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Preface

Mass spectrometry proteomics is a relatively young field, but it is rapidly gaining
importance in both large and small laboratories around the world, and a steadily increas-
ing number of scientists and students have come into more or less intimate contact with
proteomics, through the literature, through collaborations, or through their own practical
work. The field relies heavily on bioinformatics to process and analyze the acquired data,
and our aim has therefore been to write a book that can serve as a solid introduction to
the crossroads where proteomics and bioinformatics meet.

The intention has been to give an introduction to students and beginners in both
‘proteoinformatics’, experimental proteomics, and researchers who are in more peripheral
contact with these fields. Thus, the book includes the basic information needed for
bioinformaticians who want to develop algorithms and programs for proteomics. For such
work, the informaticians must have some knowledge of molecular biology. They should
also understand the function of the instruments, whether it is for writing programs that
control the instruments, or for further processing of the data produced. The beginner in
practical proteomics, on the other hand, is often confused by the technical and biological
complexity of the field, including the theoretical basis underlying proteomics. We hope
that this book can contribute to a shortening of the period of confusion. However, we will
underline that this book is no replacement for contact with experienced people within
bioinformatics or experimental proteomics, and we hope that the book can give the
beginner a better basis of knowledge, and thereby improve the reciprocal understanding
between bioinformaticians and the experimentalist.

The book concentrates on the identification and characterization problem of pro-
teomics, though quantification and sample comparison are also briefly described. The
first chapter provides a fairly detailed introduction to the peptides and proteins that are
studied in mass spectrometry proteomics, and their relevant properties. It also gives
an overview of the two main approaches used: peptide mass fingerprinting (PMF) and
tandem MS (MS/MS). The next four chapters explain techniques and methods used in
both of the approaches, including informatics solutions of selected problems. Chapters 6
and 7 describe PMF, with special emphasis on the informatics challenges. Chapters 8
and 9 describe the instruments and principles for tandem MS, and the next four chapters
concentrate on algorithms and programs for protein identification and characterization
by tandem MS. The last five chapters deal with quantification and some more specific
topics.



x PREFACE

The application of bioinformatics in mass spectrometry proteomics is a young field,
and little theoretical foundations have been developed. It is not the goal of this book
to provide such a theoretical foundation, but rather to present the main problems, and
extract and systematize some common principles used in solving these problems. The
presentation is illustrated by figures and numerous examples.

We have tried to restrict the description of a subject to one section or chapter, but for
some of the subjects it is necessary to treat them several times in different contexts. In
these cases we have included the necessary cross-references.

We have also included many references and websites, although we are aware that
websites can change quickly.

Terms
Many terms used in molecular biology and proteomics do not have unique or commonly
accepted definitions. We have mainly tried to follow the IUPAC (International Union of
Pure and Applied Chemistry) Compendium of Analytical Nomenclature. IUPAC has an
ongoing revision of the terms used in mass spectrometry, and a first draft exists.

IUPAC http://www.iupac.org/publications/analytical_compendium/
Ongoing revision http://www.msterms.com/
First draft http://www.sgms.ch/links/IUPAC_MS_Terms_Draft.pdf

However, for some cases where other terms seem to be more established, we have used
those.

Also, new terms are introduced in some of the literature quoted. We have relied partly
on these, but in some cases have resorted to defining our own terms. When applicable,
we also mention synonymous terms that may be encountered.
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1 Protein, proteome, and
proteomics

Proteins are generally the executive molecules in the cells. Many of them are enzymes that
catalyze myriads of biochemical reactions. Others are regulatory proteins that contribute
to the correct expression of the genome. Some are structural proteins that build the many
cellular components, and some proteins are carriers that move molecules around in the
cells or between cells. Annotation of genomes (that is, deciding the functions and names
for the individual genes that constitute the genome) is therefore primarily done at the level
of the proteome. While the genome is essentially identical in all cells in an organism,
the set of expressed proteins varies extensively through time as well as according to the
specific conditions a cell finds itself in. The term proteome may therefore be used with
several meanings. One definition is all the proteins encoded by the genome of a species.
Another use of the term is the set of proteins expressed in a particular cell (or tissue
or organ) at a particular time and under specific conditions. The term can also be used
for the set of proteins of a subcellular structure or organelle. Proteomics is therefore the
study of the subsets of proteins present in different parts of the organism and how they
change with time and varying conditions.

1.1 Primary goals for studying proteomes
The overall goal of proteomics is to understand the function of all proteins found
in an organism. Since this implies the collection of large quantities of proteomics
data, frameworks are needed for the storage and presentation of such data. The Gene
Ontology Consortium (GO), an international collaboration that aims to catalogue and
standardize the existing knowledge about protein function, has established a large
controlled vocabulary (CV) for gene and protein function. This CV is subdivided in three
orthogonal types: molecular function, biological process, and cellular component. Each
of these is briefly described below.

Molecular function describes activities at the molecular level, such as catalytic or
binding activities. It is important to note that molecular function terms represent activities
rather than the molecules (for example, proteins and molecular assemblies) that perform
them. Furthermore, these terms do not specify where and when, or in which context,
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2 PROTEIN, PROTEOME, AND PROTEOMICS

the activities occur. The molecular function terms describe function in the full range of
detail, from the broadest terms (for example, ‘catalytic activity’) to the more molecular
precise terms (for example, ‘Toll receptor binding’).

Biological process describes processes that are typically composed of a series (or
collection) of molecular functions. ‘Cell division’ is an example of a higher level
biological process, while ‘regulation of Ras protein signal transduction’ is an example of
a lower level process. Higher level processes can also contain one or many subprocesses.

Cellular component is just that – a component of a cell that is not an individual
protein. Examples are ‘rough endoplasmic reticulum’ and ‘nucleus’ at the high level
and ‘ribosome’ and ‘protein dimer’ at the detailed level. The ‘nucleus’ further contains
‘nuclear chromosomes’, ‘nuclear envelope’, etc.

As of April 2007, GO has a total of 22 945 terms divided by 13 446 biological processes,
7563 molecular functions, and 1936 cellular components. The GO tree is organized as a
directed acyclic graph (DAG) since a term can have more than one parent term.

It is important to note that while GO describes possible functions, it does not describe
dynamics and chains of functions as in metabolic pathways and regulatory networks.
Similarly, GO does not describe supercellular structures such as tissues, organs, and body
parts. Such terms and terminologies are currently being developed in other ontologies and
classification schemes which complement GO. Examples are KEGG (Kyoto Encyclopedia
of Genes and Genomes) that describes metabolic and regulatory pathways and The Adult
Mouse Anatomical Dictionary for anatomical structures of the mouse. A new Sequence
Ontology Project (SO) is being developed for detailed descriptions of features and objects
of genes and proteins. Other initiatives, such as OBO (Open Biological Ontologies),
aim to establish the means for the integration of ontologies from different domains
within biology.

Establishing such systems for the digitalized description of both function and properties
of genes, proteins, cells, and organs as well as pathways and networks will pave the way
for the development of computerized models of cells, organs, and organisms. Such static
models form the basis for the dynamic modeling of processes in biological systems in
the emerging field of research known as systems biology.

We can say that there exist four cornerstones of present-day proteomics: identification,
characterization, quantification, and sample comparison.

Protein identification is the determination of which protein we have in our sample.
This can be done by determining the sequence of the protein, or by measuring so many
properties of the protein that it is statistically unlikely that it could be another protein. In
this book we primarily consider determining the sequence.

Protein characterization is the determination of the various biophysical and/or
biochemical properties of the protein (regardless of whether the protein has been
identified). Although there are many important protein properties, in this book we mainly
concentrate on the problem of determining the posttranslational modifications.

Protein quantification is the determination of the amount (abundance) of a protein
in the sample, either as a relative or an absolute value. It should be noted that the
determination of protein abundance is most often far from trivial.
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Protein sample comparison is the determination of the similarities and the
differences in the protein composition of different samples. Some aspects of sample
comparison are:

• relative occurrence, the presence of proteins in some samples but not in others;

• relative abundance, the presence of proteins in different amounts in different
sample s;

• differential modification, the presence of different modified forms of proteins in
different samples.

In this book we present one of the most important basic techniques to achieve the
goals of proteomics: mass spectrometry. We mainly concentrate on the first two tasks
(identification and characterization), and give more briefly an introduction to the last two
(quantification and sample comparison). Before we proceed to a more thorough treatment
of the tasks, we will look at the protein itself in more detail.

1.2 Defining the protein
A protein is usually defined as consisting of one or more polypeptides, a polypeptide
being a macromolecular chain of amino acids. More elaborate assemblies of polypeptides
are often referred to as protein complexes. As many protein complexes are dynamic in
composition, a subunit can spend a considerable amount of its lifetime in the cell as a
single chain protein. This is one of the reasons why it has become commonplace to refer
to polypeptide subunits of protein complexes as proteins. In this book, we will therefore
use the term protein to denote a polypeptide, while assemblies of polypeptides will be
called protein dimers, trimers, etc., or protein complexes as appropriate. Unless otherwise
stated, the term protein thus refers to a single polypeptide chain.

Some proteins can have bonds to non-protein molecules such as small bio-organic
molecules (for example, fatty acids, co-enzymes, nucleotides) or, as in the case of ribo-
somes and chromatin, they can be stably associated with RNA or DNA. Derivation of a
comprehensive terminology for proteins (and parts of proteins) is non-trivial and beyond
the scope of this book. It is, however, treated briefly in Chapter 1.4.

1.2.1 Protein identity

The objective of proteomics is to assign experiment-derived information on protein func-
tion to a particular protein. To do this, it is necessary to identify the protein. Ideally, a
protein should have a unique amino acid sequence and a single source of origin (a species
name). While this may appear trivial at first sight, there are several reasons why fulfilling
these requirements is not always straightforward.

First, a single organism may contain several genes that encode proteins of identical
sequence, violating the first of the above constraints (sequence uniqueness). This is for
instance the case for several histone genes. Second, two proteins from two different organ-
isms may also have identical sequences, violating the single source of origin constraint.
A third complication is that the species concept itself is far from trivial and sometimes
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controversial. Finally, it is worth noticing that the emerging field of metagenomics gener-
ates DNA (and protein) sequence data for which a particular species name simply cannot
be provided. Yet for the purposes of this book we need not consider these issues further.
There are, however, other levels of complexity, variation, and ambiguity that proteomics
must consider. These issues are outlined in the following sections.

1.2.2 Splice variants

The primary transcript of a gene (transcription unit) can often be spliced in different
ways, giving rise to different mRNAs. The different proteins translated from such differ-
entially spliced mRNAs are often called splice variants and can have different molecular
functions, localize to different cellular components, and be involved in different biochem-
ical processes. A detailed proteomic analysis must therefore be able to assign functions
correctly to different splice variants. A similar situation occurs for genes that can be
transcribed from different initiation sites (and/or end at different termination sites).

1.2.3 Allelic variants – polymorphisms

In natural populations, many genes are polymorphic (estimates indicate that this is the case
for 20 % to 30 % of human genes), some of which result in protein variants with different
sequences. Although the majority of such variants are functionally indistinguishable
from each other, some have altered function, and in rare cases, allelic variants are
associated with disease. Although a large number of polymorphisms have been identified
and recorded in protein databases, many remain to be discovered. Algorithms for the
identification of proteins should therefore ideally be able to deal with allelic variants.

1.2.4 Posttranslational modifications

Another source of variation in proteins (and their masses) is the many posttranslational
modifications. These include both simple modifications such as phosphorylation and
methylation as well as more complex modifications such as glycosylation and sumoy-
lation. Many modifications can significantly alter the function of the protein and the
investigator may therefore like to distinguish the modified forms from the unmodified
ones. In other applications, however, it could be desirable to identify the proteins regard-
less of their modification status. It should also be considered that some modifications
are transient and/or chemically vulnerable and may not survive until detection. Although
many software applications have been designed to deal with posttranslational modifica-
tions, it is often far from trivial to detect and identify them, in particular for proteins which
carry multiple modifications. Posttranslational modifications are considered in more detail
in Section 1.4.

Proteolytic cleavage

Proteolytic cleavage is a particular kind of posttranslational modification that will result in
variants. In this case, the variants may appear as if they are the result of alternative splicing
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(splice variants). Cleavage results in N- or C-terminal truncation of the primary protein
product as well as removal of internal segments, creating two polypeptide chains from the
original single polypeptide chain. N-terminal truncation is for example a common mecha-
nism for the removal of the N-terminal signal sequence of proteins targeted to the secretory
system, while insulin is a classic case of the proteolytic excision of an internal segment.

1.2.5 Protein isoforms

The term protein isoforms has been frequently used in the literature. Unfortunately, the
term has not been used consistently. It can refer to any of the variants of modified forms
discussed above. In some cases it is also used to describe two distinct, but closely related
proteins encoded by different genes. In this book we therefore avoid the use of this term,
but forms of proteins are used in some places. Also, we occasionally use protein variants
for clarification.

1.3 Protein properties – attributes and values
Proteins are essentially chains of linked amino acids. There are 20 different naturally
occurring amino acids, all with an amino group,1 a carboxyl group, a central carbon atom
(often denoted as the � (alpha) carbon), and a side chain. The generalized structure of
an amino acid is depicted in Figure 1.1(a). The different amino acids are distinguished
by the structure of their side chain (Figure 1.1(b)). In writing, each amino acid can be
represented in one of three ways: by its full name, its three-letter abbreviation, or its
one-letter notation (see the first column of Table 1.1). When amino acids are part of a
chain, they are commonly referred to as residues. The bonds between two consecutive
amino acid residues in the chain are amide bonds, and are denoted as peptide bonds.
Correspondingly, a short chain of amino acids (smaller than a few tens of residues) is
usually referred to as a peptide. From the structure shown in Figure 1.1(c), it is evident
that an amino acid loses a water molecule �H2O� when it is incorporated into a chain.
Structurally speaking, a residue is therefore what remains of the amino acid after this
water molecule is released. The chain along the atoms N −C� − C−N� � � is called the
protein backbone. The end that carries the free amino group (−NH2 or −NH+

3 ) is called
the amino-terminal (or N-terminal) end of the chain, while the other end, carrying the
free carboxyl group (−COOH or −COO−), is referred to as the carboxy-terminal (or C-
terminal) end. By convention, the amino acid sequence2 is written as a string of residues
(usually in one-letter notation) from the N-terminus to the C-terminus.

The side chains of the different amino acids are structurally distinct and carry charac-
teristic physical and chemical properties, some of which are listed in Table 1.1. For some
of the properties in the table the values vary slightly with the experimental conditions
used for measuring them, conditions such as temperature, salt concentration in solutions,
etc. A lot of experiments suitable for measuring amino acid properties are collected in

1 Strictly speaking, proline contains an imino group rather than an amino group.
2 We will use amino acid sequence and protein sequence interchangeably.
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Figure 1.1 (a) All 20 amino acids have the same basic structure, but differ in their side chains.
(b) The amino acid valine with its side chain. (c) A polypeptide is formed by chaining amino acids.
The bonds between consecutive amino acids are called peptide bonds. When two amino acids are
bound, a water molecule is released

The Amino Acid Repository database for which the web address can be found in the
bibliographic notes.

A protein can be considered as having a set of properties. A common way of describing
a property of an object is to use an (attribute,value) pair. For example, a protein can have
a ‘mass’ attribute with a value of ‘8500 Da’, and a ‘cellular component’ attribute with
value ‘Endoplasmic reticulum’.

Since we mainly concentrate on protein identification, characterization of posttransla-
tional modifications, and comparison of proteins, we are primarily interested in attributes
that can be of help in solving these tasks. For such attributes there exist some desirable
requirements:

1. The value of the attribute should be (easily) measurable.

2. The attribute should have a (high) degree of specificity, meaning that different
proteins should ideally have different attribute values.

3. The value should be constant (minimal variation with time and other external
factors).

4. It should be possible to calculate or predict the value from the sequence of the
protein, if the sequence is known (this is useful for protein identification).

We can distinguish between properties that are intrinsic to the protein sequence (given
standard buffer conditions) and contextual properties that depend on the molecular or
cellular context of the protein. From point 4 above, it is clear that we are mainly interested
in the intrinsic properties.
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Table 1.1 Some amino acid properties. The residue masses are from the i-mass guides
(http://i-mass.com/guide/aamass.html), pI values are from Nelson and Cox (2004), pK values are
from DTASelect (http://fields.scripps.edu/DTASelect/), the hydrophobicity index is from Kyte and
Doolittle (1982), average occurrences are from the composition of the Swiss-Prot database release
52.1 of 20. March-07

Amino acid Residue mass pI
values

Hydro-
phobicity

index

pK
values

Occurrence (%)

Mono-
isotopic

Average

Ala A alanine 71�04 71�08 6�01 1�8 7�87
Arg R arginine 156�10 156�19 10�76 −4�5 12�0 5�42
Asn N asparagine 114�04 114�10 5�41 −3�5 4�13
Asp D aspartic acid 115�03 115�09 2�77 −3�5 4�4 5�34
Cys C cysteine 103�01 103�15 5�07 2�5 8�5 1�50
Gln Q glutamine 128�06 128�13 5�65 −3�5 3�96
Glu E glutamic acid 129�04 129�12 3�22 −3�5 4�4 6�66
Gly G glycine 57�02 57�05 5�97 −0�4 6�95
His H histidine 137�06 137�14 7�59 −3�2 6�5 2�29
Ile I isoleucine 113�08 113�16 6�02 4�5 5�91
Leu L leucine 113�08 113�16 5�98 3�8 9�65
Lys K lysine 128�10 128�17 9�74 −3�9 10�0 5�92
Met M methionine 131�04 131�20 5�74 1�9 2�39
Phe F phenylalanine 147�07 147�18 5�48 2�8 3�95
Pro P proline 97�05 97�12 6�48 −1�6 4�82
Ser S serine 87�03 87�08 5�68 −0�8 6�84
Thr T threonine 101�05 101�11 5�87 −0�7 5�41
Trp W tryptophan 186�08 186�21 5�89 −0�9 1�13
Tyr Y tyrosine 163�06 163�18 5�66 −1�3 10�0 3�02
Val V valine 99�07 99�13 5�97 4�2 6�73
N-terminus 1�01a 8�0
C-terminus 17�01a 3�1

a Note that the terminus masses are the masses of the atoms added to the end residues, normally H at the
N-terminus and OH at the C-terminus.

There exist a large number of protein attributes, and many of them can be used in
protein analysis in some way. We will, however, concentrate on the physicochemical
ones that are used in the analytic methods described later in the book. We will also briefly
mention how they can be measured, whether the values can be calculated or estimated
from the sequence, and, if possible, how this can be done.

1.3.1 The amino acid sequence

The amino acid sequence is the most fundamental attribute of a protein. Correspondingly,
the sequence is also referred to as the primary structure of the protein. If the sequence is
known, the protein is considered identified. When we consider a protein we should there-
fore first try to determine its complete sequence. This is, however, not a straightforward
process.
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Protein sequencing

The traditional technique for protein sequencing is Edman degradation. The first step
of Edman degradation relies on the ability to remove the N-terminal amino acid from a
polypeptide while leaving the rest of the chain intact. In the next step the identity of the
removed amino acid is determined. Repeated cycles of these two steps ultimately result
in a readout of the polypeptide sequence from the N-terminus to the C-terminus. This
process is restricted to chains of roughly 60 residues and is very laborious: one day of
work for 40–50 amino acids.

Tandem mass spectrometry (Chapter 12) can also be used for protein sequencing and
is now becoming the standard technique. This approach is aimed at sequencing peptides
rather than whole proteins, and direct sequencing of intact proteins remains a very tough
challenge today. Note that many of the protein sequences found in databases are derived
from in silico translations of (predicted or annotated) open reading frames (that is, genetic
sequences that are assumed to encode for proteins).

1.3.2 Molecular mass

The mass (symbol m) of a molecule or atom is expressed in unified atomic mass units
(symbol u), defined as 1/12 the mass of carbon-12 (which is 1�660 540 2 · 10−27 kg). A
more common term for unified atomic mass unit is dalton (Da).

Molecular weight is not the same as molecular mass, and is also known as relative
molecular mass (denoted as Mr). Formally, weight is a ratio relative to 12C, and can vary
with the location. This is unlike mass, which stays the same regardless of location. When
the literature gives a mass in Da or kDa it refers to molecular mass. It is incorrect to
express molecular weight (relative molecular mass) in daltons. Nevertheless you will find
the term molecular weight used with daltons or kilodaltons in some of the literature, often
using the abbreviation MW for molecular weight. Another term sometimes used in this
context is the atomic mass unit (symbol amu). Note that this term is deprecated since it
is used both as synonymous with dalton and as a relative definition to 16O.

All chemical elements have naturally occurring isotopes. Isotopes are elements that
have the same atomic number (and therefore similar chemical properties), but different
molecular mass (slightly different physical properties). This is important for the mass
definitions.

The following definitions of terms related to ions or molecules are mainly based on the
IUPAC third draft. The reader should therefore be aware that these terms can sometimes
be used with slightly different meanings in the literature.

• Exact mass is the calculated mass of an ion or molecule containing a single isotope
for each atom (most frequently the lightest isotope of the element). It is calculated
using an appropriate degree of accuracy.

• Monoisotopic mass is the exact mass of an ion or molecule calculated using the
mass of the most abundant isotope of each element. For small elements the most
abundant isotope is the lightest one (as for C, H, N, O, S), but this is not necessarily
the case for larger elements (like B and Fe).
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• Average mass is the mass of an ion or molecule calculated using the average mass
of each element weighted for its natural isotopic abundance.

• Mass number is the sum of the number of protons and neutrons in an atom, molecule,
or ion.

• Nominal mass is the mass of an ion or molecule calculated using the mass of the
most abundant isotope of each element rounded to the nearest integer value. It is
equivalent to the sum of the mass numbers of all constituent atoms.

• Mass defect is the difference between the mass number and the monoisotopic mass.

• Mass excess is the negative of the mass defect.

• Accurate mass is an experimentally determined mass of an ion that is used to
determine an elemental formula.

• Mole is a measure of the amount of substance. One mole of any substance contains
6�022 ·1023 (Avogadro’s number) molecules or atoms.

• Apparent mass is not an IUPAC term. It is frequently used in the literature to indicate
a molecular mass that is estimated from an inaccurate experiment (for example, gel
electrophoresis, Chapter 2).

Example Consider the amino acid valine. The derived residue consists of five C,
nine H, one O, and one N. We calculate the different residue masses (in daltons).

Monoisotopic mass: 5 ·12�0000+9 ·1�0078+15�9949+14�0031 = 99�0682
Average mass: 5 ·12�0107+9 ·1�0079+15�9994+14�0067 = 99�1307
Nominal mass: 5 ·12+9 ·1+16+14 = 99 �

Measuring the mass of a protein

In the laboratory, the mass of a protein is commonly estimated by SDS-PAGE (sodium
dodecyl sulfate polyacrylamide gel electrophoresis), as explained in Chapter 2. This method
has limited accuracy and the inaccuracy increases with increasing mass. Other methods
like gel filtration and analytical ultracentrifugation are also used to estimate the masses,
in particular of larger proteins and protein complexes. The mass of (small) proteins can,
however, be accurately determined by mass spectrometry, as described in Chapter 6.

Experimentally measured masses necessarily carry errors or uncertainties. The total
error of a general measurement is often given as either a relative or an absolute value,
and the two scales used for these are the part per million (symbol ppm) scale for relative
error, and the milli unit (symbol mu) scale for absolute error. For mass measuring, the
absolute error is commonly given in milli-mass unit (mmu) or daltons: 1 mmu is 0.001 Da.
For ions less than 200 Da, a measurement with 5 ppm accuracy is considered sufficient
to determine the elemental composition.

Example Suppose we have a measured value of 5 kDa, and an error of 1 Da. The relative
error is 1

5000 = 200
1 000 000 = 200 ppm. For our value of 5 kDa, a relative error of 200 ppm is

therefore equivalent to an absolute error of 1 Da. �
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Theoretical calculation

Theoretical calculation of the mass of a polypeptide is done simply by adding up the
masses (monoisotopic or average) of all the residues, and adding the masses of the extra
atoms at the N- and C-terminus (normally H and HO).

Distribution of the protein masses

If we want to use protein mass for identification purposes, we first need to know about
the protein mass distribution. Release 52.1 of the Swiss-Prot sequence database contains
261 513 sequence entries, with lengths in the interval [2; 34 350], and an average length
of 365 residues; 195 202 of the sequences lie in the length interval [51; 500]. If we assume
an average residue mass of 110 Da, this means that the masses of 195 202 proteins lie
in the interval [5.5; 55] kDa. If the proteins are sorted by increasing mass, the average
difference between two neighboring masses in this interval is 0.28 Da.

1.3.3 Isoelectric point

The isoelectric point of a protein is defined using the term pH, which is a measure
of the acidity of a solution. pH is an abbreviation for potential of Hydrogen, or more
precisely ‘The negative of the base 10 logarithm of the concentration of hydrogen ions
in a solution.’ It is measured using the number of H+ and OH− ions in the solution.

Water dissociates (splits into simpler fragments) as

H2O → H+ +OH−

Using the chemical convention that concentrations are indicated by square brackets [],
the equilibrium of dissociation can be expressed as

��H+� · �OH−��

�H2O�
= K

The concentrations in such formulas are expressed in moles per liter, or molar (M). The
equation above can be rearranged as

K�H2O� = Kw = �H+��OH−�

Kw is called the dissociation constant, or the ion product, of water, and at 25 �C,
Kw = 1�0 ·10−14 M2. A neutral solution of pure water (at 25 �C) implies equal amounts of
H+ and OH− and correspondingly means �H+� = �OH−�. Thus,

Kw = �H+��OH−� = �H+�2 = 1�0 ·10−14

and �H+� = 1�0 ·10−7.
By definition, pH is the negative logarithm of the concentration of H+. Thus, for

neutral solutions pH = − log10 10−7 = 7. When the concentration of H+ is high (due to
the negative logarithm, this corresponds to a low pH), the solution is considered acidic.



PROTEIN PROPERTIES – ATTRIBUTES AND VALUES 11

According to the Brønsted – Lowry definition, molecules that readily donate protons (H+)
to the solution are acids, and molecules that accept protons from the solution are bases
(note that the hydroxyl ion (OH−) is the quintessential base, as it readily combines with
a proton to form water).

Proteins (like amino acids and many other molecules) have both acidic and basic
characteristics, and thus carry chemical groups that act as either proton acceptors or proton
donors. Accepting a proton results in a positive charge, while loss of a proton yields a
negative charge. These charges are distributed along the chain of the molecule, according
to the location of the specific basic or acidic groups. Depending on the availability of
protons in the solution (the pH) in which the protein is dissolved, the number of positive
and negative charges of the protein will vary. At a low pH, there is an abundance of
protons available that will quickly populate the available acceptor sites while inhibiting
dissociation of the donor sites. The result is a net positive charge for the protein. At a high
pH, very few protons are available to bind to the acceptor sites, and the donor sites will
readily lose their protons, leading to a net negative charge for the protein. At a certain
pH, however, the protein will have an equal number of positive and negative charges.
The net charge is then zero, and the protein is electrically neutral. This pH value is called
the isoelectric point (pI) of the protein. Different proteins will have different pIs, which
depends on their amino acid composition.

Measuring the pI

The pI of a protein can experimentally be determined by use of isoelectric focusing pH
gradients, and is explained in Chapter 2.

Theoretical calculation

Protein ionization is determined by the properties of the amino acids that the proteins
consist of. Each amino acid carries two ionizable groups: the amino group (proton
acceptor, basic) and the carboxyl group (proton donor, acidic). Additionally, some amino
acids also carry an ionizable group in their side chain. The amino group already ionizes
at a relatively high pH and will carry a positive charge at neutral and acidic pHs. The
carboxylic group ionizes at a relatively low pH and carries a negative charge at neutral
and high pHs. However, since these two groups form the peptide bond between two
consecutive amino acids in a protein, it is only the N-terminal amino acid that has a free
amino group, and only the C-terminal amino acid that has a free carboxyl group. If these
two groups were the only ionizable groups in the proteins, all proteins would obviously
have very similar pIs. Yet proteins actually have widely varying pIs, and this is due to
the influence of the ionizable groups in the side chains of certain amino acids. Histidine
(H), lysine (K), and arginine (R) carry a proton acceptor group in their side chains and
can therefore become positively charged, while cysteine (C), aspartate (D), glutamate (E),
and tyrosine (Y) have side chains that contain a proton donor group and can become
negatively charged. The dissociation constants can be determined for the ionizable groups
of these amino acids. The negative logarithm of the dissociation constant is defined as
the pK value, analogous to the definition of pH. Simply put, the pK value corresponds to
the pH where 50 % of the particular ionizable group is ionized, and 50 % is not ionized.
The pK value thus represents a measure of the acidity or basicity of the ionizable group.



12 PROTEIN, PROTEOME, AND PROTEOMICS

The pK values are obtained experimentally, and some values for pK are shown in
Table 1.1. Note, however, that the values vary slightly with the environment and the
experimental conditions in which the values are measured. Also bear in mind that the
values reported for amino acids are experimentally determined for free amino acids. When
the residues are bound in a complex macromolecule, their pK values can vary significantly
(something that is exploited to great advantage by many enzymes). The pK values for
the termini also vary with the actual amino acids that form the corresponding ends.

Note also that pK is a generic dissociation constant, and pKa is the acid dissociation
constant, thus more specific than pK. For simplicity we use pK here.

Theoretical calculation (or rather estimation) of the pI of a protein is performed by
using these dissociation constants. Indeed, the pK values can be used to calculate the
partial charge of the ionizable amino acids b at any given pH according to standard
equations:

Cb = 1
1+10pH−pKb

if amino acid b is positively charged, and

Cb = −1
1+10pKb−pH

if amino acid b is negatively charged. Note that �Cb� < 1. From these, we can define a
function CP�pH� that estimates the net charge of a protein P for a given pH. Let B be
the set of charged amino acids including the termini, and nb the number of occurrences
of amino acid b in the protein. Then CP�pH� is calculated as

CP�pH� =∑

b∈B

nbCb

The protein’s pI is then obtained as the pH where CP�pH� is zero. This value can be found
by numerical methods as described in Algorithm 1.3.1, which implements a binary search
procedure. For simplicity, the function CP�pH� is denoted as C�x� in the algorithm.

Algorithm 1.3.1 Theoretical calculation of the isoelectric point of a polypeptide
Let the function be C�x�. We search for the value where C�x� = 0

const
	 limit for accuracy
var
x
x0
 x1

begin
find values x0
 x1 such that sign�C�x0�� �= sign�C�x1��
while �x1 −x0� � 	 and max number of iterations not reached do

x �= �x0 +x1�/2
if sign�C�x0�� �= sign�C�x�� then x1 �= x else x0 �= x end

end
end the isoelectric point is in �min�x0
 x1�
 max�x0
 x1��
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Example Consider the (small) polypeptide P=QEAYEGK. Then we calculate

C�5��= CP�pH = 5�� = −1�6
 C�4� = 0�6

This means that the isoelectric point for P is between 4 and 5. The average of these limits
(4.5) is calculated and the function C�4�5� is solved. If this value is less than zero, then
the isoelectric point must lie between 4 and 4.5, otherwise it is between 4.5 and 5. In the
next iteration, the average of these limits (4.25) is again used and C�4�25� calculated. The
process continues until a sufficiently small interval is obtained (the absolute difference
of the limits must be less than the predefined value 	).

�

The distribution of pI values

Several analyses have been done on the distribution of the pI values for proteins. Almost
all proteins have values in the interval [4, 12], but the actual distribution varies with the
organism under study (deviating values are for instance obtained for organisms that have
adapted to highly basic or acidic environments).

1.3.4 Hydrophobicity

Compounds that tend to repel water are termed hydrophobic, as opposed to hydrophilic
compounds that dissolve easily in water. Though hydrophobicity is one of the most
important physicochemical properties of amino acids and proteins, it is still poorly defined.
The main characteristic is that when there are many consecutive hydrophobic amino acids
in a certain part of the sequence, that sequence part will tend to avoid water. This can
be achieved in one of several ways. The sequence may be packed in the interior of the
3D structure of the protein, the sequence may integrate into one of the many membranes
of the cell (that is, the protein becomes a membrane protein), or the sequence may
appear as a hydrophobic patch on the surface of the protein, serving to attract a similar
hydrophobic patch on another protein. In all cases the hydrophobic sequence avoids the
entropically unfavorable contact with water.

Hydrophobicity scales

The hydrophobicity of the amino acids has been determined through either calculation or
measurement. There are different ways to determine hydrophobicity, relying on different
properties of the amino acids. Because of this, many scales exist for the hydrophobic-
ity values of amino acids. Fortunately most of them are fairly similar, and for most
applications it does not matter which of them is used. The most often used scale is
the Kyte–Doolittle scale from 1982 (Table 1.1), in which the most hydrophobic amino
acids have the highest positive values. Hydrophobicity scales are often used for finding
hydrophobic regions in proteins.

Theoretical calculation

A hydrophobicity value for a protein can be calculated simply by adding the hydropho-
bicity values of all the residues and dividing the sum by the number of residues. This is
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called a GRAVY score (GRand AVerages of hYdrophobicity). For proteins, however, it
is generally more common to calculate a hydrophobicity plot (or hydrophobicity profile).
A sliding window is used in this approach, and the average hydrophobicity of the residues
inside the window is plotted at the residue in the middle of the window. If the size of the
window is nine, the first average value will be plotted at residue 5, the next at residue 6,
and so on. This technique can be used to find hydrophobic regions along the sequence.

1.3.5 Amino acid composition

The amino acid composition of a protein can be determined by first cleaving (hydrolyzing)
all the peptide bonds in the protein to release the constituent amino acids. The amino
acids are subsequently separated, and after staining the intensity of each amino acid is
determined. From this the prevalence of each amino acid is calculated.

Theoretical calculation

Theoretical calculation of the amino acid composition from a protein sequence is per-
formed simply by counting the number of occurrences of each amino acid in the protein.

1.4 Posttranslational modifications
A posttranslational modification (PTM) can be defined as any alteration to the chemical
structure of the protein effected by the cellular machinery after the formation of the
protein. PTMs thus occur strictly in vivo and are correspondingly sometimes called in
vivo modifications. Note that this implies that the chemically induced modifications that
often occur in the lab during sample preparation are (strictly speaking) not PTMs. These
are usually described as chemical, artefactual, or in vitro modifications and should be
taken into consideration when performing proteomics. A very specific type of chemical
modification is the introduction of isotopic labels. These modifications exploit the dif-
ferent masses of different isotopes of the same element to distinguish between different
samples. The distinction is achieved by introducing a different isotope (and thereby a
different mass) to each sample, as explained in Chapter 15.

PTMs are very important to the survival of the cell; they contribute to the correct
localization of proteins, act as controllers and mediators of protein function, and play cru-
cial roles in cellular communication and signal transduction. Some examples of common
PTMs are:

1. cleavage of the protein, for example the removal of inhibitory sequences or sorting
signals;

2. ligand binding;

3. covalent addition of further groups, for example glycosylation, acetylation, etc.;

4. phosphorylation and dephosphorylation.
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In this book we will only consider modifications that affect the structure of one residue.
The modifications will change some of the attributes of the proteins, most notably the
mass but also the pI and the hydrophobicity.

Several databases of modifications exist. Some focus explicitly on PTMs, while others
also include a range of chemical modifications. The RESID database at the European
Bioinformatics Institute (EBI) is an example of the former category, while UniMod
and DeltaMass are examples of the latter category. UniMod and DeltaMass have been
developed for use in mass spectrometry applications and this explains their inclusion of
chemical modifications. Recently, these three databases have started to collaborate on the
HUPO PSI Modifications ontology. Because of our focus on mass spectrometry, we here
describe UniMod in some more detail.

Each modification has one entry in the UniMod database. Each entry can have several
specifications, and each specification refers to the modification of a specific amino acid.
A specification consists of a site, a position, and a mass:

Site is the residue where the modification can take place. There are 22 possibilities:
the 20 amino acids, the N-terminus, and the C-terminus.

Position is where the modification can occur, and here there are five possibilities.

Anywhere, the modification is position independent.

Any N-term, the modification occurs only at a peptide N-terminus. For defini-
tion of peptides, see Section 1.6.2. Note that this option is primarily used for
chemical modifications as peptides are usually artificial molecules obtained in
the laboratory.

Any C-term.

Protein N-term, the modification occurs only at the N-terminus of the intact
protein.

Protein C-term.

Mass is the mass difference effected by the modification and this varies from −128
to 1769 Da, with only nine over 1000. The mass difference is specified as both
monoisotopic mass and average mass. In addition a neutral loss may be specified,
since some modifications exhibit a neutral loss on fragmentation in a mass spec-
trometer. This loss has no biological meaning by itself and is simply a useful artifact
uniquely associated with mass spectrometry experiments.

Example The entry phosphorylation has seven specifications, one for each of the amino
acids S,T,Y,D,H,C,R. The addition is HO3P, with monoisotopic mass 79.966 331. �

Modifications are mainly discovered by observing changes in the mass and/or pI.
However, since there are so many possible modifications, it is often not easy to uniquely
determine which modification led to the observed parameter shift. Additionally, if there
are several possible positions for the modification, it can be difficult to determine the exact
residue where the protein modification took place. Another method for detecting protein
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modifications relies on the specificity of antibodies to bind a particular residue carrying a
particular modification. Antibodies can be spotted on arrays and can then analyze many
modifications in parallel. Some modification-specific antibodies may be specific for the
modification and a certain protein, others recognize the modification regardless of the
protein. However, reliable antibodies are difficult to obtain.

Theoretical calculation of the mass of a modified protein is simply done by adding
the mass of the modification. The change in pI is similarly calculated by changing the
pK value of the modified residues in accordance with the modifications. It is important
to note, however, that for many modifications the pK values are either unknown or very
rough estimates, making accurate pI predictions practically impossible.

1.5 Protein sequence databases
Sequence databases build upon the most basic source of information about proteins, their
sequence. In the next three subsections the most commonly used sequence databases for
protein identification will be briefly discussed and in the fourth subsection a note is given
on the instability in time of sequence databases.

1.5.1 UniProt KnowledgeBase (Swiss-Prot/TrEMBL, PIR)

The central UniProt database builds on three well-established pillars in the sequence
database world: the Swiss-Prot, TrEMBL (Translated EMBL), and PIR (Protein Infor-
mation Resource) databases. The key difference between Swiss-Prot and PIR on the
one hand and TrEMBL on the other hand lies in the manual curation effort that under-
lies the former two databases. We will focus here on the Swiss-Prot database since
we mostly refer to and take examples from Swiss-Prot. All entries in Swiss-Prot have
passed through a rigorous manual control by human curators. During this curation process
diverse information sources are consulted and cross-verified in order to establish which
annotations are clearly supported by trustworthy evidence. The result of these efforts
is an extremely high-quality and stable3 protein sequence database with heavily cross-
linked annotations. Obviously, the curation process is labor intensive and this limits the
reach of the Swiss-Prot database. The TrEMBL database complements this nicely, how-
ever. It contains automatically annotated proteins, including predicted protein sequences.
UniProt is more than a list of sequences and their annotations. Apart from the UniProt
KnowledgeBase, the system encompasses a complete sequence archive called UniParc
(UniProt archive), as well as UniRef, a set of reference clusters at different sequence
identity levels.

As stated above, Swiss-Prot contains much curated protein information and annotations,
but in our context it is enough to consider the following points:

• the accession number, which supplies a unique identifier for the entry;

• the sequence;

3 The number of sequences curated into Swiss-Prot continues to grow, so ‘stable’ here simply means
that it is unlikely that an entry will be deleted from Swiss-Prot.
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• molecular mass (denoted as molecular weight);

• observed and predicted modifications.

The sequence is the sequence after translation, yet before any modifications that may
cleave off parts of it. This is often explicitly annotated in the entry by affixing [Precursor]
to the protein name.

A feature table contains reported differences in the sequence for a protein. They are
of different types:

Conflict, positions where different (bibliography) sources report different amino acids;

Variants, where the sources report that sequence variants (alleles) exist;

Mutagen, positions where alterations have experimentally been performed;

Varsplic, the description of sequence variants produced by alternative splicing. Note
that following our definition this would be different proteins, and that a derived
database called Swiss-Prot Varsplic exists in which all splice variants are included
as separate protein entries. The accession numbers for these entries are composed of
the accession number of the parent entry, followed by a dash (-) and a number, for
example P12345-3 for the third splice variant of entry P12345.

The feature table also includes observed PTMs. The type of modification, and the
position, is specified for each observed modification.

Finally, it is important to keep in mind that even Swiss-Prot may contain errors,
although the curation process is specifically designed to minimize potential errors.

1.5.2 The NCBI non-redundant database

The National Center for Bioinformatics Information provides a non-redundant sequence
database that is usually referred to as the NCBI nr database. This database groups sequence
information from a variety of sources, including Swiss-Prot, TrEMBL, and RefSeq.
The last one consists of two distinct types of entries, NP and XP, which are readily
identifiable by their accession numbers (they start with ‘NP_’ or ‘XP_’, respectively).
The NP sequences have corroborating evidence such as cDNA to back up their validity,
while the XP sequences are based purely on predictions.

