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Introduction to the Series

The Series ‘Topics in Molecular Organization and Engineering’ was initiated by
the Symposium ‘Molecules in Physics, Chemistry, and Biology’, which was held
in Paris in 1986. Appropriately dedicated to Professor Raymond Daudel, the
symposium was both broad in its scope and penetrating in its detail. The sections
of the symposium were: 1. The Concept of a Molecule; 2. Statics and Dynamics
of Isolated Molecules; 3. Molecular Interactions, Aggregates and Materials; 4.
Molecules in the Biological Sciences, and 5. Molecules in Neurobiology and So-
ciobiology. There were invited lectures, poster sessions and, at the end, a wide-
ranging general discussion, appropriate to Professor Daudel’s long and distin-
guished career in science and his interests in philosophy and the arts.

These proceedings have been arranged into eighteen chapters which make up
the first four volumes of this series: Volume I, ‘General Introduction to Molecular
Sciences’; Volume II, ‘Physical Aspects of Molecular Systems’; Volume III, ‘Elec-
tronic Structure and Chemical Reactivity’; and Volume IV, ‘Molecular Phenomena
in Biological Sciences’. The molecular concept includes the logical basis for geo-
metrical and electronic structures, thermodynamic and kinetic properties, states
of aggregation, physical and chemical transformations, specificity of biologically
important interactions, and experimental and theoretical methods for studies of
these properties. The scientific subjects range therefore through the fundamentals
of physics, solid-state properties, all branches of chemistry, biochemistry, and
molecular biology. In some of the essays, the authors consider relationships to
more philosophic or artistic matters.

In Science, every concept, question, conclusion, experimental result, method,
theory or relationship is always open to reexamination. Molecules do exist! Never-
theless, there are serious questions about precise definition. Some of these ques-
tions lie at the foundations of modern physics, and some involve states of aggre-
gation or extreme conditions such as intense radiation fields or the region of the
continuum. There are some molecular properties that are definable only within
limits, for example, the geometrical structure of non-rigid molecules, properties
consistent with the uncertainty principle, or those limited by the neglect of quan-
tum-field, relativistic or other effects. And there are properties which depend
specifically on a state of aggregation, such as superconductivity, ferroelectric (and
anti). ferromagnetic (and anti). superfluidity, excitons. polarons, etc. Thus, any
molecular definition may need to be extended in a more complex situation.

Chemistry, more than any other science, creates most of its new materials. At
least so far, synthesis of new molecules is not represented in this series, although
the principles of chemical reactivity and the statistical mechanical aspects are
included. Similarly, it is the more physico-chemical aspects of biochemistry, mol-
ecular biology and biology itself that are addressed by the examination of questions
related to molecular recognition, immunological specificity, molecular pathology,
photochemical effects, and molecular communication within the living organism.
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vi INTRODUCTION TO THE SERIES

Many of these questions, and others, are to be considered in the Series ‘Topics
in Molecular Organization and Engineering’. In the first four volumes a central
core is presented, partly with some emphasis on Theoretical and Physical Chemis-
try. In later volumes, sets of related papers as well as single monographs are to
be expected; these may arise from proceedings of symposia, invitations for papers
on specific topics, initiatives from authors, or translations. Given the very rapid
development of the scope of molecular sciences, both within disciplines and across
disciplinary lines, it will be interesting to see how the topics of later volumes of
this series expand our knowledge and ideas.

WILLIAM N. LIPSCOMB
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Prefaces

Why this Book ?

Starting from pure academic knowledge, Quantum Chemistry has gained the rank of full
partner in most chemical research carried out today, from organic chemistry to solid state
chemistry, from biology to material sciences, from astrophysics to chemical engineering.

Evolution has been rapid.

After a promising start in the mid twenties, Quantum Chemistry then faced the first
technological block: the numerical barrier.
The consequence has been a flourishing of concepts still found in the present literature and
in the common langage of all physico-chemists when it comes to understanding the basic
phenomena.

Then appeared the time of computers. Quantum chemists developed semi-empirical codes
that rapidly evolved into ab-initio complex systems of programs. According to their
optimistic or pessimistic views, colleagues have seen this period either as that of semi
-quantitative or of semi-qualitative theoretical chemistry. Very recently came the age of
super computers, and a generation of quantum chemists have seen their dream come true: at
last, the quality of the calculation is in harmony with the quality of the concepts.

At a time when an increasing number of chemists are being dangerously attracted by the
fascination of supposedly easy computing, it seemed an appropriate opportunity to dedicate
a volume to Gaston Berthier. Born in 1923, a year in which the scientific community
celebrated the 10th anniversary of Bohr's quantum theory of the atom, but also the year
when de Broglie published the fundamental idea that the orbit of an electron is linked to a
stationary condition on the associated wave, Gaston Berthier took part in all the evolution
and unavoidable conflicts between the anciens and the modernes at each stage of
development of the discipline. Often in advance of his time, but never rejecting the past,
Gaston Berthier has inspired generations of young, and less young, scientists in almost
every branch of theoretical chemistry and its applications to experiment.

The title "Strategies and Applications in Quantum Chemistry" was chosen to illustrate his
dual philosophy. The response of former collaborators of Berthier, often former students,
always friends, has been overwhelming, as is evident from the size of this book.

Most of the signatures come from the community of the Theoretical Chemists of Latin
Expression, a melting pot conceived by Berthier and a few others. The contributions range
from the prefaces with a personal assessment by the first witnesses of Berthier's beginning
through a series of articles covering basic developments in MCSCF theory, perturbation
theory, basis sets, charge densities, wave function instabilities, correlation effects,
momentum space theory, through contributions to understanding EPR spectroscopy,

xi
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magnetic properties, electric field effects, electronic spectra, interaction between radiation
and molecular structures, puzzling astrophysical systems, clusters and, as an opening to a
different world, muonium chemistry.

Although the broad spectrum of Quantum Chemistry represented by the thirty or so articles
contained in this volume only partially reflects the variety and richness of Berthier's
preoccupations, it should convey to the coming generation of quantum chemists and to all
readers the useful lesson of an outstanding chemist maintaining wide interests and resisting
the drift of fashion.

It is a pleasure to thank all the contributors to this volume for their gracious and
enthusiastic cooperation, with a special mention to J.P. Flament for his kind assistance.
This book is simply a measure of universal regard and affection and the date is just what it
is, no more, since we all know that G.B. will never retire.

Y. Ellinger M. Defranceschi



At the Dawn of Quantum Chemistry:
The Role of Gaston Berthier

The active involvement of french scientists in the development of quantum chemistry started
rather late. Strangely, as is may seem to be, the native country of Louis de Broglie was for
a long time rather insensitive, if not resistant, to the possible significance and usefulness of
quantum theories for the development of chemical knowledge. The strangest opponents
were found, as can be guessed, among... the chemists. When we were students, the highly
popular series of courses leading to the Certificate of General Chemistry, which implied a
whole year of studies, hardly mentioned the existence of an electronic structure in atoms or
molecules. The situation was somewhat better in the Certificate of Physical Chemistry in
which the foundations of the quantum theory were studied in more details but even there the
practical incidence of the theory was limited to the case of the molecule. Nobody seemed
to have considered seriously that quantum theory could be of practical use in contributing to
the solution of chemical problems involving larger molecules.

It is on this background of indifference, if not of open animosity, that a group of young
research workers have undertaken, in the forties, the courageous, but rather risky for their
career, task of promoting the development of quantum chemistry in France, with the well-
conceived goal of exploring its capacity for studying realistic problems related to the
exploration of molecular properties, without any a priori limitation as to the size of the
molecules involved. Gaston Berthier was one of the earliest members of these local
pioneers.

A crucial event which greatly helped to stimulate the interest of the french scientific
community in the potentialities of quantum chemistry was the holding in Paris, in 1948, of
an international symposium on the methods, achievements and status of quantum
chemistry, which was attended by the most eminent specialists in this field. Suffice it to
mention the presence of Linus Pauling and Robert Mulliken. It is that year that Gaston
Berthier joined our group.

This happened at an interesting moment in our activities. These were concentrated at that
period on the structure and properties of polynuclear aromatic hydrocarbons, in particular
but far from exclusively, in relation with their carcinogenic activity. For purely historical
reasons, due to a large extent to the international prestige of Linus Pauling, the method
which we have been using for this sake, was the valence bond method. By 1948 we have
clearly realized the practical limitations of this procedure for the exploration of large
molecular systems and turned our attention to the molecular orbital method much more
suitable for such an endeavour. Berthier joined our laboratory just at this methodologically
turning point. He was thus immediately associated with what were the first works and
publications ever performed in France by this method. They dealt with the electronic
structure of aromatic hydrocarbons composed of four and five benzene rings, a tremendous
task at that time.

We may say that from that period on, Berthier became one of the best experts in France of
the molecular orbital method and an acknowledged pioneer in its application and
development.

xiii
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In the few years which followed his first steps in the field he succeeded in investigating by
the relatively simple Hückel approximation a large number of new and fascinating problems
in organic chemistry of conjugated systems. This involved, in particular an extremely vast
exploration of non-aromatic benzenoid compounds, starting from the small fulvene and
azulene up to rather very complicated thermochromic ethylenes, a study which led to the
discovery of a number of unpredicted and surprising properties, in particular in the field of
dipole moments and ultra-violet spectra, which contradicted a number of rules "established"
by the resonance theory. A special mention must be given to his contribution to the
theoretical exploration of the diamagnetic properties of polycyclic hydrocarbons and of the
electronic structure of free radicals and biradicals. This very prolific activity was carried out
in the early fifties.

Parallel to this use of relatively simple approximations of the molecular orbital theory to the
study of complex molecules Berthier has investigated the possible utilization of more
refined molecular orbital procedures in the study of necessarily smaller molecules. We owe
him the first application of the SCF method to the study of fulvene and azulene and also a
pioneering extension, presented in 1953, of the SCF method to the study of molecules with
incomplete electronic shells.

This was altogether a most important period in the history of quantum chemistry in France,
when slowly but surely the electrons gained the right of citizenship in chemistry. Berthier is
largely responsible for this success both through his scientific contributions and through the
influence which he has exerted on an number of young students and the enthusiasm which
he has distilled in them. He had the chance of becoming a good friend of another of our
research collaborators in these early years, Madame Serre who was to become later the
Director of the Ecole Normale Supérieure de Jeunes Filles. Berthier used to divide his time
between our laboratory and that of Madame Serre; the latter enabled him to have the greatest
number of female students among all the quantum chemists in the world. This is, may be,
why he remained a bachelor.

We are referring here only to the early years of Berthier's activity in the field of quantum
chemical theory. These were the decisive ones and from some point of view the most
difficult but also exciting ones. Needless to say, everybody knows it, that he has continued
since and continues still, to contribute in a most efficient way to the development and
propagation of quantum chemistry and, at this time, not only in France but on the world
scene.

A. Pullman B. Pullman



Quantum Chemistry: The New Frontiers

J. TOMASI
Dipartimento di Chimica e Chimica Industriale. Università di Pisa
Via Risorgimento 35, 56126 Pisa, Italy

1. Introduction

The members of the scientific community are accustomed to work within a frame of rules,
laws protocols, which constitutes the accepted paradigm of a specific discipline. Moreover,
the paradigms of the various disciplines, or the scientific programs, if one prefer a different
terminology [1], are interrelated and connected in a wide and at the same time tight set of
general truths and criteria which constitutes the basic layout of science. Innovation means
to modify protocols, to question truths, to introduce new models and ultimately to infringe
rules, if necessary, but all these innovations are accurately examined before presentation to
the community, planned and justified according to considerations inherent to the specific
protocol and of the general layout of correct scientific methodology.
Things are different when a scientist has to give a overview of the future trends of his
discipline. Prediction is an art, more than a science, and also the more modest goal of a
critical appraisal of the trends of evolution, and of selection of a set of themes for which
progress is expected or hoped cannot be performed with the same instruments used in the
everyday research.

I will thus rely on my tastes, my biases, with an attempt of tempering them with
considerations on the past.

This modest essay will be inserted in a book in honour of Gaston Berthier. He is decidedly
more qualified than myself to undertake this task, having a far larger experience and clearer
ideas on what is good or less good in the theoretical chemistry production. It is a detriment
for the book that Berthier is not the author of these pages. The collection of authors
gathered here to honour Berthier, and the titles of the contributions they are providing for
the book lead me to suspect, and to hope, that the reader will derive a clearer and better
idea of the future trends in quantum chemistry by the global appreciation of the whole book
rather than by the lecture of these few pages.

2. The "modern" quantum chemistry of the past 30 years

Theoretical chemistry may be considered an old discipline: the first steps of "modern"
chemistry (in the 18th century!) are imbued of theoretical considerations, and in the course
of the past century theoretical arguments and approaches have grown into a wide body of
methods and concepts which can be collected under the heading "Theoretical Chemistry".
In the last decades there has been a remarkable shift, making more precise and restricted

Y. Ellinger and M. Defranceschi (eds.), Strategies and Applications in Quantum Chemistry, 1–17.
© 1996 Kluwer Academic Publishers. Printed in the Netherlands.
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2 J. TOMASI

the meaning of theoretical chemistry which now may be defined as the discipline studying
molecules with quantum mechanical methods.

The progress in science does not proceed with a steady pace. Periods of quantitative
growths, often rich of results, begin, and end, with sudden changes which gives rise to a
quantitative turn in the research methods.
In my opinion, the last qualitative change in theoretical chemistry corresponds to the
introduction of computers in chemistry. A conventional date for the beginning of this last
period may be indicated in the Boulder Conference of 1959 [2], i.e. more than thirty years
ago. The use of more and more large and efficient computers has shifted the attention of
theoretical chemists to an extensive use of quantum mechanical calculations.

Quantum mechanics was the dominant theory in chemistry even before the advent of
electronic computers. The conventional date for the beginning of this period may be fixed
at 1927 with the publications of the Heitler and London paper on hydrogen molecule [3].
The growth of theoretical chemistry (or better, theoretical quantum chemistry) between
1930 and 1960 (thirty years, again, as for the last period) has followed a research
programme different from that accepted in the most recent period.

We shall return later on this difference of approach. Before the advent of quantum
mechanics theoretical chemistry was influenced by the lack of a comprehensive theory for
matter at the microscopic level. In the preceding thirty years, i.e. from the beginning of this
century, there has been an evolution of the main line of research, based on the adoption of
approaches (paradigms) derived from physics with a progressive shift from an alternative
approach, based on chemical concepts, elaborated during the last part of the preceding
century by structural chemists. The physical approach has given much emphasis to the
molecule, considered as a physical entity, the properties of which are sufficient to interpret,
and to predict, the chemical behaviour of matter.

According to this partisan view of the evolution of theoretical chemistry we draw the
impression of a choice, in which the single molecules represent the basic unit of
investigation, the quantum theory provide the theoretical basis, and computer calculations
the final step. The three periods of growth are, in reality related, and the "sudden" changes
in between do not corresponds to "revolutions" in according to the meaning this word has
in the Kuhn's analysis [4].
Just at the closing speech of the event we have chosen as indicative of the beginning of the
last period, the Boulder Conference of 1959, C.A. Coulson [5] expressed the
preoccupation that the new era of theoretical chemistry, so bright of exciting promises,
would also lead to a splitting of the discipline into two (or to be more precise, three)
separate domains, each having its own set of paradigms, and not paying much attention to
the evolution of the other domains.
According to the Coulson words, the exponents of group I were committed to "in-depth
computing" and "prepared to abandon all the chemical concepts and simple pictorial quality
in their results" "in order to achieve complete accuracy"; while "the exponent of group II
argue that chemistry is an experimental subject, whose results are built into a pattern
around quite elementary concepts". The third group was at that moment (1959) more a
hope than a reality; the "spreading of quantum chemistry to biology": "Group I exponents
will throw up their hands in horror at such attempts", "group II members will mistrust the
complete neglect of many terms which are known to be large", but "the prizes are
immense": "there is much experience possessed by professional biologists which could be
linked with the deeper levels of interpretation associated with quantum chemistry", even if
"biological systems are much more perverse than any laboratory chemical system".
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Thirty years later we may compare these indications of possible trends in the evolution of
theoretical chemistry with the present status of the discipline. The separation into three
separate disciplines has not been happened. Grace to the efforts of a small number of
persons aware that the primary objective of theoretical chemists is to interpret chemical
phenomena, and that for this interpretation the semi-quantal interpretative tools elaborated
in the preceding stage of the discipline were nothing more that imperfect, provisional
instruments, the links between the first two approaches have been reinforced. The handful
of persons I refer here - the names of whom are familiar to every theoreticians and among
whom I would here remember Berthier - took the correct position that the most efficient
way of improving interpretative tools was to work, personally or through the younger men
under their control, on both sides, in the implementation of new computational and
theoretical methodologies, and in the exploitation of these progresses for the definition and
refinement of the interpretative tools.

An analogous role has been played by other scientists in strengthening the ties between
quantum chemistry of type I (and type II) with the area corresponding to biochemistry (or
complex molecular systems in general), a task made more difficult by the explosive growth
of structural and functional information about biomolecular systems. It is worth to remark
here that such a fruitful use of quantum chemical concepts in biology has requested the
extension of the methods to approaches different from quantum molecular theory in the
strict sense introduced before. We shall comeA back to this remark later.

I think that the majority of my colleagues will agree with this statement: Coulson's worries
are not become a reality, theoretical chemistry has survived to the impact with
computerized quantum mechanics and has grown in a complex discipline, rich of different
facets, and with an increasing weight in chemistry.
It rests however that many aspects of the Coulson analysis were correct: he rightly singled
out the three most important directions of progress in theoretical chemistry (we may add
now a fourth group). There has not been a complete divorce among the three groups but a
sizeable number of scientists continues to work with enthusiasm and success (we shall
distinguish later between enthusiasm and success) on the development of formal theories
and on their translation into computational codes, without bothering much about chemistry,
while another active group produces model about complex structures and functionalities in
large complex systems, without paying much attention to the congruence with the basic
paradigms of the discipline which remain those of quantum mechanics.

As anticipated before there is now another group, called in the following pages group III,

with the goal of getting specific information about structure, energetics, observables, as
derived from the calculations, without any methodical attempt of "understanding" the
phenomenon

The presence of these strong differences in the community of theoretical chemists is mainly
due to the explosive growth of the discipline. Theoretical chemistry has kept the pace with
science in general in the ever increasing rate of development, and this remark, which could
be substantiate with many indicators, like the number of journals, the number of new of
sub-disciplines, of new scientific societies, etc., points out that theoretical chemistry
enjoys good health
We have to acknowledge the situation sketched here, a discipline which has got over the
peril of complete fragmentation during a stage of sudden change, and the presence of at
least four subgroups with well differentiated interests. This will be starting point for our
attempt of indicating the most probable, and the most hoped, lines of evolution.

those of persons making computations on chemical systems (and on chemical phenomena)
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3. Models and interpretation in quantum chemistry

To put things in a clearer perspective it is convenient to introduce - in a compendious form
- few methodological concepts.

Theoretical chemistry works on models. My point of view on models in chemistry - and
quantum chemistry in particular - has been expressed elsewhere [6]; this view closely
corresponds to that expressed by other colleagues [7-11]. I suggested a partition of a
quantum chemical model into three components, and in my scientific practice I have always
taken into consideration the presence and interplay of these three components. The
consideration of the evolution of the whole quantum chemistry suggests me now the
introduction of a fourth component of the models. My revised partition of quantum
chemical models may be put in the following form.

1) The material composition of the model (material model) which states what portion of
matter is explicitly considered in the model. This portion of matter may be described
in a "realistic" way, or reduced to a simplified description (e.g. a set of coupled
oscillators).

2) The physical aspects of the model (physical model) which collects the selection of
physical interactions considered in the model. It may be convenient to introduce a
distinction between interactions involving the components of the material model
alone and interactions involving the exterior.

3) The mathematical aspects of the model (mathematical model). Methods and
approximations used to study the selected physical interactions in the given material
model.

4) The interpretative aspects of the model (interpretative model). The collection of
chemical "concepts" (according to the definition given by Coulson) or other
interpretative tools selected to "understand" the output of a model.

The introduction of the last components in quantum chemical models makes easier the
analysis of the second methodological point I will consider here.

What is the ultimate goal of theoretical investigation in chemistry? There could be a
difference of opinions on this point and I will not express here my point of view. There
will be however unanimity on the statement that this ultimate goal - whatever its nature is -
will be achieved in a safer way if there is a good understanding of the results obtained with
the model.
Scientific inquiry, which requires the definition of a model, the examination of the results,
then, if necessary, the elaboration of another model, in a sequence of steps, is a complex
taste in which interpretation (or description) plays a crucial role. I hope that the
introduction of three levels, or steps, in the process of interpretation will be of some help
for our task.

1) Report. The outcome of the model must be collected, and selected, to put in evidence
the results of interest for the desired scope. The first step collects the relevant
empirical evidence provided by the model. In many cases the report is sufficient to
reject a given model (e.g. for reasons due to its mathematical component) but usually
it provides the material for the following steps.

2) Interpretation (or description). The aspects of the phenomenon brought in evidence by
the report are related to a set of "chemical concepts" which introduces a rationale in
the empirical evidence. This is the realm of chemical (or structural) "theories" which
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are not complete and often in competition (A given phenomenon may be described in
different ways, using different concepts, and invoking different "causes").

3) Explanation. This last step aims at reaching a fuller comprehension of the
phenomenon. Contrasting descriptions must find here a synthesis. A satisfying
explanation cannot be reached by examining the descriptions of the report of a single
model, but must consider a whole set of models. As members of the chemical
community we also require that the explanation so obtained applies to the "objects"
of the real word of which the model is a schematic representation.

A partition of the process of understanding a complex phenomenon into three steps has
been supported and justified by Runcimann [12] for social sciences. The definitions done
by Runcimann cannot be directly translated into our field, nor the names he selected for the
sequence of levels, but his scheme, presented here in a modified form, gives a contribution
to appreciate the strategy and the impact of specific works of research.

4. The different facets of quantum chemistry

4.1. GROUP I

The definitions given by Coulson to quantum chemists belonging to this group (electronic
computors, or ab initio-ists) is surely outdated. Every quantum chemists is now an
"electronic computer" and the difference between ab-initioists and non ab-initioists is rather
feeble.
There is a large variety of motivations and strategies for persons and works collected here
under this heading. The effort of making more efficient the computational algorithms,
extending thus the area of material and physical models for which the report becomes
satisfactory and quite exhaustive, has produced results of paramount importance.

The good success of these efforts has greatly improved the status of quantum chemistry in
the scientific community.Quantum chemistry is now one respectable branch of chemistry,
like organic synthesis or molecular spectroscopy, because their practitioners have shown
that high-level quantum calculations are not confined to models composed by 2-10
electrons, and that the information thus gained is valuable and comparable to that
obtainable with the aid of other methods. This achievement could be considered of
secondary interest ("well, there is another technique which confirms our evidences"), but
actually has had a great impact on the evolution of chemical thinking and teaching, suffice
to compare textbooks of chemistry ante 1960 with the present ones.

The future evolution of chemistry will be more and more based on theoretical concepts,
and we have to ascribe to "in-depth computors" the merit of this evolution, even if quite
probably the most significant progresses will not directly derive from very accurate
calculations.

This line of research has not lost his momentum. One of the reasons is the continuing
progress in the computer hardware and software. Methods and algorithms are, and will be,
continuously updated to exploit new features made available by computer science, as for
example the parallel architectures, or the neuronal networks, to mention things at present of
widespread interest, or even conceptually less significant improvements, as the increase of
fast memory in commercial computers. Computer quantum chemistry is not a mere
recipient of progresses in computer science. Many progresses in the software comes from
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quantum chemists, and also the stimulus of our discipline on the progress of hardware is
not negligible, as the example of Clementi tells.

Efficient computational algorithms for "in-depth calculations" produces, as output -
apparently this is a truism - accurate calculations. Let me consider now more in detail what
this means.

At the basis there is the tacit assumption of a reductionistic ideal. Quantum mechanics in
the current version is the correct theory, and the process of extracting from the whole
universe the molecule subjected to accurate calculations does not create problems. I do not
object this assumption, being however aware that there are objections, mainly for the
process of abstraction of one molecule from the whole universe ( see, e.g. Primas [13])
and for the definition of an isolated molecule (see, e.g. Wolley, [14],Claverie [15],
Sutcliffe[16]).

The material model is just a bit of matter - a molecule -, all the physical interactions are in
principle considered (even if some terms are discarded in actual calculations), the
modelization is thus reduced to the mathematical part. In addition, the report has the
characteristics of an explanation. Making reference to a celebrated sentence opining the
textbook on Quantum Chemistry by Eyring, Walter, Kimball [17]: "In so far as quantum
mechanics is correct, chemical questions are problems in applied mathemathics"; it may be
said that this program is a realization of that sentence.

This research program is far from being devoid of practical interest. Numerous are the
problems in which the interpretation of experimental evidence is dubious. ( Theoreticians
often forget that rarely experimental evidence is directly amenable to the properties of more
general interest for the progress of our knowledge of the material work; at the molecular
level at least theory and computations have the advantage of getting directly the property of
interest.) In case of doubt, as in the choice between two different values of a molecular
parameter, both fitting the experimental data, the computed value often has univocally
provided the right answer.
In many other cases the experimental approach is unable to give the desired answer,
because the material system is not available in laboratory, as it is the case for many
astrophysical problems, or because the experiment is too complex and delicate. I am unable
to find now the exact source of the remark performed some years ago by a well known
experimentalist that the determination of the octupole moment of a molecule requires a stay
of the molecule in the measuring device for a time of the order of a week, while a computer
gives an equivalent answer within few hours. I am not expert of the progresses in
measuring octupole moments, but surely the quality of the quantum mechanical results in
the meantime greatly ameliorated, the computer time reduced, the size of the molecules for
which this calculation is possible is noticeably enlarged (We may also add that the use of
this kind of program may be now left to a medium-grade technician, while the experimental
determination requires a good technical skill. This remark is not essential here, but has its
weight in the general economy of the research).

One of the fields in which the competition of ab-initio methods is evident is that of
molecular vibrations. The experimental technique is relatively easy - transient species apart-
but the ab-initio methods give now results of comparable quality and a wealth of additional
information [18]. It is reasonable to forecast that the number of experimental measurements
which will find in accurate ab-initio calculations a serious competitor will increase.
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It is worth to remark that the opposite also happens. There is an evolution in the
experimental techniques too, and in some cases this progress makes possible ( or
competitive) the measurement of a quantity formerly available via computations only. One
example is the detailed measurement of the electronic density of a molecule, and of the
related molecular electrostatic potential. The determination of these two observables has
been for many years a task feasible only by quantum-mechanical methods, now the
progresses in the elaboration of diffraction technique measurements makes possible a direct
determination.

I have reported this last example not for the sake of completeness in our discussion, but to
underline a different point. Quantum chemistry, in the work of group I and even more in
the work of group II, put the emphasis on some properties which by tradition are not
object of direct experimental determination. Electron charge distribution and MEP are just
two examples. The use of these quantities by theoreticians has spurred the elaboration of
experimental methods able to measure them. This positive feedback between theory and
experiment is an indication that quantum and experimental chemistry do not live in separate
worlds.

The competition between theory and experiments may be expressed in another way. Is
quantum chemistry able to predict special properties unknown to the experimentalists, or
the existence of compounds not yet synthesized? We are here considering the activity of
group I and the question thus regard a definitive demonstration of the existence (or non-
existence) of a given property or of a given compound; the question must be put in a
different way when addressed to persons belonging to group II. In the present case the
answer is partially positive.

There are several examples in the literature of recent years of convincing numerical
demonstrations that a compound not yet observed has a stable structure. It must be
remarked that these studies usually regard compounds of marginal chemical interest, and
that for innovative problems the quantum approach has always been late with respect to the
experiments. This delay decreases, but it is unlikely to expect that the leadership in the
search of new compounds will be assumed by in-depth calculations.
To substantiate this statement I will quote three examples. In the early sixties the discovery
of noble gases compounds came after the elaboration of the first codes for the ab-initio
calculation of polyatomic molecules: it was not possible however to give at that moment a
serious demonstration of the existence of or related compounds because the technical
means for in-depth calculations were not sufficient. Ten years later there has been a great
fuss about a presumed form of "polymeric water". Several theoreticians tried to
corroborate (or to disprove) that claim. The computational theory was at that time sufficient
to give a reliable description of the water dimer, but completely inadequate to disprove the
existence of that particular state of aggregation. Twenty years later the experimental
discover of a new stable form of carbon, , aroused first a sceptical reaction, then a
widespread interest. A definitive prediction of the stability of  via quantum mechanics
was at that time within the possibilities of an efficient computational centre, and it was not
necessary to wait until 1991 to discover the existence of carbon nanotubes. Other more
complex carbon structures are good candidates as potential carriers of new properties, but
there is no indication of resolute efforts of group I in this direction.

Another aspect of quantum chemical activity which we connect with group I is the formal
elaboration of new approaches. At the beginning of the "computational era" (i.e. 30 years
ago) there has been a blossoming of new formulations and new approaches which have
given origin to to computer algorithms constituting the basic structure of today in-depth
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calculations. The names of Roothaan, Boys, Nesbet, McWeeny, Löwdin, Shavitt are few
examples randomly selected to make more clear what kind of activity I am considering
here. This activity has continued in the following years, and the formal framework of
quantum chemical theory has greatly changed from 1960 to now.

It is my impression, however, that the momentum has decreased, and not for the lack of
enthusiasm. Several interesting approaches have been formulated ten, or more, years ago
and still wait the final step necessary to pass from an exploratory stage to efficient tools to
be used for chemical applications. Formal quantum chemistry is a mature discipline and the
progresses occur now at a slower pace. The potentialities are not fully exploited, however,
and further efforts must be encouraged, the reward being now larger than 30 years ago,
because the larger impact quantum theory has now in chemistry. An example is given by
the density functional theories, which after many years of induction, are now amply paying
for the efforts of elaboration. The future of quantum chemistry is also in the hands of the
persons struggling with unconventional approaches.

4.2. GROUP II

The definition given by Coulson for this second branch of quantum chemistry has not been
a well selected choice. Coulson spoke of "non-electronic computers", when the use of
computers to examine "chemical concepts" and to elaborate new interpretation tools was
already initiated. Within few years from the Coulson analysis the computer become the
main instrument for interpretation (or description).

What is the main difference in the use of quantum calculations between group I and II ?

Group I relies, as said before, on the reductionistic ideal that everything, in the field of
chemistry, is amenable to the first principles and that a correct applications of the
principles, accompanied by the necessary computational effort, will give the answer one is
searching. It is a rigourous approach, based on quantum mechanical principles, in which
the elements of the computation have no cognitive status, unless when employed to get
numerical values of physical observables or of other quantities having a well defined status
in the theory.

Group II accepts the basic postulates of group I, performs molecular calculations as group
I but with a different philosophy which may be appreciated by contrasting two quotations.
The opening sentence of Quantum Chemistry by Eyring et al. I have already quoted is
often considered as a shortened re-formulation of another famous saying by Dirac [19]
which deserves to be reported here because its second part is often omitted: "The
underlying physical laws necessary for the mathematical theory of a large part of  physics
and the whole of chemistry are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too complicated to be soluble. It
therefore becomes desiderable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the main features of
complex atomic systems without too much computation". The members of group II
address their attention to the last part of this sentence, with the emphasis put on the
"explanation". It is a quite different philosophy, in which the extreme variety of chemical
phenomena plays the essential role in assessing the strategy.

To achieve their objective the members of group II are compelled to complement the
quantities with a correct formal status in quantum mechanics (e.g the observables) with
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others which, according to the Primas definition [13] are graceless. These graceless
quantities are defined and selected with the scope of "understanding", i.e. in our
terminology with the scope of giving an interpretation of the chemical phenomena.

The "nature of the chemical bond" , the "chemical group effects" are examples of
"concepts" accepted by group II as objects of theoretical investigation. To perform these
studies it is allowed to introduce other "concepts" and "quantities" which have a
questionable status in the formal theory.

There is a large number of concepts and quantities of this kind used in actual
investigations, and a large rate of increase of new formulations. This abundance of
interpretative tools could lead somebody to suspect that we have lost any control on the
growth and on the use of of these instruments and that interpretation in chemistry is
becoming an exercise in which is possible to reach the conclusions one desires by an
appropriate selection of the tools.
This is not my opinion, and I will try to explain why.

Interpretation, as it has been already said, is not univocal. There is competition among
different interpretations, and the concept of  "generality" of an interpretation (i.e. its range
of applicability) should be - and in fact is - an important criterion to eliminate ad hoc
descriptions. In other words a good chemical concept must be robust ( the adjective is
taken again from the Primas book [13]). Gracelessness and robustness must be balanced.
As example we may consider the natural orbitals. These quantities have been proposed by
group I: they have "grace" and little effectiveness in the interpretation. Their use in the
Weinhold's formulation of natural bond analysis (NBOA) [20] makes them graceless but
effective; it rests to verify if this formulation is robust enough.

The definition of "concepts" must be accompanied by explicit recipes for computing them
is actual cases. There is no more space in theoretical chemistry for "driving forces",
"effects', etc. not accompanied by specific rules for their quantification. The impact of a
new "concept' will be greater if the rules of quantifications are not restricted to ad hoc
methods, but related to methods of general use in molecular quantum mechanics. A
concept based exclusively on some specific features of a given method, e.g. the extended
Hückel method, is less robust than a concurrent concept which may be quantified also
using other levels of the theory.

The "chemical concepts" represent a part of the model and must share with the entire model
other requirements, in particular simplicity, falsicability, and agreement with the general
laws of physics [6]. These additional criteria make possible to keep under control the
growth of methodological proposals.
The elaboration of "concepts" often requires the partition of the molecule into smaller
subunits. This partition is not supported by formal theories, and it is thus at a good extent
arbitrary. The consideration of the above mentioned criteria introduces strong limitations in
the choice of submolecular units. In fact there are only three basic choices: the constituent
atoms, the molecular orbitals and the partition of the charge distribution into localized
units. Each choice presents advantages and disadvantages which is not convenient to
analyze here.
The selection of a type of basic subunit is the first step in the elaboration of interpretative
tools. An analysis of this work, which represent the essence of the innovative activity of
group II is not possible here. It sufficient to remark that during this process of elaboration
there has been important "admixtures" of concepts having their origin in different choices
of the basic subunits.
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The concept of atom, for example, must be accompanied by a definition of "valence
states", based on the definition of hybrid orbitals, which play a prominent role in the
definition of VB structures and also constitute an important component in models based on
localized orbitals (LO). Localized orbitals represent a bridge between partitions of a
molecule based on molecular orbitals and partitions based on a dissection of the charge
distribution into local subunits. LO give an alternative view of electron correlation holes,
and in a different context offer a good starting point for semiclassical segmental partitions
of the charge distribution. The alternative concept of charge partitioning according to the
values of some physical quantities (e.g. the Bader's approach) challenge the traditional
partition into atoms or into LOs, offering new views of some concepts and permitting new
admixtures of tools.

I have selected few examples taken from the theory of molecular bonding, but this aspect
of competition and transference of concepts is present in all the fields of chemistry -and
they are quite numerous- in which quantum theory has given contributions.
Another important point is the connection with in-depth calculations. We have already
remarked that this connection is extremely important for the elaboration of interpretations.
There are two main lines, in my opinion.

The first could be called a constructive (synthetic) approach. Pragmatic and theoretical
reasons suggest to start computations appropriate for the model one has selected at a low
level of the theory; the goal is not to obtain the most complete report on the problem under
scrutiny but to reach a satisfactory degree of confidence in the interpretation obtained by
analyzing the results, and a set of reports at increasing levels of the mathematical model
may be of noticeable help in assessing the quality of the description. The constructive
approach may be also employed with the aim of getting accurate reports. In this case an
interpretative model is (tentatively) adopted, and the mathematical model is formulated
accordingly. The goal now is to get accurate results at a lower computational cost than
using brute force methods. Many formulations of this strategy have been elaborated, some
addressed to specific problems, others of more general character. The quotation of an
example always make more clear what a general statement means; to this end we recall the
recent generalized multi-structural wavefunction method (GMS) [21]. This approach
remind me the suggestion expressed by Dirac in the last lines of the above reported
quotation. It is worth to remark that the modern reformulations of the VB theory play an
important role in this field [22-23]. On the whole, the constructive approach is the most
potent and versatile method to connect chemical concepts to in-depth calculations,

The second approach is addressed to elaborate methods able to derive from accurate
calculations the points of interest for the interpretation The strategy, in general, consists in
the adoption of a simpler model (the mathematical aspects of the model are again
concerned) and the task consists in reducing the information coming from the full in-depth
calculation (not the the numerical values of observables and other statutory quantities
alone) to the level of the simpler model. For example accurate calculations may be reduced
at the level of a simple VB theory (Robb, Hiberty) or of a simple MO perturbation scheme
(Bernardi) making more transparent the interpretation.

Both approaches are subjected to criticisms and to errors. The stipulation of the model
constitutes a bias in favour of one among several possible alternatives, and the conclusions
will suffer if the choice was not appropriate. All the models, by definition, are subjected to
failures of this kind, and it rests with the users to exert their acumen to decide if the model
is applicable to the case under examination.
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I have touched few items selected in the varied activity of group II not sufficient to give a
balanced appraisal of the evolution and of the prospects of the quantum molecular theory
addressed to interpret chemical facts, but sufficient, I hope, to show that there is here, after
more than thirty years of activity, a noticeable momentum, and that in the foreseeable
future there will be other important progresses.
As a last point I would like to reconsider again a question already examined in relation to
the activities of group I. Is this kind of quantum chemistry able to predict properties, or
molecular species, unknown to experimentalists?

The question is now different from that asked before, because there is no more the demand
of a definitive or fully convincing demonstration. Coming back to the three examples
considered before, it may be said that the discovery of xenon fluorides could have
predicted with theoretical arguments ( and in fact this has been partially done, because
these compounds have been synthesized not by serendipity, but on the basis of theoretical
considerations). The relatively high stability of , and the stability of carbon nanotubes ,
as well as of other more complex structures not yet synthesized, involving knots of
different topology and pseudo-3D lamellar structures, has been already predicted, on the
basis of simple, not definitive, models. The example of polywater shows, on the contrary,
a weakness of the approach. There had been models supporting and describing the
properties of polywater. This activity came at an abrupt end when it was provided
experimental evidence that polywater is a myth. The weakness of interpretative models put
in evidence by this example will be even more critical when put in the context of the
activities of group IV which we shall examine later.

This cautionary remark expressed, we may conclude this section giving a positive answer
to our question. Quantum chemistry, in the version cultivated by group II, represents an
important factor in the growth of chemistry, and constitute one of the cornerstones of
molecular engineering, or similar activities addressed to plan, and to produce, new
substances, new materials endowed with special properties.

4.3. GROUP III

We supplement here the classification proposed by Coulson. The success of quantum
chemistry has given in fact origin to another group, hardly foreseeable in 1959. I am
collecting into group III persons not interested in producing new techniques for the
improvement of in-depth calculations), nor interested in elaborating and checking
interpretative tools, but simply interested in performing and using molecular calculations.
It is a reasonable activity for persons belonging to groups I and II to use, also for extensive
applications, the tools they have elaborated. This activity does not be confused, in my
opinion, with that of members of group III.

There is a variety of motivations for using molecular calculations, some of which are of
interest for the future evolution of theoretical chemistry.
When quantum calculations, at the ab initio and at the semiempirical level, gained foot in
the realm of chemistry, a steadily increasing number of experimentalists began to use
quantum calculations as a supplement in the exposition of their findings. In many case this
was - and still is - nothing more that an ornament, like decorations on a cake. This use of
quantum chemistry has been, in general, harmless, because results in contrast with
experimental evidence have been rarely published, and this production may be considered
now as a sort of advertising for the new-born computational chemistry. A more serious use
of the facilities offered by the computational techniques is done by scientists provided of
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the adequate training for a sound appreciation of the limits of the methods they were using.
Theoretical chemistry, as the other domains of experimental sciences, is not restricted to
the persons who have elaborated or improved methods, but open to all the researchers with
the necessary background. A large portion of the good work done in theoretical applied
chemistry can be classified here.

The dissemination of computers, and the diffusion of complex computational packages,
has given origin to another type of members of group III, the "molecular computers".
The links with the underlying theory become feeble. The computers are omnivorous:
observables or other statutory quantities attract their interest as well as molecular indexes or
other interpretative tools, these last often considered at the same degree of "realism" as the
physical observables. The selection of the level of the theory and of the method is based on
the criterion of "continuity", i.e. by looking at the methods used by other computers and
trying to do something better. A criterion to decide what is better is simply the cost of the
method: ab initio methods are better that the semiempirical ones which in turn are better
than the semiclassical ones. A larger basis set is better than a smaller one, and so on.

I have here purposely drawn a caricature instead that a faithful portrait of a relatively large
portion of our community, composed, on average, by young enthusiastic people. The
reason is that the future of quantum chemistry depends, at a good extent, on the evolution
of this group, and a flattening description overlooking deficiencies and questionable trends
of evolution does not help to address the progress along the most fruitful direction.

A crisis similar to that felt by Coulson in 1959 is probably impending now. Our fathers
have been able to close the gap between groups I and II offering on the one side methods,
computational tools, and confidence in numerical quantum chemistry and on the other side
accepting this offering and exhibiting the capability to re-formulate in a new form concepts
and approaches.

The present generation is on the verge of a splitting between persons devoted to the theory
and persons devoted to the practice of computation. Thirty years ago the young people was
mostly on the side of in-depth calculations, and this people gave a quite important
contribution to the evolution of chemistry; now the youngsters are on the computers side
and they also have contributions to give to the future evolution of theoretical chemistry (in
drawing my caricature of this group I have omitted the positive points). This group does
not benefit by a privileged situation akin to that enjoyed by group I at its beginning: a
good, reliable theory and the opportunity offered by new technical means of making
concrete dreams coveted for many years. Group III has no well established traditions, and
its driving force is the desire of enlarging our knowledge of the complex realm of matter at
the molecular level. This driving force has produced valuable methodological results (I am
not interested here to examine practical results, which are not negligible), in particular the
attitude of combine methods and approaches of different theoretical level into a unified
strategy. Molecular graphics is largely exploited, classical and quantum methods are used
in sequence or in parallel, information theory is exploited to enlarge the field of application
of the results, etc.
The oldest core of quantum chemistry (i.e. groups I and II) must give its help to strengthen
this trend of evolution. Theoreticians already satisfy the increasing demand of integrated
computational packages, easy to use. The next generation of programs should make easier
not the use only, but the modification of the procedures, the implementation of new
algorithms, the establishment of new connections among the several subunits of the
computational stock. At the same time the authors should provide more information about
the limits of the calculations performed with these programs.
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Computers of group III (let me use again this disparaging definition; it would be clear now
that my personal position is far from being disparaging) are shifting their interests to
problems of ever increasing complexity, because this is the evolution of chemistry, and are
now affording problems hardly treatable with canonical procedures elaborated for
molecules containing a moderate number of atoms. These problems represent a new
challenge to the theory, and this is the field of investigation of the last group in our
classification.

4.4. GROUP IV

Coulson signalled the possible formation of a separate group related to "the spreading of
quantum chemistry into biology". This prediction is now a reality and Quantum Biology is
an important branch of Quantum Chemistry [27], cultivated by members of all the
preceding groups. The contribution of group I via the elaboration of new formalisms as
well as via the elaboration of more powerful computational techniques constitutes the basic
layout; concepts and interpretations provided by group II find here an exciting field of
application (and a challenge to refine and to extend the methods); the computational
enthusiasm of group III with its combination of different approaches is especially
addressed to these problems.

I prefer do not consider scientists working in quantum biology as a separate group, but
rather to collect a sizable part of their activity into a more general group, characterized by
the presence in their problems of a large number of degrees of freedom. We could collect
here all the problems regarding matter in condensed phases, from real gases to perfect
crystals. In this very large body of systems - and of phenomena - many are not sensibly
affected by the increase of the degrees of freedom, and the traditional approaches are still
sufficient.

More interesting is the consideration of cases in which the traditional approach is ill at ease.
The theory of chemical bonding is not profoundly affected (special cases apart) from the
extension of the number of degrees of freedom. Clementi rightly pointed out that from the
point of view of quantum mechanical calculations there are no "too large" systems: the
portion of space including the matter exhibiting a non vanishing interaction with a localized
subunits (e.g. an atom or a bond) may be defined in terms of a sphere, with a radius
not extremely large. Nowadays our computational tools are able to fill almost completely
this sphere with interacting matter (electrons, nuclei) and to describe the interactions at a
reasonable (and steadily increasing) level of accuracy. This concept may be introduced into
our definition of models for quantum chemistry: there will be an overlap of material sub-
models, with defined physical interactions, and the whole problem is then reduced to the
specification of the mathematical model able to deal with the couplings among subunits. A
formidable problem is thus reduced to a more manageable form.

A report on the electronic structure of a large molecule at a given geometry is however the
first in a long sequence of steps. Even the next step, the recognition of the features of the
potential energy hypersurface presents formidable problems, well known to members of
group III who study conformational properties of large molecules. There are now
expedient ways to overcome (in part) the difficulties of this specific problem, but
analogous questions rise again at a higher level of investigation, when the "large
molecules" are involved in chemical reactions. This last problem is present, and perhaps
more evident, in the study of chemical reactions involving "small" molecules in condensed
media.
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The number of detailed studies on these last systems is nowadays sufficiently large to
generalize the results, and to project the conclusion to more complex (o "perverse",
according to Coulson) systems. The traditional view of a reaction occurring on a well
defined surface, with a flux of representative points passing the transition state region is
untenable. The separation between static and dynamic aspects of a problem, so often
exploited for studies an isolated molecule must be reconsidered.

There is a deluge of papers, as well as of methods and of approaches, addressed to these
problems. It is significant that in this blossoming of studies there is space for very simple
models (as regards the material composition of the model) as well as for very complex
models with a high degree of realism in the chemical composition.

A combination of different approaches is at present the most convenient strategy. Most of
the work done an complex material models adopts a classical formalism, disregarding for
the moment quantum aspects, while there are significant progresses in quantum description
of simple models [26].

I have briefly touched here two examples, structure of large molecules and reactions in
condensed media. The number of examples could be by far larger, from isolated molecules
again (the dynamics of excited polyatomic molecules, the study of their roto-vibrational
levels) to man-made materials with their specific properties (ceramics, polymers,
incommensurable phase systems, dispersed mesosystems) to materials of natural origin
(mainly, but not exclusively, of biological nature).

Numerous additions to our collection of methodological remarks could derive from the
consideration of other examples. The picture drawn here is extremely incomplete, but
sufficient to express some remarks and to draw some conclusions.
The various attempts, in the different fields, can be viewed as an effort to combine
methods and experience of two disciplines which have reached since longtime their
maturity: quantum mechanics for isolated systems and statistical mechanics. This effort of
combination produces important results, and the progress in this area is indisputable.

There is however the need of a qualitative jump. The resulting theory should not be called
quantum chemistry again: this now is an old and glorious name, corresponding to a very
active research domain, promising new progresses and important results; the more generic
name of theoretical chemistry is more suitable. Specific suggestions for the elaboration of
this theory, not supported by detailed analysis and discussion, could be considered with
scepticism or criticized for many reasons (partiality, inconsistency, errors, etc.). For this
reason I will refrain from suggestions, but I am unable to resist temptation of adding a few
concise remarks. Temperature is not a statutory quantity in quantum mechanics of isolated
systems and it is introduced here via a classical picture. A quantum definition of T, e.g. via
the fluctuations theory, could be an important supplement to a reformulated and generalized
theory. Time has a special status in quantum mechanics [27] but it should be reconsidered
when passing to complex systems arranged in hierarchical order [28,29]. We have thus far
assumed that all the activities in this domain are "covered" by the usual quantum theory.
The proviso expressed by Dirac just before the sentence we have quoted has been until
now superfluous. There are no convincing evidences of limits of the quantum theory in the
fields covered by groups I to IV. There is however a widespread dissatisfaction with some
basic aspects of the theory. If there will be something to change (and a change at this level
means the formulation of a new theory, encompassing the old one) the clue should come
from the realm of complexity, rather than from a reconsideration of simple gedanken
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experiments [30]. The future activity of group IV will be the forefront for further attempts
to amend and to extend the quantum theory.

5. Conclusions

My attempt of depicting the new frontiers for Quantum Chemistry has no produced
exhaustive and detailed indications. It is almost impossible to present in a few pages
indications of this type, of questionable validity even if expressed as final report of a panel
of experts, after a hard collective work on this theme. Quantum Chemistry is in fact one of
the cornerstones of Chemistry, enjoying good health as the other branches of Chemistry,
and there are ample and varied perspectives of progress. A selection of some themes would
means to indulge too much to personal tastes.

I have tried to sketch a partition of the various approaches in Quantum Chemistry into four
groups. This taxonomy is open to criticism and does not imply, in my intention, an
exclusive assignation of each quantum chemist to one of the four groups.

The main message of this short undertaking is that Quantum Chemistry in the different
facets it displays, still is an unique discipline, and the activities of a single researcher may
be often assigned to different groups.

Quantum Chemistry is a mature discipline: the roots are very far in the past, and during his
life, more than sixty years, it has been the subject of a "scientific revolution", and a second
important change (or "revolution") is on the verge. This change will perhaps modify the
relative importance of the various approaches, which I have denoted as groups, and surely
will present new challenges to the discipline. Some details and some suggestions have
been given in the preceding pages; here I limit myself to few conclusive remarks.
Molecular quantum chemistry in its computational version has to merge in a more intimate
and effective way with other branches of quantum mechanics and other disciplines or
techniques. The main lines of future evolution will be done by the adoption of complex
strategies involving several techniques, the molecular quantum chemistry, which embodies
the basic understanding of molecular structures and properties, quantum statistics, at the
equilibrium and out of the equilibrium, and many ancillary techniques, from information
theory to computer graphics, etc. The dynamic methods, and all the aspects involving time,
should make more efficient, the temperature should have a better defined status in the
theory.

A period of re-formulation of the theory, similar under some aspects to that which has
characterized quantum chemistry in the years 1930-1960, but projected toward more
complex objectives, should be opened now.
One of the main avenues open to quantum chemistry is that of the complex, very complex,
systems. There are the basic premise to reach these goals. I end thus this overview with a
note of optimism.
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Theory of Orbital Optimisation in SCF and MCSCF Calculations

C. CHAVY, J. RIDARD and B.LEVY
Groupe de Chimie Quantique, Laboratoire de Physico-Chimie des Rayonnements,
(UA CNRS 75), bât. 337, Université Paris Sud, 91405, Orsay Cedex, France

The aim of the present article is to present a qualitative description of the ’optimised’
orbitals of molecular systems i.e. of the orbitals resulting from SCF calculations or
from MCSCF calculations involving a valence CI : we do not present here a new
formal development (although some formalism is necessary), nor a new computa-
tional method, nor an actual calculation of an observable quantity ... but merely
the description of the orbitals.

In fact, it turns out that the orbitals resulting from SCF or valence MCSCF calcu-
lations in molecules can be described in extremely simple terms by comparing them
with the RHF orbitals of the separated atoms.

In the case of a valence MCSCF calculation the difference between the optimised
orbitals and these atomic RHF orbitals simply represents the way in which the atoms
are distorted by the molecular environment. Thus, this difference is closely related
to the idea of ’atoms in molecules’ ( l ) . However, here, the atoms are represented only
at the RHF level, and the difference concerns only the orbitals, not the intra- atomic
correlation.

The starting step of the present work is a specific analysis of the solution of the
Schrödinger equation for atoms (section 1). The successive steps for the application of
this analysis to molecules are presented in the section 2 (description of the optimised
orbitals near of the nuclei), 3 (description of the orbitals outside the molecule), and
4 (numerical test in the case of ). The study of other molecules will be presented
elsewhere.

1. The atomic case

We briefly recall here a few basic features of the radial equation for hydrogen-like
atoms. Then we discuss the energy dependence of the regular solution of the radial
equation near the origin in the case of hydrogen-like as well as polyelectronic atoms.
This dependence wi l l turn out to be the most significant aspect of the radial equation
for the description of the optimum orbitals in molecules.
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1.1. HYDROGEN-LIKE ATOMS

In the case of hydrogen-like atoms the Schrödinger equation can be written as (in
atomic units) :

where T represents the kinetic energy operator, Z the nuclear charge, -Z/r the
Coulomb electron-nuclear attraction, e the energy and the orbital.

The solution of this equation can be factorised into the product of a radial part
and an angular part (spherical harmonic where the radial part depends of
the quantum number l but not of m (2).

Inserting this form of into the eq.(l) gives the equation to be satisfied by the
so called radial equation :

It can be demonstrated (2) that two linearly independent solutions of this equation
can be chosen in general (i.e. except for some values of e) in such a way that one
of them (the so called ’regular’ solution) is continuous at the origin and diverges at
infinity, and the other one (the so called ’irregular’ solution) diverges at the origin
and tends to zero at inf in i ty .

Neither of these two solutions is square summable in general. However for some values
of e (the ’eigen values’) these two solutions coincide and can be accepted physically
for atoms since they both are continuous at the origin and they both tend to zero at
infinity.

It should be emphasized that we are not interested here specifically by these particular
values of e. On the contrary , what is useful here i.e. for the description of optimum
orbitals in molecules is to study the variation of the regular solution when e varies
continuously.

To solve that problem, we depart here from the development used for instance in (2)
and we write in the form :

(4)

Substituting this form of into the eq.(3) leads to :

(5)

But we are interested here only by the ’regular’ solution, and we can write in the

20 C. CHAVY ET AL.
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form of a power expansion

where the are numerical coefficients depending of l.

Substituting this form of into the eq.(5) gives a recursion relation which allows to
determine all the for any arbitrary choice of one of them. Choosing , one
gets

These expressions of the will allow us now to discuss the energy dependence of
and then to derive some consequences from this dependence.

1.2. THE VALLEY THEOREM

We first note that the choice made in deriving the eq.(7) simply consists in a
particular norm of (and thus of ). In fact the standard norm cannot
be used here since for most values of e the orbital is not square summable. The
choice is a convenient alternative for

Next we consider the value of . It implies the relation :

which is the well known ’Cusp’ theorem (see e.g. the ref.3).

An other aspect of the eq.(7) concerns the energy dependence of . In fact one
deduces from this equation that :

The meaning of the eq. (9) can be stated as : the energy dependence of vanishes
like near the origin (or even faster than since there is a partial cancellation
between the and terms). Therefore the energy dependence of  vanishes like

or faster.

This statement will be referred to here as the ’Valley’ theorem. It constitutes the
formal basis of our description of the optimum orbitals in molecular systems.

In fact, the Valley theorem is a simple extension of the Cusp theorem. However, the
Cusp theorem provides only a local information (for r=0), while the Valley theorem
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is the extension providing a qualitative information (weak e dependence) valid inside
a finite volume . This last aspect (finite volume) is the one that allows the description
of the optimum orbitals in molecular systems.

The Cusp and the Valley theorems express the same aspect of the Schrödinger equa-
tion, eq.(l) : since has no pole for r=0, the pole of can be compensated
only by ; but a pole of with a residue equal to -Z implies the Cusp theorem
(at the origin) and the Valley theorem (inside a finite volume around the origin).

It should be noted that the weak energy dependence of the orbitals inside a finite
volume around the nucleus has already been noted and used in different contexts : the
numerical determination of atomic orbitals (4) as well as the scattering of electrons
by atoms (5).

1.3. ORBITAL OPTIMISATION IN POLYELECTRONIC SYSTEMS

The equation determining the optimum orbitals of polyelectronic systems in the case
of the SCF and MCSCF theories can be written in the form :

where

-           are the creation operators corresponding to the orbitals and and j, l the
anihilation operators for the orbitals and

- h is the one electron part of the total Hamiltonian.

-        is a local operator :

- the factors are the Lagrange multipliers that take care of the orthonormality
constraints.

1.4. POLYELECTRONIC ATOMS

We consider here only the SCF case where the off diagonal factors vanish.
In addition, we assume that the orbitals satisfy the usual symmetry constraint i.e.
that they are pure s, p, d ... functions (RHF approach). On the other hand, no spin
constraint is assumed. Then the eq.(10) is most conveniently written as :
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with

The eq.(12) is similar to the eq.(l) in the sense that it requires a compensation
between T and -Z/r. The main difference comes from the presence of and that
might reduce the range of that compensation. In order to solve the eq.(12) one writes

and in the form :

We now study the dependence of the solution of the eq.(14) using the following
scheme :

- we first determine normalised by using some standard program of Quantum
Chemistry ;

- using these normalised we determine the functions  and ;

- then we set up the equation :

where f is an unknown function, e is a variable parameter, and are the func-
tions evaluated at the preceding step using the normalised  and   f (0),
are the values of f and at the origin (note that f (0) is unknown).
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- finally we solve the eq.(15) with various values of e but always with the same
functions

The factor ensures that the solution of the eq.(15) is independent of a
multiplicative factor (if f is a solution, then is also a solution for any number )
and that f is proportional to when It turns out that no useful comparison
with the molecular case can be made in the absence of this factor.

The eq.(15) can be solved by mean of a power expansion of f, and of in the
same way as the eq.(5) :

Substituting the eq.(16) in the eq.(15) gives a recursion relation which allows to
determine the Owing to the factor it is possible here to choose as done
in the eq.(7), so that one gets :

etc ...

The main aspect of the eq.(17) is that the orbital energy e occurs only in the coeffi-
cients with Therefore we obtain here the same results as the one obtained
in the case of hydrogen-like atoms (§1.1 and §1.2) :

- the energy dependence of the RHF orbitals of polyelectronic atoms decrease faster
than in the region close to the nucleus (Valley theorem);

- and the corollary that these orbitals depend very weakly of the orbital energy in a
finite volume around the nucleus. The range of that volume, which depends of the
magnitude of and , will be now determined numerically.

1.5 NUMERICAL ILLUSTRATIONS

We present here numerical results illustrating that the solutions of the radial equa-
tions (eq.(5) for the hydrogen-like case and eq.(14) for polyelectronic atoms) are
’weakly’ dependent of e in a finite volume.

In the case of polyelectronic atoms we have calculated the and parameters
as described in the preceding section (see above, the §1.4) i.e. using the normalised
orbitals resulting from a RHF calculation of the atom in a gaussian basis (11).

The radial equations was then solved using the Runge-Kutta method (7).

We present in Fig. (1-6) the  function defined in the eq.(2) (or defined in
the eq.(13)), in the case of the orbital 1s of Hydrogen (Fig.l), 2s and 2p of Carbon
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(Fig. 2 and 4) , 3s and 3p of Silicon (Fig. 3 and 5), and 3d of Scandium (Fig.6). In
each case three values of e have been chosen : the RHF value, one value higher by
0.2 H and one value lower by 0.2 H. Thus we can study the deviation of the orbitals
when e varies by around the RHF value.

It is seen on the fig.(l) - 1s orbital of the Hydrogen atom - that this deviation      is
smaller than 5% of the orbital for (close of the covalent radius of the H
atom). In the case of 2s(C) and 3s(Si), similar deviations (less than 5%) are observed
for r smaller than the position of the last extremum of the function (the one obtained
with the largest r) i.e. for in the case of Carbon, in the case
of Si. These distances are smaller than the covalent radii of these atoms (ca. 1.5 B
for C and 2 B for Si). But close to the covalent radius, (at 1.4 B for C and 1.8 B
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for Si) the deviation is still smaller than 10% of the value of the orbital at the last
extremum.

These results illustrate the fact that the orbital is weakly dependent of the energy
e at the peak for r=0 (Cusp theorem) but also down in the valley and even on the
next hill if any (Valley theorem).

In the case of the p and d orbitals (fig. 4-6) the deviations are larger than the
deviations obtained with s orbitals. This is simply because the magnitudes of the
p and d orbitals are larger than those of the s orbitals for r ca. 1.0 B due to the
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particular norm chosen here. In fact, it can be checked that deviations smaller than
10% of the value of the last extremum, are obtained for r values up to a limit close
to the covalent radius of the atom in all three cases ( for the 2p(C) orbital,

for the 3p(Si) orbital and for the 3d(Sc) orbital).

We conclude from these numerical examples that it is possible to give a quantitative
and probably rather general expression of the Valley theorem (weak e dependence
of the orbital in a finite volume around the nucleus) : a variation of the energy of
ca. 0.2 H results in a variation of the function smaller than 10% of the last
extremum of until a distance of the nucleus equal to ca. 90% of the covalent
radius of the corresponding atom.

2. Molecular systems

We arrive now at the main purpose of the present work : to find a qualitative descrip-
tion of the optimum orbitals (obtained by SCF or MCSCF calculations) of molecular
systems.

To that end, we will start with the same equation as the one used above in the case
of polyelectronic atoms,viz. the eq.(10), and we will try to use the equivalent of the
compensation between the kinetic energy and the nuclear attraction (T and -Z/r)
found in the atomic case.

In fact, it turns out that the compensation between the kinetic energy and the nuclear
attraction does lead to a qualitative description of the optimum orbitals in molecular
systems, but only in the frame of the following restrictive conditions.

i) Global versus local description. In the case of molecular systems, the one electron
part of the electronic hamiltonian includes a sum over the electron-nuclear attraction
of all the nuclei:

Therefore it appears that the above mentionned compensation takes place separatly
in the vicinity of each atom. We can arrive to a description of the optimum orbitals ;
however this description is not global, but local in the sense that it concerns separatly
the regions around each atom. Thus, we will hereafter consider only the region of a
single atom, say A, and study the effect of the compensation between T and

ii) Natural versus non natural orbitals. The factor is always combined in the
eq. (10) with the factor according to

If appears in several terms corresponding to
different orbitals, and it is difficult to demonstrate directly that the compensation
occurs separatly for each orbital. Therefore, we will consider here only the cases



28 C. CHAVY ET AL.

where i.e. we will consider only natural orbitals.

iii) Strongly versus weakly occupied orbitals. It is then seen on the expression 19 that
appears in the eq.(10) multiplied by when natural orbitals are

used. Thus, if is small then dominate
the remaining terms of the eq.(10) only in a very small volume around the nucleus
of A. In the remaining part of the volume occupied by the molecular system the
description of this orbital cannot be deduced from the Valley theorem. Therefore,
we will consider here only strongly occupied orbitals with
In fact, a simple description of the weakly occupied orbitals resulting from valence
MCSCF calculations has already been presented (12) .

iv) Canonical versus non canonical orbitals. Let us now consider the right hand side
of the eq.(10) which depends of the off diagonal Lagrange multipliers through terms
like Such terms may present very steep variations with so that the
Valley theorem may lead to no special conclusion. Therefore, we consider here only
the cases where one can have . A similar restriction has not been made
in the atomic case (section 1.4 above) because it turns out that is very
small in all useful cases.

v) Partial waves versus orbital . Finally it is worth noting already that the present
approach will tell us nothing concerning the orbitals themselves! It will tell us some-
thing only on each of the partial wave around A separatly : the relative weights of
the different partial waves in the total orbital do not result from the local compensa-
tion between T and . It appears rather as a global property of the molecular
system .

Let us note that the two conditions can be satisfied
only with canonical SCF orbitals. Thus, in fact, the present theory can be applied
only in such cases. However it has been demonstrated (12) that in most systems,
the strongly occupied MCSCF orbitals and the SCF orbitals are extremely close one
to the others. Therefore, in practice, the present theory also applies to the strongly
occupied MCSCF orbitals.

On the all, the limitations coming from the above hypotheses i-v are :

- one can find a description of the partial waves of the optimum orbitals near each
atom separatly , not of the orbitals themselves;

- these descriptions concern only the strongly occupied canonical orbitals, not any
type of orbitals.

We now return to the eq.(10). In the frame of the hypotheses i-v it writes :
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with

Let us now introduce the partial waves expansion of with the origin on the atom
A :

and the expansions given by the eq.(13) for and

Thus, the eq.(20) becomes

where the summations over l" and m" in the expression of arc restricted by the
conditions : and/or

The presence of the term is the only formal difference between the eq.(14),
obtained in the atomic case, and the eq.(22). This term comes from the fact that
the partial wave expansion of includes several terms here instead of a single term
in the atomic case. In fact and are two components of the Coulomb type
potential is diagonal in the partial wave while gives rise to a
coupling between different partial waves of the same
orbital

We now transform the eq.(22) in the same way as done for the eq.(14) : we assume
that the (normalised) optimum orbitals have been determined by some existing
Quantum Chemistry program along with the partial waves and with the poten-
tial terms . Using these quantities we then set up the equation
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This equation is similar to the eq.(15) obtained in the atomic case. Thus one can
switch at will between the atomic and the molecular cases : if we give to the param-
eters the values determined for the atom as described in the
above section 1.4 (this implies ), then f is proportional to the RHF orbital of
the atom A with the quantum numbers l and m and the energy e ; if alternatively we
give to the parameters the values obtained for a molecular system as just explained,
then f is proportional to the l , m partial wave of the orbital of the molecular system
with the energy e.

We now use the Valley theorem : the atomic function f depends weakly of the
e parameter in a large region near the nucleus. It can be seen by inspection of
the eqs.(15),(16),(17) and (23) that the critical parameter in the molecular case is
an effective energy where are the
differences between the values of at the origin in the molecular
case and in the atomic case. Therefore, if is not too different from the atomic
orbital energy,then the two f functions obtained with the atomic and molecular values
of the parameters arc extremely close to be proportional one of the other in a finite
region near the nucleus. Stated differently : in a finite region near the nucleus of an
atom A, the partial waves of the optimum orbitals centered on A are proportional
to the corresponding RHF orbitals of the atom A , unless the atomic and molecular
parameters are very different from each other (i.e. unless the difference is much larger
than the variations mentionned in the section 1.5).

3. Asymptotic conditions

The Valley theorem leads to simple conditions for the optimised orbitals near the
nuclei. However these conditions are not sufficient to characterize these orbitals :
one needs in addition to take the asymptotic form of the equations into account.

In the asymptotic region, an electron approximately experiences a potential,
where is the charge of the molecule-minus-one-electron ( in the case of a
neutral molecule) and r the distance between the electron and the center of the charge
repartition of the molecule-minus -one-electron. Thus the orbital describing the
state of that electron must be close to the asymptotic form of the irregular solution
of the Schrödinger equation for the hydrogen-like atom with atomic number

(see for instance the Eq.13.5.2 of Ref.9) where e is the orbital energy. Since e is differ-
ent in the molecule and in the separated atoms, this asymptotic behaviour cannot be
represented properly if the molecular orbital is approximated by a linear combination
of the RHF orbitals of the separated atoms.

4. The case of

The interest of in the present context is that it provides a good test for the present
orbital optimisation theory because one knows the exact solution.
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Thus we will use the result of calculations of the wave function of expanded in a
gaussian basis to provide numerical tests of the qualitative discussion on the orbital
optimisation theory presented in the above sections 2 and 3.

We have calculated several approximations of the energy of (ground electronic
state) using various GTO bases (Table 1). In all cases the intcrnuclear distance used
was equal to 2 B, close to the experimental equilibrium distance

The accuracy of the results obtained here using gaussian bases - and the usefulness
of the numerical tests based on these results - can be seen from the values given in
the Table 1. It is seen that the dissociation energy De obtained in the largest basis
used here is excellent (error equal to 0.01 eV). On the other hand, the error on the
value obtained using the minimum basis is as high as 1.35 eV (or 48% in relative
value). This proves, if need be, the importance of the orbital optimisation studied in
the present article.

It is also useful to note that the major part (77%) of the effect of the orbital optimi-
sation is obtained in the intermediate basis where no polarisation orbital is used.

4.1. OPTIMISATION IN THE VICINITY OF A NUCLEUS

We first consider what happens when comparing directly the optimum orbital of
the un-optimised orbital of (i.e. the sum of the two 1s orbitals of the H atoms)
and the orbitals of the H atom itself. The comparison between the values of these
orbitals along the bond axis is presented on the fig.(7).

It is seen that in the inner region (positive values of the abscissae), the atomic or-
bital is close neither to the optimal orbital nore to the un-optimised orbital. On the
contrary, the atomic orbital is very close of the un-optimised orbital but not of the
optimised one in the outer region (negative values of the abscissae). The inverse con-
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clusion is obtained in the perpendicular direction presented in the fig.(8) : the atomic
orbital is very close to the optimal molecular orbital but not of the un-optimised one.
Thus, no clear conclusion can be reached in this way.

Let us now consider what happens when comparing the orbital of the H atom, no
longer with the orbitals of the system, but with the partial waves of these latter
orbitals.

In the case of the s wave (l = 0) of the optimised orbital the effective energy defined
in the section 2 is given here by (R is the internuclear
distance). According to the analysis of that section it is seen on the fig.(9) that the s
wave of the optimum orbital obtained in the gaussian basis is actually very close to
the numerical regular atomic s orbital with while the s wave of the
un-optimised orbital is significantly different from these two functions.

Here the effective energy is very close to the energy of the genuine atomic orbital
(-0.602 H to be compared to -0.5 H). Correspondingly, it can be seen on the fig.(9)
that the s wave of the optimum orbital is also very close to the genuine 1s orbital of
the H atom. In fact, the difference between these two functions is smaller than 2.4%
in all the considered range of r.

A similar conclusion cannot be reached concerning the p waves (l = 1). In fact the
coupling term between the s and p waves (the term of the eq.(22)) is not small
here and correspondingly the p wave of the molecular system cannot be expected to
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be close of any atomic-like orbital.

4.2. OPTIMISATION IN THE ASYMPTOTIC REGION

When expanding the orbital in partial waves with origin at the midpoint of the
molecule (center of charge of the molecule-minus-one-electron) the p wave vanishes,
and only the s wave has to be considered. According to Sec.3, this partial wave must
be proportionnal to the irregular solution of the hydrogen-like system with atomic
number Z’= 2 and with e equal to the exact orbital energy (-1.102 H).

We present in the Table 2 the ratio of the irregular solution of the hydrogen-like sys-
tem with the s wave of the optimised orbital, and with the s wave of the unoptimised
orbital. It is seen that the irregular numerical solution is actually much closer to be
proportional to the s wave of the optimised orbital than to that of the unoptimised
orbital.

In fact, the ratio between the numerical and the optimised orbital is nearly constant
(relative variation smaller than 11%) for 2< r <6 B, while the ratio with the s wave
of the un-optimised orbital is multiplied by ca. 5 when r increases from 2 B to 6 B
( r=distance to the midpoint of the two nuclei). The decrease of the ratio at larger
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distances in the case of the optimised orbital just comes from the fall off of gaussian
functions at large distances.

4.3. CONSTRUCTION OF THE ORBITAL OF

In the two preceding sections (4.1 and 4.2) we have presented numerical test of the
following description (resulting from the analysis of the sections 2 and 3) of the
optimised orbital of :

- near of a nucleus, the s wave (with origin on that nucleus ) of the optimised orbital
of is proportional to the s regular solution of the radial equation (eq.(2)) with
Z=l and a shifted energy given by (e=orbital energy, R=inter-
nuclear distance);

- outside the molecule, the s wave ( with origin at the midpoint of the two nuclei ) of
the optimised orbital of is proportional to the s irregular solution of the radial
equation with Z=2 and the actual energy of the orbital.

