies considerably (the experimental values for silicon–halogen bond lengths were
taken from diatomic Si–Hal molecules). The potential (8.32) was generated for the
pseudosilicon atom to make the bond in the two-electron diatomic molecule H–Sips

the same as the single chemical bond H–Si in the SiH4 molecule, this potential is
centered at the Si atom.

The potential-generation procedure consists of several stages. In the first stage
the all-electron HF calculations on the SiH4 molecule were performed. The canonical
HF orbitals, orbital energies, and the total density matrix were obtained in the GTO
basis. In the second stage, the noncanonical HF orbital ϕbond localized on the selected
Si-H bond was calculated using the Wiberg index for the localization criteria. The
maximum localizing functional value obtained was 0.965, which is close enough to
the maximum possible value 1 for the single covalent bond. In the third stage, the
semilocal potential V̂sl was generated so that the excited energy levels of the equation(

−1
2
∆ − 1

r
+ V̂sl

)
ψ0

nlm(r) = E0
nlψ

0
nlm (8.35)



8.2 Nonrelativistic Effective Core Potentials and Valence Basis Sets 309

coincide with unoccupied energy levels of the neutral silicon atom (E0
2s =E(Si)4s,

E0
2p = E(Si)4p, E0

3d = E(Si)3d and so on). No adjustment was done for the E0
1s

energy level and it could be quite different from E(Si)3s. In the fourth and final
stage, the function Ψ1 and the energy E1 were determined, and the pseudosilicon
potential was obtained. The obtained potential of the pseudosilicon atom was used to
calculate the diatomic molecules X−Sips(X = F, Cl, Br, I). The properties of the bond
and the state of the halogen atom in the diatomic molecule could be compared with
those in the real five-atom molecule. This comparison will show whether the same
pseudosilicon potential could be used in all considered molecules, i.e., whether the
generated pseudosilicon potential is transferable. The dipole moment of the bond was
chosen for the bond property, and the atomic charge for the halogen property. For the
diatomic molecule the dipole moment of the bond is the dipole moment of the molecule
itself. However, for the five-atom molecule the dipole moment of the particular bond
is not defined a priori. To make the comparison possible several assumptions were
used that are natural enough. It was assumed that the dipole moment of every five-
atom molecule SiH3X is the sum of the dipole moment of the X–Si bond and the
dipole moment of the SiH3 radical. Next, it was assumed that the dipole moment
of the (SiH3) radical is the same in all five molecules. The latter assumption can
be considered as the “frozen bond” approximation, i.e. the neglect of the radical
polarization when the X–Si bond is changing. Other details of the dipole-moment
calculations can be found in [488]. To improve the agreement of the calculated dipole
moments with the experimental data one d-orbital was added to the GTO 6-311G
basis of silicon and halogen atoms.

In Tables 8.4 and 8.5 the dipole moments and Mulliken atomic charges found in
the all-electron HF calculations are compared with those obtained with the use of
a pseudosilicon atom and a hydrogen atom to saturate the bond. The disagreement
between experimental and HF data is explained by the neglect of the correlation
effects, and in the case of a SiH3I molecule the neglect of relativistic effects. The
analysis of Table 8.4 allows us to conclude that the pseudosilicon potential generated
for one molecule (SiH4) to represent the SiH3 radical could be employed in calculations
of other molecules (SiH3X, X = F, Cl, Br, I) with the same radical.

From Table 8.5 it follows that the correlation between charges calculated with
different methods is similar to that for the dipole moments. However, it should be
remembered that atomic charges are not physically observable quantities and they
strongly depend on their definition and on the basis employed in calculations.

Approximations to the exact (in the Hartree–Fock approximation) separable em-
bedding potential were introduced in [490] that enable one to incorporate this poten-
tial into existing molecular calculation packages. The test calculations on the (CH3)2O
molecule were performed that showed good accuracy of the potential.

So far, the formulation of pseudopotentials has been strictly nonrelativistic, so
that the issue of heavy elements still remains to be addressed. In the next section we
consider relativistic pseudopotentials.
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Table 8.4. The dipole moments (a.u) [488]

Theor.1a Theor.2b Theor.3c Expt.

SiH3F 1.226 0.555 0.527 0.511

SiH3Cl 0.899 0.644 0.631 0.515

SiH3Br 0.267 0.502 0.533 0.519

SiH3I 0.257 0.536 0.560

aThe bond is saturated with the hydrogen
bThe bond is saturated with the pseudosilicon
cAll-electron Hartree–Fock calculations

Table 8.5. The charge on atom A, A= H, F, Cl, Br, I, [488]

Theor.1a Theor.2b Theor.3c

SiH4 0.000 –0.157 –0.149

SiH3F –0.380 –0.523 –0.687

SiH3Cl –0.278 –0.398 –0.416

SiH3Br –0.032 –0.035 –0.040

SiH3I –0.097 –0.263 –0.352

aThe bond is saturated with the hydrogen
bThe bond is saturated with the pseudosilicon
cAll-electron Hartree–Fock calculations

8.3 Relativistic Effective Core Potentials and Valence Basis
Sets

8.3.1 Relativistic Electronic Structure Theory: Dirac–Hartree–Fock and
Dirac–Kohn–Sham Methods for Molecules

Heavy-element systems are involved in many important chemical and physical phe-
nomena. However, they still present difficulties to theoretical study, especially in the
case of solids containing atoms of heavy elements (with the nuclear charge Z ≥ 50).
In this short description of relativistic electronic-structure theory for molecular sys-
tems we follow [496] and add a more detailed explanation of the Dirac–Kohn–Sham
(DKS) method. For a long time the relativistic effects underlying in heavy atoms
had not been regarded as such an important effect for chemical properties because
the relativistic effects appear primarily in the core atomic region. However, now the
importance of the relativistic effects, which play essential and vital roles in the total
natures of electronic structures for heavy-element molecular and periodic systems, is
recognized [496].

To treat the relativistic effect theoretically, the Dirac Hamiltonian should be ap-
plied instead of the nonrelativistic Schrödinger Hamiltonian. The Dirac one-particle
Hamiltonian has the form

ĥD = cα · p̂ + (β − 1)c2 + V (r) (8.36)
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where c is the speed of light, V (r) is the external potential, and p̂ = −i∇ is the
momentum operator. The 4 × 4 Dirac matrices α and β in (8.36) are given by

αt =
(

02 σt

σt 02

)
, t = (x, y, z), β =

(
I2 02

02 −I2

)
(8.37)

with a 2 × 2 Pauli spin matrix, σt

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(8.38)

Here, 02, I2 are zero and identity 2 × 2 matrices.
The free-particle Dirac Hamiltonian provides a physical structure that the eigen-

value spectrum {Ek} consists of two parts. The states of the higher-energy spectrum,
where Ek ≥ +mc2 are called the positive-energy states, and comprises states cor-
responding to those found in the nonrelativistic theory. The second branch of the
eigenvalue spectrum consists of states with energy less than −mc2 and in a second-
quantized theory they can be interpreted as states of positrons, and are called the
negative-energy states.

To apply the Dirac theory to the many-particle system the one-particle Dirac
operator (8.36) is augmented by the Coulomb or Coulomb–Breit operator as the
two-particle term, gij , to produce the Dirac–Coulomb (DC) or Dirac–Coulomb–Breit
(DCB) Hamiltonian derived from the quantum electrodynamics [496–498]:

gij =

{
gc

ij = 1
rij

, rij = ri − rj , rij = |rij |
gCB

ij

(8.39)

where

gCB
ij =

1
rij

− 1
2

(
(αiαj)

rij
+

(αirij)(αjrij)
r3
ij

)
(8.40)

By applying the independent particle approximation to many-particle relativistic DC
or DCB Hamiltonians, one obtains the four-component Dirac–Hartree–Fock (DHF)
method with large- and small-component spinors treated explicitly.

The DHF wavefunction Ψ is given as the Slater determinant with Ne one-particle
spinors (ψi(r), i = 1, . . . , Ne), where Ne represents the number of electrons. The one-
particle spinor ψi(r) is the four-component vector whose components are the scalar
wavefunctions,

ψi =
(

ψ2L
i

ψ2S
i

)
=

⎛⎜⎜⎝
ψL

1i

ψL
2i

ψS
3i

ψS
4i

⎞⎟⎟⎠ (8.41)

The two-component electron functions ψ2L
i and ψ2S

i are called the large-component
and small-component spinors, respectively, which are expanded in the basis spinors
χL and χS .

The matrix DHF-LCAO equation for closed-shell systems is given as,

FC = SCE (8.42)
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where C is a matrix of molecular spinor coefficients, E is a diagonal spinor(orbital)
energy matrix, S is an overlap matrix,

Sµν =
(〈χL

µ |χL
ν 〉 0

0 〈χS
µ |χS

ν 〉
)

(8.43)

and the Fock matrix F is given by

Fµν =
(
VLL

µν + JLL
µν − KLL

µν cΠLS
µν − KLS

µν

cΠSL
µν − KSL

µν VSS
µν + JSS

µν − KSS
µν − 2c2SSS

µν

)
(8.44)

The matrices ΠXX̄
µν ,VXX

µν ,JXX
µν , and KXX

µν (X, Y = L or S, L̄ = S and S̄ = L) are
the kinetic-energy integral, the nuclear-attraction integral and the Coulomb integral,
respectively, defined by,

ΠXX̄
µν = 〈χX

µ |σp|χX̄
ν 〉 (8.45)

VXX̄
µν = 〈χX

µ |V nuc|χX̄
ν 〉 (8.46)

JXX
µν =

∑
Y =L,S

∑
λσ

PY Y
λσ

(
χ2X

µ χ2X
ν |χ2Y

λ χ2Y
σ

)
(8.47)

and
KXY

µν =
∑
λσ

PXY
λσ

(
χ2X

µ χ2X
ν |χ2Y

λ χ2Y
σ

)
(8.48)

The density matrix PXY
λσ is calculated as,

PXY
λσ =

∑
i

occ
CX

iλCY ∗
iσ (8.49)

where the negative-energy states are ignored. Even applying the four-component
single-configuration (SCF) approximation, Dirac–Hartree–Fock–Breit(DHFB) or DHF
methods , to calculation of heavy-atom molecules (followed by transformation of two-
electron integrals to the basis of molecular spinors) is not always an easy task because
a very large set of primitive atomic basis functions can be required for such all-electron
four-component SCF calculations.

In the high-Z case the effects of relativity can be just as important as those of
electron correlation, making it necessary to develop efficient methods for the simulta-
neous treatment of correlation and relativity [499]. Such a treatment can be made in
the framework of post-DHF methods (very complicated in the practical realization)
or relativistic DFT theory.

Although the DFT method has been extensively applied to nonrelativistic calcu-
lations, the four-component DFT approaches have only recently appeared (see the
book [335] and the review [499] and references therein). Relativistic versions of the
Kohn–Sham equations have been developed based on the relativistic extension of the
Hohenberg–Kohn theory [500].

The one-electron effective Hamiltonian for the Dirac–Kohn–Sham (DKS) method,
as a relativistic extension of the conventional KS approach, takes the form,

ĥDKS = ĥD + VH + VXC + βσ
δEXC [ρ,m]

δm(r)
(8.50)
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where ĥD is the one-electron Dirac operator (8.36), VH =
∫ ρ(r′)

|r−r′|dr′ is the Hartree
potential, defined by the electron-charge spin density ρ(r). In contrast to the non-
relativistic theory the relativistic exchange-correlation potential consists of the spin-
independent part (the functional derivative of the exchange-correlation energy func-
tional with respect to total density δEXC

δρ ) and the spin-dependent part βσ δEXC

δm(r) ,
where m(r) is the spin magnetization vector [501]. The latter is defined as m(r) =∑
i

occ
ψ∗

i σψi, where ψi are two-component spinors ψi =
(

ψiα

ψiβ

)
and σ = (σx, σy, σz)

is the vector of the Pauli spin matrices. In the so-called “collinear approach” the
vector m(r) is projected on the z-axis to define the spin density s(r) = mS(r) =
occ∑
i

ψ∗
i σψi =

occ∑
i

(
ψ∗

iαψiα − ψ∗
iβψiβ

)
. The total density is given by

ρ(r) =
occ∑
i

ψ∗
i ψi =

occ∑
i

(
ψ∗

iαψiα + ψ∗
iβψiβ

)
(8.51)

where positron states are excluded by employing the so-called no-sea approximation.
The DKS equation is then the matrix pseudoeigenvalue equation by introducing basis
set expansion as,

ĥDKSC = SCE (8.52)

where ĥDKS takes the form of a Fock matrix

hDKS
µν =

(
VLL

µν + JLL
µν − VLL

(XC)µν cΠLS
µν

cΠSL
µν VSS

µν + JSS
µν − VSS

(XC)µν − 2c2SSS
µν

)
(8.53)

In (8.53) VXX
(XC)µν is the exchange-correlation potential defined by,

VXX
(XC)µν = 〈χX

µ |δEXC

δρ
+

δEXC

δm(r)
|χX

ν 〉 (8.54)

During the last decade, good progress was attained in four-component techniques
for molecules (see [496, 502, 503] and referencies therein) that allowed one to reduce
efforts in calculation and transformation of two-electron matrix elements with small
components of four-component molecular spinors. The straightforward DHF and DKS
methods with the four-component spinors were implemented in several ab-initio MO
LCAO programs: MOLFDIR, [504], DIRAC, [505], BERTHA, [506]. However, fully
relativistic DFT calculations on molecules containing more than one or two heavy
atoms are not yet routine. The efficient computational scheme for the Gaussian-based
fully relativistic DHF and DKS methods is proposed in [496] and applied to hydrides
MH and dimers M2 (M=Cu, Ag, Au).

As the fully relativistic (four-component) calculations demand severe computa-
tional efforts, several quasirelativistic (two-component) approximations have been
proposed in which only large components are treated explicitly. The approaches with
perturbative treatment of relativistic effects [507] have also been developed in which a
nonrelativistic wavefunction is used as reference. The Breit–Pauli (BP) approximation
uses the perturbation theory up to the (p/mc)2 term and gives reasonable results in
the first-order perturbation calculation. Unfortunately, this method cannot be used in
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variational treatment. One of the shortcomings of the BP approach is that the expan-
sion in (p/mc)2 diverges in the case where the electronic momentum is too large, for
example, for a Coulomb-like potential [496]. The zeroth-order regular approximation
(ZORA), [509], can avoid this disadvantage by expanding in E/(2mc2 − V ) up to
first order. The ZORA Hamiltonian is variationally stable. However, the Hamiltonian
obtained by a higher-order expansion has to be treated perturbatively, similarly to
the BP Hamiltonian.

Two recently developed quasirelativistic approaches are considered in [496]. In
particular, in the RESC method (the relativistic scheme by eliminating small com-
ponents) the Hamiltonian is separated into the spin-averaged (scalar relativistic,
which can be called the one-component approximation) and spin-dependent parts.
The RESC approach has several advantages. It is variationally stable. This method
can easily be implemented in various nonrelativistic ab-initio programs, and the rel-
ativistic effect is considered on the same footing with the electron-correlation effect.
RESC has been applied to various systems in ground and excited states. As the en-
ergy gradient of the RESC method is also available it is possible to study the chemical
reaction in the heavy-element systems (as an example, the ionization of OsO4 is con-
sidered in [496]).

While accurate relativistic (both four- and two-component) calculations of simple
heavy-atom molecules can be performed on modern computers the relativistic calcu-
lations of periodic systems are made mainly using relativistic effective core potential
(RECP). We consider these potentials in the next section.

8.3.2 Relativistic Effective Core Potentials

The two-component RECP approximation was suggested originally by Lee et al. [508]
and is widely used in molecular calculations (see [487, 510, 511]). There are several
reasons for using RECPs in calculations of complicated heavy-atom molecules, molec-
ular clusters and periodic solids. As the nonrelativistic ECP approaches, the RECP
approaches allow one to exclude the large number of chemically inactive electrons
from calculations and treat explicitly only valence and outermost core electrons. The
oscillations of the valence spinors are usually smoothed in heavy-atom cores simul-
taneously with exclusion of small components from the explicit treatment (quasirel-
ativistic approximation). As a result, the number of primitive basis functions can
be essentially reduced; this is especially important for calculation and transforma-
tion of two-electron integrals when studying many-atomic systems with very heavy
elements including lanthanides and actinides. The RECP method is based on a well-
developed earlier nonrelativistic technique of pseudopotential calculations; however,
effective scalar-relativistic and spin-orbit interaction effects are taken into account
by means of the RECP operator. Post-DHF correlation calculations with RECPs
are performed in a natural way in the basis of spin-orbitals (and not of spinors as
in all-electron four-component relativistic calculations) even for the cases when the
Dirac–Coulomb–Breit(DCB) Hamiltonian is used [512]. Note, however, that the DCB
technique with the separated spin-averaged and spin-dependent terms also has been
developed [513], but it can be efficiently applied only in the cases when spin-dependent
effects can be neglected both for valence and for core shells. In the RECP method,
the interactions with the excluded inner core shells (spinors!) are described by spin-
dependent potentials, whereas the explicitly treated valence and outer core shells can
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be described by spin-orbitals. This means that some “soft” way of accounting for the
core-valence orthogonality constraints is applied in the latter case [514]. Meanwhile,
the strict core-valence orthogonality can be retrieved after the RECP calculation by
using the restoration procedures described below. The use of the spin-orbitals allows
one to reduce dramatically the expenses at the stage of correlation calculation. Thus,
many complications of the DC or DCB calculations are avoided when employing
RECPs.

When core electrons of a heavy atom do not play an active role, the effective
Hamiltonian with RECP can be presented in the form

HEf =
∑
iv

[hSchr(iv) + UEf(iv)] +
∑

iv>jv

1
rivjv

(8.55)

This Hamiltonian is written only for a valence subspace of electrons that are treated
explicitly and denoted by indices iv and jv (large-core approximation). As in the case
of nonrelativistic pseudopotentials, this subspace is often extended by inclusion of
some outermost core shells for better accuracy (small-core approximation) but below
we consider them as the valence shells if these outermost core and valence shells
are not treated using different approximations. In (8.55), hSchr is the one-electron
Schrödinger Hamiltonian

hSchr = −1
2
∇2 − Zic

r
(8.56)

where Zic is the charge of the nucleus decreased by the number of inner-core elec-
trons. UEf in (8.55) is an RECP (relativistic pseudopotential) operator that is usu-
ally written in the radially local (semilocal) [510] or separable [515] approximations
when the valence pseudospinors are smoothed in the heavy-atom cores. In LCAO
calculations of heavy-atom molecules among the radially local RECPs, the shape-
consistent (or normconserving) RECP approaches [510] are employed and “energy-
consistent” pseudopotentials by the Stuttgart–Dresden–Cologne group are also ac-
tively used [487,511,516]. The latter are now applied also in LCAO calculations of pe-
riodic systems with modified valence basis sets (see Sect. 8.3.5). To generate “energy-
consistent” RECP the direct adjustment of two-component pseudopotentials is made
(scalar-relativistic + spin-orbit potentials) to atomic total energy valence spectra.
The latter is derived from the four-component multiconfiguration DHF all-electron
atomic calculations based on the DCB Hamiltonian.The “energy-consistent” RECPs
are now tabulated for all the elements of periodic table at the site www.theochem.uni-
stuttgart.de. The adjustment of the pseudopotential parameters has been done in fully
numerical atomic calculations, valence basis sets have been generated a posteriori via
energy optimization. The complete set of potentials includes one-component (nonrel-
ativistic and scalar-relativistic) effective-core potentials (ECP), spin-orbit (SO) and
core-polarization potentials (CPP); only the one-component ECPs are listed in full.
The “energy-consistent”pseudopotentials are under continuous development and ex-
tension [516,517] and the corresponding Gaussian basis sets are published [518–520].

In plane-wave calculations of solids and in molecular dynamics, the separable pseu-
dopotentials [93,492,515] are more popular now because they provide linear scaling of
computational effort with the basis-set size in contrast to the radially local RECPs.
Moreover, the nonlocal Huzinaga-type “ab-initio model potentials” [521–523] con-
serving the nodal structure for the valence spinors are often applied. Contrary to the
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four-component wavefunction used in DC(B) calculations, the pseudowavefunction in
the RECP case can be both two- and one-component. The RECP operator simu-
lates, in particular, interactions of the explicitly treated electrons with those that are
excluded from the RECP calculations. The use of the effective Hamiltonian (8.55)
instead of all-electron four-component Hamiltonians leads to the question about its
accuracy. It was shown both theoretically and in calculations, see [514], that the typ-
ical accuracy of the radially local RECPs is within 1000–3000 cm−1 for transition
energies between low-lying states though otherwise is sometimes stated, [481,482].

In a series of papers [482, 514, 524, 525] a generalized RECP(GRECP) approach
was developed that involves both radially local, separable and Huzinaga-type poten-
tials as its components. Additionally, the GRECP operator can include terms of other
types, known as “self-consistent” and two-electron “term-splitting” corrections [514],
which are important particularly for economical (but precise!) treatment of transi-
tion metals, lanthanides and actinides. With these terms, the accuracy provided by
GRECPs can be even higher than the accuracy of the “frozen-core” approximation
(employing the same number of explicitly treated electrons) because they can account
for relaxation of explicitly excluded (inner core) electrons [514]. In contrast to other
RECP methods, GRECP employs the idea of separating the space around a heavy
atom into three regions: inner core, outer core and valence, which are first treated by
employing different approximations for each. It allows one to attain practically any
desired accuracy for compounds of lanthanides, actinides, and superheavy elements
as well, while requiring moderate computational efforts since the overall accuracy is
limited in practice by possibilities of correlation methods.

8.3.3 One-center Restoration of Electronic Structure in the Core Region

It should be noted that calculation of such properties as spin-dependent electronic
densities near nuclei, hyperfine constants, chemical shifts, etc. with the help of the
two-component pseudospinors smoothed in cores is impossible. However, the above
properties (and the majority of other “core-type” properties of practical interest that
are described by the operators heavily concentrated within inner cores or on nuclei)
are mainly determined by the electronic densities of the valence and outer core shells
near to, or on, nuclei. The valence shells can be open or easily perturbed by external
fields, chemical bonding, etc., whereas outer-core shells are noticeably polarized (re-
laxed) in contrast to the inner-core shells. Therefore, accurate calculation of electronic
structure in the valence and outer-core region is of primary interest for such proper-
ties. The electronic densities evaluated from the two-component pseudowavefunction
very accurately reproduce the corresponding all-electron four-component densities in
the valence and outer-core regions not only for the state used in the RECP gen-
eration but also for other states that differ by excitations of valence electrons. In
the inner-core region, the pseudospinors are smoothed, so that the electronic density
with the pseudowavefunction is not correct. When operators describing properties of
interest are heavily concentrated near or on nuclei, their mean values are strongly
affected by the wavefunction in the inner region. The proper shapes of the valence
four-component spinors must, therefore, be restored in atomic core regions after per-
forming the RECP calculation. The applicability of the above two-step algorithm for
calculation of wavefunctions of systems containing heavy atoms is a consequence of



8.3 Relativistic Effective Core Potentials and Valence Basis Sets 317

the fact that the valence and core electrons may be considered as two subsystems,
interaction between which is described mainly by some integrated properties of these
subsystems. The methods for consequent calculation of the valence and core parts
of electronic structure give a way to combine the relative simplicity and accessibility
both of RECP calculations in Gaussian basis set and of relativistic finite-difference
one-center calculations inside a sphere with the atomic core radius. In 1959, a non-
relativistic procedure of restoration of the orbitals from smoothed Phillips–Kleinman
pseudo-orbitals was proposed [473] based on the orthogonalization of the latter to
the original atomic core orbitals. In 1985, Pacios and Christiansen [526] suggested a
modified orthogonalization scheme in the case of shape-consistent pseudospinors. At
the same time, a simple procedure of “nonvariational” one-center restoration (NOCR)
employing the idea of generation of equivalent basis sets in four-component DHF and
two-component RECP/SCF calculations was proposed by Titov and first applied in
the calculations of the PbF molecule. Later, the two-step RECP/NOCR calculations
of the hyperfine structure constants and other properties were performed for the XF
molecules and radicals, X=Pb,Yb,Ba [527–531], the TlF [532] and PbO [533, 534]
molecules, and the molecular ion HI+, [535]. In 1994, a similar procedure was used by
Blöchl inside the augmentation regions [536] in solids to construct the transformation
operator between pseudo-orbitals and original orbitals in his projector augmented-
wave (PAW) method.

The NOCR scheme consists of the following steps [537]:

• Generation of equivalent basis sets

of one-center four-component spinors
(

fnlj(r)χljm

gnlj(r)χ2j−l,jm

)
and smoothed two-

component pseudospinors f̃nlj(r)χljm in finite-difference all-electron Dirac–Fock(–
Breit) and RECP/SCF calculations of the same configurations of a considered
atom and its ions. The χljm is the two-component spin-angular function, the
fnlj(r) and gnlj(r) are the radial parts of the large and small components of Dirac
spinors, respectively. The nucleus is usually modeled by a Fermi-charge distribu-
tion within a sphere. The all-electron four-component and two-component calcu-
lations are employed to generate two equivalent numerical basis sets used at the
restoration. These sets, describing mainly the atomic core region, are generated
independently of the basis set used for the RECP calculations.

• The molecular pseudospinorbitals from the RECP calculation are then expanded
in the basis set of one-center two-component atomic pseudospinors (for r≤Rnocr,
where Rnocr is the radius of restoration that should be sufficiently large for calcu-
lating core properties with the required accuracy),

φ̃p(x) ≈
Lmax∑
l=0

j=|l+1/2|∑
j=|l−1/2|

∑
n,m

cp
nljmf̃nlj(r)ωljm , (8.57)

where x denotes spatial and spin variables
• Finally, the atomic two-component pseudospinors in the basis set are replaced by

equivalent four-component spinors and the expansion coefficients from (8.57) are
preserved:
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φp(x) ≈
Lmax∑
l=0

j=|l+1/2|∑
j=|l−1/2|

∑
n,m

cp
nljm

(
fnlj(r)ωljm

gnlj(r)ω2j−l,jm

)
. (8.58)

The four-component spinors constructed in this way are orthogonal to the inner-
core spinors of the atom, because the atomic basis functions used in (8.58) are gener-
ated with the inner-core shells treated as “frozen”.

8.3.4 Basis Sets for Relativistic Calculations of Molecules

The fully relativistic (four-component) LCAO calculations of molecular systems use
contracted Gaussian-type spinors as the basis: two scalar wavefunctions within a two-
component basis spinor are multiplied by a common expansion coefficient, for di-
mensions n of both the large and small components the total number of variational
parameters (the scalar expansion coefficients) is equal to 2n [496]. In the relativistic
correlated calculations the atomic basis sets should be optimized in the atomic corre-
lated calculations. As Almlöf and Taylor showed [538], atomic basis sets optimized to
describe correlations in atoms also describe correlation effects in molecules very well.
The two main types of basis sets are used in correlation calculations of molecules: basis
of atomic natural orbitals (ANO) suggested by Almlöf and Taylor [538]; correlation-
consistent (CC) basis set suggested by Dunning [462].

Atomic natural orbitals {ψp} are obtained by unitary transformation of some set
of orthonormal basis functions {φp}. Natural orbitals diagonalize density matrix Dij

for some state (or group of the states) of the atom or its ions:

ρ(r, r′) =
∑
p,q

Dpqφ
†
p(r)φq(r′) =

∑
p

npψ
†
p(r)ψp(r′) (8.59)

where np are occupation numbers. Only those {ψp} are selected in the ANO basis set
for which np is greater than some threshold: np ≥ nthr; nthr∼10−3 − 10−5.

Unlike the ANO scheme, the different number of primitive Gaussian functions are
used in each basis set in the CC approach. Exponents of the polarization-correlation
functions are optimized in correlation calculations of the atomic terms to provide the
lowest possible total energy. It turns out that basis functions can be separated in
groups and every function in each group lowers the total energy approximately by
the same amount. Correlation-consistency means that whole groups of functions are
added to the basis set, not just separate functions.

Both ANO and CC schemes have a number of advantages, i.e. the ANO basis set
is relatively easy to construct and the smaller ANO basis is just a subset of the larger
one. Advantages of the CC basis are the smaller number of the primitive functions and
a natural criterion for estimation of the completeness of the basis set. The following
disadvantages can be emphasized for CC and ANO basis sets:

• for heavy atoms with many electrons, the number of ANO and CC functions be-
comes too large to obtain satisfactory accuracy in transition energies and prop-
erties. Even for the light Ne atom, ANO basis sets obtained in correlation CI-SD
calculation are [3s 2p 1d] with nthr∼10−3 and [5s 4p 3d 2f 1g] for nthr∼10−5;

• “occupation number-optimized” (ANO) or “energy-optimized” (CC) basis sets do
not take into account special features of one or another property and do not reflect
properly the state of the “atom-in-molecule”;
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• the incompleteness of atomic basis sets with the change of internuclear distance
leads to basis-set superposition error (BSSE). This error is usually corrected by
a “counterpoise” correction [539] that is calculated rather arbitrarily (it depends,
in particular, on the atomic state used for its calculation) for ANO and CC basis
sets.

The generalization of the correlation-consistent scheme of the basis-set generation
was suggested, see [524] and references therein, which allows one to control effec-
tively the quality of the basis set in different space regions depending on the property
of interest. Practically all properties can be divided into two groups: (1) “valence”
properties, which are determined by the wavefunction in the valence region, like disso-
ciation energy or transition energies and (2) “core” properties, which are described by
operators heavily concentrated near the nuclei of the heavy atom, like the hyperfine
structure. The calculations of the different kind of properties require, in principle,
different optimization criteria for basis sets. The generalized correlation (GC) basis
set is constructed in the following stages:

1 Generation of the trial spin-orbitals, two-component spinors or four-component
spinors in the atomic SCF calculation with numerical functions. Functions are
obtained in SCF calculations of the atom and its ions, thus trial functions are
localized in valence or outer-core regions.

2 Criterion of choice of the optimal function is the maximization of some functional
that depends on total energies of the states and transition energies between them.
The energies of the states are obtained in some correlation calculation of the group
of the states that describe an “atom-in-molecule” in the best way. The choice of
the energetic functional is the key element of the GC-basis generation.

3 The resulting sets of functions are approximated by Gaussian functions with the
same exponents for each l (or pair of lj) by the least square fit.

A commonly used choice of the functional is:

Fc(∆E1, . . . , ∆EM ) =
1
M

M∑
i

∆Ei (8.60)

Here, Fc is the change in the average energy for some considered group of the lowest-
lying terms.

The functional used in the GC generation scheme can be chosen as follows:

Fv(∆E1, . . . , ∆EM ) =
M

max
i>j

|∆Ei − ∆Ej | (8.61)

where M is the number of atomic terms, ∆Ei ≥ 0 is the lowering of the total en-
ergy of the ith term in comparison to calculation without the given function. Thus,
Fv presents the maximal change in transition energies. (Some other versions of the
functional on changes of transition energies can also be used but their results are not
very different.)

Functional Fc is reasonable to use for generation of the GC basis for “core” prop-
erties, while Fv can be used when one is interested in “valence” properties. When only
valence electrons are correlated, any functional can be used since the function giving
the maximal change in total energy, as a rule, also provides the maximal change in
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transition energies in this case. In a universal scheme, both of the above functionals can
be applied together when Fc is used in the first step to select the most important corre-
lation functions and then, Fv is used (see also [540] for a variational justification of the
suggested functionals). If the effect of atomic polarization is important the GC basis
can be augmented by diffuse polarization functions, whose exponents are optimized in
the SCF calculation of an atom in an electric field. The valence basis sets, used in rel-
ativistic molecular calculations, have to be in correspondence with RECP used in the
basis set optimization. As was already mentioned the basis sets corresponding to the
“energy-consistent” RECP can be found on the site www.theochem.uni-stuttgart.de.
Highly accurate relativistic Gaussian basis sets are developed for the 103 elements
from H to Lr [544]. Orbital exponents are optimized by minimizing the atomic self-
consistent field (SCF) energy with the scalar relativistic approximation. The basis
sets are designed to have equal quality and to be appropriate for the incorporation
of relativistic effects. The basis-set performance was tested by calculations on pro-
totypical molecules, hydrides, and dimers of copper, silver, and gold using SCF, MP
theory, and the single and double coupled-cluster methods. Spectroscopic constants
and dissociation energies are reported for the ground state of hydrides, which agree
well with the experimental data (the mean absolute error relative to the experiment in
dissociation energy, equilibrium bond length and harmonic frequency is 0.09eV , 0.003
Å, and 2 cm−1, respectively). The optimized Slater-type basis sets for elements 1–118
are developed in [545]. The exponents of the Slater-type functions are optimized for
the use in scalar-relativistic zero-order regular approximation (ZORA). These basis
sets are used in DFT code ADF [345] for calculations of molecules and solids. The use
of RECP and valence basis sets for periodic systems is considered in the next section.

8.3.5 Relativistic LCAO Methods for Periodic Systems

The influence of relativistic effects on the structural and electronic properties of the
crystals with heavy elements is well known [541].

One important effect is the strong relativistic contraction of s and p orbitals due to
the non-negligible probability to find them close to the nucleus; in turn d and f orbitals
are stretched due to indirect relativistic effects. This largely affects the interatomic
distances, the cohesive energies, the one-electron energies, etc. This effect can be
partly handled within the scalar relativistic (SR) calculation, neglecting spin-orbit
interaction. Another important relativistic effect is due to the spin-orbit coupling,
which plays an essential role in the magnetic properties of solids [546]. The spin-orbit
coupling requires more elaborate treatment beyond the SR calculations, i.e. the two-
or four-component relativistic calculations.

The four-component DHF LCAO equations for 1D-, 2D- and 3D-periodic systems
were at first presented by Ladik [547]. The resulting somewhat complicated generalized
matrix eigenvalue equation for solids is described (for details we refer the reader
to [547]). It was also shown for 1D and 2D systems how MP2 methods could be
applied in their relativistic form. With the help of these, on the one hand, the total
energy per unit cell (including correlation effects) can be computed. On the other
hand, the relativistic band structure can also be corrected for correlation. Note that
the symmetry of crystalline orbitals changes, compared with the nonrelativistic case,
as the symmetry of the DHF Hamiltonian is described by double space groups. Finally,
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a scheme is proposed in which most of the electrons are treated in the standard way
(Dirac–Hartree–Fock equations with only Coulomb interactions and calculation of all
the other terms with the aid of first-order perturbation theory), while for the core
electrons of large-Z atoms or ions, the generalized relativistic HF equations are used.
Therefore, one applies the solutions of the generalized relativistic HF equations for
the construction of the relativistic Slater determinant in the case of core electrons,
while for the rest of the electrons the one-electron functions are obtained from the
standard Dirac–Hartree–Fock equations. Unfortunately, the application of this fully
relativistic theory (involving four-component spinors built in terms of a large and
small component) is practically too difficult not only for solids but even for molecular
systems (this application is limited to small-size molecules).

As was noted in the preceding sections the relativistic calculations of molecu-
lar systems are made in quasirelativistic (two-component) approximations based on
Hamiltonians operating on the large component only. Between different alternatives to
decouple large and small components for molecules and solids the Douglas–Kroll–Hess
(DKS) approach [548,549] is the most popular as this approach is variationally stable
(and therefore can be incorporated into SCF calculations) and allows its accuracy to
be improved [550]. In the DKS approach the decoupling of large and small components
of the Dirac Hamiltonian is made through a sequence of unitary transformations

Hm = UmUm−1 · · ·U1U0HDU†
0U†

1 · · ·U†
m−1U

†
m (8.62)

Each transformation Un is chosen in such a way that the offdiagonal blocks of the
Dirac Hamiltonian are zero to a given order in the potential. The decoupled, block-
diagonal transformed Hamiltonian

Hn =
(

HL
DKHn

O(V n)
O(V n) HS

DKHn

)
(8.63)

The large-component block, HL
DKHn

is the two-component effective Hamiltonian to
be included in the electronic-structure calculation. The order n of transformation can
be systematically increased to improve the accuracy of transformation. Two classes
of operators are involved in the construction of the DKHn Hamiltonian: a function
of the square of the momentum f(P 2),p = −i∇ and those involving the poten-
tial V, (σp)V (σp), where σ are the Pauli spin-matrices [550]. The explicit form of
HDKHn up to fifth order was derived in [551, 552]. The DKH approach leads to
a two-component formalism, which is separable in a spin-averaged (spin-free) and
spin-dependent part. In the scalar-relativistic (SR) approximation the spin-dependent
part is ignored. The DKH transformation for the one-electron operators in scalar-
relativistic HF LCAO calculations with periodic boundary conditions is used in [553]
and implemented in CRYSTAL88 code. The fact that scalar-relativistic effects are
short range was made use of so that the electrostatic potential calculated by the
Ewald method was not relativistically corrected. The results of SR HF LCAO cal-
culations [553] of silver halides AgX (X=F, Cl, Br) with the fcc NaCl structure are
presented in Table 8.6.

The reoptimized uncontracted correlation corrected basis sets were used. The dif-
fuse exponents (< 0.04) in the basis set for Ag were discarded. The results given in
Table 8.6 demonstrate the influence of scalar-relativistic effects in the AgX crystals
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Table 8.6. Scalar-relativistic effects in AgX (X=F, Cl, Br) crystals, [553]

Property AgF AgCl AgBr Ag

Lattice parameter (Å) 5.175 5.937 6.207 4.456

(5.191) (5.990) (6.260) (4.546)

Binding energy (kJmol−1) –371.2 –385.9 –333.4 –53.0

(–407.5) (–417.7) (–362.8) (–39.4)

Bulk modulus (kbar) 459 306 273 298

(460) (297) (259) (322)

properties (the results of nonrelativistic HF LCAO calculations are given in brackets,
the binding energy is given with reference to the HF ground-state energies of the
free atoms). It is seen that lattice parameters show small relativistic effects – they
decrease (up to 2% for Ag) as compared to the nonrelativistic values. The binding
energies demonstrate a remarkable bond destabilization (up to 8.9% for AgF and
34.5% for Ag as compared to the nonrelativistic values). Bulk moduli change up to
7.5% (for Ag). Though scalar-relativistic effects of silver compounds are expected to
be relatively small (compared with the compounds of heavier elements), remarkable
changes of the HF binding energy and of the bulk modulus are observed. We note that
in the relativistic HF calculations the correlation effects are not included explicitly
in the Hamiltonian (the correlation correction is included only in AO basis sets). In
Table 8.7 properties of AgCl crystal are compared at various levels of theory. Table 8.7
demonstrates good agreement for the lattice parameter and bulk modulus between HF
calculations with RECP (Hay–Wadt RECP is used) and the scalar (one-component)
relativistic HF DKH approach. Slight differences are seen for the binding energy.

Table 8.7. Crystal properties of fcc AgCl at various levels of theory [553]

Method Total energy Lattice Binding energy Bulk modulus

(a.u.) const. (Å) (kJ mol−1) (kbar)

Nonrel. HF –5656.601 5.990 –417.7 297

Rel. HF –5771.344 5.937 –385.9 306

HF RECP –159.709 5.943 –376.5 307

DFT ECP –160.870 5.610 –514.6 560

Exper. – 5.510 –519.8 535

We noted that it is necessary to simultaneously include the relativistic and corre-
lation effects in the Hamiltonian. Such inclusion for periodic systems is usually made
in the relativistic DFT approaches.

The fully relativistic LCAO method for solids, based on the DKS scheme in the
LDA approximation was represented in [541]. The basis set consists of the numerical-
type orbitals constructed by solving the DKS equations for atoms. This choice of basis
set allows the spurious mixing of negative-energy states known as variational collapse
to be overcome. Furthermore, the basis functions transform smoothly to those in the
nonrelativistic limit if one increases the speed of light gradually in a hypothetical way.
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This is also an important feature to avoid the variational collapse. The proposed ap-
proach was applied to Au and InSb crystals. The basis functions were chosen so that
they have enough variational flexibility: not only were used AOs of neutral atoms
but also those of positive ions Au+, Au2+, Au3+, In2+, Sb2+. In the comparison for
Au the results of scalar- and two-component relativistic calculations (lattice constant
and bulk modulus) indicates that the spin-orbit coupling plays a minor role in the
structural properties of Au. The comparison of results of the relativistic calculations
with those of the nonrelativistic calculations shows that the lattice constant is over-
estimated by 5% and the bulk modulus is underestimated by 35% in nonrelativistic
calculations. This strongly shows the importance of the inclusion of the relativistic
effects in the study of the structural properties of Au. In contrast with the case of
Au, the results of nonrelativistic calculations of InSb are not so poor; the error in the
lattice constant is 1% and the error in the bulk modulus is 10%. This should be due
to the fact that In and Sb are not so heavy that the relativistic effects do not play an
important role in studying the structural properties of InSb.

The implementation of scalar relativity in an all-electron LDA linear combina-
tions of the Gaussian-type orbitals (LC-GTO) method for solids was reported by
Boettger [542] and applied for crystalline Au with a fcc lattice. This initial imple-
mentation was later extended to include spin-orbit coupling terms, produced in the
second-order DKH transformation. The GTO Au atomic basis set of 19s14p10d5f
primitive GTOs was derived from scalar-relativistic (SR) and nonrelativistic (NR) cal-
culations of paramagnetic atom. These calculations show that bulk and one-electron
properties obtained by the LCGTO method, are very close to those obtained with all-
electron, scalar-relativistic DFT techniques using other basis sets (LAPW or LMTO
SR methods). The efficiency of the LCGTO approximation in relativistic calculations
of solids was demonstrated also in the calculations of equilibrium volumes and bulk
moduli for the light actinides Th through Pu [555]. It is concluded that two indepen-
dent (both scalar and quasirelativistic) electronic-structure DFT methods with the
different choice of basis set (LCGTO and LAPW) are in good agreement with each
other. Table 8.8 shows this agreement for fcc Th and Pu metals giving numerical
values of the equilibrium volume V (a.u) and the bulk modulus B (GPa), for compar-
ison also results of FPLMTO calculations are given. The agreement between LCGTO
and FPLAPW results is important, keeping in mind the primary advantage of LCAO
methods over other existing DFT approaches (FLAPW, FLMTO)- the possibility of
LCAO methods to treat both molecular and periodic systems and in this way to bridge
the gap between quantum chemistry and solid-state physics.

Comparison of the nonrelativistic and scalar-relativistic results for fcc Au reveals
the large impact that relativity has on the lattice constant (6%) and bulk modu-
lus (57%) [542]. The most important qualitative change in the band structure of
fcc Au is the more than 2-eV lowering of the s-band relative to the bottom of d-
bands. In addition, the overall width of the d-bands is increased by more than 15%
due to a relativistic delocalization of the d- states. The spin-orbit coupling included
LCGTO DFT-GGA calculations were made for fluorite structure actinide oxides MO2

(M=Th,U,Pu) and their clean and hydroxylated surfaces, [556], magnetic ordering in
fcc Pu [557] and bulk properties of fcc Pb [558].

In the calculations using nonrelativistic LCAO codes for solids the relativistic ef-
fects are included implicitly in RECPs and basis sets. In the relativistic calculations
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Table 8.8. Equilibrium volume V (a.u) and bulk modulus B (GPa) for Th and Pu with
FP-LMTO, LCGTO and FPLAPW calculations, using DFT LDA and GGA Hamiltonians,
with and without spin-orbit (SO) effects included [555]. Experimental data for fcc Th:
V =221.7 a.u., B=58 GPa

fcc Th fcc Pu

LDA +SO GGA +SO LDA +SO GGA +SO

FPLMTO V - 182.1 - 199.9 109.2 - 119.2 -

B 82.6 61.5 - - 214 - 143 -

LCGTO V 200.5 199.3 216.9 214.8 111.5 125.7 121.2 141.4

B 64.8 71.7 58.8 63.4 218 124 170 97

FPLAPW V 199.7 204.1 219.3 218.1 111.9 120.2 122.3 133.4

B 61.0 78.6 56.7 73.1 194 143 153 121

of periodic systems RECPs of the Stuttgart-Köln group (energy-consistent RECPs)
are often applied. These RECPs (and the corresponding basis sets) are obtained in
the relativistic DHF atomic calculations and are tabulated as the linear combination
of GTFs, see www.theochem.uni-stuttgart.de. As was noted in Sect. 8.1, the basis sets
generated for molecular calculations have to be adapted for the periodic systems cal-
culations. As an example we mention the valence basis sets for lanthanide 4f-in-core
relativistic pseudopotentials, adapted for crystal orbital ab-initio calculations [559].
The crystalline calibration calculations were made for Ln2O3 (Ln=La–Pm) crystals
with hexagonal space group P3m1 and one formula unit per cell. The calibration
within the HF and DFT schemes was made using the CRYSTAL03 code [23]. To
verify these basis sets the calculated geometries and cohesive energies were compared
with experimental data. The valence basis sets adapted for crystal calculations re-
store the calculated cohesive energy of Ln2O3 (Ln = La–Nd) to more than 88% of
the experimental data within the a-posteriori HF correlation scheme in combination
with gradient-corrected functionals. Good agreement has also been found between the
conventional DFT results and the experimental cohesive energy with a deviation of
only a few per cent.

The implementation of the LCGTO relativistic two-component DKH approxima-
tion in a fully self-consistent all-electron DFT approach for molecules (this implemen-
tation requires changes to be made in the Hamiltonian [550]), allows the RECP results
(when the nonrelativistic calculations are made with the use of relativistic pseudopo-
tentals) to be compared with those obtained in scalar-relativistic and two-component
relativistic calculations. Such a comparison was made in [560] for the bond dissocia-
tion energy in the UF6 molecule, obtained from the relative energies of the fragments
(UF6 = UF5 + F), corrected for zero-point energy and spin-orbit interaction. The
small-core RECP PBE0 and B3LYP calculations give the bond-dissociation energy as
68.34 and 69.59 kcal/mole, respectively, all-electron two-component relativistic PBE0
and B3LYP calculations – the values 68.94 and 70.39 kcal/mole, while the experimen-
tal values are given between 69.5 and 73 kcal/mole. Note that the large-core RECP
result is off by more than 50% so that to obtain a good agreement with experiment
one needs to work with a hybrid density functional and small-core RECP.
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This conclusion was taken into account in RECP calculations of crystals. RECP
hybrid DFT calculations were made for PtO crystal [421]. For Pt, 60 core electrons
[Kr]4d104f14 were replaced with the small-core relativistic Stuttgart–Dresden effec-
tive core potentials RECPs. A valence basis set was optimized for Pt considering
5s, 5p, 5d, 6s, and 6p orbitals. This basis set circumvents numerical linear dependen-
cies in periodic calculations and it is of similar quality to the Stuttgart basis set for
most practical applications. Benchmark calculations in PtO using the 6-31G(d), the
6-311G(d), and 8-411G(d) basis sets for oxygen showed that these three bases yielded
similar results. RECPs of the Stuttgart group were also applied in periodic hybrid
DFT calculations of PuO2, Pu2O3 [422], PtN [420], UO2 [543].

The molecular calculations [550, 560] allow us to conclude that the DKH approx-
imation in combination with hybrid DFT functionals provides a reliable tool for the
prediction of structural and thermochemical properties of molecules.

The all-electron DFT LCAO approach with Gaussian basis sets was extended to
scalar-relativistic calculations of periodic systems [561]. The approach is based on
a third-order DKH approximation, and similar to the molecular case, requires only
a modification of the one-electron Hamiltonian. The effective core Hamiltonian is
obtained by applying the DKH transformation to the nuclear–electron potential VN .
Considering that relativistic effects are dominated by the short-range part of the
Coulomb interaction, it is proposed to replace the nuclear–electron Coulomb operator
used to build the DKH Hamiltonian by a short-range Coulomb operator

V ζ(r) = −Z

r
erfc(ζr) (8.64)

where the complimentary error function screens the long-range tail of the potential.
The use of the complimentary error function simplifies the calculation of the matrix
elements between GTOs, but in general, any screening function could be employed.
The correct nonrelativistic long-range behavior of the Coulomb operator is retained
if the core Hamiltonian is defined as

Hcore = Hζ
DKHn − V ζ

N + VN (8.65)

where the supraindex stands for quantities involving the short-range potential given
by (8.64). The parameter ζ switches from a Hamiltonian where only the free-particle
(averaged) kinetic energy is relativistically corrected (ζ → ∞), to the full-range DKHn
Hamiltonian (ζ = 0). In this way, the relativistic term Hζ

DKHn − V ζ
N for periodic

systems can be evaluated using V ζ
N and pV ζ

Np obtained by adding contributions from
a finite number of cells in direct space. It should be pointed out that the summation
of V ζ

N and pV ζ
Np for ζ = 0 diverges. The divergent term can be removed from the

summation by adding a uniform charge-canceling background, as is usually done in
Ewald-type summations. For the relativistic term Hζ

DKHn−V ζ
N the contribution from

the uniform background is exactly zero, since the DKH transformation does not change
a uniform potential. The choice of ζ only affects the relativistic correction to the core
Hamiltonian, while the nonrelativistic electrostatic contributions are entirely done
using FMM, see Chap. 7. The tests on bulk systems by changing the value of ζ from
0.05 a.u to 0.5 a.u., showed that the lattice constants, bulk moduli, and bandgaps are
rather insensitive to ζ in this range [561], (ζ =0.1 has been chosen in the discussed



326 8 Basis Sets and Pseudopotentials in Periodic LCAO Calculations

calculations). In this approach, relativistic effects are included through the nucleus–
electron interaction, while the electron–electron, Coulomb, the portion of Hartree–
Fock exchange, and DFT exchange-correlation potential remain nonrelativistic. Such
a strategy has been successfully employed for molecules and solids earlier.

The benchmark scalar-relativistic calculations [561] were made for the bulk metals
(Pd, Ag, Pt and Au) and the large bandgap semiconductors AgF and AgCl. It was
shown that scalar-relativistic effects reduce the lattice constant by 0.06–0.10 Å for
the 4d metals (Pd and Ag), and by 0.14–0.22 Å for the 5d metals (Pt and Au). For
the 4d metals, scalar-relativistic effects increase the calculated bulk moduli by 20–40
GPa, while for the 5d metals this increase is between 60 GPa and 100 GPa. For both
AgF and AgCl crystals scalar-relativistic effects decrease the energy gap – by 1.0 eV
for AgF and 0.9 eV for AgCl.

The DKH approach allows relativistic all-electron DFT calculations to be per-
formed using the traditional LDA and GGA approximations, as well as meta-GGA
and hybrid density functionals. Slater-type basis sets were used in the relativistic DFT
calculations, based on the ZORA Hamiltonian and applied for heavy metals and their
surfaces [562,563].

Concluding this chapter we note that the relativistic correlated calculations of
solids are mainly made in the DFT scheme. The post-DHF methods for solids wait
their further development and implementation in computer codes for periodic systems.
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LCAO Calculations of Perfect-crystal Properties

In the next three chapters we illustrate the possibilities of LCAO methods in the
calculations of different crystalline-solid properties.

We do not discuss here the electron–phonon and isotope effects on the optical
spectra of solids. In [564, 565] these effects were studied in the framework of the
tight-binding (TB) LCAO approach for several semiconductors with diamond and
zincblende structure. The results reproduce the overall trend of the available exper-
imental data for the bandgap as a function of temperature, as well as give correctly
the mass dependence of the bandgap.

The TB approach represents a conceptual bridge between ab-initio simulations and
model-potential ones. In particular, the coupling of TB with the molecular dynamics
(MD) generates the TBMD method as a valuable tool for atomic-scale materials
modeling [566]. A description of the TB method can be found, for example, in [6,567].

In this chapter the perfect-crystal properties are considered: the analysis of chemi-
cal bonding on the basis of population analysis, the one-electron properties and prop-
erties, defined by the total energy and its derivatives and the magnetic ordering in
crystals.

In Chap. 10 we discuss the models of crystals with point defects and calculation
of their properties by LCAO methods.

In Chap. 11 the possibilities of LCAO methods in surface modeling are illustrated
by numerous results of recent LCAO calculations.

We refer the reader to the very informative review article [568], where it is possible
to find many illustrations of ab-initio simulation possibilities in the area of solid-state
chemistry, physics, materials and surface science, and catalysis. This publication is
especially useful as an introductory overview for the reader who is not acquainted
with solid-state simulation. All the examples discussed in [568] have been generated
with the CRYSTAL code and implemented by the authors and collaborators. CRYS-
TAL was the first periodic ab-initio code to be distributed to the scientific community
beginning in 1989. Now, several ab-initio LCAO codes are available to users (see Ap-
pendix C), but the CRYSTAL code remains the most user-friendly and fast-developing
code being applied now in more than 200 research groups in the world.
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9.1 Theoretical Analysis of Chemical Bonding in Crystals

9.1.1 Local Properties of Electronic Structure in LCAO HF
and DFT Methods for Crystals and Post-HF Methods for Molecules

Crystals, like molecules, are made up of atoms interacting with one another, which
gives rise to electronic-density localization along bonds (covalent solids), around
atomic nuclei (ionic crystals), or to the more complex and most widespread pat-
tern of electronic-density distribution. Considered in Chap. 4, the density matrix of
molecules and crystals in the LCAO approximation permits one to derive the local
characteristics of the electronic structure employed usually when describing chemi-
cal bonding in molecules or crystals (the electronic configuration of an atom, atomic
charges QA, atomic bond orders WAB and covalency CA, and the total and free atomic
valences). In molecular quantum chemistry such calculations are known as population
analysis. In molecular theory the local electronic-structure characteristics were intro-
duced at first for the orthogonal atomic basis used in semiempirical ZDO calculations
(see Chap. 6), with subsequent generalization to the case of a nonorthogonal basis
employed in nonempirical HF and DFT calculations [96,569,570]. The first attempts
at a theoretical determination of local electronic-structure characteristics of periodic
systems were made later: for the orthogonal basis set used in semiempirical versions of
the HF method in [571,572] and for the nonorthogonal AO basis – in [573,574]. Note
that determination of local characteristics of electronic structure by traditional meth-
ods of solid-state physics, which make use, as a rule, of the plane-wave basis, requires
special projection techniques (see Sect. 9.1.4), involving additional approximations to
calculate electronic-density-matrix elements in an atomic basis.

The local properties of the electronic structure of a periodic system are defined by
the density matrix ρ(R,R′),see (4.91); the electron position vectors R and R′ vary
within the basic domain of a crystal consisting of N primitive unit cells. For a one-
determinant wavefunction the density matrix can be expressed through Bloch-type
spin orbitals ψσ

ik(R)(σ = α, β):

ρ(R,R′) = ρα(R,R′) + ρβ(R,R′) =
∑

σ

occ∑
i

∑
k

ψσ
ik(R)ψσ∗

ik (R′) (9.1)

In the LCAO approximation

ψσ
ik(R) =

∑
µ

Cσ
iµkχµk(R) (9.2)

χµk(R) =
1√
N

∑
n

exp(ikRn)χµ(R − RA − Rn) (9.3)

where χµ(R − RA − Rn) = χAn
µ (R) is the atomic orbital centered on atom A in the

primitive unit cell with a translation vector Rn. In the basis of Bloch sums χµk(R)
the overlap matrix Sµν(k) and density matrix Pµν(k) are introduced:

Sµν(k) =
∑

n

exp(ikRn)
∫

χ∗
µ(R − RA)χν(R − RB − Rn)dR (9.4)



9.1 Theoretical Analysis of Chemical Bonding in Crystals 329

Pσ
µν(k) =

occ∑
i

Cσ∗
iµkCσ

iµk (9.5)

The expansion coefficients Cσ
iµk are calculated by solving the matrix equation of the

CO LCAO method for crystals, see (4.67):

Fσ(k)Cσ(k) = S(k)Cσ(k)Eσ(k) (9.6)

In (9.6) Fσ(k) is the matrix of the Hartree–Fock (HF) or Kohn–Sham (KS) operator.
The former operator includes a nonlocal exchange part, depending on the density
matrix ρ(R,R′), whereas the latter operator involves the electron density ρ(R) =
ρ(R,R), that is, it depends only on the diagonal elements of the density matrix, see
Chapters 4 and 7.

In view of the translational symmetry of a crystal, one can introduce density
normalization per primitive unit cell containing n electrons:

Sp(PS) =
1
N

∑
k

∑
µ

[P (k)S(k)]µµ =
∑

µ

(PS)A0,A0
µµ = n (9.7)

The Mulliken population analysis may be extended to crystalline solids [573,574,576]
giving the following definitions for an electronic population NA0 on an atom, atomic
charge QA0, bond order WA0,Bn, covalency CA0, and the total valency VA0 (A0, Bn
mean atom A in the reference unit cell and atom B in the unit cell with a translation
vector Rn):

NA0 =
∑

µ∈A0

PA0,A0
µµ +

∑
B �∈A0

RA0,B0 +
∑
n�=0

∑
B

RA0,Bn (9.8)

where the overlap population is defined as

RA0,Bn =
∑

µ∈A0

∑
ν∈Bn

PA0,Bn
µν SBn,A0

νµ (9.9)

and the atomic charge as
QA0 = ZA0 − NA0 (9.10)

In (9.10) ZA0 is the nuclear charge for the all-electron calculation or the core charge
if the pseudopotential approximation is used. The bond order and covalency are

WA0,B0 =
∑

µ∈A0

∑
ν∈Bn

[
(PS)A0,Bn

µν (PS)Bn,A0
νµ + (P sS)A0,Bn

νµ (P sS)Bn,A0
νµ

]
(9.11)

CA0 =
∑

B �=A0

WA0,B0 +
∑
n�=0

∑
Bn

WA0,Bn = 2NA0 − WA0,A0 (9.12)

In (9.11), P = Pα + P β and P s = Pα − P β . In deriving (9.12) the idempotency
relation for the density matrix in the nonorthogonal AO basis (PS)2 = 2 (PS) −
(P sS)2 was used (see (4.130). Equations 9.11 and 9.12 are applied in unrestricted HF
(UHF) or spin-polarized (SP)KS calculations. For the closed-shell case (RHF and KS
calculations) Pα = P β and P s = 0.

The definition of the total valency of the atom accounting for both the ionic (elec-
trovalence) and covalent (covalence) components of chemical bonding was suggested
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in [571] for molecular systems and extended to crystalline solids in [572]. The atomic
total valence is of the form

VA0 =
1
2

(
CA0 +

√
C2

A0 + 4Q2
A0

)
(9.13)

To study the influence of the correlation effects on the local properties of electronic-
structure DFT or post-HF methods can be used. If the KS equations are solved the
definitions (9.8)–(9.13) of local properties include the correlated density matrix and
therefore take into account the correlation effects.

We note that there are no rigorous quantum-mechanical definitions for the lo-
cal characteristics of the electronic structure. The definitions given above require the
LCAO approximation, and the numerical results depend on the choice of atomic basis.
In attempting to separate an atomic subsystem or a molecular subsystem in systems
with a strong coupling, we should refuse to describe this subsystem by using pure
states, which leads to considerable conceptual and computational problems. For ex-
ample, an atomic subsystem in a molecular system, as a rule, cannot be assigned a
certain integral number of the electrons involved (the calculated atomic electronic
population (9.8) is noninteger), which implies that this subsystem should be repre-
sented by an ensemble of states matched by different numbers of electrons. However,
an approach exists that gets around the above difficulties. This approach rests on the
analysis of reduced density matrices (as a rule, these are the first-order and second-
order matrices) of a system as a whole, and the separation of a particular subsystem
is generally based on some geometric criteria. This makes it possible to considerably
simplify computations, but leads to some arbitrariness in the choice of the definitions
for local characteristics of the electronic structure.

This arbitrariness most clearly manifests itself in going beyond the scope of the
HF approximation, as evidenced by a wide variety of definitions for molecular systems
available in the literature for valences and bond orders in the case of post-Hartree–
Fock methods for molecular systems [570,578–580]. In post-HF methods local charac-
teristics of molecular electronic structure are usually defined in terms of the first-order
density matrix and in this sense there is no conceptual difference between HF and post-
HF approaches [577]. It is convenient to introduce natural (molecular) spin orbitals
(NSOs), i.e. those that diagonalise the one-particle density matrix. The first-order
density matrix in the most general case represents some ensemble of one-electron
states described by NSOs

ρ =
2n∑
i=1

λi|ψi〉〈ψi| (9.14)

where λi are the NSO occupation numbers so that
2n∑
i=1

λi = N, λi ≥ 0 for all i =

1, 2, . . . , 2n and the characteristic feature of the HF case is that exactly N weights λi

in this expansion are equal to 1 (due to the normalization condition, the remaining
(2n−N) should be equal to 0). Here, N is the total number of electrons. In geometric
terms, this property of the HF density matrix means that it is a projector on the
subspace of occupied NSO or, equivalently, that the N -electron state is described by a
single-determinant wavefunction. In any post-HF method, based on the wavefunction
formalism, the coefficients in expansion (9.14) satisfy the representability conditions:
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0 ≤ λi ≤ 1. Some of these coefficients can be close to 1 (strongly occupied NSO) and
some close to 0 (weakly occupied NSO), but in any case the post-HF density matrix
loses its property ρ2 = ρ. Turning to the basis of natural orbitals (NOs) results in
the appearance of two spin components of the density matrix, ρα and ρβ . For RHF,
ROHF, and UHF cases, these spin components are idempotent, being projectors on
the subspace of the full MO space spanned by the occupied σ-MOs (σ = α, β). The
density operator is the Hermitian positive-semidefinite operator with a spur equal to
the number of electrons. At the same time, in general, this operator does not possess
any other specific properties such as, for example, idempontency. After the convolution
over the spin variables, the density operator breaks down into two components whose
matrix representation in the basis set of atomic orbitals (AOs) has the form

ρ̂σχµ =
n∑

ν=1

χν (PσS)νµ (9.15)

where S is the AO overlap matrix, and the matrix elements of the Pσ matrix are
related to the occupation numbers and the coefficients Cσ

iµ in the expansion of the
spatial parts of natural spin orbitals in the AO basis set through the expressions

Pσ
µν =

n∑
i=1

Cσ
iµλσ

i (Cσ
νi)

∗ (9.16)

In principle, it is not difficult to define the σ-occupancy of the atomic subspace (sub-
space spanned by AOs of atom A). To this end it is sufficient to calculate

Nσ
A = Sp [ρ̂σρ̂A] (9.17)

where ρ̂A is the projector on the subspace of atom A. This value gives us a certain
measure of immersion of atom A subspace into the subspace of σ-occupied NOs. Such
a definition, however, is not satisfactory because due to the nonorthogonality of the
AO basis the sum of occupancies will be greater than the total number of electrons.
A reasonable approach consists of turning to the so-called biorthogonal basis χ̃µ and
introducing the atomic projector as

ρ̂A =
∑
µ∈A

|χµ〉〈χ̃µ| (9.18)

where χ̃ = χS−1 and 〈χµ|χ̃µ〉 = δµν . Operator (9.18) is idempotent and Hermitian.
Let the atomic basis set be well localized on atoms (or the atomic fragments under

consideration) and be orthonormal. The unit operator can be expanded as

Î =
∑
A

ρ̂A (9.19)

This operator has a unit matrix with respect to the AO basis set and can be used as
the right identity in manipulations in AO basis. In particular,

Sp ρ̂σ =
∑
A

Sp ρ̂σρ̂A = Nσ (9.20)
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With such definitions, the total electron occupancy of atom A is calculated as

NA = Nα
A + Nβ

A =
∑

σ

Sp ρ̂σρ̂A =
∑

σ

∑
µ∈A

(PσS)µµ (9.21)

In order to determine the two-center bond order, it is reasonable to attempt to obtain
the expansion similar to (9.20), but for the squares of the density-operator compo-
nents. Unfortunately, in the general case, the spur of the density operator squared
Sp(ρ̂2) =

∑
σ

Sp(ρ̂σ)2 depends on both the AO basis set and the computational tech-

nique and can be treated as a certain characteristic of a system only with the very
large basis sets and full configuration interaction. Furthermore, even in this limiting
case, the physical meaning of the given characteristic is not quite clear. However,
instead of the σ-components of the density operator, it is possible to consider their
combinations ρ̂α+β = ρ̂α + ρ̂β and ρ̂α−β = ρ̂α − ρ̂β that are referred to as the total
electron and spin density operators, respectively, and to examine the contributions to
the squares of these operators. Both approaches are consistent with each other and
with the standard analysis within the Hartree–Fock approximation for occupied shells
when one uses the expansion of the doubled sum of the density-operator σ-components
squared∑

σ

Sp (ρ̂σ)2 =
∑

σ

∑
A,B

Sp ρ̂σρ̂Aρ̂σρ̂B =
∑

σ

∑
A,B

∑
µ∈ A

ν∈B

(PσS)µν (PσS)νµ (9.22)

The quantities
WAB = 2

∑
σ

∑
µ∈ A

ν∈B

(PσS)µν (PσS)νµ (9.23)

at B �= A can be interpreted as certain characteristics of bond A − B order. Their
sum

CA =
∑
B �=A

WA (9.24)

may be treated as the covalence of A atom. The one-center terms FA = WAA in (9.23)
are termed the free (nonrealized) valence of atom A.

The results obtained in post-HF methods for solids refer mainly to the energy of
the ground state but do not provide the correlated density matrix. The latter is calcu-
lated for solids in the one-determinant approximation. The density matrix calculated
for crystals in RHF or ROHF one-determinant methods describes the many-electron
state with the fixed total spin (zero in RHF or defined by the maximal possible spin
projection in ROHF). Meanwhile, the UHF one-determinant approximation formally
corresponds to the mixture of many-electron states with the different total spin al-
lowed for the fixed total spin projection. Therefore, one can expect that the UHF
approach partly takes into account the electron correlation. In particular, of interest
is the question to what extent UHF method may account for correlation effects on
the chemical bonding in transition-metal oxides. An answer to this question can be
obtained in the framework of the molecular-crystalline approach, proposed in [577] to
evaluate the correlation corrections in the study of chemical bonding in crystals.

Conceptually, the method is as follows. The local characteristics of a crystal elec-
tronic structure are calculated within the periodic model by the Hartree–Fock method
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to choose the molecular cluster that adequately describes the local features of the
electronic structure. In the majority of cases, the number of atoms comprising this
cluster is appreciably less than the number of atoms contained in the clusters simu-
lating one-electron states in a crystal. At the next stage of the advanced approach,
the chosen cluster is calculated in the framework of the multiconfigurational approx-
imation using the molecular programs providing the expansion of wavefunctions into
determinants. Then, by applying the UHF method to the calculations of the clus-
ter and the crystal, one can obtain the one-determinant solutions, which correspond
to the generalized valence bonds. Simple rearrangements of the multiconfigurational
cluster function permit one to explicitly separate the obtained valence bonds in its
expansion. If these valence bonds turn out to be dominant in the expansion, then,
in order to construct the many-electron function of a crystal, it is sufficient to re-
place the cluster valence bonds by the crystal valence bonds. Thus, the constructed
wavefunction explicitly includes the electron-correlation effects. By convoluting the
many-particle density matrix into two- and one-particle density matrices, it is possible
to calculate the local characteristics of chemical bonding in a crystal by the known
formulas.

In Sect. 9.1.3 we discuss the results of such an approach for application to the
Ti2O3 crystal with the open-shell configuration d1 of the Ti3+ ion. It is common
knowledge that the electron correlation can play an important role in compounds of
transition metals with an unfilled d electronic shell. The density-functional method
(LDA or GGA), which has been widely employed for these crystals, often appears to
be unsatisfactory because of an incorrect description of the self-interaction, see Chap.
7.

9.1.2 Chemical Bonding in Cyclic-cluster Model: Local Properties of
Composite Crystalline Oxides

The above formalism for calculation of local electronic-structure characteristics of
crystals was at first applied in the cyclic-cluster CNDO semiempirical calculations
[571] of composite crystalline oxides with the metal atom oxidized to various degrees.
In chemistry the oxidation state is a measure of the degree of oxidation of an atom
in a chemical compound. It is the hypothetical charge that an atom would have if
all bonds to atoms of different elements were 100% ionic. Metal oxidation states are
positive and denoted by I, II, III for oxidation states one, two, three, respectively.
It should be remembered that the oxidation state of an atom does not represent
the “real” charge on that atom: this is particularly true of high oxidation states,
where the ionization energies required to produce a multiply positive ion are far
greater than the energies available in chemical reactions. The assignment of electrons
between atoms in calculating an oxidation state is purely a formalism, albeit a useful
one for the understanding of many chemical reactions. It was shown [306] that it is
the full atomic valence (9.13) that correlates and in many cases is numerically close
to the oxidation state. Usually, composite oxides of heavy-metal atoms crystallize in
structures with low-symmetry space groups and contain many atoms in their unit cell.
Due to the large atomic (or ionic) radii of the metallic atoms these compounds have
both nontypical metal–oxygen bond lengths and atomic coordination numbers. As a
rule, the constituent heavy-metal elements exhibit a different oxidation state. The
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variable valence of the metal atoms makes the formation of oxides with a different
chemical compositions (simple, composite and miscellaneous oxides) possible. The
simple oxides contain metal atoms with constant valence (for example, Cu2O,La2O3

etc.). However in miscellaneous oxides the metal atoms of the same chemical elements
occur in the different oxidation states (for example, Fe3O4, Cu4O3). The heavy-metal
oxides may lose or acquire oxygen atoms forming a defective crystalline structure and
nonstoichiometric compounds.

Unlike light-metal oxides, the investigation of the electronic structure of crystalline
heavy-metal oxides is a difficult task because of their composite crystal structure.
Thus, it is necessary to use approximations both for the crystal-structure description
and for the choice of one-electron Hamiltonian.

It is necessary to investigate the electronic structure of defect-containing metal
oxides to understand their physical and chemical properties. However, the first step
of such an investigation is connected with the calculation of the electronic structure
of perfect nondefective crystal. The analysis of ionic and covalent components of the
chemical bonding in perfect crystal allows one to propose realistic models describing
the defects in these compounds.

The calculations of local properties of metal-oxide electronic structure [571, 581–
583] were made in the cyclic-cluster model, in the CNDO approximation. As in the
CNDO approximation AOs are supposed to be orthogonalized by the Löwdin proce-
dure (see Chap. 6), the definitions of local properties given in Sect. 9.1.1 for nonorthog-
onal basis, have to be modified. In particular, the overlap population (9.9) becomes
zero in the CNDO approximation, so that the electronic population is defined only
by diagonal density matrix elements PA0,A0

µµ . In (9.6) and in the bond-order definition
(9.11) the overlap matrix has to be replaced by an identity matrix. The matrix ele-
ments of the cyclic-cluster Hamiltonian are given by (6.61),(6.62) and depend on the
semiempirical one-center parameters βM , Uµµ, γMM and two-center Coulomb integrals
γMN . The one-center parameters for the light elements with s and p valence electrons
have been taken from [584], where these parameters were calibrated for molecular cal-
culations. The one-center parameters for copper, lead, nickel and lanthanum atoms
were calibrated so that the results of the electronic-structure calculations correlate
well with the experimental data for the simple oxides of these elements. The Coulomb
integrals γMN were estimated from the one-center γMM and γNN Coulomb integrals
using Ohno’s approximation [239]. The numerical values of the bonding parameters
βMN are connected with the choice of the atomic basis functions. As the double-
dzeta atomic functions of the neutral atoms were used the bonding parameters βM

for the light elements were recalibrated as their values in [584] correspond to Slater
single-dzeta atomic functions. The bonding parameter βMN was taken to be equal
to

√
βMMβNN as is done in many molecular calculations. The numerical values of

CNDO parameters of atoms are given in Table 9.1. The details of their choice for ac-
tual atoms can be found in [571]. The crystal structures of the considered composite
metal oxides are given in Table 9.2 (the references to the corresponding experimental
data can be found in [571]). The calculated atomic charges and full atomic valencies
are given in Table 9.3 for nonequivalent (not connected by the symmetry transfor-
mations) atoms, both with variable valence (Cu,Pb,Ni) and constant valence (oxygen
and metal atoms Me in different oxidation states).
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Table 9.1. CNDO semiempirical parameters of atoms used in crystalline metal oxides cal-
culations (in eV)

Element γMM Uss Upp Udd βM

Li 3.47 –4.99 –1.8
O 13.63 –101.31 –84.287 –17.0
K 3.70 –4.15 –1.8
Cu 17.20 –162.23 –171.46 –8.4,–14.6
Sr 3.75 –9.43 –1.8
Y 8.50 –20.80 –22.80 –5.8
Ba 4.20 –10.30 –1.8
La 7.30 –15.08 –19.08 –5.0
Pb 4.30 –26.30 –21.500 –7.7
Ni 17.00 –140.90 –149.00 –5.0,–10.0

For comparison the crystallographic valencies in copper–oxide compounds, calcu-
lated for the experimental bond lengths, are given in brackets.