It is clear that the level of annotation and available cross-links in the database varies
considerably between entries and is largely dependent on the source database of the
sequence.

The NCBI nr database is non-redundant at the absolute protein sequence level, meaning
that no two sequences are completely identical in the database. History management is
also provided via the Entrez web interface.

1.5.3 The International Protein Index (IPI)

This database has its origins in the human genome project and was originally conceived
as a non-redundant view on all known human proteins. Over the years the reach and
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scope of the IPI database has grown, yet the basic premise of providing an intelligently
designed non-redundant protein sequence database has remained. IPI is now available for
a variety of model organisms, including human, mouse, rat, and Arabidopsis. IPI presents
an automatically curated view on the total contents of a large collection of sequence
databases (including UniProt, RefSeq, and Ensembl) by a rather complex algorithm to
remove sequence redundancy in a thorough way. Simply put, the algorithm can be
described as follows: instead of simply requiring each protein sequence to be unique,
sequences are also collapsed into clusters when they show more than 95 % overlap over
the full match length. When a cluster consists of sequences of different lengths (which
often happens due to the presence of protein fragments as separate entries in several source
sequence databases), the longest sequence is chosen as the master sequence. Notable
exceptions to the clustering rule are the annotated UniProt splice variants, which are
retained as separate entries. Each cluster is finally assigned an IPI accession number and
all source references aggregated in the cluster are expressly reported in the IPI entry. IPI
also provides complete history files, which trace the history of every entry that has ever
carried an IPI identifier.

1.5.4 Time instability of sequence databases

In the above sections it has been mentioned that each of the sequence databases maintains
sequence history in a specific way. The ability to trace a sequence (or its (versioned)
accession number) through time is a much overlooked, yet highly important characteristic
of a sequence database. Indeed, sequences in any database are subject, to a greater or
lesser extent, to changes over time. The primary event of any sequence is of course its
first inclusion in a database. This can be traced for each entry in the above-mentioned
sequence databases. All sequence databases continue to grow, so the creation of novel
entries occurs frequently. Once a sequence has been recorded in a database, it can undergo
alterations as well. Depending on the database, these alteration events can trigger a change
in the version number or even cause the assignment of a new accession number.

In the latter case, tracing is usually provided in such a way that the original accession
number will still link up to the sequence. Certain sequences can be subjected to removal
from the database, invalidating the accession number without providing a replacement.
This effect is most pronounced for purely theoretical predictions (such as the above-
mentioned RefSeq XP entries). Indeed, a change in the prediction algorithm usually
renders a number of previous predictions obsolete. Also note that databases such as NCBI
nr or IPI, which combine information from different sources (including RefSeq XP),
necessarily suffer the same fluctuations as their source databases.

1.6 Identification and characterization of proteins
Protein identification can be performed by collecting properties of the proteins under
consideration, and explore whether we can recognize these properties among the known
proteins. This is generally done by comparing the measured properties to the calculated
or documented properties of the proteins in a protein database, and could be performed
by the following procedure:
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1. Choose a protein database, or a subset of a protein database, with the candidate
proteins.

2. Compare the properties of an unknown protein to the properties of the database
proteins, and select the proteins that best fit the observed properties.

3. Compute a probability for the hypothesis that the best fit database protein and the
unknown protein really are the same protein. Note that we do not always know
whether the unknown protein is in the database in the first place. The probability
calculation mentioned earlier will be different depending on whether we know the
protein to be present in the database, or not.

We have seen that, especially due to the modifications, there does not exist a single, or
even a set of, protein attributes that make this procedure workable in the general case. It
has therefore been necessary to develop other techniques and procedures for identifying
proteins. Mass measurement has proved to be the most useful technique, with mass
spectrometers as the instruments of choice. Mass spectrometers are general instruments
for measuring the masses of the molecules in a sample. However, mass spectrometers
are only able to recognize charged molecules, therefore the molecules must be ionized.
In proteomics the ionization is commonly achieved by the addition of protons, and more
rarely by loss of protons. Hence the mass of the peptide or protein is increased by the
nominal mass of 1 Da times the number of charges (protons) in the case of addition,
and decreased by the nominal mass of 1 Da times the number of charges in the case of
loss of protons. By convention the number of added (or lost) protons is denoted by z.
It is then important to recognize that the mass is only indirectly determined; it is the
mass-to-charge ratio, denoted m/z, that is measured. Figure 5.4 shows examples of mass
spectra, with m/z values along the horizontal axis, and intensities along the vertical axis.
The masses are then only obtained after processing of the m/z values. Depending on the
instrument and the experimental conditions, the processing of m/z data to masses can be
anything from trivial to exceedingly difficult. This will be described later.

1.6.1 Top-down and bottom-up proteomics

Although proteomics can be performed in a number of different ways, it may be useful
to divide the existing approaches into two types of paradigms: top-down and bottom-
up. In the top-down paradigm, intact proteins are directly used for the analysis. In the
bottom-up paradigm, the proteins are first cleaved into smaller parts, and these parts are
then used for identification, characterization, and quantification. These smaller parts are
called peptides. Methods using a combination of both paradigms (hybrid methods) are
also in use.

The bottom-up paradigm is most often used, and there are several reasons for doing
mass spectrometry on peptides, and not (solely) on intact proteins, as follows:

• The absolute error in the measurement increases with the measured m/z.

• A protein does not have one defined mass, but rather a mass distribution. This is
due to the occurrence of stable isotopes. Due to their long sequence, proteins will
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have a much more complex mass distribution than the short peptides. As a result, it
is a lot easier to obtain a single, monoisotopic mass for a peptide than for a protein.

• It is not possible to measure the mass of all proteins, especially (very) large and
hydrophobic proteins.

• Sensitivity of measurement of intact protein masses is not nearly as good as sensi-
tivity for peptide mass measurement.

• The existence of modifications complicates the analysis. This effect is much more
noticeable for whole proteins as their long sequence can be modified several times
with several different modifications. For the much shorter peptides, the combinatorial
possibilities are more manageable.

Also, it is difficult to perform large-scale analysis of intact proteins with top-down
proteomics techniques. The bottom-up paradigm is therefore used as the basis for the
presentation in this book. For the sake of completeness, an introduction to the top-down
paradigm is given in Chapter 17.

1.6.2 Protein digestion into peptides

As we have seen, a peptide means a contiguous stretch of only a few tens of residues (in
practice, the desired length lies between 6 and 20 residues). Protein cleavage into such
peptides is generally done by enzymes called proteases, and the cleaving operation is
called digestion. The measured masses (experimental masses) of the resulting peptides
can be used for comparison against the predicted masses (theoretical masses) of the
peptides obtained after an in silico digestion of candidate protein sequences in a database.
In silico digestion is done by simulating the cleavage on a computer using the specificity
of the protease (for example, that it cleaves only after arginine residues) and the peptide
masses can theoretically be calculated as the sum of the residue masses with the addition
of the masses of the intact termini: a hydrogen (H) at the N-terminus and a hydroxyl
group (OH) at the C-terminus.

Example Let a (short) protein sequence be MALSTRVATSKLICDVTRASDT. Using
trypsin as a protease (cleaving after each arginine and lysine, if not followed by proline),
the protein should ideally be cleaved into the peptides MALSTR, VATSK, LICDVTR,
ASDT, resulting in the (nominal) masses {677, 504, 818, 392}. �

1.7 Two approaches for bottom-up protein analysis by mass
spectrometry

The foundation for bottom-up proteomics is to digest the proteins into peptides, and com-
pare peptide properties to the properties of theoretical peptides from a protein sequence
database. Two main approaches have evolved to perform such analysis, differing in the
peptide properties used, the mass spectrometry instruments used, and the method for
separation of molecules to reduce the complexity.
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Peptide masses or peptide sequences Peptide masses and peptide sequences are the
main peptide properties used in bottom-up analysis. The process of comparing experi-
mental masses to theoretical masses has been named peptide mass fingerprinting (PMF)
and is sometimes also referred to as mass profile fingerprinting and peptide mass
maps. If our unknown protein corresponds to a database protein, each of the theo-
retical peptide masses of the database protein should coincide with an experimental
peptide mass, and vice versa. However, in reality full experimental coverage of the pro-
tein sequence is never achieved; 20–40 % sequence coverage is more usually obtained.
The search tools for peptide mass fingerprinting therefore calculate statistics to indi-
cate the confidence of the suggested identifications, where one of the components is
the coverage.

For the peptide mass fingerprinting approach, we can usually determine only one
property of the peptide, namely its mass, and this only to within a certain accuracy,
for example 50 ppm. There are probably hundreds, or even thousands, of peptides in
a database that have a mass within this accuracy limit. Even if we know the exact
amino acid content of the peptide, we do not know the positions for each of the amino
acids (except that its C-terminal amino acid is probably K or R if the peptides have
been generated by the action of trypsin). The following peptides have for example
exactly identical mass: WGAR, WAGR, GWAR, WAGR, AWGR, and AGWR. Additionally, this
mass is very similar to the mass of the peptide ENAR (there is a 31 ppm difference).
Thus deriving the sequence (or part of the sequence) of a peptide gives much higher
confidence in the subsequent identification of the protein of origin.

Mass spectrometers Different mass spectrometers are used for measuring the mass,
and for deriving the sequence. One mass spectrometry analysis is sufficient for measuring
the masses, using an MS instrument. For deriving the sequence two mass analyses are
used in the MS/MS-capable instruments. The first mass analysis is used to specifically
select ionized molecules (in our context peptide ions) from a particular m/z interval.
The selected ions are then often subjected to a fragmentation step, yielding a number of
fragments per selected ion. The second mass analysis finally measures the m/z of the
fragment ions, from which sequence data might be derived. More mass analyses can be
chained to yield, generically speaking, MSn analysis. Instruments capable of performing
such analysis are generally called MSn instruments. Since sequence information can
be derived, the MS/MS studies have become the most commonly used type of mass
spectrometry analysis. The selected peptide ion in MS/MS experiments is usually called
the precursor and the isolation interval is often small enough to admit only a single
precursor to the following sequencing steps.

Separation When presented with the problem of analyzing a mixture of proteins, the
capacities of mass spectrometers are easily overcome by a too complex mixture, resulting
in the analysis of only a minor part of the total protein complement of the sample.
By fractionating the initial sample into fractions, the mass spectrometer can be used
to analyze each obtained fraction separately. This will mean that more of the proteins
in the sample are analyzed; the sample coverage is increased. Fractionation is usually
achieved by different methods of separation. When proteins or peptides are separated,
they are split into fractions (groups), in which the members share those properties that are
used by the separation process. The main separation steps may be performed on either
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Table 1.2 Illustration of two different approaches for mass spectrometry proteomics

MS MS/MS
(peptide mass fingerprinting) (tandem MS)

Peptide property Mass Sequence
Separation Protein separation Peptide separation

before digestion after digestion
Number of 1 2
MS analyses

the proteins or the peptides, and can therefore be done either before or after proteolytic
digestion.

The two different main approaches are summarized in Table 1.2. They are briefly
described in the following two subsections, and further detailed in the following chapters.

1.7.1 MS – peptide mass fingerprinting

This approach uses separation of intact proteins, and the ideal separation should yield
all the molecules of a single protein into a single fraction. In practice, protein separation
techniques rarely achieve this ideal resolution, especially if the starting material is a
complex mixture containing many proteins. For example, the variants of a single protein
will usually fall into different fractions. Protein separation is described in more detail
in Chapter 2. However, if each fraction contains only a small number of proteins (one
to three), the separated fractions may still be manageable for further analysis by mass
spectrometry.

The approach is sketched in Figure 1.2.
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Figure 1.2 MS protein analysis approach, using protein separation



TWO APPROACHES FOR BOTTOM-UP PROTEIN ANALYSIS BY MS 23

Example We have a sample of proteins, which we want to identify. Assume there
are five proteins in the sample, A
B
C
D
E, and that we separate on isoelectric point,
resulting in the separated fractions �A
D
 �B
E
 �C. Note that this means that proteins
A and D (and proteins B and E) have similar isoelectric points.

We then digest each fraction separately. Assume that ideal digestion (digestion at all
possible places that the protease can cleave) would result in the following peptides:

Protein Peptides

A A1
A2
A3
A4

B B1
B2
B3

C C1
C2
C3
C4
C5

D D1
D2
D3
D4

E E1
E2
E3

Suppose we now analyze the fraction that consists of protein C. We can expect to
find the following peptides: C1, C2, C3, C4, and C5. Even if the C2 and C5 peptides
are missed by the instrument, we can still use the other three peptide masses to identify
protein C from the database. When we analyze the fraction consisting of proteins A and
D, however, we are faced with a mixture of peptides. Suppose the instrument presents the
masses for five peptides: A1, D2, D3, D4, and A4. The database search (which assumes
a single protein to have been isolated) obtains a higher coverage of protein D and will
list this identification as the most probable candidate. Without additional analysis (such
as the removal of all identified peptides and a subsequent re-search with only the masses
of peptides A1 and A4), protein A would be missed. Note that missed cleavage sites
and similar masses of different peptides usually confound the identification process in
practice. Additionally, the mass spectrometer will also report the masses of any ionized
impurities, further complicating the analysis.

�

1.7.2 MS/MS – tandem MS

This approach uses separation of peptides, and is also termed peptide-centric proteomics.
A relatively simple protein sample, such as an Escherichia coli cell lysate, will contain
somewhere between 2500 and 5000 proteins. With an average of 25 peptides per protein
in E. coli, this yields 62 500 peptides if 2500 proteins are expressed. If the separation step
is only performed after the proteolytic digestion, one thus ends up with a large number
of peptides. In order to obtain a reasonable sample coverage, the peptide separation step
therefore must be able to handle this increased complexity. The approach is illustrated in
Figure 1.3.

Example We have the same data as in the example above, and assume that
a (non-ideal) proteolytic digestion results in A1
A2
A3
4
B1
B2
B3
C1
2
3
C4
C5

D1
D2
D3
D4
E1
E2
3. Note that we have introduced some missed cleavage sites here,
resulting in the unexpected peptides A3
4, C1
2
3, and E2
3. Assume separation of these
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Figure 1.3 MS/MS protein analysis approach, using peptide separation

peptides by hydrophobicity, which results in three fractions, where the content of the
first is �A2
B1
B2
C1
2
3
E2
3, the content of the second is �B3
D1
D4, and the con-
tent of the third fraction is �C5
D2
E1. (Note that not all peptides are observed.)
Remember that all the peptides within each fraction have similar hydrophobicities.
Suppose now that MS is performed for the first fraction, and that all peptides have
different masses. Assume that the masses of �A2
B1
E2
3 each are selected for an
MS/MS experiment, and that the resulting fragmentation spectra from these experi-
ments are used to search the database. Depending on the outcomes of these searches,
none or up to all three of the proteins A
B
E can be identified, with each protein
supported by a single peptide. The same procedure can be performed on the other
two fractions. Again, this example is a simplification, but it serves to illustrate the
approach.

�

1.7.3 Combination approaches

It is also possible to first perform a separation at the protein level, proteolytically digest
the isolated protein fractions, and finally separate the resulting peptides. By using the
separations in series, the sample complexity can be greatly reduced. On the other hand,
the extra level of separation results in a significant increase in the amount of work.

In general, if a step n yields Fn fractions after separation, the number of times the
�n+1�th step needs to be applied is given by the following multiplicative series:

n∏

i=0

Fi = F0 ·F1 ·F2 · · · · ·Fn−1 ·Fn

It is obvious that the increase in the number of sample processing steps reflects negatively
on the speed of analysis. Combined approaches quickly become very laborious and are
therefore not often used in high-throughput experiments.
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1.7.4 Reducing the search space

Often some overall knowledge about the sample is available. Usually the species of origin
is known, and it is therefore possible to select as potential candidates only those proteins
from the sequence database that are derived from this organism. For experiments that
apply some sort of protein separation, the approximate values for pI and the mass are
sometimes known. Again, this information can be used to filter candidate proteins.

It is important to bear in mind that restricting the number of candidate peptides can
influence the performance of the search algorithm employed, and should always be used
judiciously.

1.8 Instrument calibration and measuring errors
Different types of instruments exist for measuring the values of different protein or peptide
attributes. They are all similar in that they must be calibrated, however, and the result
may contain errors.

1.8.1 Calibration

The numerical value given by a measuring instrument can depend on a variety of external
factors such as the chemicals used, the temperature, voltage fluctuations, etc.

This means that the actual measured values may be incorrect, and have to be calibrated
(corrected). Calibration is performed by measuring the attributes of interest of some
molecules for which the correct values are known. These molecules are called calibrants
or standards. The measured values for the standards are compared to the known values,
and possible deviations are calculated. The measured values of any other molecules
are then corrected in accordance with these observed deviations. Note that this process
implicitly assumes that the deviations occurring during calibrant measurement will be the
same as those occurring during sample measurement.

The correction of the measurements is done by calculating a function f�v�, such that
v∗ = f�v�, where v is a measured value, and v∗ the corrected value. Such a function can
be found by least squares approximation. The correction function is often assumed to be
linear, which corresponds to a function of the type v∗ = a+bv. Note that we will need
to calculate a and b before we can apply this function. Assume that n standards are used,
with correct values �ci, and measured values �ei. a and b are then found such that

n∑

i=1

�a+bei − ci�
2

is minimized. Calculation of a and b from this expression is documented in textbooks on
numerical analysis and optimization. The overall procedure is illustrated in Figure 1.4.

The calibration can be done by either external or internal standards. The values for
internal standards are measured in the same experiment (measurement) as the unknown
molecules. External standards are measured in a separate experiment. Internal stan-
dards come closest to satisfying the requirement introduced above that standard and
unknown molecules should be measured with similar deviations. A disadvantage of
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Figure 1.4 Figure showing calibration. The three full dots represent the standards, used to
calculate the line. The calibrated value of the experimental value vi is v∗

i

internal standards is that they can affect the detection of the unknown molecules in
some cases. External standards suffer from the possibility that the environment (chemi-
cal/biological/physical) in which measurement takes place is not identical in both exper-
iments. As such, the factors that affect the measurement might not be the same in the
two experiments, violating the assumption that the standards suffer from the same kind
of deviation as the unknown molecules.

1.8.2 Accuracy and precision

The quality of a protein identification or characterization increases with more exact
measurements of the relevant attribute values.

Two terms are used for specifying this exactness (and thereby the uncertainty in the
measured values): accuracy and precision. The description of these terms that we give
here is based on IUPAC.

Accuracy

Accuracy is a measure of the closeness of a result to the true value. It involves a combi-
nation of a random error component and a common systematic error or bias component.

Precision

Precision is the closeness of agreement between independent measurements obtained by
applying the experimental procedure under stipulated conditions. The smaller the random
part of the experimental errors which affect the results, the more precise the procedure.
A measure of precision is the standard deviation, or a formula based on the standard
deviation. When a more precise definition is needed, repeatability or reproducibility is
used. Repeatability considers the same method with the same test material under the same
conditions (same operator, same apparatus, same laboratory, and after short intervals of
time) but reproducibility means under different conditions.
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The value of a measurement can be precise but not accurate, neither of them, or both
of them. However, it is not possible to achieve high accuracy without high precision;
if the values are not similar to one another, they cannot all be similar to the correct
value. If the value from a measurement is both accurate and precise, it is often said
to be valid.

Example Let the correct mass of a peptide be 950.455. Let two instruments perform four
measurements each, resulting in the following value sets: {950.650, 950.654, 950.652,
950.653} and {950.465, 950.485, 950.445, 950.425}. The first instrument has high preci-
sion, but low accuracy; the other has higher accuracy, but lower precision.

�

Accuracy and precision are illustrated in Figure 1.5. The bias (or the systematic error)
of the measurement depends on several ‘fixed’ factors, and is usually defined (for the
instrument and method used) as the mean of the deviation from the correct value. It
is often used as a measure of the accuracy of the instrument, and can also be used
for calibration purposes. In fact, usage of the mean value of multiple measurements
of a standard for calibration yields a two-step procedure that attempts to minimize
the random fluctuations in the instrument measurements while compensating for the
systematic error.

The precision is often determined by taking a sufficient number of measurements of
the same sample, and performing a statistical analysis on the data. This analysis most
often assumes a normal distribution for the measurement errors and relies on the 95 %
confidence interval, calculated as 1.96 times the standard deviation (for a two-sided test
against a normal distribution). In many cases, however, it is not convenient or even
not possible to perform many measurements, and precision then needs to be estimated
indirectly, with the exact mechanism depending on the type of attribute measured as well
as the instrument used.

Value
Correct
value

Systematic error
or bias

(accuracy)

Experimental values
The precision is calculated from

the standard deviation of the curve

Probability
distribution

Figure 1.5 Illustration of accuracy and precision
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Exercises
1.1 Calculate the monoisotopic, average, and nominal mass of the residue of serine. The

chemical formula of the residue serine is C3H5NO2, and use the atom masses as in
the example in Section 1.3.2.

1.2 Suppose the mass of a protein is measured to 18 500 Da, with an uncertainty of 10 Da.
What is the uncertainty in mmu and ppm?

1.3 Consider the peptide EVEDLQVR.

(a) Show that the theoretical pI value is between 4 and 4.5.

(b) Use the programs ‘ProtParam’ and ‘Compute pI/Mw’ (http://expasy.org/tools/)
to calculate the pI value for the peptide.

1.4 Consider the peptide ARTWLCDYEVTKRSEPTVGR.

(a) Calculate the GRAVY score for the first windows of length five.

(b) Use the program ‘Kyte-Doolittle Hydropathy Plots’ (http://gcat.davidson.edu/
rakarnik/kyte-doolittle-background.htm) to show a hydropathy (hydrophobicity)
plot of the whole peptide.

1.5 Write a program that given the (nominal) mass of a peptide calculates the possible
amino acid composition of the peptide. Remember that the mass of a peptide is the
sum of the residue masses plus the mass of a water molecule (H2O). Run the program
on the peptide mass 677.

1.6 Use the search program Mascot (http://expasy.org/tools/) to search in Swiss-Prot with
the peptide masses 611.3, 794.4, 1052.5, 818.4. Try with some and all of the masses,
and with different accuracy values. Use trypsin as the protease, and try with zero
and one missed cleavages. Observe the score of the highest scoring sequences, and
compare to the significance level. (The masses are calculated from in silico digestion
of the Swiss-Prot entry GLNB_PORPU.)
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In Chapter 1 we explained why separation of proteins or peptides is important, and that
different techniques or methods exist for performing this separation. Common to most
of them is that the analyte1 mixture is migrated through a substance. This substance is
chosen to influence the speed of a molecule’s migration depending on some property
of the molecule (for example, size) and the molecules are therefore separated over time
based on this property. Most of the different separation methods can thus briefly be
described by:

• the substance through which the molecules migrate;

• the external force that causes the molecules to migrate;

• the preprocessing of the molecules, making them able to migrate through the sub-
stance.

The most commonly used technique for protein separation is gel electrophoresis,
described in this chapter. Liquid chromatography (LC) is also used to a lesser extent.
LC is frequently used for peptide separation, however, and is described in more detail in
Chapter 4.

1 The proteins (or peptides or any other molecules) under analysis are often called analytes.
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Gel electrophoresis is the only technique that can simultaneously separate thousands
of unknown proteins. The protein attributes on which separation relies are commonly
molecular mass and isoelectric point. Since modifications and sequence variations change
these attribute values, protein variants will often be separated. The proteins can be
separated on mass alone, on pI alone, or on both. It is important to note that protein mass
and pI are orthogonal attributes. This means that they are not directly related and therefore
should give optimal separation efficiency. For instance, two proteins with similar mass
will most probably not have similar pIs. As shown in Section 1.3 these parameters can
be calculated based on the sequence, which makes them appropriate for identification.

To achieve high-quality results, care has to be taken during sample preparation, espe-
cially to prevent other components (such as salts, lipids, polysaccharides, and nucleic
acids) from interfering with the protein separation. Furthermore, one should try to avoid
protein aggregation (particularly troublesome for hydrophobic proteins) and undesirable
chemical modifications due to the chemicals used during sample preparation. Fortunately,
a number of protocols have been developed for performing the sample preparation and
the subsequent separation experiments.

2.1 Separation on molecular mass – SDS-PAGE
Strictly speaking, SDS-PAGE is a technique for separation on molecular size, since the
speed of migration is inversely proportional to the size of the molecule. However, size is
usually considered to be sufficiently proportional to mass.

The substance used in this separation technique is polyacrylamide. When this polymer
is formed under the right circumstances, it turns into a porous gel with a lot of small
holes or tunnels. It is this network of tunnels that impedes the transit of large molecules
while small molecules move much more readily through them. The force applied to move
the molecules through the gel is supplied by an electric field. PAGE thus stands for
PolyAcrylamide Gel Electrophoresis.

The preparation of the proteins should therefore generate molecules in which the size
is more or less proportional to the mass, while at the same time charging the analytes with
a constant charge-over-mass ratio. Since proteins exist in natural form as 3D structures,
a form which is inappropriate for mass-proportional size separation, they must first be
denatured into a linear form. In natural form proteins also carry both negative and positive
charges, depending on the charge state of the amino acids along their sequence. This is not
an ideal situation with regard to the separation procedure. The necessary preprocessing of
the proteins is achieved by treating them with sodium dodecyl sulfate (SDS), a detergent
molecule with a long hydrophobic tail and a negatively charged head. SDS will then:

• denature the proteins; and

• impart negative charges to the proteins (roughly) proportional to the size of the
protein.

This is illustrated in Figure 2.1.
After being prepared, the resulting negatively charged and denatured proteins are loaded

onto the polyacrylamide gel. When a gel is loaded with multiple, discrete samples, each
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_ _

_ _ _
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(a) (b)

Figure 2.1 Sample preparation for SDS-PAGE. (a) The native proteins exist in 3D form. (b) They
are treated by SDS, denaturing them to linear form and negatively charging them in constant
charge/size ratio

loading spot is called a well. The loaded gel is then placed in an electric field, and the
negatively charged proteins start migrating towards the positive electrode with velocities
depending on their sizes, small proteins migrating fastest. When the gel is loaded by
multiple samples, each protein separation track derived from a single well is called a lane.

In any sample there will be many copies of the same protein. They may take different
paths through the substance, but will still migrate with approximately the same speed.
All copies of proteins of the same mass will therefore turn up as one band on the gel, as
illustrated in Figure 2.2. A standard dye is also loaded on the gel and is of sufficiently low
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Figure 2.2 A gel with four numbered loading spaces or wells. A voltage difference is applied to
the gel, with the negatively charged electrode at the top, and the positively charged electrode at
the bottom. The proteins carry negative charge because of the attached SDS molecules and will
move towards the bottom, positive electrode when they are loaded at the top. Well 1 is typically
loaded with molecules with known masses (standards or markers), and the resulting gel bands can
be used to calibrate the masses of the unknown proteins. Well 2 contains a two-protein mixture
with proteins a and c. Well 3 contains a sample of three proteins a, b, and c, and well 4 contains
protein c alone. In this case a is the heaviest protein. Note that a certain protein species (for
example, protein c) travels equally far through the gel, independently of how many other proteins
were present in the samples loaded in the wells
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molecular mass to most probably be the fastest migrating molecule in the gel. Usually,
the dye is colored (hence the name), which allows tracking of its progress through the
gel. This progress is visible as a thin, colored line and this line is called the dye-front.
The migration is stopped by turning off the electric field before this dye-front reaches
the bottom of the gel. Biological protein samples normally contain a number of proteins
with approximately the same mass, yielding bands that can contain several different
proteins. The bands can also merge into each other, making the interpretation of real gels
a difficult task.

2.1.1 Estimating the protein mass

Estimating the mass of a protein2 can be done (as illustrated in Figure 2.2) by loading
standard molecules of known masses in a parallel well on the gel, and after separation
comparing the migration distances. An Rf value is first calculated for the proteins, which
is the ratio of the distance that the protein has migrated to that migrated by the dye-front.
Consequently, the Rf values of the proteins are less than or equal to one. There is a
linear relationship between the logarithm of the protein mass M and its Rf value:

log10 M = aRf +b

A set of standards are migrated through the gel, and a linear line is interpolated (by
calculating the values for a and b). The log of the protein mass is then determined by
using the Rf value on this line, as explained in the example below.

0.7 1.21.0

0.4

0.6

log10 mass

Rf

0.5

Figure 2.3 The estimation of protein mass. The full dots illustrate the standards used, and a
linear relationship is interpolated. A protein with a relative migration of 0.55 will then have a
log10 value of its mass equal to 0.88, and therefore a mass of 7.6 kDa

2 The mass estimate as derived from an SDS-PAGE experiment is usually referred to as apparent mass.
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Example Assume we have three standards with masses (5, 10.8, 14.5) kDa, and the
relative migration distances (Rf values) are (0.66, 0.48, 0.42) respectively. The logs to
base 10 of the masses are (0.70, 1.02, 1.16). Figure 2.3 illustrates how the mass of an
unknown protein with Rf value 0.55 is estimated from these data points.

�

2.2 Separation on isoelectric point – IEF
Separation on isoelectric point is performed by isoelectric focusing (IEF), where a pH
gradient is used for the separation. The pH gradient used for separation these days
is typically immobilized on a plastic backing. The gradient itself is generated from
certain polymerized chemicals (polyaminocarboxylic acids and similar compounds) that
are imbedded into agarose or polyacrylamide gel, arranged by (continuously) increasing
pH values. The proteins are entered into the gradient by absorption from a buffer with
the sample, often strengthened by applying an electric current. After sample transfer, an
electric field is applied across the pH gradient. The proteins will move in this electric
field, initially towards the electrode with the opposite charge. When the protein reaches
the point in the pH gradient that is equal to its pI, the net charge will become zero, and
the migration will end. The procedure is illustrated in Figure 2.4.

The pH value at both ends of the gradient is known, and the gradient itself can be linear
or nonlinear. If it is linear, the pI of the proteins can be calculated directly by measuring
the distance to one of the ends. If it is nonlinear, standards are used for determining the
pI of the proteins.

The most popular type of pH gradient is the immobilized pH gradient or IPG strips.
Immobilized means that the chemicals on the strip are not moving, which used to be a
problem with older systems. Gradients producing reproducible pI measurements can be
bought for different pH ranges, and vary in length from 7 to 24 cm. The pI of proteins is
usually in the range of 3 to 12, but the overall majority are between 4 and 7. The strips
typically have either a very broad range (for example, pH 3–10), or a very narrow range
(for example, pH 4–5).

(a)

(b)

+ _

7

4

4

7

pH values

Figure 2.4 (a) A pH gradient filled initially with the protein sample. Note that the sample may
also be applied at one end of the pH gradient. (b) When an electric field is established, the proteins
move to the pH equal to their pI values. Each spot therefore contains a set of proteins with similar
pI value
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2.3 Separation on mass and isoelectric point – 2D SDS-PAGE
The SDS-PAGE or IEF separation methods alone do not have high enough separating
power for sufficient resolution of complex protein samples. However, because these two
methods are orthogonal, they can be combined in a method called two-dimensional SDS-
PAGE (2D SDS-PAGE). The proteins are separated on pI in the first dimension and on
mass in the second. This method, first published in 1975, remains the most widely used
protein separation technique today.

2.3.1 Transferring the proteins from the first to the second dimension

This is done manually by attaching the pH gradient to the top of the gel, after it has been
treated by SDS.

2.3.2 Visualizing the proteins after separation

Normally the bands/spots (of proteins) are invisible. To make them visible on the gel
they must therefore be stained, commonly with dyes or metals (most notably silver).

Which dyes or metals that are best suited depends on the types of the proteins. Desired
properties for a staining agent are reproducibility, sensitivity (can detect low-abundance
proteins), and linearity, so that it can be used for quantification. No staining technique
will stain all types of proteins in proportion to the amount of protein present, implying
that they are unsuited for accurate quantification inside a gel. Figure 2.5 shows a 2D gel.

Figure 2.5 A typical 2D gel with pI in the horizontal direction, and mass in the vertical direction
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2.3.3 Problems

There are several problems with 2D SDS-PAGE, as follows:

• Not all proteins will appear on the gel. These are typically:

– hydrophobic proteins, with GRAVY values above 0.4;

– proteins with an isoelectric point below 3 or above 10;

– proteins with a mass below 8 kDa, or above 150–200 kDa;

– proteins of low abundance.

The hydrophobic proteins tend to form complexes and precipitate before they can
be loaded on the pH gradient, while the proteins with extreme pI usually fall off the
edges of the pH strip. The very small or very large proteins tend to be lost during
gel electrophoresis and the low-abundance proteins will fail to be stained and will
therefore escape detection.

• The gels may contain contaminating components.

• Protein complexes may stay intact and will therefore behave as a single, very large
molecule.

• It is difficult to observe membrane proteins, which are usually quite hydrophobic
(see above).

• 2D SPS-PAGE has mediocre reproducibility. It is difficult to obtain the same patterns
for repeated experiments. There might also be local variations inside a single gel.
Thus, proteins with a high pI may not have exactly the same migration rate as
proteins with the same masses, but low pI.

2.3.4 Excising the proteins

Proteins with similar mass and isoelectric point migrate into spots on the gel. The different
spots can then be cut out by a scalpel, or can be picked up by a robot, for further analysis
(for example, by a mass spectrometer).

2.4 2D SDS-PAGE for (complete) proteomics
2D SDS-PAGE is mainly used as a separation technique, enabling further analysis in other
instruments. However, despite the above-mentioned serious drawbacks, it has been used
for identification, and was for some years considered synonymous to proteomics. High-
quality sample preparation and very precise experimentation are then required. Below we
briefly describe how 2D SDS-PAGE is used for further processing.

2.4.1 Identifying the proteins

The values for isoelectric point and mass can be determined by use of standards, and
further used as support for identification. The accuracy and precision obtained are usually
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not sufficient to lead to unambiguous identification, however. As we have seen above,
usually the separation is followed by mass spectrometry analysis for identification.

Another approach for identification is to use antibodies. This approach is for instance
used in Western blotting. A disadvantage of this approach is that we need to know
which proteins are present (in order to obtain the correct antibodies). The proteins are
transferred from the gel onto a membrane by applying an electric current or a liquid flow.
This procedure transfers the pattern from the gel onto the membrane. The membrane is
then probed for a specific protein by adding a specific antibody, which also contains a
detectable label (usually an enzyme, a fluorescent dye, or a radioisotope). The membrane
is washed in a series of steps, and the bound probe is detected using photographic film,
a highly light-sensitive camera, or a camera-like device.

2.4.2 Quantification

In general, 2D SDS-PAGE gel quantification is based on the signal intensity of the spot
in which the protein has been found. Obviously, spots containing more than one protein
present challenges to any such quantitative study as the unexpected proteins add staining
intensity that will be incorrectly assumed to be derived from the identified protein. And
even if the spot is known to hold more than one protein, it is no longer possible to trace
back which protein contributed which amount of staining to the spot. On the other hand,
if different forms (for example, truncated or modified forms) of the protein are spread
over different spots, the (total) quantification of the protein may become problematic
as it relies on adding the spot intensities of all the different forms. Any missed spot
(that could not be identified for whatever reason) will thus result in an underestimation
of the quantification. The fact that different forms often localize in different spots can,
however, be beneficial if one wants to compare one form with the other (for example,
the phosphorylated form compared to the unphosphorylated protein). Another problem
focuses on the usable interval of these staining procedures for quantification. Several
staining procedures do not stain at all below a certain amount of protein present, and
their staining intensity levels off quickly above a certain amount of protein present as
well. The interval between these amounts can be considered ‘covered’ by the staining
procedure and is called the dynamic range. It is desirable to have a linear response in
staining intensity versus amount of protein present for the dynamic range, in addition
to a high sensitivity. Most non-fluorescent staining agents have relatively poor dynamic
range, and even the best non-fluorescent technique (silver staining) only has a dynamic
range of about one order of magnitude. The fluorescent stains can attain the sensitivity
of silver staining when used under optimal circumstances, yet can yield a much better
dynamic range, up to five orders of magnitude. The fluorescent detection does have some
caveats, however, including fading signals if the fluorophore is (slowly) decomposed by
the influx of light, and problems with the interference of fluorescence of flourophores
that have become associated with detergent micelles.

2.4.3 Programs for treating and comparing gels

In most cases, the patterns obtained after 2D SDS-PAGE are analyzed and compared
using computer-based tools.
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In a first step, image capture devices are used to generate digital images of the
actual gels. Such images consist of pixels, and each pixel has a corresponding value for
the brightness or signal intensity. The images are then analyzed by special programs.
Such programs are typically semi-automatic, in that the analysis is performed in an
interactive way. The user gives parameters for calibration, spot detection, quantification,
spot matching, and result presentation. The sequence of typical operations performed is
listed below:

1. Removal of noise. Several filtering procedures are performed, depending on the
types of noise that exist. The challenge is to remove the noise while retaining
the spots corresponding to the molecules of interest. There are different types of
filters. Generally they use a window of a certain size, usually �3 × 3� to �9 × 9�
pixels, which is slid across the image. A new value for the pixel in the middle
of the window is calculated from the values of all the pixels in the window by a
filtering function. An example of a filtering function can be a weighted average of
the intensities of the pixels in the window, with the pixels lying nearest the one
in the middle carrying the greatest weight. The programs may offer some help in
identifying what types of noise exist, and can thus suggest appropriate filters to use.

2. Removal of the background. The background intensity should be subtracted from
the image. In more advanced noise filtering steps, a complete background image is
constructed which is then subtracted in its entirety.

3. Detection of the spots. Cut-off parameters such as minimum peak intensity, spot size
in pixels, and other parameters, depending on the program, are used. The software
should detect the spots, and try to separate protein spots from any other coloring of
the gel (due to artifacts or left-over noise). Fortunately, protein spots typically have
special forms that can be used to recognize them.

4. Quantification of the spots. The amount of protein present in a spot is calculated from
the pixel intensities and the spot surface area. A Gaussian filter of the pixels around
the detected spot center can be used, for example, after which the quantification is
based on the output of the Gaussian filter.

5. Matching spots from different gels. This is the most important analysis when per-
forming gel-to-gel comparisons. Due to the low reproducibility typically encoun-
tered in 2D SDS-PAGE, it can be a difficult process. Usually, gels are aligned by
using a set of internal standards that constitute reference spots. Since local devia-
tions occur, the standards are spread over the gels. The reference spots in the two
gels are recognized, and overlaid. The rest of the spots are then moved and matched
in correlation with the alignment of the standards. Matching several gels is typically
done by defining a master gel, which can be either one of the real gels, or a new
gel constructed from several of the real ones. Spot matching over several gels is
then performed using pairwise matchings to the master gel. Programs that attempt
to directly perform multiple matchings also exist.

6. Analysis and presentation. The result can be statistically analyzed and presented in
a variety of ways.
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Sample A Sample B

Dye 1 Dye 2 Dye 3

Combine

Gel for BGel for A

Reference
sample

Gel for reference sample

Figure 2.6 Illustration of the DIGE procedure. Two samples and a reference sample are each
labeled with different dyes and then mixed. One 2D gel is used for separating the proteins. Using
different wavelengths of light, three different gel images can be obtained (one for each sample)
from the same gel

2.4.4 Comparing results from different experiments – DIGE

As described earlier, the poor reproducibility implies that comparing gels is not a
straightforward process. A widely used technique to avoid the typical low reproducibil-
ity between different gels is the fluorescence-based differential in-gel electrophoresis
(DIGE) approach. In this technique, the proteins in the different samples are labeled with
different fluorescent dyes having different excitation wavelengths. The samples are then
mixed, and the proteins separated on the same 2-D PAGE gel. Because of the different
excitation wavelengths of the different labels, separate gel patterns can be obtained for
each sample. This effectively allows the samples to be run under identical circumstances,
greatly limiting the factors that can cause variation. The spots from two samples are
therefore much more directly comparable. Figure 2.6 illustrates the process.

Exercises
2.1 Assume we have calculated the equation between the log of the mass (in kDa) and

the relative migration as log10 M = −0�6Rf + 1�08. What is the mass of a protein
with relative migration equal to 0.8?
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2.2 As indicated in Chapter 1, proteins and their amino acids may become modified post-
translationally, intentionally by chemical treatment, or unintentionally during sample
handling. Discuss how the following modifications could change the migration of a
protein during 2D electrophoresis.

(a) Phosphorylation of the side chain of serine �−OH → −OPO2−
3 �.

(b) Methylation of the side chain of glutamic acid �−COO− → −COOCH3�.

(c) Assume we have a protein with pI of 5.6 and mass 40 000 Da, and that the
N-terminal part of the protein (MGKLLSRVHWKKLI) is cleaved off.
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An important part of the identification process is protein digestion: the cleaving of
proteins into peptides. Protein cleavage can be performed chemically or enzymatically,
with enzymatic cleavage the most often used approach. The enzyme(s) that perform(s) the
digestion are called proteases, and these are found in all organisms. For example, in the
intestine, proteins derived from food are cleaved into small pieces to achieve an efficient
absorption, while inside individual cells proteins are continuously degraded by proteases
as a part of regulatory mechanisms. Numerous proteases from numerous species, ranging
from man to bacteria, are known and characterized. Because proteases in proteomics
research need to fulfill certain specific requirements, only a few proteases are routinely
used.