We examine now a numerical test of the reciprocal of this description : if a function
satisfies this description, then it is the optimised orbital of . If both the description
and the reciprocal are t rue we can conclude that the description is complete.

To that end we first introduce the following notations :

- the ’ internal zone ’ corresponding to the nucleus A is defined by the condition
(in there are two ’internal zones’, but , due to the symmetry, only one

of them will be considered here) ;

- the ’external zone’ is the region outside the molecule ;

is the orbital to be determined in the form of an expansion in a gaussian basis :

where is a gaussian function and the numerical coefficients to be determined;

is the s partial wave of with origin on the nucleus A;

is the σ partial wave of with origin at the middle of the bond;

and are the regular and irregular solutions of the two radial equations
corresponding to the internal and external zones (assuming and e to be known).

Then and are obtained by mean of the partial wave expansion of the gaussian
functions :
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where is a spherical harmonic centered on the nucleus A and is a gaussian
centered on either of the two nuclei. A similar relation holds for with in the
place of , where M is the midpoint of the two nuclei.

We introduce now two unknown numerical constants and and we try to check
that the two conditions

directly by diagonalising the hamiltonian matrix.

To do that, we first guess starting values of and ; secondly we determine the
coefficients by minimising the quantity Q given by

where and are two set of points in the internal and external regions respectively;
thirdly we evaluate the energy of using the coefficients just determined. The
steps two and three are repeated wi th d i f ferent values of and until the energy is
minimised.

It is seen that this process is essentially a least square fit of and by
and , subject to a min imum energy condition which allows to determine and

. Note that are related by the norm of so that there is in fact a single
parameter in this minimisation.

This calculation has been made here using the 4s basis set (which includes no po-
larisation p gaussian orbitals). The energy obtained in this way is very good : it
reproduces the energy obtained by diagonalisation (viz. -0.59088 H ; cf the Table 1)
wi th an error equal to 0.02 eV.

Concerning the expansion coefficients, the most significant comparison concerns the
values of the two orbitals : the one obtained by the fitting process just described and
the one obtained by diagonalising the matrix of the hamiltonian in the gaussian basis.
In fact we have found that the difference between these two orbitals never exceeds
3% in the internal region as well as in the external region.

We conclude that the description of the orbital by the proportionality between
and on the one hand and between and on the other hand is supported
by the present calculation and that it is indeed complete.

5. Conclusion

We have demonstrated formally that the optimum orbitals of any given molecular
system (canonical SCF orbitals or strongly occupied MCSCF orbitals that are closed
to the SCF ones) can be described very simply in the regions surrounding each nucleus
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of the system, approximatly the region extending from the nucleus to the middle
of the bonds starting from that nucleus. In that region each partial wave of the
optimum orbital is proportional to the atomic orbital with the same value of the
quantum number l, unless the molecular potential differs too much from the atomic
potential, or unless the coupling term with other waves of the same orbital is too
strong (polarisation orbilals).

This description results from the fact that the optimum orbitals are essentially deter-
mined in the region surrounding each atom by the compensation between the kinetic
energy T of the electron and the Coulomb attraction of the electron by the nucleus
of that atom. This compensation implies that the orbital is very weakly dependent
of the environment of the atom in the molecular system so that it is essentially de-
termined by atomic conditions (Valley theorem).

A special aspect of this description appears if one starts the orbital optimisation
process with orbitals obtained by linear combinations of RHF orbitals of the isolated
atoms (LCAO approximation s.str.). Let and be the starting and final
orbitals of such a calculation. Then the difference between and in the
vicinity of each atom merely consists in a distortion of the atomic orbitals of each
atom. This distortion jus t compensates the contr ibut ion of the orbitals of the other
atoms to in order to restore the propor t ional i ty between the partial waves of

and the appropr ia te atomic orbital .

This description is completed by describing what happens outside the molecule : the
partial waves of the optimum orbital are there proportional to the irregular solution
of a radial equation involving the actual energy of the orbital .

We have checked, using as a test case, that the description of the optimum orbital
of the molecular system is then complete in the sense that it allows (assuming that
the orbital energy is known) to construct by a fit process an optimum orbital which
is very close to the one obtained by a diagonalisation process in a gaussian basis.

Clearly, several aspects of the orbital optimisation remain to be clarified. Firstly a
numerical test using a system more complex than should be made. What happens
to orbitals or strongly hybridized orbitals should be also examined. It would be also
interesting to explain how the optimisation - as described here - is related to an energy
lowering, as well as the practical use of the present description in actual calculations,
etc ... These different aspects will be examined in forthcoming publications.
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A Coupled MCSCF-Perturbation Treatment for Electronic Spectra
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1. Introduction

1.1. PURE VARIATION OR PERTURBATION APPROACHES

Despite continuous efforts over many decades, the determination of accurate wavefunctions
and energies for polyatomic systems remains a challenging problem. Although carefully-
designed implementations of various codes and computational developments allow now for
calculations that were unrealistic even a few years ago, the evaluation of correlation
energies and highly-correlated wavefunctions, that are necessary to properly describe
excited states or potential energy surfaces, remains still in most cases a tremendous task
which can hardly be performed routinely and rigorously for large systems.

If we except the Density Functional Theory and Coupled Clusters treatments (see, for
example, reference [1] and references therein), the Configuration Interaction (CI) and the
Many-Body-Perturbation-Theory (MBPT) [2] approaches are the most widely-used
methods to deal with the correlation problem in computational chemistry. The MBPT
approach based on an HF-SCF (Hartree-Fock Self-Consistent Field) single reference
taking RHF (Restricted Hartree-Fock) [3] or UHF (Unrestricted Hartree-Fock) orbitals [4-
6] has been particularly developed, at various order of perturbation n, leading to the
widespread MPn or UMPn treatments when a Möller-Plesset (MP) partition of the
electronic Hamiltonian is considered [7]. The implementation of such methods in various
codes and the large distribution of some of them as black boxes make the MPn theories a
common way for the non-specialist to tentatively include, with more or less relevancy,
correlation effects in the calculations.

It is however too often forgotten that the usual single-reference MBPT is relevant only for
structures that are already well-described by a single determinant: even a second-order
perturbation treatment on a closed-shell molecule using RHF orbitals and the SCF
determinant as zeroth-order function for the perturbation will be relevant only if this
function dominates the exact wavefunction of the system [8]. It follows that using standard
MPn approaches for the determination of potential energy surfaces which invoke distorded
geometries and breakings of chemical bonds or in the description of molecules involving
transition metals should be considered with an extreme critical mind. This point is even
more crucial for excited states where appropriate perturbative excitonic treatments are
necessary as shown in the pioneering works by Berthier or Pauzat [9-13]. Moreover, there
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is no method currently avalaible to perform efficient MPn calculations on open-shell
systems described by a spin-clean single ROHF determinant (Restricted Open Hartree-
Fock) [14]; when dealing with unpaired electrons, UHF orbitals are used instead,
sometimes leading to the well-known drawbacks of spin contamination (for an extreme
example, see reference [15] or poor convergence [16,17] and even to dramatic failures [18-
21].
The advantages of MPn perturbation treatments are however clear on both the theoretical
and computational points of view. For example, size-consistency is ensured, analytical
gradients and Hessians are avalaible, parallelization of the codes is feasable.

Most of the previous advantages are lost in the variational approaches: getting upper-bound
energies has to be paid for and despite numerous and ingenious implementations using a
large variety of algorithms, large-scale CI are not easily tractable. The cost-effectiveness
argument leads either to carefully design a CI space or to truncate it in order to
accommodate the storage limitations of modern computers, whatever the method used. The
single-reference SDCI (Singles and Doubles Configuration Interaction) approach is an
example of such a truncation which is known to give an unbalanced description of the
correlation energy between excited states [22]. Even the extension to the SDTQ CI appears
to be insufficient [23], especially as soon as the single reference does not dominate the
exact wavefunction by a large margin. Also the lack of size-consistency of such
dramatically truncated CIs [24-26] makes them too flimsy to accurately deal with
correlation problems. Major improvements in variational methods have been reached using
MRCI (Multi-Reference CI) [27,28]: however, a careful choice of the reference
configurations has to be made in order to avoid both the inflation of the CI expansion and
the lack for some potentially important configurations needed for a proper description of the
phenomenon under investigation. Even carefully truncated MRCI may lead to deceptive
results when one deals with excited states.

It is seen that neither the MBPT nor the CI approaches are the panacea.

1.2. THE COUPLING OF VARIATION AND PERTURBATION TREATMENTS

The idea of coupling variational and perturbational methods is nowadays gaining wider and
wider acceptance in the quantum chemistry community. The background philosophy is to
realize the best blend of a well-defined theoretical plateau provided by the application of the
variational principle coupled to the computational efficiency of the perturbation
techniques.[29-34]. In that sense, the aim of these approaches is to improve a limited
Configuration Interaction (CI) wavefunction by a perturbation treatment.

One of the first attempts was done more than 20 years ago and led to the so-called 'CIPSI'
method whose basic idea is to progressively include the most important correlation terms in
the variational space to be improved by a forthcoming second-order perturbation treatment
[35]. The selection of the terms to be included in the variational zeroth-order space is made
according to a user-fixed numerical threshold based either on the contribution of these
terms to the perturbed wavefunction, as in the original CIPSI approaches [35,36], or on
their energetic contribution to the total energy [37,38]. The pitfalls to avoid when using
such iterative algorithms are now well-established, although often forgotten: in particular,
extreme caution must be taken to ensure an homogeneous treatment of correlation energies
along a reaction path or between excited states.
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In order to systematically remedy the previous drawbacks, we recently proposed to
perform a perturbation treatment, not on a wavefunction built iteratively, but on a
wavefunction that already contains every components needed to properly account for the
the chemistry of the problem under investigation [34]. In that point of view, we mean that
this zeroth-order wavefunction has to be at least qualitatively correct: the quantitative
aspects of the problem are expected to be recovered at the perturbation level that will
include the remaining correlation effects that were not taken into account in the variational
process: any unbalanced error compensations or non-compensations between the
correlation recovered for different states is thus avoided contrary to what might happen
when using any truncated CIs. In this contribution, we will report the strategy developed
along these lines for the determination of accurate electronic spectra and illustrate this
process on the formaldehyde molecule taken as a benchmark.

2. Theoretical background in the perturbation theory

2.1. PERTURBATIONS AND THE SPECTRAL DECOMPOSITION OF THE
HAMILTONIAN

Let suppose is an exact solution to the eigenvalue problem :

where is an hermitian zeroth order hamiltonian. Considering the perturbation to and

induced by the perturbation operator V on , the first order correction can be
developed on a set of basis functions

The Rayleigh-Schrödinger Perturbation Theory (see [2]) leads then to the following system
of linear equations for the determination of

where is the first order correction to the zeroth order energy

Let us now define :

If the following relations are both valid:

then, equation (3) can be simplified, which gives :
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which is the usual first order perturbation coefficient for in the first order correction to
the initial wavefunction . The first- and second-order corrections to the energy are in
that case:

We emphasize that the validity of equations (7) and (8) depends on that of equations (5)
and (6) which reflect the fact that expansion (2) is performed on the set of the eigenvectors
of

If, for example, we suppose that is the ground state electronic configuration of

interest and are Slater determinants built on a set of orthogonal orbitals then
equation (6) is automatically fulfilled.

Furthermore, if are eigenvectors of some one-electron operator such that:

equation (5) becomes also valid. An immediate application of these results is the usual MP2
theory for a set of RHF or UHF orbitals with taken as the Fock operator for the
polyelectronic system.

In the CIPSI theory, the reference is the zeroth order space S which consists in a set of
determinants Let then P be the perturbation space formed of Slater determinants
arising from all the single and double excitations relative to the Slater determinants included
in S for the description of We define the zeroth-order wavefunction as :

The expansion coefficients are determined variationally so that is one of the

eigenvectors of the restriction of H to the S space with eigenvalue

where defines the projection operator onto the S space. We now chose the zeroth-order
hamiltonian so that:
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is thus defined through the two sets namely by its matrix elements in the
space. If the determinants are built on orthogonal orbitals, equation (6) is

automatically fulfilled which ensures that equation (5) is also valid due to the definition of
. The matrix elements of are then easily calculated :

* for the P-P interaction :

* for the S-S interaction :

* for the S-P interaction :

With this choice for , equations (7) and (8) are automatically valid for the perturbation.
The only restriction is that we have to use orthogonal orbitals and Slater determinants rather
than Configuration State Functions (CSFs) as a basis for the perturbation. None of these
restrictions is constraining, however.

2.2. THE MOELLER-PLESSET PARTITION

A detailed study of the various possibilities in the choice of the partition to be used in
performing the perturbation falls outside the scope of the present contribution (see reference
[34]): here we will limit the discussion to the widely used Möller-Plesset partition [7] in
which the diagonal matrix elements are defined by :

where F is the usual Fock operator. For a multireference zeroth-order wavefunction,
equation (18) gives the usual expansion of the definition of the zeroth-order energy [35]:

This approach extends the usual MP single-reference approach and will be hereafter
referred to as "Barycentric Möller Plesset" (BMP) perturbation theory [35]. If the orbitals
used are of RHF or UHF type, a single reference BMP calculation is analogous to a MP2
or UMP2 calculation. However, as emphasized above, we only need to have orthogonal
orbitals, which means that the orbitals to be used are not necessarily those that diagonalize
the usual Fock operators for a closed-shell system :
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F can be advantageously taken as the following effective operator [39] in which orbital
occupancies are explicitely considered :

If we define the orbital energies by :

are easily expressed as :

More generally, given a set of orbitals and their corresponding energies with respect to
some one-electron operator, it is always possible to define a (non local) one-electron
operator having these orbitals and energies as eigenvectors and eigenvalues [40]. Such a
possibility which amounts to extending relations (12), (19), (20) and (22), will not be
developed further here, but allows us to use various level of correlated orbitals in the
calculations [34,41,42] and gives the opportunity to circumvent the problem of the
invariance of the perturbation energy correction relative to any arbitrary rotations of the
orbitals when those are not unambiguously defined . Furthermore, in the implementation
used here, and contrary to the CASPT2 approach [22,31,43], the zeroth-order
wavefunction is not necessarily supposed to ensure the Generalized Brillouin Theorem
[44].

3. The "Chemical" choice of the zeroth-order wavefunction

There is no general way to choose the "best" zeroth-order wavefunction to be used.
However, to avoid large variational expansions or to be sure not to miss some important
effects by a too drastic truncation, it may be wise to keep some rules in mind.

3.1. DESIGNING A "GOOD" ZEROTH-ORDER WAVEFUNCTION

First of all, the wavefunction has to contain the necessary ingredients to properly describe
the phenomenon under investigation: for example, when dealing with electronic spectra, it
thus has to contain every CSFs needed to account at least qualitatively for the description of
the excited states. The zeroth-order wavefunction has then to include a number of
monoexcitations from the ground state occupied orbitals to some virtual orbitals. In that
sense, the choice of a Single CI type of wavefunction as proposed by Foresman et al.
[45,46] in their treatment of electronic spectra represents the minimum zeroth-order space
that can be considered.
However, the restriction of this space to monoexcited configurations wrongly sweeps away
the complexity of excited state wavefunctions [22]. In particular, such a truncated space
lacks all the CSFs that account for non-dynamical correlation effects. These effects are
poorly recovered by any subsequent second-order perturbation while being essential in the
description of excited states or potential energy surfaces. In those cases, a wavefunction
generated by a specific configuration interaction is necessary. The structure of the
corresponding multiconfiguration reference space must however be carefully designed if
one does not want to handle large expansions that might include useless CSFs. The
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"chemical" (or spectroscopic, or quantum chemical... ) intuition can help in designing the
most relevant CI space as will be shown in the case of in the next section. In
particular, CAS spaces which are often used to build zeroth-order wavefunctions before
performing large-scale CI can be split into products of smaller CAS or GVB [47] spaces
without loss of accuracy: the formal completeness of the treatment may be lost, but the
computing time saving is considerable.
It is furthermore logical to use some sets of orbitals that are coherent with the zeroth-order
space used: the natural MCSCF orbitals issued from an MCSCF treatment using the space
defined previously are then attractive candidates for the perturbation.
Finally, in order to ensure an homogeneous treatment of all excited states at the variational
level, the MCSCF calculation should be averaged on the states under investigation. The
lowest eigenfunctions of the MCSCF Hamiltonian will provide the zeroth-order
wavefunctions to build the perturbation on.
As a conclusion, the calculation will be performed using a state-averaged MCSCF treatment
in a well-designed active space.

3.2. THE ACTIVE SPACE FOR

The space spanning the CSFs used in the calculation is presented in Table 1. Orbitals are
distributed into several sets, and ordered by symmetry. They are denoted in terms of
localized orbitals (Fig. 1) in order to emphasize their "chemical" significance: Table 1
presents the various distributions of the correlated electrons into these sets, with 'R'
standing for Rydberg orbitals or Rydberg states.

For the description of the vertical spectrum of it is necessary to account for
transitions, so that the MCSCF space has been built as a product of

smaller MCSCF spaces as follows:

part A : Two electrons in the set describing both the ground state and the excited
states using a CAS space,

part B : Three electrons in the set and only one in the (n) set describing the excited
states using a MCSCF space.

part C : One electron in the set and one in the (R) set describing the excited
states using a MCSCF space.

part D : One electron in the (n) set and one in the (R) set describing the excited states
using a MCSCF space.
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We emphasize that the Rydberg states are included in the variational MCSCF treatment in
order not to be undercorrelated relative to the valence states [48,49]. Furthermore, it is seen
that all the previous distributions are coupled to diexcitations from the to the
orbital: that way, we account for the non-dynamical repolarization of the polar bond in
a GVB-like approach.
Finally, we also account for an explicit relaxation of both lone pairs of by the
inclusion of corresponding correlating orbitals [50] and treat them at a GVB-like level.

The final space spanned by these distributions can then roughly be seen as a product of
CAS, GVB and MCSCF spaces. It accounts for all effects supposed to be essential to get a
good zeroth-order description of the ground and the excited valence and Rydberg
states.The dynamical correlation of the 8 electrons included in this variational treatment
will be recovered, in the ground state and in the excited states, with the perturbation, and so
will be the correlation energy arising from the core and from the remaining electrons.
The perturbation will also account for any coupling not explicitely included in the
distributions presented in Table 1.
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4. The vertical electronic spectrum of formaldehyde

4.1. SOME HISTORY ON FORMALDEHYDE STUDIES

Initiated by the pioneering work of Burawoy [51 ], a number of experimental and theoretical
studies were performed on the carbonyl group [52-55]. A complete review is beyond the
scope of this paper. We will mention only some of them that we consider of particular
importance for a comprehensive coverage of the electronic spectrum of formaldehyde for
both the theoretical and experimental points of view.

A review of the early experimental works can be found in references [56-58]. More
recently, Chutjian recorded the electron-impact excitation spectrum of formaldehyde
[59,60] and reported transition energies that are taken as reference values in many other
works. So are the experimental values compiled by Robin [61].
A few years ago, Brint et al. [62] focused on the vacuum high-resolution spectrum,
pointing out a number of well-defined Rydberg series, of special importance for theoretical
benchmarks.

On the theoretical hand, calculations have been performed as soon as in the 50ies [56,63]
since formaldehyde represents the smallest member of the carbonyl series. References to
early works are avalaible in the compilation by Davidson and McMurchie [64] and in
references [56-58,63]. Of particular interest for a comprehensive assignment of the
experimental transitions are the very fine and accurate calculations by Harding and Goddard
using their GVB-CI method [60,65].

4.2. COMPUTATIONAL DETAILS

The MP2/6-311++G** geometry [45] was used for in the present report
(CO=1.2122 Å, CH=1.1044 Å, HCO=121.94°). It is very close to the experimental
geometry [66]. The molecule is supposed to lie in the yz plane; the z axis corresponds to
the axis, as in Figure 1.

The MCSCF and the subsequent perturbation calculations were done using a 6-31+G*
basis set expanded by a set of spd Rydberg functions. Exponents of this additional
gaussians were : 0.032 and 0.028 for the s and p shells for the oxygen atom, and 0.023
and 0.021 for the carbon atom. For the d functions, a common value of 0.015 was chosen
for both heavy atoms.

The MCSCF calculation was performed using the configuration space described in section
3.2. The state-averaging was done for seven and seven states for
both singlet and triplet multiplicities.

The variational calculations were performed using the Alchemy II package [67] while the
further perturbation calculations used a code derived from the original CIPSI module.
Proper interfaces between the two programs were developed.



48 O. PARISEL AND Y. ELLINGER



A COUPLED MCSCF-PERTURBATION TREATMENT OF ELECTRONIC SPECTRA 49

4.3. RESULTS AND DISCUSSION

The analysis of the variational wavefunctions clearly shows admixtures of valence and
Rydberg characters in many states, either at the orbital level or at the CI level. We will not
discuss this point here, but will focuse on transition energies.

The transition energies from the ground state to the lowest 60 vertical excited states
considered in this study are reported in Table 2 (30 singlets) and in Table 3 (30 triplets)
where they are compared to the avalaible experimental results and to some previous
theoretical calculations [45,60,65,68].
It is immediately seen that the agreement of our computed values with experimental
transitions is excellent for both valence and Rydberg states. The discrepancies vary from
0.00 eV to 0.40 eV for the largest of them. An exact value of the deviation is however
difficult to obtain due to both the experimental band widths and the fact that many observed
transitions are not necessary vertical so that structural effects and vibrational shifts are
involved. However, the calculated root-mean-square deviation of the computed values from
their experimental assignment is found to be, for the whole spectrum, about . To
our knowledge, there has been no report, whatever might have been the theoretical method
used, of such a small deviation between theory and experiment when dealing with so many
excited states together.

Within a few exceptions, all singlet states can be correlated to an observed experimental
feature. Especially, the high density of states around 11.8 and 12.7 eV is compatible with
the observation of unresolved broad peaks in the 11.6-11.9 eV and 12.5-12.8 eV spectral
intervals [60]. Unfortunately, the lack of spectroscopic resolution makes any unambiguous
one-to-one assignment impossible in these regions.
The situation is more favorable at lower energies: up to about 11 eV, each calculated singlet
state correlates unambiguously to a well-resolved experimental line, and the deviation from
the experiment does not exceed 0.35 eV which is the largest discrepancy observed.
Compared to the calculations by Harding and Goddard [60], the agreement between both
methods is excellent. Each state reported by these authors is found in our calculations. In
addition, we report some new singlet states of Rydberg character whose description has
been made possible essentially because of the larger flexibility of both our MCSCF
calculation and one-particle space (basis set including semi-diffuse orbitals that were not in
reference [60]). Our calculations provide a clear-cut assignment for the

states which were not reported previously. It is
important to notice that most of these new states correlate to the recent experimental results
obtained in the study by Brint and Sommer [62] which is devoted to the Rydberg series. It
is worth to emphasize that all their lower terms of the ns (3 states), np (6 states) and nd (4
terms) series can be related to a calculated state. Getting a correct description of the higher
terms of these series would however require the inclusion of a Rydberg orbital progression
in the basis set, so as the consideration of f functions as suggested in reference [62].
The same comments apply to the triplet states, although comparison to experiments is more
difficult due to the lack of experimental determinations, even in the low energy region.
However, as seen in Table 3, the agreement with avalaible data is excellent, and shows the
same quality as for singlet states. So is the correlation with the results by Harding and
Goddard [60]. In the triplet manifold, as in the singlet one, the largest flexibility of the
present method allows for more states to be found: as an example, we tentatively assign the

or the state, missing in reference [60], to a peak reported at 9.59 eV [69].
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The comparison to the results obtained using the SCI/MP2 approach [45,68] leads to
unquestionable conclusions: not only the SCI/MP2 method does not provide acceptable
transition energies for the lowest valence and Rydberg states but it misses some of them
and does not provide any good energetical ordering of the excited states. Even if this
method presents interesting computational advantages, it can only provide a flimsy
quantitative electronic spectrum, as anticipated in section 3.1 and outlined in reference [22].

5. Conclusions and prospects

The present approach is one of the second-generation multireference perturbation treatments
first opened by the CIPSI algorithm 20 years ago. Even if the spirit of these new treatments
is different, mainly because the reference space is chosen on its completeness rather than on
energetical criteria, it remains that the unavoidable problems of disk storage, bottleneck of
variational approaches, can now be conveniently transferred to the problem of CPU time
which is less restrictive.
The methodology presented here expands the recent CASPT2 approach to more flexible
zeroth-order variational spaces for a multireference perturbation, either in the Moller-Plesset
scheme or in Epsein-Nesbet approach [70-72]. Furthermore, it allows for the use of a wide
set of possible correlated orbitals. These two last points were discussed elsewhere [34].
The reliability of this method for the evaluation of (vertical) electronic spectra has been
clearly established in the present work, and further calculations on other molecules
(ethylene, vinylydene… for example) have confirmed the very promising potentialities of
such an approach that avoids the possible artefacts brought in by any arbitrary truncated
CIs when dealing with excited states [49]. We also emphasize that this methodology is able
to give reliable splittings between states ranging from 10 kcal/mol to more than 10 eV.
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Reduced Density Matrix versus Wave Function: Recent Developments

C. VALDEMORO
Instituto de Ciencia de Materiales, Serrano 123, 28006 Madrid, Spain

1. Introduction

Much of the great interest that the Reduced Density Matrices (RDM) theory has
arisen since the pioneer works of Dirac [1], Husimi [2] and Löwdin [3], is due to the
simplification they introduce by averaging out a set of the variables of the many body
system under study. For all practical purposes, the averaging with respect to N-1
or N-2 electron variables which is carried out in the 1-RDM or 2-RDM respectively,
does not imply any loss of the necessary information. The reason for this is that
the operators representing the N-electron observables are sums of operators which
depend only on one or two electron variables.
The RDM’s are therefore much simpler objects than the N-electron Wave Function
(WF) which depends on the variables of N electrons. Unfortunately, the search for
the N-representability conditions has not been completed and this has hindered the
direct use of the RDM’s in Quantum Chemistry. In 1963 A. J. Coleman [4] defined
the N-representability conditions as the limitations of an RDM due to the fact that
it is derived by contraction from a matrix represented in the N-electron space. In
other words, an antisymmetric N-electron WF must exist from which this RDM
could have been derived by integrating with respect to a set of electron variables.
The research for finding these conditions, has been intense and fruitful [5-13]. Thus,
although an exact procedure for determining directly an N-representable 2-RDM
has not been found, many mathematical properties of these matrices are now known
and several methods for approximating RDM’s and for employing them have been
developed [14-19].
To study the electronic structure of small systems within the framework of the RDM
formalism is a good strategy to adopt, but where it is of the foremost importance is
in the study of the electronic structure of very large systems. In this latter case, to
work within the framework of an N-electron WF does not seem the best approach
to take even now that large and fast computers are available. It seems clear to me
that it would be advantageous to approach the study of these large systems within a
theoretical framework having a quantum statistical character. Since the RDM’s are
statistical objects their formalism would fit in a natural way in such a framework.
The aim of this paper is to review the work done by our group in this direction
in the last ten years. The reader wishing to have a broader outlook of this vast
and fascinating field of research is referred to the Proceedings of the A. J. Coleman
Symposium on Reduced Density Matrices and Density Functionals [20]. In this book
the opening contribution is by A. J. Coleman himself, where he masterly describes
the history of the Reduced Density Matrix (RDM) research from 1929 up to 1987.
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This book also collects the contributions of most specialists in the field.
Two different approaches to this problem will be described in this work. They are
based in quite different philosophies, but both are aimed at determining the RDM
without a previous knowledge of the WF. Another common feature of these two
approaches is that they both employ the discrete Matrix representation of the Con-
traction Mapping (MCM) [17,18]. Applying this MCM is the alternative, in discrete
form, to integrating with respect to a set of electron variables and it is a much simpler
tool to use.
In this work, we will concentrate on describing the ideas leading to the relevant
formulae and only the essential algebraic developments will be described.

2.Notation and Basic Definitions

2.1. CONSTANTS AND STATES

N =    number of electrons of the system

K = number of orbitals of the basis set

S = spin quantum number

2.2. OPERATORS AND EXPECTATION VALUES

2.2.1. Replacement Operators and Reduced Density Matrices

Most operators used in this work may be written in terms of the q-order Replacement
Operators (q – RO) [21,27] which, in our notation, take the form:

where and b are the usual fermion operators.
The expectation values of the q-RO’s are the q – RDM’s. Thus, the general definition
of the q – RDM in this formalism is:

When relation (2) defines a transition q – RDM. In what follows, unless it
is necessary, the upper indices which indicate the bra and ket states will be omitted
since that only the case is considered.
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Since

where the symbol s denotes the set of spin variables, the replacement operators can
be further generalised. Thus, in the operator

the sum of annihilators destroy q electrons which are in the state J and the sum of
creators create the state I.
Therefore, in this basis one has:

2.2.2. The Hamiltonian Operator and the Energy

The spin free many-body Hamiltonian Operator can be written in compact form by
employing the 2-RO

where

In this latter formula, the two electron repulsion integral is written following Mulliken
convention and the one electron integrals are grouped in the matrix In this way,
the one-electron terms of the Hamiltonian are grouped together with the two electron
ones into a two electron matrix. Here, the matrix is used only in order to render
a more compact formalism.
An element of the matrix representation of the Hamiltonian in the. N-electron space
is therefore:

or equivalently

A particular case of this is the well known expression of the energy of a normalized
state
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2.2.3. The Holes Replacement Operators

An important operator, complementary to the RO, is the Holes Replacement
Operator (HRO). The general form of this operator is:

The HRO’s are holes density operators and operate by first filling orbitals with
electrons (i.e. they annihilate holes) and then removing electrons from orbitals (i.e.
they create holes). These operators generate the Holes Reduced Density Matrix
(HRDM) which in our notation takes the form:

I wish to stress that the meaning of the word Hole here is different and far more
general than in Many Body Perturbation Theory. Indeed, no specific reference state
is required in this definition and the difference between the RO’s and the HRO’s
follows exclusively from the different order of the creator operators with respect to
the annihilator operators in E and in respectively.

3.The Contraction Mapping in Matrix  Form (MCM)

The MCM is at the basis of the two formalisms which are described in this work.
Its general form for is:

where and are N-electron states. The symbols denote q-electron states
which may correspond to simple Slater determinants, to eigenstates of the spin op-
erator or to any kind of q-electron correlated states.
It must be underlined that, in (13), while the resulting RDM, may be represented
either in an orbital basis or in a spin-orbital one, as in (Ref.17), the symbols
stand for uniquely defined states depending on both space and spin variables.
Relation (13) allows us to contract any q – RDM and what is more, it also allows us
to contract any q – HRDM by replacing the number N by the number (2K – N).
The derivation of the MCM is based on the important and well known relation

which must be used q – p times in order to obtain relation (13).
In many cases a simpler form of this mapping may be used. Thus, the RDM by
itself, when it is not involved in matrix operations it can be contracted by using
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(14) directly, without any reference to the intermediate matrix The
algorithm in this case is:

This direct sum with respect to an index which is common to the creator and the
corresponding annihilator cannot always be carried out as will be seen in the following
sections, hence the usefulness of the general MCM (relation (13)).

4.The Spin adapted Reduced Hamiltonian (SRH )

The Spin adapted Reduced Hamiltonian (SRH) is the contraction to a p-electron
space of the matrix representation of the Hamiltonian Operator, in the N-
electron space for a given Spin Symmetry [17,18,25,28]. The basis for the matrix
representation are the eigenfunctions of the operator. The block matrix which is
contracted is that which corresponds to the spin symmetry selected; In this way, the
spin adaptation of the contracted matrix is insured.
Let us consider the spectral resolution of

Now, in order to obtain the p – SRH, let us apply the MCM to both sides of this
relation,

According to relation (17), the p–SRH matrix is a sum of terms and each term is the
product of the energy and the RDM corresponding to an eigen-state of the system.
Therefore for the p – SRH matrix has all the relevant information about the
eigen-states of our system and is represented in a reduced space which renders it easy
to handle.
Note that by generalizing the concept of N-representability it can be said that the
p – SRH are both N-representable and S-representable.

4.1. CONSTRUCTION OF THE p–SRH MATRIX

A very convenient feature is that, in order to construct the p – SRH matrix it is not
necessary to evaluate the matrix and then apply the MCM since both operations
can be combined and carried out simultaneously. Thus, by replacing in relation (17)
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the element of (relation 16), which appears between brackets, by its value in terms
of the electronic integrals (relation 8) one gets after some simple algebra

At first sight, this looks rather complicated, and in fact, evaluating this general rela-
tion is not trivial. On the other hand, the results are simple, closed form expressions.
The derivation of the algorithms for different values of p have been described in detail
previously [25,26,28]. Here we will just sketch the results obtained.
The main point about the SRH matrix is that its only non zero elements are those
where the set of the i indices and the set of the j indices are equal or differ at the
most in two indices.
The general form of the three different classes of the matrix elements are [28]:

• The set of i indices is equal to the set of j indices (although any ordering of the
indices is allowed).

Where the symbol has the same meaning as previously. In this relation,
denotes a permutation of the indices and A and B are coefficients.

• An index of the set i differs from that of an index of the set j, say
(although any ordering of the indices is allowed).

• Two indices of the set i differ from two indices of the set j, say and
(although any ordering of the indices is allowed).

A very convenient feature of this formalism is that the values of the A and B coef-
ficients only depend on three numbers: the number of electrons (N), the number of
orbitals of the basis (K), and the Spin quantum number (S).
The different orderings of the matrix element indices ( superscript in relations
19,20,21) give rise to different values of the A and B coefficients. Finally, the value of
these coefficients also depends on whether one or more of the matrix element indices
are repeated (appears twice).
For p = 1,2,3 the values of these coefficients have been explicitly obtained; and for
large p, a set of diagramatic rules have been reported [28] in order to determine the
coefficients in each case.
To calculate a p – SRH once the electronic integrals are known, is therefore a very
simple and rapid task.
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4.2. SOME PROPERTIES OF THE p – SRH MATRICES

Let us now derive from the fundamental relation (17), some properties of the p–SRH
matrices. Taking the trace of this matrix we find that:

Since the trace of is an invariant of the system, relation (22) establishes that the
trace of the p – SRH matrix is also an invariant of the system.
The eigen – values of the p – SRH matrices have the form:

where the symbol I denotes the corresponding p – SRH eigen-state. This relation
shows up the average character of the p – SRH eigen-values. However, until now we
have not been able to find the relation linking the values with the energy observables
of the N-electron system.
In what follows we will focus our attention on the p = 2 and p = 1 cases which are the
most useful ones. The eigen-vectors of the p – SRH for these values of p are geminals
and orbitals respectively. In order to simplify the interpretation of the geminals and
to reduce the size of the matrices involved in the calculations it is convenient to apply
to the 2 – SRH a linear transformation which factorizes this matrix into two blocks
according to the representations of the Symmetric Group of Permutations. In this
way the eigen-geminals of both blocks have a clear physical meaning since those of
the symmetric block describe the space part of singlet pair states and those of the
antisymmetric part describe that of triplet states.
Although the physical meaning of the 2- and 1- electron eigen-states of the 2 – SRH
has not been established rigorously we interpret them as describing states of two/one
electrons which in average can be considered independent. This interpretation was
justified [29] through the analysis of the asymptotic form of the 2 – SRH in the
coordinate representation for . . In this analysis, Karwowski et al. showed that
the eigen-geminals of the asymptotic 2 – SRH described isolated pairs of electrons.
Another important feature of the SRH formalism is that it can be generalized by
contracting Taking now the trace of the product of these generalized SRH’s
matrices and the one gets the n + 1 moment of the spectral distribution [30].

4.3. APPLICATIONS OF THE SRH THEORY

An outline of the main applications of the SHR theory is presented in this section. In
6.1 the advantage of using the eigen-vectors the 1-SRH as a basis in CI calculations
is discussed. The main application until now of this theory is summarized in the
following subsection. Then in 6.3 other applications which have been less developed
are mentioned.

4.3.1. Performance of the eigen-vectors of the 1-SRH as a basis in CI calculations

A set of calculations [31] was recently carried out in order to compare the performance
of the 1 –SRH eigen-orbitals with other known and easy to get basis sets when doing
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CI calculations. Some of the results reported in (Ref. 31) for the ground state of the
Water molecule (minimal basis set) are given in Table 1.

These results show that convergence is favored when the basis used are either the
1–SRH or the Absar and Coleman [32,33] Reduced Hamiltonian (RH) eigen-orbitals.
The other two basis used were the SCF orbitals and the core Hamiltonian eigen-
orbitals (Core H)

4.3.2. The 2 – SRH independent pair model

Since the which appear in relation (17) are not orthogonal matrices, the energy
or the 2 – RDM of a particular eigen-state of the system cannot be filtered out from
the contributions of the other eigen-states. To deal with this difficulty and based on
the physical interpretation given above of the eigen-geminals and eigen-orbitals of
the SRH, the following working hypothesis was proposed [34] in 1985:
“Let us substitute the study of the N-electron system by that of an ensemble of

non interacting pairs of electrons, described by the eigen-geminals of the 2 – SRH” .
According to this hypothesis, each state I, will have the probability, , of being
occupied by a pair. Since in an N-electron state there are possible pairings the
condition
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should be fulfilled.
Now, when a pair is described by a state I, its Density Matrix ( D M ) is

and by applying this working hypothesis, the 2 – RDM corresponding to the N-
electron eigen-state can be approximated by

It should be noted that this relation is formally identical to the spectral resolution
of the 2 – RDM. That is, in this model, all happens as if the eigen-vectors of the
2-SRH were natural geminals.
In order to determine the we proposed two main approximations:

• Let us start by assuming that in our N-electron state there is a
eigen-state,   having a coefficient of a much higher absolute value than all the
rest i.e., is the dominant configuration in Then the are approximated
as follows:

This is called [35] Mixed Pair State approximation (MPS ) . The name, which
probably is not the best one, refers to the fact that the barring exceptions,
has a value smaller than one, which means that the electron pair is not in the
pure state I.

• A variant of relation (27) was initially proposed [34] where the were deter-
mined as follows. By definition:

where has the same meaning as before and is the orbital part of the eigen-
states of the operator. The two electron configurations, having a non zero
value are thus selected. Now, the eigen-vector whose highest coefficient (in
absolute value) is, is allocated the occupation number:

This approximation was denoted initially by the acronym IQG [34] and later on
by IP (Independent Pairs) [35]. It gave satisfactory results in the study of the
Beryllium atom and of its isoelectronic series as well as in the BeH system. The
drawback of this approximation is that when the eigen-vectors are diffuse, i.e.
there is more than one dominant two electron configuration per eigen-vector,
the determination of the corresponding is ambiguous. In order to avoid this
problem the MPS approximation, which does not have this drawback, was
proposed.
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A detailed discussion of these and other variants was given in (Ref.35). Attention
must be called to the fact that these methods are not variational which causes the
energies obtained with them to be lower than those obtained with the FCI method.
The counterpart to this deffect is that excited states, open-shell systems, and radicals,
can be calculated with as much ease as the ground state and closed-shell systems.
Also, the size of the calculation is determined solely by the size of the Hilbert subspace
chosen and does not depend in principle on the number of electrons since all happens
as if only two electrons were considered.
While from the energy point of view, the correlation effects seem to be overestimated,
the RDM’s are particularly satisfactory. Thus, when comparing the 2-RDM’s ob-
tained with these approximations for the ground state of the Beryllium atom with
the corresponding FCI one, the standard deviations are: 0.00208236 and 0.00208338
for the MPS and IP respectively. For this state, which has a dominant four electron
configuration of the type, the more important errors, which nevertheless can
be considered small, are given in table 2.
In table 2, the elements which are equal due to symmetry have been omitted.

It can be seen that, even for this case where no ambiguity exists in applying the IP
approximation, the results are slightly better with the MPS variant which seems to
favor this latter approximation.
The data given in table 2 have been obtained using a double zeta basis [36] and
transforming it to the basis which diagonalizes the 1-SRH matrix which as we saw
in subsection 5.3 is a basis both good and simple to determine.
Analysis of the different terms of the energy
Another interesting analysis of this method can be carried out by applying a par-
titioning of the energy [37] which shows up the role played by the 1–RDM, the
1-HRDM and the 2-HRDM.
Thus, it has been shown that the energy can be partitioned as

where:
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The only operation used for obtaining this partitioning is the anticommutation rule
of the fermion operators. Note, that by adding the F and G terms one falls into the
unitarily invariant Absar and Coleman partitioning [32,33] which was obtained by
using a Group theoretical approach.
The interesting point about relation (30) is that each of the terms has a clear physical
interpretation. Thus the term involving F is a sum (for N electrons) of generalised
Hartree-Fock energy levels and clearly is a one-electron term. The term involving
G gives the sum (for N electrons) of the energy of an electron in the average field
of holes. The term is clearly the repulsion energy between the holes and
finally the value shifts the zero of the energy.
In my opinion this partitioning is particularly suitable for analysing electronic corre-
lation effects. To illustrate this point a set of calculations for the three lowest singlet
states of the Beryllium atom are reported in table 3 (in all cases
Hartrees).
Let us start the analysis of the results given in table 3 by commenting on the FCI
one. It is interesting to note that the one-electron term energy becomes lower as
the degree of excitation of the state increases. I find this result rather unexpected,
since in principle, the low energy orbitals will become more empty, At any rate the
stabilization caused by the term is more than counter-balanced by a large
increase of the positive terms of the energy, in particular by
The most stricking features, when comparing the FCI results with the IP and MPS
ones are:

• The and the terms vary for the different states in a very
similar way to the FCI terms. The values obtained with the IP and MPS
approximations for the term for the ground and third state show a
similar behaviour to those of the FCI calculation. However while the
FCI value is higher in the second state (which has a dominant open shell
configuration) than in the other states the opposite happens to the IP and
MPS results.

• The lowering of the energy in the ground state with respect to the FCI result
is due to the term which is much too low in the two approximations.
This error is compensated to a certain extent by errors in the opposite direction
of the two other terms.

• In the second state the two terms depending on the 1-and 2-HRDM compensate
their errors to a large extent but nevertheless the hole –electron positive energy
is too low and a global lowering of this state energy results.

• Finally in the third state the two approximations give very similar energy values,
both with higher energy than the FCI one. In each approximation, the error
of the different terms compensate each other to a certain extent.
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These results show that at least for the ground state, the correlation effects described
by the term are overestimated in the IP and MPS calculations.

4.3.3. Other applications

Before concluding this section, it must be pointed out that there are other fields of
application of the SRH formalism. Thus, Karwowski et al. have used it in the study
of the statistical theory of spectra [30,38]. Also, the techniques used in developing the
p-SRH algorithms have proven to be very useful in other areas such as the nuclear
shell theory [39,40].
We think that the physical meaning of the SRH matrices is not yet fully understood
and can therefore be considered an open field of research. It is to be expected that a
more complete understanding of the SRH matrices will lead to new applications of
this formalism.

5. The Contracted Schrödinger Equation

In this section I will outline a new line of research recently initiated by our group. It
must be emphasized that the only points in common with the SRH formalism pre-
viously described are that no call is made upon the N-electron WF of the electronic
system and that its basic formal tools are also the MCM and the RDM's.

5.1. THE NAKATSUJI AND COHEN-FRISHBERG EQUATION

The integration with respect to N – q electron variables of the Schrödinger equation
was reported simultaneously by H. Nakatsuji [41] and by L. Cohen and C. Frishberg
[42] in 1976. The form of this equation (NCF) for q = 2 is:



REDUCED DENSITY MATRIX VERSUS WAVE FUNCTION 67

where

is the 2-RDM written in first quantization language. The symbols denote
the Hamiltonians of two and three electrons respectively and is the two electron
repulsion operator.
Since this integro-differential equation depends not only on but also, through the
two integral terms, on and it is indeterminate [43].
An important property of the NCF equation is that in it the variational principle is
taken implicitly into account [42,44].

5.2. ORBITAL REPRESENTATION OF THE CONTRACTED SCHRÖDINGER
EQUATION (CSchE)

The matrix form in a spin-geminal representation (CSchE) of equation (34) was
obtained [18] in 1985 by applying the MCM.
The interest of contracting the matrix form of the Schrödinger equation by employing
the MCM, is that the resulting equation is easy to handle since only matrix opera-
tions are involved in it. Thus, when the MCM is employed up to the two electron
space, the geminal representation of the CSchE has the form [35]:

where the symbols have the same meaning as in the preceding sections. It must be
pointed out, that the contraction can also be carried out, up to the first order and
the result is:

5.3. ITERATIVE SOLUTION OF THE CSchE

It was suggested [35,45] that the indeterminacy of the CSchE could be removed
by replacing in it the 3- and the 4-RDM’s by their corresponding approximations
evaluated within the SRH formalism. After this replacement is performed, the matrix
equation can be solved with the help of relation (10) and

as auxiliary conditions.
Recently, a more powerful approach has been initiated. The different steps involved
in the procedure just proposed for solving the CSchE are:
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• From an initial 2-RDM the corresponding 3- and 4- order RDM’s are approx-
imated by using a method which will be described in the following section.

• Then, all the approximated RDM’s are replaced in the r.h.s. of equation (36) so
that its three terms are added into a matrix, say and relation (36) becomes:

• By taking the trace of both sides of equation (39) one obtains since

• The following step is to divide by which gives a new 2-RDM from which
the procedure can start again.

All these steps are built into an iterative procedure whose success pivots on the
approximation of the higher order RDM’s in terms of the 2-RDM. This important
part of the method will be addressed in the next section.

5.4. APPROXIMATING AN RDM IN TERMS OF THE LOWER ORDER ONES

As has been mentioned, the iterative procedure for solving the 2-CSchE will only
work if sufficiently precise approximations of the 3- and 4-order RDM’s in terms of
the 2-RDM can be obtained. Since the method is based on the N-representabili-
ty relations, the subsection 8.1 is dedicated to discuss these fundamental equations.
Then in 8.2 the method will be outlined and some examples will be given.

5.4.1. The N-representability conditions

The basic relations for studying the properties of the RDM’s are the anticommu-
tation/commutation relations of groups of fermion operators since their expectation
values give a set of N-representability conditions of the RDM’s. Thus,

• The first order condition

From the fundamental rule of anticommutation of an annihilator with a creator
operator it follows, in our orbital representation, that:

Since both the RDM’s and the HRDM’s are positive matrices, this relation
says that the eigen-value of the 1-RDM, must be which is the well
known ensemble N-representability condition for the 1-RDM [10] represented
in an orbital basis (in a spin-orbital representation the upper bound would be
1 instead of 2).
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• The second order condition

From the commutation of two annihilator with two creator operators follows the
also well known Q-condition [9] for the 2-RDM. In our notation, this condition
takes the form:

and replacing the Krönecker deltas by their value according to relation (41) one
finds [46]:

Note, that in this last relation, the part involving HRDM’s and that involving
RDM’s have the same structure.

• General N-order condition

The aim of the following discussion under this heading is not to describs the
formalism but merely to outline the ideas on which the method for approximat-
ing a p-RDM from the q-RDM’s with q < p is based. Nevertheless, in order to
avoid using vague or imprecise arguments the essential theoretical background
supporting the leading ideas must also be included here. The reader interested
in going beyond this sketchy discussion is referred to a recent paper [47] where
all the details are reported.

The result of commuting/anticommuting (for N even/odd) N annihilator op-
erators with N creator operators is:

where the symbols are N-electron configurations. This relation is very
elegant and compact but the following, in the orbital representation (obtained
by inference [47]), is more practical for our purpose:

where:
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– CN represents the classes of the Symmetric Group of Permutations SN

– are the permutations (of the indices of the annihilator operators) be-
longing to a particular class

– represents the parity of the permutations belonging to class C

– The symbol is given by:

– The symbol describes a sum of terms. Each of these terms is a

product of (N - i) Krönecker deltas with a i-RDM element. Now, the
terms whose addition is represented by a G symbol are those where the
indices are ordered according to the permutation of class
For instance, for N = 3 and the G symbols are:

Relations (44,45) describe the general form of the N-order condition; However,
some terms must be eliminated from relation (45) because they do not occur
when the anticommutation/commutation operations are carried out explicitly.
We call these terms spin – forbidden because in all of them the spin correspon-
dence which should exist between the creator and the annihilators forming the
p-RO (which generates the p-RDM) is not maintained. These spin-forbidden
terms are those having a transposition of at least two indices in their p-RDM.
For instance:

which is the third term of is spin-forbidden and must be eliminated.

An equivalent N-order equation having the same structure for the particle part
and for the holes part (in a similar way as in (43)), may also be inferred. This
equation has the form:

where all the symbols have the same meaning as in relation (45) except for
. This new symbol, like also describes a sum of terms. Each of these
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terms is a product of (N – i) 1-RDM elements with an i-RDM element, (i.e.
the 1-RDM plays a similar role to the Krönecker deltas). Thus, for instance:

is spin-forbidden and must be eliminated.

The inference process leading to equations (45) and (49) was carried out with the help
of a set of graphs specially suited for operating with RO’s. This graphical method has
been described in several recent publications [26,27,47] and would excessively lengthen
this paper; therefore, I would like to mention its usefulness without elaborating.
The interest of relation (49) lies in that the holes and the particle parts of the
equation, have the same structure.
Equations (45) and (49) stress the direct connexion existing between the elements
and classes of the Symmetric Group of Permutations and the terms derived by com-
muting/anticommuting groups of fermion operators after summing with respect to
the spin variables.
Two important facts concerning the set of relations given above are that all the
N-representability relations known to us, can be derived from (45) (or (44) in a spin-
space representation) by varying the value of N and relation (49) condenses them
all.
It is interesting to note that relation (45) guaranties that the N-electron state of refer-
ence (whose superindex has been omitted) is antisymmetric since the RO's involved
on the l.h.s of these equations operate on N-electron states. Now, by contracting
this equation to a p-electron space an N-representable equation is obtained (by con-
struction). In view of this, I hoped that a relation obtained in such a way would
be a sufficient N-representability condition or at least more stringent than the (45)
equation for N = p. Now the contraction of equation (45) gives exactly the same
equation where N has been replaced by p. On the other hand the contraction of
equation (49) gives a very complicated equation where partial traces of RDM’s of
orders (p + l),(p + 2),....(N – 1) appear. This equation although difficult to analyse
may prove to be useful and it is being studied at the moment.

5.4.2. Approximation proposed

The method for approximating an RDM in terms of the lower order ones is based
on equation (49). The working hypothesis which has been put forward [46] is:
”Let us assume that Holes and Particles are totally different objects. If this as-
sumption were true, equation (49) could be exactly decoupled into two equations,
one involving RDM’s of different orders and the other, of similar structure, linking
HRDM’s of different orders”.
This hypothesis, given that Holes and Particles are related through the N-repre-
sentability conditions, is not true. On the other hand, by taking into account several
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auxiliary conditions, very good approximations have recently been obtained by using
this method.
In order to see an example of how these suplementary conditions are imposed let us
consider the approximation of a 3-RDM in terms of the 2-RDM. Since an RDM
cannot have any negative diagonal element when such an element occurs it is put equal
to zero. Until now the negative diagonal elements found were of the type
where M represents the approximated 3-RDM. By comparing the approximated
matrix with the exact one it was apparent that the deffect in was compensated
very closely by an excess in the element therefore this element was corrected
in accordance. After this correction was performed the new elements (M´) had the
value:

It has been shown [48] that the related off-diagonal elements obey
definite symmetry relations which must be maintained after the corrections indicated
above have been applied.
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These symmetry relations impose that the following corrections should also be intro-
duced:

• must also be made equal to zero.

• The value should be subtracted from

Under these conditions, the 3-RDM of the three lower states of the Beryllium atom
and the two lower ones of the Water molecule were determined [48] by taking as initial
data the 2      -RDM obtained in a Full Configuration Interaction. In Table 4 some of
these results are given and as can be seen they are very satisfactory.
The results for approximating the 4-RDM in terms of the lower order RDM’s are
slightly inferior but still very good. In consequence, I expect that the iterative pro-
cedure proposed in the previous section may prove to be a realistic one.
In spite of the good results obtained we continue our search for simple auxiliary
conditions directed at ensuring that the approximated matrix is positive and that its
trace has the correct value. This search is mainly focused at improving the quality
of the 2-RDM obtained in terms of the 1-RDM,which at the moment is the less
precise procedure [46]. When this latter aim is fulfilled we expect that the iterative
solution of the 1-order CSchE will also be successful although in this CSchE the
information carried by the Hamiltonian only influences the result in an average way
which probably will retard the convergence.

6.Conclusion

The two previous sections outline the main formal and applicative results obtained
in our search for a theoretical framework where the number of variables which are
explicitly taken into account would be as small as the observables allow. This frame-
work should permit the use of different levels of approximation for the Hamiltonian
operator and its orbital representation. That is, the size of the basis set and the
kind of approximation used for the integrals should not be predetermined by the
formalism.
Both lines of research are far from being closed and we are confident that their
development will contribute useful results. However, without considering future per-
formances I think that it can already be said that it is a good strategy to project the
future Quantum Chemical methodology in such a way that the WF is by-passed and
the 2-RDM or (better still but more difficult) the 1-RDM are directly determined.
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The Real Generators of the Unitary Group

P. CASSAM-CHENAI
Equipe d'Astrochimie Quantique, Laboratoire de Radioastronomie
EMS., 24 rue Lhomond, F-75231 Paris Cedex 05, France

This note is dedicated to G. Berthier who has always emphasized the importance of a
rigorous use of the language in scientific papers. I would like to expose here an "abus de
langage" regarding "the generators of the unitary group U(n) ", usually denoted by
which dates back to their introduction in quantum chemistry [1]. As a matter of fact, in
the original paper, the author concedes that they are not the generators of U(n) but those
of the linear group ; however, as far as I am aware, none of his followers has
ever mentioned this point.

The generators which are chosen such that:

are Hermitian only for They generate, using complex numbers, the Lie algebra of
. This algebra contains the Lie algebra of U(n) , but it is indeed much larger.

The Lie algebra of U(n) can be generated more specifically, using real numbers, with
Hermitian generators denoted

The generators , and the generators
are related in the same way as the angular moment operators" and

where is the Kronecker symbol, and
It is convenient to extend these relations to all couples (i,j), and to write compactly :

The structure constants for Hermitian generators are purely imaginary :

Y. Ellinger and M. Defranceschi (eds.). Strategies and Applications in Quantum Chemistry, 77–78.
© 1996 Kluwer Academic Publishers. Printed in the Netherlands.
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The fundamental representation of the generators as n x n matrices is easily obtained; the
matrix elements have the following expressions :

is that it decomposes on with real numbers, even when the integrals
are complex (case of an electromagnetic field, of a molecule whose symmetry group has
irreducible representations which are not realizable over real numbers...) :

with w (respectively v ) one-electron (respectively two-electrons) Hermitian operator
and Re(x) (respectively Im(x)) real part (respectively imaginary part) of the complex
number x.

So the genuine generators of the unitary group have original properties and do not deserve
to be forgotten. It would seem weird to build the theory of angular momentum using only

with no mention of and . It is equally surprising that only the appear
in the theory of the unitary group. In short, in the traditional approach, one builds the Lie
algebra of the linear group but uses only the Lie subalgebra corresponding to the unitary
group. A more satisfactory approach would consist in generating the Lie algebra of the
unitary group only, using its real generators, then to define in this algebra with Eq.(3) the
rising and lowering operators
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Convergence of Expansions in a Gaussian Basis

W. KUTZELNIGG

Lehrstuhl für Theoretische Chemie, Ruhr- Universität Bochum,
Universitätsstr. 150, D-4630 Bochum, Germany

1. Introduction

Few papers have had as much impact on the progress of ab-initio quantum chemistry
as that of Boys [1] where he proposed to use Gaussians (GTOs) as basis sets. The
great breakthrough of ab-initio theory would never have been possible without the
invention of Gaussians. Nevertheless, even nowadays it is difficult to explain to
a beginner why one should rely on Gaussians, which have the wrong behaviour
both near the nuclei and very far from them. The ease; with which two-electron
integrals over GTOs can be computed is certainly an argument. However, if one
has thought a little bit on the importance of choosing basis sets with the right
behaviour at the singularities of the Hamiltonian [2], one cannot but be deeply
surprised that expansions in GTOs converge decently well in spite of their failure
at the singularities of the Hamiltonian.

To appreciate this point somewhat better it is useful to compare three types of
Gaussian basis sets, (a) a set of Gaussians with common orbital exponents (for one
l) but a sequence of principle quantum-numbers

(We consider here only the case of a single center), (b) the same set (1.1) but with
n – l = 1,2,3,4, ..., (c) a set of Gaussians with the lowest possible n for each l, but
with a sequence of orbital exponents

Sets of orbital exponents have been proposed mainly by Huzinaga [3], van
Duijneveldt [4], Pople et al. [5]. A systematic construction of basis sets of arbitrary
dimension is possible in terms of the ’even tempered’ concept of Ruedenberg et
al. [6,7 ], or of some more sophisticated generalizations [8,9,10]. For a recent
comprehensive review on basis sets see Feller and Davidson [11].

It does not make a significant difference that in practice one uses ’cartesian Gaus-
sians’ rather than Gaussians with explicit inclusion of spherical harmonics. One
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should also mention that there is a fourth type of basis sets (d), namely that of
Gaussian lobes [12,13] i.e. functions of type (1.2) with only but with
centers spread over the molecule, not only at the position of the nuclei. These don't
differ basically from case (c).

It has been shown [14] for both types of basis sets (1.1) and (1.2) that a given set
of dimension n can be regarded as a member of a family of basis sets that in
the limit become complete both in the ordinary sense and with respect to
a norm in the Sobolev space – which is the condition for the eigenvalues and
eigenfunctions of a Hamiltonian to converge to the exact ones. However, as to the
speed of convergence the two basis sets (1.1) and (1.2) differ fundamentally.

In a careful study of basis sets of type (1.1) applied to the ground state of the
hydrogen atom Klahn and Morgan [15] were able to show that the error of the energy
goes as (n being the dimension of the basis) for fixed By optimization
of one can achieve [1.6] that the error goes as . Anyhow this rate of
convergence is as bad as one can imagine and it makes basis set (1.1) absolutely
useless. Convergence as an inverse-power law with a small exponent generally
prevents accurate calculations, as is known from the slow convergence of the partial-
wave expansion for the interelectronic coordinate (equivalently the convergence of
a CI for an atom with the highest angular equantum number l in the basis set
included), where the error goes as Inclusion of a single term with the
right behaviour at the Coulomb singularity (a ’comparison function’ [2]) improves
the rate of convergence, such that the error goes as for the expansion of the
H-atom ground state in basis (1.1) [16] or as for the convergence of a CI
[17].

If one includes functions with n – l even in (1.1) (i.e. one uses set b) the basis is
formally overcomplete. However the error decreases exponentially with the size of
the basis [2,16]. Unfortunately for this type of basis the evaluation of the integrals
is practically as difficult as for Slater type basis functions, such that basis sets of
type (b) have not been used in practice.

The rate of convergence of expansions in the basis (1.2) has received little attention
except for purely numerical studies [3,7,8,9,16] which indicated that the convergence
is at least (unlike for bais set of type) not frustratingly slow. Rather detailed studies
were performed for the even-tempered basis set, i.e. for exponents constructed from
two parameters and (for each l)

In a numerical study of basis sets (a), (b) and (c) for the H atom ground state W.
Klopper and the present author [16] found that for the basis (c) the error goes as

i.e. the convergence is not exponential (which would be ideal, i.e. generally the
case for a basis that describes the singularities correctly) but almost so. This
does not only hold for the energy, but for other properties as well. However there
are properties for which the limit does not yield the correct result, e.g.
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which is for the exact H ground state wave function, but which
vanishes for the expansion in (1.2) for all finite n.

Similarly is equal to while this second derivative is negative for
any finite expansion with an apparent divergency to for Some prop-
erties like the density at the nucleus and the variance of the energy converge very
slowly to the exact values. These are, nevertheless, relatively minor defects.

Again by adding to the basis at least one function that has the correct behaviour
at r = 0, e.g.

the convergence can be speeded up – and the last-mentioned defects can be removed
[10,16]. However, the improvement is much less spectacular than for basis (1.1) –
unless one is interested in the density at the nucleus or the variance of the energy.

There are hints [9,10,18] that the rate of convergence for basis sets of type (1.2) is
even better than (1.4), if one uses better optimized basis sets than those of even
tempered type (1.3),

and that the same convergence pattern is found for the expansion of as for

There is no doubt that the convergence behaviour of standard Gaussians is much
better than one should have expected in view of their failure at

What is the fundamental difference of basis sets of type (1.1) and (1.2)? Without
claiming to give a definite answer we can say that the expansion in the basis (1.1)
is closely related to the expansion in terms of Laguerre functions, i.e. in a typical
orthogonal basis and that a theory much like that for Fourier series applies. There it
generally holds that the singularities of the function to be expanded determine the
rate of convergence [19]. An expansion in the basis (1.2) can hardly be traced back
to something like a Fourier series. It must rather be viewed as a discretization of
the integral representation of an exponential (or another exponential-like) function.

and entirely different features determine the error. (As to a direct application of a
numerical discretization of the integral transformation (1.7) see ref. 20).

To get analytic results for the convergence behaviour of an expansion in a Gaussian
basis we shall proceed in two steps.

1. We replace the integral (1.7) by an integral from s1 to s2 rather than from 0 to
The errors due to this restriction of the integration domain – the cut-off errors

– can easily be estimated.
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2. We replace the integral from s1 to s2 by a sum over a regular grid. We do
this by applying first a variable transformation (to be specified by some criteria)
such that after this transformation an equidistant grid can be used. An estimate
of the discretization error is possible by means of tricky and non-trivial application
of analysis. Details on this are given in the appendix, which is a rather important
part of this paper.

The integral (1.7), which is the starting point for the expansion of a hydrogen-like
1s function in a Gaussian basis, is rather complicated. There is a much simpler
counterpart of (1.7) which is relevant for the expansion of the Coulomb potential
1/r in a Gaussian basis, namely

It has, in fact, been found in a numerical study [21] that this type of expansion has a
very similar convergence behaviours as that of , i.e. that the error also goes as

. The origin of this behaviour is essentially the same for the expansion
of the two functions. Since (1.8) is formally much simpler, it is recommended to
study the expansion of 1/r first.

In fact only the expansion of 1/r will be treated here in detail, while a full study
of the expansion of will be published elsewhere.

The key feature is – both for the expansion of 1/r or in terms of ’even-
tempered' Gaussians – that, for large n, the cut-off error goes as
with h the step size and that the discretization errors goes as with
a and b constants. While – for fixed n – a small h is good for the discretization
error, it is bad for the cut-off error and vice versa. The best compromise is that

which implies that the overall error goes as

The similarity between 1/r and , as far as the expansion in a Gaussian basis
is concerned, leads to another interesting aspect. In many-electron quantum me-
chanics we have in principle to solve both Schrödinger and Poisson equations. We
don't realize this usually because the Poisson equations are first solved in closed
form – which is not possible for the Schrödinger equation. This procedure destroys
the equivalence between the matter field and the electromagnetic field and one may
want to consider an approach in which one solves the Poisson equations numeri-
cally in a basis of Gaussians rather than solving it exactly. Work on these lines is
in progress [21].

2. Expansion of 1/r in a Gaussian basis

We proceed in two steps. Starting point is the identity (1.8) or equivalently
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In doing so we make two ’cut-off ’ errors

The error function erfx has a power series expansion for small x and an asymptotic
expansion for large x

and the following inequalities hold

which allow us to estimate and in two alternative ways.

We have indicated the order of errors of these estimates after the semicolons. We
see that (2.6a) is a close estimate for if while (2.6c) is a close estimate
for . On the other hand the relative error approaches 1, i.e. 100%
for and for . Note that the cut-off error never exceeds 100%.
The range of r-value for which f ( r ) is a good approximation to 1/r is

In this range the total cut-off error is determined by the
’lower-cut-off’ error (2.6a), with respect to which the ’upper-cut-off error’ (2.6c) is
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negligible. In a wide range of r ’flat’ gaussian are more important than ’steep’ ones,
which only matter for small r.

The next step on the way to an expansion of 1/r in a Gaussian basis is to replace
the integral (2.2) by a sum. Before we divide the range between into n
intervals, we apply a variable transformations, such that after this transformation
an equidistant grid can be used.

Let us define the normalized functions (with respect to square integration over r)

Then (2.8b) becomes

Obviously we must choose p(x) such that the domain between and –   which
have different orders of magnitude – is covered in a balanced way. One may fur-
ther require that all g(r, x) have about the same weight in the sum. The latter
requirement leads to the condition

Obviously an exponential mapping looks also good in the sense of the first criterion.
One sees easily that f(r) is independent of the choice of such that we may as
well take Of course, this is only a plausiblity argument and we need a
rigorous criterion for the optimum mapping. We come back to this problem in the
conclusions.

We hence have

We now approximate (2.12a) as a sum (with the discretization error).
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Estimates for the discretization error are derived in the appendix. Unlike the esti-
mates (2.6) these are not obtained as strict inequalities, but rather as leading terms
of asymptotic expansions. For the integral (2.12a) with the integration limits
to the discretization error is (for large n and sufficiently small h, see appendix
E)

To arrive from (E.2) and (E.7b) at (2.14) one must identify a of appendix E with
and realize that (E.2) or equivalently f ( x ) in (C.1) is normalized to 1. To

establish the relation to (2.1) one must multiply (E.2) by The relative
discretization error happens to be independent of r (at least as far as its dominant
term is concerned). Using the arguments of the appendix one finds for the optimum
interval length as function of dimension n of the basis

and for the overall error (for that range of r values for which and are suffiently
small).

3. Estimation of the error of an expectation value of 1/r

In practice one will – in fact – not be interested in the accuracy of f(r) as a
function of r, but rather in the error of matrix elements like that over a hydrogenlike
1s function

as

To estimate this error we insert (2.2) into (3.1b) and integrate first over r such that
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The analytic expression for this integral is

The limit of (3.3) is not obvious. To get it we must expand the
first line of (3.3) in powers of and insert the asymptotic expansion of erfc in the
second line before we collect powers of . We get for the first and second lines of
(3.3) respectively

Of course, and as defined by (3.4) are the ’cut-off’ errors due to limitation
of the integration domain to to

We next approximate the integral (3.3) by a numerical integration after performing
the variable transformation (2.11) with . This means we first replace (3.3) by

Before we study the ’discretization errors’ let us look on how the ’cut-off errors’
and depend on the number of points chosen in (3.5c). In view of (3.5a), (3.4)
and (2.13b) we have
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The minimum with respect to (for nh fixed  –  and sufficiently large –) is achieved
if

This means that one should choose roughly and that for
fixed h the error decreases exponentially with n (or for fixed n exponentially with
h).

The estimation of the discretization error is fortunately rather easy, relying on the
results of appendix E (which contains the difficult part of the derivation). In fact
the discretization error given by (2.14) is simply proportional to 1 / r . Hence

A derivation of the discretization as

is very lengthy, but leads essentially to the same result, which is not so obvious,
since in appendix E we have done the phase-averaging before integrating over r,
and phase averaging and integration over r need not commute.

We use again the argument that the minimum of appears close to the
value of h for which the arguments of the exponential agree, i.e.

There is one difficulty insofar as (3.8) is only an estimate of the absolute value of
the discretization error. It cannot be excluded that (depending on how the limit

is performed, see appendix and have opposite sign. In
this case the minimum absolute error may vanish, while (3109a) is still valid.

Note that h is related to the of an even-tempered basis (1.3) for the H atom
ground state as

Let the smallest orbital exponent in the Gaussian basis be and the largest
Then for sufficiently large n we have

these results, especially that for are in good agreement with results from a purely
numerical study [21].
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4. Conclusions

We were able to show analytically – in an unexpectedly tricky way (the mathemat-
ical ingredients of which are in the appendix) – that the error of an expansion of
the function in terms of an even-tempered Gaussian basis of dimension n goes
as provided that the two parameters of the even-tempered basis are
optimized.

We have not shown that this is the optimum convergence, in other words whether
there are other (two- or more-parameter) basis sets for which the convergence is
even faster.

The examples given in the appendix give some indications on the properties which
the mapping function has to satisfy that both the cut-off error and the discretization
error decrease exponentially (or faster) with nh and 1 /h respectively and don't
depend too strongly on r. Further studies are necessary to settle this problem.

For quantum chemistry the expansion of in a Gaussian basis is, of course,
much more important than that of The formalism is a little more lengthy than
for 1/r, but the essential steps of the derivation are the same. For an even-tempered
basis one has a cut-off error and a discretization error
such that results of the type (2.15) and (2.16) result. Of course, is not well
represented for r very small and r very large. This is even more so for 1/r, but this
wrong behaviour has practically no effect on the rate of convergence of a matrix
representation of the Hamiltonian. This is very different for basis set of type (1.1).
Details will be published elsewhere.

At this point one can conjecture that the relatively rapid convergence of Gaussian
geminals [22]

to describe the correlation cusp, has a somewhat similar origin as the example
studied here, and goes probably also as exp with n the dimension of the
geminal basis.
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Appendix

Estimation of the discretization error

A. GENERAL CONSIDERATIONS

We want to approximate the integral by dividing the integration domain
into n intervals of the same length h and by approximating f(x) in each interval
by its value at the center of the interval. The discretization error is then

To estimate (in a more traditional way) we make a Taylor expansion of f(x)
around in the k-th interval. We write (assuming that f ( x ) is differentiable
an infinite number of times, which is the case for the functions that we study here)

We express

and proceed similarly with in a next step and so on such that
finally

The are Bernoulli numbers.

The expansion coefficients in (A.4) are essentially those of cosech(x/2).

The equality sign in (A.4) only holds if the series converges. Otherwise the series
is at least asymptotic in the sense that the sum truncated at some k differs from
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the exact by This also holds if f is only (2k – 1) times differentiable,
such that one has has to truncate the expansion anyway.

The discretization studied here is related to that of the Euler-McLaurin method
well-known in numerical mathematics (see e.g. [23]). The difference is that in this
method one approximates the mean value of f ( x ) in the interval by the average of
the values at the boundaries of the interval, while we approximate it by its value
at the center of the interval. This choice is more closely related to the expansion of
a function in a basis.

For the Euler-McLaurin discretization an error formula similar to (A.4) holds,
namely without the factor which corresponds to the expansion co-
efficients of coth(x /2).

An equidistant integration grid may not be the best choice. Let us therefore consider
that we perform a variable transformation in the integral before we discretize.

To define the error by (A.1) and to apply the error formula (A.4) we must replace
and and respectively

We are mainly interested in the transformation

Eqn. (A.4) or its counterpart with h replaced by and allows
us to estimate for small h it is less convenient for so large that
the Taylor series within an interval converges slowly or diverges.

There is an alternative – and for our purposes more powerful – way to estimate
the discretization error, namely in terms of the Fourier expansion of a periodic

function. We write see (A.1), as [24]
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Only the cosine terms contribute, because the sine terms vanish at

The larger l and the smaller h the more rapidly oscillating is the cosine factor in
(A.9) and the smaller is the contribution to For sufficiently small h usually the
term with l = 1 dominates in the sum.