The crystallographic valence (CV) of the ith atom in a crystal is defined as the
sum

Ṽi =
∑

j

Bij (9.25)

where the summation is performed over all the atoms with charge opposite in sign to
that of the ith atom and Bij is the so-called bond valence of the ith and jth atoms. It
has been found that in acid–base networks the bond valence Bij correlates well with
the bond length Rij and can be approximated by the inverse power or logarithmic
function,

Bij = (Rij/R0)
−N (9.26)

Bij = exp
[
−Rij − R0

B

]
(9.27)

The fitted constants N, R0 and B depend only on the nature of the bonded atoms
(i, j) and are given in the literature [585, 586] or may be calculated by the computer
code VALENCE [587] designed to calculate bond valences from bond lengths and
vice versa. This code allows also calculation of bond–valence sums and average bond
lengths, and can determine bond–valence parameters from the bonding environments
of different cations.

The numerical values of parameters N, R0 and B are usually found by fitting the
crystallographic valence Ṽi to the mean value of the stoichiometric atomic valence in
the row of the simplest crystals containing the ith atom. One has to be careful in
interpreting the bond-valence sums. The drawbacks of the CV definition are evident:

1. only the central part of the typical valence–bond length curve may be approxi-
mated by (9.26) and (9.27);

2. the real interaction between two atoms in a crystal depends not only on the
interatomic distance between atoms, but also on the covalent or ionic character of
the formed chemical bonding (in some cases this is taken into account by introducing
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Table 9.2. The crystal structure of metal oxides (Z is the number of formula units in the
unit cell)

Compound Space group Z Cu,Pb,Ni Me O

Cu2O Pm3m 2 4b 2a

YCuO2 R3m 3 3a 3b 6c

LaCuO2 R3m 3 3a 3b 6c

CuO C2/c 4 4c 4e

NiO R3m 3 3a 3b

Cu4O3 I41/adm 4 8c,8d 4a,8e

Li2CuO2 Immm 2 2b 4j 4i

SrCuO2 Cmcm 4 4c 4c 4c,4c

Sr2CuO3 Immm 2 2d 4f 2a,4f

MgCu2O3 Pmmm 2 4e 2a 2b,4e

Y2Cu2O5 Pn21a 4 4a,4a 4a,4a 4a,4a,4a,4a,4a

NaCuO2 P1 1 1a 1h 2i

KCuO2 Cmcm 4 4c 4c 8f

LaCuO3 R3c 6 6b 6a 18e

La2O3 P3m1 3 6d 3a,6d

La2CuO4 orth
La2NiO4 orth

Cmca 4 4a 8f 8e,8f

La2CuO4 tetr
La2NiO4 tetr

I4/mmm 1 1a 2e 2c,2e

YBa2Cu3O6 P4/mmm 1 1a,2g
Y:1d
Ba:2h

4i,2g

YBa2Cu3O7 Pmmm 1 1a,2q
Y:1h
Ba:2t

1e,2s,2r,2q

α-PbO P4/mnm 2 2c 2a

β-PbO Pbcm 4 4d 4d

α-PbO2 Pbcn 2 4c 8d

β-PbO2 P4/mnm 4 2a 4f

Pb2O3 P21/a 4 4e,4e 4e,4e,4e

Pb3O4 P42/mbc 4 4d,8h 8g,8h

additionally the dependence of the fitting parameters on the oxidation states of bonded
atoms).

Nevertheless, the crystallographic valence has a number of practical applications,
in particular in the determination of crystal structures or identifying elements that
cannot be distinguished by X-ray diffraction. The fiiting parameters values for CV
given in Table 9.3 were taken from [588].

It can be seen that the CVs of atoms correlate on the whole with their full atomic
valence V and oxidation state in the compounds considered. However, the dispersion
of CV values is large for an atom with the same oxidation state in different crystals.
For example, the CV of the oxygen atom appears to be in the interval 1.5 to 2.6.
The CV approach was used by some authors to find the copper oxidation states in
high-temperature superconductors [585]. However, as a rule, these compounds have



9.1 Theoretical Analysis of Chemical Bonding in Crystals 337

Table 9.3. Atomic charges and full atomic valencies in crystalline metal oxides*

Crystal Atomic charges Full atomic valencies

Cu, Pb, Ni O1 O2 Me Cu, Pb, Ni O1 O2 Me

Cu2O 0.97 –1.94 1.03 2.00
(1.29) (2.58)

YCuO2 0.99 –1.59 2.18 1.08 2.03 3.06
LaCuO2 0.97 –1.73 2.49 1.02 2.01 3.03

(1.25) (2.16) (3.07)
CuO 1.60 –1.60 2.18 2.01

(2.04) (2.04)
NiO 1.87 –1.87 2.00 2.00
Cu4O3 0.96 1.57 –1.72 –1.56 1.02 2.11 2.00 2.01

(1.25) (1.99) (2.15) (2.17)
Li2CuO2 1.43 –1.71 0.99 1.92 1.99 1.00

(1.84) (1.99)
SrCuO2 1.43 –1.60 –1.74 1.90 1.98 1.99 2.00 1.99

(2.01) (2.08) (1.80) (1.87)
Sr2CuO3 1.38 –1.84 1.99 1.81 1.99 1.97 2.00

(1.90) (1.82) (2.16) (1.96)
MgCu2O3 1.31 –1.49 1.98 1.72 2.01 1.98 2.00

Y2Cu2O5 1.59 1.67 –1.20 –1.32 1.68 2.25 2.29 2.09 2.06 3.13
–1.58 –1.32 1.67 2.02 2.06 3.14
–1.18 2.10

NaCuO2 1.89 –1.44 0.99 2.56 2.01 1.00
(2.52) (1.91) (1.29)

KCuO2 2.08 –1.54 0.99 2.73 2.00 1.00
(2.50) (1.73) (0.95)

LaCuO3 2.19 –1.54 2.45 2.82 2.02 3.02
(2.96) (1.90) (2.75)

La2O3 –1.68, –1.60 2.43 2.01 2.03 3.03

La2CuO4 orth 1.56 –1.52,–1.54 2.28 2.18 2.00 1.98 3.01
(2.38) (2.19) (1.67) (2.67)

La2NiO4 orth 1.86 –1.76,–1.65 2.45 2.01 2.00 3.00

La2CuO4 tetr 1.70 –1.61,–1.63 2.39 2.38 2.01 1.98 3.00
(2.45) (2.28) (1.46) (2.52)

La2NiO4 tetr 1.88 –1.76,–1.67 2.48 2.01 2.00 3.00

YBa2Cu3O6

Cu–O chains 0.97 –1.97 Y:2.44 1.00 2.00 3.03
(1.42) (1.94) (2.89)

Cu–O planes 1.57 –1.65 2.12 2.01
(2.12) (2.13)

YBa2Cu3O7

Cu–O chains 2.04 –1.78,–1.64 Y:2.44 2.66 1.99 1.97 3.03
(2.21) (1.87) (2.00) (2.80)

Cu–O planes 1.52 –1.74,–1.51 2.06 2.01 1.99
(2.13) (2.03) (2.03)

to be continued
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Crystal Atomic charges Full atomic valencies

Cu, Pb, Ni O1 O2 Me Cu, Pb, Ni O1 O2 Me

α -PbO 0.91 –0.91 2.38 2.21
β -PbO 0.88 –0.88 2.41 2.21
α -PbO2 2.78 –1.39 3.95 2.04
β -PbO2 2.80 –1.40 3.95 2.05

Pb2O3 0.94 2.80 –1.11,–1.24 2.32 3.94 2.11 2.07
–1.38 2.06

Pb3O4 0.74 3.09 –1.05,–1.24 2.34 3.97 2.10 2.09
∗Cu, Pb, Ni – atoms with variable valence; oxygen and Me (I,II,III) – atoms with
constant valence; crystallographic atomic valencies are given in brackets.

nonstoichiometric composition, which introduces some uncertainty into their crystal-
structure interpretation.

The experimental Cu–O distance in the orthorhombic modification of La2CuO4,
see Fig. 2.13, is larger than in the tetragonal one. The corresponding CV of copper is
less in the orthorhombic modification. This tendency is reproduced by the calculated
full valence values. However, in both La2CuO4 modifications the copper CV values are
larger than two (stoichiometric value) while the full valences are closer to this value.
The crystal valence of copper atoms also changes when the oxygen vacancies concen-
trate on the 01 site (oxygen in chains) in YBa2Cu3O7, (see Fig. 2.15), and change
the composition to YBa2Cu3O6, and symmetry from orthorhombic to tetragonal. In
YBa2Cu3O7 both Cul copper atoms in chains and Cu2 copper atoms in planes have
CV values larger than that in CuO crystal (see Table 9.3) and the CV of the Cul atom
is somewhat larger. The absence of oxygens on the Ol site destroys the chain structure
of Cul atoms that become linearly coordinated by two oxygen atoms in YBa2Cu3O6,
and have a CV value close to that of Cu I copper. The five-coordinated Cu2 atom has
a crystal valence close to that of Cu II (see Table 9.3). The calculation of not only the
full valencies but also other local properties of electronic structure gives more detailed
information about the chemical bonding in crystals of metal oxides.

As is seen from Table 9.3, the copper atomic charge QCu is close to +1 in the
Cu I oxide compounds. This means that the Cu I–O bonding is essentially ionic. The
calculated 4s population of copper atoms appears to be near zero so that the copper
atomic configuration in Cu I oxide crystals is close to 3d10. The results for Cu II-
containing copper oxide compounds indicate that Cu II–O bonding is more covalent
compared to Cu I–O bonding; the copper atomic charge in Cu II oxide compounds
lies between 1.38 and 1.70 so that the copper atomic configuration appears to be
between 3d9.6 and 3d9.3. The Cu III atomic charge is close to +2 (see Table 9.3);
calculated atomic populations correspond to a 3d9 configuration. Thus, there are no
Cu3+ ions in cuprates, although these compounds do contain Cu III atoms, which
lose two electrons to form an ionic bond with oxygen and supply one electron to form
the covalent bonds. Calculated atomic charges on alkali and alkali-earth metal atoms
(Me) are close to the number of their valence electrons, so that these metal atoms
are present as Me+ and Me2+ ions, respectively. As shown in Table 9.3 the calculated
charge of the rare-earth atoms Y and La are close to +3.
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In Table 9.3 the results suggest that the absolute value of the atomic charge in
plumbic oxides PbO2 are larger than those in plumbous oxides PbO. However, all the
lead–oxygen crystals are very far from purely ionic compounds.

The nonequivalent metal atoms in the miscellaneous oxides Cu4O3, Pb2O3, Pb3O4

have different atomic charges, and the charge values are close to those in either higher
(CuO, PbO2) or lower (Cu2O, PbO) oxides.

We see that the calculated atomic-charge values agree qualitatively with those
expected from the chemical point of view. On the other hand, the electronic-charge
distribution calculated by other approaches (more traditional for solid-state physics)
appears to be unrealistic: for example, it was found in an LAPW calculation of the
Cu2O crystal [589] that the atomic charges (estimated by the density integration inside
the atomic spheres) are positive for both atoms: QCu = 2.05 and QO = 0.40. LCAO
calculations of the electron density and direct integration over a spherical region near
atomic cores [590] also do not allow one to distinguish the atomic charges on atoms
with different oxidation states (the numerical values for the copper atomic charge
in Cu2O and CuO crystals are practically the same :+0.58 and +0.48, respectively).
These examples demonstrate the advantage of quantum-chemical LCAO calculations
of the local electronic-structure properties to describe reasonably both the valence and
charge states of metal atoms in crystals. This conclusion is important for the study of
new complicated crystalline structures, synthesized experimentally. As an example,
we refer to the high-Tc superconductors. It is well known that a small variation of the
composition or the way in which the material is prepared may essentially change the
superconducting properties. Evidently this is connected with a change of the electronic
structure of the superconductor.

In [582] the comparative theoretical analysis of chemical bonding was made in
two pairs of copper oxide compounds : (a) orthorhombic and tetragonal modifications
of La2CuO4 (the latter modification has a structure similar to that of the super-
conductor La2−x, SrxCuO4) and (b) nonsuperconducting tetragonal YBa2Cu3O6 and
superconducting orthorhombic YBa2Cu3O7 crystals. In accordance with the results of
previous band-structure calculation, it was found that La2CuO4, and YBa2Cu3O7 are
metallic with small values of the density of states at the Fermi level, but YBa2Cu3O6

is a semiconductor with a forbidden energy gap of 2.5 eV. It was also found that the
density of states for the YBa2Cu3O7 crystal contains 3d Cu I (copper in chains) peak
around 13 eV below Fermi level, but in the case of YBa2Cu3O6 this peak was absent.
An analysis of chemical bonding in high-Tc superconductors and related nonsuper-
conductor crystals shows changes that take place in the local electronic structure of
these substances. As seen in Table 9.3 the charge distribution around the copper atom
in the orthorhombic modification of the La2CuO4 crystal is practically the same as in
the CuO crystal. Contrary to this, in the tetragonal modification of La2CuO4 the cop-
per atomic valence exceeds the ordinary Cu II valence in copper oxide compounds.
The calculated atomic charge on the copper atoms in La2CuO4 crystals correlates
well with that from it ab-initio Hartree–Fock cluster calculation (1.79e) [591]. If
we consider the following defect-formation process, the substitution of La III by Sr
II atoms, or the addition of oxygen atoms (for example, La2CuO4.13 compound ex-
ists) it still further increases the copper valence in La2CuO4. A comparison of the
atomic charges and bond orders in YBa2Cu3O6 and YBa2Cu3O7 crystals shows that
electron-density distributions are practically identical in Cu–O planes, see Table 9.3.
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The main changes in the chemical bonding take place in Cu–O chains. The results in
Table 9.3 show that the charge state of Cu I atoms (in Cu–O chains) in YBa2Cu3O6

crystal is close to the state of copper atoms in Cu I oxides, but that in YBa2Cu3O7

they are close to copper atoms in Cu III oxides.
The analysis of calculated bond orders shows that there is no peroxide bonding in

copper oxygen superconducting materials. It was also shown by atom–atom potential
modeling that even additional oxygen atoms in La2CuO4+x do not cause the formation
of peroxide bonds.

One of the questions to be considered is the role of the tetragonal–orthorhombic
transition in superconductor materials. To analyze the changes in the electronic struc-
ture that are connected with the tetragonal–orthorhombic transition the YBa2Cu3O7

crystal with an oxygen vacancy was considered. The composition of this phase is
YBa2Cu3O6, but the lattice parameters and space symmetry are the same as those in
the YBa2Cu3O7 crystal. It was found [571] that differences in atomic charges between
perfect YBa2Cu3O6 and orthorhombic YBa2Cu3O6 do not exceed 0.05. These results
show the strong correlation between Cu III (though not Cu3+) atoms presence and
high-Tc superconductivity in copper oxides.

The correlating bonding and structure in Cu II and Ni II mixed oxides is a matter
of high interest. The comparative study of the chemical bonding in NiO–CuO and
La2NiO4–La2CuO4 crystals was made in [582, 583]. NiO crystals were calculated in
rhombohedral structure, corresponding to nonmetallic antiferromagenetic phase of
this crystal. Analysis of local properties of electronic structure of crystals containing
a Ni II–O bond with those containing Cu II–O bond, allows us to conclude that the
former is more ionic than the latter (see Table 9.3). The increase of ionicity degree in
the Ni II–O bonding with respect to Cu II–O bonding is understood in terms of the
mutual position of the oxygen 2p and metal 3d subbands that lie nearly in the same
energy interval for Cu, whereas the 3d Ni subband lies approximatively 2 eV above
the center of gravity of the oxygen 2p level.

The ionic part of the Ni II–O bonding is the same for NiO and La2NiO4 (see Table
9.3). As regards the Cu II–O bonding, the data obtained for La2CuO4 as compared
to CuO and other Cu II mixed oxides such as Sr2CuO3, Sr2CuO2, Li2CuO2, atomic
charges that are found in the range 1.4 to 1.6, point to a rather high ionic part
of the Cu II–O bonding. Comparing the full atomic valence for Ni II and Cu II
(Table 9.3) evidences a striking feature: the quantum-chemical value of the valence fits
perfectly the formal oxidation state of Ni, namely (II), whereas for Cu, the quantum-
chemical valence is larger than the oxidation state, with an enhancement for La2CuO4,
(VCu = 2.38). Such a data is likely to depend on an increase of the covalence of the
Cu II–O bonding, as compared to the corresponding Ni II–O bonding.

As regards the problem of the true meaning of the (II) valence in tetragonal
La2NiO4, quantum-chemical data cannot be considered as contradictory to the occur-
rence of some Ni II–Ni III oxidation coupled with the presence of interstitial oxygen,
which is rather usual for air-prepared polycrystalline La2NiO4.

From the data of Table 9.3, one can get an insight into the anisotropy of the M
II–O bonding in La2MO4, i.e. the electronic anisotropy in the MO6 octahedra (see
Fig. 2.13), in terms of the two following features:

(i) The Ni II–O bonding in La2NiO4 does not exhibit any significant anisotropic
trend: the covalence is rather low and equally distributed in the equatorial plane and
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the apical direction. Consequently, the nature of the Ni II–O bonding in the NiO6

octahedra is nearly unchanged when going from the binary oxide NiO to the composite
oxide La2NiO4.

(ii) The increase of the covalent bond order of the Cu II–O bonding, as compared
to the Ni II–O one, concerns the Cu II–O inplane bonds: such Cu–O equatorial bonds
are very similar to the Cu II–O bonding in the binary oxide CuO. Conversely, the
Cu–O apical bonds are slightly covalent and look like the corresponding Ni–O apical
bonds in the NiO6 octahedra of La2NiO4 and NiO, as well. The strong ionic character
of the Cu–O apical bonds in La2CuO4 results in an unusual overall increase of the
atomic charge of Cu (Table 9.3), when compared to CuO and other Cu II mixed
oxides. The absence of any significant anisotropic covalent effect of the Ni–O bonding
in La2NiO4 found in calculations, fully agrees with the conclusions of magnetization
density studies, which point to an equal population of dx2−y2 and dz2 orbitals and
no significant covalence in the M–O plane [592]. Moreover, as also stated in [592],
the covalent effect to be found in the apical direction of the octahedra is likely to be
due not to Ni II but to La III, in terms of a “hybridization between the La 5d and
O 2p bands”. This is consistent with the lowering of the atomic charge of the apical
oxygen, as compared to the equatorial one, modeled in La2NiO4 (Table 9.3); such a
lowering cannot depend on an increase of the covalent effect of the Ni II–O bonding
in the apical direction, but more likely it can be ascribed to the covalent character of
the La III–O bonding (Table 9.3).

From the main differences in the Ni II–O and Cu II–O bonding emphasized above,
it is possible to clear up the problem of the actual nature of the anisotropic effects in
the Ni II and Cu II octahedral oxygen coordination in La2MO4 oxides (M = Cu, Ni),
namely to appreciate the mutual electronic and geometric or steric contributions. In
this respect, Ni II and Cu II behave in a completely different way:

(i) The electronic contribution to the overall anisotropy of the NiO6 octahedra
in La2NiO4 is nearly absent (4Ni − Oeq: 1.934 Å, 2Ni − Oap: 2.243 Å) [593]). This
means that the tetragonal distortion of the NiO6 octahedra largely depends on steric
effects originating in the impossibility to match properly the usual La–O and Ni–O
bond lengths: 2.57 and 2.06 Å, respectively, when building the structure of La2NiO4,
as proposed in [594].

(ii) The electronic contribution of Cu II in terms of a significant covalent effect of
the Cu II–O inplane bonding, results in a cooperative shortening/lengthening of the
Cu−Oeq and Cu−Oap, bonds, respectively: 4 Cu−Oeq : 1.904 Å, 2 Cu−Oap: 2.397
Å. The enhancement of the tetragonal distortion of the CuO6 octahedra results from
adding the electronic contribution of Cu II to the typical steric effect of the La2CuO4.

Finally, the quantum-chemical data, as used to compare the anisotropy of the M
II–O bonding in the M II octahedral oxygen coordination of La2MO4 oxides (M =
Ni, Cu), allow the following two features to be emphasized:

(i) The so–called Jahn–Teller effect of the d9 Cu II must be understood in terms of
an anisotropy of bonding, namely a strong covalent character of the Cu II–O inplane
bonding that no longer exists in the Cu II–O apical bonding. Such an anisotropic
covalent bonding character cannot be found in the high-spin d8 Ni II: as a consequence,
the occurrence of a distortion of the NiO6 octahedra is related to the steric effects of
the geometric structure in question: the rocksalt structure of NiO permits only a very
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slight distortion of the octahedra, as the structure of La2NiO4 results in significant
steric constraints on the octahedra.

(ii) The overall anisotropy of the MO6 octahedra in the La2MO4 oxides (M = Ni,
Cu) cannot be fully understood in terms of the typical M II–O bonding properties. The
role of La III–O bonding can be held as crucial in enhancing the covalent character of
the apical oxygen and consequently increasing the tetragonal distortion of the MO6

octahedra. This is clear from the data obtained for La2NiO4.
Thus, anisotropy of the NiO6 octahedra can be assumed to originate from geomet-

ric contributions. Conversely, the anisotropy of the Cu II–O bonding, in terms of a
significant covalency of the Cu II–O inplane bonding, is unambiguously settled. More
generally, each increase of the covalency effect of inplane bonding in MO6 octahedra,
results in a corresponding lengthening of the apical M–O bonding. Such an effect,
which was previously well evidenced for the anisotropic electronic configurations of
some so-called exotic cations such as low-spin Ni3+ or low-spin Cu3+ is presently
being investigated in Ni I–O and Cu I –O bonding of the structures of the reduced
phases LaNiO2 and LaSrNiO3 [595].

The use of local electronic-structure properties conception in the chemical-bonding
analysis was demonstrated also in ab-initio calculations of crystalline metal oxides,
discussed in the next section using the example of titanium oxides.

9.1.3 Chemical Bonding in Titanium Oxides: Periodic
and Molecular-crystalline Approaches

As demonstrated above by the results of semiempirical calculations of metal oxides,
the full valence of the metal atom, defined according to (9.13), correlates with the
metal oxidation state. Such a conclusion was confirmed later in ab-initio HF calcula-
tions [574] of titanium oxides. Although the quadrivalent state (oxidation state IV) of
the titanium atom is the most stable, the existence of oxygen compounds of titanium
in formal oxidation states of III and II, as well as of a series of nonstoichiometric
compounds was established. Table 9.4 presents the space-group symbol, the number
of formula units in the cell, and the shortest Ti–Ti and Ti–O experimental distances
for TiO in hexagonal structure, Ti2O3 in corundum structure and TiO2 (in the rutile
(r), anatase (a), and brookite (b) modifications).

Table 9.4. Crystal structure of titanium oxides: space group, number of formula units per
cell Z, and nearest interatomic distances (in Å)

Structure
data

TiO(hex) Ti2O3 TiO2(r) TiO2(a) TiO2(b)

Group P6m2 R3c P42/mnm I41/amd Pbca

Z 2 2 2 2 8

RTi−Ti 3.03 2.58 3.00 3.10 2.95
3.24 2.99 3.55 3.76 3.06

RTi−O 2.38 2.02 1.95 1.94 1.86
3.86 2.07 1.97 1.99 1.92
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The titanium oxides are of considerable technological interest, so different theo-
retical studies of electronic and atomic structure and properties have been performed
both for TiO2 [100,323,596,597] and Ti2O3 [598,599] crystals. We are not aware of the
existence of the electronic-structure calculations of TiO. The available publications
focus attention primarily on description of the band structure and phase stability of
titanium oxides and restrict the discussion of the nature of chemical bonding in these
compounds to an analysis of Mulliken atomic charges and overlap populations.

The chemical bonding in titanium oxides was studied in more detail in [574, 575,
577, 600]. The calculations are made by HF-LCAO and DFT-LCAO methods, incor-
porated in the computer code CRYSTAL [23]. The core electrons of Ti and O atoms
are described by Durand–Barthelat [484] pseudopotentials and the atomic basis sets
were taken from [323], where the outer exponents of the Gaussians were fitted to
reproduce the parameters of rutile structure. For the structural parameters those cal-
culated in [323, 598] were taken. The sufficiently good accuracy of the calculations
was ensured by the following choice of input computational parameters: 1. The good-
quality set of the threshold parameters controlling the accuracy of the bielectronic
series in RHF and UHF calculations (10−6, 10−6, 10−6, 10−6, 10−12). 2. The reason-
ably accurate tolerances controlling the DFT calculations of density, potential, and
grid weight (10−9, 10−9, 10−14). 3. The values 10−6 and 10−5 a.u. for the convergence
thresholds of eigenvalues and total energy, respectively. 4. For the sampling k-point
net of the integration in the reciprocal space Monkhorst–Pack set with shrinking
factors s1 = s2 = s3 = 6 was used.

Table 9.5 presents local electronic-structure characteristics of the titanium oxides
obtained by the RHF method, namely, the Ti d-orbital populations Pd and atom
charges QTi, as well as the atomic valences VA. Also given are the local characteristics
calculated in a nonorthogonal atomic basis and a basis orthogonalized according to
Löwdin. As follows from a comparison of the results obtained from population analyses
by Mulliken and Löwdin, the Löwdin analysis shows the chemical bonding in the
crystals under study to be largely covalent, with the total valences of the titanium
and oxygen atoms differing substantially from the expected stoichiometric values.

Table 9.5. Local electronic-structure characteristics of titanium oxides in the restricted
Hartree–Fock method

Crystal Mulliken Löwdin

Pd QTi VTi VO Pd QTi VTi VO

TiO(hex) 2.38 1.62 2.14 2.04 2.70 1.27 2.30 2.15
Ti2O3 1.82 2.26 3.61 2.05 2.50 1.43 3.98 2.30
TiO2(r) 1.46 2.66 3.94 2.08 2.18 1.73 4.18 2.36
TiO2(a) 1.47 2.65 3.98 2.08 2.19 1.72 4.23 2.36
TiO2(b) 1.49 2.63 3.97 2.09 2.21 1.70 4.23 2.38

It was shown [602] that the calculations made using a valence-atomic basis without
polarizing functions in the Löwdin population analysis agree better with the expected
values of atomic valencies. The population analysis by Mulliken made in a nonorthog-
onal basis was found to be less sensitive to the inclusion of polarizing functions into the
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calculation. The results obtained with the restricted and unrestricted HF methods for
TiO2 in formal titanium configuration d0 do not differ practically from one another.
The results of a calculation of the local properties of the three TiO2 modifications
show them to be only weakly sensitive to structural changes.

Table 9.6. Local properties of chemical bonding in titanium oxide crystals in the restricted
and unrestricted HF methods: titanium d-orbital populations Pd, atomic charges QA, cova-
lencies CA, atomic valences VA, and bond-orders WAB for nearest-neighbor atoms*

Local
properties

TiO (hex) Ti2O3 TiO2(r)

RHF UHF RHF UHF RHF

Pd 2.38 2.34 1.82 1.77 1.46
QTi 1.63 1.67 2.26 2.32 2.66
CTi 0.90 0.69 2.19 1.23 2.15
VTi 2.14 2.05 3.61 3.01 3.94
QO –1.63 –1.67 –1.51 –1.55 –1.33
CO 0.74 0.66 0.94 0.88 1.24
VO 2.04 2.03 2.05 2.05 2.08

WTi−Ti 0.03 0.01 0.89 0.03 0.01
0.00 0.00 0.00 0.01 0.01

WTi−O 0.11 0.10 0.20 0.19 0.36
0.00 0.00 0.21 0.19 0.30

*For the TiO2 crystal, the RHF and UHF results coincide.

As seen from Table 9.6 the largest difference between the calculations made in
the RHF and UHF approximations was found for Ti2O3 in corundum structure, see
Fig. 2.19, with a formal titanium atom configuration d1, where one can expect sub-
stantial spin-polarization and correlation effects. In the Ti2O3 case the RHF method
predicts a high bond order between titanium atoms, which, in its turn, results in an
overestimated titanium valence. This pattern of chemical bonding is not borne out
by experiments. As follows from Table 9.6, an increase in the degree of Ti oxidation
from II to IV gives rise to an increase in the charge on the titanium atom, but the
relative ionicity and the absolute value of the charge on the oxygen atom decrease.
UHF calculations show that, in all the above insulator oxygen compounds of titanium,
there is no strong covalent interaction among the Ti atoms.

An appreciable role in transition-metal compounds is played by electron-correlation
effects, which may be taken into account in periodic DFT calculations or within the
framework of multiconfigurational methods employing the cluster model of the crys-
tal. In particular, of interest is the question to what extent the single-determinant
UHF method (applied in the periodic LCAO calculations of solids) may account for
the correlation effects. In the general case only a qualitative answer to this question
is possible. The comparison of the whole set of local properties for rutile TiO2 and
corundum Ti2O3 structures as seen from results of calculations [575,577,600] demon-
strates the different role of correlation effects on the chemical bonding in these two
solids. In Tables 9.7 and 9.8 results are given for RHF, UHF, KS (Kohn–Sham Hamil-



9.1 Theoretical Analysis of Chemical Bonding in Crystals 345

tonian with BLYP exchange-correlation functional – nonspin-polarized) and KSS (the
same KS Hamiltonian with inclusion of spin polarization). Also given are results for
hybrid spinless and spin-dependent schemes using HF exchange and LYP correlation
in the Hamiltonian (HB and HBS, respectively).

As follows from the results of the calculations, the effects of electronic correlation
on local properties of the electronic structure of two crystals under consideration have
both similarities and differences. Their explanation can be given if the peculiarities
of the structure are taken into account. In both crystals the essentially covalent Ti–

Table 9.7. DFT and HF results for rutile TiO2 crystal (Mulliken population analysis)

Method E (a.u.) QA CA VA WTi−O1 WTi−O2

RHF –69.776 2.66 2.15 3.94 0.36 0.30
–1.33 1.24 2.08

UHF
SZ = 0 –69.776 2.66 2.15 3.94 0.36 0.30

–1.33 1.24 2.08
SZ = 1 –69.491 2.80 1.99 3.97 0.32 0.26

–1.40 1.11 2.07

KS (BLYP) –71.348 1.88 3.18 4.06 0.50 0.43
–0.94 1.85 2.25

KSS (BLYP)
SZ = 0 –71.351 1.88 3.18 4.06 0.50 0.43

–0.94 1.85 2.24
SZ = 1 –71.481 2.24 2.73 3.99 0.43 0.39

–1.12 1.60 2.17

HB (LYP) –70.834 2.64 2.17 3.94 0.36 0.30
–1.32 1.25 2.09

HBS (LYP)
SZ = 0 –70.834 2.64 2.17 3.94 0.36 0.30

–1.32 1.25 2.09
SZ = 1 –70.554 2.80 1.99 3.97 0.32 0.27

–1.40 1.11 2.07

O interaction takes place as the two spheres of the Ti atom’s nearest neighbors are
formed by oxygen atoms: 1. In TiO2 the Ti atom is surrounded by four oxygens at
1.95 Å and the next two oxygens at 1.97 Å i.e. oxygens form a distorted octahedron,
see Fig. 2.11. 2. In Ti2O3 crystal six oxygens are grouped into two triangles (with
close Ti-O distance 2.02 and 2.07 Å, respectively), see Fig. 9.1. The Ti–Ti atoms’
configuration in two crystals is different: 1. In TiO2 crystal there are two Ti atoms
at distance 2.99 Å as a third neighbor of the Ti atom. In Ti2O3 crystal each Ti atom
interacts with only one Ti atom at the distance 2.58 Å, being smaller than that in TiO2

crystal. The results, given in Tables 9.7 and 9.8, may be explained when only the three
first neighbors of the Ti atom are considered (from the analysis of calculated bond
orders, it follows that the interactions with more distant atoms are sufficiently weak).
From Tables 9.7 and 9.8 it is seen that both HF and KS calculations demonstrate the
essential role of covalence in both crystals due to Ti–O interactions. When comparing
atomic charges QTi for the same calculational scheme, one finds that the Ti–O bonding
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Table 9.8. DFT and HF results for Ti2O3 crystal in corundum structure (Mulliken popu-
lation analysis)

Method E (a.u.) QA CA VA WTi−Ti WTi−O1 WTi−O2

RHF -108.029 2.26 2.20 3.61 0.87 0.20 0.21
–1.51 0.94 2.05

UHF
SZ = 0 –108.362 2.32 1.23 3.01 0.03 0.19 0.19

–1.54 0.88 2.05
SZ = 1 –107.902 2.24 2.37 3.72 0.49 0.20 0.20

–1.49 0.96 2.05

KS (BLYP) –110.682 1.65 3.47 4.13 0.34 0.35 0.30
–1.10 1.63 2.18

KSS (BLYP)
SZ = 0 –110.702 1.69 3.11 3.85 0.10 0.33 0.30

–1.13 1.60 2.18
SZ = 1 –110.744 1.68 3.04 3.79 0.19 0.33 0.28

–1.12 1.56 2.15

HB (LYP) –109.672 2.24 2.22 3.61 0.86 0.20 0.21
–1.50 0.96 2.05

HBS (LYP)
SZ = 0 –110.027 2.31 1.25 3.01 0.03 0.19 0.20

–1.54 0.90 2.05
SZ = 1 –109.588 2.24 2.41 3.74 0.51 0.20 0.20

–1.49 0.97 2.05

in TiO2 crystal is partly more ionic. For TiO2 crystal the Ti–Ti interaction is weak
(the corresponding bond orders WTi−Ti are in the range of values 0.01–0.02 for all
calculation schemes and are not given in Table 9.7). For Ti2O3 crystal the results
of calculations depend on the spin correlation: 1. In the RHF method bond order
WTi−Ti appears to be large (0.87) and does not practically change in hybrid HF-KS
calculations (HB) without spin; 2. For spin projection Sz = 0 (antiferromagnetic case),
WTi−Ti is close to zero in UHF, KSS, and HBS calculations, which means that spin-
correlation effects are mainly important when the Ti–Ti interaction is considered;
3. For spin projection Sz = 1 (ferromagnetic case), not only spin correlation but
also the Coulomb one influences WTi−Ti: UHF value WTi−Ti = 0.49 decreases to
WTi−Ti = 0.19 in KSS calculation. It is seen also that in UHF and Becke exchange
Hamiltonians spin correlation is described in a different manner: the WTi−Ti value
decreases from 0.49 (UHF) to 0.19 (KSS). Analyzing the total energy E per unit cell,
one can draw interesting conclusions from Tables 9.7 and 9.8.

In TiO2 crystal: 1. Spin-correlation effects are small for Sz = 0 (antiferromagnetic
ordering practically does not change E, as seen from a comparison of the RHF-UHF,
KS-KSS, and HB-HBS results). 2. The energy of the ferromagnetic state (Sz = 1) is
higher than for the antiferromagnetic state (Sz = 0) for UHF and HBS calculations. It
again shows the difference between HF and Becke approximations for exchange. This
difference is due to the nonlocal exchange in the HF Hamiltonian (the one-electron
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Fig. 9.1. Geometric structure of [Ti2O
12−
9 ] cluster, modeling Ti2O3 crystal in corundum

structure

density matrix offdiagonal elements are not taken into account in DFT approximation
for exchange).

In Ti2O3 crystal the same difference in the total energy for Sz = 0 and Sz = 1 cases
was found: In HF and HBS calculations, antiferromagnetic ordering gives an energy
gain compared with the diamagnetic picture (compare in Table 9.8 the total energy for
Sz = 0 and Sz = 1 in UHF and HBS calculations); however, Becke exchange gives the
opposite order of the total energies (compare Sz = 0 and Sz = 1 for KSS calculations).
As for covalencies of oxygen atoms and WTi−O, one can draw from Tables 9.7 and 9.8
the following conclusions: 1. Only spin correlation of Ti atoms gives small changes for
these properties of electronic structure in both crystals (compare in Tables 9.7 and
9.8 RHF-UHF, KS-KSS, and HB-HBS results). 2. Inclusion of Coulomb correlation
with Becke exchange gives a more covalent picture of chemical bonding (compare the
results for RHF and KS calculations), but only the correlation correction gives small
changes of the covalence of chemical bonding (compare the results for RHF and HB
calculations).

As was demonstrated in [571], the full valence of the metal atom, calculated for
different metal oxides according to definition (9.13), correlates with the oxidation state
in the semiempirical calculations, implicitly taking into account the correlation effects
(see Chap. 6). In TiO2 and Ti2O3 crystals the Ti atom oxidation state should be +4
and +3, respectively. The calculated total valence VTi is close to oxidation state 4 for
all calculations of TiO2 (see Table 9.7) but strongly depends on the spin-correlation
description for Ti2O3 (see Table 9.8). The calculated total valence VO appears to be
close to a reasonable value, 2.0, in all cases.
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For rutile TiO2 the LCAO results for Mulliken charges and the Ti–O overlap
population can be compared with those found in DFT-PW calculations [601] after
projecting the eigenstates onto a localized basis set of atomic pseudo-orbitals. In KS-
LCAO calculations, QTi = 1.88 and overlap populations of Ti–O bonds are 0.11 and
0.10 for nearest and next-nearest oxygens, respectively. In PW calculations [20], QTi =
1.46, and the overlap populations are 0.35 and 0.43, respectively. This comparison
shows that the calculated local properties’ numerical values depend on the choice of
basis set used in calculations (LCAO or PW sets). Moreover, in PW calculations the
procedure of projection is used to receive atomic orbitals (see Sect. 9.1.5), which is
not necessary in LCAO calculations.

From the discussion of the results obtained it follows that the spin-correlation ef-
fects are described in an essentially different manner in HF and DFT calculations for
Ti2O3 crystal and as a result give different descriptions of Ti–Ti interaction: in the
HF method, this interaction is weak (for energetically more favorable antiferromag-
netic ordering); in the DFT method, the ferromagnetic ordering appears to be more
favorable and Ti–Ti interaction remains essential.

It seems reasonable to use post-HF descriptions of spin-correlation effects other
than that used in HF and DFT methods. For this, one can perform, say, UHF and
CASSCF electronic-structure calculations of reasonably selected clusters of the crystal
under consideration to get single-determinant UHF and multiconfigurational CASSCF
wavefunctions. Then, expanding UHF β-MOs over an α set and inserting these expan-
sions in the UHF determinant, we obtain a certain multiconfigurational wavefunction
that is, in general, a mixture of different spin states. Annihilation of the highest-spin
contaminants leads to the multiconfigurational wavefunction that should be compared
with the CASSCF one. If these functions are similar, that is, in both functions the
same determinants are dominating, then one can state that the UHF method ac-
counts for part of the Coulomb-correlation effects. Estimation of relevant energies
may give an impression of what part of the correlation energy (in comparison with
the CASSCF method) is obtained on the UHF level. Then, all qualitative conclusions
concerning a cluster may be directly applied to the corresponding crystal. In particu-
lar, if local molecular characteristics (such as atomic charges, bond orders, valences,
and covalences) of a cluster are notably affected by correlation effects and UHF clus-
ter calculation reproduces this tendency, then the UHF calculation of a crystal should
certainly display the same tendency.

There exists one simple but important case where more detailed analysis is possi-
ble. Indeed, let us consider a molecular system (cluster) with a nondegenerate singlet
ground state that can be described by a MCSCF wavefunction with dominating con-
tribution of only two configurations:

ΨMCSCF = C1 det | . . . ϕhαϕhβ| + C2 det | . . . ϕlαϕlβ| (9.28)

With the aid of a nondegenerate (nonorthogonal) transformation (for the standard
case C1 > 0 and C2 < 0) generalized valence bond orbitals may be constructed:

ϕa =

√
1
2

{√
C1ϕh +

√
|C2|ϕl

}
(9.29)

ϕb =

√
1
2

{√
C1ϕh −

√
|C2|ϕl

}
(9.30)
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Simple algebraic manipulations lead to the conclusion that

ΨMCSCF � Φab + Φba (9.31)

where
Φab = det | . . . ϕaαϕbβ| (9.32)

and
Φba = det | . . . ϕbαϕaβ| (9.33)

are typical single-determinant UHF configurations. These determinants correspond
to zero projection of the total spin but are not, in general, S2 eigenfunctions. Their
symmetrical combination gives the initial singlet wavefunction (9.28) whereas the an-
tisymmetrical combination gives the related triplet state. In general, the nondiagonal
matrix element 〈Φab|Ĥ|Φab〉 differs from zero and its absolute value may serve as a
certain measure of the UHF method’s capability to account for Coulomb- correlation
effects. Indeed, if this matrix element is small (in absolute value) then singlet and
triplet states are energetically close and the UHF method for a singlet state accounts
for about the same part of the correlation effects as the MCSCF one with wavefunction
(9.28).

Calculations of the lowest singlet and triplet states of cluster [Ti2O12−
9 ], see Fig.

9.1, were performed by UHF and CASSCF methods using the GAMESS program
set for molecular calculations [35]. The cluster includes two nearest Ti atoms and
their nearest oxygen neighbors. The initial MOs for this cluster were obtained by
the RHF method with C3h as the point-symmetry group. The active space of the
CASSCF method involved five highest occupied and three lowest virtual MOs (active
space [2a′2a′′2e′]10). From Table 9.9 it is seen that the cluster chosen reasonably
reproduces the Ti atom’s local properties compared with periodic calculations for
Sz = 0 (see Table 9.8). In UHF calculations, QTi = 2.22 (cluster model), QTi = 2.32
(periodic model), CTi = 1.37 (cluster model), and CTi = 1.23 (periodic model). It
turned out that the singlet state of the cluster under consideration is described by
two configurational wavefunctions.

0.8[ϕ2
hϕ0

l ] − 0.6[ϕ0
hϕ2

l ] (9.34)

whereas the related triplet state with SZ = 1 is reasonably described by a single
determinant.

The comparison of the total energies for the cluster shows (see Table 9.9) that
the UHF calculation reproduces well the small difference of the CASSCF energies
for the total spin values S = 0 and S = 1. Moreover, as seen from Table 9.9, the
UHF calculation describes correctly the influence of the correlation effects on the Ti–
Ti bond-order value. Indeed, in RHF calculations this bond order constitutes 0.88,
whereas in UHF calculations the bond-order values are 0.03 for Sz = 0 and 0.01 for
Sz = 1, in full accordance with CASSCF calculations (0.09 for S = 0 and 0.01 for
S = 1). At the same time, the Ti atomic charges are practically not affected by the
method used.

Calculations of the electronic structure of crystals TiO2 and Ti2O3 and corre-
sponding cluster show that numerical results for local properties of the electronic
structure of crystals (atomic charges, covalences, free and total valences, and bond
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Table 9.9. Energies and local characteristics of electronic structure of molecular cluster
[Ti2O9]

12− in UHF and MCSCF calculations

Characteristics of
electronic structure

UHF MCSCF

Sz Sz=0 Sz=1 Sz=0 Sz=1

E (a.u.) –137.874 –137.867 –137.913 –137.904
QTi 2.22 2.28 2.11 2.12
QO1 –1.68 –1.68 –1.63 –1.64
QO2 –1.90 –1.90 –1.89 –1.89

WTi−Ti 0.03 0.01 0.09 0.01
WTi−O1 0.17 0.17 0.19 0.20
WTi−O2 0.27 0.27 0.31 0.32

CTi 1.37 1.34 1.62 1.56
CO1 0.63 0.62 0.70 0.71
CO2 0.21 0.21 0.23 0.24
VTi 3.01 3.02 3.07 3.04
VO1 2.02 2.02 2.02 2.03
VO2 2.01 2.01 2.01 2.01

orders) depend on (a) Choice of basis for calculation (LCAO, PW); (b) Choice of
Hamiltonian (RHF, UHF, DFT); (c) Choice of population analysis (POPAN) scheme
(Löwdin, Mulliken). The effects of electron correlation on local properties may be
estimated using (a) periodic and cluster DFT and hybrid HF–DFT calculations in
the periodic model; (b) post-HF calculations in the molecular cluster model; (c) the
results of (a) and (b) agree when the appropriate cluster choice is made and the same
basis and population analysis are used.

To minimize the essential dependence of results on the basis-set choice and
POPAN, it is reasonable to generate Wannier-type atomic functions that are orthog-
onal and localized on atomic sites. These functions can be generated from Bloch-type
functions (after relevant symmetry analysis), see Chap. 3. In the next section it is
shown that the results of POPAN with use of Wannier-type atomic functions weakly
depend on the basis choice in Bloch function LCAO calculations.

9.1.4 Wannier-type Atomic Functions and Chemical Bonding in Crystals

As we have seen above chemical bonding in crystals (as well as in molecules) is an-
alyzed in terms of the local properties of the electronic structure, obtained from the
one-electron density matrix, written in a localized basis. Since local properties of
electronic structure are essential ingredients of a number of theories and models (for
example, the numerical values of atomic charges are used in the atom–atom poten-
tials of the shell model), their estimation is of great importance. Traditionally, the
same AO basis is used both in LCAO SCF calculations and in the local properties
definition, as was noted above. However, this approach is not always reliable, since
the results of the population analyses are often strongly dependent on an inclusion of
diffuse orbitals into the basis (useful for the electronic-structure calculations) and on
the scheme chosen for the population analysis.
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As discussed in Chap. 3 the variational method of localized functions generation al-
lows development of an approach of the chemical-bonding analysis, which is much less
basis-set dependent than the conventional approaches. The population analysis in this
case is done using the density matrix given in the minimal valence basis of Wannier-
type atomic orbitals (WTAOs) – Wannier functions centered on atoms and having
the behavior of atomic-valence states in the cores of atoms [47,603,604]. WTAOs are
analogous to atomic functions in form and by symmetry but, in contrast to the initial
LCAO basis, they are directly connected with the calculated electronic band structure
and the Bloch states involved. WTAOs are constructed from the occupied and some
vacant Bloch states, chosen so that they assure the maximal localization for the cor-
responding WTAOs (see Chap. 3). The summary of the results of WTAO application
for the calculations of local properties of the electronic structure of periodic systems
is given in [605].

WTAOs are defined as the Wannier functions that are constructed from a set
of specially chosen occupied and vacant bands and have a definite symmetry (they
are centered on atoms and transform via irreducible representations (irreps) of the
corresponding site groups). Thus, the index t in (3.114) may be substituted by several
indices – i, j, a, β, µ – that reflect the symmetry properties of the WTAOs – W βµ

ija(r−
an): the index a marks the symmetrically nonequivalent atoms, the index j runs
through the set of symmetrically equivalent atoms of the type a; the Wyckoff positions
of these atoms qa are characterized by their site groups, whose irreps are labeled by
the index β, the index i numbers the basis functions of the irrep β and the index µ
discriminates between the independent sets of the functions transforming according
to the same irrep β. The requirement for WTAOs to have fixed symmetry properties
implies additional restrictions on the matrices U(k) in (3.112). These restrictions can
be completely taken into account by using, instead of canonical Bloch orbitals, their
linear combinations, symmetrized according to the desired irreps of the site-symmetry
groups of atoms [47].

WTAOs were generated by the variational method [604], which allows both or-
thogonal W βµ

ija(r − an) and nonorthogonal V βµ
ija (r − an) sets of symmetry adapted

WTAOs to be obtained. In this method the functional

Iβα =
∫

ωβα

∣∣∣V (β,1)
11a (r)

∣∣∣2 dr (9.35)

with the weight function:

ωβα =
(
πr2

βα

)−3/2
exp

(
− (r − qa)2

2r2
βα

)
(9.36)

is maximized (r2
βα is a parameter, for which a value of 1 Å was used). The orthogonal

WTAOs W βµ
ija(r − an) are obtained from the nonorthogonal ones V βµ

ija (r − an) via
Löwdin’s procedure:

W = V
(
S(V )

)−1/2

(9.37)

where S(V ) is the overlap matrix of nonorthogonal WFs V βµ
ija (r −an), and W and V

are row vectors constituted by the sets of the orthogonal and nonorthogonal WFs, cor-
respondingly. The orthogonalization procedure can be performed either in the direct
or reciprocal space. The latter is computationally faster.
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Before constructing the minimal basis of WTAOs one should choose the energy
bands whose states are to be used in the process of the WTAOs generation. For
each of the WTAOs a band or a group of bands is chosen according to the following
criteria: the band states should be compatible with the corresponding WTAOs by
symmetry, in the context of the induced representations (indreps) theory, see Chap.
3, and provide the maximal localization for them. Hereafter, we mark such bands by
the type of the WTAOs corresponding to them (e.g. s-band of the oxygen atom: the
s-WTAOs centered on oxygen and constructed from the states of this band appear to
be the most localized comparing to those constructed from any other states). After the
desired bands for all the WTAOs are chosen the final WTAOs are constructed using
the states from this group of bands. When the WTAOs (orthogonal or nonorthogonal)
are found, the density matrix is calculated in the localized basis of these functions.
The local properties are expressed via the matrix elements of this matrix.

WTAOs’ analog of Mulliken population analysis is made using nononorthogonal
WTAOs.

Let us now consider WTAOs VνA(r−an) (ν-th WTAO of atom A in the nth cell)
as the linear combinations of Bloch functions:

VνA(r − an) =
∑
τk

bτk,νAnϕrk(r), or V = ϕb, ϕ = Vb−1 (9.38)

where Bloch functions ϕrk(r) are given in LCAO or PW basis. The density matrix in
the corresponding basis ρ(V ) can be written in the following way:

ρ(V ) = 2b̄−1b̄ (9.39)

where b̄ is the truncated matrix b with rows corresponding only to the occupied states.
For the orthogonalized WTAOs:

WνA(r − an) =
∑
τk

dτk,νAnϕrk(r), or W = ϕd, ϕ = Vdf† (9.40)

the density matrix ρ(V ) is given by

ρ(V ) = 2d̄†d̄ (9.41)

The electronic population NAn of an atom A in the nth primitive cell and an order
of the bond WA0,Bn between an atom A of the reference cell and an atom A′ in the
nth cell can be obtained from the density matrix (9.41):

NAn = NA0 =
∑

ν

ρA0,A0
νν (9.42)

WA0,Bn =
∑
µν

ρA0,Bn
µν ρBn,A0

νµ (9.43)

Using these quantities one can obtain the atomic charge QA (9.10) of an atom A, the
covalence CA (9.12) and total valence VA (9.13) of this atom.

To demonstrate the efficiency of WTAO use for chemical-bonding analysis, we
consider at first the cubic crystals with the perovskite structure [603]. The LCAO
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approximation in the HF and DFT methods was used to calculate the band structure
and the Bloch functions of bulk SrTiO3 (STO), BaTiO3 (BTO), PbTiO3 (PTO) and
LaMnO3 (LMO) crystals. The Hay–Wadt pseudopotentials [483] were adopted: small-
core for Ti, Sr, Ba, La and Mn atoms, large-core for Pb atoms. The oxygen atoms were
included with the all-electron basis set. The optimized Gaussian-type atomic basis was
taken from [606], where the same pseudopotentials were used. The basis optimization
made it possible to obtain the lattice constant, bulk modulus and elastic constants
of the considered crystals that were in good agreement with the experimental data.
For the exchange-correlation functional the hybrid HF-DFT form (B3PW) was used,
as it reproduces, for optimized basis sets, optical band gaps close to the experimental
values [606].

The Monkhorst–Pack [14] mesh of 4×4×4 = 64 k-points, used in the calculations,
corresponds to a cyclic model with 64 primitive unit cells in the direct lattice, see
Chap. 3. An increase of this number in the band- structure calculations up to 8×8×8 =
512 does not lead to any significant changes in the values of the one-electron energies.

The cubic structure of perovskite-like ABO3 compounds is characterized by the
primitive cubic lattice with the O1

h (Pm3m) space group, see Sect. 2.3.2. The A-atoms
and B-atoms occupy the Wyckoff positions a (0,0,0) and b (0.5,0.5,0.5), correspond-
ingly, with the site group Oh. The oxygen atoms occupy c (0.5,0.5,0) positions, site
group D4h. The minimal atomic-like basis for the crystals under consideration con-
sists of s- and p-type functions of the oxygen atoms, s- and d-type functions of the
Ti atoms and s- and p-type functions of Sr, Ba and Pb in STO, BTO, PTO, or s-
and d-type functions of La and Mn in LMO. So these are the types of WTAOs to be
used in the population analysis for the compounds under consideration. Table 9.10
lists the symmetries of these functions.

Table 9.10. The symmetry properties of the WTAOs of the minimal valence basis for STO,
BTO, PTO and LMO crystals

Atom Function’s type Symmetry

Sr, Ba, Pb s (a, a1g)
p (a, t1u)

La s (a, a1g)
d (a, t2g) + (a, eg)

Ti, Mn s (b, a1g)
d (b, t2g) + (b, eg)

O s (c, a1g)
p (c, a2u) + (c, eu)

Once the types of WTAOs are determined one should find the energy-bands states
corresponding to these WTAOs. First, the bands to be chosen should be symme-
try compatible with the corresponding WTAOs (see [604] for details). Secondly, the
WTAOs constructed from the Bloch states of the chosen bands should be principally
the most localized WTAOs of the corresponding type. The analysis of the electronic
structure of STO and BTO has shown (excluding the semicore states from consider-
ation) that the oxygen s- and p-bands and the Sr (Ba) atom p-bands form 15 upper
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valence bands states, see also next section. The Ti atom d-states form the five lowest
conduction bands, while the Sr (Ba) and the Ti atom s-states are located among
vacant conduction-band states very high in energy. In the case of PTO the difference
in the location of the bands is that the Pb atom s-band is one of the valence bands
and the Pb atom p-bands are vacant and lie high in the conduction band. This agrees
with the results of DFT LDA calculations [607].

Unlike STO, BTO and PTO, the electronic structure of cubic LMO is metallic
both in HF and DFT calculations (a nonzero bandgap in LMO appears only if an
orthorhombic structure with four formula units in the primitive cell is considered).
The s- and p-bands of the oxygen atoms are occupied. As in STO and BTO the s-
bands of the metal atoms are located at high energies. But the d-bands of both metal
atoms are located in the region of the Fermi energy. These bands are partly occupied
and partly vacant, which is caused by the metallic nature of the calculated electronic
structure.

The WTAOs that are used in the population analysis are built from the space of
all the chosen bands taken together. The density matrix is then calculated using the
coefficients connecting the orthogonal or nonorthogonal WTAOs and the occupied
Bloch states.

In Table 9.11 the atomic charges for STO, BTO, PTO, correspondingly, calculated
by the WTAOs technique, and using the traditional Mulliken population-analysis
scheme are compared.

Table 9.11. Atomic charges in cubic ATiO3 (A=Sr,Ba,Pb)

Method of electronic-
structure calculation

Population-analysis
scheme

Atomic charges, |e|
Sr Ti O

nonorthogonal WTAO 2.00 3.20 –1.73
HF Orthogonal WTAO 2.00 3.13 –1.71

Mulliken 1.92 2.76 –1.56

nonorthogonal WTAO 2.00 2.68 –1.56
DFT Orthogonal WTAO 2.00 2.63 –1.54

Mulliken 1.87 2.35 –1.40

Ba Ti O
nonorthogonal WTAO 2.00 3.19 –1.73

HF Orthogonal WTAO 2.00 3.16 –1.72
Mulliken 1.86 2.82 –1.56

nonorthogonal WTAO 2.00 2.65 –1.55
DFT Orthogonal WTAO 2.01 2.60 –1.54

Mulliken 1.80 2.37 –1.39

Pb Ti O
nonorthogonal WTAO 1.99 3.27 –1.75

HF Orthogonal WTAO 1.89 3.14 –1.68
Mulliken 1.59 2.79 –1.46

nonorthogonal WTAO 1.99 2.72 –1.57
DFT Orthogonal WTAO 1.93 2.64 –1.52

Mulliken 1.34 2.34 –1.23
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The Mulliken atomic charges coincide with those given in [606]. The results of the
WTAO population analysis in these three crystals show the following: 1. The results
of population analysis performed on orthogonal and nonorthogonal WTAOs are close.
2. The fully ionic charge +2 for the Sr, Ba or Pb atoms remains practically the same
for both methods of the electronic-structure calculation – Hartree–Fock and DFT.
The only exception is the orthogonal WTAOs analysis in PTO, but even in this case
the charge is very close to +2. The reason for such a high ionicity is related to the
high-energy location of the s-bands of the Sr and Ba atoms and the p-bands of Pb
atom, which leads to a negligible contribution of the corresponding WTAOs to the
covalence of these atoms. The switch from the HF calculations to DFT practically
does not affect the location of high-lying vacant bands of the Sr, Ba and Pb atoms
and, therefore, no covalence for these atoms appears. On the contrary, the traditional
Mulliken analysis displays some covalence for these atoms, which increases in the case
of DFT calculations. This is especially noticeable in a PTO crystal. 3. The Ti and O
atom charges differ from the purely ionic ones (indicating a partial covalence of the Ti
and O atoms). For these atoms the covalence is higher in the DFT calculations than
in the HF ones. This correlates with the decrease of the bandgaps in DFT calculations
compared to the HF ones (in DFT calculations the d-bands of the Ti atom shift down
and become closer to the valence oxygen bands). As a result, mixing of the vacant
states of the Ti atom d-bands with the oxygen WTAOs increases, generating the
larger values of the covalence for these atoms. 4. The results of the WTAO analysis
demonstrate a mixed (ionic-covalent) character of chemical bonding in ABO3 crystals.
However, the ionicity, calculated by the WTAOs method, appears to be larger than
that obtained in the traditional Mulliken population analysis. 5. The values of atomic
charges in all the three considered perovskite-type crystals are close.

The values of some other local characteristics of the electronic structure of STO,
BTO, PTO – bond orders, covalences and full valences of atoms – are listed in Table
9.12. These values correspond to nonorthogonal WTAOs analysis. The results given
in Table 9.12 allow the following to be concluded. 1. The numerical values of the
local characteristics of the electronic structure of the cubic STO, BTO, PTO are
very close. 2. The covalence in these crystals appears only in the nearest-neighbor
Ti–O bonds (all the other bonds manifest almost no covalence both in HF and DFT
calculations). Each Ti atom has six bonds of this type, and each oxygen atom two
bonds. In DFT calculations the value of the bond order is larger than in HF ones.
3. Both in the DFT and HF calculations the values of the total calculated valence of
the metal atoms practically coincide with the values of the oxidation state used by
chemists for these compounds.

The population analysis is not entirely correct for metallic crystals, because they
are characterized by a special metallic type of bonding. But since the nonconducting
state in LMO arises already within small distortions from the cubic structure, a formal
population analysis performed on the cubic structure can show some tendencies in
the local properties. Their values for the cubic LMO obtained with the help of the
orthogonal WTAOs in HF calculations are given in Table 9.13.

Analyzing these values one can conclude the following. 1. Some of the results
are principally different from those of STO, BTO and PTO. These are a nonzero
covalence of the A (La) atom, a nonzero La–O bond order, the calculated valence of
the B (Mn) atom is different from the expected one. Probable reasons for these results
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Table 9.12. Atomic charges in cubic ATiO3 (A=Sr,Ba,Pb)

Method of electronic-
structure calculation

Order of
Ti–O bond

Covalence Full valence

Sr Ti O Sr Ti O
HF 0.24 0.00 1.47 0.51 2.00 4.01 2.01

DFT 0.36 0.00 2.28 0.82 2.00 4.06 2.02

Ba Ti O Ba Ti O
HF 0.24 0.00 1.46 0.51 2.00 4.01 2.01

DFT 0.37 0.01 2.33 0.83 2.01 4.06 2.02

Pb Ti O Pb Ti O
HF 0.22 0.02 1.35 0.47 2.00 4.01 2.01

DFT 0.35 0.04 2.23 0.80 2.02 4.06 2.02

Table 9.13. Local properties of electronic structure of cubic LaMnO3

Atomic charges Bond orders Covalence Full valence

La Mn O La–O Mn–O La Mn O La Mn O

2.48 2.09 –1.53 0.08 0.16 1.00 2.48 0.80 3.04 3.68 1.98

are connected with the metallic nature of the considered crystal in cubic structure
and with the difference of the LMO crystal from STO, BTO or PTO. 2. On the
other hand, the value of the La atomic charge is relatively close to the fully ionic one
+3. Besides, the calculated valences of the La and oxygen atoms are similar to those
obtained in STO, BTO and PTO crystals. This indicates the similarity between these
crystals and LMO, manifested in spite of the metallic nature of the latter. 3. The
largest value of a bond order in LMO corresponds to the nearest-neighbor Mn–O
bond. This correlates with the interatomic charge distribution in STO, BTO and
PTO. The difference is in the value of the bond order – in LMO this bond order
is smaller, while the covalence (which is, actually, the sum of all the bond orders)
of the Mn atoms practically coincides with that of the Ti atoms in the other three
considered crystals. This is, apparently, a consequence of the metallic nature of LMO,
which leads to smearing of the nearest-neighbor Mn–O bond charge over the other
bonds. Finally, we note that the local properties for STO, BTO and PTO not that
close to each other might be obtained if noncubic low-temperature phases are studied.
It is especially important to consider the orthorhombic phase of LMO since in this
phase LMO is no longer metallic.

WTAO population analysis can be made also using the Bloch functions found in
the calculations with plane-wave basis (as was noted, the majority of modern computer
codes for periodic systems calculations use this basis and the DFT Hamiltonian).

The results of chemical-bonding analysis for crystal MgO, performed via the con-
ventional and WF schemes of population analysis, were compared in [608]. The MgO
crystal is a good testing system for studying the accuracy of such methods, since on
the one hand, the nature of chemical bonding in it is well known to be ionic, and on
the other hand, some of the methods give contradictory results of chemical-bonding
analysis in this crystal (see below and [601,609]).
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The electronic structure for the MgO crystal was calculated in [608] both in the
LCAO approximation and in the PW basis. In both cases the calculations were done
by the density-functional theory (DFT) method in the local density approximation
(LDA). The Monkhorst–Pack set of special points of BZ, which allows a convergence to
be obtained (relating to extended special-points sets) in the calculations of electronic
structure, was used in both cases. For the LCAO calculations the Durand–Barthelat
pseudopotential [484] was used. In the case of the PW calculations the normconserving
pseudopotential and a PW kinetic energy cutoff of 300 eV were used.

For construction of the WTAOs the delta-functions were used as the weight func-
tions in the variational functional (9.35). In this case, the variational procedure is
equivalent to projecting the delta-functions onto the space of the states of chosen
energy bands and demands a very low computational effort.

In both types of calculations the s- and p-bands of oxygen atoms form the four
valence bands. The s-band of the Mg in the case of the LCAO basis is the highest
possible (twelfth) conduction band. For the PW calculations, the lower 32 conduction
bands were examined. This analysis showed that the s-band of the Mg atom in PW
calculations is also located among high-energy conduction bands. If one considers
more than 32 conduction bands, the location of the s-band of the Mg atom can only
increase, which would not affect the results of the population analysis.

The calculations [608] showed that the WTAOs, corresponding to the LCAO and
PW bases are essentially different in their form. This distinction is probably caused
mainly by the difference in the structure of the bases used for the LCAO and PW
calculations. All the WTAOs, excluding the s-WTAO of the Mg atom in the PW
calculations, are well localized. The poor localization of the latter is probably due to
considering only 32 lower bands, while the actual s-band of the Mg atom might lie
higher in the energy than the examined ones. Anyway, the difference in the WTAOs’
form and localization level does not affect the results of WTAO-based population
analysis for MgO.

The atomic charges and covalences, calculated within the conventional approaches
and WTAOs method, are given in Table 9.14.

Table 9.14. Calculated atomic charges and covalencies in MgO

Basis Population analysis Charge on Mg atom Atomic covalence

Mg O

LCAO
Mulliken
Löwdin

1.93
1.54

0.15
0.88

0.30
1.13

PW
Mulliken
Löwdin

1.06
0.90

1.63
1.90

1.65
1.89

LCAO
Nonorthogonal WTAOs

Orthogonal WTAOs
2.00
1.97

0.00
0.05

0.00
0.05

PW
Nonorthogonal WTAOs

Orthogonal WTAOs
2.00
1.93

0.00
0.13

0.05
0.14

The spilling parameter for the projection procedure (see Sect. 9.1.6) in the PW
calculations was 2.5 × 10−3. It is seen from this table that among the traditional
schemes, only the Mulliken analysis performed for the LCAO calculations exhibits a
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more or less ionic picture of chemical bonding in MgO. All the other conventional
methods give the results corresponding to the mixed ionic-covalent type of bonding,
which is actually quite unnatural for MgO. Besides, for the traditional methods the
values of the atomic charges and covalences are significantly different depending on
the calculation scheme and the type of basis.

On the contrary, the method based on orthogonal or nonorthogonal WTAOs cor-
rectly demonstrates the ionic nature of chemical bonding in MgO crystal whatever
basis is used for the electronic-structure calculations. The values obtained within the
different types of basis are close and correspond to the practically pure ionic character
of bonding in this crystal. Though the LDA band-structure calculations for the MgO
crystal in LCAO and PW bases give different values for the total energy and bandgap
width and the forms of corresponding WTAOs are quite dissimilar, nevertheless, the
results of population analysis performed in the basis of WTAOs are practically the
same. This is a consequence of a high-energy location of the s-band of the Mg atom
in both types of calculations.

9.1.5 The Localized Wannier Functions for Valence Bands:
Chemical Bonding in Crystalline Oxides

The approach to the analysis of the chemical bonding in crystals discussed above is
based on the population-analysis procedure, applied in the basis of AOs or WTAOs.
In the second approach [63] the Wannier functions are generated using the Bloch
functions of only the upper valence bands (see Chap. 3), so that the number NWF of
WFs per primitive cell is equal to the number of valence bands under consideration.
For metal oxides, considered in this section, the upper valence energy bands are formed
by 2s and 2p states of oxygen atoms. Therefore, the number of WFs per cell NWF =
4NfNO (Nf is the number of formula units per cell, NO is the number of oxygen
atoms in the formula unit). In particular, NWF = 4, 24, 48 for MgO, Al2O3 and
AlPO4 crystals with one, two and three formula units per cell, respectively. This
approach provides the additional numerical characteristics of chemical bonding, which
complement the population analysis in periodic systems.

Any of the WFs in the reference cell is given in the AO basis set (used in the
Bloch-functions calculation) as

Wi(r − g) = Wi(r) =
M∑

µ=1

∑
g′

Cg′
µiχµ (r − Aµ − g′) (9.44)

where the orthonormality condition 〈W g
i |W g′

i 〉 = δgg′ holds for the periodic images
Wi(r − g) of the reference cell WF. The coefficients Cg′

µi in (9.44) are related to the
coefficients Cµi(kj) in the Bloch functions of M valence bands by the relation

Cµi(kj) =
∑
g′

exp(−ikjg
′)Cg′

µi (9.45)

In these relations µ = 1, 2, . . . , M numbers AOs in the primitive cell, g is the direct
lattice translation vector, i = 1, 2, . . . , NWF numbers the valence bands and WFs and
kj(j = 1, 2, . . . , L) are defined by the size of cyclic system L used for the summation



9.1 Theoretical Analysis of Chemical Bonding in Crystals 359

over BZ (see Chap. 3). WFs are characterized in terms of their Mulliken atomic
populations by

qg
A,i =

∑
µ∈A

∑
ν,g′

Cg
µ,iC

g+g′
νi Sg′

µν (9.46)

where the first sum runs over the AOs µ centered on atom A and the second one
over all the AOs ν and cells g′. The atomic populations (9.46) are normalized to one
i.e., they satisfy the condition

∑
A,g

qg
A,i = 1. These populations are used to describe

the localization properties of WFs, as qg
A,i gives the fraction of the electron density

of WF Wi(r) assigned to atom A in cell g. The range of WF Wi(r) localization is
defined by nonzero values of (9.46) in spheres of atoms around the localization center
of WF. The latter (centroid position) is defined by

r̄i =
∫

r |Wi(r)|2 dr =
∑

s

x̄siēs, x̄si =
∫

xs |Wi(r)|2 dr (9.47)

The centroid positions are used in the definition of the second-order central moment
tensor, τi,lm of the electron density associated to WF Wi(r):

τi,lm =
∫

dr |Wi(r)|2 (rl − ri,l)(rm − ri,m) (9.48)

where r = (r1, r2, r3) and ri = (ri1, ri2,ri3). Tensor (9.48) contains useful information
on the shape and spatial extent of the WFs. Centroid position ri of the WF Wi(r)
also determines the so-called polarization fraction for Wi(r):

Pi =
∣∣∣∣2(ri − rA)(rB − rA)

|rb − rA|2 − 1
∣∣∣∣ , (0 ≤ Pi ≤ 1) (9.49)

which is proposed to estimate the degree of ionicity and covalency of the chemical
bonding between atoms A and B (rA and rB are their position vectors). This param-
eter takes the value Pi = 1 for a pure ionic bond and Pi = 0 for a pure covalent bond.
A and B atoms are supposed to give the two largest contributions of the Mulliken
atomic population to the WF Wi(r).

These indices were used to analyze the chemical bonding in semiconductors [610]
and metal oxides [63], based on HF LCAO calculations. In Table 9.15 the results for
metal oxides are presented. In this table Nf , NWF and Nc are the number of formula
units in the primitive cell, the number of valence-WFs in the primitive cell and the
coordination number of the oxygen atom. According to the point symmetry at the
O position, the four WFs can be equivalent, as in the case of MgO and MnO, or
split into 2, 3, or 4 sets; the number of equivalent WFs in each set is indicated in
the Neq column. In those systems where crossings occur between the valence and the
most diffuse semicore bands (the transition-metal oxides MnO and ZnO and CaSO4)
the cation d and the Ca 2p bands, respectively, have also been included within the
active subspace. In MnO, where only the ferromagnetic spin polarized solution was
considered, α and β subspaces are localized independently (the former conventionally
containing the five Mn d states), [63]. In the right part of the table some features of
the oxygen-WFs are provided: Neq is the number of equivalent oxygen-WFs in the
set; q1, q2 and q3 are the three largest Mulliken atomic populations (the number of
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equivalent contributions is given in brackets!). The Or column indicates whether the
second-order moment tensor principal axis is oriented along the bond axis (y) or not
(n), and the last column classifies the WFs as covalent bond (cv), ionic (io), or lone-
pair (lp). The degree of localization of the oxygen WFs is estimated in terms of the

Table 9.15. Characterization of the oxides through their symmetry and WF features [63]
(explanations are given in text)

System
Space
group

Nf NWF Nc Neq q1 q2 q3 Or Class

MgO Fm3m 1 4 6 4 0.991 0.005(2) 0.004 n io

MnO-α Fm3m 1 9 6 4 1.005 –0.001(4) — n io
MnO-β — 4 4 0.969 0.016(2) 0.005 n io

ZnO P63mc 2 18 4 1 0.929 0.065(3) 0.002 y cv
3 0.927 0.065(3) 0.003 y cv

Al2O3 R3c 2 24 4 2 0.964 0.043 0.004 y cv
2 0.942 0.060 0.003 y cv

SiO2 P3221 3 24 2 1 0.957 0.022 0.020 n lp
1 0.947 0.029 0.026 n lp
1 0.815 0.167 0.017 y cv
1 0.812 0.171 0.017 y cv

AlPO4 P3121 3 48 2 1 0.965 0.030 0.006 n lp
1 0.952 0.031 0.021 n lp
1 0.910 0.070 0.023 y cv
1 0.821 0.173 0.006 y cv

CaSO4 P6222 3 48 1 3 0.958 0.039 0.004 n lp
1 0.711 0.296 0.001 y cv

Mulliken atomic populations (9.46), attributed to oxygen and its neighboring atoms.
These data are summarized in columns q1, q2, and q3 of Table 9.15. It turns out that,
in all cases, most of the electron density is localized on the oxygen atom, q1 ranging
from 0.71 (CaSO4) to 1.01 (MnO). The value of the second atomic contribution is
never larger than 0.30 (CaSO4); in most cases, however, it is of the order of 0.05. The
third largest atomic population is much smaller and never exceeds 0.03 (SiO2).