As explained earlier, the peptides are analyzed by mass spectrometry, producing a mass
spectrum. This spectrum is then compared to the theoretical peptide masses from an in
silico digestion of database sequences. In the following we will look more deeply into
this comparison.

Let PE be the set of masses in a spectrum, which are assumed to come from a
single protein. Furthermore, let PT be the set of theoretical masses from an in silico
digestion (simulating the protease) for that same protein. Then, in an ideal situation
without modifications, PE = PT . In reality, however, this situation is rarely encountered,
for the following reasons:

1. Some of the masses in PE come from other proteins or molecules contaminating
the sample. These masses are called PC

E .

2. Not all of the peptides obtained after digestion are detected by the mass
spectrometer, and these unrecorded masses will not be in PE . This set of masses is
denoted PU

T .

Computational Methods for Mass Spectrometry Proteomics I. Eidhammer, K. Flikka, L. Martens and S.-O. Mikalsen
© 2007 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51297-5
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3. There may be a disagreement between the experimental digestion and the model used
for the in silico digestion. An example of this is the occurrence of so-called missed
cleavages in which not all expected cleavages are performed in the experimental
digestion, hence the name. This results in a set of experimental masses, PD

E , which
are not in PT , and, if the missed cleavages occur consistently, in a set of theoretical
masses PD

T , which are not in PE . Note that PD
T is a subset of PT .

4. Some peptides may contain modified residues, PM
E . The mass set from the corre-

sponding unmodified peptides is denoted PM
T .

The shared set of experimental and theoretical peptide masses based on pure mass simi-
larities then is PE −�PC

E ∪PD
E ∪PM

E � = PT −�PU
T ∪PD

T ∪PM
T �. Most comparison procedures

will usually take possible modifications and missed cleavages into consideration, how-
ever, and more experimental masses corresponding to theoretical masses will therefore
be found. The overall approach is sketched in Figure 3.1.

Example Consider the sequence

MAVMQPRTLLLLLSGALAKTQTWAGSHSMRYFYTSVSRPGKGEPRFIAVGYKVDDTQFVR
FDSDAASQRMEPT

Using trypsin (which cleaves after R and K, unless followed by P) for in silico digestion
will result in the following peptides:

MAVMQPR TLLLLLSGALAK TQTWAGSHSMR YFYTSVSRPGK GEPR FIAVGYK
VDDTQFVR FDSDAASQR MEPT

DB sequence

CPE

A protein

Digestion

Mass spectrometry

P
E
D PE

M PT PT PT
U M

illustrates covered sequence parts (simple matching)

In silico digestion

D

Figure 3.1 Comparing experimental and in silico digestion of a protein. The different set names
are described in the text. The covered part of the sequence is defined by matching theoretical and
experimental masses
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The theoretical peptide masses are denoted T1� � � � � T9. Assume that six experimental
masses E1� � � � �E6 are observed in the mass spectrum, and that

• E1 corresponds to T1 with a modification at amino acid Q;

• E2 corresponds to T2;

• E3 corresponds to T4 with a modification at amino acid S;

• E4 corresponds to �T6� T7� (one missed cleavage);

• E5 corresponds to a contaminant;

• E6 corresponds to T9.

Then the different subsets are PC
E = �E5��PD

E = �E4��PM
E = �E3�E1��PU

T =
�T3� T5� T8��PD

T = �T6� T7��PM
T = �T1� T4�.

A simplistic matching will then find that E2 and T2 have equal masses, as well as E6

and T9, and therefore that these parts of the sequence are covered. If we now revise the
matching to become more robust by also allowing certain modifications, and if we assume
that the modification occurring in E3 is considered in our comparison, an additional match
between E3 and T4 is found. Finally, if one missed cleavage is also allowed, one more
match is found between E4 and the concatenation of T6 and T7, thus further increasing the
sequence coverage. Note that these refinements (considering modifications and missed
cleavages) also substantially increase the size of PT .

�
In peptide mass fingerprinting (PMF) the aim is to achieve as many common peptides

as possible for the experimental and in silico digestion, hence as high a sequence coverage
as possible. A very important factor in achieving high coverage is the protein separation
steps performed prior to digestion. It is clearly preferable to obtain a single protein in
each sample (for example, a single protein in each spot on a 2D gel) after separation,
and contamination should be avoided at any step of sample handling. Human keratins
(from the skin or hair) are common contaminants, and they can severely interfere with the
analysis of the samples. Typical PMF-based identifications are achieved in a sequence
coverage of 15 to 30 %, corresponding to 5 to 15 peptides for most proteins. There are
many reasons that contribute to this relatively low overall sequence coverage. These will
be discussed in some detail in Chapter 6.

As can be understood from the above discussion, the selection of the protease is a very
important decision. The protease should cleave the protein in a consistent and predictable
way. The protease should also not cut the protein into too many small peptides or into only
a few very long peptides, and this for two reasons. First, most mass spectrometers have
only a limited mass range, with a lower threshold due to interference by background noise,
and an upper threshold depending on the resolution of the instrument (see Section 5.7).
Second, the number of sequences that share a specific peptide mass increases with decreas-
ing mass. For example, if we take 13 359 human proteins available in the Swiss-Prot
database in January 2006 (a few restrictions were made in the selection of proteins), and
digest them in silico with trypsin, there are 633 peptides in the m/z range 499.0 to 501.0,
but only 195 peptides in the m/z range 1999.0 to 2001.0. Peptides of less than six amino



46 PROTEIN DIGESTION

acids are so difficult to distinguish by mass alone that they are less appropriate for PMF
identification. It is thus clear that the protease should follow the Goldilocks doctrine: the
resulting peptides should not be too small, nor should they be too big.

3.1 Experimental digestion
A protease cleaves a protein substrate by first recognizing a cleavage site on the protein;
this results in a bond being formed between the cleavage site and the binding site of the
protease, and subsequent cleavage. The actual cleavage reaction is performed by a subset
of the residues in the binding site, and this subset is called the catalytic site.

The binding site of the protease consists of a set of subsites, by convention denoted
Sn� Sn−1� � � � � S1� S′

1� S′
2� � � � � S′

m. These bind to a protein substrate cleavage site, with
the residues of the cleavage site denoted Pn�Pn−1� � � � �P1�P ′

1�P ′
2� � � � �P ′

m by the same
convention. The cleavage is performed between P1 and P ′

1, such that P1 is the N-terminal
to the cleavage point, and P ′

1 is the C-terminal to it. The cleavage point is called the
scissile bond. This is illustrated in Figure 3.2. Each subsite may have a preference for
the properties of the corresponding amino acid, such as shape, size, and charge. The
stringency of this preference is strongly variable, with some subsites requiring a specific
amino acid, while others accept any amino acid.

Example The cleavage site for caspase 6 is five residues long, with four residues being
recognized before the cleavage point. The requirements for the different subsites are
P4 = V�P3 = E�P2 = H or I�P1 = D� and P ′

1 must be different from �P,E,D,Q,K,R�.
P ′

2 is aspecific and can accommodate any residue.
�

Of the thousands of known proteases from a wide variety of organisms, only a few
cleave in a way that is appropriate for use in proteomics.

term

Cleavage point
(scissile bond)

P4

S4

P4

N     . . . . . . .A  R  G  T  P  R  W  L  S  T  . . . . . . Cterm

Protease

P1

S1

P1́

S1́

´

S2́

Figure 3.2 Illustration of the notation used for binding and cleavage sites. In this example the
binding site has six subsites which are used to bind to a cleavage site of six residues, four before
(the N-terminal to) the cleavage point, and two residues after (the C-terminal to) the cleavage
point. (Redrawn from a figure in PoPS homepages (http://pops.csse.monash.edu.au/home.html),
with permission)
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3.1.1 Cleavage specificity

Cleavage specificity is a description of the cleavage site of a protease’s substrate protein.
A cleavage site can be described by the following:

cleavage activator is a set of amino acids that a subsite can bind to;

cleavage point specifies the cleavage point;

cleavage preventor is a set of amino acids that hinder the cleavage if one of them
occurs at a specific position, effectively negating the occurrence of the cleavage
activators.

Thus each residue of a cleavage site is part of an activator or a preventor. Note, however,
that for some proteases an activator can be X, meaning that any of the amino acids can
occur at that position.

A lot of research has been performed to reveal the cleavage specifications of different
proteases, but many uncertainties still exist. Therefore (slightly) different specifications
can be found in the literature for several proteases.

A notation for describing a cleavage site is to:

• enclose the cleavage activators in brackets, ‘[]’;

• enclose the preventors in ��;

• specify the cleavage point by a full stop, ‘.’;

• take the length of the cleavage site as equal to the sum of the number of activators
and preventors.

Table 3.1 shows the cleavage specificity for the most commonly used proteases. For
some of them other specifications may exist.

Table 3.1 Cleavage specificity for the most commonly used proteases

Trypsin �RK	
�P� Cleaves C-terminal to an
arginine or a lysine if not
followed by a proline

Chymotrypsin �WYF	
�P�
Glu C (V8 �ED	
�P� In sodium phosphate buffer,

protease) �E	
�P� otherwise
Lys C �K	


Asp N 
�D	 Cleaves N-terminal to aspartic
acid

Pepsin �WYF	

Pepsin (pH 1.3) �HKR��P��R�
�WYFL	�P�
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Some important proteases have been researched in so much detail that even
more specific cleavage information is known, which cannot be described in the for-
mula notation used here. Trypsin, for example, will cleave poorly at the following
compositions:

�CD��K	
�D�� �C��K	
�HY �� �C��R	
�K�� �R��R	
�HR�
W as activator for chymotrypsin at position P1 is blocked by M at position P ′

1. Note also
that proteases may occasionally cleave at other positions. Trypsin is considered as a very
specific protease that rarely cuts at unexpected positions, while chymotrypsin is rather
unspecific and may do so quite often.

A protease with only one amino acid as activator will on average generate quite long
peptides (if all 20 amino acids were equally prevalent, the protease would generate
peptides with an average length of 20 residues). If there are three or more amino acids
as activators, the majority of the peptides would become quite short. A general purpose
protease for proteomics should thus have two amino acids as activators, no preventors,
and no additional specific demands for the surrounding amino acids. Such an ideal
protease does not exist. Trypsin is the protease that has properties closest to these
criteria, and is by far the most commonly used proteolytic enzyme in proteomics. Other
proteases may also be used depending on the properties of the protein under study and the
specific purpose of the experiment (identification or characterization), in addition to the
properties of the protease, and the mass spectrometer used in the analysis (MS or MS/MS;
positive or negative mode). Some of these points will be elaborated upon in the following
subsections.

3.1.2 Trypsin

As mentioned above, trypsin is the protease that best satisfies the desired requirements,
for the following reasons:

1. It has high specificity, results in relatively few missed cleavages, and rarely or never
cleaves at unexpected positions.

2. From Table 1.1 we see that arginine and lysine appear with an average distance of
approximately 11 residues, and with only a small probability of being succeeded
by a proline. The peptides produced are therefore of suitable length.

3. It is easily obtained and purified, and most of the ‘sequencing grade’ trypsin used
today is obtained as a recombinant version from high-yield expression vectors.

4. It is applicable in most experimental settings and procedures, and is used to cleave
proteins in solution, in gels, or even adsorbed onto surfaces.

Trypsin is particularly appropriate for positively charged mass spectrometry. If a peptide
is to be observed in a mass spectrometer, the peptide must be able to become ionized
by trapping and retaining a proton. Since arginine and lysine are both basic, trypsin, by
cleaving after each arginine and lysine, ensures that each peptide will have a site capable
of retaining a proton.
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A MALDI MS (Chapter 6) analysis of missed cleavages in trypsin found that approx-
imately two peptides with missed cleavages were observed per protein. Almost all of the
missed cleavage sites had one of the amino acids K, R, D, E either before or after the
activator sites K or R.

3.1.3 Chymotrypsin

In contrast to trypsin, chymotrypsin cuts the protein backbone at more than two sites,
and it is less reliable in its selection of cleavage sites. It is therefore less suitable for
identification purposes, but can still be valuable for protein characterization purposes.
In many cases, we know the identity of the protein we want to further characterize.
The purpose of the characterization is often to identify posttranslational modifications
and the residue and position of the modification. To be able to do so, the modified
peptide must be detected in our experiments. As explained previously, a full sequence
coverage of a protein is rarely achieved, no matter the protease or instrument used. By
employing an alternative protease, we may be able to extend the sequence coverage, and
we will probably get an alternative sequence coverage of parts of the area detected by
the first protease. Thereby we increase the chance of detecting the modified peptides and
determining the modified residue.

3.1.4 Other considerations for the choice of a protease

As explained in Chapter 2, 2D gel electrophoresis is a common separation method for
proteins. Proteins are found over a wide pI range from greater than 10 to less than 4. It
is very likely that the highly basic proteins will contain many arginines and lysines, but
few aspartic acids and glutamic acids. Conversely, a very acidic protein will probably
contain many aspartic and glutamic acids, and few arginines and lysines. Thus, a very
basic protein may be cleaved into a high number of small peptides by trypsin, and a very
acidic protein may be cut into a few large peptides. In these cases, alternative proteases
may be used, such as Lys-C, Glu-C, or Asp-N, especially if a first approach with trypsin
was not successful. Similar considerations may come into play if we are interested in
covering an area of a protein with an unusual amino acid sequence. In a few cases, usually
for characterization purposes, a combination of two proteases may be used to achieve
peptides of suitable length. For peptide-centric proteomics analyses (which do not rely
on protein separation) on mass spectrometers that yield multiply charged peptide ions,
larger peptides are sometimes desirable. Lys-C can then be employed to shift the average
peptide length above 11. An alternative approach relies on the chemical modification of
the side chain of lysine residues (for instance, by acetylation), which stops trypsin from
recognizing them and therefore causes it to cleave only after arginine.

3.1.5 Random cleavage

Although not applicable for PMF, rather unspecific proteases may be used for MS/MS
purposes. If such proteases are allowed to work for a long time, the result is a large
number of small and useless peptides. However, by controlling time and conditions, the
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result can be a set of overlapping peptides that is useful for both protein identification
and protein characterization. In this way, we partly achieve, in one single sample and one
single experiment, the same effect as described in Section 3.1.3 by using one unspecific
protease rather than two more specific ones in two parallel samples.

3.1.6 Chemical cleavage

Chemical cleavage is rarely used in proteomics research. The most common method
of chemical cleavage employs cyanogen bromide, which cleaves the peptide backbone
C-terminal to a methionine residue. The methionine is at the same time converted to
homoserine, which then becomes the C-terminal amino acid in the peptide. Under acidic
conditions, the hydroxyl group of the homoserine side chain may react with the carboxylic
acid in a cyclization process and form homoserine lactone. Since methionine is a relatively
rare amino acid, the average size of the generated peptide is much larger than for most
proteases. Due to the aggressive chemicals and acids used in cyanogen-bromide-induced
cleavage, more protective care is needed than when using proteases.

3.1.7 In-gel digestion

In-gel digestion is the most common approach to PMF. Usually a complex mixture of
proteins is first separated by 2D gel electrophoresis, and the gel stained to reveal the
positions of the proteins. Many, but not all, gel staining methods are compatible with
subsequent mass spectrometry analysis. The spots containing the proteins of interest are
excised from the gel, and, if needed, the stain is washed away. The gel piece is then
dehydrated. When a small volume of buffer with protease is added, the liquid and the
protease are both absorbed into the gel piece, and thereby gain access to the protein
molecules. The resulting peptides are extracted from the gel by washing and dehydration.

3.2 In silico digestion
The in silico digestion of a protein sequence is performed by scanning the sequence for
cleavage sites, and calculating the masses of the resulting peptides. However, one should
bear in mind how the experimental data are produced. There can be:

1. missed cleavages;

2. naturally occurring modifications in some positions of the protein;

3. chemical modifications intentionally introduced;

4. unintentional chemical modifications introduced by the sample handling;

5. unsuspected cleavages during the maturation/life cycle of the protein, creating new
N- or C-termini on the protein;

6. unexpected cleavages occurring during cell lysis and/or compartment mixing;

7. unexpected cleavages occurring during the experimental proteolytic treatment.
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In general, the aim of the comparison between the experimental data and the theoretical
data is to maximize the number of matches. Points 1 to 3 are relatively easy to take
into consideration when performing the in silico digestion. Often (but not always) we
may have some indications or suspicion of modifications of the protein, for example that
the protein is a phosphoprotein. Certain unintentional modifications (point 4) happen so
often that they are also normally taken into consideration. Examples are oxidation of
methionine and the formation of pyroglutamic acid from N-terminal glutamine in the
peptides. However, missed cleavages and different modifications (points 1–4) greatly
increase the number of theoretical peptides, thus also increasing the chances of random
matches with the experimental data. If the number of cleavage sites in a sequence is n and
the number of missed cleavages allowed in a peptide is k, then the number of theoretical
peptides is given by

1
2

�2n+2nk−k2 +k+2� (3.1)

However, some of them may have identical masses (to the chosen accuracy).
The usual procedure for taking modifications into account is to specify a set of possible

modifications, and the scanning procedure recognizes for each modification its sites on
the sequence. Therefore, if n modification sites are observed for a theoretical peptide,
then the number of calculated masses for the peptide is given by

n∑

i=0

(
n

i

)

= 2n

If there is a limit h on the number of modifications per peptide, the number of masses
will be

h∑

i=0

(
n

i

)

For identification purposes we therefore only include in the in silico digestion the modi-
fications that have a reasonable certainty of being present.

Points 5, 6, and 7 can only be considered after the candidate protein has been found,
and would be a part of the further characterization of the protein.

Exercises
3.1 The introduced language for cleavage specificity is rather simple, and cannot describe

the complete specification for several of the proteases. It can for example not describe
that, for trypsin, P does not block the cleavage at WKP. Can you suggest how to
extend the language to be able to deal with such situations?

3.2 How many peptides can be expected when using chymotrypsin for the digestion of
a protein of length 400? Use the occurrence probabilities in Table 1.1, and assume
that the positions of the amino acids are random.
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3.3 Explain how the combined use of trypsin and chymotrypsin can (ideally) constrain
the area in which there might be a modification, when performing characterization
on a known protein. Illustrate by a sequence where a part is � � � RCVLYKSTH
WIVACRTSFPK� � � , and there is a modification on the second C residue.

3.4 Prove the result in Equation 3.1.
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The term chromatography includes a family of techniques that are used to separate
a mixture into its individual components. The name comes from early work on the
separation of differently colored components. The separation is performed by passing the
mixture through an immobilized porous substance with which the individual components
will interact to different degrees. Ideally, it takes each component a characteristic time to
pass through such a system, called the retention time. Chromatography is a large scientific
field in itself, with several applications. In proteomics it is mainly used for separation,
especially of peptides, but also occasionally of proteins.

Simply put, the separation is performed by injecting the sample (usually a mixture
of many different components, for example peptides) to be separated into a mobile
phase. The mobile phase (containing the sample) moves through a stationary phase
(the immobilized porous substance), and at any time a component is interacting either
with the stationary phase, or with the (moving) mobile phase. The more a component
interacts with the stationary phase relative to the mobile phase, the more time it takes for
migration. Individual components have different retention times because of differences
in their interactions with these phases.

Column chromatography is the most commonly used type of chromatography in pro-
teomics. Other types are paper and thin-layer chromatography. Column chromatography
consists of a column made of glass, metal, or a synthetic material, containing the stationary
phase, through which the mobile phase is moving.

Two methodologies of column chromatography are in use for organic components, gas
chromatography (GC) and liquid chromatography (LC). Gas chromatography uses gas for
the mobile phase, and almost always a liquid, gum, or elastomer as the stationary phase.
The instruments for gas chromatography have a higher efficiency of separation, and are
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simpler to use than instruments for liquid chromatography. However, gas chromatography
is unsuitable for non-volatile or thermally labile components such as peptides and proteins.
Therefore, liquid chromatography dominates the field of proteomics.

4.1 High-pressure liquid chromatography, HPLC
Liquid chromatography uses a liquid as the mobile phase and a porous solid as the
stationary phase. The surface of the solid is usually modified to achieve certain desired
properties. The stationary phase is sometimes called the packing, and the mobile phase
the solvent or the eluent. When the mobile phase has passed through the column, and
carries the separated components out of the column, it is often named the eluate, and the
components are said to elute (from the ancient Greek word meaning ‘to wash out’) from
the column. The components to be separated are also called analytes or solutes.

Originally, the mobile phase flowed through the stationary phase under the force of
gravity alone. However, to get a more reasonable flow rate, high-pressure pumps are
now used, hence the name HPLC. HPLC also increases the separation efficiency. (Note
that HPLC is also often interpreted as an abbreviation of High-Performance LC.) In
the literature, HPLC and LC are often used interchangeably. Columns used in LC are
typically 10–25 cm long. Columns with internal diameters of one to a few millimeter are
called micro LC columns, and are used for so-called preparative purposes. For capillary
LC columns the diameter is less than 300 �m, and these are used for the separation of
small molecules (peptides). Nano LC columns have an inner diameter of 50–100 �m, and
are ideal for separation coupled to MS/MS, where the eluate from the column is infused
directly into an MS/MS instrument (as explained in Section 8.5).

Figure 4.1 shows the principle of HPLC. The components turn up as bands in the
column. Each of the components to be separated consists of a large number of molecules.
As these molecules are interacting with the stationary phase and the mobile phase on an
individual basis, the molecules will not move through the column at an exactly identical
rate. The individual rates will rather vary around an average value. Thus, the components
will form a concentrated peak rather than one sharp, thin line as shown in Figure 4.2.
The aim thus is to separate different components into distinct peaks.

A detector may be placed at the outlet of the column. The detector registers the compo-
nents as they pass by. The detector is commonly based on the ability of the components
to absorb light of certain wavelengths, usually in the ultraviolet region. The most com-
mon wavelengths used in proteomics are 280 nm (absorbed by aromatic amino acids) or
210–220 nm (absorbed by the peptide bond). A computer is typically connected to the
detector, and a diagram is constructed for the presentation of the eluted components. This
diagram is called a chromatogram, and has (retention) time along the horizontal axis and
the intensities of the measured components along the vertical axis. If the HPLC infuses
the eluate directly into a mass spectrometer, the ion current (amount of ions) can be
measured instead of using an optical detector.

A good HPLC separation depends on finding a balance in the affinity of the components
for the stationary phase, and the solubility of the components in the mobile phase such
that the different components migrate at different rates. Also, the band in which each
component elutes should be as narrow as possible, to prevent different bands (and therefore
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Figure 4.1 Illustration of the principle of LC. The mixture contains three components, and three
peaks are correspondingly seen in the chromatogram when all the components have been detected

Figure 4.2 An example of a chromatogram. Retention time is on the horizontal axis, and total
intensity on the vertical axis

peaks) overlapping. The challenge of chromatography is therefore to achieve different
rates of migration for the different components, and narrow bands. The interpretation
of a chromatogram can be difficult due to noise and baseline drift. The noise is often
quantified in a signal-to-noise (S/N) ratio, which is a measure of how well a real signal
(from a component) is differentiated from the background signals. The noise may be due
to electronic noise in the system, or due to contaminating components in the sample or
mobile phase. The baseline is the part of the chromatogram recorded by the detector when
only the mobile phase emerges from the column. As seen in Figure 4.2, this baseline can
vary (drift) over time.
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4.2 Stationary phases and separation modes
The interaction of the stationary phase with the components, and their solubility in
the mobile phase, determine the degree of migration and separation of the components
in a sample. This is further dependent on the properties of the stationary phase, the
mobile phase, and the components of the sample. Different types of stationary phases
and separation modes are used for HPLC. HPLC is often classified according to the
principle of separation applied in the columns: hydrophobicity, charge, affinity to specific
functional groups, or size of the components. In the context of proteomics, nearly all
work with HPLC is based on the two former principles, and especially if the HPLC
is coupled directly to the mass spectrometer. The actual separation principles based on
either hydrophobicity or charge are further subdivided into several methods.

The two most common HPLC methods in proteomics, reverse phase chromatography
(separating on hydrophobicity) and strong cation exchange chromatography (separating
on charge), will be described in some detail. The other separation principles will only be
briefly mentioned. It should be noted that the same HPLC instrument can be used for all
mentioned types of chromatography by exchanging the columns and mobile phases.

4.2.1 Reverse phase (RP) chromatography

RP-HPLC is a versatile method. It gives good resolution and separation, and has high
reproducibility and good recoveries. The eluate may be infused directly into a mass
spectrometer by electrospray ionization (see Section 5.2.2), or fractions of the eluate
may be collected off-line for subsequent analysis. The stationary phase is usually made
from surface-modified silica beads, and these modifications cause the adsorbance of the
sample components. The modifications are therefore sometimes called sorbents. The most
common modifications are based on carbon chains (similar to the carbon chains in fatty
acids) of different lengths, for example 4 (C4), 8 (C8), or 18 (C18) carbon atoms. Other
modifications are sometimes also used, for example phenyl groups (carbon rings of 6
atoms). The longer the carbon chain, the stronger the hydrophobic interaction that can
occur between the stationary phase and the peptides. C18 is most frequently used in RP
chromatography of peptides.

Most of the separation methods in HPLC, RP chromatography or otherwise, use a
mixture of two solutions as mobile phase. By convention, the solutions are called A and
B. In RP chromatography solution A is usually water with a small amount of (organic)
acid (often 0.1 % formic acid if the sample is directly infused into the mass spectrom-
eter). The sample is injected into the column in solution A, and as the liquid is forced
through the column, the peptides interact with and attach to the carbon chains, and are
retained on the stationary phase. Solution B is mainly an organic solvent (for instance,
90 % acetonitrile, 0.1 % formic acid, and water). After the peptides have attached to the
stationary phase, solution B is gradually mixed into solution A, thereby slowly increasing
the percentage of organic solvent in the mobile phase. As the percentage of B is increas-
ing, the less hydrophobic peptides detach first, and start moving together with the mobile
phase. The more hydrophobic peptides detach at a higher percentage of B. This change in
solvent strength over time is called a gradient. When the gradient reaches 60 % organic
solvent, all peptides are normally eluted from the stationary phase.
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Hydrophobic interaction (HI) and normal phase (NP) chromatography are two variants
of LC that use the principle of hydrophobicity for separation. HI chromatography may use
the same types of stationary phase as RP chromatography, but the sample is injected in
a high salt solution (for example, (NH4�2SO4), and the analytes are eluted by decreasing
salt concentrations. This type of chromatography is mainly used for proteins and rarely
for peptides. NP separates by using a polar stationary phase and a non-aqueous organic
solvent as the mobile phase. Hydrophobic components elute most quickly in this approach.

4.2.2 Strong cation exchange (SCX) chromatography

SCX is a form of ion exchange chromatography. Ion exchange chromatography is based
on the principle that opposite charges will attract each other. As explained in Section 1.3.3,
the proteins/peptides in solution possess a net charge that depends on the pH of the
solution and the isoelectric point of the protein/peptide. A protein/peptide with a pI above
the pH of the solution will possess a net positive charge, while one with a pI below the
pH will possess a net negative charge. When the pI is equal to the solution’s pH the
protein/peptide will be neutral.

For strong cation exchange the stationary phase is often a surface modified by sulfonic
acid groups. Sulfonic acid becomes negatively charged at a pH above 2–3. The peptide
sample is injected into the column at a low pH (often 3–3.5) solution. Thus, the peptides
will be positively charged, and they will interact with the negative charges of the stationary
phase. Positively charged ions are called cations. The more positive charges the peptide
contains, the stronger it will interact with the stationary phase. Uncharged peptides or
other components that do not bind to the stationary phase are washed out of the column.

Similar to what is described above for RP chromatography, another solution is gradually
mixed into the mobile phase to perform the separation of the peptides. For strong cation
exchange it is common to increase the ion strength of the mobile phase by using a salt
in solution B, while keeping the pH constant. The salt (which contains both positively
and negatively charged ions) will compete with the negative charges (on the stationary
phase) and positive charges (on the peptides). The peptides with the weakest binding
to the stationary phase will detach first and subsequently start moving with the mobile
phase. The peptides with a stronger binding will only detach at higher salt concentrations.
An alternative method of elution is to gradually change the pH of the mobile phase. This
will cause the charge of the peptides to change, and at a certain pH the increasing number
of negative charges and decreasing number of positive charges will release the peptide
from the stationary phase.

In contrast to the eluate from RP chromatography, SCX is normally not infused directly
into the mass spectrometer. This is because the mobile phase in SCX contains salts or
other ingredients that will disturb the analysis of the peptides.

SCX is one of four main types of ion exchange chromatography. The others are weak
cation exchange (characterized by a pH above 7–8 before the surface modifications of
the stationary phase become negatively charged), strong anion exchange (the surface
modifications become positively charged at a pH below 10–11), and weak anion exchange
(surface modifications become positively charged at a pH below 7–8). Thus strong and
weak in the context of ion exchange indicate whether the surface modifications are ionized
in a wide (strong ion exchange) or narrow (weak ion exchange) pH range.
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4.2.3 Other types of chromatography for proteomics

Two other types of chromatography should be mentioned.

Affinity chromatography is a type of chromatography that separates analytes by their
interaction with specific functional groups that have specific affinity to them. The compo-
nents of interest are retained while non-interacting components pass through the column.
The retained analytes are afterwards eluted by changing the mobile phase conditions.

Size exclusion chromatography is a type of chromatography that separates analytes
based on size. The stationary phase here consists of porous beads, which the smaller
components are allowed to enter. This will lead to much larger path lengths for smaller
components (they will criss-cross the porous beads rather than eluting straight past
them) and will therefore elute larger analytes first. Size exclusion chromatography is not
appropriate for peptide separation (due to the low resolution). In contrast to the other
separation modes mentioned above where the mobile phase usually is a combination
of two solutions, the mobile phase for size exclusion chromatography consists of one
solution alone.

4.2.4 Tandem HPLC

To increase the separation power, two or more different separation techniques are some-
times used in series. This is explained in Section 14.3.

4.3 Component migration and retention time
The speed of a component’s migration through the column depends on the chemistry of
the stationary and mobile phase, the temperature, the dimension of the column, and the
speed of the mobile phase, in addition to the properties of the component itself. This is
reflected in the following definitions:

(Total) retention time, tR, is the time between sample injection and the detection of
the band (peak) maximum.

Dead time, t0, is the time a component uses for migration from the injection until the
appearance of the band maximum at the detector, assuming that the component did
not have any interaction with the stationary phase. This is the time the component
is in the mobile phase, and is equal for all components. In other words, dead time is
the time it takes for a non-interacting component to elute through the column from
the point of injection.

Capacity factor (retention factor), k′, is defined as

k′ = tR − t0

t0

Thus, the capacity factor is the ratio of the time the component interacts with the
stationary phase relative to the time it is in the mobile phase. It is a measure of
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Figure 4.3 Illustration of different terms characterizing chromatography. ti are different times,
wb is the baseline width of the peak, and wh the half-height width of the peak. xi and yi are the
distance from the middle line to the front and back of the peak at i % of the maximum peak height

the retention of a component in the column, and is generally different for different
components.

Relative retention (separator factor) is the ratio between two capacity factors. It has
the advantage that it only depends on the temperature and the chemistry of the two
phases. It describes the discriminating ability of a system, and the denominator is
often a component used as a reference (standard).

The retention is illustrated in Figure 4.3. The retention time tR is used as the x-axis for
the chromatograms, the other terms are used for characterizing and comparing columns.

4.4 The shape of the peaks
Ideal peaks are narrow and symmetrical, since such peaks imply better separation between
different components, and it will be possible to separate more components in one run
(one chromatogram).

4.4.1 The width

Generally the peak width increases with the retention time, and is commonly measured
in one of two ways:

Baseline width, wb, is the width at the baseline.

Half-height width, wh, is the width at 50 % of the maximum peak height.

Both widths are illustrated in Figure 4.3.

Plate number A good separation requires narrow peaks in the chromatogram. How-
ever, since peak width increases with time (when all conditions remain equal), peak
width is not a sensible term for describing how good a column is at producing narrow
sample bands. Instead, a ratio of retention time and peak width is used, called the plate
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number, N. The plate number is almost constant for all peaks in a specific chromatogram,
and is calculated from the baseline width as N = 16�tR/wb�

2, or from the half-height
width as N = 5�54�tR/wh�

2. A column with a large plate number gives narrow bands.
The constants used (16 and 5.54) are calculated from a fitted Gaussian distribution
curve.

4.4.2 Asymmetry

Real peaks are seldom entirely symmetrical, and this creates several problems. Peak size
calculation for example will be more difficult. The most general type of deviation from
symmetry is tailing, where there is a ‘tail’ at the back, as shown for the second peak in
Figure 4.3. Two measures are used for measuring the asymmetry of a peak:

Asymmetry factor, As, is measured at 10 % of max peak height. Using the symbols
shown in Figure 4.3, it is defined as As = y10/x10.

Tailing factor, TF, is measured at 5 % of max peak height. Using the symbols shown
in Figure 4.3, it is defined as TF = �x5 +y5�/2x5.

The values calculated for the two measures are similar for the same peak, but not
identical. Complete symmetry is reported by a value of 1.0, and the value should not
exceed 1.5 for a reasonable chromatogram.

4.4.3 Resolution

Resolution, R, is a measure of how well separated two adjacent peaks are. In chromatog-
raphy it is, by convention, defined as the ratio of the distance between the two peak
maxima to the average baseline width of the two peaks. Again referring to Figure 4.3,
R = 2�D/�wb +wb2�. A larger resolution value means a better separation. If the peaks
are approximated by symmetric triangles, an R greater than or equal to one means that
the components are completely separated. By definition, a resolution of more than 1.5
is considered baseline resolution. This is the value that will result in less than 1 % of
mutual overlap between two peaks of equal size and ideal shape.

4.5 Chromatography used for protein identification
Chromatography in proteomics is mainly used for the separation of peptides, but it
may also aid in the identification and characterization of the peptides. Reproducibil-
ity is tantamount for this purpose. HPLC has fairly good reproducibility, meaning
that when all conditions are held constant, the retention times for a specific analyte
remains fairly constant between different experiments. Therefore, with a theoretical model
for calculating the retention time from a peptide sequence, a measured retention time
can be compared to calculated retention times for possible theoretical peptides. Mod-
els have been developed for RP chromatography, while this is not the case for SCX
chromatography.
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4.5.1 Theoretical calculation of the retention time for RP chromatography

The retention time for RP chromatography depends mainly on the hydrophobicity of
the peptides. The exact dependence is, however, not fully understood, and models have
mainly been developed based on observing what effect the different amino acids have on
the retention time. A retention coefficient is therefore determined for each amino acid.
The retention time for a peptide is dependent on the sum of the retention coefficients of
all the residues, plus coefficients for the end groups, plus a constant representing the time
needed for the first part of the mobile phase to reach the detector (gradient delay time or
dead time).

Retention coefficients

The retention coefficient for an amino acid should be a value for the relative impact
the amino acid has on the total retention time for a peptide. Several sets of retention
coefficients exist, and they have mainly been determined by one of two approaches:

• find the retention time for a set of peptides (training set), and calculate the contri-
bution of each amino acid, either by regression analysis or by neural networks;

• construct synthetic peptides, where certain positions are substituted by each of the
amino acids, and measure the retention times for each of the substituted amino acids.

Retention coefficients are primarily determined for a pH of 2.1 in the mobile phase.

SSRC – a model for calculating the retention time

The SSRC (Sequence Specific Retention Calculator) probably represents one of the best
models for RP chromatography, and it is available on the Internet. We will therefore use
this model as an example. The model is developed based on tryptic peptides, and may
not be fully transferable to peptide samples generated by other proteases.

When developing a model, it will not be possible to take into account all variables that
can affect the results. Since the aim is to develop a model that can be used in an experi-
mental setting, it is important to choose one or a few conditions that are commonly used.

Assuming that the sample is constant in this context, the variables include the column
size and choice of stationary phase, the acid used in solutions A and B (the acid is often
called an ion-pairing agent, with different acids used depending on the experimental
setup), the organic solvent used in solution B, the gradient slope, flow rate, temperature,
on-line or off-line analysis of the eluate from the column, etc. Some of the variables
mainly affect the time for the components to pass through the column, but not their
relative speed and sequence. Such variables are the delay time, slope of the gradient, and
flow rate (at least when they are varied within reasonable ranges). Other variables, like
the choice of stationary phase, the ion-pairing agent, and the organic solvent, may change
the relative speed of the components, and thereby the sequence of elution of the different
components.

SSRC is based on the use of a C18 RP column with 3–4 �l/min flow rate, off-line
sampling of fractions, use of trifluoroacetic acid (TFA, a strong organic acid) as ion-
pairing agent, and acetonitrile as organic solvent.
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In SSRC the user specifies the gradient delay time, the slope of the gradient, and 100
or 300 Å pore size for the stationary phase. SSRC assumes either that other experimental
conditions are constant, or that they have no influence on the retention time.

SSRC then uses the properties of the peptide to calculate a hydrophobicity H of the
peptide, an index specifically adapted to RP chromatography. The retention time is then
calculated as a+bH , where a is the gradient delay time, and b is related to the gradient
slope. These constants must be determined by calibration of the equipment used.

There are nine different peptide properties used in version 3 of SSRC. The first six are
used to calculate a basal hydrophobicity index, and the last three are used for corrections
to the index.

1. Retention coefficients. For each amino acid there are five different retention coef-
ficients, depending on where on the peptide sequence they are located: position 1
(N-terminal), position 2, positions 3� � �n−2, position n−1, and position n, where n
is the number of amino acids in the peptide. The individual amino acid coefficients
are added to get the total contribution from this property. Note that because all
individual coefficients are summed, and most of the coefficients are positive, longer
peptides will generally have a higher H than shorter peptides. This contrasts with
a hydrophobicity calculation based on GRAVY, in which the coefficients can be
negative as well. Furthermore, different retention coefficients are found for 300 and
100 Å pore sizes.

2. Nearest-neighbor effect. Amino acids adjacent to H, R, or K inside the peptide will
have a different effect on the hydrophobicity.

3. Clusters of hydrophobic amino acids. The clusters will decrease the hydrophobicity
of the peptide.

4. Specific role of proline. Proline is the most structurally rigid of the amino acids,
and the hydrophobicity is decreased for successive occurrences of proline.

5. Influence of isoelectric point of the peptide. Lower pI favors retention of hydropho-
bic peptides and decreases retention for hydrophilic ones. For high pI the situation
is reversed; hydrophilic peptides are preferentially retarded.

6. Separate set of retention coefficients for short peptides (< 9 residues).

7. Correction for peptide length. The hydrophobicity is decreased for peptides of less
than 8 and increased for those larger than 20 residues.

8. Correction for overall peptide hydrophobicity. The hydrophobicity is decreased for
peptides with a calculated H larger than 20, and is more decreased for even higher
calculated H values.

9. Influence of peptide propensity to form helical structures. The H value is increased
if the peptide contains small stretches of hydrophobic amino acids, separated by
any other amino acid.

An example of the use of the SSRC is given in Exercise 4.3.
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4.6 Chromatography used for quantification
The size of the peaks in a chromatogram is related to the injected amount of the com-
ponents. This can be used for quantitative analysis. If standards of known amount have
previously been run, the size of a component peak can be related to the peak size of a
standard, and the amount of the component determined. Two measurements are used for
the peak size:

Peak area is the area under the peak, and is the most fundamental measure. For well-
designed instruments and reproducible conditions, the area is directly proportional
to the mass of injected component.

Peak height is easier to measure, and when the width and asymmetry of a peak are
constant from run to run, the height of a peak is proportional to its area.

Exercises
4.1 In ion exchange chromatography, either the salt concentration or the pH is varied

in order to elute peptides from the stationary phase. Can you explain what would
happen if both were altered at the same time?

4.2 Figure 4.4 contains a part of a chromatogram. Find approximate values for the
necessary parameters, and calculate plate numbers (using both formulas), asymmetry
factors, and tailing factors for the two highest peaks.

4.3 (a) Calculate the retention time for the peptide GWFLLWFARLGK using the SSRC
procedure:

1 The retention coefficients (300 Å pore size) are shown in Table 4.1.

2 If R is followed by L the hydrophobicity is decreased by 0.3.

3 A stretch of six very hydrophobic residues (WFLLWF) decreases the hydropho-
bicity by 1.8.

4 Is not considered since the peptide does not contain any proline.

5 Ignore.

6 Is not considered since the peptide is longer than nine amino acids.

7 No correction.

8 Correct the hydrophobicity H according to the following table:

H Corrected H

H < 20 H
20 ≤ H < 30 H −0�27�H −18�
30 ≤ H < 40 H −0�33�H −18�
40 ≤ H < 50 H −0�38�H −18�
50 ≤ H H −0�45�H −18�
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Figure 4.4 A part of a chromatogram

Table 4.1 Retention coefficients for some amino acids

Residue Pos. 3 � � � n−2 Pos. 1 Pos. 2 Pos. n-1 Pos. n

A 1�1 0�35 0�5 −0�1 1�1
F 10�9 7�5 9�5 10�3 10�9
G −0�35 0�2 0�15 −0�7 −0�35
K −2�05 −0�6 −1�5 −1�45 −1�9
L 9�3 5�55 7�4 9�3 9�3
R −1�4 0�5 −1�1 −1�3 −1�1
W 12�25 11�1 11�8 12�1 12�25

9 Is not considered for the present peptide

Use 5 (minutes) for a and 0.5 for b.