A very popular method of numerical integration is that of [23]. It has the
advantage that with n points in a integration one gets the same accuracy
as with 2n points on an equidistant grid – provided that the integrand is well
approximated as a polynominal of degree n, or is expandable in an orthogonal basis
like in Laguerre polynomials. For the examples that we study here this condition
is far from beeing satisfied, and therefore the integration is not supposed to
be helpful.

We now study some special examples that are closely related to those that we are
interested in.

B. THE EXPONENTIAL FUNCTION WITH AN EQUIDISTANT GRID

For the example

a closed expression for the truncation error can be obtained

In this case the relative error is the same for all intervals and one gets

We write to indicate that this is a discretization error.

If one expands (B.3) in powers of one gets the same result as from (A.4) namely

noting that
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The series (A.4) has here the radius of convergence but it can be continued
analytically beyond its radius of convergence.

Let us now argue that we are actually interested in the integral

and that the first approximation step is to replace by y and the second one the
discretization, then the total error consists of the cut-off-error

and the discretization error (B.4).

The limit of the discretization error (B.4) is

while from the Fourier expansion (A.9) we get

The identity between (B.8) and (B.9) is not immediately recognized. One sees at
least easily that for small h one gets from (B.9)

in agreement with what one gets from the Taylor expansion of (B.8) or immediately
from (A.4). The agreement of (B.8) and (B.9) is confirmed in terms of a relation
familiar in the theory of the digamma function

together with
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and

which implies

from which one is immediately led to the equivalence of (B.8) and (B.9)

If one limits the sum (B.9) to the term with l = 1 and expands in powers of h, the
coefficient of the leading term in instead of the correct value

(see B.10). Convergence with l for small h is pretty (though not extremely)
fast.

We want to make the overall error minimal for fixed n. We express the total error
in terms of h and n

We want to minimize ε as function of h for fixed n. Since the discretization error
only depends on h, it is obvious that one should make h as small as possible, in
order to minimize it. We can therefore assume that h is so small that

Asymptotically for large n the solution of this transcendental equation is

Since lnn is a slowly varying function of n, the error goes essentially as This is
the typical behaviour of a discretization error for a numerical integration [23], but
is atypical for the examples that we want to study.

C. THE GAUSSIAN WITH AN EQUIDISTANT GRID

Our next example is
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At first glance this looks similar to (B.1). However, there are two differences be-
tween (B.1) and (C.1) that have spectacular consequences.

1. While the function f(x) in (B.1) is convex for all x, the f(x) in (C.1) is concave
from x = 0 to the inflection point and convex from to This
means that the discretization error is negative for intervals between 0 and and
positive between and such that a partial cancellation of the error is possible.

2. While for f ( x ) in (B.1) all derivatives at x = 0 are non-zero, the odd-order
derivatives of the f ( x ) in (C.1) vanish at x = 0. Since these enter the error
formula (A.4) there is no contribution of the boundary at x = 0 to the given by
(A.4), whereas for (appendix B) the derivatives at x = 0 determine
the error.

Prom (A.4) we conclude that for sufficiently small h

Not only is this error negative, meaning that we overestimate the integral (C.1),
but it also appears that the error decreases very rapidly with y, such that one is
tempted to conclude that in the limit (and hence vanishes,
independently of h.

In fact for the odd-order derivatives of f ( x ) vanish at either boundary such
that (A.4) gives the result zero. Of course (A.4) only holds for h smaller than
the radius of convergence of the series. There is no reason why should be
independent of y, and we shall, in fact see that This makes the
estimate (C.2) rather useless because its range of validity is too limited (unlike for
the example of appendix B).

The explicit expression for the discretization error is

Unlike for the example of appendix B a closed summation is not possible. However,
(C.3) allows us to discuss the behaviour of for large h, where the sum is dominated
by the first term

For large h one cannot reduce the error significantly by increasing n. There is
obviously a limiting function for which for large h is given by
(C.4). For small h (C.3) is not convenient because it is slowly convergent.

Fortunately the Fourier expansion method helps us for small and intermediate h
but large n. We get in the limit
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This is (at variance with C.3) a rapidly converging series for

For h suficiently small the first term with l = 1 is a good approximation to the sum
(C.5a).

If the upper integration limit in (C.5a) is y = nh rather than i.e. for finite n,
a simple closed expression is not obtained. However, one can estimate the leading
term in an expansion in powers of such that

The asymptotic expansion of (C.5b) in powers of h agrees with (C.2). In fact the
first term neglected in (C.5b) starts with In the limit of course, all
terms of an expansion in powers of h vanish. has an essential singularity at
h = 0.

From this asymptotic expansion in powers of no conclusions on the radius
of convergence of are possible, but there are some hints that the radius of
convergence is that of cosech i.e.the series (A.4) probably converges for

This conjecture is consistent with the result that for the radius of conver-
gence reduces to 0.

At the arguments of the exponential functions in (C.5a) and (C.5b) agree,
which implies that near goes through zero. Between h = 0 and

is slightly negative and rather well approximated by (C.2), while for
increases rapidly and soon approaches 1.

Near the cut-off error

and the discretization error have the same order of magnitude, hence the minimum
of is also close to The minimum error therefore goes as

The prefactor of the exponential in (C.7) is less easily obtained. To get it one
has to solve the transcendental equation for h and insert this into
Numerically one obtains that this factor is close to 1/2.



96 W. KUTZELNIGG

The essential message is that the error goes as and the optimum h as
This means very fast convergence with the number n of intervals, very

different from the example of appendix B where the error only decreased as

In this appendix we have argued that (C.5b) is valid for ’sufficiently
small’ h. That meant that h should not be significantly larger than which
is not very restrictive. However (C.2) only holds for h satisfying (C.6), which limits
its validity to extremely small h, in the limit (C.2) becomes even invalid.
The two references to ‘small’ h must be clearly distinguished.

D. THE EXPONENTIAL FUNCTION WITH A LOGARITHMICALLY
EQUIDISTANT GRID

We consider again (B.1), but with the transformation

The lower integration limit is now changed from 0 to If we want to discretize,
we must also introduce a lower cut-off. I.e. rather than (D.2) we must consider

The integrand in (D.3) falls off rapidly for but more slowly for
Therefore the ‘lower’ cut-off is more critical than the ‘upper’ cut-off We have

We divide the domain into n intervals, hence

We minimize the error with respect to for hn fixed, ignoring terms of
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and we get for the discretization error

We want to take the limit and in order to obtain There
is the difficulty that in this limit becomes an indefinite phase.
Pictorially it is clear what this means.

The intervals near the maximum of the integrand F(z)give the largest contributions.
If one changes both integration limits, the intervals close to the maximum are not
only changed in length, but also their positions with respect to the maximum are
shifted. It makes, especially for large h, a lot of a difference if the ’innermost’ inter-
val has its center or a border at the maximum. The limit for the integration from

depends somewhat on the position of the innermost interval, especially
for large h.

Since the limit and is not unique, we can either choose a procedure
to make it unique, e.g. fix that there is always a border of an interval at z = 0, or
– what is more realistic – we accept the non-uniqueness and hence an incomplete
information and average over the indefinite phase in some consistent way. Leaving
the phase unspecified we get

Since [25,26]
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the term with  l = 1 dominates for sufficiently small h. If we take only this term in
(D.8) and form the mean square average over the phase we get

This estimate is independent of a as is the estimate (D.6c) of the cut-off error.

Note that is a monotonically increasing function of h, while both
Re and Im oscillate between and

The discretization error for finite integration limits and contains in ad-
dition to (D.8) two extra terms (under the sum) that contain incomplete Gamma
functions. We don't need their explicit form for the estimation of the dominating
part of the overall error. Of course, expanding these extra terms in powers of h
would lead to the error estimation (A.4), that holds for extremely small h (and
sufficiently small l) which is rather irrelevant in the present context.

Somewhat similar to appendix C we have a discretization error that goes as
and a cut-off error The minimum as function of h is

achieved (for large n) if

If and happen to have opposite sign, the optimum error vanishes, while close
to its zero ε (h) has an inflection point.

The optimum interval length goes as and the error as exp This is
certainly a much faster convergence than for the choice of an equidistant grid for
the exponential function as studied in appendix B.

We have not considered the next term in an 1 /n expansion of which
would be needed to get the prefactor of

E. A GAUSSIAN WITH A LOGARITHMICALLY EQUIDISTANT GRID

We consider now (C.1) but with the transformation

Everything is similar to appendix D.

Now (D.3) is replaced by
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We further get

We minimize with respect to

For the discretization error we get

The argument concerning the indefinite phase in the limit is similar as in
appendix D. The counterpart of (D.8) is
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Limitation to the term with l = 1 (which dominates for sufficiently small h and the
same phase averaging as in appendix D leads to [24,25]

For small h this goes as

The condition analogous to (D.11a) is

Like for the last example the optimum h goes as and the error as
The convergence is slower than for the same function with an equidis-

tant grid, but both h and ε are (on this level of approximation) independent of
i.e. essentially the same grid can be used for a very steep or a very flat Gaussian.
there is only a shift via the a-dependence of and
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Quantum Chemistry in Front of Symmetry-Breakings
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118 route de Narbonne, 31062 Toulouse, France

1. Introduction

Symmetry breaking is a universal phenomenon, from cosmology to the microscopic world,
a perfectly familiar and daily experience which should not generate the reluctance that it
induces in some domains of Physics, and especially in Quantum Chemistry. In classical
physics, the symmetry breaking of an a-priori symmetrical problem is sometimes refered
to as the lack of symmetry of the initial conditions. But it may be a deeper phenomenon, the
symmetry-broken solutions being more stable than the symmetrical one.
Quantum chemistry experiences two types of symmetry breakings.
One is purely formal, it concerns the departure from symmetry of an approximate solution
of the Schrödinger equation for the electrons (ie within the Born-Oppenheimer
approximation). The most famous case is the symmetry-breaking of the solutions of the
Hartree-Fock equations[l-4]. The other symmetry-breaking concerns the appearance of
non symmetrical conformations of minimum potential energy. This phenomenon of
deviation of the molecular structure from symmetry is so familiar, confirmed by a huge
amount of physical evidences, of which chirality (i.e. the existence of optical isomers) was
the oldest one, that it is well accepted. However, there are many problems where the
Hartree-Fock symmetry breaking of the wave function for a symmetrical nuclear
conformation and the deformation of the nuclear skeleton are internally related, obeying the
same laws. And it is one purpose of the present review to stress on that internal link.

2. Symmetry breakings of the electronic wave function

The Schrödinger equation being linear, H commutes with the symmetry operations of space
and spin, and the wave function must be symmetry-adapted. This is the basic doxa which
we transmit to our students. If they are critical, they perhaps wonder why the  atomic
orbital of the hydrogen atom is an eigenfunction, while symmetry-broken. Actually, we
usually do not take time to mention that for degenerate roots, it is the projector on the stable
subspace of these degenerate eigenvectors which commutes with the symmetry operators of
the problem. But the drama arises when the desired state is non degenerate and when an
approximate method delivers a symmetry-broken wave-function. The results is in general
considered negatively as spurious, contaminated and irrelevant, despite the fact that
meaningfull physics have been introduced in these solutions in a biased way, lowering the
energy with respect to the symmetry-adapted description obtained at the same level of
sophistication.
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The most famous case concerns the symmetry breaking in the Hartree-Fock approximation.
The phenomenon appeared on elementary problems, such as when the so-called
unrestricted Hartree-Fock algorithms were tried. The unrestricted Hartree-Fock formalism,
using different orbitals for a and electrons, was first proposed by G. Berthier [5] in 1954
(and immediately after by J.A. Pople [6] ) for problems where the number of α  and
electrons were different. This formulation takes the freedom to deviate from the constraints
of being an eigenfunction.
For problems, where the ground state is a singlet state, the use of such a wave
function appeared to give significantly lower energies than the orthodox symmetry-adapted
solution in many problems, as illustrated below. Later on other types of symmetry breaking
have been discovered and Fukutome [7] has given a systematics of the various HF
instabilities in a fundamental paper.

2.1. ATOMIC PHYSICS

In the Be atom, the two valence electrons occupy a 2s, 2p valence shell, the 2s and 2p
Atomic Orbitals (AO) having an important "differential overlap" (ie a good coincidence of
their spatial extension). The contribution of the 2p AO to the angular correlation of the
valence electrons is especially large (the Moller Plesset expansion from
being poorly convergent) and the proper valence function should be written

while the RHF approximation is reduced to the component. One obtains a much
lower energy using an UHF function which looses both the space and symmetry
constrainsts. The single determinant

is lower in energy than the best RHF solution due to the inclusion of some angular
correlation through the component, despite the contamination by the triplet

configuration This example illustrates wonderfully the physically suggestive
potentiality of the symmetry-broken solution. Since it tells us that when the α electrons is
on the right side of the nucleus the electron prefers to move into an

hybrid, ie on the left side of the nucleus. This is the best translation of the angular
correlation, and it is clear that superimposing and the degenerate non orthogonal
solution

into

will restore the singlet character of the wave function by eliminating the triplet
contamination but still disobeying the space-symmetry constraint [8].
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The space symmetry would only be restored by superposing the degenerate and

solutions in
Such phenomena do not occur in heavier alkaline earth atoms due to a poorer differential
overlap between the valence s and p orbitals (smaller Ksp integrals) as explained by
Kutzelnigg [9].
Another well-known atomic HF symmetry breaking is the problem but it is more
artificial since in this unbound state, two electrons leave the atom oppositely in two diffuse
orbitals [10].

2.2. THE WEAK SINGLE BOND

The most popular use of the UHF solutions concerned the single bond breaking, since it
was rapidly understood that while the RHF solution of

with

imposed a constant ratio of ionic/neutral VB components whatever the interatomic distance

and therefore a spurious asymptote at (IP-EA)/2 above the dissociation into neutral atoms,
the UHF solution

with

authorized one electron to concentrate on atom A while the second one concentrates an atom
B. The detailed conditions for the appearance of the UHF solution have been explicited a
long time ago as a special application of the Thouless' relations [2]. This relation analyzes
the stability of the symmetry-adapted HF solution, using symmetry-adapted MOs [11]. The
transcription of these conditions in Valence Bond terms is easy to derive, [12] and one may
show that the symmetry breaking takes place when

where in the element of the Fock operator between the valence AOs a and b and
is the energy difference between the neutral and the ionic VB determinants. The

solid state physicists would say that
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t being the hopping integral and the on-site effective bielectronic
repulsion, while the radius of convergence of the Rayleigh Schrodinger perturbation theory
from the RHF single determinant is

For the relevant perturbation consists in perturbing the covalent (or neutral) VB
structures by their interaction with the ionic ones; this is the strongly correlated or magnetic
domain. So that the Hartree Fock symmetry breaking occurs in a zone which covers the
whole magnetic domain and a significant part of the "weakly" correlated domain

2.3. THE MULTIPLE BOND

For more complex problems such as multiple bonds and Metal-
Metal bonds [15-17]) or extended systems ( the system of cyclic polyenes, among
others), the symmetry-breakings may take several forms since one may leave different
space-and spin-symmetry constraints independently or simultaneously. For for
instance, the RHF symmetry adapted solution is of character while

one may find at much lower energy a solution of closed shell character (a pure
singlet) which has broken the symmetry between the x and bonds. A UHF solution lies
much below, which has a dominant VB character

at short interatomic distances and a correct asymptotic content

at large interatomic distances.
The multiplicity of symmetry breakings have been explored in details in where they
occur near the equilibrium interatomic distance [12].
The fact that symmetry breaking occurs at shorter interatomic distances for multiple bonds
than for single bonds may be understood within two different languages. One refers to the
instability conditions of the symmetry-adapted solution. In multiple bonds some bonding
electron pair are strongly delocalized and would not break the symmetry (for instance the

while the p bonds are weaker and enter more rapidly into the :

regime (this criterion is only weakly modified for multiple bonds [12] ). Of course in a
sextuple bond, as the bonds are so weak that they induce a strong symmetry
breaking [18].
In the other approach one looks at the VB content of the symmetry adapted) wave function,
for instance for
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and one sees that all VB components in terms of localized orbitals (obtained from the
occupied MOs and a proper definition of antibonding valence

have equal coefficients, from the neutral ones to the triply ionic ones, which is especially
absurd. All effective symmetry breakings lower the energy by reducing the components on
the most ionic VB components. For instance in a singlet type symmetry-broken solution of

of the type

x concentrates on atom A while y concentrates on atom B so that the occurence of
and situations is dramatically reduced. This reduction is even stronger in the
UHF solution

where the spin MOs concentrate on atom A and the spin MOs concentrate on atom B.
This increases not only the neutral VB character of the wave function but also the
component on the atomic ground states, satisfying the atomic Hund's rules.
As an example of the interest to scrutinise the UHF solution, one may quote the
problem [19]. The bond is weak but it takes place at short interatomic distance and is
definitely not the dispersion well which one might expect from two closed shell atoms (and
which occurs in and heavier compounds). Quantum chemical calculations only
reproduce this bond when using large basis sets and extensive CI calculations [20]. It is
amazing to notice that the UHF solution gives a qualitatively correct behaviour, and
suggests a physical interpretation of this bond since in

the two a spin MOs concentrate an atom A and have respectively a 2s and dominant
character (the same being true for the spin MOs on atom B). The creation of that weak
bond would be due to an atomic promotion to the lowest excited state of the atoms. This
suggestion would deserve a verification by defining natural MOs from the full CI wave
function and their appropriate localizing transformations.

2.4. EXTENDED SYSTEMS

HF symmetry breaking for polyatomic molecules have the same origin, i.e. the reduction of
the components on highly ionic VB situations. If one considers a strongly localizable
electronic system such as a molecule built of covalent bonds like the cubic (12 P-P
single bonds), each bond is weakly correlated but there are equal mixtures of neutral and
ionic contents. So that each atom being involved in three bonds, the occurence of and

situations is completely exaggerated. Moreover, among the initial situations, the spin
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distribution is random without any privilege neither for the spread of the three electrons in
three p AOs nor for the spin alignment, which would satisfy the atomic Hund's rules. The
UHF solution may be written :

where the MOs concentrate on different atoms and where the spin distribution is
antiferromagnetic (each a spin atom being surrounded by three spin atoms), and it
appears close to the equilibrium interatomic distance [21]. It is clear that it corrects the
spurious charge fluctuations on the atoms and satisfy their intrinsic preferences.
Symmetry breakings have been studied for systems with one electron per center such as the

systems of cyclic polyenes [22,23]. One finds here both charge-density-wave RHF
solutions , where the bond indexes are alternant (one strong bond (2i, 2i+i) between two
weak bonds (2i-i, 2i) and (2i+l, 2i+2) and spin-density-wave UHF solutions where the
electrons are spin-alternant (one electron on atom 2i surrounded by two electrons on
atoms The first one does not "dissociate" properly (when t/u tends to zero), since it
remains half neutral and half ionic but it reduces the weight of the most irrelevant VB
situations with respect to their importance in the symmetry-adapted solution. The charge-
density-wave solution tends to localize the electrons by pairs on the "strong bonds",
each one supporting a localized MO

with small delocalization tails. In such a function the probabilities to find one electron of
spin, one electron of spin, two electrons or zero electron on each atom remain equal,
as it occured in the symmetry-adapted HF function. But the probability to find two adjacent
positive or negative charges is now diminished (at least in the "strong bond") and the
avoidment of such high energy situation through the charge density wave RHF solution
lowers the energy (at least when PPP hamiltonian is prefered to the less realistic Hubbard
Hamiltonian which only counts the ionicity of each VB structure ). As a consequence of
that pairing of electrons in bonds, the probability to find two electrons of the same spin on
adjacent atoms is also diminished with respect to its probability of occurence in the
symmetry-adapted solution and this reduction is overestimated compared to the exact wave
function.
The UHF solution appears when the hopping integral t becomes small and leads to a spin
density wave. The localization of the MOs leads to a and b atom centered orbitals, localized
around odd and even labelled atoms respectively.

This solution can only be reached in linear or cyclic polyenes for rather unrealistic t/u ratios
(i.e. lengthened CC bonds) while it occurs in cyclic ideal clusters for realistic
interatomic distances in ab initio calculations [24]. But in that case another fascinating
symmetry breaking takes place, namely a bond-centered spin-density wave, as discovered
by Mc Adon and Goddard [24]. This UHF solution is much lower in energy, and it
consists in an antiferromagnetic distribution of the electrons, each electron occupying a MO
centered midway between adjacent atoms. In this solution the electrons have left the atoms
and each of them occupy its own cell, i.e. is delocalized into the largest intersticial zone.
This is made possible by the fact that a strong s-p hybridization does not require too much



QUANTUM CHEMISTRY IN FRONT OF SYMMETRY BREAKINGS 109

energy. This solution is physically based on a good compromise between the electronic
repulsion, which keeps the electrons apart, one per cell, the kinetic energy which is higher
than in the delocalized RHF solution but lower than in the atom-centered UHF solution.
The benefit of that optimal balance compensates a weak diminution of nuclear attraction.
This discovery, confirmed by GVB [25] and later by CI calculations [26], led McAdon and
Goddard to propose a rather revolutionary picture of the metal, the "intersticial picture"
[27]. Lepetit et al., [26]  have shown that

- for a 2n-electron problems there are different UHF solutions which differ
essentially by the distribution of the spin, the localized UHF MOs of the different UHF
being almost identical (except for small tails) and defining an unvariant vectorial space,
- there are similar solutions, up to the ferromagnetic one with similar content
of the localized MOs,
- the antiferromagnetic solution is the lower in energy, but the hierarchy of the energies
obeys the logics of an Heisenberg Hamiltonian. This means that the delocalization between
the interstices is small enough to be treated as a perturbation, through effective spin
couplings. From that hierarchy of energies of the various UHF solutions one may estimate
the amplitude of the spin coupling; and solving the Heisenberg Hamiltonian for the cluster
one obtains an energy quite close to the best CI estimates [26].
This strategy has been successfully applied to infinite periodic 1-D chains of Li atoms [28],
through the first symmetry-broken application of the ab-initio UHF version of the Torino's
CRYSTAL package [29]. The results of this work and of further treatments of 2-D lattices
of Li and even Mg ( Lepetit and coworkers, to be published) all confirm the validity of the
intersticial picture. This is a case where the symmetry-broken HF solutions have led to a
completely new picture of the electronic assembly.
When the symmetry breaking of the wave function represents a biased procedure to
decrease the weights of high energy VB structures which were fixed to unrealistic values
by the symmetry and single determinant constraints, one may expect that the valence
CASSCF wave function will be symmetry-adapted, since this function optimizes the
coefficients of all VB forms (the valence CASSCF is variational determination of the best
valence space and of the best valence function, i.e. an optimal valence VB picture). In most
problems the symmetry breaking should disappear when going to the appropriate MC SCF
level. This is not always the case, as shown below.

2.5. SYMMETRY BREAKING IN CASE OF WEAK RESONANCE BETWEEN
POLARIZED FORMS

In systems such as where an electron (or a hole) hesitates or oscillates between
two equivalent positions on subsystems A or A', symmetry breakings may occur when the
effective transfer integral between the two sites is weak. This will be the case when A and
A' are far apart, when they are bridged by an "insulating" ligand, or when the two localized
MOs concerned by the electron transfer have a very weak spatial overlap.
Actually in such problems the symmetry-adapted solutions should be

The two solutions may be reached independently since they belong to different symmetries.
Then one may define localized MOs, on A and A' respectively :
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and the amplitude of the transfer integral is given by

This quantity may be very weak. Now starting from the trial function

one may reach under certain circumstances an HF solution of spin-restricted or spin-
unrestricted character (this is not the main point) localizing the hole on site A or on site B

Now the core functions are adapted to the static electric field of the broken symmetry
situation, they are adapted for instance to the situation while the symmetry-adapted
solution optimized the cores in an field. We qualitatively understand the
physics of the problem :
The symmetry-breaking of the HF function occurs when the resonance between the two
localized VB form and is weaker than the electronic relaxation which one
obtains by optimizing the core function in a strong static field instead of keeping it in a
weak symmetrical field. If one considers for instance binding MOs between A and A' they
do not feel any field in the SA case and a strong one in the SB solution. The orbitals around
A+ concentrate, those around A' become more diffuse than the compromise orbitals of

and these optimisations lower the energy of the form. As a

counterpart, the energy of the which describes the situations in the

field of the core polarized in the situation grows up and the interaction between the
two resonant VB forms is now completely underestimated. This phenomenon was first
noticed for the ionization of the core levels of homonuclear diatoms ; the
ionization potentials from symmetry-adapted HF calculations give correct estimates of the
small energy splitting between the and ionization potentials but overestimate both of
them by several eV while the symmetry-broken solutions gave the correct mean energy and
miss the energy splitting. The mechanism was first elucidated by Snyder et al. [30], by
Denis et al., [31] in a more general and more correct analysis and later on by Cederbaum et
al. (32).

The HF symmetry-breaking also occurs in the valence shell for systems when the
overlap between the two electron donating groups is too low. One may quote for instance
recent works devoted to molecular architectures designed for Molecular Electronics. An
analytic treatment of the symmetry breaking of the HF function for such problems may be
found in ref. [33] where it is shown that the symetry breaking is a bifurcation.
Another interesting problem concerns the case of a weak resonance between two ionic VB
structures as occurs in the singlet state of ethylene (and longer polyenes). This state
(the allowed state) is of ionic VB content
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where a and b are the atomic orbitals of the carbon atoms of The resonance
between the two VB forms and is the interatomic exchange integral Kab. The
repulsion between the two groups tends to rotate the bond, and to put the a and b
orbitals in perpendicular orbitals. Then the Kab integral becomes very weak, and we have
again a weak resonance between two VB components. But these two forms tend to polarize
the frame in two opposite directions. The electronic relaxation energy is large and
prevails on the resonance. So that for highly twisted ethylene the singlet closed shell HF
function will be symmetry-broken and will give two and solutions,

polarized. Allowing then the group to pyrimidalize leads to a stable
structure. This phenomenon, discovered by Salem et al. [34], has given raise to a great
interest in the early seventies under the name of "sudden polarization" but its suddeness has
been questionned when the potential energy surface has been more extensively studied
[35].

2.6. DENSITY FUNCTIONAL AND SYMMETRY BREAKING

As long as it maintains the single determinant picture, the density functional function does
not dissociate properly the chemical bonds, and is thus the subject of symmetry breaking at
large interatomic distances. We may equivalently say that the correlation potential (i.e. the
difference between the exact exchange and the exchange correlation potential) diminishes
the electronic repulsion or that it increases the delocalization. Turning to the VB formulation
of the HF instability, this implies that the symmetry breaking will occur at larger
interatomic distances in DF calculations than in HF ones,

Then an interesting question would be : for molecules which present strong HF symmetry
breaking at equilibrium distance, such as Be2 or cyclic (and eventually are
the symmetry-adapted LDF solutions stable at these distances ? If they are not, one will
face an embarrassing problem ; since the calculated dissociation energies, are already
correct when using the SA, solution at short distance and the separated atoms energies what
should one think of the lower UHF solutions ? Let remember that most LDF calculations
on organometallic systems or metallic clusters are LSD (Local Spin Density) calculations
(i.e. performed in the UHF formalism). Why should one accept the symmetry (closed
shell) constraint in some cases and not in others ?
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2.7. MC SCF SYMMETRY-BREAKING

The precedings sections concentrated on single determinant variational functions. One may
wonder whether going to multiconfigurational SCF functions will restore symmetry and
when.
We have attributed the origin of the HF symmetry breaking of homopolar simple and
multiple bonds or in symmetric homoatomic clusters to unrealistic constraints on the
coefficients of the different VB components. Going to a valence CASSCF (ie an optimal
valence CI function) should restore the symmetry.
This will not be the case in the weak resonance systems. Notice that in these problems there
are only two dominant VB configurations (for instance and that the
minimal valence CAS function

reduces to the symmetry-adapted single determinant:

And actually the two-determinant function will be symmetry-broken for a symmetric
configuration when the resonance energy is weaker than the polarization energy. This has
been observed first by Ellinger et al. [36] in a problem with three electrons in two
equivalent orbitals on distant oxygen atoms. The authors restored the symmetry by
considering a local "antibonding" lone pair (or a 3p type orbital) in the active space in order
to reintroduce into the CAS function the instantaneous repolarization of the oxygen orbitals,
which are more diffuse when they are occupied by two electrons than by only one. But this
is by no means a universal recipe. If the two oxygen atoms were separated by more bonds,
the resonance would diminish and the rest of the dynamical polarization (the polarization of
the bonds between the oxygen atoms) would be larger than the resonance, inducing a new
symmetry-breaking of the enlarged CASSCF function.
The problem has already received a dramatic illustration on the LiF molecule, where the
avoided crossing between the ionic and the neutral VB configurations takes place at such a
large interatomic distance that the transfer integral is very
small The orbitals of are completely different of those of LiF., in spatial
extension and distortion (p-d mixing) and these relaxation phenomena bring much more
energy than the interaction between the ionic and the neutral VB structures. So that
Bauschlicher et al. [37] have never succeeded in making their CASSCF functions
continuous around the avoided crossing (as they should be) despite the enlargement of the
active space to all valence electrons in up to 12 active orbitals. As explained in ref. [38] this
failure is due to the fact that the part of the dynamical polarization which remains out of the
CAS space is still larger than the electron transfer integral.
CASSCF calculations are not a universal solution to symmetry-breaking of the wave
functions, and for such weak resonance problems it is far more reliable to start from state
average solutions which treat on an equal footing the two configurations which interact
weakly.
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2.8. THE DIFFICULTY TO RESTORE SYMMETRY

The major drawback of symmetry-broken solutions is the difficulty to exploit them at a
higher level of accuracy. There are three possible attitudes (besides simply refusing
symmetry-breaking).

One attitude would consist in restoring symmetry by a symmetric superposition of the
degenerate and linearly independent but non orthogonal symmetry-broken solutions,
considering the gerade and ungerade combinations of the solutions in the
electron transfer problem, or of  the solutions in the bond breaking. Due
to the non orthogonality the calculation of the overlap and of the hamiltonian matrix
elements between these solutions is rather difficult (although it is routinely done in GVB
programs). This is the first drawback. The second one is that in some cases this
combination will not satisfy all symmetry requirements. For instance if one combines spin-
polarized UHF solutions the result has no reason to be a spin eigenfunction. Finally one
does not see how to go simply beyond this step to treat later on the dynamical correlation
effects.

A second attitude consists in projecting the symmetry-broken solution on to the appropriate
symmetry-adapted subspace. The exact or approximate projected HF methods have been
the subject of an important litterature but the cost of the projections is non negligible
compared to a CI and they do not compare efficiently with the traditional avenue which
consists in respecting the symmetry from the beginning and performing CI.

The third attitude consists in performing the CI from one symmetry-broken HF solution,
using the corresponding MOs. The idea is that if one goes sufficiently close to Full CI
(which is independent of the choice of the MOs), the symmetry breaking of the intermediate
step will be unimportant. Usual CI codes are written assuming the equivalence between
and MOs and cannot be used for UHF solutions, but they might be exploited for singlet-
type symmetry breakings, in order to study the convergence of the symmetry. Unrestricted
Moller-Plesset (UMP) perturbative expansions have been written to the 4th order
(essentially for the study of doublet or triplet states in [39] and the convergence of UMPn
expansion for an UHF solutions in single bond breaking appears to be fantastically
poor, as shown by several authors [40–42]. The reasons for that poor convergence, i.e. of
that failure to restore symmetry, have been analysed in details [43] and are twofold. The
first one is due to the lack of meaning of the energy denominators in that problem, (a defect
which disappears if one uses an Epstein Nesbet zeroth-order Hamiltonian). The other one
is the strong coupling between the doubly excited and the singly excited determinants in
UHF SB solution, which only plays a role from the 4th order in energy and slows the
perturbation convergence. So far the HF symmetry-broken solutions appear as deserving to
be searched and analysed, since they tell us very instructive stories about the physical
trends acting on the electronic population, but they do not appear as a shortcut towards the
exact solution.

3. Symmetry breaking of the nuclear conformation

There is not much to say about this well accepted phenomenon. We would simply like to
stress on two peculiar aspects.



114 J. P. MALRIEU AND J. P. DAUDEY

3.1. BEHAVIOUR ON THE CRITICAL REGION

The dominant practice in Quantum chemistry is optimization. If the geometry optimization,
for instance through analytic gradients, leads to symmetry-broken conformations, we
publish and do not examine the departure from symmetry, the way it goes. This is a pity
since symmetry breaking is a catastrophe (in the sense of Thom's theory) and the critical
region deserves attention. There are trivial problems (the planar three-fold symmetry
conformation of is a saddle point between the two pyramidal equilibrium
conformations). Other processes appear as bifurcations ; for instance in the electron transfer
problem, the energy of the rectangular system as a function of the
intersystem distance R and of the relaxation of the intra system coordinate 6 from the mean
geometry (half-way between those of behaves as a typical bifurcation [33].
The potential surface presents a symmetrical delocalized hole at short R and the symmetrical

valley for larger R values becomes a symmetrical crest beyond a critical value Rc.
Beyond RC there are two symmetry-broken valleys corresponding to
(where A is a molecule). We have not yet met any problem which would exhibit a
multi-stable symmetry breaking where for a certain domain, one would have a co-existence
of a symmetrical valley and two symmetry broken valleys. A bistability region has been

shown to exist in the isocele triangle, between the and the neutral F states.
It is likely that the above schematic view of the potential energy surface would be relevant
for the mixed valence Donnor Acceptor Donnor (DAD) architectures such as :

which would be symmetrical and neutral for larger values and ionic and symmetry-broken
for smaller values of R, with a possible domain of multistability

3.2. ISOMORPHISMS AND INTERFERENCES BETWEEN ELECTRONIC AND
NUCLEAR RELAXATIONS

The conformational symmetry breaking in electron transfer problem is governed by the
ratio between the nuclear relaxation energy (i.e. energy stabilization when going from the
symmetrical to the localized equilibrium geometry) and the amplitude of the
electron transfer. It is therefore governed by the same inequalities that the HF symmetry
breaking for the same problem in the symmetrical conformation, the nuclear relaxation
replacing the electronic relaxation [33J.
Of course the conformational symmetry breaking may appear or disappear depending on
the level of sophistication of the computation, which may unduly favor one term of the
crucial (relaxation/resonance) ratio. As an example we would like to mention an open

controversy on the geometry of Does the surface present a double well

or a single symmetric well for a linear structure with a
delocalized hole ? A simular interference between electronic and geometrical symmetry
breaking occured for the allyl radical [46]. It may concerns the weak resonance between
two excitations [47]. It seems necessary to insist on the possible interference
between the electronic symmetry breaking of the approximate wave function and the
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treatment of the conformational symmetry breaking. Except for intrinsic degeneracies
(leading to conical intersections) the potential energy must have a zero derivative with
respect to the symmetry breaking coordinate (in the symmetrical conformation)

and this will be the case for the energy obtained from a symmetry-adapted approximate
wave function In case of symmetry breaking of the wave function, there exist two
other degenerate solutions and of broken symmetry and lower energy

and if the SA solution is unstable (which is not necessarily the case), one cannot build a
function (δ) tending to when tends to 0. The variational procedure falls on

and one can only find estimates of the potential energy surface around
by stabilization techniques [48].

Thus the potential energy surface does not exist and is reduced to a line for On
the contrary the solutions exist whatever (at least one of them, the
other one may become unstable), but the derivative of the corresponding energy surfaces
are different from zero at

The shape of the potential energy surface obtained by considering the lowest HF energy is
qualitatively wrong near since the resonance between and is not treated
properly. This is evident at but is necessarily remains a problem for If  is
biased for the bias is necessarily continuous and exists for Since we have
already mentioned the difficulty to restore symmetry from a symmetry-broken solution, ie
to correct the bias of the starting wave function, it is clear that the calculation of the PES
even near this potential well is questionable if its starts from This is not an academic
comment. One may take as an example the famous problem of bonding alternation in linear
polyenes, first rationalized by Longuet-Higgins and Salem [49]. This interpretation in
terms of Peierls distorsion was purely monoelectronic and led to some contradiction
regarding the r-dependence of the hopping integral and electron correlation must be
invoked. A recent ab initio evaluation of the correlation energy for an infinite chain has
been reported by Stolhoff [50] starting from an HF determinant, and it is clear that a
spurious cusp exists for in this work, which questions its reliability to determine the
value of the bond alternation, ie such that



116 J. P. MALRIEU AND J. P. DAUDEY

In our opinion it would be better to avoid the HF step, and to start the CI process from any
unbiased function, symmetrical for as are the Huckel MOs. We think that it is risky
to study the existence and amplitude of a physical symmetry-breaking phenomenon through
a computational sequence involving a symmetry-broken wave function at an intermediate
step, since the use of this function introduces a prejudice and may result in an
overestimation of the geometrical symmetry breaking. In that case the singlet symmetry
breaking goes through an overestimation of the pairing of electrons into bonds (bond-
centered charge density waves) as previously discussed and this overpairing, evident for

necessarily acts for constraining the bond alternation. The approximate CI cannot
repair the defect of this starting point [51].

4. Final comments

Even if symmetry-broken wave functions are difficult to use for higher levels of
computation, their physical content is always instructive about the physical trends of the
problem under study and they deserve interest. Their appearance and the more physical
geometrical symmetry breaking are internally (but not strictly) related. Since they represent
catastrophes on the wave function and/or the energy (or energy derivatives) they should be
studied with attention and our ultranumericist discipline has not paid enough attention to
these critical behaviours. This neglect is perhaps due to some implicit philosophical
"continuism", prevailing in a domain where most instruments are based on variational
procedures and optimizations. The use of computers and algorithms as black-boxes, and
even the systematic plotting of the results through graphic codes using spline interpolations
sometimes lead some quantum chemists of high reputation to miss cusps and intriguing
features in their results [13,37]. Since qualitative explanations or pictures may be obtained
from symmetry-broken wave functions and since funny behaviours are expected around
conformational symmetry breaking, these problems should not be considered as
teratological. Pictorial explanations and qualitative problems are both necessary to balance
the unavoidable and fruitful research of numerical efficiency.
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Molecular Orbital Electronegativity as Electron Chemical Potential in
Semiempirical SCF Schemes
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I-80134 Napoli, Italy

1.Statement of the problem

The identification of the electronegativity of an orbital with the corresponding elec-
tron chemical potential - i.e. the derivative of the total energy with respect to the
orbital occupation - is well known, and was in fact mentioned in Hinze and Jaffé’s
classical paper on electronegativities [1]. That paper referred to atomic orbitals; as far
as we know, the notion of electronegativity of a molecular orbital has not been exten-
sively discussed, although an explicit expression of the electronegativity of a molecular
orbital has been given in the context of a theoretical analysis of ground-state charge
transfer [2]. That expression closely matches Mulliken's classical expression [3], but
does derive from an explicit general equation for the chemical potential of an elec-
tron in that orbital. We describe here the derivation of such a general equation with
special reference to the semi-empirical methods leading to SCF schemes, which are
especially useful nowadays for treating large molecules. Probably the method of that
kind that is least charged with unphysical and possibly contradictory assumptions
is the BMV method, which G. Berthier developed with his collaborators Millie and
Veillard [4] in 1965, and De Brouckère [5] extended to molecules containing tran-
sition metals in 1972. It is an all-valence-electron method not involving neglect of
differential overlap, in which the the diagonal elements of the Hamiltonian depend of
the AO populations and the off-diagonal elements are estimated so as to avoid the
drastic simplifications concealed in the Wolfsberg-Helmholtz approximation. Many
of the ideas of the present author on SCF schemes and their properties go back to
discussions and joint work with Berthier on his method. A late development of those
discussions is the question discussed here.
The analytical determination of the derivative of the total energy
with respect to population of the r-th molecular orbital is a very complicated
task in the case of methods like the BMV one for three reasons: (a), those methods
assume that the atomic orbital (AO) basis is non-orthogonal; (b), they involve non-
linear expressions in the AO populations; (c) the latter may have to be determined as
Mulliken or Löwdin population, if they must have a physical significance [6]. The rest
of this paper is devoted to the presentation of that derivation on a scheme having the
essential features of the BMV scheme, but simplified to keep control of the relation
between the symbols introduced and their physical significance. Before devoting
ourselves to that derivation, however, we with to mention the reason why the MO
occupation should be treated in certain problems as a continuous variable.
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In an ordinary MO scheme, fractional occupation of an orbital can only be accepted
as a more or less useful fiction. This is because the whole electronic state is assumed
to be correctly described by a single Slater determinant. An improvement which is
sometimes indispensable is provided by CI (configuration interaction), which asso-
ciates different occupation schemes to a given set of orbitals. Now, as is well known,
already in the simple case of the linear combination with coefficients of
two Slater determinants, the expectation value of the population of an orbital

the n values denoting the (integral) occupations of that orbital in
the two Slater determinants. Thus, as soon as the reference scheme becomes one of
configurations over MO's, the expected occupations of the latter must be assumed to
be in general fractional. Now, when we juxtapose two molecules D and A acting as a
donor-acceptor pair in some redox process, a very reasonable and simple way of treat-
ing the situation theoretically, in accordance with Mulliken's original formulation [7],
consists in assuming that the two partners are described by (possibly SCF) MO's
that are localized on either partner and enter two Slater determinants correspond-
ing to the states For a vanishing coupling between the
two states, the requirement that the actual situation should be described by a linear
combination of those two states corresponding to the lowest energy can be translated
into the condition that the chemical potentials of the orbitals differing in occupation
in the two states should be equal [8]. This is the foundation for a rigorous derivation
of the principle of electronegativity equalization [9].

2.Expression of the variations of the MO's

We consider the equation:

where:

and

The Hermitian Hamiltonian matrix H, the diagonal matrix E, and the unitary matrix
C are assumed to satisfy the equation:

The barred matrices have the same properties as those of eqn 5; in the case of
normalization to unity of the single columns is ensured by an ad hoc diagonal matrix
N. As will appear below (eqn 6), if terms in of order higher than the first are
negligible, N can be taken equal to the identity matrix. This is what will be assumed
in the following.
We now follow the familiar procedure of perturbation theory to extract from eqn 1
the first order expression of the variations indicated by Let us start from the
normalization condition, and denote by the j-th column of any given matrix M.
Since both are normalized to unity, to first order in as has been
mentioned, N may be taken to be unity, and we must have:
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whence it appears that must be orthogonal to a linear combination of
all the columns of C except itself:

We now substitute eqns 2, 3, and 4 into eqn 1, eliminate second order terms in
multiply on the left by and separate the resulting equation into two as follows.
We find, first of all:

Multiplication by the j-th row of on the left gives:

which, since yields the familiar expression:

Multiplication by the k-th row on the left gives:

Since is orthogonal to with the same consideration as has led to eqn 10,
eqn 12 becomes:

Comparing with eqn 7, we find:

For k = j and for degenerate eigenvalues the elements of f are taken equal to zero.
Let us next consider the variation of the population-bond-order matrix, which, in the
orthogonal case of eqn 1, is just:

where p and b are the diagonal (population) and the off-diagonal (bond-order) parts
of P, respectively, and is the occupation number of the j-th MO.
From eqn 7 we find:
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3. Derivation of electronegativity

Let us now specialize the above equations for the special case when only the popu-
lation of the r-th MO changes, and the reference scheme is a simple -technique
[10] applied to an extended-Hückel method, which is a highly simplified form of the
BMV procedure.
We start from a Hamiltonian whose off-diagonal elements are assumed to form
a constant matrix and the diagonal elements depend on the net charges of the
individual AO's according to the expression

where

is a standard atomic parameter matrix, Z is the diagonal matrix of the AO oc-
cupations, and is a suitable constant. Finally, is a diagonal element of the
population matrix associated to the given AO's. We adopt here the Löwdin popula-
tion analysis, i.e. assume that P (and therefore p) is defined by eqn 14 in terms of
the coefficients of the Löwdin AO's associated to If S is the AO overlap matrix,
then H of eqn 5 is given by

and therefore, in virtue of eqns 16 and 17,

This gives

where

Now, considering as the only independent variation, and remembering that f is
an antisymmetric matrix, one gets from eqn 15

where, for the sake of simplicity, the eigenvector coefficients have been assumed to
be real (as they are in molecular problems) and

Equation 22 depends on in virtue of eqn 13, and therefore does not define
completely. However, insertion of eqn 20 into eqn 13 transforms eqns 22 into a linear
system that can be solved for We write eqn 13 for our special case in the form
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with

where is the eigenvector matrix of in the original non-orthogonal basis.
With this notation, eqn 22 becomes

where

is a matrix formed by the diagonal elements of the matrices:

Equations 26 form a linear system which can be solved without any difficulty. Let us
first of all divide eqn 26 by and pass to the limit, so as to work directly in terms
of partial derivatives. Let us then define the matrix:

With this notation, we can write the very simple expression:

For the off-diagonal part of P we have:

with the matrices W and X defined by eqns 28 and 29, respectively. If we next define
a set of matrices with elements

we can finally write
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We are now ready for computing the electron chemical potential within the scheme.
Since ours is a Hückel-like scheme, the total energy is the sum of the orbital
energies multiplied by the pertinent occupations, and therefore

where Tr stands for the trace. Deriving the above expression with respect to we
obtain:

Substituting eqn 20, eqn 30 and eqn 31 into eqn 35 we find

and

If we now apply the well known property (the latter being the energy
of the r-th MO) and take into account that , R being the density
matrix over the non-orthogonal MO's , (cf. eqn 26) obtained from , we find for
eqn 35:

This is our final equation. A simplified form is found if the matrices W defined in
eqn 28 are neglected (so that X and the matrices are ignored). This is possible,
for example, in the case of large energy differences between MO's whose occupations
are different. Then

4.Discussion

We have presented above the derivation of eqns 38 and 39 in great detail because it
includes expressions of general utility, in particular the variation of the eigenvectors
(eqns 7 and 24) of an MO problem after Löwdin orthogonalization and the resulting
variation of the population matrix P. The generalization to a Hamiltonian more
complicated than that of eqn 19 is possible by following step by step the above
derivation.
The physical meaning of our final equation is best seen on eqn 39. The term containing

is essentially the self-energy correction introduced by Mulliken in his analysis of
electronegativities to account for the average repulsion of electrons occupying the
same orbital. In order to get an idea of the orders of magnitude, let us apply eqn 39
to a model computation of FeCO, made to compare the CIPSI results of Berthier et al.
[11] with those of a simple orbital scheme. Consider one of the two systems of FeCO,
treated under the assumption of full localization (and therefore strict separation)
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in an iterative MO-LCAO scheme using as an AO basis maximum localization hybrids
[12], Hoffman’s atomic parameters [13], and Cusachs’ expression [14] for the off-
diagonal elements of the Hamiltonian . Since this is just an illustration of the
numerical aspects of the equations given above, we need not justify further the scheme
used. The special features which make the present example especially suited for our
purpose include the fact that in the case of the system the MO occupation numbers
must be given the values 2, 1.5, 0 (in the order of increasing orbital energies) in
order to ensure the equivalence between the two degenerate systems of our linear
molecule. This feature is especially important since of eqn 28 is the sum of
terms containing as factors the differences between MO occupation numbers
This fact implies that only MO's with different occupation numbers play a role in
the terms by which eqn 38 differs from the simpler form 39.

Table 1: Source data and for the average system of FeCO

a. Overlap matrix for one system of FeCO

1.0000 0.2783 0

0.2783 1.0000 0.2414

0 0.2414 1.0000

b. Ham. matrix (eV) with correction at convergence

-9.6177 -2.2081 0

-2.2081 -10.9490 -2.7811

0 -2.7811 -12.6638

c. Eigenvalues (italics, eV) and Löwdin charge bond-order matrix

-12.7349 -11.4723 -9.4836

0.7671 0.5442 -0.0530

0.5442 -0.2747 0.0418

-0.0530 0.0418 -0.4924

d. Derivative of P with respect to and diagonal elements of (italics)

0.2087 -0.4060 -0.0689

-0.4060 0.7583 0.1859

-0.0689 0.1859 -0.0281

0.1502 0.8355 0.0142

The source matrices (for the sequence Fe C 0) are presented in Table 1 together with
the resulting derivative of the Löwdin population matrix P. The electronegativities
derived from the complete expression 38 and from the approximate expression 39 are
-7.1690 eV and -7.3582 eV, respectively, thus suggesting that even in the unfavourable
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case here considered eqn 39 is a reasonable approximation of the exact expression.
Two remarks may be added here. First, as was shown in a preceding paper [3], a cor-
rection must be added to the expression of the electron chemical potential whenever
the given molecule is in the presence of another molecule or of a solid surface. Second,
although we have referred to the scheme and to Löwdin's population analysis, no
implication is made that the above analysis depends on either assumption. As has
been mentioned, it has been designed for general all-valence SCF schemes. Also the
introduction of Mulliken's population analysis is straightforward, since in that case

and the whole derivation above can be applied to the Mulliken population without
any difficulty.
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Quasicrystals and Momentum Space

J.L. CALAIS
Quantum Chemistry Group, University of Uppsala
Box 518, S - 75120 - Uppsala, Sweden

1. Introduction

In November 1984 the world of crystallography was thoroughly shaken by the news that
"forbidden" peaks characteristic of icosahedral symmetry had been recorded in electron
diffraction diagrams of an Al-Mn-alloy [1]. According to "classical" crystallography long
range order is compatible with rotations through multiples of but not with
rotations through . The point group of a space group must be one of the 32
crystallographic point groups and the icosahedral group is certainly not one of them.
Scientific results of that nature are among the most interesting ones, since they open up
qualitatively new perspectives.

A crystal is an extended system with (in principle) perfect long range order, which is
invariant under all operations of a certain space group. At the other extreme we have
disordered systems with a "completely" random arrangement of its constituent atoms.
Intermediate cases with more or less short range order have been known for a long time [3].
What was unexpected in the paper by Shechtman et al. [1] was the combination of long
range order and a non crystallographic point group. Already in 1902 the French
mathematician Esclangon [4] pointed out, however, that arrangements which are aperiodic
but non random are possible. And even though the paper by Shechtman et al. [1] must be
regarded as the one which opened up this new field of crystallography, it seems that some
Japanese results 20 years earlier [5] should also be interpreted as providing experimental
evidence for the existence of quasi-periodic structures.

During the nearly ten years which have passed since the appearance of the "Shechtman
paper" a large amount of both experimental and theoretical research has been carried out on
quasiperiodic structures. For more material about quasicrystals we refer to a paper in La
Recherche by the French collaborator in the Shechtman team [6], to a thesis by Dulea [7J,
and to a survey paper with a large number of references [8].

Last year a magnificent paper by Mermin appeared in the Reviews of Modern Physics [9],
as the (so far) crowning contribution to a series of papers describing nothing less than a
reformulation of crystallography [10 - 18]. Emphasising reciprocal space concepts Mermin
and his collaborators have been able to treat both "classical" crystals and quasicrystals with
the same method. As is often the case with truly original work this first of all throws new
light on the theory of the "ordinary" space groups, which leads to a deeper understanding of
notions and relationships believed to be well known. Then it provides a straightforward
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classification of both crystals and quasicrystals, as well as incommensurately modulated
crystals and quasicrystals. The procedure offers a simple explanation of how seemingly
contradictory concepts can in fact be combined in a perfectly consistent manner. This major
achievement definitely deserves to become better known by all physicists and chemists who
work with extended systems. One of the aims of the present paper is to contribute towards
that goal.

Over the last few years there has been an increasing interest in using momentum space
concepts for both molecules and polymers and also to perform explicit calculations directly
in momentum space rather than making the detour over position space [19, 20].
Conceptually it is very valuable to work so to speak in parallel in position and momentum
space, since corresponding concepts often help to "clarify each other". In the present paper
we want to confront - in a preliminary way - the procedures proposed by Mermin and
collaborators with certain momentum space notions. We expect first of all to get a better
understanding of these procedures. And more specifically we want to use Mermin's results
for investigating the symmetry properties of momentum wave functions for quasiperiodic
systems. In this connection it is important to distinguish the closely related by still different
notions of "reciprocal space" and "momentum space". In a certain sense these terms denote
the same object. Momentum space and position space refer to different representations of
wave functions related by Fourier transforms for any types of systems. The term
"reciprocal space", on the other hand is normally used only in connection with solids. Until
relatively recently this concept has been used only about crystals: solids with long range
order which are invariant under one of the 230 space groups that can exist in three
dimensions.

Mermin's "generalised crystallography" works primarily with reciprocal space notions
centered around the density and its Fourier transform. Behind the density there is however a
wave function which can be represented in position or momentum space. The wave
functions needed for quasicrystals of different kinds have symmetry properties - so far to a
large extent unknown. Mermin's reformulation of crystallography makes it attractive to
attempt to characterise the symmetry of wave functions for such systems primarily in
momentum space.

In the next setion we review some key concepts in Mermin's approach. After that we
summarise in section III some aspects of the theory of (ordinary) crystals, which would
seem to lead on to corresponding results for quasicrystals. A very preliminary sketch of a
study of the symmetry properties of momentum space wave functions for quasicrystals is
then presented in section IV.

2. Indistinguishability and Identity

As stressed by Mermin and collaborators [9 - 18] it is far too restrictive to define the
structural indistinguishability of two mesoscopically homogeneous materials with reference
to identical densities. Instead of the densities themselves one should study the properties of
the correlation functions,
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Here V is the volume of the Born-von Kármán region, i.e. that part of position space which
is repeated as a result of the fundamental periodic boundary conditions. The integration in
(II. 1) is carried out over that region, which we denote by BK.

For n = 1 we have for example,

i.e. the average density of the system.
Two densities and are said to be indistinguishable if all their correlation functions

and are identical. As shown by Mermin and collaborators their Fourier transforms

then have some very interesting properties. We can always expand a density in plane
waves,

The wave vectors k can be expressed in terms of any basis vectors we choose. At the
moment there is neither a direct nor a reciprocal lattice. Using (II.3a) in (II. 1) we see that
the Fourier components of two indistinguishable densities can differ only by a phase
factor:

The gauge function is linear in its argument:

A related concept is that of phase function which relates the Fourier components of

a density and those of a transformed density obtained by letting a point group
operation g work on r:

If g is an element of the point group of the material meaning that and are
indistinguishable for all elements g in that group, corresponding Fourier components can
differ only by a phase factor:

A "generalised" space group is specified by a point group and the associated phase
functions The ordinary space groups constitute special cases of these generalised
space groups.
Since (gh)k = g(hk) we get with (II.7)

which implies
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From this group compatibility condition Mermin and his collaborators have derived both

all the "ordinary" crystallographic and the quasicrystallographic space groups.

If gk = k, (II.7) implies that either the Fourier component vanishes or the phase

function is an integer or zero. Another way of expressing that important result is to

say, that given a phase function those wave vectors k, for which that function is not

equal to an integer or zero, determine a set of vanishing Fourier components The
number of vanishing terms in the Fourier expansion (II.3a) of the density is a kind of
measure of the degree of symmetry in the system.

3. Momentum space characteristics of crystals

The traditional characterisation of an electron density in a crystal amounts to a statement that
the density is invariant under all operations of the space group of the crystal. The standard
notation for such an operation is where R stands for the point group part (rotations,
reflections, inversion and combinations of these) and the direct lattice vector m denotes the
translational part. When such an operation works on a vector r we get

The details of the operation Rr can be further specified by the matrix which represents
the operation R in a suitably chosen coordinate system [2], in which also the vector r is
expressed. For the operation on a function of r we need the inverse of the space group
operation,

We thus have for an arbitrary function f(r),

A crystal characterised by a space group G has an electron density p(r) which is invariant
under all elements of G:

The electron density is the diagonal element of the number density matrix , i.e the
first order reduced density matrix after integration over the spin coordinates,:

A transformation of the number density matrix N under a space group operation means that
both variables are transformed:

The following relation and its inverse hold between the elements of the number density
matrices in momentum and position space [21]:

The momentum space counterpart of (III.6) can therefore be written,
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Thus the point group part of the operation works on the momentum coordinates and the
translation part gives rise to a phase factor. We notice that this phase factor reduces to 1 in
the diagonal elements, or in general when the difference between the the two arguments of

is a reciprocal lattice vector.

If the elements of the number density matrix in position space are invariant under all
operations of the space group, i.e. if

we get with (III.8), that their momentum space counterparts satisfy

The momentum distribution, i.e. the diagonal element of (III. 10) then satisfies

The reciprocal form factor [22] is the Fourier transform of the momentum distribution,

Using (III. 11) we see that the reciprocal form factor of a crystal which is invariant under a
space group, satisfies the relations,

for all point group elements R of the space group.

We notice that neither the momentum distribution nor the reciprocal form factor seems to
carry any information about the translational part of the space group. The non diagonal
elements of the number density matrix in momentum space, on the other hand, transform
under the elements of the space group in a way which brings in the translational parts
explicitly.

The number density matrix for a crystal with translation symmetry can be written in terms
of its natural orbitals [23, 24], as

This is the most general expression obtained from a set of natural spin orbitals written in
spinor form as

The orbitals are Bloch functions labeled by a wave vector k in the first Brillouin

zone (BZ), a band index µ , and a subscript i indicating the spinor component. The

combination of k and can be thought of as a label of an irreducible representation of the
space group of the crystal. The quantity is the occupation function which measures

the degree of occupation at wave vector k in band
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The momentum space counterpart of the Bloch orbital

vanishes unless k-p is a reciprocal lattice vector K [25]. In other words this function of the
momentum variable p labeled by the wave vector k, vanishes except when p = k, and at
equivalent points p = k+K in the other Brillouin zones.

We expand the density (III.5) in a Fourier series,

Here BK stands for "Born-von and denotes the basic region of periodicity
associated with the periodic boundary conditions. That "large period" must be carefully
distinguished from the "small period" associated with the crystal lattice. BK contains N
cells of volume and thus has the volume Wave functions have the "large
period", but quantities like the density and the crystal potential have the "small period".
We first notice the following connection between the Fourier component (III. 17b) and the
density matrix in momentum space, obtained from the inverse of (III.7):

Combining the inverses of (III. 14) and (III. 16) we get the natural expansion for a general
element of the number density matrix in momentum space:

Here the component of the number density matrix associated with the wave vector k is
thus
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Substituting (III. 19) in (III. 18) and using the special properties of (III. 14) we can then
write the Fourier component of the density as

A more condensed expression is obtained using (III. 14) and (III.17b):

Here is the Fourier component of the square of the absolute value of the Bloch

orbital which can be written as a product of a plane wave and a function
having the periodicity of the lattice:

Using (III. 16) we can also write this Fourier component in terms of the momentum space
orbitals as

If the density is invariant under the space group operation {R|m} we have with (III.4) and
(III.17b),
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It is important to distinguish between symmetry properties of wave functions on one hand
and those of density matrices and densities on the other. The symmetry properties of wave
functions are derived from those of the Hamiltonian. The "normal" situation is that the
Hamiltonian commutes with a set of symmetry operations which form a group. The
eigenfunctions of that Hamiltonian must then transform according to the irreducible
representations of the group. Approximate wave functions with the same symmetry
properties can be constructed, and they make it possible to simplify the calculations.

In the case of a perfect crystal the Hamiltonian commutes with the elements of a certain
space group and the wave functions therefore transform under the space group operations
according to the irreducible representations of the space group. Primarily this means that
the wave functions are Bloch functions labeled by a wave vector k in the first Brillouin
zone. Under pure translations they transform as follows

This implies that a density built up from such Bloch functions [cf (III.5) and (III.14)] is
invariant under all such translations [the "little" period]:

Corresponding relations for arbitrary space group elements ' ~ ' show that if the
orbitals which make up the density transform asthe irreducible representations of

the space group, the density is invariant under all the operations of that group.

It is also of interest to study the "inverse" problem. If something is known about the
symmetry properties of the density or the (first order) density matrix, what can be said
about the symmetry properties of the corresponding wave functions? In a one electron
problem the effective Hamiltonian is constructed either from the density [in density
functional theories] or from the full first order density matrix [in Hartree-Fock type
theories]. If the density or density matrix is invariant under all the operations of a space
group, the effective one electron Hamiltonian commutes with all those elements.
Consequently the eigenfunctions of the Hamiltonian transform under these operations
according to the irreducible representations of the space group. We have a scheme which
is selfconsistent with respect to symmetry.
The symmetry properties of the density show up experimentally as properties of its
Fourier components If those components vanish except when the wave vector k
equals one of the lattice vectors K of a certain reciprocal lattice, the general plane wave
expansion of the density,

reduces to (III.17a). Since times an integer, we then have

If (III.24) holds we get the corresponding result for arbitrary space group elements
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The symmetry properties of the momentum space wave functions can be obtained either
from their position space counterparts or more directly from the counterpart of the
Hamiltonian in momentum space.

4. Momentum space characteristics of quasicrystals

One of the main points in the papers by Mermin and his collaborators [9 - 18] is the
insistence on the primacy of reciprocal space. The properties of the Fourier transform of the
density rather than the density itself determine those properties which are of importance for
"generalized" crystallography. As pointed out by Mermin that point view was stressed in a
paper by Bienenstock and Ewald already in 1962 [26].

Irrespective of the type of extended system we are interested in we impose periodic
boundary conditions in position space - "the large period": BK. Such conditions imply a
discretisation of momentum and reciprocal space |27] which means that integrations are
replaced by summations:

The discrete momenta can be written as

where the are positive or negative integers or zero, and the very large even integer G
characterizes the BK region The reciprocal basis vectors do not require any
actual physical lattice, but can be seen as just providing a suitable framework. We have
used (IV. 1) several times in the previous section, but there we had lattices both in direct and
in reciprocal space, and then this procedure may have seemed more natural. In the present
section there is definitely no lattice in direct space and the "lattice" in reciprocal space may
be of a different nature from the ordinary ones. Because of the periodic boundary
conditions, (IV. 1) should still be used, however.

The Fourier expansion of the density in an extended system which does not have any
particular symmetry is

This sum over all reciprocal space vectors of the form (IV.2) should be carefully
distinguished from the expansion (III.4) of the density of a periodic crystal. If the density
has the "little period", the expansion (IV.3) reduces to a sum over all reciprocal lattice
vectors. The general case (IV.3) and the periodic case (III.4) actually represent two
extreme cases. The presence of "more and more symmetry" in the density can be gauged
by the disappearance of more and more Fourier components in (IV.3). If some of the
Fourier components in (IV.3) vanish, but not necessarily all which do not correspond to a
set of reciprocal lattice vectors, we have a Fourier expansion of a density with another
type of long range order than the one known from traditional crystals. There are
quasicrystals, incommensurately modulated crystals or incommensurately modulated
quasicrystals [9].
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Using the inverse of (III.7) we can write the density of an arbitrary extended system as

which means that the Fourier component of the density can be written

This should be compared to (III. 18) where the role of k in (IV.5) is played by a reciprocal
lattice vector K.

Mermin's conceptual starting point is a set of vectors k in reciprocal space which
correspond to sharp Bragg peaks in the experimental diffraction pattern. The non
vanishing Fourier components are then to be found for wave vectors which can be
characterized as the set of all integral linear combinations of a certain finite set of D basis
vectors In an ordinary crystal D = 3 and the point group must be one
of the 32 crystallographic point groups. If we have a non crystallographic point group the
rank D of the lattice can be larger than three. Such a system is called a quasicrystal. A
system with a crystallographic point group and a lattice with a rank D higher than three is
called an incommensurately modulated crystal.

An important and interesting question is obviously whether for quasicrystals and
incommensurately modulated crystals there is anything corresponding to the Bloch
functions for crystals. Momentum space may be a better hunting ground in that connection
than ordinary space, where we have no lattice. Not only is there no lattice, one cannot
even specify the location of each atom yet [8].

A Bloch function for a crystal has two characteristics. It is labeled by a wave vector k in
the first Brillouin zone, and it can be written as a product of a plane wave with that
particular wave vector and a function with the "little" period of the direct lattice. Its
counterpart in momentum space vanishes except when the argument p equals k plus a
reciprocal lattice vector. For quasicrystals and incommensurately modulated crystals the
reciprocal lattice is in a certain sense replaced by the D-dimensional lattice L spanned by
the vectors It is conceivable that what corresponds to Bloch functions in momentum
space will be non vanishing only when the momentum p equals k plus a vector of the
lattice L.

The problem is to "translate" the fact that certain terms are absent in the expansion (IV.3)
to symmetry properties of the density in the sense of transformation properties under
certain operations. We have a density with non vanishing Fourier components only for
such wave vectors k which belong to the lattice L:

Mermin [9, 18] has given a recipe for the construction of a set of Fourier components for
a density characterised by a certain space group. The space group is then specified by a
point group G, a lattice of wave vectors in the sense discussed above, and a set of phase

functions one for each element of the point group.
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The Fourier components of the density are then obtained from the expression

Here f is a function on the lattice satisfying and such that f(k) is the Fourier
transform of a function with no symmetries whatever. That last condition is imposed in
order to avoid that the density obtained from (IV.7) gets any symmetries which are not
associated with the point group G, and also to prevent from vanishing on a set of wave
vectors so large that the lattice is thinned out to a sublattice for which the space group
would have a different character. The components (IV.7) transform under the elements of
the point group according to the fundamental rule (II.7).

An effective one electron Schrödinger equation with a local potential V(r) in position
space, (atomic units),

corresponds in momentum space to the following equation [19],

Wave functions in position and momentum spacce are related as in (III. 16), and the
Fourier component of the potential is

In density functional theories the potential is determined by the density, and consequently
its Fourier components are related to those of the density. One can therefore connect the
symmetry properties of the momentum functions, in other words the transformation
properties of under the operations of the point group, with those of the Fourier
components of the density, (11.7).

What has been sketched here is obviously just the bare framework of a general
investigation of the symmetry properties of momentum space functions in quasicrystals.
With all the information available in the papers by Mermin and collaborators it should
however be a very tempting enterprise to go ahead along the lines sketched and learn
about the details of the symmetry properties of those wave functions - both in momentum
and in positition space - which will be needed in quasiperiodic extended systems.
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1. Introduction

In quantum mechanics, the state of a physical system is described by a vector of an

Hilbert space, represented by a linear superposition of eigenvectors of Hermitian

operators which result from a particular choice of a maximal set of commuting

observables [1,2]. The various representations obtained in this way are connected by a

generalized Fourier transformation. The so-called Schrödinger method, normally used for

systems of electrons and nuclei, starts in an Hilbert space by taking the components of
particle coordinates as a maximal set; consequently, the state function of the system is

written in the coordinate representation, and this leads to the familiar Schrödinger equation

for determining the possible energies of atoms and molecules as eigenvalues of the total

Hamiltonian operator in position space. The Schrödinger equation can be expressed in

other representations as well ; e.g. by referring to the various particles in terms of
momenta instead of position vectors The state function in momentum space

representation becomes the ordinary Fourier transform of the state function in position
space, with appropriate factor :

Taking the Fourier transform of the ordinary Schrodinger equation yields, in atomic units,
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where E is the total energy and V(r) represents the electron-nucleus attraction potential and

the electron-electron repulsion potential.

Except for a few situations related to scattering problems where observables typically

involve momenta, physical quantities are defined in position space (r-representation) even

where the momentum space representation (p-representation) would be more natural. For

instance, experiments such as Compton profiles and (e,2e) measurements [3,4] are

compared with theoretical momentum space distribution obtained by Fourier

transformation of wavefunctions [5] computed in the position space. The lack of wave

functions directly evaluated in momentum space is no doubt due to the development of

techniques using the Schrödinger equation in the r-representation for a large variety of

situations. At least two other factors contribute to dissuade the physicists and chemists

from considering momentum space as an interesting direction for solving their problems.

First, interpretation and visualization can be more difficult in momentum space and,

second, the Schrödinger equation, and approximations to it, e.g. the Hartree-Fock (HF)

equation, are expressed as integral equations in the p-representation instead of differential

equations in the r-representation. In spite of these barriers, momentum space offers

advantages which should not be ignored. For instance, it provides an interesting

alternative way for solving electronic structure problems of atoms and molecules,

traditionally addressed in position space [6,7]. This aspect is central to this work.

As far as in the thirties the possibility of calculating wave functions in momentum space

has been recognized ; in 1932, Hylleraas [8] treated the problem of a one-electron atom,

the solutions of which for discrete and continuous spectra are well known [9]. In 1949,

McWeeny and Coulson [10,11] tried to generalize this approach to many-electron systems

involving electron repulsion terms. Starting with fixed trial functions, they applied the

iterative method developed by Svartholm [12] for the case of nuclear systems to solve

variationally the integral momentum space wave equation of helium atom and hydrogen

molecule and H2. Owing to convergence difficulties found in the simplest systems,

they concluded that direct calculations of electronic wave functions in momentum space

were hopeless ; and so the subject disappeared from Quantum Chemistry literature for

nearly 30 years. The situation changed in 1981, when two crystallographers, Navaza and
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Tsoucaris, decided to treat by Fourier transformation, not the Schrödinger equation itself,

but one of its most popular approximate forms for electron systems, namely the Hartree-

Fock equations. The form of these equations was known before, in connection with

electron-scattering problems [13], but their advantage for Quantum Chemistry calculations

was not yet recognized.

The work by Navaza and Tsoucaris on the molecule [7] proved the feasibility of direct

numerical molecular orbitals computations, i.e. without atomic basis functions contrary to

what happens in r-space where it is difficult to obtain accurate Hartree-Fock solutions for

atoms, molecules and solids due to the need of representing the solutions in terms of a

finite basis of known functions, e.g. the linear combination of atomic orbitals (LCAO)

approximation. For chemists interested in polyatomic molecules, the momentum method

is quite attractive because it is not limited to systems whose geometry determines the

coordinates to be used for integrating the position space equations, as for example polar

coordinates for molecules [14] because they have approximate spherical symmetry

and/or spheroidal coordinates for diatomic molecules, see e.g. Ref. [15]. During the last

years, we have contributed to demonstrate that direct momentum space calculations are in

principle feasible for any molecule by studying hydrogen systems of increasing

complexity : the ground state at the SCF and MC-SCF level [16], an open-shell

system [17] and a chain of H atoms including an infinite number of electrons and nuclei

[18,19]. More complex systems have also been studied : atoms up to neon [20-28],
cations [22,23, 28-31], anions [22, 23, 27, 28], symmetric molecules [16, 17,32-36] as

well as asymmetric molecules such as or HF [38].

The advantages of the momentum approach are not only limited to the opportunity for

direct numerical calculations for chemical systems, but it also offers the prospect of

selecting better bases of atomic functions on which rely almost all first principle quantum

mechanical calculations.

2. MOMENTUM SPACE EQUATIONS FOR A CLOSED-SHELL SYSTEM

The Fourier transformation method enables us to immediately write the momentum space

equations as soon as the SCF theory used to describe the system under consideration

allows us to build one or several effective Fock Hamiltonians for the orbitals to be

determined. This includes a rather large variety of situations:
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Closed-shell systems as defined in the standard Hartree-Fock theory [39-40].