The Or column provides information as to whether the principal axis connected to
the largest eigenvalue of the second-order moment tensor is oriented along the bond
axis or not. The bond axis of an O-WF is defined as the line joining the oxygen and
the atom that brings the second largest contribution to the total population. For ease
of discussion, one can try to use the two kinds of information (qi and Or indices) to
classify (with a certain degree of arbitrariness) the O-WFs bonds as covalent bond
(cv), lone-pair (lp), or ionic (io). In particular, it is considered as cv, a WF oriented
along the bond direction, (orientation criterion); alternatively, a WF can be classified
as cv, when q1 < 0.95 and q2 > 0.05 (population criterion), where q1 and q2 are the
two largest contributions to the total population (see Table 9.15). A non-cv-WF is
classified as io or lp when the coordination number of O is larger or smaller than 4 (the
number of WFs formally attributable to oxygen), respectively. As is shown in [63], io
and lp WFs do have quite different characteristics. The two criteria provide a very
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consistent classification, the only exception being the most localized O-WFs of Al2O3,
classified as cv or not according to the first or second criteria, respectively. Indeed in
this case, both types of WFs are of the same chemical nature and quantitative dif-
ferences are probably due to geometrical constraints. The orientation criterion seems
to be the most appropriate and has been adopted (see last column of Table 9.15).
This classification allows various trends to be traced with respect to the nature of
the O-WFs along the series of compounds, as was done in [63]. In particular, it turns
out that WFs give quite a complete picture of the chemical nature of the X–O bond,
indicating that the covalent character increases according to the following sequence
with respect to X: Mg < Mn < Al < Zn < Si < P < S. This order coincides with the
cation Pauling electronegativities and demonstrates the atomic nature dependence of
the chemical bonding in crystals.

This approach was applied also in [611] in the comparative study of chemical
bonding in SrTiO3 and SrZrO3 crystals. The results of these calculations are discussed
in the next section in the consideration of the projection technique for population
analysis in crystals.

The numerical values of the indices dependence on the basis-set choice requires
additional investigation. It is evident that use of Löwdin atomic populations instead
of Mulliken ones can change the localization of WFs, especially in the case when
diffuse AOs are included in the basis set. From this point of view the WTAOs use is
preferable. As was demonstrated above, the numerical values of local properties are
close in Mulliken and Löwdin population analysis made with WTAOs.

In the approach [63] WFs are generated directly from Bloch valence states with-
out any preliminary symmetry analysis. In this case one obtains WFs that have the
centroid positions in the vicinities of some points of the direct lattice of the crystal
occupied by atoms or being midpoint between the pairs of symmetry-equivalent atoms
(for the oxides listed in Table 9.15, these points are near oxygen atom positions). The
noncontradictory chemical interpretation of the WFs obtained is difficult due to the
absence of the symmetry analysis. Indeed, it is difficult to explain the appearance in
MgO crystal (see Table 9.15) of four equivalent WFs corresponding to the tetrahedral
sp3 hybridization, while the oxygen atom is octahedrally coordinated.

The improvements of this theory were suggested in [612]. The importance of the
symmetry analysis in the procedure of the generation of maximally LOs in crystals
was shown. It was suggested that the numerical parameters of the LOs corresponding
to the valence energy bands of the crystal can be used in the theory of chemical bond-
ing only if these functions form bases of irreducible representations of site-symmetry
groups of atoms and bonds in crystals. The background of LOs symmetry analysis
is the theory of band representations (BRs) of space groups, considered in Chap. 3.
This analysis is applicable both to nonorthogonal atomic-like localized orbitals, cen-
tered on the atoms, and to localized Wannier orbitals (LWOs), i.e. to an orthonormal
set of LOs. BRs of space groups are used to identify possible LOs symmetry from
the symmetry of the canonical (Bloch) orbitals of the calculated energy bands or to
establish the fact that the construction of LOs from the canonical orbitals chosen is
impossible for the reasons of symmetry. In the general case, the LWOs are centered
on some center q and transform according to some representation Re (in the general
case reducible) of the site-symmetry group Lq of this center. Let us represent these
functions as linear combinations of the LWOs W̃

(β)
j transforming according to IRs β
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of the site group Lq,

Wi(r) =
∑
β,j

αβj,iW̃
(β)
j (r), αT α = E (9.50)

The transformation, with the help of the matrix α, is orthogonal as it relates to
two orthonormal bases in the space of the representation Re (E is the unit matrix).
Inserting (9.50) in (9.47), one obtains

x̄si =
∑

ββ′jj′
D

(s)
βj,β′j′α

∗
βj,iαβ′j′,i (9.51)

where the number of independent values D
(s)
βj,β′j′ = 〈W̃ (β)

j (r)|xs|W̃ (β′)
j′ (r)〉 is equal to

the number of irreducible components of the vector representation contained in the
symmetric square {Re × Re∗}+ of the representation Re [13]. If Wi(r) coincide with
their irreducible components (αβj,i = δβj,i), then ri = 0 for centrosymmetric site
groups Lq as all D

(s)
βj,β′j′ = 0(x̄si = 0). In the general case, as seen from (9.51), ri �= 0

and their lengths and orientations depend on the value of the coefficients αβj,i. Being
functions of the centroid position, the polarization fractions Pi (9.49) also depend on
the value of the coefficients αβj,i. It is obvious that in the general case one can not
attribute to the centroid of a LWO some physical meaning. But a particular choice
of LOs can attach to the centroid a common sense useful in the theory of chemical
bonding.

LWOs WA(r) sited on atoms describe lone pairs or a purely ionic bonding (Pi = 1).
LWOs WB(r) sited on interatomic bonds mean the presence of a covalent component
of the chemical bonding (0 < Pi < 1), the degree of covalence being determined by
the value of the polarization fraction Pi that takes the form

Pi =
∣∣∣∣2 di − dA

dB − dA
− 1

∣∣∣∣ (9.52)

where dA, dB , and di are positions of atoms A,B, and the centroid of the LWO Wi(r)
on the bond line A−B counted off some arbitrary point on it. In the latter case, the
BR associated with the valence bands of the crystal has to include the BR induced
from some IR β of the site-symmetry group Lqb

of the bond. The value Pi = 0
corresponds to a pure covalent bond. Note that this BR is a composite one. Indeed,
the group Lqb

is a subgroup of the site group LqA
of the atom A (and of the site group

LqB
of the atom B) lying on the bond. The IR β induces in the groups LqA

some
reducible representation that, in its turn, induces in the space group G a composite
BR [13]. There is an exception when a middle point of the bond is a symmetry point.
In this case, the IR of the site group of this point induces in the space group G a
simple BR. This situation takes place, for example, in the Si crystal where the IR
a1g of the site group D3d of the middle point of the bond Si–Si (Wyckoff position c)
induces in the space group O7

h of the crystal the BR with q-basis consisting of the
canonical Bloch states of the four-sheeted upper valence band. This LWO describes
the purely covalent bond (P = 0).

In [612] the following procedure was suggested to describe the chemical bonding
in crystals by analyzing only occupied valence states in the basis of LOs.
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As the first step a symmetry analysis of valence band states is carried out. The
purpose of this analysis is to find the q-basis indices of the band representation (BR)
corresponding to the valence states of the crystal. These indices can consist of: (a1)
the irreducible representations (IRs) of the site groups of the bonds (including those
of symmetry points on the bond lines, if there are any); (a2) the IRs of site groups of
atoms. If a composite BR has several variants to be represented as a sum of simpler
ones, the preference has to be given to the BRs induced from site groups of bonds.
This symmetry analysis allows the centroid positions (on atoms or on bonds) of the
LOs, generated from the Bloch functions of the valence states, to be found. The
numerical characteristics of only these symmetry-defined LOs are suggested to give
a noncontradictory unambiguous interpretation of chemical bonding in crystals. It
was proposed in [612] to introduce not only the centroids position, but also the other
numerical characteristics of the chemical bond related to the centroids position:

1) Contributions Q
(A)
i and Q

(B)
i to charges on atoms A and B related to the LO

Wi(r)

Q
(A)
i = 2

di − dB

dB − dA
, Q

(B)
i = 2

dA − di

dB − dA
, −2 ≤ Q

(A)
i , Q

(B)
i ≤ 0 (9.53)

An electron charge Q
(A)
i + Q

(B)
i = −2 associated with the fully occupied LO is parti-

tioned between atoms A and B and is inversely proportional to the distances between
the centroid position and the atoms.

2) The degree of ionicity Ii of the bond A − B related to the LO Wi(r),

Ii =
∣∣∣∣2di − dA − dB

dB − dA

∣∣∣∣ =
1
2

∣∣∣Q(A)
i − Q

(B)
i

∣∣∣ , 0 ≤ Ii ≤ 1 (9.54)

The degree of covalency Ki of the bond A–B related to the LO Wi(r),

Ki = 1 −
∣∣∣∣2di − dA − dB

dB − dA

∣∣∣∣ = 1 − 1
2

∣∣∣Q(A)
i − Q

(B)
i

∣∣∣ , 0 ≤ Ki ≤ 1 (9.55)

Ionicity Ii coincides with the polarization fraction (9.52).
For pure ionic bonding Q

(A)
i = −2, Q

(B)
i = 0 (or vice versa), K = 0, I = 1. For pure

covalent bonding Q
(A)
i = Q

(B)
i = −1,K = 1, I = 0. The definitions (9.52)–(9.55) are

introduced in such a way that the LWO centroid position defines the characteristics
of chemical bonding. In fact, the details of the electron density distribution have to
be included, as is done in the definition (9.48) of the second-order central moment
tensor.

In the second step of the chemical-bonding analysis the space Ω of the states of
all the valence energy bands is projected on the spaces Ωi of IR of the site-symmetry
groups related to the components of the BR in the q-basis established above.

The third step is the generation from the canonical Bloch valence states maximally
localized orbitals in the spaces Ωi by any known procedure.

The fourth step consists of calculation of numerical characteristics of the chemical
bonding on the base of these LOs. This calculation includes both the characteristics,
defined by the centroids positions, and those depending on the details of the electron
density distribution.
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As follows from the theory of BR, the LOs obtained without any preliminary
symmetry analysis, are in fact to be bases of some representations (in the general
case reducible) of site-symmetry groups of the Wyckoff positions of atoms and bonds,
the preference has to be given also to BRs induced from site groups of bonds. In this
case, steps 2 and 3 have to be replaced by: (2a) Generation maximally LOs in the
space of the canonical Bloch valence states by any known procedure. (3a) A proper
symmetrization of generated LOs according to the results of the symmetry analysis
of step 1.

We shall illustrate the discussed procedure using the example of the SrZrO3 crystal
with the cubic perovskite structure. In Table 9.16 band representations of space group
O1

h induced by those atomic states that take part in the valence band formation are
given. Each line of this table defines the connection of the q-basis for site-symmetry
groups Oh(Sr), D4h(O) with the k-basis at the symmetry points of BZ, see also Sect.
3.3.

Table 9.16. Band representations of upper valence bands in the SrZrO3 crystal induced
from Sr 4p-, O 2s- and O 2p-atomlike states

Atom
states

q-basis Γ R M X

Sr 4p (b, t1u) 4− 5+ 2−5− 1+5+

O 2s (d, a1g) 1+3+ 4− 1+5− 1+2+3−

O 2pz (d, a2u) 4− 1+3+ 1+2+3− 1+5−

O 2px,y (d, eu) 4−5− 4+5+ 3+4+5± 3−4−5±

To include the electron-correlation effects on the chemical bonding, the calcula-
tions of SrZrO3 crystal [612,613] were performed by the DFT LCAO method with the
CRYSTAL03 code [23] and the PBE exchange-correlation potential used in [614] for
the geometry optimization in the generalized gradient approximation (GGA). For the
Sr and Zr atoms, the Hay–Wadt pseudopotentials [483] in the small-core approxima-
tion were used. In this case, the 4s, 4p, and 5s states of the Sr atom in the 4s24p65s2

configuration and the 4s, 4p, 4d, and 5s states of the Zr atom in the 4s24p64d25s2

configuration were treated as valence states. The basis functions were taken as the
atomic functions of the Sr atom from [606] and the 8-411G * functions obtained for
the Zr atom in [615] with optimization of the 5sp, 6sp, and 5d outer orbitals for the
ZrO2 crystal with experimental geometric parameters. For the oxygen atom, the full-
electron basis set [606] describing the oxygen atom in the 1s22s22p4 configuration was
used. The Monkhorst–Pack 8×8×8 set of special points was used in the BZ sampling.
The lower valence bands are composed of Sr 4p- and O 2s-states (six sheets), whereas
the upper valence band is produced mainly by the O 2p-atomic orbitals (nine sheets),
see Fig. 9.2. The symmetry of all these valence-band states and the atomic nature of
the projected density of states is the same both in these DFT-LCAO and in former
DFT-PW calculations [616]. The iterative procedure implemented in CRYSTAL03
code was applied to generate LOs using crystal orbitals of these 15 occupied bands.
The Bloch functions for the Γ point of the BZ are taken as the starting LOs. As a
result, the iterative procedure gives 15 LOs. Three of them are centered on the Sr
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Fig. 9.2. Electronic structure of SrZrO3 crystal: (a) band structure; (b) total and projected
DOS. LCAO DFT calculations [613]

atom and are connected with Sr atom 4p-states. The remaining 12 LOs are connected
with the three symmetry-equivalent oxygen atoms in the crystal, four LOs with the
centroid positions near each oxygen atom. To analyze the nature of chemical bonding
with these LOs, the information about the symmetry of the band states induced from
Sr 4p-, O 2s-, and O 2p-states forming two upper valence bands given in Table 9.16
is used. It is seen that these states form a basis of composite BR described in q-basis
by the symbol

(b, t1u) + (d, a1g + a2u + eu) (9.56)

Therefore, four LWOs Wi(r) with the centroid positions near each oxygen atom form
a basis of a four-dimensional representation a1g + a2u + eu of the site group D4h

of the oxygen atom. Let us denote LOs that are the basis functions of these IRs as
follows: W̃1(r) = W̃

(d,eu)
1 (r), W̃2(r) = W̃

(d,eu)
2 (r), W̃3(r) = W̃

(d,a2u)
3 (r), W̃4(r) =

W̃
(d,a1g)
4 (r). Then, instead of (9.50), one has

Wi(r) =
4∑

j=1

αjiW̃j(r), i = 1, 2, 3, 4 (9.57)

The starting LWOs of the computer code [23] result in Wi(r) (9.57) with some definite
values of the coefficients αji. In this case, Re = eu + a2u + a1g, the representation
{Re × Re∗}(+) = 3a1g+b1g+b2g+eg+eu+a2u contains only one times two irreducible
components of the vector representation (eu+a2u), i.e. there are only two independent
parameters in (9.51),

r̄i =
3∑

s=1

x̄siēs, x̄si = Dsα4iαsi (9.58)

where
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D1 = 2〈W̃4(r)|x1|W̃1(r)〉 = D2 = 2〈W̃4(r)|x2|W̃2(r)〉, D3 = 2〈W̃4(r)|x3|W̃3(r)〉
(9.59)

In Table 9.17 the Cartesian coordinates x̄si of centroid positions and the polarization
fractions Pi for LWOs Wi(r) evaluated by the computer code [23] are given. It is
evident (see (9.58)) that the other choice of the starting LWOs can, in principle, give
other centroid positions and other values of Pi. Let us note that the BR (d, a1g+a2u) is

Table 9.17. Centroids positions (x1i, x2i, x3i), in a.u., and polarization fractions pi for
functions Wi(r) in the SrZrO3 crystal localized according to the Wannier–Boys mixed scheme
[63]

Wi x1i x2i x3i pi

W1 –0.039 0.465 –0.002 0.999
W2 0.465 –0.039 –0.002 0.999
W3 –0.211 –0.211 0.774 0.610
W4 –0.215 –0.215 –0.769 0.612

a composite one. The points on the line binding Zr and O atoms (Wyckoff position e)
have the site-symmetry C4v. The IR a1 of this group induces in the group D4h (the
site symmetry group of the oxygen atom) the representation a1g + a2u : a1(C4v) ↑
D4h = a1g + a2u(D4h). Therefore, instead of (9.56) one can write another symbol in
q-basis

(b, t1u) + (d, eu) + (e, a1) (9.60)

for the same BR corresponding to the 15-sheeted band chosen. Note that the IR a1

of C4v induces also the representation a1g + eg + t1u of the site group Oh of the Zr
atom – the second atom on the bond line Zr–O: a1(C4v) ↑ Oh = a1g + eu + t1u(Oh).
Thus, one can attribute one more symbol in the q-basis to the BR corresponding to
the same 15-sheeted energy band,

(b, t1u) + (d, eu) + (a, a1g + eg + t1u) (9.61)

It is seen that the part (b, t1u) + (d, eu) is common for three symbols (9.56)–(9.60)–
(9.61) of the BR under consideration. They correspond to LWOs, localized on Sr and
oxygen atoms. The rest of the BR is given in three different ways by its labels (9.56)-
(9.60)-(9.61). The symmetry considerations show that it is possible to generate from
the states of valence bands of the SrZrO3 crystal the LWOs centered on zirconium
and on oxygen atoms. These LWOs form the bases of reducible representations of the
site groups of Zr and O atoms, a1g +eg + t1u of Oh and a1g +a2u of D4h, respectively.
Linear combinations of functions of any of these bases are equivalent from the group-
theoretical point of view, but will give different values for the numerical characteristics
of chemical bonding (9.52)–(9.55). However, there is only one possibility to reconcide
these two bases. Both bases are induced from the same IR a1 of the common subgroup
C4v (the site group of the Wyckoff position e on the bond line Zr–O) of the groups
Oh and D4h.

The BR with q-basis (9.60) corresponds to a particular choice of the linear
combinations of W̃j(r) (9.57): two of them are transformed according to the IR
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eu of the site group (D4h) of the oxygen atom, the linear combination W̃
(e,a1)
+ =

1√
2

(
W̃ (d,a1g) + W̃ (d,a2u)

)
of two others engenders the LWO sited on the bond line

Zr–O and transforming according to IR a1 of the symmetry group C4v of the bond.
This LWO induces another one W̃

(e,a1)
− = 1√

2

(
W̃ (d,a1g) − W̃ (d,a2u)

)
centered on the

Zr–O bonding line but at the other side of the same oxygen atom. On the whole, the
number of LWOs per unit cell remains the same. These functions describe the covalent
bonding of the oxygen atom with its two neighboring Zr atoms. The numerical value
of covalency can be evaluated from the centroid positions of these LWOs counted off
the oxygen atom.

To find the centroid positions of the LWOs W̃i(r) it is sufficient to symmetrize the
LWOs W̃i(r) calculated without symmetry by the usual group-theoretical methods.
Instead of extracting the LWO s themselves from the results of computer code [23]
application it was done in [612] by using the relation (9.58) with the normality con-
dition and the orthogonality of the matrix α in (9.58) connecting the symmetrized
LWOs and those found in the direct calculations. This matrix was found in numerical
form and analyzed in [612]. It was found that LWOs Wi(r), i = 1, 2 almost coin-
cide with W̃

(d,eu)
i (r) although they have a noticeable admixture of LWO W̃ (d,a1g)(r).

LWOs Wi(r), i = 3, 4 are formed essentially by W̃ (d,a2u)(r) and W̃ (d,a1g)(r) although
they have a noticeable admixture of LWO W̃ (d,eu)(r). Using (9.59), one obtains
〈W̃ (d,ag)(r)|x3|W̃ (d,a2u)(r)〉 = 0.912. The centroid positions relative to oxygen atoms
for the LWOs W̃i(r)(i = 1, 2, 3, 4), r−r0 = 0 and the corresponding polarization frac-
tion Pi = 1 for all four LWOs. In particular, for W̃

(d,eu)
1 (r) and W̃

(d,eu)
2 (r), P = 1.

They describe lone pairs on the oxygen atom in the crystal. But for the linear com-
binations W̃

(e,a1)
± (r) (the IR a1 of the site group C4v of the Wyckoff position e on

the bond line Zr–O), r± − r0 = ±0.912e3 (in a.u.) and the polarization fractions
P± = 0.54. These LWOs describe the partly covalent binding of atoms O and Zr in
the crystal SrZrO3. The other numerical characteristics (9.53) and (9.54) of this bond
are: Q(O) = −1.54, Q(Zr) = −0.46, IO−Zr = 0.54,KO−Zr = 0.46. Taking into account
the choice of valence and semicore electrons, atomic cores have the charges: +6(O),
+8(Sr), +4(Zr). According to the q-basis index of the BR (9.60) the electron structure
of the crystal can be represented by 15 LWOs per primitive cell, every orbital being
occupied by two electrons:

1. Three orbitals W̃ (b,t1u)(r) of symmetry t1u (p-type) are localized on Sr (site
group Oh) and bring to it the charge –6. Finally, atom Sr has in the crystal the
charge +2=8–6 rigorously. This value is close to that found by population analysis
with WTAOs.

2. Six orbitals W̃ (d,eu)(r) of symmetry eu (px, py-type) are localized on O atoms
(site group D4h, three atoms per primitive cell) and bring to every atom the charge
–4.

3. Six orbitals W̃ (e,a1)(r) of symmetry a1 (spz-type) are localized on the bonding
line O–Zr (site group C4v, six bonding lines per primitive cell). The charge –2 associ-
ated with every orbital is partitioned between oxygen (–1.54) and zirconium (–0.46)
atoms. As there are two bonds for the oxygen atom, its charge in the crystal is –1.08
(=+6-4-1.54 × 2). Equally for the zirconium atom, one has +1.24(=+4–0.46 × 6; 6
bonds for Zr). The traditional Mulliken population analysis gives values –1.29 and
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+2.02, the projection techniques –1.14 and +1.63, WTAO population analysis gives
more ionic charges –1.67 +3.00, [611].

Using the symmetry analysis in MgO crystal [612] for the Bloch states of the four
upper valence bands one obtains the q-basis of symmetry

(a, a1g + t1u) (9.62)

with the oxygen atom in the Wyckoff position a. Electronic states of these energy
bands are originated certainly from 2s, 2p-O atomic states. The points on the bond
line of the atoms Mg and O (Wyckoff position e) have the symmetry C4v. Even the
one-dimensional IR a1 of this group induces in the group Oh the six-dimensional
representation a1(C4v) ↑ Oh = a1g + eg + t1u(Oh). This means that there exists no
LWO centered on this bond that could generate a four-sheeted upper valence energy
band in the MgO crystal. One can say the same about the LWOs centered on the
Wyckoff position f (x,x,x) with site group C3v: they could engender an eight-sheeted
energy band.

Therefore, there is no other alternative but (9.62) for the BR corresponding to
valence bands in the MgO crystal. For a reasonable interpretation of bonding in the
crystal only the functions W̃1(r) = W̃ (a,a1g)(r), W̃i(r) = W̃

(a,t1u)
1 (r), i = 2, 3, 4 are

suited. They are centered on an oxygen atom and ri = rO, Q
(O)
i = −2, Ii = Pi =

1,Ki = 0(i = 1, 2, 3, 4). The centroid positions and the values of other numerical
characteristics of chemical bonding are not changed evidently for any linear combi-
nation of the functions W̃i(r), i = 1, 2, 3, 4 in the space of IR t1u. The charges on
atoms are: +2(Mg), –2(O) strongly. Such a picture of chemical bonding in MgO crys-
tal corresponds to the accepted one for this ionic system. Nevertheless, it is necessary
to introduce such numerical characteristics of LWOs that could describe the small
covalent part of Mg-O bonding and relative change of this part in the row MgO–
CaO–SrO–BaO.

This discussion demonstrates the importance of the symmetry analysis in the
procedure of the generation of LWOs in crystals. The theory of space group BR gives
a powerful tool to determine the centroid positions of LWOs.

(1) If this centroid is at the symmetry point in the direct lattice, its position
is defined exactly by the BR theory. If this position is occupied by an atom, the
corresponding LWO describes an ionic bond or a lone pair. This is the case for the
MgO crystal and the LWOs W̃

(d,eu)
1 and W̃

(d,eu)
2 in the SrZrO3 crystal. If it is a

middle point between two atoms, the corresponding LWO describes a pure covalent
bond. This is the well-known example of the Si crystal.

(2) If the centroid is located on a symmetry line (possible site groups are
C6v, C4v, C3v, C2v, C6, C4, C3, C2), its exact position cannot be defined by the BR
theory, and numerical calculations are necessary. The corresponding LWO describes a
two-atom partly covalent bond. This is the case of the LWO W̃ (e,a1) (site group C4v)
in the SrZrO3 crystal with the following numerical characteristics of the bond:

IO−Zr = PO−Zr = 0.54,KO−Zr = 0.46, Q(O) = −1.54, Q(Zr) = −0.46

(3) If the centroid is located at a symmetry plane (possible site group is Cs), its
exact position cannot be defined by the BR theory, and numerical calculations are
also necessary. The corresponding LWO describes a three-(and more)-atom bond.
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As we saw in the example of SrZrO3 crystal the absolute atomic-charge values differ
in the different approaches to their calculation. Do different approaches (including
those based on PW calculations) reproduce correctly at least the relative changes in
the chemical bonding in crystals with analogous structure? This point is discussed in
the next section.

9.1.6 Projection Technique for Population Analysis of Atomic Orbitals.
Comparison of Different Methods of the Chemical-bonding Description
in Crystals

At present, the electronic structure of crystals, for the most part, has been calculated
using the density-functional theory in a plane-wave (PW) basis set. The one-electron
Bloch functions (crystal orbitals) calculated in the PW basis set are delocalized over
the crystal and do not allow one to calculate the local characteristics of the electronic
structure. As a consequence, the functions of the minimal valence basis set for atoms
in the crystal should be constructed from the aforementioned Bloch functions. There
exist several approaches to this problem. The most consistent approach was considered
above and is associated with the variational method for constructing the Wannier-
type atomic orbitals (WTAO) localized at atoms with the use of the calculated Bloch
functions. Another two approaches use the so-called projection technique to connect
the calculated in PW basis Bloch states with the atomic-like orbitals of the minimal
basis set.

The first approach (A) consists in using the technique for projecting the Bloch
functions calculated in the PW basis set onto atomic orbitals of the minimal valence
basis set for free atoms [617, 618]. Within this procedure the atomic-like functions
are generated using the pseudopotentials chosen for the PW band structure calcula-
tions. Such functions are neither orthonormal nor complete in the sense of spanning
the space of the occupied states. To measure how completely the localized atomic
orbitals represent the eigenstates a so-called spilling parameter is introduced, which
varies between one and zero. If the spilling parameter is nonzero a special projection
procedure is needed to correctly define the density-operator for the incomplete basis
of atomic-like functions. Since this constructed localized basis is not orthogonal, as in
the case of LCAO calculations both Mulliken and Löwdin schemes may be used.

The second approach (B), proposed for constructing quasiatomic minimal basis
orbitals (QUAMBO) in [609] is also closely related to the projection technique (being
in fact a projection reverse to the first one): the projection of a given minimal atomic
basis is made on the Bloch states obtained in the PW calculations. This method
can be regarded as a sort of localization procedure, and it describes the electronic
structure of periodic solids in terms of localized quasiatomic minimal basis orbitals
(QUAMBO).

Both variants of the projection technique were used for calculations of the local
characteristics in the bulk of crystals [601,609,618] and, in a number of cases, led to
results that are rather difficult to explain from the chemical standpoint. For example,
the calculated charge of Mg atom in the ionic crystal MgO equals 0.76 [601]. Note
that the construction of the WTAOs from the Bloch functions obtained in the PW
basis set permitted almost ionic charges at atoms in the MgO crystal to be derived,
see Table 9.14. However, it should also be noted that comparison of the data available
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in the literature on different characteristics obtained by the projection technique is
complicated because the crystal orbitals are calculated with different variants of the
DFT method, different pseudopotentials for excluding the core electrons from con-
sideration, different atomic basis sets, etc. In order to interpret the results obtained
by the projection technique, it is necessary to perform a comparative analysis of the
density matrices (in the atomic orbital basis set) determined by the two aforemen-
tioned projection variants. In [619] such an analysis is carried out for the first time,
and a simplified version of technique B was proposed to avoid cumbersome calcula-
tions of a large number of vacant crystal orbitals. Thus, in both variants A and B
of the projection technique when the atomic orbital set for free atoms or free ions
is assumed to be known, the population analysis can be carried out without invok-
ing vacant crystal orbitals. We refer the reader for the mathematical details of this
analysis to the publications [611, 619]. Here, we discuss only the numerical results,
obtained in these studies for the local properties of electronic structure of crystals
in both projection techniques and compare them with those obtained in traditional
AO and WTAO Mulliken population analysis, including Bloch functions of vacant
states. The comparison is also made with the results obtained with localized Wannier
functions, generated only for the valence bands by method [63].

In Table 9.18 we give the local properties of electronic structure (atomic charges
QA, covalencies CA, bond orders WAB and overlap populations RAB) calculated by
projection techniques A and B for the crystals with different nature of chemical bond-
ing: Si, SiC, GaAs, MgO, cubic BN, and TiO2 with a rutile structure, R0 is the
nearest-neighbor distance, given in Å.

Table 9.18. Local properties of electronic structure in projection technique, [619]

Crystal R0 QA CA spl (10−3) WAB RAB

A B A B A B A B A B
MgO 2.107 1.609 1.607 0.630 0.632 1.4 1.1 0.112 0.113 0.095 0.096
BN 1.565 0.681 0.715 3.292 3.263 3.7 3.0 0.804 0.800 0.709 0.700
TiO2 1.951 1.730 1.739 3.474 3.459 2.2 1.4 0.552 0.550 0.305 0.302
Si 2.364 0.000 0.000 3.823 3.801 9.6 6.5 0.894 0.889 0.756 0.744
SiC 1.901 1.260 1.284 3.497 3.472 8.9 5.3 0.831 0.827 0.760 0.751
GaAs 2.451 0.361 0.380 3.231 3.202 1.8 1.8 0.768 0.765 0.636 0.629

The crystal orbitals were calculated by the DFT method in the plane-wave basis set
with the CASTEP code [377] in the GGA density functional. A set of special points
k in the Brillouin zone for all the crystals was generated by the supercell method
(see Chap. 3) with a 5 × 5 × 5 diagonal symmetric extension, which corresponds to
125 points. In all cases, the pseudopotentials were represented by the normconserving
optimized atomic pseudopotentials [621], which were also used to calculate the atomic
potentials of free atoms. In the framework of both techniques (A, B), the population
analysis was performed in the minimal atomic basis set; i.e. the basis set involved
only occupied or partially occupied atomic orbitals of free atoms. It is well known
that the inclusion of diffuse vacant atomic orbitals in the basis set can substantially
change the results of the population analysis. For example, if the Mg 2p vacant atomic
orbitals are included in the basis set, the charge calculated by technique A for the Mg
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atom in the MgO crystal decreases from 1.61 to 1.06. Consequently, the inclusion of
the Mg 2p functions leads to a considerable decrease in the ionic component of the
bonding and, correspondingly, to an increase in the covalence of atoms. Chemically,
it is difficult to explain this high covalency of the bonding in the MgO crystal.

The spilling parameter spl values are also given in Table 9.18, which characterize
the accuracy of the projection of occupied crystal orbitals onto the space of the atomic
orbitals (technique A) and the accuracy of the projection of atomic orbitals onto the
Bloch functions (technique B).

The atomic charges obtained by technique A can be compared with those calcu-
lated in [601] with the use of a similar method. The atomic charges and the spilling
parameters presented in [601] are considerably smaller than those in the calculation
discussed. In our opinion, the main factor responsible for this disagreement is the
difference between the atomic basis sets that are used for the projection. This as-
sumption is confirmed by the following fact noted in [601]. The removal of the Si d
vacant orbital from the atomic basis set leads to an increase in the charge at the Si
atom in the SiC crystal from 0.66 to 1.25 and an increase in the spilling parameter
from 2×10−3 to 9×10−3. It follows from Table 9.18 that, in calculations in the mini-
mal basis set (without the Si d function), these quantities are equal to 1.26×10−3 and
8.9× 10−3, respectively, which agrees well with the results obtained in [601] (without
the Si d function). It is evident that an increase in the size of the basis sets should
result in a decrease in the spilling factor in method A, because this is accompanied by
an increase in the space of the atomic orbitals onto which the occupied crystal orbitals
are projected. However, we believe that it is incorrect to decrease the spilling param-
eter in the population analysis of the atomic orbitals by increasing the atomic basis
sets, as was actually done in [601]. For example, if the basis set of the atomic orbitals
is increased to a complete set, the spilling coefficient can be reduced to zero; how-
ever, the population analysis of the atomic orbitals in this basis set loses all physical
meaning.

For the purely covalent cubic Si crystal, the results obtained by technique B can
be compared with the data reported in [609], for Si–Si bond order WAB = 0.885 and
the Mulliken overlap population is RAB = 0.756. As can be seen from Table 9.18, the
results obtained by technique B (WAB = 0.889, RAB = 0.744) are very close to those
given in [609]. The insignificant differences can be associated with the use of different
variants of the DFT method in the plane-wave basis set. Note that technique B used
in [619] is a simpler modified variant of the method proposed in [609] and does not
deal with the vacant Bloch states.

It can be seen from Table 9.18 that the data calculated by the techniques A and
B are in good agreement. It should only be noted that the ionic component of the
bonding (QA) in technique B is somewhat larger than the analogous component in
technique A. Correspondingly, the covalent component (CA,WAB , RAB) is somewhat
smaller in technique B. Moreover, the spilling parameters in technique B are regularly
smaller in magnitude.

In Table 9.19 we compare the local characteristics of the electronic structure de-
termined for the TiO2 crystal with the use of the projection technique and those
obtained in an earlier study [623], in which the Wannier-type atomic functions of
the minimal valence basis set of titanium and oxygen atoms were constructed by the
variational method. In [623], the Bloch functions were calculated by the DFT method
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Table 9.19. Local characteristics of the electronic structure of the TiO2 (rutile) crystal*

Method QTi CTi WTi−O VTi

A 1.79 3.36 0.51 4.13
B 1.80 3.34 0.51 4.12
LCAOM 1.78 3.30 0.52 4.08
LCAOL 1.04 4.29 0.66 4.52
WTAOM 1.98 3.16 0.51 4.11
WTAOL 1.92 3.23 0.52 4.12

*LCAOM(L) – traditional Mulliken (Löwdin) population analysis with basis set used in
LCAO calculations; WTAOM(L) – Mulliken (Löwdin) population analysis with WTAO basis
set

in the LCAO approximation with the CRYSTAL code [23] and the atomic pseudopo-
tentials taken from [484]. It follows from Table 9.19 that the local characteristics of
the electronic structure of the TiO2 crystal are close for two projection variants (tech-
niques A, B) and differ only slightly from the results of the Mulliken (not Löwdin!)
population analysis performed in the basis set of the atomic orbitals at the LCAO
level. It is seen that the traditional Löwdin population analysis with the initial LCAO
basis set containing diffuse atomic functions leads to an overestimated covalence of
chemical bonding.

When analyzing the populations in the WTAO basis set, the Löwdin orthogonal-
ization of the basis set leads to insignificant differences as compared to the results of
the Mulliken population analysis (due to the localized character of the Wannier-type
atomic functions). The Löwdin atomic charges and the atomic covalences correspond
to a somewhat lower degree of ionicity. An important conclusion can be drawn from
comparison of WTAO results with those obtained in the projection technique: de-
spite the use of substantially different basis sets for calculating the crystal orbitals
(plane waves in the projection technique, LCAO in the WTAO method), the local
characteristics of the rutile electronic structure obtained within the two approaches
are in good agreement. Meanwhile, the results of traditional population analysis differ
from those obtained by the projection technique (see Table 9.19). This difference is
demonstrated also in Table 9.20, where for SrTiO3 and SrZrO3 crystals the results
of traditional Mulliken population analysis are compared with those obtained by the
projection technique (both crystals were taken in cubic perovskite structure with the
space group Pm3m.

The results, given in Table 9.20, were obtained by the DFT PBE method in LCAO
and PW calculations (the details of the LCAO basis set and other parameters choice
can be found in [611]). In the projection technique the atomic orbitals were numerically
calculated for occupied states of free atoms using the same pseudopotentials as in
the PW band-structure computations. As can be seen in Table 9.20, the results of
projection-techniques application, unlike the traditional population analysis, exhibit
the correct trends in the chemical-bonding change when the Ti atom is replaced by
the Zr atom in the same structure (the experimental lattice constants were used for
both cases). The population analysis based on the projection technique shows that
ionicity of chemical bonds M–O (M= Ti, Zr) in SrZrO3 is larger than in SrTiO3.
This is in agreement with the experimental data on the bandgaps in SrTiO3 (3.2
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Table 9.20. Local properties of electronic structure of SrMO3 crystals (M=Ti, Zr) in Mul-
liken population analysis, projection techniques and WTAO population analysis [611]

Quantity Mulliken Projection A Projection B WTAO

LCAO PW PW LCAO

SrTiO3 SrZrO3 SrTiO3 SrZrO3 SrTiO3 SrZrO3 SrTiO3 SrZrO3

Q(Sr) 1.85 1.85 1.83 1.80 1.83 1.80 2.00 2.00
Q(M) 2.24 2.02 1.46 1.63 1.46 1.63 2.54 3.00
Q(O) –1.36 –1.29 –1.09 –1.14 –1.09 –1.14 –1.51 –1.67
WSr−O 0.036 0.033 0.025 0.026 0.026 0.027 0.00 0.00
WM−O 0.461 0.496 0.626 0.607 0.663 0.606 0.389 0.269

eV) and SrZrO3 (5.9 eV) and the relative Pauling electronegativities of Ti (1.4) and
Zr (1.2) atoms. Both variants of the projection approach give very close results for
the local properties of electronic structure, possibly because the projection method
A produces almost orthogonal crystalline orbitals. From Table 9.20 one can conclude
that the traditional Mulliken population analysis within the framework of LCAO
calculations does not correctly reproduce the relative ionicity of chemical bonding
in SrTiO3 and SrZrO3 crystals, while the WTAO-based populations and projection-
techniques application allows one to reflect properly the more ionic nature of SrZrO3

in comparison with SrTiO3.
Table 9.21 gives the localization indices of Wannier functions in SrTiO3 and

SrZrO3 crystals calculated for the valence bands by the method used in [63].

Table 9.21. Localization indices of localized Wannier functions in SrTiO3 and SrZrO3

crystals [611]

Crystal LWF Wi(r) λi pi qO qOs qOpx qOpy qOpz

SrTiO3 a (i=1) 1.145 0.978 0.934 0.191 0.731 0.011 0.002
b (i=2) 1.145 0.978 0.934 0.191 0.011 0.731 0.002
c (i=3) 1.252 0.627 0.890 0.311 0.064 0.064 0.453
d (i=4) 1.230 0.670 0.890 0.296 0.117 0.117 0.373

SrZrO3 e (i=1) 1.183 0.999 0.918 0.136 0.005 0.778 0.000
f (i=2) 1.183 0.999 0.918 0.136 0.778 0.005 0.000
g (i=3) 1.302 0.610 0.870 0.343 0.064 0.064 0.403
h (i=4) 1.300 0.610 0.870 0.341 0.066 0.066 0.400

Localized Wannier functions (LWFs) have been calculated for three upper valence
bands in SrTiO3 and SrZrO3, represented mainly by O 2p, Sr 4p, and O 2s atomic
states (in the case of SrZrO3 the last two bands overlap considerably). A total of
15 crystalline orbitals have been used to generate, correspondingly, 15 LWFs per
primitive unit cell: in both crystals under consideration, three oxygen atoms occupy
the same Wyckoff positions, and four LWFs can be attributed to each oxygen atom.
It was found by calculations with CRYSTAL03 code [23] that the centroids of four
functions are positioned near the center of one oxygen (at distances of about 0.3 Å).
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Table 9.21 presents the following localization indices: the Mulliken population of LWF
(9.46) qO due to the oxygen atom and corresponding contributions from 2s and 2p-
oxygen functions. The atomic delocalization index of LWF

λi =

[∑
A

∑
g

(qg
Ai)

2

]−1

(9.63)

is a measure of the extent of the LWF in terms of the number of “contributing” atoms.
This index is close to 1.0 for much localized LWF, and it is > 1.0 for more diffuse
LWFs. The polarization fraction, (9.49) for all LWFs is also given.

Figure 9.3 presents the fragment of crystal containing four primitive unit cells to
show the axes orientation: the oxygen atom is positioned in the center and the two
nearest Ti or Zr atoms lie on the z-axis.

The counter density maps of the obtained LWFs are shown in Fig. 9.4.
As is well seen from Fig. 9.4 and Table 9.21 (functions a, b and e, f) two of the

four LWFs for each crystal are perpendicularly oriented toward the M–O–M line and
lie along x- (Fig. 9.4, a and e) and y- ( Fig. 9.4, b and f) axes, respectively.

Fig. 9.3. Local environment of oxygen atom in cubic perovskites SrMO3 (M= Ti, Zr).

The polarization fractions of LWFs a, b for SrTiO3 and e, f for SrZrO3 are very
close to 1.0; i.e., these LWFs practically represent the electron lone pairs of oxy-
gen ions O2− with a predominant contribution of oxygen 2px- and 2py-orbitals. Two
other LWFs (see Fig. 9.4 c, d, g and h) are directed along the z-axis. As can be seen
from the populations (Table 9.21), they closely correspond to hybrid spz orbitals of
oxygens. The polarization fractions are substantially less than 1.0 for these two or-
bitals, revealing the rather strong covalent character of Ti (Zr)–O bonds in both crys-
tals (these covalency effects are well known for transition-metal–oxygen compounds).
Thus, localized Wannier functions, generated with the inclusion of only the valence-
band states, appear to be a useful tool in analyzing the electronic distribution and
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chemical bonds in solids. It should be noted that the LWFs obtained are not en-
tirely symmetry-agreed: they do not transform via the representations of the oxygen
atom site-symmetry group under the point-symmetry operations because there is no
explicit symmetry constraints in the localization procedure [63]. Further symmetriza-
tion of WTAOs is desirable to correlate the results with those qualitatively known
in quantum chemistry. This symmetrization procedure was discussed in Sect. 9.1.5
and allows the LWFs centered on oxygen atoms and transforming over eu and a1u

irreducible representations of the oxygen site-symmetry group D4h to be obtained.
The symmetrization of LWF is considered in general form in [109].

Concluding this section we note that the projection technique with PW calcu-
lations gives reasonable results for local properties of electronic structure, close to
those obtained in LCAO calculations after using WTAO population analysis. In gen-
eral, WTAO results correspond to the more ionic bonding. The useful information
about the atomic nature of the band states is obtained in the PW calculations of
solids from the orbital and site decompositions of the densities of states (DOS). As
an example, we refer to the DFT PW calculations [620] of transparent conductive
oxides In4Sn3O12 and In5SnSbO12 – complicated rhombohedral structures with 19
atoms in the primitive unit cell. It was found by DOS analysis that the tops of the
valence states of both materials are formed by oxygen 2p states, whereas the bottom
of the conduction bands are due primarily to the Sn 5s electrons. For such crystals
LCAO calculations with a posteriori WTAO generation or the projection technique
application would be very cumbersome.

The analysis of DOS and other one-electron properties of crystals in the LCAO
calculations is discussed in the next section.

9.2 Electron Properties of Crystals in LCAO Methods

9.2.1 One-electron Properties: Band Structure, Density of States,
Electron Momentum Density

The local properties of chemical bonding in crystals considered above are defined
by the electron-density distribution in real space described by a one-electron density
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matrix (DM), see (4.125)-(4.127). The latter is calculated self-consistently for the finite
set of L discrete k-points in BZ and corresponds to the cyclic cluster of L-primitive
unit cells modeling the infinite crystal:

ρµν(Rn) =
1
L

M∑
i=1

L∑
j=1

exp(−ikRn)Ciµ(kj)C∗
iν(kj)ni(kj) (9.64)

The total number of bands M in (9.64) equals the number of AOs associated with
the primitive unit cell. The one-electron energy levels form energy bands consisting of
L levels in each band. Therefore, each energy band can allocate 2 × L electrons; if in
the unit cell there are n electrons, and the bands do not cross, the lowest n/2 bands are
occupied and are separated from the empty bands. In this case the occupation numbers
in (9.64) are ni = 2, 0 for the occupied and empty bands, respectively (insulators and
semiconductors). However, if n is odd, or if the valence and conduction bands cross,
more than n/2 bands are partially occupied (metal).

The eigenvalue spectrum of an infinite periodic system does not consist of discrete
energy levels as the wavevector k changes continuously along the chosen direction of
the BZ. The DM of an infinite crystal is written in the form where the summation
over the discrete k-vectors of the BZ is replaced by the integration over the BZ. In the
LCAO approximation written for the cyclic-cluster (4.126) for DM in the coordinate
space is replaced by

ρµν(Rn) =
M∑
i=1

ρ(i)
µν(Rn)

=
1

VBZ

M∑
i=1

∫
BZ

exp(−ikRn)Ciµ(k)C∗
iν(k) (εF − εi(k)) dk (9.65)

where ρ
(i)
µν(Rn) is the contribution of the ith energy band.

For the infinite crystal at each cycle of the SCF process, an energy εF (the Fermi
energy) must be determined, such that the number of one-electron levels with energy
below εF is equal to the number of electrons (or, in other words, the number of filled
bands below εF is equal to half the number of electrons in the unit cell). The Fermi
surface is the surface in reciprocal space that satisfies the condition εi(k) = εF . By
limiting the integration over the BZ to states with energy below εF , a Heaviside step
function θ(εF − ε) excludes the empty states from the summation over the energy
bands. In fact, the band structure of the infinite crystal is obtained after the cyclic-
cluster self-consistent calculation by the interpolation of the one-electron energy levels
considered as continuous functions ε(k) of the wavevector. The band structure of solids
is an important feature, defining their optical, electrostatic and thermal properties.
Both the electron charge distribution and the band structure are defined by the self-
consistent DM of a crystal.

As we have seen, two binary oxides – MgO in sodium chloride structure and TiO2

in rutile structure (see Chap. 2 for descriptions of these structures) – differ significantly
in the character of chemical bonding, which is due to the electron-density distribution
being much different in them. We discuss now the differences in the band structures
of these crystals.
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The electronic structures of both compounds have been well studied experimen-
tally. The experimental data show that the MgO crystal is a wide-bandgap insulator
(Eg = 7.8 eV ); titanium dioxide TiO2 in the rutile structure is a semiconductor with
an experimental bandgap of approximately 3 eV. These differences are reproduced in
the band strucrure of these two binary oxides, calculated in [623] by HF and LDA
LCAO methods and shown in Figures 9.5 and 9.6, respectively. The details of the AO
basis-set choice and BZ summation can be found in [623].
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Fig. 9.5. Band structure and DOS of MgO crystal, [623]: (a) HF LCAO method; (b)
DFT(LDA) LCAO method

In MgO (in accordance with the results of other calculations), the two highest
valence bands are the oxygen s- and p-like bands, respectively, whereas the conduction
bands are more complicated. The upper valence bands in TiO2 are also oxygen s-
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Fig. 9.6. Band structure and DOS of rutile TiO2 crystal, [623]: (a) HF LCAO method; (b)
DFT(LDA) LCAO method

and p-like bands; however, they consist of 4 and 12 sheets, respectively, because the
primitive cell of titanium oxide contains four oxygen atoms.

The lowest conduction band in TiO2 consists of 10 branches formed by 3d-states of
two titanium atoms and is noticeably separated in energy from the upper conduction
bands. The symmetry of the one-electron states can be found using the BR theory of
space groups and data on the crystalline structures (see Chap. 3).

Evidently the symmetry of band states does not depend on the basis choice for
the calculation (LCAO or PW); the change of basis set can only make changes in the
relative positions of one-electron energy levels.
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An important parameter in the band theory of solids is the Fermi-level energy (see
Figures 9.5 and 9.6), the top of the available electron energy levels at low tempera-
tures. The position of the Fermi level in relation to the conduction band is a crucial
factor in determining electrical and thermal properties of solids. The Fermi energy
is the analog of the highest-occupied MO energy (HOMO) in molecules. The LUMO
(the lowest unoccupied MO) energy in molecules corresponds to the conduction-band
bottom in solids. The HOMO-LUMO energy interval in a solid is called the forbidden
energy gap or simply bandgap.

Depending on the translation symmetry of the corresponding Bloch states the
gap may be direct or indirect. In HF and LDA calculations of both crystals under
consideration the bandgap is direct, i.e. the one-electron energies at the top of the
valence band and the bottom of the conduction band belong to the same Γ -point of
the BZ (this result agrees both with the experiment and other band-structure calcula-
tions). It is seen that the HF bandgap in both crystals is essentially overestimated and
decreases in LDA calculations mainly due to the lowering of the conduction-band bot-
tom energy (see Chap. 7). The influence of the correlation effects on the valence-band
states is smaller.

It is also seen that the oxygen 2p bandwidth in MgO is smaller than that in
TiO2. The bandwidth is a measure of dispersion in the k-space and depends on the
magnitude and the range of interactions within the crystal: for the more covalent
rutile crystal the oxygen-oxygen interactions are stronger. The core bands of both
crystals (not shown on the figures) are separated by a large energy gap from the
valence bands and are completely flat due to the high localization of core states near
the atomic nuclei.

The Fermi energy of a crystal with n electrons in the primitive unit cell is defined
from the condition

n = 2
M∑
i=1

εF∫
−∞

1
VB

∫
BZ

θ(ε − εi(k))dk =

εF∫
−∞

n(ε)dε =
∑

i

εF∫
−∞

ni(ε)dε (9.66)

where n(ε) is the total density of states (DOS) per unit energy. DOS is an important
quantity calculated for crystals. The total DOS can be expressed as the sum of con-
tributions ni(ε) from individual energy bands, see (9.66). The total DOS definition is
independent of the basis set choice (PW or LCAO); the product ni(ε)dε defines the
number of states with energy in the interval dε. Each energy band spans a limited
energy interval between the minimal and maximal one-electron energies εmin, εmax

so that
∫ εmax

εmin
n(ε)dε gives DOS in the corresponding energy interval.

The connection between the electronic structure of a crystal and the one-electron
states of the constituent atoms is given by the projected density of states (PDOS),
associated with the separate AOs, their shells or individual atoms.

Let us rewrite the total DOS as

n(ε) =
M∑
i=1

ni(ε) =
1

VB

M∑
i=1

∫
BZ

f i(k)δ(ε − εi(k))dk (9.67)

The weighting function f (i)(k) in (9.67) chosen as

f (i)(k) = Ciµ(k)C∗
iν(k) exp(−ikRn) (9.68)
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defines PDOS associated with AO µ in the reference cell and AO ν in the cell with
the translation vector Rn. After summation over band index i and integration up to
εF PDOS (9.68) gives the density matrix elements (9.65).

According to Mulliken population analysis, the DOS projected onto a given set of
AOs {λ} (belonging to the given shell or to the whole atom), is defined by the weight
function

f
(i)
{λ}(k) =

∑
µ∈{λ}

∑
ν

Ciµ(k)C∗
iν(k)Sµν(k) (9.69)

where the overlap integral Sµν(k) is defined by (4.123).
Let the set {λ} consist of one AO from the reference cell. The summation of (9.69)

over the direct lattice translations Rn and integration over BZ gives the orbital DOS

nµ(ε) =
1

VBZ

∑
i

∑
ν

∑
Rn

∫
BZ

Ciµ(k)C∗
iν(k) exp (ikRn) Sµν(k)δ(ε − εi(k))dk (9.70)

The DOS of an atom A nA(ε) and the total DOS ntot(ε) are caluculated from the or-
bital DOS:

nA(ε) =
∑
µ∈A

nµ(ε); ntot(ε) =
∑
A

nA(ε) (9.71)

The total DOS and PDOS give rich information on the chemical structure of a system,
connecting the calculated band structure with the atomic states. We demonstrate this
by considering total and projected DOS for binary oxides MgO, TiO2 and ternary
oxides SrTiO3 and SrZrO3 with cubic perovskite structure (see Figures 9.5–9.8).
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Fig. 9.7. Full and partial DOS in (a) SrTiO3 and (b) SrZrO3 crystals

The analysis of total and partial DOS demonstrates that in all the oxides under
consideration the upper valence band is predominantly formed by the O 2p states. It
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method–(a),(d); hybrid HF-DFT(PBE0) LCAO method–(b),(e); DFT(PBE) LCAO method–
(c),(f).

can also be seen that Mg 3s, Ti 3d and Zr 4d states make the dominant contribution
to the bottom of the conduction band.

As is seen from Fig. 9.8, the inclusion of correlation effects moves the valence and
conduction bands to the higher and lower energies, respectively, which decreases the
bandgap. In more ionic stronzium zirconate the energy bands are narrower than in
less-ionic strontium titanate.

The ground-state electron-charge density in a crystal can be expressed as

ρ(r) =
∑
µν

∑
Rn

∑
Rm

ρµν(Rn − Rm)χµ(r − Rn)χν(r − Rm) (9.72)

and reproduces the essential features of the electron-density distribution near atomic
nuclei and along interatomic bonds. For each r the sums over Rn and Rm are
restricted to those direct lattice vectors such that the value of χµ(r − Rn) and
χν(r − Rm) are nonnegligible.
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The total electron-density maps provide a pictorial representation of the total
electronic distribution and are obtained by calculation of the charge density in a grid
of points belonging to some planes. More useful information is obtained by consider-
ing difference maps, given as a difference between the crystal electron-density and a
“reference” electron density. The latter is a superposition of atomic or ionic charge
distributions.

Fig. 9.9 shows the total and difference maps for Cu2O crystal, obtained in HF
LCAO calculations [622].

Fig. 9.9. Electron-density maps obtained for Cu2O on a (110) plane, [622]. (a) Total elec-
tron density. (b) Density difference maps, bulk minus neutral atom superposition. Values
corresponding to neighboring isodensity lines differ by 0.01 e/Bohr3. The full and broken
curves in (b) indicate density increase and decrease, respectively.

Two important quantities that require an integration involving ρ(r) are the elec-
trostatic potential and the electric field, [324]. In particular, maps of the electrostatic
potential created by electrons and nuclei at a crystal surface may be useful for gath-
ering information about reaction paths and active sites of electrophilic or nucleophilic
chemical processes at the surface. As concerns the electric field, it may be of inter-
est to calculate the electric-field gradient at the location of nuclei with a nonzero
nuclear quadrupole moment, since comparison with experimental data is possible in
such cases.

Three functions may be computed that have the same information content but
different use in the discussion of theoretical and experimental results [23]: the electron
momentum density itself (EMD) ρ(p); the Compton profile (CP) function J(p); the
autocorrelation function, or reciprocal space form factor, B(r).

Let χµ(p) be defined as the Fourier transform of AO χµ(r) belonging to atom A

χµ(p) =
∫

exp(ipr)χµ(r)dr (9.73)

and sµ is the fractional coordinate of atom A in the reference cell.
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EMD is defined as the diagonal element of the six-dimensional Fourier transform
of the one-electron density matrix from coordinate to momentum space:

ρ(p) =
∑
µν

∑
Rn

ρµν(Rn) exp (−ip(Rn + sµ − sν))χµ(p)χν(p) (9.74)

The Compton profile function is obtained by 2D integration of the EMD over a plane
through and perpendicular to the direction

J(p) =
∫

ρ(p + p′
⊥)dp′

⊥ (9.75)

after indicating with p′
⊥ the general vector perpendicular to p.

It is customary to make reference to CPs as functions of a single variable p, with
reference to a particular direction <hkl> identified by a vector e = (ha1 + ka2 +
la3)/|ha1 + ka2 + la3|. We have

J<hkl>(p) = J(pe) (9.76)

The function J<hkl>(p) is referred to as directional CPs. The weighted average of
the directional CPs over all directions is the average CP. In the so-called impulse
approximation, J<hkl>(p) may be related to the experimental CPs, after correction
for the effect of limited resolution [23].

Once the directional CPs are available, the numerical evaluation of the correspond-
ing autocorrelation function, or reciprocal-space form factor, B(r) is given by the 1D
Fourier transform:

B<hkl>(r) =
1
π

∞∫
−∞

J<hkl>(p) exp(ipr)dp (9.77)

The structural and electronic properties of Cu2O have been studied in [622] using
the HF LCAO method and a posteriori density-functional corrections. The electronic
structure and bonding in Cu2O were analyzed and compared with X-ray photoelec-
tron spectroscopy spectra, showing a good agreement for the valence-band states. The
Fourier transform of the ground-state charge density of a crystalline system provides
the X-ray structure factors of the crystal, which can be determined experimentally
by X-ray diffraction. To check the quality of the calculated electron density in Cu2O
crystal, structure factors have been calculated in [622], showing a good agreement
with the available experimental data, see Table 9.22.

9.2.2 Magnetic Structure of Metal Oxides in LCAO Methods:
Magnetic Phases of LaMnO3 and ScMnO3 Crystals

The crystalline transition metal oxides TiO2, SrTiO3, SrZrO3 considered above are
classified as d0 insulators with quite wide bandgap, being diamagnetic with no un-
paired electrons. This means that these crystals have no inherent magnetization, but
when subjected to an external field develop magnetization that is opposite to the field
(the transition atom spins tend to be oriented in the direction opposite to the field).
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Table 9.22. Structure factors for Cu2O calculated with the periodic HF LCAO method,
[622]. Experimental values are obtained from X-ray data

hkl Fcalc Fexpt

110 13.52 12.42
111 94.78 93.70
200 79.48 78.98
211 9.10 8.53
220 84.34 82.52
222 61.07 59.40
310 6.94 6.56
311 69.22 67.49
330 4.63 4.71
331 55.57 53.78
332 4.39 4.24
333 46.86 45.42
400 65.05 63.09
411 4.80 4.71
420 49.72 48.06
422 53.90 52.18

As we saw in the preceding subsection, the bandgap in d0 insulators is between a
filled band of bonding orbitals, with predominately oxygen 2p atomic character, and
an empty metal d band of antibonding orbitals.

The transition-metal oxides with dn ions (such as NiO, Cr2O3, LaMnO3) form a
class of compounds with the localized “impurity-like” d-levels [624]. These systems
are known as Mott–Hubbard or magnetic insulators (exhibit magnetic order in the
absence of an external field); their magnetic properties indicate the unpaired electrons
expected for the appropriate dn open-shell configuration. d − d transitions in these
crystals appear due to the crystal-field splitting and give rise to optical absorptions,
with only quite weak perturbations from those expected for isolated dn ions. These
oxides have narrow upper valence bands (1–2 eV), because of small overlap between
the metal d and oxygen 2p orbitals, so that their local electronic structure can be
described in terms of atomic-like states. The fully ionic O2− configuration is not
exactly the state of an oxygen atom in a crystal, and O− mobile and correlated
configuration (oxygen holes with 2p5 configuration) has to be included. The weak
interactions between magnetic moments of dn-ions give rise to magnetic ordering
(most commonly antiferromagnetic at low temperatures). At the same time, these
compounds are good insulators with bandgaps that may be as large as those in some
d0 compounds. Like the latter, however, the magnetic insulators are susceptible to
nonstoichiometry, and this may give rise to semiconductive properties and strong
optical absorptions. For example, NiO is green and highly insulating when pure, but
easily takes up excess oxygen to become black and semiconducting.

The magnetic insulators have an the extraordinary range of structures and prop-
erties [625] and provide an excellent case study in quantum chemistry of solids. The
existence of a magnetic ground state is a many-body effect caused by correlated
electron–electron interactions. The need for the inclusion of electron-correlation ef-
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fects has limited the majority of applications to solids by DFT methods. We noted
in Chap. 7 that due to the strong Coulomb correlations DFT methods are in serious
trouble for systems with localized electrons as these methods overestimate delocaliza-
tion of the electron density due to nonexact cancelation of the electron self-interaction.
DFT results in many cases are in disagreement with experiment. For example, when
the LDA is used to describe the magnetically ordered insulating ground states of
NiO, a nonmagnetic metallic state is obtained [626]. Initially, this was thought to
be a failure of the one-electron approximation itself, meaning that such highly cor-
related systems could not be described using band theory. It is now apparent that
this is not case [627]: the failure of DFT was due to its approximate treatment of the
exchange interaction. Analyzing different approaches, introducing better descriptions
of the onsite exchange interactions we concluded in Chap. 7 that LCAO calculations
with hybrid DFT functionals can play the same role in quantum chemistry of solids
as DFT+U and SIC DFT calculations (with PW and LMTO basis) in solid-state
physics. This is demonstrated by the results of recent numerous LCAO (UHF and
hybrid DFT) calculations of the properties of magnetic insulators [568].

The magnetic properties of different oxides have been investigated in the LCAO
approximation: MO (M=Ni, Mn), [628], M2O3(M=Cr, Fe), [629, 630], Mn3O4, [631],
CuGeO3, Ag2Cu2O3, [632], high-Tc superconductor parent compounds A2CuO2X2

(A=Ca,Sr, X=F, Cl), [633]. The main parameter used to quantify the magnetic prop-
erties is the exchange coupling constant between the paramagnetic centers with total
spins Si and Sj that is defined through the phenomenological Heisenberg–Ising Hamil-
tonian with total spin operators Ŝ:

Ĥ = −
∑
i>j

J ′
ijŜiŜj = −

∑
i �=j

JijŜiŜj (9.78)

The interactions are generally assumed to be limited to nearest neighbors, but the
range of interactions can be extended beyond the nearest neighbors (we refer the
reader to Chap. 7 in [9] for a detailed discussion of magnetic behavior of solids and the
Heisenberg–Ising model). The comparison of calculated exchange coupling constants
with those obtained experimentally is, however, not straightforward since experimen-
tal data are in most cases obtained from a fitting of the magnetic susceptibility to
the expression obtained using a model that includes simplifying assumptions [632].
The latter are adopted to reduce the number of fitting parameters. In this situation
the use of theoretical methods to estimate the exchange coupling constants becomes
a valuable tool for the experimentalists.

We discuss here in more detail the recent applications of LCAO methods to the
LaMnO3 and ScMnO3 crystals, two representatives of the rare-earth manganese ox-
ides, RMnO3 (R=La, Sc). The structures of these two crystals were described in
Chap.2. LaMnO3 crystal has the orthorhombic perovskite structure, found in RMnO3

with a large ionic radius of rare-earth element R (R= La, Pr, Nd, Sm, Eu, Gd, and
Tb). ScMnO3 crystal has hexagonal structure found in RMnO3 oxides containing
the rare-earth elements with a small ionic radius (R= Ho, Er, Tm, Yb, Lu, and Y).
We note that some of the hexagonal manganites can also form in the orthorhombic
structure depending on the heat treatment.

Perovskite materials display a wide variety of fundamental properties, from mag-
netism to ferroelectricity, from colossal magnetoresistance to half-metallicity; they
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are used in a number of important technological applications, such as transducers
and memories. They also show electronic and structural peculiarities including or-
bital and charge ordering, formation of local moments, and Jahn–Teller distortions.
Such a richness of properties, combined with their relatively simple structure, makes
them ideal materials for investigating the general principles that govern these prop-
erties. Unlike the recently extensively studied perovskite manganites, the hexagonal
RMnO3 compounds have a ferroelectric transition at very high temperature (e.g.
900 K for YMnO3), and an antiferromagnetic transition at a much lower temperature
(e.g., 570 K for YMnO3.7). Such compounds are known as ferroelectromagnets.

There exists a series of LaMnO3 bulk electronic-structure calculations, using a
number of first-principles methods e.g. UHF LCAO [634, 635], LDA+U PW [636],
and relativistic FPGGA LAPW [637]. LCAO studies with hybrid DFT functionals
[638,639] provided a most reliable description of the electronic and magnetic structure
of LaMnO3. These studies deal with the energetics of the ferromagnetic (FM) and
antiferromagnetic (AF) phases. The experiments show that below 750 K the cubic
perovskite phase of LaMnO3 with a lattice constant of a0 =3.95 Å is transformed
into the orthorhombic phase (four formula units per unit cell). Below TN=140 K
(Neel temperature) the A-type AF configuration (AAF) is the lowest in energy. This
corresponds to the ferromagnetic-coupling in the basal ab (xy) plane combined with
antiferromagnetic coupling in the c (z)-direction in the Pbnm setting, see Fig. 9.10.

La

Mn
O

α β

FM AAF GAF CAF

z

y

x

Fig. 9.10. Magnetic ordering in LaMnO3 crystal. FM–ferromagnetic ordering, AAF, GAF,
CAF–antiferromagnetic orderings.

Also, FM, GAF and CAF magnetic states exist: FM corresponds to a fully fer-
romagnetic material, in GAF all the spins are antiferromagnetically coupled to their
nearest neighbors, and in a CAF cell the spins are antiferromagnetically coupled in
the basal plane and ferromagnetically between the planes (along the c-axis). In the
DFT LCAO calculations [639] Becke three-parameter hybrid functional (B3PW) was
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applied, [373], which uses in the exchange part the mixture of the Fock (20%) and
Becke’s (80%) exchange, whereas in the correlation part the Perdew–Wang (PWGGA)
nonlocal correlation functional is employed. As was demonstrated in [606], the B3PW
functional gives the best description of the atomic and electronic structures, as well as
elastic properties of several ABO3 perovskite materials. In some cases, for a compar-
ison the B3LYP hybrid functional was also used (the exchange part is the same as in
the B3PW functional and the correlation is the Lee–Yang–Parr nonlocal functional).
For comparison, the DFT PW calculations with the PW91 GGA nonlocal functional
were made in [639]. As was noted earlier DFT PW calculations with hybrid functionals
are not implemented in modern computer codes.

The relative smallness of the total energy differences between different magnetic
phases requires a high numerical accuracy in the direct-lattice and Brillouin-zone
summations. Therefore, in [639] the cutoff threshold parameters of the CRYSTAL
code for Coulomb and exchange integrals evaluation have been set to 7, 7, 7, 7, and
14, respectively. The integration BZ has been carried out on the Monkhorst–Pack
grid of shrinking factor 8 (its increase up to 16 gave only a small change in the total
energy per unit cell).

The self-consistent procedure was considered as converged when the total energy
in the two successive steps differs by less than 10−6 a.u. In order to check how the
results depend on the basis-set (BS) choice, B3LYP and B3PW LCAO calculations
were performed for the cubic LaMnO3 with one formula unit per primitive cell with
the experimental lattice constant of 3.95 Å. Five different BS (BS1-BS5) were used,
including the BS optimized both in all electron (AE) and pseudopotential calculations
(large- and small-core Hay–Wadt pseudopotentials were taken for La and Mn atoms).
The details of BS optimization and choice are given in [639]. The total energies for the
cubic structure (with the five atom primitive unit cell) obtained in nonspin-polarized
and spin-polarized B3PW calculations were compared with different magnetic order-
ing of four d electrons on the Mn3+ ion (the d-levels are split in the cubic field into t2g

and eg levels, the latter are higher in energy than the former): total spin projection
Sz = 2 (four electrons occupy t2g and eg levels), Sz = 1 (three α electrons and one β
electron occupy the t2g level), and Sz = 0 (two α electrons and two β electrons occupy
the t2g level). The calculated self-consistent Mn atom magnetic moment is close to 0,
2 and 4 for the three cases under consideration. Since the number of electrons per cell
depends on the basis used (AE or without core electrons), the absolute values of these
energies are quite different. The basis optimization for the same BS choice results in
a lower energy for the same spin projection. It was shown that the order of relative
energies for different magnetic configurations is the same for all BS chosen and even
the absolute values of energy differences are close. Independently of the BS choice the
lowest total energy per cell corresponds to the maximal spin projection Sz = 2, i.e. for
the Mn3+ ion in a crystal the Hund rule holds and the lowest energy corresponds to
the maximal spin. This result demonstrates that the magnetic behavior of insulators
can usually be discussed in terms of the physics that applies to isolated atoms or ions
that have a magnetic moment. The Mulliken atomic charges remain practically the
same for different magnetic orderings, provided the BS is fixed. At the same time,
their absolute values show the BS dependence for the same spin projection value.
The relative energies of different magnetic orderings reveal the same sign in PW DFT
and LCAO calculations (the lowest energy corresponds to Sz = 2). The Bader atomic
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charges, calculated in the PW DFT method, compared with the Mulliken charges, are
much smaller and also show a weak dependence on the magnetic ordering.

To study the magnetic ordering in LaMnO3, the so-called broken symmetry ap-
proach was adopted [638]. It allows one to deduce the magnitude of the magnetic
coupling data making spin-polarized calculations for different magnetic orderings of
transition-metal atoms. LaMnO3 is stabilized at moderate temperatures in the or-
thorhombic structure comprising four formula units, space group D16

2h (in Pbnm and
Pnma settings the largest orthorhombic lattice translation vector is directed along
the z or y axis, respectively; in what follows, the Pbnm setting is chosen). The real
structure can be viewed as a distorted cubic perovskite structure with a quadrupled
tetragonal unit cell (ap

√
2, ap

√
2, 2ap) where ap is the lattice parameter of the cubic

perovskite structure. This tetragonal cell is slightly distorted in the real orthorhombic
structure. The calculations on the tetragonal model (both in LCAO and PW basis),
i.e. four formula units without the structural distortion have shown that LaMnO3 is
metallic in all magnetic states and the ground state is FM. This contradicts the ex-
perimental data, for both the energy gap (LaMnO3 is believed to be a spin-controlled
Mott–Hubbard insulator with the lowest-energy d–d transitions around 2 eV [640])
and magnetic AAF ordering in the ground state below 140 K. The results obtained
in [639] for cubic LaMnO3 with the primitive cell of five atoms explain this fact: the
tetragonal structure remains in fact cubic, with the tetragonal supercell; since in the
primitive unit cell the FM configuration corresponds to the metallic ground state, the
same is true for the undistorted tetragonal structure. However, when the orthorhom-
bic atomic distortions are taken into account, the AAF structure turns out to be the
ground state, in agreement with experiment.

This is seen from results given in Table 9.23, [639], where the relative energies of
different magnetic phases are presented (the energy for the FM phase is taken as zero
energy). The calculations were made for orthorhombic structure with the structural
parameters from a neutron-diffraction study [641]. Magnetic moments µ on the Mn
atom and magnetic and coupling constants Jab and Jc are also presented there.