(b) Also run the on-line version of SSRC (see bibliographic notes) for the same
peptide, using the same parameters.
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Bibliographic notes
Retention coefficients
Guo et al. (1986b); Meek (1980); Sasagawa et al. (1982)
Krokhin et al. (2004); Petritis et al. (2003)

Retention time prediction
SSRCalculator Krokhin (2006); Krokhin et al. (2004)

http://hs2.proteome.ca/SSRCalc/SSRCalc.html
PeptideSort http://www.hku.hk/bruhk/gcgdoc/peptidesort.html
ExPASy Tools http://expasy.org/tools/pscale/HPLC2.1.html
Use of ANN Petritis et al. (2003)

Retention time and use in identification
Guo et al. (1986a); Krokhin et al. (2004); Palmblad et al. (2002)
Chen et al. (2005); Wang et al. (2005)



5 Fundamentals of mass
spectrometry

Mass spectrometry (MS) is used for measuring the mass, or more strictly speaking, the
mass-to-charge ratio (m/z), of the components in a sample. The instruments are called
mass spectrometers. This chapter focuses on two main topics of mass spectrometry:

• The common principles. There are many classes of instruments, some of which will
be discussed in more detail in the subsequent chapters, yet all of these operate on
the same underlying basis.

• The isotopic distribution of elements in peptides and proteins, and how this knowl-
edge can be used to describe the performance of the instruments.

5.1 The principle of mass spectrometry
Very schematically, a mass spectrometer consists of three main parts: the ionization
source, the mass analyzer, and the detector. All mass spectrometers use electric or
electromagnetic fields to handle the components of the sample. The components under
analysis therefore have to be ionized before their masses can be measured, and this
ionization is performed in the ionization source. As mentioned in Chapter 1, when dealing
with peptides and proteins, ionization is commonly achieved by the addition of protons
to the molecules. This addition also increases the mass of the molecule by the nominal
mass of 1 Da per charge (per proton).

The sample is then transferred to the mass analyzer that separates the components of
the sample according to the mass-to-charge ratio (m/z) of the ions. After separation the
components hit the detector, and a mass spectrum is constructed by a connected computer.
A mass spectrum is a diagram, with m/z along the horizontal axis and the intensity of the
signal for each component along the vertical axis. Since the analyzers operates on m/z
rather than on the mass directly, the charge of a component must be known before the
mass can be determined. m/z is usually reported as a dimensionless number, but units
like the thomson (Th), u, or even Da are sometimes used. Note that the use of u or Da is
essentially incorrect, whereas thomson is correct, but not recognized by standardization
bodies.

Computational Methods for Mass Spectrometry Proteomics I. Eidhammer, K. Flikka, L. Martens and S.-O. Mikalsen
© 2007 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51297-5
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Example Suppose we have a peptide with mass 2000.0 Da, and that the ionization yields
peptide ions of charge +1�+2� and + 3, by the attraction of one, two, or three protons,
respectively. The peptide ions will then be detected at

ions with charge +1: m/z = (2000 + 1)/1 = 2001

ions with charge +2: m/z = (2000 + 2)/2 = 1001

ions with charge +3: m/z = (2000 + 3)/3 = 666.7
�

Example Figure 5.1 illustrates the main principle of mass spectrometry. Suppose we
have a sample of three peptides (A, B, C), with nominal masses A: 680, B: 481, C: 400.
Assume further that some of the A peptides become singly charged, and some doubly
charged, while all B peptides are singly charged, and all C peptides doubly charged. The
m/z values for the ions thus become A: (680+1)/1=681 and (680+2)/2=341, B: 482,
C: 201, as shown in the spectrum in Figure 5.1.

�

5.2 Ionization sources
Schematically, as described in Chapter 1, there are two main classes of mass spectrometers
for proteomics: those that perform single mass spectrometry and those that perform
tandem mass spectrometry (MS/MS). The former measure the m/z ratio of intact peptides.
It is an advantage if the peptides mainly have a single (positive) charge. In tandem mass
spectrometry the peptides are intentionally fragmented (mainly due to peptide backbone
breaking, resulting in two fragments per fragmentation event) to measure the masses of
fragments. Ideally, one wants to detect the mass of both fragments, which can only be
achieved if both are ionized. Thus, in tandem MS it is an advantage if the peptides carry
several charges (often +2) as this increases the chance that each of the fragments will
be ionized. The two classes of instruments therefore generally use different ionization
sources, but exceptions exist.

In the ionization source, the sample components are brought into the gas phase while
they acquire their charge. There are many methods to achieve ionization, with differ-
ent advantages and drawbacks. Some desired properties for the ionization process in
proteomics are as follows:

• All the components in the sample should be ionized in a detectable amount.

• The ionized amount should be proportional to the sample component amounts.

• There should be no fragmentation of the components unless we want to analyze the
fragments. Fragmentation here means breaking components into smaller parts which
may or may not be ionized.

• There should be no unwanted adduct ions. An adduct ion is an ion comprised of
a component and one or more additional atoms. Typical unwanted adduct ions in
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proteomic experiments would be the potassium or sodium adducts of peptides. Such
ions can easily arise from samples that contain even low amounts of salts.

• There should be no ions from other molecules (contaminants).

No ionization source completely satisfies all these desires, however. The actual source
to use is therefore usually chosen based on the type of analysis that is to be performed
(obviously often limited by the available instrument(s)). The protonated molecular ions
are often called quasi-molecular ions, and are commonly denoted by �M +nH�n+, where
n is the number of protons added. Sources which cause only limited fragmentation are
called soft ionization sources, as opposed to hard ionization sources, in which components
typically fragment upon ionization. Soft ionization sources are used for peptides and
proteins, and if fragmentation is desired afterwards (as in MS/MS) other (post-source)
methods are used to achieve fragmentation. Below, we will briefly describe the two most
commonly used ionization sources for proteomics, MALDI and ESI, which both perform
soft ionization, and also mention some others.

5.2.1 MALDI – Matrix-Assisted Laser Desorption Ionization

MALDI is the dominating ionization source for (single) mass spectrometry, but is also
sometimes used in instruments that can perform MS/MS. The name provides a description
of the ionization process. The matrix consists of small organic molecules that absorb light
at specific wavelengths, usually in the UV area. There are hundreds of organic compounds
that have been used as the matrix for MALDI, but in proteomics only a handful or so are
commonly used. The matrix is dissolved in an organic solvent under acidic conditions,
and mixed with the sample. A small drop (microliter volume) is spotted on a sample plate,
and the organic solvent is allowed to evaporate. During the evaporation, the matrix forms
small crystals, and the sample components are incorporated into these crystals. This is
called crystallization. A laser then fires light (energy) onto the plate in very short pulses
(a few nanoseconds), which is absorbed by the matrix. It is clear that optimal results can
be achieved if the matrix has a strong absorption peak at the wavelength of the laser
light. The matrix essentially fulfills two roles at this stage: it captures the laser light and
becomes ionized while at the same time protecting the analyte molecules (peptides or
proteins) from the disruptive energy transferred by the laser light.

The absorbed energy causes the matrix molecules and sample molecules to eject from
the plate. The peptides are able to receive protons from the ionized matrix molecules, and
they become ionized in the gas phase. Most of the ionized peptides carry only one adduct
proton. Thus, the peptide ions generally have the charge +1. Under the influence of an
electric field, the ions are transported to the mass analyzer. In most MALDI instruments,
the generation of ions occurs under vacuum (or rather, very low pressure). The principle
is illustrated in Figure 5.3 below.

5.2.2 ESI – Electrospray Ionization

ESI is primarily used for MS/MS analysis. The peptides are brought into the ionization
source by a liquid flow. Often the liquid is the eluate from an HPLC instrument. The
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liquid is sprayed from a heated needle or capillary into a strong electromagnetic field,
resulting in a mist of small droplets with a charged surface. As the solvent in the droplets
evaporates, the droplets get smaller and smaller, increasing the electric field on the
surfaces. When the electric field becomes strong enough, charged peptides desorb from
the surfaces. Under these conditions, most of the ionized peptides will carry two or more
protons. Under the influence of the electric field, the generated ions are transported to
the mass analyzer. In most ESI instruments, the generation of the ions occurs under
atmospheric pressure, while the mass analyzer operates under low pressure. Therefore,
the ions must be transported from atmospheric pressure to vacuum. The principle for ESI
is shown in Figure 5.2.

5.2.3 Other ionization sources

Several other types of ionization sources are used in mass spectrometry, although they are
more rarely employed for proteomics experiments. Photoionization uses UV light from a
krypton lamp. In chemical ionization, the solvent is able to ionize the sample. Fast atom
bombardment (FAB) ionization uses argon or xenon atoms that are shot at the liquid
surface of the sample.

++
+

(HP)LC
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Metallic
capillary

Counter
electrode
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Figure 5.2 The principle of ESI
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Figure 5.3 Illustration of a linear MALDI-TOF analyzer
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5.3 Mass analyzers
There are several principles of mass analyzers used in proteomics, but here we will briefly
describe the simplest one to understand. A more detailed description of the different mass
analyzers is given in the following chapters.

In the MALDI time-of-flight (TOF) mass analyzer, ions are sent to the analyzer in short
pulses due to the short laser pulses described for MALDI. The ions are accelerated by an
electric field, and then they enter a field-free drift tube. The velocity that the ions have
achieved during the acceleration is dependent on the mass and the charge of the ion, and
this velocity is kept during travel through the drift tube. Naturally, the time needed to
pass through the drift tube is dependent on the velocity. When the ions hit the detector at
the end of the drift tube, the flight time is registered, and the m/z value can be calculated.
The principle of such a linear TOF analyzer is illustrated in Figure 5.3.

5.4 Isotopic composition of peptides
As briefly mentioned in Section 1.3.2, many elements exist naturally in several isotopes.
Where these elements are incorporated into biological molecules, such as amino acids,
the isotopes are represented in ratios that correspond to their abundance in nature. Since
the chemical properties of the different isotopes of an element are identical, the chemistry
of the biomolecules (and therefore their function) is not affected by isotopic differences.
Six elements (hydrogen, carbon, nitrogen, oxygen, phosphorus, and sulfur) constitute the
overwhelming part of the elements incorporated into proteins and their post-translational
modifications. The abundances and masses of the stable isotopes of these six elements
are shown in Table 5.1. Note that several elements also have radioactive isotopes (for
instance, 3H and 32P), which are excluded from this discussion as they are subject
to decay over time.

Table 5.1 Abundances and masses of the stable isotopes of elements
naturally occurring in proteins and their posttranslational modifications

Element Abundance (%) Mass

Hydrogen 1H 99�99 1�007 83
2H 0�01 2�014 10

Carbon 12C 98�91 12�000 0
13C 1�09 13�003 4

Nitrogen 14N 99�6 14�003 1
15N 0�4 15�000 1

Oxygen 16O 99�76 15�994 9
17O 0�04 16�999 1
18O 0�20 17�999 2

Phosphorus 31P 100 30�973 8
Sulfur 32S 95�02 31�972 1

33S 0�76 32�971 5
34S 4�22 33�967 6
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Numerically, carbon and hydrogen are the most common elements in proteins, but as
the heavy isotope of carbon, 13C, has a 100-fold higher abundance than deuterium, 2H,
the former has far more influence on the isotopic pattern of peptides than any of the other
elements. We will therefore focus on isotopes of carbon, and for the present purpose
suppose that all the other elements are always represented by their lightest isotope.

Assume that we are working with a small peptide with a mass of approximately
600 Da (below called mass M). Such a peptide will contain around 30 carbon atoms.
Approximately one-third of the peptide molecules will therefore contain one 13C atom
with the remainder being 12C. Since only a very small amount of the peptides will contain
two (or more) 13C atoms, approximately two-thirds of the peptide molecules will only
contain 12C. As there is a 1.0034 Da mass difference between the peptide molecules that
only contain 12C and the peptide molecules that contain one 13C atom, the mass spectrum
will show one high peak at mass M, which is called the monoisotopic peak. At mass
M+1 there will be a peak of approximately one-third the intensity of the monoisotopic
peak. A very small peak may be seen at mass M+2, corresponding to the peptide with
two 13C atoms.

If we work with a peptide with a mass of approximately 3000 Da, there will be a low
percentage of the peptide molecules that only contain 12C atoms. A higher percentage of
peptide molecules will contain one or two 13C atoms. Peptide molecules containing three,
four, or five 13C atoms can be seen in decreasing amounts. Figure 5.4 illustrates the dif-
ferent behavior of the isotopic peaks of a relatively small and a relatively large peptide.
Thus, with increasing mass of the peptide, fewer and fewer molecules will contain only
12C atoms. For peptide masses above 5000 to 7000 Da, most instruments will no longer be
able to distinguish the monoisotopic peak, and the other peaks will be poorly resolved. In
experimental settings, we therefore rarely use the monoisotopic mass of large peptides or
proteins (although it can easily be calculated), but rather the average mass. A collection
of isotopic peaks from the same peptide is called an isotopic envelope. Knowledge of the
isotopic peak pattern helps to interpret mass spectra, for example in estimating the charge.

5.4.1 Estimating the charge

A singly charged peptide will have �1 �m/z� = 1 between the peaks in the isotopic
envelope as illustrated in Figure 5.4. Doubly charged peptides will have � �m/z� = 0�5
between the peaks, and triply charged peptides will have � �m/z� = 0�33. At the same
time, the m/z position of the peak in the mass spectrum is moved according to the formula
�M +nH+�/nH+, where M is the mass of the peptide and n is the charge. This can be
used to estimate the charge of the peptides.

5.5 Fractional masses
It is well known that peptide masses occur in clusters with distances a little more than
1 Da apart, as illustrated in Figure 5.5.

1 Note that delta means difference.
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Figure 5.4 Example of a peptide mass fingerprint of a tryptic digest of the matrix metallopro-
teinase 2 protein. For ease of viewing, not all peaks have been labeled in the upper spectrum. Two
peaks from the lower and two peaks from the higher mass range of the spectrum are shown in the
two zoomed views below. Note the differences in the isotopic peak patterns between the low-mass
and the high-mass peptides. Also note that the isotopic peaks have a spacing of approximately 1,
indicating that all these peptides carry a single charge
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1.0005 Da

Masses

Figure 5.5 Distribution of the peptide masses. The distance between the apex of two neighboring
clusters is approximately 1.0005 Da

The reason for this lies in the distribution of the amino acid masses. The amino
acids are built from only five different atom types, each with a mass nearly equal to
an integer. Consequently, the amino acids also have masses that are nearly equal to an
integer. The integer is called the nominal mass of the amino acid, and the numbers after
the decimal point are called the fractional mass. From Table 1.1 one can see that the
fractional masses of the individual amino acids are in the interval [0.01, 0.1] Da. One can
also see that the normalized fractional mass (the fractional mass divided by mass) varies
over �0�09–0�74� ·10−3. The lowest normalized fractional mass is found for cysteine, and
the highest for leucine, isoleucine, and lysine. The weighted average of the normalized
fractional mass is approximately 0�47 · 10−3, using the amino acid abundances for the
weighting. (Because of the weighting, the exact number will vary slightly according to
the species and protein database used for the calculations as the amino acid abundances
will vary slightly.) When the fractional mass is plotted as a function of the peptide mass,
a plot like Figure 5.6 is obtained. The average fractional mass regression line (middle
line of Figure 5.6) has a slope that corresponds to the weighted average of the fractional
mass. The average fractional mass regression line is broken at a mass of approximately
2100. This corresponds to the point where the sum of the individual fractional masses
of the amino acids in the peptides exceeds one. This is also seen by the calculation
(0�47 ·10−3 ·2100 ≈ 1).

It is found that the masses of most of the modified peptides also follow this clustering.
The clustering effect is interesting because it can be taken into account when considering
the correctness of identifications, and can also be used to perform calibrations. Conversely,
it can also be used to identify and remove non-peptide peaks, like those arising from
matrix–alkali clusters, non-biological polymers, Coomassie Blue stain, etc. The fractional
mass of these contaminating peaks will be located outside the distribution of the peptide
peaks. Without going into further details, note that different proteases will give slightly
different fractional masses of the resulting peptides.

Example One research group (Wool and Smilansky (2002)) has found that the cen-
troid cluster peptide mass Mc can be calculated from the nominal mass Mn as Mc =
1�000 495Mn. The nominal mass for a peptide is calculated by adding the nominal masses
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Figure 5.6 Illustration of (experimental) fractional masses of tryptic peptides. The middle line
corresponds to the average regression line for the fractional masses of tryptic peptides, Fm =
0�000 495Mn, where Mn is the nominal mass. The upper and lower lines correspond to plus or minus
one standard deviation. The relationship shown is valid only for singly charged peptides

of all the residues. The standard deviation Dm of the fractional mass distribution was
found to be Dm = 0�03+0�02Mn/1000. This means that for peptides with nominal mass
Mn = 2000 Da we find Mc = 2000�99 Da and Dm = 0�07 Da. This means that 99.7 %
(corresponds to 3Dm, assuming a normal distribution) of the peptides with nominal mass
2000 Da have masses in the interval 2000�99±0�21 Da.

�

5.5.1 Estimating one or two peptides in a peak complex

The existence of isotopes and clusters of the fractional masses has the consequence that
isotopic envelopes from one peptide may overlap with the envelope from another peptide.
Such cases can be detected during the interpretation of the spectrum because the isotopic
intensity distribution of overlapping envelopes will be different from the isotopic intensity
distribution of a single peptide.

Assuming that two peptides are spaced approximately 1 Da apart, the second (overlap-
ping) peptide will add intensity to the isotopic peak pattern of the first peptide. The first
peak in the isotopic peak complex will be the monoisotopic peak of the lighter peptide.
The second peak will be the sum of the monoisotopic peak intensity of the second peptide
plus the peak intensity of the first peptide with one 13C atom, and so on. One such exam-
ple that may be encountered relatively often in practice is the deamidation of asparagine
in NG sequences. This is a spontaneous reaction that may occur under slightly alkaline
conditions. The deamidation of asparagine generates aspartic acid with a concurrent mass
increase of 1 Da. The result consists of two peptides, spaced 1 Da apart: one peptide con-
tains the original sequence with an N, while the other carries the spontaneously generated
D at that position.
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5.6 The raw data
As explained previously, a detected compound is presented as a peak stretching over a
(short) range of m/z values, rather than a single line at one exact m/z value (that is, a peak
without spreading). Thus for each peak there are numerous intensity measurements at
defined small increments of the m/z value (defined by the time resolution of the detector),
and these should be combined into one intensity value as a peak without spreading. Hence
we can roughly say that a mass spectrum can be presented in one of two forms: as raw
data or as a peak list. The peak list is a processed form of the raw data. In its simplest
form, it contains a list of m/z values of the detected peptides. Most peak list formats,
however, also include the intensity value and possibly other data (for instance, charge
state), for each of the detected peptides. The intensity (the number of detected ions) is
proportional to the area under the curve, and the physical value at the centroid of the peak
is usually used to calculate the ion’s actual m/z value. A typical raw data spectrum can
for example contain about 3000 pairs (m/z, intensity) inside a 100 unit interval, while
the derived peak list contains only four pairs (corresponding to four peptides). The ratio
between these numbers depends on the instrument used. Figure 5.4 shows an example of
a raw data spectrum with little noise.

The processing steps involved in transforming raw data into a peak list are further
described in Section 6.2.

5.7 Mass resolution and resolving power
Resolution and resolving power in mass spectra are terms for describing the possibility
to discriminate between different components with small differences in the masses. A
commonly agreed definition of how to measure them does not exist, and in some milieus
the two terms mean the same, while they have slightly different meanings in others. We
will here present two definitions for resolution that are used to some extent (taken from
an earlier version of IUPAC definitions).

Resolution (in mass spectroscopy) – p percent valley definition Let two peaks of
equal height in a mass spectrum at masses m and m−�m be separated by a valley that at
its lowest point is just p percent of the height of either peak. For similar peaks at a mass
exceeding m, let the height of the valley at its lowest point be more (by any amount)
than p percent of either peak height. Then the resolution (p percent valley definition) is
m/�m. It is usually a function of m. The ratio m/�m should be given for a number of
values of m. The commonly used value for p is 10.

Resolution (in mass spectroscopy) – peak width definition For a single peak made
up of singly charged ions at mass m in a mass spectrum, the resolution may be expressed
as m/�m, where �m is the width of the peak at a height which is a specified fraction of
the maximum peak height. It is recommended that one of three values, namely 50 %, 5 %,
or 0.5 %, should always be used. A common standard is the definition of resolution based
upon �m being full width of the peak at half its maximum height, sometimes abbreviated
‘FWHM’ (50 %).
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100%

2x%

x%

Δ m

Δ m/2

Figure 5.7 Figure showing the similarity between the two definitions of resolution, peak width
definition (�m/2 at x %) and valley definition (�m at 2x %). The full line curve corresponds to the
added intensities from two similar and symmetrical overlapping peaks, and the dotted subcurves
to the intensity from each peak (drawn from a figure in de Hoffmann and Stroobant (2002) with
permission)

Note that the percent valley definition depends upon two adjacent mass spectral peaks
of equal size and shape. This can sometimes be found within the isotopic envelope of a
single peptide, but rarely for two different peptides. The resolution is therefore commonly
calculated from a single peak. However, for the most common peak shapes occurring
in mass spectrometry, it is shown that for an isolated symmetrical peak recorded with
a system which is linear in the range between x % and 2x % levels of the peak, the
x % peak width definition is technically equivalent to the 2x % valley definition. This is
illustrated in Figure 5.7.

The spectrometers are often classified as being of low, middle, or high resolution,
depending on which mass spectra they are able to produce. Commonly, a resolution of
up to 2000 is denoted as low, and those over 20 000 as high, but these limits are not fixed
and they evolve as instruments evolve (typically shifting towards ever higher absolute
resolutions).

5.7.1 Isotopic resolution

The determination of isotopes is important in the interpretation of mass spectrograms,
as explained above. The resolution should therefore be high enough to recognize the
isotopes. For a peak of m/z, the resolution Rm must satisfy Rm ≥ m/z · z.

Example Suppose that we have an ion of m/z = 600, and that z can be up to three.
Then for z = 3 the distance between isotopic peaks is 1/3. For the peaks to be resolved at
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FWHM, the width �m of the peaks must satisfy �m < 1/3. This means that the resolution
�m/z�/�m measured by FWHM at 600 must be greater than 600/0�333 33	 	 	 = 1800.

�

Exercises
5.1 In a spectrogram there are two peaks at m/z values 239 and 358. Examine if these

can come from the same peptide, but with different charges, and determine in the
charges in that case.

5.2 The average residue mass is approximately 110, and the average number of C atoms
per residue is 5.4. Use this to calculate the relative abundances of the isotopes for a
peptide of mass 3000 Da and one of mass 500 Da.

5.3 In an MS spectrum generated by MALDI there are peaks at m/z values 600.2 and
600.7. Do you think any of them is noise?

5.4 Suppose that a resolution (FWHM) of 7000 is obtained for peaks at m/z = 3000.
What is the maximum charge at which isotopic resolution can still be obtained?

Bibliographic notes
Fractional masses
Gay et al. (1999); Gras et al. (1999); Lehmann et al. (2000);
Wool and Smilansky (2002)
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The MALDI-TOF instruments are the simplest MS instruments suitable for protein and
peptide analysis. The instruments are easy to handle, and results are rapidly obtained.
The sample for MALDI-TOF instruments should preferably contain the peptides from
a single protein or a very low number of proteins (two or three at maximum). Thus,
extensive sample preparation must be performed before the analysis can take place in the
instrument. Analyses by MALDI instruments are therefore often combined with 2D gel
electrophoresis.

Some important properties of MALDI and MALDI instruments are as follows:

• MALDI instruments are robust, fast, and easy to use.

• Not all of the peptides become ionized. There is a ‘competition’ between the pep-
tides for the available charges (competitive ionization), and which peptides are
preferentially ionized depends partly on the matrix used. The ionization process by
MALDI is not fully understood, but several studies have empirically investigated
how the ionization depends on peptide properties. This is described in more detail
in Section 6.1.3.

• MALDI is able to ionize molecules with masses from a few hundred daltons up to
several hundred thousand daltons, although the mass range studied during a single
analysis is much more restricted. It is usually known whether we study peptides
or large proteins, and the instrument settings can therefore be optimized for each
purpose. The lower mass range is limited by noise generated from matrix ions and
other unwanted ions.

Computational Methods for Mass Spectrometry Proteomics I. Eidhammer, K. Flikka, L. Martens and S.-O. Mikalsen
© 2007 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51297-5
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• Almost all of the ionized peptides have a single positive charge due to the acquisition
of a proton. As a general rule, only very large peptides or proteins may pick up two
or three protons. The spectra are therefore relatively easy to interpret.

• The accuracy in the peptide mass area (500–6000 Da) is good. The exact accuracy
obtainable is dependent on the instrument and the calibration procedures. When
internal calibration is used, the accepted accuracy during database searches is often
set to 50 ppm, meaning that the difference between the experimental m/z value and
the theoretical m/z value must be less than 50 ppm.

• The resolution is good, meaning that all newer instruments can distinguish the
isotopic peaks in the peptide mass range and correctly assign the monoisotopic peak.

• The peptides ionized by MALDI are generally quite stable, and there is little frag-
mentation.

• There can be adduct ions from contaminating salts. However, MALDI tolerates salt
contamination better than ESI instruments.

• There can be other contaminants. We may distinguish between three types of con-
taminants: the matrix (which is unavoidable), contaminants introduced by sample
handling, and contaminants due to insufficient sample separation.

• It is possible to connect to other ‘intelligent systems’ (robots) for automatic pro-
teomics. Thereby it is possible to automate sample handling, strongly increasing the
sample throughput.

• MALDI instruments are generally quite sensitive. Identification is often obtained if
the sample initially contained as little as 10 to 100 femtomoles of protein, and with
newer instruments the sensitivity may enter the attomole area. Sensitivity here is a
measure of the amount of a component that is needed for that component to produce
a signal in the spectrum.

• Contrary to ESI sources, in which the sample is spent during the analysis, MALDI
targets that are appropriately stored after analysis can be reanalyzed at a later time.
The only caveat is that each laser shot on the target consumes some of the sample
at that location. However, the spots are typically large enough to hold much more
sample than is consumed by a single analysis. This is sometimes called the sample
archiving property of MALDI sources. An important fact to consider with regard to
sample archiving is that the peptide bond absorbs UV light, and can be broken as
a result of the energy absorbed. The target should therefore always be archived in
the dark.

6.1 TOF analyzers and their resolution
TOF analyzers are the dominating analyzers for single MS. When connected to a MALDI
ionization source, the instrument is called a MALDI-TOF mass spectrometer. The simplest
form of TOF analyzer is the linear TOF, schematically described and illustrated in
Section 5.3. Ions are sent to the analyzer in short pulses due to the pulses of the laser and
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the synchronized changes in the electric field. The ions are accelerated in the electric field.
Let the potential of the acceleration field be P, the velocity at the end of the acceleration
v, the distance to the detector d, and e the charge of an electron. The kinetic energy is
then

mv2

2
= zeP (6.1)

After the acceleration, the ion enters a field-free drift tube and continues with the
obtained velocity until it hits the detector. The time for the ion to fly to the detector is
t = d/v. From this we get

t2 = d2

v2
= m

z

d2

2eP
⇒ t = d√

2eP

√
m

z
= C

√
m

z
(6.2)

for a constant C. We see that m/z can be calculated from the flight time.
As described in the previous chapter, the resolution of an MS instrument is its ability

to discriminate between different components with small differences in their m/z values.
We will illustrate how this is related to time and masses for TOF analyzers.

Example Consider the difference in flight time at one mass unit difference:

�t = d√
2eP

(√
m+1+ z

z
−
√

m+ z

z

)

= C

(√
m+1+ z

z
−
√

m+ z

z

)

(6.3)

We see that the time difference (and hence the discrimination ability) decreases with
increasing mass. For z equal to one, we get �t = 0�02C for m = 500 Da, and �t = 0�007C
for m = 5000 Da. This means that as the mass increases it becomes more difficult to
differentiate between peptides with mass differences of 1 unit.

�
Another important factor in relation to resolution is that not all ions of a peptide

(or several peptides of the same m/z) will reach the detector at exactly the same time.
Therefore, there will be a spreading in the measured time (and therefore the calculated
m/z) of a peptide. The reasons for these different flight times are mainly derived from the
fact that not all ions come from exactly the same point in the matrix/sample, and they are
therefore spread out in a 3D space when they enter the electric field. The velocities after
acceleration may thus vary slightly. As a result, overlaps can occur between different
peptides, as shown in Figure 6.1. This spreading is decisive for the resolution, and the
most important factors that determine the spreading are:

• the length of the laser pulse for ion creation;

• the size of the matrix/sample volume;

• the variation in kinetic energy.

We also see from Equation 6.3 that we can increase the resolution by increasing d,
or decreasing the acceleration voltage. However, increase of d is limited by practical
considerations, while limiting the voltage has a negative impact on the sensitivity.
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Figure 6.1 Illustration of the overlap in signal for two components with small mass differ-
ences. It also shows that the overlap increases for higher masses, if the mass differences are the
same

Two strategies are commonly used to reduce the spreading (thus increasing the
resolution).

Delayed (pulsed) extraction, DE When the ions of a single peptide are ejected from
the plate after the laser pulse, they exhibit a range of velocities, and would therefore each
reach the detector at different times. To remedy this, a delayed extraction voltage can
be used. Delayed extraction, as its name suggests, allows for a period of field-free drift
before switching the extraction voltage on. During this field-free time interval, faster ions
move farther than the slower ions. When the extraction voltage is subsequently applied,
the faster ions find themselves further into the potential field, and thus at a lower potential,
than the slower ions. The faster ions thus acquire less additional velocity than the slower
ions, which helps to reduce the spreading on the ion velocities. This extraction voltage
pulse is applied from a few tens to a few hundreds of nanoseconds after the laser pulse,
trying to optimize the mass resolution.

Reflectron A reflectron is an electrostatic mirror placed at the end of the linear flight
tube. When the ions enter the reflectron, they are exposed to an electric field that forces
them to turn around and fly back, with their return path slightly angled relative to the
direction they came from. The reflectron has two effects. First, it increases the flying
distance d by sending the ions back through another TOF analyzer that has a detector
placed at the far end. Second, the reflectron is able to ‘collect’ the ions of the same m/z
that had slightly different velocities in the first drift tube. This is because ions with a
higher velocity are able to penetrate farther into the reflectron than ions with slightly lower
velocity. The fastest ion thus follows a longer overall flight path through the reflectron,
while the slower ions are turned around more easily. This effectively focuses the ions
that have the same m/z. In more formal terms, the reflectron compensates for the spread
in kinetic energies that the ions may have acquired during their initial acceleration. The
reflectron principle is schematically illustrated in Figure 6.2.

All advanced MALDI-TOF instruments have the possibility to choose between lin-
ear TOF and reflectron TOF in addition to delayed extraction. The linear TOF is
mainly used for the analysis of proteins, while the reflectron is used for the analysis of
peptides.
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Acceleration Reflectron

Detector

Figure 6.2 Illustration of a TOF analyzer fitted with a reflectron. The reflectron consists of a
collection of grids that act as an ion mirror. For ions of the same m/z, a higher velocity will result
in a longer path through the reflectron, which thus compensates for the spread in kinetic energy.
As a result, ions of the same m/z should reach the detector almost simultaneously

6.1.1 Time-to-mass converter

From Equation 6.2 we have m/z = at2 for a constant a. However, it is more realistic to
account for a non-zero initial velocity and other factors in the instrument. The equation
used for determining the m/z is therefore

m

z
= at2 +bt + c (6.4)

The constants a�b� c must be determined for each instrument.
Using the simple form in Equation 6.2 for the conversion we have

t2 = m

z

d2

2eP

Here e = 1�6 · 10−19 C (coulomb) and 1 Da = 1�665 402 · 10−27 kg. Assume the potential
P = 1000 V� d = 1 m� z = 1. A peptide with a mass of 500 Da will then use 51�01 �s, and
a peptide with a mass of 501 Da uses 51�06 �s. For the detector to be able to differentiate
between these two masses, the accuracy of the timer must be at least 0�05 �s. This requires
the use of electronic devices. In addition to the TOF, the amount of ions reaching the
detector must also be measured for each time interval.

6.1.2 Producing spectra

We have seen that ions are created by laser pulses, with each pulse sending ions to the
detector, generating a signal from which a spectrum can be drawn. In practice, however, a
spectrum for a sample of components (peptides) is obtained by averaging over the spectra
generated from a number of pulses. The number of averaged spectra may vary according
to the amount of peptides in the sample or the signal-to-noise ratio. Random noise is more
likely to be partially cancelled out when many pulses are accumulated, while a weak but
constant signal from a peptide will consistently be added up and can thus more readily be
distinguished from the background noise. A spectrum may therefore be produced from a
few pulses (10–100) or many pulses (more than 1000), depending on the circumstances.
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6.1.3 Ionization statistics

It is commonly observed that some peptides from a digested protein are absent in MALDI-
TOF spectra. Rather, a typical sequence coverage of 20 to 50 % is obtained. The detection
or lack of detection of a peptide may have different reasons. Some peptides might be
too small, while others are too large for detection. However, a major reason is that
not all peptides are ionized. As explained earlier, the ionization involves a competition
for the available charges, and which peptides are ionized depends partly on different
peptide properties and partly on matrix properties. Most studies have used tryptic peptides
in concert with �-cyano-4-hydroxycinnamic acid, a very common matrix for peptides.
Tryptic peptides have R or K as their C-terminal amino acid (except the C-terminal peptide
of the protein). Peptides with a C-terminal R generally have above-average intensities,
so consequently those containing K have lower intensities. The intensity of R-containing
peptides depends on the neighboring residue to R, with G having a positive effect, and
D and E having a negative effect. It is generally accepted that F has a positive effect on
peak intensity. Y,W,P, and L also appear to improve intensity, and thereby the chance of
detection. It therefore seems that the signal intensity of a peptide depends mostly on the
presence of certain amino acids rather than on the overall physicochemical properties of
the peptide. There are examples indicating that the matrix may influence the ionization
of peptides. Phosphopeptides are generally considered as ‘bad flyers’ using �-cyano-
4-hydroxycinnamic acid (that is, these peptides are often difficult to detect). Certain
matrices like 2,4,6-trihydroxyacetophenone or 2,5-dihydroxybenzoic acid, or supplements
in the matrix, like phosphoric acid or ammonium salts, have been reported to improve
the ionization capabilities of phosphopeptides.

6.2 Constructing the peak list
The raw data spectrum contains signals from the peptides, as well as signals derived from
different forms of noise. Specifically revealing the signals (peaks) corresponding to the
sample peptides is a multistep task. The detailed procedures for peak list construction
vary with the instrument and software used, as well as with the type of spectra. However,
some basic (sub)tasks have to be performed, either as separate tasks, or performed in
an integrated procedure. The main challenges are the removal of noise peaks without
removing any of the peptide peaks, and to determine the m/z and intensity values with
the best possible accuracy.

6.2.1 Noise

The quality of the obtained spectra may range from excellent to poor. The amount of
noise in the spectrum relative to the amount of sample compounds strongly influences
the quality of the spectra.

Figure 6.3 shows a spectrum with much noise, and its processing by techniques is
explained later in this section. It can be understood that when the peptide peaks have low
intensity and are surrounded by much noise, this can influence both the exact m/z value
and the peak pattern. Noise may be defined in a narrow manner as random fluctuations
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Figure 6.3 A spectrum with much noise, a high baseline, and low-intensity peptide peaks. A
detail of the spectrum is zoomed into, and the effect of baseline correction and noise filtering is
illustrated for this detail. The spectrum has not been calibrated. The high noise level may influence
both the exact m/z value of the peaks and the detection of the isotopic peak distribution. In the
zoomed part of the spectrum, peaks 1388.9 and 1439.9 have isotopic distributions that could be
commensurate with peptides, while 1393.9 and 1437.8 (not labeled, approximate m/z value) do
not have such envelopes

between two spectra of the same sample, or between two laser shots on the sample. Noise
may also be defined in a wide manner as all unwanted peaks not belonging to our sample.
This latter definition can for example include unwanted contaminants.

Noise may be divided into two main types.

Chemical noise may have several sources, as follows:

• It may come from chemical contaminants introduced during the sample handling,
for example detergents that have not been removed from the samples and polymers
that have leached out from low-quality plastic tubes.

• It may be derived from proteins or peptides that have been unintentionally introduced
during sample handling, for example human keratins from the skin or hair.
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• In MALDI-TOF analyses it may also come from the instability of peptides after
receiving energy from the laser pulse. This may result in fragmentation along the pep-
tide backbone, loss of parts of the amino acid side chains (loss of water and ammonia
are the most prevalent), or loss of some of the posttranslational modifications (espe-
cially phosphorylations or glycosylations attached to serine or threonine residues).

In all of the above cases unexpected peaks are produced.

Electronic noise is the result of electronic disturbances, and occurs with random fluc-
tuations between the chemical noise.

The noise level of a spectrum (or part of a spectrum) is typically calculated as the
standard deviation of selected points assumed to be noise. The signal-to-noise ratio (S/N
ratio) is also often used.

Noise and contaminations may cause so much disturbance that the MS analysis is
unusable. Both sample handling and instrument settings may therefore be critical during
an experiment.

6.2.2 Baseline correction

A specific form of noise occurs as the baseline of a spectrum, derived predominantly
from chemical noise. The baseline is an offset of the intensities of masses, and should be
subtracted from the measured intensities. It often shows a dependency on the m/z value
such that it is highest at low m/z values, and shows an exponential decay towards higher
masses. The baseline varies from spectrum to spectrum. Each spectrum must therefore
be treated separately.

Many algorithms for baseline correction have been developed. The simplest baseline
correction finds the lowest point in the spectrum and drags this point down to zero. At the
same time, the highest point in the spectrum (the base peak) is kept at 100 % intensity.
The result is that the intensities in the spectrum are ‘extended’ along the vertical axis.
More advanced methods take into account that the baseline varies across the spectrum,
and try to locally (in windows along the m/z-axis) fit the baseline points to polynomial
or exponential functions. The windows should preferably be intervals that do not contain
real peaks, such that only baseline points contribute.

6.2.3 Smoothing and noise reduction

As illustrated in Figure 6.3, a spectrum can be jagged, making it difficult to detect peaks
amongst the noise. A smoothing is therefore often performed on the spectrum. Again this
can be done in different ways. The straightforward way is to use a sliding window, where
a new value is calculated for the point in the middle of the window, based on the values
for the points in the window. The calculation is very often a weighted average.

Example Suppose we have the intensity values 20, 16, 19, 18, 15 for five succeeding
points of measurements, and use filter length five with weights 1:2:4:2:1. Then the new
value for the middle point is 18 (17.9).

�
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The length of the window and the weights are determined from known forms of the
noise, often taking the resolution into account. A Gaussian filter is also often used, based
on the Gaussian function

G�x� = 1√
2	


e
− x2

2
2

which is symmetric. 
 determines the length of the window, and the weights are calculated
by a discretization of the function values. Due to variation of the noise level along the
mass range, they are calculated for small intervals (down to under 1 unit). More advanced
smoothing functions include Fourier transformations and wavelet transformations.

6.2.4 Peak detection

Peak detection is the process of distinguishing interesting peaks from noise. The aim is
that every isotopic variant of each peptide should be represented by exactly one data point
in the spectrum, and several techniques are used. One way is to first identify the apex of
a peak. This is the point where the intensity stops increasing and starts decreasing. The
intensity at this apex is then compared to the surrounding noise level. Alternatively, the
valleys on each side of the apex can be used to determine the start and end of the peak.
The area of the peak is then calculated, and is compared to a minimal ‘true peak area
threshold’.

Other methods consider a peak as a continuous range of points with intensity above
the noise level. Some also consider the shape of the peak to distinguish peptides from
contaminants and noise, as peptide peaks tend to have different shapes than noise peaks.
The number of expected raw data points per peak (which can vary over the spectrum) is
also used in some peak detection algorithms. One such method is described in Gentzel
et al. (2003), which takes the resolution of the mass spectrometer into account. The
resolution is mainly determined by the geometry and the settings of the instrument. At
fixed settings, the function describing the peak width, pw, as a function of the mass is
also fixed. This function is set to pw�x� = 0�08 + 0�0004x, where x is the m/z value.
(We see that the resolution varies with x.)

By denoting the intensity at mass xi by yi, a (raw) spectrum is represented by a set of
�xi� yi� values, where the difference between succeeding xi can vary. A centroid is started
at xi if

∑

j

yj ≥ t

where the sum is over j such that xi ≤ xj ≤ xi +pw�xi� and t is a predefined threshold.
The maximum of the rising peak is determined to be xm, and the centroid peak �xc� yc�
is calculated as

xc =
∑

j xjyj∑
j yj

� yc =∑

j

yj

where the sums are over j such that �xm −pw�xm�/2� ≤ xj ≤ �xm +pw�xm�/2�. xc and yc

are then the m/z value and the intensity of the centroided peak. By comparing the borders
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of two succeeding centroid peaks, overlapping can be discovered, and the overlapping
intensities are split between the two (centroid) peaks.