Unrestricted monodeterminantal treatments using different orbitals for different spins

for open-shell systems (free radicals, triplet states, etc.) [41,42].
Roothaan open-shell treatments involving a closed-shell subsystem and outer unpaired

electrons interacting through two-index integrals of Coulomb and exchange type only

[43].
MC-SCF treatments written in terms of coupled Fock equations [44]. The simplest

examples are the two-configuration SCF theory [45] used in atomic

mixing [46], or bonding-antibonding molecular problems [47], and more generally the

Clementi-Veillard electron-pair MC-SCF theory [48].
SCF treatments for infinite chains having translational symmetry [49,50],

In the recent past, we have investigated and published examples illustrating the different

cases. For instance in Ref. [17] a Roothaan open-shell system, has been detailed, in

Refs. [18, 19] a SCF treatment for infinite chains and finally in Ref [16] a MC-SCF

treatment were proposed.

In this contribution our purpose is to review the principles and the results of the

momentum space approach for quantum chemistry calculations of molecules and

polymers. To avoid unnecessary complications, but without loss of generality, we shall

consider in details the case of closed-shell systems.

2.1. RESTRICTED HARTREE-FOCK EQUATIONS

Since both position and momentum formulations contain exactly the same information, it

is convenient to start from the familiar position space expression and express it in

momentum space. In the case of a closed-shell system of electrons in the field of

M nuclear charges located at fixed positions (Born-Oppenheimer approximation),

the doubly occupied orbitals of the Hartree-Fock model in the position space are

obtained from the second-order differential equation of the form if we

assume -as usual - that the off-diagonal Lagrange multipliers ensuring the

orthogonality of the have been eliminated by an appropriate unitary transformation

inside the closed set. The F operator giving the orbitals iteratively is a one-electron

Hamiltonian including a kinetic term and an effective potential in which the electron-

nucleus attraction is balanced by the Coulomb-exchange potential approximating the real

electron-electron interaction. In atomic units, we have :
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and by applying the Fourier transform to Eq. 3, we get the momentum space RHF

equation. The linearity of the Fourier transformation allows a separate treatment of each

of the terms occurring in the Hartree Fock equation.

Kinetic energy term.

The integral in Eq. 4 is readily evaluated if is replaced by its inverse Fourier

transform. After rearrangement of the terms, one finds that the integral over r yields the
delta function Carrying out the remaining integral yields the final expression.

By convention is a shorthand for the dot product both |p| and

p will be used to denote the length of vector p.

Nuclear attraction, electron-electron repulsion, and exchange terms.

and
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The above integrals are most conveniently reduced if is substituted by

the inverse Fourier transform of (resp. The steps for the

final expression of the nuclear term and the electron-electron repulsion term in p-

representation are summarized below :

Using the convolution theorem the content of the square brackets in Eq. 9 is rewritten as :

Defining a quantity Wij(q),

and introducing it in Eq. 9 leads to the expression for the two-electron term :
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With the above results, it is possible to write the expanded momentum space form of the

Hartree-Fock equations :

The equations to be fulfilled by momentum space orbitals contain convolution integrals
which give rise to momentum orbitals shifted in momentum space. The so-called

form factor F and the interaction terms Wij defined in terms of current momentum

coordinates are the momentum space counterparts of the core potentials and Coulomb

and/or exchange operators in position space. The nuclear field potential transfers a

momentum to electron i, while the interelectronic interaction produces a momentum

transfer between each pair of electrons in turn. Nevertheless, the total momentum of the
whole molecule remains invariant thanks to the contribution of the nuclear momenta [7].

2.2 ORBITAL AND TOTAL ENERGIES

The calculation of in momentum space is analogous to that in position space. Starting

with the r-representation, and expressing the quantity as the inverse Fourier

transform of one easily finds that:

The one-electron energy has the same expression in the p-representation as in the

position space where the different contributions can be expressed as follows :

Kinetic energy term. Its expression is straightforward to write :
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Nuclear attraction, electron-electron repulsion and exchange terms. Using the Eqs. 6 and

7, these contributions are respectively written in terms of the quantity Wij(q) previously

defined in Eq. 11 :

and

The detailed expression for is then :

The momentum space equivalent of the total energy E, is :

3. Principles for numerical resolutions

Because of the terms and explicit solutions to Eq. 3 cannot be obtained in

position space. In such cases approximate solutions are usually expressed as truncated

linear combinations of basis functions (LCAO expressions). In spite of its successes, the

LCAO approximation experiences various difficulties (truncation limits, nature of the

basis functions, etc.) hard to estimate and which are not entirely controllable [51].
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Furthermore their incidence are very dependent upon the nature of the properties [52,53].

Due to computer limitations, basis sets cannot be extended indefinitely and direct

numerical evaluations seem the ultimate solution for molecules [54]. In position space

this is a viable alternative for diatomic molecules [55,56], but it cannot be extended easily

to polyatomic systems. Formulated in momentum space, the HF equations have not

explicit solutions and the difficulties to express them in terms of basis functions are

analogous to those encountered in the r-space. However the momentum space HF

equations give way to numerical approaches in which Coulombic interactions become
tractable even for polyatomic molecules [7] ; among other advantages, these equations,

Eqs. 13 and 20, do not require coordinate systems adapted to the geometry of the

molecules to remove Coulombic singularities. In both equations the only singular

contribution comes from the factor.

3 .1 . VARIATION-ITERATION PROCEDURE

In both position and momentum spaces, iterative procedures are necessary to solve the HF
equations. Starting from a trial orbital an approximate orbital, is

obtained after k+1 iterations from Eq. 13 rewritten as:

The procedure is repeated until convergence is reached. Since we are interested in bound
states where no problem of divergence or cusps conditions is raised. But the

method can be adapted to more general situations by introducing a translation of the

energy origin in Eq. 21.

Numerical and computational problems associated with the implementation of the

approach for routine use fall in two main categories : (a) numerical integration and (b)

enforcement of the orthogonality and renormalization of the numerical orbitals during the

iteration steps. Many different integration schemes have been considered in the past,

some of which will be detailed in the section 3.2. As concerns orthonormalization, at
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each step the new iterates even if initially orthonormal, need to be

renormalized and orthogonalized to form true canonical HF orbitals. Great care must be

exercised in selecting orthogonalization procedures, for instance the so-called Löwdin's

symmetric orthogonalisation procedure [57], often used in Quantum Chemistry, mixes all

the orbitals simultaneously, tends to contaminate all the iterates, and impairs the

convergence of the iterative steps. Schmidt orthogonalization does better (since it allows

to choose the sequence of orthogonalization) but looses track of the symmetry of these

orbitals. Finally, the canonical orthogonalization performs a maximum in mixing of all

states. We have shown [31] for the ground state of Be and B+ that the Gram-Schmidt

procedure turns out to be more appropriate in most cases, but with very good trial

functions, Löwdin's symmetric procedure yields equivalent results. In all cases reported

in Table 1, Gram-Schmidt orthonormalization has been used.

3.2. NUMERICAL TECHNIQUES

Different integration schemes have been considered. To cancel the singularity factor in

Eq. 13 by the integration volume element, Navaza and Tsoucaris have proposed the use of

spherical polar coordinates. However, because of the convolution integrals, interpolation

schemes are needed in these coordinates since arguments (p-q) do not necessarily belong

to the grid points. The computation time increases as the square, , of the number of

points of the integration grid, and for large systems, this time becomes prohibitive.

Another point of view has been to focus on these convolution integrals and treat them via

a more economical fast Fourier transform procedure. In this case, the computation time

increases only as , but at the expense of an approximate treatment of the

singular factor [58,59]. Variants [60,61] based on the Fock transformation have also

been proposed to deal with the infinite limits of integration resorting to a one-to-one

correspondence between intervals and . At the present time,

none of the approaches has been satisfactory enough to bring the fully numerical

momentum quantum chemistry calculations beyond a stage of prematurity. Furthermore,

computational tests [25] on helium atom have shown the importance of accuracy and

convergence of the integrals. It seems that straightforward numerical calculations are not

readily applicable and our work is now directed toward mixed numerical and analytical

procedures.
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3.3. SEMI-ANALYTICAL TECHNIQUE

The method presented here allows, starting with trial gaussian functions, a partial

analytical treatment which we have used to improve the LCAO-GTO orbitals (trial

functions) essentially obtained from all ab initio quantum chemistry programs. As in r-
representation, trial functions (Eq. 21) are conveniently expressed as linear

combinations of functions themselves written as linear combinations of

gaussian functions (LCAO-GTO approximation)

and

where is a normalized gaussian function expressed in momentum space. As
belong to the Sobolev space direct Fourier transformation leads to a

set that fulfills the criterion about the convergence of the energy and wave

function (the completeness of the orbital bases is not sufficient

to guarantee the convergence of the energy and wave function in the norm of ; to

ensure this convergence the set must be complete in . The expression

for the first iterate based on trial functions expressed as LCAO-GTO

expansions is thus :

The various quantities entering Eq. 24 are deduced when the trial orbitals are

expressed as linear combinations of Gaussian functions, they are expressible in terms of
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known transcendental functions. In the case of s-functions, two basic integrals,
respectively denoted by and have to be solved to obtain

The details of the calculations can be found in Ref. 35, the final expressions are :

and Daw dx is the so-called Dawson function. The individual terms

appearing in Eq. 24 are :

Nuclear attraction term:
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Fourier transform of orbital products :

Electronic repulsion term :

Exchange term :

So the first iteration transforms the trial wave functions expressed as linear combinations

of gaussian functions into an expression which involves Dawson functions [62,63]. We

have not been able to find a tabular entry to perform explicitly the normalization of the first

iterate, accordingly this is carried out numerically by the Gauss-Legendre method [64].

One of the drawbacks of the first iteration, however, is that computation of energy

quantities, e.g. orbital and total energies, requires to evaluate the integrals occurring in

Eq. 3 on the basis of the Unfortunately, the transcendental functions in terms of
which the are expressed at the end of the first iteration do not lead to closed form

expressions for these integrals and a numerical procedure is therefore needed. This

constitutes a barrier to carry out further iterations to improve the orbitals by approaching

the HF limit. A compromise has been proposed between a fully numerical scheme and the

simple first iteration approach based on the fact that at the end of each iteration the
entail the main qualitative characteristics of the exact solution and most
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importantly the right asymptotic decay. The idea is thus to fit the iterated analytical
functions obtained at the step on a finite set of gaussian functions and then use

these fitted functions as a new set of trial functions The advantage is twofold.

First, with exponents and linear coefficients specific for each orbital, energies and

functions are quickly improved. Second, the problematic convolution products and

integrals are efficiently computed in terms of the gaussian functions obtained to represent
the The analytical functions are represented as linear combinations of

gaussian functions, This fit is carried out using a modified version of the

Gausfit package [65] developed by Stewart [66] for gaussian fits of Slater functions. The

resulting functions are analytically orthonormalized.

For atoms, the radial part of is expressed as a linear combination of spherical

gaussians, which, in the case of 2p orbitals writes as :

Given a radial function to fit, one minimizes the variance,

where is a function which weights the contributions to the integral according their

expected importance [28]. From several tests on Be and Ne we have found that the

following weight functions are quite efficient:

Gaussian functions do not have the right asymptotic decay due to too low amplitudes in

regions of large p values, therefore representations in terms of gaussians are of much

slower convergence than Slater functions. Since contributions from high momenta are

essential to the energy, a second degree polynomial, Eq. 35, is used to enforce them in the

valence orbitals.

A set of nine gaussians allows a satisfactory fit with low variance, Eq. 34, values : about

for the 1s and 2p orbitals and for the 2s orbital. The valence orbitals having

node(s) are slightly more difficult to fit. Under these conditions, the iterative scheme
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converges to results close to HF limit, but obviously it cannot approach it completely

because the fit is based on a limited number of gaussian functions.

4. Results and advantages

In Tab. 1 are given the various results obtained in our group ; the precision of the method

used for the resolution as well as the main interest of these results are summarized. When

results have been obtained numerically (section 3.1) the method is denoted num-SCF or

num-MCSCF according to the level of theory used ; when an analytical treatment (section

3.2) has been performed, the denotation is analyt-gauss if the trial functions were

expressed as linear combinations of gaussian functions or analyt-Slater if the trial

functions were expressed as linear combinations of Slater functions. Finally when a

semi-analytical treatment (section 3.3) has been done the method is called analyt-gauss*.

Results fall into three categories : the first one corresponds to pure numerical results on

which have demonstrated the feasibility of numerical

calculations. They have also provided momentum wavefunctions for physical quantities

such as Compton profiles [17], (e,2e) cross-sections [26]. In the second category we

have investigated the possibilities of using a variation-iteration procedure defined in

momentum space to improve the one-electron states for various chemical systems

expressed as linear combinations of gaussian functions. Significant improvements in

energy quantities and properties sensitive to the shape of the wave function (Compton

profile, momentum distribution, etc.) were indeed noted. In particular, the first iteration

transforms the trial wave function expressed as linear combinations of gaussian functions

in an expression which involves Dawson functions. An asymptotic analysis carried on

the first iterate discloses a behavior quite close to the exact one. In the third category, the

semi-numerical approach is used to provide physical quantities. Similarly to the position

space approach it is based on the variation principle which guides the changes of the
wavefunction : the closer the energy E to the nearer the trial wave function the

ground state In LCAO-SCF-MO schemes however, the function obtained by

minimizing the total energy does not necessarily give a good description of properties

such as multipole moments, while in momentum space due to the capacity of the method

to improve the quality of a wavefunction significant improvements have been obtained

e.g. for the dipole moment of the hydrogen fluoride [38].
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Core-Valence Separation in the Study of Atomic Clusters

O. SALVETTI
Dipartimento di Chimica e Chimica Industriale. Università di Pisa
Via Risorgimento 35, 56126 Pisa, Italy

The study of clusters containing an increasing number of atoms provides an interesting
theoretical way of understanding the properties of solid matter.
In particular it allows us to consider in a simple way possible irregularities of structure,
the existence of non stoichiometric compounds, and the possibility of replacing one atom
by another.
A study of the variation of properties with cluster size is also of great importance,
especially in view of experimentally observed variations, which may amount to almost a
change of phase, in clusters ranging from 10 to 50 atoms [1].
The main difficulty in the theoretical study of clusters of heavy atoms is that the number
of electrons is large and grows rapidly with cluster size. Consequently, ab initio "brute
force" calculations soon meet insuperable computational problems. To simplify the
approach, conserving atomic concept as far as possible, it is useful to exploit the classical
separation of the electrons into "core" and "valence" electrons and to treat explicitly only
the wavefunction of the latter. A convenient way of doing so, without introducing
empirical parameters, is provided by the use of generalyzed product function, in which
the total electronic wave function is built up as antisymmetrized product of many group
functions [2-6].
This scheme is very appealing, since it allows us to reduce drastically the numbers of
electrons to be considered, thus making possible essentially "ab initio" calculation, even
for large systems,.
If a cluster is built from various separated atoms A, B, ... with ... "core" electrons,
descibed by the functions ..., the generalized product for the
total number of electrons will be given by the following expression:

where is the total number of "core" electrons, and are the total number and the
wave function of the "valence" electrons, is the operator that antisymmetrizes the
product, and M is a normalization factor.
The strong orthogonality requirement among the wave functions of different groups, is
satisfied for the "core" groups, because they are localized in different spatial sites, but it
must be imposed between and each "core" function. It is well known that this last
condition is equivalent to assuming that the function is built up using spin-orbitals
drawn from a set orthogonal to all orbitals of the "core" functions.
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Let us first consider a single atom, A. We can study this atom with high accuracy and
prepare some atomic quantities useful in subsequent calculations. Also for this atom we
suppose that the total wave function is given by a product

where the meaning of the symbols is obvious.

We suppose that the core functions is built up from orbitals , ... which satisfy
the following relation

where means that the integration is extended to a sphere SA around A. This sphere
SA is supposed much smaller than the Van der Waals sphere of the atom A.
The function is then built up from the orbitals ... , where the
functions extend well beyond SA.
Since we are dealing with a monocentric problem, the function can be easily studied
as accurately as required. In order to determine the valence function we generally use
an open shell H.F. method and so obtain a set of orthonormal orbitals which satisfy
the conditions of strong orthogonality to "core" functions. Each of these orbitals will be
of the following form

and if is one of the orbitals appearing in the following relation holds:

The "core" orbital is built up from function
The following atomic quantities can now be calculated
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To build up in the cluster function (1) we use the functions
all of which satisfy the strong orthogonality condition in the sense of to (2), but do not
satisfy the strong orthogonality needed for (1) We therefore consider the linear
combination

and require that this function be a linear combination of the functions  in each sphere
SP. This condition can be only approximatively satisfied and it is useful to have a
measure of the goodness of the approximation. To obtain such a criterion we consider the
quantity

This quantity measures the error in the orthogonality of fi to all the group functions.
Since the urij are arbitrary coefficients, we can put and so obtain

As noted in previous papers [7–11], by considering the matrix

we can find the minimum of (15) by diagonalizing the matrix. The eigenvectors,
ordered according to the corresponding increasing eigenvalues, give functions less and
less orthogonal to the "core" orbitals. The associated eigenvalues give us a measure of the
goodness of the functions obtained. One must keep only functions corresponding to
eigenvalues smaller than some chosen threshold.
In this way we obtain n functions

with the property
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From (1) and (6), (8) we then obtain

The in (21), are the coefficients of the two center expansion of the potential energy
of interaction of two non overlapping charge distributions. [12].
To obtain the contribution only from calculations over type functions and from
atomic data one needs a more detailed analysis of the equations. Let us consider the
following form of Fock operator

To obtain matrix elements of we have

But from (18-19) and (7-13) one obtains

In order to derive Gv matrix elements, we consider the bielectronic integral
which can be written
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since

one has

From (24) and (25) it follows that all the matrix elements can be obtained by

calculation over the set of "valence" functions, with the addition of terms relating to
single atoms.

Numerical applications to particular clusters are wery encouraging [7-11].



164 O. SALVETTI

References

1. U.Even, N. Ben-Horin and J. Jortner, Phys. Rev. Lett. 62, 140, (1989).
2. R. McWeeny, Proc. R. Soc. London Ser. A 253, 242, (1959).
3. R. McWeeny and B.T. Sutcliffe, Proc. R. Soc. London Ser. A 273, 103, (1963).
4. Y. Ohrn and R. McWeeny, Arch. Phys. 31, 461, (1966).
5. P.D. Drace and R. McWeeny, Proc. R. Soc. London Ser. A 317, 435, (1970).
6. M. Klessinger and R. McWeeny, J. Chem. Phys. 42, 3343, (1965).
7. R. Colle, A. Fortunelli and O. Salvetti, J. Chem. Phys. 80, 2654, (1984).
8. R. Colle, A. Fortunelli and O. Salvetti, Mol. Phys. 57, 1305, (1986).
9. A. Fortunelli and O. Salvetti, Mol. Phys. 75, 1191, (1992).
10. A. Fortunelli, O. Salvetti and G. Villani, Surface Sci. 244, 355, (1991).
11. A. Fortunelli, A. Desalvo, O.Salvetti and E. Albertazzi, Cluster Models for Surface

and Bulk Phenomena, Plenum Press,(1992).
12. J.O. Hirschfelder, C.F. Curtiss and R.B. Bird, Molecular Theory of Gases and

Liquids, Wiley (1965).



Core-Hole States and the Koopmans Theorem

C. AMOVILLI and R. McWEENY

Dipartimento di Chimica e Chimica Industriale, Via Risorgimento 35, 56100 Pisa,
Italy

1. Introduction

The theorems of Brillouin [1,2] and Koopmans [3], in both their original and gener-
alized forms, have provided a recurring theme in the work of Gaston Berthier who
always showed a profound appreciation of their significance and importance (see, for
example, [4,5]). Both theorems have been of immense value in the calculation and
interpretation of a wide range of molecular properties. But both are ‘first-order’ the-
orems, based originally on the Hartree-Fock model, and refer to the first-order effect
of perturbations that are considered ‘small’. When the perturbations become large
the theorems lose their value, except as a basis for rough approximations, but the
violations themselves are also of considerable practical importance. In particular, as
every quantum chemist knows, the ionization energy for removal of an electron from
orbital is related to the Hartree-Fock orbital energy according to the Koopmans
theorem, by

where is calculated using the ‘zero-order’ for the unperturbed (neutral) system.
The perturbation of the orbitals in passing from the neutral to the ionized system is
irrelevant to the first-order result. To calculate second- and higher-order corrections
to equation (1), however, it is necessary to allow the orbitals of the ionized system to
‘relax’ in order to describe the perturbation of the Hartree-Fock field caused by the
change in occupation number of orbital Such relaxation effects are often rather
small and the Koopmans result (1) can give a fairly satisfactory interpretation of the
ionization processes observed in valence-electron photoelectron spectroscopy (PES);
but for ‘deep’ ionizations, as observed in ESCA experiments (see, for example, Sieg-
bahn et al [6]) where electrons are knocked out of atomic inner shells, the relaxation
effects can be very large. The electron distribution tends to ‘collapse’ towards the
‘core hole’ – roughly equivalent to an increased nuclear charge – and the use of (1)
commonly yields ionization energies in error by 20–30 eV.
This note is concerned with the alternative procedure in which (1) is replaced by

where E (the electronic energy of a neutral molecule) and (that for the molecule
in a ‘core-hole’ state) are both calculated independently. It must be remarked at
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the outset that since the energy of a ‘core-hole’ state normally lies high in the con-
tinuum, relative to the lowest energy state in which the hole has been filled by an
Auger transition from a valence orbital, there are severe problems in calculating the
energy by conventional bound-state methods: indeed the corresponding ‘state’ is
not a true bound state at all, being at best metastable and subject to spontaneous
decay, with filling of the hole and ejection of a second (Auger) electron. A completely
satisfactory calculation would thus require the inclusion in the basis of continuum
functions, to admit the possibile presence of a scattered electron, and would employ
propagator methods which are well adapted to the description of such processes (see,
for example, Agren [7]). Nevertheless, bound-state methods have been widely and
successfully used in the interpretation of PES, ESCA and Auger spectra. In partic-
ular, the formulation of SCF methods for systems containing incompletely occupied
shells (McWeeny [8]) was applied by Firsht and McWeeny [9] to free atoms and ions,
with inner-shell holes, yielding results of much higher accuracy than those based on
the Koopmans theorem. The present paper reports applications of similar methods
to some small molecules.

2. Formulation

For inner-shell ionizations, where the energy change may be several hundred eV, it
is sufficient to use ensemble averaging (Slater [10]; McWeeny [8]) over the various
states of a configuration - which differ relatively little in energy. The corresponding
formulation of many-shell SCF theory is fully described elsewhere (McWeeny [11])
and will be summarized only briefly. We use to denote the orbitals of Shell
K, containing electrons, and express the orbitals of all shells in terms of a common
set of TO basis functions { }: thus, collecting the functions in row matrices,

where is an matrix, n being the total number of orbitals employed. It is
also convenient to partition the row matrix into subsets and the rectangular
matrix into corresponding blocks . The set of occupation numbers

then defines the electron configuration, while the average energy
(for all states with the same partitioning of electrons among shells) is given by

Here is the fractional occupation number of the spin-orbitals
of Shell K and is a suitably averaged electron interaction matrix (cf. the usual
Roothaan matrix') and depends on the density matrices of all
shells: in fact

where the modified occupation number (removing the self-interaction when
is The matrix G(2R) coincides with the usual G matrix
for a closed-shell system, while h in (4) is the usual 1-electron Hamiltonian matrix.
All matrices are defined with respect to the basis functions in
The energy expression (4) applies when the orbitals are orthonormal and in seeking
a stationary value it is thus necessary to introduce constraints to maintain orthonor-
mality during a variation. When this is done, the orbitals that give a stationary
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point turn out to be eigenfunctions of a certain ‘effective’ Hamiltonian (which em-
bodies the constraints); and this leads to an iterative procedure parallel to that of
the usual closed-shell SCF theory. For molecules, these ‘canonical’ orbitals are nor-
mally the delocalized MOs which extend over the whole molecular framework; but

is invariant against unitary mixing of the orbitals within each shell (which leaves
the matrices unchanged) and this freedom may be exploited in the usual way
to obtain alternative orbitals with a high degree of localization in different regions
of the molecule (e.g. inner shells, bonds, lone pairs). Clearly, in discussing phe-
nomena related to physically well-defined regions, we shall be more concerned with
the localized orbitals than the canonical MOs. The question that then arises is that
of what localization criterion to adopt: the one to be used in working with atomic
inner shells is simply that the inner-shell orbital be constructed from basis functions
located on the atom in question. All other orbitals are easily orthogonalized against
inner shells (e.g. by the Schmidt method) and among themselves (e.g. by the Löwdin

transformation).
Instead of using repeated solution of a suitable eigenvalue equation to optimize the
orbitals, as in conventional forms of SCF theory, we have found it more convenient
to optimize by a gradient method based on direct evaluation of the energy functional
(4), orthonormalization being restored after every parameter variation1. Although
many iterations are required, the energy evaluation is extremely rapid, the process is
very stable, and any constraints on the parameters (e.g. due to spatial symmetry or
choice of some type of localization) are very easily imposed. lt is also a simple matter
to optimize with respect to non-linear parameters such as orbital exponents.

3. Some results

We have considered K-shell ionizations from the atoms of carbon, oxygen, and nitro-
gen in a series of small molecules, typically using basis sets of ‘double-zeta’ quality
(as tabulated by, for example, Dunning [12]), with the addition of polarization func-
tions for the smallest systems. The total energies for the neutral molecules and some
of their core-hole positive ions are collected in Table 1. Energies for the molecular
ground states, as calculated by standard (RHF) SCF methods, are also shown for
comparison. It is evident that the localization constraint for the inner shells has a
negligible effect on the energies.
The energies in the last column of 1 show the effect of modifying the basis
set, after the ionization, to allow for the increased central field to which the valence
electrons are then exposed. Some of the early work on the interpretation of ESCA
and Auger spectroscopy employed an ‘equivalent-core’ approximation (Shirley [13])
in which, with a minimal basis set, valence orbitals were given exponents appropriate
to an effective atomic number Z + 1 instead of Z: the inner shell, with only one
Is electron, was thus ‘modelled’ by an 'equivalent core' with two 1s electrons but
one extra unit of positive charge on the nucleus. This simple model has been found
equally effective in the case of a DZ basis: in describing the valence electrons of
an atom with a core hole it is sufficient to use contracted gaussians with tabulated
exponents and contraction coefficients for the atom of atomic number Z + 1 instead
of Z. For the Is orbital, on the other hand, appeal to ‘screening constant’ rules
(Slater [14]; Clementi and Raimondi [15]) suggests that the Gaussian exponents for

1The valence set is orthogonalized against the core set, so as not to ‘contaminate’ the core

orbitals, while symmetric orthonormalization is employed wi th in each set.
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the neutral atom should be multiplied by a scale factor

following removal of an electron, being the recommended effective nuclear charge
for the atom in question. This value (close to the actual nuclear charge) proves to
be perfectly satisfactory. In fact, the procedure just described leads to energy values
which are not appreciably affected by further parameter optimization. The results in
the Table confirm the need to re-optimize the basis following ionization, the resultant
drop in energy being quite significant. The agreement with experiment at this level
is now probably as good as can be expected, bearing in mind the extreme simplicity
of the theoretical model on which the calculations are based.

The results for homonuclear molecules are of particular interest in so far as they ex-
hibit “symmetry breaking”. For N2, for example, removal of an electron from the
MO of a ground-state SCF calculation, with re-optimization of all orbitals subject to
symmetry constraints, leads to an energy value of –93.49612 hartree for the positive
ion in which the core hole is symmetrically ‘shared’ between the two atoms. But
when the symmetry constraint is relaxed the energy falls to –93.88673 hartree, cor-
responding to localization of the hole on one centre alone: this is the result expected
on physical grounds, given a sufficiently short time scale for the process of electron
removal – the valence-electron distribution responding immediately to the enhanced
attraction towards the core with the hole. Of course, as already remarked, the re-
sultant metastable state will decay rapidly: the symmetry constrained wavefunction
describes the stationary state, in a long-time limit, of a fictitious model system in
which the hole appears on either centre with equal probability. The spectroscopic
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observations are in fact consistent with the short-time situation, before relaxation of
the electron distribution has taken place.
The inner-shell ionization energies are collected in Table 2 and compared with the
Koopmans estimates (which are seen to be seriously in error) and the best available
experimental values. Whilst the Koopmans approximation is clearly incapable of
giving good ionization energies and must therefore be used with caution in predicting
the ‘chemical shifts’ in going from one molecule to another, the ionization energies
based on (2) are rather satisfactory.

In view of possible applications of the method to much larger molecules, where the
use of extended basis sets may be impracticable, it is worth asking whether good
results might also be obtained with only a minimal basis: in this case, with the
reduced flexibility of the basis, it would clearly be desirable to optimize the orbital
exponents. To investigate this possibility, a study has been made of the inner-shell
ionization energies of the carbon atom in the series of fluoro-substituted methanes

using the MIDI-4 basis of Tatewaki and Huzinaga [16]. The
approximation (6) was used for the 1s orbitals, but the scale factors for the valence
orbitals had to be optimized (for both the neutral and ionized systems) since the
tabulated MIDI-4 values refer to the isolated atoms. Table 3 shows the resultant
scale factors for the carbon 2s and 2p orbitals, which are most strongly affected by
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the core ionization. The absolute energy values are of course somewhat inferior to
those obtained with a basis (cf. the results for in Table 1) but the ionization
energies, shown in Table 4, are still in very satisfactory agreement with experiment.
Even the chemical shifts for fluoro-substitution are very close to those observed: what
is more surprising is that the shifts predicted by the Koopmans theorem are also quite
satisfactory, even though the ionization energies are in error by 10-15 eV. Whether
the Koopmans theorem will retain its apparent predictive value in situations where
the chemical shift is much smaller remains an open question.

4. Conclusions and further applications

It is evident that the method of calculation used in this work provides an extremely
simple approach to the interpretation of ESCA results for ionization from an atomic
K shell, in spite of the fact that the state of the ion plus the ejected electron lies
high in the energy continuum of the neutral molecule. More sophisticated methods of
dealing with such states are of course available (see Agren et al [7]) but, whilst capable
of giving excellent results for valence electron ionizations (including also intensities
and vibrational fine structure), encounter considerable difficulty in treating core-hole
states, where relaxation effects are very severe. The simple model used here, on
the other hand, is particularly well adapted to the study of these ‘deep’ ionizations
and gives an immediate and transparent interpretation of the relaxation effects in
terms of scaling (contraction) of the valence orbitals. It is also possible to extend
the approach in various ways; for example, for open-shell molecules, the states of the
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configuration with a core hole (which arise from differences of spin coupling between
the core and valence electrons) can readily be studied by using the optimized orbitals
for the configurational average energy to set up the secular equations that will lead
to the individual states.
Another application is to the study of the ‘Auger states’ in which a further electron
ionization of attachment may occur, leaving the system with holes in more than one
shell. Such states were considered in some detail by Firsht and McWeeny [9] for free
atoms: here we have made a preliminary application to the nitrogen molecule. The
initial aim is simply to identify and assign the principal peaks and satellites in the
Auger spectrum of gaseous

The calculations were performed using a double-zeta basis set with addition of a po-
larization function and lead to the results reported in Table 5. The notation used for
each state is of typical hole-particle form, an asterisc being added to an orbital (or
shell) containing a hole, a number (1) to one into which an electron is promoted. In
the same Table we show also the frequently used 'letter' symbolism in which ‘K’ indi-
cates an inner-shell hole, ‘L’ a hole in the valence shell, and ‘e’ represents an excited
electron. The more commonly observed ionization processes in the Auger spectra of

are of the type K—LL (a ‘normal’ process, ‘core-hole state’ ‘double-hole state’);
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KL-LLL (‘monopole ionizations’); and KLe–LL or Ke–L (‘high-energy satellites’).
From Table 5 it is possible to estimate the energies of transition for various pairs of
states, even though the ‘state’ energies are stricly speaking configurational averages.
Figure 1 shows (vertical lines) the estimated values of these transition energies, su-
perimposed on the experimental spectrum. It is noteworthy that, even if the vertical
lines are not actually coincident with the peak positions, the assignment of the peaks
for various processes is substantially in accord with that made by Moddeman et al
[21] on the basis of the experimental data.
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An Application of the Half-Projected Hartree-Fock Model to the Direct
Determination of the Lowest Singlet and Triplet Excited States of
Molecular Systems

Y. G. SMEYERS, P. FERNANDEZ-SERRA1 and M. B. RUIZ
Instituto de Estructura de la Materia, C.S.I.C., c/Serrano, 123, E-28006-Madrid,
Spain

1. Introduction

Among the many ways to go beyond the usual Restricted Hartree-Fock model in
order to introduce some electronic correlation effects into the ground state of an
electronic system, the Half-Projected Hartree-Fock scheme, (HPHF) proposed by
Smeyers [1,2], has the merit of preserving a conceptual simplicity together with a
relatively straigthforward determination. The wave-function is written as a DODS
Slater determinant projected on the spin space with S quantum number even or odd.
As a result, it takes the form of two DODS Slater determinants, in which all the spin
functions are interchanged. The spinorbitals have complete flexibility, and should be
determined from applying the variational principle to the projected determinant.
The difficulty of determining the Half-Projected Hartree-Fock function has somewhat
hampered its utilization [3-10]. Some calculations, however, exist in literature. At
present time, because of the increasing computing facilities, as well as the introduction
of more powerful convergence techniques, the HPHF model is expected to play a more
important role, especially in the field of medium size molecules, in which the use of
more sophisticated procedure are not yet possible [9-10].
In addition, since the HPHF wavefunction exhibits a two-determinantal form, this
model can be used to describe singlet excited states or triplet excited states in which
the projection of the spin momentum The HPHF approximation appears thus
as a simple method for the direct determination of excited states (with such
as the usual Unrestricted Hartree Fock model does for determining triplet excited
states with
In the present paper, we propose the use of the HPHF approximation for the direct
calculation of excited states, in which just as Berthier [11], and Pople and
Nesbet [12] did for the determination of states in which We give some ex-
amples of such calculations, either when the excited state wavefunction is orthogonal
or not by symmetry to that of the ground state.

1Permanent Address: Departamento de Ingeniería de Circuitos y Sistemas, E.U.I.T. de Teleco-
municacion, Universidad Politécnica de Madrid, E-28031-Madrid, Spain
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2.Theory

2.1. GENERAL APPROACH

The HPHF wavefunction for an 2n electron system, in a ground state of S quantum
number, even or odd, is written as a linear combination of only two DODS Slater
determinants, built up with spinorbitals which minimize the total energy [1-2]:

where and are two spinorbitals of opposite spin belonging to a same electron
pair, so that
This linear combination is obtained by projection of one of the determinants on the
spin eigenstates with S even or odd:

where is a permutation operator which interchanges all the and  spin functions
in the initial determinant.
Since the HPHF wavefunction for singlet states does not contain any triplet contam-
ination, this model was seen to produce relatively good results for singlet ground
states, very close to those of the fully projected one [1-10].
The Brillouin’s theorem has been shown to hold in the case of the HPHF function [2].
As a result, any variations of the orbitals which minimizes the HPHF total energy,
can be expressed as:

where is the HPHF function in which an occupied orbital has been replaced
for an virtual one.
Introducing the HPHF wave-function expression (1) in (3), and taking into account
the idempotency of operator the following equation may be obtained:

where is a Slater determinant in which one i occupied orbital has been substituted
by a t virtual one.
In order to solve equation (4), the following matrix elements between Slater Deter-
minants have to be considered:

Since and are constructed with the same set of orthonormal spinorbitals, the
two first matrix elements can easily rewritten, according to the Slater’s rules [13], as:
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where is a Slater determinant in which an orbital is replaced by an one.
In this expression, the operator is the usual Fock operator of the Unrestricted
Hartree-Fock method [14]:

In this equation, the Mulliken notation for the repulsion integrals is used, that is:

and stands for the well known monoelectronic operator:

A similar operator as (8) can be written when a orbital is substituted by a virtual
one:

The calculation of the cross matrix elements (6) is somewhat more difficult, be-
cause the Slater Determinants involved in them are constructed with two sets of
non-orthonormal spinorbitals. This calculation, however, may be greatly simplified,
if the two sets are assumed to be corresponding, that is, if they fulfill the following
condition [14]:

As well known, this condition is not a restriction whenever the wavefunction is in-
variant under an unitary transformation [2].
Taking into account (12), the matrix elements (6), with their phase factor in (4), may
be written in the following way:
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and

In these equations, S is the overlap between the two determinants built up with
corresponding orbitals (12)(multiplied by a phase factor according the multiplicity
required):

and

is defined as a cross operator analogous to the Fock operator (8):

A similar operator can be written for the case in which a bi orbital is replaced by a
virtual one,

Introducing now expressions (13) and (14) in (4) , the following equation is obtained:
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which is the expression of the Generalized Brillouin Theorem for the HPHF function
written as a function of the orbitals. A similar equation can be deduced when a

orbital is replaced by a one. The next step will now be to write equations
(19) as pseudo-eigenvalue equations to be solved in an iterative way just as in the
Unrestricted Hartree-Fock method.
For this purpose, let us define the following density projection operators:

and let us introduce them in (19). After some straightforward operations, we obtain:

From this equation the following HPHF Fock operator for determining the  orbitals
can be extracted:

A similar operator for determining the orbitals can be obtained in the same
way.
Let us remark that operator (21) is not symmetric. But, it can be symmetrized easily
just by adding the adjoint of the asymmetric part:

In addition, since the action of operator on a virtual orbital is zero, it is seen
that this adjoint will not affect the results. So that the complete operator may
be written as:

2.2. APPLICATION TO EXCITED STATES

The HPHF wavefunction for an excited state is constructed by substi-
tuting in the HPHF ground state wavefunction (1) an occupied spinorbital by an

virtual one. In order to avoid the possible collapsing of to so-constructed excited
wavefunction onto the ground state one during the variational process, it is conve-
nient that the excited function should be orthogonal to the former. In some cases,
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this orthogonality requirement is automatically achieved, when both wavefunctions
exhibit different multiplicities or different spatial symmetries. In the second case, the
promoved and excited spinorbitals, and possess also different symmetries.
When both wavefunctions exhibit the same multiplicity and the same spatial symme-
try, it is convenient that the excited function should be orthogonal to the fundamental
one [15]. One way to achieve partially this requirement is orthogonalized the excited
orbital to its companion at each step of the iterative procedure. Remember
that and possess the same symmetry.
In any cases, the orthogonality requirement applied to the orbitals:

implies some modifications in the formulae of the previous paragraph in order to avoid
some singularities [7]. In particular, new cross Fock operators have to be redefined:

and

in which the sumations are restricted to the nonorthogonal orbitals.
In addition, partial cross Fock operators are also to be defined for evaluating the
matrix elements in which the orthogonal orbitals are involved:

and

For the same reason, new density projection operators are redefined:

as well as limited projection operators to the k or u orbital space:
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Finally, a restricted overlap between the two determinants limited to the nonorthog-
onal orbitals is defined:

In order to deduce the new pseudo-eigenvalue equations (22), we have to distinguish
the two possibilities:
When the Brillouin Theorem equation (20) is reduced to:

where the cross energy term, between the two Slater determinants, takes the form
of a simple repulsion integral:

In contrast, when the following expression is found:

From equations (33) and (35), a general HPHF Fock operator for determining the
orbitals of excited states can be extracted after some straightforward transformations:

Since equation (36) is not symmetric, it is symmetrized by addition of the ad joint
of the asymmetric part. We obtain the new expression:

A similar equation can be deduced for the bi orbitals.

3. Calculation

In order to determine the HPHF wave-functions, the HPHF Fock operators (24) and
(37) for the ground and excited states, respectively, have to be expressed in matrix
form, in which the orbitals are developed on a basis function set. So, we have for the
ground state:
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where ,.. are the matrix representations of the corresponding oper-
ators. In particular, is defined as , where A is now the inverse diagonal
matrix of the overlap between the occupied corresponding orbitals, and and
_ and the coefficient matrices of two set of occupied orbitals. Finally, s is the
overlap matrix between the basis functions.
For the excited states, with an orthogonal orbital pair, we have:

where is defined as before except for the diagonal element, of the , corre-
sponding to the orthogonal orbitals which is missing, and where

are the column vectors of the coefficients of the and orbitals, respectively.

3.1. THE METHYLENE MOLECULE

As well known, the methylene lowest state is a triplet, with electronic configu-
ration which lies somewhat below the fundamental
singlet state, In addition, the companion singlet state, is also known. To

in degrees, r in and energy in Hartrees.

study the potential energy functions of both states, as a function of the bending
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angle, was for many years an attractive problem for many scientists, in order to an-
alyze the spectrum structure of the transition which is allowed [16,17].
Next, and as an example of HPHF calculations, the potential energy curves for the
bending in the and states of methylene were determined into the HPHF ap-
proximation, using the Huzinaga-Dunning valence basis set with polarization orbitals
(d on the C atom, and p on the H atoms with 0.8 and 1.1 as exponent respectively),
and full geometry optimization. For this purpose, an orbital was substituted by
an one, into the fundamental configuration. The energy variations are given in
Table 1 for both states. The geometrical parameters encountered in this way are in
very good agreement with the experimental data. These are gathered in Table 2.

3.2. THE METHANAL MOLECULE

Methanal (formol) presents an additional degree of freedom: the out-of-plane wagging
of the oxygen atom. In its singlet ground, this molecule is planar. But, in its
triplet and singlet lowest exited and this molecule is pyramidal
with the possibility of inversion, because its electronic system is destabilized by

antibonding orbital. In order to test the performance of the HPHF model, to
determine the potential energy curves for the inversion seems to be illustrative.
HPHF calculations with full geometry optimization were performed for these lowest
excited states using the Huzinaga-Dunning valence basis set with polarization or-
bitals. The potential energy curves are given in Figure 1. As expected, a double
potential energy well is obtained for both excited states of methanal. In Table 3,
the geometrical parameters, as well as the inversion barrier, obtained with different
basis sets and different approaches are given for the first singlet state, It
is seen that the values for the barrier height are very basis dependent. Anyway, the
HPHF approach gives the best values into the same basis set, except for the SCF-CI
calculation which involves 17,000 configurations [18].
In Table 4, similar results are gathered for the first triplet excited state,
Here, the UHF model is seen to furnish slightly better results. The HPHF
model, however, yields a better value for
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3.3. TRANS-BIACETYL MOLECULE

In order to test the HPHF model with a larger system, we have considered the trans-
biacetyl molecule, which contains six atoms of the second row and six hydrogen atoms.
The energy values of the two extremal configurations for the double rotation of the
methyl groups were determined on the potential energy surface, with full geometry
optimization except for the molecular frame which is constrained to be planar. In
the same calculation, the barrier height was determined.
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In Table 5, we give the HPHF energy values obtained for the singlet ground state,
and the first triplet and singlet excited states, as well as the RHF and UHF values
obtained elsewhere [20] with different basis sets. It is seen that whereas con-
formation is the preferred in the singlet ground state, the one is the most
stable in the excited states in accordance with the large band progressions observed
in the electronic spectrum, as well as the band assignments [20]. This change of
conformational preference can be also interpreted on the basis of the destabilization
of the electronic system.
Here, once more the barrier height values are seen to be very basis dependent. The
value encountered for the singlet excited state, however, is found to be in relatively
good agreement with the experimental value:

3.4. FORMIC ACID

Finally, the HPHF approach is applied to the formic acid molecule, in its first singlet
excited state, which is not orthogonal any more to the singlet ground state in a
random conformation.
The calculations were performed into two basis sets, with full geometry optimization
except for the torsional angles and Two non planar conformations were con-
sidered, which correspond to minima on the potential energy surface into the GVB
approximation [21]. In these conformations, the molecule adopts a pyramidal confor-
mation, as in methanal. In addition, the hydroxilic group is rotated up or down the
OCO plane.
In Table 6, the formation energy values for these two preferred conformations are
given, together with the corresponding values for the planar conformations syn and
anti. It is seen that one of the minima is only slightly more stable than the other when
calucated with the larger basis, but much more stable than the planar conformations
in accordance with the GVB calculations [21].

The geometrical parameters found for these four conformations are gathered in Table
7. It is seen that the carbon atom of the preferred conformations exhibits an
hybridization because of the destabilization of the electronic system by the
antibonding orbital, whereas the carbon atom of the planar conformations shows
mostly an one.
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Distances in and angles in degrees.

4. Discussions and conclusions

In the present paper, the Half-Projected model is applied to the direct determination
of the lowest singlet and triplet excited states in which  just as the usual UHF
method is employed for states in which As examples, the method
is successfully applied to the calculation of some molecular properties of methylene,
methanal, dimethylglyoxal and formic acid, in these excited states.
In the case of methylene, methanal or dimethylglyoxal, in which the excited wave-
function is always orthogonal by symmetry to that of the singlet ground state, the
procedure converges well without any complication. In this case, the HPHF method
could be regarded as an extension of the usual UHF procedure for the states in

 which This extension appears to be especially interesting for the direct
determination of the lowest singlet excited states of medium size molecules, for which
no simple and efficient method exists.
In the case of formic acid, in a random conformation, the excited wave-function pos-
sesses the same symmetry as that of the ground state. In the present paper, we
propose to orthogonalize the excited orbital to its companion in order to avoid the
variational collapsing of the excited state into the fundamental one. The procedure
converges more slowly, but procedures for accelerating convergence may be used. No-
tice that the excited wave-function is not necessarily orthogonal to the fundamental
one in this way of proceeding. But, both functions have not to be orthogonal because
the Hamiltonian operators (24) and (37) are not the same. They may expected, how-
ever, to be nearly orthogonal. It may be added here that a complete orthogonalization
will yield probably worst results [15].
It may be concluded thus that the Half-Projected Hartree-Fock model proposed more
than two decades ago for introducing some correlation effects in the ground state
wave-function [1,2], could be employed advantageously for the direct determination
of the lowest triplet and singlet excited states, in which This procedure
could be especially suitable for the singlet excited states of medium size molecules
for which no other efficient procedure exists.
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FSGO Hartree-Fock Instabilities of Hydrogen in External Electric Fields
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1. Introduction

In the early sixties, it was shown by Roothaan [1 ] and Löwdin [2] that the symmetry
adapted solution of the Hartree-Fock equations (i.e. belonging to an irreducible
representation of the symmetry group of the Hamiltonian) corresponds to a specific
extreme value of the total energy. A basic fact is to know whether this value is associated
with the global minimum or a local minimum, maximum or even a saddle point of the
energy. Thus, in principle, there may be some symmetry breaking solutions whose energy
is lower than that of a symmetry adapted solution.

The Hartree-Fock description of the hydrogen molecule requires two spinorbitals, which
are used to build the single-determinant two-electron wave function. In the Restricted
Hartree-Fock method (RHF) these two spinorbitals are created from the same spatial
function (orbital) but differ only by its multiplication by the a or spin basis functions.

It is common knowledge that, in the case of the hydrogen molecule studied in a minimal
basis set, the correlation error can be explained by the existence of ionic species in the
hydrogen dissociation products:

This is an artefact due to the non-zero probability of the restricted wave-function of
finding two electrons of opposite spins at the same spatial position.

FSGO's (Floating Spherical Gaussian Orbital) were introduced by Frost [3] in the mid
1960s. With FSGO's one abandons the idea of atomic orbitals centred on nuclear
positions to arrive at an even more compact basis set than a minimal one. FSGO's
correspond to s-type Gaussians that are not fixed at the atomic centers but are able to
"float" in space so as to optimally represent each localized pair of electrons. Because only
one function is needed for each electron pair, the basis set used is often referred to as
being "subminimal".
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With respect to correlation, the behaviour of the hydrogen molecule studied in a
subminimal FSGO basis set is still more striking than the one observed in a minimal basis
set. By symmetry arguments, the single FSGO which describes the electron pair of the
hydrogen molecule is centred at the middle of the H-H bond. As the internuclear distance
increases and ultimately when the molecule dissociates, such a description would lead to
a physical nonsense. Indeed, at the dissociation limit, this would correspond to two
protons and an isolated pair of electrons

Thus, we understand that, in the FSGO model, for some critical distance, the single
Gaussian will jump from its symmetric position at the middle of the H-H bond to a
dissymetric one represented below. Thus, the FSGO dissociation scheme corresponds to
one electron pair on one of the proton and no electron on the second proton

This behaviour is a nice example of the symmetry dilemma in the conventional Hartree-
Fock scheme and is intimately connected with the question of Hartree-Fock instability.

In this paper, we analyze the instabilities which appear in the Hartree-Fock method. Our
analysis is made in the framework of basis sets. In the hydrogen molecule, the single
floating Gaussian orbital (FSGO) desribing the electron pair has its optimal position in
the middle of the hydrogen molecule only for small internuclear distances. For large
enough distances its optimum position is close to one of the nuclei and a broken-
symmetry solution is thus preferred. Application of an external electric field along the
molecular axis induces some additional instabilities in the lowest-energy solution with
respect to the electric field value. Here, both types of instabilities are investigated
analytically as well as numerically.

This paper is, thus, a double tribute to Professor Berthier. On one side, G. Berthier has
provided excellent analysis of quantum mechanical instabilities [4], while additionally
being at the origin of the interest of the Namur group for studies of (hyper)polarizabilities
in organic molecules and chains.

2. Subminimal basis set Hartree-Fock-type calculations of the hydrogen molecule

In a FSGO basis set, the Gaussian orbital is defined by:

where both, the Gaussian exponent and the Gaussian center are optimized in a FSGO
calculation. Depending on the complexity of the calculation, we could have to compute
the following integrals:

one-electron integrals:
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two-electron integrals:

In the RHF method, the FSGO describing the electron pairs is doubly occupied and the
wave-function has the form:

Its associated RHF energy is, at a given internuclear distance (R):

Table 1. shows the total energies obtained using the RHF method for: 1. LCAO minimal
basis set STO-1G for the sake of comparison with FSGO, 2. FSGO in its symmetric and
broken symmetry solutions and, 3. LCAO minimal basis set STO-3G in order to allow a
safer comparison with the quality of the subminimal basis used in the FSGO technique.
The dissociation curves are given in Figure 1.
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The “equilibrium” FSGO-hydrogen molecule is found for the parameters:
(could be compared to the experiment: 1.401 a.u.)
(center of the molecule)

One observes that the energy minimum at the calculated equilibrium internuclear distance
always corresponds to the symmetric solutions For the values given between
parentheses in the above table, the broken symmetry solution does not exist; the single
Gaussian remains centered at the middle of the H-H bond. However, for interatomic
distances greater than 5.6 a.u., the broken symmetry solutions (Gaussians centered near

give the absolute minimum while the symmetric solution has a higher
energy; this is a further example that, for approximate wave functions, the basic
symmetry properties do not follow automatically from the variation principle and
consequently do not have necessarily the full symmetry of the nuclear framework.

In the HF scheme, the first origin of the correlation between electrons of antiparallel spins
comes from the restriction that they are forced to occupy the same orbital (RHF scheme)
and thus some of the same location in space. A simple way of taking into account the
basic effects of the electronic correlation is to release the constraint of double occupation

and so use Different Orbitals for Different Spins
(DODS scheme which is the European way of calling UHF). In this methodology,
electrons with antiparallel spins are not found to doubly occupy the same orbital so that,
in principle, they are not forced to coexist in the same spatial region as is the case in usual
RHF wave functions.

A UHF wave function over different orbitals  and is then:

The wave function obtained corresponds to the Unrestricted Hartree-Fock scheme and
becomes equivalent to the RHF case if the orbitals  and are the same. In this UHF
form, the UHF wave function obeys the Pauli principle but is not an eigenfunction of the
total spin operator and is thus a mixture of different spin multiplicities. In the present
two-electron case, an alternative form of the wave function which has the same total
energy, which is a pure singlet state, but which is no longer antisymmetric as required by
the Pauli principle, is:

In both cases, the energy formula (E(UHF-FSGO)) is the same:
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Table 2 gives the values of E(RHF-FSGO) and E(UHF-FSGO) for internuclear distances
from 1.0 a.u. to 7 a.u. (step 0.5 a.u.) and also the value for We observe that we
have the "correct" dissociation behavior for the UHF case

Since in those forms of the UHF wave functions, one drops a constraint (either the need
of a pure spin state in the first case or the Pauli antisymmetry rule in the second case), it
is expected that the resulting wave function will give a lower energy than in the RHF case
and thus introduce a part of the correlation energy. As shown in the table above, there is
no splitting of the orbitals for small interatomic distances The
single Gaussian describing the different spinorbitals remains located at the same central

position. For larger distances, however, a progressive splitting of the orbitals
exists, with the orbitals tending to localize near each hydrogen atom leading to correct
dissociation into two hydrogen atoms.

Further improvements to the previous UHF schemes can be obtained by using the
Projected (PHF) and Extended (EHF) Hartree-Fock schemes. Löwdin has shown that if
one carries out a component analysis of the non-pure UHF wave function, there is at least
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one component which restores the symmetry and which has a lower energy than the UHF
wave function.

The form of the PHF wave function is, in this case:

Note that the PHF wave function is no longer a single determinant and is a sum of two
terms. This PHF function both satisfies the Pauli principle and is a pure singlet state. The
energy formula E(PHF-FSGO) is easily derived:

In the PHF method, the variational procedure is applied to the UHF wave function and
subsequently the projection is performed on the UHF and orbitals. If no splitting is
obtained during the UHF step the RHF, UHF and PHF wave functions are
equivalent and have the same total energy.
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In the Extended Hartree-Fock (EHF) technique, the minimization is performed on the
form of the PHF wave function. This type of wave function should produce for each
interatomic distance a further lowering of the energy with respect to the RHF, UHF, and
PHF total energies. The values of E(PHF-FSGO), and E(EHF-FSGO) for internuclear
distances from 1.0 a.u. to 7 a.u. (step 0.5 a.u.) are also given in Table 2. As in the UHF
case, we have the "correct" dissociation behavior

Indeed, the extrapolated values converge to the expected values; we have shown that in
the RHF symmetric case, the limiting situation is an asymptotic energy
which should correspond to the H- described whose two electrons are described by a
single Gaussian:

With the optimisation condition:
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we obtain:

In all the other schemes (UHF, PHF, EHF), the dissociation limit is the correct one
corresponding to two neutral hydrogen atoms (2H-); each FSGO-hydrogen atom energy is
thus obtained by the simple variational procedure:

dissociation limit for two hydrogens:

As a final comment, it is interesting to note that this FSGO study of the hydrogen
molecule offers a new and simple illustration of the behavior of sophisticated Hartree-
Fock schemes like UHF, PHF and EHF. Furthermore, it provides a very efficient
numerical example of instabilities in the standard Hartree-Fock method. It is important to
see that the UHF, PHF and EHF schemes all correct the wrong RHF behavior and lead to
the correct dissociation limit. However, the UHF and PHF schemes only correct the wave
function for large enough interatomic distances and the effect of projection in the PHF
scheme even results in a spurious minimum. The EHF scheme is thus the only one which
shows a lowering of the energy with respect to RHF for all interatomic distances.

3. Subminimal basis set Hartree-Fock-type calculations of the hydrogen molecule in
an external electric field.

When applying an external electrical field to the FSGO model of the hydrogen molecule,
one expects that the floating gaussian will be moved in accordance with the polarity of
the field, i.e., displaced towards the positive pole. Thus, near equilibrium internuclear
distances, a minimum should be obtained close to the middle of the molecule. On the
other hand, continuing to move the floating gaussian towards the positive pole, a barrier
should appear close to the hydrogen atom the gaussian is floating towards. After having
passed that barrier, the “energy catastrophe” of the unbound perturbing potential should
produce an infinitely negatively stable position. This is the type of behaviour which is
listed in Table 3 and illustrated in Figure 3. For the equilibrium internuclear distance (R =
1.474 a.u.) and the optimal exponent we compute the energy as a
function of the orbital position for various strength of the external electrical field (F

and 0.5 a.u.). The energy formulae can be obtained from the
Hamiltonian for the hydrogen molecule in the electric field (z being the axis
of the molecule):
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where is the Hamiltonian of the isolated molecule and is the z component of the
dipole moment operator (in a.u.)

with the summation over nuclei and the i summation over electrons. stands for the
nuclear charges, while z denotes the z-coordinate.

In the RHF case with the doubly occupied orbital one obtains the mean value of the
energy:

Thus, we observe that when applying a finite electric field to a molecule, in addition to
the instability with respect to the internuclear distance R, one obtains an instability
connected to a change of the electric field strentgh F, as intuitively explained previously.
In a more general way, the possible instabilities can be rationalized as follows: at some
fixed values of the internuclear distance R and the FSGO exponent a the energy may be
viewed as a function, , of the FSGO orbital position only. In view of the cylindrical
symmetry of the problem, the position is determined by the z coordinate of the FSGO
center, _ The formula for the function is:

where is a constant equal to:

which contains the mean value of the kinetic energy, the electron-electron and the nuclear
repulsions, as well as the nuclear dipole moment interaction with the electric field. As one
can see, if the field is positive, the energy goes to when

When expressing the nuclear attraction integrals in the FSGO basis, one has explicitly:

where Fo is the standard error function:
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The optimal positions of the FSGO orbital correspond to the minima of the function
They may be found by imposing the necessary condition:

The derivative of the error function is given by:

where:

By performing the derivative of the error function, one finds easily that the optimal
position of the FSGO necessarily satisfies the following equation:
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where:

It is convenient to define a further function, for the discussion which follows, in
which



200 J. M. ANDRÉ ET AL.

At first sight, we are forced to solve this equation numerically, but its overall form allows
a qualitative insight into the number of solutions and their approximate values. For
example, one easily see that S represents a sum of two identical quasi-atomic (one-
dimensional) functions each centered on the corresponding hydrogen nucleus. The
functions are quite similar to Gaussian functions, but they differ by their one-
dimensionality and by a different radial dependence. Indeed, instead of the usual
exponential behaviour, one has the function that is positive, even with respect to
z, and, as it seen from the previous equation, has its maximum at while it vanishes
for large z.

This information is sufficient to analyze the qualitative behaviour of Indeed, two
limiting cases may be considered.

For one limiting case (small values of i.e., close to equilibrium distances), the
function can be easily evaluated. By putting it looks like a single one-dimensional

orbital centered in the symmetry center of the molecule. As one can see for
there is only one solution, of the equation and it corresponds obviously to a
single minimum of the energy (symmetric solution) as seen in Figure 3. For very large
values of the equation cannot be longer satisfied and does not attain negative
values. This corresponds to the energy changing monotonically qualitatively. The energy
minimum at is clearly unstable when F increases. As one sees from Figure 4 for
moderate values of F, one should observe two values satisfying the equation. One of
them corresponds to a minimum and the other to a maximum of the energy. One example
of a single minimum is given in Figure 3 for the cases, and 0.25 a.u. Thus,
there is a certain critical electric field value for which the energy curve changes
qualitatively from the one having a single minimum to that with no minimum at all. From
Figure 3, one easily see the existence of one and no minima in the curve
according to the strength of the field. For large values of F, there is no root in the S-
function and no minimum is found for the This is the case for in Figure 3.
Since the coordinate origin has been placed at the center of the molecule, the contribution
of the nuclei to the dipole moment is 0 and the total dipole moment is equal to (in
a.u.). At large values of the energy of the molecule mainly comes from the interaction
of the dipole moment with the electric field and therefore has the asymptotic form
From Figure 3, it is also seen that the energy changes linearly with for large For
small values, one has a strong influence of the nuclei (through the first term of the

equation). Also, it is easily proved that the asymptotic behaviour of the energy
comes from its linear dependence of for large values of this variable and that its
asymptotic slope is 2F.
The other limiting case corresponds to the limit of large values of  In order to remain
concise, this has not been illustrated. For one finds three values of for which

The first one is _ and the remaining two are close to and
(the two positions of the nuclei). They correspond to the broken symmetry behaviour
analyzed in section 2. For very large values of no value of satisfies the equation,
and the function does not attain negative values. This means that the energy has
no extremum.
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For intermediate values of F, either four or two values satisfy the equation. This
corresponds to one or two energy minima, respectively, both of which are unstable when
F increases. When broken symmetry solutions are observed in the absence of external
electric field one might expect a single minimum appearing either at nucleus a
or b, by turning on the electric field. In fact, for  the minimum eventually appears
only at the nucleus a, because the values for its left hand side (at the nucleus a)
negative branch are slightly smaller than for its right hand side (at the nucleus b) positive
branch. Both instabilities (with respect to F) should however be extremely close one to
another. A more precise numerical analysis confirms also the possibility of two minima
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at low electric field and at a sufficiently large distance to allow for broken symmetry
solutions.
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Electronic Charge Density of Quantum Systems in the Presence of an Electric Field:
a Search for Alternative Approaches
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1. Introduction

Many fundamental properties of atoms and molecules could come within our reach
through the "simple" knowledge of the electronic distribution density Among these
properties we limit ourselves to quote as particularly significant the various multipole
moments of the distribution itself, electric potential and field generated by it in the
surrounding space. The list of properties that we could master grows longer if we were in
a position to establish how the electronic distribution density is polarized under the action
of external electric and magnetic fields, inasmuch as one might evaluate also various
kinds of (generally nonlinear) response parameters of matter, a piece of information that
is nowadays of utmost importance for a vast series of research programs endowed with
prominent technological significance (for instance, oriented toward the very ambitious
goal of "designing" molecularly-thought materials in such strategic fields as photonics,
optoelectronics, etc. [1-3]). Although the electronic density is physically defined in
a space of lowdimensionality according to the proper modeling adopted
for the system under investigation), the canonical approach to the computation of such
fundamental quan t i ty involves the preliminary obtainment of the electronic
wavefunction, a solution to the Schrodinger equation depending on the totality of the
DNe space coordinates associated with the Ne present electrons. Without going into the
slightest detail, we simply restrict our comments on this point to re-emphasize what is
well known even to quantum chemistry students, the fact that the usually accepted
descriptions of the quantum behaviour of many-electron systems correspond to
approximate solutions to the Schrödinger equation, most frequently built up in terms of
one-electron wavefunctions, i.e. orbitals. Hartree-Fock (HF) orbitals constitute almost
invariably the output of ab initio molecular calculations carried out by today's computer

program packages up to and lead obviously to an orbital picture of the
electronic distribution as a sum of contributions from each of the occupied orbitals.
Overcoming the HF accuracy so as to take into account effects beyond the mean-field
approximation (electron correlation) is permitted at the cost of handling much smaller
molecules, while for systems containing a very large number of electrons even the HF
level of description becomes untenable and one has to turn to empirical or semiempirical
models.
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The concerns we have expressed are bound to get even more acute if the problem under
study demands that we are able to adequately describe distortion effects induced in the
electron distribution by external fields. The evaluation of linear (and, still more, non
linear) response functions [1] by perturbation theory then forces one to take care also of
the nonoccupied portion of the complete orbital spectrum, which is entrusted with the
role of representing the polarization caused by the external fields in the unperturbed
electron distribution [4].
A still more outstanding role in quantum many-particle systems is assigned to the
electron density by the Hohenberg and Kohn theorem [5], a not obvious statement
affirming the existence of a rigorous theoretical framework where one is allowed to
obtain ground state properties of the system in terms of the ground state density alone.
Unfortunately, although the electron kinetic and exchange-correlation energy
contributions are shown to be universal functionals of the density the theorem does
not offer any practical guide to their actual construction. In view of the extremely
attracting perspective of treating many-electron systems at an accuracy level beyond the
HF one, without making recourse to wavefunction approaches, it is quite understandable
that many efforts have been addressed to the development of density functional theories
(DFT's) [6-8], There exists possibly general agreement that the most satisfactory DFT
approach presently implemented, suggested by Kohn and Sham [9], actually fails the
original program, because it involves a return to an orbital picture (Kohn-Sham orbitals)
as a rescue from the difficulties posed by our insufficient knowledge of the basic
universal functionals inherent of the procedure, particularly the kinetic energy one. As a
consequence, troubles met with large molecules, that we presumed to be able to leave
outdoors thanks to the novel approach, again enter home from the windows, thus
challenging to a substantial extent applications concerning most of the chemically and
technologically interesting problems.
The present (very preliminary) investigation follows a research line closer to the true
spirit of the DFT's, moving in the same direction as some recent papers where the
attention is focused on the development of a formalism able to lead to the electron
density without invoking wavefunctions, orbitals in particular [10-15]. It is right to
recall that the seminal ideas of this approach are anything but new, their origin dating
back to the atomic statistical model put forward more than sixty years ago by Thomas
and Fermi. Without pretending to review the concerned literature during such a long
period of time (but a very complete bibliography is collected in ref. [7]), we limit
ourselves to point out as particularly relevant to the present work some additional papers
[16-26] where the manifest intent of revitalizing an old subject proceeds through the
development of a general formalism that contemplates the Thomas-Fermi theory as a
low-order level of approximation.
By the present paper we intend to start to explore the possibility of generating explicit,
approximate ways for calculating the electron density of a quantum system
subjected to an external homogeneous and static electric field, without invoking, in the
construction, orbitals as basic ingredients. Although the electronic distribution of the
system is at the outset assumed to be describable in terms of (unspecified) occupied
orbitals, we immediately shirk the orbital approach in favor of an integral representation
of the electronic density involving the knowledge of the quantum mechanical
propagator (QMP) [27-30]. A drastic ansatz for the latter quantity based on the known
QMP of a particle moving in a linear potential field is the key-step of the whole
procedure, by which we attain, without any further approximations, an explicit final
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result for expressed in terms of Airy function and its first derivative. The only
applications of the result thus deduced will be restricted to the case of a model of
independent particles moving in a quadratic potential while simultaneously acted by a
static electric field: the predicted electric dipole moment induced by the field in the
system is shown to be the exact value, despite the fact that the electronic charge density
resulting from the approach is only an approximation to the correct one.

2. An approximate approach to the electronic density

The system under study is assumed to consist of electrons, possibly in the presence
of a nuclear framework. An orbital picture of the quantum behaviour of the system is
then introduced on accepting the validity of an independent-particle model where each
electron moves in the field of an effective potential which afterwards is left
substantially unspecified. We emphasize, however, that the choice of is an essential
step of any modeling. Besides semiempirical forms, effective potentials
functionally dependent on the electron numeral density are intuitively bound to play
a prominent role in applications.
The one-electron Hamiltonian operator kinetic energy operator,

generates a complete spectrum of orbitals according to the Schrödinger equation

The ground state of the system corresponds to electrons occupying the lowest-

energy levels, so that the electron numeral density is

To attain an expression of which does not make explicit reference to the occupied
orbitals, we rewrite eq. (2.2) in the form

where we have introduced the Heavisidefunction and the Fermi level energy If
we make use of the following standard representation of

from eq. (2.1) and the completeness of the spectrum of orbitals supported by the
electron density n (2.3), can be expressed as

(atomic units with are used throughout this paper). Eq. (2.5) is a well
known result [12,14-17,20,24,25], that makes evident the key-role played by the diagonal
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matrix element of the QMP in determining the electronic
density. Considering that the QMP knowledge allows one, in principle, to solve the
problem of the time-evolution of any arbitrary initial quantum state, the obtainment of

is to be regarded in general as a true piece of skill. It is a fact that we have at
disposal only very few exact QMP expressions in analytical closed form [29], despite
tremendous advances in quantum dynamics, particularly during the past fifteen years
[31]. Much progress in the QMP evaluation has been realized following mainly the idea
that the propagator for an arbitrary time t can be rigorously expressed in terms of short-
time propagators, for which simple approximations are available [31]. The latter
procedure has actually been developed in some of the papers quoted [10-15,25], which
should therefore be regarded as more rigorous contributions to the problem of
representing the electronic density according to eq. (2.5), even though it is right to say
that the implementation of the formalism to explicit calculations has not kept the pace
with theory.
Our more rudimentary approach is basically founded on an ansatz choice for the quantity

of higher quality with respect to the short-time approximation

which neglects all quantum effects arising from the

noncommutativity of the operators and . In order to appreciate the nature of the

approximation, let us consider the case where the energy potential with

constant quantities. Although the QMP for a particle subjected to a constant
force is one of the few cases explicitly known [32], for our convenience we adopt the
following exact alternative representation of the propagator for a particle moving in a
linear potential [see Appendix A, eq. (A.8)]

The ansatz for the diagonal matrix element of the QMP appearing in eq. (2.5)
corresponds to assume the validity of eq. (2.6) also for potentials other than the

linear one. Taking, moreover, into account that a homogeneous and static electric field
is associated with a potential energy the propagator ansatz for the system subjected
simultaneously to the action of an electric field generalizes in a straightforward way from
eq. (2.6) to yield

Eq. (2.7) is the starting point of the procedure we are going to develop. The neglect of the
exponentials involving and leads to the same result obtainable according to the
Trotter formula [30]; as easily verified, such short-time approximation is the basis for
recovering from eq. (2.5) the same result predicted by the Thomas-Fermi theory.
Thanks to eq. (2.7), the electronic density expression given by eq. (2.5) can be cast into
the (obviously approximate) form
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with

A series of manipulations [see Appendix B, eq. (B.4)] allows the function to be
expressed as follows

where we have set

and Ai[x] denotes the Airy function of argument x [33].

The replacement of the result for eq. (2.10), into eq. (2.8) yields for the

electronic density

where

The expression for can be elaborated rather simply, [see Appendix C, eq. (C.4)]

Indefinite integrals involving products of Airy functions and/or their derivatives can be
evaluated without many difficulties [34]. Thus,
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and successively

After carrying out the integrations involved in eq. (2.15) [34], we finally obtain the result

which allows one to calculate the numerical electronic density in terms of both the
potential characterizing the one-electron model assumed and the electric field
polarizing the electron distribution itself. It should be evident from the derivation that the
effect of the field has not been taken into account according to a perturbative
treatment; eq. (2.16) is an approximate result for the electron density that includes at
infinite order the polarization distortion caused by the external field.
Eq. (2.16) is not an entirely new result. After this work had been concluded and we were
looking around in search of bibliographical material, we came upon a paper by Englert
and Schwinger [24] dealing with the introduction of quantum corrections to the Thomas-
Fermi statistical atom. These authors attain the same result expressed by eq. (2.16) (for
the case by resorting to a somewhat more general assumption about the adopted
QMP as compared to our choice.
For a quantum system with a single degree of freedom (dimensionality a procedure
parallel to that sketched above leads to the following result

where

The Fermi level energy appearing in eq. (2.16) [or eq. (2.17)] through the argument b
of the Airy function and its derivative is fixed by the normalization requirement

[or the analogous one-dimensional stemming from eq. (2.17)]. Obviously depends on

the external field amplitude.

Unperturbed electron densities descend naturally from the above formalism by letting
vanish.