The Ising model Hamiltonian

H = −Jab

∑
ij

SziSzj − Jc

∑
kl

SzkSzl (9.79)

was used, where Jab and Jc are exchange integrals (magnetic coupling constants)
between nearest neighbors in the basal plane (xy) and between nearest neighbors
along the c-axis, respectively, Szi stands for the z-component of the total spin on the
magnetic center i, and (ij) and (kl) indicate summation over intraplane and interplane
nearest magnetic centers, respectively. Due to two different possible choices of the Ising
Hamiltonian presentation, we stress that in (9.79) that the form of (9.78) is used that
contains double summation over each pair of centers and gives positive values for
Jab and negative for Jc. The latter must be taken into account in a comparison with
the experimental data obtained by fitting to the Ising Hamiltonian. In particular,
experimental Jab and Jc values [641] have to be multiplied by a factor of 2 for the
Hamiltonian (9.79).

A set of equations relating the energy differences for the FM, AAF, GAF and CAF
configurations with the magnetic coupling constants sought for was used:

E(FM) − E(AAF) = E(CAF) − E(GAF) = −32Jc (9.80)
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Table 9.23. The energy (in meV per unit cell) of the different magnetic phases for or-
thorhombic LaMnO3 for the experimental structure [641]. The energy of the FM config-
uration is taken as zero energy. Magnetic moments µ on the Mn atom in µB , magnetic
coupling constants Jab and Jc in meV. Experimental data: µ =3.87 for AAF [632], Jc=–1.2,
Jab=1.6 [640]

Method/basis set AAF GAF CAF Jc Jab

UHF(BS1)a –4.8 — 55.6 — — — –0.15 0.94

B3LYP(BS1)b –33.0 3.80 112.0 3.72 120.0 3.73 –0.64 2.07
UHF(BS2)c –8.0 — 48.0 — 56.0 — –0.25 0.88

B3LYP(BS2)b –33.0 3.78 84.0 3.71 101.0 3.71 –0.78 1.70

UHF(BS3)d –5.2 3.96 51.2 — 55.9 — –0.15 0.88

Fock-50(BS3)d –12.2 3.89 89.22 — 93.64 — –0.26 1.52

B3LYP(BS3)d –32.2 3.80 114.0 — 121.5 — –0.62 2.09

B3LYP(BS4)b –32.0 3.81 103.0 3.73 117.0 3.76 –0.72 1.97

B3LYP(BS5)b –30.0 3.82 106.0 3.74 117.0 3.77 –0.64 1.98

B3PW(BS5)b –19.0 3.86 153.0 3.75 152.0 3.79 –0.28 2.50

GGAPW91(BS5)b –40.0 3.71 248.0 3.58 234.0 3.64 –0.83 4.08

(GGA-PW)b –59.0 3.55 189.0 3.35 224.0 3.46 –1.47 3.69
(LAPW)e –72.0 — 96.0 — 136.0 — –1.75 2.38

(LMTO)f –62.0 3.46 243.0 3.21 — — –1.94 4.76
FLMTO(GGA)g –98.8 — 142.8 — 167.2 — –1.92 3.19

(LDA+U)h –34.0 — 170.0 — — — –1.06 2.66

a Reference [635], b Reference [639], c Reference [634], d Reference [638], e Reference [642],
f Reference [643], g Reference [644], h Reference [645].

E(FM) − E(CAF) = E(AAF) − E(GAF) = −64Jab (9.81)

Again, to avoid misunderstanding, (9.80) and (9.81) are written for a quadruple cell,
corresponding to four formula units. For calculating the coupling constants both
(9.80)and (9.81) were used and an averaging was performed. Unfortunately, E(CAF)
is not always presented in the published results (see Table 9.23). The calculated mag-
netic coupling constants are compared with the experimental data in the last two
columns of Table 9.23. This table demonstrates how the calculated magnetic coupling
constants depend on the Hamiltonian choice (LDA, UHF, hybrid) and the BS choice
(LCAO, PW, LAPW).

These results can be briefly summarized as follows. Independently from the BS and
Hamiltonian used, all calculations mentioned in Table 9.23 correctly reproduce the
sign of the experimental exchange integrals and their relative values (|Jab| > |Jc|).
In all UHF and hybrid (B3LYP, B3PW) calculations the exchange integrals agree
better with the experimental data than in DFT calculations. We explain this by the
incorporation of the Fock exchange into UHF and the hybrid methods. For example,
if we fix the AO basis as BS3 and analyze a series of the UHF (pure Fock exchange),
Fock-50 (50% of Fock exchange) and B3LYP (20% of Fock exchange included), the
coupling constants Jab and Jc in this series are getting closer to the experimental
values. The effect of the correlation part is smaller (compare B3LYP and B3PW results
for BS5). The lack of Fock exchange in LCAO GGA and GGA-PW calculations leads
to overestimated values of both magnetic coupling constants. This overestimate is
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well observed also in previous LAPW, FLMTO, and LDA+U calculations. Therefore,
in agreement with the conclusions, made by other researchers it is demonstrated
that when calculating the experimentally observable magnetic coupling constants, the
nonlocal exchange plays an important role. Such hybrid DFT or UHF calculations are
practically possible only for the LCAO BS. These results confirm again the conclusion
[632] that the CRYSTAL code is a valuable tool for the study of magnetic properties
for open-shell transition-metal compounds. The optical gap for the AAF orthorhombic
phase was also calculated in [639]. The B3PW LCAO gives 2.9 eV and 4 eV for the Mn
d-d and O2p-Mnd transitions, in good agreement with the experiment [640], whereas
the DFT PW gap of 0.6 eV is an underestimate typical for the DFT. These results,
in line with those in [638], demonstrate that it is a combination of the nonlocal
exchange with correlation effects realized in the hybrid functionals that considerably
narrows the gap between calculated and experimental magnetic coupling constants.
This questions the generally accepted idea that DFT is better suited than UHF and
related methods for the study of transition-metal oxides, in particular, LaMnO3. The
surface calculations of this crystal made in [639] we discuss in Chap. 11.

We noted that the hexagonal manganites RMnO3 (R = Sc, Y, Ho–Lu) are an
interesting group of compounds because of their unusual combination of electric and
magnetic properties. At low temperatures, they show coexistence of ferroelectric and
magnetic orderings. ScMnO3 plays a prominent role in the series of hexagonal mangan-
ites. It has the smallest distance between magnetic Mn3+ centers along the c-direction
and has the highest Neel temperature. Below the temperature 1220 K its structure be-
longs to space group P63cm [646]. The Mn3+ ions are surrounded by five oxygen ions
that form a distorted trigonal bipyramid, see Fig. 2.18. In this environment the 5D
state of Mn3+ with 3d4 occupancy splits into three states. The magnetic moment of
the Mn3+ ions in ScMnO3 has been measured as 4.11 µB . Its Neel temperature is 130
K [647], much higher than that of YMnO3 (71 K), [648]. The assignment of the strong
optical absorption band at about 1.6 eV for hexagonal manganites is a matter of de-
bate [649]. From local spin-density approximation (LSDA) and LSDA+U calculations
of YMnO3 [650] this band was interpreted as an interatomic charge-transfer transition
from O 2p to Mn 3d orbitals. In another theoretical study of YMnO3 based on LSDA
and LSDA+U [651], it was found that the states near the top of the valence band have
predominantly Mn 3dx2−y2 character, while the lowest-unoccupied subband has Mn
3dz2 character. The d-band centers of the occupied and empty bands are separated by
2.0 eV. The latter theoretical result is in agreement with a careful analysis of experi-
mental spectra [649] that revealed that the band at 1.6 eV is due to an intra-atomic
3d − 3d transition in the Mn3+ ions. The O(2p)→ Mn(3d) charge-transfer transition
in LaMnO3 and related compounds occurs at 3.1 eV or higher. Later experiments on
ScMnO3 [652] were interpreted differently, partly based on previous LSDA calcula-
tions. In particular, the strong band in ScMnO3 (at 1.57 eV), ErMnO3 (1.59 eV), and
YMnO3 (1.61 eV) was considered now as a charge-transfer band. In this context we
have to point out that LSDA values for bandgaps are usually much too small. In [638]
a charge-transfer transition in LaMnO3 was found at 2.3 eV with B3LYP and at 4.0
eV with Fock35 (35 per cents of the HF exchange in the hybrid functional) function-
als. Considering that one-particle energies obtained by band-structure calculations do
not describe local d–d transitions, the agreement between LSDA charge-transfer and
the experimentally determined band may be fortuitous.
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The LCAO calculations [653] with the computer code CRYSTAL03, [23] is the first
attempt to establish the electronic and magnetic structure of the low-temperature
phase of ScMnO3 from first principles. The solid phase was modeled with three-
dimensional periodic supercells of stoichiometry Sc6Mn6O18. Three different Hamil-
tonians were used: UHF, hybrid HF-DFT (B3LYP) and DFT (BLYP). In a previous
study of magnetic coupling in CuGeO3 [632] the same Hamiltonians had been com-
pared and it was found that the hybrid HF-DFT B3LYP Hamiltonian gives the most
accurate values for the magnetic coupling constant J . Optimized basis functions were
used for Mn and O as obtained in [639]. The valence basis of Sc was optimized for
Sc2O3 bulk crystal, Sc atom inner (1s 2sp) electrons were described with the Hay–
Wadt small-core effective core potential. The Sc6Mn6O18 cell contains two hexagonal
atomic planes. Three magnetic phases were considered: ferromagnetic (FM) when the
four unpaired electrons of each of six Mn ions have parallel spins; two antiferromag-
netic (AFc and AFa). In the AFc phase the spins of the Mn ions in different atomic
planes along the c-direction are antiparallel, while all spins are parallel in the same
plane (between two planes, the Mn–Mn distance is about 5.8 Å, while it is only 3.4 Å
in the plane). In the AFa state each plane contains two types of Mn with antiparallel
spin in a ratio of 1:2. The local spin arrangements are shown in Fig. 9.11.

Fig. 9.11. Two local spin configurations in the AFa state in a hexagonal plane; in case (a)
the central spin-down Mn ion is surrounded by 4 spin-down and 2 spin-up Mn ions, in (b)
the central spin-up Mn ion is surrounded by 6 spin-down Mn ions.

This is a simplification of the real situation in ScMnO3 where the Mn spins are
not collinear [647]: the projections of neighboring Mn spins in the same plane are in
fact rotated by 120◦.

If the FM state and the AFc state are compared, the two neighbors along the
c-direction in the planes above and below each magnetic center have different spin. It
was found that the corresponding interplane coupling constant Jc ≤ 0.2 meV for all
three Hamiltonians under consideration, i.e.the magnetic coupling between Mn ions
of different planes is negligible. The results of the calculation of intraplane coupling
constant are given in Table 9.24. The magnetic coupling constants of ScMnO3 have
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Table 9.24. Energy difference (eV) between the AF and the FM states of ScMnO3, estimated
magnetic coupling constant (meV), Mulliken charges q (a.u.), magnetic moment of Mn ions
(µB) obtained with three different Hamiltonians [653]

Hamiltonian Ja Qsc QMn QO eff

UHFa –0.163 4.1 +2.3 +2.4 –1.5 4.0
B3LYPa –0.555 13.9 +1.9 +2.0 –1.37 3.7

B3LYPb –0.449 11.2 +1.9 +2.0 –1.3 3.8
BLYPa –0.925 23.1 +1.87 +1.9 –1.2 3.5

Exper. 5.5–7.0c 4.11d

a with fixed structural parameters from experiment [654]
b with fully optimized in [653] structures
c estimated from a comparison with YMnO3 (the Neel temperature 70 K and Ja =3.8 meV)
d Reference [648]

not yet been measured at the time of calculations [653]. The simplest assumption is
a linear relation between J and the Neel temperature TN [655]. It is then possible
to estimate Ja of ScMnO3 from the coupling constant of the isostructural compound
YMnO3 (3.0–3.8 meV, [655]). With TN= 130 K for ScMnO3 and TN =71 K for
YMnO3 [648] one obtains Ja =5.5–7.0 meV. In Table 9.24 the calculated coupling
constants are compared to this crude estimate. The UHF method gives Ja =4.1 meV,
which is slightly smaller than the estimated value. When electron correlation is taken
into account with B3LYP, a much larger value (Ja =13.9 meV) is obtained. But also
the description of electron exchange has a substantial effect on the magnetic struc-
ture. The BLYP method, which has no contributions from exact HF exchange, gives
the largest coupling constant, Ja =23.1 meV. The same ordering of magnetic coupling
constants obtained with these methods has been obtained in studies of CuGeO3 [632],
where the B3LYP result favorably agreed with the measured value. Since for ScMnO3

the deviation from the estimated crude value is substantial with B3LYP, it is likely
that the linear extrapolation scheme is inadequate. But before any conclusion was
drawn the effect of changes in the local structure on the calculated coupling constant
was investigated. A full optimization of hexagonal lattice parameters and fractional
coordinates of ScMnO3 was performed with B3LYP for both the FM and the AFa
states, [653]. The energy difference between these two states is reduced by 20% (com-
pared with that obtained for the experimental structure) and Ja accordingly decreases
to 11.2 meV. Since this value is still considerably larger than the estimated one the
above statement about the inaccuracy of the linear interpolation scheme holds. In
Table 9.24 there are also compared the calculated self-consistent magnetic moments
µeff with the experimental value 4.11 µB [648]. The obtained values range from 3.5
µB (BLYP) to 4.0 µB (UHF) and are thus in agreement with experiment. The small
change from 3.7 µB to 3.8 µB due to optimization at the B3LYP level indicates that
the local atomic structure has a small effect on this property. Atomic charges were
calculated based on the Mulliken population analysis. Table 9.24 shows that the ion-
icity is reduced in the series from UHF to BLYP. The oxygen and manganese charges
range from –1.2 to –1.5 and +1.9 to +2.4, respectively, indicating substantial cova-
lent contributions to the bonding. These values do not essentially differ from those
(–1.6 to –1.8 and +1.5 to +1.8), obtained in the LaMnO3 calculations [639]. The



9.3 Total Energy and Related Observables in LCAO Methods for Solids 393

PDOS calculated for ScMnO3 with B3LYP for the fully optimized structure of the
AFa state shows the following. The highest-occupied states between –0.5 eV and 0
eV (the Fermi level is taken as the zero energy), and the lowest-unoccupied bands
between 3.3 eV and 4.5 eV consist of a mixture of O(2p) and Mn(3d) orbitals. Sc
orbitals only contribute to higher unoccupied states above 5 eV. In agreement with
experimental estimates [649], the interband transition at 3.3 eV with B3LYP was
found. On the basis of the calculated PDOS the excitation is neither a pure d–d nor
a charge-transfer transition, rather it represents an intermediate situation.

As is seen from Table 9.24 the structure-parameter optimization influences the
results of the electronic-structure calculations. Such an optimization also allows the
calculation of the such important properties of solids as the cohesive energy, relative
stability of phases with different structure, bulk moduli, elastic constants. LCAO
calculations of these total energy related properties are considered in the next section.

9.3 Total Energy and Related Observables in LCAO Methods
for Solids

9.3.1 Equilibrium Structure and Cohesive Energy

The theoretical determination of the equilibrium structure of molecules and periodic
systems and their cohesive energy is of primary importance in quantum chemistry of
molecules and solids.

In the molecular systems, the parameters that must be optimized are the nuclear
coordinates. Such an optimization requires the numerical or analytic calculation of
forces – the total energy derivatives with respect to nuclear coordinates. The method-
ology for calculating analytic first derivatives at the HF (SCF) LCAO level of theory
was suggested by Pulay [656]. Extensions of the HF derivatives to density-functional
theory methods were straightforward. Derivatives of correlated (post-HF) energies
followed a number of years after the SCF derivatives [657]. Analytical gradients have
become a standard tool for the optimization of molecular structures and are imple-
mented in modern molecular electronic-structure codes. Calculations with the struc-
ture optimization are now possible on molecules with hundreds of atoms, and energy
derivatives provide an enormous amount of information about the potential-energy
surface at very little additional cost. Analytic derivatives with respect to geometrical
parameters are used not only for the structure optimization but also for exploring
potential-energy surfaces and the study of transition states and following reaction
paths.

Such molecular properties as vibrational frequencies, IR and Raman intensities,
NMR shielding constants, etc., can be formulated in terms of second and higher
derivatives with respect to geometry and applied fields. Such calculations are now
practical and routine using analytic derivatives at the SCF level and a few correlated
methods, [657].

In periodic systems, the cell dimensions are a set of optimized structure parameters
additional to nuclear coordinates in the primitive unit cell. Nowadays, the majority
of solid-state codes compute the total energy with KS PW methods. In KS PW
calculations the analytical gradients of total energy for nuclear coordinates and cell-
parameter optimization are implemented in computer codes and widely used in the
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electronic-structure calculations of crystals [377]. The more complicated task is the
analytical gradients theory in LCAO methods for periodic systems. The total energy
E of the crystal (per primitive cell) is the sum of electron energy Ee and nuclear
repulsion energy EN : E = Ee + EN . The electron energy Ee as calculated within
the HF LCAO approximation can be expressed in terms of the one-electron density
matrix and includes the direct lattice sums, see (7.46). In the KS LCAO method only
the electron-density is involved in the Hamiltonian, see (7.47).

The analytical gradients in HF and MP2 LCAO calculations were applied for
a long time only for one-periodic (1D) systems [658, 659]. The efficient method of
analytic energy-gradient calculation in the KS LCAO method for periodic systems
with one-, two- and three-dimensional periodicity was presented only recently in [82]
and implemented in the code GAUSSIAN03 [107]. A real space approach is used, where
all the summations are performed in direct space. Energy derivatives with respect to
geometrical parameters (atomic forces and stress tensor) are computed analytically
to high accuracy using techniques based on the fast multipole method (see Chap. 7).
This allows for the accurate lattice parameters and nuclear-coordinate optimization
and evaluation of vibrational frequencies using finite differences of analytic forces.
The extension of this technique to the hybrid HF-DFT LCAO Hamiltonians allowed
optimization of the structure of different solids in good agreement with experiment
(as was demonstrated in Chap. 7).

Simultaneously, progress has been achieved to implement analytical HF gradi-
ents in the LCAO code CRYSTAL [23, 660]. The formulas for analytic total-energy
gradients with respect to nuclear coordinates in periodic systems were presented
in [661, 662] and illustrated in test calculations. It was demonstrated that an effi-
cient nuclear-coordinates optimization of large systems with any periodicity can be
performed. Later, the theory of analytical HF gradients with respect to the cell param-
eter for three-periodic systems was presented [663], so that full structure optimization
with the help of analytical gradients is now possible. It is important to note that the
CRYSTAL code is based on the Ewald method in three dimensions, so that comput-
ing analytical gradients with respect to the cell parameter requires various additional
derivatives that were not yet available with the implementation of nuclear gradients,
and this has been documented in great detail in [663]. The one- and two-dimensional
cases are again different because different potentials are used in a real-space approach.
The article [664] complements [663] by analytical HF gradients with respect to cell
parameters for systems periodic in one and two dimensions. The implementations
mentioned include the cases of spin-restricted and unrestricted polarization.

We intentionally do not give here the mathematical details of the approaches
allowing implementation of analytical gradients in the calculations of periodic systems
(for these details readers are referred to the cited publications and references therein).
We note that such an implementation is essentially more complicated than in the case
of molecular systems and requires high accuracy in the total-energy calculation. One
can find the detailed analysis of the accuracy in gradients calculations on numerical
examples in [660,661,663]. The comparison of the numerical and analytical derivatives
values can also be found. In what follows we turn to the results obtained for the
equilibrium structure and cohesion energy in the crystalline metal oxides. The LCAO
calculations discussed were made with the CRYSTAL code and use of HF, KS and
hybrid Hamiltonians.
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The cohesive (binding) energy Ecoh is defined as the energy required to dissociate
a solid into noninteracting atomic species A with energies EA

Ecoh =
∑
A

EA − Esolid (9.82)

In this definition, Ecoh is positive for any thermodynamically stable crystal. The
summation is made over the atoms included in the primitive unit cell, Esolid is the total
energy per primitive cell. Calculated values of the cohesive energy are compared with
experimental results that can be obtained by measuring the latent heat of sublimation
at various low temperatures, and extrapolating to zero Kelvin.

The binding-energy definition depends on what the constituent parts are consid-
ered to be: reference can be made to the ions in ionic crystals or to the molecules
for molecular crystals. The expression “lattice energy” is also in use either as a syn-
onym of cohesive energy or to denote the energy difference relative to the free ions or
molecules [568]. In the calculations of Ecoh we are interested not in the total energy
of a system as such, but rather in energy differences that might be as small as a few
kcal/mol. It is with respect to this scale of energy that the overall accuracy of a cal-
culation must be verified. The molecular codes now allow an accuracy of 1 kcal/mol
for thermochemical data, which is still far from being attained in solid-state chem-
istry, although attention to the quantitative aspects of the calculation is increasing
rapidly, [568]. The different computational aspects of the ground-state total-energy
evaluation for crystals are considered in [665]. In particular, some sources of errors in
the total-energy calculations are analyzed: 1) the choice of Hamiltonian (HF, DFT,
HF+ a-posteriori correlation correction, description of the core electrons by one or
other pseudopotential); 2) the use of a finite variational basis; 3)the numerical approx-
imations, introduced in the solution of LCAO equations (truncations of infinite lattice
sums, reciprocal-space integration). In the evaluation of the cohesive energy, partially
different basis sets for the valence or semicore states need to be used for the atoms or
ions and the bulk crystal. The bulk basis set can be improved by the addition of polar-
ization functions, which do not contribute to the energy of atoms and ions in the gas
phase because of AO orthogonality, but they can be important in the expansion of the
bulk wavefunction. The atomic function tails become unnecessary in the description
of the crystalline orbitals. Moreover, the use of diffuse AOs is normally to be avoided
(see Chap. 8). Thus, separate optimizations of basis set for the bulk and the isolated
atoms are necessary, i.e. not equal, but variationally-equivalent basis sets are to be
used. The handling of these problems in the cohesive-energy calculation is illustrated
in [568] and the general influence of the Hamiltonian choice on the calculated cohesive
energy is discussed. An important aspect of the comparison between the calculated
and experimental cohesive energy is related to the difference between the definition of
cohesive energy and the crystal-formation energy that is reported in thermodynamic
tables, the main point probably being that quantum-mechanical calculations refer
to the static limit (T = 0 K and frozen nuclei), whereas experiments refer to some
finite temperature. In fact, the comparison is never straightforward, and the origi-
nal experimental datum is linked to the calculated cohesive-energy values through a
chain of thermodynamic transformations. As an example, the Born–Haber cycle for
the formation of a crystal has to be considered (see below).
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A general feature of the HF LCAO method is the underestimation of the cohe-
sive energy (the error varies between –20% and –45% for the series of compounds
considered in [568]). DFT calculations of Ecoh allow one to recover part of the con-
tributions that are disregarded with HF, at about the same computational cost. LDA
even tends to overestimate the cohesive energy, whereas GGA and B3LYP results are
closer to the experimental measurements. At any rate, the performance of none of the
Hamiltonians used is fully satisfactory, and the correct answer is always somewhere in
between the two extremes represented by HF and LDA, but LDA results are generally
improved when gradient corrections are included. Properly correlated wavefunctions
perform better than HF and DFT methods: the binding energies for the incremental
scheme and local MP2 methods (see Chap. 5) agree better with the experimental
data.

Table 9.25. The equilibrium structure and cohesive energy for rutile TiO2 ( [666]). Lattice
parameters are given in Å, cohesive energy in eV

Observable HF (AE)* HF(PP)* HF+correlation Experiment

a 4.559 4.555 4.548 4.592
c 3.027 3.024 2.993 2.958
u 0.3048 0.3061 0.3046 0.3048
Ecoh 13.95 15.99 19.35 20.00

*Reference [596]

As an example, we give in Table 9.25 the results obtained for equilibrium struc-
ture and cohesive energy in rutile TiO2 by different LCAO methods [666]. For the
correlation calculations in [666] an incremental scheme was used, one-, two- and three-
atom clusters in a large slab of Madelung point charges were included in the CCSD
calculations. For the Ti ions nearest to the cluster atoms Ti4+ pseudopotentials were
used instead of the bare point charges, in order to simulate the Pauli repulsion on the
O2− electrons of the inner cluster. The cohesive energy was calculated including zero-
point vibrations (see Sect. 9.3.3). As is seen from Table 9.25 the electron correlation
for TiO2 crystal does not influence the equilibrium structure parameters in a major
way but is important for the cohesive energy.

In Table 9.26, a summary of the results from a selection of experimental and
recent ab-initio studies of the structural parameters of rutile is presented, see [597].
Early LCAO-HF and PW-LDA studies of rutile yielded lattice parameters to within
2% of experiment. More recent studies that have taken advantage of improvements
in the theoretical techniques and available computing power to perform calculations
with improved treatments of exchange and correlation (DFT calculations based on
the GGA) and higher numerical accuracy improved basis sets have yielded results
consistent with those from the earlier work.

Generally speaking, all the ab-initio studies of rutile have yielded structural pa-
rameters to within a few per cent of experiment. In particular, LCAO methods give
results with the same accuracy as PW methods.
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Table 9.26. The theoretical and experimental structural parameters for rutile (in Å), num-
bers in parentheses indicate the percent deviation from low-temperature neutron-diffraction
experiments. The references to the theoretical and experimental data, given in this table, can
be found in [597]. SC,LC mean small-core and large-core pseudopotentials, AE –all electron
calculations

Method a c u

PW-LDA SC 4.555 (–0.70) 2.922 (–1.08) 0.304 (–0.33)
PW-LDA SC 4.528 (–1.29) 2.918 (–1.21) 0.303 (–0.66)
PW-LDA SC 4.567 (–0.44) 2.932 (–0.74) 0.305 (0.00)
PW-LDA LC 4.536 (–1.11) 2.915 (–1.32) 0.304 (–0.33)
PW-LDA LC 4.653 (1.44) 2.966 (0.41) 0.305 (0.00)
PW-LDA LC 4.603 (0.35) 2.976 (0.74) 0.304 (–0.33)
PW-LDA LC 4.638 (1.11) 2.923 (–1.05) 0.305 (0.00)
PW-GGA LC 4.624 (0.81) 2.992 (1.29 ) 0.305 (0.00)
PW-GGA LC 4.690 (2.25) 2.990 (1.22) 0.306 (0.33)
OLCAO-LD AE 4.622 (0.77) 2.983 (0.99) 0.304 (–0.33)
LCAO-HF LC 4.555 (–0.70) 2.998 (1.49) 0.306 (0.33)
LCAO-HF AE 4.560 (–0.59) 3.022 (2.30) 0.305 (0.00)
LCAO-HF AE 4.529 (–1.26) 3.088 (4.54) 0.305 (0.00)
LCAO-HF AE 4.548 (–0.85) 2.993 (1.32) 0.305 (0.00)
LCAO-LDA AE 4.529 (–1.26) 2.942 (–0.41) 0.304 (–0.33)
X ray 298 K 4.594 (0.15) 2.958 (0.14) 0.305 (0.00)
Neutron 295 K 4.593 (0.13) 2.959 (0.17) 0.305 (0.00)
Neutron 15 K 4.587 2.954 0.305

Table 9.27 shows the results of binding-energy HF LCAO calculations [598] in
corundum-like Me2O3 oxides (M=Ti,V,Cr,Fe,Co,Ni). The a-posteriori DFT correla-
tion correction of total energy was added in the UHF LCAO AE calculations with
numerical optimization of corundum structure parameters.

Table 9.27. Calculated and experimental binding energies (eV) of corundum-like oxides
[598]

Oxides UHF UHF+corr Experiment

Al2O3 –23.64 –30.08 –32.14
Ti2O3 –21.41 –28.05 –33.45
V2O3 –19.28 –26.23 –31.21
Cr2O3 –18.10 –25.08 –28.05
Fe2O3 –17.46 –22.00 –25.17
Co2O3 –19.80 –24.90 —
Ni2O3 –17.41 –22.74 —

The atomic energies of Al, Ti, V, Cr, Co, Ni and oxygen were derived by us-
ing the basis sets adopted for solid oxides, but supplemented by two more diffuse
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shells, the exponents of which were optimized. The binding energy is computed as
the difference between the total crystal energy per formula unit (for the most stable
antiferromagnetic configuration) and the energies of the constituent isolated atoms.
For comparison, experimental binding energies are also given. These were obtained
by applying a suitable Born–Haber thermochemical cycle of type

Ecoh(expt) =
∑

i

[
H0

a,i +
(
H298

i − H0
i

)]
+ ∆fH298 − (

H298 − H0
)− E0

vib (9.83)

Here, the sum is extended to all chemical elements in the formula unit. The formation
enthalpy ∆fH298 of Me2O3 compounds, sublimation (Me) and dissociation (O2) en-
thalpies H0

a,i and heating enthalpies H298
i −H0

i for all chemical species involved were
taken from [667]. The zero-point vibrational energies E0

vib of all oxides were estimated
by the Debye model, using an isotropic approximation for the mean acoustic-wave
velocity derived from the bulk modulus in order to obtain the Debye temperature.

Table 9.27 shows that the general trend of experimental data (from Al2O3 to
Fe2O3) is simulated correctly by theoretical binding energies, with deviations of the
order of –30% for UHF energies, which are reduced to –12% by including the DFT-
based correction for electron correlation. A secondary feature of the experimental data
is not reproduced by the calculated results: the peculiar stabilization energy of Ti2O3

with respect to other oxides. Also, V2O3 seems to be affected by a larger error than the
average. This is consistent with the difficulties found in achieving SCF convergence
to stable insulating states for these two oxides: oxides of early-row transition metals,
with their very diffuse d orbitals and tendency to metal states, are harder to simulate
by HF methods than those of end-row metals. As we have seen in Sect. 9.1 the UHF
calculations of Ti2O3 reproduce the electron-correlation effects on the local properties
of chemical bonding. It appears that a-posteriori correction of UHF total energy is not
enough to reproduce the correlation effects on the binding energy, i.e. self-consistent
hybrid HF-DFT calculations are required.

In the next section we consider the LCAO calculations of other total-energy-related
observables.

9.3.2 Bulk Modulus, Elastic Constants and Phase Stability of Solids:
LCAO ab-initio Calculations

We considered above the calculation of observables requiring the first-order deriva-
tives of the total energy. For the equilibrium structure of crystal (equilibrium nuclear
coordinates and unit-cell parameters) the total-energy derivatives with respect to nu-
clear coordinates r and lattice parameters ai equal zero at constant temperature T :(

∂E
∂ri

)
T

= 0,
(

∂E
∂ai

)
T

= 0.
An important variable is pressure as under pressure interatomic distances in crys-

tals show larger variations than those induced by temperature. At constant temper-
ature T pressure P is related to the rate of energy change with the unit-cell volume
V by relation P = − (

∂E
∂V

)
T
, including the first-order derivative of total energy with

respect to the cell volume. Such observables as the bulk modulus, the elastic and force
constants depend on the second-order derivatives of the total energy.

The bulk modulus B measures the response of a crystal to isotropic lattice ex-
pansion or compression and can be related to the second-order derivative of the total
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energy with respect to the volume, V , evaluated at the equilibrium volume V0:

B = −V

(
∂P

∂V

)
T

= −V

(
∂2E

∂V 2

)
V0

(9.84)

The anisotropic response of a crystal to a mechanical force can be described by the
elastic constants, Cij , which are defined as the second derivatives of the total energy
with respect to the components εi and εj of the strain tensor, ε:

Cij =
(

∂2E

∂εi∂εj

)
eq

(9.85)

The strain-tensor components εij = 1
2

(
∂ui

∂xj
+ (∂uj

∂xi

)
are first-order derivatives of the

displacements u. The elastic constants provide a full description of the mechanical
properties of crystalline materials. The bulk modulus is related to the elastic tensor.
In the case of a cubic system, where only three independent components of the elastic
tensor differ from zero, B can be obtained from C11 and C12 as 1

3 (C11 + 2C12).
Table 9.28 shows the results of the HF LCAO optimization of the Cu2O crystal
structure with the all-electron basis set [622]. These results show the feature noted
above of the HF method – an overestimation of the lattice size, mainly due to the
neglect of electronic correlation. The a-posteriori inclusion of the electronic correlation
considerably improves the results of the structure optimization.

Table 9.28. Calculated lattice constant a (Å), interatomic distances (Å), bulk modulus
(GPa) and elastic constants (GPa) for Cu2O [622]

HF HF+LYP Expt.

a 4.435 4.277 4.2696
Cu–O 1.920 1.852 1.849
Cu–Cu 3.136 3.025 3.012
B 100 93 112
C11 118 103 116 – 126
C12 90 88 105 – 108
C44 59 65 11 – 13

The isotropic variation of the volume of the cubic unit cell was used also to eval-
uate the bulk modulus. The calculated bulk modulus is in good agreement with the
available experimental data. The three independent components of the elastic tensor
were derived numerically from the changes in energy obtained by applying adequate
deformations to the unit cell. Good agreement has been obtained for the C11 and C12

elastic constants, while there is definite disagreement for C44. This disagreement is
certainly to be attributed to the lack of precision of these methods to estimate small
values of the elastic constants. Good-quality calculations of the elastic constants would
require a larger accuracy, in contrast to those properties like the cell parameters.

Various possible structures of a crystal and the associated relative energies can
be determined experimentally as a function of pressure. This structure evolution as
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a function of pressure can involve one (polymorphism) or several (solid-state reac-
tion driven by pressure) types of systems. For example, CaO crystal phase transition
CaO(B1) � CaO(B2) includes two polymorphic phases B1 (fcc lattice, Ca atom is six-
fold coordinated) and B2 (sc lattice, Ca atom is eightfold coordinated). The decompo-
sition reaction of MgAl2O4 spinel into its oxide components MgAl2O4 � MgO+Al2O3

includes three types of system. The knowledge of pressure enables investigation of
phase stability and transitions, [568]. In fact, enthalpy is immediately obtained from
the total energy by H = E + PV at T =0 K, where any transformation of a pure
substance tends to be isotropic, phase stability can be related to the enthalpy and a
phase transition occurs at those points in the phase diagram where two phases have
equal enthalpy. From the computational point of view, it is possible to explore a range
of crystalline volumes by isometric lattice deformations and obtain the corresponding
values of pressure and, consequently, of enthalpy. It is intended that nuclei are allowed
to relax to their equilibrium geometry after every lattice deformation.

The theoretical study of phase transitions is made as follows. For each crystal
phase, the total energy E is computed at a number of unit-cell volumes V ; at each
volume, the structure parameters (nuclear coordinates and lattice parameters) that
minimize E are determined. An analytical representation of E vs. V is obtained by
using a polynomial expression or the Murnaghan equation of state (or any other fitting
function). The Murnaghan function, by far the most universally adopted, is as follows:

E(V ) = E0 + B0V0

[
1

B′(B′ − 1)

(
V0

V

)B′−1

+
V

B′V0
− 1

B′ − 1

]
(9.86)

The four fitting parameters are V0 (equilibrium volume), B0 (zero-pressure bulk modu-
lus) and B′ (pressure derivative of the bulk modulus B at P = 0), and E0 (equilibrium
energy). From the P (V ) = − ∂E

∂V relationship, we get

V (P ) = V0

(
B′

B0
P + 1

)− 1
B′

(9.87)

Inserting (9.87) in (9.86), one obtains the analytic E vs. P dependence; by adding
the PV term, the enthalpy as a function of pressure is obtained:

H(P ) = E + PV = E0 +
B0V0

B′ − 1

[(
B′

B0
P + 1

)1− 1
B′

− 1

]
(9.88)

At T=0 K, the transition pressure, Pt, corresponds to the point where all the systems
have the same enthalpy:

∆H(Pt) = 0 (9.89)

This equation is solved numerically yielding the transition or the decomposition pres-
sure. Knowing this pressure, the equation of state followed by the system during the
process can be deduced.

A rough estimate of the transition pressure, Pt′ , can be obtained just from the
knowledge of the equilibrium values (E0 and V0) for each phase. At T=0 K, the
enthalpy as a function of pressure can be evaluated as follows:
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H(P ) = H0 +

P∫
0

dH = E0 +

P∫
0

V dP (9.90)

Using this relation, (9.89) becomes

∆H(Pt) = ∆E0 +

Pt∫
0

∆V dP = 0 (9.91)

If the pressure dependence of ∆V is negligible, one obtains

Pt � P ′
t = −∆E0/∆V0 (9.92)

For fitting of one or multiphase transitions MULFAS (multiphase transition analysis
program) by Llunell can be used. The information about this program can be found
at the site www.crystal.unito.it in tutorials (phase transitions) directory. An input
file for this program contains the volume and total energy data of one phase obtained
by using an external quantum-mechanical or shell-model program.

The first-principles all-electron LCAO calculations of the crystal structures, bulk
moduli, and relative stabilities of seven TiO2 polymorphs (anatase, rutile, columbite,
baddeleyite, cotunnite, pyrite, and fluorite structures) have been carried out in [597].
From the optimal crystal structures obtained with the Hartree–Fock theory at various
pressures, the bulk modulus and phase-transition pressures of various high-pressure
polymorphs have been derived at the athermal limit. In most cases, the calculated
unit-cell data agree to within 2% of the corresponding experimental determination.
In Table 9.29 the calculated bulk moduli of the various phases of TiO2 are given and
compared with the existing experimental data. The calculated bulk moduli are within
10% of the most reliable experimental results. It was shown in [597] that the com-

Table 9.29. The bulk moduli (GPa) of various phases of TiO2 compound [597]

Method
Rutile

P42/mnm
Z=2

Anatase
I4/amd

Z=2

Columbite
Pbcn
Z=4

Baddeleyite
P21/c
Z=4

Pyrite
Pa3
Z=4

Fluorite
Fm3m
Z=1

Cotunnite
Pnma
Z=4

LCAO-HF 239±10 202±10 264±10 300±10 318±10 331±10 380±10
LCAO-LDA 241±10 195±10 — — 273±10 308±10 –
PW-LDA 243 194 247 249 — 282 —
experiment 211±7 178±1 253±4 304±6 — — 431±10

puted anatase–columbite, rutile–columbite, columbite–baddeleyite, and baddeleyite–
cotunnite phase transitions appear in the same order as observed in experiments, and
the transition pressures agree semiquantitatively with those measured. The pyrite and
fluorite structures are predicted to be less stable than other polymorphs at pressures
below 70 GPa, in agreement with experiments.

The detailed LCAO calculations for bulk properties and the electronic structure
of the cubic phase of SrTiO3 (STO), BaTiO3 (BTO), and PbTiO3 (PTO) perovskite
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crystals with optimization of basis set (BS) are presented in [606]. The results given in
Table 9.30 are obtained using it ab-initio Hartree–Fock (HF) and density-functional
theory (DFT) with Hay–Wadt pseudopotentials. A number of different exchange-
correlation functionals including hybrid (B3PW and B3LYP) exchange techniques are
used. Results, obtained for seven types of Hamiltonians, are compared in Table 9.30
with available experimental data. On average, the disagreement between the lattice
constants computed using hybrid HF-DFT functionals and experimental values for
all three perovskites is less than 0.5%.

The bulk moduli were calculated in two ways – as the total energy second deriva-
tives (9.84), B1 and using the elastic constants, B2. The results for both ways of
bulk-moduli evaluation differ by no more than 10–15%. Especially good agreement
with the experimental data has been achieved for hybrid functionals. With the polar-
ization orbitals added to the BS of oxygen atom, the calculated optical bandgaps are
3.57, 3.42 and 2.87 eV for STO, BTO and PTO respectively, in very good agreement
with experimental data.

Table 9.30. The optimized lattice constants a (Å), bulk moduli B (GPa) and elastic con-
stants Cij (in 1011 dyn/cm2) for perovskites SrTiO3 (STO), BaTiO3(BTO), PbTiO3(TO),
[606]

Method LDA PWGGA PBE BLYP P3PW B3LYP HF Exper.

STO

a 3.86 3.95 3.94 3.98 3.90 3.94 3.92 3.89
C11 42.10 31.29 31.93 29.07 31.60 32.83 41.7 31.72
C12 12.21 9.80 9.75 9.39 9.27 10.57 7.11 10.25
C44 13.32 11.34 11.30 11.09 12.01 12.46 10.5 12.35
B1 222 170 171 159 167 180 186 174
B2 214 167 169 164 177 177 219 179

BTO

a 3.96 4.03 4.03 4.08 4.01 4.04 4.01 4.00
C11 35.81 30.11 31.04 28.22 31.12 29.75 30.1 20.60
C12 11.52 10.35 10.72 10.78 11.87 11.57 13.46 14.00
C44 14.98 13.22 13.98 12.24 14.85 14.54 17.34 12.60
B1 196 169 175 166 183 176 190 162
B2 204 175 180 154 188 172 194 195

PTO

a 3.93 3.96 3.96 4.02 3.93 3.96 3.94 3.97
C11 45.03 32.47 34.25 23.03 43.04 34.42 39.83 22.9
C12 26.14 15.81 15.52 9.93 24.95 18.08 16.90 10.1
C44 11.28 10.69 10.96 8.25 10.93 10.35 17.20 10.0
B1 324 213 217 143 310 235 245 144
B2 321 246 252 140 279 242 299

We note that the results given in Table 9.30, were obtained with the BS optimiza-
tion (the details of this optimization can be found in [606]). In our opinion, it is this
optimization that allowed good agreement of calculated and experimental data to be
obtained.
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Strontium zirconate SrZrO3 is of interest because of possible applications in fuel
cells, hydrogen gas sensors and steam electrolysis. The powder neutron-diffraction
data suggest the following sequence of phase transitions in SrZrO3: from the or-
thorhombic Pbnm to the orthorhombic Cmcm at 970 K, to the tetragonal I4/mcm
at 1100 K and lastly, to the cubic

Pm3m

at 1400 K [668]. The first ab-initio DFT PBE calculations for all four phases of SrZrO3

using both PW and LCAO basis sets are presented in [614]. The structural parameter
optimization was performed using DFT PBE-PW calculations and good agreement
with experimental data was obtained. LCAO PBE calculations were made both for
the experimental and optimized structures. Table 9.31 shows the calculated relative
energies (per formula unit) of four SrZrO3 polymorphs.

Table 9.31. Calculated relative energies (eV per formula unit) of SrZrO3 polymorphs [614]

Structure parameters

Exper. Optimized

phase LCAO LCAO PW

Pm3m 0.000 0.000 0.000
I4/mcm –0.040 0.002 0.004
Cmcm –0.177 –0.252 –0.235
Pbnm –0.241 –0.303 –0.274

It is seen from Table 9.31 that both LCAO and PW results agree with the experi-
mental sequence of the SrZrO3 phases: the most stable turn out to be two orthorhom-
bic phases, whereas the tetragonal and cubic high temperature phases are close in
energy.

The sequence of phase transitions in ABO3-type oxides with the temperature
increase could be described in terms of the nearest BO6 octahedral tilts/rotations
[668]. In the SrZrO3 case, the orthorhombic structure with three rotations is changed
by two rotations for Cmcm and finally by one rotaton for the tetragonal structure. The
combination of three rotations produces the lowest-energy structure. The electrostatic
energy is lowest for the lowest symmetry because of the inherent instability of the ideal
corner-shared octahedral network. To compensate the loss in Madelung energy, the
repulsive energy should also be lowered, in order to achieve the equilibrium. Thermal
expansion or entropy is the driving force for the octahedral tilts.

9.3.3 Lattice Dynamics and LCAO Calculations
of Vibrational Frequencies

The second-order derivatives of the energy with respect to the nuclear coordinates are
involved in lattice dynamics, in particular, in the calculation of vibrational (phonon)
spectra. We shall begin from the molecular case, [669]. The decoupling of the nuclear
from the electronic motion is made in the adiabatic approximation (see Chap. 4).



404 9 LCAO Calculations of Perfect-crystal Properties

Let ui represents a displacement of the ith cartesian coordinate from its equilibrium
value (i = 1, 2, . . . , 3N), where N is the number of nuclei in a molecule, and qi =√

Miui are the generalized coordinate (Mi is the mass of the atom associated with
the ith coordinate) and its derivative with respect to time

.
qi = pi. In the harmonic

approximation the classical vibrational Hamiltonian of a polyatomic molecule becomes

H = T + V =
1
2

⎛⎝∑
i

Mi
.
u

2
i +

∑
ij

HijUj

⎞⎠+ V0 =
1
2

(〈p|p〉 + 〈q|W |q〉) + V0 (9.93)

Here V0 is the electron energy for the equilibrium atomic coordinates, and Hij are
the Hessian matrix elements

Hij =
1
2

[
∂2V

∂ui∂uj

]
0

(9.94)

evaluated at equilibrium. The relation Wij = Hij√
MiMj

defines the elements of the

weighted Hessian.
The eigenvalues κj of the Hermitian matrix W are the generalized force constants.

The Hamiltonian (9.93) then can be factorized into 3N one-dimensional harmonic
Hamiltonians

H =
∑

ν

hν =
∑

ν

1
2
(
P 2

ν + ω2
νQ2

ν

)
(9.95)

Thus each of the 3N−6 vibrational modes can be interpreted as a collective oscillatory
movement with frequency ων =

√
κν/2π and the problem of calculating vibrational

spectra reduces to the diagonalization of matrix W to find the set of eigenvalues κj .
For periodic systems, the translation invariance of the potential energy and Hessian

matrix should be used. The generalized coordinates obey the Bloch theorem and are
written in the form

qi(k) = N
∑

g

exp(−ikg)qg
i (9.96)

The vibrational problem is block-factorized into a set of problems (one for each k
point in BZ) of dimension 3N − 6 where N is the number of atoms in the primitive
unit cell.

The k-block of the k-factorized W matrix takes the form

Wij(k) =
∑

g

exp(ikg)
H0g

ij√
MiMj

(9.97)

where H0g
ij is the second derivative of potential energy at equilibrium with respect

to atom i in the reference cell 0 and atom j in cell g. The number of equations
(9.97) to be solved equals the number of k-points in the BZ, i.e. is infinite for the
infinite crystal. In practice, the calculations of phonon frequencies are made for a
finite number of k-points and the interpolation is used to obtain so-called phonon
branches ω1(k), . . . , ωi(k), . . . , ω3N (k) (like one-electron energies are obtained in SCF
calculations for a finite set of k-points and then interpolated to form the electron-
energy bands). The relationship between phonon frequencies ω and wavevector k
determines the phonon dispersion.
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Comparing the vibrational branches and electronic bands calculations we note that
in the former case the equations for different k values are solved independently while
in the latter case the self-consistent calculation is necessary due to the BZ summation
in the HF or KS Hamiltonian (see Chapters 4 and 7). Once the phonon dispersion
in a crystal is known, thermodynamic functions can be calculated on the basis of
statistical mechanics equations. As an example, the Helmholtz free energy, F , can be
obtained as:

〈F 〉 =
∑
ik

{
1
2

�ωik + kBT ln
[
1 − exp

(
−�ωik

kBT

)]}
(9.98)

where the sum is extended to all lattice vibrations, ωik, and kB is the Boltzmann’s
constant. Another way of computing thermodynamic functions is based on the use
of the phonon density of states. The evolution of the crystal structure as a function
of temperature and pressure can also be simulated by minimizing G = F + pV .
The procedure requires a sequence of geometry optimizations, and lattice-vibration
calculations [568].

Lattice vibrations can be measured experimentally by means of classical vibration
spectroscopic techniques (infrared and Raman) or neutron inelastic scattering. How-
ever, only the latter technique allows one to measure the full spectrum in a range of
k vectors, whereas with infrared and Raman spectroscopy, only lattice vibrations at
Γ (k = 0) are usually detected (the second-order spectra, corresponding to nonzero
wavevector k �= 0 are demanding). The calculations of the vibrational frequencies
only at Γ point require the solution of only one equation

det |W (0)| = 0, Wij(0) =
∑

g

H0g
ij√

MiMj

(9.99)

To analyze the symmetry of phonon states the method of induced reps of space groups
can be used [13]. The procedure of analysis of the phonon symmetry is the following.
First, for the space group G of a given crystal the simple induced reps are generated
(see Chap. 3). Second, using the simple induced reps together with the compatibility
relations and arranging atoms in the primitive cell over the Wyckoff positions one
can determine the symmetry of the phonons. Only those of the induced reps that are
induced by the irreps of the site-symmetry groups according to which the components
of the vectors of the local atomic displacements transform are used. The total dimen-
sion n of the induced rep (called the mechanical representation) equals 3N (N is the
number of atoms in the primitive cell).

As an example, Table 9.32 shows the phonon symmetry in rutile TiO2 crystal.
The results given are easily obtained from the simple induced reps of the space group
D14

4h (see Table 4.5 in [13]) and the atomic arrangement in rutile TiO2 (see Chap. 2).
There is a one-to-one correspondence between irreps of crystal point group D4h

and irreps of the space group at Γ point: A1g,u − 1±, A2g,u − 3±, B1g,u − 2±, B2g,u −
4±, Eg,u − 5±. The atomic displacements of six atoms in the primitive cell generate
the 18-dimensional reducible represntation, which contains three acoustic modes and
15 optical modes (A1g + A2g + A2u + B1g + 2B1u + B2g + Eg + 3Eu). Three acoustic
modes have zero frequency at the Γ point and are associated with the translation
of the entire crystal along any direction in space. These branches are called acoustic
modes as the corresponding vibrations behave as acoustic waves. The translation of



406 9 LCAO Calculations of Perfect-crystal Properties

Table 9.32. Phonon symmetry in rutile TiO2 crystal with space group D14
4h

q-basis k-basis

Gq Rep. of Gq Γ M Z A X R

Ti(2a) b1u(z) 2−,3− 2−,3− 1 1 1 1−

(000) b2u(x − y) 5− 5− 3 3 2 1−

D2h b3u(x + y) 5− 5− 4 4 2 1−

O(4f) a1(x + y) 1+,4+,5− 1+,4+,5− 1,4 1,4 2,2 1+,1−

(xx0) b2(x − y) 2+,3+,5− 2+,3+,5− 2,3 2,3 2,2 1+1−

C2v b1(z) 2−,3−,5+ 2−,3−,5+ 1,3 1,3 1,1 1+1−

the entire crystal along the z-axis corresponds to irrep 3−(A2u) at Γ point, translation
in the plane xy – 5−(Eu).

Both acoustic modes are polar and split into transverse A2u (TO) and longitu-
dinal Eu (LO) with different frequencies due to macroscopic electric field. All other
branches show finite nonzero frequencies at Γ and are known as optical modes, be-
cause they correspond to unit-cell dipole moment oscillations that can interact with
an electromagnetic radiation.

In the model of a finite crystal the rotation of the entire crystal around the z-
and xy-axis corresponds to the irreps 3+ and 5+, respectively, including the displace-
ments of only oxygen atoms, see Table 9.32. As seen from Table 9.32, the phonons
of even symmetry (1+, 2+, 3+, 4+, 5+) are connected only with the oxygen-atom dis-
placements. Due to the different atomic masses of oxygen and titanium atoms, the
corresponding lines can appear in different parts of the vibrational spectra, making
its interpretation easier. The knowledge of phonon symmetry is useful in the analy-
sis of infrared and Raman spectra of solids as the symmetries of active phonons in
these spectra are governed by selection rules following from the symmetry restric-
tions imposed on the transitions matrix elements [13]. Using the symmetry of the
phonons found one can establish which vibrational modes are active in the first- and
second-order infrared and Raman spectra.

The calculation of phonon frequencies of the crystalline structure is one of the
fundamental subjects when considering the phase stability, phase transitions, and
thermodynamics of crystalline materials. The approaches of ab-initio calculations fall
into two classes: the linear response method [670] and the direct method, see [671]
and references therein.

In the first approach, the dynamical matrix is expressed in terms of the inverse
dielectric matrix describing the response of the valence electron-density to a periodic
lattice perturbation. For a number of systems the linear-response approach is difficult,
since the dielectric matrix must be calculated in terms of the electronic eigenfunctions
and eigenvalues of the perfect crystal.

There are two variants of the direct method. In the frozen-phonon approach the
phonon energy is calculated as a function of the displacement amplitude in terms of the
difference in the energies of the distorted and ideal lattices. This approach is restricted
to phonons whose wavelength is compatible with the periodic boundary conditions
applied to the supercell used in the calculations. Another approach of the direct
method uses the forces

(
∂E
∂ui

)
eq

calculated in the total-energy calculations, derives
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from them the values of the force-constant matrices and hence the dynamical matrix
and phonon-dispersion curves. The majority of calculations were performed based on
DFT PW method, for example to study phonons in the rutile structure, [672]. The
calculation of the vibrational frequencies of crystals was implemented in the LCAO
CRYSTAL06 code (see www.crystal.unito.it) and applied to different oxides: quartz
SiO2 [669], corundum Al2O3 [673], calcite CaCO3 [674].

In the LCAO approximation frequencies at Γ are evaluated in the direct method
in the same way as for molecules [669]: a set SCF calculations of the unit cell are per-
formed at the equilibrium geometry and incrementing each of the nuclear coordinates
in turn by u (use of symmetry can reduce the number of the required calculations).
Second-order energy derivatives are evaluated numerically. Obtaining frequencies at
wavevector symmetry points different from Γ would imply the construction of appro-
priate supercells (see Chap. 3). These supercells are chosen in the same way as was
discussed in the electronic-structure calculations due to the one-to one correspondence
between the supercell choice and the set of k-points equivalent to the Γ point in the
reduced BZ. A finite range of interaction in the lattice sum (9.99) is assumed, usually
inside the supercell chosen (compare with the cyclic-cluster model in the electronic-
structure calculations). In the case of ionic compounds, long-range Coulomb effects
due to coherent displacement of the crystal nuclei are neglected, as a consequence
of imposing the periodic boundary conditions [669]. Therefore, Wij(0) needs to be
corrected for obtaining the longitudinal optical (LO) modes [675]. For this reason, in
some cases only transverse optical (TO) parts of the phonon spectrum are calculated
as is done in the combined DFT PW-DFT LCAO lattice dynamics study of TiO2

rutile [676]. The phonon frequencies computed in [676] for optimized crystal structure
are reported in Table 9.33 and compared with experimental data.

The LDA frequencies are in excellent agreement with the experimental frequencies,
especially if compared with the frequencies measured at low temperature (T ∼ 4 K),
when these data are available. The deviation between the LDA and experimental
frequencies is ∼ 13 cm−1 at most, and is often much smaller than that. For instance,
the deviation drops to no more than ∼2 cm−1 for the two stiffest modes, B2g and A1g,
and it remains small also for several of the softer modes. Both PBE and PW91 results
are much less satisfactory. With the exception of the B1g mode, the GGA functionals
systematically underestimate the LDA and measured frequencies. It is found in [676]
that this discrepancy between LDA and GGA results is mostly due to the difference in
the equilibrium lattice parameters at zero pressure predicted by the functionals. The
LDA frequency is the highest because LDA predicts the smallest equilibrium volume,
and the PBE equilibrium volume is large enough to lead to an imaginary frequency.

All the results discussed were obtained within the plane-wave pseudopotential
implementation of DFT. For all functionals, calculations were repeated for the equi-
librium geometries, bulk moduli, and energy profiles along the ferroelectric TO A2u

mode with the all-electron LCAO scheme. Apart from slight quantitative differences,
in all cases the all-electron LCAO calculations agree well with the plane-wave, pseu-
dopotential results, confirming their independence of the particular numerical scheme
used to implement DFT. We note that the hybrid HF-DFT LCAO calculations could
in principle give better agreement with experimental data for phonon frequencies of
rutile as was shown in the B3LYP LCAO calculations of the vibrational spectrum
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Table 9.33. Calculated and measured frequencies (in cm−1) relative to the Γ -point of bulk
TiO2 rutile ( [676]).*

Mode PBE PW91 LDA Neutrons IR and Raman

Raman

B2g 774.3 780.9 824.7 825 827
A1g 565.9 572.0 611.6 610 612 (611)
Eg (2) 429.2 434.2 463.2 445 447 (455)
B1g 154.2 151.7 137.0 142 143 (143)

Silent

A2g 423.6 425.4 421.7 not found —
B2u 357.5 363.4 393.0 406 —
B1u 79.2 99.2 104.0 113 —

Infrared

Eu (TO) 468.6 472.0 488.4 494 500
Eu (TO) 353.5 357.1 383.9 not found 388
Eu (TO) 124.0 127.4 191.4 189 183
A2u (TO) 186.3 47.1 154.4 173 (142) 167 (144)
∗The double degeneracy of the Eg mode is indicated by the label (2). The references
to the experimental neutron-scattering and the infrared (IR) and Raman data are given
in [676]. When available, the low-temperature (T ∼ 4 K) experimental
frequencies are reported in brackets

of calcite CaCO3, [674]. In this case the mean absolute error is less than 12 cm−1

(frequencies range from 100 to 1600 cm−1).
As we have seen in this chapter, the HF and DFT LCAO methods, implemented in

the computer code CRYSTAL, present efficient computational schemes for the study
of different properties of periodic systems. Real-solid properties in many cases depend
on the point defects, destroying the translational symmetry. In the next chapter we
discuss the models used for defective crystals study and give examples of the LCAO
calculations of defective crystals.
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Modeling and LCAO Calculations of Point Defects
in Crystals

10.1 Symmetry and Models of Defective Crystals

10.1.1 Point Defects in Solids and Their Models

The theory of perfect crystalline solids explains those bulk properties of crystals that
do not depend on boundary effects and other defects of the structure. However, real
solids do not demonstrate translational symmetry. Boundaries and other regions of
disruption of translational symmetry called defects are always present. Many prac-
tical applications of solids are based on the use of the properties caused by defects.
By varying the defect structure of solids it is possible to change their physical and
chemical properties in such a way that the defective crystals find useful applications.
As an example, we mention TiO2 crystal that has been successfully applied as a semi-
conductor photocatalyst with high oxidizing power and high resistance to photo- and
chemical corrosion. However, the relatively large bandgap ( 3 eV) does not permit
efficient absorption of visible light and hence prevents TiO2 from being used in large-
scale environmental applications. Chemical doping of TiO2 allows the bandgap to be
reduced. The theoretical study of the doped TiO2 helps to solve the important prob-
lem: how to best manipulate the gap while maintaining the beneficial photocatalytic
properties [677].

The defects in solids can be classified according to the dimensions of the region
of translation symmetry disruption. When one or a few nearest host crystal sites are
disturbed, we speak of point (zero-dimensional) defects, called also local defects. Also
known are extended defects that introduce structural imperfections in lattice directions
- linear (one-dimensional) defects or in the lattice planes (planar or two-dimensional
defects). The surface of a crystal and dislocations are the important examples of
two-dimensional and linear defects, respectively.

The point defects, in turn, are classified as native (intrinsic) and substitution de-
fects. The intrinsic point defects appear as a vacancy (the absence of an atom in a
crystal lattice position) or as an interstitial defect (the presence of the host crystal
atom in an interstitial position). The host crystal atoms can be substituted for another
atom of a different chemical species at a regular lattice site or at the interstitial posi-
tion (impurity center or substitution defect). The point defects can also be classified as
neutral and charged relative to the host crystal lattice. The perturbation of a solid by
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the charged point defect includes the short-range (local) and long-range (Coulomb)
parts. The former is reproduced in the calculations of the sufficiently small fragments
of the defective crystal, the calculation of the latter requires special methods, taking
into account the polarization of the surrounding crystal by the point defect.

In what follows we consider, as examples, LCAO calculations of different types of
point defects in oxides: native point defects – interstitial oxygen atom in MgO crys-
tal and neutral oxygen vacancy (F-center) in corundum Al2O3 and SrTiO3 crystals;
substitution defects (vanadium-doped rutile TiO2 crystal, iron impurity in SrTiO3

crystal). The calculations of the charged point defects are demonstrated by a charged
oxygen vacancy (F+ center) in corundum Al2O3 crystal.

For low defect concentration it becomes appropriate to model a single point defect
in an environment of the remaining solid. In such a model the translation symmetry
is completely absent so that the crystal with a single point defect can be seen as a
gigantic molecule. However, in the case of a solid solution the single-defect model is
not appropriate as the stoichiometry change is introduced by regular substitution of
the host-crystal atoms by those of other chemical species. In this case the periodic
point-defect model is more appropriate. As an example, we discuss in Sect. 10.3 the
modeling of BaxSr1−xTiO3 solid solutions.

The calculational methods of quantum chemistry are widely applied to the point
defects in solids. This application is made after the choice of one of the existing
defective crystal models, (see Fig. 10.1).

Fig. 10.1. Defective crystal models

If a single point defect is introduced into an otherwise perfect crystal, the transla-
tional symmetry is, in principle, lost completely (see Fig. 10.1), and equations should
be solved for all atoms of the solid, i.e. for the aperiodic system [294]. Obviously, the
application of some kind of simplified model is desirable. In many cases the electronic
states of defects in a crystal are localized in some relatively small region. The degree of
this localization depends on the nature of the defect and of the host crystal. The local
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nature of a single point defect allows a smaller piece of a crystal to be taken (called
a cluster) but its size must be chosen in such a way that there is at least one shell of
atoms between the defect zone and the cluster surface that remains undisturbed. The
obvious way is to separate the part of the crystal perturbed by the defect from the
still crystalline background, and treat only the former in an explicit manner. On the
one hand, the need for economizing calls for a model consisting of as few atoms as
possible. On the other, the explicitly treated part of the crystal should, in principle,
extend far enough for the effect of the defect to become negligible [294]. This means,
up to the point where the amplitude of the localized wavefunctions, the deviations of
charge density and of host-atom positions relative to the unperturbed case become
close to zero. In practice, this is assumed to be for a group of atoms around the defect
(cluster). The three criteria above are almost never satisfied to a necessary degree
with clusters that can be sequeezed into the computer. Therefore, at least some kind
of convergence test in all three respects is proper.

The electronic structure of the molecular cluster can be calculated using any of the
methods developed for the molecules. However, the problem arises at the molecular
cluster surface, i.e. with the representation of the rest of the crystal. As is shown
schematically in Fig. 10.1, there are different possibilities for this representation. In
molecular-cluster models the group of atoms chosen is embedded into the crystalline
environment (embedded-cluster model) or the cluster surface atoms are saturated by
hydrogen or other species atoms (saturated-cluster model). In the most crude model
the free cluster (neutral or charged) is chosen.

The models with periodic boundary conditions (the supercell and the cyclic-cluster
models) allow calculation of the one-electron states of perfect and defective crystals
at the same level of approximation. The supercell model (SCM) and cyclic-cluster
model (CCM) have both similarities and discrepancies. One similarity is that in both
models not a standard primitive unit cell but an extended unit cell (supercell or large
unit cell) is considered. The discrepancy is that the periodic boundary conditions in
the SCM are introduced for the infinite crystal or its main region, but in the CCM
model – for the extended unit cell itself.

The calculation schemes usually used for point defect include: 1. the choice of the
model of the defective crystal; 2. the choice of the Hamiltonian (Hartree–Fock, DFT or
hybrid, semiempirical); 3. the choice of the basis for the one-electron Bloch functions
decomposition – linear combination of atomic orbitals (LCAO) or plane waves (PW).

SCM is used as a rule for the neutral-point-defects calculations (for the charged
point defects the field of periodically repeated charge has to be suppressed in one or
another way). The molecular- and cyclic-cluster models are more universal as they
can be applied both for the neutral and charged point defects.

In the SCM the calculations with HF or hybrid Hamiltonians are made in the
LCAO approximation, DFT Hamiltonians are used both in the LCAO and PW rep-
resentations. CCM can be practically realized with the semiempirical LCAO Hamil-
tonians.

In SCM we let the defects be situated periodically and try to make the separation
between defects as large as possible. If the extended unit cell is large enough the defects
are separated by large distances and do not affect each other’s electron structure
so that the results of the application of SCM and CCM models become close. The
bandwidth of defect states depends primarily on the degree of overlap of the functions
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describing the defect electron states from different supercells and decreases rapidly
with increasing defect period. Therefore, this bandwidth can be used as the criterion
of the convergence of the SCM results to those of CCM. The cyclic-cluster model is
conceptually a supercell-type approach but is technically more closely related to the
simple molecular-cluster model. SCM introduces the artificial point-defect periodicity,
CCM describes the single point defect.

All the approaches to the theoretical description of defective crystals use informa-
tion about the symmetry of the system or its model. As mentioned above, a single
defect embedded in a crystal disrupts the translational symmetry of a perfect crystal
so that it may be considered as a gigantic molecule with a point-symmetry group in-
herent to molecules. There are two cases: an atomic type point defect, which occupies
one point of a crystal lattice or an interstitial position and can be a substitutional
impurity, vacancy or interstitial atom; and a molecular type point defect, which occu-
pies several atomic or interstitial points of a crystal lattice and can be composed of an
impurity molecule or a cluster of several vacancies at neighboring lattice points. In the
first case the symmetry group of the defect crystal is fully determined by the site sym-
metry of the point q where the atomic defect appears. In a crystal with a symmorphic
space group the atomic defect may occupy the position q with the symmetry of the
crystal class or one of its subgroups. In nonsymmorphic crystals the point group of
the crystal with a single point defect of atomic type is always a subgroup of the crys-
tal class. In a crystal with point defects of molecular type the center of the impurity
molecule is situated at a point with some site symmetry. A molecular defect has its
own point symmetry so that the point symmetry of the whole system is determined
by the common elements of two groups: the point group of the isolated molecule and
the site-symmetry group of the site where the impurity molecule is situated. However,
it is necessary to also take into account the orientation of the impurity molecule with
respect to the crystal symmetry axes.

It can be assumed that when a point defect appears the configuration of the crys-
tal matrix around the defect does not change (the model of a rigid lattice). In reality,
this assumption is approximately correct only for some point defects and as a rule
only for the ground electron state. Excitation of the defect electrons causes signifi-
cant reconstruction of the defect’s surroundings so that the point symmetry of the
entire system may change. In many calculations, the distortion of the crystal lattice
by a defect is at first neglected. Then, this distortion is taken into account with ap-
proximate wavefunctions obtained for the rigid-lattice model. Therefore, initially, the
symmetry is approximated in the framework of the rigid-lattice model. The knowl-
edge of the actual symmetry of a crystal with a point defect is necessary for correct
understanding of all its properties: the symmetry determines the selection rules for
optical transitions in the defect, the symmetry and the splitting of local energy levels
in external fields, the features of EPR and NMR spectra, etc.

To understand the nature of a point defect in a crystal and the degree of its
influence on the properties of the crystal matrix it is necessary to relate the local
energy levels of the defect to the energy-band structure of the perfect crystal. But
these two systems (crystal with defect and perfect crystal) have different symmetries
and the classification of electron states is made according to irreps of either a point
group (for a crystal with a single defect) or a space group (for a perfect crystal).
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In the molecular-cluster model it is rather easy to establish the relationship be-
tween energy levels and one-electron states of a molecular cluster with and without a
point defect. The symmetries of both systems are described either by the same point
group or by a point group that is a subgroup of the other (in the case of a molecular-
type defect). Hence, in the cluster model the relationship between the classification
schemes of electron energy levels and states of perfect and imperfect crystals is sim-
ple. But the relationship between the cluster electron energy structure and that of a
perfect crystal is much more complicated. In the models using PBC the application
of the site-symmetry approach is quite useful [13]. The single-defect localized electron
states of a given energy level span the space of an irrep of defect point-symmetry
group FD. The band states of a perfect crystal are classified according to irreps of
the space group G. It is useful to determine which band and localized states are al-
lowed by symmetry to mix (e.g. , for calculating the electron structure from atomic
basis functions). We consider the appearance of a point defect as a perturbation of a
perfect crystal. According to perturbation theory, only states with the same symme-
try may interact with one another. The common symmetry group of both systems is
FD ⊂ G. Let β be an irrep of FD that describes one of the defect states. To establish
the possibility of its mixing with the perfect crystal states of symmetry D(∗kγ) it is
sufficient to know whether the restriction D(∗kγ) ↓ FD contains the irrep β. If the
state of symmetry D(∗k0γ) does not contain the state of symmetry β, then the con-
tribution of the states with k near k0 is small according to the perturbation theory,
although it is not equal to zero due to the symmetry. As an example, let us consider
the s-states of an impurity at a cation site (Wyckoff position a, site group D2h s-state
has symmetry ag) or at an anion site (Wyckoff position f , site group C2v, s-state
has symmetry a1) in rutile TiO2. From band calculations we know the symmetry of
states on the boundaries of the forbidden gap in a rutile TiO2 crystal (see Chap.
9): Γ+

1 (the bottom of the lowest conduction band) and Γ+
3 (the top of the highest

valence band). From the table of induced representations of the space group D14
4h we

find Γ+
1 ↓ D

(a)
2h = ag; Γ+

3 ↓ D
(a)
2h = b1g, i.e. the s-states of an impurity may mix with

the states of the bottom of the lowest conduction band, but not with the states of
the top of the uppermost valence band. The anion site is at the Wyckoff position f

(Ff = C2v). We get Γ+
1 ↓ C

(f)
2v = a1; Γ+

3 ↓ C
(f)
2v = b2, i.e. the s-states of an impurity

at an anion site may mix with the states of the bottom of the lowest conduction
band but not with the states of the top of the uppermost valence band. From this
consideration it follows that the defect local levels due to the s-states of the impurity
both at Ti and O sites split from the conduction-band bottom. Such information is
useful for the study of doping influence on the rutile crystal bulk properties.

In the next sections we consider in more detail the defective-crystal models men-
tioned above.

10.1.2 Symmetry of Supercell Model of Defective Crystals

The recent trends in the theory of the point defects in solids and of the crystalline
surfaces, formally aperiodic systems, are connected with the widespread application
of periodic boundary conditions (PBC) and computer codes developed for the perfect
crystals, see [568, 678, 679] and references therein. This allows one to use the same
numerical schemes both for the host and defective crystal to study changes induced
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by a point defect or surface: additional local energy levels in the optical gap, lattice
relaxation around defects, etc . As was noted above, in the theory of point defects two
models with PBC are used: the supercell model (SCM) and the cyclic-cluster model
(CCM).

The application of the supercell model to the defective crystals requires consider-
ation of periodic systems with a sufficiently large number of atoms in the unit cell.
The possibilities of the supercell model extend if the full symmetry of the object is
taken into consideration. It was demonstrated [681–683] that the study of the sym-
metry of a crystal with a periodic defect permits, in some cases, investigation of the
dependence of the results of electronic-structure calculations on the period of a defect
by only changing the symmetry of the system without any augmentation of the su-
percell. The symmetry of the crystal with a periodic defect is determined by the site
symmetry of the defect in the crystal and by the symmetry of the host-crystal matrix.
Let a point defect (impurity atom or molecule, one or a few vacancies) occupy a po-
sition q in a perfect crystal with a space group G (crystal class F). A site-symmetry
group of the defect in the crystal SD consists of common elements of two groups: of
the symmetry group S(0)

D of the defect itself and the site-symmetry group Sq of the
position q in the crystal occupied by the defect. The group SD depends on the mutual
orientation of the symmetry elements of the groups S(0)

D and Sq.
Let us consider now a periodic structure that arises in the supercell model when

the embedded defect is periodically repeated and occupies in this structure some po-
sition Q with site-symmetry group SQ = SD. The symmetry of the obtained periodic
structure is characterized by some space group GD. One seeks for all the possible space
groups GD = TAFD of the defective crystal for a given host crystal (space group G)
and for a given point defect in the crystal (point group SD). Here, translation group
TA includes translations A of the supercell. Some symmetry operations disappear
when one goes from the space group G to the space group GD. Therefore, the group
GD has to be a subgroup of GD ⊆ G with a crystal class satisfying the condition
SD ⊆ FD ⊆ F. The possible space groups GD of the crystal class FD are those that
have the group SD as a site-symmetry subgroup. In this way, one obtains the list of
space groups GD that may describe the symmetry of the supercell model of a defective
crystal for a given site symmetry SD of the embedded defect and space group G of a
host crystal.