Whatever peak detection algorithm is used, high-intensity peaks of single peptides are
usually detected without failure. However, when the peaks have low intensities and there
are complex patterns of overlapping peptides, errors are much more likely to occur.

6.2.5 Example

We have the following part from a raw data spectrum (m/z, intensity; with the values
limited to two decimals for presentation reasons):

1939.00 64.72 1939.62 107.91 1940.25 45.24 1940.87 227.58
1939.04 59.56 1939.67 129.19 1940.29 46.59 1940.91 210.30
1939.09 54.14 1939.71 150.26 1940.33 49.28 1940.96 190.47
1939.13 48.67 1939.75 170.48 1940.38 53.26 1941.00 169.51
1939.17 43.54 1939.80 176.96 1940.42 58.55 1941.05 148.09
1939.22 39.25 1939.84 157.23 1940.47 65.16 1941.09 126.90
1939.26 39.51 1939.89 136.76 1940.51 73.71 1941.14 106.51
1939.31 41.84 1939.93 116.24 1940.56 94.22 1941.18 88.00
1939.35 45.41 1939.98 96.38 1940.60 124.24 1941.23 73.99
1939.40 50.21 1940.02 82.06 1940.65 154.87 1941.27 64.92
1939.44 56.16 1940.07 71.62 1940.69 185.41 1941.32 59.72
1939.49 63.37 1940.11 62.74 1940.74 215.17 1941.36 57.46
1939.53 71.99 1940.16 55.36 1940.78 234.24 ���1939.58 87.17 1940.20 49.50 1940.83 238.55

A part from the derived peak list is shown below:

Centroid Peak Relative Peak area
mass height intensity (rel. local

(to zero) baseline)

1939.790 61 844.0 2.85 843.67
1940.844 95 1897.0 6.41 1897.29
1941.802 98 7717.0 26.05 7717.00
���

6.2.6 Intensity normalization

Intensities are used to distinguish noise from real signals in the score calculations of
comparisons, in the classification of spectra as good or bad, and in quantitative analyses.
The intensities of peaks are highly variable from spectrum to spectrum, and in order
to use them in a uniform way they should be normalized somehow. The normalization
should be such that the normalized values reflect the probabilities that the ions are real
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ions (derived from peptides) and not noise. The traditional approach has been to transform
to relative intensities, usually relative to the total intensity (total ion count (TIC)) or to
the maximum peak intensity (which results in the same relations between the normalized
peaks). This can then be used to remove noise, by considering peaks with a normalized
intensity below a threshold as noise.

To obtain higher robustness across different spectra, rank-based intensity normalization
has been proposed. This means that the most intense peak gets rank 1, the next highest
rank 2, and so on.

The rank-based normalization does not take the magnitude of the intensities into
account, therefore Na and Paek (2006) proposed a cumulative intensity normalization.
The peaks are sorted after decreasing intensities, and the normalized intensity of peak
with rank n is defined as

∑
rank�x��n I�x�

TIC

where I�x� is the original intensity of peak x, and TIC is the total intensity of the spectrum.
Normalization is also treated in Chapter 15.

6.2.7 Calibration

The spectra obtained from MS instruments must be calibrated to achieve the accuracy
needed for database searches, as described in Section 1.8.1. Internal calibration is most
commonly used, and is achieved by knowing the exact m/z values of certain peaks in
the experimental spectrum. Such peaks are obtained in one of two ways:

• known standards may be added to the sample; or

• the protease used for digesting the sample will produce known autolytic peaks by
self-digestion.

It is also possible to use external calibration by spotting known standards close to the
sample on the sample plate of the instrument, and by acquiring the spectra from the
sample spot and the standard spot consecutively. Measurement deviations as observed in
the standards spectrum are then extrapolated to hold for the sample spectrum as well.

Different forms of regression curves for calculating the calibrated values are used, from
a linear m∗ = am+b function to higher order functions, for example

m∗ = �am+b
√

m+ c�2

where m∗ is the calibrated m/z value. Which form of calibration to use depends on the
instrument. In the case of internal calibration, the new constants are applied to the same
spectrum, correcting the m/z values of all peaks in the spectrum. In the case of external
calibration, the constants from the standard spectrum are applied to the sample spectrum.
External calibration will usually be less exact than internal calibration.

The fractional mass distribution can also be used as a component of the calibration,
relying on the observation that the distribution of the peptide masses is not uniform, as they



92 MASS SPECTROMETRY – MALDI-TOF

a + bm

m i

Δ m

C
al

ib
ra

te
d 

m
as

se
s

m i

*

Figure 6.4 Calibrated masses are determined by maximizing
∑

i P�a+bmi��m

occur in clusters. In addition, the number of peptides in such a cluster decreases at higher
masses. The peptide mass range can therefore be divided into small intervals of length
�m. If P is the mass probability distribution, then the probability for a random peptide
mass to occur in interval �m�m + �m is P�m��m. A set of peaks with experimental
masses �mi� can then be calibrated anew by determining the constants a�b such that the
total probability

∑
i P�a+bmi��m is maximized, as shown in Figure 6.4. It has been

shown that for this method to work the initial errors must be less than 0.5 (Gras et al.
(1999)).

6.3 Peak list preprocessing
After construction of the initial peak list, it should be preprocessed to make it more
appropriate for subsequent database searching.

6.3.1 Monoisotoping and deisotoping

This process reduces a cluster of isotopic peaks (an isotopic envelope) to a single peak,
with intensity equal to the sum of the isotope intensities. Monoisotoping reduces the
isotopic envelope to the peak with the lowest m/z in the cluster. This is usually the
procedure for MALDI experiments where delayed extraction and reflectron mode have
been used. Deisotoping reduces the isotopic envelope to a centroid peak, with the m/z
value determined from the intensities of the individual isotopes. The centroid m/z value
corresponds to the value that would be obtained if average masses of the atoms in the
peptide were used for a calculation of its mass.

6.3.2 Removing spurious peaks

The fractional masses (Section 5.5) can be used to try to remove non-peptide masses,
by removing those peaks whose fractional masses do not follow the pattern for peptides.
An illustration of this can be found in the masses that lie outside the marked area in
Figure 5.6.
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The background noise increases at low m/z ratios, and masses below a specified limit
(sometimes 500, but more typically 700 to 800) are therefore removed. High masses
(typically above 3000 to 4000) are also removed, since the sensitivity and the accuracy
are usually lower at such high masses. Additionally, there are relatively few peptides in
this high-mass range as explained earlier.

It is also common to filter the masses for known contaminants, such as peptides
from keratin or autolytic peptides from the protease used. For high-throughput protein
identification, such contaminants can be found in an automatic way, for example by
comparing many spectra at the same time. If many spectra contain the same peak (within
a specified accuracy), that peak is likely to be a contaminant. More formally, the mass
range is divided into bins of small size (for example, 0.6), and for a batch of spectra each
bin gets a value equal to the number of spectra in which this mass occurs. If this number is
above the expected number, the mass is considered a contaminant. The expected number
can be estimated from the spectra in the batch, or calculated from a set of random spectra,
generated from a non-redundant database.

6.4 Peak list format
There are several formats used for presenting the peak list data (pkt, pkm, dta, mgf, bdtx,
mzXML, etc.). All include the m/z value and an intensity for each peak. Some also have
additional data from the raw data peak, such as peak start, peak end, area, etc.

Note that there is an ongoing work for standardization of proteomics data: ‘The HUPO
Proteomic Standards Initiative’ (PSI). This is explained in detail in Chapter 18. The MS
data standard drafted by the PSI also aims to capture the experimental setup in addition
to the more traditional m/z and intensity.

6.5 Automation of MALDI-TOF-MS
The MALDI-TOF instruments are robust and rapid, and they can be used in high-
throughput proteomics. To this end, a considerable degree of automation is required at
the level of sample handling, acquisition of the spectra, and the analysis of the spectra.
As 2D gels often are the starting point of MALDI-TOF analyses, we will briefly describe
a possible workflow.

Images of the stained 2D gels are run through an image analysis software package. The
software is able to assign coordinates to the spots, and potentially compare the image with
previous images of other gels for differential analysis. The user may manually determine
the spots that are interesting, or the software can do so according to specified criteria.
The coordinates of the interesting spots are sent to a spot-picking robot that excises the
spots from the gel, and transfers the gel pieces to 96-well plates. Each spot is transferred
to one well, such that one plate can contain the protein(s) from 96 spots. The plates are
then transferred to a pipetting robot that can add and remove liquid from the wells with
the gel pieces. Here the gel pieces are treated according to procedures described earlier
(destaining, dehydration, protease treatment, extraction of peptides). The robot may then
clean the peptide samples by reverse phase microcolumns (either in other 96-well plates
or in pipette tips), and thereafter spot the samples on the sample plate (chip) of the MS



94 MASS SPECTROMETRY – MALDI-TOF

instrument. Such a plate can contain several hundred spots (corresponding to several
hundred 2D gel spots). The sample plate is transferred to the instrument, and each spot
is exposed to laser shots. In this way a peptide spectrum is produced for each of the
selected spots from the 2D gel. The spectra are then processed as described previously
in this chapter, and the peak lists are submitted to the identification programs as will be
described in the next chapter. In this way, hundreds of, or even a thousand, spots may
be analyzed per day in an unattended manner. Note that the rate-limiting steps in such
an approach are often the 2D gel separation of the proteins, and subsequent staining of
the gel.

As can be appreciated, such full automation is well suited for the high-throughput
identification of proteins, while detailed characterization of posttranslational modifications
presently requires more interaction from the user.

Exercises
6.1 Use Equation 6.3 to calculate �t for m = 500 and m = 5000 for z = 2. Use the values

e = 1�6 · 10−19 C and 1 Da = 1�665 402 · 10−27 kg. Furthermore, let P = 1000 V and
d = 1 m.

6.2 Consider the following part of a raw data spectrum:

842.009 577 41.7505 842.303 592 127.796 842.597 659 874.646
842.038 976 39.4705 842.332 997 175.743 842.627 068 646.352
842.068 376 38.1118 842.362 401 390.189 842.656 478 431.301
842.097 776 37.9343 842.391 807 712.181 842.685 889 319.232
842.127 177 39.3472 842.421 213 1078.96 842.715 300 242.616
842.156 578 42.6215 842.450 619 1432.5 842.744 711 181.639
842.185 980 48.3637 842.480 026 1627.03 842.774 123 137.138
842.215 382 58.8778 842.509 433 1542.52 842.803 536 103.744
842.244 785 75.0604 842.538 841 1331.61 842.832 949 78.816
842.274 188 98.379 842.568 250 1103.36

(a) Use the peak detection method described in Section 6.2.4 and t = 4000 to
show that a centroid is started at m/z = 842�038 976.

(b) Find �xm� ym) for this peak.

(c) Calculate �xc� yc) for the peak.

6.3 Suppose that the m/z values 399.98, 900.15, 1100.22 are found in a spectrum.
Describe how you can use the fractional masses to calibrate the spectrum, illustrated
by these values.
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In this context, protein identification is a multistep process. Peptides originating from an
unknown protein have been analyzed by mass spectrometry, and a spectrum has been
acquired. The experimental data are compared with theoretical sequences from a sequence
database. The aim is to find a protein in the sequence database that can explain the
experimental data as far as possible, and in such a way that it is highly unlikely that the
fit between the experimental and theoretical data is artifactual.

In practical terms, this is done by presenting the acquired peak list to a specialized
software program that performs the comparison. Such software may be provided with the
instrument, but there are also several freely available Internet tools as well as some stand-
alone commercial programs that are designed for this task. Only some of the programs
will be directly mentioned (see list at the end of the chapter), as we focus here on the
principles and approaches, rather than on the details of specific programs.

Reliable identifications require high-quality MS experiments. This means that the
spectra should contain clear peaks from the peptides of the protein sample, and ideally
none from other molecules. As explained earlier, the quality of MS experiments depends
on different factors such as the sample preparation methods, the matrix composition, the
characteristics of the analyzed sample (such as sugar content or other posttranslational
modifications, hydrophobicity, amino acid sequence, 3D structure), the amount of protein
in the sample, the purity of the sample, the characteristics of the MS instruments (accuracy,
precision, resolution), and the availability of internal or external calibration standards.
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7.1 The main search procedure
A generic identification procedure using MS data is illustrated in Figure 7.1. The different
parts of the procedure will be explained in more detail next.

7.1.1 The experimental data

The minimum experimental data are a list of peptide masses. This list may be supple-
mented by the peak intensities. We then have a peak list ��m1� I1�� · · · � �ms� Is�� of peptide
masses and intensities. In addition we may know (or have estimated) one or several other
types of data, for example:

• the origin species (or group of species) of the proteins;

• the apparent mass of the intact protein (for example, found by 2D gel separation);

Preprocess DB data
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protein sequences
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missed cleavages
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Figure 7.1 Illustration of protein identification by MS data
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• the isoelectric point of the intact protein;

• the protein amino acid composition (though this is uncommon as a laborious chemical
procedure is required to determine it).

Usually the peak list is processed as described in Chapter 6 before comparison with the
theoretical data.

7.1.2 The database – the theoretical data

The theoretical data are a set of theoretical peptide masses derived from sequences in the
database. The database is usually preprocessed and filtered before the in silico digestion.

Preprocessing the database

The sequences in the database may not correspond completely to the sequences of the
sample proteins. For example, they may contain signal sequences, propeptides, or transit
peptides. Such sequences are normally cleaved off from the protein during its life cycle
and/or its transport in the cell. They are therefore often removed from the database
sequences before in silico digestion (which can lead to unidentified peaks if the sample
proteins still contain these subsequences). In order to obtain more reliable comparisons,
one can also take into account other information about the sequences, for example reported
sequence conflicts or variants, see the feature table of Swiss-Prot, Section 1.5. Thus there
can be several alternative masses for some of the theoretical peptides.

Filtering the database

If some properties of the sample protein(s) are known (like mass, pI, amino acid composi-
tion, species of origin), the database sequences that do not satisfy these properties (within
certain tolerances) can be filtered out. Filtering can, however, be risky if it is not taken
into account that the database entry can contain a slightly different form for certain pro-
teins, such as a fragment (or subsequence) of the experimentally observed protein. Search
programs can take such problems into consideration, for example in the case of Mascot
where applying a protein mass constraint results in a search against database sequences
that have a theoretical mass that is less than or equal to the specified mass. Additionally,
keywords in the specific search database can be used (such as biological process, cellular
component, disease, etc.) if they are available (not all sequence databases carry such
annotation). The amount of filtering applied will be a trade-off between ensuring that the
correct protein sequences are included in the searched sequences on the one hand, and
attempts to minimize the number of candidate sequences in order to reduce the search
time, and avoid potential random matches on the other hand.

Peptide mass calculation

The mass of a theoretical peptide is calculated as the sum of the residue masses with the
addition of the mass of H (nominal mass 1 Da) at the N-terminus, and OH (nominal mass
17 Da) at the C-terminus.
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In silico digestion and construction of the theoretical peptide mass list

When the relevant sequences are extracted from the database, they are in silico digested
and the peptide masses calculated, in accordance with several specified parameters, as
follows:

• The enzyme used for digestion.

• The modifications to consider. Usually the search programs are linked to a database
(or list) of different modifications, containing the mass of the modifications and the
affected amino acids. Some search programs also allow for user-defined modifica-
tions.

The modifications can be of two types:

Fixed modifications These are modifications that will be present on any occur-
rence of the affected amino acids. Fixed modifications do not affect the search
time or the size of the search space, since the only consequence is that the
mass of the affected amino acid is changed (thus not extending the number of
theoretical masses).

Variable modifications These are modifications that may be present at some or all
positions of the affected amino acid. Variable modifications can (dramatically)
increase the search time and the size of the search space. If an amino acid with
a possible modification occurs n times in a peptide, then the experimental mass
is one of 2n different possible theoretical masses (as shown in Section 3.2).

• The mass can be specified in different ways, with and without (positive or negative)
charge:

– �M +H�+� �M�� �M −H�−

– monoisotopic or average masses

• Maximum number of missed cleavage sites for a peptide. If the digestion is assumed
to be complete, the number of missed cleavages is set to zero. Increasing this
parameter will increase the number of theoretical masses constructed, and will
therefore also increase the probability for random matchings. As shown in Section
3.2, if a complete digestion produces n (unmodified) peptides, than allowing for k
missed cleavages will produce 1

2 �2n+2nk−k2 +k+2� peptides.

• There might also be cleavages at unexpected sites. This can be implemented by
searching for any subsequences that have a mass equal to an (unmatched) experi-
mental mass. The subsequence may occur anywhere on the whole sequence, or must
satisfy the cleavage rule of the protease at one terminus (the latter is sometimes
called semi-specific cleavage). For trypsin this last alternative means that either the
subsequence must end with one of {R,K}, or the residue before the subsequence
must be one of these two.
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7.1.3 Other search parameters

The search and presentation of results are controlled by specifying several search parame-
ters, in addition to those described in the preceding subsections. Some prominent examples
are:

• The expected number of proteins in the sample. This has consequences for the score
calculation and statistical significance of the sequences found.

• The tolerance for comparing protein masses.

• The tolerance for comparing peptide masses. This value depends on the expected
accuracy of the MS instrument; since no mass spectrometer has perfect accuracy,
this parameter is always specified.

• Several parameters regarding the presentation of the results (for example, the min-
imum number of peptide mass matches required for a sequence to be presented).
These parameters can be used further to automatically filter the results.

7.1.4 Organization of the database

In order to quickly obtain the protein sequences of interest (filtering), the database can
be organized as a relational database, or with an explicit set of index tables. Each
protein mass in such an index table then has pointers to the protein sequences with this
mass.

Another means to increase the speed relies on saving the result of in silico digestions.
The theoretical masses obtained are then sorted, and each mass is provided with indices
that point to the sequences in which they occur, together with some peptide infor-
mation (modifications etc.) as shown in Figure 7.2. Note that this approach requires
separate index tables for each protease. Also note that the index tables have to be
changed whenever the protein database is updated. Thus, the decision to use index
tables relies on a balance between saving computer time during the search on the one
hand, and the extra database administration and preprocessing time required on the other
hand.
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Figure 7.2 A peptide mass index table. Each peptide mass has pointers to database sequences
as well as some additional information
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7.2 The peptide mass comparison
The main task is to compare two lists of masses, and the straightforward approach is to
sort the two lists on masses and perform a parallel comparison. Some aspects that have
to be taken into account are as follows:

• An experimental mass may match more than one theoretical peptide mass within the
given threshold.

• A theoretical mass may match more than one experimental peptide, i.e., several
experimental peptides may have the same mass.

• A theoretical mass may match both an unmodified peptide and a second modified
peptide.

• Both a concatenated theoretical peptide (missed cleavages) and one of its parts may
find matches.

• Some of the experimental masses may come from noise or contaminants.

• Different peptides can have similar masses, due to permutations of the amino acids,
or because different amino acids, doublets, or triplets of amino acids can have similar
masses, such as the mass equality of I and L, and the mass similarity of W and EG,
and of HP and FS.

Thus for each experimental mass there can be a number of false matches (matches
to other peptides than the correct one), and this number depends on the accuracy of
the measurements. To get a feeling for how many false matches one can expect, try
Exercise 7.4.

7.2.1 Reasons why experimental masses may not match

Even if the correct protein sequence is in the database, usually not all of the experimental
masses find a match in the database sequence, as also described in Chapter 3.

There are several reasons for this, the most common being:

• the unmatched masses might come from other proteins, noise, or contaminants in
the protein mixture;

• unexpected posttranslational modifications (modifications that are not considered)
may occur on some of the peptides;

• (unexpected) differences in the database sequence and the experimental sequence
(variants or conflicts);

• an unexpected number of missed cleavages, or unexpected cleavages;

• a mass measurement that carries an error larger than the specified tolerance.

The number of unmatched masses therefore depends on how these points are considered
in the searching.
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7.3 Database search and recalibration
The masses from a spectrum may be incorrect, and a reasonable recalibration ‘weaved’
into the database search can often be useful. Such a recalibration utilizes the correlation
between experimental and theoretical masses of recognized mass matches ��mi� ti��.
These correlations are used to calculate a regression line, and the experimental masses
are changed, according to this, to �m∗

i �. A new search with the corrected masses is then
performed. The idea is that more matches should be found after a reasonable recalibration,
but there are also some of the original matches that can now be missed. This recalibration
can be iteratively repeated. For the recalibration to be effective it requires that a sufficient
number of the matches found in the first search are true matches, otherwise there is a
substantial risk that the corrected masses will be farther away from the correct ones than
the original masses. We now show how the idea of recalibration is used in two search
programs.

7.3.1 The search program MSA (Mass Spectra Analyzer)

MSA is a program that uses recalibration implicitly, and the developers claim that this
makes internal or external calibration unnecessary. It does not require manipulation of
the experimental data, and makes use of the observation that the relative mass errors
correlate linearly with m/z. MSA performs the search in two steps (before a score is
calculated in a third step).

Step 1 Search with large mass tolerance. The database is searched for all sequences
that contain at least five theoretical (tryptic cleavage) peptides that all have a mass
similar to an experimental mass within a fairly large deviation (for example, ±500 ppm).
This results in a subset of the database sequences.

Step 2 Implicit recalibration and removal of matches. Each sequence extracted in
Step 1 is individually examined to remove matches that obviously are incorrect, and
also to calculate how good the matches are. This is (iteratively) performed through
four substeps. The mass errors are calculated relative to the experimental mass as ei =
�mi − ti�/mi.

1. The mean 	 and standard deviation 
 of the errors are calculated. In Figure 7.3(a)
the dashed lines indicate the limits 	−2
 and 	+2
 . Matches outside these limits
are removed (three in the figure).

2. A linear regression determines a line y = a + bm, correlating the relative
mass errors with the peptide m/z for the rest of the matches, as shown in
Figure 7.3(b).

3. The distances from the relative errors of the matches to the line y are calculated
and plotted, Figure 7.3(c). Outliers are again removed.

4. Substeps 2 and 3 can be repeated, to determine the final matches.
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Figure 7.3 Illustration of Step 2 in MSA. (a) The relative error as a function of the experimental
mass (m/z). (b) The linear relation between the relative error and the experimental mass, y =
a + bm. (c) The relative error distances from the line y = a + bm. The dashed lines are at two
standard deviations

7.3.2 Aldente

The program Aldente solves the multiple matching problem by calculating a line through
an experimental/theoretical mass diagram. The line should maximize the number of
matches, and this matching is combined with taking the calibration error into account. A
diagram is shown in Figure 7.4(a). It shows that an experimental mass can match more
than one theoretical mass, and the correct matches are to be determined.

It is assumed that, taking the calibration errors of the mass spectrometer into account,
the experimental mass m can be described as a function of the correct mass r, as m =
h+�1+s�r, where h is the shift, and s the slope. h is an absolute value (given in daltons),
and s a relative value, given in ppm. The user can specify maximum and minimum values
for h and s (by using knowledge about the instrument). The maximum value of h is the
maximum difference allowed between a theoretical and experimental mass in daltons.
The maximum value of s is the maximum difference allowed between a theoretical and
experimental mass in ppm. If both are given (not equal to zero), the largest value of these
two is used as the threshold (see Figure 7.4(b)), where the most external lines define the
area used for matching (h for lower masses, s for higher masses). If the theoretical masses
are considered the correct masses, the relation between the experimental and theoretical
masses (t) is m = h+ �1+ s�t.

A straight line through the defined area is to be determined which should maximize
the number of matches. The threshold for a match between the line and an (experimental,
theoretical) point is called the internal error (of the instrument), and is specified in ppm.
Figure 7.4(c) illustrates such a line. Hough transformation is used for determining the
line. An example of the values for the parameters are hmax = 0�2 Da� smax = 200 ppm,
internal errormax = 25 ppm.
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Figure 7.4 (a) The crosses on the axes indicate theoretical and experimental masses respectively,
and bullets the possible matches. (b) The dashed line represents the maximum value for h, and
the dotted line the maximum for s. Matches must lie inside the outermost boundaries (here nine
bullets). (c) A line is then to be determined which maximizes the number of matching masses,
inside the defined area, as the line drawn in the diagram shows. This line is found by using the
Hough transformation

7.4 Score calculation
When a set of database sequences is found to have matches to the experimental peptide
list, the sequences should be given a score to extract the sequence(s) that most likely
correspond to the protein(s) from which the experimental peptide list is constructed.
Ideally the spectrum should contain only the peptides derived from a single protein, but
it is not uncommon that there are peptides from more proteins in a spectrum (as in a spot
from a 2D gel).

The goal of a scoring scheme is to give the correct database sequences the best scores,
and also to obtain a large difference between the correct sequence(s) and the wrong one(s).
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The construction of good scoring schemes is not straightforward, and many different
schemes have been proposed.

The score should be based on the similarity between the observed peaks and the
theoretical peaks obtained when simulating an identical MS experiment on the database
sequence. This similarity depends on a set of different components. The challenge is then
to determine these components, how they should be measured, and how they should be
combined in a formula with relative weights between them.

7.4.1 Score components

The components can be divided into two levels: the peptide level and the protein level. The
components on the peptide level give scores to each individual peptide mass match. The
following is a list of components that are (widely) used.

Peptide level

• The mass differences for the matching masses.

• The number of missed cleavages.

• The intensities of the experimental peaks.

• The expectation of the theoretical peptide’s occurrence in a spectrum and
intensity (based on its amino acids), see Section 6.1.3. This can include
both theoretical peptide masses that are matched to experimental masses and
masses that are not matched. For unmatched theoretical peptides one can cal-
culate the probability that such a peptide should not be observed in a mass
spectrometer.

• The number (and types) of modifications.

Protein level

• The number of experimental masses.

• The number of matching masses.

• The sequence coverage of the database sequence (%).

• The difference in experimental and theoretical protein masses.

• The difference in experimental and theoretical pI.

• The (estimated) number of proteins in the sample.

• The variation of the peptide matching errors. Large variation means that one should
be more skeptical of the suggested sequence.

Determining the score coefficients

The problem with using several score components is determining the manner in which
the components should be combined in a function, and how each component should be
weighted. Simple scoring functions use the product of the component scores, or a linear
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function. Let the score of component i be si; then the sequence score for a linear function
is
∑

i cisi, where ci are coefficients (weights) which have to be determined (or learned).
Learning is typically done by considering a lot of manually verified identifications, and
determining the coefficients such that ‘good’ matches get high scores.

7.4.2 Scoring scheme examples

As mentioned above, a number of different scoring schemes have been proposed. Briefly,
they can be divided into non-probabilistic and probabilistic schemes. Non-probabilistic
schemes typically combine a set of scoring components in some reasonable form, and
probabilistic schemes try to calculate the probability that a given sequence is the origin
of the spectrum. In this subsection we present some (rather diverse) scoring schemes.

Mascot–Mowse score

The exact score calculation used in Mascot is not fully available, but it is inspired from
the Mowse score. The Mowse score is based on the following points:

1. Decreasing the score with increasing mass of the database sequence.

2. Increasing the score with increasing number of mass matches.

3. Decreasing the score (for a match) with increasing number of (theoretical) peptides
in the database with similar masses to the experimental mass.

The protein sequence mass range is divided into intervals j of fixed length (10 kDa), and
the peptide mass range into intervals i of another fixed length (100 Da). All theoretical
peptides are placed in an �i� j� class, depending on the peptide mass and the mass of the
protein sequence to which it belongs. Let ni�j be the number of theoretical peptides in the
database belonging to class �i� j�, and then define (for point 3)

fi�j = ni�j

maxi ni�j

Let a sequence d, with theoretical mass md, obtain r matches to the experimental
masses and let ck be the peptide class �i� j� of the kth match. Then the score of the
sequence is

Scored = 50 000
md

∏r
k=1 fck

Example Consider two peptide mass intervals r� s (let for example r be the mass
[800,899.9] Da) and one protein mass interval j (for example, the mass [20,29.99] kDa).
Assume now that nr�j = 30� ns�j = 60, and that maxi ni�j = 100. Then fr�j = 0�3� fs�j = 0�6.
Assume further that we have a database sequence d with theoretical peptides in intervals
r and s. If we set C = 50 000/md the scoring for d is C/0�3 ·0�6 ≈ 5�5C.

�
The scoring scheme of Mascot is further described in Section 7.5.3.



108 PROTEIN IDENTIFICATION AND CHARACTERIZATION BY MS

ChemApplex

In the scoring scheme of the program ChemApplex each mass match is first given a
chemical score ChemScore, which depends on the probability that this peptide would
occur in a real spectrum. Thus knowledge about the protein digestion and the peptide
ionization are used. ChemScore depends on the occurrence or absence of certain amino
acids (R,C,K), and chemical modifications (on C, M, or Q). In addition, missed cleavages
are taken into account, and the amino acids at the missed cleavage point (for example, a
missed cleavage at RD will result in a higher score than a missed cleavage at KV, when
all other conditions are equal). The final score of a peptide match is then

Intensity × ChemScore
Masserror

where Intensity is the intensity of the (experimental) peak, and Masserror is the difference
between the two masses in ppm. A simple formula for the final sequence score is the
sum of the peptide scores. However, in order to remove a bias towards long sequences,
the sequence length can also be taken into account in this score.

OLAV-PMF score

This is a probability-based scoring method. It tries to calculate the probability that a
suggested protein sequence really is the origin of the experimental spectrum.

A commonly used formula for scoring schemes in bioinformatics is the log-odds
formula, and this is the basis for OLAV-PMF scoring. In particular, the score of an
event E is determined by first calculating (estimating) the probability of E to occur given
two alternative hypotheses H0 and H1, namely P�E�H0� and P�E�H1�. The score is then
calculated as the log-odds

log
P�E�H1�

P�E�H0�

H0 is often the ‘random’ hypothesis, such that P�E�H0� is the probability that E will
occur just by chance. In the context we are discussing, E is the calculated value for some
(peptide or protein) component’s match. H1 is the hypothesis that the considered match
is a correct one, and H0 that the match happens just by chance. P�E�H1� is then the
probability that a correct match will result in the specified value for the given component.
The notation used for P�E�Hi� is xHi

z , where x specifies a frequency (or probability), z a
component specified index, and i either 0 or 1, see below.

OLAV-PMF uses three components: sequence coverage v, amino acid composition c,
and posttranslational modifications o. These three components are considered indepen-
dent, and the score is a function of several component probabilities calculated for both
of the hypotheses. For determining these probabilities, two training sets of peptides are
used, T1 for hypothesis H1 and T0 for hypothesis H0. T1 is constructed from correctly
matched spectra, T0 from a set of randomly generated sequences, which are then matched
against the experimental spectra used for T1. Distributions (or frequencies) are learned
(determined) from these two sets, and are then used for estimating the probabilities for
the different hypotheses.
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Now let d be the database sequence we are calculating a score for, P the set of
theoretical peptides from d that have a matching mass in the set of experimental masses,
and p a member of P.

Sequence coverage score, Sv Sequence coverage distributions F are learned for both
hypotheses, and are used for the score

Sv = fH1
v

f
H0
v

fH1
v is the probability that a correctly suggested sequence will have sequence coverage

fv, and fH0
v that a random sequence will have the same sequence coverage. It was found

that fH1
v could be adequately fitted to a Gaussian distribution and fH0

v to an exponential
distribution.

Amino acid composition score, Sc The amino acid compositions of the peptides in the
two training sets are compared, and the subset B of the amino acids that show a bias
factor to one of the training sets is found. Let u

Hi

b be the frequency of amino acid b in
the training set Ti. Then a match p ∈ P is scored as

Sc�p� = ∏

b∈B

(
u

H1
b

u
H0
b

)nb�p�

where nb�p� is the number of b occurring in p. The final composition score for d is then

Sc = ∏

p∈P

Sc�p�

Posttranslational modification score, So Let I be the set of modification types to
consider in the search, with each modification type attached to only one amino acid (for
example, oxidation of H). The probabilities of modifications at various positions in a
peptide are considered independently, and the probability p

H1
i � i ∈ I , for modification i to

occur for hypothesis H1 is found by using T1. For H0, p
H0
i is set to 0.5. For each (peptide)

match there may be several possibilities for which modification types can be included
(for example, one C has been alkylated by iodoacetamide, and one H and one M have
been oxidized, resulting in a total of three modification types). If at least one amino acid
is present in a higher number than the number of modifications of that type, the positions
of the modifications are unknown. Let M�p� be the set of all possible locations of the
modifications, and m ∈ M�p�. The score of the modification m is

So�m� =∏

i∈I

(
p

H1
i

p
H0
i

)ni
o
(

1−p
H1
i

1−p
H0
i

)ni
t−ni

o

where ni
t is the number of amino acids that could potentially be modified by i, and ni

o is
the number of these amino acids that really are modified. Note that the formula includes
probabilities for modified and non-modified amino acids. The final modification score
for p is then the average score of all the possibilities

So�p� = 1
�M�p��

∑

m∈M�p�

So�m�
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and the final modification score for d is

So = ∏

p∈P

So�p�

The final total score of sequence d is then S�d� = log�SvScSo�.

Example Suppose that the database sequence for which we want to calculate a score
has a coverage of v = 0�28, that one of the matched peptides is p = HPDYSVVLWLRLAK,
and that the matching includes one oxidation. We will calculate the coverage score, and
the composition and modification score for the peptide.

Coverage score Suppose that the exponential coverage distribution for H0 is

fH0
v = e− v

0�02

0�02
= 0�000 042

for v = 0�28. For H1 let it be normally distributed, �	��2� = �0�37� 0�142�. Then

fH1
v = 1√

2�
e− 1

2 � v−	
� �2 = 0�868

for v = 0�28. Thus we find for the coverage score Sv = 0�868/0�000 042 ≈ 20 000.

Composition score The relative frequency ratios

u
H1
b

u
H0
b

for the amino acids found to be biased to one of the training sets are A: 0.89, E: 0.93, F:
1.12, H: 1.13, M: 0.72, P: 1.19, R: 1.22, V: 1.09, Y: 1.18. Thus the composition score of
p is Sc�p� = 1�13×1�19×1�18×1�092 ×1�22×0�89 = 2�05.

Modification score The oxidation can be at either the H or the W, thus presenting
two possibilities. The modification probabilities for these oxidations are found to be
p

H1
H = 0�02� p

H1
W = 0�21. Since there is only one of each of the actual amino acids, the

formulas become quite simple:

• So�Oxidation at H� = 0�02
0�5 × 0�79

0�5 = 0�06.

• So�Oxidation at W� = 0�21
0�5 × 0�98

0�5 = 0�82.

The modification score of p is then So�p� = �0�06+0�82�/2 = 0�44.
�

7.4.3 Identification from a protein mixture

If there are reasons to believe (for example, from the search results) that the spectrum
contains peptides derived from more than one protein, one can take this into account to
potentially get a more efficient identification. One method is to slightly alter the search
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database, such that the two highest scoring sequences are ‘combined’, and then perform a
new search. If the spectrum does indeed contain peptides derived from these two proteins,
the score against the combined sequence should be high. Another approach is based on
the subtraction method. The masses corresponding to the peptides from the sequence
with the highest score are removed from the experimental masses, and a new search is
performed with this reduced spectrum.

7.5 Statistical significance – the P-value
After a database search is performed, one sequence ends up with the highest score, S.
However, this sequence may still not be the correct match, either because the experimental
protein is not in the database, or because the correct sequence has received a lower score.
One should also keep in mind that the scores from different experiments cannot generally
be compared. A statistical significance for the score should therefore be determined:
the probability that a sequence with such a high score is a correct identification. It
is actually most convenient to calculate the complementary value: the probability that
the identification is incorrect. This is commonly done by calculating the P-value, the
probability of achieving a score of S or higher by chance. Another, but correlated measure
is the E-value, the expected number of database sequences achieving such a high score
by chance. For small values, the P-value and the E-value are equal. The final score is
sometimes presented as −C log P (where C is a constant), in order to give the ‘best’
matching sequence the highest score.

Calculating the P-value from theoretical considerations is only possible for rather
simple scoring schemes.

7.5.1 A priori probability for k matches

Consider the number of matching peaks as a simple scoring scheme. We want to calculate
the probability Pr�d�k�n� that a spectrum R with n peaks has k matches to a specific
sequence d in the database, just by chance. This means that R is considered a random
match to d. The presentation is based on Eriksson and Fenyö (2002). Let us first assume
that all masses in R have the same probability p for yielding a match in d, and that these
probabilities are independent of each other. Then the probability of k matches follows
the binomial distribution

Pr�d�n� k� =
(

n

k

)

pk�1−p�n−k (7.1)

It is commonly known that p depends on the number of theoretical peptides in d. This
number depends on the length (and therefore the mass) of d, and on the number of missed
cleavages allowed in the in silico digestion. Therefore, p should be calculated for each
sequence separately. Two other issues complicate the calculation further: (i) the number
of peptides that have a specific mass depends on the mass; and (ii) the peptide masses
occur in clusters, and the width of the peptide mass distribution increases with increasing
mass of the clusters. This implies that p is not equal for all masses in R. To handle this the
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considered peptide mass region is divided into successive subregions �ri = �mi�mi+1��,
where p is considered equal for all masses in a region. Let pi be this value for region ri.

Let ni be the number of masses from R falling in region ri, and ki the number of these
ni masses that give a match to d. If q is the number of regions, we must therefore require∑q

i=1 ki = k. We see that k matches can be obtained for a number of different distributions
of �ki� as long as the sum is k. Then from Equation 7.1 we get

Pr�d�n� k� = ∑

�k1�k2� � � � �kq��∑q
i=1 ki=k

Pr�d�n1� k1�Pr�d�n2� k2� · · ·Pr�d�nq� kq� (7.2)

Determining pi

pi is the probability that a mass m in region ri matches a theoretical mass in d. Let
further:

• t be the number of theoretical peptides in d. t can be estimated from the mass of d
and the maximum number of allowed missed cleavages.

• fi be the frequency of the peptide masses falling in region ri. fi can be estimated
from an in silico digestion of a sequence database.

Then we can calculate:

• fit as the estimated number of theoretical peptide masses in d which are in region ri.

• p∗
i = fit/�mi+1 −mi� as the probability that there is a mass in d in the same mass

cluster as m. This follows from the fact that there are mi+1 −mi mass clusters in ri

(since the clusters are approximately 1 Da apart).

• In order to be considered a match, the two masses must not deviate by more than a
given threshold, �m.

Then pi can be found by

pi = p∗
i ��I��m�

where ��I��m� is interpreted as a measure of the fraction of the peptide masses in a
cluster (in region ri) that falls within ±�m from a random mass in the cluster. � depends
on the shape of the distribution of the masses in the cluster, and can be estimated from
measuring peptide masses with the mass spectrometer used.

Note that Pr�d�n� k� is not the P-value, since it calculates the probability for one
specific database sequence to obtain exactly k matches. The P-value is the probability
that at least one of the proteins in the database obtains k or more matches just by chance.

7.5.2 Simulation for determining the P-value

Since it is usually not possible to theoretically calculate the P-value, some more indirect
methods must be used. The common way is to obtain a probability distribution of the
highest scores that will be found when searching in the database with ‘random’ spectra.
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Figure 7.5 An example probability distribution function. The total area under the curve equals
one, and the shaded area is 0.0181. This means that the probability for obtaining a value of S ≥ 6
by chance is 0.0181

This distribution is supposed to be the distribution of scores that can be achieved just
by chance. When a score S is found for a database sequence, the part of the distribution
for scores higher than S is found. This is taken as the P-value of S, as illustrated in
Figure 7.5.

Constructing the probability distribution

We describe three approaches for the construction of a probability distribution (Eriksson
et al. (2000)).

Generate random spectra A set of independent random spectra (for example, 10 000)
is generated. A search is performed with each of them against the same database, and a
distribution of the highest scores is obtained. This is assumed to be a distribution of false
positive (random) scores. This empirical distribution is then fitted to a proper probability
distribution. For this procedure to yield reasonable results, some factors need to be taken
into account:

• the random spectra must resemble possible experimental spectra;

• the spectra must be random in relation to the experimental context and the database
used;

• the database search must be performed with the same search parameters as used in
the search with the experimental spectra.
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The most important task is to construct random spectra that could be generated by the
experimental conditions used. In order to achieve this, two frequency distributions are
constructed from the search database:

• the number of peptides (for the specific protease used) per protein, taking modifica-
tions and allowed missed cleavages into account;

• the number of peptides per mass unit.

From these two distributions a random spectrum can be constructed by drawing the
number of peaks from the first distribution, and the masses for these peaks from the
second.

Another, simpler way for generating a random spectrum is to randomly choose a protein
in the database for each peak, and use a randomly chosen theoretical peptide mass from
that protein for the peak mass. Experiments show no large differences for the usefulness
of these two methods for generating random spectra.