ELECTRONIC CHARGE DENSITY OF QUANTUM SYSTEMS 209

3. An elementary application of the formalism

As a very simple application of the approach presented in sect. 2, we confine our
attention to a model system consisting of independent charged particles

("electrons"), moving in a one-dimensional harmonic effective potential

while simultaneously acted by a static, homogeneous electric field E. An exact treatment
of this standard problem is sketchily reviewed in Appendix D for reasons of
completeness.
The approximate numeral density n(x;E) is that obtained from eqs. (2.17), (2.18) with

Typical properties of the charge distribution are summarized by its various electric
multipole moments. The electric dipole moment induced in the system by the external
field is obviously

For further progress, it is convenient to change integration variable from x to F, eq. (3.1),
so that

with

After noting that we are simply left with

Use of the normalization condition finally leads to

a result coincident with the exact prediction [see Appendix D, eq. (D.6)].
The static electric dipole polarizability of the model system investigated is therefore

while higher-order polarizabilities (hyperpolarizabilities) vanish rigorously.
In view of the result just found, it is interesting to contrast exact and approximate
behaviour of the density n(x;E) [eqs. (D.5) and (2.17), respectively]. Some insight into
the nature of the approximations contained in our treatment is gained through the
inspection of Table 1, which collects Fermi-level energy values calculated for several
electron occupation numbers and two different electric field amplitudes. The entries have
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been obtained by an easily feasible trial-and-trial procedure until satisfying the
normalization requirement [eq. (2.19)] evaluated by numerical quadrature. The field-free
values are seen to be spaced nearly uniformly by according to the

Table 1. Fermi-level energy predicted for the harmonic-well model

for different electron numbers and different electric

field amplitudes E (a.u.).

well known behaviour of the quantum harmonic oscillator spectrum. The lowest energy
value (corresponding to and consequently all the others, however, are shifted

upward about  thus suggesting the picture of a ladder spectrum of discrete energy

values dephased with respect to the exact one. Some progressive deterioration seems to
creep slowly into such harmonic picture as the electron number increases more and more.
For a given number of electrons, moreover, the dependence of the Fermi-level energy
shift on the electric field E is in perfect agreement with the exact

prediction,

Figs. 1-4 allow one to gain some further feeling about the quality of the approximation
upon which our derivation of eq. (2.17) for n(x;E) has been founded. Figs. 1 and 2
represent the electron density as a function of the coordinate x, in the absence of external
electric field, for  respectively.  Excellent overall agreement between
exact and approximate profiles of is immediately recognized. In particular,
there is a perfect reproduction of the electron distribution in the outer region, while for
the central core the approximation leads to a "simulation" of the exact behaviour, able to
represent only in some average manner the typical spatial oscillations of the quantum
density. Such "simulation" becomes seemingly more adequate as the electron number
increases from the two cases actually display a similar behaviour, the
drawing in Fig. 2 being unable to put in evidence details because of the too coarse-grain
scale employed. Fig. 3 refers to the same situation illustrated in Fig. 2, the only change
corresponding to the presence of an external electric field a.u. It should be manifest
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that the effect of switching on the external field is simply to translate uniformly the
whole electron distribution toward more negative x values, the shift amounting to

in accordance with the exact prediction [eq. (D.5)].

The behaviour of the approximate density n(x;E = 0) at both large and small x values
can be understood considering the analytical properties of the function

, eq. (2.17) [24,33]. As , in fact,

and exponentially, since asymptotically as         .

On the other hand, from the asymptotic behaviour valid for

, as , according to , so that we deduce

, a divergent result. The density at x=0, however, is finite, its value

from eq. (2.17) being Very rapid small oscillations
which characterize both Ai(z) and Ai'(z) at large negative values of their arguments
become concentrated in the region of small x values around x=0. Such unphysical
oscillations, which arise from the approximate nature of the QMP utilized in our
approach, do not result evident in the figures because of scale reasons, but can be
partially perceived. Exact and approximate physical oscillations exhibited by n(x; E) are
compared on a magnified scale in Fig. 4 for the case  and E=1. a.u.
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Appendix A

The time-evolution operator for a single electron moving in a 3D-linear potential
can be expressed in the form

where

A useful manipulation of the operator can be carried out by setting

being an unknown operator, with A differential equation for is
easily obtained by deriving with respect to t both sides of eq. (A.3):

Noting that
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and therefore

Taking into account that operators associated with different labels j commute between
each other, form eqs. (A.1), (A.3), (A.6) we get

The diagonal matrix element of the QMP can therefore be written in the form

The evaluation of the simple integral contained in eq. (A.8) would lead, of course, to the
known expression for the QMP of the system under study [32].

Appendix B

The function of eq. (2.9) is conveniently expressed as follows

with

The Fourier representation of the Dirac delta function leads then to the result

and therefore,

The cubic form in t appearing in the exponential of eq. (B.1) is expressible as
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where we have set
Thus the integration in the time variable involved in eq. (B.1) yields

where we have utilized the definition of the Airy function [33]

From the latter result, eq. (B.1) is finally cast into the form

Appendix C

Eq. (2.14) in the text can be derived in a straightforward way after choosing the z-axis

along the direction of the vector , so that . Then , eq. (2.13), can
be written down in the form

By a simple variable change the integration in is expressible in terms of the Airy
function of proper argument [see eq. (B.3)], so that
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Transforming to plane polar coordinate we get

where

Appendix D

For a one-dimensional model system of independent particles moving in a harmonic

effective potential and simultaneously subjected to an electric field E, the

numeral distribution density n(x,E) is given by

where is an orbital fully "dressed" by the external field E, a solution to the
Schrödinger equation

After recognizing that , a variable change

leads to the following Schrödinger equation for the orbitals required,

i.e. the same equation one should solve for orbitals in the absence of external field.
Therefore,

s = 0, 1, 2, ...
The exact numeral density of the model system is consequently

The electric dipole moment induced in the system by the electric field is therefore
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How Much Correlation Can We Expect to Account for in Density Functional
Calculations ? Case Studies of Electrostatic Properties of Small Molecules

J. WEBER, P. JABER, P. GULBINAT and P.-Y. MORGANTINI
Université de Genève, Département of Chimie Physique, 30 quai Ernest-Ansermet,
1211 Genève 4, Switzerland

1. Introduction

It is well known that the traditional ab initio techniques of quantum chemistry are able to
incorporate many-electron effects through expansions of the many-particle wavefunction,
which leads in principle to systematic procedures to take correlation effects into account.
However, the computational challenge issued by these post-Hartree-Fock calculations is
generally a formidable task, as for both variational configuration interaction (CI) and size-
consistent many-body perturbation theory (MBPT) techniques, the amount of computations
required to reach chemical accuracy is enormous. In addition, these methods, and in
particular those of multiconfiguration self-consistent field (MCSCF) and CI type, are
sophisticated and in virtually no case they can be used as black boxes. Indeed, the problem
is that, unless the system investigated is small enough so as to allow for a full CI treatment,
truncated CI expansions have to be used and, according to the qualified statement of
Berthier et al. [ 1 ] , "the choice of an appropriate molecular orbital (MO) basis set in then a
considerable concern".

On the other hand, it is indispensable for most molecular properties to account for
correlation effects so as to achieve quantitative, or even sometimes qualitative, predictions
as the neglect of instantaneous repulsions introduces an error which may be significant [2].
Fortunately, substantial efforts have been made in the last twenty years in order to develop
correlated quantum chemical methods and there is ample choice among them today for a
given problem. For example, most of the popular semiempirical models offer the possibility
to include some CI using, e.g., the Pople-Pariser-Parr formalism, as implemented in the
AMPAC series of programs [3]. As far as they are concerned, the techniques based on
density functional theory (DFT) are able to incorporate some treatment of correlation
through the energy functional used to solve the Kohn-Sham equations [4,5]. However, the
degree of correlation introduced in these methods depends on the form of the so-called
exchange-correlation potential and it is difficult to estimate how much correlation is present
in the results unless performing comparative ab initio calculations. As to the latter ones,
they have the advantage to allow in principle for a progressively increasing treatment of
correlation through enlarging the N-electron basis set in CI calculations or through the
introduction of higher orders of perturbation in MBPT studies. It is thus possible to rather
accurately quantify (generally in percent) how much correlation is introduced in, e.g., a CI
study, by comparing the calculated correlation energy with the difference between Hartree-
Fock and "experimental" (when available), or full CI with a very large one-electron basis
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set (when possible), total energies [6]. It is of course impossible to implement such a
procedure using the DFT methodology, as there is no equivalent to the Hartree-Fock
energy. In other words, one extracts from such a calculation a total energy which contains
"some" correlation contribution, without the possibility to separate it from the SCF energy.
To elucidate this point, one has therefore to compare molecular properties calculated using
the DFT formalism with their values predicted by ab initio computations performed at
various levels of approximation.

It has been recently pointed out that DFT models are in general adequate to describe to a
good extent, through the standard exchange-correlation potentials generally used, the
correlated movement of electrons at short interelectronic distance, i.e. the so-called dynamic
correlation [5]. This is even possible in the simple formalism of the local density
approximation (LDA) [7], using a potential such as that of Vosko, Wilk and Nusair (VWN)
which is now commonly employed for many DFT applications [8]. It has indeed been
shown that such calculations incorporate dynamic correlation effects at least to the same
extent as second-order Moller-Plesset (MP2) MBPT [9], which represents now a standard
for post-Hartree-Fock ab initio calculations. However, there is a second category of
correlation, known as static or long-range correlation, which accounts for near-degeneracy
effects in the wavefunction [10]. Whereas it can be accounted for in ab initio calculations
through the MCSCF procedure, it is more difficult to describe in DFT as it requires the use
of involved exchange-correlation potentials, with the risk of a double counting of
correlation corrections [11]. Alternatively, long-range correlation can be introduced in the
DF formalism by combining CI or MCSCF with DF through a scaling of the electron
density by a factor depending on Hartree-Fock and CI (or MCSCF) two-electron density
matrices calculated in the same one-electron basis set [12].

In the present work, we shall investigate the problem of the amount of correlation
accounted for in the DF formalism by comparing the molecular electrostatic potentials
(MEPs) and dipole moments of CO and calculated by DF and ab initio methods. It is
indeed well known that the calculated dipole moment of these compounds is critically
dependent on the level of theory implemented and, in particular, that introduction of
correlation is essential for an accurate prediction [13,14]. As the MEP property reflects
reliably the partial charges distribution on the atoms of the molecule, it is expected that the
MEP will exhibit a similar dependence and that its gross features correlate with the changes
in the value of dipole moment when switching from one level of theory to the other. Such a
behavior has indeed been reported recently by Luque et al. [15], but their study is limited to
the ab initio method and we found it worthwhile to extend it to the DF formalism. Finally,
the proton affinity and the site of protonation of as calculated by both DF and ab initio
methods, will be reported.

2. Computational Details

For the DFT calculations, the linear combination of Gaussian - type orbitals - density
functional (LCGTO-DF) method and its corresponding deMon program package [16] have
been used. In all calculations, the VWN exchange-correlation potential was employed [8]
and all the core and valence electrons were explicitly taken into account. To enable a
meaningful comparison with the ab initio results, the same one-electron basis set has been
used in all the calculations, i.e. which has been recently found
adequate for calculating the dipole moment of CO and N2O [14]. The auxiliary basis sets
required by the LCGTO-DF model to fit the electron density and the exchange-correlation
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potential have been chosen as C(5,3;5,3), O(4,4;4,4), N(4,3;4,3) and H(3,l;3,l).
The ab initio calculations have been performed using the Gaussian 90 program package
[18]. The 6-31+G(2d,2p) has been employed throughout at both self-consistent field (SCF)
and MP2 levels of theory. In all the calculations, the proton affinities (PAs) have been
obtained as the difference between total energies of optimized unprotonated and protonated
species and no zero-point nor thermodynamic contributions have been introduced. This
means that we are more interested in comparing the PAs deduced from the theoretical
models at various levels of theory than in performing accurate comparisons with the
experimental values.

3. Results and Discussion

Table 1 presents the results obtained for the bond distance and dipole moment of carbon
monoxide.

As expected, it is seen that the SCF bond distance is somewhat too short and that the MP2
calculation leads to a significant bond lengthening, which is in agreement with the well-
known trend that introduction of correlation effects substantially increases calculated bond
lengths [21]. As expected, the LCGTO-DF result is in very good agreement with
experiment, even though the so-called nonlocal corrections have not been introduced [16],
the predicted bond distance being intermediate between the experimental value and the MP2
prediction. Actually, the LCGTO-DF value for lies much closer to the MP2 result than
to the SCF one, which is a first indication for some correlation being taken into account.
This conclusion is strengthened by examination of the dipole moment of CO (Table 1). It is
indeed seen that, whereas the ab initio method at the SCF level predicts, as is well known
[13], the wrong sign, both the MP2 and LCGTO-DF values lead to a dipole
moment in agreement with experiment. In addition, the DFT result is substantially smaller
than the MP2 one, which makes it closer to the 0.122 D experimental value. As the dipole
moment of CO is very sensitive to the amount of correlation introduced in the
wavefunction, this suggests that our LCGTO-DF calculation incorporates a correlation
contribution roughly equivalent to the MP2 level.

Let us turn to the MEP of CO which we have calculated using the same methods as those
employed for the dipole moment (Fig. 1). We expect that these MEPs will reflect the same
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trend as the dipole moment, inasmuch as a multicenter multipole expansion of the molecular
electron charge density can be used to generate a MEP which is a good approximation to
that obtained from the wavefunction [22]. It has been shown indeed that the contributions
arising from the monopolar and dipolar terms are generally preponderant [23], which
suggests that the MEP and molecular dipole moment calculated from the same wavefunction
should exhibit the same trend within a series of compounds or when evaluated at various
levels of theory.

It is seen in Fig. la that the MEP calculated at the ab initio SCF level exhibits two roughly
equivalent minima on both carbon and oxygen ends, lying at -14.0 and -11.4 kcal/mol,
respectively, along the CO bond axis. From the point of view of electrostatics, both atoms
behave therefore similarly at the SCF level towards an incoming proton. This picture is
drastically modified when examining the MP2 result (Fig. 1b). In this case, the minimum
on carbon (-18.0 kcal/mol) is significantly lower than that on oxygen (-3.8 kcal/mol),
which indicates that the electron density calculated at the MP2 level is substantially different
from that resulting from the SCF calculation. In particular, this dissymetry in the MEP
minima on both atoms suggests that part of the electron density is shifted towards the
carbon atom, which simultaneously allows to rationalize the change of sign of the calculated
dipole moment when going from SCF to MP2 and the polarity evaluated in this
latter case. It is therefore of interest to examine the LCGTO-DF MEP (Fig. 1c) in order to
confirm the shift of electron density induced by introduction of correlation. It is seen that
indeed the LCGTO-DF result is very similar to the MP2 map, with MEP minima lying at
-18.8 kcal/mol on the C-end at -6.7 kcal/mol on the O-end. However, the difference
between C and O MEP minima is about 2 kcal/mol larger in MP2 than in LCGTO-DF,
which suggests that the MP2 electron density of CO leads to a slightly more polar molecule
than in the LCGTO-DF case and hence to a larger dipole moment (see Table 1). In
spite of these small differences, there is no doubt when examining Fig. 1 that the LCGTO-
DF electron density calculated for CO incorporates correlation to an extent comparable to
MP2, which confirms the results of previous investigations [4,9,16].

Let us turn to the results obtained for nitrous oxide From a theoretical point of view,
this is an interesting molecule as properties such as its dipole moment and protonation site
have been found very difficult to calculate accurately [14,24]. is a linear species
whose predicted bond lengths and dipole moment are presented in Table 2.
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It is seen in this Table that, similarly to CO, the bond lengths of  increase significantly
when going from SCF to MP2. It is also noteworthy that the introduction of correlation at
the ab initio level leads to a much better agreement with experiment, particularly for the NO
bond distance. Again, the LCGTO-DF results lie much closer to the MP2 than to the SCF
ones, the LCGTO-DF bond distances being actually on an average closer to the
experimental values than both SCF and MP2 results. Examination of this part of Table 2
suggests therefore again that a roughly equivalent amount of electron correlation is present
in both MP2 and LCGTO-DF calculations. This conclusion is strengthened by the results
obtained for the dipole moment: it is seen indeed in Table 2 that, whereas the ab initio SCF
result leads to a dipole moment, in agreement with the experimental sign, though
the absolute value is much too large, both MP2 and LCGTO-DF predictions exhibit the
wrong sign but significantly smaller absolute values. Actually, the dipole moment of
has been shown to be even more sensitive than that of CO to the level of theory and
calculation parameters employed [14]. In particular, Moller-Plesset calculations performed
at various orders of perturbation exhibit oscillations with a change of sign of 1 at each order
from the SCF case to MP4 [14], which clearly indicates a very slow and difficult
convergence of this property. Actually, infinite-order methods such as quadratic CI are
necessary for a correct prediction of the dipole moment of  Coming back to Table 2,
the fact that both MP2 and LCGTO-DF results for the dipole moment of  exhibit the
same sign is a clear indication of a similar amount of correlation present in both methods,
though one might argue that the +0.150 D value obtained by Frisch and del Bene at the
MP4 level using the same one-electron basis set [14] is actually closer to the LCGTO-DF
prediction than the MP2 result. However, further comparative calculations would be clearly
needed to better substantiate this point. Actually, these and previous [9] results allow us to
conclude that correlation contributions equivalent to at least the MP2 level are most
probably included in DFT calculations such as those performed here.

The MEPs of as calculated at the SCF, MP2 and DFT levels of theory, are presented
in Fig. 2. As expected from the results obtained for the dipole moment of this compound,
considerable differences are observed between the SCF and MP2 MEP maps. Indeed,
whereas all the MEPs exhibit a single minimum on the terminal nitrogen lying on the
molecular axis and a crown region of out-of-axis minima on oxygen, the energy values of
these minima are quite different. In the SCF case, the absolute minimum is found on
oxygen (-16.2 kcal/mol) and the minimum on nitrogen is only a local one lying at -6.6
kcal/mol, which is in accordance with the dipole moment calculated at this level of
theory. However, the energies of the minima in both MP2 and LCGTO-DF cases are in
sharp contrast with this picture, as the absolute minimum is found on nitrogen, the
minimum on oxygen being only a local one lying at a much higher energy. In other words,
both MP2 and LCGTO-DF results are characteristic of a situation where a significant
amount of electron density has been shifted from the oxygen to the terminal nitrogen atom
with respect to the SCF description, which is in line with the dipole moment
predicted by these models. Again, the resemblance between MP2 and LCGTO-DF MEPs is
striking as both maps exhibit practically the same energy minima on oxygen and terminal
nitrogen atoms. On the other hand, it immediately seen when comparing Figs. 2a and 2c
that SCF and LCGTO-DF MEPs are quite dissimilar, which underlines the substantial
amount of correlation introduced into LCGTO-DF wavefunctions.

Finally, we turn to the problem of protonation of  In principle, this molecule has two
possible sites of protonation : the oxygen and the nitrogen ends. While experimental results
are not really able to discriminate between these two sites [27], Amano has provided
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rotational constants for the protonated species [28] which were used by Rice et al. [29] in
their theoretical study to support protonation on oxygen. This result has been recently
confirmed by Ekern et al. [30], who report, however, that this prediction is very sensitive
to the level of electron correlation introduced in the calculations : at MP3, MP4SDQ and
QCISD(T) levels, O-protonation is preferred, whereas in the MP2 and MP4SDTQ cases,
N-protonation is predicted. Actually, the fact that the protonated  species is a difficult
case for quantum chemistry is not unexpected on the basis of the sensitivity of the
calculated dipole moment and MEP of this compound upon the level of electron correlation
introduced.

Table 3 presents the proton affinities calculated (without zero-point and thermodynamic
contributions) for both N- and O-ends of It is seen that indeed the SCF result leads
unambiguously to O-protonation, which is consistent with both dipole moment and
MEP minima calculated at this level of theory. However, both MP2 and LCGTO-DF results
predict erroneously N-protonation and there is probably no doubt that introduction of zero-
point and thermodynamic contributions would not modify this conclusion [30]. Our
calculations confirm therefore the theoretical results previously obtained for protonated
[29,30] and concluding that correlation effects have to be introduced at a higher level of
theory than MP2 and LCGTO-DF so as to perform a reliable prediction of the protonation
site. Again it is noteworthy that MP2 and LCGTO-DF protonation energies lie very close
one another. Undoubtedly, the LCGTO-DF model incorporates correlation effects to an
extent similar to MP2 and not MP3, as in the latter case O-protonation would be favored.

As a conclusion, the present investigation has shown that it is possible to estimate the
amount of correlation accounted for in density functional theory by performing comparative
calculations of selected properties of small molecules. Among the properties studied, the
MEP presents the advantage being a local property, which leads to visual comparisons
between maps calculated in molecular planes. It is thus possible to rapidly evaluate the
similarities between SCF, post-Hartree-Fock and DFT calculations and to deduce general
conclusions as to the main characteristics of the corresponding wavefunctions. In
particular, it is expected that such a procedure would be useful in comparing various
exchange-correlation potentials commonly employed in DFT calculations, and further
investigations in this direction are in progress.
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Applications of Nested Summation Symbols to Quantum Chemistry:
Formalism and Programming Techniques

R. CARBÓ and E. BESALÚ
Institute of Computational Chemistry, University of Girona
Albereda 5, 17071 Girona, Spain

1. Introduction

Our research on various Quantum Chemistry areas has been directed in a great
extend to the construction of general useful algorithms based on, as elementary as
possible, mathematical concepts [1,2]. We tried along this past period to obtain
computational procedures with sufficiently interesting features leading to a three fold
purpose. First, the results must be pedagogically adequate. Second, the algorithmic
structure must be susceptible of easy implementation to high level programming
languages. Third, the development must benefit the computational side of Chemistry as
Physics and be solidly grounded of Applied Mathematics principles.

In this sense, our intention was, such that the final working schemes can serve
to connect mathematical general formulae writing and computationally valid general
program structures. Thus, programming techniques can also be assisted by means of this
process, as well as Artificial Intelligence [1c] algorithms may use partially the results of
our outline in order to increase the performances of formulae generation and translation
programs.

With all this conditioning principles in mind, the present work tries to describe
in a first place the definition and properties of two fundamental symbols: Logical
Kronecker Deltas (LKD’s) and Nested Sums. The authors hope these symbol forms turn
to be as useful to the scientific community as they had been in the development of their
quest of a valid computational scheme based on PC machinery, whose main features had
been already explained by one of us, see for example reference [3].

Consequently, here are studied under the formulation of the Nested
Summation Symbols (NSS’s) symbolism some Quantum Chemical problems and topics.

2. Definition and Properties of the NSS

2.1 LOGICAL KRONECKER DELTA SYMBOL DEFINITION

Let us define a generalization of the Kronecker delta symbol and call it a
Logical Kronecker Delta (LKD). This symbol is written as  and corresponds to a
funct ion that can return two possible values: 1 if the logical argument L is true or 0
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otherwise. The Kronecker delta symbol is a particular case of a LKD, where in the logical
expression L there is involved an equivalence symbol.

2.2 DEFINITION OF THE NSS

The NSS concept corresponds to an operator attached to an arbitrary number
of nested sums. In other words, a NSS represents a set of summation symbols where the
number of them can be variable. In a general notation one can write a
where the meaning of this convention corresponds to perform all the sums involved in the
generation of all the possible values of the index vector j under the fulfillment of the set
of logical expressions collected in the components of the vector L. The elements of the
vector j have the following limits:

where the indices can be incremented or decremented respectively in steps of length .
The index n is the dimension of the NSS, that is: the number of summation symbols
embedded in the operator, and thus the dimension of the involved vectors j, i, f and s. The
set of all the vectors appearing as arguments of the NSS can be named parameters of the
NSS.

The logical vector L is of the type . The delta symbol corresponds to
a LKD. In this manner, the indices of the vector L are 0’s or 1’s. So, the convention of
a NSS stands for the generation of all the possible forms of the index vector j that are
attached to the logical vector

A NSS has a computational implementation we have called a GNDL [1,4].
The Fortran code of the algorithm implementing a GNDL can be found described in
Program 1  below. The GNDL algorithm constitutes the link between the mathematical
notation of the NSS and the computer codification of this operator.

2.3 SIMPLIFIED NESTED SUM NOTATION

Despite the general form adopted here to write a NSS, sometimes it is
superfluous to explicit all the involved parameters. When this circumstance does occur,
some parts of the general form can be dropped in an arbitrary manner. The most important
cases are:

a) If the logical vector L is not specified it will mean that all the possible
forms of the vector j must be generated with no restriction. In all the
remaining text this NSS form will be used.

b) When the step vector increment is irrelevant only the initial and final
vector index parameters need to be explicitly written. In this case, the

notation can be employed. Frequently, the step vector s is a n-
dimensional vector such as s=1.
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c) The same can be said of the final parameter vector f, which may be a
product by a scalar of vector 1. As an example the notation:
displays the symbol which is constructed by n nested sums, whose
indices take the same values within each sum in the interval {l,m}.

d) When initial, final and increment values are implicit in the nested sum,
a simplified symbol such as may be also used.

e) When the vector dimension n is obvious, then the n subscript can be
omitted from the sum, as in: for instance.

2.4 MATHEMATICAL NSS PROPERTIES

Following from NSS’s definition, some properties of these operators arise and
have to be considered. Here are listed some of them:

a) NSS’s can be recognized as linear operators with respect to any general
expression placed at the right side of the symbol.

b) A product of two NSS’s of dimensions n and m is another NSS of
dimension or:

where the new index vectors are constructed using the direct sum of the
original vectors appearing in the product.

c) The symbol can be made by convention equivalent to the
unit operator.

d) The classical summation symbol is a particular case of the NSS one,
it can be written as:

e) Einstein's convention, by which a set of nested sums are omitted from
an expression, corresponds to obviate writing a NSS like

3. Computational implementation of a NSS: the GNDL algorithm

3.1 GENERAL CONSIDERATIONS

In standard high level language programming the dimension of the NSS: n,
signals the number of nested do loops which are necessary to reproduce the structure in
a computational environment. But the mathematical usefulness of this entity can be easily
recognized when the particular characteristic of this symbolic unit is analyzed: the
involved vector parameters could be chosen with arbitrary and variable dimensions. There
are many scientific and mathematical formulae which will benefit of this property, when
written in a paper or computationally implemented.
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NSS symbolism constitutes a link between mathematical formalism and
program implementation techniques, because successive generation of j index vector
elements can be programmed in a general but simple way under any high level language.
This can be achieved using a unique do or for loop statement construct, which is general
and independent of the dimension of the involved nested sums. This kind of programming
structure constitutes the GNDL algorithm.

NSS have not a direct translation to the usual high level languages. Present
day compilers or standard language rules ignore such an interesting feature, see for
example the practical f inal form of the standard Fortran 90 language [5]. Even high level
language compilers have no capacity of processing more than a limited number of
classical do loops in a nest, for example VAX Fortran and NDP Fortran compilers [6]
have a l i m i t of 20 nested do loops. Thus, the GNDL structure is a good candidate to
circumvent these l imitat ions in any compiler.

It looks simple to introduce GNDL in the family of repetitive sentences found
in high level languages. So we feel that a claim in this direction to language and compiler
builders can be made here. Some immediate computational benefits in order to construct
really general programs may be obtained.

3.2 A SCHEMATIC GNDL PROGRAM EXAMPLE

In order to show
in a practical manner the
computational implementation
of a NSS, Program 1
represents a Fortran source
code corresponding to the
NSS structure. The NSS
implementa t ion us ing a
GNDL algorithm generates
al l the possible forms of
vector j. According to this,
Program 1 generates the
indices of the n-dimensional
NSS The
dimension n and the in i t ia l ,
f inal and step index values
collected in the vectors i, f,
and s have not been specified
and the question mark
symbol stands for their
possible values. These values
depend on the concrete
application given to the
algorithm. Here it is assumed
that the step vector s has a l l its components positive definite.
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There, Application is a called procedure where the n nested loops converge
and where their leading indices can be arbitrarily used in the desired internal application.
The j index values generation is sequential but the execution of Application can be
performed into separate CPU’s, each one controlling the process attached to one of the
forms of the vector j. In this manner, the full computation can be parallelized if desired.
In fact, this is a general algorithm, enabling to perform a parallel Application
implementation if the nature of the problem asks for such a process and the available
hardware allows to run it in this manner. A previous tentative description on GNDL, in
a sequential programming framework, was initially made by Carbó and Bunge [4].

Various application examples have been constructed by the authors. Some
Fortran source codes on combinatorial analysis, product of an arbitrary number of matrices
and determinant evaluation in a parallel transputer environment [7] have been tested and
encouraging results obtained.

4. Mathematical application examples

As an illustration of the possible use of the described symbols, there will be
presented first a set of possible purely mathematical application examples of NSS.

4.1 GENERATION OF VARIATIONS AND COMBINATIONS

A NSS can be used to generate variations and combinations of m elements
belonging to an arbitrary set of mathematical objects. It is only necessary numbering in
a canonical order, from 1 to m, all the elements in the set. This will produce a completely
formal development which can be occasionally used for immediate implementation on any
high level language. Although this direct translation will obviously lack of programming
refinement in the first bulk program scheme, it may be considered a not too bad starting
point in order to obtain a given optimized code.

Then, one can easily describe the expressions that stands for the generation
of some combinatorial entities. It is required the implementation of the following NSS:

Depending on the definition of the logical vector L they are obtained
different entities:

a) If L is obviated the NSS then represents the generation of all the
possible variations with repetition, which can be formed making groups
of n elements out of the m element set.

b) When L is defined as then they are reproduced
the m!/(m-n)! variations without repetition, which can be formed making
groups of n objects taken from the m element set inside the nested sum.
It is required the condition

c) If L is defined as then the NSS creates the
m!/n!(m-n)! combinations related to a set of m elements, when they are
taken in groups of n out of the m element set.
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d) Combinations generation can be also performed by means of the
implementation of the NSS obviating the logical vector L and defining
the parameter vectors i and f as and

, respectively. This last choice implies to rewrite
Program 1 in some special manner, where also the initial indices are
modified, while the GNDL is executed.

4.2 EXPLICIT EXPRESSION OF THE DETERMINANT OF AN ARBITRARY
SQUARE MATRIX

Using the NSS, one can reformulate the expression which gives the
determinant of an arbitrary (n×n) square matrix A, Det | A | . A compact formula of
Det | A | can be written in this way as:

where the logical vector L is a function of the j vector indices and is defined as:

and the S(j) factor is a sign, which can be expressed by:

being P(j) the parity of the order of the values of the index of the vector j. This parity
value can be expressed as:

Finally, the last term in equation (3) is a product of the elements of the
matrix:

Although this final determinant structure can easily lead to an immediate
construction of sequential or parallel Fortran subroutines, there cannot be a claim such that
this procedure will be better, from a computational point of view, than well established
numerical ones, based on other grounds as Cholesky decomposition, see references [8] for
more details. One can recall again the remarks already made at the beginning of section
3.1 above, and stress once more the formal nature of the programming immediate
translation capabilities of NSS’s.

However, the previous determinant development form can be used as a very
general interpretative formula, which can compete pedagogically and practically with other
widespread alternatives, for example these usually employed in Quantum Chemistry, see
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reference [9] as a guide. In section 5 this determinant form is used, for example, to deal
with Slater determinants.

One can easily see that, despite all criticisms which can arise from the
programming technical side, the nested sum formalism permits to solve in a very elegant
manner the following problem: Program in a chosen high level language a function
procedure which can be used to compute the determinant of a general square matrix using
the direct Laplace determinant definition [10].

4.3 TAYLOR SERIES EXPANSION OF A n-VARIABLE FUNCTION

The complete formula for the Taylor series expansion attached to a n-variable
function f (x) in the neighbourhood of the point possess the following peculiar simple
structure when using NSS’s:

The terms are defined by means of the product:

Finally, is a short symbol expressing the m-th order partial
derivative operators, acting first over the function f (x) and then, the resultant function,
evaluated at the point The differential operators can be defined in the same manner as
the terms present in equation (9), but using as second argument the nabla vector:

The expression (8) is very useful in the sense one can control the series
truncation. This is so because the parameter in gives the order of the derivatives appearing
in the expansion.

Although there are some general textbook approaches to equation (8), see
reference [11] for example, we have not found the expression of the Taylor expansion in
full as simple as it has been presented here. Moreover, many potential Taylor expansions
are used in various physical and chemical applications; for instance in theoretical studies
of molecular vibrational spectra [12] and other quantum chemical topics, see for example
reference [13]. Then, the possibility to dispose of a compact and complete potential
expression may appear useful.
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5. Quantum chemical application examples

Several Quantum Chemical application examples of NSS’s follow. Some of
them had been chosen because they are related to the actual research in this field in our
Laboratory.

We do not pretend to give here an exhaustive account of all the possible
applications of NSS’s into Quantum Chemistry. Some areas, which for sure can be studied
from the nested summation point of view, like the Coupled Cluster Theory [14], are not
included here.

In fact, our interest in the present formulation, the use of NSS’s and LKD’s,
has been aroused when studying the integrals over Cartesian Exponential Type Orbitals
[la,b] and Generalized Perturbation Theory [ld,e]. The use of both symbols in this case
has been extensively studied in the above references, so we will not repeat here the
already published arguments. Instead we will show the interest of using nested sums in
a wide set of Quantum Chemical areas, which in some way or another had been included
in our research interests [ lc] .

5.1 SLATER DETERMINANTS

As it is shown in section 4.2, using NSS terminology, the general expression
for any determinant can be obtained. In this manner, this formulation can be transferred
into the Slater determinants [9], constructed by n spinorbitals associated to n electrons.
Adopting the following structure and notation for unnormalized Slater determinants:

where the logical vector L, defined in equation (4), is needed in order to obtain all the
variations without repetition of the values of the vector j indices. Here, a term constructed
by means of spinorbital products is present:

A similar definition of the symbol (12) can be taken into account, just using
the products of

The Slater determinant expression of equations (11) and (12) will be taken as
implicit in this paper from now on.

An operator, depending of an arbitrary number of electron coordinates, has
an easily expressible set of matrix elements, using two Slater determinants D(j) and D(k).

The term D(j) can be taken as a Slater determinant, formed by n functions
chosen from a set of in available spinorbitals, and ordered following the actual internal
values of the j index vectors. That is:
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where the usual abbreviated form for a Slater determinant has been used as in equation
(11). Both determinants D(j) and D(k) can be considered built up in the same manner.
The number of different spinorbitals appearing in both determinants, can produce a zero
result for the matrix element, as it is well known for one and two electron operators, see
reference [9]. Generalization to integrals over any number of electrons can be performed
as follows.

Suppose a r-electron operator to be written as with the r-dimensional
vector r representing the coordinates of the canonically ordered electron set:

The matrix element between two Slater determinants can be written as:

where the symbol j[p] means that a permutation p has been performed over the parameter
vector j subindices. Here must be noted that the expression (14) above can be written with
a unique summation symbol, using the property outlined in equation (2). Then, the integral
over the spinorbital products, appearing as the rightmost term of equation (14) can be now
simplif ied. Because in the spinorbital products appearing in equation (11), the canonical
ordering of the electrons is preserved by convention in equation (12), as discussed before,
one can write the integral using only the first r spinorbitals of the successive products,
which wil l be the ones connected with the r-electron operator:

The logical Kronecker delta, which appears when integration is performed
over the coordinates of the remaining n-r electrons, can be easily substituted by the
equivalent logical expression:

where the Minkowski norm of the difference, between the permuted vectors j[p] and k[q],
must be equal to the sum of the absolute values of the differences between the first r-th
components of both vectors.

The right hand part of the last equality (16), may be substituted in equation
(15) and the resulting formula transferred into the expression (14). The final result
indicates fairly well one can have at least r differences between the spinorbitals involved
in constructing both determinants in order that the integral becomes not automatically
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zero. This result encompass the well described zero-, one- and two-electron operator cases
[9], generalizing in this way the rules governing the calculation of operator matrix
elements between two Slater determinants. One can say that the general rule in order to
prevent automatic integral nullity is: "r-electron operators allow a maximal amount of r
spinorbital differences". This rule is connected to the Brillouin theorem [15].

The same expression can be used with the appropriate restrictions to obtain
matrix elements over Slater determinants made from non-orthogonal one-electron
functions. The logical Kronecker delta expression, appearing in equation (15) as defined
in (16)] must be substituted by a product of overlap integrals between the involved
spinorbitals.

5.2 CI WAVEFUNCTIONS

Using the approach already described for combination generation, one can
formulate in a short but completely general form the CI wavefunctions [16].

This kind of wavefunctions, in the complete CI framework, as Knowles and
Handy [16e] have proved feasible, for a system of m spin-orbitals and n          electrons
can be written within the NSS formalism:

where the logical vector L is defined according to the combinations generation and the
terms D(j) are Slater determinants constructed as the one defined in equation (13). The
C(j) factors are the variational coefficients attached to each Slater determinant.

Also, an alternative formulation of equation (17) can be conceived if one
wants to distinguish between ground state, monoexcitations, biexcitations, ... and so on.
Such a possibility is symbolized in the following CI wavefunction expression for n
electrons, constructed as to include Slater determinants up to the p-th excited order.
One can in i t i a l l y start from n occupied spinorbitals and in unoccupied  ones

Then, the CI wavefunction is written in this case as the linear combination:

where the index e, appearing in the first classical sum, signals the excitation order. That
is, for e=0 one has the ground state, for e=l the monoexcitations are obtained and so on.

In equation (18) the terms are n-electron Slater determinants formed
by the spin-orbitals numbered by means of the direct sum: of the vector index
parameters attached to the involved nested sums and to the occupied-unoccupied orbitals
respectively. That is:
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This two general CI function expressions, along with the results obtained in
the section 5.1 above, permit to compute the expected value form of any quantum
mechanical operator in a most complete general way.

5.3 DENSITY FUNCTIONS

Density functions can be obtained up to any order from the manipulation of
the Slater determinant functions alone as defined in section 5.1 or from any of the linear
combinations defined in section 5.2. Density functions of any order can be constructed by
means of Löwdin or McWeeny descriptions [17], being the diagonal elements of the so
called m-th order density matrix, as was named by Löwdin the whole set of possible
density functions. For a system of n electrons the n-th order density function is
constructed from the square modulus of any n-electron wavefunction attached to the n-
electron system somehow.

5.3.1. Density functions over Slater determinants

Using a unnormalized n-electron Slater determinant D(j) as system
wavefunction, constructed as discussed in section 5.1, then one can write the n-th order
density function

A recurrent procedure can be defined in order to obtain the remaining lesser
order density functions. The (n-l)-th order density function is obtained from the n-th order
one, integrating over the coordinates of the n-th electron (or the first) the right hand side
of equation (20). The result is:
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where the primed index vectors mean that the n-th element has been erased from the
initial unprimed vector.

Thus, there is the possible relationship between both n-th and (n-l)-th order
density functions:

It is straightforward to deduce, in general, how to obtain the (n-m)-th term of
the sequence:

The zero-th order term being, finally, the norm of the Slater determinant,
which by means of equation (23) becomes n!, a well known result.

Generalization of this one determinant function to linear combinations of
Slater determinants, defined for example as these discussed in the previous section 5.2,
is also straightforward. The interesting final result concerning m-th order density
functions, constructed using Slater determinants as basis sets, appears when obtaining the
general structure, which can be attached to these functions, once spinorbitals are described
by means of the LCAO approach.

5.3.2. LCAO expression of density functions

Taking into account equation (23), and supposing the Slater determinants
normalized, one can write, calling the init ial constant factor v(n,m)=1/(n-m)!:

and using the LCAO approach for the spinorbitals, written as:

where each spinorbital has been expressed as a linear combination of atomic spinorbitals
from a given M-dimensional basis set Then, a product of spinorbitals like
(12) can be structured by means of the linear combination (25) as:
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where C(a,j[p]) and X(a) are products of the coefficients and the basis functions
respectively, appearing in the linear combinations (25) for every spinorbital. Now using
(26) in the spinorbital product appearing in the rightmost side of (24), one obtains using
a simplified NSS notation:

Finally the density function of (n-m)-th order can be expressed in terms of the
atomic spinorbitals as:

being the (n-m)-th order charge and bond order hypermatrices,  defined as:

using the hypermatrix elements:

The equation (28) has the same structure as the well known LCAO form of
the first order density function [9]. Thus, it can be concluded that density functions of any
order exhibit the same formal structure. In this manner, it can be seen that NSS’s lead to
an interesting mnemotechnical rule.

5.4 PERTURBATION THEORY

In order to define the notation which we will use from now on, let us consider
the application of the perturbation theory to a system which has a perturbed hamiltonian
H composed by an unperturbed one, plus a perturbation operator

From here, the goal consists to find the eigenvalues and the eigenvectors of
the perturbed system, which we denote as the sets respectively. That is,
the target is focused into solving the eigenvalue problem:
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The eigenvalues and eigenvectors of the unperturbed hamiltonian are assumed
to be known:

and the ket stands for the unperturbed eigenfunction of the i-th state and  is the
corresponding energy. Also it is assumed that this system has an energy spectrum with
a simple structure.

The perturbed energies for the i-th state can be expressed as:

and the corresponding wavefunction is:

where the index n signals the correction order in expressions (34) and (35).

On the other hand, the n-th order energy correction can be written using the
form:

provided that the orthogonality condition holds between the unperturbed state
wavefunction and the corrections of any order:

where stands for a LKD.

5.4.1. Brillouin-Wigner perturbation theory

In the Brillouin-Wigner perturbation formalism, the following identity is used
[18]:

Combining equations (36) and (38) it can be easily found that the n-th order
wavefunction correction is given by [18]:
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being the vector defined in equation (33) and where the terms
constitute the representation of the perturbation operator V within the characteristic basis
set of the unperturbed hamiltonian In equation (39) the primed summation symbols
are attached to sums performed over all index values except the i-th.

The n-th order correction for the energy takes the form [18]:

being defined in equations (33) and (36) respectively.

Equations (39) and (40) can be rewritten using the NSS formalism. The
corrections for the wavefunction take now the simple form:

and the corrections over the energies are expressed by equation (36).

In equation (41) the vectors 1 and L are n-dimensional and L components are
LKD’s of the type The operator Ri(j) is written as:

where is a projector-like operator defined in turn as:

Thus, one can see NSS as a useful device which permits to write in a compact
manner equations (39) and (40). Also it allows to easily obtain these formulae by means
of the NSS straightforward implementation, the GNDL algorithm.

5.4.2. General Rayleigh-Schrödinger perturbation theory

As it can be seen in equation (41), the NSS notation permits to write some
equations in an elegant and compact manner. This is due to the fact that NSS opens a new
door in order to obtain algebraic expressions. In this sense we propose that the use of NSS
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as an ideal framework to construct a really general perturbation theory scheme. Next
discussion wil l try to prove this.

Let us write a perturbed hamiltonian by a set of k independent perturbation
operators using the following expression involving a NSS:

where the vectors s and L of the NSS are omitted, assuming that s=1 and all the possible
forms of vector p have to be generated. In equation (44) the first parameter vector value
gives the unperturbed hamiltonian H(0), thus the convention must hold, and any
other vector index p structure generates a set of perturbation operators The
final parameter vector K contains the maximal order of the perturbation, which can be
different for every operator. The symbol is an element of the scalar set of
perturbation parameters. Both H(p) and can be considered products of perturbation
operators and the attached parameters.

That is:

and

The adequate technique here is to substitute the usual Rayleigh-Schrödinger
scalar perturbation order by a vector perturbation order n.

The perturbed energies and wavefunctions for the i-th system state can be
expressed in a similar way as in scalar perturbation theory:

and

being the expressions (47) and (48) the generalization of equations (34) and (35)
respectively.

Substituting equations (44), (47) and (48) into the perturbed Schrödinger
secular equation produces the n-th order equation:

which when n=0 yields the unperturbed Schrödinger equation.
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Thus, the n-th order energy correction for the i-th system’s state can be
written as:

provided that the orthogonality condition:

holds between the unperturbed state wavefunction and their perturbation corrections up
to any order.

The wavefunction corrections can be obtained similarly through a resolvent
operator technique which will be discussed below. The n-th wavefunction correction for
the i-th state of the perturbed system can be written in the same manner as it is customary
when developing some scalar perturbation theory scheme: by means of a linear
combination of the unperturbed state wavefunctions, excluding the i-th unperturbed state.
That is:

Using expression (52) into equation (49), after some straightforward
manipulation, one can obtain the equivalent rule in order to construct the n-th order
wavefunction correction:

where a set of Resolvent Operators for the i-th state are easily defined as follows:

with the weighted projector sum Zi (0) defined in turn as:

being the set of projectors over the unperturbed states:

In this context equations (50) and (53) can be considered forming a
completely general perturbation theory for nondegenerate systems, although a recent
development permits to extend the formalism to degenerate states [1e].
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6. Conclusions

A mathematical device, the NSS, which can be related to Artificial
Intelligence techniques, has been defined and applied in order to solve or reformulate
some quantum chemical problems. This symbol is related to computer formulae
generation. It has been shown that by means of the use of NSS’s many applications of
such symbols can be found in mathematics as well as in Mathematical Chemistry in
particular.

Apart of being able to simplify typographical structures, the NSS symbols
constitute the basic elements of a completely general framework, allowing to write
mathematical formulae, in such a manner that immediate translation to any high level
programming language is feasible, producing a complete general code, which can be kept
sequential or parallelized in a simple manner.

Pedagogical and in many cases mnemotechnical formula structures appear to
be also deduced at a very generic level as a consequence of the use of this kind of
devices.

The obtained mathematical patterns seems to be also fairly well adapted to
Artificial Intelligence formula writing programming philosophy.

An assorted set of purely mathematical and Quantum Chemical application
examples prove the generalization power and flexibility of this presently described
symbolic framework.

When NSS’s together with LKD’s are adopted as working tools, both
structures appear to trigger some sort of thinking machine, in such a way that once a
given problem is solved, new study areas immediately appear to be a promising future
application field in the focus of the imagination eye.

One can conclude that a robust and powerful theoretical machinery has been
described, possessing general, far reaching imaginative possibilities.

Perhaps there are hidden in the symbolic limbo other possible similar tools,
even better than these described here. We are confident in that this paper will stimulate
the research interest in this direction.
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Vibrational Modulation Effects on EPR Spectra
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1. Introduction

Hyperfine coupling constants provide a direct experimental measure of the distribution of
unpaired spin density in paramagnetic molecules and can serve as a critical benchmark for
electronic wave functions [1,2]. Conversely, given an accurate theoretical model, one can
obtain considerable information on the equilibrium structure of a free radical from the
computed hyperfine coupling constants and from their dependence on temperature. In this
scenario, proper account of vibrational modulation effects is not less important than the use
of a high quality electronic wave function.

Semirigid molecules can be described in terms of normal modes by well known
perturbative treatments [3]. This approach is, however, ill-adapted to treat large amplitude
vibrations, in view of their strong curvilinear character and of poor convergency in the
Taylor expansion of the potential [4]. These situations demand, especially in the case of
lareg (i.e. containing more than four atoms) molecules, some separation between the active
large amplitude motions (LAM) and the "spectator" small amplitude ones. On these
grounds, the influence of vibrational effects on EPR parameters has been studied at the ab-
initio level for a series of radicals [5-14], using different basis sets, correlation expansions,
and treatments of vibrational averaging. In our opinion the key limitation of these
approaches is their lack of generality. In fact, the use of global internal coordinates and of
analytical kinetic energies leads to quite complicated formalisms specific to a reduced class
of systems [12-15], unless oversimplified metrics are used [11,13,14]. We have recently
proposed a general numerical procedure [16] to treat the nuclear motion taking into the
proper account the variation of the reduced mass along any kind of curvilinear LAM. Here
we apply this approach to the radicals CH3 and CF3, whose inversion motion is governed
by quite different potential wells. In order to focus attention on general trends, avoiding
specific technical details, we have used a standard polarised basis set (6-311G**) and
treatment of correlation (MP2). The more so as for localized pseudo radicals, this level of
theory appears completely adequate and readily applicable to large systems [17],

2. Methods

All the electronic calculations were performed with the GAUSSIAN/90 [18] and
GAUSSIAN/92 [19] codes and the vibrational studies by the DiNa package [16]. Electronic
wave functions were generated by the Unrestricted Hartree-Fock (UHF) formalism,
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correlation energy being then introduced by second order many-body perturbation (UMP2)
theory [20]. All electrons were always correlated, for we have shown [21] that core
electrons play an important role in the calculation of hyperfine coupling constants. The most
serious criticism to this approach would be that the wave function consisting of UHF
orbitals does not represent a correct spin state of the molecular system under consideration.
Since, however, all the computations reported in this study give a very low spin
contamination we can expect quite accurate values of spin dependent
properties.
Basis set effects were not in the ground of this study, so that the 6-311G** [22] basis set
has been chosen as a compromise between reliability and computation times.

Isotropic Hyperfine coupling constants are related to the spin densities at the
corresponding nuclei by

where ' is the ratio of the isotropic g value for the radical to that of the free electron,
and are the nuclear magnetogyric ratio and nuclear magneton, respectively. In turn, the
spin density at nucleus N can be calculated as the expectation value of the spin density
operator over the electronic wave function

where the index v runs on all electrons, and Sz is the quantum number of the total electron
spin (1/2 for radicals).

In the framework of the Born-Oppenheimer approximation, we can speak of a potential
energy surface (PES) and of a "property surface", which can be obtained from electronic
wave functions at different nuclear configurations. In this scheme, expectation values of
observables (e.g. hyperfine coupling constants) are obtained by averaging the "property
surface" on the nuclear wave functions. To proceed further, let us introduce a curvilinear
path continuously describing the large amplitude motion (LAM) joining two (possibly
equivalent) energy minima through a first order saddle point (SP). Next, the path is
parametrized in terms of the signed arc length s in mass weighted (MW) cartesian
coordinates. The only necessary condition on the path is that it must not contain any
translational or rotational component. For the remaining f-1 internal degrees of freedom,
{Qi} (which will be referred to as the small amplitude, SA,coordinates) the potential energy
contributions are approximated to second order terms along the LA path. These local
vibrational coordinates must be orthogonal to the path tangent, to translations and to
infinitesimal rotations. In the adiabatic approach [23], the components of the SA
coordinates in the space of the MW cartesian coordinates are the eigenvectors of the
Hessian matrix from which translations, rotations and path tangent are projected out. The
{Qi} are further assumed to adjust adiabatically to the motion along s, thus giving rise to
the following effective potential:
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In the above equation is the array of conserved quantum numbers for
the SA modes, and (neglected in this study) accounts for anharmonic effects and non
orthogonality between the path tangent and the energy gradient [16,23]. In fact, the so
called intrinsic reaction path (IRP) is always parallel to the gradient, so that the last
contribution vanishes [23]. For intramolecular dynamics, however, the distinguished
coordinate (DC) approach has the advantage of being isotope independent and well defined
also beyond energy minima, while still retaining an almost negligible coupling between the
gradient and the path tangent. This model corresponds to the construcion of the one-
dimensional path through the optimization of all the other geometrical parameters at selected
values of a specific internal coordinate. In the present context, the distinguished coordinate
is the out-of-plane angle  defined in Figure 1. Furthermore, the distance s along the path is
set to zero at a suitable reference configuration (in the present case the planar structure
where

When the IRP is traced, successive points are obtained following the energy gradient.
Because there is no external force or torque, the path is irrotational and leaves the center of
mass fixed. Sets of points coming from separate geometry optimizations (as in the case of
the DC model) introduce the additional problem of their relative orientation. In fact, the
distance in MW coordinates between adjacent points is altered by the rotation or translation
of their respective reference axes. The problem of translation has the trivial solution of
centering the reference axes at the center of mass of the system. On the other hand, for non
planar systems, the problem of rotations does not have an analytical solution and must be
solved by numerical minimization of the distance between successive points as a function of
the Euler angles of the system [16,24].

In the scenario just sketched, the large amplitude vibration along s is governed by the
following equation:

where is the kinetic energy operator and is a generic vibrational eigenstate with
energy The so-called vibrationally adiabatic zero curvature (VAZC) approximation is
obtained neglecting the small couplings between the path tangent and the local vibrational
coordinates appearing in the kinetic energy operator [23,25]. Since the arc length is
measured in the space of mass weighted cartesian coordinates, we obtain a Schrödinger
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equation formally equivalent to that governing the motion of a particle with a unit mass in a
one dimensional space. This model is intimately linked to the use of local vibrational basis
functions centered at different points along the path. In our approach [16,26,27], cubic
splines are used to interpolate the potential along the path and to generate a larger set of
equispaced points on which cubic splines are also used as basis functions. This kind of
treatment avoids any modelling of the ab-initio data and involves only analytical integrals.
Although the size of the basis set is larger than the one necessary when employing Hermite,
Morse or Gaussian functions, the spline approach remains competitive since the matrices to
be diagonalized are banded with a constant width of 7. Furthermore, no new integrals are
introduced by the computation of expectation values of observables (also represented by
spline fittings), and the additional computational effort depends on the number of
eigenstates to be taken into account, rather than on the dimension of the primitive spline
basis set. The expectation value of a given observable in the eigenstate j
corresponding to the eigenvalue  is given by

The temperature dependence of the observable is obtained by assuming a Boltzmann
population of the vibrational levels, so that

3. Results

Full geometry optimizations and calculations of harmonic force constants were performed at
the UMP2/6-311G** level. Although this is not the main concern of this study, it is
noteworthy that the relatively unexpansive theoretical treatment we have developped
provides structural and spectroscopic parameters in close agreement with experiment (see
Table 1). More precisely, the harmonic approximation seems quite adequate for
whereas strong anharmonicities affect the CH stretchings and the out-of-plane motion of

The wave number of this latter vibration is increased to (in much better
agreement with the experimental value of by our one-dimensional anharmonic
treatment. Such a strong positive correction is in agreement with experimental estimates
[29]. From another point of view, the two radicals are well suited to point out the influence
of the shape of the potential well on vibrational effects: a simple well and a double-
well with an high inversion barrier

The influence of out-of-plane bending on geometrical parameters, electronic energy and
coupling constants is shown in Figures 2-4. The linear relationship between the s
coordinate and the angle is well evidenced in Figure 2a. We recall that in our approach,
although the geometries in internal coordinates used to build the path are mass independent,
the arc length s varies with the atomic masses, whereas the reduced mass governing the
motion always remains unitary. The larger mass of fluorine versus hydrogen then explains
the lower slope of the curve versus s for than for Also noteworthy is the
increase of the CH and CF bond lengths upon inversion (Figure 2b).
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The symmetry assignment of vibrational states refers to point group. Experimental
geometries and wave numbers are taken from [28,29] for and [30] for EPR
parameters are taken from [31] for at 96K and [32] for .at77K.

It is quite apparent (Figures 3,4) that the hyperfine constants of the central and terminal
atoms in the two radicals are strongly influenced by the out-of-plane displacement. For the
central atom, the coupling increases with  and this is clearly related to a strong change in
hybridization.
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The hyperfine coupling constants of the hydrogens increase smoothly (in absolute value)
with inversion, while those of the fluorines show a more complex trend, reaching their
maximum value around the equilibrium structure. At his stage, and at the repective
equilibrium geometries, the couplings (Table 1) are far from experiment for but closer
to experiment for  More generally, the difference between computed and experimental
values is inversely proportional to the height of the potential barrier, the effect being more
pronounced at the central atom than at the α ones [33].

4. Discussion

The similarity in the behaviour of coupling constants as a function of in both radicals
allows to discuss vibrational averaging effects simply in terms of the potential governing
the out-of-plane motion.
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The ground vibrational wave function of planar systems is peaked at the planar
structure. Vibrational averaging then changes the coupling constants toward values which
would be obtained for an angle in a static description. The wave function of the
ground vibrational state being symmetrically spread around introduces contributions
of pyramidal configurations. This results in a noticeable increase of the absolute values of
the coupling constants, which are minimal at planar structures (see Figure 3). Vibrational
averaging then provides hyperfine coupling constants in close agreement with experiment.
The effect is even more pronounced in the first excited vibrational state, whose wave
function has a node at the planar structure and is more delocalized than the fundamental
one, thus giving increased weight to pyramidal structures.

For radicals characterized by a double-well potential the vibrational effect acts in
an opposite direction, bringing the coupling constants to values which would be obtained
for The ground state vibrational wave function is now more localized inside the
potential well, even under the barier, than outside. So it introduces more contributions of
internal points. Vibrational effects, while still operative, are less apparent in this case since
high energy barriers imply high vibrational frequencies with the consequent negligible
population of excited vibrational states and smaller displacements around the equilibrium
positions. This explains the good agreement between experimental and static theoretical
computations.

Let us now turn to the second parameter, namely the shape of the "property surface".
Around reference configurations, the dependence of the hyperfine coupling constants on the
inversion motion is well represented by:

The average value of a can be written as:

The mean and mean square values of the LA coordinate s represent the principal
anharmonic and harmonic vibrational contributions, respectively [3].
In the case of a planar equilibrium structure, the lineaar term is absent since symmetry

constraints impose that Since, in our case, hyperfine coupling

constants reach a minimum value at the planar reference structure (Figures 3b and 4b), the
third term is always positive. Vibrational frequencies of this class of molecules are, of
course small (Table 1), leading to large mean square amplitudes and consequently,
to significant corrections to static values computed at the reference structure.
Unless Boltzmann averaging gives significant weight to vibrational states above the barrier,
strongly pyramidal molecules like can be effectively treated as systems governed by a
single well potential unsymmetrically rising on the two sides of the minimum energy
configuration. If we shift s so that now s = 0 at the equilibrium structure, the difference
with the previous case resides in the presence of the linear term in Eq.(8). This is due to the
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lack of any constraint on and < s >. Although the linear term contributes to < a >, it

is, anyway, small and, since in our case < s > and the first derivative of coupling constants
have opposite signs (see appendix), it conterbalances the harmonic contribution. Thus the
resulting correction on < a > is small in all cases. this explains why the static results are
very close to the dynamic ones.

5. Summary and conclusion

The results presented in the preceding sections call for the following general remarks.
i) As noticed in the earliest works on EPR [27,28], all the coupling constants increase,

in absolute value, with the pyramidality at the radical center, the effect being always much
prounounced at the radical enter than at the surrounding atoms.

ii) Vibrational averaging of coupling constants is always operative, but can be masked
by the compensation of effects related to the shape of the potential energy surface from one
side, and of the "property surface" from the other.

iii) From a methodological point of view, standard polarized basis sets and limited CI are
sufficient to compute hyperfine coupling constantsof localized -radicals, if large amplitude
vibrations are properly taken into account.

The most significant outcome of our study is that a qualitative understanding of vibrational
averaging effects is possible along the line of reasoning developed above. This opens the
opportunity for a more dynamically based analysis of EPR parameters for large non rigid
radicals.
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Appendix

Using second order perturbation theory [3], the mean and mean square values of the mass
weighted coordinate s in the vibrational state with quantum number j are explicitely
given by:

where is the  harmonic  angular   frequency
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In the above equation, h is the Planck constant, and c the speed of light. The mean values
at the absolute temperature T are obtained from the same equations by the of (j + 1/2) by

where K is the Boltzmann constant.From one side, Eq. (Al) shows that < s > and the cubic

force constants have opposite signs. On the other side, Figure 4 shows that in the

case of and have the same sign near the equilibrium structure. As a

result, the linear term in Eq. (8) is negative, thus counterbalancing the positive quadratic
term.
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Ab–initio Calculations of Polarizabilities in Molecules: Some Proposals to
this Challenging Problem

M. TADJEDDINE, J.P. FLAMENT
Ecole polytechnique, D.C.M.R., 91128 Palaiseau Cedex, France

1.Introduction

The polarizability expresses the capacity of a system to be deformed under the action
of electric field : it is the first–order response. The hyperpolarizabilities govern the
non linear processes which appear with the strong fields. These properties of materials
perturb the propagation of the light crossing them; thus some new phenomenons (like
second harmonic and sum frequency generation) appear, which present a growing
interest in instrumentation with the lasers development. The necessity of prediction
of these observables requires our attention.
The calculation of the static polarizability, is now well documented, actually com-
mon enough to give a test for the choice of the atomic basis sets in molecular cal-
culations. On the other hand, few calculations concern the dynamic polarizability,
i.e. when the energy of the electric field is no more zero but can vary and reach
the electronic transition energies of the molecule. Computations are more complex;
not only they must well describe the ground state in order to reproduce the static
polarizability, but also the excited states (valence and Rydberg states) in order to
give the resonance energies correctly.
The computation of these observables poses several problems :

• In the case of an electromagnetic perturbation, a first difficulty rises : the choice
of the gauge. Indeed the gauge is only a mathematical tool and the
observables of interest (energies, susceptibilities...) must be gauge invariant;
they are effectively if the computations use complete molecular bases. Our
calculations, using bases unavoidably truncated, will be never gauge invariant.
The discrepancies with respect to the gauge invariance is, in a way, a mesure of
the quality of our computation, of the molecular basis set. In our calculations
the gauge is used.

• Since we must restrict the number,N, of the molecular states used in the com-
putations, what value have we to give to N ? And then, can we correct the
obtained value for the polarizability in order to approximate to the exact value
by evaluating the ignored terms ?

• The formula which gives the polarizability involves the excited states. As said
before, it is necessary to be able to well describe them. The choice of the atomic

261

Y. Ellinger and M. Defranceschi (eds.), Strategies and Applications in Quantum Chemistry, 261–278.
© 1996 Kluwer Academic Publishers. Printed in the Netherlands.



262 M. TADJEDDINE AND J. P. FLAMENT

basis set is essential : the bases used in usual calculations are not sufficient; we
have to find suitable bases.

The first part of this paper responds to the first two problems through the calculation
of the polarizability of CO (1). In this work, we bring our contribution to the three
formal challenges enumerated by Ratner (2) in the special issue of Int. J. Quant.
Chem. devoted to the understanding and calculation of the non linear optical response
of molecules :

1. The frequency dependence is taken into account through a ”mixed” time–
dependent method which introduces a dipole–moment factor (i.e. a polynomial
of first degree in the electronic coordinates ) in a SCF–CI (Self Consistent Field
with Configuration Interaction) method (3). The dipolar factor, ensuring the
gauge invariance, partly simulates the molecular basis set effects and the in-
fluence of the continuum states. A part of these effects is explicitly taken into
account in an extrapolation procedure which permits to circumvent the sequels
of the truncation of the infinite sum–over– states.

2. The effects of electron correlation are investigted through the CIPSI (Configu-
ration Interaction with Perturbatively Selected Configurations) calculations (4)
of the molecular states.

3. The vibronic coupling features are evaluated in a perturbation treatment by
taking account of temperature and electric field dependence (5).

The second part of this paper concerns the choice of the atomic basis set and especially
the polarization functions for the calculation of the polarizability,  and the hyperpo-
larizabiliy, We propose field–induced polarization functions (6) constructed from
the first– and second–order perturbed hydrogenic wavefunctions respectively for
and In these polarization functions the exponent  is determined by optimization
with the maximum polarizability criterion. These functions have been successfully
applied to the calculation of the polarizabilities, and for the He, Be and Ne
atoms and the molecule.

Throughout, atomic units will be used :
The unit of the dipole moment is equal to

the unit of the dipole polarizability is equal to
and that of the second hyperpolarizability to

2.Calculation of the dynamic polarizability of CO : exemple of a mixed
method

2.1. THEORY

2.1.1. The sum–over–states approach

The perturbation theory is the convenient starting point for the determination of
the polarizability from the Schrödinger equation, restricted to its electronic part and
the electric dipole interaction regime. The Stark Hamiltonian describes the
dipolar interaction between the electric field and the molecule represented by its
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dipole moment The perturbed molecular wavefunction is expanded in terms of the
complete set of eigenfunctions of the unperturbed molecular Hamiltonian

and the components of the polarizability are given through an expansion over all
electronic excited states. For a static external electric field,

where u and v run over the cartesian electronic coordinates x, y and z.
For an oscillating electromagnetic field characterized by its pulsation

the dynamic polarizability is derived from the time–dependent perturbation theory :

In such an expression, must be read as the sum of two functions
like

where

The ket and its counterpart are calculated as a weighted sum over the
excited states; the weight of each state is well defined through its interaction

with the ground state by the operator. The function represents

the first–order perturbed wavefunction whose knowledge is essential in the variation–
perturbation treatment. Expression (5) has been proposed by Karplus and Kolker
(7).

2.1.2. The polynomial approach

Previously, Kirkwood(8) had suggested another choice: he deduced the first–order
perturbed wavefunction from the unperturbed one which was multiplied by a linear
combination of the electronic coordinates, i.e. :

with :

is the electric field component along v direction and some constants. In this
approach, the polarizability may be calculated very easily from the second–order
perturbed wavefunction which is simply given by :
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For a heteronuclear diatomique molecule of symmetry (z being the molecular
axis), it becomes :

with :

where is the electron number. As tends to zero, the constants tend to

The normalization condition imposes to move the origin to the center of
electronic charge thus, the polarizability may be written very
simply in the limit of zero frequency :

2.1.3. A mixed approach

The idea to combine a method only polynomial (Eq.6 with and ) with
the SCF–CI procedure (Eq.5 with ) has been initially developed for
the calculation of magnetic observables (9) and later for the electric ones (10). Thus,
the first–order perturbed wavefunction is given by :

and the component of the polarizability tensor becomes :

The calculations of the and constants lead to a system of linear equations
similar to that of the SCF–CI method, but with three more lines and columns corre-
sponding to the coupling of the polynomial function with the electric field perturba-
tion. The methodology and computational details have already been discussed (1);
we stress two points : the role of the dipolar factor, the nature and the number of
the excited states to include in the summation.
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2.2. DIPOLAR FACTOR

The dipolar factor may be interpreted in terms of gauge invariance. The electric
observables usually are calculated in the gauge In the change to
the gauge the Hamiltonian is transformed and the wavefunction becomes
(11):

If the strength of the electric field is small enough, then :

As known (11), the gauge invariance is ensured i f :

By omitting time–dependent terms, as in the preceding paragraph, the function
may be read as the sum of the unperturbed wavefunction and a term which is the
product of this function by a linear combination of the electronic coordinates, i.e. the
Kirkwood’s function. Thus, the dipolar factor ensures gauge–invariance.
But the role of the dipolar factor in this mixed method is essential on the
following point : its contribution in the  computation occurs in a complementary
(and sometimes preponderant) way to that calculated only from the excited states,
the number of which is unavoidably limited by the computation limits. But before
discussing their number, we have to comment the description of these states.

2.3. EXCITED STATES AND EXTRAPOLATION PROCEDURE

In a first approach, Rérat (10) described the excited states of Eq.15 through
Slater determinants, constructed by monoexcitation of the ground state
through the monoelectronic operator. By reason of orthogonality (deriving from

all those necessary to the description of were rejected. The lack of
such determinants does not allow to have a good description of the excited states
when they have a dominant configuration appearing also in  If this approach led
to interesting static results with reduced basis sets, it could not reach the resonances
correctly.
It is the reason for which the Slater determinants have been replaced by the kets
accounting for the true spectral states   (1). These states have been computed
independently by the CIPSI (4) program which treats the electronic correlation. Pre-
liminary calculations of energies have been made by the standard CIPSI algorithm
(4a) on small S subspaces of c.a. 400 determinants. Perturbation treatments involv-
ing larger subspaces (about 1000 for CO) have been achieved using the diagrammatic
version of CIPSI (4b).
The quality of the states has been tested through their energy and also their
transition moment. Moreover from the natural orbitals and Mulliken populations
analysis, we have determined the predominant electronic configuration of each
state and its Rydberg character. Such an analysis is particularly interesting since
it explains the contribution of each to the calculation of the static or dynamic
polarizability; it allows a better understanding in the case of the CO molecule : the
difficulty of the calculation and the wide range of published values for the parallel
component while the computation of the perpendicular component is easier. In effect
in the case of CO :
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• If the excited state is a valence state, without Rydberg character, its contribu-
tion to the polarizability may be important and sometimes essential. This is
the case of the first state.

• If the excited state presents an important Rydberg character, its contribution
is very weak and is even negligible. For instance, this is the case for all the
states states but the 7 and 8 ones.

To summarize, if the low–lying states connected to the ground state by allowed dipole
transition are not valence states but present a predominant Rydberg character, we
have to introduce a lot of states; if not, the value of dynamic polarizability near
the first resonance is poor.
To circumvent this difficulty, we have developed a procedure which allows us to reach
an extrapolate value of a from a finite number N of low–lying true spectral states

We have shown that (1) :

1. Within the limits of a complete molecular basis set with exact the
coefficients of tend to zero as N becomes infinite.

2. We can write an extrapolation formula of the form
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where and are the polarizabilities calculated with N states, with and
without the ”polynomial” contribution. The value of the exponent p is deter-
mined by a least– square fit and then the extrapolated polarizability is obtained
by a linear regression. In the case of the dynamic polarizability, this extrapo-
lation is done separately for the cases and

Figure (1) gives an illustration of this extrapolation procedure for the calculation of
the static parallel polarizability in CO. In this case the extrapolated value
was obtained with the following equation

It is important to underline two points :

• The extrapolation procedure rests upon the hypothesis of exact or very accurate
eigenstates which in practical calculations is seldom the case for the large
molecules. The function partly compensates the weakness of the atomic
and molecular basis sets with the extrapolation procedure.

• This extrapolation has been obtained with a finite number N (usually less
than 10) of spectral states lying under the first ionization potential; thus, the
continuum is not taken into account explicitly in our calculations. It has been
simulated through the function and the extrapolation procedure as we are
going to show it.

2.4. CONTINUUM CONTRIBUTION

Hydrogen atom, in its ground state, can be treated in an entirely analytic approach.
The calculation of the second–order perturbed energy gives the well known values :

for the static polarizability of the ground state. Since we have used exact analytic
wavefunctions which are the eigenstates of the electronic Hamiltonian, the continuum



268 M. TADJEDDINE AND J.P. FLAMENT

contribution has been taken into account, i.e.
On the other hand, the static polarizability can be calculated by a sum–over–states
on the spectral states the discrete series converge on a value defined by

Tanner and Thakkar (12) have obtained Then it is possible
to deduce the continuum contribution i.e. about 18.6% of the total
electronic polarizability.
In order to demonstrate the efficiency of the function in the calculation of the
polarizability, Rérat et al. (13) have carried out the calculation of the polarizability
for the ground state of the hydrogen atom. This computation has been made with

and without the dipolar factor, versus the N number of the spec-
tral states involved in the calculation. The convergence of such series
and leads to discrete values of 4.4018 and 3.6632 (i.e. the result of Tanner and
Thakkar) corresponding respectively to 97.8% and 81.4% of the exact value. This
result illustrates the fact that a large part of the continuum contribution is simulated
through the use of the dipolar factor. Moreover the convergence of the series
is faster as we can see on table 1.
At last, the extrapolation procedure employed in that calculation gives the final

value to be 4.503, i.e. 0.07% above the exact static value of
Such a calculation with exact wavefunctions shows :

• the precise role and the rigorous contribution of the function in particular
for the continuum

• the efficiency of the extrapolation procedure to obtain accurate values.