In the framework of the same space group GD the periodical structures may differ
by the length of supercell basic translation vectors A1,A2,A3 for the same type of
Bravais lattice. These vectors have a definite orientation with respect to the symmetry
elements of the group GD, and sometimes there is a definite relation between their
lengths. In addition, they have to be integer linear combinations, see (4.77), of basic
translation vectors of the host perfect crystal. This combination defines the transfor-
mation matrix l with the determinant L (the number of primitive unit cells in the
supercell). As was noted, this transformation is called a symmetric one if the point
symmetry of the Bravais lattice of supercells is the same as that of the host-crystal
Bravais lattice, see Chap. 4. Use of the symmetric transformation for the supercell
generation allows the point symmetry of the defective crystal in the supercell model
to be maintained as high as possible. These conditions determine the matrix l, i.e.
the translational subgroup TA of the symmetry group GD. Finally, it is necessary to
verify whether the obtained group GD is a subgroup of the symmetry group of the
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host crystal. This condition assures that all the atoms of the system transform into
themselves under the operations of the group GD. If G̃D ⊂ G, then GD = G̃D; if
GD �⊂ G, then the group G̃D has to be excluded from the list of the possible groups
GD.

Finally, the generation of the possible space groups with a periodical defect in the
supercell model consists of the following steps [683]:

(i) determination of the site group SD of the defect in the crystal; (ii) determination
of the crystal classes satisfying the condition SD ⊆ FD ⊆ F; (iii) determination in the
space groups of these classes those that have the site-symmetry subgroups SD; (iv)
generation of the matrix l and the supercell translation vectors Ai by symmetric
transformation of the host crystal basic translations; (v) verification of the condition
GD ⊆ G.

The groups GD of a supercell model with one point defect for a supercell are sym-
morphic, they belong to the crystal class FD = SD with all the types of crystal lattices
possible for this crystal class. The point symmetry of the cyclic-cluster coincides for
the host crystal – with the point-symmetry group F, for the defective crystal – with
the point-symmetry group SD.

Let us consider some examples. In MgO crystal the supercells, containing 8, 16
and 32 atoms (S8, S16, S32), are obtained by a linear symmetric transformation of
the fcc lattice basic translation vectors with matrices

l(4) =

⎛⎝ 1 1 −1
1 −1 1
−1 1 1

⎞⎠ , l(8) =

⎛⎝2 0 0
0 2 0
0 0 2

⎞⎠ , l(16) =

⎛⎝ 3 −1 −1
−1 3 −1
−1 −1 3

⎞⎠
Superscript (n) in l(n) denotes the number of primitive unit cells in the supercell.

The supercell translation vectors for A1, A2, and A3 for l(4), l(8), l(16) correspond to
simple cubic, face-centered-cubic, and body-centered-cubic lattices, respectively. The
host crystals, consisting of the corresponding supercells, have the symmetry of cubic
space groups O1

h, O5
h, and O9

h, respectively. For the isoelectronic Be, Ca impurities
in the Mg site the site-symmetry group coincides with the point-symmetry group of
the host crystal, i.e. the space groups of the defective crystals are the same as for
the host crystal. The Li impurity atom is displaced from the Mg site along the fourth
order symmetry axis (the Li atom site symmetry is C4v). As a result, the space groups
of the defective crystal are now tetragonal – C

(1)
4v , C

(9)
4v , and C

(9)
4v , respectively (the

face-centered lattice is absent in the tetragonal system).
An additional neutral interstitial oxygen Oi atom as a point defect in MgO crystal

can have several configurations. In three of these (called v, f , and e) the oxygen atom is
at the volume, face, or edge centers, respectively, of the cubic unit cell. Fig. 10.2 shows
volume-(a), face-(b) centered configurations and a (110)-oriented dumbbell (see below)
configuration (c). The point symmetry of the v, f and e configurations is Td, D2h,
and C4v, respectively. The space groups for MgO with these centers in the supercell
model depend on the supercell chosen and they are given in Table 10.1. The other three
configurations vd, fd, and ed are so-called dumbbell-shaped defects formed when the
Oi is moved towards a nearest-neighbor O2− lattice anion along <111>, <110>, or
<001> directions, respectively, the lattice anion being simultaneously displaced from
its site along the same direction. The center of the dumbbell is at the lattice site, and
the point symmetry of these defects is D3d, D2h, and D4h, respectively. The space
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Fig. 10.2. Configurations of the interstitial oxygen atom in MgO

groups of MgO containing these defects are given in the last three lines of Table 10.1.
The results of Table 10.1 were obtained using the list of subgroups of the space groups
given on the Internet site www.cryst.ehu.es. For example, the supercell transformation
with the matrix l(4) changes the host-crystal space group from O5

h to O1
h. Choosing

from the list of subgroups of space group O1
h those symmorphic subgroups that refer

to the crystal class Td (point symmetry of the v configuration), we obtain directly the
result given in the third column of Table 10.1.

Table 10.1. Space-group symmetry for the supercell model of an oxygen-atom interstitial
Oi in MgO crystal [682]

Supercells

Center FD l(4) l(8) l(16)

v Td T 1
d (215) T 2

d (216) T 3
d (217)

f D2h D19
2h(65) D25

2h(71) D25
2h(71)

e C4v C1
4v(99) C9

4v(107) C9
4v(107)

vd D3d D5
3d(166) D5

3d(166) D5
3d(166)

fd D2h D19
2h(65) D25

2h(71) D23
2h(69)

ed D4h D1
4h(123) D17

4h(139) D17
4h(139)

The next example – the impurity atom on the Ti site of rutile structure with the
space group D14

4h. There are two titanium atoms in the primitive unit cell, occupying
the two-site Wyckoff position a with coordinates (000) and (1

2
1
2

1
2 ). An impurity atom

replaces a Ti atom with the site symmetry D2h. Therefore, the space group of the
defective crystal belongs to the crystal class D2h. Four possible symmetric supercell
transformations for the space group D14

4h are given in Table 6.3. The first of them
maintains the simple tetragonal lattice of the host crystal, the other three transform
it to the body-centered tetragonal lattice. Respectively, the possible symmetry groups
of the defective crystal are the following: D1

2h, D19
2h, D23

2h, D25
2h.
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In the Ti atom site-symmetry group two of three second-order axes are directed
along the diagonals of the square, see Chap. 2. In the standard setting of the space
groups with D2h point symmetry all the three second-order axes are directed along
the Cartesian coordinate axes. This difference must be taken into account [683].

The point symmetry of the cyclic-cluster model coincides with point groups F and
FD for the host and defective crystal.

10.1.3 Supercell and Cyclic-cluster Models of Neutral
and Charged Point Defects

In the point-defect calculations there are two criteria to be met: the model used for
solving the quantum-mechanical problem has to describe sufficiently well both (i) the
extended crystalline states and (ii) the localized states of a single point defect. The
CCM can be defined from the two points of view: it can be regarded either as the
application of the Born– von Karman cyclic boundary conditions directly to the large
unit cell (supercell), or as the band-structure calculation on SCM with (A) applying
the k = 0 approximation, and (B) neglecting interactions beyond the Wigner–Seitz
cell corresponding to the supercell chosen. The SCM have no restrictions like A and
B and thus CCM could be considered as a special approximation to the SCM.

The economic approach to a single-point-defect study in a model with PBC con-
sists of three stages [680].

In stage 1 the band-structure calculation of a perfect crystal is performed, in order
to fix the shape and size of the supercell that reasonably models the host crystal, i.e.
when the above-described condition (i) is met. These calculations are made using a
primitive unit cell and k-sampling in the usual (primitive) BZ.

The one-to-one correspondence was demonstrated between a fixed k-mesh and the
supercell in a real space, see Equations (4.77), (4.80) and (4.84). Due to the one-to-
one correspondence between k-point sampling and the supercell size in a real space
it is possible to find such a k-mesh that ensures a compromise between its size and a
reasonable reproduction of the total- and one-electron energies, as well as the electron-
density distribution in the host crystal. At this stage, the k-point sets satisfying (4.84)
are used.

In stage 2 the calculations are made for a defective crystal using SCM, in order
to check the above-described criterion (ii). It is reasonable to begin from the smallest
supercell, chosen at stage 1, i.e. corresponding to the converged results of the band
calculations. The supercell shape should be such as to exploit the point symmetry of
the defect as far as possible. In the particular case of the cubic SrTiO3 crystal cubic
supercell of 80 atoms (L = 2× 2× 2, the diagonal matrix l in transformation (4.77) is
taken) may be used for a perfect crystal in the HF calculations but larger supercells
are necessary in the DFT-PWGGA calculations [680]. When estimating the defect–
defect interaction from the calculated defect bandwidth in the second stage, one makes
a decision about the need for a further increase of the supercell. In particular, the
Fe impurity at the Ti site bandwidth in the HF calculations still changes when the
supercell is increased from 80 to 160 atoms [680]. This means that the local states
induced by the point defect are sufficiently well localized only in the larger, 160-atom
supercell [680]. That is, in stage 2 the comparison of supercell results for different
k-meshes allows us to decide if it is necessary to further increase a supercell, in order
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to surpass artificial defect–defect interaction. When energies at k = 0 and nonzero k
supercell calculations turn out to be close, this means that the corresponding cyclic
cluster is appropriate for the single-point-defect study as CCM corresponds to the Γ
point only consideration for the supercell chosen.

In the most time-consuming stage 3 the CCM is used (i.e. the band-structure cal-
culations for the chosen supercell are performed only at k = 0) for the determination
of the equilibrium geometry, i.e. relaxation of the crystalline lattice around the point
defect and calculation of other defective crystal properties.

As is seen, the approach described combines both supercell and cyclic-cluster mod-
els of the defective crystal and differs from the traditional supercell calculations by
an attempt to exclude in stage 3 the spurious point-defect periodicity. This exclusion
allows us formally to escape periodic repeating of the crystalline lattice relaxation
around the point defect. Furthermore, the different charge states of the point defect
could be also considered in stage 3 without principal difficulties since in CCM the
charge is not periodically repeated over the lattice.

The defect-formation energy is an important property of the defective crystal. The
formation energy ∆Ef of a neutral defect in CCM is given by

∆Ef = Ed − EB + ER − EA (10.1)

where EB is the bulk-crystal total energy, Ed is the total energy of the cyclic cluster
with the point defect, EA and ER the energies of the added and removed species,
respectively. The bulk crystal energy EB = LE(0), where L is the number of primitive
cells in the cyclic cluster and E(0) is the energy per primitive cell. As an example,
for ionic MgO crystal the formation energy of X substitution impurities (X=Ca, Be
substitutes Mg atom), [684], can be given in terms of the isolated atoms or isolated
ions

∆EL
X = EMgO−X − LE

(0)
MgO + EMg2+ − EX2+ (10.2)

∆EL
X = EMgO−X − LE

(0)
MgO + EMg − EX (10.3)

When the relaxation is taken into account (shifting of some nuclei around a defect from
a reference bulk-crystal situation) the total energy Ed is corrected by the relaxation
energy Erel.

The oxygen-removal energy for MgO crystal ∆Ef (formation energy of neutral
oxygen vacancy, also called an F center) is defined as the energy of the system, con-
taining the F center, plus the energy of an isolated oxygen atom minus the energy
of the perfect crystal [685]. In the LCAO approximation the energies of added or
removed atoms are calculated in the same numerical scheme that is used for the bulk
and defective crystal calculation (the atomic basis is used that is appropriate for a free
atom, see Chap. 9). In PW calculations the energy of the isolated atom is obtained
by calculations on a number of periodic systems, containing one atom per increasing
supercells, and the final size of the supercell is taken large enough to ensure that the
interaction between atoms introduces a sufficiently small error (this error was 0.01
eV in calculations [685]). Within the supercell approach, ∆Ef should tend to a well-
defined limit with increasing supercell size. For a defect to be considered as single,
sufficiently large supercells must be adopted to avoid spurious interactions among
neighboring defects.
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In the SCM (CCM) models two finite energies are compared when determining
the defect-formation energy: they are the total energies per unit supercell of the two
crystals (perfect and defective). In view of the large energies involved, it is important
that the same cell be used for the perfect and defective crystals to ensure cancelation
of errors.

As an example, we consider the convergence of the LCAO HF AE supercell calcu-
lations of Ca and Ba atom subsitution in bulk MgO, the details of the computational
scheme used can be found in [684]. In Table 10.2 the substitution energies are given
as a function of the supercell size for nonrelaxed and relaxed defective lattice. The
supercells of 8, 16 and 32 atoms correspond to the host crystal fcc lattice vector trans-
formations, giving simple, face-centered and body-centered cubic lattices of supercells
with L=4, 8, 16 (8, 16 and 32 atoms), respectively(see Sect. 10.1.2). Table 10.2 shows
that in an unrelaxed lattice the increasing of the supercell from 8 to 32 atoms changes
the defect-formation energy from 0.11 eV (Ca substitution) and 0.02 eV (Be substitu-
tion). It is also seen that for the largest supercell the Ca substitutional energy reduces
from 7.09 eV to 6.43 eV when the first star of neighbors (six O ions) is allowed to
relax; a further energy gain of 0.19 eV is obtained after allowing the second neighbors
(12 Mg ions) to relax, the total relaxation energy, 0.84 eV, being substantial. In the
case of the Be substitution, the relaxation energy, 0.27 eV, is considerably smaller. In
the Be case the displacements are smaller and in the opposite direction to those for
the Ca substitution, but the pattern is otherwise qualitatively siimilar. Thus, quite
small unit cells appear to be able to describe the effect of electronic rearrangement.
In contrast, Table 10.2 indicates that nuclear-positional relaxation is much more long
ranged, at least for fully ionic compounds such as MgO.

Table 10.2. Ca and Be HF substitutional energies ∆Ef (in eV) in MgO as a function of
the size of the supercell. M is the number of atoms in the supercell, ∆R is the variation (in
Å) of the distance between the defect and its first (6O) and second (12Mg) [684]

Ca Be

∆R ∆R

M ∆Ef First(6O) Second(12Mg) ∆Ef First(6O) Second(12Mg)

8 7.20 — — –3.81 — —
16 7.12 — — –3.80 — —
32 7.09 — — –3.83 — —
16 6.56 0.073 — –3.93 –0.044 —
32 6.43 0.084 — –4.00 –0.053 —
32 6.25 0.097 0.031 –4.10 –0.070 –0.022

The dependence of the defect-calculation results on the supercell size in MgO was
obtained for oxygen atom removal energies in DFT PW calculations [685]: increasing
of the supercell from 8 to 64 atoms changed the defect-formation energy from 10.656
eV to 10.568 eV in unrelaxed lattice and from 10.553 eV to 10.547 eV for the relaxed
lattice. In this case, the effect of relaxation appeared to be completely negligible.

The convergence of the results with the supercell size is strongly dependent on
the point-defect nature. Ca and Be substitutions of Mg atom in MgO are examples
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of isoelectronic substitution, giving small impurity-atom displacement from the sub-
stituted atom site. However, in the case of the MO : X point defect (M=Mg, Ca, Sr;
X = H, Li, Na, K) this displacement becomes large due the difference between the
host and substitution atoms. The difference in the number of valence electrons in M
and X atoms (two and one, respectively) is called hole trapping. Ionizing radiation
produces a variety of trapped hole centers in metal oxides, both alkaline-earth oxides
and perovskite-type compounds.

As a result of the impurity-atom displacement the point defect in MgO has axial
symmetry along one of the fourth-order symmetry axes of the cubic lattice. This low-
ering of the crystalline symmetry from cubic to tetragonal generates a dipole moment
within the cell. A long-range dipolar defect–defect interaction then originates among
defects in neighboring cells, and larger supercells are needed to obtain the converged
results. As an example, the defect formation energy of the MgO : Li center in UHF
calculations (for the Li only relaxation taken into account) changes with the supercell
increase are the following [568]:4.82 eV(8), 4.99eV(16), 5.06eV(32), 5.10eV(64). Here,
the number of atoms in the supercell is given in brackets. When all the atoms in the
supercell are allowed to relax, the defect-formation energy changes (in the calcula-
tions of the largest supercell of 64 atoms) from 5.43 eV (unrelaxed) to 4.15 eV (fully
relaxed). The comparison with the data given in Table 10.2, demonstrates that for
the hole-trapping center the convergence is slower than for isoelectronic substitution
and the geometry optimization plays a crucial role for the hole-trapping center: the
difference in the defect-formation energy for fully relaxed and nonrelaxed largest su-
percells is 0.84 eV (Ca substitution), 0.27 eV (Be substitution) and 1.28 eV for the
hole-trapping center. The atomic relaxations themselves are especially large for the
Li atom (about 0.3 Å). It was found [568] that in the fully relaxed case, the conver-
gence of the defect-formation energy is much faster (0.03 eV in going from a supercell
of 8 atoms to one of 64 atoms) that shows that structural relaxation is an effective
mechanism to screen and minimize long-range electrostatic interactions induced by
the dipolar nature of the defect center.

When the alkali-metal ion replaces an alkaline-earth cation, it relaxes from the
perfect lattice position toward the oxygen ion (O2) along the axial direction, which
brings a formal +2 charge; the electron hole localizes at the opposite oxygen (O1),
which in turn relaxes away from the X monovalent ion. However, this relaxation is
periodically repeated, and it would be desirable to compare its role for the supercell
calculations at the center and symmetry points of the BZ.

The supercell calculations give important information concerning the charge re-
distribution in the defective crystal. In particular, the UHF electronic structure of
the trapped-hole defect MgO : [Li]0 indicates the localization of the unpaired electron
at the O1 atom [568]. However, the degree of localization is quantified by the spin
moment of O1 and changes significantly when different Hamiltonians are considered:
the spin moment decreases from 0.98 at the UHF level, to 0.41 for B3LYP, to about
0.1 with other DFT Hamiltonians [568]. The different degree of localization produced
by DFT methods has important consequences for the atomic relaxation. Magnetic
coupling constants determined by EPR and ENDOR techniques permit a direct com-
parison with experimental data to be made. In the particular case of the Li defect,
the agreement is reasonable for the UHF result, where the hole is localized at O1. For
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the other Hamiltonians, the disagreement increases in parallel with the delocalization
of the hole [568].

In PW calculations of defective crystals the use of PBC is the only possibility
in the model choice. Apart from the problem of getting rid of interactions between
defects by considering sufficiently large cells or by introducing corrections by averaging
over the sampled k-points [686], the supercell technique seems to provide a natural
“universal” reference for the neutral point defects in crystals: the two structures that
are compared satisfy the same boundary conditions, and the two wavefunctions (or
density matrices) differ only in the vicinity of the defect in each supercell [687]. This
is, however, no longer true when charged defects are considered. The artificial long-
range Coulomb interactions between the periodic charged defect images introduce
the divergence in the energy. The problem of the neutrality of the periodic array of
charged defects is solved by superimposing a neutralizing charge uniformly spread in
each supercell (a uniform, neutralizing “jellium” background charge is introduced to
restore the electroneutrality of the unit cell).

It is also necessary to correct the defect-formation energy using an estimate of the
dielectric response of the host system to the periodic ensemble of neutralized defects.
While the self-energy of this charge becomes vanishingly small with increasing super-
cell size, this is not true for its interaction with the host crystal. Polarization of the
crystalline medium by the local charge could be taken into account by allowing full
relaxation of nuclear positions with very large supercell sizes. This is impossible in
practice, and the corresponding finite contribution to the stabilization of the defect
must be evaluated separately. With “reasonable” supercell sizes, it is necessary to
correct for the interaction between charged defects. This correction can be performed
classically, using the experimental ε static dielectric constant [688]. However, using
the experimental ε value makes the model inconsistent, not only because of the semi-
empirical character of this assumption, but also because use of the static dielectric
constant would imply full relaxation of electrons and nuclei in the field of the defect
charge, while use of the optical dielectric constant would require that no nuclear
relaxation takes place [687]. To calculate the charged point defect formation energy
in SCM some other correction schemes are suggested, [689–692]. These schemes were
applied for the supercell calculations of point defects in semiconductors: tetrahedral
– Si [690], diamond [693], InP [692], SiC [691] and hexagonal –AlN [694], GaN [695].

LCAO calculations of the charged point defects in metal oxides are made mainly
in the molecular-cluster model, considered in the next section. As we already noted
PW molecular-cluster calculations are impossible as use of the PW basis requires the
periodicity of the structure under consideration.

10.1.4 Molecular-cluster Models of Defective Solids

The molecular-cluster model (MCM) of the defective crystal is the simplest and most
direct approach. As was already noted, MCM is obtained by cutting out in the crystal
some fraction of atoms consisting of the point defect and several spheres of nearest
neighbors, followed by an embedding of this cluster into the field of the surrounding
crystal and (or) by saturating with the pseudoatoms the dangling bonds on the cluster
surface. The embedding pseudopotential can also be used (see Sect. 8.2.3).

The main attractive features of a cluster model are the following: the simplicity
of the mathematical formulation; the possibility of direct transfer of computational
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schemes, worked out in quantum chemistry of molecules; and applicability to almost
all types of solids and point defects in them. A reasonable choice of cluster is possible
when well-localized point defects are considered [696].

There are well-known [294] difficulties of the cluster model connected with changes
of host-crystal symmetry, pseudoatom choice at the cluster boundaries and the ne-
cessity to consider nonstoichiometric (charged) clusters. The validity of the results
obtained within the cluster approach is often questionable due to some serious draw-
backs: the strong unpredictable influence of the cluster shape and size on the results
of calculations; the difficulties arising when relating the cluster one-electron energy
levels with the band energies of the perfect crystal; and the appearance of “pseudo-
surface” states in the one-electron energy spectrum of the cluster. The appearance of
the “pseudosurface” states is accompanied by the unrealistic distortion of electronic
density on the cluster boundaries and can lead to artefactual resonances between the
“pseudosurface” and the point defect one-electron states.

In order to make the cluster model more realistic, a large number of embedding
schemes have been developed. Most of them are oriented on special types of crystal
(ionic, simple covalent) or are based on the use of special approximations in the Hamil-
tonian operator (local exchange, tight-binding approximations). The other group of
cluster models is based on adding the effective-potential operator (the embedding
operator) to the unperturbed-cluster Hartree–Fock operator, giving the proper one-
electron solution for the perfect crystal. When the cluster shape and size are chosen,
this embedding operator can be determined and used in the following perturbed-
cluster calculations. This so-called embedded-cluster approach is sufficiently general
and can be applied to different types of solids.

The only characteristic that to a certain extent depends on the nature of the solid
and local center in it is the minimal appropriate cluster size. This size is limited by
the extent of localization of one-electron states in the perturbed and nonperturbed
solid. At the same time the extent of the defect-potential localization is not so critical
if the cluster is chosen in such a way that the long-range polarization outside the
cluster can be taken into account.

The use of localized orbitals for the cluster calculation is an efficient approach
for defective crystals. To connect the perfect crystal localized orbitals and molecu-
lar cluster one-electron states the molecular cluster having the shape of a supercell
was considered [699]. Such a cluster differs from the cyclic cluster by the absence of
PBC introduction for the one-electron states. Evidently, the molecular cluster chosen
is neutral and stoichiometric but its point symmetry can be lower than that of the
cyclic cluster. Let the localized orthogonal crystalline orbitals (Wannier functions)
be defined for the infinite crystal composed of supercells. The corresponding BZ is
L-times reduced (the supercell is supposed to consist of L primitive unit cells). The
Wannier functions Wn(r − Ai) are now introduced for the supercells with the trans-
lation vectors and satisfy the following equation:

ĤWn(r − Ai) =
∑
Al

εn (Al − Ai) (10.4)

Here, Ĥ is the one-electron Hamiltonian of the crystal,

εn(Al) =
1√
N

∑
k′

En(k′) exp(ikAl) (10.5)
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are the Fourier coefficients of the energy En(k′) of the nth band. The range of k′

summation, numbering of energy bands and the coefficients εn(Al) in (10.5) corre-
spond to the supercell chosen, N is the number of supercells in the macrocrystal. Let
Emin

n , Emax
n be the minimum and maximum values of the energy in the nth band.

Introducing ∆En = 1
2

(
Emax

n − Emin
n

)
and En = Emin

n + ∆En we get

1
N

∣∣∣∣∣∑
k′

(En(k′) − En) exp(ik′Al)

∣∣∣∣∣ ≤
≤ 1

N
· N · max {|En(k′) − En|| exp(ik′Al)|} ≤
≤ max

{|En(k′) − Emin
n − ∆E|} ≤ ∆En

The inequality obtained

1
N

∣∣∣∣∣∑
k′

(En(k′) − En) exp(ik′Al)

∣∣∣∣∣ ≤ ∆En (10.6)

is fulfilled for any choice of the supercell, defining the translation vectors Al, the
range of k′ summation and the band numbering. For any choice of the supercell∑
k′

exp(ik′Al) = N · δAl0. Using (10.6) we have the relation

|ε(Al) − EnδAl0| ≤ ∆En (10.7)

that can be rewritten as

|ε(0) − En| ≤ ∆En, |ε(Al)| ≤ ∆En (10.8)

Hence

ε(Al) → 0, ε(0) → En

∆En → 0 (10.9)

On increasing the size of the supercell one can approach the limits in (10.9) as closely
as desired. When the size of the supercell increases, the number of energy bands in
some fixed energy interval ∆E increases proportionally, and the width ∆En of the
nth band decreases. From (10.8) it follows that the narrower the energy bands of the
perfect crystal (in the usual band numbering for the primitive cell), the smaller will
be the unit cell for which one can neglect on the right side of (10.4) all the terms with
Al �= Ai and consider the approximate equation

ĤW̃ (r − Ai) = εn(0)W̃ (r − Ai) (10.10)

This equation is written for the Wannier function of the ith supercell. Due to (10.9)
εn(0) can be considered as the average energy of the nth band (in the supercell
classification of crystalline states). In fact, (10.10) corresponds to the molecular cluster
having the shape of the supercell. The Bloch functions of the macrocrystal can be
constructed from the cluster one-electron states:
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Ψn(k, r) =
1
N

∑
Rl

exp(ikRl)W̃ (r − Al) (10.11)

This consideration is the foundation of the approach originally called “the cycli-
cally embedded cluster” model [697]: the crystal is divided into the sets of regions
chosen in the shape of a Wigner–Seitz supercell of the perfect crystal. The central
region A contains the defect with its surrounding, the other regions together form the
rest of the crystal. We refer the reader to [697] for the mathematical details of this
approach. We note only that in the limit when the region A is the whole crystal this
model gives the traditional HF LCAO equations for a defective crystal considered as a
large molecule. In the other limit, when the defect potential is equal to zero, the cyclic
cluster of the perfect crystal is obtained. The cyclically embedded cluster model is
relatively simple in implementation and has been used for point defects in ionic [698]
and covalent [697] crystals. The drawback of the model is that it does not take into
account the polarization of the crystal by the perturbative potential of the defect.

The consideration above using a Wannier function for the supercell shows that
the molecular-cluster model is more appropriate for the solids with the relatively
narrow (1–3 eV) upper valence bands and sufficiently large energy gap. For ionic
insulating crystals these conditions are fulfilled and the convergence of the results
with increasing cluster size is rapid. The results of recent molecular-cluster calcula-
tions [432] confirmed these conclusions made about thirty years before [699]. As an
example, we mention the localized orbitals approach used to introduce the embedded-
cluster model of α-quartz [700]. The localized orbitals are constructed by applying
various localization methods to canonical HF orbitals calculated for a succession of
finite molecular clusters of increased size with appropriate boundary conditions. The
calculated orbitals span the same occupied Fock space as the canonical HF solutions,
but have the advantage of reflecting the true chemical nature of the bonding in the
system.

In strongly ionic systems, where coupling between the cluster and the background
is mainly by classical Coulomb interactions, the long-range forces from the background
can be accounted for by a Madelung term. A higher level of approximation applies a
shell model for the environment, i.e. places a set of ions with rigid positive cores and
polarizable, negatively charged shells around the cluster. The parameters of this shell
model can be determined, e.g. , from self-consistent calculations on model systems.
The charges in the embedding point charge model or in the shell model must be
determined self-consistently with charges in the cluster [294]. Except for ionic solids,
the interaction between the cluster and the background is quantum mechanical in
nature, i.e. the electronic equation is to be solved.

A rigorous mathematical basis for the separation of cluster and background is
provided by Green-function (GF) techniques. There are essentially two possible ways:
the perturbed-crystal and the perturbed-cluster approaches. In the former approach
it is assumed that the defect introduces a perturbation relative to the perfect crystal,
localized to the cluster. If the GF of the perfect crystal is known in any localized basis
representation, and the matrix elements of the perturbation can be constructed, the
GF of the perturbed crystal can be calculated [294]. The perturbed-crystal approach
looks conceptually like the cleanest and most sophisticated solution as far as the
description of the crystalline background is concerned. The problems arise more with
the cluster. The perturbation should be constructed self-consistently and at the same
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level as the crystal potential. The perfect-crystal problem can easily be solved on a
plane-wave basis but then the solutions must be transformed into Wannier functions
in order to construct the perturbation. Alternatively, a localized basis set can be used
for the perfect crystal in the first place. The perturbed-crystal model is most often
used in metals where the screening effect of electrons is strong and the extent of
atomic displacements is smaller.

The perturbed-cluster approach [701,702] is formulated in the LCAO approxima-
tion and is based on the following sequence of steps, [703]: a) subdivide the entire
defect system into a molecular cluster (C), containing the defect, and an external
region (D), the indented crystal; b) calculate the wavefunction for the molecular clus-
ter in the field of the indented crystal; c) correct the cluster solution in order to
allow for the propagation of the wavefunction into the indented crystal while gen-
erating the density matrix of the defect system. Steps “b” and “c” are repeated to
self-consistency. The corrective terms in step “c” are evaluated by assuming that the
density of states projected onto the indented crystal is the same as in the perfect host
crystal (fundamental approximation).

With respect to standard molecular-cluster techniques, this approach has some
attractive features: explicit reference is made to the HF LCAO periodic solution for
the unperturbed (or perfect) host crystal. In particular, the self-embedding-consistent
condition is satisfied, that is, in the absence of defects, the electronic structure in the
cluster region coincides with that of the perfect host crystal; there is no need to
saturate dangling bonds; the geometric constraints and the Madelung field of the en-
vironment are automatically included. With respect to the supercell technique, this
approach does not present the problem of interaction between defects in different
supercells, allows a more flexible definition of the cluster subspace, and permits the
study of charged defects. The perturbed-cluster approach is implemented in the com-
puter code EMBED01 [703] and applied in the calculations of the point defects both
in the bulk crystal, [704] and on the surface [705]. The difficulties of this approach
are connected with the lattice-relaxation calculations.

Concluding this section we compare the results obtained in the supercell and
perturbed-cluster HF LCAO treatment for the cation vacancy in MgO [706]. The
supercells with 16, 32 and 64 atoms have been considered. The perturbed-cluster
was chosen so that the most important effects of electronic rearrangement and ionic
relaxation occur within the cluster, i.e. the cluster included sufficiently large number
of oxygen ions, which are the most polarizable species (perturbed-clusters of 7, 13
and 25 atoms were considered). For the largest supercell (64 atoms) and the largest
perturbed-cluster (25 atoms) the cation-vacancy-formation energy was obtained (in
eV) as 1.58 (1.48) and 1.29 (1.19), respectively. In brackets are given the formation
energies after relaxation of first-neighbor oxygens; this relaxation is close in both
models – 0.36 a.u and 0.37 a.u for the supercell and perturbed-cluster, respectively.
This agreement can be called close.

The majority of the point-defect calculations are now made with the use of the
supercell model as it allows use of the computer codes developed for the perfect-
crystals calculations. The examples of supercell LCAO calculations of some point
defects in the metal oxides are given in the next sections.
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10.2 Point Defects in Binary Oxides

10.2.1 Oxygen Interstitials in Magnesium Oxide:
Supercell LCAO Calculations

Calculations on interstitial oxygen atoms Oi in MgO crystal are of interest because
of the possibility of their formation as a primary product during radiation damage.

Irradiation of alkali halides (MX) leads to the formation of primary pairs of Frenkel
defects, namely F centers (electrons trapped at anion vacancies) and interstitial atoms
X0. The latter are chemically active and immediately form diatomic molecular-type
defects X−

2 (H centers), each of which is centered on one anion lattice site.
However, much less is known about interstitial defects in MgO crystals. The effi-

cient creation of F centers under irradiation is known and means that complementary
interstitial Oi atoms should also be formed. However, the volume change due to irra-
diation of MgO is surprisingly small, in contrast to that accompanying the formation
of H centers in alkali halides. A diffusion-controlled process related to Oi defects was
experimentally observed and characterized by an activation energy of 1.6 eV. This
was ascribed to the destruction of some complexes. Therefore, the theoretical study
of the stability and configuration of oxygen-atom interstitials in MgO is of importance
in trying to understand radiation damage of this

important ceramic material.
We discuss here the results of all-electron HF and semiempirical valence-electron

CNDO LCAO calculations of oxygen interstitials in MgO crystal [682]. The supercells
of 8, 16 and 32 atoms (S8, S16, S32, see Sect. 10.1.2) were taken in HF calculations,
in CNDO calculations the larger supercells were taken to study the convergence of
the results obtained. The different configurations for the interstitial oxygen atom were
considered, corresponding to an oxygen atom at the volume (v), face(f) and edge (e)
centers, respectively, see Fig. 10.2. The dumbbell-shaped configurations vd, fd, ed are
formed when the interstitial oxygen atom Oi is moved toward the nearest-neighbor
O2− lattice anion along <111>, <110> and <001> directions, respectively. The lat-
tice oxygen anion is simultaneously displaced from its site along the same direction,
the center of the dumbbell formed is at the lattice site. To settle the question of an
adequate size for the supercell, the calculations for v, f , and e configurations are made
for supercells containing 9, 17, and 33 atoms. The defect energy levels in the bandgap
are observed to change between the 9-atom and 33-atom supercells, although the in-
fluence of supercell size on the charge distribution is relatively small. In HF LCAO
calculations the size of the supercell is limited by the computational facilities avail-
able. Therefore, the convergence of the properties of these defects was investigated
also by means of the semiempirical complete neglect of differential overlap (CNDO)
approximation, using a code, written by Tupitsyn [707] for the CNDO band calcula-
tions. In the CNDO approximations it was possible to use supercells containing 65,
129, and 257 atoms, obtained by enlarging all three smaller supercell translation vec-
tors by a factor of two. It was found that both the charge distribution and the defect
levels in the bandgap for the larger supercells were close to those obtained for the
33-atom supercell.

HF and CNDO calculations were done to investigate convergence with respect
to supercell size. All basis atoms, except those involved in a defect, occupy lattice
sites. The CNDO results show that the defect-formation energy changes by only 0.3%
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on increasing the supercell size from 33 to 257 atoms. The HF energies generally
change by less than 0.03% on increasing the supercell from 17 to 33 atoms. This
suggests that the variations observed in the CNDO energies may be due more to
inherent approximations in the method than to defect interactions and that a 33-
atom supercell is definitely sufficient. If we were only interested in the energy of the
unrelaxed crystal then an S8 supercell, containing eight primitive unit cells, would in
fact be adequate. However, the number of shells of atoms around the defect that may
be relaxed is dependent upon the size of the supercell, and the 33-atom supercell is
the smallest that can be used to obtain quantitatively accurate results.

In Table 10.3 is given the optimized distance between the two dumbbell atoms
calculated by both the HF and CNDO methods. The labels S16, S64, and S128 are
used for supercells containing 16, 64, and 128 primitive unit cells, respectively. q is
the charge on each of the two oxygen atoms in the dumbbell configuration and d is
the optimized distance between the two O atoms in the dumbbell. ∆Ed is the energy
change on forming the dumbbell from an interstitial in the rigid lattice.

Table 10.3. Results of HF and CNDO calculations for O atom interstitials in MgO (only
the dumbbell oxygen atoms are relaxed), [682]

Configuration Supercell d(Å) q(e) −∆Ed

ed S16 (HF) 1.310 –1.160 —
S16 (CNDO) 1.280 –0.944 32.6
S64 (CNDO) 1.280 –0.944 32.6
S128 (CNDO) 1.282 –0.944 32.6

vd S16 (HF) 1.355 –1.070 —
S16 (CNDO) 1.394 –0.918 7.9
S64 (CNDO) 1.392 –0.917 7.9
S128 (CNDO) 1.393 –0.917 7.8

fd S16 (HF) 1.372 –1.033 —
S16 (CNDO) 1.369 –0.929 3.2
S64 (CNDO) 1.366 –0.928 3.2
S128 (CNDO) 1.369 –0.928 3.3

The charge q on each of the two ions in the dumbbell is close to –1, negative
charge on the dumbbell in excess of –2 is being made up by a slight deficit on the
next-nearest ions. The optimized HF values for d are close to those found for a 17-atom
supercell using the full-potential linear muffin-tin orbital (FPLMTO) method [708].
The optimized d values in the CNDO approximation are also close to those obtained
using the HF and LMTO methods. Since the CNDO method is semiempirical these
calculations were performed with all atoms except the added interstitial, or the two
dumbbell atoms, fixed on their normal lattice sites. In the HF calculation, d was first
optimized for a crystal with all except the defect atoms on perfect lattice sites. The
charges on the two dumbbell atoms are again close to –1 and the values of d and q (the
charge on each of the dumbbell atoms) in Table 10.3 are from these calculations. The
optimum relaxed positions of the near-neighbor ions were then determined iteratively,
and finally the value of ∆Ed was reoptimized.
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The values of d and q with the relaxed positions are in Table 10.4 together with the
energy changes that accompany the formation of a dumbbell from the corresponding
interstitial (ed from e, and so forth) and the further energy changes associated with
relaxation of near neighbors. ∆Ed is the difference between the total energy of the
unrelaxed crystal in the dumbbell configuration and that for the unrelaxed crystal
with the added O atom in the interstitial site, ∆Erel is the further energy change (in
eV) accompanying the relaxation of near neighbors.

Table 10.4. Results of HF calculations of interstitial oxygen in MgO using S16 supercell,
[682].

Type of dumbell d (Å) q(e) −∆Ed (eV) −∆Erel (eV) Relaxations δ (Å)

ed 1.319 21.001 28.88 0.12 δMg1 = 0.241
δMg2 = 0.051
δMg2 = 0.051
δO = 0.0245
δO = 0.1030

vd 1.383 21.049 15.94 0.27 δMg = 0.077
δO = 0.1057

fd 1.324 21.010 7.15 2.59 δMg1 = 0.152
δMg2 = –0.010
δO = 0.0997

Subscripts 1,2 mean nearest- and next-nearest atoms (of that species) to the dumb-
bell, see Fig. 10.2c. For ed, δO‖ is the displacement parallel to the axis of the dumbbell
and δO⊥ the displacement perpendicular to the axis of the dumbbell. In each case all
the atoms of a symmetry-related set that lies wholly within the supercell were allowed
to relax.

The importance of supercell size is shown, for example, by the calculations for
vd where for S8, only the six nearest-neighbor Mg atoms may be relaxed because
the nearest O atoms lie on the supercell boundary. This may be why comparable
FPLMTO calculations [708] for S8 found the vd defect to be slightly more stable
than fd, whereas in HF calculations the reverse is true (Table 10.4). The decrease
in energy ∆Ed on forming a dumbbell in a perfect lattice from a v, f , or e-centered
interstitial O atom (calculated as the difference between the HF total energies for the
two configurations) is largest (28.9 eV) for the ed center and smallest for the fd center
(7.1 eV). The former result is to be expected because of the greater overlap in the e
configuration. The CNDO results for ∆Ed agree with the HF results only qualitatively,
but they serve to confirm convergence with increasing size of supercell, which was the
reason for doing the calculations. The further energy gain on the relaxation of near
neighbors, −∆Erel, was found to be small compared to that on forming the dumbbells,
which evidently provides a very effective mechanism for reducing charge overlap.

The optimized displacements are given in Table 10.4 and these are seen not to
exceed 0.1–0.2 Å. With respect to the most stable fd relaxed dumbbell configuration
the vd and ed configurations are less favorable by 1.31 and 1.86 eV, respectively.
So O atoms formed in MgO during radiation damage will become trapped in face-
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centered dumbbell configurations. The excitation of this configuration to the relaxed
face-centered interstitial requires an energy of 2.12 eV, which would therefore be the
activation energy for diffusion of fd. This energy may be compared with: 1.45 eV
the activation energy for oxygen-atom diffusion calculated by the supercell FPLMTO
approach [708]; the 1.6 eV for some diffusion-controlled process involving interstitial
oxygen atom that has been observed experimentally in MgO.

10.2.2 Neutral and Charged Oxygen Vacancy in Al2O3 Crystal:
Supercell and Cyclic-cluster Calculations

Aluminum oxide (α-Al2O3, corundum) has a large number of technological applica-
tions. Due to its hardness, its chemical and mechanical stability at high temperatures
and its electronic properties as a widegap insulator it is used for the fabrication of
abrasives, as a carrier for thin metal films in heterogeneous catalysis and in optical
and electronic devices.

The structural and electronic properties of α-Al2O3 are altered by defects such
as oxygen vacancies, which can be formed as a result of the bombardment of the
oxide with high-energy particles. Neutral oxygen vacancies (F centers) and positively
charged oxygen vacancies (F+ centers) in aluminum oxide have been investigated in a
number of experimental and theoretical studies. Experimental and theoretical results
agree that the two electrons of the F center are localized and remain in the vacancy
vicinity indicating a singlet ground state. Despite numerous investigations, the defect-
formation energies of the F center, Ef (F), and the F+ center, Ef (F+), are rarely given
in the literature. To our knowledge, no experimental data are available up to now.

In [709] supercell calculations based on the orthogonalized linear combination of
atomic orbitals (OLCAO) method within the local density approximation (LDA) were
performed. In this case, the oxygen vacancy was modeled by removing one oxygen
atom from the cell. They obtained a defect-formation energy of Ef (F) = 38.36 eV
for the neutral oxygen vacancy without relaxation of the geometry. When the four
nearest-neighbor aluminum and 12 next-nearest-neighbor oxygen atoms around the
vacancy (see Fig. 2.19) were allowed to relax the defect-formation energy decreased
to Ef (F) = 5.83 eV. This corresponds to a relaxation energy of Erel = 32.53 eV. The
distance of the neighboring aluminum atoms to the vacancy increased by about 16%
and the distance of the oxygen neighbors by about 8% with respect to the unrelaxed
structure. Similar values were obtained for the F+ center. The defect-formation energy
for the F center was calculated with respect to an isolated neutral O atom, see (10.1),
using the difference of the total energy of the supercell with and without vacancy, and
adding the energy of the free oxygen atom EO.

In [710] a 65-atom molecular cluster is used that was treated semiempirically at
the INDO level and embedded in the electrostatic field generated by multipoles. To
model the F and F+ centers in corundum additional 2s and 2p Slater-type atomic
orbitals were placed in the vacancy after removing one O atom. The relaxation of
the four aluminum atoms nearest to the vacancy resulted in an outward displacement
by 2–3% and 5–6% for the F and F+ center, respectively. From the 12 next-nearest
oxygen atoms only two were allowed to relax. In contrast to the results of [709] the
two oxygen atoms moved toward the vacancy by about –2.2% and –4.6% for the F
and F+ center, respectively. Defect-formation energies were not calculated.
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The neutral oxygen vacancy was investigated in [711] by supercell-DFT calcula-
tions within the generalized gradient approximation (GGA) using a plane-wave basis
and ultrasoft Vanderbilt pseudopotentials. The calculated defect-formation energy is
Ef (F) = 7.13 eV and Ef (F) = 7.08 eV for the F center without and with the re-
laxation of the nearest aluminum and next-nearest oxygen atoms, at the oxygen-rich
limit. As a reference for the calculation of the defect-formation energy EO = 0.5EO2

was taken instead of a free oxygen atom energy EO. The aluminum atoms show an
inward relaxation of –1.5%, the positions of the oxygen atoms are almost unchanged
(–0.1%).

The intrinsic defects in α-Al2O3 were also studied in [712] by the supercell DFT
PW method (the supercell contained up to 120 atoms). The relaxation of the four
nearest aluminum atoms, 12 next-nearest oxygen atoms and two next-next-nearest
aluminum atoms around the neutral and positively charged oxygen vacancy was taken
into account. The results given in [712] show an average inward relaxation of the near-
est Al for the neutral oxygen vacancy of about –1.5% and a slight inward relaxation of
the next-nearest O atoms by –0.4%. For the single positively charged oxygen vacancy
they find an outward relaxation of the nearest Al atoms of 4.6%. The oxygen atoms
relax by –1.4% toward the vacancy. The defect-formation energy of the neutral oxygen
vacancy Ef (F)= 13 eV was calculated at the oxygen-rich limit.

It is seen that the results of the different theoretical simulations of oxygen vacan-
cies in corundum are contradictory. An attempt to resolve this contradiction was made
in [713] where the energies of the formation of an F center and an F+ center were
calculated and relaxation effects were investigated with a combination of HF, DFT
and semiempirical methods in the framework of supercell and cyclic-cluster models.
All supercell LCAO calculations were made using the CRYSTAL code [23], the details
of the basis and computational parameters choice can be found in [713]. The semiem-
pirical cyclic-cluster calculations were made using the MSINDO code developed in the
Hannover theoretical chemistry research group [256], see Chap. 6. The cyclic cluster
was embedded in an infinite field of point charges using the Ewald summation tech-
nique [714]. The charges for the embedding can either be calculated self-consistently
from the atoms of the cyclic cluster using a Lowdin population analysis at each SCF
cycle or can be kept fixed at the values of the perfect crystal.

The scheme of the SCM model realization, discussed in Sect. 10.1.3, requires in
stage 1 the calculations of the perfect crystal. The perfect corundum crystal has a
rhombohedral structure with the space group R3̄c(D6

3d, see Chap. 2). The oxygen
atoms form a hexagonal close-packed structure, the aluminum atoms occupy 2/3 of
the octahedral vacancies so that all Al atoms have the same environment. Every O
atom has two neighboring Al atoms at a distance of r1 = 1.86 Å and two others at a
distance of r2 = 1.97 Å. The primitive rhombohedral unit cell consists of two Al2O3

formula units with experimental lattice parameters a = 5.128 Å and α = 55.333◦.
Using the transformation of basic rhombohedral lattice translation vectors with

the matrix

l =

⎛⎝2n1 n1 0
−n1 n1 0
0 2n1 n2

⎞⎠ , L = 3n2
1n2 (10.12)

one obtains the hexagonal setting of the corundum structure structure. Its unit cell
(n1 = n2 = 1) consists of L=3 primitive unit cells. The lattice parameters in this



10.2 Point Defects in Binary Oxides 431

hexagonal setting are a = 4.763 Å and c = 13.003 Å. Furthermore, corundum has
two internal structure parameters uAl = 0.352 and uO = 0.306, which define the Al
and O positions, respectively (see Sect. 2.3.5). The experimental heat of atomization
is ∆aH0 = 31.60 eV/Al2O3. This has been obtained by the experimental heat of
formation of the solid (∆fH0(Al2O3) = −17.22 eV) and the heats of formation of the
corresponding atoms in the gas phase (∆fH0(Al) = 3.35 eV, ∆fH0(O) = 2.56 eV).

As was noted in Sect. 10.1.3, the first stage of supercell-cyclic-cluster calculations
of the defective crystal consists of the band-structure calculations of the perfect crystal
to choose the supercell for its modeling. Table 10.5 shows the results for the HF and
DFT LCAO band calculations of the perfect Al2O3.

Table 10.5. HF and DFT cohesive energies EHF and EDFT (eV/Al2O3) obtained from band
calculations using different sets (s1s2s3) of k-points, [713]*

Unit cell (s1s2s3) L Nefficient EHF EDFT

rhombohedral (222) 8 Al16O24 21.47 29.70
(333) 27 Al108O162 21.50 29.72

hexagonal (111) 3 Al12O18 — 29.84
(221) 12 Al48O72 21.49 29.70
(331) 27 Al108O162 21.50 29.71
(662) 216 Al432O1296 21.50 29.72

*Eexp=31.60 eV

The geometrical parameters were fixed to the experimental values. The cohesive
energy per formula unit was calculated as the difference between the total energy per
Al2O3 unit in the crystal and the sum of the energies of the corresponding free atoms.
The calculations were made using Monkhorst–Pack sets (s1, s2, s3) of k points, which
correspond to supercells of L-primitive unit cells consisting of Nefficient atoms. Ecoh

calculated corresponds to the experimental heat of atomization ∆aH0 except for the
zero-point energy that is neglected in the calculation of Ecoh. The energies of the free
Al and O atoms were obtained by increasing the basis sets successively with diffuse
sp-functions until the energies of the free atoms were converged, see Chap. 8. The HF
cohesive energy of 21.50 eV/Al2O3 is too low by 10.10 eV/Al2O3 compared with the
experimental value of 31.60 eV/Al2O3. This discrepancy is mainly due to the missing
correlation and the incompleteness of the basis set [715].

The DFT results, using the PWGGA-PWGGA exchange-correlation functional
(29.72 eV/Al2O3), are closer to the experiment. But the cohesive energy is still under-
estimated by about 1.88 eV/Al2O3. The bandgap Eg = 6.28 eV from DFT calculation
is about 0.4 eV larger than the value obtained in [712] but still too small compared
with the experimental range of the bandgap between 8.5 and 9.9 eV. The bandgap of
17.51 eV calculated at the HF level is much too high in line with experience.

The results of the cyclic-cluster MSINDO calculations are shown in Table 10.6.
Since the CCM does not involve a summation over the reciprocal space the

size of the cyclic cluster was increased in direct space to obtain convergence for
the cohesive energy. Each cluster was embedded in an infinite Madelung field of



432 10 Modeling and LCAO Calculations of Point Defects in Crystals

Table 10.6. Cohesive energies EMSINDO (eV/Al2O3) for cyclic-cluster MSINDO calculations
using different cyclic clusters, [713].

Cluster L n1 n2 EMSINDO

Al12O18 3 1 1 35.45
Al48O72 12 2 1 31.17
Al96O144 24 2 2 31.17
Al108O162 27 3 1 31.09
Al192O288 48 4 1 31.09

point charges. Again, the geometry was fixed to the experimental values to en-
able the comparison with the results of the supercell calculations. The MSINDO-
optimized lattice parameters (a = 4.779 Å, c= 13.074 Å), internal structure parame-
ters (uAl = 0.354, uO = 0.301) and the cohesive energy (Ecoh = 31.16 eV/Al2O3) [714]
of the perfect α-Al2O3 are in very good agreement with the experimental data. A
bandgap of Eg = 10.9 eV was obtained by a 25 × 21 configuration interaction (CI)
calculation for the defect-free Al192O288 cluster. This value is at least 1 eV above the
experimentally observed range of the bandgap of the perfect crystal but there are
no forbidden transitions, which is an indication of a direct bandgap, in agreement
with the generally accepted opinion. The valence-band maximum (VBM) consists of
O 2p orbitals, while the conduction band minimum (CBM) consists mainly of Al 3s
orbitals in agreement with other theoretical [712] and experimental results. The co-
hesive energies for the experimental geometry of α-Al2O3 given in Table 10.6 show a
fast convergence with increasing cluster size. Already the energy value of the Al48O72

cluster that corresponds to L = 12 primitive unit cells is, with 31.17 eV/Al2O3, close
to the calculated limit of 31.09 eV/Al2O3. Therefore, the experimental value of 31.60
eV/Al2O3 is reproduced with a deviation of about 0.50 eV/Al2O3.

In stage 2 (the supercell calculation of a defective crystal, see Sect. 10.1.3), for the
simulation of the F center in α-Al2O3 a supercell was created by using the transforma-
tion matrix (10.12) with n1 = 2 and n2 = 1 (L=12). One oxygen atom was removed
from the supercell and the defect-formation energy for the F center was calculated for
different k-point grids (s1s2s3) keeping the geometry fixed to the experimental values.
For the calculation of the defect-formation energy EO = 0.5EO2 was used. Table 10.7
shows the results using the HF and the DFT (PWGGA-PWGGA) approach.

Table 10.7. HF and DFT defect-formation energies EHF(F) and EDFT(F) (eV) for the
neutral oxygen vacancy in Al2O3 obtained from supercell calculations using different sets
(s1, s2, s3) of k-points, [713].

(s1, s2, s3) EHF (F) EDFT(F)

(1 1 1) 16.55 13.08
(2 2 2) 16.38 12.92
(3 3 3) 16.38 12.24

PW-DFT GGA [712]
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The defect-formation energy shows fast convergence with the increase of the num-
ber of sampling k points. Already the (2× 2× 2) grid gives the converged HF energy
of EHF

f (F ) = 16.38 eV. For the DFT calculations the same set of k points was used
to yield a defect-formation energy of EDFT

f (F ) = 12.92 eV, which is about 3.46 eV
lower than the HF result.

In stage 3 relaxation effects were included in the simulation of the F and the F+

centers in α-Al2O3 using the MSINDO cyclic-cluster calculations (Table 10.8).

Table 10.8. Cyclic-cluster MSINDO defect-formation energies EMSINDO (F) and
EMSINDO(F+) (eV), distances r1 and r2 (Å) of nearest-neighbor (NN) and next-nearest
neighbor (NNN) atoms from the defect and changes of the distances ∆r(%) for the unre-
laxed and relaxed F and F+ center in Al2O3 using the Al192O288 cyclic cluster, [713]

Unrelaxed Relaxed (NN+NNN)

F center EMSINDO(F) = 12.32, EMSINDO(F) = 11.81,
r1 = 1.86, r2 = 1.97 r1 = 1.872 (∆r = 0.5),

r2 = 2.053 (∆r = 4.0)

F+ center EMSINDO(F+) = 12.22, EMSINDO(F+) = 10.33,
r1 = 1.86, r2 = 1.97 r1 = 1.971 (∆r = 6.0),

r2 = 2.089 (∆r = 6.0)

The Al192O288 cyclic cluster (n1 = 4, n2 = 1, L=48) was chosen for the simulations.
One oxygen atom was removed from the cyclic cluster to create the F center, keeping
the system neutral. To model the F+ center the charge of the system was set to +1
after removing one oxygen atom. In both cases the cyclic cluster was embedded in
the Madelung field of the perfect crystal. The charges for this embedding were the
Löwdin charges calculated from the simulation of the corresponding perfect cyclic
cluster. In contrast to the standard supercell model of a periodic point defect, no
artificial neutralizing background and additional charge corrections are needed in the
cyclic-cluster model as the point defect is not periodically repeated. The four nearest-
neighbor (NN) aluminum atoms and the 16 next-nearest-neighbor (NNN) oxygen
atoms close to the vacancy were allowed to relax using a quasi-Newton method until
the residual forces had converged to less than 0.02 eV/Å. The rest of the cyclic cluster
was fixed in the experimental geometry. The defect-formation energy of the F+ center
was calculated using as the reference a single oxygen atom energy EO′ = 0.5EO2 as
in the case of the neutral oxygen vacancy. Additionally, one electron is removed from
the cluster to create a positive charge and the chemical potential of the electron µe

is assumed to be zero, different from the models of the charged defects where the
electron is assumed to remain in the lattice. The CCM value for the defect-formation
energy of the unrelaxed F center EMSINDO

f (F ) = 12.32 eV is close to the DFT
supercell value of EDFT

f (F ) = 12.92 eV and the 13 eV obtained in [712], despite
substantial differences in the defect-level positions above the VBM. The latter are
8.1 eV for MSINDO, 4.9 eV for DFT supercell calculation and 2.3 eV as obtained
in [712]. The SCM calculation using the HF method gives a larger defect-formation
energy (EHF

f (F ) = 16.38 eV). The defect-formation energy of 7.13 eV calculated
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in [711] is considerably lower than the values obtained in [713]. The defect-formation
energy of Ef (F ) = 38.36 eV calculated in [709] was obtained using the total energy
of the oxygen atom. If one usees the same reference [709] and not 1/2EO2 one finds a
defect-formation energy of 15.06 eV for the MSINDO cyclic-cluster simulation of the
unrelaxed vacancy.

An absorption band of about 6 eV has been assigned experimentally to the F
center, indicating a location of a doubly occupied defect level roughly 3 eV above the
VBM. The corresponding excitation energies are 1.8 eV and 8.8 eV for DFT and HF
calculations [713], respectively. The defect level obtained using the MSINDO-CCM
method consists mainly of Al 3s orbitals of the aluminum atoms next to the vacancy.
Using a 40 × 30 CI the first allowed excitation was found to occur at 3.1 eV for the
relaxed structure. Therefore, the excitation energy is underestimated by about 3.0
eV. In comparison the excitation energy in [712] is 3.52 eV which is also too small.

Concerning the relaxation, the CCM simulations of the F center show that the
NN Al atoms increase their distance from the vacancy by 1% to 4% which agrees
well with the corresponding data of 2% to 6% of [710]. The value from [709] is larger
(16%) but the NN Al atoms also show a movement away from the vacancy. This is
reasonable, since the NN Al atoms are positively charged and should therefore repel
each other. Under these circumstances the inward relaxation to the vacancy (1.5%)
of the aluminum neighbors found in [711,712] is difficult to understand. Their choice
of pseudopotentials and of basis set, restriction only by Γ point in BZ might be the
reason for the discrepancy. Table 10.7 shows that a Monkhorst–Pack net of at least
(222) must be used for the defective supercell to reach convergence with respect to
the energy. Using only the Γ point might also influence the relaxation.

Considering the NNN O atoms, an average relaxation of –0.4% toward the vacancy
and the total relaxation energy Erel =0.51 eV was found in the LCAO calculations
[713] of the F center. This agrees well with the values –0.1% and –0.4% of [711,
712] indicating that the positions of the oxygen atoms are almost unchanged. An
inward relaxation was also found in [710]. In contrast to these results, a large outward
relaxation of 8% and Erel=32.53 eV were found in [709]. The value of 32.53 eV for
the relaxation energy appears to be much too high, because this value is larger than
the experimental heat of formation for the α-Al2O3 (31.60 eV).

A singly occupied defect level occurs in the bandgap in the case of the F+ center.
The results of the CCM calculations for the F+ center (Table 10.8) indicate a larger
relaxation of the NN Al atoms (6.0%) and of the NNN oxygen atoms (-1.2%) compared
to the values obtained for the neutral oxygen vacancy. This is reasonable, since the
aluminum atoms repel each other more strongly due to the missing electron in the
vacancy. In consequence, the relaxation energy (Erel = 1.90 eV) is also larger than
the corresponding value for the F center. This trend is confirmed by results found in
DFT PW calculations [712]: an outward relaxation of 4.6% for the Al neighbors and
an inward relaxation of –1.4% of the oxygen atoms close to the vacancy, which agrees
well with the MSINDO CCM results. The movements found in semiempirical LCAO
calculations [710] are slightly larger (5–6% for the Al atoms, –4.6% for the oxygen
atoms) but they also confirm the tendency.

The defect-formation energy of the F+ center is smaller than that of the F center in
both the relaxed and the unrelaxed structures using µe = 0 for the chemical potential
of the electrons. This agrees qualitatively with the results of [712] when compared to
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their values at k = 0. It was noted that no experimental data for the defect-formation
energy are available in the literature for the F and F+ center in α-Al2O3. The detailed
consideration of the results of application of different models and calculation schemes
to F and F+ centers in corundum demonstrate that LCAO methods reproduce well the
results of PW calculations for the neutral defect. Furthermore, the LCAO methods are
more appropriate for the charged-defect modeling as the artificial defect-periodicity
is escaped in the LCAO cyclic-cluster approach.

10.2.3 Supercell Modeling of Metal-doped Rutile TiO2

Titanium dioxide (TiO2) is a wide-bandgap material useful in many practical applica-
tions (electrochemistry, sun lotions, nanostructured electrodes). The electronic stuc-
ture of TiO2 can be strongly influenced by 3d transition-metal dopants that introduce
local electronic levels into the bulk energy bandgap and thus shift the absorption edge
to the visible region.

The effects of metal doping on the properties of TiO2 have been a frequent topic
of experimental investigation. In particular, according to a systematic study on the
photoreactivity and absorption spectra of TiO2 doped with 21 different metals [716]
the energy level and d-electron configuration of the dopants were found to govern
the photoelectrochemical process in TiO2. The resonance photoemission study [717]
was applied to investigate the nature of bandgap states in V-doped TiO2 in rutile
structure.

The computer simulation has been employed to clarify in detail impurity-doping
effects. A molecular-cluster approach was extensively adopted, see references in [718].
These cluster calculations have never led to unifying conclusions regarding the effects
of doping on the electronic states due to the influence of dangling bonds.

The supercell approach demonstrated its capacity to deal with metal-doped TiO2

defective crystals in DFT FPLAPW supercell electronic-structure calculations [718,
719]. It was found that when TiO2 is doped with V, Cr, Mn, Fe or Co, an electron-
occupied localized level in the bandgap occurs and the electrons are localized around
each dopant. As the atomic number of the dopant increases the localized level shifts
to the lower energy. The energy of the localized level due to Co is sufficiently low to
lie at the top of the valence band, while the other metals produce midgap states. In
contrast, the electrons from the Ni dopant are somewhat delocalized, thus significantly
contributing to the formation of the valence band with the O 2p and Ti 3d electrons.
These conclusions were made in [718] on the basis of the DFT FPLAPW calculations
on a relatively small supercell consisting of four primitive unit cells stacked along
the b- and c-axis of the simple tetragonal lattice. The experimental values of the
lattice constants a=b=4.594 Å, c=2.959 Å were taken, so that the translation vectors
lengths a, b, c of the orthorhombic supercell equal 4.594 Å, 9.188 Å and 5.918 Å,
respectively. Such a choice of supercell is not optimal as the defect–defect distance
Rd−d is not the same along the three supercell translation vectors and the defect–
defect interaction corresponds in fact to the smallest distance Rd−d = 4.594 Å (the
length of the primitive tetragonal unit cell translation in the perfect rutile crystal).

As in the FPLAPW method the further increasing of the supercell is sufficiently
difficult that the dependence of the results on the supercell size was not studied
in [718]. Such a study was made in semiempirical cyclic-cluster calculations of Li and
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Cl, Br impurities in TiO2 [720, 721] without preliminary symmetry analysis of the
cyclic clusters chosen. Such an analysis was made in [683] and allowed the convergence
of the supercell UHF LCAO calculations of V-doped rutile with the supercell size to
be investigated. This first nonempirical supercell LCAO calculation of the defective
rutile crystal is discussed here in more detail.

The impurity vanadium atom substitutes for a titanium atom introducing an un-
paired electron in the unit cell. The symmetry of the supercell model is described by
any of four orthorhombic space groups D1

2h, D19
2h, D23

2h, D25
2h. Analyzing the period of

the defect for the same supercell size (given L-value) in these groups it was found
that for rutile structure the best choice would be D25

2h corresponding to the symmet-
ric transformation of the simple tetragonal lattice translation vectors with matrix
(n1, n2, n3 - integers, n1 �= n2):

l =

⎛⎝−n1 −n2 n3

n1 n2 n3

n2 n1 −n3

⎞⎠ , L = 2
(
n2

1 − n2
2

)
n3 (10.13)

The space group D25
2h corresponds to the body-centered orthorhombic lattice of su-

percells with the translation vectors of equal length in all three translation directions.
This means that the point-defect period is also the same in these directions (equidis-
tant configuration of defects). This choice of defective crystal space group ensures the
largest defect period for a chosen supercell size (fixed value of L).

The UHF LCAO calculations of V-doped rutile were made using the CRYSTAL
code [23] and Durand–Barthelat pseudopotentials [484]. The atomic basis functions of
Ti and O atoms were taken from [323] that were fitted to reproduce the band struc-
ture and bonding properties of perfect rutile crystal. The vanadium atom functions
were found by fitting these properties of VO2 crystal in the rutile modification. The
accuracy of the calculation was ensured by the choice of the computational param-
eters of the CRYSTAL code ensuring a good accuracy of the bielectronic series, the
convergence thresholds of the eigenvalues and total energy and k-point sampling in
BZ.

Table 10.9 shows the results obtained for the supercells of increasing size. The
Monkhorst–Pack shrinking factor was taken to be 6 for supercells with L=2, 4, 6
and 4 for supercells with L=10, 14. Table 10.9 gives the integers n1, n2, n3 defined
according to (10.13) the supercell of the defective crystal consisting of L primitive unit
cells and corresponding doping per cent, the number of atoms NA and atomic basis
functions NB in the supercell, vanadium–vanadium distance Rd−d (defect period)
in the supercell model. The convergence of the absolute value of the one-electron
energy Ed occupied by the unpaired electron is seen. It appears that already the
supercell for L =6 is enough to reproduce the vanadium atom charge QV , covalence
CV (the sum of the bond orders of the impurity atom with all the crystal atoms)
and spin-density Nα−β

V . Using the calculated QV and CV the total valence Vtot =

0.5
(
CV +

√
4Q2

V + C2
V

)
is 3.88, i.e. the impurity atom is in oxidation state IV,

and the calculated spin density corresponds to the fifth vanadium electron not taking
part in the chemical bonding. This result is in accordance with the experimentally
found [717] ESR signal for V-doped rutile.

The Fermi energy EF in the perfect rutile TiO2 (EF =–0.3029 a.u.) was calculated
using the same pseudopotential and basis functions of titanium and oxygen atoms
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Table 10.9. The convergence of the results of the unrestricted Hartree–Fock LCAO cal-
culations [683] of the V-doped rutile (defective-crystal space group D25

2h = Immm; L =
2(n2

1 − n2
2)n3)

∗

(n1, n2, n3) (1,0,1) (1,0,2) (2,1,1) (3,2,1) (4,3,1)

L 2 4 6 10 14
doping (%) 0.25 0.125 0.083 0.050 0.036
NA 12 24 36 60 84
NB 120 240 360 600 840
Rd−d (Å) 5.45 7.53 10.62 16.69 22.97
Ed (a.u.) –0.2955 –0.2991 –0.3004 –0.3012 –0.3016
QV 2.761 2.760 2.759 2.759 2.759
CV 1.921 1.924 1.927 1.927 1.927

Nα−β
V 1.115 1.114 1.099 1.099 1.099

∗ The supercell transformation matrix l =

⎛⎝−n1 −n2 n3

n1 n2 n3

n2 n1 −n3

⎞⎠

that were used for the defective-crystal calculation. Thus, the V-atom impurity level
(occupied by an electron) is relatively close to the perfect-crystal valence-band edge
(∆E=–0.3016 + 0.3029 = 0.0013 a.u. or 0.04 eV). Experimental data [717] predict
larger values of ∆E (0.03 a.u. or 0.81 eV). The difference may be explained both by
the necessity to take into account the atomic relaxation around the impurity atom
and experimental ambiguity in the assignment of the gap states to electrons localized
on the V dopant. Bearing in mind the energy gap of 3.0 eV for the perfect crystal
and midgap position of the localized level in FPLAPW calculations [718] for V-doped
rutile, we conclude that both LCAO (0.04 eV) and FPLAPW (1.5 eV) results for
the defect-level position in the bandgap differ from the experimental estimation (0.81
eV).

Table 10.9 shows that the increase of the supercell size moves the defect energy
level closer to the valence-band edge. Therefore, DFT FPLAPW-correlated calcula-
tions with the larger supercells would make the agreement with the experimental
data better. When using HF LCAO approach for the calculations it is important to
estimate the possible influence of the electron correlation on the obtained results.
We have seen that the highest-occupied level position moves to higher energies when
the correlation is taken into account and this movement may appear different for the
perfect and defective crystal, so that the defect-level position in the bandgap also
changes. This requires further study.

Nevertheless, the calculation [683] demonstrates: (1) the efficiency of the more de-
tailed symmetry analysis for the supercell choice when the periodic defect calculations
are made in the complicated crystalline structures with the symmetry of a nonsym-
morphic space group and noncubic lattice; (2) the reality of the supercell model for
the nonempirical LCAO calculations of the point defects in such a complicated crys-
talline structure as a rutile structure; 3) higher efficiency of LCAO basis compared
with LAPW basis in the supercecell calculations of defective crystals. Moreover, the
supercell model allows the dependence of the electronic properties of doped crys-
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tals on the doping level to be investigated. In the next section we consider supercell
calculations of defective crystals with perovskite structure.

10.3 Point Defects in Perovskites

10.3.1 Oxygen Vacancy in SrTiO3

Ternary ABO3 perovskite materials have numerous technological applications as these
materials display a wide range of useful physical and chemical properties. They are
important as catalysts, as ceramics, ferroelectrics, superconductors, as materials for
fuel cells, fusion reactors, and optical and piezoelectric devices.

The properties of perovskite materials are heavily dominated by their oxygen
content, as well as by donor- and acceptor-type impurities. An essential contribu-
tion to the knowledge of the structural and electronic properties of point defects in
these materials comes from theoretical approaches. The results of large-scale computer
semiempirical and first-principles modeling of point defects, polarons and perovskite
solid solutions can be found in [722], focusing mostly on KNbO3 and KTaO3.

First-principles calculations of formation energies of point defects were made on
BaTiO3 [723,724] and NaNbO3 [725] crystals. Among the various fundamentally and
technologically important oxides, SrTiO3 is a simple structural prototype for many
perovskites, in which the detailed investigation of native and dopant defects can lay
the theoretical groundwork that can be applied to structurally and chemically more
complex perovskite materials [726].

The Green-function method appeared to be very useful for displaying the chemical
trends in defect energy levels [727, 728]. However, the calculation of other defective-
crystal properties (defect-formation energy, lattice relaxation, local-states localiza-
tion) requires approaches based on molecular cluster or supercell models. Only re-
cently have these models been used in the first-principles calculations to study point
defects in SrTiO3.

The supercell calculations are made mostly by the DFT PW method [726, 729].
The comparative PW (supercell) and LCAO (cluster and supercell) calculations are
known for the oxygen vacancy in SrTiO3 crystal [730–732].

Oxygen vacancies in SrTiO3 act as effective donors and are important defects
in SrTiO3. Theoretical simulation of defective SrTiO3 is very important since mod-
ern scanning transmission electron microscopy (STEM) and reflection high-energy
electron diffraction (RHEED) combined with atomic-scale electron-energy-loss spec-
troscopy (EELS) are able to detect the presence of even single impurities and vacan-
cies in SrTiO3. A deliberate deviation of oxygen content from the ideal stoichiometry
of perovskites, is relevant for their numerous high-tech applications as sensors, fuel
cells, microelectronic devices. At low oxygen partial pressure, the electrical conduc-
tivity of SrTiO3 perovskite is controlled by both the concentration and mobility of
oxygen vacancies, which act as effective donors; therefore, this material becomes n-
type conductive. Increasing the partial pressure reduces the carrier concentration,
and at high pressures the conductivity goes through a minimum: the material be-
comes p-type [733,734]. Consequent thermal reduction of oxygen in single-crystalline
strontium titanate results in the insulator-to-metal transition, up to a possible su-
perconducting state, accompanied by intensive formation of vacancies and their high
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density within the skin region [735]. Oxygen vacancies play a noticeable role in the
structural transformations in bulk SrTiO3, which possesses two relevant structures:
the tetragonal antiferrodistortive (AFD) phase, and the cubic phase [726]. The latter
(Fig. 10.3a) is stable at 105 K, whereas AFD (slightly distorted cubic phase) is stable
at lower temperatures.