Search with ideal spectra The distribution can also be obtained by first choosing a ran-
dom set of proteins from the search database, and then constructing a theoretical spectrum
for each of these. These theoretical spectra are in fact ideal spectra for those proteins.
For each such spectrum, the second highest score is recorded when searching against
the database. These second best scores are then considered false positive identification
scores.

An alternative probability distribution Another technique compares the highest score
to the second (or third) highest score, assuming that these latter scores are not correct
identifications. A probability distribution of the score difference between the correct
identification and the best incorrect identification can then be learned from experiments.

7.5.3 A simple Mascot search

As an illustration we perform some searches using Mascot. As mentioned above, the
actual algorithm for calculating a Mascot score is not available, but what is known is
summarized as follows:

• A probability P is calculated for the comparison between the experimental spectrum
and a database sequence. P is the probability that the ‘combined matches’ constitute
a random event. Note that P is independent of the database size.

• It is reasonable to assume that the database sequence that provides the ‘best’ match
to the experimental spectrum should have the highest score. Therefore the score S
is calculated as S = −10 · log10�P�.

• From P and the size of the database, a score threshold T is calculated. T is determined
such that a score that is equal to or greater than T can be considered random with a
probability less than or equal to another threshold p. The default threshold used by
Mascot is p = 0�05, but this can be adjusted by the user if desired.

• The E-value is calculated as E = p ·10
T−S

10 .
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Consider entry P08253 (human matrix metalloproteinase-2, MMP2_HUMAN) in
Swiss-Prot. This protein would yield 38 tryptic peptides in the mass range 600 to 3000 Da,
if no missed cleavages are considered. Among them are four peptides with monoisotopic
masses 611.28, 794.42, 1052.52, and 818.43 Da. We restrict the search first to the human
(16 027) sequences, use ±0�05 Da as the maximum allowed mass difference, and do not
allow for missed cleavages. Database sequences with a score above 55 (T ) are then sig-
nificant at the 0.05 (p) level. First we search with the first two masses. P08253 receives
the second highest score, and the highest score is 36. Then we search with three masses.
P08253 now receives the highest score, this time 51. When searching with all four masses,
P08253 receives a score of 70, which is significant at the 0.05 level. When searching in
the whole Swiss-Prot database the score of 70 remains significant (T has now gone up to
67, due to increased database size). Note also that the score is reduced when the allowed
mass error is broadened. For instance, searching with an allowed mass error of 0.15 Da in
the human sequences gives a score of only 68 for the four matches, while T is still 55.

This experiment indicates that four masses at high accuracy could be enough for sig-
nificantly (at the 0.05 level) identifying an average human sequence. We must, however,
bear in mind that we have allowed no missed or unexpected cleavages, and that we have
considered no modifications. Taking these items into account will increase the efficiency
of the search (allowing us to identify more peptides), but could also increase the number
of false positive peptide matches.

7.6 Characterization
Characterization in our context means discovering:

• the potential posttranslational modifications in the protein; and

• potential differences in the amino acid sequence between the sample protein and the
sequence given in the database (conflicts or variants).

Since the identification procedure can take modifications into account, some of the mod-
ifications may have been found during this process. However, since a protein is usually
identified with a sequence coverage of less than 50 %, nothing is known about the majority
of the protein. Characterization is often performed by MS/MS analysis, but here we will
briefly discuss how to approach this problem when only MS instruments are available.

Let us assume that the protein is identified, and thus known. The problem is then
to match the experimental masses (peak list) to the known protein sequence. First, all
conceivable contaminants are considered and removed from the peak list, and then peptide
mass comparisons are performed as explained earlier. Since we now have only one
sequence to consider, more modifications, or a combination of modifications, can be
included in the search, as well as unexpected cleavages. These measures should then
allow us to increase the coverage of the sequence.

By allowing for more modifications and cleavage variants, however, there is also a
correspondingly higher chance for false positive matches. Specifically, an experimental
mass can be found to match to several theoretical peptides, and several experimental
masses can be matched to different (modified or cleaved) versions of the same peptide.
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Example Assume that two of the masses in an experimental spectrum are m1 =
692�8�m2 = 706�8. Assume further that three theoretical peptides from a sequence are
p1=AGCVSTR, p2=AASVTCR, and p3=CQTWR. Then m1 matches unmodified p1 and
unmodified p3. Furthermore, m2 matches unmodified p2, but also p1 and p3 if the cys-
teines (C) in these two peptides are methylated. Note that although methylation could
also occur on R, a tryptic cleavage would probably not occur in that case.

�

When several alternative theoretical peptides match a mass, a score can be calculated
for each alternative. The score should be based on the mass difference and the probability
that such a peptide would be ionized and detected in the spectrum, see Section 6.1.3.

The mass comparison will result in different types of data (also see Section 7.2.1):

• A set of experimental/theoretical mass matches, not necessarily one-to-one.

• A set of unmatched experimental masses. They can be caused by unconsidered
contaminants, by the results of unexpected digestions, or by peptides that carry
unconsidered modifications.

• Uncovered parts of the sequence for which no peptides were observed. These peptides
may not have been ionized, or they could have eluded detection by not being
recorded by the detector. The points mentioned above for unmatched masses may
also explain this lack of coverage.

Since the experimental masses are expected to come from the sequence, it is possible
to perform more comprehensive investigations:

• One could test for unexpected digestions by comparing the unmatched masses
to every possible subsequence, or to semi-specific subsequences that satisfy the
cleavage rule at only one end.

• One could consider more (unexpected) modifications.

Obviously, one could also perform multiple analyses of a single protein under dif-
ferent experimental conditions, and then compare the different results with respect to
modifications. Ideally, such analyses should be undertaken in a common environment,
with one common administrative unit. Some programs that can do this are listed in the
bibliographic notes.

Exercises
7.1 Suppose the highest peak intensities of a spectrum are 29 621, 26 087, 19 699, 17 777,

9605, 7717, and that the total intensity is 253 422. Calculate the intensities normalized
relative to highest value, and also by using cumulative intensity normalization.

7.2 Explain why recalibration can be dangerous.
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7.3 Consider the Mowse score (Section 7.4.2). Assume the score for r matches a database
sequence with mass md calculated to be Sd. Assume further that all fck

are equal to
f . Derive an expression for the number of matches r∗ required for a sequence with
mass 2md to obtain the same score, Sd.

7.4 This exercise illustrates a rough calculation of the expected number of false posi-
tive matches. The number of different human sequences (entries) in Swiss-Prot is
approximately 20 000. The average sequence has approximately 50 tryptic peptides,
when no missed cleavage is allowed. About 45 % of these have masses in the range
500–1500 Da, so we assume that each sequence has 25 peptides with masses in the
specified range. We know (Section 5.5) that the peptide masses occur in clusters,
and, for the range considered here, there are approximately 1000 clusters. At this
range the width of the clusters is around 0.3 Da. We now assume a uniform mass
distribution over the range, that no two peptides from a sequence are in the same
cluster, and that there are no modifications.

(a) Calculate the probability P that a specific sequence has a mass in cluster i.

(b) Find the expected number of sequences with a peptide mass in cluster i.

(c) Find the expected number of sequences with peptide masses in both cluster i
and j.

(d) Find the expected number of sequences with peptide masses in all clusters i� j,
and k.

(Note that the probabilities are calculated for specific clusters, since we search with
given masses.)

7.5 Consider the Mascot score in Section 7.5.3. Assume that a score S is calculated from
the probability P. Assume another score S1 = S +10.

(a) Show that the probability P1 = 10−1P.

(b) For the same database the E-value is proportional to the calculated values for
P. Perform some of the searches described in Section 7.5.3 and show that this
is correct.
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Identification of proteins by peptide masses (PMF) has some shortcomings:

• different peptides often have the same or similar masses, which necessitates extensive
protein separation. However, this may even occur with peptides generated from a
single protein, and thus other tools are needed to ensure the identification of such
peptides.

• it is difficult to handle modifications efficiently as the exact location of the modifi-
cation within the peptide sequence cannot be derived from the mass of the modified
peptide alone if there are two or more positions in the peptide that can possess a
modification of a certain mass.

A much better determinant for peptide identity (and indirectly for protein identification)
is the peptide sequence itself. Although two peptides from different proteins may have
identical sequences, such redundancy occurs far less frequently than at the peptide mass
level. Usually one or two peptide sequences can already identify a protein. Additionally,
if we can obtain mass information for each residue in the sequence, we can find the exact
site of modification for modified peptides. This sequence-level information is obtained
through tandem MS (or MS/MS) analysis.

The principle of MS/MS analysis is illustrated in Figure 8.1. This approach relies
on two mass analyzers in tandem (hence the name). The first mass analyzer allows the
selection of a particular m/z range, usually centered on the m/z of a peptide of interest.
The selected peptide subsequently undergoes a fragmentation step with the second mass
analyzer finally measuring the m/z of the resulting fragment ions. The resulting spectrum,
which contains the m/z and ion intensity for each of the fragment ions, is called an
MS/MS spectrum. A more standardized nomenclature refers to a fragmentation spectrum
as a product ion spectrum.

Computational Methods for Mass Spectrometry Proteomics I. Eidhammer, K. Flikka, L. Martens and S.-O. Mikalsen
© 2007 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51297-5
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Figure 8.1 The principle for obtaining an MS/MS spectrum. Note that the MS spectrum does not
need to be constructed

For identification and characterization the MS/MS spectrum is compared to subse-
quences in a database, by using one of the approaches described in Chapter 10.

The peptide ion chosen for fragmentation is called the precursor ion or parent ion, and
the resulting fragment ions are likewise called product ions or daughter ions. Fragments
(or fragment parts) that are neutral are called neutral losses. Note that the presence of
these neutral fragments can only be inferred by observing the original fragment both with
and without the loss. The neutral fragments themselves cannot be seen directly due to the
lack of charge.

8.1 Peptide fragments
The peptides are mainly fragmented along the peptide backbone. Further fragmentation
may occur, changing the produced fragments into other fragment types. Since the first
mass analyzer selects ions that fall within a certain m/z range rather than a single m/z
value, multiple ions can be selected simultaneously. Each of these selected precursors will
yield fragments, of which those with sufficiently high abundances are shown as peaks in
the MS/MS spectrum.

The precursor can carry one or more charges, depending on the ionization source
and the peptide properties. When a singly charged precursor ion fragments, the single
charge will necessarily be located on only a single fragment ion, effectively hiding the
neutral sister fragment from the mass spectrometer. With multiply charged precursors,
the different charges are usually distributed across the product ions. One advantage with
multiply charged precursors is that instruments with lower maximum precursor m/z
values can be used. Multiply charged ions also tend to fragment easier, and, as explained
above, yield more fragment ions per fragmentation event.

The accepted nomenclature for the fragment ions is to denote each type by a letter.
The most important fragment types are described below; for a complete list see the
bibliographic notes.

Backbone fragments result from fragmentation along the peptide backbone. If a charge
is retained on the N-terminal fragment, the fragment ion is classified as a, b, or c,
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Figure 8.2 (a) Nomenclature for different backbone fragments. n is the number of residues in
the peptide, i refers to the ith residue of the peptide. (b) The basis of an immonium ion

depending on which bond is broken. If a charge is retained on the C-terminal fragment,
the fragment type is either x, y, or z. The fragment ions are annotated by subscripts,
indicating the number of residues in them (see Figure 8.2(a)).

Internal fragments result from double backbone fragmentation. Usually, these are
formed by a combination of b-type and y-type fragments, and consist of five residues or less.

Immonium fragments are internal fragments composed of a single side chain formed
by a combination of a a-type and y-type fragmentation. This means that both a C and O
atom �−28 Da� are lost compared to the residue, see Figure 8.2(b). However, it abstracts
an extra proton, hence an immonium ion for an amino acid is observed at an m/z of 27 Da
less than the residue mass of the amino acid (assuming a single charge). A peak (with
sufficient abundance) at the mass of an immonium ion (strongly) indicates the presence
of the corresponding amino acid.

Water loss occurs when backbone fragments lose a water molecule �H2O�
−18�011 Da�. The resulting fragments are denoted a�� b�, etc. Water is mainly lost from
the side chains of serine, threonine, aspartic acid, or glutamic acid residues.

Ammonia loss occurs when fragments lose an ammonia molecule �NH3� −17�027 Da�.
The resulting fragments are denoted a∗� b∗, etc. Ammonia is mainly lost from the side
chains of arginine, lysine, asparagine, or glutamine residues.

Side chain fragmentation occurs when additional fragmentation of the side chain of
a backbone fragment takes place. The most common are d ions from partial side chain
fragmentation of a ions, v ions from complete side chain fragmentation of y ions, and
w ions from partial side chain fragmentation of z ions. Side chain fragmentation can be
used to differentiate between leucine and isoleucine, since the resulting fragments will
have different masses.

Example Suppose the mass range around m/z = 410 ±1 is selected for fragmentation
and further analysis. Suppose further that there is one peptide within this m/z interval,
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Figure 8.3 An example of an MS/MS spectrum. See text for explanation

the doubly charged peptide LICDVTR. For simplicity we assume only b and y ions, and
that the following fragments are detected:

• the fragmentation after the second residue will produce detectable b and y ions, each
with charge 1;

• the fragmentation after the third residue will produce detectable b ions with charge 1;

• the fragmentation after the fourth residue will produce detectable y ions with
charge 2;

• the fragmentation after the fifth residue will produce detectable b and y ions, each
with charge 1;

• the precursor is also detected.

Figure 8.4 An example of an interpreted MS/MS spectrum as shown in Mascot output. Many
fragment ions are observed, for example all singly charged y ions are recognized. Water loss (marked
by 0) and ammonia loss (marked by *) are recognized for some fragments. Note that in practice
b1 ions are seldom are not observed, and b2 ions can have a quite high intensity.
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Then the MS/MS spectrum shown in Figure 8.3 is produced.
�

An example of an experimental spectrum is shown in Figure 8.4.

8.2 Fragmentation techniques
Fragmentation of molecules in mass spectrometers has been used for many years in order
to obtain structure or sequence information. Historically, a broad distinction can be made
based on the location of the fragmentation, yielding two types:

In-source decay, ISD means that fragmentation occurs ‘simultaneously’ with the ion-
ization in the source (through the use of excess energy). This has historically been useful
and was long considered the ‘normal’ form, hence the name ‘normal ions’ for the resulting
fragment ions. Contrary to its applications for the study of small chemicals, however, ISD
is considered a drawback when analyzing peptides. In order to prevent ISD, soft ionization
techniques are therefore used for peptides (producing none or little fragmentation in the
source).

Post-source decay, PSD implies fragmentation occurring after the source. These are
ions that are not fragmented in the source, yet that either contain internally or receive
externally sufficient excess energy to fragment in the analyzer. They are therefore some-
times called metastable ions.

The peptides most often do not have enough energy to fragment efficiently. A separate
fragmentation unit is therefore commonly included in MS/MS instruments. Different
techniques are used for fragmentation, yielding different types of fragment ions as the
dominating types. These techniques can be divided into two broad categories, depending
on whether they observe unimolecular or bimolecular decay. Four of the most used
techniques are as follows:

Laser-induced dissociation, LID causes a unimolecular decay, that is the decay rate is
only dependent on the number of molecules that are available to the decay. The decay rate
k can be expressed mathematically as d�A�/dt = −k�A�, where A is the decaying ion. The
laser used for ionization during the MALDI process will provide enough excess energy
to the molecules to cause metastable ions. Decay occurs in the analyzer, classifying it as
PSD. LID provides MS/MS spectra with mainly a� b, and y ions.

Collision-induced dissociation, CID is a bimolecular decay, as it depends on two
colliding molecules. CID is the most commonly used fragmentation technique, primarily
combined with ESI but sometimes also used in conjunction with a MALDI source.
Fragmentation is performed in a special part of the mass spectrometer, called the collision
cell. This cell contains an inert collision gas (for example, argon), and potential energy
is built up in the precursor ions through repeated collisions with the gas molecules. A
precursor molecule that reaches the energy threshold for fragmentation will fragment into
product ions and/or neutral losses. As can be understood from the explanation above, the
decay is dependent on both the number of decaying molecules, A, and the number of
collision gas molecules, B. The decay rate is proportional to the rate at which the two
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Figure 8.5 The principle of CID

molecules meet, which is in turn proportional to their concentration in the collision cell.
Mathematically, a bimolecular decay rate is expressed as d�A�/dt = −k�A��B� when the
decay occurs as a single step.

Exactly which product ions and neutral losses are formed depends on the precursor and
the energy involved. The principle of CID is shown in Figure 8.5. Commonly two levels of
collision energy are used, either low (< 100 eV) or high (> 1000 eV) energy. High-energy
CID can dissociate precursors of higher mass and produces more fragment ion types, but
this makes the spectrum more difficult to interpret. For peptide fragmentation low energy
is normally used, typically in the interval 25–70 eV, depending on the (expected) peptide
size and charge.

Another term used for CID is CAD, Collisionally Activated Dissociation.

Electron capture dissociation, ECD occurs when a trapped precursor with more
than one positive charge is bathed in low-energy electrons. Capture of such an electron
will cause the precursor to fragment quickly, without allowing the energy surplus to
spread across the different bonds. It preferentially produces variants of c and z ions, and
occasionally a ions, making it complementary to CID which favors y and b ions. It can
be used to fragment larger multiply charged peptides (or even intact proteins), but due to
its rather low efficiency when compared to CID and experimental difficulties (a Fourier
transform ion cyclotron resonance (FT-ICR) mass spectrometer is required for ECD), its
use has remained limited to specialized topics. An advantage of the peculiarities of ECD
fragmentation is that it can distinguish between leucine and isoleucine residues, as their
distinct structure results in different fragments.

Electron transfer dissociation, ETD essentially brings the mechanism of ECD frag-
mentation to non-FT-ICR instruments (for example, 3D or 2D (linear) quadrupole ion
trap instruments) by substituting free electrons with an anion species of sufficiently low
electron affinity. The larger anions (in contrast to free electrons) can effectively be trapped
long enough in the non-FT-ICR instruments to allow electron transfer to occur. The result
is a fragmentation signature that is extremely similar to that of ECD.

8.3 MS/MS spectrometers
MS/MS-capable mass spectrometers in general consist of an ionization source, one or
more analyzers, and a detector. When only a single analyzer is present, it is usually a
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trapping analyzer that can also eject unwanted ions (for example, a quadrupole ion trap)
and act as a fragmentation cell. As explained earlier, the most common ionization sources
for proteomic purposes are ESI and MALDI, described in Chapter 5. Remember that
MALDI almost always results in singly charged precursor ions, but that double- or triple-
charged ions are typical for ESI. However, other ionization sources can be combined with
particular analyzers, for example API (Atmospheric Pressure Ionization).

8.3.1 Analyzers for MS/MS

Analyzers for MS/MS must perform two analyses: one for selecting the m/z range of
interest, and one for measuring the m/z values and intensities of the fragment ions.
These two analyses can be done in two different analyzers, called in-space analyzers,
because the ions travel from one analyzer to the next, or they can be performed in the
same analyzer but at different times, called in-time analyzers. In order to allow both MS
and MS/MS analyses to take place on the same instrument, the analyzers can commonly
operate in two different scanning modes. In full-scan mode all peptide ions from the source
are analyzed and retained, allowing the recording of an MS spectrum. In MS/MS mode,
however, the analyzer retains only ions that fall within the specified m/z range, ejecting
or cutting off any ions that fall outside this range. After this selection step, the retained
ions are subjected to a fragmentation step that yields daughter ions. These daughter ions
are then measured by an analyzer operating in full-scan mode, yielding the final MS/MS
spectrum. Mass spectrometers are often configured to switch continuously between these
two modes, recording an MS spectrum in full-scan mode to select an interesting precursor
ion, and subsequently switching to MS/MS mode in order to record the fragmentation
spectrum of that precursor. When this continuous shifting is done automatically, it is
usually referred to as automated data acquisition.

The mechanism by which the m/z values of the ions are measured depends on the
type of analyzer, and can be based on the time of flight of the ions, their magnetic or
electrostatic properties, orbital frequency, and path stability.

8.4 Different types of analyzers
The analyzers can be classified based on different properties, but here we have followed
the more commonplace system that classifies them according to their mode of operation.
Different types of analyzers can also be combined in so-called hybrid analyzers, to
maximize the beneficial properties of each.

The main operations that the analyzers need to perform are the following:

1. Separate the peptides.

2. Select ions within an appropriate m/z range for subsequent fragmentation.

3. Fragment the selected precursor ion(s).

4. Measure the m/z of the resulting fragment ions.

The order in which points 2 and 3 are performed varies.
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8.4.1 TOF/TOF

The TOF/TOF analyzer performs two TOF operations in sequence, and is therefore of
the in-space type. MALDI is the most often used ionization source for a TOF/TOF,
but some instruments also employ ESI. The part which enables peptide selection is
called the ion gate (also called mass gate) or timed ion selector, TIS. An m/z range
is selected by temporarily switching off a restrictive voltage on the ion gate when the
ions of interest pass through. Ions that fall outside of the m/z range arrive before or
after the voltage is removed, and are therefore deflected away by the electric field of
the gate.

In the simplest case, PSD is the source of fragmentation, and this is illustrated in
Figure 8.6. Since the fragment ions maintain the same velocity as the precursor, they also
do not show any difference in their TOF when compared to an unfragmented precursor
molecule. The TOF/TOF analyzer is therefore fitted with a reflectron that generates an
electric field in which the distance that the molecules traverse depends on their m/z
values. Thus, the larger the m/z of an ion, the more deeply it penetrates the reflectron
field, and the ions are again separated in time based on their m/z value, with lower m/z
ions (the fragments) arriving before the ions of higher m/z (the precursor).

There are several noteworthy disadvantages with PSD fragmentation: it takes a long
time to produce spectra, fragmentation efficiency is typically low (on the order of 10 %),
and unwanted fragmentation can occur at the reflector. In order to compensate for these
shortcomings, a CID step often replaces PSD as the fragmentation method. A second
source for ion acceleration can also be implemented, and the reflector can finally be used
to reduce the spreading in time of the ions derived from the same molecule (or fragment).
An outline of these additions is shown in Figure 8.7.

8.4.2 Triple quadrupole (triple quad)

A triple quadrupole instrument is constructed from three quadrupoles in series. The
functioning of such a single quadrupole is explained next.

Source

Acceleration Ion gate

Detector

Product ions

Metastable fragmentation

Reflectron field

Unfragmented
precursor ions

Figure 8.6 The basic principle of a TOF/TOF analyzer, here shown using PSD as the fragmentation
method
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(source 2)CID
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Figure 8.7 Illustration of a TOF/TOF instrument with fragmentation before peptide selection,
from BRUKER DALTONICS. When a peptide fragments, it creates an ‘ion family’ with its product ions.
All ions in a family have the same velocity, but different families have different velocities. Only
one family therefore passes the TIS. The LIFT provides a lift in potential energy (hence the name),
giving the different ions of the selected family different velocities, based on their m/z values

Quadrupole mass analyzer consists of four parallel metallic rods, as shown in
Figure 8.8. The electric field between the rods is obtained by applying a superposition of
a static direct current (DC) and a radio frequency (RF) alternating current (AC) voltage
across the metallic rods. The combined voltage thus reads as U +V ·cos��t�. Ions passing
through the field will follow a spiral trajectory. The radius of a particular ion’s spiral
depends on the m/z value of the ion and the offset voltage for the field. For a specific
voltage, only ions of a particular m/z will reach the detector, while the others will be
ejected from the quadrupole or collide with the rods. The m/z value of the ions that

+ ( U + V cos ( ω t ))
+ ( U + V cos ( ω t ))

− ( U + V cos ( ω t ))

− ( U  + V cos ( ω t ))

+

−

−

+

From source

To detector

Quadrupole/
RF field

Figure 8.8 A quadrupole mass analyzer
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Figure 8.9 Schematic diagram of a triple quadrupole instrument in (a) MS/MS mode and (b) full-
scan mode

will traverse the quadrupole safely can be calculated from the used offset voltage. By
scanning over the voltage and observing the ion abundances for each voltage interval, a
mass spectrum is obtained.

In a triple quadrupole instrument, the middle quadrupole is used for the fragmentation
step (usually CID), while the first and last quadrupoles can be used as mass analyzers.
This is shown schematically in Figure 8.9. The triple quadrupole is an in-space type of
instrument and ESI is commonly used in the ion source.

8.4.3 Ion trap (IT)

Ion traps are analyzers that are able to trap ions in a confined space. MS and MS/MS
analyses are both performed in the same unit, hence it is of in-time type. Since fragment
ions remain trapped as well, it is possible to iterate the fragmentation process, forming
MSn spectra. We will briefly describe three types of ion traps.

3D ion trap

A 3D ion trap is based on a quadrupole and is therefore also called a quadrupole ion trap
(QIT). Sometimes reference is made to the original inventor, in which case the name Paul
trap is used. Figure 8.10 shows that the trap is built from three electrodes (two capping
electrodes and one ring electrode between them).

We can think of a 3D ion trap as constructed from a quadrupole with two of the rods
forming the endcap electrodes, a third bent into the ring electrode, and the fourth collapsed
to a point in the middle. The ions are captured in the field by alternating compression
and expansion along the x-axis (from source to detector), causing the cloud to expand
radially and axially in turn.
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Figure 8.10 A simplified schematic diagram of a 3D ion trap

The principle of MS/MS mode operation of a 3D ion trap is relatively simple:

• the precursor ions enter the trap through the entrance endcap electrode;

• the m/z value of interest is selected, and ions of all other m/z values are ejected by
correctly adjusting the voltages;

• collision gas is introduced into the trap, while the voltages are adjusted to increase
the kinetic energy of the remaining ions, such that fragmentation can readily occur;

• the product ions are ejected out of the trap in the order of their m/z values by
scanning over a voltage range, and are subsequently recorded by the detector.

Both ESI and MALDI are used for ionization, but this type of trap suffers from low
resolution and poor accuracy. The size of the trap itself is about that of a lemon, and it
has high sensitivity. However, the small size limits the number of ions that can be kept
in the trap, limiting the dynamic mass range.

Linear ion trap (LIT)

The linear ion trap has been shown to remedy some of the disadvantages with 3D
ion traps. Made of four parallel electrodes, it is simpler in construction. By using only
two field components a larger number of ions can be captured, increasing the dynamic
range beyond what can be achieved with a 3D ion trap. The signal-to-noise ratio also
outperforms that of 3D ion traps. CID has typically been used for fragmentation, but
newer LIT (and QIT) instruments can be equipped for ETD fragmentation.

Orbitrap

The Orbitrap consists of an outer and inner coaxial electrode, as shown in Figure 8.11, that
form an electrostatic field. The ions form an orbitally harmonic oscillation along the
axis of the electrostatic field. The frequency of a molecule’s oscillation is inversely
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Figure 8.11 Schematic diagram of the Orbitrap. The ions are oscillating along the axis

proportional to its m/z value, and the m/z values of the individual molecules can therefore
be calculated by (fast) Fourier transformation. Orbitrap analyzers have very high accuracy
and resolution, and the design is patented by Thermo Scientific.

8.4.4 Fourier transform ion cyclotron resonance (FT-ICR)

An FT-ICR analyzer contains a cyclotron, a unit that accelerates charged particles to
high energies. The cyclotron contains a (strong) magnetic field, and the ions are rotating
around this magnetic field, due to an applied voltage, as illustrated in Figure 8.12.

The cyclotron frequency (or angular velocity) can in an approximated equation be
related to m/z as � = zeB/m, where e is the charge of a proton and B is the magnetic
field applied. The frequencies of several ions are determined simultaneously, resulting
in a superposition of sine waves. The individual ion’s frequency, and the corresponding
intensity, must be extracted from this ‘interweaved’ sine diagram, and this is performed
by applying a Fourier transformation. With the individual frequencies determined, it is
then easy to calculate the corresponding m/z values.

The electric field allows the expulsion of all ions outside a particular m/z range. The
retained ions can subsequently be fragmented by CID or ECD.

The ions are not recorded by a detector but by simply passing near some detection
plates. The resolution and accuracy are extremely high, and the mass range lies between
25 Da and up to several kilodaltons. It is the most expensive of the instruments discussed

Magnetic field B

Electrodes

Ion orbit

Figure 8.12 A simplified schematic diagram of an FT-ICR



DIFFERENT TYPES OF ANALYZERS 131

here, mostly due to costs involving the magnet used (which generates fields of up to 9
tesla). FT-ICR spectrometry is sometimes denoted as FT-MS.

8.4.5 Combining quadrupole and time of flight – Q-TOF

This is a hybrid form of mass spectrometer, combining a quadrupole and TOF analyzer.
Functionally it is identical to a triple quad (Figure 8.9), except that Q3 is replaced by
a TOF analyzer. It allows for higher resolution as a TOF analyzer is used instead of a
quadrupole in the final mass analysis step. It is also faster, since the voltage scanning in
Q3 is avoided. Both MALDI and ESI are used for ionization.

8.4.6 Combining quadrupole and ion trap – Q-TRAP

This is a hybrid analyzer based on a triple quadrupole instrument, but with Q3 replaced
by a linear ion trap. This setup is becoming quite popular in proteomics because of its
ability to perform multiple reaction monitoring (MRM). Originally intended to selectively
monitor products of chemical reactions, MRM is used in proteomics to substantially
increase the selectivity of any analysis. We have discussed earlier that the quadrupole
and ion trap mass selectors can only select an m/z range rather than an exact m/z value.
As a result, the mass selectors may allow the transmission of several ions with narrowly
spaced m/z values rather than a single ion. This degrades the signal-to-noise ratio and
may interfere with identification. In the Q-TRAP, however, the first quadrupole can be
used as the precursor selector, admitting only a narrow range of ions to proceed into the
second quadrupole, which is used as the collision cell. The fragments of all the precursors
subsequently enter the linear ion trap, where a second selection step can focus on a
known (or predicted) fragment of the desired precursor. Distinct precursors are unlikely
to have very similar fragment ions, which results in the highly selective isolation of a
single fragment. Indeed, even though the linear ion trap can only select an m/z range,
this range will most likely only be occupied by the fragment of interest. The single ion
spectra obtained have a very high signal-to-noise ratio, are highly specific, and are ideal
for quantitative measurements.

8.4.7 Combining TOF and ion trap

In these hybrid systems, an ion trap is followed by a TOF analyzer. The ion trap allows
in-time separation and fragmentation of the ions, and the TOF subsequently supports the
recording of high-mass-resolution spectra.

8.4.8 Combining linear ion trap with Orbitrap

A linear mass analyzer is followed by an Orbitrap, which together with an API source and
a detector constitute the main components of the LTQ Orbitrap instrument from Thermo
Electron Corporation. It has high accuracy and resolution, fast scanning time, and a wide
mass range.
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Table 8.1 Characteristics and performances of commonly used types of mass spectrometers. v
indicate available, (v) indicate optional. +, ++, +++ indicate possible or moderate, good or high,
and excellent or very high, respectively. LOD = Limit of Detection. Reproduced from Domon and
Aebersold (2006) by permission of SCIENCE AAAS

IT/LIT Q-TOF TOF/TOF FT-ICR Triple quad Q-TRAP

Mass accuracy Low Good Good Excellent Medium Medium
Resolving power Low Good High Very high Low Low
Sensitivity (LOD) Good High Medium High High
Dynamic range Low Medium Medium Medium High High
ESI v v v v v
MALDI (v) (v) v
Identification ++ ++ ++ +++ + +
Quantification + +++ ++ ++ +++ +++
Throughput +++ ++ +++ ++ ++ ++
Detection of

modifications
+ + + + +++

8.4.9 Characteristics and performances of some types of analyzers

Table 8.1 outlines important properties for the analyzers discussed above. It is important
to realize that these analyzers are continuously improved by the manufacturers and that
the information given can therefore only be indicative.

8.5 Overview of the process for MS/MS analysis
Figure 8.13 shows the general principle for obtaining LC-MS/MS spectra. For ESI instru-
ments, an MS spectrum is first (conceptually) constructed at given time points during the
infusion of the sample. For MALDI instruments, the MS spectrum is obtained for the
sample spot. From this MS spectrum, which often contains multiple peaks, the peaks for
subsequent MS/MS processing are automatically selected. The criteria for this selection
can be specified by the user, such as:

• the n most intense peaks, n normally between three and eight;

• the charge state;

• an inclusion list of specified m/z values to analyze;

• an exclusion list of m/z values not to be analyzed, for example certain contaminants
likely to be present.

The inclusion list results in a targeted approach that is for instance used in MRM.
The charge state of an MS peak is determined by the spacing between its isotope peaks,
if possible (low-resolution analyzers such as ion traps often cannot distinguish isotopes,
especially for higher charge states). In the figure the three most intense peaks are chosen
for MS/MS, and these fragmentation spectra are recorded during the rest of the chro-
matographic time for the component under consideration (A). A final MS/MS spectrum
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Figure 8.13 Illustration of the process used for recording LC-MS/MS spectra. The three highest
peaks from the MS spectrum are selected for MS/MS. Recording of MS/MS spectra from a MALDI
plate is similar, but the time dependency disappears there. The laser is then simply used to scan
spot per spot. See text for a detailed explanation

for a precursor is typically made up of the accumulated spectra from multiple scans, and
the accumulation time can usually be chosen by the user.

8.6 Fragment ion masses and residue masses
Interpretation of the spectra relies on knowing the relation between the mass of a fragment
type and the sum of the residue masses of the amino acids in the fragment ion. This
is illustrated in Figure 8.14 for fragment ions typically observed in CID. The equations
below use the following notation:

�N� is the (nominal) mass of the N-terminal group, = 1 (H).

�C� is the (nominal) mass of the C-terminal group, = 17 (OH).

RP is the sum of the residue masses of the peptide under consideration.

MP is the neutral mass of the peptide under consideration (= RP +�N�+�C�).

RF is the sum of the residue masses of the fragment ion under consideration.

Mk is the mass of a fragment ion of type k under consideration (charge 1).
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Figure 8.14 A neutral peptide, and a diagram for the six (main) backbone fragments with charge
1 for CID. Note that the y and c ions get two extra protons (H). The position of the charge can
vary, with the illustrated positions indicating one possibility. The diagrams give sufficient detail
for mass calculations

The masses for the singly charged fragment ion types can now be written as

Mb = RF +�N� My = RF +�C�+2H
Ma = RF +�N�−CO Mx = RF +�C�+CO
Mc = RF +�N�+N +3H Mz = RF +�C�−NH

Note that RP is the sum of RF for the two complementary fragment types, and that RF

is different for those two complementary types. Adding complementary masses results in

Mb +My = RP +�N�+�C�+2H �= MP +2H�

Ma +Mx = RP +�N�−CO+�C�+CO �= MP�

Mc +Mz = RP +�N�+N +3H +�C�−N −H �= MP +2H�

From these equations we see that the sum of single charged complementary b and y ions
(and c and z ions) equals the mass of the double charged parent ion. The most frequently
occurring fragment types by far for CID are the b and y ions and partly a ions, and many
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programs consider only these. We will also mainly consider these here for illustrative
purposes.

8.7 Deisotoping and charge state deconvolution
The fundamental peptide-derived data used for database searches are the m/z value
of the precursor and its MS/MS spectrum. Some preprocessing can often be useful to
increase the quality of the identification. Peak detection and preprocessing as described
for MS spectra in Section 6.2 can of course also be performed here. There are oper-
ations that are more specific for MS/MS spectra in that monoisotoping or deisotop-
ing (depending on the resolution of the instrument) is combined with charge state
deconvolution.

One goal of preprocessing is to obtain a spectrum where each fragment is represented
by only one datum. This means that an isotope envelope is reduced to one peak (monoiso-
toping or deisotoping), and that a fragment that occurs in different charge states is also
collated into one state (commonly to the singly charged ion, which is called charge state
deconvolution). An m/z value for z > 1 is converted to ���m/z�−1�z+1�, and the inten-
sities are summed for ions occurring with several charges. As explained in Section 5.4,
these two tasks rely on the m/z differences between the peaks, and can therefore be done

800.7800 1600.4 1601.4

800 1600.4

z = 3(A)
z = 2(B) z = 1(B)

Figure 8.15 Illustration of deisotoping and charge state deconvolution. Two fragment ions are
shown, one by the full line (A), and one by the dashed line (B). A occurs with charge 3, and has
four isotopic peaks. B occurs both as charge 2 with three isotopic peaks and as charge 1 with two
isotopic peaks. A and B have overlapping isotopic envelopes. A is monoisotoped to a single peak
with charge 3, and B is deisotoped and deconvoluted to the peak with charge 1. The resulting
intensities are simply the sum of the individual intensities of the isotopic peaks. As ion A has
charge 3, its MP = 2397
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simultaneously. A serious problem is that isotopic envelopes can overlap, necessitating
caution in estimating both the charge states and the total ion intensities for each of the
overlapping ions. Figure 8.15 shows an example. Programs for charge state determina-
tion typically define a maximum limit for the charge (three or four for fragment ions).
Furthermore, the charge cannot be higher than the charge of the precursor, and for each
fragment it cannot be so large that the neutral mass of the fragment becomes larger
than the mass of the precursor. For each peak, the occurrence of isotopes is checked
against the predicted isotopic masses of the suggested charge. One can also take into
account the expected number of isotopes for the mass of the peak, to see if these are
present.

When it is found that a peak may belong to more than one isotopic envelope, the
problem of distributing the intensity of that peak occurs. A reasonable way of solving
this is to use models for the expected intensity distribution of the isotope envelopes
included.

8.8 Precursor treatment
Precursor mass errors can occur when the wrong isotope has been selected as the
monoisotopic peak, or if the charge is either not determinable, or incorrectly determined.
Fortunately, precursor mass errors can be controlled for or estimated from their MS/MS
spectrum.

8.8.1 Precursor mass correction

An error in the precursor mass or charge can be detrimental for the identification of the
peptide, since such an error will produce systematic errors in derived data. By using
complementary fragment ions it may, however, be possible to control for and correct
wrong precursor masses. We show the principle assuming that the precursor charge is
two. From Section 8.6 we have for the complementary ions �b� y� and �c� z� the equation
Mb +My = MP +2H .

Let R = r1� 	 	 	 � rm be a spectrum. An inversed spectrum1 is defined as R̄ = r̄1� 	 	 	 � r̄m,
where r̄i = MP + 2H − ri; then b�c� ions in R should be translated to corresponding
y�z� ions in R̄, and y�z� ions to b�c� ions. There should therefore be many common
peaks in R and R̄. If MP is not correct, however, this correspondence will be low or
not occur. MP can therefore be considered an unknown x that is to be determined.
Then define R̄�x� with r̄i = x + 2H − ri. Let then C�x� = C�R� R̄�x�� be the number of
common peaks (to a given accuracy) in R and R̄�x�. The value of x that maximizes
C�x� should be chosen as the corrected precursor mass. This problem can be solved
as a mixed integer programming problem, but also in polynomial time �O�m3�� by
Algorithm 8.8.1.

1 Reversed spectrum is also used in the literature.
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Algorithm 8.8.1 Estimating the precursor mass x for the MS/MS spectrum R =

r1� 	 	 	 � rm�

var

ri� the peaks of R

r̄i} the peaks of R̄
i� j� k� l indices
n�n1 number of coinciding masses in R and R̄
x� x1 proposed precursor masses
const
� accuracy threshold
H the mass of H
begin

n = 0
for all �i� j� ∈ �1�m� do

calculate the precursor mass assuming that ri and r̄j are
complementary

x1 = ri + rj −2H
calculate the inversed spectrum R̄�x1�

for all i ∈ �1�m� do r̄i = x1 +2H − ri end
n1 := the number of coincident peaks �rk� rl� such that �rk − r̄l� ≤ �
if n1 > n then n = n1� x = x1 end

end
x is the proposed precursor mass, and n the number of coinciding masses

end

Example Consider the peptide LICDVTR, and assume that the following (ideal
nominal) MS/MS spectrum is constructed: R = 
227�b2�� 276�y2�� 330�b3�� 375�y3�,
490�y4�� 544�b5��. We construct the inversed spectrum with r̄i = x + 2H − ri. We
find that the value x = 818 will maximize the number of equal values (four), R̄ =

593� 544� 490� 445� 330� 276�.

�

8.8.2 Estimating the charge state of the precursor

While MALDI rarely produce ions of charge state higher than one, multiple charge ions are
commonly produced by ESI. However, fragmentation spectra from precursors with a charge
higher than three are seldomly of good enough quality for subsequent identification.

The problem is therefore reduced to determining the charge as being one, two, three,
or ‘larger’. The charge state is commonly found by using the isotopic differences of the
associated MS spectrum. However, especially for low-resolution instruments, the charge
state assignment may be wrong or simply unknown. Knowing the actual charge state is
important for performing a reasonable database search, all the more so since erroneous charge
state assignments often lead to faulty results. An alternative to determine the correct charge
state of the precursor is to perform the database search with several charge states, but this is
time consuming, and it is not always possible to select the correct search results afterwards.



138 TANDEM MS OR MS/MS ANALYSIS

Several methods have therefore been developed for estimating the precursor charge state
from MS/MS spectra. The easiest approach is to differentiate between charge of one and
greater than one. If the charge is one, the �m/z� values of all the product ions are less than
�m/z� of the precursor. For example, let T+ be the total ion current for ions with �m/z�
greater than that of the precursor, and T− the rest of the total ion current. If the ratio �T+/T−�
is small (for example, less than 0.1), the charge state can be estimated to one.