2.5. VIBRONIC CORRECTIONS

The theoretical method, as developed before, concerns a molecule whose nuclei are
fixed in a given geometry and whose wavefunctions are the eigenfunctions of the
electronic Hamiltonian. Actually, the molecular structure is vibrating and rotating
and the electric field is acting on the vibration itself. Thus, in a companion work, we
have evaluated the vibronic corrections (5) in order to correct and to compare our
results with experimental values.
In the particular case of diatomic molecules, the molecular geometry can be described
by the reduced coordinate

where R is the internuclear distance; Re, its equilibrium value in the electronic ground
state. Energy and each component of the polarizability may be written as a power
series in the reduced coordinate £ around their equilibrium values :

:
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where and are the well known Dunham constants and and the values
of the first and second derivatives of the polarizability calculated at the equilibrium
geometry.
By including the effect of the rotation (at a given T temperature, for the level v = 0)
in a perturbation calculation, we have obtained (5) :

where we have introduced the dimensionless constant c like :

which characterizes the molecule (m is its reduced mass).
Moreover, for the observables depending on external electric field, its specific effect
has to be investigated : the electric field induces new terms in the nuclear Hamilto-
nian, due to the change of equilibrium geometry and the nuclear motion perturbation.
Pandey and Santry (14) has brought to the fore this effect and calculated the correc-
tion which only concerns the parallel component. It is represented by the following
expression :

where is the value of the first derivative of the dipole moment calculated at the
equilibrium geometry. On table 2 we have reported the results obtained for the

static polarizability of CO : the correction for the perpendicular component may be
neglected; for the parallel component, the vibronic correction mainly originates from
the effect of the electric field cannot be neglected at all.

2.6. RESULTS FOR THE POLARIZABILITY OF CO

The quality of electronic calculations is confirmed by the very good agreement of the
resonance energies for both components if we compared to the experimental ones,
as shown on table 3.



270 M. TADJEDDINE AND J. P. FLAMENT

Moreover, the values obtained for the dynamic polarizability by varying the wave-
length  are in good agreement with experiment (1). Table 4 resumes
the results obtained for the static polarizability of CO :

1. On the first line, we have reported our results (1) obtained with the spectrocopic
states, the dipolar factor and the extrapolation procedure. In order

to compare them with the experimental results (last line) we have corrected
them by taking into account the vibronic coupling –temperature and electric
field dependence– as developed before (second line). The parallel component,

is now in excellent agreement with experiment.

2. The two following lines present the results obtained later by Rérat et al. (17) :
the method consists in adding one more term in the expression of given by
Eq.14. He keeps the dipolar factor; from the summation on the spectroscopic
states he retains only the first one of the symmetryof interest, thus there is
no extrapolation procedure; on the other hand, he adds the Slater determinants

which contribute to the perturbation of the ground state by the operators

and he takes into account the non–orthogonality of the zeroth and
first–order perturbed wavefunctions. Their results show an improvement for
both a components, in particular for anisotropy.

3. These results are compared with those obtained by Oddershede and Svendsen
(18) using SOPPA or Sunil and Jordan (19) using MP4 or a coupled cluster
approach, but without vibronic correction.

3.Determination of the polarization functions

In order to overcome the optimization process of the (hyper) polarizabilities calcula-
tions, we have been led to deeply study the perturbational and variational methods
and in particular the variation–perturbation treatment introduced by Hylleras (20)
since 1930. We will not develop here the theoretical framework of the recent study
of N. El Bakali Kassimi (21). We propose criteria for generating adequate sets of
polarization functions necessary to calculate (hyper) polarizabilities.
As our computations use the HONDO/8 program (22) which is based on the CPHF
(Coupled Perturbed Hartree Fock) method (23) we begin by briefly recalling this
method.
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3.1. THE CPHF METHOD

The variational theorem which has been initially proved in 1907 (24), before the
birthday of the Quantum Mechanics, has given rise to a method widely employed in
Quantum calculations. The finite–field method, developed by Cohen and Roothan
(25), is connected to this method. The Stark Hamiltonian explicitly appears
in the Fock monoelectronic operator. The polarizability is derived from the second
derivative of the energy with respect to the electric field. The finite–field method has
been developed at the SCF and CI levels but the difficulty of such a method is the
well known loss in the numerical precision in the limit of small or strong fields. The
latter case poses several interconnected problems in the calculation of polarizability
at a given order, n :

• The strength of the field must not be so strong that higher order effects
come into play; and then, should we introduce the basis functions suited for
order m to get a correct response of the system up to order n, even if we are
concerned only with the nth–order ?

• The pointwise energies will be fitted by a Taylor espansion. What must be the
order of the expansion ? How much points must be considered ? It is necessary
to master the numerical techniques well.

By allowing the direct calculation of the successive derivatives (thus without resort-
ing to any effective value of the field), the perturbation methods offers an elegant
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alternative. In the stationary perturbation theory, the CPHF is the most known.
The CPHF originates in a perturbation development of the spin–orbitals and of their
energies on the expansion of the electric field . The polarizability (or the second
hyperpolarizability) is derived from the second– (or fourth–) order perturbation en-
ergy. The CPHF is akin to the finite–field method on the point that they treat the
bielectronic interactions in presence of the electric field in a self coherent way (26).
On the other hand, it is basically different with respect to the use of variational prin-
ciple : while the finite–field method variationaly treats the total energy in presence
of the field, the CPHF, by using the perturbation development, allows variational
approaches to the calculation of polarizabilities.

3.2. CHOICE OF TRIAL FUNCTION FOR THE POLARIZATION ORBITALS

In all the variational methods, the choice of trial function is the basic problem. Here
we are concerned with the choice of the trial function for the polarization orbitals
in the calculation of polarizabilities or hyperpolarizabilities. Basis sets are usually
energy optimized but recently we can find in literature a growing interest in the
research of adequate polarization functions (27).
By returning to the genuine meaning of the word ”polarization”, we propose polar-
ization functions suited to the calculation of the electric property of interest : our
polarization functions belong to the so–called field–induced ones (FIP) (28).
The foundation of our approach is the analytic calculations of the perturbed wave-
functions for a hydrogenic atom in the presence of a constant and uniform electric
field. The resolution into parabolic coordinates is derived from the early quantum
calculation of the Stark effect (29). Let us recall that for an atom, in a given Stark
eigenstate, we have :

The calculated perturbed wavefunctions have been rewritten in terms of a combina-
tion of normalized Slater orbitals in real form. Ref. 6 gives a detailed illustration for
the level 1s.
At the beginning it is necessary to describe the unperturbed system very well, inde-
pendently of the polarization functions : Let us assume that the unperturbed system
is reasonably well described by using some finite set of basis functions . As
shown by Hirschfelder et al. (30) we only need the first–order perturbed function for

and the second–order one for
We propose to construct the polarization functions from these perturbed wave func-
tions. The genuine basis set has to be enriched by :

• the Slater orbitals (STO) which form in order to calculate

• the STO which form

Thus, by following the hydrogenic model, we know not only the kind of angular
symmetry but also the value n of the quantum number of the suitable polarization
functions. In the case of a true hydrogenic atom these STO appear in a given linear
combination. To limit the size of the basis set, one could use an unique polarization
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orbital which would be the relevant combination (a contracted STO). In fact, the
hydrogenic model does not apply exactly to any polyelectronic atom, so we let the
coefficients of the combination vary freely, as new variational parameters, in the
CPHF equations.
Moreover according to such a model, the same exponent is used in each perturbed
wavefunction, keeping the value of the non–perturbed wavefunction.
We propose to keep the same value of in both polarization functions and

but to dissociate their value from that of the zeroth order basis set which
is taken in the literature once for all so as to describe the system for the best; let be

this value. On the basis of the Hylleraas variation principle, we will determine the
suitable value for the hydrogenic scale factor in the polarization functions derived
from and after optimization with respect to maximum polarizability.

Table 5 presents the results for the first levels (n = 1,2,3). In this table, is the
basis set to be added to for the calculation of and . One
must note that analytic expressions of and are developed over a series of
monomials such as and (see Ref. 6). The first two
monomials, correspond exactly to ns and np orbitals. The others
are combinations of nd/ns, nf/np and ng/nd/ns respectively. Table 5 gives the
orbitals with the pure spherical harmonics In programs using 6d, 10f or
15g cartesian functions, only the nd, nf or ng need be given since they include the
corresponding ns for the nd shells; np for nf and nd/ns for ng.
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Applications to He and will give a deeper understanding of the determination of
the polarization functions.

3.3. APPLICATION TO He AND

Owing to their simplicity, the helium atom and the dihydrogen molecule have been
the object of experiments (Ref. 31 for of He; Ref. 32 for of ) and
calculations, some of them near the Hartree–Fock limit (Ref. 33 for He and Ref.
34–36 for ). In order to test our polarization functions, we have taken the zeroth

order basis set from the literature so as to describe the system best and our
references values are the HF limit for any observable

3.3.1. Helium

The field–free atom has the configuration the unperturbed wavefunction is de-
scribed through a Huzinaga’s CGTOs set (the 10 CGTOs one in Ref. 37). We use

the {2p, 3p} orbitals for and {3s/3d,4s/4d,5s/5d} orbitals for  The
polarizability has been maximized with respect to the exponent of the STOs of

by using these polarization functions only; we have obtained : Then

this value has been given also to the exponent of the STOs in at the second
step of our calculations for the computation of

Table 6 clearly shows the effect of the polarization functions : the HF limits for energy,
and are reached at the first, second and third levels of calculation. Moreover, we

have proved (6) that :

• the extension of the basis set does not produce further change, and

• if Table 6 shows the necessity of the d orbitals, any two of the three d shells
give satisfactory values of
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This last result which will be verified with the following applications is a consequence
of our choice for the polarization functions. In effect, the STOs have nodeless radial
part and they all combine in phase in so that the resulting polarization function
is also nodeless and can be approximately modeled by only one or two STOs with
suitable exponents.

3.3.2. Dihydrogen

If the values published for converge quite well (6.45 for and 4.5–4.6 for in
Ref. 38–40), nothing similar appears for components : 330 (39) 687 (38) for

such discrepancies
exist, though there are actually p and d orbitals, required for and  calculations,
in all the basis sets used. This evidences the extreme sensibility of to the quality
of the wavefunction.
Mulliken (41) distinguishes two kinds of polarization. He calls ”Coulomb polar-
ization” what we are concerned with in this paper : the polarization produced by
an electric field, and he calls ”valence polarization” : a kind of polarization du to
quantum–mechanical valence forces. In order to correctly describe the chemical bond
in it is necessary to include the ”valence polarization” function as soon as one
calculates energy with the unperturbed function (i.e. the 2p orbital).

For this calculation we used the basis set ls ,2s ,2p of Fraga and Ransil (35) which
gives near HF limit quality for energy The polarization
functions were derived from the 1s orbital only, like in He calculations. Their expo-
nent was optimized using the maximum probability criterion Table 7
presents the obtained results.
Now with the 2p valence polarization, it is possible to partly describe the polarizabil-
ity since the first step of calculation with the unperturbed wavefunction, especially
the parallel component which is generally easier to calculate in CPHF. The optimized
values of are excellent at the second step with
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Owing to the very large discrepancies in the data on we have made new com-
putations with other basis sets but with the same process; they converge
at less than 4% from the previous ones, giving confidence in our results and in our
procedure.

3.4. APPLICATION TO Be AND Ne

The two preceding applications showed that our hydrogenic model fits well with the
helium atom and the dihydrogen molecule for the determination of the polarization
functions except that their exponent is different from which is the exponent of
the genuine basis set It is obvious that the hydrogenic model will fit less and
less as the atom will be described by more and more electrons.
Nevertheless our method of and calculations has been successfully extended to
Be and Ne atoms (21). Let us resume the principal results :

1. For less than 1% error for it is sufficient to ”polarize” only the valence
electrons in Be; the polarization of the 1s orbital leads to an value within
0.1% of HFL value. Contrary to Be, the polarization of the inner shell is now
absolutly negligible for Ne.

2. The transfer of exponent to the set leads to good values of : for Be :
instead of the HF limit and for Ne : 68 instead of

70  (42).

3. Contrary to the previous applications we observe an increase of the
values of with the polarization function because contains p func-
tions improving the first order wavefunction which, despite its size, was not at
the HF limit.

4. At last, it is possible to still improve the results on by using two different
values of the exponent :

by optimization of for the STO of

by optimization of for the STO of

This last result is important for the generalization of our procedure to more compli-
cated systems.

4.Conclusion

The computation of polarizabilities requires consideration of two complementary
problems: the computational method and the basis set used.
We have first been concerned with the computational point of view. Through the
calculation of the dynamic polarizability of CO, we have developed a method based
on the conventional SCF–CI method, using the variational– perturbation techniques :
the first–order wavefunction includes two parts (i) the traditional one, developed over
the excited states and (ii) additional terms obtained by multiplying the zeroth–order
function by a polynomial of first–order in the electronic coordinates. This dipolar
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factor makes an extrapolation procedure possible in critical cases (for example when
the low–lying states are of Rydberg character as the states of CO).
This calculation has shown the importance of the basis set and in particular the
polarization functions necessary in such computations. We have studied this problem
through the calculation of the static polarizability and even hyperpolarizability. The
very good results of the hyperpolarizabilities obtained for various systems give proof
of the ability of our approach based on suitable polarization functions derived from
an hydrogenic model. Field–induced polarization functions have been constructed
from the first– and second–order perturbed hydrogenic wavefunctions in which the
exponent is determined by optimization with the maximum polarizability criterion.
We have demonstrated the necessity of describing the wavefunction the best we can, so
that the polarization functions participate solely in the calculation of polarizabilities
or hyperpolarizabilities.
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Coupled Hartree-Fock Approach to Electric Hyperpolarizability Tensors
in Benzene
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Italy

1. Introduction

In the presence of a static, spatially uniform electric field the electronic cloud of
atomic and molecular systems gets polarized. The energy, W, can be written as a
Taylor series [1–3]

where is the unperturbed energy,  is  the permanent electric dipole moment
and the coefficients etc. are known as (static) electric polarizabilities.
Non-linear response of the system is rationalized via hyperpolarizabilities
(sum over repeated Greek indices is implied), etc.. The total electric dipole moment
of the molecule in the presence of the electric field is [1–3]

According to (1) and (2), the response tensors are defined
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Owing to permutational symmetry of the tensor indices, only

components are distinct for a tensor of rank r appearing in (1). Thus the number of
independent values which completely characterize the various tensors in eq. (1) is 3,
6, 10, 15, 21, . . . respectively for Molecular point
symmetry further reduces the number of linearly independent components, see, for
instance, Refs. [4], [5]. For any tensor appearing in (1), denoted in general by
let us rearrange its components as a column vector in cartesian space, i.e.,

If the basis set of unit vectors in cartesian 3-space transforms

under an operation T, then the direct product matrix

can be introduced, so that

If T belongs to a group G and brings the physical system into self-coincidence, then
the array of components will be stable under G, i.e.,

In addition one can always find a transformation leading to a symmetry adapted basis
so that T is brought to the block diagonal form T via the associated similarity

transformation. The matrix can be written as a direct sum
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where the different blocks of are classified according to the irreducible representa-
tion with frequency of G, and its appearence. Accordingly, in the new
basis, the symmetry adapted tensor components are [4]

for every operation of the group and for each block This implies either that
or that, being invariant under the operations of G, it carries the one-

dimensional totally symmetric representation, Thus, if
the totally symmetric representation occurs m times in the direct product represen-
tation, then the tensor is fully determined by just m numbers. Therefore theoretical
procedures for evaluating the higher-rank polarizability tensors appearing in (1) and
(2) should efficiently exploit the symmetry properties of a given molecule to save
computer effort. The number of independent parameters can be conveniently eval-
uated a priori via simple techniques based on symmetrized Kronecker products [4].
Tables reporting data for a number of groups are available [1].
Besides the elementary properties of index permutational symmetry considered in
eq. (7), and intrinsic point group symmetry of a given tensor accounted for in eqs.
(8)-(14), much more powerful group-theoretical tools [6] can be developed to speed
up coupled Hartree-Fock (CHF) calculations [7–11] of hyperpolarizabilities, which are
nowadays almost routinely performed in a number of studies dealing with non linear
response of molecular systems [12–35], in particular at the self-consistent-field (SCF)
level of accuracy.
The present paper is aimed at developing an efficient CHF procedure [6–11] for the
entire set of electric polarizabilities and hyperpolarizabilities defined in eqs. (l)-(6) up
to the 5-th rank. Owing to the 2n + 1 theorem of perturbation theory [36], only 2-nd
order perturbed wavefunctions and density matrices need to be calculated. Explicit
expressions for the perturbed energy up to the 4-th order are given in Sec. IV.
A computer program for the theoretical determination of electric polarizabilities and
hyperpolarizabilitieshas been implemented at the ab initio level using a computa-
tional scheme based on CHF perturbation theory [7–11]. Zero-order SCF, and first-
and second-order CHF equations are solved to obtain the corresponding perturbed
wavefunctions and density matrices, exploiting the entire molecular symmetry to re-
duce the number of matrix element which are to be stored in, and processed by,
computer. Then and tensors are evaluated. This method has been
applied to evaluate the second hyperpolarizability of benzene using extended basis
sets of Gaussian functions, see Sec. VI.

2. Solution of first-order CHF equation

The Hartree-Fock equations for the i-th element of a set containing occ occupied
molecular orbitals in a closed shell system with n = 2occ electrons are [8]

where the orthonormality conditions are written
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All the quantities appearing in (15) are expanded in powers of a formal perturbation
parameter   which is finally put equal to unity, so that, for instance,

The matrix of Lagrange multipliers is usually chosen diagonal to zero order, so that

and

with

To first order in

with

Taking the Hermitian product with in eq. (21) one has

Taking the product in eq. (21) with where k labels another occupied orbital in

a non degenerate problem, using (19) and (20),

Owing to the arbitrary nature of the Lagrange multipliers, one can choose

so that the projection of the first-order i-th orbital on the subspace spanned by occ–1
occupied MO’s vanishes. From the orthogonality condition (22) one has,
for the i-th orbital,

For real perturbations, e.g., in the presence of a static electric field, which is the case
studied in the present paper, the zero- and first-order orbitals can always be chosen
real, so that also

At any rate, the projection of the first-order orbitals on the subspace of occupied
is not needed within the McWeeny approach [7], where choice (25) is implicitly

assumed; it is sufficient to calculate the projection on the subspace of virtual
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zero-order orbitals. Taking the Hermitian product with an unoccupied in eq. (21)
one has

and left-multiplying by the ket and summing over k gives

where

is the Hartree-Fock propagator [10], [11] and the projector

is equivalent to the identity operator when acting on the subspace of virtual or-
bitals [7].

3. Solution of second-order CHF equation

We discuss a method to evaluate the second-order molecular orbitals appearing in eq.
(17) consistent with the first-order computational scheme outlined in the previous
section. In particular we take advantage of definition (30) to develop a compact
approach explicitly oriented to numerical applications.
The second-order CHF equation for the i-th occupied orbital is

where the orbitals satisfy the orthonormality condition to second order,

Taking in (32) the Hermitian product with and using eqs. (19), (21), and (22),
one finds

where the index j = i can be omitted in the sum, in the present case of real pertur-
bations, owing to eq. (27). Summing over i occupied, the last term in (34) vanishes.
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Left-multiplying (32) by occupied in a non degenerate case, using (19),
(21), and (33) one obtains

This equation shows that second- and first-order Lagrangian multipliers are not in-
dependent, so that a specific selection of will bias Thus the choice (25) for
the first-order Lagrangian multipliers makes the sum over j in eq. (35) vanish in the

case of real perturbations, but, in general, there is no choice of in eq. (35) which

annihilates the projection of on occupied and
However, using the McWeeny approach [7], it is sufficient to calculate only the pro-

jection on the subspace of virtual zero-order orbitals in order to get the
second hyperpolarizability tensor. This projection is evaluated via a procedure similar
to the one used in solving the first-order equation (21). Taking in (32) the Hermitian
product with the unoccupied and using (19), one finds

Multiplying on the left by the ket and summing over k, one finds

where

is available from the solutions (29) to the first-order eq. (21).

4. Computational scheme

We will now discuss an iterative scheme based on the CHF approach outlined in
Sections II and III, using the McWeeny procedure [7] for resolving matrices into
components, by introducing projection operators and with respect to the
subspaces spanned by occupied and virtual molecular orbitals.
Expanding the occupied over an orthonormal atomic basis set of order m (which
is assumed independent of the perturbation), one has
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The projection operators have matrix representations

and

A perturbation expansion analogous to (17) holds for any matrix, for instance, the
Fock matrix

and the density matrix

The first- and second-order coefficients and can also be resolved into projec-
tions on the subspaces of occupied and virtual molecular orbitals:

The projections with k labeling another occupied orbital, vanish according to

choice (25), and the projection vanishes for a real perturbation, see eq. (27).
Any matrix A can now be resolved into projection components [7] with respect to
the occupied and virtual subspaces, that is,

For instance, the first-order density matrix can be written

where

The iterative scheme for the first-order coefficients becomes
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where

is used to start the iteration (49)-(52). In the case of electric perturbation, denoting
by the coordinates of the i-th electron with charge – e ,

To first order the repulsion matrix

is obtained contracting the first-order density matrix with the two-electron integrals
over the atomic basis,

The second-order density matrix

is also resolved into four components according to (46),

that is,

Accordingly, only the projections over the subspace of virtual orbitals are needed
to compute the second-order density matrix.
The iterative scheme for the second-order coefficients, consistent with (49)-(52), is
(in the case of electric perturbation there is no
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The iteration starts with The second-order repulsion matrix is
defined analogously to (55). and X matrices have been computed only once
to solve the first-order CHF problem (i.e., to determine the polarizability and the

first hyperpolarizability     . and are saved onto a file to be processed at
each step of the iterative calculation (63)-(66): it seems worthy of notice that the
present CHF algorithm, based on the Hartree-Fock propagator (30), is quite general,
compact and suitable for efficient sequential determination of both first- and second-
order perturbed orbitals. In addition, it can be easily extended to perturbations of
higher order.
So far we have considered an orthonormal basis set In actual calculations, em-
ploying non orthogonal sets of Gaussian functions with overlap matrix

it is customary to orthogonalize according to the Löwdin procedure, i.e.,

with similar equations for first- and second-order perturbed matrices. In the second-
order iteration eqs. (63) and (65) are replaced by

for a non orthogonal basis.
The expression for the electronic contribution to electric dipole moment,

is not affected by transformation (68)-(72), owing to the trace theorem. In addition,
it can be shown that the iterative steps (49)-(52) are formally the same for a non
orthogonal basis, as the formula for the polarizability

is also invariant under Löwdin orthogonalization. The overlap matrix appear only to
third order in the expression for the first hyperpolarizability [10],

where and are permutations of the expression in square brackets.
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5. Symmetry transformations of second-order density

The electron density of a molecule in the presence of electric perturbation is a scalar
field with perturbation expansion [6], [11]

Relaxing the Einstein convention, sums over repeated Greek indices are
made explicit in this Section, to avoid misunderstanding whenever two couples of
repeated indices and with         , appear in a formula, compare fo r (92) hereafter.
Introducing a basis set of atomic functions, for the second-order term one defines
the expansion

For any symmetry operator (rewritten when operating on the domain of
basis functions for instance, the rotation-reflexion about the z-axis, with matrix
representation

over a basis set of Cartesian unit vectors, and belonging to a group G, one has

In the transformed coordinate system,

Hence the transformation law for second-order density is
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Since the transformation belongs to the group G one has

and the second-order density matrices transform according to

Owing to permutational symmetry, at most six second-order matrices are indepen-
dent. To account for point molecular symmetry let us introduce the symmetrized
Kronecker square of T, with matrix elements [4]

Eventually one finds the final transformation law for the second-order density matrices

Hence, according to the present method, only the symmetry-distinct density matrices
need to be computed.
Within our approach the entire molecular symmetry is exploited to increase the ef-
ficiency of the code in every step of the calculation. For a molecule belonging to
a group G of order |G|, only symmetry-distinct two-electron integrals
over a basis set of Gaussian atomic functions are calculated and processed at each
iteration within SCF, first- and second-order CHF procedures. A skeleton Coulomb
repulsion matrix  is obtained by processing the non-redundant list of unique two-
electron integrals, then the actual repulsion matrices are obtained via
the equation

This method turns out to be a major computer saver, as (i) the iterative steps become
much faster, owing to the reduced number of integrals, and (ii) the occupancy of the
mass storage gets smaller. Accordingly, one can afford large problems which would
be otherwise intractable.
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6. Fourth-order CHF energy

The CHF formulae (75)-(77) for the response tensors are established by expanding
the Hartree-Fock energy [8],

in powers of the electric field in the same way as (1). In the presence of multiple
perturbations, the first-order perturbed core Hamiltonian can be written

where the parameters a, b, c, etc., are related to the intensity of each perturbation.
The expansion for the energy of a molecule becomes

Comparing this general expression with the analogous expansion (1), one finds (no
sum over repeated Latin indices)

It should be noted that, in this notation, the order of the superscripts is irrelevant;
is the entire perturbed energy term linear in ab ... z and there is no

additional term with permuted ab ... z indices.
The following terms appear in the expression of the 4-th order energy
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In the above formulae the projected (11) and (22) components of the density matrices
are obtained from the series

First- and second-order Fock Hamiltonians are given analogous expressions. The
density corrections are given by

All of these formulae apply to the case of orthonormal basis sets [7]: correspond-
ing expressions for the general case of metric are easily obtained via similarity
transformations, see, for instance, (70).
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7. Second hyperpolarizability of benzene

The computational scheme outlined in Secs. IV and V has been applied to the cal-
culation of the hyperpolarizability of benzene molecule, for which a number of
ab initio studies have been already reported [15–18]. The computer program imple-
menting the CHF algorithm has been checked with respect to corresponding finite-
perturbation theory calculations [28]. For a number of molecular systems, belonging
to several point groups, the results from calculations exploiting the full symmetry
have been matched with corresponding ones, obtained by using lower subsymmetries
for the same molecule [11], including
In particular the results of Ref. [16], obtained via a 4-31g polarized basis set, have
been reproduced on an 486 IBM compatible PC, with a hard disk memory of 100
Mbyte. As a matter of fact, in that calculation, only 1 180 752 symmetry unique
two-electron integrals . had to be stored within our method.
Five large basis sets have been employed in the present study of benzene; basis set
I, which has been taken from Sadlej’s tables [37], is a (10s6p4d/6s4p) contracted to
[5s3p2d/3s2p], and contains 210 CGTOs. It has been previously adopted by us in a
near Hartree-Fock calculation of electric dipole polarizability of benzene molecule [38].
According to our experience, Sadlej’s basis sets [37] provide accurate estimates of
first-, second-, and third-order electric properties of large molecules [39].
Basis sets II-V have been employed in estimating the Hartree-Fock limit of a number
of second-order properties in the benzene molecule [40]. The primitive GTO sets range
from (11s7p2d /5s2p) to (14s8p4d/8s3p), contracted respectively to [6s5p1d/3s1p]
and [9s6p4d/6s3p]. Although the exponents for the polarization functions of these
basis sets were chosen in that paper to maximize the paramagnetic susceptibility,
the extension of the basis sets (from 252 to 396 CGTO) guarantees a remarkable
flexibility and excellent overall characteristics. The number   of symmetry unique
two-electron integrals range from The calculations have been carried
out on a CONVEX C-220 and on an IBM 3090.
The ability of Sadlej basis sets [37] to provide reliable values of has been tested
in a limited number of cases with encouraging results [11]. In the present work on
benzene the Sadlej basis set yields theoretical estimates close to those obtained by
Perrin et al. [16] and Kama et al. [17], but smaller than those reported by Augspurger
and Dykstra [18]. The C-C bond distance retained in [18], however, is
compared to used by us, see Refs. [38] and [40].
The theoretical results provided by the large basis sets II-V are much smaller than
those from previous references [15–18]: the present findings confirm that the second-
hyperpolarizability is largely affected by the basis set characteristics. It is very dif-
ficult to assess the accuracy of a given CHF calculation of and it may well
happen that smaller basis sets provide theoretical values of apparently better qual-
ity. Whereas the diagonal components of the electric dipole polarizability are
quadratic properties for which the Hartree-Fock limit can be estimated with relative
accuracy a posteriori, e.g., via extended calculations [38], it does not seem possible to
establish a variational principle for, and/or upper and lower bounds to, either
and
As a matter of fact, the electric dipole polarizabilities obtained via basis sets II-IV
are larger than those reported in Ref. 16 and Ref. 18: from Table 1 of Ref. 39 it can
be seen that from those basis sets ranges from 78.352 to 79.142 a.u., and that
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ranges from 42.305 to 45.284 a.u.. Sadlej basis sets give _ and
a.u., see Table 2 in Ref. [39]. These results are close to the estimated Hartree-Fock
limits, ,, and [39]; accordingly they are much more accurate
than those reported by Perrin et al. [16], i.e., and Our
estimates are also more accurate than the best ones from Ref. 18, and

These findings imply that our basis sets are definitely more reliable than those
adopted in Ref. 16 and Ref. 18 for studying second-order electric properties. Ac-
cordingly, it seems quite difficult to understand that theoretical obtained via
relatively small ad hoc basis sets are closer to the HF limit, if the same basis sets
provide less accurate polarizabilities. This feature would mean that the problem of
constructing suitable basis sets for the simultaneous evaluation of second-, third-,
and fourth-rank electric properties of HF quality ought to be carefully reconsidered.
Comparison with a few experimental values, obtained corresponding to different wave-
lengths [41–47], seems however to suggest that nuclear vibration [3] and electron cor-
relation [15–18] play an important role. In particular, the correlation contributions
estimated via second-order Moeller-Plesset techniques [16] are large. Accordingly, the
present work confirms that CHF level of accuracy is insufficient to predict accurate
hyperpolarizability of benzene molecule.
In any event, we are confident that the computational approach developed in this
study, owing to its efficient use of molecular symmetry, can help develop large basis
sets for first and second hyperpolarizabilities. An important aim would be that of
estimating, at least at empirical level, Hartree-Fock limits for these quantities. To
this end the use of basis sets polarized two times, according to the recipe developed
by Sadlej [37], would seem very promising.
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Second Order Static Hyperpolarizabilities of Insaturated Polymers

D. HAMMOUTENE, G. BOUCEKKINE and A. BOUCEKKINE
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BP 31 El Alia16111 Bab Ezzouar, Alger, Algérie

1. Introduction

In a previous work [1,2], we were interested in the calculation of second order
hyperpolarizabilities of conjugated systems including substituted benzenes, pyridine N-
oxydes and vinyl oligomers, in relation with non linear optical activity [3]. We showed that
MNDO calculations were in good agreement with SCF ab initio results obtained using a
double zeta basis set plus polarization and diffuse orbitals.
In this paper we present the hyperpolarizabilities, computed at the MNDO level, of different
series of insaturated polymers, which are known to exhibit interesting chemical, mechanical
or optical properties [4-16]. The influence of different structural factors, such as the
lengthening of the polymeric chain, bond length alternation and conjugation should be
investigated in order to help to the design of new active molecules.

2. Results and discussion

2.1. MOLECULES UNDER CONSIDERATION AND METHOD OF CALCULATION

Trans-polyenes trans-polyenynes cumulenes
and polyynes have been studied (M=N-1). For

centrosymmetric molecules, the first order hyperpolarizability is equal to zero so that non
linear effects are of second order nature . Furthermore, ( the x axis goes through the
middle of the C-C bonds of the polyenes, or is the internuclear axis in the case of linear
molecules) is the most important component of the second order hyperpolarizability
tensor, the other components being negligible. Both and the mean hyperpolarizability

noted have been computed for the above mentioned polymers, the number of unit cells
varying from N=1 to N=11.

The MNDO method [17] coupled with the finite perturbation (FP) technique [18], as
implemented in the MOPAC5 [19] program has been used throughout this work.
The expression of the component as a numerical derivative, is the following:
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whereas the mean hyperpolarizability is given by:

representing the value of the computed dipole moment when the numerical value

is given to the electric field strength.

2.2. TRANS-POLYENES

These compounds have been the subject of several theoretical [7,11,13,20)] and
experimental[21] studies. Ward and Elliott [20] measured the dynamic  hyperpolarizability
of butadiene and hexatriene in the vapour phase by means of the dc-SHG technique. Waite
and Papadopoulos[7,11] computed static  values, using a MacWeeny type Coupled
Hartree-Fock Perturbation Theory (CHFPT) in the CNDO approximation, and an extended
basis set. Kurtz [15] evaluated by means of a finite perturbation technique at the MNDO
level [17] and using the AM1[22] and PM3[23] parametrizations, the mean values of a
series of polyenes containing from 2 to 11 unit cells. At the ab initio level, Hurst et al. [13]
and Chopra et al .[20] studied basis sets effects on and . It appeared that diffuse
orbitals must be included in the basis set in order to describe correctly the external part of
the molecules which is the most sensitive to the electrical perturbation and to ensure the
obtention of accurate values of the calculated properties.

The and mean values computed at different theoretical levels are given in Table 1.
We can see that the hyperpolarizability increases with the extension of the polymeric chain.
It is worth noting that our MNDO values agree with the ab initio ones of Kurtz[15]  but do
not vary in a parallel direction to the CNDO results of Waite and Papadopoulos[7]. Note
that the CNDO values are the closest to the experimental data for butadiene and hexatriene,
but these latest data have been used to fit the CNDO parameters. Furthermore, the results
of Hurst et al [13] show that the computed value of is very sensitive to any extension of
the basis set. The MNDO calculations reach their best agreement with the more extended 6-
31G+PD basis set. It is worth noting that a very good correlation exist between the
calculated values of the two methods (coefficient of correlation equal to 0.998 )[2].

Several authors have studied which is very sensitive to the lengthening of the
polymeric chain, as a function of the number N of unit cells, and have found a relationship
of the form:

where K and are parameters which can be evaluated using a least square method. We
produce in Fig. 1, the variation curve of  In Table 2, are given the computed
values using different techniques.
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We can see that our MNDO value is in better agreement with the ab initio results

than with the empirical ones,

2.3. TRANS POLYENYNES

Polydiacetylenes which constitute an important class of polenynic polymers can be
synthetized photochemically in the solid state from substituted diacetylenes. Experimental
studies have shown that polydiacetylenes exhibit electrical susceptibilities similar to
covalent semi-conductors' ones[24-28] either in the solid state[29] or in solution[30].
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However, this kind of compounds has not been extensively studied theoretically[12,15]. At
the semi-empirical level, we point out the MNDO calculations of Williams [12] concerning
chains of less than 14 carbon atoms, and the INDO computations of Kirtman [15] related to
polymeric chains containing up to 60 carbons. To our knowledge no ab-initio evaluation of

has been done for polyenynes. In Table 3, are given our and values,  obtained
using the MNDO method, and Williams’ ones[12].
As in the polyenes case, we can see that these values increase with the lengthening of the
polymeric chain. We observe the good agreement between our values and those obtained
by Williams[12] for the three first compounds of the series, whereas for the higher
polymers our values are lower. After checking of the calculations, it seems to us that an
error could have occur in Williams’ computations.
The variation of  in the polyenynes as a function of N (Fig. 2) follows the relationship

2.4. CUMULENES

The geometry of these compounds is very different from the usual conjugated structures
which generally exhibit bond alternation. For this reason, cumulenes possess a great
structural and electronic homogeneity. Very few theoretical studies have been carried out on
these polymers. However, we note the non empirical calculations of Chopra et al.[20] at
the SCF level using a 3-21G basis set, of the hyperpolarizability of the first cumulenes
(N = 2,3,4 ). On another hand, Beratan et al.[31] carried out tight binding computations to
evaluate of higher cumulenes, up to 80 carbon atoms.



302 
D

. H
A

M
M

O
U

T
E

N
E

 E
T

 A
L

.



SECOND ORDER STATIC HYPERPOLARIZABILITIES OF INSATURATED POLYMERS 303

In Table 4, are given our MNDO values and those of Chopra et a1.[20]. The mean
hyperpolarizability increases in a non linear manner with the extension of the polymeric
chain. The MNDO results are, excepted, of a different sign and lower in absolute
value than the Chopra et al values. We believe that this discrepancy is due to the fact that
the basis set used in the ab initio calculation does not include diffuse orbitals which are
necessary to describe correctly this kind of electric properties[32-34]. Furthermore, we see
that varies as a function of N, according to the following relationship (Fig. 3):

2.5. POLYYNES

These monodimensional compounds, rich in electrons, have been the object of several
experimental[35] and theoretical work[20,35,36]. Perry et al.[35], using a powder SHG
technique, have studied diaryl polyynes and have shown that some of them exhibit second
order hyperpolarizabilities of very high magnitude. On another hand, Jameson and
Fowler[36] carried out ab initio calculations in order to study basis sets effects on the
electrical properties of acetylene and diacetylene. Furthermore, Chopra et al [20], then
Maroulis and Thakkar [37] have been interested in the influence of the lengthening of the
polymeric chain on these properties, and studied polyynes up to 8 carbon atoms. Beratan et
al.[31] carried out tight binding calculations on high polyynes. Our MNDO results and the
values obtained by the above mentioned authors are given in Table 5.
We note that, as previously, and increase with the lengthening of the polymeric
chain. It is worth noting that the MNDO results vary in a parallel manner with the ab initio
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values which have been obtained at the SCF level using basis sets including diffuse
orbitals. As previously, a relationship exists between and N, and the

MNDO value equal to 3.97 is close to the result of Maroulis and Thakkar The
corresponding graph has been reported in Figure 4.

2.6. COMPARISON OF THE  EVOLUTION IN THE FOUR SERIES OF
POLYMERS

In Table 6, are given the MNDO values of the four series of polymers,polyenes (A),
polyenynes (B), cumulenes (C) and polyynes (D).
In Figure 5, the variation curve of              as a function of N, is plotted.

As can be seen in Table 6 and Figure 5, up to N = 5,  varies approximately as
follows:

and

For N>5, and more particularly for N=7, we observe an important increase of (C)

relatively to (B) and (D), whereas  ( A ) st i l l remains of the higher
magnitude.
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Beyond N=9, (C) becomes higher than (A). In general, the relative classification
of the studied polymers hyperpolarizabilities does not follow the increase in the number of

electrons. An explanation can be found, if we consider the two important factors which
are the lengthening of the polymeric chain and bond alternation. In Table 7, are given the
MNDO optimized lengths L, of the studied oligomers. The variation of L as a function of
N, is plotted in Figure 6. We can see that for any N value, we have approximately the
classification:

For the lower polymers (N<5) one has the same classification of L and for polyenes
and polenynes.
Beyond N=7, the longitudinal hyperpolarizability of cumulenes increases and

becomes higher than the corresponding polyenes values for 8<N<11. In order to explain

this result, we computed a bond alternation index defined as the mean value of the
differences of the bond lengths of consecutive C-C bonds. The values obtained are given in
Table 8. The variation of as a function of N is plotted in Figure 7, for the four series of
polymers. These curves indicate that is the smallest in the cumulenes family and that its
value is negligible beyond N=7. The regular geometry of these compounds is certainly at
the origin of their hyperpolarizability exaltation, particularly beyond N=9. This result is in
agreement with the work of André et al.[38| on polyenes, who showed that bond
alternation reduces the magnitude of electrical polarizabilities and hyperpolarizabilities
Furthermore, it is worth noting that up to N=11 (Figure 5) no saturation of the tensor is
observed. Beratan et al.[31] estimate that no less than forty unit cells are necessary to reach
such a saturation in the case of cumulenes.
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3. Conclusions

The MNDO method combined with a finite perturbation technique has been used for the
computation of the static hyperpolarizabilities and of four series of insaturated
oligomers, including polyenes, polyenynes, cumulenes and polyynes. The MNDO results
are in good agreement with the available ab initio values obtained at the SCF level using
extended basis sets including diffuse orbitals. This study permits to confirm the ability of
the semi-empirical MNDO method to give reliable values for second order hyper-
polarizability with a very small computing time. The computed electrical properties increase
in a non linear manner with the lengthening of the polymeric chain. Actually we note a
relationship between and the number of unit cells N of the form The

hyperpolarizabilities of polyenes are two to three times higher than those of polyynes,
because the effect of the polyenes length and the weaker bond alternation compensate for
the richest but localized  system of polyynes. Polyenynes hyperpolarizabilities values are
generally intermediate between those of polyenes and polyynes.  Higher cumulenes exhibit
the greatest hyperpolarizabilities. This is due to the quasi-inexistence of bond alternation in
their structure.
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An ab initio Study of the Magnetic Properties of the Isoelectronic Series
BH, and AlH,
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35042 Rennes Cedex, France

1. Introduction

The magnetic properties of the BH molecule have been theoretically studied by several
authors [1-6], because this compound is supposed to exhibit a temperature-independent
paramagnetism. Its isoelectronic molecules, and have been the subject of
similar studies [3-5]. Recently Fowler and Steiner [5] emitted the hypothesis that an
isolated anion is weakly diamagnetic, whereas it could become paramagnetic under
some conditions of environment. Furthermore, the calculation of the magnetic susceptibility
of the A1H molecule which is of particular interest because its electronic structure is similar
to that of BH, has shown that this compound is weakly diamagnetic [7]. In this work, we
plan to re-examine more systematically the magnetic properties of by mean of SCF ab
initio calculations including several sets of diffuse orbitals, and to extend the study to the

and molecules which are the AlH analogs.

2. Calculations and discussion

2.1. METHOD OF CALCULATION

First of all, let us point out that electron correlation effects on second order magnetic
properties (susceptibilities, screening constants) were investigated by several authors [6,8],
and that it was found that calculations at the Hartree-Fock level give reliable results for
these properties. Actually, it is well known that computed SCF diamagnetic susceptibilities,
using large basis sets, agree excellently with the corresponding experimental values. We
retained, for our part, to employ at the SCF level, London field-dependent atomic orbitals
(the so-called gauge invariant atomic orbitals: GIAO) [9] which ensure the origin
independence of the calculated magnetic susceptibilities. The London approach has been
extended and widely used to study the magnetic properties of conjugated molecules
between 1951 and 1953 by G. Berthier et al. [10-13]. At the ab initio level, it was shown
[3,4] that the calculated magnetic susceptibilities using the London functions in a triple-zeta
basis set supplemented by one eccentric polarization function (a s-type bond function) are
very close to those obtained using very large field-independent basis set near the Hartree-
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Fock limit. It has also been pointed out by Wolinski et al. [14] that the use of GIAO's
permits to reduce the basis set dimension when evaluating screening constants. All the
details of the method of calculation are given in references [15-19], so they will not
repeated here.

2.2. RESULTS FOR

The starting point is our previously performed calculations [3] using the Huzinaga basis set
[20] (9s) for Be and (4s) for H, triple-zeta contracted, supplemented by the three 2p
orbitals proposed for Be by Ahlrichs and Taylor [21] with exponents equal to 1.2 , 0.3 and
0.05 respectively. This initial basis set, noted I, includes one s-type bond-function the
exponent of which is equal to 0.5647. Several sets of diffuse orbitals have then been added
to this basis I. Their corresponding exponents were determined by downward extrapolation
from the valence basis set, using the Raffenetti [22] and Ahlrichs [21] procedure. Three
supplementary basis sets noted II, III and IV containing respectively one, two and three
extra diffuse orbitals, have thus been constituted. The corresponding exponents of these
supplementary diffuse orbitals are reported in Table 1.

In Table 2, we have reported the and principal components,

respectively parallel and perpendicular to the internuclear axis, the mean valu
and the anisotropy of the molecule susceptibility tensor,

obtained using each of the previously defined basis sets. The internuclear distance R has
been taken equal to 2.5 a.u.
As we can see, the diffuse orbitals play a dramatic part in the description of the magnetic
properties of : not less two sets of these orbitals (basis set III) are necessary to obtain
an accurate and converging value of the susceptibility. The anion should be
diamagnetic and its mean susceptibility is of the order of Note that
the use of a single set of supplementary diffuse orbitals is not sufficient to bring to light this
magnetic property.
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We carried out a second calculation for at an internuclear distance of 2.67 a.u.
corresponding to the minimum of energy.The mean magnetic susceptibility obtained
value, which is equal to , agrees more closely to the value
calculated by Fowler and Steiner [5], at the same internuclear distance,which is equal to

2.3. RESULTS FOR AlH, AND

The Veillard basis set [23] (1 ls,9p) has been used for Al and Si, and the (1 ls,6p) basis of
the same author has been retained for Mg. However, three p orbitals have been added to
this last basis set, their exponents beeing calculated by downward extrapolation. The basis
sets for Al, Si and Mg have been contracted in a triple-zeta type. For the hydrogen atom,
the Dunning [24] triple-zeta basis set has been used. We have extended these basis sets by
mean of a s-type bond function. We have optimized the exponents and locations d of
these eccentric polarization functions, and the internuclear distance R of each of the studied
molecules. These optimized parameters are given in Table 3.

The optimization of the geometry leads to a good agreement with experiment for AlH
For a previously calculated internuclear distance [25) using a 6-

31G* basis set, is equal to 1.863 which is not very close to our value for this molecule.
Note, however, that in the particular case of the energy presents a flat minimum
between  and its variation beeing of the order of  a.u in this interval.

For we have extended the previously defined basis set, noted I, by means of one
and two sets of diffuse orbitals, the exponents of which have been computed by downward
extrapolation. These basis sets are reported in Table 4.
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In Table 5, we show the calculated magnetic susceptibilities for A1H and  , and the
Lipscomb et al. [7] obtained values for A1H using an extended basis set of field
independent Slater type orbitals.

Our results are in close agreement with the values obtained by Lipscomb et al. [7]; this
confirm the validity of our approach. Note that, A1H is predicted to be weakly diamagnetic
but should be paramagnetic.

The results for the molecule are given in Table 6.
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Our results indicate that the basis set I cannot describe correctly    and that the magnetic
susceptibility of this anion is strongly depending on the inclusion of diffuse orbitals in the
basis set. We notice that the basis set II permits to obtain reliable results, its further
extension by extra diffuse functions (basis set III) leading approximately to the same
results. should be diamagnetic, and its mean susceptibility is of the order of   -22.

It should be noted that diffuse functions which are necessary for a good description of the
magnetic properties of anions, have been found needless when computing the
susceptibilities of the neutral molecules.

In Table 7, we reported the mean magnetic susceptibilities of the BH and
molecules, obtained by G. Berthier et al. [3], using the same SCF ab initio method,
employing a triple-zeta basis set augmented by a s-type bond function. We produce also in
this table, our values for and those of the AlH, and series for
comparison. We note, that the magnetic susceptibilities exhibit the same features in the two
analogous series of molecules, namely that diamagnetism decreases when the heavy atom
nuclear charge increases.

3. Conclusion

The good agreement between our results and those obtained by Lipscomb and al. [7],
permits to think that the calculated susceptibility values for and are accurate.
We observe also, that is predicted to be paramagnetic as its  counterpart [13],
whereas the AlH and molecules are diamagnetic. We could confirm the weakly
diamagnetic character of the molecule whose susceptibility is strongly dependent on
the introduction of several diffuse orbitals in the basis set. In both series of compounds,
diamagnetism decreases with the increase of the heavy atom nuclear charge.
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CI Calculations of Miscellaneous Spectroscopic Observables for the PN
and States

G. de BROUCKERE
University of Amsterdam, Department of Physics and Astronomy, Valckenierstraat 65,
1018 XE Amsterdam, The Nederlands

1. Introduction

1.1 PN STATE

The PN molecule whose ground state electronic configuration is

first investigated by Curry et al [1], has attracted a considerable amount of interest among
experimentalists due to the availability of high quality optical spectra. The presence of
sharp spectral lines made it possible to determine many of the rotational-vibrational
spectroscopic constants, such as with high accuracy. Some of these
constants were subsequently refined by Wyze et al [2] using high resolution microwave
spectroscopy by means of which several pure rotational transitions were also measured.
In recent years PN has been among the growing number of first and second row molecular
species observed from a variety of astronomical sources, including Orion(KL), W51M,
SgrB2. Several pure rotational transitions have been unambiguously identified [3]. It is of
primary importance to assist astrophysicists in identifying potential interstellar species that
as many spectroscopic constants as possible be available in order to recognize the
measured spectral lines. As a large number of small phosphorus-containing compounds
have either not been detected experimentally or have gaps in the known spectroscopic
constants, theory might be able to fill in the missing information.

1.2. LOW-LYING PN A AND STATES

The best characterized excited state of PN remains to be, without contest, the state yet
experimentally detected in 1933 [1]. During the next fifty years no new excited state
findings were reported for PN. However during the last decade a revival of experimental
as well as theoretical interest has lead to a reexamination of both and states.
Aside from improving the accuracy of certain spectroscopic constants' values, a few
perturbing states interacting selectively with some low lying vibrational levels (i.e.

have been characterized [4]. These states are and , all arising from
319
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the orbital occupancy. For example, the perturbation on v'=l in the
bands, first noticed by Curry et al [1] , was due to nearby low rovibrational

levels of a , while the state was shown to perturb the level v'=0.Whereas a few
spectroscopic constants had been determined for the perturbed vibrational states by
these perturbing states a similar analysis had never been performed for the state
although this state should perturb in the same proportions [4] certain low lying
vibrational levels.For the sake of completeness, let us mention a new
transition [5] has been reported arising from the excitation which should interact
with high lying vibrational levels as well as a set of four new excited states, i.e. two

and two , but an absolute vibrational assignment for these states was not possible
[6]. The technology of astrophysical measurements on excited states for molecules such as
PN is still in its infancy and, to the best of our knowledge, no results have been reported.

2. Procedure

2.1. POTENTIAL CURVES OF THE and STATES

Details of the extended triple zeta basis set used can be found in previous papers [7,8]. It
contains 86 cartesian Gaussian functions with several d- and f-type polarisation functions
and s,p diffuse functions. All cartesian components of the d- and f-type polarization
functions were used. CI wave functions were obtained with the MELDF suite of programs
[9]. Second order perturbation theory was employed to select the most energetically double
excitations, since these are typically too numerous to otherwise handle. All single
excitations, which are known to be important for describing certain one-electron
properties, were automatically included. Excitations were permitted among all electrons
and the full range of virtuals.
All three states were described by a single set of SCF molecular orbitals based on the
occupied canonical orbitals of the state and a transformation of the canonical virtual
space known as "K-orbitals" [10] which , among other properties, approximate the set of
natural orbitals. Transition moments within orthogonal basis functions are easier to derive.
For the X state the composition of the reference space was obtained by performing two
Hartree-Fock single and double excitations (HFSD-CI) calculations at two typical
internuclear distances, i.e. (equilibrium geometry) and about and adding to the HF
configuration all those configurations whose coefficients in either of these CIs were

. The resulting list of 44 configurations constituted the occupancy of the reference
space for Multi-Reference Single and Double CI (MRSD-CI) calculations in the region

The energy threshold value, hereafter referred to as ETHRESH, used in the
perturbation theory selection procedure of the configurations was set equal to
For the state, considerably more configurations contribute the above threshold
coefficient and in order to increase the value of the sum of the squares of the CI
coefficients in the reference space with respect to that obtained in either of the
HFSD-CIs, two MRSD-CI calculations at the above internuclear distances were next
performed, keeping in either case all configurations with expansion coefficients
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An avoided crossing did occur at which, however, was absent at [8].Thus the
combined space spanned by all configurations whose coefficients equalled or exceeded
|0.03| in either of the MRSD-CIs (at and was chosen for the reference space to
describe the potential function in the region. This space spanned 51
configurations. ETHRESH was set equal to This value as the above one
should ensure that the overwhelming majority of the correlation energy was recovered via
the variational CI calculation.
For the state, this procedure led to still much larger reference spaces and larger CI wave
functions because of the still larger number of configurations possessing expansion
coefficients In order to keep the calculations tractable, this threshold was set
equal to 0.043 while lowering the value of ETHRESH to This reference space
was spanned by 28 configurations. In light of the primary goal for the state of being
able to compute properties in the neighbourhood of the potential curve's minimum with
acceptable accuracy, this wavefunction should still be adequate. This will be illustrated by
comparing our lifetime results with those of CO obtained by a different CI approach as
well as a set of spectroscopic constants with those obtained by similar CI calculations
based on another algorithm.
Estimates of the energy contributions from higher than double excitations out of the
reference space were obtained by means of one form of the "Davidson correction" [11,7].
More details can be found in references [7,8].

3. Results

3.1. PN STATE

3.1.1. Potential energy curve; one-electron properties; spectroscopic constants

The potential energy curve including the Davidson correction is shown in Figure 1. Among
the calculated one-electron properties [7] only a few ones did show sizeable correlation
effects (Table 1). The calculated and experimental values of the electric dipole moment are
unexpectedly yet in good agreement although multiple bonded systems are known to
require the use of a large number of higher angular momentum basis functions [ 12J. The
rather large theoretical difference found for the nuclear coupling remains at the
present time an open question: if the experimental value is accurate, this difference is due to
a too small value of the electric field gradient. It should be pointed out this observable is
neither easy to measure with precision nor to compute accurately, especially for multiple
bonded systems involving third period atoms.

3.1.2. Spectroscopic constants

Selected spectroscopic constants (Table 2), derived by the well-known Dunham
polynomial fit expansion method [13,14] were calculated from both the variational MRSD-
CI energies and the estimated full CI energies, i.e. including the Davidson correction. In
general, the effects of the Davidson correction appear to be small. A very good agreement,
up to the second decimal, is obtained in case of leading to an exceedingly small
theoretical deviation (0.007%) on The effect of the correction on the latter observable is
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sizeable (24%) and decreases the agreement with experiment. The observables
- in contrast with are closer to experiment at the full CI approximation, leading
also to a subtantial lowering of the theoretical discrepancy for the anharmonicity whereas
the relative error on the fundamental frequency amounts merely to 1.5%.

Unless otherwise noted, the phosphorus atom is placed at the origin of the reference frame,
with nitrogen pointing in the positive z direction

Entries
'Generated' Total number of spin and symmetry adapted configurations
'Selected' Number of spin and symmetry adapted configurations selected by second-

order perturbation theory and treatedvariationally
'*' Property calculated with respect to the center of mass.

For the dipole moment, the polarity has not been measured experimentally.
The sense found is the same as that of McLean and Yoshimine [17] and the
agreement between observation and the MR SD-CI result leaves little doubt
on the correctness of this sense.

'EXP' Experimental values, see Raymonda and Klemperer [18]
'Est.full CI En' Estimated full-CI energy [11]

These results have been compared with those issued from smaller CI calculations based on
another algorithm [15]. Except for the anharmonicity, our results are generally closer to
experiment. Another instructive comparison has been made with CASSCF results on
singly bonded [19] using a comparable basis set: for and the theoretical
deviations are quite comparable, the CASSCF result on the anharmonicity being however
much closer to experiment. The size of the H-CI matrix handled in the latter methodology
(350,000 - 385,000) is not commensurable with that in the present study (93,000 -
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110,000). Therefore, it appears that the overall agreement obtained for a variety of
spectroscopic constants is comparable for the two methods while the present method
allows us to use a more compact wavefunction. It should also be noted that a good CI
description of a triple bonded system involving a third period atom is much harder to
achieve. It can be concluded that the shape of the theoretical potential energy curve reflects
its experimental counterpart with acceptable accuracy in the interatomic region of interest.

In column A , use is made of the variational MRSD-CI energies. In column B, these
energies are corrected for higher excitations (see text)
Entries
'Emin' Energy of the minimum of the potential curve
'E0 '            Energy corresponding to vibrational quantum number v=0
'E(ZP)'

The Dunham polynomial fit expansion of the theoretical curves involves
polynomials of 9th and 10th degree leading to the data in columns 'A' and
'B' respectively.

'f ' Using the variational CI energies and correcting these for higher order
excitations, the radial Schrödinger equation solutions for E(ZP) are equal to

and respectively with and

3.1.3. Pure rotational and vibrorotational transitions; spontaneous radiative lifetimes

Pure rotational transitions, vibrorotational transitions and spontaneous radiative lifetimes
have been derived by solving numerically [20] the one-dimensional radial part of the
Schrödinger equation for the single X state preceded by constructing an interpolation
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curve - using tensioned spline functions [21] - of this state adopting the data including the
Davidson correction. For the calculations of lifetimes within a single state ,in contrast to
two distinct states , the vibrational/rovibrational decays occuring via a cascade mode, the
electric dipole moment function replaces the usual electric dipolar transition moment
function required in case of transitions between states. More details can be found in [7,8]
as well as the references quoted therein.
A remarkable agreement with experiment had been found for pure rotational excitations
(Table 3). The calculated values are systematically a little smaller because the theoretical
internuclear distance is slightly larger than the experimental one, i.e.
(expt), (theor.) and this deviation affects the parameter values
leading to our previous observation. A slight deviation with respect to the expected effect
of the anharmonicity on the vibrorotational transitions is observed in contrast to the same
effect noted on the pure rotational excitations.
To the best of our knowledge, pure rotational transition calculations for the PN X state are

reported for the first time.

The calculated lifetimes (Table 4) are several powers of ten larger then those corresponding
to usual electric dipolar transitions They constitute therefore true predictions
which require special techniques of measurements that were available only in recent years.
Molecular lifetimes corresponding to pure vibrational (v =0-4) and rovibrational (v =0-4,
j=l-5) levels - derived for the first time - were found to be eight to ten powers of ten larger
than those corresponding to an electric dipolar transition state above state).
In the latter case large transition moments for non-orthogonal off-diagonal vibrational
states are also responsible for the resulting magnitude of these lifetimes. In this case, the
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off-diagonal elements of the dipole moment for orthogonal vibrational states are several
powers of ten smaller compared to their transition moment counterparts, leading to much
smaller values of the transition probabilities and Einstein spontaneous emission coefficients
and therefore very large lifetimes. A very important rotational effect on the lifetime for
v'=0, becoming rather weak for v'=l and being not existent for higher v's considered in
this study is noted.

3.2. PN and EXCITED STATES

3.2.1. Potential energy curves for the and states. Selected one-electron
properties. Spectroscopic constants

MR SD-CI potential curves including the Davidson corrections are presented in Figure 1.
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The correlation effects on the electric dipole moment (Table 5) are much larger at the MR
SD-CI level for the state while the HF SD-CI algebraic values differ slightly for the
two states, the qualities of the respective reference spaces being comparable[8].We find the
following magnitudes' sequence, among the dipole moments
and presently it cannot be verified by experiment. MR SD-CI correlation effects noticed on
the electric quadrupole moment are also larger for the state. These effects on the
nuclear nitrogen couplings' z component for the state appear to be negligible with
respect to their HF SD-CI homologues which is generally quite unusual in case of the
ground state. The absolute value of the coupling of the state, 2.554MHz, is
smaller than that for the state, 2.635MHz, whereas the state nuclear coupling
appears to be the smallest: this sequence seems plausible as the electric field gradient at the
nitrogen nucleus should diminish as one goes to higher energy molecular excited states.

Energy (a.u.);
and analoguously for the other components.

Entries
'Generated' Total number of spin and symmetry adapted single and double excitations
'Selected' Number of spin and symmetry adapted configurations selected by second-

order perturbation theory and treatedvariationally
'*' Property calculated with respect to the center of mass
'Est.full CI En' Estimated full-CI energy [11]
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Several spectroscopic constants derived with and without the Davidson correction (Table
6) show little differences except for and the overall agreement with
experiment being satisfactory. As for the X state, the Davidson correction tends to reflect
experiment sometimes better, e.g. for whereas the discrepancy with respect to
experiment is sizeably reduced for

Entries
'Emin' Energyof the minimum of the potential curve
'E0 ' Energy corresponding to vibrational quantum number v=0
'E(ZP)'
'EXP' Experimental values for the band [22]
'other' see [15]
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A deviation of merely 0.5% is found for the experimental value. Most of these
results for both states compared favourably with those obtained by Grein and Kapur [15]
using smaller basis sets and another CI algorithm also based on single and double
excitations out of a multi-reference space. For and of the state our results
(with the Davidson correction) are closer to the experimental values.
We find the state to lie at merely above the state. The electronic
spectra exhibit strong similarities with PN and, in particular, the same sequence is
observed, the corresponding states being separated by only [22] which should
make our PN value very likely to be observed.

3.2.2 Spontaneous radiative lifetimes for the bands and

corresponding lifetimes for the and states

Spontaneous radiative lifetimes via electric dipole transitions for the and
transitions are summarized in Table7 for several sets of (v',v") values.

Experimentally, the detection of the so-called Hanle signal which consists of measuring the
change of fluorescence intensity in a transition band as the magnetic sublevels separate in a
variable external magnetic field provides a direct measure of the upper state lifetime [23]
which has been performed only for v'=0. This value agrees reasonably with its theoretical
counterpart. A lack of a still better agreement with experiment might be related to the
presence of the very nearby state perturbing selectively the level, no
experimental analysis by high resolution spectroscopy [4] or through the Hanle signal
measurement [23] being known for the state (see also section 1.2). Whereas for the
first transition band no rotational dependence for is noticed and the lifetimes
increase with the vibrational quantum number, a small but clear-cut rotational effect does
exist for v'=0 - 2 in case of the second system. Moreover these lifetimes decrease with v'
(except for v'=4) in contrast with the previous system. These effects are related to the
evolution of the respective transition moments as function of the internuclear distance [8].
The large difference in magnitude among the lifetimes of both systems are linked to the
corresponding values of the Einstein coefficients [8]. These results have been compared
with those issued from a theoretical study of the same transition in CO [24], isoelectronic
in the valence shell's electrons: it appears that our PN lifetimes are of the same order of
magnitude as those in CO. Because a monotonic decrease in the CO lifetimes from low v'
up to high-lying vibrational levels has been predicted too which were found consistent
with experiment for the latter levels, we believe our PN lifetime values should be of the
correct order of magnitude.
A lifetimes' comparison for each excited state (Table 8) shows that they are smaller for
the state except for v'=0. The vibrational decays occur by means of cascade
processes. Rotational effects appear to be even more intense than for
the corresponding transition bands and in either case these effects disappear for For
both states the lifetimes decrease with upward v' values. For the state a comparison of
our results with those on CO shows that the lifetimes are larger by an amount
similar to that noted for the transition. Unfortuntely no conclusive lifetime

measurements for the state seem to exist nowadays such that no useful informations
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can be invoked from the CO molecule to subtantiate our corresponding lifetimes for the PN
state.

Comparing the vibrational lifetimes issued from both decay mechanisms (Tables 7 - 8),
it is readily seen that the electric dipolar transition decay is always slightly favoured. A
similar conclusion holds for the state but, as expected, the vibrational transition
probabilities are much larger for the dipolar decay which lead to much smaller vibrational
lifetimes with respect to those via the cascade mode of decay, the differences amounting to
five to six powers of ten (Table 7 - 8).
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3.2.3. Miscellaneous spectroscopic observables

The emission spectrum observed by high resolution spectroscopy for the
vibrational bands [4] has been very well reproduced theoretically for several low-lying
vibrational quantum numbers and the spectrum for the vibrational bands has
been theoretically derived for low vibrational quantum numbers to be subjected to further
experimental analysis [8]. Related Franck-Condon factors for the latter and former
transition bands [8] have also been derived and compared favourably with semi-empirical
calculations [25] performed for the former transition bands. Pure rotational, vibrational and
rovibrational transitions appear to be the largest for the X ground state followed by those
for the and states respectively [8]. Whereas accurate data on pure rotational
excitations were available for the X ground state [2] with which a fairly good theoretical
agreement was obtained (Table 3), no such data exist for these excited states. Because the
three states have been treated identically in solving the corresponding one-dimensional
Schrödinger equations, the qualities of the respective reference spaces being rather close
[7,8] and noting the algorithm provides exact solutions within the numerical procedure
utilized, we believe the theoretical data should also be verified by accurate microwave
measurements. The experimental trend shown by the expectation values of the electric
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dipole moment over a few vibrational functions is well reflected theoretically for the X state
[7]. Different patterns over several vibrational quantum numbers for this observable are
also predicted for each excited state [8] which, to-date, cannot be experimentally verified.

It is a pleasure for the author of being invited to contribute to this book as a tribute to
Gaston Berthier who taught him in the late sixties at 'Ecole Normale Supérieure (rue
Lhomond, Paris)' how to use a particular molecular orbital formalism, developped in his
group, for a study on transiton metal complexes. This has been the beginning of a fruitful
collaboration over the years.

This work was performed as part of the research programme of the 'Foundation for
Fundamental Research on Matter (FOM)' which is financially supported by the
'Netherlands Organization for the Advancement of Scientific Research (NWO)'.
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Theoretical Treatment of State-Selective Charge Transfer Processes.
He as a Case Study

M.C. BACCHUS-MONTABONEL
Laboratoire de Spectrométrie Ionique et Moléculaire (URA CNRS n°171),
Université Lyon I, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France

1. Introduction

Charge transfer recombination of multiply charged ionic species in collision with neutral
atoms or molecules is an important process in astrophysical plasmas [1,2] and controlled
nuclear fusion research [3]. From an experimental point of view, these reactions have
been extensively studied in recent years using a wide variety of techniques (VUV
spectroscopy [4-11], energy gain spectroscopy [12,13], electron spectrometry [14,15]).
Much attention has also been paid to the interpretation of the electron capture processes
using model potential methods [16-181 which allow generally a fair description of the
phenomena in the case of closed shell systems, or ab initio methods [19-24] necessary for
the study of open-shell systems as for example low-charged ions or metastable states.

Recently, we have developed a full theoretical treatment of electron capture processes
involving an ab initio molecular calculation of the potential energy curves and of the radial
and rotational couplings followed, according to the collision energy range concerned, by a
semi-classical [21-23] or quantal [24] collision treatment.

As a test case, we report in this paper the study of the He collision. This work has
been undertaken in connection with photon spectroscopy experiments regarding the
electron capture for the reactions

at collision energies in the range [10-100 keV] [4,7].
In accordance with previous investigations [8,9], these experiments have shown a quite
different behaviour for than for other multicharged ions such as the isoelectronic
ion . The single-electron capture process has been shown to be dominant on the
n = 3 levels and in particular on the 3s level for collision energies lower than 50 keV. A
high probability of double capture has also been observed characterized by an intense peak
at nm attributed to the transition [4,5,7]. Furthermore,
for this system, metastable levels can be populated by foil excitation and may thus be
present in the incident beam. Experimental measurements have been performed for the
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and He collisions at 60 keV from photon spectroscopy
[6] and at 51 keV from electron spectroscopy [14].

A complete theoretical treatment of the He collision should therefore take into
account, first the single-electron capture process from the ground state entry channel

and also from the metastable level in order
to take care of the fraction of metastable ion in the incident beam, as well as the
double-electron capture process from both ground and metastable ions.

The single-electron capture process from the ground state is the
easiest one to handle and also the most important one. The capture being dominant on the
n = 3 levels, and the effect of spin-orbit coupling being of negligible importance for
electron capture in the energy range of interest, we have determined the potential energy
curves corresponding to the entry channel and all the

and states corresponding to the configuration.

The consideration of the collision involving the metastable ion
requires the calculation of much higher levels. The work has been undertaken in tight
connection with experimental investigations in order to reduce the number of states
involved in the molecular calculation. From an experimental point of view, it is assumed
that only the triplet metastable state will be involved in the collision because
of the shorter lifetime of the singlet state [25] with respect to the time-of-flight of the ions
from their production to the collision cell. Besides, among the doublet and quartet states

produced in the single-electron capture process, the doublet states are
rapidly autoionized, when the quartet states are metastable with respect to Coulomb
autoionization and then only transitions involving these quartet states may be observed.

As in the collision of the ground state ion on a He target, the main process has
been shown experimentally to be the core-conserving single-electron capture on the n = 3
levels [6,14] with a small amount of capture on the n = 4 levels. The transfer-excitation
process corresponding to a single-electron capture and an excitation of the core leading to

states has also been observed, with a dominance of the capture on the
levels [6,10]. In view of all these experimental findings we have thus considered the
collisional processes

and calculated the potential energy curves for the entry channel and the and
states of the configuration as well as the and states
corresponding to the configuration which could partly account
for the transfer-excitation process.

For the double-electron capture a very large
energy gap separates the two potential energy curves involved in the process, thus many
molecular curve crossings may be important and the population of the
level should probably come from a cascade effect. In practice, a complete treatment
including all the potential energy curves is impossible [18,26].
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As this process has been shown experimentally [5] to be dominant on the
level, we have performed a calculation including the entry channel

and the and states corresponding to the configu-
ration. We have also considered the states which are energetically
very close to the double capture states. Such a calculation could certainly hardly provide
quantitative results, but it could give some qualitative information on the behaviour of the
collisional system.

It has otherwise been shown experimentally [5] that the double-electron capture occurs
mainly from the , . ground state. We have thus neglected the contribu-
tion of the metastable ion.

The electron capture processes are driven by non-adiabatic couplings between molecular
states. All the non-zero radial and rotational coupling matrix elements have therefore been
evaluated from ab initio wavefunctions.

2. Computational method

The potential energy curves have been determined by ab initio calculations with configura-
tion interaction according to the CIPSI algorithm [27]. The SCF calculation has been
performed by means of the Psondo program [28,29] for the electronic configuration

From a molecular point of view, the and the 
He collisional systems have to be considered separately.

For the ground state system compact configuration interaction (CI) spaces
have been used in the calculation (about 100-150 determinants) with a threshold
for the contribution to the perturbation. According to the deep energy difference between

and the molecular orbital has been frozen in the CI procedure. The basis of
atomic functions used in the calculation [21] is a 9s5p3d basis of gaussian functions for
nitrogen and a 4slp basis for helium optimized from the 6-311G** basis of Krishnan et al.
[30J. Diffuse functions have been added — 2s2pld for nitrogen and 1p for helium — and
optimized with respect to the experimental data by means of a one-configuration
calculation for the excited states of and respectively.

This basis leads to a reasonable agreement with experiment [31] for a large number of
atomic levels of nitrogen (Table 1). For the determination of the couplings between the
states involved in the double electron capture process, a less expanded basis set has been
chosen — 8s4p3d basis set for nitrogen and 3s1p basis set for helium — leading to
shorter computation time while saving a fairly reasonable agreement with experiment.

The calculation performed for the metastable He system has necessitated
somewhat larger CI spaces (200-250 determinants) in order to reach the same perturbation
threshold the molecular orbital being not frozen for this calculation.The basis
of atomic orbitals has been also expanded to a 10s6p3d basis of gaussian functions for
nitrogen reoptimized on for the s exponents and on for the p
exponents and added of one s and one p diffuse functions [22]. For such excited states,
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no experimental data are available, so the most diffuse functions have been optimized with
respect to highly accurate atomic data of Chung [32] taking into account relativistic
correction terms. The results are reported on Table 2 and show a rather reasonable
agreement, the accuracy is of course somewhat poorer than for the ground state
but we are dealing with much more excited states. The comparison with relativistic atomic
calculations gives besides an insight over the importance of relativistic terms which seem
to be quite negligible with respect to the rate of accuracy reached in such calculations.

The evaluation of the radial coupling matrix elements between molecular states of the same
symmetry

has been performed by means of the finite difference technique [33]

For reasons of numerical accuracy, we have performed a three-point differentiation using
calculations at and with a parameter The origin of the
electronic coordinates has been generally taken at the N nucleus in order to eliminate the
non-vanishing coupling terms at long-range. The importance of possible translation effects
has nevertheless been estimated in the case of the metastable He system by
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performing the calculations of using both the N and He nuclei as the origin of
electronic coordinates.