Fig. 10.3. Three types of equidistant crystalline cells with a centered O vacancy for the
cubic phase of SrTiO3 perovskite: (a) simple cubic (sc); (b) face-centered cubic (fcc); (c)
body-centered cubic (bcc). Sticks between the oxygen and titanium ions indicate the partly
covalent bonds between them. To construct the difference electron-density plots, each cell is
sectioned along the Ti-O-Ti axis by the plane PP

When simulating a single point defect, the main problem is to understand changes
induced by it in the atomic and electronic structure of a host crystal. A perfect
SrTiO3 crystal has a mixed ionic-covalent nature of the chemical bonding, which is
not in complete conformity with the formal charges on Sr2+, Ti4+, and O2− ions,
see Chap. 9. The formalism of Wannier functions applied for the determination of
effective charges and bond populations in several perovskite crystals [736] calculated
previously using the density-functional theory (DFT) method [606] gives the atomic
charge of +2.55 on titanium and –1.55 on oxygen, whereas the Ti–O bond order is
0.35; only the charge on Sr (+1.95) is close to the nominal ionic value +2, confirming
that strontium is ionically bonded in SrTiO3. Partly covalent chemical bonding makes
the simulations of the structural defects in strontium titanate rather complicated, even
in a cubic phase.

The simplest native defect may be described in terms of either a neutral oxygen
vacancy (single O atom removed from the lattice site) or neutral F center (the oxygen
ion O2− vacancy trapped 2 electrons remaining in a host crystal).

Theoretical studies mainly predict equal contributions of the 3d orbitals of the two
nearest titanium ions (Fig. 10.3) into the wavefunction of the F center [729,730,734].
According to DFT calculations on a cubic phase of SrTiO3 perovskite [730], the
Mulliken electron charge of 1.1–1.3 is localized in the neutral O vacancy (depending
on the supercell size), and 0.6–0.8 are equally divided by the two nearest Ti ions if we
consider the F center. This result does not confirm the formal conclusions that the
F center is supposed to have released both electrons, whereas the nearest titanium
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ions change their valence from Ti4+ to Ti3+. The position of the F center level in the
optical bandgap of SrTiO3 is also not completely clear: it is an open question as to
whether it lies well below the conduction-band bottom or close to it. The latter is
supported by the indirect experimental study on the conductivity of SrTiO3 ceramics,
suggesting that the F center is a rather shallow defect [737].

Supercell ab-initio calculations on the SrTiO3 give the values of the formation
energy for O vacancy within the range of 6.5–8.5 eV [726, 729, 730, 734], whereas in
cluster models [738], removal of an O atom from the lattice has a higher energy cost (>
9 eV). However, this value cannot be directly measured experimentally. Conductivity
in SrTiO3 at low partial oxygen pressures depends on the mobility of O vacancies [737].
Experiments performed at high temperatures suggest an energy barrier of 0.86 eV for
the F center diffusion in bulk, whereas semiempirical pair-potential calculations on
migration on the empty O vacancy result in the barrier of 0.76 eV [739].

In [732] the results of both LCAO (made with the CRYSTAL code [23]) and PW
(made with the VASP code [740]) DFT calculations on the F center in a cubic phase
of SrTiO3 perovskite are analyzed, combining the advantages of LCAO and plane-
wave formalisms. The lattice structural relaxation around an oxygen vacancy was
optimized for supercells of different shapes and sizes. This is important as DFT PW
calculations [726] show the strong dependence of the results on the supercell size (it
was concluded that at least a 4 × 4 × 4 supercell of 320 atoms is needed to describe
the structural parameters of an oxygen vacancy accurately). In [732] the supercells
were obtained by a consequent equidistant extension of crystalline lattice vectors (Fig.
10.3) increasing the supercell size from 80- up to 320-atom cells, in order to eliminate
the interaction of periodically repeated point defects and to reach the limit of a single
F defect. These supercells are described by transformation matrices⎛⎝n 0 0

0 n 0
0 0 n

⎞⎠ ,

⎛⎝0 n n
n 0 n
n n 0

⎞⎠ ,

⎛⎝−n n n
n −n n
n n −n

⎞⎠ (10.14)

where n is varied between 2 and 4. The corresponding equidistant supercells form
sc, fcc and bcc lattices (cases a), b) and c) in Fig. 10.3, respectively). The ratio of
volumes for the supercells extended from the primitive unit cell using matrices (10.14)
with the same n is

Vbcc = 2Vfcc = 4Vsc (10.15)

Supercells with extensions 3×3×3 (135 atoms) and 4×4×4 (320 atoms) form a simple
cubic lattice (Fig. 10.3a). In turn, supercells with the fcc extensions 2

√
2×2

√
2×2

√
2

(80 atoms) and 3
√

2 × 3
√

2 × 3
√

2 (270 atoms) are rhombohedral with a 60◦ angle
between the lattice vectors, see Fig. 10.3b. Lastly, for a 160-atom rhombohedral bcc
supercell (extension 2

√
3 × 2

√
3 × 2

√
3), the angle is 109.47◦. For all three types of

equidistant cells shown in Fig. 10.3, their shapes correlate with the orientation of the
–Ti–O–Ti– axis, it may be: (i) the rotation axis joining the centers of opposite faces
(Fig. 10.3a), (ii) the diagonal joining the opposite apices of the rhombohedron (Fig.
10.3b), and (iii) the axis joining the centers of opposite rhombohedron edges (Fig.
10.3c).

The computational details (the optimization of LCAO basis and choice of cutoff
energy in PW calculations, k-meshes used for BZ integration, choice of pseudopoten-
tials) can be found in [732]. The advantage of PW calculations is that the complete
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optimization of lattice relaxation upon vacancy creation, even for large supercells,
can be performed much faster than in LCAO calculations. Geometry optimizations
in PW calculations have been carried out with an accuracy of 10−3 eV in the total
energy. The electronic structure of defective SrTiO3 perovskite calculated with both
the CRYSTAL and VASP codes has been studied for the diamagnetic closed elec-
tronic shell (singlet) state, since no lower state was found employing spin-polarized
calculations [730].

The basic properties of a perfect cubic SrTiO3 crystal (lattice constant, bulk mod-
ulus, elastic constants) were obtained in reasonable agreement with experiment in
LCAO calculations. The best agreement with experimental results for the energy gap
was obtained for the hybrid HF-DFT technique (B3PW), see Chap. 9. Further im-
provement of the calculated optical gap was achieved by adding the d polarization
orbital into the oxygen basis set: at the Γ point of BZ the calculated gap 3.65 eV is
close to the experiment, 3.25 eV for the indirect bandgap. In DFT (PW91) PW cal-
culations the structural parameters were again found to be quite reasonable but the
optical bandgap of 2.59 eV is an evident underestimate, typical for the DFT method.

The F center was modeled by removing an oxygen atom in the supercell (see
Fig. 10.3). For estmation of the formation energy Ef (F ) of the F center the energy
for the spin-polarized isolated oxygen atom (3P state) was taken and (10.1) was
used. A similar approach for the determination of Ef (F ) was used in [734]. In an
alternative approach [726,729] the formation energies of the O vacancy were expressed
via chemical potentials of O, Sr, and Ti atoms. However, the range of Ef (F ) calculated
using both approaches for supercells of different shapes and sizes is not so large as to
give a preference to one of them.

Table 10.10 shows the dependence of the vacancy-formation energy in SrTiO3 bulk
on both supercell shape and size, which is accompanied by the large contribution
coming from the lattice relaxation upon vacancy formation. The formation energy is
reduced considerably (by 1.5–2.0 eV) when the positions of all atoms in the supercells
are fully optimized. This demonstrates that the relaxation of even 14 nearest ions
(neighboring Ti, O, and Sr coordination spheres directly shown in Fig. 10.3a) might
be somewhat insufficient, and the inclusion of next-nearest coordination spheres is
necessary, see Table 10.11.

Table 10.10. Dependence of the nearest distance between F centers (dF−F), formation
energy of a single oxygen vacancy Ef (F), and energy barrier Ediff (F) of its (011) diffusion
on both shape and size of supercell used for PW calculations, [732]

Supercell Extension Type of dF−F Ef (F)(eV) Ediff(F)
lattice (Å) unrelaxed relaxed (eV)

S80 2
√

2 × 2
√

2 × 2
√

2 fcc 11.04 9.00 7.73 0.41
S135 3 × 3 × 3 scc 11.71 9.17 7.89 0.35

S160 2
√

3 × 2
√

3 × 2
√

3 bcc 13.52 8.98 7.35 0.50

S270 3
√

2 × 3
√

2 × 3
√

2 fcc 16.56 8.98 7.17 0.38

The lattice relaxation around the defect is periodically repeated in the supercell
model, thus affecting the calculated total energy per cell: the larger the supercell,
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Table 10.11. Dependence of lattice relaxation for the nearest equivalent atoms around a
single F center in a cubic SrTiO3 crystal on shape and size of supercells in PW calculations
[732]. Relative radial shifts from unrelaxed positions (%)∗ are given

Nearest
atoms

Distance
(in units of a)

Number of
equiv. atoms

S80 S135 S160 S270 S320

Ti 1/2 2 7.21 7.16 7.08 8.28 7.76

O
√

2/2 8 –7.59 –7.92 –7.98 –7.43 –7.79

Sr
√

2/2 4 3.51 3.48 3.45 3.42 3.94
O 1.0 4 3.16 2.98 2.49 2.87 3.56
O 1.0 2 –1.72 –1.56 –1.67 –1.05 –1.28

∗Positive shift corresponds to expansion of the atomic coordinate sphere, whereas negative
sign means its compression

the smaller this artifact. The numerical results given in Tables 10.10 and 10.11 are
obtained in PW calculations, as complete optimization of the lattice relaxation in the
large supercells is extremely time consuming in the LCAO calculations.

The calculated defect-formation energies mainly decrease with the increase of the
supercell size, but they also depend on the shape of the supercell (compare the cor-
responding values for fcc 80-atom and sc 135-atom cells). To calculate the energy
barrier Ediff (F ) for oxygen-vacancy diffusion a jump of the O atom from the eight
possible sites nearest to the F center (Fig. 10.3a) toward the vacancy is considred.
The saddle point energy has been estimated by fixing a hopping O atom at the mid-
dle of the Sr–Ti–Sr triangle (Fig. 10.3a) crossed by the oxygen migration trajectory,
which has been found to be nonlinear, while the rest of the lattice has been allowed
to relax to the minimum of the total energy. The Ediff (F ) (Table 10.10) is sensitive
to both the shape and size of the SrTiO3 supercell; moreover, for optimized rhombo-
hedral fcc and bcc supercells (Fig. 10.3, b and c), the migration trajectories are not
completely equivalent. Nevertheless, migration energies mainly decrease with increase
of the supercell size. The sensitivity of the calculated lattice relaxation around the
defect to both supercell shape and size is also clearly seen in Table 10.11. For the
same type of superlattice (sc, fcc, or bcc), expansion of the first coordination sphere
(two Ti ions) is larger, whereas compression of the second sphere (eight O ions) is
smaller with increasing size of the supercell. However, the convergence of the lattice
relaxation is complex, and a very low concentration of F centers should be used to
achieve it. For instance, fcc supercells are stretched along the z-axis and are com-
pressed in the xy-plane (Fig. 10.3b). This causes the larger z-shifts of Ti ions nearest
to the O vacancy in 80- and 270-atomic fcc supercells, as compared with 135- and
320-atomic cubic supercells (Table 10.11), whereas xy-shifts of the nearest O and Sr
ions are smaller in the former case. Nevertheless, the range of δR for equivalently
shifted atoms in equidistant supercells of different shapes and sizes is small enough
(≤ 1.0%) to suggest the stabilization of a single O vacancy in a cubic SrTiO3 crystal
when using large equidistant supercells containing 270 and 320 atoms.

When trying to use the LCAO basis for partial optimization of the total energy
for the same supercells, a markedly smaller expansion of the first coordination sphere
involving the two nearest titanium ions as compared with complete optimization in
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PW calculations (1.5–2% vs. 7–8%) was obtained. The same is true for the next-
nearest coordination spheres.

While use of the PW basis is more efficient for optimization of the lattice re-
laxation around a vacancy, the LCAO basis possesses a noticeable advantage when
describing the electronic properties of defective crystals. To gain deeper insight into
the defective SrTiO3 bulk from LCAO calculations on different supercells in [732] the
electron density due to O-vacancy formation was analyzed. Redistribution of the elec-
tron density due to O-vacancy formation is shown in Fig. 10.4(a and b) as calculated
for the equidistant fcc supercells with different extensions.

Fig. 10.4. Two-dimensional (2D) difference electron-density maps (the total density in the
perfect SrTiO3 bulk minus the sum of electron densities of both isolated oxygen atoms and
defective SrTiO3) projected onto the (110) section plane PP for 80-atom (a) and 270-atom
(b) fcc supercells containing a single oxygen vacancy [732]. Dash-dot isolines correspond to
the zero level. Solid and dashed isolines describe positive and negative values of electron
density, respectively. The isodensity increment is 0.002 e/A−3.

In both plots, the Mulliken electron charge (1.1–1.3 e) is localized within a neutral
O vacancy; in other words, 0.6–0.8 e is equally divided by the two Ti ions nearest to
the neutral F center and mainly localized on their 3dz2 orbitals, making the largest
contribution to the defect bands shown in Fig. 10.5(a and b). Figure 10.4 clearly
demonstrates the effect of size of the fcc-type supercell (80 atoms and 270 atoms)
on localization of the charge redistribution. For the 80-atom supercell, mutual inter-
action of the neighboring O vacancies is clearly seen, especially along the –Ti–O–Ti–
axes, whereas for the 270-atom supercell, the more-or-less visible redistribution of the
electron density is limited by a region of 1.5–2.0 lattice constants around a vacancy,
in the z-direction.

From Fig. 10.5 it is seen that the defect-band dispersion becomes very small for a
270-atom supercell demonstrating decreasing the defect–defect interaction. The latter
is also manifested in LCAO calculations through the finite defect bandwidth. As noted
earlier, a pure DFT (PW91) functional strongly underestimates the bandgap. As is
seen from Table 10.12 (the results of LCAO calculations are given), the F-center
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Fig. 10.5. Band structure of unrelaxed SrTiO3 crystal with a single F center per fcc supercell
containing either 80 atoms (a) or 270 atoms (b), [732]. Energy bands corresponding to the F
center are split off the conduction bands. Their depth (gap) is shown relative to the bottom
of the conduction band at the Γ point

energy level, remaining in the bandgap, approaches the conduction-band bottom,
moving from 0.69 eV for the 80-atom supercell (with a bandwidth of 0.15 eV), down
to 0.57 eV (0.08 eV) for 160 atoms, and finally reaching the optical ionization energy
of 0.49 eV (almost neglecting the dispersion of 0.02–0.03 eV) for supercells of 270
and 320 atoms where the distance between the nearest defects is close to four lattice
constants.

The results presented in Table 10.12 confirm that the 135-atom supercell is not big
enough to reduce defect–defect interactions; its dispersion δε is even larger than for
an 80-atom supercell with a different shape, i.e. δε is sensitive to both the shape and
size of the equidistant supercell, similar to other properties described before. At the
same time, the defect band for the 270-atom supercell (Fig. 10.5b) is almost a straight
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Table 10.12. Dependence of the F-center energy-level position with respect to the
conduction-band bottom of unrelaxed SrTiO3 crystal with periodically distributed oxygen
vacancies (ε), its dispersion (δε) and distance between the nearest F centers (dF−F) as a
function of the supercell size used in LCAO B3PW calculations [732] with 2× 2× 2 k-mesh∗

Supercell Extension Type of lattice dF−F (Å) ε δε

S80 2
√

2 × 2
√

2 × 2
√

2 fcc 11.04 0.69 0.15
S135 3 × 3 × 3 scc 11.71 0.72 0.23

S160 2
√

3 × 2
√

3 × 2
√

3 bcc 13.52 0.57 0.09

S270 3
√

2 × 3
√

2 × 3
√

2 fcc 16.56 0.49 0.02
S320 4 × 4 × 4 sc 15.61 0.49 0.03

∗The defect-level position is calculated at the Γ point of the BZ

line. Table 10.12 clearly shows that the use of both supercells of 270 and 320 atoms
practically eliminates the interaction between periodically distributed point defects.

The calculations [732] clearly demonstrate the advantage of combining DFT PW
and DFT LCAO calculations. The former is necessary for the complete optimization
of both lattice relaxation upon vacancy creation (especially for large supercells) and
its migration, whereas the latter allows one to study in more detail the electronic
structure for both unrelaxed and relaxed lattices. Such a combined study of the oxygen
vacancy in SrTiO3 crystal shows that achieving the convergence with the supercell
increases up to 270–320 atoms, the defect–defect interaction becomes negligible, thus
approaching a realistic model of a single F center. A similar conclusion follows from
the study of the Fe impurities in SrTiO3, considered in next section.

10.3.2 Supercell Model of Fe-doped SrTiO3

The properties of transition-metal impurities, especially iron, in ABO3 perovskite
ferroelectrics are of considerable interest due to their photochromic, photorefractive
and other applications.

There were several theoretical calculations for ion impurities substituting for B
atoms. Molecular-cluster calculations were made to study charged point defects in
SrTiO3–3d3 ions Cr3+, Mn4+, Fe5+ [741] and Fe3+, Fe4+, Fe5+ ions [742–744]. The
formal charges used in designations of impurity ions mean the metal-atom oxidation
state. As was already noted the calculated charges on transition-metal atoms in per-
ovskites differ essentially from the formal charges due to strong covalent interaction
with oxygen atoms. Bearing in mind that in perfect SrTiO3 crystal Ti4+ means the
titanium-atom oxidation state 4, Fe3+, Fe4+, Fe5+ ions can be considered as impu-
rity centers with charges –1, 0, +1, respectively. The supercell calculations are known
for Fe impurities in KNbO3 [745] in the LDA+U approximation, Li-doped KTaO3

(semiempirical INDO simulations [746] and comparative DFT, PW and INDO calcu-
lations [747]).

The supercell DFT PW calculations of different donor and acceptor centers in
SrTiO3 [748] demonstrated the dependence of the formation energy on doping levels
in the bulk crystal. In the majority of calculations cited no lattice relaxation around
the impurity was studied, the calculated density of states depends on the parameters,
used in the LDA+U or INDO approximations for the Hamiltonian.
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A combination of first-principles supercell HF and DFT calculations that include
lattice relaxations have been used in [680] to investigate the energy levels of neutral
Fe4+ substitution on the Ti site. Here we consider these calculations in more detail.
A consistent supercell–cyclic-cluster approach was applied for defective solids (see
Sect. 10.1.3) with a focus on a detailed treatment of lattice relaxation around a single
defect.

For a perfect crystal results of periodic HF and DFT calculations based on LCAO
approximation are compared. Despite the fact that the supercell approach is widely
used in defect calculations, very little attention is paid to the supercell shape and
size optimization and the effect of periodically repeated defect interaction. Following
the method accepted for the above-considered supercell calculations of native point
defects (interstitial oxygen in MgO, F center in Al2O3 and SrTiO3) a study of the
convergence of results to the limit of a single defect is one of the main emphases of the
calculations [680] on Fe-doped SrTiO3. The transformation matrices for the supercells
used are given in (10.14) in general form and define the equidistant supercells, forming
sc, fcc and bcc lattices. In the footnote to Table 10.13 actual transformation matrices
used in Fe-doped SrTiO3 calculations are given [680].

For the perfect crystal the special kq points sets corresponding to these supercells
satisfy the Chadi–Cohen condition, see (4.83):∑

kq

Wq

∑
|Aj |=Rm

exp(ikqAj) = 0, m = 0, 1, 2, 3, . . . (10.16)

where the second sum is over lattice vectors of the same length equal with the mth
neighbor distance Rm, the first sum is over a set of these special kq points, and Wq are
weighting factors equal to the number of rays in their stars. The larger the number m,
the better is the electronic-density approximation for the perfect crystal. The numbers
M (m = 0, 1, 2, . . .), defined according to (10.16) the accuracies of the corresponding
sets, are given in Table 10.13.

The ab-initio periodic restricted and unrestricted HF (RHF,UHF) calculations
were performed for perfect and defective SrTiO3 crystals, respectively, using the
CRYSTAL computer code [23]. This code has the option to perform both HF and
DFT calculations on equal grounds, for a large number of implicitly or a posteriori
used exchange-correlation functionals that permits one to analyze directly the rel-
evant electron-correlation effects keeping other computational conditions the same.
The same LCAO basis set was used in the HF and DFT (PWGGA) calculations.
Large-core Durand–Barthelat [484] for Ti and O atoms and Hay–Wadt small-core
pseudopotentials [483] for Sr atoms were used. The impurity iron atoms were treated
as all-electron atoms. The “standard” basis for Ti and O was taken from previous TiO2

LCAO calculations [574] whereas that for Fe and Sr from [629] and the CRYSTAL
code site [23], respectively. The outer Ti, Fe and oxygen O basis functions were reop-
timized. To characterize the chemical bonding and covalency effects for both defective
and perfect crystals, a standard Mulliken population analysis was used for the effec-
tive atomic charges q and other local properties of electronic-structure – bond orders,
atomic covalencies and full valencies (these local properties of electronic structure are
defined in Sect. 9.1.1).

Since the lattice-relaxation calculations around a point defect was one of the aims,
the band-structure calculations with the lattice constant a optimization were made
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Table 10.13. Convergence of results for pure SrTiO3 (a=3.905 Å) obtained for pure HF
(a) and DFT-PWGGA (b) LCAO band calculations corresponding to cyclic clusters of an
increasing size [680]. All energies in eV, total energies are presented with respect to the
reference point of 80 a.u.=2176.80 eV. q and V are effective atomic charges and valencies (in
e), respectively. RM and M are explained in the text

Supercell Matrix M RM(Å) Etot (eV) V C q(Ti) q(O) q(Sr) V (Ti) V (O) V (Sr)

a) HF LCAO calculations

S8, sc A 4 7.81 –24.288 –6.838 3.393 2.39 21.41 1.84 3.94 2.07 2.01
S16, fcc B 7 11.04 –24.818 –6.895 3.766 2.54 21.46 1.84 3.97 2.06 2.01
S32, bcc C 11 13.53 –24.873 –6.906 3.725 2.54 21.46 1.84 3.98 2.06 2.01
S64, sc D 14 15.62 –24.873 –6.906 3.720 2.54 21.46 1.84 3.98 2.06 2.01
S108, bcc E 24 20.29 –24.883 –6.895 3.744 2.54 21.46 1.84 3.98 2.06 2.01

b) DFT-PWGGA LCAO calculations

S8, sc A 4 7.81 –73.059 –4.647 4.367 3.43 21.74 1.79 3.98 2.06 2.04
S16, fcc B 7 11.04 –73.024 –2.735 2.169 2.82 21.51 1.71 3.97 2.09 2.04
S32, bcc C 11 13.53 –70.874 –2.737 1.219 2.55 21.42 1.70 3.99 2.11 2.04
S64, sc D 14 15.62 –66.101 –2.414 0.027 1.69 21.13 1.70 4.12 2.18 2.04
S108, bcc E 24 20.29 –66.134 –2.443 –1.025 1.69 21.13 1.70 4.12 2.18 2.04

Transformation matrices

A =

⎛⎝ 2 0 0
0 2 0
0 0 2

⎞⎠ , B =

⎛⎝ 2 2 0
2 0 2
0 2 2

⎞⎠ , C =

⎛⎝ 2 2 −2
2 −2 2

−2 2 2

⎞⎠ , D =

⎛⎝ 4 0 0
0 4 0
0 0 4

⎞⎠ , E =

⎛⎝ 3 3 −3
3 −3 3

−3 3 3

⎞⎠

for the perfect crystal. The values obtained were a=3.92, 3.84, and 3.92 Å, for HF,
HF-PWGGA and DFT-PWGGA, respectively. The experimental value is a0=3.905 Å.
The bulk modulii are B=222, 242, and 195 GPa, respectively, to be compared with the
experimental value (extrapolated to 0 K) B=180 GPa. That is, pure HF gives an error
of 0.5% only for the lattice constant, and by 20% overestimates the bulk modulus. Its
a posteriori electron-correlation correction, HF-PWGGA, gives too small a value, and
B even larger than the pure HF. Use of an optimized basis set results in a=3.93, 3.85,
and 3.93 Å for HF, HF-PWGGA, and DFT-PWGGA, respectively. The relevant bulk
moduli are B=220, 249, and 191 GPa, respectively. That is, the basis optimization
only slightly affected the calculated a and B values.

Tables 10.13a and b demonstrate the effect of the cyclic-cluster increase for both
HF and DFT-PWGGA methods, respectively. The main calculated properties are:
the total energy Etot (per primitive unit cell), one-electron band-edge energies of the
valence-band top and conduction-band bottom εv and εc, Mulliken effective atomic
charges q and full atomic valencies V . As is seen, the result convergence, as the
supercell size increases, is quite different for the HF and DFT. We explain the much
slower DFT convergence by a more covalent calculated electron-charge distribution,
as compared to the HF case. For both methods, the convergence of local properties
of the electronic structure is faster than that for the total and one-electron energies.

Based on the results of Table 10.13 the conclusion can be drawn that in the HF
LCAO calculations of a perfect crystal, the electronic structure is reasonably well
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reproduced by the supercell of 80 atoms (L=16). This is confirmed by the band-
structure analysis. The results of the standard band-structure calculations for the
SrTiO3 primitive unit cell with Monkhorst–Pack k set 6×6×6 and the cyclic cluster
of 80 atoms (only at the Γ point of the BZ) are very similar. It appears that the
most important features of the electronic structure of a perfect crystal (valence- and
conduction- bandwidths, local properties of electronic structure) are well reproduced
by the cyclic cluster of 80 atoms. The corresponding one-electron energies do not
practically change along all the symmetry directions in the narrowed BZ for supercell
band calculations.

Analysis of the difference electron-density plots, calculated for the band and the 80-
atom cyclic-cluster calculations confirms that the latter well reproduces the electron-
density distribution in a perfect crystal. Lastly, the total and projected density of
states for a perfect crystal show that the upper valence band consists of O 2p atomic
orbitals with admixture of Ti 3d orbitals, whereas the Sr states contribute mainly to
the energies close to the conduction-band bottom, in agreement with previous studies.

However, as follows from Table 10.13, very accurate modeling of pure SrTiO3 by
means of DFT-PWGGA needs use of cyclic clusters as large as 320 atoms (L=64).
This conclusion agrees with the results of DFT PW supercell calculations on SrTiO3

discussed in the preceding subsection.
Table 10.13 has shown that an increase of the cyclic cluster from S16 to S32

does not change the HF-calculated top of the valence band. However, the calculated
width of the defect impurity band EW found using a standard Monkhorst–Pack set
6×6×6 for three different supercells (Table 10.14) demonstrates clearly a considerable
dispersion of defect energies across the supercell BZ.

Table 10.14. The width of the Fe impurity band EW calculated for the relevant supercells

Supercell Number of atoms Fe–Fe distance (Å) EW (eV)

S8 40 7.81 1.42
S16 80 11.04 0.23
S32 160 13.53 0.14

Indeed, the EW decreases rapidly, from 1.42 eV (S8) down to 0.23 eV (S16), and
further down to 0.14 eV (S32), when the Fe–Fe distance increases only by a factor
of about 2, from 7.81 to 13.53 Å, since an overlap of the impurity atomic functions
decreases exponentially. This is why only S32 (160-atom cyclic cluster) is suitable for
a careful modeling of the single Fe impurity and lattice relaxation around it. This is
in contrast to many previous supercell calculations of defects in perovskites where S8
supercells were often used without any convergence analysis.

Mulliken effective charges calculated for ions at different positions in supercells
modeling pure and Fe-doped SrTiO3 are summarized in Table 10.15.

Table 10.15 demonstrates that the standard band-structure calculation and the
S64 cyclic cluster give essentially identical charges. The more so, charges of the same
ions in a 320-atom supercell are the same, irrespective of the ion position inside
the cyclic cluster. Next, in the defective-crystal calculations, say, for the S32 cyclic
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Table 10.15. Effective charges q of ions obtained in the HF band-structure calculations with
a Monkhorst–Pack k-set 6×6×6 and different cyclic clusters modeling perfect and defective
SrTiO3. The lengths in the first column are lattice constants of the relevant supercells the
distances R given above the effective charges are calculated with respect to the supercell
coordinate origin where the Fe ion is placed

R (Å) 0.00 1.95 3.38 3.90 4.37 5.52 5.86 6.48 6.76 7.04 7.81

Lattice const.(Å) q(Fe) q(O) q(Sr) q(Ti) q(O) q(Ti) q(O) q(Sr) q(Ti) q(O) q(Ti)

3.90 (band struct.) –1.458 1.837 2.538

15.62 (S64)
(perfect cryst.)

–1.459 1.837 2.540 –1.459 2.540 –1.459 1.837 2.540 –1.459 2.540

7.81 (S8) 2.583 –1.464 1.835 2.406
11.04 (S16) 2.571 –1.464 1.840 2.536 –1.460 2.543
13.53 (S32) 2.570 –1.464 1.838 2.534 –1.458 2.540 –1.459 1.837 2.540
15.62 (S64) 2.570 –1.463 1.838 2.534 –1.458 2.540 –1.459 1.837 2.540 –1.459 2.539

cluster, the effective charges of atoms close to its boundary are the same as in the
perfect crystal. This confirms that the chosen cyclic cluster is large enough.

The S32-UHF supercell calculations for the zero-spin and high-spin (S=2) states
show that the latter is much lower in energy (by 5.4 eV) (after lattice relaxation). In
the perovskite crystalline field a fivefold degenerate Fe 3d state splits into eg and t2g

states (see Fig. 10.6) separated by 2.1 eV (for an undistorted lattice).

Fig. 10.6. (a) Schematic view of the Fe impurity with asymmetric eg relaxation of the six
nearest O atoms. (b) The relevant energy levels before and after relaxation

In the high spin state with S=2 the upper level is occupied by one α electron and
three other α electrons occupy t2g states. As is well known in this case an Eg ⊗ eg

Jahn–Teller effect takes place. This means that an orbital degeneracy is lifted by an
asymmetrical displacement of six O ions, as shown in Fig. 10.6: four equatorial O
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atoms lying in the xy-plane relax towards the impurity, whereas the two other O
atoms relax outwards along the z axis. This results in two nondegenerate levels close
to the valence-band top: the eg level at 0.5 eV above the band edge, and a virtual
nondegenerate b2g level lying much higher (Table 10.16).

Table 10.16. Positions of one-electron Fe levels (in eV) with respect to the valence-band top
calculated by means of HF method for S16 (80 atoms) and S32 (160 atoms) cyclic clusters
with and without lattice relaxation

Cyclic
cluster

Before relaxation After relaxation

t2g eg a1g b1g eg b2g

80 atoms 0.36 2.31 0.02 0.03 0.5 5.4
160 atoms 0.25 2.50 0.02 0.05 0.5 5.0

If we assume that x, y, z displacements have equal magnitudes, pure HF and
HF-PWGGA calculations with the “standard” basis set give practically the same
magnitude of the six O displacements δ =0.04 Å, a quite flat minimum and an en-
ergy gain of 1.40 eV. This means that we have a combination of the Jahn–Teller and
breathing modes of surrounding O-atom dsplacements. With the optimized basis set
a slightly smaller energy gain 1.33 eV was obtained. It was checked also whether the
magnitudes of the O-atom displacements along the x, y and the z axes could be dif-
ferent and indeed a small additional energy gain, down to 1.42 eV for the following
asymmetrical dispacements in the latter case was found: 0.028 Å along the x,y axis and
–0.052 Å along the z axis, i.e. outward displacements of two O atoms are twice larger
than those for four equatorial O atoms. Note that UHF calculation effectively incor-
porates the spin-dependent electron-correlation effects during the self-consistent loops
and thus gives nearly the same results as HF with a posteriori (nonself-consistent)
corrections for electron correlations. The total valence of the iron impurity VFe=3.3
correlates much better with the Fe4+ model than with the calculated Mulliken ef-
fective charge of +2.59. These effective charges q of atoms collected in Table 10.17
demonstrate considerable covalency effects, well known for ABO3 perovskites.

Table 10.17. The effective Mulliken charges of atoms q and bond orders W (in e) for S32
HF cyclic cluster with unrelaxed and relaxed lattices

SrTiO3 q(Ti) q(Ox,y) q(Oz) W (Ti–Ox) W (Ti–Oz)

Pure 2.540 –1.459 –1.459 0.375 0.375

Fe-doped q(Fe) q(Ox,y) q(Oz) W (Fe–Ox) W (Fe–Oz)

Unrelaxed 2.570 –1.464 –1.464 0.164 0.164
Relaxed 2.594 –1.440 –1.534 0.235 0.154
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In particular, in pure SrTiO3 the effective charges are q(Ti)=+2.54, q(Sr)=+1.84,
and q(O)=–1.46. The Ti–O bond order in a pure crystal is 0.375. When the two O
atoms are displaced outwards from the Fe impurity along the z axis and thus approach
the nearest Ti atoms, the Ti–O bond order increases to 0.489. The combination of a
large lattice relaxation energy and relatively small O displacements is not surprising
in the light of a considerable covalent bonding between the unpaired iron electrons
occupying Fe 3d orbitals and 2p orbitals of four equatorial oxygen ions: the Fe–Ox,y

bond orders (Table 10.17) increase upon mutual approach of these atoms from 0.164
to 0.235.

Fig. 10.7. (a) The electronic-density plots for the (010) cross section of Fe and nearest ions
in SrTiO3 as calculated by means of the HF method for the cyclic cluster of 160 atoms.
Isodensity curves are drawn from 20.8 to 0.8 e a.u.−3 with an increment of 0.0022 e a.u.−3,
b) the same as (a) for the (001) section, (c) the same for the (110) section. Left panels are
HF difference electron densities, right panels are spin densities.

Analysis of the total electron-density and spin-density distribution (Fig. 10.7)
shows that in the HF calculation four unpaired electrons are well localized on the Fe
ion.

Lastly, a comparison of the band structures for the cyclic cluster containing the Fe
impurity with that for a pure crystal clearly demonstrates that the Fe impurity induces
additional energy levels below the valence band (in the region around –20 eV) and
above the valence band, at around –2 eV. These bands have practically no dispersion
over the BZ, which demonstrates that the defect is almost isolated from its periodic
images.

Any method is not completely universal, and the approach described also has its
limitations. In particular, it does not work when incorporation of the lattice relax-
ation qualitatively changes the electron localization (e.g. , for free electron and hole
polarons). On the other hand, it could be very efficient for many impurities in insula-
tors characterized by high symmetry and when calculating forces is computationally
expensive.
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It was demonstrated that the size of the cyclic cluster large enough for a correct
reproduction of the perfect crystal depends on the particular quantum-mechanical
method; for SrTiO3 this means 80-atom cyclic clusters for the HF but 320 atoms
for the DFT-PWGGA. In the HF defect calculations for the single Fe+ impurity the
cyclic cluster should not be smaller than 160 atoms. This is in contrast with many
previous supercell calculations on perovskites where supercells as small as S8 were
used without convergence analysis.

It was already mentioned in Chap. 9 that the HF method typically overestimates
the optical gap, whereas DFT underestimates it. This can affect the electronic-density
distribution (chemical-bond covalency) and defect-level positions within the gap (even
determined with respect to the valence-band top). In this respect, the hybrid HF-
DFT methods widely used in the molecular chemistry, e.g. , B3LYP, seem to be more
promising tools.

The calculations [680] have demonstrated the strong covalent bonding between
unpaired electrons of Fe impurity and four nearest O ions relaxed towards an impu-
rity. The positions of Fe energy levels in a SrTiO3 gap are very sensitive to the lattice
relaxation that was neglected in previous studies. The predicted positions of the Fe
energy levels with respect to the valence-band top could be checked by means of UPS
spectroscopy whereas the local lattice relaxation around iron and its spin state was
checked by means of EXAFS. The results of the calculations under consideration are
important since the single Fe4+ ions were not detected by ESR (only Fe4+-O vacancy
complexes were experimentally studied) and their optical absorption bands at 2.1 and
2.8 eV [749] are tentative. Note that the high-spin state of Fe4+ impurity predicted in
ab-initio calculations contradicts previous semiempirical and nonself-consistent calcu-
lations (Xα − FeO6 cluster calculation [742] and tight-binding calculation [743]).On
the other hand, a high spin state is indirectly supported by its observation for host
Fe ions in SrFeO3 perovskite.

We conclude this chapter by discussion of the supercell use for the solid-solution
modeling. In this case the supercells of different size allow different percentages of
doping in solid solution to be modeled.

10.3.3 Modeling of Solid Solutions of LacSr1−cMnO3

One of the extensively studied perovskite-type materials, LacSr1−cMnO3 (LSM), is
of special interest due to numerous applications, particularly as the cathode for solid
oxide fuel cells [750].

LSM was investigated both theoretically [751, 752] and experimentally [753] with
a focus on the chemical-bonding nature, magnetic properties, metal–insulator transi-
tions, structural transformations and surface properties.

Numerous efforts were undertaken to study the phase transformations and phase
stability in LSM in a wide range of solid solutions. These materials exhibit a compli-
cated dependence of the properties on the concentration of the Sr dopant and oxygen
nonstoichiometry. Nowadays, it is well recognized that the dielectric, piezoelectric
and other LSM properties are entirely related to the phase equilibrium and the phase
separation that occurs under different thermodynamic conditions.

In what follows we discuss the results of ab-initio supercell studies of the rela-
tive stability of different LSM phases [754]. To perform the ab-initio calculations the
program packages WIEN-2k [378] and CRYSTAL-03 [23] were used.
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The spin-polarized DFT FPLAPW and LCAO electronic and atomic-structure
calculations [754] use the exchange-correlation PBE functional.

The basis set of augmented plane waves combined with local orbitals (APW+lo)
is used in the WIEN-2k code for solving the Kohn–Sham equations. In this method
the unit-cell volume is divided into two regions: (I) nonoverlapping atomic spheres
centered at the atomic sites and (II) an interstitial region. In the two types of regions
different basis sets are used. Inside atomic sphere i of radius Ri, where electrons behave
as they were in a free atom, a linear combination of radial functions times spherical
harmonics is used. In the interstitial region between these atomic spheres, where the
electrons are more or less “free,” a plane-wave expansion is used. On the sphere
boundary the wavefunctions of both regions are matched by a value. The APW+lo
basis set has a significantly smaller size than the basis set in the LAPW method and
thus the computational time is drastically reduced. Nevertheless, these two schemes
converge practically to identical results. The convergence of the method is controlled
by a cutoff parameter RmtKmax, where Rmt is the smallest atomic sphere radius in
the unit cell and Kmax is the magnitude of the largest k-vector in the reciprocal
space. To improve the convergence of the calculations it is necessary to increase this
product. A reasonably large Rmt can significantly reduce the computational time. A
value of Rmt =1.7 a.u. was chosen and a plane-wave cutoff RmtKmax = 9.

The calculations [754] are performed for the high-temperature cubic phase of
LaMnO3 (LMO)-based crystals doped with Sr, substituting for La atoms in differ-
ent fractions. This substitution results in a charge-compensating hole formation. The
formation of other defects like oxygen or metal vacancies is neglected.

To model the LaMnO3 doped by Sr (LSM), a 2 × 2 × 2 supercell is used, which
consists of eight primitive unit cells and thus contains 40 atoms. The WIEN-2k code
generates the k-mesh in the irreducible wedge of the Brillouin zone (BZ) on a special-
point grid that is used in a modified tetrahedron integration scheme (500 k-points
were used). The accuracy in total-energy calculations was 10−4 Ry. Different configu-
rations of Sr atoms substituting for La atoms allow ordered LSM solid solutions to be
modeled. In particular, La0.875Sr0.125MnO3 is typically used in fuel cells and thus is
the subject of detailed thermodynamic study. The calculations are carried out for the
ferromagnetic spin alignment (all Mn spins in the supercells are oriented in parallel),
which results in a metallic character of the resistivity [753]. However, the resistivity
of this phase is larger by three orders of magnitude than that of a typical metal. This
is confirmed by FP LAPW band-structure calculations: a very small density of states
(DOS) in the vicinity of the Fermi level is observed. The model used is in agreement
with the calculations [752] where the ferromagnetic state was revealed for layers of a
cubic La0.7Sr0.3MnO3.

In [754] DFT B3LYP LCAO calculations for LacSr(1−c)MnO3 mixed crystals (c
=0, 0.125, 0.5, 1.0) were performed, see Fig. 10.8. La, Sr and Mn core electrons
were described by Hay–Wadt small-core (HWSC) pseudopotentials [483]. For the
oxygen atoms an all-electron 8-411(1d)G basis was taken from previous MnO cal-
culations [628], performed with basis-set (BS) optimization. For La, Mn and Sr ions
BSs 411(1d)G, 411(311d)G and 311(1d)G were taken from La2CuO4 [755] calcula-
tions, the CRYSTAL web site [23] and SrTiO3 calculations [606], respectively.

To achieve a high numerical accuracy in the lattice and in the BZ summations,
the cutoff threshold parameters of the CRYSTAL03 code for Coulomb and exchange
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Fig. 10.8. Four structures used in calculations of LacSr1−cMnO3

integrals evaluation to 7, 7, 7, 7 and 14, respectively, were taken. The integration over
the BZ has been carried out on the Monkhorst–Pack grid of shrinking factor 8 (its
increase up to 16 gave only a small change in the total energy per unit cell). The
self-consistent procedure was considered as converged when the total energy in the
two successive steps differs by less than 10−6 a.u.

As the first step, B3LYP spin-polarized LCAO calculations for the cubic LaMnO3

and SrMnO3 (with one formula unit per primitive cell) are performed, using the max-
imal spin projection Sz = 2 for four d-electrons of the Mn3+ ion. As we have seen
in Chap. 9, such a spin projection ensures the lowest total energy compared with
Sz = 0, 1. The optimized cubic lattice constants are a=3.967 Å and a=3.840 Å for
LaMnO3 and SrMnO3, respectively. These values are in a reasonable agreement with
the experimental lattice constants a=3.947 Å and a=3.846 Å, respectively. The two
optimized cubic lattice constants for LaMnO3 and SrMnO3 were used for calculating
the lattice constants of their solid solutions according to Vegard’s law (linear depen-
dence of the lattice parameters on the composition). As follows from the WIEN-2k
calculations, this is fulfilled quite well in this system.

To predict the relative stability of different phases, which might appear in the
quasibinary phase diagram of LSM solid solutions in a wide range of dopant concen-
trations, the statistical thermodynamic approach combined with the ab-initio calcu-
lations was used. Such an approach has been successfully applied to different systems
(see, e.g. , [756–758] and references therein).

The standard periodic ab-initio approach could be used only for ground-state
energy calculations and ordered structures and thus does not allow prediction of
thermodynamic stability of these phases as the temperature grows. This forces the
problem to be reformulated so as to permit the extraction of the necessary energy
parameters from the calculations for the ordered phases, and to apply these param-
eters to the study of the disordered or partly ordered solid solutions, in order to get
information on the thermodynamic behavior of LSM solid solutions. From the exper-
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imental data [759] it follows that in these solid solutions Sr atoms substitute for La
at all atomic fractions, 0 < c < 1. Therefore, it is possible to consider the LSM solid
solution as formed by La and Sr atom arrays occupying the sites of a simple cubic
lattice immersed in the external field of the remaining lattice of Mn and O ions. The
thermodynamics of such solid solutions can be formulated in terms of the effective
interatomic mixing potential, which describes the interaction of La and Sr atoms em-
bedded into the field of the remaining lattice. The study is based on the calculation
of the relative stabilities of different ordered LSM cubic phases.

Figure 10.8 illustrates four phases: three of them (a, b, c) correspond to c =0.5,
the last one (i) with c =7/8 corresponds to 12.5% Sr-doped LaMnO3. The remaining
phases in Table 10.18 are the same as those used in BacSr(1−c)O3 calculations [756].

Table 10.18. Total energies Etot per 2 × 2 × 2 cell, for LacSr1−cMnO3 compositions and
equilibrium lattice parameters aeq for different structures, see [754] and Fig. 10.8.

WIEN-2k Crystal-03

Structure c Etot (Ry) aeq (Å) Etot (Ry) aeq (Å)

a 0.5 –115574.4034 3.881 –5771.8383 3.903
b 0.5 –115574.4248 3.881 –5771.8688 3.903
c 0.5 –115574.4178 3.879 –5771.8812 3.903
d 0.25 –94302.8877 3.862
e 0.75 –136845.8880 3.901
f 0.25 –94302.8725 3.865
g 0.75 –136845.8763 3.901
h 0.125 –83667.1051 3.855(3.828)∗

i 0.875 –147481.5822 3.914 –5776.8921 3.951
LaMnO3 –158117.2795 3.921(3.947)∗ –5778.3816 3.967
SrMnO3 –73031.3269 3.848(3.806)∗ –5764.9568 3.840

*For the references to these experimental data see in [754].

In the concentration wave (CW) theory [760] the distribution of atoms A in a
binary A–B alloy is described by a single occupancy probability function n(r). This
is the probability to find the atom A (La) at the site r of the crystalline lattice. The
configurational part of the free energy of solid-solution formation (per atom) includes
the internal formation energy ∆U , the function n(r), a concentration of particles
La(A), the effective interatomic potentials between La atoms (A) and Sr atoms (B),
for details see [754].

To find the internal formation energies, which are differences between total ener-
gies of superstructures and the reference-state energy, the energy of a heterogeneous
mixture, cLaMnO3 + (1-c)SrMnO3, has been chosen for the reference state. This en-
ergy is calculated as the sum of weighted (according to the atomic fractions) total
energies of the two pure limiting phases, LaMnO3 and SrMnO3. From ab-initio calcu-
lations the total energies Etot and equilibrium lattice constant for all superstructures
are obtained, Table 10.18. The internal formation energies for ordered phases (Table
10.19) are calculated by the definition
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∆U = Etot −
(
cELaMnO3

tot + (1 − c)ESrMnO3
tot

)
(10.17)

Table 10.19. Formation energies of different superstructures (in eV per atom on La/Sr
sublattice) as calculated by means of the WIEN-2k (FPLAPW) and CRYSTAL-03 (LCAO)
codes, [754]

Configuration FPLAPW LCAO

a 0.170 0.288
b 0.207 0.339
c 0.195 0.360
i 0.080 0.320

All these energies calculated using two very different DFT methods (FPLAPW
and LCAO) are negative, i.e. the formation of these ordered phases is energetically
favorable with respect to their decomposition at T =0 K into a heterogeneous mixture
of LaMnO3 and SrMnO3 phases. It is easy to see from Table 10.18 that at the stoi-
chiometric composition c=1/2 the ordered phases a, b, c (which have different local
impurity arrangements in the supercell) are energetically more favorable than other
phases. Also, these three phases differ slightly between themselves in the formation
energies.

The absolute values for formation energies, given in Table 10.19, are larger in
LCAO calculations than those from FPLAPW calculations, especially for the “i” con-
figuration. In order to check this point, additional LCAO calculations were performed
using two different hybrid exchange-correlation functionals (B3LYP and B3PW) and
optimized lattice constants in all four configurations. However, the results are very
close to those obtained by using Vegard’s law. Therefore, the only reason for the en-
ergy discrepancy is the use of different computational schemes. However the use of
two different methods allows more reliable information to be obtained. In this par-
ticular case, both methods give qualitatively similar results. Using these formation
energies it is possible to calculate the temperature evolution of the long-range order
(LRO) parameters of the superlattices. The LRO parameters characterize the atomic
ordering in sublattices of the ABO3-type perovskite. Their values were taken to be
equal to unity (which corresponds to completely ordered phases at stoichiometric
compositions). The concentration was taken to be equal to the stoichiometric compo-
sitions of the corresponding phases. Finally, the free energy of formation of the phase
La0.875Sr0.125MnO3 was calculated (we refer the reader to [754] for details).

The calculations of LSM solid solution considered here demonstrate the efficiency
of use of thermodynamic formalism based on combination of the ab-initio electronic-
structure calculations as developed in [754,756–758].The main feature of this approach
is the treatment of ordered superstructures presenting the La-Sr sublattice immersed
in the field of the remaining lattice formed by Mn and O atoms. The total-energy
calculations allow the formation energies of these superstructures for different compo-
sitions to be found and their competition at T =0 K to be analyzed. These calculations
for a series of ordered structures permit extraction of the key energy parameters – the
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Fourier transforms of the mixing potential and thus the free energy for temperature
induced partly disordered structures to be determined. Using the 12.5% Sr-doped
LaMnO3 a thermodynamic analysis was performed [754]. It was predicted, in partic-
ular, that disordering of this phase with respect to the decomposition into the hetero-
geneous mixture of LaMnO3 and SrMnO3 can occur only at temperatures above the
melting point. This is in contrast to a similar study of isostructural BacSr(1−c)TiO3

solid solution where below a certain temperature Ba impurities in SrTiO3 tend to
form BaTiO3 nanoclusters.

In this chapter we have seen that in modern quantum chemistry of solids the first-
principles periodic calculations are successfully extended to formally aperiodic systems
– defective crystals and solid solutions. In the next chapter we consider the application
of periodic models in the calculations of crystalline surfaces and adsorption.
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Surface Modeling in LCAO Calculations of Metal
Oxides

11.1 Diperiodic Space Groups and Slab Models of Surfaces

11.1.1 Diperiodic (Layer) Space Groups

To model the electronic structure of surface states of crystals three basic approaches
are used: the cluster, slab (single and periodic), and semi-infinite crystal models. The
latter is the most exact because it takes into account all the atoms of the crystal with
a surface.

A semi-infinite crystal is a three-dimensional (3D) object. Its symmetry group
contains, in addition to translations in the surface plane, only the rotations and mirror
reflections that keep the atoms in the planes parallel to the surface. Only 17 such
groups exist. Formally, these groups are isomorphic with diperiodic space groups in
two dimensions. They are called plane groups.

In the molecular-cluster approach a crystal with a surface is modeled by a finite
system consisting of the atoms on the surface and of some atomic planes nearest to
it. The diperiodicity of the surface is not taken into account. The symmetry of such
a model is described by one of the crystallographic point groups.

In the single-slab model a crystal with a surface is approximated by a slab of
finite thickness. The symmetry group of this model allows the existence of symmetry
operations that move the atoms out of the plane of the layer but bring them into
positions occupied by other atoms of the slab. These are space diperiodic groups in
three dimensions. They are also called the layer groups. We denote them by DG. These
groups also describe the symmetry of thin films. In layered crystals the interaction
between the nearest layers is usually weaker than that between nearest atoms in the
same layer plane. Therefore, the slab model is a convenient approximation for such
crystals. Layer groups describe the symmetry of this model. Diperiodic (layer) groups
are the symmetry groups of three-dimensional (3D) objects with two-dimensional (2D)
periodicity.

In plane-wave calculations the periodic (repeated) slab model is used. In this model
the slab is periodically repeated along the normal to the slab surface plane. This
repeating of the slab restores the 3D periodicity of the surface model. The symmetry
group of the periodic slab is a space group (Chap. 2) – three-dimensional group with
three-dimensional translations.
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The layer groups DG belong to the so-called subperiodic groups. The latter include
7 frieze groups (two-dimensional groups with one-dimensional translations), 75 rod
groups (three-dimensional groups with one-dimensional translations), and 80 layer
groups (three-dimensional groups with two-dimensional translations). The informa-
tion presented about the subperiodic groups in [761] is in the same format and consists
of the same content as that provided in [19] for space groups G.

In [761] a relationship is considered between space and subperiodic groups: given
a crystal of a specific space-group symmetry and a plane transecting the crystal,
one can enquire as to what is the layer subgroup of the space group that leaves this
plane invariant. The physical motivation for answering this question is clear as this
problem arises, for example, in the surface modeling by a single slab. The information
about subperiodic groups is followed in [761] by the scanning tables in which the layer
symmetries of sectional planes are tabulated for all crystallographic orientations and
for all positions (locations) of these planes. These tables also contain explicitly the
orbits of these planes (an orbit is defined as a set of planes connected by the symmetry
operations) and implicitly, via the so-called “scanning groups”, information about the
rod symmetries of straight lines that penetrate through the crystal. Rod groups are
used for studying polymers, nanotubes, quantum wells.

Diperiodic group DG contains a subgroup of two-dimensional translations T (2)

with elements (E|an), where

an = n1a1 + n2a2 (11.1)

is an arbitrary translation vector of the plane lattice, and a1,a2 are unit cell (prim-
itive) translation vectors. The ends of all vectors an beginning at some origin O
form a two-dimensional Bravais lattice. The point-symmetry group FDG of this lat-
tice must satisfy the following requirements: symmetry axes of order n (with n > 2)
must be perpendicular to the plane of vectors a1,a2 (layer plane), reflection planes
must be either perpendicular or parallel to this plane. These requirements restrict the
number of possible two-dimensional lattices. The two-dimensional lattice of a layer
group is also a two-dimensional lattice of a plane group (two-dimensional groups with
two-dimensional translations). There exist five plane lattices, distributed over four
crystal systems: oblique, rectangular (2 lattices – primitive and centered), square and
hexagonal.

The point symmetry of the oblique, rectangular, square and hexagonal systems is
given by C2, C2v,C4v and C6v point groups, respectively. Note that in a plane lattice
the inversion at the origin of the coordinate system is equivalent to the rotation
through the second-order axis normal to the plane. Screw axes in layer groups may be
only the second-order axes lying in the layer plane. Improper translations in operations
of reflection in glide planes (parallel or perpendicular to the layer plane) must be
oriented along the layer plane.

One can find the information about subperiodic groups on the Bilbao Crystallo-
graphic server [16]. These groups are specified by their number as given in [761] or by
the international symbols. The international symbol of layer group DG contains, first,
the information about the plane Bravais lattice type: P (primitive) or C (centered).
Then the information about symmetry elements is given. The screw axes (of second
order) have the subscript 1. The reflection planes are denoted as follows: m (mirror
planes), n, a, b (glide planes, depending on the direction of the improper translations).
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The subperiodic groups are described by means of a crystallographic coordinate sys-
tem consisting of a crystallographic origin, denoted by O, and a crystallographic basis.
The conventional basis vectors for the three-dimensional layer groups are labeled a,
b, and c. Unlike space groups, not all basis vectors of the crystallographic basis are
lattice vectors (for primitive lattices vectors a and b coincide with the primitive trans-
lations a1, a2). Like space groups, the crystallographic coordinate system is used to
define the symmetry operations and the Wyckoff positions. The symmetry opera-
tions are defined with respect to the directions of both lattice a, b and nonlattice
c basis vectors. A Wyckoff position, denoted by a coordinate triplet (x, y, z) for the
three-dimensional layer groups, is defined in the crystallographic coordinate system
by O + r, where r = xa + yb + zc.

Like space groups, the term setting will refer to the assignment of the labels a,
b, and c (and the corresponding directions [100], [010] and [001], respectively) to the
basis vectors of the crystallographic basis. In the standard setting, those basis vectors
that are also lattice vectors are labeled for layer groups with their two-dimensional
lattice by a and b. The Wyckoff positions for the 80-layer groups can be found in
[16, 761]. Note that the setting of the layer groups for rectangular lattices may be
chosen different for the same group (symbols P211 or P121 refer to the same group
in two different settings) but at the same time P112 and P211 denote different layer
groups. In the first group the axis of second order (oriented along the z-axis) is
perpendicular to the layer plane, in the second it lies in the layer plane xy and is
directed along the x-direction. In the first case, the second-order axis is oriented along
the plane translation lattice vector, in the second case along the nonlattice vector.
Respectively, the Wyckoff positions for both groups are different, see [16].

Any element of the layer group may be written as (Ri|vi + an), where an and vi

are lattice and improper translations, i=1,2.
Let a3 be a vector that does not lie in the layer plane. A set of elements (E|n3a3)

forms a group T3 of one-dimensional translations. Consider the elements

(Ri|vi + an)(E|n3a3), (Ri|vi + an) ∈ DG, i = 1, 2, (E|n3a3) ∈ T3 (11.2)

The set (11.2) of symmetry operations contains a group of three-dimensional trans-
lations (E|an + n3a3) ∈ T. The set (11.2) is some space group provided the trans-
lational symmetry (the group T) is compatible with the point symmetry FDG of the
layer group DG. This condition is fulfilled if the vector a3 is chosen perpendicular to
the layer plane. Indeed, the translations (E|an) ∈ T (2) ⊂ T are compatible with FFD

as they are the elements of DG. The compatibility of the translations (E|n3a3) ∈ T3

with point group FFD follows from the fact that the rotations (proper and improper)
from DG transform the layer into itself and, therefore, the vector perpendicular to
the layer is transformed into a vector also perpendicular to the layer. Thus, the set of
elements (11.2) forms one of the three-periodic space groups G. Moreover, the trans-
lational group T3 is invariant in G: with the translation (E|a3) it contains also the
translation (E|Ria3) for any Ri from (11.2). Therefore, the group G may be expressed
as a semidirect product

G = T3 ∧ DG (11.3)

and be decomposed into cosets with respect to T3
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G =
∑

i

(Ri|vi + an)T3, (Ri|vi + an) ∈ DG, i = 1, 2 (11.4)

Thus, subperiodic layer group DG is isomorphic to factor group G/T3. A relationship
between factor groups of space groups and subperiodic groups is studied in [762,763].

Table 11.1 gives correspondence DG ↔ G/T3 between three-dimensional diperi-
odic (DG) and three-periodic (G) space groups. This correspondence was at first
given by Wood [764] in the setting that differs for rectangular diperiodic groups from
that given in Table 11.1 (the setting in this Table corresponds to the standard set-
ting of [761]). The layer and rod groups isomorphic to factor groups of space groups
(the corresponding space groups are called reducible space groups) have been tabu-
lated [763].

Table 11.1. Correspondence between three-dimensional two-periodic (DG) and three-
periodic (G) space groups (DG ↔ G/T3), [761].

DG G DG G DG G

1 P1 C1
1 1 28 Pm21b C2

2v 26 55 P4mm C1
4v 99

2 P1 C1
i 2 29 Pb21m C2

2v 26 56 P4bm C2
4v 100

3 P112 C1
2 3 30 Pb2b C3

2v 27 57 P42m D1
2d 111

4 P11m C1
s 6 31 Pm2a C4

2v 28 58 P421m D3
2d 113

5 P11a C2
s 7 32 Pm21n C7

2v 31 59 P4m2 D5
2d 115

6 P112/m C1
2h 10 33 Pb21a C5

2v 29 60 P4b2 D7
2d 117

7 P112/a C4
2h 13 34 Pb2n C6

2v 30 61 P4/mmm D1
4h 123

8 P211 C1
2 3 35 Cm2m C14

2v 38 62 P4/nbm D3
4h 125

9 P2111 C2
2 4 36 Cm2a C15

2v 39 63 P4/mbm D5
4h 127

10 C211 C3
2 5 37 Pmmm D1

2h 47 64 P4/nmm D7
4h 129

11 Pm11 C1
s 6 38 Pmaa D3

2h 49 65 P3 C1
3 143

12 Pb11 C2
s 7 39 Pban D4

2h 50 66 P3 C1
3i 147

13 Cm11 C3
s 8 40 Pmam D5

2h 51 67 P312 D1
3 149

14 P2/m11 C1
2h 10 41 Pmma D5

2h 51 68 P321 D2
3 150

15 P21/m11 C2
2h 11 42 Pman D7

2h 53 69 P3m1 C1
3v 156

16 P2/b11 C4
2h 13 43 Pbaa D8

2h 54 70 P31m C2
3v 157

17 P21/b11 C5
2h 14 44 Pbam D9

2h 55 71 P312/m D1
3d 162

18 C2/m11 C3
2h 12 45 Pbma D11

2h 57 72 P32/m1 D3
3d 164

19 P222 D1
2 16 46 Pmmn D13

2h 59 73 P6 C1
6 168

20 P2122 D2
2 17 47 Cmmm D19

2h 65 74 P6 C1
3h 174

21 P21212 D3
2 18 48 Cmma D21

2h 67 75 P6/m C1
6h 175

22 C222 D6
2 21 49 P4 C1

4 75 76 P622 D1
6 177

23 Pmm2 C1
2v 25 50 P4 S1

4 81 77 P6mm C1
6v 183

24 Pma2 C4
2v 28 51 P4/m C1

4h 83 78 P6m2 D1
3h 187

25 Pba2 C8
2v 32 52 P4/n C3

4h 85 79 P62m D3
3h 189

26 Cmm2 C11
2v 35 53 P422 D1

4 89 80 P6/mmm D1
6h 191

27 Pm2m C1
2v 25 54 P4212 D2

4 90

The numbers of 17 plane groups are underlined.



11.1 Diperiodic Space Groups and Slab Models of Surfaces 463

For some layer groups of oblique and rectangular crystal systems (DG 1, 2, 8–18)
the vector a3 may be inclined to the layer plane.

In the cases when a space group G may be represented as a semidirect product
(11.3)) in two different manners it generates two nonisomorphic layer groups. For
example, the layer groups P112 and P211 are related to one space group P2(C1

2 ) with
two different settings (the second-order axis is oriented along the z- and x-directions,
respectively). The space group P2/b (C4

2h) generates two layer groups P112/a and
P2/b11. In the first group the rotation axis is perpendicular to the layer and the
layer plane itself is a glide plane with an improper translation on a half-period along
the x-direction. In the second group the rotation axis is directed along the x-axis;
the glide reflection plane is perpendicular to the layer (and to the rotation axis) and
reflection in this plane is followed by improper translation on the half-period along
the y direction. The latter corresponds to the space group, with a nonconventional
setting.

A particular case of layer groups is that of the so-called plane groups mentioned
above. Formally, they are the symmetry groups of diperiodic systems in two dimen-
sions. They correspond to the layer groups that do not contain the rotation axes lying
in the layer plane and the reflection planes coinciding with the layer plane. Semi-
infinite crystals with plane diperiodic surfaces have plane groups as the groups of
symmetry.

The Wigner–Seitz (WS) cell for an arbitrary group DG is a right prism with a
directrix lying in the layer plane. The projection of the Wigner–Seitz (WS) cell on the
layer plane is a polygon constructed from the basis vectors a1 and a2 [13]. The WS
cell of the corresponding triperiodic group G is derived by construction of additional
planes perpendicular to the vectors a3 (and perhaps to their integer combinations
with the vectors a1 and a2) and passing though their midpoints. Thus, the WS of the
group G is a part of that for the corresponding group DG.

The site-symmetry groups of Wyckoff positions for the majority of positions be-
longing to both WS cells (of G and of DG) are identical since they are determined
by the same set of symmetry operations. The only exception may be for the points
on the sides of the group G cell that are absent in that of the group DG. The exis-
tence of translational symmetry in the third dimension in the group G may give rise
to additional symmetry operations in site-symmetry groups for these points in the
group G with respect to DG. The part of the WS cell of the layer group DG that
has no common points with the cell of the corresponding group G contains the points
of general position and the points with site symmetry defined by vertical planes and
rotation axes. These types of site symmetry are already represented in the common
part of the cells for G and DG. Therefore, the set of points with different types of
site symmetry in the group G is larger than that in the group DG. Thus, the points
of different types of site symmetry (Wyckoff positions) in DG may be specified by
the same roman letters as in the corresponding groups G [16]. In layer groups the
inversion center and the points of intersection of vertical and horizontal symmetry el-
ements may be situated only in the layer plane. This means that the symmetry points
of the Wigner–Seitz cell for a layer group DG may appear only in its intersection with
the layer plane. An example illustrating the Wyckoff positions connection in space
group C5

2h and layer DG 18, is given in [13].
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It can be shown that all the irreps of DG are contained in the irreps of the related
space group G. The simple connection between the irreps of G and DG may be
established using (11.3), i.e. isomorphism DG ↔ G/T3: every irrep of DG is related to
a definite irrep of G (of the same dimension). In these irreps of G all the elements of the
coset (Ri|vi+an)T3 are mapped by the same matrix. In particular, all the translations
in T3 (coset (E|0)T3) are mapped by unit matrices. We refer the reader to Chap. 6
in [13] for details. The same approach can be used to connect irreps of space group G
with those of subperiodic rod group RD ↔ G/T (2) (T (2) is the two-dimensional group
of translations in a plane that does not contain the one-dimensional translations of
a rod group), [765]. The two-dimensional plane groups and the corresponding layer
groups are isomorphic (see Table 11.1) and therefore have the same sets of irreps. The
theory of induced reps described in Chap. 3 for triperiodic space groups G may be
easily applied to diperiodic groups DG. The tables of simple induced reps of DG may
be directly constructed by using this theory [13]. The induced reps of layer groups are
useful when analyzing electron-density localization on a crystal surface. Such analysis
is important in the study of chemisorption of atoms and molecules.

In order to understand the principal features of the origin of surface states it is
important to know how the energy bands of a crystal look in terms of the diperiodic
specification. The comparison of bulk and surface states according to the symmetry
is based on the relation between the irreps of the corresponding tri- and diperiodic
groups G and DG. The bulk states are specified by the wavevector k(3) in the three-
dimensional BZ (BZ-3) for the group G. The surface states are classified by k(2) in
the two-dimensional BZ (BZ-2) of the layer (plane) group DG. The choice of the
translation vectors a1 and a2 in the surface plane defines its orientation relative to
the primitive translation vectors a

(3)
i (i = 1, 2, 3) of the corresponding space group G.

The surface is identified by three integers (hkl) – Miller indices, specifying the atomic
planes in the crystal by means of the components of a vector perpendicular to that
plane. Planes perpendicular to crystallographic axes X, Y, Z are indicated (h00), (0k0)
and (00l), respectively. In particular, the planes closest to the origin are identified with
indices (100), (010) and (001). Planes parallel to one of the three axes X, Y, Z are
indicated (0kl), (h0l) and (hk0), respectively. When the surface reconstruction effects
(change of the surface plane translational symmetry with respect to that of the perfect
crystal) may be neglected, the symmetry group DG of a crystal with a surface is a
subgroup of the bulk crystal group G. However, the BZ-2 depends on the indices of
the surface plane.

Consider, for example, crystals with face-centered cubic Bravais lattices. For the
(001), (110) and (111) sections the plane lattices are square, rectangular and hexago-
nal, respectively. The basic translation vectors of the direct and reciprocal lattices for
these three cases are given in Table 11.2 (a1 and a2 are given in units a/2, Bi in units
2π/a, where a is the cubic lattice parameter). Note that for a cubic lattice the planes
(100), (010) and (001) are equivalent. The equivalence takes place also for (110), (101),
and (011) planes. We see that the vectors Bi(i = 1, 2) are now not the translation
vectors of the three-dimensional reciprocal lattice. Therefore, the boundaries of BZ-2
do not coincide with those of BZ-3.

Figure 11.1 shows the Brillouin zones corresponding to the surface (001), (110)
and (111) inscribed in the three-dimensional Brillouin zone for a face-centered cubic
lattice.
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Table 11.2. Vectors of basis translations for three sections of a face-centered cubic Bravais
lattice

Surface translation vectors (001) (110) (111)

a1 110 –110 1–10
a2 1–10 002 10–1
B1 110 –110 2/3,–4/3, 2/3
B2 1–10 001 2/3, 2/3,–4/3

Fig. 11.1. Brillouin zones for a face-centered cubic lattice and surfaces (a) (001), (b) (110),
(c) (111)

Note that some nonequivalent points of BZ-3 become equivalent in BZ-2 (for ex-
ample, the points X for the surface (001) and the points L for the (110) surface).
Some points of BZ-2 have higher symmetry than in BZ-3 (for example, the vertices
of BZ-2 for the (111) surface). These properties of BZ-2 arise because the unit-cell
vectors in the two-dimensional reciprocal space Bi are not the lattice vectors of the
three-dimensional reciprocal lattice.

To obtain the crystal energy band structure in terms of a diperiodic specification
it is necessary to represent the dispersion law E = En(k(3)) in the form

Es
n(ks

‖) = En(ks
‖ + k⊥ − Bn) (11.5)

where ks
‖ is a projection of the three-dimensional wavevector k(3) onto the surface

and k⊥ is its component perpendicular to the surface. The vector Bn is assumed to
be chosen so that the wavevector ks

‖ = k‖ + Bn takes values in the limits of BZ-2.
In the projection of the energy bands of the three-dimensional crystal on the two-
dimensional Brillouin zone forbidden energy lacunas can appear. When the surface is
taken into account, a band of surface states appears inside the energy lacuna. These
surface states are analogous to the local energy levels of point defects that appear in
the forbidden energy gap of a perfect crystal. The energy levels of surface states may
arise in the continuous energy spectrum of a bulk three-dimensional perfect crystal.
These are the so-called resonance surface states. They are analogous to the point
defect states in the spectrum of bulk-crystal states.

In the next sections we describe the slab models of the surface and illustrate the
choice of the slab by examples of metal oxides with sodium chloride, rutile and cubic
perovskite structures.
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11.1.2 Oxide-surface Types and Stability

Oxides are very common in nature and play a fundamental role in corrosion, friction,
electronic devices and superconductivity. The study of the properties of oxide surfaces
has an interdisciplinary nature, being included in several fields of research – not
only solid-state chemistry and physics, but also electrochemistry, catalysis, electronics
and even geophysics and geology. Nowadays, nanostructured surfaces are used as
substrates for growing artificial structures, for example, to make quantum wires or
size-controlled clusters.

The present understanding of oxide surfaces in the light of experimental and theo-
retical studies is summarized in books and review articles, see for example, [766–768].
Computer simulation plays an important role in the surface study and in recent
decades has become an important tool for investigations of structural, electronic and
catalytic properties of surfaces. Computer simulation of surfaces is based on two key
issues – model of the surface and the Hamiltonian used for the chosen model. Method-
ological developments and the rapid improvement of computer hardware have enabled
theorists to work with systems of increasing complexity and apply ab-initio (HF, DFT
and hybrid) Hamiltonians in the surface calculations. Thereby, it is possible not only
to reproduce experimental findings with increasing accuracy, but it is also possible
to help in the prediction and interpretation of experimental results. As for models
there were already mentioned both finite (molecular cluster and cyclic cluster), and
infinite (semi-infinite crystal and slab) models. The model of a semiinfinite crystal is
the most appropriate, because it takes into account an infinite number of atoms in the
crystal below the surface. Slab and cluster models are, nevertheless, more popular,
since they are more feasible from the computational point of view. The cyclic-cluster
model is intermediate between the slab and molecular-cluster models. It takes into
account the translational symmetry of the surface but considers only a finite number
of interatomic interactions within a strictly defined region [320,770].

The surface modeling is connected with the basic concepts, introduced by Tasker
[772] in a discussion of the stability of surfaces of ionic or partly ionic crystals. Ac-
cording to classical electrostatic criteria, the stability of a compound surface depends
on the characteristics of the charge distribution in the structural unit that repeats
itself in the direction perpendicular to the surface. The surface can be studied by con-
sidering the crystal as a stack of atomic planes. Each plane consists of sublattices of
nonequivalent atoms, a sum over each sublattice on each plane gives the total electro-
static potential. For perpendicular distances z greater than a few interionic spacings,
the contribution from a planar sublattice reduces to the particularly simple form

V (z) =
2π

S
qz (11.6)

where S is the area of the unit cell in the plane and q is the planar sublattice charge.
This expression is identical to the potential due to an infinite charged plane of charge
density ρ = q

S ; the field E = 2π
S q due to the charged plane is constant. Since V (z) and

E do not diminish with increasing distance z the electrostatic sum must be over the
whole crystal as stacks of planes unless cancellation of these terms occurs. Although
the potential V (z) becomes infinite at infinite distances from the plane, it should be
noted that when the crystal is constructed as a neutral block the infinities cancel
and the potential becomes constant at large distances. In fact, it becomes zero in all
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cases except where there is a dipole moment perpendicular to the surface. Similarly
the field E cancels to zero outside a neutral crystal block, irrespective of the stacking
sequence.