2to3 is a program that estimates the charge (2 or 3) of multiple charged precursors.
It is supposed that neutral loss does not occur and that fragmentation of triply charged
precursors into three fragment ions does not occur. Let �m/z�P� zP be the �m/z� and
charge of the precursor, and �m/z�b� zb and �m/z�y� zy be the corresponding two resulting
complementary product ions. From Mb + My = MP + 2H (Section 8.6) we have for a
precursor of charge 2

1�m/z�b +1�m/z�y = 2�m/z�P

since �m/z�P = �MP + 2�/2. If the charge of the precursor is three, and the b ion gets
charge 2, we have

2
(

Mb +1
2

)

+ My

1
= Mb +My +1 = 3

(
MP +3

3

)

hence

2�m/z�b +1�m/z�y = 3�m/z�P

We find an analogous equation if the y ion gets the extra charge. From this we get

zP�m/z�P = z1�m/z�1 + z2�m/z�2 (8.1)

where 1 means b or y, and 2 means y or b. The idea is then to look at each pair of
peaks (above a threshold intensity), and use Equation 8.1 to see if they can originate
from complementary fragments when the charge of the precursor is two or three. Let the
�m/z� values of two such peaks be Q1 and Q2. We then have:

if Q1 +Q2 = 2�m/z�P then it supports a doubly charged precursor;

if 2Q1 +Q2 = 3�m/z�P then it supports a triply charged precursor;

if Q1 +2Q2 = 3�m/z�P then it supports a triply charged precursor.

By considering all pairs of peaks, one can find the charge state with the most supporting
evidence.

Different machine learning techniques are also used for the precursor charge estima-
tion problem. One procedure is to utilize the observation that the �m/z� values of the
product ions are in the interval �0� zP�m/z�P�. It is appropriate to divide the interval into
subintervals ��i − 1��m/z�P� i�m/z�P�� i = 1	 	 	 zP . The charge of the product ions will
have different distributions in the different subintervals. For zP = 3 the last subinterval
will for example only contain product ions of charge 3. For each actual zP the product ion
patterns for each subinterval can be learned from known MS/MS spectra. The spectrum
under consideration is then compared to these patterns, and given a score for each zP .
The value of zP resulting in the highest score is used as the precursor charge estimate.
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8.9 MS3 spectra
Since the analysis in in-time analyzers uses the same analyzers for MS and MS/MS,
one can actually repeat the process. Product ions from MS/MS can be selected for
another fragmentation step and an MS3 spectrum is thus produced. The process can be
repeated even more, producing MSn spectra for n− 1 fragmentation steps. The number
of ions available for fragmentation will decrease for each step, and a limit for producing
reliable spectra from today’s instruments is reached for an n of about 10. An interesting
observation is that the additional selection steps will typically decrease the noise signal
more than the signal of the actual fragment ions, increasing the signal-to-noise ratio. The
MRM approach outlined above takes advantage of this property.

The fragment ions produced by the second fragmentation step are of three types (when
considering only b and y ions as possible precursors):

1. y ions: these are produced from the y ions from the first fragmentation.

2. b ions: these are produced from the b ions from the first fragmentation.

3. Internal ions: these are produced as y ions from the b ions from the first fragmen-
tation or as b ions from the y ions from the first fragmentation.

MS3 spectra can be used to resolve ambiguities in an identification. For identification,
the MS/MS spectra are compared to segments in a protein sequence database. A segment
is a subsequence, in our context often a theoretical peptide. When more than two segments
can fit in an MS/MS spectrum, the most intense peak in the spectrum can be selected
for a second fragmentation step and the resulting MS3 spectrum can then be compared
to the two candidate segments. It can also be useful when no matching segment is found
for the MS/MS spectrum, since the MS3 spectrum is simpler and may be easier to reveal
helpful information.

For the ion trap the ions have to be reloaded before each new step, which is in contrast
to an FT-ICR instrument where no reloading is necessary, since the ions are detected as
they are formed.

Exercises
8.1 Consider the peptide ACLHVR. Assume that there is a methylation modification at

residue 4 (H). Construct a theoretical spectrum when the fragments have charge 1.
Assume that the following ions are detected: a3� b2� b4� b5� c4� y3� y4� y5� b�

3� y∗
4 , and

an immonium ion for V.

8.2 Assume that two peaks with nominal m/z values 172 and 343 are in a spectrum.
Investigate if these can correspond to the same peptide, and determine in that case
the mass (m) of the peptide.

8.3 In a spectrum there are peaks at m/z values m�m+1�m+1�5�m+2. Discuss how
many different ions (fragments) these may correspond to, and the charges of the ions.
What can you use to assess your suggestions?
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8.4 Suppose an MS/MS spectrum is {72, 159, 175, 276, 287, 404}. Use Algorithm 8.8.1
to estimate the precursor mass.

8.5 Develop an algorithm that implements the 2to3 algorithm in an efficient way.

8.6 Consider the peptide ACLHVR. Construct a theoretical MS3 spectrum of the b4

fragment.

8.7 Assume two peaks with charge 1 from an MS/MS spectrum of a peptide where all
residues are different, and have m/z values m1 and m2, where m1 < m2. Let us
assume only b and y ions, that the number of residues in the peptide is lP , and in
the two fragments there are l1 and l2 residues respectively. The two peaks are both
(separately) selected for a new fragmentation, also producing only b and y ions.
Discuss how many peaks may be common in the two MS3 spectra, using the lengths
lP� l1, and l2. Discuss this for each of the four possibilities for m1�m2 being b or y
ions.
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9 Fragmentation models

The analysis of MS/MS spectra is undertaken in order to allow protein identification and
characterization. Several different kinds of analysis can be used, but all of them rely on
predictions of the expected occurrences and intensities of ions from each fragment type.
Imagine for example that you have a fragmentation spectrum R, and would like to verify
if this could have been produced from a peptide with sequence S. In order to do so,
you should have a model that predicts which fragments will be created and subsequently
detected if an MS/MS experiment is performed on S. Ideally, this prediction would include
intensities for the fragment ions as well. These expected fragment intensities could then
be compared to the measured peaks in R and seen how similar they are. While complete
knowledge of the actual fragmentation process would be very useful here, it is still not
fully understood. Some theories and informal rules do exist, however, and we will be
discussing some of these next.

The information we need can be delivered by a fragmentation model. This model takes
a peptide sequence S as input, and returns a theoretical MS/MS spectrum.

There are two main approaches in the attempt to determine and/or understand the
relationships between a peptide sequence and the produced MS/MS spectrum:

Chemical approach (bottom-up) relies on systematic investigation of the chemical
processes involved in the fragmentation.

Statistical approach (top-down) is based on the investigation of large sets of MS/MS
spectra to learn how the fragmentation depends on certain peptide properties, without
necessarily understanding the fragmentation pathway.

The most promising investigations will likely be based on a combination of these two
approaches.

9.1 Chemical approach
Central to the chemical approach is the determination of the location of the added
proton(s). The proton(s) can be located at different protonated sites, such as a group in
the side chain, the terminal amino group, and amide oxygen or nitrogen.

Computational Methods for Mass Spectrometry Proteomics I. Eidhammer, K. Flikka, L. Martens and S.-O. Mikalsen
© 2007 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51297-5
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9.1.1 The Mobile Proton Model (MPM)

A few models have been proposed to explain the fragmentation process, and one of the
most popular is the Mobile Proton Model. This model states that as the dissociation
energy increases the added proton(s) will move to a protonation site, if they are not
sequestered by a basic amino acid side chain (R, K, or H).

The proton typically migrates to an atom at the amide bond (either the amide nitrogen
or the amide oxygen), resulting in amide bond fragmentation (giving b and/or y ions)
at the protonized atom. Peptides in which the proton(s) migrate freely are called mobile
peptides, and this form of fragmentation is called charge-directed fragmentation.

Peptides in which the proton(s) are located at basic amino acids show very little
proton mobilization. Recall that this follows directly from our definition of a ’base’
according to the Brønsted–Lowry theory (see Section 1.3.3). Relocating the proton to
another, energetically less favored site therefore requires additional energy, making such
a protonation site unstable and unlikely. Other mechanisms for backbone dissociation
can occur in such circumstances, for example reactive intermediates. This mechanism is
commonly referred to as charge-remote fragmentation. It has been found that the loosely
bound proton on the acidic side chain of glutamic acid (E), and especially of aspartic
acid (D), can initiate fragmentation of the amide bond C-terminal to the acidic residue.
Fragment ions derived by this cleavage thus dominate the MS/MS spectrum for such
peptides.

9.2 Statistical approach
In a statistical approach, different statistical techniques (often relying on machine learning)
are used to analyze MS/MS spectra in order to develop a fragmentation model, as
illustrated in Figure 9.1. A model should be able to predict both the fragments that will
occur and their intensities, given a peptide sequence.

Peptide
sequence

Set of
MS/MS
spectra

Learning
(collecting statistics)

Fragmentation
model

Expected
fragment ions

(Theoretical spectrum)

Fragmentation
environment(s)

Figure 9.1 A fragmentation model is constructed from a set of spectra. The model will predict
the fragment ions for a peptide sequence. The fragmentation environment determines how detailed
the model should be
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The complexity of the models depends on the detail of the collected data. A model can
be thought of as being on one of three complexity levels:

Uniform level model (which does not need any statistics at all) will simply include all
possible fragment ions, and assign a uniform intensity to each fragment.

Fragment level model makes a distinction between fragment types by assigning the
same intensity to all fragment ions of the same type (all b ions get the same intensity,
but this intensity is generally different from the one assigned to y ions). Another
distinction can be made on the basis of fragment ion charge, so that b ions with a
charge of one generally get a different intensity than those with a charge of two.

Residue level model describes how the fragmentation depends on certain fragment
and peptide properties.

The statistics for a model must be collected from spectra produced in an experimental
environment. Different fragmentation patterns can be expected for different MS/MS
instruments. Also, different patterns can occur for different charge states of the precursor.
It is therefore essential that the experimental environment in which the model is developed
must be clearly specified.

9.2.1 Constructing the training set(s)

A large number of training spectra, from which the statistics are calculated, are needed for
these analyses. Since different instruments and specific experimental conditions usually
require distinct models to be developed, the training set(s) should ideally be constructed
automatically. A training set should consist of (spectrum, segment) pairs, where the seg-
ments are identified by a search in a protein sequence database (remember that a segment
here is part of a protein sequence). This is commonly done by searching the database with
an ’accepted’ search program, and considering those (spectrum, segment) pairs identified
that receive a high score from the program. This is a slightly circular type of reasoning,
since the input of the scoring model consists of those identifications that correspond to
the model built into the program (that is, those that are confidently identified).

The training set should also be non-redundant, to avoid the introduction of bias towards
some types of spectra. Avoiding redundancy here means removing fragmentation spectra
derived from the same peptide sequence. Note that this means that reproducibility is
implicitly assumed. A crucial point to consider when deciding on the type of model you
want to construct is that there must first be sufficient data to derive statistical results to
the desired detailed level.

Intensity normalization

The intensity normalization process should depend on the level at which the analysis is
performed. On the fragment level, the normalization could be to the total intensity of the
spectrum. At the residue level, the normalization should rather be to the most abundant
peak of the fragment types considered. Distortions from other fragmentation pathways are
thereby avoided, and spectra can have different signal-to-noise ratios without disturbing
the analysis.
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9.2.2 Spectral subsets

The fragmentation processes are likely to show different behavior for different peptides.
The challenge is therefore to divide the set of training spectra into spectral subsets, in
which the fragmentation is expected to show similar behavior. Each subset can then
be used to train a specific instance of the learning algorithm. One possible partition is
presented in Kapp et al. (2003). In accordance with the mobile proton hypothesis the
peptides were divided into three groups:

• mobile peptides: defined as peptides where the number of basic residues (R,K,H)
is less than the number of extra protons (the charge);

• non-mobile peptides: defined as peptides where the number of R residues is greater
than or equal to the number of extra protons;

• partially mobile peptides: defined as peptides not classified as mobile or non-mobile.

A more detailed partition is performed in Huang et al. (2005), where subsets of the
mobility groups were analyzed.

9.3 Learning (collecting statistics)
As explained previously, collecting statistics can be performed at two levels: fragment
and residue level. Statistical analysis for the first level is fairly straightforward, although
the counting can differ. In Huang et al. (2005), for example, two values are counted for
each fragment type: frequency and normalized % intensity. The frequency is calculated
as the number of spectra that contain a non-zero sum of normalized intensities for the
fragment type, divided by the number of spectra in the considered training set. If half of
the spectra contain at least one b+ (b ion with charge 1), the frequency for b+ would be
0.5. The intensity for a fragment type, on the other hand, is calculated directly from the
spectra with a non-zero sum of normalized intensities for the considered fragment type.
The median of these non-zero values is used as the predicted intensity.

In the next sections we mainly consider analysis at the residue level, but some methods
are also valid for the fragment level. We define three terms here:

Fragmentation site is a position in the peptide where fragmentation can occur. If only
fragmentation of the peptide bond is considered (that is, the formation of b and y ion
pairs), there exist n−1 fragmentation sites for a peptide of length n.

Fragmentation environment is a set of fragment and peptide properties associated with
a fragmentation site.

Fragmentation environment class is a class that a fragmentation environment belongs to.

A model must predict the tendency of fragmentation to occur for each environment in
an environment class, relative to fragmentation to happen for all the environments in
the class. The complexity (or detail) of a model is determined by the complexity of the
fragmentation class it is going to serve.
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Example A simple fragmentation environment class can consist of the two amino
acid residues whose peptide bond is broken. If we do not take the position of the residues
into account, this leads to 400 different fragmentation environments. Statistics have to be
collected for each of the 400 possible pairs showing how strong the tendency is for the
peptide bond to fragment between these two amino acids. A more complex environment
class can include more neighboring residues, and/or the fragmentation position along the
peptide sequence, and/or the hydrophobicity of the peptide or fragment etc.

�

Several ways of learning are employed, a few of which we will describe in the next
subsections.

9.3.1 Fragmentation intensity ratio (FIR)

One way of learning is to calculate a fragmentation intensity ratio from a set of MS/MS
spectra resulting from a set of peptides P for each environment of an environment class.
Let p ∈ P, and np be the number of residues in p. Let f be the fragment ion type(s) under
consideration, for example b ions, or both b and y ions. Then the average intensity over
all fragmentation sites Sp in p is

Ī�p� f� = 1
np −1

∑

s∈Sp

Is�f�

where Is�f� is the intensity of the f fragment(s) from fragmentation site s. The average
intensity for all occurrences of an environment v is then

Īv�p� f� = 1
�s ∈ Sp ∧ s = v�

∑

s∈Sp∧s=v

Is�f�

The FIR of p for an environment v is defined as

FIRv�p� f� = Īv�p� f�

Ī�p� f�

The FIR over all peptides is the average FIR. Let Pv be the peptides for which environment
v exists. Then the final FIR is

FIRv�P� f� = 1
�Pv�

∑

p∈Pv

FIRv�p� f�

which is a measure for the intensities occurring in an environment v relative to the sum
of all intensities.

Example Consider the peptide p=ALCVLCR, and let f be b ions. Suppose the observed
intensities of the b ions are (from b1 to b6): (0, 12, 6, 8, 4, 3). Then Ī�p� b� = 33

6 = 5�5.
Let the fragmentation environment be the two residues flanking the fragmentation site,
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and consider v = (L,C). Then we get Īv�p� b� = 16
2 = 8, and FIRv�p�b� = 8

5�5 ≈ 1�5,
which shows a higher tendency for b ions at (L,C) than average (=1).

�

A possible extension of the environment in the above example could be to include
the actual fragmentation site in either absolute or relative position, thus for example
differentiate between (L,C) coming in third and fifth position, respectively. The question
then is whether sufficient data are available to produce statistically significant results at
this level of detail.

9.3.2 Linear models

A linear model can be constructed from a set of selected attributes. One such example is
from Kapp et al. (2003). The linear model used was

log2�Ie� = IB + tN-term�e�+ tC-term�e�+k1b+k2b
2 +k3 log2 Lp

where:

Ie is the expected intensity for fragmentation environment e (not differentiating between
b and y ions).

IB is a baseline fragmentation intensity term, representing the average intensity expected
if neither of the neighboring residues have a special effect.

tN-term is a table with one entry for each amino acid. It represents an increase/decrease
in the intensity that will be applied when this amino acid is the N-terminal flanking
residue.

tC-term is an analog table for the C-terminal flanking residue.

b is the relative position of the fragmentation. An increased tendency of fragmentation
is observed in the middle of the peptide.

Lp is the length of the peptide. This term corrects for the lower overall intensity on
longer peptides due to the intensity normalization.

The fragmentation environment in this model consists of the amino acid at the N-terminal
side of the fragmentation site, the amino acid at the C-terminal side, the position of the
fragmentation within the peptide sequence, and the peptide length. A linear regression
was performed to estimate the constants (k1� k2� k3, and the 40 constants in the residue
tables tN-term and tC-term).

9.3.3 Use of decision trees

Elias et al. (2004) describe a learning method in which many fragment and peptide
properties are investigated for their influence on the observed fragmentation pattern. The
study relies on fragmentation spectra from doubly charged peptides, obtained on an ESI
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ion trap instrument. From the 1 000 000 candidate spectra, 27 000 (non-redundant) were
chosen for the analysis. The SEQUEST software (Section 11.2.5) was used for finding
matches in the sequence database. The identifications were limited to the confident
assignments by applying rigorous filtering criteria.

Between 100 and 200 attributes were considered during the analysis, of which 63
were automatically selected as significant for the fragmentation. The 63 attributes can be
classified into 10 attribute types:

1. The amino acid that occurs in certain positions, such as the N- and C-terminus of
the peptide, and at positions x residues in N- and C-terminal direction from the
fragmentation site.

2. Fraction and number of (R,K,H) residues in the peptide and the fragment.

3. The length of the peptide and the fragment, relative position of the fragmentation
site, and distance from the fragmentation site to the termini.

4. Different attributes relating to gas phase basicity (both averaged over the fragment
as well as for special residues).

5. Different attributes relating to helicity (both averaged over peptide and for special
residues).

6. Different attributes relating to hydrophobicity (both averaged over peptide and
fragment, and for special residues).

7. Ion type: b or y ion.

8. Number of missed cleavages.

9. m/z of the fragment and peptide, and the difference in m/z and mass between them.

10. Different attributes relating to isoelectric point (pI).

The result of the analysis was incorporated into two decision trees, which report a
score for a spectrum and a candidate peptide sequence, indicating the probability that the
spectrum is derived from the peptide. Apart from the end nodes, each node in a decision
tree specifies a test of some attribute (here one of the 63 attributes), and each branch
from the node corresponds to the result from the test. Although several branches can
potentially extend from a node in a tree, in this case only two are present. When this
is the case the tree is called a binary decision tree. Note that an end node in the tree
represents a specific fragmentation environment. The trees were constructed by using
Shannon entropy of intensity to select attributes and corresponding values for decision
points (internal nodes).

Figure 9.2 shows part of a decision tree from Elias et al. (2004). The following attributes
are used in this part:

POS is the fractional position of the fragmentation site;

ION is the fragment ion type;

M_Z is the m/z of the fragment;
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0.06 0.07 0.13 0.24 0.32 0.18

POS
> 0.16

RESN_1
= P

PMZD
> − 476.0

PMZD
> − 476.0

PMZD
> − 676.3

M_Z
> 1898.0

RESN_1
= H

RESC_1
= P

PMZ
> 741.9

POS
> 0.83

ION
= y

HYDN_1
> − 2.85

Figure 9.2 Part of a (binary) decision tree from Elias et al. (2004). The right branch is always
selected if the test passes. This part concerns b fragments resulting from fragmentation in the
middle of the peptide. The dashed lines are pointers to other nodes in other parts of the tree.
Each end node contains an intensity distribution, but only one is presented. The intensity range is
divided into six intensity bins. The end node shown here states that there is a probability of 0.18
that a fragment with this environment has an intensity of the highest intensity bin. (Reproduced
by permission of Nature Publishing Group)

PMZD is the fragment m/z minus the precursor m/z (note that this is a negative
number);

RESN_1 is the residue N-terminal to the fragmentation site;

RESC_1 is the residue C-terminal to the fragmentation site;

HYDN_1 is the hydrophobicity of the residue N-terminal to the fragmentation site.

To predict the intensity of a fragmentation environment, the tree is simply traversed to
an end node, which contains an intensity distribution.

Example Consider a b ion from a fragmentation environment consisting (among
others) of the following properties: �POS = 0�48� HYDN_1 = −3�2� RESN_1 = H�
PMZD = −200�. Upon traversing the nodes, the end node shown in Figure 9.2 will be
reached.

�
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A mismatch tree is also constructed, and both trees are used for scoring. This is
explained in more detail in Chapter 11.

9.4 The effect of amino acids on the fragmentation
The fragmentation learning procedures have greatly increased knowledge about the effects
that the amino acids adjacent to the fragmentation site have on the fragmentation efficiency
(and thus on the fragment intensities). Some of these results are briefly presented here.

Tabb et al. (2003c) investigated the preference for N- or C-terminal fragmentation
for the different amino acids (N-bias fragmentation), using fragmentation spectra from
doubly charged peptides from ESI ion trap instruments. The b ion N-bias of the amino
acid a is defined as

N_biasb�a� =
∑

ia
IN
b �ia�−∑ia

IC
b �ia�

∑
ia

IN
b �ia�+∑ia

IC
b �ia�

where
∑

ia
IN
b �ia� is the sum of the intensities of all b ions from a fragmentation N-

terminal to an a (ia is an index running over all fragmentation sites with an a as the
nearest C-terminal residue). The most b ion N-biased amino acid was found to be P, and
less N-bias was observed for G and S. Hydrophobic amino acids such as I, L, and V
show a C-bias fragmentation in y ions, and H shows a C-bias in b ions. A similar analysis
is also included in the article by Kapp et al. (2003) on peptides with different charges,
but also obtained from ESI ion trap instruments. For each of the mobility groups (Section
9.2.2) they analyzed amino acid specific fragmentation and position-dependent cleavage.
The most important results are summarized below.

Mobile peptides:

• a strong positive N-bias was shown for P, and to a lesser degree for G and W;

• a positive C-bias was shown for I and V;

• a strong negative C-bias was shown for P, and to a lesser degree for G and S.

Partially mobile peptides:

• a strong positive N-bias was shown for P, and to a lesser degree for G, H, K and W;

• a positive C-bias was shown for D, H, I, K and V;

• a strong negative C-bias was shown for P, and to a lesser degree for G and S.

Non-mobile peptides:

• a positive N-bias was shown for H, K, and P;

• a (very) strong (11 times the average) positive C-bias was shown for D, and to a
lesser degree for E, K, and R;

• a negative C-bias was shown for G and P.
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9.4.1 Selective fragmentation

Selective fragmentation, meaning that the fragmentation of a peptide is strongly dominated
by one fragmentation site, has been observed for years. It especially occurs when the
number of arginines is higher than the number of protons.

Exercises
9.1 For a specific fragmentation technique we want to explore how the produced ions

depend on:

• the residue N-terminal to the fragmentation site;

• whether the fragmentation site is nearest to the N-terminus of the peptide, the
middle of the peptide, or the C-terminus of the peptide;

• whether the peptide is considered overall hydrophobic or hydrophilic.

How many fragmentation environments are there in this environment class?

9.2 Assume that the amino acids are grouped according to some properties. A frag-
mentation environment is defined by the group that the residue C-terminal to the
fragmentation site belongs to. We will calculate the fragmentation intensity ratio for
y ions, and consider the environment consisting of the aliphatic group e ={I,L,V}.
We consider three peptides, and collect the following data:

I L V Ī�p1� y�

No. Ave. No. Ave. No. Ave.
int. int. int.

p1 2 60 1 54 0 40

p2 1 46 1 54 1 44 50

p1 1 74 0 3 58 46

Calculate FIRe�P� y�, where P is the set of the three peptides.

9.3 Consider the decision tree in Figure 9.2. Assume that the five end nodes in the figure
numbered from the left are:

0.40 0.31 0.14 0.07 0.04 0.04
0.06 0.07 0.13 0.24 0.32 0.18 (the example in the figure)
0.36 0.32 0.18 0.07 0.04 0.03
0.33 0.25 0.17 0.13 0.08 0.04
0.17 0.28 0.22 0.16 0.11 0.06
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A peak in an MS/MS spectrum is found with intensity in the second intensity bin.
Use the decision tree to find the probability that this peak can be a b4 ion from the
peptide TSVFAVLR.

9.4 Consider six fragmentation sites. Assume that the intensities of the y ions resulting
from the fragmented C-terminal to a V are 30, 40, 0, 45, 55, 80 and the corresponding
ones from the N-terminal to a V are 30, 0, 20, 15, 0, 40. Explore whether V shows a
C- or N-bias fragmentation for y ions.

Bibliographic notes
Fragmentation pathway and rules

Paizs and Suhai (2005), Papayannopoulos (1995); Wysocki et al. (2000)
Mann et al. (2001); Steen and Mann (2004)

Fragmentation statistics
Elias et al. (2004); Huang et al. (2002); Kapp et al. (2003);
Tabb et al. (2003c)
Huang et al. (2005)

Selective fragmentation
Huang et al. (2005)



10 Identification and
characterization by MS/MS

The MS/MS identification problem can be formulated as: given a set of MS/MS spectra
R = �R1�R2� � � � �Rn�, resulting from the peptides P = �P1�P2� � � � �Pn� (generally with
known m/z), and a set of protein database sequences D = �D1�D2� � � � �Dm�, find (iden-
tify) the sequences in D where the peptides P come from, if any. For each peptide we
have four alternatives:

1. The peptide comes from a protein whose sequence is in D.

2. The peptide comes from a protein whose sequence is homologous to a sequence
in D.

3. The peptide comes from a ‘unique’ unknown protein, with no homologue in D.

4. Each of the cases above may include modifications; the spectrum may therefore
come from a peptide that is modified.

In principle, the search is performed by comparing an experimental spectrum to each
segment (theoretical peptide) in the database, and identifying the segment(s) that give
the best match(es) to the spectrum. There may be millions of segments in a sequence
database, however, and it is therefore often impractical to examine every segment. Some
form of filtering is therefore used to isolate only those segments that constitute potential
matches. The mass of the precursor is one such filter, and others are described in the
following chapters.

One way of classifying the different approaches for protein identification is to arrange
them by how the basic comparison (comparing an experimental spectrum R to a segment
S) is performed. We chose to divide the methods into three approaches:

Spectral compare spectra: construct a theoretical spectrum T of the segment, and
compare the experimental spectrum to the theoretical one.

Sequential compare sequences: perform de novo sequencing of the spectrum to obtain
a derived sequence E. Then compare the derived sequence to the segment.

Threading compare spectrum to segment: either the spectrum is ‘threaded’ on the
segment, or vice versa. This approach includes a few methods that do not fit into
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Figure 10.1 Illustration of the three different basic methods for spectrum-to-segment
comparison

one of the other approaches. Some methods in this approach are briefly described in
Section 13.4. It will, however, be clear when learning these methods that they have
much in common with either the spectral ones or the sequential ones.

The different approaches are illustrated in Figure 10.1. For all approaches, scoring the
matches is essential, and for MS/MS comparison the scoring scheme strongly depends
on the matching approach.

The problem can now be formulated as: given a set of MS/MS spectra R =
�R1�R2� � � � �Rn� and a set of segments (theoretical peptides) S = �S1� S2� � � � � Sm�, find
the segment(s) that give the best match(es) to each spectrum. We can consider two types
of (spectrum, segment) comparisons: straight and transformed comparison. Transformed
comparison means that possible transformations using operations are taken into account.
The operations consist of types of modifications and the possible mutations (substitutions,
insertions and deletions).

Straight comparison means finding the segment(s) in S that provide the best
match(es) to a given spectrum when no transformations are considered.

Transformed comparison means finding the segment(s) that provide the best
match(es) to a given spectrum, when at most k operations have been performed on the
peptide that is the origin of the spectrum. The simplest case is when k = 1, and the mass
of the operation is known.

10.1 Effect of operations (modifications, mutations) on spectra
A modification at residue i means that there is a mass shift in the b series of ions bi

to bn−1, and in the y series of yn−i to yn−1, where n is the number of residues in the
peptide. Consider a complete spectrum RP of peptide P. Complete means that all ions of
the considered fragment types are produced. Consider also another spectrum RPM where
P is modified at residue i. Then the b ions of RP become equal to the b ions of RPM by
shifting bi� � � � � bn−1 over a distance corresponding to the mass of the modification. A
modification will therefore maintain the same number of peaks. A substitution will have
the same effect as a modification, since it changes the mass of one residue. Insertions and



EFFECT OF OPERATIONS ON SPECTRA 155

y 3

++
2b

+

y3

++
2b

+

m/z

+
b 3

y2
+

y5
m+

Peptide
m++

b 5

m+

m/z

b
+

Peptide++
5

+
b 3

y2

+

y5

+

403

443

(a) Spectrum from unmodified peptide LICTVTR

(b) Spectrum from peptide LICTVTR, phosphorylated at first T

Figure 10.2 (a) An example MS/MS spectrum (incomplete) of the unmodified peptide LICTVTR.
(b) The same spectrum for the LICTVTR peptide, but now phosphorylated at the first T (80 Da)

deletions will also result in a shifting of peaks, but in addition to this, the total number of
peaks is changed as well. This means that comparing spectra when taking modifications
or mutations into account can be done by considering shifting some of the peaks, but also
by considering the removal or insertion of peaks.

Example Consider the spectrum in Figure 10.2(a), derived from the unmodified peptide
LICTVTR. If we assume a phosphorylation of the first T, then the peaks for b5 and y5

are shifted 80 units to the right, as shown in (b). Note that in this example, b4, which
also carries the modification, is not detected.

�

When we use the term modifications in the following chapters, it can also include
mutations, depending on the context. This should not be confusing, however.

10.1.1 Comparison including modifications

Most of the identification methods where modifications or mutations are taken into
account restrict the searching to include only a few specified types, and ignore the others.
The searching can then be performed by (several) straight comparisons, by ‘changing’
the segments accordingly. If, for example, the possible methylation of cysteines needs to
be taken into account, this can be done by comparing the experimental spectrum to the
segment using the ordinary mass for cysteines, but also against that same segment with
one or several of the cysteines carrying the increased mass of the modification. Such
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straightforward searching is, however, inefficient due to the possibility of a combinatorial
explosion, and more intelligent search methods have therefore been developed.

In the last few years a couple of methods have been developed that are able to identify
unanticipated modifications. The approach used by these methods is called blind PTM
identification, since it operates in a blind mode, that is without any potential modifications
specified before searching.

10.2 Filtering and organization of the database
In principle, each spectrum is compared to all segments in the database used, which
in practice would imply too many comparisons. Some form of filtering is therefore
necessary, meaning that only some of the segments are compared to the spectrum. This
filtering needs to carefully balance two desires: not filtering out the correct segment
(prevent false positive filtering), while filtering out as many of the incorrect segments as
possible (prevent false negative filtering).

The most common filtering techniques use the precursor mass, and/or the specificity of
the protease used for the digest. The mass filter can allow modifications or mutations, and
either specific mass deviations are given, or a maximum allowed deviation is specified.
The result is a set of masses, or an interval of masses, defining the mass constraints that
segments must satisfy in order to be extracted for further comparisons. This is called mass
filtering. It is important to realize that by using mass constraints, the ability to consider
(unexpected) modifications will be limited.

Another filtering technique relies on the de novo extraction of short amino acid
sequences from the spectrum. These sequences are typically two to four residues long and
are called sequence tags. Only segments containing one of these sequence tags, some-
times including the correct flanking masses as well (essentially creating a combination of
a sequence filter and a mass filter), are processed. This is called sequence filtering, and
as we have seen above, it can be combined with mass filtering.

Example Consider a peptide with a neutral mass of 706 Da, and an observed MS/MS
spectrum with peaks at {129, 246, 276, 345, 363, 432, 533, 579, 636}. If we expect
that one residue may be phosphorylated, we have to consider two segments: one with a
calculated peptide mass of 706 Da (in case there was no phosphorylation after all), and
one with a calculated mass of 626 Da (which will yield the observed mass of 706 Da upon
phosphorylation). When examining the mass differences between the fragment peaks we
see that 345 − 246 = 99, which is the residue mass of V, and 432 − 345 = 87, which
is the residue mass of S. It is then reasonable to believe that the peptide contains the
subsequence VS (assuming we have been looking at consecutive b ions), or SV (if we
have sequenced from the y ions).

�
In order to speed up the filtering step(s) the database can be indexed, and this can

be done both for the mass filtering and for the sequence filtering. Advanced indexing
organization can also include fragment masses, making it possible to use the fragment
peaks of the MS/MS spectrum as entries in an index table. A disadvantage of using
indices is that the index tables must be changed whenever the database is changed.
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A second technique for speeding up the search is to organize the database as a suffix
tree (see Section 13.4.1).

10.3 Scoring and statistical significance
Each search program uses some scheme for scoring the match between the segment and
the spectrum, and the segment with the highest score is assumed to be the correct one.
Many scoring schemes have been proposed, and the general discussion in Sections 7.4
and 7.5 concerning scoring schemes and statistical significance also holds here.

Exercises
10.1 Construct a theoretical spectrum of a peptide ANCHIKR using all b and y ions.

Assume that in an experiment the peptide is modified by 14 Da on residue C, and
that residue I is deleted. Construct also the spectrum for this case, and compare the
two spectra by looking at the positions of corresponding ions and corresponding
differences.



11 Spectral comparisons

As explained in Chapter 10, spectral comparison means that an experimental spectrum is
compared to theoretical spectra constructed from segments from database sequences. The
segments used are typically the theoretical peptides obtained from an in silico digestion.
The comparison methods can be characterized by the following:

1. Which fragment ion types are considered.

2. How the intensities in the theoretical spectrum are calculated.

3. How the comparison is performed (the algorithm) and scored.

4. Whether modifications or mutations are taken into account, and, if so, how.

11.1 Constructing a theoretical spectrum
First one has to specify the fragment types expected in the experimental spectra, ��i�. The
segment is then subjected to a theoretical fragmentation, producing ions of the specified
types (typically singly charged).

Peak construction For each fragmentation site one must decide for which of the
fragment types � = ��i� there should be peaks. The simplest case is to construct all.
This results in a complete spectrum. An alternative approach is to use a fragment type
probability p��i�, an estimate of the probability that an ion of type �i is produced at a
fragmentation site. In addition, peaks can be produced due to noise. If q is the probability
of the occurrence of a noise peak, then a peak should be constructed at the corresponding
m/z value with probability p��i� + �1 − p��i�	q. The corresponding m/z values of the
theoretical peaks are determined by using the equations in Section 8.6.

Peak intensities Determination of the peak intensities can be done at three levels, result-
ing in different types of theoretical spectra (or spectra at different levels), corresponding
to the levels in Section 9.2:

UT spectra (Uniform Theoretical spectra), all peaks have the same height;

FT spectra (Fragment Theoretical spectra), the height of a peak depends on the
fragment type, meaning for example that all b ions get equal height, and all y ions
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get equal height, but the height for the b ions is generally different from the height
assigned to the y ions;

RT spectra (Residue Theoretical spectra), different heights are given to each peak of
the same fragment type, depending on information about position, length, sequence,
mass, etc., as described in Section 9.3.

These different types of spectra are reflected in different methods for spectral comparison
and scoring:

• One can quickly construct UT spectra (or FT spectra) and compare these to the
experimental spectrum. If the match gives a high score in this phase, one can then
go on to a more sophisticated scoring, based on the same type of information as used
for constructing RT spectra. This can therefore be considered a two-step procedure
where the first step functions as a filter.

• One can directly construct RT spectra prior to starting the comparison, but this will
cost more time.

Different schemes for scoring the comparison between an experimental spectrum R
and a theoretical spectrum constructed from a segment S are used, and we divide them
into non-probabilistic and probabilistic methods.

11.2 Non-probabilistic scoring
In this context, comparing spectra means comparing an experimental and a theoretical
spectrum, although several of the scoring schemes were originally developed for com-
paring experimental spectra. Note, however, that there is a difference between comparing
two experimental spectra (for example, to examine whether they are generated from the
same peptide) and comparing an experimental and a theoretical spectrum, as all expected
fragment types are included in the theoretical spectra. The comparison between two
experimental spectra is treated in Section 14.6.

In the comparison two main methods are used:

• search for matching peaks;

• divide the m/z-axis into intervals, and compare the integral intensities in corre-
sponding intervals.

The latter avoids the process of finding corresponding peaks, but carries the disadvantage
of a loss of precision and suffers from problems when the ion’s mass is on the border
between two intervals.

Scoring schemes typically include a sum of the scores for each pair of matching peaks
(or intervals), but often also a scoring component based on several matching peaks.
Different variants of these methods are used, and they range from quite simple approaches
to fairly advanced techniques.
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11.2.1 Number and intensities of matching peaks or intervals

The simplest procedure for comparison is to process the spectra in parallel, counting the
number of matching peaks. This can easily be extended to take intensities into account
(either only from the experimental spectrum, or from both the experimental and theoretical
spectra). One possibility is to calculate

∑n
j=1 IR

j IT
j , where IK

j is the intensity of the jth
matching peak in spectrum K, and n is the number of matching peaks. The scoring can
also be weighted, for instance by introducing a factor that corresponds to the difference
between the matching m/z values.

When interval division is used, the score of the comparison is, as above, C =∑m
j=1 IR

j IT
j ,

where m is the number of intervals, and IR
j is the total intensity in interval j of the

experimental spectrum. It is clear that only intervals with non-zero intensities in both
spectra affect the score.

The scoring scheme above has two components: the number of matching peaks or
intervals, and the intensities of these matches. It assumes a linear increase in score as
the number of matches increases. For instance, when all peaks have the same intensity,
this means that a comparison with eight matches has a score that is twice as high as
a comparison with only four matches. This is unreasonable, since some of the matches
may occur simply by chance. Underlying probability functions for the number of matches
occurring by chance are typically exponential, indicating an exponential increase in the
score as a function of the number of matches. While this would not matter if all intensities
were the same (the scores would arrange the segments in the same order), it has an
effect when the intensities vary. Fenyö and Beavis (2003) have therefore proposed an
alternative C ′ to the C score outlined above. This score is defined as C ′ = Cnb!ny!, where
nb�ny� is the number of matched b�y� ions. Alternatively, they proposed C ′′ = Cenb+ny .
They showed that both these nonlinear scoring functions outperformed the simpler, linear
scores mentioned above.

11.2.2 Spectral contrast angle

A spectrum can be represented as an n-dimensional vector, where n is the number of
considered m/z values (or intervals). The jth component of the experimental spectrum
is then IR

j . Two spectra can subsequently be compared by calculating (the cosine of) the
angle between the vector representations, called the spectral contrast angle:

cos 
 =
∑

j IR
j IT

j√∑
j �IR

j �2
∑

j �IT
j �2

Two equal spectra have a contrast angle of zero, and an angle of 90� indicates max-
imal spectrum difference. The spectral contrast angle is mainly used to identify spectra
produced by the same peptide, as discussed in Section 14.6.

11.2.3 Cross-correlation

A common function for calculating the correlation between any two signal series is the
cross-correlation function. For the spectra we are considering, it can be formulated as
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C� =∑n
j=1 IR

j IT
j+� , where � is a relative displacement between the spectra. The simplest

way to calculate the similarity (or correlation) is to use the correlation value for � = 0
(corresponding to the number of matching peaks when intensities are considered). It has
(Powell and Hieftje (1978)) been found, however, that subtracting the mean of the cross-
correlation function over a range −k < � < k from the � = 0 value resulted in a better
discrimination between similar spectra and that the resulting score was less sensitive to
the (im)purity of the samples. In Eng et al. (1994) it was found empirically that 75 is a
suitable value for k for MS/MS data.

In order to efficiently calculate this function for many �, a Fourier transformation
can be used. R and T are Fourier transformed, one of them is converted to its complex
conjugate, and multiplication is performed. The result is then inverse Fourier transformed,
to get the final value C� for many �.

11.2.4 Rank-based scoring

Several rank-based scoring schemes have been developed. We will describe one from
Searle et al. (2005). The experimental spectrum is first normalized by using a sliding
window. After removing the precursor peak, the intensity of each peak is normalized by
dividing the intensity by the average of all peak intensities in a window around the peak
(±100 units). The top 50 normalized peaks in the whole spectrum are ranked, with the
highest ranked peak at position 50 and the lowest ranked one at position 1. The spectrum
mass range is divided into unit intervals, and a vector IR constructed such that IR

i is the
highest ranking value in interval i (which can be zero). The values IR

i are then normalized
by dividing by 50.

The intensities of the peaks in the theoretical spectrum are calculated in the range
[1,50], depending on the fragment types (b� y� a, with water and ammonia loss). The b
and y ions, for example, are assigned an intensity of 50. A vector IT is then constructed for
the theoretical spectrum, with IT

i the intensity of the most intense fragment ion occurring
in interval i. IT is then normalized in the same way as IR. The score is then

∑

i

�IR
i − IR��IT

i − IT �

where IR is the mean value over the values in IR. Note that the expression is somewhat
analogous to the spectral contrast angle.