The rotational coupling matrix elements between and states have been evaluated
analytically by use of the operators.

3. Molecular results

3.1. GROUND STATE SYSTEM

The potential energy curves of the states involved in the single- and
double-electron capture processes are displayed in Fig. 1. The potential energy
curves show no evidence of avoided crossings, but three avoided crossings appear in the
range [6.0-9.0 a.u.] between the entry channel and the states of
single-electron capture and at about 9.0 a.u. between the and

states.

The asymptotic energy values obtained by a configuration interaction calculation at 25 a.u.
corrected by the coulombic repulsion term (the 1/R4 term has been neglected) are seen to
be in quite good agreement with experiment (Table 3).

The main features of the radial coupling matrix elements are presented in Fig. 2. In corres-
pondence with the avoided crossings between the potential energy curves of single-
electron capture, sharp peaked functions appear at respectively 6.35, 7.50 and 8.30 a.u..
They are approximately 1.23, 2.53 and 12.21 a.u. high and respectively 0.75, 0.50 and
less than 0.10 a.u. wide at half height.
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The rotational coupling matrix elements between states of are
displayed in Fig. 3. At large internuclear distances, rotational couplings are seen to be
almost equal to 1.0 a.u. for states, corresponding to the same configuration,
i.e.

3.2. METASTABLE SYSTEM

The potential energy curves of the states are presented in Fig. 4. They show
four avoided crossings in the range [5.0-10.0 a.u.] between the entry channel, the state
corresponding to and the three states of single-electron capture

In relation with these avoided crossings, the radial coupling matrix elements present sharp
peaks at respectively 5.4, 6.6, 7.55 and 9.5 a.u. (Fig. 5). We may notice that these radial
couplings are almost insensitive to the choice of the origin of electronic coordinates. The
most sensitive one is the function at short internuclear distance range, but we may
expect weak translational effects for such electron capture processes dominated by
collisions at large distance of closest approach.

With regard to the results obtained for the ground state system all the
crossings are shifted towards shorter internuclear distances and have a lower height. The
main remark concerns, however, the presence of an avoided crossing between the entry
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channel and the state corresponding to the configuration which
explains immediately the possibility of a transfer-excitation process for the
collision; such a process was not observed with the ground state.

4. Collision dynamics

4.1. SINGLE-ELECTRON CAPTURE PROCESS FROM THE GROUND STATE

This is, beyond all doubt, the most important process and the only one which has been
already tackled with theoretically. Nevertheless, the prediction given by the classical
overbarrier transition model is not correct for this collision [9] and the modified
multichannel Landau-Zener model developed by Boudjema et al. [34] cannot explain the
experimental results for collision velocities higher than 0.2 a.u.. With regard to the
collision energy range, we have thus performed a semi-classical [35] collisional treatment
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of the single-electron capture process using the ab initio molecular data. The   state has
been neglected in the calculation. The strong radial couplings between the entry channel
and the states dissociating to have been fitted by Lorentzian
shape functions, while the other couplings and the potential energies have been fitted by
spline cubic functions.

The partial cross-sections on the n = 3 levels are displayed in Table 4 and Fig. 6 and show
a fairly good overall agreement with the experimental results of Cotte et al. [4,7] and
Dijkkamp et al. [9]. From a numerical point of view, the error bar has been estimated
experimentally to by Cotte et al. [4,7] and to by Dijkkamp et al. [9].
Theoretically, the error bar could be evaluated to about , the main difficulty arising
in the determination of the sharp radial couplings.

Table 4. Single-electron capture cross-sections on the n = 3 levels
(For comparison with Dijkkamp results, the collision energy is given in parenthesis
when different from ours).
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preted by the Landau-Zener model [34]. This feature seems to be driven at high energy by
the rotational coupling (Table 5), the levels showing a preponderant contribution to the
cross-section at 100 keV, especially for the states of the configuration.

4.2. SINGLE-ELECTRON CAPTURE PROCESS FROM THE METASTABLE

In consideration with the experimental data available, the collision dynamics has been per-
formed for two energies, 60 and 50 keV, by means of a semi-classical method using the
EIKONXS program [36]. As seen in Table 5, the contribution of the levels coupled by
rotational couplings appears to be quite negligible over the contribution of the levels for
collision energies up to 50 keV. The collisional treatment has thus been performed with

states only. Two calculations have been undertaken: one with the entry channel and
the three states of single-electron capture and one inclu-
ding besides the transfer-excitation state. The partial cross-sections of capture are
presented in Table 6 and compared with the experimental results of Bouchama and Druetta
at 60 keV [6]. Taking into account the experimental error bar, which is at least of 30% in
view of the weakness of the observed lines, the accordance appears to be quite good. This
result gives even confidence in the experimental results which remain particularly difficult
to analyse. Besides, the theoretical partial cross-sections are affected by less than 20% by
changing the origin of electronic coordinates, which is far behind the experimental error
bar.
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Table 5. Values of the single-electron capture cross-sections for the
states

A comparison of the partial cross-sections of capture at 50 keV, for the collision with He
of the ground state and the metastable . , is given in Table 7. About
the same values are obtained for both systems, with a slightly higher value of for the
metastable. This shows, a posteriori, that neglecting the fraction of metastable — which is
often done when no informations are available — should not lead to too high an experi-
mental error bar.
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4.3. DOUBLE-ELECTRON CAPTURE PROCESS FROM THE GROUND STATE

A quantitative treatment of this process should be “formidable” as stated by Crandall [8].
We tried just to get an insight into a possible interpretation of the phenomena.

For that, we performed two semi-classical calculations in the 10-50 keV energy range:
first a three-channel calculation including the entry channel and the states
corresponding to the configuration, and a six-channel calculation
including besides the states corresponding to

Assuming the contribution of the potential energy curves which have not been taken into
account to be almost constant with the collision energy, such calculations could provide a
relative estimate of the variation of the double capture cross-sections with the collision
energy. The results presented in Fig. 7 seem to be coherent with this hypothesis and to
corroborate a cascade effect for the double electron capture process.

5. Concluding remarks

This work provides an accurate and complete treatment of the collision of a multicharged
ion on a neutral atom target — here the helium atom — taking into account both ground
and metastable states.

As far as the molecular calculation is concerned, the use of an ab initio method is
necessary for an adequate representation of the open-shell metastable
system with four outer electrons. The CIPSI configuration interaction method used in this
calculations leads to the same rate of accuracy as the spin-coupled valence bond method
(cf. the work on by Cooper et al. [19] or on by Zygelman et al. [37]).

For the collision dynamics, a semi-classical method is quite accurate for intermediate
energies about 50 keV. Note the use of a more recent collision program using the
propagation method for the metastable system.
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The agreement shown between calculations and experiment gives confidence both in the
theoretical method used here, and in the analysis of experimental spectra, in particular in
the case of metastable state. Furthermore, the interpretation of the transfer-excitation
process is straight forward from the knowledge of the potential energy curves of the
collisional system.
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1.Introduction

The electronic states and potential energy curves of BH have been studied in
the past at considerably different levels of detail and accuracy. Of the ground
state, four vibrational levels have been observed [1-3], therefore only the lowest part
of the RKR curve is known [3-4]. A dissociation energy of has
been derived from the break-off of rotational lines for the . , assuming that
it corresponds to the top of a barrier in the potential energy curve of that state [2,5].
However, the above assumption has been criticised [6], and a recent analysis of the
tunnelling lifetimes in the state yields , in good agree-
ment with the most complete theoretical determinations [8,9]. The whole potential
curve for the state has been determined by several theoretical methods [10-12],
almost at the same level of accuracy as the calculations of
Four vibrational levels were observed also for the . and the states and
only one for the state [1,2]. Ab initio calculations have shown that the
potential energy curve has two minima [11,13-15], but the vibrational states which
should be accomodated in the outer minimum have never been observed. The double
minimum is due to a Rydberg-ionic curve crossing, which should affect also the shape
of the potential energy curves of the next excited states, C and However, only
the curve has been determined [15], and for a range of internuclear distances
such that the expected avoided crossings could not be detected.
The aim of this work is to obtain the four lowest curves and wavefunctions of
BH at the same level of accuracy and to bring out the interplay of ionic, Rydberg
and valence states at energies and internuclear distances which were not previously
investigated. We have therefore made use of a method, already put forward by us
[16,17] to determine at once quasi-diabatic and adiabatic states, potential energy
curves and approximate nonadiabatic couplings. We have analogously determined
the first three states, of which only the lowest had been theoretically studied
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[14,18,19]. The determination of electronic quantities is preliminary to the study of
molecular dynamics and radiative properties.
In section 2 we describe the method employed and in sections 3 and 4 we comment
upon the electronic energy curves and wavefunctions.

2.Method

We have performed ab initio calculations employing a gaussian atomic basis set similar
to that of Jaszunski et al [11], but slightly superior for the presence of more diffuse s
and p functions; these were necessary in order to represent higher Rydberg terms of
the B atom and the anion formed upon dissociation of the ionic state. The s and
p exponents were taken from van Duijneveldt's compilation [20]. His 13s,8p basis for
the B atom was contracted with the scheme 6111111,311111; two diffuse s and one
p function were added, with exponents 0.036, 0.014 and 0.015, respectively; three d
functions (not including the s combination of the cartesian components) were added,
with exponents close to Jaszunski’s: 1.0, 0.4, 0.12; the final basis had 10s,7p,3d
functions on B. For H we used van Duijneveldt's 9s basis, contracted with the scheme
51111 and supplemented with one more s (exponent 0.0165) and three p (1.0, 0.4,
0.135) functions; the exponents of the most diffuse s and p functions were such as to
minimize the full CI energy of ; the basis for H was thus 6s,3p. The computed
electron affinity of H is to be compared with the experimental value of

The closed shell SCF energy of BH at the experimental equilibrium
distance (R = 2.336 bohr) is -25.131322 a.u., while the HF limit is -25.131647 a.u.
[22].
SCF-CI calculations were performed at 20 different internuclear separations, from 1.2
bohr to The lowest separate atom states are . therefore,
in order to have a homolytic dissociation and three degenerate orbitals on B we
have adopted the closed shell Fock hamiltonian with fractional occupation [23]: one
electron was placed in the orbital, correlating with H(1s) at infinite separation,
and 1/3 each in the and orbitals correlating with B(2p).
Electron correlation was treated by the CIPSI multi-reference perturbation algorithm
([24,25] and refs. therein). The Quasi Degenerate Perturbation Theory (QDPT)
version of the method was employed, with symmetrisation of the effective hamiltonian
[26], and the baricentric (MPB) partition of the C.I. hamiltonian.
The zeroth order states were quasi-diabatic, as described by Cimiraglia et al

[16]. The adiabatic states are obtained by diagonalisation and then submitted
to a unitary transformation:

The _ transformation matrix is determined by the requirement that the sum of

square overlaps be maximized. The are simple reference wavefunc-
tions chosen so as to represent the diabatic states of interest. Their quality does
not affect the accuracy to which the adiabatic energies and wavefunctions are deter-

mined, but only the degree of “diabaticity” of the corresponding functions. The
QDPT is the natural complement of such a method, in that it allows a perturbed
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effective hamiltonian matrix H in the quasi-diabatic basis to be constructed. The
wavefunctions themselves are perturbed to first order:

and the final adiabatic energies and states are obtained by diagonalisation of the H
matrix:

The C matrix, the columns of which, , are the eigenvectors of H, is normally not
too different from the matrix defined above. However, the QDPT treatment,
applied either to an adiabatic or to a diabatic zeroth-order basis, is necessary in
order to prevent serious artefacts, especially in the case of avoided crossings [27].
The preliminary diabatisation makes it easier to interpolate the matrix elements of
the hamiltonian and of other operators as functions of the nuclear coordinates and
to calculate the nonadiabatic coupling matrix elements:

(see appendix); moreover, one can apply theoretical or empirical corrections to the
diabatic energies, in order to improve the location of the avoided crossings and the
general shape of the adiabatic curves; finally, the simple inspection of the diabatic
curves and of the vectors helps in bringing out the nature of the adiabatic states
and the relevant physical effects.
The construction of quasi-diabatic states often meets with the so called intruder state
problem. This can be stated as follows: a given set of adiabatic states, contiguous
in the energy ordering, is not spanned by the same basis of (approximately) diabatic
states for all nuclear geometries. Such is the case under study in this work. The first
four singlet and triplet states of BH at very large internuclear distances originate
from and

1) , ground state;
2) Rydberg excitation 2p —› 3s (excitation energy,
3) , valence excitation 2s —› 2p
4) , Rydberg excitation 2p —› 3p
We may temptatively identify the diabatic references with antisymmetrized
products of these B and H atomic states. The Rydberg series converges to the first
ionisation level the electron affinity of H brings the energy of the
ionic configuration to Six more excited states of B lie under
this level [28]; the attractive Coulomb potential of crosses all the flat curves
originated from such states, and also those of
at large internuclear distances (R > 10 bohr). As a result, the four lowest
states, for intermediate R, are linear combinations of three neutral and one ionic
state, approximately orthogonal to . To circumvent the intruder state problem,
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we change the definition of the fourth reference state, following a procedure already
described [17]. For the singlet states, will be the linear combination:

with coefficients depending on the internuclear distance: are determined
at the same time as the _ matrix, and by the same maximum overlap criterium,

As a result, the associated state is less strictly diabatic,
or diabatic only in certain ranges of R, but some interesting properties still hold: for

instance, the matrix elements should be small or negligible as asserted in
the appendix.
The situation for the states is similar, because of the autoionizing state

lying about above the ground state of the  anion ac-
cording to our full CI calculations. The state contaminates the fourth
at short R. However, we have chosen to study only the first three states, which
are approximately spanned by and, depending on
the internuclear distance, , Therefore, a linear
combination of the latter two states gives , while are defined as for
the singlets.
The orbitals employed to build the reference configurations were taken from atomic
SCF calculations for the appropriate states of , ._ . .__ . . _ , only for the va-
lence orbitals of the Rydberg states, we have
preferred to perform RHF calculations on the cation.
The CIPSI zeroth-order subspace was selected by performing preliminary calculations
at different R for four and three states; at medium and large distances
bohr), however, we determined five states, in order to guarantee
a correct description of the ionic singlet and of both the ' and

triplets, too. The same subspace, union of the subspaces resulting
from selections at different R, was employed in all the final calculations. We adopted
a modified version [25] of the three classes CIPSI algorithm originally proposed by
Evangelisti et al [29]. The zeroth-order wavefunctions and energies are determined
by diagonalisation in a subspace of 1287 determinants, (selection threshold = 0.018);
of these, 396 determinants (selection threshold = 0.038) originate single and double
excitations in the perturbation step.
The matrix elements of the electric dipole and of the operators were determined
for the perturbed wavefunctions. The finite differences technique was applied
to evaluate bohr (see [16] and refs. therein). All
the matrix elements in the basis were interpolated by cubic splines: notice that
the direct interpolation of the adiabatic matrix elements would require many more ab
initio calculations, especially in the proximity of the avoided crossings. The adiabatic
states and energies are then determined by diagonalisation for any desired value of
R (eqs. 3 and 4) and the matrix elements of other operators are transformed from
the diabatic to the adiabatic basis; this procedure allows an approximate evaluation
of the second derivative nonadiabatic couplings, (see appendix).
The first few bound vibrational states in each potential were determined by the Nu-
merov algorithm [30], in conjunction with a technique, similar to Hajj’s [31], which
allows to change both the starting and the ending point of the numerical integration
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according to the features of each vibrational state: this is advantageous especially
when dealing with double minimum problems and with bound states approaching the
dissociative limit.

3.Singlet electronic states and energies

The ground state non relativistic electronic energy of BH at equilibrium distance can
be evaluated in following the same procedure as Meyer and
Rosmus [10], but using more accurate values for [7] and the relativistic correc-
tion [32]; the uncertainty on the total arises from the experimental determination
of the dissociation energy. Given the HF limit, one evaluates the correlation energy
as 0.1528 a.u. We obtained a MPB total energy of -25.26125 a.u. (about 85% of
the correlation energy accounted for), while the variational (zeroth-order) CI gives
-25.18465 a.u. These values may be compared with some previous results: full CI
on a DZ + polarisation basis set, -25.22763 a.u. [33]; CEPA with two different basis
sets, -25.22588 a.u. [10] and -25.25512 a.u. [12]; CASSCF, -25.22413 a.u. [11]; MP4,
-25.21498 a.u. [34]; QCISD, -25.25358 [8].
The main features of the singlet adiabatic energy curves are summarized in table 1.
To avoid any ambiguity in the comparison with other results, we have given the first
four vibrational levels for each electronic state, rather than the vibrational constants.
Some of the data from previous works have been determined by spline interpolation
of the potentials and Numerov integration of the vibrational equations. The MPB
vibrational level spacings for the X, B and C states are too low by about 15, 30
and , respectively; the CASSCF results of Jaszunski et al 1981, limited to
the X and B states, are better under this respect. On the other hand, we have the
best results as concerns the dissociation energies, , the transition energies of BH,

and those of the B atom, Notice that the values
for the barrier and the outer minimum of the B state, shown in the first column of
table 1, are not true experimental data: they belong to the hybrid potential of Luh
and Stwalley [4], obtained by rescaling the theoretical results of Jaszunski et al [11].
An accurate treatment of the electron correlation is mandatory in order to evaluate
such quantities, because of the wide differences in electronic structure between the
states under consideration; however, in our opinion, the residual deviations from the
experimental data are mainly due to deficiencies of the atomic basis set: in fact,
CIPSI calculation for the isolated B atom and the , with enlarged zeroth
order spaces, did not improve the results.
Our potential energy curves too need some rescaling, in order to give, as far as possi-
ble, the correct ordering of the vibronic states belonging to different electronic terms,
and the right position of the avoided crossings occurring at large R. This is best done
by considering the diabatic energies, , because a constant or smoothly varying cor-
rection is not applicable to the adiabatic curves, at least in those regions where they
undergo abrupt avoided crossings. The diagonalisation of a corrected diabatic hamil-
tonian matrix yields modified adiabatic energies and states, according to eqs.(3) and
(4). Therefore, the nature of the electronic states and their dependence on R must
be taken here into consideration. Between R = 10 and 25 bohr, the ionic potential
curve of coulombic shape crosses (from now
on, we shall indicate the neutral states with the corresponding atomic term of boron,
for simplicity). Within this range of distances we were able to determine five diabatic
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and adiabatic singlets, because here the intruder state problem, as stated in the pre-
vious section, is absent (the next ionic-Rydberg crossing is expected at R = 36 bohr,
with the In the five states calculations, the reference wavefunctions
were the same as described above, but in place of the linear combination of eq.(7)
we had the two separate components Such a treatment
enables us to describe all the aforesaid crossings: however, small errors in the tran-
sition energies and ionisation potential of the B atom, or in the electron affinity of
H, bring about large displacements of the curve crossings along the R coordinate,
because of the reduced slope of the ionic curve in this region. We have therefore
applied the following constant corrections to the calculated diabatic energies
to . i.e. to the transition energies for the and

states, respectively:
The same corrections have been applied in the four states treatment, taking thor-
oughly into account that the fourth diabatic state gradually transforms from neutral

to ionic between 15 and 20 bohr. Although the corrections to the diabatic
potentials do not change abruptly in the crossing regions, they may depend smoothly
on the molecular geometry, as a consequence of specific deficiencies of basis set or
correlation treatment. Therefore, for bohr, about the equilibrium distance
for all the states, we have applied a different set of corrections, . The values
were adjusted so to reproduce the experimental dissociation and transition energies,

within For the state is unknown and has been es-
timated from T0–0 and a preliminary computed value of the zero point energy. In
conclusion we have: respectively
for the states; the ionic state, as
we shall see, does not contribute to the first four adiabatic states in the equilibrium
region. Between and bohr, we connect smoothly the
corrections:

where
The third column of table 1 contains the spectroscopic constants of the four
states, based on the corrected adiabatic potentials. Apart from the and
energies, which are bound to coincide with the experimental values, we observe a
remarkable improvement in the computed vibrational levels of the state. The

values here presented for the barrier and outer minimum of this potential
curve are probably the best estimates available to date. The vibrational levels be-
longing to the state are much less accurately determined, the energy differences

ranging from The only previous determination
of this potential energy curve leads to overestimate the same levels by
(the same holds for the lowest electronic states, and may be partly due to a poor
interpolation, i.e. to an insufficient number of points on the potential curves). No
comparison with previous determinations is possible for the
Figure 1 shows the corrected adiabatic energies for the states, which come
out practically identical from the four states and five states treatments (the same
holds for the nonadiabatic coupling and dipole moment matrix elements). Figure 2
shows the corrected diabatic energies, according to the four states treatment;
only the upper portions of the and ionic curves in the range 10 < R < 25
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bohr have been taken from the five states treatment. All the diabatic states here
considered are attractive. The two Rydberg states, and , have
a well depth of about , approximately the same as in the ground
state The ) state is more attractive, about 34600

and has the shortest equilibrium bond length; this can be rationalized, if one
considers that in the and states a single electron bond is formed
between the B(2p) and the H(1s) orbitals, whereas in the state a two
electron bond is formed between the B(2s) and the H(1s) orbitals. As a result, the

I state crosses around R = 3.2 bohr. The minima of the neutral
species are placed between 2.2 and 2.6 a.u., whereas the ionic state has a minimum
around R = 6 bohr, in the region where the other curves are almost flat. This is due
to the large ionic radius of for the unperturbed anion, an extrapolation from
X-ray electron density data gives bohr [35]. As a consequence, the ionic
curve crosses the three neutral excited ones, both in the long range with its outer
limb, and around R = 4 bohr with its inner limb.
The resulting adiabatic ground state is substantially at all distances, with
a non negligible contribution of between 4 and 7 bohr, and a stronger mixing
with at shorter distances. The interaction between and

is rather large (0.105 a.u. at R = 2.3 bohr, whereas all other off di-
agonal matrix elements are at least 6 times smaller): this makes the ground state
minimum deeper and tighter than the corresponding diabatic one, and displaces the

state to higher energies, so that it ends up being the second excited
state, , instead of the first.
The state is characterized by the double minimum. It dissociates as

, but it becomes mainly ionic in the outer potential well. The crossing of the
diabatic curves can be located at R = 10.4 bohr, but the minimum energy gap,

) and the maximum of (R) (see fig. 3) occur at R = 11.5
bohr; the shift is due to the decrease of with increasing the internuclear
distance. Anyway, the crossing region extends over a range of a few bohr, because of
the rather large ratio of versus the slope difference, Around the
maximum in the curve the ionic contribution almost disappears: the B state
is again substantially down to the equilibrium distance. This description
agrees with those based on Natural Orbitals, by Pearson et al [14], and on MCSCF,
by Jaszunski et al [11].
The next state, , dissociates as . It undergoes an abrupt
change to a combination of and at R = 17.5 bohr. Here the
minimum energy gap is much smaller, and the  (R) func-
tion consistently more sharply peaked (see fig.3). In this range of distances (10
to 20 bohr), the ionic state has much larger interaction matrix elements : with

and I than with this is due to the diffuse charge
distribution of the Rydberg states and of and is reflected on the very different
features of the avoided crossings here described. Around 11 bohr the state
switches gradually to , still keeping a partial ionic character. This state too
presents a double well potential, but the outer minimum is shallower and very flat:

bohr and a barrier of about which separates it
from the inner minimum. The barrier is located at about 4.5 bohr, where the mixed

/ionic character disappears, in the range of about 0.5 bohr. For shorter
distances the state is substantially



358 M. PERSICO ET AL.

The last state here considered, , dissociates as . It under-
goes two avoided crossings, one broad between 15 and 20 bohr, with the ionic
state, and one very narrow, at R = 17.5 bohr, involving the partially ionic and the

state, whence the peculiar shape of the (R) and coupling func-
tions. The E state remains , with a flat potential energy curve, down
to bohr. Around R = 4 bohr the ionic state crosses again and

, so that at shorter distances the state is substantially                                                                                                    .
Although the above considerations about the diabatic/adiabatic relationships make
sense and are confirmed by the shape of the and dipole moment functions
(see fig.4), one should keep in mind that the identification of the adiabatic states with
linear combinations of VB-like wavefunctions still contains some degree of arbitrari-
ness; this appears at two distinct levels. First, as in pure VB treatments, the reference
functions are not perfectly orthogonal among themselves, therefore one cannot rig-
orously attach a different meaning to each of them. The overlaps generally increase
when shortening the R distance; in particular, the 3s Rydberg orbital of boron over-
laps with the diffuse 1s of therefore the overlap between
(combination of reaches a maximum of about 0.4 around R = 6
bohr, where the weight of the ionic structure in . is largest; also, the overlap
is large at short distances, about 0.5 at R = 2.3 bohr, due to the superposition of the
B(2p) and H(1s) orbitals. The second source of arbitrariness is the greater or lesser
ability of the reference functions to span the adiabatic subspace one
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can take as a measure of the adequacy of the reference set. In
our case, the values of S range from a quite satisfying 0.96 at large R to an acceptable
0.86 at short R.

The success of the diabatisation procedure can be ultimately judged by computing
the matrix elements, as we have done in this work. Fig. 3 shows the
most important couplings, obtained from the five state treatment at large distances.
The state mixing term alone provides a very good approximation of the coupling
functions (eq. (18)). The contribution containing the functions, second
term in the r.h.s. of eq. (17), is largely negligible. In figs. 5 and 6 we show the
coupling functions for the first four singlets, at shorter distances. Here, the state
mixing term does not approximate the exact couplings with uniform accuracy: in
general, the agreement is much better for large couplings, such as those obtained in
the proximity of avoided crossings, than for small couplings, between states which are
well separated in energy (notice the different scales of figs. 3, 5 and 6). In practice,
the diabatisation procedure is most useful and the approximate couplings are most
accurate, in those cases where electronic transition probabilities are higher, and the
“exact” evaluation of couplings is more difficult (see also ref. [17]).
In a recent work [36], Bak et al presented a new method to obtain first-order corrected
radial couplings from MCSCF wavefunctions and applied it to three states of
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BH: their results are in good agreement with ours. A diabatisation procedure partly
related to ours has been put forward by Gadéa and Pélissier: see ref.[37] for a recent
application.

4.Triplet states

We have computed diabatic and adiabatic energies and wavefunctions for three triplet
states, originating from the asymptotes: I and

. As already mentioned, the first two diabatic reference states
simply coincide with the asymptotic wavefunctions, while is a linear combina-
tion of At large R we have almost pure

, below R = 5 bohr we have : the transition takes place grad-
ually around R = 6. The reason is that ] is repulsive, in the triplet
spin coupling. On the contrary, are binding,
in analogy with the corresponding singlet and the core. Two more avoided
crossings are quite evident in fig. 7: the repulsive curve crosses both

. The adiabatic curves alone, also shown in fig.
7, may not be interpreted so easily, because of the closeness of the two crossings both
in the distance and in the energy scale.
Fig. 8 shows the nonadiabatic coupling functions between states, which are
completely dominated by the double crossing feature. The coefficient mixing term is
a very good approximation of the total matrix elements, thus confirming the consid-
erations already put forward with regard to the singlets.
The lowest adiabatic state is completely dissociative. The second and third are bound,
but an efficient predissociation of the associated vibronic states can be predicted, on
the basis of the strong couplings and small energy gaps in the region of the minima.

5.Conclusions

In this work we have carried out a thorough investigation on the lowest states
of the BH molecule. In order to best elucidate the physical nature of the electronic
states, we have resorted to a quasi-diabatic description within the CIPSI-QDPT
method. Such technique is particularly adequate to characterize the behaviour of
both the electronic curves and the nonadiabatic coupling functions in the presence
of narrowly avoided crossings, a situation which is very common when considering
the dissociation of a molecule in electronically excited states. In such cases, the di-
abatisation technique here applied is able to yield approximate adiabatic coupling
functions in very good agreement with exactly evaluated ones. An application of our
results, concerning the time evolution of vibronic states, line widths, radiative and
predissociative lifetimes, is in progress.

6.Appendix

In this section we give the relations between the nonadiabatic coupling matrix ele-
ments in the quasi-diabatic and adiabatic representations. We do not obtain simple
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matrix transformation equations, because the differential operators, also
operate on the transformation coefficients. We have, by definition:

where is a column of the C matrix. The same equations hold for zero-order or
perturbed matrices and wavefunctions. The nonadiabatic coupling matrices in the
two representations are:

We shall make use of the Hellmann-Feynman type formula:

for Notice that In practical applications, this equation allows to
substitute the numerical differentiation of the coefficients with that of the hamiltonian
matrix. There are two advantages:
1) it is easier to impose the hermiticity constraint than the orthonormality
constraint
2) the elements normally are smooth functions of R; on the contrary, the
coefficients may undergo rapid variations in the proximity of avoided crossings, thus
making the numerical differentiation more difficult.
From eqs.(9,12,13), the relation between G and follows:

The “state mixing” term, the first in the r.h.s., usually dominates, at least in the
presence of avoided crossings. Its determination reduces to a simple problem of
interpolation of the matrix elements, according to eq.(16). The second term
corresponds, for large R, to the electron translation factor (see for instance [38]).
This term depends on the choice of the reference frame: that is, for baricentric
frames, it depends on the isotopic masses. It contains the matrix, which may be
determined by numerical differentiation of the quasi-diabatic wavefunctions [16]: this
calculation is more demanding, especially in the case of many internal coordinates.
It is therefore interesting to adopt the approximation:
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The functions obtained by this equation are labelled “coefficient mixing term”
in figs. 3, 5, 6 and 8.
The second derivative matrix elements give rise to three terms:

Only the first one is a pure state mixing term. The Hellmann-Feynman expression of
the two terms containing coefficient derivatives involves a bit of algebra. For
we have:

The summation runs over all The diagonal matrix elements are:

The calculation of the matrix, involving second derivatives of the electronic wave-
functions, is more expensive and subject to numerical inaccuracy than that of      .
A simple approximation for the third term in eq.(19) is based on a partial expansion
of the identity operator in terms of the diabatic basis:

Notice that the usually dominant term, the one containing is not approximated.
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Magnesium Photoionization: a K-Matrix Calculation with GTO Bases

R. MOCCIA

Dipartimento di Chimica e Chimica Industriale, Università di Pisa,
Via Risorgimento 35, I-56126 Pisa, Italy

P. SPIZZO

Istituto di Chimica Quantistica ed Energetica Molecolare del CNR, Via
Risorgimento 35, I-56126 Pisa, Italy

1.Introduction

The theoretical study of the molecular photoionization processes is an active field of
the current research. The calculation of the photoionization cross sections may be
advantageously done by resorting to the use of bases. In fact, these bases are
used by many powerful and available codes devised to treat bound-state problems,
which may be adapted to consider also the electronic continuum. If only the integral
cross section is required, the calculations are greatly simplified by methods, like the
Stieltjes imaging (1), that allow to obtain these quantities without a detailed knowl-
edge of the continuum wavefunctions. But if more detailed quantities are wanted,
like the branching ratios, the differential cross sections, the structure due to nar-
row resonances etc., a more detailed knowledge of the continuum wavefunctions is
necessary. In the atomic case, there exist efficient techniques for the continuum
properties and may be applied in connection with the powerful CI packages that are
currently available. Their application to molecular systems is thwarted by the re-
quirement that the variational functions must be accurate in a region far away from
the nucleus. Thus, they should be expanded upon bases of very diffuse orbitals, like
the STO or STOCOS ones (2). These bases are very cumbersome for molecular cal-
culations and only in few cases (usually the hydrides) one may tradeoff the problems
in the multicenter bielectronic integrals for the well-known shortcomings of a mono-
centric expansion. To take a full advantage of the current packages for molecular
structure, it is clearly necessary to develop an technique capable of extracting the
continuum properties from the comparative short-range representations allowed by
the GTO bases, which are an almost obligatory choice for molecules.
Unfortunately, in the molecular systems the theoretical predictions for the already
formidable electronic problem cannot be checked fairly against the experimental data,
since the nuclear motions may play major effects. From here the need to check these
methods in calculations on atomic systems, where accurate theoretical and compara-
ble experimental reference data are already available.
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In previous works, we have developed efficient techniques which have been ap-
plied to various atomic systems using STOCOS bases (3–5) and then to Helium
with GTO bases (6). This last calculation has shown the capability of our K-matrix
technique to obtain the continuum properties with GTO bases. As a matter of fact,
accurate results were obtained also in the energy regions of the autoionizing states,
where it is necessary to recover the interactions between diffuse discrete states and a
continuum. The present paper applies this method to Magnesium and shows that it
deals effectively also with other technical difficulties that are encountered in molecu-
lar calculations, e.g. the orthogonality to the inner shells and the strong short-range
deviations from the Coulomb potential.
Unless otherwise specified, all quantities are expressed in atomic units.

2. Method of calculation

The present method is an extension of the K-matrix technique pioneered by Fano (7).
Our previous works have discussed thoroughly its general aspects, the discretization
procedure (4,8) and the implementation upon the short-range GTO bases (6), so only
a concise description will be given here.
The K-matrix method is essentially a configuration interaction (CI) performed at a
fixed energy lying in the continuum upon a basis of ”unperturbed functions” that
(at the formal level) includes both discrete and continuous subsets. It turns the
Schrödinger equation into a system of integral equations for the K-matrix elements,
which is then transformed into a linear system by a quadrature upon a finite basis
set.
In the present implementation, the unperturbed functions are not subject to any or-
thogonality constraint nor are required to diagonalize any model hamiltonian. This
freedom yields a faster convergence of the variational expansion with the basis size
and allows to obtain the phaseshift of the basis states without the analysis of their
asymptotic behaviour.
For conciseness, throughout this article it is understood that all the states and mani-
folds have well defined symmetry, so the corresponding labels
and projectors are omitted wherever this is possible without ambiguities.

2.1. THE K-MATRIX UNPERTURBED BASIS STATES

The formal basis employed in the K-matrix calculation includes the relevant partial
wave channel (pwc) subspaces plus a ”localized channel” (lc) of discrete functions.
These last are usual CI states and their inclusion in the basis allows to efficiently
reproduce the autoionizing states and the correlation effects.
In the atomic case, the pwc’s are defined by the ion level I and the l value of the
electron partial wave, i.e. the formal pwc subsets span the tensor product of the ion
level states times the one-electron l-wave manifold. In the following, the subspaces
will be indexed with greek letters; a subspace index will designate explicitly
an open pwc subspace, while an index an arbitrary subspace. The lc subspace will
be numbered 0 and will denote the projector in the subspace
The formal basis employed for the pwc is made by the eigenfunctions
o f the channel hamiltonian i.e. the hamiltonian projected
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in the pwc subspace The are coupled products of the ion states times the an-
gular and spin functions of the outer electron (the so-called channel functions in the
close-coupling jargon) and N is a normalization factor arising from the lack of strong-
orthogonality of the outer orbital to the ion states. The radial functions behave
asymptotically as standing shifted Coulomb waves and the pwc basis functions may
be indexed by the corresponding energy For ease of writing, the same
notation is employed for both discrete and continuous eigenfunctions, normalized to
unity and respectively.
Since these formal bases, which are supposed to describe the true continuum back-
ground, will be represented upon finite sets, all the quantities which must be
interpolated from these representations (i.e. matrix elements and phaseshifts) must
be smooth functions of the energy index: this requires a suitable redefinition of the
channel hamiltonian if this supports narrow shape resonances.
Using GTO bases, it cannot be expected that the variational representations of the
electron waves are sufficiently accurate far outside the so-called “molecular region”,
i.e. the rather limited region of space where the potential clearly deviates from the
asymptotic Coulomb form. Therefore the phaseshifts of the pwc basis states cannot
be obtained from the analysis of their long-range behaviour, as was done in previous
works with the STOCOS bases. In the present approach, this analysis may be avoided
since the K-matrix technique allows to determine, by equation [3] below, the phase-
shift difference between the eigenfunctions of and the auxiliary basis functions

where are the bound and continuum radial eigenfunc-
tions in the Coulomb field. This requires variational representations accurate only
where the potential felt by the outer electron is different from that of a pure Coulomb
field and therefore this phaseshift difference builds up. Unless in special cases, the
auxiliary basis cannot be an orthonormal one.

2.2. THE K-MATRIX METHOD

If at the energy E there are n open channels, one may define n linearly independent
trial functions of the form

where P denotes the principal value of the integral and the summation over the

discrete part and the integration over the continuous one of the subsets. The expan-
sion coefficients are determined by imposing and
this leads to the system of coupled integral equations

The delta-function addendum removes the divergences from these matrix elements
and allows their representation upon bases. When the pwc basis functions are
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the eigenfunctions of the projected hamiltonian the intrachannel matrix
elements (E) are identically zero, but this is not required to apply the method

and indeed it must not hold for the auxiliary basis
The K-matrix on the energy-shell K ( E ) , defined by is a real
symmetric matrix on the real energy axis. As discussed in (4), it is related to the
scattering matrix and contains the quantities needed to analyze the resonances.
It should be noted that the integral equations [2] determining the elements
derived as an energy-variational problem, correspond also to the stationary condition
of the variational functional proposed by Newton (9). Thus the K-matrix elements
obeying equation [2] guarantee a stationary value for the K-matrix on the energy
shell.
When only one channel is open, the phaseshift is related to that

of the unperturbed basis function ) by

This relation allows, as said above, to obtain the phaseshifts of the basis func-
tions by a single-channel K-matrix calculation on the basis , whose non-
Coulomb phaseshifts are zero by construction.
The real K-matrix variational wavefunctions satisfy

so that two sets of complex orthonormal eigenfunctions may be obtained by:

where is the total phaseshift of . The states

obey the boundary conditions suitable for photoionization processes, since
they contain an outgoing Coulomb wave (with zero phaseshift) only in the channel

As discussed in (4), the K-matrix has a pole at energies near a resonance and this
yields a convenient method for the analysis of the narrow autoionizing states. The
matrix representation of equation [2] upon a finite basis may be in fact recast in
the form (4)

where P ( E ) is an almost diagonal matrix arising from the integration of P/(E – E')
times the polynomials that interpolate the K- and V-matrix elements over the basis
grid. Across a narrow resonance, the real symmetric matrix should
be a smooth function of the energy and one of its eigenvalues must change sign. Its
inverse may be therefore approximated, quickly and accurately, using the smallest
(in modulus) eigenvalues and their eigenvectors, which may be linearly interpolated
across the resonance. The blocked and almost-diagonal matrix P ( E ) may be easily
inverted, so it is possible to sweep the resonance profile with a great saving of CPU
time.
This approach proved accurate and convenient for the analysis of the narrow reso-
nances; the results presented in this work have been obtained without employing this
trick because the limited dimensions of this single-channel problem are easily handled
by the standard method.
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2.3. THE BASIS FUNCTIONS

The present calculations are at the frozen-core level; the inclusion of a phenomeno-
logical core potential is straightforward and has been avoided here only because it
will complicate the comparison of the results on GTO and STOCOS bases. All the
basis functions have the form is a single Slater de-
terminant built with the SCF orbitals for the ground state; for simplicity the core
will be hereafter omitted. The strong-orthogonality to a closed shell SCF core does
not cause any loss of generality and has been imposed for computational ease on the
valence group functions i. No other orthogonality constraint is imposed on the
basis functions, in particular the waves are not strong-orthogonal to the ion states nor
the pwc basis functions are mutually orthogonal. Each of these conditions, beside
slowing the convergence of the variational expansion, would inhibit the phaseshift
determination by the K-matrix calculation on the auxiliary basis.
The core orbitals have been expanded upon an 11s/5p GTO basis and the group
energy of the core is –198.747 against the value –198.823 obtained with a 4s/3p
STO basis. As well known, very long gaussian expansions are needed to obtain inner
orbitals of near-HF (SCF limit) quality, which is instead reached by relatively short
STO expansions. The GTO core employed here yields an higher total energy, but
generates a more attractive potential and hence more negative attachment energies
for the outer electrons.
The 3s and 3p orbitals of have been expanded upon all the GTO employed
for the inner orbitals plus other 5 GTO whose orbital exponents were optimized for
them.
For the description of the 3sel continua and of the higher 3pnl resonances, the bases
include a large number of configurations of the forms , where 3.s, 3p
are the lowest one-electron states in the field of the SCF core.
The localized basis function for the set 0 (ls) are usual frozen-core valence-shell CI
states; all the bound states involved in the present calculations are also described at
this level.

2.4. THE REPRESENTATION OF THE PARTIAL WAVE CHANNELS

The epresentations of the unperturbed states (uppercase
letters are used for the formal basis and lowercase ones for their representations)
have been obtained by diagonalizing the electrostatic hamiltonian over the
basis configurations mentioned above.

The variational representations of the regular Coulomb waves have been obtained
by diagonalizing the Coulomb hamiltonian upon the same orbital basis employed to
expand the waves . The following discussion refers explicitly to the states
but apply equally well to this ones.
The basis orbitals employed for the electron wave have the form

where is a third-degree polynomial in with coefficients depending on
The present work is mainly aimed at demonstrating the ultimate accuracy of the
method, so the sequence of the orbital exponents and the coefficients of
were determined to yield a large number of variational states in the lowest continuum
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with the least redundance of the metric. In atomic calculations, the rather expensive
introduction of these polynomial factors appears to be fully justified only in rather
special cases. Indeed, here one deals generally with a rather limited number of open
channels and may therefore employ a large number of basis orbitals, so a low metric
redundance is the only practical advantage. As a matter of fact, results of comparable
quality were obtained in preliminary calculations without this factor. The molecular
calculations, instead, require the proper consideration of many partial wave channels,
so the choice of the above parameters may be used to minimize the number of basis
functions.
The variational pwc states obtained with these bases include accurate representations
for the lowest bound states of the channel hamiltonian, broad ”wavepackets” in the
higher Rydberg region, a number of narrow wavepackets in the lowest continuum
and again broad wavepackets at higher energy. In this context, narrow wavepacket
means a variational state whose wave is almost exact, i.e. , inside
a sufficiently large sphere. When, as in the present case, the channel hamilto-
nians do not support shape resonances, the energy-normalization constants of
these narrow wavepackets may be fairly well approximated from the energy spacings,

The present method does not involve the analysis of the long-range behaviour of the
states, so its application requires only that the narrow wavepackets are accurate in-
side the molecular region. By equation [3], the phaseshifts of these states may be
determined through a K-matrix calculation on the auxiliary basis, so it is assumed
that the narrow wavepackets might be continued outside the molecular region as
shifted Coulomb waves.
The K-matrix calculations may be obviously performed only at energies inside the
range covered by the narrow wavepackets, which should allow to interpolate the ma-
trix elements and the phaseshifts of the channel basis functions. The contributions to
the integrals in equations [1,2] from the region of the narrow wavepackets are obtained
by interpolating the integrands on the grid supplied by the variational basis. Those
from the high-energy regions, which should be small and weakly energy dependent,
are instead approximated by summing the contributions of the broad wavepackets.
The basis for the discretized K-matrix calculations contains the narrow wavepack-
ets in their ”energy-normalized” form and all the other variational states
with unit normalization.
The calculations performed with gaussian bases have been checked employing also the
STOCOS bases which include, beside Slater and Hydrogenic orbitals, a large number
of STOCOS functions

These are probably the most efficient bases for calculations in the electronic con-
tinua of atomic systems and furnish reliable reference data for the GTO calculations.

3.Results

The present work is essentially concerned with the comparison of the results obtained
with the GTO and STOCOS bases: a thorough comparison of the STOCOS results
with the experimental data has been given in (3).
As noted above, the field exerted by the present GTO core on the outer electrons
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is slightly more attractive than that of a near-HF core and the attachment energies
for the outer electrons are slightly more negative than those obtained in valence-
analogous calculations with STO bases. This partially compensates the error due to
the intershell correlation, so, by a fortunate cancellation of effects, the GTO calcula-
tions yield valence energies in better agreement with experiment than those carried
out with STO bases; the most significant positions are reported in table 1. Also the
transition energies, of course, turn out slightly better with the GTO basis than with
the STOCOS one: the transition is predicted at 0.15770 and 0.15715 with
the GTO and STOCOS bases against the experimental value 0.15970.
In spite of the relatively poor description of the core, the present GTO calculations
yield accurate oscillator strengths: the data for the lowest-energy transitions from
the Mg ground state are given in table 2 and compare well with the STOCOS results.
The experimental values given in this table represent a less relevant comparison, due
to their uncertainties and/or normalizations upon theoretical results (3). All the
transition probabilities have been computed with both the length gauge (LG) and
the velocity gauge (VG) forms of the dipole operator and the gauge invariance of the
results is only slightly worse than that achieved with the STOCOS bases.
The properties of the continuum and the ground state photoionization cross sec-
tion have been studied from the 3s threshold up to a wave energy of about 0.150.
From this energy to the 3p ionization threshold at about 0.157, the crowding of the
resonances of the 3pns and 3pnd series makes hopeless further variational calcula-
tions. The quality and regularity of the present results, however, allow to extrapolate
safely the properties of this region, e.g. by fitting formulae based on the quantum
defect theory.
In addition, we have investigated the broad resonance, which lies rather close
to the ionization threshold and represents therefore a stringent test for the capabili-
ties of the method in the delicate low-energy region.
The positions and the widths for the above autoionizing states have been obtained
from the analysis of the scattering matrix as described in (4); the results of the present
GTO and STOCOS calculations are reported in table 3. On the whole, the GTO and
STOCOS results compare quite well, with a significant difference only for the width
of the 3p3d resonance. As discussed in (3), a frozen-core calculation of this kind re-
produces accurately the position of the levels 3snl, 3pnl with respect to their
parent ion. Indeed, the calculated wave energies of the 3pns and 3pnd resonances
compare well with their experimental counterparts when corrected for the intershell
energy difference 0.0054 between the 3s and 3p ion levels. Instead, the position of
the resonance cannot be reproduced very accurately with respect to neither
of these thresholds, since its intershell correlation energy is intermediate between
theirs. The GTO and STOCOS calculations yield values in good agreement for this
resonance, although the predicted width is somewhat larger than the experimental
value
The ground state photoionization as calculated with the GTO and STOCOS bases is
given in figure 1. The agreement of the two calculations is satisfactory, apart in the
critical region of the very low wave energies. It is interesting to note that the correla-
tion effects in this continuum are so strong that the cross section to the unperturbed
pwc basis functions (which are the best frozen-core single-configuration approxima-
tions) is far from being the coarse average of that to the correlated states: it amounts
to 10 Mb at the threshold and would lie off the figure in most of the energy range.
The phaseshifts for the manifold are reported in figure 2 from the ionization
threshold up to the photoelectron energy 0.1, across the lowest broad resonance
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(3p4s). The phaseshifts of the unperturbed STOCOS states plotted in this figure
(points) have been calculated by fitting their asymptotic behaviour, but nearly iden-
tical results have been obtained by the single-channel K-matrix step. Only this last
technique has been employed for the GTO basis; the calculated phaseshifts (circles)
agree closely with the STOCOS results and demonstrate the ability of our method to
obtain these quantities from moderately diffuse bases. The difference in the phase-
shifts for the K-matrix states in the GTO and STOCOS calculations is partially due
to the different wave energy of the resonance (about 0.002 lower with the STOCOS
basis).
The s–wave contribution to the photoionization from the level is plotted in
figure 3 and shows a quite satisfactory gauge invariance. Its peak value is in excellent
agreement with that yielded by our previous STOCOS calculations, 346 Mb (3).

4. Conclusions

It may be concluded that a method based on the K-matrix technique may be con-
veniently adapted to calculate the continuum properties using variational basis
functions that are accurate only inside the ”molecular region”. This means that the
calculations may be carried out upon GTO bases, which allow the extension of the
proposed method to molecular systems, as already checked for (13).
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Investigation of Photochemical Paths by a Combined Theoretical and
Experimental Approach

F. MOMICCHIOLI, I. BARALDI, A. CARNEVALI and G. PONTERINI
Dipartimento di Chimica, Università di Modena, Via Campi 183, I-41100, Modena, Italy

1. Introduction

The attempt to set the wide field of photochemical reactivity within the framework of
quantum chemical methods is relativity recent, if one considers what has occured in other
fields like, for instance, electronic molecular spectroscopy. In the common view, the origin
of theoretical photochemistry dates back to two papers, published in 1972, which first
provided a general description of biradical-like species by elucidating their electronic
structure in terms of the basic 3x3 CI model [1], and bringing to light their role in organic
photochemistry [2]. From then on Salem, Michl and others, starting essentially from
analysis of state correlation diagrams, have introduced several new theoretical concepts,
such as avoided crossing, funnel, twisted intramolecular charge transfer (TICT) state, etc.,
which are now currently used to rationalize a variety of photophysical and photochimical
behaviours (for comprehensive descriptions, see ref. [3-6]). By accurate calculations on
simple model systems [4,5], the above mentioned concepts have been shown to have fairly
general validity, so they can be seen as real supports for the modern theory of organic
photochemistry.
On the other hand, when dealing with photochemistry of large molecules in dense media
(e.g organic dyes in liquid solution) the application of the above interpretative framework
faces two serious problems. The first one is that construction of potential energy surfaces
of the ground state (S0) and some low-lying electronic excited states (at least  )
cannot be fulfilled by the same ab initio extended-CI procedures used for the model
compounds. Thus, one should have resort to all-valence-electron NDO (neglect of
differential overlap) methods which yet, in their current formulations, have proved more or
less inadequate to build ground and excited state potential surfaces, particularly along paths
leading to conformational rearrangements or formation of photoreaction intermediates
(radical-like structures) (for detailed analysis, see ref. [7-10]. The second problem comes
from the fact that the potential surfaces for the isolated molecule, even if they were rightly
calculated, are in principle poorly representative of the photochemical behaviour in
solution phase where energy minima and barriers may be substantially affected by solvent
polarity and viscosity [6, 11-16].
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Starting from such considerations, during the last decade we have searched for an
effective approach to the theoretical understanding of the condensed-phase
photochemistry of large organic molecules. Our study had two major components:
1) formulation of a new model Hamiltonian of the all-valence-electron type capable of
providing, in the case where it is adequately solved, qualitatively correct descriptions of
the reaction paths in both the ground and lowest excited states, and 2) implementation of
photophysical and photochemical measurements devised to minimize the degree of
arbitrariness inherent in any comparison between the results of molecular quantum-
mechanical calculations and the experimental observations in condensed phase. As for
point 1), our studies led us to publish in the early 1980s two modified INDO-based
methods, namely C INDO [9] (limited to prediction of ground state properties) and CS
INDO [10] (capable of reliably handling both ground and excited state properties),
subsequently applied to the study of electronic spectra and cis-trans (ground and excited
state) isomerizations in a variety of conjugated systems: diarylethylenes [17-20],
polyphenyls [21], binaphthyls [22,23], cyanines [24,25], diphenylmethane dyes [26],
donor-acceptor-type stilbene derivatives [27,28], etc. . Point 2) was fulfilled by setting
up in our laboratory a complete equipment for both stationary and time-resolved
nanosecond spectroscopy as well as by access to picosecond spectroscopic apparatuses
of external laboratories.

The remainder of the present article is divided into two parts. The first one reviews
the main points of our combined theoretical-experimental approach. The second one
reports an application of it to the study of the mechanism and dynamics of trans-cis
photoisomerization of bisdimethylaminopentamethine cyanine (BMPC)#1.

2. Combining theory and experiment

2.1. CONSTRUCTION OF MOLECULAR WAVEFUNCTIONS AND POTENTIAL
SURFACES: THE CS INDO MODEL

CS INDO [10] (as well as the parent C INDO [9]) shares the same basic idea as the
PCILO scheme [29,30]: to exploit the conceptual and computational advantages of using
a basis set of hybrid atomic orbitals (AOs) directed along, or nearly, the chemical bonds.

In the PCILO scheme the hybrid AOs, determined according to Del Re's method
[31], are used to construct a basis of molecular orbitals (MOs) localized on the bonds
and lone pairs, and from this to build a configuration basis set constituted by a fully
localized determinant, representing the chemical formula, and the excited configurations
obtained by utilizing the antibonding orbitals. On this basis, two different perturbative
CI procedures were developed in successive times for the ground state [29,30] and the
excited states [32,33]. In short, the early one is a perturbation expansion up to the third
order for the fully localized determinant, taken as the zeroth order ground state
wavefunction. As is well known [34], the CNDO version of such PCILO scheme

#1 This study starts from previous work carried out by three of us (F.M., I.B., G.P.) in collaboration with
Bcrthier [24,25], and may be considered as the logical pursuance of it.
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overcomes, at least partly, the most striking failures of the ordinary CNDO-SCF
procedure as far as the conformational predictions are concerned. The PCILO-CNDO
method for the excited states, as proposed by Langlet and Malrieu [32,33], is based on a
second-order perturbation treatment of multiconfigurational zeroth-order wavefunctions
determined by variational CI on a proper basis of local single excitations. A similar
procedure, using the CIPSI method [35] for a better choice of the zeroth-order
wavefunctions, was applied to study cis-trans photoisomerism in styrene [36] and s-
trans-1,3-pentadiene [37] and emphasized the usefulness of the excitonic scheme in
interpreting photoreaction mechanisms.

In conclusion, from the scanty reported applications the CIPSI-PCILO-CNDO
procedure stands as an interesting investigation tool in photochemistry. However, with
especial reference to large conjugated systems, the PCILO-CNDO scheme has some
limitations arising from both the very model (e.g. arbitrariness sometimes arising in the
choice of the zeroth-order localized structure [30,38]) and the CNDO parametrization
(e.g. underestimation of the internal rotation barriers [9,34] and, at the same time, large
overestimation of transition energies [30,36,37]), the latter defects being retained at the
INDO level of approximation [39].

Thus, we resolved to reconsider the delocalized NDO-type MO-SCF techniques and
explore the possibility, if any, of decidedly improving their predictive capabilities
through the use of hybridised AO basis sets. It is well known that the main defect of
CNDO and INDO SCF procedures, making them hardly usable to predict conformations
and rotational barriers of conjugated molecules [9,34,40], is an anomalous stabilization
of geometries with perpendicular arrangement of subsystems. This failure originates in
a large overestimation of (hyperconjugative) interactions [7-9] which is traceable in

turn to the fact that CNDO-INDO methods adopt averaged , bonding parameters (i.e.
depending only on the nature of atoms A and B) in order to satisfy all invariance
conditions [41]. In fact, the use of averaged parameters causes inadequate

differentiation of the resonance integrals corresponding to the various

types of interactions occurring in conjugated systems. Of course, the
correct differentiation might be approximately restored by introducing specific screening
constants , but the realization of this simple idea requires the characters
of the interactions to be unequivocally identifiable in any context. In planar geometries,
the belonging of the basis AOs to or systems is fixed by symmetry, so proper
screenings can be introduced for and interactions using pure Slater orbitals (e.g.
with orbitals forming the system), as is done, for instance, in CNDO/S [42] and
INDO/S [43] methods. However, in out-of-plane twisted conformations the use of pure
Slater orbitals does not make it possible to discriminate between and symmetries
(now definable only within each planar subsystem), and hence the CNDO-INDO/S
procedure for the evaluation of integrals becomes ineffective. On the other hand, by
switching from the usual STO valence set to a set of hybrid AOs retaining or (local)
symmetry in both planar and non-planar geometries, the resonance integrals can be
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made to correspond to chemically well-defined interactions and can therefore be
specifically reparametrized according to a formula like

where is the overlap integral between the hybrid orbitals (atom A) and ; (atom
B) and is a screening factor depending on the nature of the involved hybrids.
There is ample evidence [9,17,44] that the INDO SCF procedure transformed according
to this scheme (C INDO) can provide predictions comparable to those of minimal-basis-
set ab initio SCF calculations for conformations and rotational barriers of conjugated
molecules in the ground state.

Starting from the C INDO scheme, in a second step we derived a new version of the
method (CS INDO, where C and S stand for conformations and spectra) [10] capable of
correctly handling electronic spectra and excited state potential surfaces, yet preserving
the quality of the C INDO predictions as far as the ground state properties are
concerned. The relevant changes incorporated into CS INDO are: 1) re-modelling of the
screening effects for integrals, 2) scaling down of the electron repulsion integrals

according to one of the current "spectroscopic" parametrizations (e.g. Pariser-Parr,
Ohno-Klopman, Mataga-Nishimoto), 3) use of a new formula for core-core repulsions

) self-fitting the adopted parametric function. Moreover, rather extended -
properly selected CIs are performed as needed for a correct excited state treatment.

At the present stage of development [45] the essential steps of the CS INDO CI
procedure can be summarized as follows:
1) A basis set of hybrid , having or n character, is prepared by the Slater s,p
valence set according to the maximum overlap criterion [31,46]. An extension to d
orbitals is in progress.
2) The selection of the screening factors for integrals is made assuming and
obtaining the best values of by fitting rotational barriers, transition
energies and transition energies, respectively. The remaing factors are
then deduced by a simple proportionality criterion. It being understood that ' is kept
equal to one ("pivot" parameter) the optimized values of the other screening factors are
slightly dependent on the adopted CI scheme (see point 4). The introduction of three
extra-parameters related to chemically distinct interactions and controlling distinct
molecular properties, is the main feature of the CS INDO method.
3) Apart from minor exceptions all other parameters are given the same values as in
standard INDO (electroneguivities, Slater-Condon parameters, bonding parameters) or
CNDO/S (one-centre repulsion integrals) methods. Two-centre repulsion integrals are
usually evaluted by the Ohno-Klopman formula.
4) With reference to our main target (large conjugated molecules), CI calculations are
expanded on the subspace of the configurations generated within a restricted MO basis
set encompassing all and type orbitals which, in CS INDO, are easily identifiable in
non-planar conformations, too. From this common starting point CI calculations are
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performed by purely variational or mixed variational-perturbative (CIPSI-type [35,47])
approaches. In both cases a rather limited number of representative configurations (e.g.
the monoexcited configurations "localized" on the characteristic chromophores) form a
privileged reference set for the construction of the CI matrix.

The results of the above cited applications [18-28,45] have clearly shown that CS
INDO method is fairly successful in combining equally satisfactory predictions of
electronic spectra and potential surfaces (especially along internal rotation pathways) of
conjugated molecules, a goal never reached by other NDO-type procedures. CS INDO
shares, at least partly, the interpretative advantages of the CIPSI-PCILO-CNDO
procedure [32,33,36,37], coming from using the same hybrid AO basis sets, but
improves its predictive capabilities as far as spectroscopic and photochemical properties
are concerned.

The advantages of CS INDO with respect to all other NDO-type procedures derive,
in summary, from the resonance integrals being made to depend on the nature (in the
chemical sense) of the interacting orbitals. This implies, in principle, loss of the
hybridizational invariance [41], but the practical disadvantages are slight since in
general the hybridization is nearly determined by the molecular structure and, when
ambiguity arises (e.g. with nonbonding hybrids of heteroatoms), hybridization may well
be fixed according to an energetic criterion [44]. A more serious deficiency of CS
INDO, inherent in the INDO approximations, concerns the description of those
Coulombic interactions where the angular dependence plays an important role (e.g. lone-
pair interactions). This defect, due to the use of spherically averaged two-centre
electron-repulsion integrals (required to preserve rotational invariance), could be partly
overcome by switching to the NDDO level of approximation [48,49], but the benefit
would not balance the difficulty of working out a complete re-parametrization of
NDDO for the excited states.

From the foregoing considerations, taken as a whole, the CS INDO CI method
appears to be a suitable tool to try to explore ground and excited state potential surfaces
of large conjugated molecules. On the other hand, such systems are commonly studied
in solution, so one must face the extra problem of the possible solvent effects (see next
section) on the mechanism and dynamics of photochemical processes. Of course, no
effects of the solvent viscosity can be explicitly treated within the framework of the
electronic theory of photochemistry. However, leaving aside specific solute-solvent
interactions, the dielectric solvent effects can be conveniently evaluated by theoretical
models treating the solvent as a continuum, essentially the reaction field and the virtual
charge (solvaton) models [3]. Quantum chemical SCF treatments incorporating the
dielectric effects of the solvent have been developed for both models [50-52]. Such
direct quantum chemical approaches are certainly advisable for studies limited to the
ground state, but they are hardly practicable in photochemistry where the solvent effects
on the ground state and some lowest excited states are to be evaluated at the same time.
Thus we limit ourselves to calculating state by state the solvation energy of a
solute molecule using its electrical properties as obtained in the isolated-molecule
approximation. Following the conclusions of a recent study [27], where the two
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continuum models have been comparatively tested, we evaluate according to the
solvaton model which, after Hedrich et al. [53], can be conveniently expressed as:

where is the static dielectric constant of the solvent, is an average effective atomic
radius, is the distance between the centres of the atoms A and B, and QA (QB)is the
net charge on the atom A (B) derived from the CI treatment of the isolated molecule. As
pointed out in ref. [27], this "microscopic" model is superior to the "macroscopic" ones
based on the global dipole moment of the solute, since it is able to take into account
local solute-solvent interactions. This is especially important in large molecules, where
high local net charges may well occur in spite of a small global dipole moment.

2.2. PRODUCTION OF SELECTED PHOTOPHYSICAL AND PHOTOCHEMICAL
DATA

As said above, our theoretical tools are especially effective for studying
photoisomerizations (in a generalized sense) of conjugated non-rigid systems. Such
processes usually involve large amplitude motions of rather bulky groups, so that
coupling of these motions with solvent drag is often strong. Furthermore, in many cases,
marked changes of the electrical properties, related to separation or localization of
charge, take place along the reaction coordinate (e.g. sudden-polarization [54] and
TICT-formation [6] phenomena). As a consequence, coulombic interactions with solvent
molecules may deeply affect the potential governing the internal motion of a solute
molecule. A fruitful experimental approach should provide selected and organized
experimental information on both the spectroscopy of the species and the dynamic of the
processes involved in the photoisomerization.

This purpose is achieved in our laboratory carrying out photostationary (steady-state
fluorometry and photolysis) and time-resolved (time-correlated fluorescence single-
photon counting, laser or conventional flash photolysis) experiments, at variable
temperature and in solvents with different polarities and viscosities. The results may
consist as well in the absorption and emission spectra of a number of transients (e.g.
triplets and photoisomers) as in lifetimes, quantum yields and rate constants. The
analysis of the temperature dependences of the latter affords the preexponential factors
(A) and activation energies of the processes under study in the solvent employed.
The repetition of the variable temperature measurements in several solvents of very
different dielectric constants, yet similar and low viscosities, will make the "pure"
medium-polarity effects on the kinetic parameters emerge and will help to check the
validity of a theoretical model [55] as well as to verify the reliability of the calculated
solvation energies. However, in order that a more quantitative check of the calculated
potential barriers may be possible, activation energies must be cleared of the
contributions arising from solvent frictional effects. Such "intramolecular" (but for
electrostatic solute-solvent interactions) activation energies are obtained as the slopes of
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isoviscosity plots made with data measured in a series of homologous solvents. Within a
certain accuracy, the procedure itself provides a check of the reasonableness of the
assumptions on which it rests [16].

Steady-state experiments can also be designed within the same kind of strategy. As
an example, we can cite recent works [25,45], where the results of a quantitative
analysis of the resolved absorption spectra of a number of trans and cis isomers of
cyanine dyes were compared with calculated oscillator strengths and transition energies
so as to propose the identification of the observed phototropic species as well defined cis
isomers.

Starting from the results of such a theoretical-spectroscopic investigation on BMPC
[25], in the next section we report a typical application of the above outlined approach,
in which kinetic measurements as functions of the solvent properties have been
prompted by theoretical considerations and the experimental results are used in turn to
analyse critically the calculated potential energy curves.

3. An example: the trans cis photochemical and cis trans thermal back
isomerization of BMPC

Photoisomerism of BMPC (Scheme 1) has already been investigated by us [25] through
the comparison between the calculated spectra of the trans and the two mono-cis (2-3
and 3- 4 cis) isomers, on the one hand, and the experimentally resolved spectra of the

stable and photochemically produced forms, on the other. It was concluded that
irradiation of the stable (all-trans) form results in the formation of a single isomer with
cis-planar structure and, by considerations on the intensity relations between .    and

(cis peak) transitions, the phototropic species was assigned as the 3-4 cis isomer.
Both these findings appeared to be in agreement with the predictions of an early
theoretical study based on simple MO correlation diagrams as well as on explicit
potential-energy curve (CS INDO CI) calculations [24] for unsubstituted pentamethine
cyanine (PC). Ref.s [24,25], taken together, disproved previous theoretical
interpretations [56,57] according to which cyanine photoisomers should correspond to
twisted ground state conformations (resulting from a 90°-rotation around one of the C-C
bonds) strongly stabilized by electrostatic solute-solvent interactions. In view of such a
striking interpretative contrast, and considering that calculations of ref. [24] had been
carried out for a model system (PC) neglecting any solvent effect, we decided to tackle
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the dynamic aspects of BMPC photoisomerization in solution more thoroughly through
a proper sequence of calculations and experiments.

As a first step of this work, we wanted to verify if the predictions of the previous
theoretical study on the prototype system (PC) [24] were valid for BMPC, as well. For
this aim we theoretically analysed the pathways leading from trans to (2-3 and 3-4)
mono-cis isomers and explored, in addition, the possibility of concerted isomerizations
at two C-C bonds (taking the 2-3, 4-5 double isomerization as an example).

Let us first recall some basic characteristics of the cyanine isomerization
mechanism, as emerging from simple MO correlation diagrams like those of Fig. l. In

reference to Fig. la, it is evident that isomerization at one C-C bond involves formation
of a twisted intermediate characterized by two decoupled subsystems
having even and odd numbers of centres. Due to the localization, at ' the
cationic charge is borne by the even (polyenic) fragment in the ground state and shifts to
the odd (polymethinic) fragment upon HOMO-LUMO excitation. A substantially
similar situation arises with two-bond isomerizations (Fig. 1b) even if the scheme is
made more complex because of the presence of three mutually orthogonal subsystems
at In summary, Fig. 1 emphasizes the fact that the foreseeable
photoisomerization intermediates have TICT-like nature (related to full localization of
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the positive charge, instead of charge separation as in the classic TICT donor-acceptor
systems, e.g. DMABN [6]). As previously argued [24], the CT nature of the perp forms
points to some other basic properties: 1) quasi-degeneracy of the and (essentially
HOMO-LUMO) states, 2) low efficiency of the intersystem crossing, 3) possible
occurrence of intramolecular minima at the perp conformations.

Since the negligible contribution of intersystem crossing to the radiationless
decay of cyanine-like systems has been firmly established [26,58,59], henceforth we
will consider only the properties of the and potential surfaces involved in the
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photoisomerization and the thermal back isomerization,
respectively. The results of the CS INDO CI calculations for the 2-3 and 3-4 one-bond
and 2-3, 4-5 two-bond isomerizations are represented in Fig. 2. The concerted two-bond

isomerization is predicted to be hindered by high barriers at in both the
ground and the excited state This result does not
explain the very short fluorescence lifetime in octanol at
room temperature [57]; for in 1:1 ethanol-methanol mixture see later) nor the aptitude
of BMPC and other streptocyanines for photoisomerization [25]. We consider this as
sufficient proof to rule out definitely simultaneous isomerizations at two C-C bonds. On
the other hand, the potential curves for both 2-3 and 3-4 single isomerizations are in
keeping with the observed photophysical and photochemical behaviours. The main
aspect is the presence of pronunced perp minima in which can be easily reached from
the directly excited form by overcoming of more or less little barriers (4.5 and

for the isomerizations around 2-3 and 3-4 links, respectively) and through
which decay to the ground state trans and cis isomers may rapidly occur (the barriers for
thermal back isomerization of 2-3 cis and 3-4 cis isomers being 25.4 and 24.2 kcal

respectively). From the comparison between the calculated barriers the formation
of the 3-4 cis isomer appears to be decidedly favoured in agreement with both the CS
INDO CI calculations on PC [24] and the analysis of the spectrum of the phototropic
form of BMPC in methanol solution [25].

In conclusion almost all the experimental observations concerning photophysics and
photochemistry of BMPC in alcoholic solutions appear to be fairly accounted for by
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calculations performed in the “free space” approximation. Of course, this requires
supplementary investigations since, in principle, one should expect both the
photoinduced and the thermal isomerization dynamics to be
influenced by solvent polarity, owing to the charge localization phenomenon in the
and perp forms (Fig. 3), as well as by solvent viscosity, as has been observed with
many other polymethine cyanines [16].

As for the theoretical treatment, we could only try to include the electrostatic solute-
solvent interactions and, in fact, we corrected the electronic potential energies for the
solvation effects by simply adding as calculated according to the solvaton model
[eq. (2)]. The resulting potential curves are to be seen as effective potentials at
equilibrium, i.e. reflecting orientational equilibrium distributions of the solvent dipoles
around the charged atoms of the solute molecule. In principle, the use of potentials thus
corrected involves the assumption that solvent equilibration is more rapid than internal
rotation of the solute molecule. Fig. 4 points out the effects produced on the potential
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energy curves by two solvents of very different dielectric constants when
using the net charges derived from monoconfigurational descriptions of (SCF
determinant) and ([HOMO, LUMO] configuration) states. Owing to the fact that the
cation charge begins to localize at highly twisted conformations, solvation manifests
itself as a potential energy lowering (much more marked in than in around the
perp forms As a consequence, the small barriers impeding
conversion in located at low values of appear to be very little
affected by the solvent polarity, while the barriers to trans-cis isomerization in S0,
located at undergo a significant, yet not very large, decrease when the solvent
polarity increases. Anyway, some 50% of the limit polarity effect is obtained on passing
from the gas phase to a solvent of low dielectric constant In order to check
the internal consistency of the predicted solvation effects we recalculated using the
atomic charges obtained by rather extended CI wavefunctions (Fig. 5). Not surprisingly,
appreciable changes were found only for the excited state and were confined to a smaller
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stabilization of the perp form. In summary, Fig.s 4,5 indicate, in agreement with the
results of Fig. 2, that BMPC photoisomerization proceeds preferably through rotation
around the 3-4 bond and involves overcoming of a small barrier (between 1 and 2 kcal

almost independent of the solvent polarity. On the other hand, not very large yet
significant polarity effects are expected for the barrier hindering
isomerization in which is of in the gas phase and goes down to

in a highly polar solvent

The validity of the above conclusions rests on the reliability of theoretical
predictions on excited state barriers as low as 1-2 Of course, this required as
accurate an experimental check as possible with reference to both the solvent viscosity
effects, completely disregarded by theory, and the dielectric solvent effects. As for the
photoisomerization dynamics, the needed information was derived from measurements
of fluorescence lifetimes and quantum yields on solution of
Leaving out solvents of very low dielectric constant, where extensive formation of ion
pairs may occur [60], the observed photophysical properties are confidently referable to
the unperturbed BMPC cation. Figure 6 shows the temperature dependence of the
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fluorescence lifetime of BMPC in 1:1 EtOH-MeOH mixture; is about 1.6 ns at
temperatures lower than 100 K and drops suddenly upon heating the sample:  ps at

Further heating causes a much slower lifetime shortening. Such a behaviour is
parallel to that of the solvent viscosity, which undergoes a steep change between 100
and 130 K due to matrix melting [61]. This indicates that solvent friction considerably
affects the photoisomerization dynamics of BMPC and poses the very question whether
the photoisomerization of BMPC is a barrierless process, so that its kinetics would be
affected by temperature only through the variation of the solvent viscosity. The results
reported in Fig. 7 clearly show that the answer to this question is "no". The fluorescence
quantum yields of BMPC in several linear alcohols at 298 K increase with solvent
viscosity much more slowly than when measurements are carried out in ethanol at
different temperatures. It is apparent that, in ethanol, a temperature lowering causes an
increase of the quantum yield not only indirectly, by increasing the solvent viscosity to
values comparable with those of the longer-chain alcohols, but also in a direct way: the
photoisomerization of BMPC in alcohols features a significant intramolecular barrier.