The repeat unit of a stack of planes is introduced when analyzing the distribution
of the bulk structure atoms over the atomic planes in the direction z normal to
the surface. This distribution depends on the oxide bulk structure and Miller index,
defining the surface. The three different possible stacking sequences define three types
of surfaces.

As a simplest case of the type-1 surface we consider the (001) surface of MgO
crystal (Fig. 11.2).

Fig. 11.2. Stacking of atomic planes for MgO surfaces

The neutral bulk unit cell consists of two atoms (Mg and O) and both of them
occupy the same atomic plane. Each atomic plane has overall zero charge since it
consists of both anions and cations in stoichiometric ratio. The potential V (z) can-
cels on each plane since the contributions of the sublattices are equal and opposite.
Additional planes in the surface of the crystal make no contribution to the energy of
ions in the bulk of crystal, and the lattice sums required for the Madelung energy at
any ion site need include only a few planes either side of that site. It is seen from
Fig. 11.2, that the (110) surface of MgO crystal refers also to type 1.

When a stacking sequence consists of charged planes, there are two possible cases.
In the first case the repeat unit has no dipolar moment perpendicular to the surface
(type-2 surface), in the second case the stack of charged planes has a nonzero dipole
moment along the z-direction (type-3 surface).

For the type-2 surface each plane contributes a term in the potential V (z), but a
sum over the planes in repeat units cancels the potential to zero. Addition of extra
neutral repeat units at the type-2 surface of the crystal cannot therefore affect the
energy of ions in the bulk, and again the Madelung sums for the potential at any ion
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site are rapidly convergent. The (110) surface of the TiO2 rutile structure (Fig. 11.3)
is an example of a type-2 surface.

Fig. 11.3. Stacking of atomic planes for rutile TiO2 surfaces

Indeed, the bulk crystal unit Ti2O4 atoms are distributed over three planes with
the surface unit cells consisting of one oxygen atom (two planes) or Ti2O2 units (one
plane). The atomic planes in this repeating unit are charged (q = −2 for oxygen planes
and q = +4 for Ti2O2 planes). However, the stacking of planes with the repeat unit as
O–Ti2O2–O allows one to obtain zero as its dipole moment along the z-direction. Two
other terminations (O–O–Ti2O2 and Ti2O2–O–O) give the repeat unit that bears a
nonzero dipole moment. This example demonstrates that the surface orientation only
is not always sufficient to refer the surface to the one of three types, especially when
various terminations may be produced. The atomic TiO2 planes in the repeat unit
of the (001) surface of rutile (Fig. 11.3) are also charged (q = −2), but the dipole
moment of any stack of an integer number of such planes is again zero (type-2 surface).
The repeat units for (100) and (101) type-2 surfaces have also zero dipole moment
(O- and O2-terminated repeat units of 6 and 3 atomic planes, respectively, can be
chosen).

For the majority of cases of the oxide surfaces the stacking sequence of charged
planes has a dipole moment perpendicular to the surface. In particular, the stacks of
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alternately charged planes form the repeat unit for (111) surface of MgO (Fig. 11.2),
(101) surface of TiO2 (Fig. 11.3).

Table 11.3 gives the formal plane charges in the stack of different surfaces in the
cubic perovskite ABO3 crystal with one formula unit in the primitive unit cell. The
bulk atoms distribution over atomic planes is shown on Fig. 11.4.

Table 11.3. Formal and calculated (in brackets) atomic planes charges of ABO3 cubic
perovskite

Surface (001) (110) (111)

Termination AO BO2 ABO O2 AO3 B

AIBVO3 (KNbO3) –1 +1 +4 –4 –5 +5
AIIBIVO3 (SrTiO3) 0(+0.27) 0(–0.27) +4 –4 –4 +4
AIIIBIIIO3 (LaMnO3) +1(+0.95) –1(–0.95) +4 –4 –3 +3

Fig. 11.4. Stacking of atomic planes for cubic perovskite ABO3 surfaces

All the surfaces in cubic perovskite structure are type-3 surfaces being stacks
of alternately charged planes. It is less obvious in the case of the (001) surface in
AIIBIVO3 as the repeat unit consists of neutral atomic planes (see below). It is also
seen that the charge of the atomic plane depends both on the oxidation states of A
and B atoms (the sum of oxidation states is in all cases 6) and Miller indexes of the
surface.

For the stacking sequence of alternately charged planes (producing a dipole mo-
ment perpendicular to the surface) the two-plane repeat unit produces a potential at
large distances whose magnitude is given by

V = 2π|q| a
S

(11.7)

where a is the interplanar spacing. Addition of an extra neutral repeat unit of two
planes on the surface of the crystal will affect the energy of ions an infinite distance
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below the surface. Consequently, the Madelung sum cannot be truncated and must
include contributions from every plane out to the surface. The potential at any ion
site never reaches a constant bulk value, the energy of a neutral pair of ions never
reaches the usual cohesion energy and the surface energy is infinite [772]. The stacking
of planes for rutile (100), (101) and (111) type-3 surfaces is more complicated as it
can not be named as the stacking sequence of alternatively charged planes.

The classification of the surfaces by Tasker is based on the formal ionicities (oxida-
tion states) of metal atoms. As we already noted, the oxidation state and calculated
atomic charges are close only in purely ionic compounds (MgO, for example). As we
have seen in Chap. 9, the transition-metal atoms charges differ essentially from the
oxidation states due to the covalence part of the chemical bonding with oxygen atom.

In Table 11.3 are given in brackets the atomic planes charges for (001) surface in
SrTiO3 and LaMnO3 crystals calculated for the bulk crystals with the use of Wannier-
type atomic functions in the population analysis, see Chap. 9 and reference [736]. As
the Ti–O bond in SrTiO3 presents a non-negligible part of covalent character the
actual charges of atomic planes SrO and TiO2 are nonzero. This means that SrTiO3

(001) should be considered as a polar (type-3) surface.
Type-1 or -2 surfaces have a zero dipole moment in their repeat unit and are thus

potentially stable. By contrast, polar type-3 surfaces have a diverging electrostatic
surface energy due to the presence of a nonzero dipole moment not only on the outer
layers, but on all the repeat units throughout the material, [768]. An electrostatic
instability of type-3 surfaces results from the presence of that macroscopic dipole.
Type-3 surfaces can be stabilized when the macroscopic field is removed by surface
reconstruction, absorption of charged specks and so on. The modification of the surface
electronic structure due to the reconstruction introduces compensating charges in the
outer planes, stabilizing the surface structure. The absorption of charged specks is also
a very effective mechanism to achieve the stabilization of polar orientations. Indeed,
polar orientations are generally much more reactive than cleavage planes [768].

The classification of surfaces considered above was introduced for ionic or semi-
ionic metal oxides. In covalent solids, the creation of a surface requires cutting covalent
bonds, which means that dangling bonds would be present at the surface. The satura-
tion of dangling bonds by chemisorption is important, for example, in silicates. When
a surface is cut out from the bulk, unstable Si–O radicals at the surface react readily
with water to give a fully hydroxylated surface with hydrophilic character [568].

Tasker’s classification of surfaces allows some qualitative conclusions to be made
about the surface stability. The quantitative calculations of the surface formation
energy in slab models are considered in the next sections.

11.1.3 Single- and Periodic-slab Models of MgO and TiO2 Surfaces

As was seen above in the slab model the surface plane is supposed to be fixed by
its orientation (by the set of Miller indices) relative to the bulk structure and its
symmetry elements. All the atoms of the bulk primitive unit cell are distributed
within one or several atomic planes with the same 2D-translation periodicity, see
Figures 11.2–11.4. Let these planes of atoms form a layer, being stoichiometric and
neutral as by definition it contains all the atoms of the bulk primitive unit cell.
Depending on the host-crystal structure the one-layer single slab can have zero (types-
1 and type-2 surfaces) or nonzero (type-3 surfaces) dipole moment along the normal
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to the surface plane. To ensure the zero dipole moment in the type-3 surface modeling
the nonstoichiometric slabs can be used.

Figure 11.3 shows that for the type-3 (111) surface of rutile TiO2 structure O- or
TiO2-terminated layer of the smallest thickness consists of 5 atomic planes: O–Ti–
O–TiO2–O or TiO2–O–Ti–O–TiO2, respectively.

For the cubic perovskite ABO3 (001) surface the nonstoichiometric slabs with AO
or BO2 terminations can be introduced. Figure 11.4 shows a AO-terminated slab,
consisting of 7 atomic planes – 4 AO planes and 3 BO2 planes. As is seen from
Fig. 11.4, the slab termination is different for different surfaces.

The symmetry of the single slab corresponds to one of 80 diperiodic (layer) space
groups. Fig. 11.5 shows a 3-layer single-slab model of (001) surface of MgO crystal
(each layer consists of one atomic plane). The symmetry group of this slab DG61
(P4/mmm) belongs to a square system.

Fig. 11.5. 3-layer (3-plane) slab for MgO (001) surface

Figure 11.6 shows a 3-layer single slab of (110) rutile TiO2. In this case each layer
consists of 3 atomic planes. In particular, the upper layer includes an oxygen plane
(O1 atoms), a Ti2O2 plane (Ti1, Ti2, O2, O3 atoms) and an oxygen plane (O4 atoms).
Oxygen atoms O5 belong to the next O–Ti2O2–O layer. The symmetry group of this
slab is DG37 (Pmmm).

In the multislab model (periodically repeated slab) the 3D periodicity is restored:
slab of n layers (nL-slab) is supposed to be periodically repeated along the normal to
the surface (let the translation vector of a single slab be c). Figures 11.7 and 11.8 show
the periodic 3-layer slabs, modeling MgO (001) and TiO2 (110) surfaces, respectively.
The corresponding space symmetry groups can be found from Table 11.1: G123(D1

4h)
and G47(D1

2h), for MgO and TiO2 3-layer slabs, respectively.
In 3D-slab calculations the results depend not only on the number of layers in

the slab (slab thickness), but also on the separation between periodically repeated
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Fig. 11.6. 3-layer (9-plane) slab for rutile TiO2 (110) surface

Fig. 11.7. Periodic slab model of (001) MgO surface
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Fig. 11.8. Periodic slab model of rutile TiO2 (110) surface

slabs defined both by the slab thickness and the length of the translation vector
along the normal to the surface. The interslab distance (vacuum gap) is equal to the
difference between the length of translation vector c and the vertical distance between
the top atoms of one slab and the nearest repeated one, i.e. the difference between
the translation vector c and the single slab thickness (see Figures 11.7 and 11.8).

The symmetry of the 3D-slab model is given by one of the 3D space groups G
(see Table 11.1) and may depend on the slab thickness, i.e. number of layers in the
slab and its termination. As is seen from Fig. 11.1, for MgO crystal (001) surface
slabs of an odd number of atomic planes have inversion symmetry (relative to the
central atomic plane) but slabs of an even number of atomic planes have no inversion
symmetry. For the cubic perovskite ABO3 (001) surface the stoichiometric slabs (AO–
BO2–AO–BO2–) consist of an even number of atomic planes and have no inversion
symmetry. But the nonstoichiometric AO- or BO2-terminated slabs have inversion
symmetry relative to the central AO or BO2 planes, respectively.

Note that the space-symmetry group of a periodic slab differs from the space group
of the host crystal. As an example, we consider MgO crystal with symmetry of space
group O5

h. The single-slab model refers to a square lattice and has the symmetry of
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DG 61 (P4/mmm) or DG 51( P4mm) for slabs of odd and even number of planes,
respectively (see Figures 11.2 and 11.5). As is seen from Table 11.1, the periodic slab
model in these cases has the symmetry of D1

4h (G123) or C1
4v (G99) space groups,

respectively.
One of the goals of slab-model studies is to investigate the dependence of the calcu-

lated surface energy on the dimensionality of the slab model and on the Hamiltonian
applied. The surface energy En

s per unity of surface area for an n-layer slab is defined
by the relation

En
s = lim

n,W→∞
1

2S
[E(n, W ) − nEb] (11.8)

where E(n, W ) is the total energy in a 3D-slab calculation of an n-layer slab with
the vacuum gap W and Eb is the total energy of primitive unit cell in a separate bulk
calculation. In the 2D-slab model W is infinite, i.e. E(n,∞) is the n-layer single slab
energy E(n). In (11.8) S is the surface area per repeating 2D-unit cell, the factor 1/2
accounts for the existence of two limiting surfaces. En

s is the energy per unit area
required to form the surface from the bulk, and it is intrinsically a positive quantity.

The value of surface energy is very dependent not only on E(n, W ) but also on
the bulk total energy Eb used in (11.8). In (11.8) total energies from 3D (E(n, W )) or
2D (E(n,∞)) systems are used, creating a problem of equivalent accuracy in periodic
codes for 3D and 2D systems. Boettger pointed out [773] that any difference between
Eb and the change in E(n, w) with slab thickness will cause the calculated surface
energy to diverge linearly with n. Thus, increasing the slab thickness must sooner or
later lead to unacceptable results because the bulk energy from a separate calculation
will never exactly equal the slope of the slab energy versus n, [774]. To avoid the
divergence problem, it was suggested [773], for each slab thickness n, pick as the bulk
energy Eb the differential increase in the slab total energy upon addition of one layer
of material:

En
s = lim

n,W→∞
1

2S
[E(n, W ) − n (E(n, W ) − E(n − 1,W ))] (11.9)

In this expression, Eb has been replaced by (E(n, W ) − E(n − 1,W )). This relation
has the merit of using only slab-related quantities, making no reference to separately
calculated bulk energies.

The surface formation-energy calculations impose two strong requirements to the
accuracy of calculated energies: (1) numerical precision, and (2) computational con-
sistency. While the first condition may be relatively easily satisfied by increasing the
computational thresholds, the second one can lead to considerable problems due to
inevitable approximations that are inherent to all quantum-mechanical computation
techniques [679]. The surface modeling of real interest lies in a semi-infinite crystal i.e.
the calculation of the surface energy limit when n and W tend to infinity. However,
one could not a priori guarantee the convergence to definite limit in (11.8). So, the
existence of such a limit is the obligatory condition for the possibility to obtain the
correct value of Es using slab models.

Use of different surface models (2D- and 3D-slabs) and basis sets in HF (LCAO)
and DFT (PW) calculations makes it difficult to understand the origin of differences
in calculated results that may be due both to the model applied and to the features
of the calculation scheme chosen (basis set, integral approximations, Brillouin-zone
sampling, and so on).
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The first attempt to compare 2D- and 3D-slab models within the same calculation
scheme was made in [775] for HF LCAO studies of the surface properties of BaTiO3 in
the cubic perovskite structure. The authors of [775] concluded that results for periodic
3D-slabs are systematically affected by the interactions among repeated images, and
possibly the fictitious field imposed by periodic boundary conditions.

In the LCAO approximation (for HF, KS and hybrid HF-DFT Hamiltonians) the
systems periodic in 2 (2D-slabs) and 3 dimensions (3D-crystals) can be treated on
an equal footing. The LCAO package CRYSTAL [23] gives the unique possibility to
compare results of 2D- and 3D-slab models when the LCAO basis set is used. Such a
comparison was made in [776] for the (001) surface of MgO crystal and in [777] for
the (110) surface of rutile TiO2.

We discuss here the results for MgO crystal. In [776] the experimental value 4.21 Å
of the fcc lattice constant for the bulk crystal was adopted in slab calculations. As was
already noted, the square unit cell of one layer is stoichiometric as it consists of one Mg
and one O atoms lying in one (001) plane (see Fig. 11.5). The calculations were made
for single slabs of one to twenty atomic layers in a truncated-bulk geometry without
relaxing the positions of atoms. The converged surface energy value was obtained
for the single slab of 5 layers. The dependence of 3D-slab calculations results on the
vacuum gap was investigated via calculating the 5-layer 3D-slabs with gaps up to
42 Å. The symmetry of slabs depends both on the 2D or 3D periodicity and on the
evenness of the number n of atomic layers. For 3-D slabs the tetragonal space groups
G 123 (P4/mmm) and G 99 (P4mm) with tetragonal lattice constant a′ = a/2 =
2.977 Å were used for odd and even n, respectively. The translation vector c was
varied in the calculations.

Table 11.4 shows the convergence of results for the single slab (2D) MgO (001)
surface model depending on the slab thickness.

Table 11.4. Convergence of results for the MgO (001) single slabs depending on the 2D
slab thickness (Es – surface energy in J/m2, EF – Fermi energy in H), [776]

Number
of

layers,
HF DFT (default ABS) DFT (extra ABS)

n Es EF Es EF Es EF

1 1.4571 –0.3293 1.5516 –0.1035 1.5506 –0.1075
2 1.4689 –0.3397 1.5766 –0.1082 1.5344 –0.1226
3 1.4678 –0.3403 1.5341 –0.1217 1.5335 –0.1217
4 1.4678 –0.3407 1.5630 –0.1140 1.5339 –0.1208
5 1.4678 –0.3409 1.5341 –0.1204 1.5336 –0.1203
6 1.4678 –0.3410 1.5554 –0.1157 1.5337 –0.1199
9 1.4678 –0.3413 1.5342 –0.1193 1.5337 –0.1193
12 1.4678 –0.3414 1.5460 –0.1171 1.5338 –0.1190
15 1.4678 –0.3415 1.5345 –0.1188 1.5338 –0.1189
20 1.4678 –0.3415 1.5417 –0.1175 1.5338 –0.1187
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To eliminate the results dependence on Brillouin-zone sampling the dense Monk-
horst–Pack k-point mesh was used. For primitive unit cells the 12×12×12 and 12×12
special-point sets have been taken for bulk and slab calculations, respectively. In the
case of 3D-slabs the number of points in the third k-direction depends on the chosen
value of the c translation vector in direct space. The latter was chosen to provide
a similar size in all directions of the corresponding cyclic model of the crystal (the
crystal is composed of equidistant supercells). The increasing of the 3D unit cell in
direct space for producing the 2D supercell was accompanied by the corresponding
reduction in the k-points mesh in the reciprocal space.

The same all-electron basis sets have been used both in HF and DFT calculations
to allow the direct comparison of obtained energies. The choice of high precision toler-
ances for the Gaussian overlap criteria in truncation of Coulomb and exchange series
ensured the high numerical accuracy required for the evaluation of the correspond-
ing surface energy. In DFT calculations the exchange and correlation were treated in
PWGGA approximation. In the CRYSTAL code the periodic DFT version in a basis
of local Gaussian-type functions is implemented to avoid the numerical integration.
This auxiliary basis set (ABS) is used for fitting the exchange-correlation potential.
In DFT computations two types of ABS were used: (1) ABS1–even tempered basis
set of 12 s-type Gaussian-type functions, and (2) the basis proposed with extra p, d,
f , and g-functions ABS-2.

Table 11.4 shows the fast convergence of 2D periodic results for surface energy
with increasing number of layers. Three to five MgO layers are sufficient to obtain
the converged values of the HF surface energy for unrelaxed slabs, in agreement with
the results of other calculations, [778]. The convergence of the Fermi-level energy
(highest-occupied one-electron energy level for the slab) is much slower. The limiting
value seems to be reached just at n = 20. As seen from Table 11.4, the use of extended
ABS2 (for the fitting of the exchange-correlation potential) proved to be necessary
for obtaining the convergence of the surface energies. The DFT values of surface
energy exhibit a similar fast convergence with the slab thickness as HF values, and
the difference between HF and DFT surface energy does not exceed 5%. However,
the initial part of En

s for n = 3 has a different sign of slope for these two methods.
The DFT result, which corresponds to decreasing of En

s with n, seems to be more
physically reliable.

There is no large discrepancy between HF and DFT atomic charges, although the
latter exhibit a slightly more covalent character [776].

The numerical value of Fermi energy EF may be used for approximate estimation
(according to the Koopmans’ theorem) of the surface ionization potential that defines
the adsorption energies. Due to the correlation effects the DFT Fermi energy EF

differs essentially from that in HF calculations. Table 11.4 shows that EF is inside
the valence band of a perfect crystal, i.e. the resonance surface states are predicted
both in HF and DFT single-slab calculations.

Taking into account the convergence of results obtained for 2D slabs, only the
5-layer 3D models have been calculated in [776]. The results are given in Table 11.5.
Table 11.5 shows that the 3D-slab with vacuum gap 6–8 Å gives the converged (001)
surface energy of ionic MgO crystal. The DFT values of En

s exhibit a similar fast
convergence as HF ones and the difference between them is small. The convergence
of the surface energy with the single-slab thickness is slower for rutile TiO2 due to
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Table 11.5. Convergence of the results for the periodically repeated 3D MgO (001) unre-
laxed slab depending on the vacuum gap for 5-layer models (primitive 2D cell), [776], (Es –
surface energy in J/m2, EF – Fermi energy in a.u.)

Cell dimensions, Å k-point HF DFT

Gap C set Es EF Es EF

∞ ∞ 12 12 1.468 –0.3409 1.532 –0.1202
2.105 10.525 12 12 4 5.365 –0.2458 4.8937 –0.0486
4.210 12.630 12 12 3 1.503 –0.3181 1.555 –0.1164
6.315 14.735 12 12 3 1.468 –0.3215 1.533 –0.1170
8.420 16.840 12 12 2 1.468 –0.3239 1.533 –0.1174
12.630 21.050 12 12 2 1.468 –0.3273 1.533 –0.1180
21.050 29.470 12 12 1 1.468 –0.3312 1.533 –0.1186
42.100 50.520 12 12 1 1.468 –0.3352 1.532 –0.1193

the partly covalent Ti–O interaction. Table 11.6 demonstrates the convergence of the
surface energy in all–electron HF LCAO single-slab calculations [777] of the (110)
surface of rutile TiO2.

Table 11.6. Convergence of the results for single-slab (2D) model of (110) rutile TiO2

surface, [777], (Es – surface energy, EF – Fermi energy)

No. of atomic No. of Ti Total energy Es EF

planes (layers) planes (a.u) (J/m2) (a.u)

Perfect crystal – –1996.8016 – –0.3077
9 3 –5990.211 2.193 –0.4171
15 5 –9983.815 2.183 –0.4235
21 7 –13977.418 2.183 –0.4237
27 9 –17971.021 2.183 –0.4237

It follows from Table 11.6 that surface energy is sufficiently well reproduced for
the 5 layers (15 atomic planes) slab, in accordance with the results of HF all–electron
calculations [779]).

As in the case of MgO crystal the convergence of the Fermi energy with slab
thickness is much slower than that of surface energy (see the last column of Table
11.6). Calculations of 3D-slabs for rutile TiO2 [777] show that the periodic supercells
in the plane with extensions 2c × 2a

√
2 and 2c × a

√
2 give the same surface energies

for the vacuum gap values 41 Å and 15 Å , respectively.
The LCAO approximation allows comparison of the electron-charge distribution

in the bulk crystal and on the surface. The application of Wannier functions for this
comparison can be found in [781], where the Boys localization criteria was applied and
only the valence-band states were included for WFs generation (for bulk crystals such
an approach is discussed in Chap. 9). As was seen in Chap. 9 for bulk crystals, the
population analysis using Wannier-type atomic orbitals (WTAO) gives more adequate
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results for charge distribution than traditional Mulliken population analysis or the
projection techniques applied in PW calculations.

The WTAOs for systems with 2D periodicity were generated in [780] for the first
time and used for the surface charge distribution analysis in a single-slab model of
(001)MgO and (110)TiO2. First, WFs of the bulk crystal, corresponding to valence
bands, were used as a tool allowing one to estimate the values for the slab parameters
needed to adequately model the surface electronic structure. Secondly, a minimal
valence basis of WTAOs, which are the Wannier functions, generated from occupied
and vacant Bloch states and centered on atoms, were used for the analysis of chemical
bonding at the surfaces under study. HF LCAO calculations were performed for 3-
layer single slabs of (001)MgO (3 atomic planes) and rutile (110) TiO2 (9 atomic
planes), see Figures 11.5 and 11.6.

For construction of the WTAOs for the minimal valence basis, the corresponding
energy bands are to be chosen. The s- and p-bands of oxygen atoms form the higher
valence bands in both slabs considered. In the case of the TiO2 slab, the d-bands of
the titanium atoms are the lower conduction bands, while the s-bands of the metal
atoms in both slabs are located among vacant states high in energy. The latter makes
the contribution of s-WTAOs of the metal atoms into the covalence of these atoms
negligible.

One can estimate the slab thickness needed for surface modeling by a preliminary
qualitative analysis of the behavior of WFs, corresponding to valence bands of a bulk
crystal. Indeed, the offdiagonal elements of the density matrix of a bulk crystal fall
off with distance as the Wannier functions of valence bands or faster (exponentially
in the case of insulators), see Chap. 4. Thus, beyond a sufficiently large domain of
the crystal (basic domain) the values of Wannier functions, assigned to the central
unit cell of the domain, are negligible. Consequently, truncation of the rest of the
crystal and imposition of the periodical boundary conditions on the domain-edge
atoms, practically do not affect the electron-density distribution inside the domain
chosen. The basic domain of the crystal corresponds to a special set of k-points, which
provides a convergence of the calculation results relative to the extension of this set.

A similar ideology can be used for the slab model. Let us consider the slab as
consisting of the finite number of atomic planes. Let, at the surface planes of the
slab chosen, the numerical values of bulk valence-band WFs be close to zero. The
corresponding number of atomic planes determines the minimal thickness of a slab
for the studied surface, which can be expected to provide the convergence of the results
relative to increasing its thickness. However, the convergence might not occur for the
chosen thickness of the slab due to an absence of periodical boundary conditions at
the slab surface. But, if the slab WFs, localized in its central part, are close to the
bulk ones and the localization of the slab WFs, centered near the slab edge, is to a
certain extent the same as in the bulk crystal, the electron density in the middle part
of the slab do not differ much from the bulk electron density, and would not change
when the thickness of the slab is increased. Thus, the analysis of bulk WFs can help in
estimating the slab thickness, which allows the bulk-like results in the central planes
of the slab to be obtained and thus corresponds to more or less adequate surface
modeling. Still, this is only a qualitative and estimative analysis.

Let us illustrate the aforesaid by the results obtained for MgO and TiO2 crystals.
In [780] it is shown that Wannier functions for the valence bands of the bulk MgO
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crystal calculated along the [001] direction are practically completely localized inside
a domain containing just three (001) atomic planes. Furthermore, according to cal-
culations the difference between these WFs and the WFs generated for the slab and
centered on the plane 2 (see Fig. 11.5), is negligible. This means that the 3-plane slab
is sufficient for modeling the (001)-surface properties of MgO. As we demonstrated
above, this consideration is, in principal, confirmed by thorough calculations of MgO
slabs with a varied thickness – the surface energy and other characteristics converge
at the 3-plane slab.

In the case of TiO2 the bulk WFs does not fit into the 9 atomic planes shown
in Fig. 11.6. As a result, the WFs, calculated from the slab states and localized
in the “central” region of the slab, are different from the corresponding bulk WFs.
Consequently, 9 planes are not sufficient for correct modeling of the TiO2 crystalline
surface. This result correlates with the results given in Table 11.6.

As seen from Table 11.7A the values of atomic charges for the MgO slab corre-
spond to the purely ionic type of chemical bonding both at the surface and inside
the slab. The charges in the slab model practically coincide with the bulk ones. The
results, obtained by the WTAOs method and according to the traditional Mulliken
and Löwdin schemes, are nearly the same.

Table 11.7. Atomic charges for the single MgO 3-plane (001)-surface and TiO2 9-plane
(110) surface slabs and bulk crystals, [780], (NWTAO is nonorthogonal WTAO, OWTAO is
orthogonal WTAO)

A) MgO crystal

Atoms Atomic charges, |e|
NWTAOs OWTAOs Mulliken Löwdin

O1, Surface –1.98 –1.96 –1.96 –1.83
Mg1, Surface 2.00 1.97 1.96 1.83

O2 –1.99 –1.96 –1.97 –1.82
Mg2 1.97 1.95 1.97 1.82

O Bulk –2.00 –1.98 –1.98 –1.82

B) TiO2 crystal

Planes Atoms Atomic charges, |e|
NWTAOs OWTAOs Mulliken Löwdin

1 O1, surface –1.33 –1.30 –1.13 –0.88

2 Ti1, surface 2.99 2.87 2.62 1.84
Ti2 2.86 2.79 2.54 1.63

O2,3, surface –1.48 –1.44 –1.35 –0.86

3 O4 –1.57 –1.51 –1.38 –0.91

4 O5 –1.54 –1.45 –1.28 –0.82

5 Ti3 3.06 2.95 2.66 1.72
Ti4 3.01 2.93 2.65 1.73
O6,7 –1.50 –1.46 –1.33 –0.87

Bulk Ti 2.76 2.70 2.66 1.72
O –1.38 –1.35 –1.33 –0.86
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For the TiO2 slab the Mulliken and Löwdin population analyses give contradictory
results. Particularly, as noted in Table 11.7B, the values of atomic charges at the
surface planes of the slab, calculated according to the Mulliken scheme, are smaller
in magnitude than those inside the slab. This corresponds to a lower ionicity at the
crystalline surface compared to the bulk. An opposite tendency is demonstrated in
the Löwdin analysis, where the surface charges are larger or the same as in the bulk.
Besides, the absolute values of the charges obtained according to the two traditional
schemes are quite different from each other. Table 11.7B shows that the analysis
performed by the orthogonal and nonorthogonal WTAOs gives approximately the
same results. They show the tendency of decreasing the ionicity level at the surface,
which is similar to the results of the traditional Mulliken analysis.

Let us consider the values of atomic charges, obtained for the central planes of the
slab (planes 3–7 on Fig. 11.6). Due to the symmetry of the slab the planes 6 and 7
are equivalent to the planes 4 and 3, respectively. As noted above, a nine-plane slab is
not sufficient to model the TiO2 surface, as the electron density at the central planes
of the slab is different from that of the bulk crystal. However, the values of atomic
charges calculated according to both the Mulliken and Löwdin schemes practically
coincide with the bulk ones (Table 11.7B). In contrast to these results, the population
analysis based on WTAOs reproduces this slab-bulk misfit: the values for the charges
of atoms of the inner planes in the slab and the bulk crystal differ noticeably.

When analyzing the Ti–O bond orders, which are given in Table 11.8, one can
conclude the following.

The values, obtained by the two traditional schemes, can be hardly interpreted.
Some of the bonds have the same orders in both schemes (Ti1–O5, Ti2–O1, Ti3–O4,
Ti4–O5), while the others are essentially different (Ti1–O2, Ti2–O2, Ti3–O6, Ti4–O6),
see Fig. 11.6. As to the results obtained by orthogonal and nonorthogonal WTAOs,
they are close for all the bonds under consideration.

Every oxygen atom (excluding the atoms O1) has two neighboring titanium atoms
at a distance of 3.687 a.u. and one at 3.727 a.u. (three-coordinated atoms). The O1
atoms are two-coordinated and have the neighbors only at 3.687 a.u. The titanium
atoms are six-coordinated (Ti2, Ti3, Ti4) or five-coordinated (Ti1) and have four
neighboring oxygen atoms at 3.687 a.u. and two or one – at 3.727 a.u., respectively.
Only for some of the atoms (Ti2, O2, Ti4) do the Mulliken and Löwdin schemes allow
the larger orders for the shorter bonds (among the nearest-neighbor Ti-O bonds) to
be obtained. For other atoms the values of the shorter bonds orders are approximately
of the same magnitude as the longer ones (O6) or even significantly smaller (Ti3, O4,
O5), which is unreal from the chemical point of view. The WTAOs method for all
the atoms gives the expected tendency - the shorter is a bond, the larger is the value
of the corresponding bond order. Also, WTAOs analysis gives the noticeably larger
values for the insurface bonds. This agrees with the decreased values of the atomic
charges at the surface relative to those at the inner part of the slab.

The results of the calculations of atomic covalences are presented in Table 11.9.
Again, the Mulliken and Löwdin methods demonstrate contradictory and obscure
bulk–surface tendencies. For some atoms the values of the covalences, calculated ac-
cording to the Mulliken scheme are close to the Löwdin ones, for the other they differ
significantly. Thus, these coincidences of the Mulliken and Löwdin results can be re-
garded as casual. And since the nine-plane slab does not provide the bulk-like electron
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Table 11.8. Orders of the bonds between the near-neighbour Ti and O atoms in the single
TiO2 nine-plane (110)-surface slab and bulk crystal (NWTAO is nonorthogonal WTAO,
OWTAO is orthogonal WTAO, d is a distance between neighbor atoms, s denotes in-surface
atom), [780].

Atom Neighbor atoms Bond orders

Atom N d NWTAO OWTAO Mulliken Löwdin

O1 Ti2, s 2 3.687 0.54 0.55 0.80 0.79
Ti1 O2,3, s 4 3.687 0.37 0.39 0.42 0.62

O5 1 3.727 0.17 0.25 0.62 0.63

Ti2 O1, s 2 3.687 0.54 0.55 0.80 0.79
O4 2 3.687 0.27 0.29 0.47 0.50

O2,3 2 3.727 0.11 0.13 0.17 0.40

O2,3 Ti1, s 2 3.687 0.37 0.39 0.42 0.62
Ti2 1 3.727 0.11 0.13 0.17 0.40

O4 Ti2 2 3.687 0.27 0.29 0.47 0.50
Ti3 1 3.727 0.17 0.21 0.52 0.54

O5 Ti4 2 3.687 0.30 0.32 0.52 0.54
Ti1 1 3.727 0.17 0.25 0.62 0.63

Ti3 O6,7 4 3.687 0.31 0.32 0.34 0.54
O4 2 3.727 0.17 0.21 0.52 0.54

Ti4 O5 4 3.687 0.30 0.32 0.52 0.54
O6,7 2 3.727 0.22 0.23 0.34 0.53

O6,7 Ti3 2 3.687 0.31 0.32 0.34 0.54
Ti4 1 3.727 0.22 0.23 0.34 0.53

Table 11.9. Atomic covalences for the single TiO2 nine-plane (110)-surface slab and bulk
crystal, [780], (NWTAO is nonorthogonal WTAO, OWTAO is orthogonal WTAO)

Planes Atoms Atomic covalences

NWTAOs OWTAOs Mulliken Löwdin

1 O1, surface 1.20 1.24 1.86 1.88
2 Ti1, surface 1.74 1.91 2.44 3.35

Ti2 1.92 2.03 2.36 3.02
O2,3, surface 0.95 1.02 1.28 2.01

3 O4 0.80 0.90 1.76 1.95
4 O5 0.85 0.99 1.92 2.07
5 Ti3 1.64 1.82 2.49 3.47

Ti4 1.73 1.85 2.87 3.45
O6,7 0.92 0.99 1.27 2.03

Bulk Ti 2.06 2.16 2.15 3.46
O 1.11 1.17 1.24 2.04
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density in the middle of the slab, the correspondence between the values for the co-
valences of the bulk and slab atoms, obtained by the traditional population analysis
schemes, also cannot be considered as reliable.

The WTAOs method, in its turn, allows one to obtain the values of atomic co-
valences in the slab, which can be physically interpreted. First, the values calculated
with the orthogonal and nonorthogonal WTAOs are alike. Secondly, the inslab atoms
have a covalence different from the bulk one. This result can be expected due to an
insufficient thickness of the nine-plane slab for the TiO2 (110) surface modeling.

And last but not least, the results of the WTAOs population analysis clearly show
the increase of the covalence at the surface of the slab when compared to the inslab
values. The surface atom O1 has the maximal covalence among all the oxygen atoms
of the slab. This effect is even sharper if it is remembered that this atom is only two-
coordinated, while the others are three-coordinated. The large value of the covalence
is also observed for the surface atoms O2/O3, but it is not as pronounced as for the
atom O1. The atom Ti1, which can be regarded as a surface atom, has a smaller
covalence than the atom Ti2, but taking into account that the former is only five-
coordinated, one can conclude that the effect of higher covalence at the surface is
valid for this atom as well.

The values of local characteristics of the slab electronic structure, differing from
the bulk one, may indicate the possibility of significant structural relaxation of the
studied TiO2 slab. This relaxation would involve insurface and intraslab atoms, since
the TiO2 nine-plane slab at its inner planes does not reproduce the bulk electronic
structure. Taking into account the results of the WTAO population analysis, one can
assume that the atoms would shift so that the length of the bonds would increase or
decrease to compensate the excessive or deficient values of the covalence, respectively.
These considerations correlate with the studies of the geometry optimization in TiO2

slabs [782].

11.2 Surface LCAO Calculations on TiO2 and SnO2

11.2.1 Cluster Models of (110) TiO2

Titanium dioxide (in rutile and anatase structures) is the most investigated crystalline
system in the surface science of metal oxides. The review article [783] summarizes
the results of experimental and theoretical studies of titanium dioxide (bulk and
surface) made up to 2002 inclusive. The information about calculations of the surface
reconstruction, surface defects and growth of metals on TiO2 is also included. The
results of the later theoretical studies of rutile surfaces can be found in [784–795] and
references therein. In the majority of the calculations the slab model was used for the
study of periodic surface structures.

Here, we consider the molecular- and cyclic-cluster models of (110) TiO2, following
[770], where the connection between the slab and cluster models was considered by
performing a symmetry analysis of the crystalline surface.

The cyclic-cluster (CC) model of the surface is connected to the slab-2D-supercell
approach, but it is different due to the different introduction of cyclic boundary condi-
tions (CBC). In the slab-supercell approach, these conditions are, in fact, introduced
for a very large system, e.g., for the main region of the 2D periodic plane lattice, so
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that band-theory methods can be used in the slab calculations. In the CC model, the
CBC are introduced for the cluster itself, so that the model turns out to be finite. The
convergence of the results to the slab values must be investigated by increasing the
CC. However, the CC approach offers evident advantages: (a) the spurious boundary
effects of molecular clusters are absent; (b) the periodicity of adsorbed species or of
defects is excluded because the CC is a finite system; (c) there is a one-to-one symme-
try correspondence between the electronic states of the 2D CC and the band states
of the corresponding slab model.

The CC model was applied in semiempirical calculations [796] of the adsorption
geometry for organic adsorbates on a rutile (110) surface. The INDO parametrization
scheme was modified to reproduce the experimental results for geometries of carbon-
and nitrogen-containing molecules. The CC representing the rutile (110) surface con-
sists of 120 atoms. It includes two layers of 5 × 2 2D unit cells with six atoms in
each 2D unit cell. It is seen from Fig. 11.6, that 2D primitive unit cells form a plane
rectangular lattice with parameters c and a (a, c are the tetragonal lattice parameters
of the bulk crystal).

The molecular-cluster (MC) model is extremely popular in surface simulations
because of its simplicity and flexibility and the possibility of its use in the standard
techniques of molecular quantum chemistry [320, 769]. It is also possible to study
defects or adsorption reactions in the limit of low coverage. In the MC approach, a
crystal with a surface is modeled by a finite (molecular) system consisting of atoms
on the surface and of some atomic planes nearest to it. The 2D periodicity of the
surface is disregarded so that the symmetry of such a model is described by one of the
crystallographic point groups. In adsorption studies, the adsorbed species are included
in the cluster-adsorbate systems. An MC is cut out of the slab to simulate a portion
of the surface so that spurious effects arise that are related to the limited cluster size
and to the presence of the boundary. To eliminate these effects, the dangling bonds
are saturated either by hydrogen atoms or pseudoatoms or the whole cluster is placed
in an external field simulating the influence of the bulk crystal [769].

In the MC model, the results critically depend on the choice of the cluster size,
stoichiometry, and shape. Nevertheless, the MC model can provide useful information
if the cluster is properly chosen and the influence of its size is investigated. A number
of general rules were suggested in [770, 771] for the generation of an MC suitable for
surface simulations based on the connection between the MC and the slab model.
These rules have been intuitively applied in different studies, in most cases without
explicitly considering the relationship between periodic and molecular models. The
following rules allow artefacts of MC surface models to be minimized: (a) the clusters
correctly reflect the stoichiometry of the bulk crystal and are electroneutral; (b) atoms
on the crystal surface should be equivalent to those on the cluster surface except for
corners and edges; (c) the average coordination of all cluster atoms is as close as
possible to that of atoms on the crystal surface; (d) as many symmetry elements of
the crystal surface as possible are retained in the cluster; and (e) an extension to rule
(a) is that each layer of the cluster should have the stoichiometry of the crystal.

In fact, such principles of the MC choice ensure the simulation of the crystal surface
as closely as possible and are directly connected with the 2D periodic slab model. By
using 2D unit cells as basic units of the model clusters, it is possible to increase
the cluster size in a systematic way and, thereby, to study the convergence behavior
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of calculated surface properties. As examples of MC model applications to surface
studies using some of the above-mentioned rules, calculations of MgO, TiO2 (rutile,
anatase structures), and Cr2O3 (corundum structure) surfaces and adsorption of small
molecules on them can be considered, see [770] and references therein. However, it
is also possible to find examples in the literature where these rules have not been
applied and, in part, unphysical results were obtained.

In MgO and NaCl crystals, the MCs were chosen [797] so that they simulated the
2D supercell of the surface and included several layers of the bulk crystal. For these
crystals, the stoichiometry of the chosen MC was ensured by this choice.

For more complicated systems, e.g., TiO2 structures, the stoichiometry of the
MC is only ensured when several additional oxygen atoms are added. There are two
principle ways to add these additional atoms. They can be placed on the regular
surface around the cluster. This is denoted as type A in Figures 11.9 and 11.10. In
some cases, this procedure leads to clusters that do not correspond to rules (d) and
(e). Another possibility is to place the additional atoms for saturation at irregular
positions of the crystalline lattice so that rules (d) and (e) will be fulfilled. Examples
of this second type (B) of cluster generation are presented in Figures 11.9 and 11.10.

If all layers of a multilayer cluster have the same stoichiometry, artificial polariza-
tion, which can affect the calculated surface properties, is reduced. To study the effect
of the distribution of saturation atoms on the calculated properties of crystalline sur-
faces, the rutile (110) surface has been selected for the MSINDO calculations [770].
The water adsorbtion in the molecular and dissociated form was modeled on clusters
of Ti5O10, Ti9O18, Ti14O28, and Ti18O36 (Fig. 11.9) chosen according to the rules
given above. Nevertheless, even if these rules are applied, several different types of
clusters can be constructed. Two types of possible cluster models were used. In type-
A clusters additional oxygen atoms, necessary to ensure total stoichiometry (shaded
in Fig. 11.9), were placed at regular lattice positions. In type-B clusters additional
oxygen atoms were placed at nonlattice positions to maximize the symmetry of the
clusters and to reduce polarization, as discussed in the previous section.

Table 11.10. MSINDO adsorption energies (kJ/mol) for water adsorption on rutile (110)
(relaxed cluster calculations), [770]

Cluster Type A Type B

molecular dissociative molecular dissociative

Ti5O10 51 39 70 201
Ti9O18 139 –24 94 107
Ti14O28 66 8 92 143
Ti18O36 157 192 129 162
Ti49O98 120 151 119 157

The adsorption energies calculated with these small cluster models are presented
in Table 11.10. The geometries of the clusters were optimized within the symmetry
of the rutile structure. In model B, there are one or two more degrees of freedom for
oxygen atoms in nonlattice positions.
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Fig. 11.9. Rutile (110) surface of size 1×1: 1–4 layer clusters of types A and B, [770]. Black,
white and shaded spheres label Ti, O and additional O atoms.
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Fig. 11.10. Rutile (110) surfaces of size 3 × 1, 3 × 3 and 5 × 3: two-layer clusters of types
A and B, [770]. The labels of atoms are the same as in Fig. 11.9.

For the cluster–water systems, the Cartesian coordinates of all water atoms, the
two surface atoms close to the oxygen atom, and the hydrogen atom of water are
optimized. The adsorption energy is calculated as the difference in the total energies
of the TiO2 cluster and the cluster+H2O system. Therefore, positive values indicate
stabilization. A comparison is made with the results of the calculations on a much
larger cluster, Ti49O98 (Fig. 11.10), which is a better representation of the surface.

From Table 11.10, it can be seen that the different distribution of additional oxy-
gen atoms in clusters A and B has a substantial influence on the calculated adsorption
energies. The variation of adsorption energy with an increasing number of layers is
significantly reduced if model B is considered. Even for rather small systems, the ad-
sorption energies are relatively close to that of the largest cluster, Ti49O98. The most
important difference between the two models is that only for model B is the disso-
ciative adsorption always more stable than that of the molecular form. The relative
stability of the two forms of water on the rutile (110) surface is still a matter of debate
(see the next section). At the moment, we only focus on the convergence of results
obtained for clusters with increasing sizes.

A comparison of models A and B of the largest cluster (Ti49O98) shows that
the influence of additional atoms is negligible due to their large distance from the
adsorption position. This indicates that, in this case, it is the description of the local
environment near the adsorption site rather than the effect of the global polarization
of the cluster that is responsible for the differences observed for the smaller clusters.
Thus, the numerical results for the adsorption behavior of rutile (110) towards water
with different clusters demonstrate that convergence to the methodological limit is
significantly improved if the criteria mentioned above are taken into account.

Since the underlying considerations are of a general nature, they can also be ap-
plied to cluster models of surfaces in other systems. In any case, only the comparison
of the results of both slab and cluster models application allow those results of calcu-
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lations that can be taken as confident to be extracted. In the next section we consider
this point returning to the water adsorption on the (110) surface of rutile.

11.2.2 Adsorption of Water on the TiO2 (Rutile) (110) Surface:
Comparison of Periodic LCAO-PW and Embedded-cluster LCAO
Calculations

The adsorption of water on TiO2 surfaces has been extensively investigated using both
experimental and theoretical methods, see [790] and references therein. Nevertheless,
the adsorption of H2O on the TiO2 (110) surface is still a matter of controversy.
From experiments, it has been proposed that H2O adsorbs mainly associatively and
dissociates at defect sites, see [798] and references therein. If dissociation does occur,
it is only at low coverages (< 15%) that may be associated with surface defects. In
contrast, most DFT 3D periodic calculations with the plane-wave (PW) basis predict
dissociation at all coverages or an equivalent amount of dissociative and associative
mechanisms. In contrast, Hartree–Fock (HF) embedded-cluster calculations with an
atomic (Gaussian) basis set [801] predict that the associative mechanism should be
favored due to overestimation of H-bonding in the dissociated configuration by DFT-
PW studies.

The first two-periodic all-electron HF LCAO calculations of the rutile relaxed
surfaces, made in [779], gave atomic displacements of surface atoms that did not
differ significantly from the later results of DFT-PW investigations. Further periodic
LCAO studies of TiO2 bare surfaces have been made in [777,799,800]. For studies of
H2O adsorption on TiO2 the single-slab periodic HF-LCAO and DFT-LCAO methods
were first applied in [790] and compared with PW-DFT results to test various methods
with cyclic- and embedded-cluster calculations and resolve discrepancies between the
methods.

In the discussion of numerical results of this study we use the following labels
for atoms of the (110)TiO2 shown on Fig. 11.6: Ti1, Ti2-Ti5f ,Ti6f (five- and sixfold
coordinated titanium atoms), O1, O2-Obr, O3f (bridging and threefold coordinated
oxygen atoms).

Both in 2D (single-slab) LCAO and 3D (periodic-slab) PW calculations the same
3-layer (9 atomic planes) slab was used with the fixed positions of the middle-layer
atoms. Both associative (molecular) and dissociative water monolayer adsorption has
been investigated.

DFT-PW calculations were performed on different H2O−TiO2 structures to de-
termine which one corresponds to the most stable arrangement on the rutile (110)
surface. To this end, a 3D-supercell consisting of 1× 1 or 2× 1 surface unit cells was
used to model the (110) surface geometry. The smallest surface unit cell was chosen
for bare-surface calculations, having dimensions of |c| (2.959 Å) and

√
2|a| (6.497 Å)

in the (001) and (–110) directions, respectively, where a and c are translation vectors
for the bulk rutile unit cell. This surface unit cell is doubled in the (001) direction for
the hydroxylated or hydrated surfaces. The calculations were performed for 3-layer
slabs with a total cell thickness ≈ 19 Å, i.e. slab thickness + vacuum gap 10 Å.
A model with the fixed atomic positions of the central layer is assumed to be more
appropriate to the real 2D surface relaxation because real crystals are not thin films
and the bulk crystal structure probably exists a few atomic layers beneath the mineral
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surface. Use of the constrained central layer was also accompanied by imposition of
the inversion symmetry. This symmetry saves computational time and minimizes any
possible dipole moment of the slab.

Adsorption was simulated with a pair of H2O molecules (one at each side of the
3-layer TiO2 slab) using a 2 × 1 unit cell. The use of one H2O molecule on each side
allows a cell with inversion symmetry to be used and creates a system with zero dipole
moment associated with the slab.

In a PW study of water associative adsorption (with structure optimization) it
was found that the lowest energy corresponds to the following structure: the water O
is directly bonded to the five-coordinate Ti5f - atom, a single H-bond between an H
in H2O and a bridging oxygen atom (Obr) and the torsion angle H − O − H · · ·Obr

117◦, see Fig. 11.11. In the structure with an angle of 180◦ all atoms of the water
molecule and bridging oxygen are in the same plane, but this structure appears to be
less favorable.

Fig. 11.11. Associative (molecular) adsorption at half-monolayer coverage

The dissociative adsorption of H2O onto the (110) surface was modeled assuming
that one H atom was bonded to the Obr next to the Ti atom with a terminal OH
group. (Note that this Ti atom was originally 5-coordinated on the bare (110) surface.)
Due to the half-monolayer configuration, the neighboring OH groups can be adsorbed
either in a zigzag geometry or inline. In the latter case, there exists the possibility of H-
bonding between neighboring bridging and terminal OH groups: Obr −H · · ·Oter −H.
Consequently, the inline configuration only was considered because this H-bonding
should lower the adsorption energy. As in the case of molecular H2O adsorption,
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there are two possible OH orientations: inplane, with torsion angle H − O · · ·H − O
equal to 180◦ (structure 1, Fig. 11.12) and a conformation with smaller torsion angle
(structure 2, Fig. 11.13).

O ter

Ti ter

Fig. 11.12. Dissociative adsorption, half-monolayer coverage: structure 1, view in (001)
direction

Energy minimizations of the corresponding slabs led to similar adsorption energies
for both structures, which were lower than the corresponding associative values for
1/2 monolayer coverage by ≈ 3–5 kcal/mol. Thus, these results are in accordance with
previous DFT simulations for half-monolayer coverage that predict H2O dissociation
on the rutile (110) surface.

A different conclusion was obtained from calculations on models corresponding to
full-monolayer coverages. The distinct feature of these structures, in contrast to other
cases, is the nearly equivalent displacements of the Ti and O atoms on the surface Ti
layer such that they lie in one plane. Also, it is interesting to note that the overall
arrangement of H and O atoms in the (110) surface is similar in both associative
and dissociative adsorption. The obtained binding energies are stronger for associa-
tive adsorption on both the 3- and 5-layer slabs. This size of difference (3.6 kcal/H2O
molecule) in favor of associative adsorption was not obtained in previous DFT calcu-
lations.

In Table 11.11, the adsorption energies, obtained in PW calculations, are compared
with those obtained in LCAO HF and DFT calculations for the structures, optimized
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Fig. 11.13. Dissociative adsorption, half-monolayer coverage: structure 2, view in (1–10)
direction

in PW DFT calculations. The computational details of both PW and LCAO calcula-
tions are given in [790].

In Table 11.12 n Ti-L designates the number of Ti planes in the slab model, DB
ECP means Durand–Barthelat effective core potential for Ti atoms, [484]. As can be
seen, the HF method using both all-electron and ECP bases gives the dissociative
adsorption energies that are about 2 to 3 kcal/mole more favorable than those for
associative adsorption. The DFT method results in the opposite picture: associative
adsorption energies exceed the dissociative values by approximately 5 kcal/mole both
for the 3 and 5 Ti-layer slabs.

The basis-set superposition error was estimated for ECP 3 Ti-layer hydroxylated
slabs and it appears to be 6.4 kcal/mole per water molecule. The TiO2 slabs with
the dissociated and molecular form of H2O have been calculated using exactly the
same basis sets in all cases, so the large value of BSSE influences the absolute values
of ∆E only, but not the relative energy of water dissociation on the TiO2 surface.
Taking into account the value of BSSE, the absolute values of the obtained LCAO
water-adsorption energies seem to lie in the interval of 25–35 kcal/mole that is slightly
greater than the corresponding PW results.

The z-shifts of positions of the surface atoms on TiO2 slabs obtained by LCAO
methods are given in Table 11.12.

The optimized geometry of a bare TiO2 surface and of hydroxylated (hydrated)
slabs exhibits qualitatively the same relaxations in LCAO calculations as were found
in PW calculations. But there are some quantitative differences between the results
of the DFT-PW, DFT-LCAO, and HF-LCAO approximations. It appears that the
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Table 11.11. Calculated (without zero-point correction) at monolayer coverage and exper-
imental adsorption energies (per one water molecule) for H2O/TiO2(110) (kcal/mol), [790].

Method Molecular Dissociative
adsorption adsorption

PW:DFT-GGA-PW91, 340 eV; 3 Ti-L –24.9 –23.0

PW:DFT-GGA-PW91, 340 eV; 3 Ti-L –24.7 –22.7
(Monkhorst–Pack k-point set 3 3 1)

PW:DFT-GGA-PW91, 1000 eV; 3 Ti-L –25.2 –24.6
(Monkhorst–Pack k-point set 3 3 1)

PW:DFT-GGA-PW91, 340 eV; 5 Ti-L –22.0 –18.4
PW:DFT-GGA-BP88, 1000 eVa –18.9 –24.9

PW:DFT-GGA-PW91, 750 eVb –22.8 –21.0
LCAO:HF, DB ECP; 3 Ti-L –35.63 –37.27

LCAO:HF, DB ECP; 3 Ti-L, with equal –28.25 –28.91
basis on all species (for BSSE)

LCAO:HF, all-electron; 3 Ti-L –28.32 –31.39
LCAO:DFT-GGA-PW91, DB ECP; 3 Ti-L –40.74 –36.42
LCAO:DFT-GGA-PW91, DB ECP; 5 Ti-L –35.15 –30.20
Experimentc –(14-24) –

a [809]
b [803]
c [798]

Table 11.12. z-shifts (Å) of Ti and O atoms on the bare surface of (110) rutile 3 Ti-layer
models obtained by LCAO calculations, [790]

Method→ HF, all- HF, DB DFT, DB HF, all- Exp. [804]
Atom type (symbol)↓ electron ECP ECP electr. [779]

Sixfold coordinated 0.13 0.15 0.19 0.09 0.12± 0.05
surface Ti (Ti6f)
Fivefold coordinated –0.12 –0.12 –0.09 –0.15 –0.16± 0.05
surface Ti (Ti5f)
Bridging surface –0.07 –0.07 0.01 –0.14 –0.27± 0.08
oxygen (Obr)
Threefold coordinated 0.15 0.14 0.21 0.07 0.05/0.16± 0.08
surface oxygens (O3f)
Oxygen underneath –0.02 –0.02 –0.01 –0.07 0.05± 0.08
Obr (OuO)
Oxygen underneath –0.01 0.01 0.03 –0.02 0.00± 0.08
Ti5f in the middle
Ti-layer (OuTi)
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Kohn–Sham Hamiltonian (both on the PW and LCAO basis) produces the larger
expansion of the slabs towards the vacuum, making them thicker and thus affects the
vertical displacements of atoms to be more positive relative to HF and experimental
values. The same effect was found for hydroxylated and hydrated species: horizontal
and vertical distortions of top-surface oxygens and titaniums from their bulk positions
are substantially larger for DFT-LCAO than for HF-LCAO. Also, the DFT method
leads to more flexible hydroxyl groups on hydroxylated surfaces and as a consequence,
to shorter H-bonds between them.

The LCAO basis gives the possibility to calculate atomic charges in a more direct
way than the PW basis. In was found in [790] that the values of Mulliken charges lie in
a reasonable region and reflect the partially covalent nature of chemical bonds in tita-
nium oxides, although the HF method gives absolute values about 25% larger than the
DFT method. The deviations of atomic charges on the surface of unhydroxylated slabs
from their bulk values, generally, were less than 0.1 e both for Ti and O atoms, except
the charge on the bridging oxygen obtained in DFT calculations that was reduced by
more than 0.2 e. It is interesting to note that oxygen charges in hydroxylated and
hydrated slabs become less negative in the order: |q(Obr)| > |q(O3f )| > |q(OH2O)|,
which is correlated with the acidity of the corresponding hydroxyls.

Tables 11.11 and 11.12 demonstrate the relatively large dependence of the calcu-
lated water-adsorption energies on the nature of the quantum-mechanical approxima-
tion (HF or DFT) and type of basis set (PW or LCAO) within the same periodic-slab
model. It should be noted that the results for the equivalent 2D and 3D slab models
coincide if the sufficiently large vacuum gap for 3D model is used, see Sect. 11.1.3.
Nevertheless, we can conclude that the Kohn–Sham Hamiltonian using both PW and
LCAO basis sets gives the order of the adsorption energy that is in better agreement
with the experimental observations. However, the relaxation of the surface atoms
seems to be more appropriate to experimental data [804] in the case of the HF calcu-
lations.

The long-term goal of research [790] was to model the interface of TiO2 and bulk
water, so solvation forces will need to be included to predict adsorption energies and
surface structures. Solvation forces are difficult to include in periodic DFT calcula-
tions because a large number of H2O molecules must be included in layers between
rutile slabs to simulate bulk water. On the other hand, the HF embedded-cluster ap-
proach in the program CECILIA [801] can include H-bonding to H2O molecules not
directly bonded to the surface and long-range solvation via a dielectric continuum
half-space representing bulk water. The embedded-cluster approach is one obvious
way to develop a force field for the Ti–O–H system representing the real TiO2–H2O
interface [791], so consistency between this approach and the results of periodic cal-
culations would be a useful step toward reliable molecular-dynamics simulations of
the larger-scale rutile–water system.

Embedded-cluster calculations have been made for comparison with periodic stud-
ies using the model developed in [801]. This model utilizes a three-level interaction
approach and takes into account the long-range forces properly. The central stoichio-
metric part of the cluster is treated by the ab-initio LCAO method using pseudopo-
tential cores of extra Ti atoms to saturate the dangling bonds of the outermost oxygen
atoms. A large stoichiometric grid of point charges represents the surrounding ions,
and a special array of point charges distributed on a closed surface around the cluster
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is constructed to reproduce the remainder of the long-range Coulomb interactions (i.e.
the Madelung potential of the bulk crystal at the surface). The neutrality condition is
satisfied separately for the stoichiometric part of the cluster and lattice array of ions
plus extra pseudopotential cores.

Embedded-cluster calculations were carried out on stoichiometric clusters of dif-
ferent size: Ti7O14, Ti13O26 and Ti17O34 (the largest cluster is shown in Figures 11.14
and 11.15).

Fig. 11.14. Embedded-cluster results for the HF geometry of Ti17O34 − H2O: associative
adsorption, [790]. Small-sized balls represent the Ti pseudopotential cores

In the Ti7O14 and Ti13O26−H2O clusters only one Ti, one bridging O and the H2O
atoms were allowed to relax during energy minimization. In contrast, the additional
4 oxygen atoms (nearest to the central Ti) were free to move in the Ti17O34 − H2O
cluster. The larger cluster and greater surface relaxation were considered necessary
to adequately describe the possible H-bonding arrangements of associatively and dis-
sociatively adsorbed H2O on the TiO2 (110) surface. About 1000 full-point charges
(i.e. +4 and -2) from the 4 Ti-layer slab and up to 310 partial charges fitted to
the Madelung potential of the rest of the crystal were introduced to represent the
electrostatics of the bulk TiO2. The positions of cluster atoms and lattice ions were
chosen in accordance with the experimentally determined surface relaxation [804].
For embedded-cluster HF LCAO calculations the Hay–Wadt LANL1 or LANL2 [483]
pseudopotentials for Ti atoms and SBK [485] pseudopotential on O atoms and cor-
responding basis sets have been used. In the case of LANL1, the 3s and 3p electrons
of the Ti atom are included in the atomic core, whereas in the case of LANL2 the
corresponding orbitals are treated as semicore states. For the pseudopotential cores
of Ti atoms saturating the dangling bonds, only the semicore basis functions were in-
cluded in the case of the LANL2 pseudopotential, whereas in the case of the LANL1
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Fig. 11.15. Embedded-cluster results for the HF geometry of Ti17O34 − H2O: dissociative
adsorption, [790]. Small-sized balls represent the Ti pseudopotential cores

pseudopotential the basis functions were not included. This trick provides the same
net charge on the extra pseudopotential Ti cores as on the lattice ions.

Table 11.13. Embedded-cluster results (without BSSE), [790] and experimental adsorption
energies for H2O/TiO2 (110) (kJ/mol)

Method Cluster Molecular Dissociative Reference
adsorption adsorption

LCAO:HF,LANL1 Ti17O34 –94a –48a [790]
LCAO:HF,LANL2 Ti13O26 –158 –90 [790]

LCAO:HF,LANL1 Ti7O14 –137b –31b [805]
LCAO:B3LYP,LANL1 Ti7O14 –146 –95 [805]
Experiment –(59–100) [798]

aEstimated BSSE is about 35 kJ/mol.
bEstimated BSSE is about 29 kJ/mol.

The embedded-cluster results for water-adsorption energies are given in Ta-
ble 11.13. This table demonstrates the dependence of the embedded-cluster results
on the cluster size, basis set and Hamiltonian used. When the size of the cluster is
increased, the energy difference between the associative and dissociative adsorption
mechanisms decreases.

The results for embedded-cluster calculations are different from that for the peri-
odic models. Adsorption energies of a water molecule in the cluster case were much
more favorable for the associative mechanism (Table 11.13), which is in better agree-
ment with experimental observations. The predicted adsorption energies for the asso-
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ciative mechanisms are higher than the measured values. There is no significant differ-
ence between the optimized geometry for water adsorption in Ti13O26 and Ti17O34,
the structures of the largest one are shown in Figures 11.14 and 11.15. No evidence
of H-bond interactions was found in either the dissociative or associative adsorption
structures in contrast to periodic PW and LCAO calculations. Bridging oxygen atoms
in the cluster model appear to exhibit less relaxation than in periodic slabs.

The reason for such divergence between the periodic and cluster approaches is not
entirely clear. The most probable reason is the differences in symmetry and boundary
conditions: the absence of periodic boundary conditions may lead to artificial rigidity
of the Ti–O bonds. Also, assigning of formal charges to lattice ions may overestimate
the Madelung potential of the bulk crystal in the cluster model. On the other hand,
the 3- and 5-layer periodic models apparently overestimate the surface relaxation and
the thicker-slab models are needed for improved quantities.

The results obtained in [790] correspond well with the experimental observation
that the probability of H2O dissociation is increased with decreasing coverage. One
explanation of this change in mechanism with coverage is that H2O molecules can
readily align to provide the maximum H-bonding interaction in associatively adsorbed
structures. At low coverages, H-bonding energies are not as significant as at higher
coverages, so the additional energy of forming stronger Ti–OH bonds (as compared
to Ti–OH2 bonds) outweighs the H-bonding term and dissociation may dominate.

Applying the different ab-initio quantum-mechanical approximations (DFT-PW,
DFT-LCAO or HF-LCAO) within the periodic models produces qualitatively close
results, but disagreement may exist in reproducing the difference between close values
if this difference is about several kcal/mole. In particular, the DFT-LCAO method
gives the order of the associative and dissociative water adsorption energy that is
in better agreement with the experimental observations. Additional investigations of
H-bonding between water molecules and oxygen atoms on the TiO2 surface using
both DFT and HF methods should be made to resolve the disagreement between the
periodic and embedded-cluster calculations.

The additional information about the water adsorption mechanism can be obtained
in calculations of the oxides with the same bulk structure but different metal atom.
The results of water adsorption on SnO2 surfaces is discussed in the next section.

11.2.3 Single-slab LCAO Calculations of Bare and Hydroxylated SnO2

Surfaces

Cassiterite (SnO2 in rutile structure)-based materials are extensively studied due to
their gas-sensing properties. The theoretical modeling of the surface processes plays
an important role in this research.

The first-principles methods have made an increasingly significant contribution
to understanding the nature of clean SnO2 surfaces [806–808] and the interaction
of these surfaces with adsorbed water [809–811], methanol [812], CO [813, 814], and
O2 [815] molecules. Many of these calculations use the DFT PW periodic-slab model.
The LCAO single-slab approach has been successfully applied for investigation of
cassiterite [806, 812–815] A review of both PW and LCAO studies of adsorption on
the perfect and reduced surfaces of metal oxides can be found in [784].
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We discuss here the results of LCAO calculations [816] based on both plain DFT
PBE and hybrid B3LYP Hamiltonians to investigate the surface relaxation and ad-
sorption of water molecules on the stoichiometric (110) and (100) SnO2 surfaces. The
aims of this study can be summarized as follows: (1) comparison of the plain DFT
functionals with the B3LYP hybrid functional for the surface modeling; (2) analysis
of the energetic and structural adsorption properties of the stoichiometric (110) and
(100) SnO2 surfaces (the latter was not studied before); and (3) finding the difference
in the adsorption of water on (110) and (100) surfaces.

Table 11.14 gives the comparison of calculated and experimental structure param-
eters (a, c, u), valence band (VB) width and bandgap (BG) for bulk SnO2 in rutile
structure. As can be seen in Table 11.14, the LCAO-calculated values are in reason-

Table 11.14. Calculated equilibrium crystallographic parameters, valence-band width, and
bandgap for the bulk rutile SnO2 crystal, [816]

Parameter Expe- LCAO LCAO DFT calc. PW DFT calc.
riment DFT calc. [816]a

B3LYP PBE B3LYP [815] LDA [817] PW91 [807] PW91 [818]

a (Å) 4.737 4.690 4.745 4.718 4.714 4.778 4.731
c (Å) 3.186 3.147 3.185 3.187 3.241 3.232 3.157
c/a 0.673 0.671 0.671 0.675 0.688 0.676 0.667
u 0.306 0.307 0.307 0.307 0.307 0.306 0.306
VB width 7.5–9.0 8.56 8.24 9.0 – – 6.5
(eV) [820]
BG (eV) 3.6 [821] 4.03 1.56 3.30 – – 1.15

aCalculated Fermi-energy level: –4.73 eV (B3LYP) and –4.01 eV (PBE). Experimental esti-
mation: –4.35 eV [819]

able agreement with the experimental data and the results of DFT PW computations.
The B3LYP form of GGA slightly underestimates the cell dimensions, whereas the
PBE functional gives values that are closer to the experimental data. The minor dis-
crepancies between the results of B3LYP calculations [816] and [815] may be due
to the different form of pseudopotentials (Hay–Wadt in the first case and Durand–
Barthelat in the second case) taken. The theoretical valence-band (VB) width (of
8.56 eV using B3LYP and 8.24 eV using PBE) agrees well with the experimental
data [821] of 7.5–9.0 eV. As expected, the B3LYP method gives the bandgap (BG) of
4.0 eV that is close to the experimental value of 3.6 eV [821]. The differences between
the various PW-DFT calculations reported in Table 11.14 are obviously due to the
computational details (choice of pseudopotentials, cutoff energy, and others). In all
cases, the plain DFT methods produce a bandgap that is about 2 to 3 times narrower
than the experimental value. The valence-band density of electronic states (DOS) in
bulk crystal calculated using the B3LYP functional [816] shows the well-known fact
that oxygen p-states give the main contribution to the VB DOS, whereas the tin s-
and p-states form the bottom of the conduction band.
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From the results of PW-DFT periodic slab calculations [807], the cassiterite (110)
and (100) type-2 surfaces are the most stable of the low-index faces and, hence, they
should be the dominant crystallite arrangement of SnO2.

To check this by the single-slab approach LCAO calculations of the stoichiometric
slabs (consisting of a whole number of SnO2 formula units) have been used for surface
modeling [816]. As in the rutile TiO2 case the distribution of the bulk unit cell six
atoms over atomic planes depends on the surface chosen: (110) O–Sn2O2–O; (100)
O–Sn–O–O–Sn–O (see Fig. 11.3). The bridging oxygen atoms Obr terminate both
surfaces; two bonds connect them with the sixfold Sn (Sn6f) atoms on the rutile
structure surfaces. There are fivefold tin atoms (Sn5f) with one unsaturated bond and
threefold oxygens (Os) in the atomic plane next to Obr, see Sect. 11.2.2 and Fig. 11.6.
The positions of all the atoms in slabs were allowed to relax at a fixed dimension of
the 2D surface unit cell that was taken from the bulk optimization result. The surface
energy was calculated using (11.8) for three- and five-layer slabs for a (110) surface (9
and 15 atomic planes), and two- and 2.5-layer (12 and 15 atomic planes) slabs for a
(100) surface to check the convergence of the surface energy with n in the DFT PBE
LCAO calculations. The influence of the basis-set superposition error (BSSE) on the
calculated values has also been estimated. For this purpose, three extra atomic layers
of ghost atoms have been added on each side of the relaxed slabs and the total energy
was recalculated.

Table 11.15. Calculated energy per unit area of the (110) and (100) surfaces of SnO2

crystal, [816]

Sur- Number of Surface energy (J/m2)

face cell k-set atomic planes PBE B3LYP Ref.data
/Sn2O4 layers unrelaxed relaxed relaxed relaxed

110 1×1 6×3 9/3 1.70 1.29 1.45 [818]

15/5 1.69 1.26 1.40 1.04 [807]b

(1.14)a

100 1×1 6×4 12/2 1.74 1.37 –

15/2.5 1.73 1.37 1.48 1.14 [807]b

(1.26)a

aBSSE-corrected values are given in parentheses.
b5–6 Sn2O4–layers have been used in [807] for estimation of the surface energy.

The obtained surface energies are given in Table 11.15. Table 11.15 demonstrates
that for both DFT PBE LCAO and hybrid B3LYP LCAO methods a (110) surface
is more stable than a (100) surface, in accordance with PW-DFT calculations [807].
Comparing the surface energies in Table 11.15 before relaxation, we see that they
are approximately the same for both surfaces. So, apparently, it is relaxation that
provides the larger relative stability of the (110) surface. The B3LYP surface energies
are larger than the corresponding PBE values by about 0.1 J/m2. On the other hand,
the BSSE correction reduces the surface energies by about 0.1 J/m2, making them
closer to the PW result [807]. However, it should be noted that the difference between
(110) and (100) surface energies is smaller using the B3LYP functional.
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In Table 11.16 we compare the bandwidths for the different surface models; the
calculated Fermi energy is also included.

Table 11.16. Widths of electronic bands and Fermi energy (eV) for bulk SnO2 and for the
different surface models (B3LYP results; AH – associatively hydroxylated, DH – dissocia-
tively hydroxylated), [816]

Surfaces

Band Bulk (110) (100)

clean AH AD clean AH AD

VB width 8.56 9.24 8.45 8.56 8.34 8.23 8.61
BG 4.04 3.14 4.22 4.29 4.07 4.45 4.54
EFermi –4.73 –8.38 –7.22 –8.11 –9.24 –7.07 –7.39

Table 11.16 shows that a clean (110) surface has a wider VB and a narrower BG
than a clean (100) surface. This fact can be attributed to the difference in distribution
of the electronic states corresponding to bridging oxygens on these two surfaces. It is
known that just the bridging oxygens primarily contribute to the density of electronic
states at the top of the VB. The LCAO calculations confirm this conclusion. We
compare the obtained total DOS of the valence band for bulk, (110), and (100) surfaces
in Fig. 11.16.