Such a qualitative conclusion is supported by the observation that the room-
temperature fluorescence spectrum of BMPC in alcohols (Fig. 8) is a good mirror image
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of the corresponding absorption band: its width at half maximum is only
slightly larger than that of the absorption band the Stokes shift is small

and there is no evidence of the long tail extending to the red which is often
observed in the case of barrierless torsion in (e.g., crystal violet [64]). This indicates
that fluorescence is emitted from a narrow collection of conformations centred
around a minimum not much shifted with respect to the one, in keeping with the
existence of an intramolecular barrier to Evidently, this is in
qualitative agreement with the theoretical predictions (Fig.s 4,5).

In order to go further into the experimental check we constructed Arrhenius plots of
the fluorescence quantum yield of BMPC in a few solvents (methanol, ethanol,
propanol, hexanol and methylene chloride), all of which showed good linearity. The
activation energies and ratios, calculated from the slopes and intercepts of those
plots, are collected in Table 1. The smooth increase of both parameters in the alcohol
series is mainly associated with the increase of solvent viscosity. On the other hand,
decrease of the solvent dielectric constant from 32.7 (methanol) to 8.9
(dichloromethane) causes a small but significant increase of the activation energy; also,
this increase is probably somewhat compensated by the decrease of the viscous-flow

#2 The oscillator strength of the longest wavelength absorption band of BMPC (1.1, [25]) is very similar
to those of two previously studied carbocyanines (DOC and DTC) [45] so that we can expect that, for
BMPC as well as for DOC and DTC, the radiative constant is equal to Combining this
value with the fluorescence quantum yield of BMPC in methanol, we can estimate its
room-temperature fluorescence lifetime to be
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activation energy of the latter solvent with respect to the former one#3. However, in view
of its slight size this change is not contrary to the theoretically predicted
"insensitiveness" of the conversion barrier to solvent polarity.

With the aim of getting a quantitative evaluation of the "intramolecular" activation
energy for the photoisomerization of BMPC in alcohols, a parameter which can be
directly compared with calculated barriers, isoviscosity plots were drawn at 2, 6 and 10
cP using data obtained in methanol, ethanol, propanol and hexanol (Fig. 9). In all cases,
the hexanol points lie slightly above the lines drawn through the points of the three
shorter alcohols. This is probably a manifestation of the saturation of viscosity effects
emphasized by Fig. 7: as the size of the alcohol molecule increases, the microscopic
friction felt by the isomerizing solute is less and less adequately described by the solvent
shear viscosity. Therefore, in spite of the fact that, due to the very low barrier and
associated frequency, an almost diffusive reaction dynamics is expected [16], shear
viscosity only provides a rough description of the frictional interaction between the
twisting solute and the solvent molecule. This is confirmed by the finding that the slopes
of the isoviscosity plots, determined omitting the hexanol points, decrease with
viscosity. The "intramolecular" activation energies obtained at 2, 6 and 10 cP were equal
to 1.24, 1.08 and 0.98 kcal respectively. In conclusion, because of the
approximations in our analysis, related to the problematic use of shear viscosity as a
measure of solvent friction, we can only provide an estimate of the "intramolecular"

#3 Comparison of these results with those found for DOC and DTC , whose activation energies in
dichloromethane were equal or even smaller than in methanol [55], indicates that the effect of solvent
polarity on the photoisomerization barrier, although still small, is more pronounced for the open-chain
cyanine BMPC than for the carbocyanines.
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activation energy for the photoisomerization of BMPC in short-chain linear alcohols:
This finding strongly supports the theoretical prediction that

photoisomerization of BMPC proceeds efficiently by twisting about the 3-4 bond in the
surface. In fact, the calculated barriers to conversion in highly

polar solvents ranged between 1.10 kcal and 1.75 kcal (Fig. 5)
according to whether the atomic charges derived from single configuration or extended-
CI wavefunctions were used to evaluate (the calculated barrier in the isolated
molecule being

Finally, the dependence of the back isomerization kinetics of BMPC in
the ground state on solvent polarity was investigated by measuring
spectrophotometrically the rate constant of this process in methanol, dichloromethane,
chlorobenzene and toluene. These solvents have similar room-temperature viscosities
(from 0.45 to 0.8 cP) and viscous-flow activation energies (from 1.60 to
[66]). Because of this, and of the probably small relative factional contribution to the
overall activation energy connected with the high curvature of the potential function at
the barrier top [16], solvent polarity effects can be evaluated by direct inspection of the
measured activation energies. These were calculated as usual from Arrhenius plots and
are shown in Table 2. As the solvent dielectric constant decreases, the measured
activation energy increases on going from methanol to dichloromethane, decreases
slightly in chlorobenzene and, finally, drops to a substantially lower value in toluene.
The preexponential factor, too, shows a strong decrease in toluene with respect to the
other solvents, reaching an atypical value of A similar behaviour of the
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Arrhenius parameters has been observed with several cationic cyanine dyes in low-
polarity solvents, and has been attributed to the extensive formation of dye-counterion
ion pairs on the basis of conductivity measurements [60]. Support for this interpretation
comes from some calculations on cyanine model system which indicate a catalytic effect
of ion-pairing on the ground state isomerization [67]. In the two most polar solvents,
where ion pairs are not formed, a decrease of dielectric constant causes a significant,
though not very large, increase of the activation energy. It is not clear whether
chlorobenzene should be considered in the analysis of this trend or if the formation of
some kind of ion pairs, looser than those formed in toluene, is responsible for the slight
decrease of activation energy in this solvent relative to the more polar dichloromethane.
However, apart from phenomena traceable to ion pair formation, both the value of the
activation energy and its increase with a decrease of the solvent polarity (already
observed with DOC and DTC [55]) are in good agreement with those theoretically
predicted for the 3-4 back isomerization in More precisely, the barriers of
20.99 and calculated for this process in solvents of high and
low polarities (Fig. 4) match fairly well with the activation energies of 16.4 and

measured in and solutions (Table 2).
In summary, all the experiments expressly selected to check the theoretical

description provided fairly clear evidence in favour of both the basic electronic model
proposed for the BMPC photoisomerization (involving a TICT-like state) and the
essential characteristics of the intramolecular and potential surfaces as derived
from CS INDO CI calculations. Now, combining the results of the present investigation
with those of previous studies [24,25] we are in a position to fix the following points
about the mechanism and dynamics of BMPC excited-state relaxation:
1) photoexcitation of the stable (trans) form results in the formation of the 3-4
cis planar isomer, as well as recovery of the trans one, through a perpendicular CT-like

minimum of intramolecular origin, 2) a small intramolecular barrier (1.-1.2 kcal
is interposed between the secondary trans and the absolute perp minima,

3) the thermal back 3-4 isomerization requires travelling over a substantial
intramolecular barrier at the perp conformation, 4) solvent polarity
effects come into play primarily around the perp conformation, due to localization of the
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cationic charge, and result in a slight reduction of the activation energy for the
trans back isomerization in (a reduction of the perp lifetime might also occur due
to a polarity induced decrease of the energy gap at 5) solvent viscosity
essentially affects the dynamics of the conversion in because of the
combined effects of a flat potential barrier and a rather bulky rotating group.

Detailed studies on this line are in progress in our laboratory in an attempt to reach
equally clear conclusions for more complex cyanines characterized by the same
(pentamethine) chromophore as BMPC (e.g. DOC and DTC).

4. Conclusion

The aim of the present work was to show that, while awaiting the development of
efficient quantum and statistical mechanical procedures able to provide qualitatively and
quantitatively satisfactory descriptions of both static and dynamic aspects of
photoreactions in condensed phase, at the present time some useful results can be
obtained by combining traditional quantum-chemical calculations of potential energy
surfaces with specially selected photophysical and photochemical measurements. This
simple strategy consists in leading the theoretical description and the experimental
analysis to a point where their direct comparison is freed from most arbitrariness factors.
For example, with reference to photoreactions where bulky groups perform large
amplitude motions combined with substantial changes in electronic distribution (like that
reported in section 3), the work should go as far as to obtain kinetic parameters cleared
of the solvent viscosity effects and compare them with those deducible from the
calculated potential energy surfaces corrected for the solvation effects in a solvent of
similar dielectric constant. Procedures of this type can serve a dual purpose: 1) to state
to what extent the photoreaction mechanism and dynamics may be controlled by the
polarity or the viscosity of the solvent, 2) to test the calculated intramolecular potential
surfaces. As regards point 2) the reported study on the trans-cis photoisomerism of
BMPC gave clear evidence for the soundness of the CS INDO method as well as the
reasonableness of the model adopted to estimate the effects of the solvent polarity. On
this basis, and the results of several other applications, we can assert that the CS INDO
CI technique is a fairly effective and supple tool for dealing with the static (electronic)
aspects of photoprocesses, especially those involving large conjugated molecules such
as, for example, pigments and dyes having central roles in biological systems or
technological devices.
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: A Puzzling Interstellar Small Molecule

F. PAUZAT and D. TALBI
Laboratoire de Radioastronomie E.N.S. et Observatoire de Paris
24 rue Lhomond, 75005 Paris, France

1. A key molecule and a model compound

The radio detection of a small molecule formed of three carbons and two hydrogens by
Thaddeus et al. [1] in 1985 came as a surprize to all astrochemists : cyclopropenylidene

last born to the small world of detected interstellar species was soon to become
famous, though competition is high in this world where exotism is common.

First, it is not a common molecule on earth, not being used in laboratory for any synthesis.
Second, it is cyclic, which was and still is a rare feature among small interstellar molecules
identified up to day; only SiCC and present the same characteristic.
Third, it seems to be present everywhere in the interstellar space and one of the most
abundant after CO.
And over all, as time and studies around this new interstellar component increase, it reveals
to be possibly related to the polycyclic aromatic hydocarbon family (PAHs), those
controversial molecules of prime interest which could be omnipresent in the interstellar
medium and an essential link between simple molecules and grains.

However, there is a critical lack of information on this system, mainly due to insufficient
studies of its spectral signatures, which makes it difficult to insert this molecule with
confidence in the astrochemical schemes. During these years, only a few experimental and
theoretical studies were performed, aiming to the different spectra useful for interstellar
identification and chemistry. Still a lot remains to do.

The rotational spectrum has been calculated accuratly by ab-initio methods [2], and has
been measured in the laboratory with high precision [3,4] , so that the radio detection of

can be done without ambiguity, encouraging its search in different environments as
dense dark clouds [5], diffuse interstellar medium [6] or HII regions [7].

The first laboratory IR detection of is from Reisenauer et al. in 1984 [8], who
reported infrared bands at 1279, 1063, 888, and attributed to trapped in an
Argon matrix. Later, Huang and Graham, in 1990 [9], studied the infrared spectrum of

as part of a systematic investigation of tricarbon hydride transient species in a low
temperature Argon matrix. Although they confirmed the assignment of Reisenauer et al. for
the band at 1279 cm-1, their studies of the deuterated isotopomers did not support the
assignments proposed for the three other bands. Theoretically, both Lee et al. in 1985 [10]
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and Defrees and McLean in 1986 [2], calculated the harmonic IR spectra of
confirming Reisenauer et al. attributions; however, IR spectra for the corresponding
deuterated molecules are not available to discuss Huang and Graham experimental
measurements.

In the stellar environment where PAHs are supposed to be at the origin of the observed IR
emission, satellite bands have been observed around the feature. In the PAHs
model, one of the hypothesis for these bands is what is called the "hot band hypothesis",
which states that some of these lines are transitions from upper vibrationally excited levels
of the PAHs molecules [11]. The band at has been identified as the CH stretch

Since the vibrational potential well is anharmonic, the transitions from higher
energy levels do not appear at the same energies and therefore are
separated from the transition, so that they can be observed. If we consider as
an aromatic molecule obeying the electron rule, it is then the smallest PAH
existing in space; consequently, the calculation of its anharmonic IR spectra should be
helpful for testing the hot band hypothesis.

Concerning the electronic spectra, very little has been done. No experimental work is
known on this singlet ground state carbene. Theoretical calculations on the lowest two
lying triplet states of have been performed by Lee et al. in 1985 [10].
However, because the transitions towards these triplet states are not allowed, they are of no
help for the astrophysical observations and a much more complete vertical spectrum is
needed in order to assist in the search of from its electronic transitions. Till now, the
few attempts to find signatures of the molecule in the Visible-UV region have been
unsuccessful. But this search has still to be done systematically when data are available,
based on the fact that a molecule seen widely in radio and possibly in IR, should
necessarily absorb energy at shorter wave length, somewhere in the UV or visible.
Considering the real lack of information about this spectrum, we might assume that the
observational windows currently chosen for such a search could be erroneous.

From this brief review of the data available, it is obvious that more theoretical work is
needed for a better understanding of the story. First, and even though the rotational
spectrum is known with a good precision from experimental work, we found it useful to
perform calculations of the rotational constants in order to compare with the observational
or experimental values and illustrate the ab-initio approach. Then, we calculated the IR
spectrum, vibrations and intensities, for the molecule and its deuterated isomers, allowing
to answer the pending questions in the experimental spectra; taking anharmonicity into
account showed interesting features for the interpretation of the satellite bands observed at

in space. Finally, in order to decide the window to be used for a search of the
molecule in the Visible-UV area, we determined its electronic spectrum, i.e. transition
energies and transitions moments at a highly sophisticated level of wave functions.

2. Radio signature

Directly linked to the geometry and dipole moment of a molecule, the rotational spectrum is
an unambiguous fingerprint that has enabled the radioastronomers community to identify
more than a hundred species. Optimized geometries of calculated at increasing levels
of theory (from RHF to MP4 [12]) are presented in Table 1. The rotational constants
obtained for and  its deuterated  isomers  are presented  in Table 2.
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The molecule appears close to cyclopropene [4] with geometrical parameters (C=C = 1.296
Å; CC = 1.509 Å; CH = 1.072 Å; tending towards
aromatic values. We note the lengthening of the double bond opposite to the carbene center
and the shortening of the other two bond lengths to a value close to that of aromatic
compounds; at the same time, the angles relax to be closer to a regular triangle in order to
accomodate the possible conjugation of the two electrons in the system over the three-
membered ring.
These calculations also show a systematic behaviour of the MP3 calculations to provide
bond lengths slightly shorter than MP2 due to the correction of an overestimated correlation
by third-order terms.

Despite little differences between the geometries, especially those taking correlation effects
into account, it can be seen that the rotational constants calculated from the frozen
geometries are not accurate enough for a search of the molecule on a radiotelescope.



404 F. PAUZAT AND D. TALBI

At that point, it should also be kept in mind that the values of bond lengths and angles are
not directly accessible from experiments but are indirectly determined so as to reproduce the
rotational constants which are themselves deduced from microwave experiments. Thus,
comparison are always subject to some controversy since there is no biunivoque
correspondence between the geometry and the rotational parameters.

At all events, the rotational constants have to be corrected for the electronic correlation still
missing in the electronic wave function and for the contribution of the nuclear vibrations.
These effects are to be taken into account with a precision depending on the error bar to be
admitted. A now classic way to proceed is to perform calculations on model compounds to
determine the error in theoretical bond lengths and angles as a function of the level of
theory and to use it as a correcting factor for the corresponding parameters in the molecule
under consideration [13-15]. It has to be noted that such a strategy is designed to account,
not only for the errors inherent to the theoretical model but also for the zero-point
vibrational effects as experimental parameters are used in place of to make the
corrections.

In this study where we are interested in isotope substituted systems, that is in systems with
the same electronic wave function, a more global approach can be used. From Table 2 it is
obvious that MP3 calculations give the best overall results. The compensation of errors that
we find here is a general characteristic of this level of wave function, as illustrated by
previous calculations on various series of molecules [16]. Thus, we will use the MP3 level
of theory together with the formula

for the estimation of the rotational constants of the deuterated isomers from the
experimental values of the hydrogenated species. The present values should be precise
enough to help in the laboratory search of these deuterated isomers.

3. IR signature and interstellar UIR bands

3.1. HARMONIC IR SPECTRUM

Harmonic IR spectra of calculated at the RHF/6-31 l++G(d,p), MP2/6-31 l++G(d,p)
and MP4/6-31 l++G(d,p) levels are reported in Table 3. The results are nicely converging
as electronic correlation is progressively included in the wave function. Excellent agreement
between theory and experiment is thus obtained at the MP4 level, which allows for a
correct treatment of simultaneous correlation effects in coupled vibrations. The only
discrepancies which could show up, would proceed from anharmonicity, as illustrated by
the CH stretching vibrations which are found shifted to higher frequencies than anticipated.

For larger systems, where MP4 calculations are no longer tractable, it is necessary to use
scaling procedures. The present results make it possible to derive adapted scaling factors to
be applied to the force constant matrix for each level of wave function. They can be
determined by comparison of the raw calculated values with the few experimental data,
each type of vibration considered as an independent vibrator after a normal mode analysis.
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A least square fitting leads to the following values:

CH stretching : 0.80 (RHF); 0.87 (MP2) ; 0.89 (MP4)
CC stretching : 0.85 (RHF); 0.95 (MP2) ; 1.0 (MP4)
CH in-plane bending : 0.80 (RHF) ; 0.94 (MP2) ; 0.96 (MP4)
CH out-of-plane bending : 0.80 (RHF); 0.96 (MP2) ; 1.0 (MP4)

Corrected frequencies are then obtained following Pulay's procedure [17] and the
intensities recalculated from the scaled force constants matrix. It can be seen on Table 3 that
neither the basis set extension, nor the inclusion of part of the correlation change the results
significantly if corrections are adapted to the method of calculation, which is particularly
encouraging for an application to larger systems. Frequencies, once corrected by the above
scaling procedure or by uniform scaling using an averaged value should then be accurate
within a few percent for molecules of the same family, except for the presence of strong
coupling between vibrations. An example of such situation can be found here for the
asymmetric CH bending and CC stretching vibrations, which, from the composition of the
normal coordinate, appear to be strongly mixed. As a consequence, the CC
stretching estimated at at the RHF/6-31 l++G(d,p) level differs from the
experimental value by 2% of its value.



406 F. PAUZAT AND D. TALBI

The calculated shifts of the bands for the partially and totally deuterated
forms of are given in Table 4 ; only the vibrations with non-zero intensities have
been reported.

- The vibration featuring a symmetric CC stretching vibration
experimentally) is shifted by towards lower frequencies when going from
to and from to in excellent agreement with experimental measurements
by Huang and Graham [9]. As in the experiments, this vibration is found to be the most
intense one with an intensity only reduced by 20% with full deuteration.

- The vibration featuring the asymmetric CC stretching vibration, which is strongly
coupled with the asymmetric CH in-plane bending vibration (at experimentally)
is shifted by towards lower frequencies, each time deuterium is incorporated in
the molecule. The intensity ratio of 1/3 between the and the dominant feature
is almost unchanged with deuteration.

- The vibration featuring the asymmetric CH in-plane bending with some blend of
asymmetric CC stretching, which is not observed in because of its weakness has its
intensity increased to 7 Km/mol with partial deuteration; it is shifted to at the MP4
level. The same behavior is seen for the shifted to in with an
intensity of 6 Km/mol. Could these vibrations be the small features seen by Huang et
Graham at 885.5 or

- The vibration featuring the symmetric CH in-plane bending (at
experimentally) is drastically shifted after deuteration because it implies mostly the CH
bond. At the MP4 level our calculations show that is shifted to in
and to in with weaker intensities of 9 and 7 Km/mol respectively.

Moreover the same authors reported that there is no evidence for the
band after deuteration. At the MP4 level we found that this band, in is shifted to
about with an intensity of 10 Km/mol and, in with a weaker
intensity of 7 Km/mol, about ten times lower than Could the weakness of these

bands be a possible explanation for their experimental non-observation ? If it is the
case, then the attribution of the and vibrations to the 885.5 or bands is
most problably erroneous. Could these two features simply be an impurity ?

3.2. ANHARMONICITY OF THE CH STRETCHING MODES

3.2.1. Electronic and vibrational calculations

The anharmonic modes for both the symmetric and asymmetric CH stretching
vibrations have been explored. In order to perform a reasonable anharmonic treatment, we
had to take into account the stretching of the bonds to larger elongations than for the
harmonic description where displacements can be confined close to the equilibrium
geometry. Consequently, correlation effects were included in the determination of the
potential surface. The electronic calculations were carried out at the MP2 level, which
insures a good description of the CH bond potential towards dissociation. A double zeta
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basis set extended by diffuse and polarization functions [18,19] was used and proper
scaling was applied to the calculated frequencies.

In the vibrational treatment we assumed, as usually done, that the Born-Oppenheimer
separation is possible and that the electronic energy as a function of the internuclear
variables can be taken as a potential in the equation of the internal motions of the nuclei.
The vibrational anharmonic functions are obtained by means of a variational treatment in the
basis of the harmonic solutions for the vibration considered (for more details about the
theory see Pauzat et al [20]).

Examination of Table 5 immediately reveals that the two anharmonic progressions diverge
from the origin. One is shifted towards larger wavelengths (CH sym. stretch.)
while the other is shifted towards smaller ones (CH asym. stretch.). This behavior can be
understood from the shape of the potential as a function of the CH normal coordinates for
the two vibrations (Figure 1). As illustrated, the two anharmonic surfaces deviate from the
harmonic potentials in different ways.

- The symmetric stretching surface behaves like the usual Morse potential with two CH
bonds undergoing dissociation simultaneously. The potential surface widens from the
harmonic profile and the vibrational levels come closer when the energy increases;
frequencies are shifted towards longer wavelengths.

- The asymmetric stretching surface behaves differently. The main reason is the opposite
displacements of the nuclei during the vibration ; while one of the CH bonds is going to
dissociation, the other undergoes strong compression. Since the potential is much steeper at
short distances (repulsion wall) than at larger CH elongations, the potential first narrows
from the harmonic profile and the vibrational levels separate when the energy increases;
frequencies are shifted towards shorter wavelengths.



408
F.PA

U
ZA

T
A

N
D

D
.T

A
L

B
I



A PUZZLING INTERSTELLAR MOLECULE 409

As the main point is the relative positions of these bands with respect to the vibrational
origin, the results of the first calculated frequency can be directly adjusted to the

observed one(see below). Thus, we find rather regular progressions of about 50
for the and for the stretching vibrations due to anharmonicity.

3.2.2. Anharmonicity and emission of space carriers

Many celestial objects show a distinctive set of emission features in the infrared, known as
the unidentified infrared emission bands (UIR bands) [21,22]. Since 1981 when Duley and
Williams [23] pointed out that a few of the bands fell at the frequencies characteristic of
polycyclic aromatic hydrocarbon molecules (PAHs) and suggested that these bands were
produced by aromatic units in thermally excited dust grains, a number of arguments coming
from observations, experiments and calculations, converge towards the hypothesis that the
features eventually arise from free molecular PAHs rather than dust grain [24-27]. Each
band of this set, i.e. 3.3, 6.2, 7.7, 8.6 and , is identified as a fundamental
vibrational mode of this class of molecules, respectively the CH stretch, the C=C stretch,
C=C deformation modes of the skeleton, the CH in-plane and finally the CH out-of-plane
bending vibrations.

More recent observations have revealed that the emission is often accompanied by a
feature at which is, in fact, part of a rich structure in the
region as shown for example in Figure 2. The whole structure, including three newly
discovered features at 3.46, 3.51, and (2890, 2850 and was first
observed by DeMuizon et al. [28] in two IRAS sources who mentioned also the presence
of possible satellites at shorter wavelengths. In the "hot band hypothesis", some of these
lines should originate from transitions between upper vibrational levels in PAH
molecules[ll].
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being the first conjugated ring satisfying the aromaticity concept is in this respect the
smallest representative of PAHs. Moreover, there is a strong possibility that
molecules exist in the same environment as PAHs: most probably comes from the
electronic dissociative recombination of a molecular ion which would be the
result of the coulombic explosion of doubly ionized PAHs [29]. Where PAHs exist,
might exist too. If the anharmonic progression of can generate satellite bands, then
PAHs are most probably responsible for a much larger contribution. For all these reasons,
comparing the interstellar observations with our calculated anharmonic progressions is
relevant.

The main conclusion to be drawn is that the calculated IR signatures do match the observed
peaks in relative position. They appear with the same frequency interval of about
The agreement is very satisfying. It is visualized on Fig.2 where we have superimposed
our calculated anharmonic progressions on two IRAS spectra. If we now consider that

is more than a spatial curiosity but also a suitable model for PAHs, then the results
suggest that a large number of these species should have similar structural characteristics,
namely duo hydrogens which are essentially found in compact PAHs. This work then
provides a structural constraint on the chemistry of the carbonaceous matter.

4. UV signature and observation window

For to be identified in space from its UV -VUV spectra, one needs to know reliable
values of its low vertical electronic excitation energies. For that purpose, a number of
experimental studies [30] have been realized in an attempt to observe electronic
transitions between 2000 and 6000 Å. These experiments having failed, computational
chemistry is the alternative left to search for stable electronic states, if any, which might
have been overlooked in the region between 2 and 6 eV.
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Since no experimental work is available to confront the theoretical model designed to
describe excited states correctly, test calculations had to be done in a preliminary
step. For that purpose, we have chosen ethylene, for which extensive calculations of the
vertical spectrum as well as experimental measures are available. It is well known indeed
that a correct quantitative and even qualitative description of small systems, is
still a challenge for theoretical chemistry. The difficulties are found at each step of the
computational approach:
- extended basis sets are needed in order to account for the diffuse character of the valence
excited states and for the differential correlation effects;
- dynamic correlation effects, important for s orbitals in excited states, can only be
recovered by including high levels of excitations in the configuration interaction (CI),
which rapidly leads to untractable expansions;
- strong interactions between excited valence and Rydberg states often result in orbitals
which are much too diffuse to properly describe the former states; electronic densities are
thus badly described and difficult to correct even with large CI calculations.

4.1. TEST CALCULATIONS ON

In terms of Lewis orbitals, the electronic configuration of ethylene can be written as

The extensive calculations of Serrano-Andres et al [31] have shown a spurious valence-
Rydberg mixing in the CASSCF wave functions when valence and Rydberg orbitals
are optimized all together in a state average calculation; it was shown that these orbitals
loose their diffuse character and instead tend to provide an extra correlation to valence
orbitals. To avoid such interaction, the orbitals used for the CI treatment of the electronic
spectrum were obtained by a two step procedure :

1 - We decided to first optimize C2H4 bonding and antibonding orbitals through an MCSCF
procedure where all single and double excitations of the 12 valence electrons from the 6
occupied orbitals to the 6 antibonding orbitals were allowed. This procedure, hereafter
referred to as MCSCF/SD, was applied using a triple zeta basis set augmented by
polarisation functions (6-31+G*).

2- To account for Rydberg states, the MCSCF/SD set of orbitals was extended by atomic
diffuse functions of s,p and d type (3s=0.023, 4s=0.015, 3p=0.021, 3d=0.015) which
were Schmidt-orthogonalized.

Correlation effects were recovered in CI calculations in which the wavefunction was
expanded in the N-particule space of Table 6. The internal space was partitioned in two
subspaces, the first one containing all the valence occupied orbitals and the second one the
corresponding correlating functions plus the Rydberg orbitals. Such a repartition was
designed to give an even-handed treatment for both types of valence and Rydberg states.
The orthogonal complement composed the third set of MOs.

The CI space was gradually augmented, each level of calculation being referred to as
according to the classes of configurations i and j incorporated in the CI expansion. The
evolution of the vertical excitation energies with regard to this systematic building of the N-
particle space has been investigated for the Ag symmetry which is well known to be
representative of the difficulties encountered in calculations of electronic spectra.
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Table 7 shows the crucial importance of triple excitations. They have to be considered for a
balanced and quantitative evaluation of the energies for both ground and excited states. The
vertical excitation energy for the first excited state of Ag symmetry, which presents a strong
Rydberg character, has converged to 8.26 eV for the expansion, in excellent
agreement with the recent two electron REMPI experimental value of 8.28 eV[32] and
compares favorably to the 8.40 eV found in the CASPT2 approach [31] for the same
geometry and basis set.
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4.2. TEST CALCULATIONS ON

Cyclopropenylidene is a singlet state of symmetry. In terms of symmetry adapted Lewis
orbitals, its electronic configuration can be written as follows :

where refers to the CC bond opposite to the lp carbene lone pair orbital,
are the symmetric and antisymmetric linear combinations of the CC single bonds orbitals
and the corresponding combinations for the CH bonds (see Figure 3).

The first series of calculations was aimed at determining which orbitals should be taken for
which excited state to reach convergence in the excitation energies, using the CI space
directly transposed from and reported in Table 8. All calculations were done at the
MP4/6-311++G** geometry of the ground state using the Alchemy II codes [33].
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The atomic basis consists in a double-zeta set expanded with polarization functions (DZP)
and augmented by diffuse functions (DZPR). Exponents and contraction coefficient are
from McLean and Chandler 1980 [18]; diffuse functions, centered on the heavy atoms with
exponents of 0.023 for the s orbitals and 0.021 for the p orbitals are from Dunning and
Hay 1977 [34]. Extension of the DZP basis set with two sets of diffuse s (0.0437, 0.0184)
and p (0.0399, 0.0168) functions (DZPRR) has also been tested.
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Based on the same two step procedure as presented above for (MCSCF calculations
followed by Schmidt orthogonalization of Rydberg functions), a systematic search was
conducted by progressively incorporating groups of orbitals in the active space. Two types
of wave functions proved well adapted to the problem, one for in-plane excitations, the
other for out-of-plane excitations from the carbene orbital. The case of the  states will
serve as an illustration of the general approach done for all symmetries and wave functions.

4.2.1. In-plane excited states

The lowest excited states of are of Rydberg type, arising from the promotion of
one electron from the carbene lone pair orbital to 3s and 3p Rydberg orbitals, are better
represented by orbitals generated by a MCSCF/SD treatment (Table 9).

The corresponding vertical excitation energies calculated with the DZPR basis set with 5
references are reported Table 10. The same type of energy convergence as observed for

appears for when configuration classes, noted by indices, are added to the CI
expansion. As energy calculations for excited states of electron systems are sensitive to
the "diffusseness" of the basis set, we have tested the DZPRR basis at the level.
The results (in brackets in Table 10) closely resemble those obtained when only one series
of diffuse functions (DZPR) is considered, justifying the use of the DZPR basis set for the
rest of our calculations.

Because Rydberg states are peculiar states with a core resembling the positive ion and one
electron in a diffuse orbital, the Rydberg states have been recalculated with orbitals
optimized for the ion, with the same MCSCF/SD expansion. An improvement of 0.2 eV is
obtained, arguing for the use of this type of MOs for Rydberg states.
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The same conclusion, that MCSCF/SD expansions using orbitals optimized for the ion
provide a better representation, is reached for the lowest states of symmetry which are
also states of Rydberg type arising from an in-plane excitation from the carbene orbital.

4.2.2. Out-of-plane excited states

The lowest and excited states of correspond to valence excitations from the 1pc
carbene lone pair to the and orbitals, the next states being Rydbergs. Because of this
mixing, the orbitals have been optimized in the configuration space of Table 11, hereafter
referred to as MCSCF/{6422}. Here the orbitals are distributed in four different spaces
according to their chemical nature and the electrons assigned so as to define a direct product
of CAS subspaces. Because the second state is of Rydberg character, orbitals
optimized for the ion in an equivalent expansion MCSCF/{6322} have been tested.
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No significant improvement for the vertical excitation energy of the state was
found. From these results we have decided to describe the lowest states of and
symmetries with the same set of molecular orbitals, optimized for the neutral molecule
within the MCSCF/{6422} expansion.

4.3. LOW ELECTRONIC EXCITED STATES OF

Our best estimation for the vertical excitation energies for states of symmetry are
reported in Table 12. They correspond to a ground state calculated at level using
orbitals optimized for the neutral molecule with the MCSCF/SD expansion, and excited
Rydberg states calculated at the level using orbitals optimized for the positive ion
with the same expansion. The first excited state lies at 7.8 eV above the ground

state and the second excited state at 8.4 eV. They are all below the first
ionization potential which, in our best calculation is 8.98 eV. Transition moments
have been evaluated in a first order treatment, The very weak value found between
the and states leaves little hope for observation and the effort should be
concentrated on the to transition.
The vertical excited states of symmetry, calculated at the level, are very high in
energy. The first one, is already at 8.60 eV above the ground state (Table 12) with
a transition moment of 0.16 a.u., probably too weak for the transition to be observed.
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Vertical excitation energies to states of symmetry, calculated at the level using the
orbitals optimized for the neutral molecule with the {MCSCF/6422} expansion, are
reported Table 12. The valence state and Rydberg state of are
respectively 5.2 eV and 7.5 eV above the ground state with large transition moments of
0.60 and 0.50 a.u.respectively.

Finaly, the lowest two states, calculated at the level using orbitals optimized for
the neutral molecule with the MCSCF/{6422} expansion are at 4.66 eV and 8.59 eV.
Transitions from the to these states are not symmetry-allowed and it is hardly probable
that vibronic coupling could make them observable in transient conditions.

The only state which could be seen in the 2000-6000 Å window is the valence state.
The fact that this state was not seen in spite of its strong transition moment may well be due
to the experimental uncertainty of 10% at the limit of the window.

Concluding remarks

The present contribution illustrates the possible role of computational chemistry in
supporting astrophysical studies aimed at the detection of new species from their radio,
infra-red and electronic signatures. In the case of a very peculiar molecule such as
we have shown that theoretical approaches provide assistance at all levels of spectroscopy.

-The rotational constants, although difficult to establish with the accuracy needed for a
direct search on the telescope, should be precise enough to identify the deuterated isomers
in the laboratory.
-The IR spectrum of the deuterated isomers is different from what has been estimated by
simple extrapolation of the hydrogenated species, which explains why several bands were
not recognized in the experiments. In addition, the anharmonic progressions of the CH
stretching are found in agreement with the satellites of the band observed in space
and support the "hot band hypothesis" for explaining part of their origin.
-The electronic spectrum reveals at least two states that should be observed, provided the
experimental window is enlarged beyond the 2000-6000 Å region.

The results presented here show the adequation of Computational Chemistry to problems of
astrophysical interest. They illustrate a promising partnership in a field largely promoted by
G. Berthier in the late seventies.
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Ab-initio Study of the Intramolecular Hydrogen Shift in Nitromethane
and its Acid-dissociated Anion

Y. TAO
Department of Chemistry, Yunnan University, Kunming 650091,
People's Republic of China

1. Introduction

The photodecomposition and thermodecomposition of nitromethane have been extensively
studied as model systems in combustion, explosion and atmosphere pollution processes[l].
On another hand, nitromethane was selected as a model solvent in experiments aimed at
examining non hydrogen-bonded solvent effects in a general acid-base theory of organic
molecules [2.3]. This selection is based on the electronic and structural characteristics of
nitromethane that has a high dielectric constant, and at the same time cannot form hydrogen
bonds with solute molecules.

One might believe that a tautomeric system between nitromethane and acinitromethane
could be formed, and that the equilibrium would shift toward aci-nitromethane under the
effet of a base. However, even under this assumption, it is not clear whether the hydrogen
in the α position to the nitro group of nitromethane is sufficiently active that the tautomeric
equilibrium between nitromethane and aci-nitromethane can be established by passing
through the intramolecular hydrogen shift, or whether an acid-base equilibrium between
nitromethane and its acid-dissociated anion has to take place.beforehand (see Fig. 1). In this
contribution we present a theoretical study of the 1,3-intramolecular hydrogen shift in the
nitromethane and nitromethylene anion undertaken in order to describe the dynamics of
these systems and to assess the adequacy of nitromethane as a model for aprotic solvents.
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2. Method and Results

The different structures and transitions states of interest in the neutral and negative ion
reactions are represented in Fig. 2. A first approach was done at the SCF level, using the
split-valence 4-31G basis set. In order to provide a better estimation of the energy
differences implied in this reaction schemes, extensive calculations have been performed at
the MP2 level of theory using the 6-311++G** basis set which contains the diffuse orbitals
necessary to quantitatively describe the negative ions.

The optimized geometries are reported in Table 1. The total and relative energies of all
species illustrated in Figure are presented in Table 2. All calculations have been carried out
with the 82 and 90 versions of the GAUSSIAN program system [4].

3. Discussion

3.1. GEOMETRIES

For nitromethane and aci-nitromethane, the optimized structures of the present calculations
with the small basis set (4-31G) are very similar to the 3-21G and 6-31G * McKee's
optimized structures [1]; the variation of bond lengths and bond angles with the level of
theory follows the expected trends with an increase in the bond lengths when correlation
effects are taken into account. The results of the present calculations for nitromethane are
also in better agreement with the cristal structure [5|.

The geometry of nitromethane (1) is characterized by the equivalence of the two NO bonds,
the single bond character of the CN bond, the coplanarity of the four nonhydrogen atoms,
and a value of the angle larger than 120°. The geometry of aci-nitromethane (4) is
characterized by the nonequivalence of two NO bonds, the double bond character of the
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bond, the coplanarity of all atoms, and the retention of the ethylene-type double bond
character for the CN bond.

Nitromethylene anion (5) and aci-nitromethylene anion (7) are planar molecules. In the
nitromethylene anion, there is an equivalence of the two NO bonds and a clear trend of the
various bond angles toward the trigonal value of 120°. By contrast, the aci-nitromethylene
anion shows the nonequivalence of the two NO bonds, a typical double bond character for
the CN bond, and a larger deviation of all bond angles from 120°.

Comparing with the neutral molecules, it can be seen that the presence of the negative
charge makes all bond lengths in the anion increase, particulary the bond connected to the
atom bearing the negative charge. This suggests that the conjugation in the anionic
systems is reduced, and the trend toward a single bond increased. In addition, the angle
variation in the anions shows a smaller steric repulsion and a greater electrostatic attraction
between atoms.

The transition state for the 1,3-hydrogen shift of the neutral molecule (2) involves a planar
four-membered ring. The requirement for cyclization brings the bond distance to a
value intermediate between the bond lengths of the two tautomers; there is an increase
in the CN bond, a shortening of the bond, and a closing of the angle. The
fact that the bond (1.123/1.065 Å )is less than the bond (1.624/1.725 Å ) in
the (SCF/MP2) transition structure shows that the shifted hydrogen atom is closer to the
oxygen with the larger electronegativity, namely the transition structure resembles aci-
nitromethane with an higher energy.

The 1,3-hydrogen shift transition state of the anion (6) is a planar molecule. Similarly, due
to the requirement for cyclization, the bond distances between the ring-forming atoms show
a tendency to averaged values relative to those of the anions in their equilibrium states,
while the angle becomes smaller. In the same way, the transition structure in the
negative ion is more similar to aci-nitromethylene though of higher energy because of the
shifted hydrogen atom being closer to the negatively charged oxygen.

3.2. RELATIVE ENERGIES

It can be seen from Table 2 that the order of the relative energies is identical for the
calculations at the SCF/4-31G and MP2/6311++G** levels of theory.
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The MP2 values are certainly the most reliable; they predict that nitromethane is more stable
than planar aci-nitromethane by 109 kJ/mol. and perpendicular aci-nitromethane by 308
kJ/mol.

The rearrangment of nitromethane to aci-nitromethane via the postulated 1,3-intramolecular
hydrogen shift is a high barrier reaction (barrier height of 310 kJ/mol), in agreement with
the prediction based on the higher tension of four-membered ring and orbital symmetry
considerations.

In view of the energy profile it is clear that the equilibrium shifts essentially to the side of
the more stable nitromethane in the tautomerism system between nitromethane and aci-
nitromethane. These quantum chemistry calculations, although they describe principally the
gaseous molecules, provide a theoretical explanation for the fact that nitromethane cannot
form any hydrogen bond with the solute molecules. Nitromethylene anion, predicted to be
144 kJ/mol (MP2) more stable than aci-nitromethylene anion, involves a barrier height of
210 kJ/mol for the corresponding 1,3-hydrogen rearrangement. This suggests that for the
acid-dissociated anion, as for the neutral system, the nitro-type molecules are more stable,
and the 1,3-hydrogen shift can hardly take place.
Finally, we can see that, neutral meolecules, either in nitro-type or in aci-nitro-type, are
more stable than acid-dissociated anions; the anion formation is a high endothermic
reaction. The energy difference between neutral molecules and acid-dissociated anions
calculated at the MP2/6311++G** level is 1539 kJ/mol for nitro-type species, and 1683
kJ/mol for aci-nitro-type species. It is clear that, in these conditions, the acid dissociation of
the neutral molecules can hardly occur.in pure nitromethane solutions. It provides another
theoretical support for nitromethane as an ideal model of aprotic solvents.

4. Conclusions

1. In either neutral molecules or acid-dissociated anions, the nitro-type species are more
stable than the aci-nitro-type species. The 1,3-intramolecular hydrogen rearrangment is a
high barrier process. In the tautomeric system formed via the 1,3-hydrogen shift, the
equilibrium is therefore strongly displaced to the side of nitro-type species.

2. The acid dissociation of neutral molecules is such a highly endothermic reaction that the
acid dissociation of nitromethane can hardly take place. The results of the calculations
presented here provide a theoretical support for nitromethane as an ideal model of aprotic
solvent in the acid-base theory of organic molecules.
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From Cluster to Infinite Solid:
a Quantum Study of the Electronic Properties of
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1. Introduction

Transition metal oxides are often selective oxidation catalysts; it is the case of molybdenum
trioxide the electronic properties of which will be studied by molecular orbital
calculations hereafter. Application of ab initio SCF methods to solid clusters requires large
calculation times owing to the system size, so the extended Hückel theory (EHT) [1] has
been adopted; indeed this method is well adapted for such an approach as proved by
previous calculations on oxides and mixed oxides : the electronic structure of some phases
of and have been investigated by Anderson and al. [2],
some polyanions containing molybdenum by Moffat 13], polyoxomolybdates by Masure
[4] and Fournier [5], the propene adsorption on the (100) face by Sylvestre [6] and
the electronic band structure of molybdenum bronzes have been studied by Whangbo [7-9]
and Canadell [l0,11].

After having described molybdenum trioxide, we intend to specify the best finite clusters
allowing to represent each of the (010), (001) and (100) faces in order to study surface
properties such as energy and electronic distribution. For this purpose, the evolution of the
electronic properties will be studied as a function of the cluster size and referred to the
results of an EHT - band calculation [12]; all calculations have been made with QCPE
programs [13,14] and Hoffmann parameters [15].

2. description

Molybdenum trioxide has a layered structure with orthorhombic symetry [16] (a=3.963,
b=13.855, c=3.696 Å), this structure consists of double layer sheets parallel to the (010)
cleavage plane. The building unit is a distorted octahedron, with Mo-O distances :
1.67, 1.73, 1.95 (twice), 2.25 and 2.33 Å (Fig. l)

Understanding the mechanism of reactions on the catalyst surface requires an adequate
description of the surface ; it must modelled either by infinite slab or by clusters having
similar properties. The interesting feature of the surface is the existence of three
structurally different oxygen atoms, a terminal one coordinated to one molybdenum
atom, and two bridge-like oxygen atoms coordinated to two and three Mo
atoms, respectively.
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The infinite slab is a monolayer limited by two (010) planes (model 1). It is built with a unit
cell and two translation vectors in the a and c directions, all the atoms having their
usual coordination number as in the bulk.

In the cluster model approach, a finite number of atoms is chosen in order to describe a well
defined crystal surface site. Afterwards, the cluster size is increased by adding additional
shells of surface atoms until the electronic properties of the active site have reached their
convergence value [17] . Depending on the nature of the active site considered and the
crystal face it would be better to choose non stoichiometric clusters; on the other hand the
ionic character of metal oxides is well known, so it is reasonable to assign a (-2) charge to
oxygen and (+6) to molybdenum [18,19], so that non stoichiometric clusters are
electronically charged according to the Mo:O ratio.
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The (010) face covers a large area of orthorhombic crystallites ; apart from the edge
atoms it contains only coordinatively saturated Mo and O, the being in the
perpendicular direction. The selected clusters are obtained from the extension of

along the a and c directions (model 2).

The (100) face is modelled by neutral clusters of general formula (MoO3)n (model 3), both
containing coordinatively unsaturated Mo and  with respective coordination of 5 and2.
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The (001) face has the highest density of Mo atoms; depending on the lattice fracture plane,
unsaturated Mo and can appear. In the a direction two types of bonds arise :
(1.73Å) and (2.25Å); several crystal surfaces can then be envisaged (model 4),
viz.

3. Results and discussion

3. 1. INFINITE SLAB

The density of states (DOS) of the infinite slab (Fig. 2) presents four blocks, two of them
are located under the Fermi level (-14.58 eV); the analysis of orbital contributions to the
total DOS (Fig. 3) reveals an occupied band at -33 eV and a second mainly occupied

band at-15.3 eV, while (around-9 eV) and (around-6.5 eV) bandes are
unoccupied. The orbitals of molybdenum give two bands: the first one at -9 eV is
intense and unoccupied, the second at -15.3 eV is weak and occupied; orbitals form three
bands: the most intense at -6 eV and two other very weak ones in an occupied region at
-15.3 eV and -33 eV. Therefore, only the d bands located below -15 eV participate in a
solid bond. The orbitals weakly contributing to and bands give rise to bonding
levels and the orbitals weakly contributing to the band give rise to bonding levels.
Furthermore, the contribution to and bands is both and antibonding.

The "Crystal Orbital Overlap Population" (COOP) [20] shows (Fig. 4) that all levels arising
below the Fermi level are and bonding and the highest energy levels are and
antibonding; however the specific COOP curves for each Mo-O distance (Fig. 5) show a
large character at short distance This result confirms the hypothesis of

the existence of a double bond between molybdenum and (coordination of 1).



FROM CLUSTER TO INFINITE SOLID 431

3. 2. (010) SURFACE CLUSTERS

When the cluster size increases (Fig. 3), the occupied energy levels are concentrated in
two blocks around -15.2 and -33.2 eV of widths 1.3 and 1.7 eV respectively; the Fermi
level is slightly removed and stabilized at -14.57 eV, the same value as in the band
calculation.
In every case, the Mulliken population analysis displays a large electronic transfer from the
molybdenum atom towards neighbouring oxygen atoms according to the ionic character of
metal oxides. The charges on the molybdenum and oxygen atoms depend on the
coordination number and also on the cluster size whether the latter is sufficient to reach the
charge convergence or not. Indeed the latter is attained for a cluster containing 6 or 8
molybdenum atoms (Table 1).
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Table 2 shows that the overlap population increases when the coordination
number of varies from 1 to 2 whereas between it decreases when
the coordination number varies from 2 to 3 ; in other words the bonding capacity between
oxygen and its nearest neighbours is shared between all bonds. Generally, the Mo-O
overlap populations converge rapidly.

The infinite slab model can be seen as an infinite extension of the (010) clusters along
cristallographic directions a and c, so one can compare limit values of (010) surface
clusters to results obtained for infinite slab. The DOS of does not differ very
much (Fig. 6) from that of the infinite slab, especially for the occupied  and bands.
Table 3 shows that absolute values of the oxygen and molybdenum charges are slightly
higher in the cluster model whereas the negative charges of are identical in both
models. The Mo-O overlap populations are generally in good agreement in both models,
except for bonds (1.95 Å).
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3.3. (001) AND (100) SURFACE CLUSTERS

Since molybdenum trioxide is built from distorted octahedrons, the atomic
arrangement on each face is different. On the (010) cleavage plane each atom has the same
coordination number as in the bulk whereas the other faces obtained by lattice breaking
contain unsaturated atoms. The type of unsaturated atom depends on the face considered :
unsaturated oxygen on the (001) face and unsaturated oxygen on the (100) face.
The evolution of electronic properties with increasing size of (001) clusters shows that
whatever the face may be, convergence of most of the electronic properties is reached by a
cluster containing 6 or 8 molybdenum atoms (Table 4).

The study of the surface cluster which models the (100) face shows that the creation of
oxygen surface vacancies slightly increases the overlap population between unsaturated
molybdenum and the nearest oxygen atoms (Table 5). In ionic compounds such as
one can consider that electron transfer takes place from so that the creation of
the oxygen vacancies involves a decrease in the global electron transfer and consequently
the molybdenum charge increases. On the other hand in order to compensate this decrease
of electron transfer, the nearest remaining oxygen atoms supply more electrons to
unsaturated molybdenum, this explains the decrease in the negative charge on the nearest
oxygen and the increase in the overlap population between unsaturated molybdenum and
the remaining neighbouring oxygen atoms.
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In order to compare the electronic properties of the (001), (010) and (100) faces three
clusters have been selected each one modelling one specific face of the crystal, these
clusters contain the same number of oxygen and molybdenum atoms : and for
the (001), (010) and (100) faces respectively.

The total energy values (Table 6) show that the (010) face is more stable than the (001) and
(100) faces, in agreement with the results of Firment[21], also our calculations show that
the (001) face is more stable than the (100) one.



FROM CLUSTER TO INFINITE SOLID 437

Since the type of oxygen vacancy depends on the (001) or (100) faces, the unsaturated
molybdenum charge is highest in the negative charge of unsaturated oxygen is higher
than in the coordinatively saturated atoms. Analysis of the Mo-O overlap population shows
that the bond is stronger on the (100) face whereas the other Mo-O bonds are
stronger on the (001) face.
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4. Conclusion

The similarity of the results obtained for finite clusters and the infinite slab allows to
conclude in favour of the validity of the cluster model of adequate size (6 or 8 molybdenum
atoms). In addition to the chemisorption of organic molecules on solid surfaces which is
generally considered as a localized phenomenon, the interaction between molybdenum
oxide and an adsorbate can also be represented by a local complex formed by a finite cluster
and the adsorbed molecule. Indeed, the study of the evolution of the electronic properties as
a function of the cluster size shows that, for a cluster containing 6 or 8 molybdenum atoms,
most of the electronic properties converge towards limit values. This convergence is
sensitive to the direction of the cluster growth. On the other hand, the electronic properties
of the (001), (010) and (100) faces are not identical, the type of surface atoms being
different ; these results allow to predict that the characteristics of the chemisorption step will
depend on the particular face on which it takes place.
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Ab initio Calculations on Muonium Adducts of Fullerenes

T.A. CLAXTON
Department of Chemistry, University of Leicester, Leicester LE1 7RH, United
Kingdom

1.Introduction

This paper is concerned with the structures of the simplest possible adducts of the
and fullerenes, namely the monohydrides, and These open shell

species or radicals may be considered as the product of the addition of one atom of
hydrogen or one of its isotopes, among which we include specifically the light pseudo-
isotope of hydrogen known as muonium, Although has been
observed [1], the stimulus for these calculations arose from the experiments on muon
implantation in solid and

and higher fullerenes are distinguished from other allotropes of carbon, diamond
and graphite, in that they exist as discrete molecules. The spherical or ellipsoidal
nature of the monotropes opens up the possibility of intriguing new areas of chem-
istry. Here we are only interested in the hydrogen (or muonium) adducts, although
this study has important implications to the very vigorous and extensive research in
fullerene chemistry.
Two types of species have been detected in the spectrum of One shows an
unreacted or meta-stable muonium state which may well correspond to an ‘internal’
state, muonium is trapped inside the cage: in the current notation [2].
This may be compared with ‘normal’ muonium (Mu´) in diamond and many other
elemental and compound semi-conductors, where the trapping site is in one of the
cavities of tetrahedral symmetry. This state of is not discussed here, but
it does exhibit all the characteristics expected of the ‘internal’ chemistry of
The ‘anomalous’ muonium state, observed in semi-conductors and generally
accepted to arise from muonium being trapped within one of the chemical bonds of
the crystal, is unknown in molecules [5,6]. The constraints of the crystal lattice are
necessary for the bond-centred state to be stable.
The other muonium adduct of has very similar hyperfine coupling con-
stants, 326MHz [2], to the the addition compound of muonium and ethene,
(329MHz)[7]. This is strongly indicative of a similar local structure and formation
mechanism, represented formally in process (1). Muonium attacks and reduces one
the short C-C bonds (common to two hexagons), bonds which have formally double
bond character. It bonds to and saturates one of the carbon atoms leaving major spin
density on the other. The rotational degree of freedom present in the ethyl radical is
absent in caged structures and in this respect is simpler theoretically [8]. Nevertheless
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the similarity in the coupling constants argues against substantial delocalisation of
the unpaired electron.

These observations are supported by the calculations of Estreicher et al. [9], using the
the PRDDO method and density functional theory, the semi-empirical calculations
of Percival and Wlodek [10] and ab initio ROHF calculations [11]. They confirm that
the most stable state of results from the muon bonding itself to one of the
carbon atoms from outside the cage.
Here this work is continued and extended to where a considerable amount of
experimental work is currently in progress. The observation [4] of three electron-
muon hyperfine coupling constants in not unexpected since there are five chemically
distinct sites for muon to attack. The lower symmetry of makes the molecule
much more interesting than

2.Methodology

2.1. AB INITIO CALCULATIONS

It is feasible to carry out Hartree-Fock calculations on our available computer re-
sources (an SGI Crimson Elan Workstation) using an STO-3G basis set with full ge-
ometry optimization of but only partial geometry optimisations of the
isomers. Fig. 1 shows planar graphs of with the carbon atoms suitably
labelled for future reference.

Whereas there are only two different bond lengths in short between atoms 1 and
2 and long between atoms 2 and 3, there are seven different bond lengths in
The bond lengths have been calculated here and previously [12] by the restricted
Hartree-Fock method using an STO-3G basis set and are discussed in some detail
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later. For the present it is sufficient to split these into three groups as indicated,
using an obvious notation, in Fig. 2a.
Previous calculations on have indicated that the distortion to the
cage in the neighbourhood of the point of attachment is so localised that it can be
well represented by allowing the positions of only six carbon atoms to relax. It is
assumed here that the same will apply to muonium adducts of and addition will
take place according to process (1) at sites of unsaturation (Fig. 2a).

A typical group are atoms 1 through 6 in Fig. 1, forming a type a structure using a
terminolgy introduced elsewhere [4]. A type a is identified as involving atoms from
two pentagonal arrangements in the fullerene structure, the connecting bond (1-2)
being short and presumably unsaturated. Three distinguishable type a structures
are illustrated for in Fig. 2b, the atoms in closed loops having the points of
muonium attachment indicated by and
The groups of atoms within each closed loop is called a defect, the defect being
different from simply by the point of muonium attachment. Defect is at right
angles to defects and From previous calculations [11] on the central
two atoms of the defect are expected to change their hybridisation from with
an inevitable distortion of the underlying fullerene cage. For example if the site
is the point of muonation, the unpaired electron tends to localise on the site,
each site changing its hybridisation from to approximately the associated
distortion also affecting the four nearest neighbours. Note that all defects of type a
contain at their centres one of the double bonds of Fig. 2a enabling the adduct to be
formed according to process (1). Although can theoretically exist in one of
five isomeric forms we have already identified three isomers of type a with an alkene
type of unsaturation. The rest must be limited to regions of arene type unsaturation
which form a band around the equator of Even so this gives rise to a further
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four defects of which two, at least, must be discarded. All are illustrated in Fig. 2b.
Type b structures involve atoms from only one pentagonal arrangement. If type c is
considered [4] (involving no pentagons) it should be noted that the point of muonium
attachment is the same as for defect The same applies to defect which shares
the same point of attachment as Where defects share common muonium points of
attachment it is possible that a more extensive relaxation than that considered here
will be necessary to describe these isomers accurately. All these defect types have
been considered in ref. [4] except type where the central bond is exceptionally
unsymmetric in that it is common to pentagonal and hexagonal arrangements.

Typical structures are specified in Table 1 which uses the labelling of carbon atoms
in defined in Fig. 1. The restricted open-shell Hartree-Fock (ROHF) method
was used in all geometry optimizations using a minimal basis set of orbitals (STO-
3G) [13]. These calculations are therefore exploratory in nature. Here we have chosen
to use the standard ab initio ROHF method since it is well-known that the UHF
method (as used in the PRDDO approximation [9]) does not give wave functions
which are eigenstates of the total spin operator The effect of spin contamination
on molecular properties is uncertain, particularly if the contamination is high (the

value obtained by Estreicher was not reported [9] but values larger than 1 have
been reported [11]). The ROHF method is normally unsuitable for investigating spin
properties because spin polarisation of the closed shell electrons is not allowed and
so some UHF calculations after quartet spin state annihilation (UHFAA)[14] are also
reported on the geometries optimised using the ROHF method.
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2.2. RESONANCE THEORY

Resonance theory [15] contains essentially three assumptions beyond those of the
valence bond method. Perhaps the most serious assumption is the contention that
only unexcited canonical forms, non-polar valence bond structures or classical struc-
tures need be considered. Less serious, but no more than intuitive, is the proposition
that the molecular geometry will take on that expected for the average of the classical
structures. This is extended to the measurement of stability being greater the greater
the number of classical structures. These concepts are still widely used in chemistry
in very qualitative ways.
Molecules of the size of the fullerenes require such approaches to help rationalise the
results. Even though the number of classical structures can be very large the same
qualitative reasoning can be used as with the smaller molecules, typically benzene.
The enumeration of classical structures is easily accomplished using computers. It is
simply a problem of determining how many ways a set of points (in our case carbon
atoms) can be connected given rules governing their connectivity.

3.Results

All of the ab initio results are collected in Tables 2 and 3. The tables differ only in
the theoretical method used. Table 2 used the ROHF method and Table 3 used the
UHF method using optimised geometries from Table 2.

The numbering system of the carbon atoms used are given in Fig. 1 for
Further results from the ab initio calculations are collected in various figures where
they are compared to the results of resonance theory. The results are displayed
in Figs. 3, 4 and 5. The number of classical structures is compared with the UHFAA
spin densities at each centre in Fig. 3. Correlations between the number of classical
structures and spin density (Fig. 4) and bond length (Fig. 5) are plotted. The
calculated bond lengths in are rationalised using resonance theory in Table 4 from
which a valence bond type structure of is suggested in Fig. 2a. The structures
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for each isomer of are shown in Figs. 6 and 7 and Fig. 8 illustrates the spin
delocalisation of each defect suggested by resonance theory.

4.Discussion

4.1. CLASSICAL STRUCTURES

There are at least two ways of describing Its association with the ball in football
has led to some unattractive nicknames. It could be regarded as twelve pentagons,
each connected to five other pentagons through a connection at each apex. The
connection could formally be given a carbon-carbon double bond. The bonds in each
pentagon are formally single, emphasising its alkene nature, conjugation between
adjacent double bonds taking a secondary role. To illustrate the possible aromatic
character of it is necessary to describe it as a continuous the sheet of hexagons,
each hexagon sharing three of its sides with other hexagons. The extreme view
would be to have extended conjugation over the whole ring, although hindered by
the curvature imposed by the spherical structure. Whatever view is taken both
indicate that they should be good candidates for treatment by resonance theory [15].
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Resonance theory relies on the intuitive generalization of the valence bond method,
although its theoretical justification comes from molecular orbital theory [16].
Resonance theory can be used in very qualitative ways. For example the rationalisa-
tion of the bond lengths of small aromatic molecules involve very simple enumeration
of the classical structures. The intermediate C–C bond length in benzene is inter-
preted to be the result of both Kekulé structures being equally dominant in the final
structure. Since any particular C–C bond is a single bond in one Kekulé structure
and a double bond in the other the observed intermediate bond length is understood.
It is known that the shortest C–C in naphthalene connects the and carbon
atoms. When this bond is chosen to be double two classical structures can be drawn
whereas only one for every other bond selection. This correlation is only expected to
be good for molecules where all the carbon atoms involved have similar environments.

The fullerenes, notably are probably good examples of such molecules since, for
example, there are only two different bond lengths in each carbon atom being
symmetrically identical to all other carbon atoms. Using the labelling in Fig. 1 the
number of classical structures which can be counted if a double bond is fixed between
atoms 1 and 2 is 5500. If the double bond is between atoms 1 and 5 or 1 and 6
the corresponding number is 3500. This immediately explains why in  the bond
length between atoms 1 and 2 (1.3759Å) is shorter than that between atoms 1 and 5
or 1 and 6 (1.4627Å) since resonance theory assumes that the larger the number of
classical structures the more stable is the chosen configuration.
It is common in the interpretation of electron spin resonance spectroscopy of organic
radicals to draw classical structures to rationalise the observed distribution of spin.
In this spirit the number of possible classical structures of with the muon
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at position 1, has been enumerated for the unpaired electron at each other position
in turn. In all the discussions using these enumerations two assumptions are made.
Firstly the double bonds in each classical structure can exist equally probably in
the pentagons as well as the hexagons. Secondly each classical structure is equally
probable enabling the spin density distribution in to be discussed [16].

In Fig. 3 the number of possible classical structures arising from the spin being
localised at each carbon atom (top half) is compared to the UHFAA spin density
results (lower half). Note that the number of classical structures when the unpaired
electron is at sites 2, 5 and 6 is the same as for the double bonds involving atoms 1
and 2, 1 and 5 or 1 and 6 in The correlation between the number of classical
structures and the spin density is excellent. With only one exception all centres with
the number of classical structures larger than 2200 show positive spin density and all
those less than 2200 show negative spin density. This anticipated correlation can be
further quantified.
The expectation that the spin density should be proportional to [16], should be
tempered with the knowledge that an explanation must include negative spin densi-
ties. The mechanism which give rise to negative spin densities is called spin polar-
ization. Very qualitatively the unpaired electron ‘attracts’ electrons of like spin in its
immediate neighbourhood imposing electrons of the opposite on neighbouring atoms
(or negative spin density). In the case of classical structures the spin density on each
centre i will be a function of the number of classical structures, and reduced by
the spin density of each of its neighbours. For example if the average of the n’s of
the three nearest neighbours is subtracted from the n of any centre the result has the
same sign as the spin density without exception. This suggests that we should look
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for a relation of the type

where a and b are adjustable constants, centres j, k and l are adjacent to centre
i and where the modulus sign is necessary to allow for negative spin densities. A
simpler, and more easily manipulated, relation is The equation
has been plotted on Fig. 4 to show how well it correlates the data. The oscillation
of sign of the spin density distribution over the cage clearly has an explanation
from resonance theory.
This relationship has been found in spite of the fact that the spherical cage of
has been severely distorted in the region of the defect which could have mitigated
against correlations of this sort. This comment also applies to the isomers
below.

It is also possible to try and rationalise the variation in bond length of over
the surface using resonance theory. This is rather more difficult than the similar
calculation made above for To do this we assume that the muon is attached
to atom 1 (Fig. 1) and the unpaired electron is localised at position 2. Certainly
this structure will dominate. Two other adjacent atoms are selected to form a bond
and the number of classical structures which can be drawn from this configuration
is enumerated and the number is a measure of the double bond character. These
have been directly plotted (Fig. 5) against the optimised bond lengths calculated
for Biaxial error bars are used to include a range of values which would
otherwise have overlapped. A number of points on the graph have been indicated for
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further comment. These points refer to bonds which are the immediate vicinity of
the defect and conceivably still liable to the large distortion.
Nevertheless the unexpectedly long bonds, (7-11,8-12), are well predicted as are the
very short bonds (3-7,4-8,9-11,10-12). All of these bonds are part of the hexagonal
carbon atom structure. On the other hand the bonds of the neighbouring pentagons,
3-5,5-6,etc., are certainly out of place although still qualitatively in the right order.
Presumably these bonds have absorbed most of the residual distortion of the defect
for geometrical reasons.
Apart from these all other bond lengths correlate well with the corresponding number
of classical structures giving the two bond lengths of The bond lengths close
to correspond closely to the central carbon-carbon bond length in butadiene,
associated by Dewar and Schmeising [17] to a measure of the normal single bond
length for sp2-hybridised carbon atoms, 1 The other large group of bond
lengths are near a little larger than the associated with a double bond
between carbon atoms [16]. This would suggest that the bond lengths are well
predicted by resonance theory, the bond lengths being either slightly longer than a
typical double bond or slightly shorter than a single bond. This would seem to rule
out significant conjugation as expected in an arene. The alkene properties of
are apparently dominant since cluster calculations on and
closely reproduce the results of
However should provide a much clearer insight into the importance of conjugation
since there are 5 different types of carbon atom leading to eight different bond lengths.
These have been obtained from a calculation on fully optimising the geometry
using the ROHF method and an STO-3G basis set (see Table 4, the bond lengths are

within in ref.[12|).
The corresponding numbers of classical structures for each bond are also given. The
column marked in Table 4 is where n is the number of classical
structures for the bond in question, no = 14196, the number of classical structures
for the typical bond 31-40, and the total number of classical structures for
We are, without justification, assuming that no classical structures are unimportant
to the bond order and are subtracted from all classical structures. The ratios of the
residuals are taken as a measure of the mobile bond order [16]. This fixes the typical
bond 31-40 to be single. The bond order for the aromatic bond is then 1.5 (the same
as benzene in resonance theory). At present this is no more than a useful correlation.
The almost identical numbers of classical structures for the ajacent typical bonds
21-22 and 21-31 strongly indicates that these form an aromatic type system because
the symmetry of the molecule makes these typical bonds form complete hexagonal
arrangements. The arene properties are also demonstrated from the almost identical
bond lengths which arise even though the bond environments of 21-22 and 21-31 are
different. These aromatic rings are apparently not directly conjugated since the bond
which connects them, typically 31–40, is the longest bond with the smallest number
of classical structures. The other single bonds have similar immediate environments.
Their bond lengths are typical for single bonds connecting carbon atoms [17]. One

1The point is emphasised from STO-3G RHF calculations on butadiene. The optimised central
bond is and the other bonds are Of more significance are the corresponding
calculated bond lengths from the doubly positive ion of butadiene, that is, two are
removed. The central bond is now reduced to the double bond as expected, but the outer
bonds are the single bond lengths
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of the double bonds is significantly shorter than the short bond
in suggesting that the alkene characteristics could be enhanced in The
other double bond is only marginally longer than the short bond. The calculated
long bond in is just about the average of the single bonds of
which have the same bond environment (pentagon/hexagon). It was therefore with
some confidence that the valence-bond type structure in Fig. 2a was presented as
representing the structure which describes the chemistry of If muonation occurs
more readily at alkene bonds the expected sites are typically 1, 6 and 11, that is,
all type a structures (Fig. 2b). Type b and c structures involve bonds with arene
character.

4.2. AB INITIO CALCULATIONS

Our interest is two-fold, we wish to know whether the defect is firstly structurally
localised and secondly electronically localised. Our second interest extends to know
how important is the ‘continuous surface’ arising from the spherical shape of or
the ellipsoidal shape of
This prompted us [11] to try to represent by clusters of carbon atoms,

and the external atoms being constrained to lie on a part
of a spherical surface with the same radius as The results were very similar
to the calculations with partial geometry optimisation to suggest that this
adduct did not depend on the full structure but corresponded to a localised ‘defect’,
both structurally and electronically.
The calculations reported here are for a fully optimised geometry. The dif-
ference between the calculation using the fully optimised geometry and that which
allowed only six of the carbon atoms to relax from the underlying structure is not
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significant (Table 2) and it is confirmed that the muonium adduct of produces
only a localised distortion.
The ROHF calculations (Table 2) show a clear progression of decreasing stability the
closer the muon is placed to the equator of This is shown by whichshould
be less than -.5 Hartrees for a stable adduct. The most stable structures are of type a,
characteristic of the adduct, and analogous to muonium adding to an alkene
(compare Figs. 2a and 2b). The corresponding UHF calculations (Table 3) do not
show the same behaviour although many of the differences can be associated with the
problems expected from large values of in other words, the exceptionally large
spin contamination makes these UHF calculations particularly uncertain. Perhaps
this has arisen due to the restrictions imposed by the partial geometry optimisation
procedure. In any case the results will not be discussed further.
Apart from type which is only slowly convergent to the optimised geometry, the
other centres are well described by the ROHF method. Polyhedral views of the three
type a structures are shown in Fig. 6. These all illustrate the change of hybridisation
at the point of muonium attachment and at the adjacent carbon atom where the
unpaired electron is effectively localised as expected from addition to an alkene. The

and c defects (Fig. 7) are quite different. The expected hybridisation change to
is clearly present for the atom bonded to muonium, but other significant distortions
are not obvious. This is consistent with the prediction from resonance theory (Fig.
8) that the unpaired electron for these structures is delocalised over a large number
of centres.
This seems to imply that the associated distortion of the cage is only large for one
atom (not two as for the type a structures) and therefore possibly better accomodated
by the defects defined in Table 4. It must be concluded that either structures b and c
are chemically unrealistic or there is a subtle, but significant, stabilisation provided
by a complete geometry optimisation.
In Fig. 8 the preferred sites for the unpaired electron are estimated from the numbers
of resonance structures counted when the electron is fixed at that site. The structural
differences between Figs. 6 and 7 can now be understood. In addition the similarity
between type and is explained and also its marginally more stable centre
Also the similar properties of and are rationalised as is the expectancy that
is a more likely structure than c.
Overall Tables 2 and 3 suggest that only type a has a firm foundation. If we accept
that the other structures may be possible only types and show smaller muon spin
density. Experimentally [4] three sites for muonium attachment have been detected
with muon hyperfine coupling constants 278.2MHz, 342.8MHz and 364.6MHz with
amplitudes 17.1%, 13.1% and 11.2% respectively. The smallest coupling constant of
the three is the strongest. The most obvious explanation is that only type a structures
have been observed, type with the smallest of the type a coupling constants, has
twice the number of sites in the molecule than the other type a structures. This would
fit both the amplitude and coupling constants results qualitatively. Since structures
type and are possibly too similar to be detected individually it is possible that
the three resonances are (i) types and (ii) type (iii) type or in order
of decreasing hyperfine coupling constant. It is not adequate to suggest that the
number of sites of each should be proportional to the amplitude in this case since
type a structures are ‘alkene’ and type b structures are ‘arene’. However since alkene
sites are expected to form adducts more readily than arene sites [18] the predicted
amplitudes are qualitatively incorrect.
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5.Conclusions

The application of resonance theory to adducts of and has proved very suc-
cessful in reproducing the trends obtained from ab initio calculations. Not only has
this helped the intepretation of the results but has contributed to testing the relia-
bility of these exploratory calculations. The assignment of the isomers of to
the results is still uncertain the current preference is that they arise from the
(type a) alkene structures. It does seem unlikely that the type c structure will be
observed. Although partial geometry optimisations seem satisfactory for the type a
defects, they are not for the other structures and full geometry optimisations seem to
be necessary. It is possible that only type a structures are chemically feasible. Further
work is necessary to confirm these conjectures but it is clear that the interpretation
of the experimental data in terms of isomers of is correct.
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