Fig. 11.16. Total valence-band DOS of bulk SnO2 crystal (fine line), its (110) (bold dark
line) and (100) (bold gray line) surfaces calculated using the B3LYP functional (see text for
explanation of energy scale)

Here, and in all figures below, the zero energy is taken at the Fermi level of the
bulk crystal and all curves were shifted in such a way that the centers of O 1s bands
coincide. All DOS values have been calculated per Sn2O4 formula unit in the solid
phase to permit comparison on an equal scale. It is clearly seen in Fig. 11.16 that the
new Obr subband appears in the surface systems at the top of the bulk VB.
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In the case of a (110) surface the broadening of the DOS distribution towards
the BG is wider and the separation of the Obr subband from the bulk VB is more
prominent than those in the case of a (100) surface. This fact indicates [784] that the
basicity of Obr is larger on a (110) surface than on a (100) surface.

Vertical displacements of the surface atoms relative to their positions in the bulk
structure are reported in Tables 11.17 and 11.18.

Table 11.17. Vertical displacements (Å) and atomic chargesa (e) on the SnO2 (110) sur-
face (5 Sn2O4-layer slab results using LCAO DFT (B3LYP calculations; AH – associatively
hydroxylated, DH – dissociatively hydroxylated), [816]

Bare surface AH surface DH surface

Atomb z- charge z- charge z- charge
shiftc shift shift

Sn6f , 6-fold surface tin 0.21 1.91 0.10 1.97 –0.05 1.96
(0.22)

Sn5f , 5-fold surface tin –0.12 1.76 –0.06 2.00 0.04 1.99
(–0.11)

Obr, bridging oxygen 0.05 –0.91 0.05 –1.01 0.02 –0.79
(0.09)

Os, 3-fold surface oxygen 0.14 –0.93 0.04 –1.02 –0.01 –1.03
(0.18)

Ou6f , subbridging oxygen 0.04 –1.03 0.03 –1.03 –0.02 –1.04
(0.07)

Ou5f , oxygen underneath Sn5f –0.04 –0.93 –0.01 –1.04 0.02 –1.03
(–0.04)

Oterm, oxygen in terminal – – – –0.66 – –0.84
hydroxyl or water oxygen
Hterm, hydrogen at Oterm or – – – 0.35 – 0.34
corresponding water hydrogen
Hbr, hydrogen at Obr or – – – 0.39 – 0.38
corresponding water hydrogen

aCharges in the bulk SnO2: q(Sn) = 2.12, q(O) = –1.06; charges in the isolated water
molecule: q(O) = –0.62, q(H) = 0.31.
bFor atom indexing see text.
cDFT result of [807] is given in parentheses.

As expected, the top-surface atoms have the largest displacements. However, there
is a qualitative difference between the two surfaces under consideration. Namely, in the
case of a (110) surface the shifts of Sn5f (inward) and Sn6f together with Os (upward)
are the most noticeable, while in the case of a (100) surface only the bridging oxygen
has a marked positive displacement. In spite of the different calculation methods used,
the agreement of these LCAO values with the PW data from [807] is excellent.

The Mulliken population analysis has been applied for the calculation of the atomic
charges that are also included in Tables 11.17 and 11.18. The noticeable reduction of
the absolute charges for the top surface atoms is seen. This effect is relatively larger
for a (100) surface than for a (110) surface. Thus, the charge of Sn5f decreases by
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Table 11.18. Vertical displacements (Å) and atomic charges (e) on the SnO2 (100) surface
(5 Sn2O4-layer slab results using LCAO DFT (B3LYP calculations)a, [816]

Bare surface AH surface DH surface

Atom z- charge z- charge z- charge
shiftc shift -shift

Sn5f , surface 5-fold tin 0.03 1.67 0.02 1.95 –0.01 1.97
(0.05)

Sn6f , surface 6-fold tin 0.00 2.07 0.00 2.10 –0.01 2.11
Obr, bridging oxygen 0.13 –0.83 0.05 –1.03 0.00 –0.81

(0.18)
Os, 3-fold surface oxygen 0.07 –0.94 0.04 –1.02 –0.02 –1.05

(0.09)
Ou5f , oxygen underneath Sn5f –0.02 –0.95 –0.01 –1.04 0.01 –1.03
Ou6f , oxygen underneath Sn6f 0.00 –1.05 0.00 –1.06 –0.01 –1.06
Oterm, oxygen in terminal – – – –0.65 – –0.85
hydroxyl or water oxygen
Hterm, hydrogen at Oterm or – – – 0.35 – 0.32
corresponding water hydrogen
Hbr, hydrogen at Obr or – – – 0.40 – 0.40
corresponding water hydrogen

aSee footnotes to Table 11.17.

0.36 on a (110) surface, while on a (100) surface it decreases by 0.45 relative to the
tin charge in the bulk crystal.

No such significant charge reduction was found in the case of rutile TiO2 [790] for
the surface Ti atoms. The Obr charge on a (110) surface is more negative than that
on a (100) surface (–0.91 vs. –0.83). This correlates with the conclusion about the
larger basicity of the bridging oxygen on the (110) surface.

The results of LCAO calculations of the bare surface slabs validate the admit-
ted approach (including single-slab model, LCAO basis, and BSSE correction) and
indicate that the use of hybrid functionals to describe SnO2 surfaces provides more
reasonable results.

PW-DFT calculations [811] predicted a significant difference in the structure of
adsorbed H2O on (110) TiO2 (rutile) and SnO2 surfaces, where the dissociative ad-
sorption was favored on SnO2 vs. associative adsorption on TiO2. The difference in
H2O behavior on the surface was attributed [811] to the larger 2D unit-cell parameters
of SnO2 compared to those of TiO2 (a = 3.186 Å, b = 6.699 Å; vs. a = 2.959 Å, b =
6.497 Å, respectively). The larger unit-cell dimensions caused H-bonding among the
adsorbed H2O molecules on the surface to be less energetically important on SnO2

than on TiO2.
It was pointed out in [784] that molecular adsorption on an oxide surface can

be understood as an acid–base process. From this point of view, the more covalent
character of the Sn–O bonds compared to the corresponding Ti–O bonds might be
the second factor that enforces the dissociation of water on the SnO2 surface. In fact,
the electronegativity of tin (1.8) is markedly greater than the electronegativity of
titanium (1.4). The significant reduction of the top surface Sn5f charges (see Tables
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11.17 and 11.18) correlates with the higher electronegativity of tin. As a result, the
hydrated Sn5f ion perhaps is a stronger Brønsted acid than the hydrated Ti5f ion on
the rutile surfaces. The water hydrolysis can obviously be promoted further by the
larger basicity of the bridging oxygens (see discussion below).

To check the validity of the computational scheme used for describing the hydrogen
bonds, a preliminary calculation of the water-water interactions has been made [816].
Full geometry optimization has been made for the isolated water dimer starting with
the well-known most favorable relative orientation of the water molecules. The values
of 30 kJ/mol using PBE and 26 kJ/mol using B3LYP for the H-bond energy (with-
out zero-point correction and BSSE correction) have been obtained. This is not bad
compared to the corresponding MP2 value, 25 kJ/mol. The optimal geometry is also
very close to the MP2 result: the O–O distance is 2.86 Å, 2.88 Å, and 2.91 Å for
PBE, B3LYP, and MP2 calculations, respectively. On the other hand, this example
shows that the energy difference of the order of 5 kJ/mol per H-bond is within the
error bounds of the usual DFT calculations. It also gives evidence that the B3LYP
functional can produce more correct values for H-bonded systems.

A single-slab LCAO approach was firstly used in [816] for modeling the water
adsorption on SnO2 surfaces. A doubled (in the x direction) 2D unit cell was used
to model the water adsorption on both surfaces. The Monkhorst–Pack 3 × 3 and
3× 4 sets of special k-points were taken for the Brillouin-zone sampling in (110) and
(100) slabs, respectively. Up to fifteen atomic planes were included in both types of
SnO2 slabs for the adsorption-energy calculation. Two water molecules were placed
on each side of the slab to simulate the full-monolayer coverage. Inversion symmetry
was imposed on all systems containing water molecules to ensure the equivalence of
both slab sides. The optimization of all atomic positions in the slabs has been made.
The contribution of BSSE to the calculated adsorption energies has been estimated
using the PBE functional. As in the case of the surface-energy calculation, the ghost
atoms have been added to represent the water molecules above the optimized slabs
and the total energy was recalculated. The energy of the isolated water molecule has
also been recalculated with the 10–15 ghost atoms originated from the corresponding
SnO2 surfaces. The resulting BSSE is approximately independent of the surface kind
and reaches 18 kJ/mol of adsorbed water (see Table 11.19).

Although this is a noticeable contribution, it decreases all calculated adsorption
energies by almost the same value, and does not influence the relative stability of
associative and dissociative adsorption forms. The obtained adsorption energies for
the (110) surface (Table 11.19) satisfactorily agree with the former periodic-slab PW-
DFT calculations [810,811].

In simulations [816] the water molecules initially were placed above the fivefold
tin. During the optimization both (on each side) water molecules spontaneously dis-
sociated in the case of PBE calculations, whereas a stable associative structure has
been obtained in the case of the B3LYP functional (Fig. 11.17a).

Hence, in contrast to previous DFT calculations the hybrid HF-DFT functional
leads to stable molecular adsorption on this surface. Starting with the broken water
molecules, a stable dissociated structure has been obtained where hydroxyls were
attached to fivefold tin and protons were bonded to the bridging oxygens (Fig. 11.17b).
The energy of the hydrolyzed structure is lower by about 35 kJ/mol than the energy
of the molecular structure (see Table 11.19). It is difficult to compare directly these
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Table 11.19. Ab-initio adsorption energies per water molecule for H2O monolayer on SnO2

surfaces (N/M – Number of atomic planes/Sn2O4 layers), [816]

Surface Cell k-set N/M Method Adsorption energy (kJ/mol)

associative dissociative

110 2×1 3×3 15/5 LCAO DFT unstable –179.7
(PBE) (–162)a

LCAO DFT –143.2 –176.6
(B3LYP)
PW DFT unstable –165.0

(PW91) [810]
PW DFT unstable –170.8

(PW91) [811]

100 2×1 3×4 15/2.5 LCAO DFT –130.2 –147.0
(PBE) (–112)a (–129)a

LCAO DFT –116.86 –145.0
(B3LYP)

aBSSE-corrected values are given in parentheses for LCAO DFT (PBE) calculations.

Fig. 11.17. Optimized monolayer structure for the water molecules adsorbed on a (110)
SnO2 surface obtained using the B3LYP functional, [816]: a) stable structure for molecular
adsorption; b) stable structure for dissociative adsorption. Large dark gray balls are O atoms;
light gray balls are Sn atoms; small white balls are H atoms.

adsorption energies of water on SnO2 with those on TiO2 [790] due to the different
methods used; however, the adsorption on a (110) surface of cassiterite seems to be
more exothermic by approximately 30 kJ/mol than the adsorption on a (110) surface
of TiO2. This conclusion is in accordance with the DFT result of [809], where it is
found that the dissociative configuration gives an adsorption energy of 134 kJ/mol
for SnO2(110) and 104 kJ/mol for TiO2(110). In [809] it has been roughly estimated
that the experimental adsorption energy on SnO2(110) should be about 110 kJ/mol.
The data in Table 11.19 show that most of the theoretical values are 50% larger than
the proposed estimation.

Both resulting geometries are stabilized by the H-bonds between water hydro-
gen and bridging oxygen in the associative case (Fig. 11.17a) and bridging hydrogen
and oxygen of the terminal hydroxyl in the dissociative case (Fig. 11.17b). It should
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be noted that the PBE functional produces shorter hydrogen bonds than the B3LYP
functional. In contrast to the (110) TiO2 surface, there is no sufficiently strong interac-
tion between the neighboring water molecules on the (110) SnO2 surface. The distance
Ow–Ow between the water oxygens is 3.1 Å and 3.4 Å on TiO2 and on SnO2(110)
surfaces, respectively. This is in accordance with the results of Lindan [811], who
pointed out the role of intermolecular interactions in the stabilizing of the molecu-
lar adsorption on the (110) TiO2 surface. On the other hand, the H-bond between
water hydrogen and bridging oxygen proves to be very short, 1.53 Å, indicating the
large basicity of Obr. Moreover, H-bonds, which could be hypothetically obtained
with the PBE functional for molecular adsorption on a (110) surface, should be even
shorter than those using the B3LYP functional, as occurs in all other cases with the
real H-bonds. This can be the main reason why the molecular adsorption becomes
unstable using the PBE variant of DFT. Also, this example shows that particular
approximations influence the details of the calculated potential energy surface for the
water–oxide interactions.

Taking into account the fact that the B3LYP approximation gives the better values
of energy and bond distances for the H-bonded systems, it can be supposed that hybrid
HF-DFT functionals can produce the more correct data for the water adsorption as
well. This could be important not only in the case of SnO2 but also for other materials:
applying the hybrid functionals may lead to the greater stability of molecular forms
adsorbed on the oxide surfaces than predicted by plain DFT techniques.

Whereas many groups have studied the water adsorption on TiO2 surfaces, there
have been few experimental water-adsorption studies for SnO2. In [822] thermal des-
orption spectroscopy and ultraviolet photoemission spectroscopy have been used to
investigate perfect and defective surfaces of SnO2. In this study it was suggested that
the amount of dissociation was about 10–15% on the stoichiometric (110) surface and
the dissociation increased to 35% on the defective surface. Although additional ex-
perimental and theoretical work may be needed to confirm these conclusions, these
data at least show that the molecular form of water can be stable on the cassiterite
(110) surface, which is in accordance with B3LYP results under consideration.

The DOS for both types of water adsorption on a (110) surface are displayed in
Fig. 11.18.

In the molecular adsorption case, depicted in Fig. 11.18a, the Obr subband tightly
adjoins the bulk VB states, and a new Ow subband (corresponding to the water
electronic states) was formed at the bottom of the VB. For comparison, the clear
surface DOS projected to bridging oxygen states is also plotted in Fig. 11.18. In the
dissociative case, Fig. 11.18b, the Obr subband almost completely disappeared and
three new peaks originated from electronic states of the terminal hydroxyl group. One
of these peaks is very sharp and is prominently separated from the top of the VB.
As in the case of the (110) surface, two different initial states were chosen for the
(100) surface. In the first, the water molecules were placed near the fivefold tin. The
optimization did not change considerably the positions of water molecules using both
PBE and B3LYP functionals (Fig. 11.19a).

Thus, the molecular form of adsorption is obviously stable on the (100) surface.
The relative positions of fivefold tin and bridging oxygen favor the formation of H-
bonds between the water hydrogen and bridging surface oxygen (Fig. 11.19a), al-
though these bonds are not so short as in the (110) case. A stable structure for the
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Fig. 11.18. Total and O-projected valence-band DOS in the hydroxylated (110) SnO2 sur-
face systems (see text for explanation of energy scale), [816]. a) Molecular adsorption: total
DOS (fine line), projection onto the water states (bold dark line), projection onto the Obr

states (bold gray line); b) dissociative adsorption: total DOS (fine line), projection onto the
(OH)term states (bold dark line), projection onto the (OH)b states (bold gray line). The
projection onto the Obr states in the clean (110) surface is shown by a dotted line.
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Fig. 11.19. Optimized monolayer structure for the water molecules adsorbed on a (100)
SnO2 surface obtained using the B3LYP functional, [816]: a) stable structure for molecular
adsorption; b) stable structure for dissociative adsorption. Large dark gray balls are O atoms,
light gray balls are Sn atoms; small white balls are H atoms.

dissociative adsorption (Fig. 11.19b) was obtained from another initial state with the
broken water molecules. There are no straight-line H-bonds in this structure. Never-
theless, as in the case of the (110) surface, the dissociative adsorption is more favorable
(by about 30 kJ/mol) for the (100) SnO2 surface. The absolute value of the adsorption
energy on a (100) surface is lower than that on a (110) surface. This is in accordance
with the PW-DFT investigation of Bandura et al. [791].

As may be expected, the atomic displacements for the hydroxylated surfaces are
much smaller (especially for the dissociative adsorption) than those in the case of the
bare surfaces (Tables 11.17 and 11.18), due to saturation of the vacant coordination
places for the surface tin up to the total coordination number 6. Data in Tables 11.17
and 11.18 show that oxygen charges in the hydroxyl groups are noticeably less negative
than charges on the other surface oxygens. The hydrogen charges were arranged in
the order q(Hbr) > q(Hterm) > q(HH2O), which correlates with the relative acidity of
the corresponding O–H bonds [823].

Figure 11.20 reports the DOS distributions for hydroxylated (100) surfaces. The
DOS for the associative adsorption (Fig. 11.20a) differs from that for the clean (100)
surface mainly by the presence of the Ow subband at the bottom of the VB.

The difference between the DOS for the slab dissociatively adsorbing water
(Fig. 11.20b) and the DOS for the clean (100) surface is less significant than that
in the (110) case. The terminal OH states also contribute to the top of the VB, but
corresponding peaks are not as sharp as for the hydroxylated (110) surface. Except
for the narrow zone at the top of the VB, the total DOS in the last case resembles the
total DOS for the bulk crystal, which is also plotted in Fig. 11.20b for comparison.

Comparing the results for the clean and hydroxylated surfaces, one can conclude
that a (110) surface exhibits stronger hydrophilic properties than a (100) surface due
both to the more favorable geometrical structure and the more basic nature of the
bridging oxygen.

The discussion above demonstrates that use of the hybrid HF-DFT approach al-
lowed new results for the clean and hydroxylated oxide surfaces compared with plain
DFT techniques to be obtained. The comparison of plain DFT functionals with the
HF-DFT B3LYP hybrid functional shows interesting differences, which could be im-
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Fig. 11.20. Total and O-projected valence-band DOS in the hydroxylated (100) SnO2 sur-
face systems. a) Molecular adsorption; b) dissociative adsorption. (The sense of line types
and energy scale are the same as in Fig. 11.19.) The projection onto the Obr states for the
clean (100) surface is shown by the dotted lines, and the total bulk DOS is shown in b) by
open circles.

portant not only in the case of SnO2 but also for other materials: in contrast to DFT
plane-wave calculations (spontaneous dissociation), an associated adsorption of the
water molecules becomes possible not only in the case of the (100) surface but also at
the most stable (110) surface judging by the hybrid functional. This fact is probably
due to the shortening of the H-bonds by the plain DFT methods.

LCAO HF-DFT investigation, as well as previous plane-wave calculations, shows
that water dissociation on SnO2 surfaces is more favorable than on the similar TiO2

surfaces. Not only may the geometrical factors favor the hydrolysis of water on cassi-
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terite surfaces but also the more covalent nature of Sn–O bonds and the larger basicity
of bridging oxygens in SnO2 comparably to TiO2.

One can conclude that the arrangement of H-bonds between the hydroxyl hydro-
gens and surface oxygens, as well as between the water molecules themselves, plays an
important role in stabilizing the water adsorption on the metal-oxide surfaces. Thus,
one of the reasons why the absolute value of adsorption energy on a (100) surface is
lower than that on a (110) surface is the relative positions of oxygen and tin atoms
being less profitable for the H-bond formation.

The general agreement between the results of calculations using the different bases
(LCAO and PW) or the different slab models (2D and 3D) justifies the validity of
the various ab-initio methods to study the molecular adsorption on the crystalline
surfaces. However, the BSSE correction may be needed to obtain more precise absolute
adsorption energies within the LCAO calculations.

In the next section we consider the surface modeling in cubic perovskites.

11.3 Slab Models of SrTiO3, SrZrO3 and LaMnO3 Surfaces

11.3.1 Hybrid HF-DFT Comparative Study of SrZrO3

and SrTiO3 (001) Surface Properties

A variety of practical applications of perovskite systems ABO3 (the piezoelectrical
and electro-optical devices, fuel cells, microelectrodes) have stimulated experimental
and theoretical investigations of their surfaces.

Neither experimental nor theoretical investigations of the (001) surface structure
of SrZrO3 are known. However, a large number of experimental studies of SrTiO3

(001) surfaces have been reported, see [824, 825] and references therein. In some of
these investigations the reconstructed surfaces have been observed. A reconstruction
of the SrTiO3 surface mostly relates to surface defects, e.g., oxygen vacancies that
can be created by annealing in O2 atmosphere at high temperature [826]. At the same
time, the relaxation of a perfect titanate surface (no oxygen vacancies) has been ex-
perimentally observed and investigated [827]. This confirms the fact that perovskite
surfaces with regular stoichiometry can be stable in some conditions. The displace-
ments of atoms for the surface relaxation have been found in [827] by medium-energy
ion scattering (MEIS) method. Charlton et al. [828] have used room-temperature sur-
face X-ray diffraction (SXRD) to investigate the 300 K structure of SrTiO3(001) with
78% terminated TiO2 and 22% terminated SrO. For the TiO2 surface, there is good
agreement with MEIS data in the position of the top-layer Ti, with both techniques
pointing to an essentially bulk-terminated position. The data in [828] indicated that
a lateral ferroelectric distortion is absent at 300 K on both terminations, consistent
with some theoretical calculations [829]. However, a reflection high-energy electron
diffraction (RHEED) study of the SrTiO3 (001) surface structure in a temperature
region from 300 down to 5 K [830] gave evidence for a surface phase transition of a
soft-mode type, promoted by the surface symmetry.

The properties of the SrTiO3 (001) surface have been examined in many quantum-
mechanical studies [824, 829, 831–833, 836, 837]. Calculations of (001) surfaces of
BaTiO3, PbTiO3, [775, 838–841] and defective (001) and (110) SrTiO3 surfaces



508 11 Surface Modeling in LCAO Calculations of Metal Oxides

[842,843] have also been made. A large number of cited calculations of surface prop-
erties of the strontium titanate are based on density-functional theory (DFT) and
plane-wave basis (PW) set. In DFT LDA simulations [829] of the surface relaxation it
has been found that relaxations account for 0.18 eV of the surface energy per surface
unit cell, compiling around 15% of the total surface energy (1.36 J/m2). Examin-
ing slabs with different surface terminations, the authors conclude that the bandgap
(BG) for the SrO surface almost does not change with respect to the bulk value, and
no ingap state occurs. For the TiO2 surface, there is a substantial reduction of the
BG. However, there are also no deep-gap surface states, in accord with experimental
reports. It should be noted that the LDA approach utilized in [829] (as well as the
generalized-gradient approximation, GGA) tends to underestimate the BG and leads
to a substantial discrepancy between calculated (1.85 eV) and experimental (3.30 eV)
BG for the bulk SrTiO3.

In [833, 836] the results of GGA calculations for SrTiO3 surface systems are re-
ported. In general, the data obtained in these studies do not differ considerably from
LDA results except for the values reported in [836] for atomic displacements that
seem to be on the order of a half of the values reported by all other DFT studies
and may be attributed to some systematic error. Again, no midgap surface state for
either TiO2- or SrO-terminated surfaces was found in the band structure, [836]. How-
ever, a clear small peak appears below the energy gap in the electronic density of
states (DOS) of the TiO2-terminated surface, which has a tendency to move into the
midgap. In [833] the electron redistribution in the surface layers has been analyzed
using charge-density decomposition based on the Bader criteria [844]. The authors
concluded that relatively strong hybridization between the Ti and O atoms leads to
a noticeable charge transfer in the SrTiO3 surface systems. This enhanced charge
transfer correlates with the strength of the surface relaxation.

In [824,831,832] HF and DFT LCAO calculations of (001) SrTiO3 surface employ-
ing a number of different exchange-correlation functionals have been performed. Prior
to investigation of the surface properties, these authors tested the different quantum-
mechanical methods on some bulk characteristics such as the lattice constant, bulk
modulus, and BG. They obtained the best agreement between theoretical and exper-
imental data for the hybrid HF-DFT B3PW method. The surface structure, surface
energies, and electronic properties of the SrTiO3 (001) surface has been calculated
by different HF and DFT LCAO methods. It was concluded that it is very diffi-
cult to choose a method reproducing all properties equally well, but hybrid HF-DFT
techniques B3PW and B3LYP turned out to be the most reasonable.

In [845] the comparison has been made between the calculated relaxed structures
of the SrTiO3 surface obtained in various DFT PW studies and the data of several
experimental investigations. Good agreement was found between the most theoretical
studies, whereas the accordance of theoretical data with the available experimental
results proved to be low. This fact can be explained by the poor agreement between
the different experimental studies themselves [829,831]. It was suggested in [828] that
a possible reason for this discrepancy is the influence of soft vibrational modes, which
are thought [799] to give rise to a 0.2Å – disagreement between 0 K theory and 300
K experiment for TiO2 (110). Whatever the origin of the discrepancy, it presumably
affects the TiO2-terminated surface and the second-layer atoms on both surface types
of SrTiO3 crystal.
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We discuss here in more detail the results of a hybrid HF-DFT LCAO comparative
study of cubic SrZrO3 and SrTiO3 (001) surface properties in the single-slab model
[825]. As known from [824], the consideration of systems with 7–8 atomic layers is
sufficient to reproduce the essential surface properties of cubic perovskites. Three
different slab models have been used in [825]. The first (I) and the second (II) ones
consist of 7 crystalline planes (either SrO- or MO2-terminated, respectively) being
symmetrical with respect to the central mirror plane but nonstoichiometric (see Fig.
11.4). The central layer is composed of MO2 (M = Ti, Zr) units in the model I and
SrO units in the model II. Both models I and II have been applied for studying the
surface properties of titanates by ab-initio calculations [832]. The asymmetric model
III is stoichiometric and includes 4 SrO and 4 MO2 atomic planes. Accordingly, it is
terminated by a SrO plane on one side and by a MO2 plane on the other side and
there is no central atomic layer. The model III has been included in the simulation
to investigate the influence of the stoichiometry-violation in the symmetrical models
I and II on the calculated surface properties. For all slabs a 1× 1 surface unit cell has
been taken. For the 2D translations in slabs the experimental bulk lattice constants
of SrZrO3 (4.154 Å) and SrTiO3 (3.900 Å) were used that does not differ significantly
from DFT B3PW LCAO theoretical values (4.165 Å and 3.910 Å respectively).

In Table 11.20 are presented the results obtained for charge distribution and atomic
relaxations for models I and II (Mulliken atomic charges and vertical atomic displace-
ments are given). The displacements in the normal to the surface direction are given
with respect to atomic positions in the unrelaxed bulk structure. The negative dis-
placements correspond to the relaxation inwards, towards the bulk, while the positive
ones relax outwards, i.e. to the vacuum side. It should be noted that the positions of
atoms in the central plane exactly fit the corresponding bulk sites and can not relax
due to the imposed mirror symmetry. There are no such restrictions for the model III.
However, the absolute atomic displacements cannot be calculated unambiguously in
this case due to uncertainty in the zero-level choice when the relaxed and unrelaxed
structures are superimposed. This problem may be overcome by fixing the positions
of the two middle layers at the bulk geometry. The model III does not satisfy this con-
dition, so the corresponding absolute atomic displacements have not been calculated
in model III.

The obtained displacement d values for the SrTiO3 practically coincide with the
shifts from calculations [831] where almost the same LCAO procedure has been used.
Calculated vertical shifts for the upper Sr atoms are noticeably greater than the
shifts of other atoms in both models I and II, though they are negative in the first
and positive in the second case. Also, for SrZrO3 they are larger than for SrTiO3.
Displacements of other atoms are very similar on SrZrO3 and SrTirO3 surfaces, except
the inward shift of the top oxygen atom on the ZrO2 surface that is much greater than
the shift of the corresponding oxygen atom on TiO2 surface. The X-ray diffraction
data [828] for SrTiO3 (001) surface are presented in the last column of Table 11.20.
Note that the experimental values correspond to 300 K whereas, the theoretical values
correspond formally to 0 K. As well as in other ab-initio investigations, the satisfactory
agreement between the theory and experiment was found only for the displacements
of the top Sr atoms in the model I. The comparison of calculated and measured
displacements for the deeper atoms in SrTiO3 slabs is difficult as the experimental
data reveals large errors. Furthermore, in these slab simulations, as in most other
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Table 11.20. Mulliken charges1 q (|e|) and vertical atomic displacements d (Å) for the SrO-
and TiO2-terminated slabs models (I and II, respectively)

Mo- La- SrZrO3 SrTiO3

del yer Ion q d Ion q d dcalc
2 dexper

3

I 1 Sr 1.86 –0.304 Sr 1.85 –0.185 –0.220 –0.25 ±0.07
O –1.50 0.035 O –1.52 0.036 0.004 –0.3 ±0.4

2 Zr 2.17 0.083 Ti 2.36 0.075 0.046 –0.24 ±0.07
O2 –1.38 0.027 O2 –1.45 0.040 0.000 –0.4 ±0.7

3 Sr 1.88 –0.058 Sr 1.87 –0.031 –0.046 0.02 ±0.04
O –1.36 0.006 O –1.43 0.009 –0.004 0.1 ±0.2

4 Zr 2.13 – Ti 2.36 – –
O2 –1.35 – O2 –1.42 – –

II 1 Zr 2.16 –0.092 Ti 2.29 –0.084 –0.131 0.00 ±0.03
O2 –1.26 –0.097 O2 –1.30 –0.005 –0.062 –0.5 ±0.3

2 Sr 1.86 0.159 Sr 1.85 0.140 0.097 –0.01 ±0.01
O –1.27 0.025 O –1.36 0.020 –0.019 0.2 ±0.1

3 Zr 2.12 –0.014 Ti 2.35 –0.010 –0.027
O2 –1.31 –0.008 O2 –1.38 0.002 –0.019

4 Sr 1.87 – Sr 1.87 – –
O –1.33 – O –1.40 – –

1Bulk charges: SrZrO3: q(Sr) = 1.88, q(Zr) = 2.12, q(O) = –1.33; SrTiO3: q(Sr) = 1.87, q(Ti)
= 2.53, q(O) = –1.47.
2 Experimental data [828] for SrTiO3 at 300 K.
3 Results of DFT PW calculations [829] using the optimized lattice constant a = 3.86 Å.

studies, the cubic bulk unit cell is used to generate the surface unit cell and the
corresponding symmetry (in the surface plane) is kept fixed; whereas the unit cell
must be doubled and symmetry should be lowered to tetrahedral for reproducing
of the ferroelectric distortions. Most certainly, the surface phase transition can also
take place in the case of zirconate due to the existence of the lower-symmetrical
orthorhombic modification at room temperature. Table 11.20 also presents the results
of a previous LDA PW simulation [829] for SrTiO3. LCAO displacements satisfactory
correlate with the data of PW calculations.

The Mulliken atomic charges are also given in Table 11.20. These quantities can
be used for analysis of the electron redistribution in the surface layers, which may
be important for adsorption of another species on the surface. Table 11.20 clearly
shows that the Sr atomic charge is close to the bulk one and exhibits insensitivity
to the kind of M atom, type of termination and number of layers. On the contrary,
calculated Ti and Zr charges give evidence of considerable covalency of M–O bonds in
both crystals. It can also be seen that deviations of the surface oxygen charges from
their bulk values are relatively large and exhibit the opposite sign for the two types of
surface termination. The calculated Mulliken charges are very similar to the charges
obtained in [833] via the Bader density decomposition.

When using models I and II the surface energy Es can be determined as a sum of
two parts, Es = Eunrel + Erel(T ). The first term Eunrel is equal to one half of the
energy for crystal cleavage into SrO- and MO2-terminated slabs. It can be written as
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Eunrel =
1

4S

[
Eunrel

slab (SrO) + Eunrel
slab (MO2) − 7Ebulk

]
(11.10)

where Eunrel
slab (SrO) and Eunrel

slab (MO2) are the energies for unrelaxed SrO- and MO2-
terminated slabs, Ebulk is a bulk energy per primitive cell, and S is the area of the
2D cell. The second term is the relaxation energy for SrO- or MO2-terminated slabs
and is computed as a difference between the relaxed and unrelaxed slab energies:

Erel =
1

2S

[
Erel

slab(T ) − Eunrel
slab (T )

]
(11.11)

where T = SrO or MO2.
The surface energy of model III (stoichiometric slab) equals the difference between

the energy of the slab and the quadruple energy of bulk primitive cell divided by 2S.
The results for surface energy are summarized in Table 11.21.

Table 11.21. The calculated surface energies Es (J/m2) and bandgaps BG (eV)

Quantity Relaxed Unrelaxed Bulk

I II (I+II)/2 III (I+II)/2 III

SrZrO3

Es 1.01 1.26 1.14 1.13 1.41 1.42
BG 4.84 4.61 – 4.56 – 3.94 5.021

SrTiO3

Es 1.20 1.29 1.25 1.24 1.46 1.46
(1.36)2 (1.55)2

BG 3.68 2.76 – 2.48 – 2.63 3.651

(1.86)2 (1.13)2 (1.85)2

1Experimental BG in bulk crystals: 5.9 eV for SrZrO3 [835], and 3.3 eV for SrTiO3 [834].
2The results of DFT PW calculations [829] are given for comparison in parentheses.

For both crystals Es for SrO termination is slightly less than that for MO2 ter-
mination. It is important that the surface energies averaged over models I and II are
very close to Es for the model III (this is valid both for relaxed and unrelaxed sys-
tems). The obtained values show that the surface energy of SrZrO3 is smaller than
the surface energy of SrTiO3 crystal. The calculated value for the surface energy of
SrTiO3 (1.24–1.25 J/m2, see Table 11.21) agrees satisfactorily with the value calcu-
lated in [829] using the DFT PW framework (1.36 J/m2).

In Table 11.21 the calculated bandgaps (BG) for slabs are compared. It is clearly
seen that in all cases the BG for SrZrO3 systems is wider. This agrees with the larger
ionicity of SrZrO3 in comparison with SrTiO3. One can notice that in the case of
SrTiO3 the BG for the model I is markedly greater than that for models II and III.
The substantial reduction of BG for the TiO2 surface relative to the bulk value is due
to an extended shoulder in the valence-band electronic DOS (see below). The same
picture has been found in DFT PW calculations [829], in spite of the fact that the
LDA gaps are half of others (see Table 11.21).

In all figures below the zero energy is taken at the Fermi level of the bulk crystal
(SrZrO3 or SrTiO3) and all curves were shifted so that the centers of O 1s bands
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coincide. Also, the DOS values have been reduced to one oxygen atom to ensure the
same scale for bulk crystal and different slabs.

In Fig. 11.21 the total oxygen DOS for the surface model III and bulk crystal are
compared. The bulk and slab VB have similar shapes and widths except the small
areas at the top and bottom that reflect the surface contributions.

-5 -4 -3 -2 -1 0
0

20

40

60

D
O

S 
(a

rb
.u

n.
)

E  (eV)
-6 -5 -4 -3 -2 -1 0 1

0

20

40

60
bulk
III

D
O

S
 (a

rb
.u

n.
)

E (eV)

a b

bulk
III

Fig. 11.21. Oxygen-projected VB DOS for bulk crystal and for surface model III (a –
SrZrO3; b – SrTiO3)

These contributions are resolved in Fig. 11.22 where the DOS projected to the
surface oxygens is plotted. Figures 11.22a and b demonstrate that the oxygen DOS
distribution for SrO and TiO2 terminations are qualitatively different, whereas the
distinctions between the model types (I and III or II and III) are less significant.

-4 -3 -2 -1 0
0

50

100

150

200

250

 I (SrO)
 II (ZrO)
 III (SrO)
 III (ZrO)

E (eV)
-5 -4 -3 -2 -1 0 1

0

50

100

150

200

250
 I (SrO)
 II (TiO)
 III (SrO)
 III (TiO)

D
O

S 
(a

rb
.u

n.
)

E (eV)

D
O

S 
(a

rb
.u

n.
)

a b

Fig. 11.22. Projected VB DOS for oxygen atom in the first surface layer for all three models
(a – SrZrO3; b – SrTiO3). For the model III the first oxygen projection corresponds to the
SrO-side and the second to the MO2-side

It is clearly seen in Fig. 11.22 that the new O-subbands appear in the slabs at the
top of the bulk VB. The corresponding peaks for the oxygen on an SrO-terminated
SrZrO3 surface (in models I and III) are significantly higher than the peaks for oxygen
on ZrO2-terminated surfaces. Also, the charge of the O atom in the first layer in SrO-
terminated slab of a SrZrO3 crystal is noticeably lower than its bulk value (1.50 vs.
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1.33 in Table 11.20). This can be explained by the larger ionicity of the M–O bond in
the zirconate than in the titanate.

These features allow one to expect that a (001) SrO-terminated surface can ac-
cumulate the excess negative charge in the case of SrZrO3 crystal and it should be
more basic in nature than a SrO-terminated surface of SrTiO3 crystal. In the case of
SrTiO3 slabs the corresponding oxygen contribution to SrO surface states is lower,
whereas the new surface states originated from the TiO2 termination form a low but
extended shoulder that is alike in models II and III. The indicated shoulder reduces
the bulk BG noticeably (see Table 11.21). This means that electronic shells on the
TiO2-terminated SrTiO3 surface are more polarizable than electronic shells on the
other surface types regarded. The similarities of the results obtained for the surface
energy and DOS from the surface models I and II on the one hand, and from the
model III on the other hand confirm the weak interaction between the opposite slab
faces if its thickness is sufficiently large, resulting in the mutual independence of two
types of termination (SrO and MO2) in the surface models of perovskites considered.

One can conclude that disagreement between the theory and experiment for the
vertical displacements of the SrTiO3 surface atoms does not depend on the actual
(LCAO hybrid HF-DFT or PW DFT) ab-initio method used. The dependence on
the slab model and thickness may also be excluded from the possible reasons. Most
probably, this discrepancy can be explained by the possible surface phase transition or
surface reconstruction under the experimental conditions. The ab-initio calculations
using the extended tetragonal surface unit cell can resolve the indicated contradiction.
The values obtained show that relaxation of the top surface atoms is more prominent
in the case of SrZrO3 than in the case of SrTiO3, and the corresponding surface energy
for zirconate is lower by about 0.1 J/m2. This fact may be attributed to the larger
ionicity of SrZrO3 bulk crystal in comparison with SrTiO3 bulk crystal. The results
under consideration give evidence that the SrO surface of a SrZrO3 crystal is more
basic than the SrO surface of a SrTiO3 crystal. Based on this conclusion one can
suppose, for example, a stronger interaction of oxygen atoms on the SrO surface with
the H atoms of the adsorbed water molecules (with possible water ionization) occurs
in the case of zirconate than in the case of titanate.

11.3.2 F Center on the SrTiO3 (001) Surface

In Sect. 10.3.1 we considered the calculations of the oxygen vacancy in a bulk SrTiO3

crystal (bulk F centers). The atomic and electronic structure of surface F centers is
practically unknown.

Only a few theoretical papers deal with the analysis of the F centers on the TiO2-
terminated SrTiO3(001) surface: one of them is based on semiempirical INDO calcu-
lations [846] and another one on GGA and LDA+U slab calculations [847]. In both
papers, the structure of the F centers was studied for very high defect concentrations
as the small 2D supercells were used. It has been demonstrated above in the bulk F
center calculations that the results for low defect concentrations might be significantly
different from those corresponding to the infinite dilution limit. Moreover, it is very
likely that in the calculations [846] both lattice relaxation and vacancy-formation en-
ergies are not converged to the infinite dilution limit and no surface defect-migration
energies were presented.
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In [848] the surface F centers on the TiO2-terminated unreconstructed (001)SrTiO3

surface are studied in more detail by the DFT method. A stoichiometric slab contain-
ing six atomic TiO2 and SrO planes (6 bulk unit cells , i.e. 30 atoms) has been chosen
as a material model. The surface F center was studied for 2D supercells 2 × 2(120
atoms) and 3 × 3(270 atoms). The formation energy for relaxed (unrelaxed) surface
oxygen vacancies was found to be 6.22 eV (8.86 eV) and 5.94 eV (8.81 eV) for 120-
atom and 270-atom supercells, respectively. Again, one must be aware of the fact that
the present values might not be completely converged to the infinite-dilution limit.
This surface vacancy-formation energy could be compared to the 7.73 eV and 7.17
eV formation energies for the relaxed F centers in the bulk, calculated for the bulk
supercells n

√
2 × n

√
2 × n

√
2, n = 2, 3, with similar interdefect distances along the z

axis. The conclusion could be drawn that the defect-formation energy on the TiO2-
terminated surface is considerably smaller than in the bulk; it is roughly reduced by
1.5 eV or 20–25%. This is similar to what has been obtained for other oxides and it is
due to the reduced coordination at the surface, [850]. The following relaxation of the
atoms nearest to the vacancy and in the Ti–O–Ti surface chain is reported in [848].
The Ti and O nearest neighbors of the vacancy are displaced by 7%a0 and 4%a0,
respectively (a0 is the parameter of bulk cubic lattice). The former displacements ex-
ceed by a factor of two those in the bulk and result from the half-coordination sphere
left when the surface is formed. Unlike the bulk, where atoms move towards and out-
wards from the O vacancy, on the surface the direction of atomic displacements is
more complicated.

A well-pronounced strong anisotropy in the atomic displacements along the
Ti − VO − Ti axis was clearly observed. Atomic displacements in the smaller su-
percell show a nonmonotonic decay with the distance from the vacancy that is caused
by the interference effects on the border of the nearest supercells and demonstrates
that this supercell is not big enough to avoid defect–defect interactions on the surface.
The calculated activation energy for defect migration for the two supercells of 120 and
270 atoms is 0.19 and 0.11 eV, respectively. This demonstrates that (i) an increase of
the distance between defects reduces the migration energy (due to the reduced repul-
sion energy between periodically distributed defects), and (ii) compared to the bulk
migration, the defect-migration energy on the perovskite surface is largely reduced.

This is in line with the calculations of the F-center migration on the MgO surface
where the activation energy obtained was also considerably smaller than in the bulk
[850]. In addition, high vacancy mobility makes the surface reconstruction easier to see
in the experiments. The difference electronic density map for the surface F center on
the 2×2×3 slab shows that the electronic density around it is more delocalized than
that corresponding to the bulk F center. The calculated Bader effective charges of the
two nearest Ti atoms give an electronic density increase of 0.4 e per atom, whereas the
rest of the missing O charge is spread in the vicinity of the vacancy. Finally, the defect
ionization energy of the surface F center is almost half that in the bulk (0.25 eV vs.
0.49 eV). Its dispersion is still not negligible (0.14 eV), being comparable with that
for the bulk 2

√
2×2

√
2×2

√
2 supercell (0.15 eV). The single bulk F center in SrTiO3

is a small-radius defect. The surface F center is predicted to be more delocalized than
that in the bulk. This is in agreement with previous findings for ionic oxides such
as MgO, [850] or Al2O3 [849] and results from the reduced Madelung potential and
atomic coordination at the surface.



11.3 Slab Models of SrTiO3, SrZrO3 and LaMnO3 Surfaces 515

The oxygen vacancies on the SrTiO3 (001) surface essentially change its properties
and they have to be taken into account when adsorption modeling. Unfortunately, the
surface-defect calculations in the slab model are complicated due to the delocalized
nature of the surface oxygen vacancy electron states. Such a study requires both
sufficiently thick slabs (in modeling the surface) and large 2D supercells (in modeling
the single vacancy on the surface).

While the theoretical study of the atomic and electronic structure of titanate
surfaces is active, for manganites such a study began only in 2004, as is seen in the
next section.

11.3.3 Slab Models of LaMnO3 Surfaces

Of primary interest for fuel-cell applications are the LaMnO3 (LMO) surface proper-
ties, e.g. the optimal positions for oxygen adsorption, its surface transport properties,
as well as the charge-transfer behavior. In fuel-cell applications, the operational tem-
perature is so high (T > 800 K) that the LMO unit cell is cubic and thus Jahn–Teller
(JT) lattice deformation around Mn ions and related magnetic and orbital orderings
no longer take place.

The first ab-initio calculation of cubic LaMnO3 surface properties [851] has been
made by the HF LCAO method for (110) LMO surface in the single-slab model. The
extension of these calculations to the (001) LMO surface was made in [852]. The
bulk cubic unit cell atoms are distributed over atomic planes (normal to the surface
direction) in the following way: for the (110) surface – O2–LaMnO–O2–LaMnO · · · ;
for the (001) surface – LaO–MnO2–LaO–MnO2 · · · (see Fig. 11.4). In both cases the
surfaces are polar.

In LMO (110) surface calculations [851] the O2-terminated slab consisting of seven
planes was taken, i.e. four O2 planes and three LaMnO planes. Such a symmetrical
slab is nonstoichiometric, i.e. it does not consist of an integer number of formula units.
To restore the stoichiometry of the 7-plane slab, one oxygen atom has been removed
from both O2-planes terminating the slab, i.e. the slab of three bulk primitive unit
cells with periodically repeated surface oxygen vacancies was used. Such an approach
is justified since it is well known that the polar surfaces are stabilized by surface
defects and surface-atom relaxation. The surface energy Es (per surface unit cell) for
such a slab equals:

Es =
1
2
(
Eslab

O − 3Ebulk

)
(11.12)

where Eslab
O and Ebulk are the total energies for the O-terminated slab and bulk unit

cells, respectively. On the other hand, the defectless surfaces could be modeled using
nonstoichiometric slabs: O2-terminated or LaMnO-terminated. In this case the surface
energy Es could be calculated as the average:

Es =
1
4
(
Eslab

O2
+ Eslab

LMO − 7Ebulk

)
(11.13)

where Eslab
O2

and Eslab
LMO are the total energies of the slabs with O2 and LaMnO termi-

nations, respectively.
The comparison of energies for the stoichiometric and nonstoichiometric 7-plane

slabs permits conclusions to be drawn on the role of surface oxygen vacancies in
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surface stabilization. The O-terminated slab consists of three Mn-containing planes,
each Mn atom is supposed to have oxidation state +3, i.e. 4 valence electrons are
localized on Mn3+ ions. The UHF LCAO calculations have been performed for both
the FM (the number of α − β electrons is 3 × 4 = 12) and the AFM (α − β = 4
electrons) states. Since the SCF calculations of these slabs are extremely slow and
timeconsuming, to a first approximation, the relaxed surface geometry optimized by
means of the classical shell model [853] based on atom–atom potentials has been used.
Since one of the two surface O atoms (per 2D unit cell) is removed, the remaining
atoms reveal displacements not only perpendicularly to the surface, but also inplane.

In slab calculations [852] the displacements in the first two top planes were taken
into account, which are considerably larger than those in deeper planes. Similar to the
bulk calculations, the FM stoichiometric (110) slab for the O termination turns out
to be energetically more favorable than AFM, by 0.9 eV per Mn. The calculated O-
terminated surface energy is 3.5 eV for the unrelaxed slab and 0.7 eV for the relaxed
one, i.e. the relaxation energy (per surface unit cell) is 2.8 eV.

Table 11.22. The effective atomic charges Q(|e|) in four unrelaxed top layers of the
LMO (110) surface, both stoichiometric O-terminated (Q1), and nonstoichiometric O2- and
LaMnO-terminated (Q2 and Q3), as well as the relevant deviations of plane charges, ∆Q(|e|)
from those in the bulk (Q(La)=2.56; Q(Mn)=2.09; Q(O)=–1.55)

Plane Atom Q1 ∆Q1 Q2 ∆Q2 Q3 ∆Q3

I O –1.16 0.39 –0.77 1.56 –1.86(O) –1.40
1.73 (La)
1.83 (Mn)

II La 2.45 –0.06 2.52 –0.06 –1.67 (O) –0.24
Mn 2.19 2.10
O –1.60 –1.58

III O –1.66 –0.16 –1.58 –0.06 –1.69 (O) 0.17
O –1.60 –1.58 2.56 (La)

2.40 (Mn)

IV La 2.54 –0.35 2.55 0.18 –1.63 (O) –0.16
Mn 1.87 2.31
O –1.66 –1.58

Table 11.22 shows the effective atomic charges Q of slab atoms and the deviation
of the plane charges ∆Q (per unit cell) from those calculated with the bulk atomic
charges. For example, in the plane II for the O-terminated stoichiometric surface the
effective charge of the La deviates from that in the bulk by 2.45 e – 2.56 e= –0.11 e.
The effective charges of Mn and O deviate from those in the bulk by 0.1 e and –
0.05 e, respectively. That is, the LaMnO plane’s charge deviates from that in the bulk
by –0.06e. This value characterizes the charge redistribution in near-surface planes
compared to the bulk. For stoichiometric surfaces the sum of ∆Q over all planes is
zero. Thus, the effective charge of a surface O atom is considerably reduced with
respect to that in the bulk. The charges of both metal atoms in the second plane are
slightly more positive, which is almost compensated by the charge of a more negative
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O atom. Charges of the two O atoms in the third plane are close to those in the bulk.
Surprisingly, in the central, fourth plane, the Mn charge turns out to be considerably
(by 0.22 e) less positive than in the bulk. This is enhanced by the same trend for the
O atoms, which results in a considerable (–0.35 e) effective charge of the central plane
with respect to the bulk.

The calculation for the surface energy for the 7-plane nonstoichiometric slabs, ob-
tained using (11.13), gives Es=6.8 eV, i.e. about a factor of two larger than the surface
energy of the stoichiometric slab. This demonstrates that oxygen vacancies strongly
stabilize the polar (110) surface. The charge distribution for the nonstoichiometric O−

2

and LaMnO-terminated surfaces is summarized in Table 11.22. As one can see, the
effective charge of Mn in the central plane of the O2-terminated surface with respect
to the bulk value is –0.22 e, i.e. the same in absolute value but with the opposite sign
to that on the O-terminated surface. The two surface O atoms share nearly the same
charge as a single O atom possesses on the stoichiometric surface. Other planes are
only slightly perturbed. Since the O2- and LaMnO-terminated surfaces complement
each other, their total charges (with respect to those in the bulk) are expected to be
equal in magnitude but of the opposite signs, which indeed takes place.

Calculations for the asymmetric, 8-plane stoichiometric LaO · · ·MnO2 slab show
that the surface energy is larger by 1 eV than that for the stoichiometric 7-plane
slab with surface vacancies. This means that the surface vacancies serve as a better
stabilizing factor than the charge redistribution near the surface compensating for the
macroscopic dipole moment. From the relevant charge redistribution one can see that
both surfaces of this 8-plane slab, the O2- and LaMnO-terminated ones, are charged
strongly positively with respect to the bulk charges, whereas the internal planes are
charged mostly slightly negatively.

The LMO (001) surface was modeled in [852] by similar symmetric 7-plane slabs
with two kinds of terminations (LaO · · ·LaO and MnO2 · · ·MnO2) and an 8-plane
LaO · · ·MnO2 slab. The former is nonstoichiometric, the latter is stoichiometric (four
bulk unit cells per surface unit cell). Unlike the (110) O-terminated surface, it is not
easy to make the 7-plane (001) slab stoichiometric through introduction of surface
vacancies. If we count the formal ionic charges, La3+, Mn3+, O2−, these two slabs
have the total charges of 1 e (LaO) and –1 e (MnO2). In the SCF calculations,
slabs are assumed to be neutral by definition, which results in the electronic-density
redistribution between atoms in different planes.

The calculated defectless surface energy for the (001) using (11.13) equals 2.04
eV. This is smaller by a factor of 3 than that for a similar nonstoichiometric (110)
surface.

Analysis of the charge redistribution for the LaO- and MnO2-terminated (001)
surfaces shows that the largest charge perturbation with respect to the bulk charges
is observed for the top and bottom planes, similarly to the (110) case. The deviations
of the effective atomic charges starting the second plane are quite small, of the order
of 0.1–0.2 e. These two surface terminations are complementary, which is why the
total charges of the LaO- and MnO2-terminated slabs are equal in absolute values
and have opposite signs of –1 e and 1 e, respectively. As to the use of the asymmetric,
stoichiometric 8-plane slab LaO · · ·MnO2, its main problem was believed to arise
due to the macroscopic polarization caused by a dipole moment perpendicular to the
surface as a consequence of the alternating oppositely charged (1 e, –1 e) planes.
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However, as was demonstrated for the SrTiO3 (110) polar surface [854], the charge
redistribution near the surface is able to cancel the macroscopic surface polarization.
For this, the absolute value of the effective charge of the top plane should be smaller
than that in the slab center. As was found in [852], the effective charge of the fourth
MnO2-plane of the 8-plane slab is –0.86 e, whereas that of the top LaO-plane 0.37 e,
i.e. the condition is fulfilled and the (001) plane is stable. The same is true for the
8-plane (110) slab. For the 8-plane (001) slab only the top and bottom planes of a
slab are considerably perturbed as compared to the bulk charges, charges in all the
other planes are only slightly modified. The effective charges of the LaO and MnO2

(top and bottom) planes are close in magnitude and opposite in sign. The relevant
surface energy calculated using (11.2) turns out to be as small as 1.02 eV/cell for the
FM state. This means that the (001) surface is stable and energetically favorable. The
(0 0 1) surface energy in the AFM state is formally even lower, 0.83 eV. However, the
relevant total energies for the bulk unit cell (per formula unit) and the slab in the
AFM state are higher (by 0.22 and 0.56 eV, respectively) than the FM states.

The LCAO single-slab calculations [852] of the electronic structure of the polar
LnMnO3 (001) and (110) surfaces clearly demonstrate that the stoichiometric slabs
have considerably lower energies than the nonstoichiometric ones. It should be stressed
that the structural oxygen vacancies are energetically required and hence are essential
elements of the (110) polar surface structure. Their formation makes the (110) slabs
stoichiometric and energetically more favorable than the stoichiometric slabs stabi-
lized by the near-surface electronic density redistribution necessary to compensate the
macroscopic dipole moment perpendicular to the asymmetric LaO · · ·MnO2 surfaces.

The comparative DFT B3PW LCAO (single-slab) and GGA PW (periodic-slab)
calculations of LaMnO3 (001) and (110) surfaces in slab models has been made in
[855], we refer the reader to this publication for details of the calculations. It is
important that the B3PW LCAO and GGA PW calculations for the LaMnO3 surfaces
show reasonable agreement for atomic displacements, effective charges (in the PW
calculations, Bader analysis was used), and surface energies. The effective charges of
surface atoms markedly depend on the surface relaxation and less on the particular
(FM or AAF) magnetic configuration. The HF-based conclusion (see discussion above)
that the polar (001) surface is energetically more favorable than the (110) one was
confirmed. This conclusion is important for the modeling of surface adsorption and
LaMnO3 reactivity. The surface relaxation energy is typically of the order of 1–1.5 eV
(per square unit a2, where a is the cubic lattice parameter) i.e. much larger than the
tiny difference between various magnetic structures. Moreover, the calculated surface
energy for the slab built from orthorhombic unit cells is close to and even slightly
larger than that for the cubic unit cells. These two facts justify the use in surface
and adsorption modeling of slabs built from the cubic cells. This is a very important
observation since the detailed adsorption and migration modeling, e.g., for surface O
atoms at moderate coverages that is relevant for fuel-cell applications, is very time
consuming even for the smallest slab thicknesses.

The discussion of LMO surface modeling concludes Part II (Applications) of this
book. We tried to demonstrate, via numerous examples, the efficiency of modern
quantum-chemical approaches to calculate the properties of crystalline solids – bulk
and defective crystals, surfaces and adsorption.
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The list of computer programs used in LCAO (both ab-initio and semiempirical)
calculations of periodic systems is given in Appendix C.



A

Matrices of the Symmetrical Supercell
Transformations of 14 Three-dimensional Bravais
Lattices

A.1. The triclinic crystal system
(i) l(P,P) is an arbitrary integer matrix.

A.2. The monoclinic crystal system

(i) l(P,P)=

⎛⎝n1 n5 0
n4 n2 0
0 0 n3

⎞⎠ , L = (n1n2 − n4n5)n3; (A.1)

(ii) l(A,P)=

⎛⎝n1 n5 0
n4 n2 −n3

n4 n2 n3

⎞⎠ , L = 2(n1n2 − n4n5)n3;

(iii) l(P,A)=

⎛⎝n1 n4 n4

n5 n2 n2

0 −n3 n3

⎞⎠ , L = 2(n1n2 − n4n5)n3;

(iv) l(A,A)=

⎛⎝n1 n5 n5

n4 n2 + n3 n2 − n3

n4 n2 − n3 n2 + n3

⎞⎠ , L = 4(n1n2 − n4n5)n3;

A.3. The hexagonal crystal system

(i) l(1)(P,P)=

⎛⎝n1 0 0
0 n1 0
0 0 n2

⎞⎠ , L = n2
1n2; (A.2)

(ii) l(2)(P,P)=

⎛⎝n1 −n1 0
n1 2n1 0
0 0 n2

⎞⎠ , L = 3n2
1n2;

A.4. The rhombohedral crystal system

(i) l(R,R)=

⎛⎝n1 + n2 n2 n2

n2 n1 + n2 n2

n2 n2 n1 + n2

⎞⎠ , L = n2
1(n1 + 3n2);
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A.5. The orthorhombic crystal system
(i) l(P,P) coincides with (A.1);

(ii) l(C,P)=

⎛⎝n1 −n2 0
n1 n2 0
0 0 n3

⎞⎠ , L = 2n1n2n3;

(iii) l(F,P)=

⎛⎝ 0 n2 n3

n1 0 n3

n1 n2 0

⎞⎠ , L = 2n1n2n3;

(iv) l(I,P)=

⎛⎝−n1 n2 n3

n1 −n2 n3

n1 n2 −n3

⎞⎠ , L = 4n1n2n3;

(v) l(P,C)=

⎛⎝ n1 n1 0
−n2 n2 0
0 0 n3

⎞⎠ , L = 2n1n2n3;

(vi) l(C,C)=

⎛⎝n1 n2 0
n2 n1 0
0 0 n3

⎞⎠ , L = (n2
1 − n2

2)n3;

(vii) l(A,C)=

⎛⎝ n1 n1 0
−n2 n2 −n3

−n2 n2 n3

⎞⎠ , L = 4n1n2n3;

(viii) l(F,C)=

⎛⎝ −n2 n2 n3

n1 n1 n3

n1 − n2 n1 + n2 0

⎞⎠ , L = 4n1n2n3;

(ix) l(I,C)=

⎛⎝−n1 −n2 n3

n1 n2 n3

n2 n1 −n3

⎞⎠ , L = 2(n2
1 − n2

2)n3;

(x) l(P,F)=

⎛⎝−n1 n1 n1

n2 −n2 n2

n3 n3 −n3

⎞⎠ , L = 4n1n2n3;

(xi) l(C,F)=

⎛⎝−n1 n1 n2

−n2 n2 n1

n3 n3 −n3

⎞⎠ , L = 2(n2
1 − n2

2)n3;

(xii) l(F,F)= 1
2

⎛⎝ n2 + n3 −n2 + n3 n2 − n3

−n1 + n3 n1 + n3 n1 − n3

−n1 + n2 n1 − n2 n1 + n2

⎞⎠ ,
L = n1n2n3;
n1, n2, n3 are of
the same parity;

(xiii) l(I,F)=

⎛⎝n1 + n2 + n3 −n3 −n2

−n3 n1 + n2 + n3 −n1

−n2 −n1 n1 + n2 + n3

⎞⎠ ,

L = 2[(n1 + n2 + n3)(n1n2 + n2n3 + n3n1) − n1n2n3];

(xiv) l(P,I)=

⎛⎝ 0 n1 n1

n2 0 n2

n3 n3 0

⎞⎠ , L = 2n1n2n3;

(xv) l(C,I)=

⎛⎝−n2 n1 n1 − n2

n2 n1 n1 + n2

n3 n3 0

⎞⎠ , L = 4n1n2n3;
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(xvi) l(F,I)=

⎛⎝n2 + n3 n3 n2

n3 n1 + n3 n1

n2 n1 n1 + n2

⎞⎠ , L = 4n1n2n3;

(xvii) l(I,I)= 1
2

⎛⎝ n2 + n3 −n1 + n3 −n1 + n2

−n2 + n3 n1 + n3 n1 − n2

n2 − n3 n1 − n3 n1 + n2

⎞⎠ ,
L = n1n2n3;
n1, n2, n3 are of
the same parity;

A.6. The tetragonal crystal system
(i) l(1)(P,P) coincides with (A.2);

(ii) l(2)(P,P)=

⎛⎝n1 −n1 0
n1 n1 0
0 0 n2

⎞⎠ , L = 2n2
1n2;

(iii) l(1)(I,P)=

⎛⎝ 0 n1 n2

n1 n2

n1 n1 0

⎞⎠ , L = 2n2
1n2;

(iv) l(2)(I,P)=

⎛⎝−n1 n1 n2

n1 −n1 n2

n1 n − 1 −n2

⎞⎠ , L = 4n2
1n2;

(v) l(1)(P,I)=

⎛⎝ 0 n1 n1

n1 0 n1

n2 n2 0

⎞⎠ , L = 2n2
1n2;

(vi) l(2)(P,I)=

⎛⎝−n1 n1 0
n1 n1 2n1

n2 n2 0

⎞⎠ , L = 4n2
1n2;

(vii) l(1)(I,I)=

⎛⎝n1 + n2 n2 n1

n2 n1 + n2 n1

n1 n1 2n1

⎞⎠ L = 4n2
1n2;

(viii) l(2)(I,I)= 1
2

⎛⎝ n1 + n2 −n1 + n2 0
−n1 + n2 n1 + n2 0
n1 − n2 n1 − n2 2n1

⎞⎠ L = n2
1n2;

n1, n2 are of
the same parity;

A.7. The cubic crystal system

(i) l(P,P)=l(F,F)=l(I,I)=

⎛⎝n 0 0
0 n 0
0 0 n

⎞⎠ , L = n3;

(ii) l(F,P)=l(P,I)=

⎛⎝ 0 n n
n 0 n
n n 0

⎞⎠ , L = 2n3;

(iii) l(I,P)=l(P,F)=

⎛⎝−n n n
n −n n
n n −n

⎞⎠ , L = 4n3;

(iv) l(I,F)=

⎛⎝ 3n −n −n
−n 3n −n
−n −n 3n

⎞⎠ , L = 16n3;

(v) l(F,I)=

⎛⎝2n n n
n 2n n
n n 2n

⎞⎠ , L = 4n3.



B

Reciprocal Matrices of the Symmetric Supercell
Transformations of the Three Cubic Bravais
Lattices

Q1 =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ Q2 =

⎛⎝−1 1 1
1 −1 1
1 1 −1

⎞⎠ Q3 =

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠
Q4 =

⎛⎝2 1 1
1 2 1
1 1 2

⎞⎠ Q5 =

⎛⎝ 3 −1 −1
−1 3 −1
−1 −1 3

⎞⎠



C

Computer Programs for Periodic Calculations in
Basis of Localized Orbitals

The information about computer programs applied in molecular quantum chemistry
and materials science can be found on different Internet sites [856–858]. In particu-
lar, on site [856] on-line links are given to the appropriate information. The majority
of the existing computer codes for calculations of periodic systems can be divided
into two main groups: LO codes using a basis set of localized orbitals (LO) and
PW(APW) codes using plane waves (PW) or augmented plane waves (APW) as a
basis set. The only exclusion is the hybrid Gaussian LO and PW (GPW) DFT code QI-
UCKSTEP/CP2K [859]. The sites mentioned include references to both LO and PW
codes. The information about periodic codes using LO or PW bases can also be found
in [568, 860]. Here, we restrict ourselves only to brief information about computer
codes for periodic LO calculations (see Table C.1). The indication of the correspond-
ing homepage and references on the publications are given in the last two columns of
Table C.1. Both ab-initio (HF,DFT (LDA,GGA), hybrid HF-DFT, time-dependent
DFT (TDFT)) and semi-empirical (SE) codes are included in the list. The codes listed
allow all-electron (AE) calculations (also termed full potential-FP) or valence-only
ones with the use of pseudopotential (PP) for core electrons or both. For the localized
basis we use the acronyms GTO (Gaussian-type orbitals), STO (Slater-type orbitals)
and NTO (numerical type orbitals). In particular, f -GTO and f -polarization-GTO
mean the possibility to make full GTO calculations for f -elements or the simple ex-
tension of Gaussian basis-sets to include f -polarization basis-functions, respectively.
In the remaining cases only s, p and d orbitals can be used in the basis set. The
geometry optimization can be made over the atomic coordinates only (GO) or in-
cluding both the lattice parameters optimization (full GO). Some codes allow linear
scaling (O(N)) with the basis-set size and molecular-dynamics (MD) calculations.
The semiempirical codes can allow the band structure calculations for nonzero wave
vectors (BAND) or the cyclic-cluster model (CCM) without the BZ summation can
be used. The CRYSTAL suite remains the mostly advanced and developing LCAO
periodic program, compared to other codes listed in Table C.1. We refer the reader to
the calculations of metal-organic frameworks (MOF), [872] as a case study showing
that the CRYSTAL program allows reliable ab-initio prediction of materials proper-
ties of complex systems to be made. Note that from January 1st, 2007, CRYSTAL03
will not be supported any more.
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Table C.1. List of periodic computer programs using localized orbitals basis

No Program Description Web site Refs

1 CRYSTAL03 HF;DFT (LDA,GGA); www.crystal.unito.it [568,860–863]
Hybrid HF-DFT; AE; www.cse.clrc.ac.uk/cmg

PP; GTO; GO

2 CRYSTAL06 + f -polarization-GTO, full GO, www.crystal.unito.it/
vibrational frequences home.html

3 CRYSCOR + MP2 correlation www.crystal.unito.it [201]

4 GAUSSIAN03 HF;DFT (LDA,GGA); www.gaussian.com [379]
PHF; Hybrid HF-DFT;

AE; PP;f -GTO; GO;O(N)

5 ADF2006 DFT (LDA,GGA); /www.scm.com/Doc/ [864]
(BAND) Hybrid HF-DFT; Doc2006.01

TD-DFT; AE; STO;

6 SIESTA DFT (LDA,GGA);PP; www.uam.es/ [400]
NTO; GO; MD ;O(N) departamentos/ ciencias/

fismateriac/siesta

7 AIMPRO DFT(LDA,GGA); PP; http://newton/ex/ [555]
LGTO ac.uk/research

8 SEQUEST DFT (LDA, GGA);PP; http://dft.sandia. [865]
GTO;O(N);GO gov/Quest

9 DMOL3 DFT (LDA, GGA);AE; http://people.web.psi.ch/ [866]
NTO; GO delley/dmol3.html

10 FPLO DFT (LSDA,LSDA+U); www.fplo.de [867]
AE; LO;

11 PLATO DFT (LDA); www-staff.lboro.ac.uk [868]
NTO;GO / masdk/plato.html

12 QUICKSTEP/ DFT(LDA,GGA); http://cp2k.berlios.de [859]
CP2K PP;GTO/PW

13 CNDO 4.0 SE,BAND,GE www.wgc.chem.pu.ru [869]
/ valera/cndo/manual.html

14 MOPAC2002 SE,BAND,GE www.cachesoftware. [312,870]
com/mopac

15 MSINDO SE,CCM,STO,GO,MD www.theochem.
uni-hannover.de/ [256]
Bredow/MSINDO

16 SOLID2000 SE,CCM,QR-INDO, www.stech.sk/stech [307]
STO,GO soft/htm

17 SYM-SYM SE,CCM,INDO,GO www.cmmp.ucl.ac.uk [871]
/ lev/recearc4/node8.html
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The reader can also find useful such codes as XCrysDen( [873], GULP( [875] and
BAND-GUI( [345].

XCrysDen program can be used as a graphical user interface (GUI) for the CRYS-
TAL95/98/03/06 programs. The advantage of the GUI is its rendering possibility,
which yields graphical feedback to the user. Every manipulation of the structure is
visualized immediately and to enhance the usefulness of XCrySDen even further, an
UNDO/REDO option is available, which makes every false move recoverable. Several
graphical procedures make the manipulation of the atomic structures easier, while
other graphical functions are suitable for checking the geometry of the structure.
This program uses the ease of a GUI and the flexibility of manual editing and allows
the user to view and edit the input scripts for the CRYSTAL programs on request.
Immediately after the manual editing is completed the program visualizes the result.
We refer the reader for details to the program description [874].

GULP is a program for performing a variety of types of simulation on materials
using boundary conditions of 0D (molecules and clusters), 1D (polymers), 2D (sur-
faces, slabs and grain boundaries), or 3D (periodic solids). The focus of the code is on
analytical solutions, through the use of lattice dynamics, where possible, rather than
on molecular dynamics. A variety of force fields can be used within GULP spanning
the shell model for ionic materials, molecular mechanics for organic systems, and the
embedded-atom model for metals. Analytic derivatives are included up to at least
second order for most force fields, and to third order for many.

ADF2006.01 is the first ADF release containing a graphical user interface for
the BAND program. BAND input also enables inexperienced ADF-BAND users to
easily create BAND jobs. You can use BAND input to define your periodic structure
(geometry), and to set details of your BAND job using an easy-to-use graphical user
interface. BAND input will generate the complete job script for you. This script takes
care of running BAND. You can also use BAND input to run these script files on your
local machine in the background.
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- Mulliken-Rüdenberg 199, 201
- PM3 206
- extended Hückel 194, 196

- cyclic cluster
- CNDO 218
- INDO 220
- MSINDO 221

Site-symmetry group 8, 22
- oriented 25

Solid solutions
- supercell model

- LacSr1−cMnO3 453, 455
Space group 17

- 1D 17
- 2D 17
- 3D 17
- designations 18
- elements 17
- nonsymmorphic 18
- plane 17
- symmorphic 18
- table 18



Index 557

Supercell
- for centered lattices 16
- transformation 16

- symmetrical 124, 521
Surfaces of crystals

- (001)
- MgO 471
- cubic perovskites 473

- (110)
- T iO2 471

- surface energy
- T iO2 (110) 477
- MgO (001) 475, 476
- slab model 474

- SnO2(110)
- atomic charges 499

- BSSE
- SnO2 (110) 497

- atomic charges
- LaMnO3 (001) 516

- bare surface (001)
- SrT iO3, SrZrO3 507, 509

- cyclic cluster
- T iO2 (110) 482

- density of states
- SrT iO3, SrZrO3 (001) 512

- models
- molecular cluster 459
- periodic slab (supercell) 459
- semi-infinite crystal 459
- single slab 459

- molecular cluster
- T iO2 (110) 483
- T iO2 (110) 484

- slab
- SnO2 (110) 496

- surface F center
- SrT iO3 (001) 513

- surface energy
- LaMnO3 (001) 515, 517
- SnO2(110) 497
- SrT iO3, SrZrO3 (001) 511

- water adsorption

- SnO2(100) 505
- SnO2(110) 501, 503
- T iO2 (110) 484, 488, 490, 492, 493

Surfaces types
- type-1

- MgO 466, 467
- type-2

- TiO2 (110) 468
- type-3

- SrT iO3, LaMnO3 469, 470
Symmetry elements 7
Symmetry operations 7
Symmetry properties 48

- of crystalline orbitals 49
- of molecular orbitals 49
- of the Hamiltonian 48
- time-reversal transformation 50

Translation
- improper or fractional 17
- proper 17

Wannier function 87, 90
- local MP2 method 185
- surface

- slab model 478
- surface

- MgO (001) 479
- T iO2 (110) 480

- Wannier type atomic orbitals 96
- generation 91, 92, 94

- variational method 97
- comparison of methods 95
- variational method 99, 101

- symmetry
- local MP2 method 189

Wavevector
- little group 60
- point-symmetry group 57
- star 58

Wyckoff positions
- notation 22
- parameter-dependent 22
- parameter-free 22