The original scoring scheme contains a term which allows the inclusion of modi-
fications, and was developed for assigning scores to de novo derived sequences (see
Section 13.2.1).

11.2.5 SEQUEST scoring

Since several of the statistical and assessment analyses for MS/MS spectra use results from
SEQUEST, we describe how SEQUEST scores its candidate segments when searching
MS/MS spectra against a sequence database. SEQUEST employs two types of scores: a
preliminary score and a final score. The preliminary score is computed in order to filter
out segments that have only a very small probability for being the correct peptide. Those
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segments that achieve a sufficiently high preliminary score are then evaluated by the
more computationally intensive final scoring scheme.

Preliminary scoring

The preliminary scoring uses b- and y-type continuity, and the presence of immonium
ions.

The b-(y-)type continuity includes the number of matching peaks of type b ion (y ion)
that also have a matching peak for the preceding b ion (y ion). If the total number of
such peaks is C, a factor 1+C is included in the scoring (with =0.075).

The score for the immonium ions consists of calculating a value �a for each of the
amino acids a that are expected to yield observable immonium ions:

• if an immonium ion of a is not found in the experimental spectrum, then �a = 0;

• if an immonium ion of a is found in the experimental spectrum, and the correspond-
ing amino acid is present in the segment, then �a = 0�15. If a is not present in the
segment, then �a = −0�15.

A factor IM = 1+∑a∈K �a is included, where K is the set of amino acids that are expected
to yield observable immonium ions. The preliminary score then becomes

Sp = �
n∑

j=1

Ij�n�1+C�IM/��

where Ij is the intensity in the experimental spectrum of matched peak j (matched
within ±1 unit), n is the number of matched peaks, and n� is the total number of predicted
fragment ions.

Final scoring

The final SEQUEST score consists of several components, which include the cross-
correlation score and the preliminary score, amongst others. The most important ones are
as follows:

1. XCorr, the cross-correlation score.

2. dCn, the delta correlation value. The cross-correlation values are normalized such
that the highest correlation value is one. dCn for a candidate match is one minus
the normalized correlation value. It is of special interest to consider the dCn value
between the first and second best match (first and second highest correlation values).

3. Sp, the preliminary score.

4. RSp, the rank that the segment under consideration got in the preliminary scoring.

5. Ions, the number of matched peaks divided by the number of peaks in the theoretical
spectrum.

6. dM, the difference between the experimental precursor mass and the calculated
mass of the segment under consideration.
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Several programs exist for combining these different components into a single score.
In Keller et al. (2002a,b) a method is described for combining different functions in a
multifunctional scoring system, to achieve maximal discrimination between correct and
incorrect identifications. The method is applied to SEQUEST scores. A discriminant
function F is formed by a linear combination of the individual scoring components
�v1� � � � � vn�

F�v1� � � � � vn� = c0 +
n∑

i=1

civi

where the constants cx are determined by techniques for discrimination analyses (see for
example Section 14.5).

Treating modifications

SEQUEST is adapted for matching modified peptides. The initial segment selection
procedure is changed so that segments are selected if they have a mass that is equal to or
lower (to a given threshold) than the precursor mass. If the selected segment has a lower
mass, the different possible combinations of the considered modifications are added to
it, and the resulting predicted mass is compared to the observed precursor mass. If the
masses are equal, the segment is retained for comparison, using the residue masses for
the potentially modified residue(s).

11.3 Probabilistic scoring
A spectrum R is given, and a set of candidate segments �S� from a database are found.
We can then formulate a probabilistic scoring in two different ways:

• Pr�S�R�, the probability that the segment S is the origin of the spectrum R;

• Pr�R�S�, the probability that R is produced when performing MS/MS analysis on
the segment S.

From Bayes’ theorem

Pr�S�R� = Pr�R�S�Pr�S�

Pr�R�

we can see that the two formulas will rank the segments in the same order if the prior
probabilities (Pr�S�) are equal for all S in the database. A theoretical spectrum (typically
an RT spectrum) is produced either directly or indirectly, for calculating the necessary
probabilities.

There are several probabilistic scoring methods. We will describe three that are fairly
representative: a Bayesian method, and two different log-odds approaches. Only the main
principles are described; the details can be found in the cited articles.
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11.3.1 Bayesian method – SCOPE

SCOPE is a scoring scheme considering the experimental spectrum R = �r1� � � � � rn� and
a database segment S.

Let F�S� consist of all fragment m/z values that are observed in a spectrum produced
from S under the given experimental condition. Note that this means that the expected
fragment types must be specified. Additionally, let F be a subset of F�S� such that
�F � ≤ n. F is then a potential set of observed fragments.

Example Let R = �177� 288� 312� 388� 489� and S =ASQTR. Assume that only b and
y ions with charge 1 are expected, giving

F�S� = �72�b1�� 159�b2�� 175�y1�� 276�y2�� 287�b3�� 388�b4�� 404�y3�� 491�y4��

Let us consider a fragmentation resulting in the fragments �y1� b3� b4� y4�, giving
F = �175� 287� 388� 491�.

�
In order to calculate Pr�R�S�, one now – in principle – considers every potential

fragment set F of S (under the given experimental conditions). For each F , calculate the
probability for this fragment set to occur, Pr�F �S�. Then calculate the probability that the
spectrum R is produced with fragment set F , Pr�R�F�S�. If we consider all fragment sets
to be independent, we get

Pr�R�S� = ∑

F∈F�S�

Pr�R�F�S�Pr�F �S�

The calculation of these probabilities includes the assumption that each observed peak
in R either must be assigned to a predicted peak in F , or must be considered noise.
To achieve effective assignments, F is extended by noise peaks. A new fragment set
is therefore defined: F ′�S� = F∪ R. We now postulate F ⊆ F ′�S� with the additional
constraint that �F � = n. This means that F consists of fragments from S (those in both F
and F�S�) and noise (the remaining peaks in F but not in F�S�).

Estimating Pr�F �S�

This is based on the probability for each fragment in the considered fragment set to
occur. For the example above this means calculating the probability that only the ions
�y1� b3� b4� y4� are present. This calculation can be performed using empirically derived
fragmentation statistics, see Section 9.3.

Estimating Pr�R�F�S�

Here we calculate the probability for ‘R can be explained by F ’. Since the number of
peaks is equal in R and F , each can be ordered by increasing mass, and the desired
probability can be estimated as

Pr�R�F�S� = Pr�R�∩n
i=1 �ri=̂fi	� F�S�

where ri=̂fi denotes the event that peak ri is a ‘true’ correspondence to fi.
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Example Consider the example above where R = �177� 288� 312� 388� 489� and
F ′�S� = �72� 159� 175� 177� 276� 287� 288� 312� 388� 404� 489� 491�. Let a theoretical
spectrum be F = �175�y1�� 287�b3�� 312� 388�b4�� 491�y4��. Then R and F are compared,
effectively estimating the probabilities that the peak at 177 is the y1 ion, 288 the b3 ion,
312 is a noise peak, 388 is the b4 ion, and 489 is the y4 ion.

�

The probabilities above are calculated by taking the accuracy and precision of the
instruments into account, for example the likelihood that the y4 ion is measured by a
deviation of 2 units.

Implementation

The procedure above would require calculating the probabilities for a huge number of
fragment sets (F ). A dynamic programming procedure is developed that reduces the time
complexity to O�n�F ′�S���.

A score corresponding to the most likely fragment set is

Pr ′�R�S� = max
F∈F ′�S�

Pr�R�F�S�Pr�F �S�

that can be computed with the same time complexity. In practice Pr�R�S� and Pr ′�R�S�
produce values that are very similar, as almost all of the probabilities in Pr�R�S� are also
contained in the most likely fragment set.

11.3.2 Use of log-odds – OLAV

Many tools in bioinformatics are based on the log-odds principle. The advantage is that
expected random results are taken into account. The probabilities of the result under two
alternative hypothesis (H1 and H0) are calculated and divided, and finally the log taken.
Typically the null hypothesis (H0) is that the result corresponds to a random occurrence,
and H1 is the alternative hypothesis representing a correct match.

OLAV is a scheme calculating the score as

L = log
Pr�E�B�S�H1�

Pr�E�B�S�H0�

where E is the information extracted from an �R�S� comparison, and B represents
available background information (fragmentation statistics etc.). The method is illustrated
by letting E be the triplet �P�F� z�:

• P is the difference between the theoretical mass and measured mass;

• F is the fragment mass matches;

• z is the charge of the precursor.
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A model for statistical signal processing is built, assuming P and F , and P and z, to be
independent. Using the general lemma

Pr�A�B�C� = Pr�A�B�C�Pr�B�C�

we get

Pr�E�B�S�H� = Pr�P�F� z�B�S�H� = Pr�F �P� z�B�S�H�Pr�P� z�B�S�H�

Since F and P are assumed independent, we get

Pr�F �P� z�B�S�H� = Pr�F �z�B�S�H�

Applying the lemma and the assumption of independence again, we derive

Pr�P� z�B�S�H� = Pr�P�z�B�S�H�Pr�z�B�S�H�

= Pr�P�B�S�H�Pr�z�B�S�H�

This results in

Pr�E�B�S�H� = Pr�F �z�B�S�H�Pr�P�B�S�H�Pr�z�B�S�H�

Estimating the probabilities for H1

For H1 the individual probabilities are estimated as follows.

Pr�P�B�S�H1� is the probability that there is a difference of P between the observed
precursor mass and the theoretical segment mass if S is the precursor sequence. This can
be computed from an observed probability distribution of the precision of the instrument,
which presumably follows a normal distribution.

Pr�z�B�S�H1� is the probability that a peptide with sequence S will get charge z.
This can be found from a learned distribution. The distribution presumably follows an
exponential function of the length of S. It should, however, be noted that the charge is
also partly dependent on the amino acid sequence of the peptide, as basic amino acids
will more readily attract additional protons.

Pr�F �z�B�S�H1� is the probability that a fragment set corresponds to an �R�S� match.
Let T = �ti� be the theoretical spectrum constructed from S, based on the considered
fragment ion types. Assuming independence between the fragment mass matches, we can
formulate

Pr�F �z�B�S�H1� ≈∏

j∈J

Prtj
�z�

∏

j∈I−J

�1−Prtj
�z��

where I is the set of indices corresponding to every theoretical fragment mass, and J is
the set of matched theoretical masses. Prtj

�z� is the probability of the actual fragmentation
producing tj when the precursor charge is z, and again can be learned as described in
Chapter 9. Note that unmatched experimental peaks are not included in the probability
calculation.
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Example Consider an experimental spectrum R = �177� 288� 312� 388� 489� with pre-
cursor charge z = 2 and m/z = 283, and compare it to the segment S=ASQTR. Let
F = �175�y1�� 287�b3�� 388�b4�� 491�y4��. The calculated m/z �z = 2� for S is 281.5.
Pr�P�B�S�H1� is then the probability of having a 1.5 unit difference from the correct
value at a measurement of 283, for the equipment used. Pr�z�B�S�H1� is the proba-
bility that S acquires a double charge with the used ionization. Comparing R and F ,
allowing for a 2 unit measurement error, finds matching peaks for �y1� b3� b4� y4�. For
Pr�F �z�B�S�H1� we must then calculate the probability for each of these four ions to
occur, and the probabilities for each of the other possible fragment ions to be absent from
the spectrum.

�
Estimating the probabilities for H0

Pr�P�B�S�H0� is given by a uniform distribution.

Pr�z�B�S�H0� is taken to be constant or is learned from random sequences.

Pr�F �z�B�S�H0� is estimated by a formula as for H1, but the fragment probabilities are
calculated independently from z.

Implementation

Several of the independence assumptions are not valid – for example, that every fragment
match is independent. In reality, if residue i in the peptide is protonated, then every b ion
of length ≥ i should (ideally) be detected, and a corresponding argumentation holds true
for y ions. Moreover, as the locations of the protonation sites are not constant for every
ion for that peptide, it should preferably be modeled as a probability distribution. In order
to accommodate this more complex approach, a hidden Markov model is constructed that
is able to favor consecutive matches in each ion series, while allowing one or two gaps.

A general scoring scheme is also developed, which makes it possible to include several
additional components besides the ones used above.

11.3.3 Log-odds decision trees

Decision tree modeling as described in Section 9.3.3 is used to define a scoring scheme
including both a match and a mismatch decision tree.

To construct a mismatch decision tree the second best ranked segments in database
searches were used. These second best matches were chosen over randomly selected
peptides so that alternative matches giving a similar score would be discriminated from
one another. Such discrimination represents a dilemma often faced in the interpretation
of MS/MS spectra.

When a match is found between a theoretical and experimental spectrum using
SEQUEST, each peak ti of the theoretical spectrum is scored against its corresponding
peak ri in the experimental spectrum (note, however, that probably some of the ti do not
have any corresponding peak):

• By using the fragment/peptide properties of ti, the match tree is traversed to
an end (terminal) node. This node contains a probability distribution for the
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intensity expected for a peak with those fragment/peptide properties. From this
the probability of the intensity observed at ri, I�ri� is found: Prmatch�I�ri��
fragment/peptide properties of ti�.

• The same procedure is used for the mismatch tree, determining Prmismatch�I�ri��
fragment/peptide properties of ti�.

• The log-odds of these two probabilities is then calculated:

lodti
= log10

(
Prmatch�I�ri��fragment/peptide properties of ti�

Prmismatch�I�ri��fragment/peptide properties of ti�

)

• The final score is found by summing the log-odds scores over all peaks ti of the
theoretical spectrum

SC = ∑

ti∈T

lodti

This log-odds score has an advantage over using the probabilistic score from the match
tree only, since the latter score would include a product of probabilities, and would
therefore unfairly penalize long segments.

11.4 Comparison with modifications
As the straightforward method of including modifications in the identification (construct-
ing several theoretical spectra) is inefficient, other methods have been developed. We
will describe two of them.

11.4.1 Zone modification searching

A method called zone modification searching is used in the program ProID of Interrogator.
In this context, a zone is defined by dividing the peptide mass into k equal parts, each part
being a zone. Let the mass difference between the precursor and the considered database
segment be �m, and the tasks are (i) to examine if there is a high probability that this
�m is derived from a modification, and (ii) to determine, if possible, the position of the
modification. The modification site is localized by dividing the mass range �0�MP	 into
k (k = 6 as standard) zones, and by calculating a score for each zone. The modification
is then supposed to be in the highest scoring zone.

Scoring the zones

Assume that the length of the precursor peptide of an experimental spectrum is n, and that
a modification is present at residue p. If the experimental spectrum is compared to a theo-
retical spectrum of b and y ions constructed from the correct segment, experimental peaks
from b1 � � � bp−1 and y1 � � � yn−p will match. Peaks from bp � � � bn−1 and yn−p+1 � � � yn−1

will match to an inversed theoretical spectrum (constructed from the complementary
masses). Assume that the modified residue at p falls in zone h. Then we have the
following:
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• every experimental b ion in zone 1� � �h−1 will match a theoretical b ion;

• every complement of an experimental b ion in zone h+1� � �k will match a theoretical
y ion;

• every experimental b ion in zone h will match a theoretical b ion, or its complement
will match a theoretical y ion;

• every experimental y ion in zone h+1� � �k will match a theoretical y ion;

• every complement of an experimental y ion in zone 1� � �h−1 will match a theoretical
b ion;

• every experimental y ion in zone h will match a theoretical y ion, or its complement
will match a theoretical b ion.

The score for a zone h is then calculated by counting the number of peaks in the
spectrum that can be matched, assuming that the modification is present in that zone
h. All peaks in the spectrum are first considered b ions and these are matched, and
subsequently they are considered y ions and matched again. Since the assumption is
that the modification is found in zone h, either the original peak or its complement will
actually be matched, depending on the ion series under consideration and the relative
position of the peak with regards to the zone h. The total number of matches, summed
over the b ion and y ion assumptions, is counted as the score. This is clarified further in
the next example.

Example Suppose a spectrum is produced from the modified peptide P =AGCmVSTR,
where m means methylated (corresponding to a nominal mass increase of 14 Da). The
precursor mass is MP = 706. Let the peaks of an experimental spectrum be as shown in
the first two rows of Table 11.1. We define four zones, (0–176.5, 176.5–353, 353–529.5,
529.5–706). The table also shows the complementary masses and the zone number in
which the masses will fall if they are assumed to be b or y ions.

The calculated theoretical peaks (without modifications) are at

b ions: 72, 129, 232, 331, 418, 519
y ions: 175, 276, 363, 462, 565, 622

The score for zone 2 (thus assuming the modification is in zone 2) is calculated as
follows.

Table 11.1 Data for the spectrum used in the example

Peaks 129 246 276 345 363 432 533 579 636
Ions b+

2 bm�+
3 y+

2 bm�+
4 y+

3 bm�+
5 bm�+

6 ym�+
5 ym�+

6

Compl. masses 579 462 432 363 345 276 175 129 72
Zone if
b ions 1 2 2 2 3 3 4 4 4
y ions 4 3 3 3 2 2 1 1 1
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Assume b ions:

Zone 1: 129 matches (theoretical) b2, the original peak is used since the modification
is assumed to be in zone 2.

Zone 2: complement of 246 matches y4, complement of 345 matches y3, note that
complements of peaks are used from here on, as the modification now needs to be
taken into account.

Zone 3: complement of 432 matches y2.

Zone 4: complement of 533 matches y1.

Assume y ions:

Zone 1: complement of 636 matches b1, complement of 579 matches b2.

Zone 2: 363 matches y3.

Zone 3: 276 matches y2.

Zone 4: no match.

The total number of matches is nine (all the experimental peaks), thus the score of zone
2 is nine. The other zones are scored in a similar way, resulting in lower scores. The
modification is therefore likely to be in zone 2, corresponding to residues 3 or 4.

�

Database indexing

The zone modification searching includes numerous comparisons, some of which should
not match (which may result in erroneous matches due to noise). For effective use
in large databases, additional intelligent search tools must be available. In ProID the
zone modification searching is combined with a comprehensive indexing organization
of the database. The sequences are theoretically digested (by trypsin or another selected
protease), and the theoretical peptides (segments) are collected into peptide bins of similar
masses, such that each bin contains at most a specified number of theoretical peptides
(for example, 100 000). All the theoretical peptides in a bin thus have the same zone
division. A second indexing is based on the theoretical fragment masses (b and y ions).

Additionally, masses including possible modifications are precalculated for each
segment. For the interpretation of the spectrum, the user defines a range �0�maxmm	,
for the possible modification masses. In order for a segment to be further investigated
there must be a possible modification mass t ∈ �0�maxmm	 for which �MS + t−MP � ≤ �,
where MS is the theoretical peptide mass, MP is the measured precursor mass, and � is
the chosen accuracy.

By using the fragment indices, and the parallel processing of the remaining theoretical
peptides from a bin, reasonable execution time is achieved for zone modification database
search.
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11.4.2 Spectral convolution and spectral alignment

Spectral convolution and spectral alignment make it possible to include a blind search for
modifications in the identification process. A blind search means that nothing is assumed
about possible modifications before searching.

We recall that cross-correlation for � = 0 measures the similarity when one of the
spectra is displaced � units relative to the other. Suppose now that we have a peptide P of
length n and let Q be the same peptide but modified at residue i by mass m. Suppose for
simplicity only b ions; then the cross-correlation of noise-free and complete spectra of P
and Q for � = 0 will have i−1 peaks in common. For � = m they will have n− i peaks in
common, and adding the number of common peaks for these two correlations will result
in n−1 peaks. Such numbers of common peaks furnish one of the ideas behind spectral
convolution, which for two spectra R�T is defined as

R�T = �r − t�r ∈ R� t ∈ T�

Furthermore, �R�T��x� is the number of pairs r ∈ R� t ∈ T such that r − t = x. In some
sense x can therefore be compared to � for cross-correlation. If T is a complete b ion
spectrum from P, and R from Q, then �R�T��0� = i− 1� �R�T��m� = n− i, and 0 and
m will be local maximum values for �R�T��x�.

Example Consider the (modified) peptide P=AGCmVSTR, and the experimental
spectrum

R = �129�b+
2 �� 182�y++

3 �� 246�bm�+
3 �� 276�y+

2 �� 432�bm�+
5 �� 462�y+

4 �� 533�bm�+
6 �� 636�ym�+

6 ��

m means methylated (corresponding to a nominal mass increase of 14 Da). A theoretical
spectrum T of P with unmodified b and y ions larger than one and with charge 1
would be �129� 232� 276� 331� 363� 418� 462� 519� 565� 622�. We then find for the spectral
convolution �R�T��0� = 3� �R�T��14� = 4.

�
Consider now two operations (modifications or substitutions) for P, at positions r1� r2

with masses m1 and m − m1. Let R again be an experimental complete spectrum of
modified P, and T a theoretical complete unmodified spectrum. With bK

i the ith b ion for
a spectrum K, we then have
b ion:

• bR
i = bT

i for i < r1

• bR
i = bT

i +m1 for r1 ≤ i < r2

• bR
i = bT

i +m for r2 ≤ i

y ion:

• yR
i = yT

i for i ≤ n− r2

• yR
i = yT

i + �m−m1� for n− r2 < i ≤ n− r1

• yR
i = yT

i +m for n− r1 < i
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From this we see that �R�T��x� will have (local) maximum values at x = 0�
m1�m−m1�m. For a random peptide with uniform distribution of the modifications over
the peptide, the ratio of the expected heights of these maximum values is 2:1:1:2 (the
first and last maximum values are effected by both b and y ions).

Example Consider again the (modified) peptide P=AGCmVSpTR, and the experimental
spectrum

R = �129�b+
2 �� 222�y

p�++
3 �� 246�bm�+

3 �� 276�y+
2 �� 512�b

mp�+
5 �� 542�y

p�+
4 ��

613�b
mp�+
6 �� 702�y

mp�+
6 ��

p means phosphorylated (corresponding with a nominal mass increase of 80 Da). We then
find �R�T��0� = 2� �R�T��14� = 1� �R�T��80� = 1� �R�T��94� = 3. Note, however, that
there are many values for x where �R�T��x� = 1.

�

We have seen that modifications will have a tendency to turn up as local maximum
values in the spectral convolution, but finding these maximum values requires calculation
of the function for many values. Spectral convolution, however, has an even more serious
drawback: the set of local maxima does not necessarily need to correspond to possible
modifications.

Example Consider two spectra, T = �10� 15� 23� 32� 37� 42� and R = �10� 17� 25�
32� 37� 44�, and suppose again for simplicity only one ion type. The spectral convolutions
for x = 0 and x = 2 both yield 3, indicating a modification with mass 2, but there is
no consistent mass shift in T (corresponding to a modification) that would explain both
maximum values.

�

The example shows that one needs to constrain the way in which the number of
matching peaks for different displacements is calculated. This can be obtained by some
sort of alignment between the spectra, called spectral alignment.

Spectral alignment

The key fact to take into account is that a true modification results in a consistent shift
of all succeeding peaks in R relative to T .1 The spectral alignment addresses the problem
of finding the maximum number of matching peaks when at most k shifts are allowed,
corresponding to k modifications.

1 This is not always correct; in fact it is only correct for each fragment type separately, see the following
example.
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Table 11.2 Matching of R and T , and spectra resulting from a shift in T , explained in the
example

b+
2 y++

3 bm�+
3 y+

2

R 129 182 246 276
T 129 232 276 331 363
T ′ 129 246 290 345 377
T ′′ 129 232 276 331 363

bm�+
5 y+

4 bm�+
6 ym�+

6

R 432 462 533 636
T 418 462 519 565 622 3
T ′ 432 476 533 579 636 5
T ′′ 432 476 533 579 636 5

Example Consider the first example in this subsection. A comparison between R and T
and shifts in T are shown in Table 11.2. The last column contains the number of matching
peaks. The number of matching peaks for no shift (T ) is three. T ′ is the theoretical
spectrum with one shift (14 Da) from 232 onwards, resulting in five matching peaks.
Note, however, that y2 and y4 are now wrongly shifted. T ′′ is the spectrum with one shift
from 418 onwards, again resulting in five matching peaks, but this time with y4 wrongly
shifted. The two solutions for the maximum number of matching peaks with one shift
(one modification) will localize the modification at different residues, with only one of
them being the correct one.

�

The maximum number of matching peaks in the example should ideally be seven (that
is, all singly charged peaks in R). The reason that only five are found lies in the fact
that R is a mixture of b and y ions, and that unmodified y ions have larger masses than
modified b ions.

The number of matching peaks can be extended if we also compare T to the inversed
spectrum of R (see Section 8.8), in practice comparing T to a combination of R and
R inversed. For the example above two new peaks would be matched, ym�+

5 and bm�+
4 .

Note, however, that for experimental spectra, using the inversed spectrum will increase
the number of noise peaks.

The maximum number of matching peaks for different numbers of shifts can be found
by a dynamic programming (DP) procedure. Assume that T contains m peaks �t1� � � � � tm�
and R contains n peaks �r1� � � � � rn�. Then define a two-dimensional matrix Amn, such
that row i corresponds to ti and column j to rj .

2 Let Aij�k� be the maximum number
of matching peaks between the i first peaks of T and the first j peaks of R, under the

2 The presentation here is slightly different from the one in the original article by Pevzner et al. (2000).
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assumption that ti and rj match and that there are at most k shifts. Further define two
cells �i′j′� and �ij� in A as codiagonal if ti − ti′ = rj − rj′ .3

Let i′ < i and j′ < j. Then we have

if �i′j′� and �ij� are codiagonal then Aij�k� ≥ Ai′j′�k�+1
else Aij�k� ≥ Ai′j′�k−1�+1

This can be used to define the recursion of the dynamic programming procedure:

Aij�k� = max
i′<i�j′<j

{
Ai′j′�k�+1� if �i′� j′� and �i� j� are codiagonal
Ai′j′�k−1�+1� otherwise

For the initial condition define A00�k� = 0. This procedure searches for each k for
the ‘path’ with the maximum number of cells when at most k shifts are allowed. The
recursion algorithm considers only shifts that do not change the order of the peak values,
which means that a shift of ti must be larger than ti−1 − ti.

Example Let T = �7� 11� 15� 18� 21� 24� 30� 38� 43� and R = �7� 11� 13� 19�
22� 25� 31� 33� 38�. The recurrence for the spectral alignment for k = 0� 1� 2 is shown in
Table 11.3, where only the cells used for finding the best alignments are filled in. k = 0
means no shifts, hence values for k = 0 are only shown for cells with the same values in
both spectra. The maximum number of matching peaks for k = 0 is three, and for k = 1
this is six. Two alignments with one shift result in this value, shown underscored and
in bold face, respectively. The maximum number of matching peaks for k = 2 is eight,
which is shown as an extension of the alignment in bold face.

�
The dynamic programming as described here has a running time complexity of O�n4k�

for spectra of length n. A more effective procedure has been developed, as follows
schematically:

• For calculating max Ai′j′�k� let u�i� j� be a pointer to the Ai′j′ which is max Ai′j′�k�
over all �i′� j′�� i′ < i� j′ < j, and ti − ti′ = rj − rj′ . These pointers can be constructed
in O�n2� time if one constructs and uses a lookup table of length tn + rm.

• For calculating max Ai′j′�k−1� one can use another two-dimensional matrix M , and
require that Mi−1�j−1�k−1� at the time of calculation contains maxi′<i�j′<j Ai′j′�k−1�.
By a little reformulation this can be written as Mij�k� = maxi′≤i�j′≤j Ai′j′�k�.

• This means that the recursion becomes

Aij = max�Au�i�j� +1�Mi−1�j−1�k−1�+1�

• The recurrence for M is then calculating the maximum of three values,
Mij�k� = max�Aij�k��Mi−1�j�k��Mi�j−1�k��.

3 Note that the cells do not need to be codiagonal in the strict understanding of the word, but would be
in a matrix defined over all integers constrained by tm and rn.
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Table 11.3 Example of a spectral alignment. Two alignments are shown, as underscore and in
bold face. See the text for explanation

T \R 0 7 11 13 19 22 25 31 33 38

k = 0 0
0 k = 1 0

k = 2 0

k = 0 1
7 k = 1 1 1

k = 2 1 1

k = 0 2
11 k = 1 1 2 2

k = 2 1 2 2

k = 0
15 k = 1 2 3 3

k = 2 2 3 3

k = 0
18 k = 1 3 3 4 4

k = 2 3 4 4 4

k = 0
21 k = 1 4 4 5

k = 2 4 5 5

k = 0
24 k = 1 4 5 5 5

k = 2 4 5 6 6

k = 0
30 k = 1 4 6 3

k = 2 6 7 6

k = 0 3
38 k = 1 3 5 3

k = 2 6 7 7

k = 0
43 k = 1 3 6

k = 2 7 8

Exercises
11.1 Assume that an experimental spectrum is compared to two theoretical spectra T1 and

T2, constructed from two segments. All intensities in the theoretical spectra are set
to 50. Assume that three matching peaks with intensities 40, 20, and 50 are found
when comparing to T1, and four with intensities 20, 10, 25, and 25 when comparing
to T1. Calculate the scores C when correlation is used (Section 11.2.1), and the
adjusted score C ′, assuming two b ions, and one and two y ions, respectively.
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11.2 Calculate the spectral contrast angle for the spectra in Exercise 11.1.

11.3 A rank-based score is to be calculated. For illustration we suppose eight intervals,
and we rank the six highest intervals. Suppose these six ranks in the experimental
spectrum are {5, 0, {1,4}, 2, 6, 0, 3, 0}, and in the theoretical spectrum {0, {2,5}, 4,
0, 3, 1, 6, 0}. (This means that there are two peaks observed in the third interval of
the experimental spectrum.) Calculate the rank-based scoring.

11.4 A scoring using OLAV is to be calculated, under the following assumptions:

• The peptide mass difference P is 1 Da. Let the probability function for this
difference follow the standard normal distribution.

• Assume the charge z = 2, and the peptide length n = 10. Let for simplicity the
charge probability for z = 2 follow the function Pz=2�n� = e

n−20
20 .

• For the theoretical fragments we ignore those of length 1 and n−1. Assume that
there are matches to five b ions and four y ions, and that we use a probability
of 0.6 for a potential b ion to occur, and 0.5 for a potential y ion to occur (for
z = 2).

• Let Pr�P�B�S�H0� be uniformly distributed in the nominal masses 400–3000.

• Let Pr�z�B�S�H0� be 1
3 for each of z = 1� 2� 3.

• Let the probability for b ions and y ions to occur in random peptides be 0.4 for
both.

11.5 Assume we have an experimental spectrum with peaks at (129, 232, 276, 331, 377,
432, 533, 579, 636) and with precursor mass MP = 706. We have reason to believe
that the sequence of the precursor is AGCVSTR, and that there is a modification.
Use zone modification searching to try to identify where a modification may be.
Use the zones (0–176.5, 176.5–353, 353–529.5, 529.5–706).

11.6 Assume an experimental spectrum (182, 209, 276, 312, 476, 512, 565, 613, 702).
We have reason to believe that the sequence of the precursor is AGCVSTR, and that
there are one or two modifications.

(a) Try to find the maximum number of matches when one and two shifts
are allowed. Masses for theoretical peaks can be found from examples in
Section 11.4.2.

(b) Perform the dynamic programming procedure on the same dataset.
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12 Sequential comparison –
de novo sequencing

De novo sequencing means trying to derive the original peptide sequence from an MS/MS
spectrum without any sequence knowledge beforehand. (De novo is Latin and means
anew or over again).

De novo sequencing was primarily developed for analyzing spectra that were not
identified by other search methods, indicating that no homologous sequences exist in the
database, or only sequences with weak homology. However, de novo sequencing followed
by a database search has also proved to be able to compete with other approaches.

The de novo peptide sequencing problem via tandem mass spectrometry can be formu-
lated as: for an experimental spectrum R, a peptide mass MP , and a set of fragment ion
types �, derive a sequence (or set of sequences) with mass MP that gives the best match to
spectrum R. Posttranslational modifications can also be taken into account during de novo
sequencing. Choosing the best match implies that a score scheme must exist for scoring
the derived sequence candidates against the spectrum.

The approach taken by nearly all methods for performing de novo sequencing of an
experimental spectrum R consists of a two- or three-step procedure:

Step 1: Derive a set of sequence candidates �Ei�, usually ranked by some scoring
scheme.

Step 2: Score each of the candidates against R (another scoring scheme).

Step 3: (optional) Search for the highest scoring candidates in a protein sequence
database.

The straightforward way to solve Step 1 is to generate all possible sequences cor-
responding to the peptide mass. However, in the general case this implies generating
too many sequences to be practically useful. Therefore other approaches must be used,
and several different methods have been developed. Here we focus on one approach,
sequencing by using spectrum graphs, and only briefly mention some others. We focus
on spectrum graphs because this approach is well investigated and implemented in several
algorithms, it is intuitive, and it clarifies most of the issues concerning de novo sequencing.

Several methods for performing a subsequent database search have been developed,
and these are described in Chapter 13.

Computational Methods for Mass Spectrometry Proteomics I. Eidhammer, K. Flikka, L. Martens and S.-O. Mikalsen
© 2007 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51297-5



180 SEQUENTIAL COMPARISON – DE NOVO SEQUENCING

In the remaining part of this chapter we assume singly charged fragment ions, if not
otherwise stated.

12.1 Spectrum graphs
The ideal situation for de novo sequencing would be that only one fragment type was
produced, that fragmentation occurred at every single fragmentation site along the peptide
backbone, and that all fragments had the same charge.

Example Assume a peptide with neutral mass MP = 692. Only singly charged b ions
are produced (and this at every fragmentation site), resulting in a spectrum with peaks
at �72� 129� 232� 331� 418� 519�. Knowing that the first peak is the b1 ion, we find that
the mass of the first residue is 72 −�N�, where �N� is one, corresponding to the mass
of the extra H at the N-terminus. Hence the first amino acid is A. The mass differences
between succeeding peaks correspond to the sequence of the residues; hence they are G,
C, V, S, T. The last residue mass is MP −�N�−�C�− �519−1� = 156, corresponding to
the residue mass of the C-terminal R.

�
One way of visualizing the method shown in the example is to use a graph. A graph

consists of a set of nodes and a set of edges. An edge is a connection between two nodes,
and it can be undirected or directed. If an edge between nodes n1 and n2 is directed, it
means that the connection is from n1 to n2. An undirected edge is commonly represented
by a line, and a directed edge by an arrow. Both the nodes and the edges can contain values.

In order to use graphs in de novo sequencing we define a node for each peak of the
spectrum, and arrange the nodes by increasing mass. Then we define a directed edge
between any two nodes that have a mass difference that corresponds to the mass of an
amino acid residue (or corresponding to the combined mass of several amino acid residues
if necessary). An edge always goes from a lower mass to a higher mass, and is labeled
with the corresponding amino acid. Such a graph is called a spectrum graph. Figure 12.1
shows the spectrum graph for the ideal situation (only b ions) described in the preceding
example. For completeness there is also a first node at mass �N�, and one last node at
mass MP −�N�−�C�+1 (for the ‘b ions graph’).

In reality, the spectrum is never as simple as this example indicates. There will be
additional peaks of other fragment types and noise peaks. Furthermore, usually several
b ions will be missing from the spectrum, and modifications add extra complications
to the spectrum. (Bear in mind that when constructing the spectrum graph we have no
knowledge about which types of ions the peaks correspond to.)

S

1 72 129 232 331 418 519 675

A V TG C R

Figure 12.1 A spectrum graph for the spectrum �72�129�232�331�418�519� and peptide mass
MP = 692. The path through the graph corresponds to the derived sequence. The mass difference
between subsequent numbers corresponds to the residue mass
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Figure 12.2 A ‘b ion’ spectrum graph for the spectrum �72�276�331�363�395�519�565� and
MP = 692

Example We have a spectrum �72� 276� 331� 363� 395� 519� 565� and peptide mass
MP = 692. A spectrum graph assuming b ions is shown in Figure 12.2. Here an edge is
drawn between two nodes when the mass difference corresponds to one or two amino
acids. Note that the order of the two amino acids in an edge spanning a mass difference
of two residues cannot be determined.

�

There is no path through the whole graph in this example, and a complete sequence
cannot be derived. The reason is that there is a lack of b ions. However, there can be
some y ions, and the complementary properties between b and y ions can be utilized. The
idea is for each peak in R to first assume that it is a b ion, and then assume it is a y ion.
This assumption is used to construct a new spectrum, a sequence spectrum Q. For each
peak r ∈ R with ion mass mr there will be a peak in Q at mr , and in addition there will
be a peak at MP −mr −2H , which is the mass of the complementary b ion if r is a y ion.
Thus Q is the union of R and R inversed. The number of peaks in Q will be between n
and 2n when n is the number of peaks in R. By using this approach we hopefully increase
the number of b ion masses, although some of them are found indirectly by calculating
the complements of y ion masses.

Example The inversed spectrum of the spectrum in the example and in Figure 12.2 is
�129� 175� 299� 331� 363� 418� 622�. We see that two of the peaks, 331 and 363, are common
to the spectrum and its inversed spectrum. Since the sum of these two masses is MP +2,
they probably come from a fragmentation producing both b and y ions. The sequence
spectrum then becomes �72� 129� 175� 276� 299� 331� 363� 395� 418� 519� 565� 622�and the
spectrum graph is shown in Figure 12.3. From the derived sequence AG(CV|VC)STR
we find that R contains �b1� b4� b6�, and �b2� b5� are constructed in the inversed
(complementary) spectrum.

�

175 276 299 331 363 395 418 565 622519 6751 72 129

A G CV | VC S R

T S CV | VC
G

T

Figure 12.3 The spectrum graph for the addition of the inversed spectrum. We see that one path
indicates that the original sequence is AG(CV� VC)STR
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12.1.1 A general spectrum graph

b and y ions are the most frequently observed ion types when fragmenting with low-
energy CID, but other types can also occur to a greater or lesser extent. In order to take
all possible fragment types into account, we will describe a general spectrum graph. The
spectrum graph is as before normally constructed through a sequence spectrum.

A sequence spectrum – the nodes of a spectrum graph

The procedure for transforming an experimental spectrum to a sequence spectrum is as
follows:

1. Choose the set of fragment ion types �, to be considered.

2. Choose one fragment type as the basis type, usually b ions.

3. For each peak in the spectrum, for each fragment type i ∈ �, calculate the corre-
sponding mass of the basis type ion if the peak was of type i. Let this calculated
mass represent a peak in the sequence spectrum. For each peak in the original spec-
trum there will be in the sequence spectrum as many peaks as there are members
in the ion set, ���.

4. Assign a score to each peak in the sequence spectrum. This can for example be
based on a weight for each fragment type in �, showing how likely it is that the
ion type is present.

5. Calculate a height (intensity) for each peak, based on the score found in the preceding
step.

Note that a peak in the sequence spectrum can come from several peaks in the original
spectrum, up to ��� if all fragment types are produced for a fragmentation site.

Using the notation from Section 8.6, let b ions be the basis, and assume only singly
charged ions. Suppose there is a peak in the original spectrum at Mo. Denote the m/z
value for the constructed peak as M∗

b �i�, when the peak at Mo is assumed to be of fragment
type i. We calculate M∗

b �i� for i being backbone fragments. With b ions as the basis,
M∗

b �b� = Mo. This means that M∗
b �a� is the mass a corresponding b ion will have if Mo

is an a ion. For the N-terminal ions a and c, we find

M∗
b �a� = Mo +CO �28 Da�� M∗

b �c� = Mo −NH3 �17 Da�

For the C-terminal ions we rely on the relationship Mb = MP +2H −My, and then find

M∗
b �x� =MP −Mo +CO �28 Da�� M∗

b �y� = MP −Mo +2H �2 Da��

M∗
b �z� = MP −Mo −NH �15 Da�

Note that the complementary ion masses depend on the mass of the precursor. It is
therefore very important that this mass is correct.

Example Let a peptide mass be MP = 774, and have an experimental spectrum as shown
in Figure 12.4. The peaks constructed in the sequence spectrum from the experimental



PREPROCESSING 183

263246 291 496 513 539

263 513

c ab

z y

y

b

MP = 774

Sequence
spectrum

Experimental
spectrum

x

Figure 12.4 An experimental spectrum and some peaks from the corresponding sequence
spectrum. Note that ‘a’ in the figure means that the mass is found for the corresponding b ion if
the mass in the experimental spectrum was from an a ion

peak at mass 263 are shown, and also two of the constructed peaks from the experimental
peak at mass 513. We see that the constructed peak when the experimental peak at 263
is assumed to be a b ion, and the constructed peak when the experimental peak at 513 is
assumed to be a y ion, have equal masses.

�

Since many fragment types may be considered, the spectrum graph can quickly become
quite complex. In order to limit this complexity, most methods only consider b, y, and
possibly a ions.

12.2 Preprocessing
A preprocessing step should try to transform the experimental spectrum to as near the
ideal situation as possible. General preprocessing steps such as deisotoping, charge state
deconvolution, and precursor mass correction as explained in Chapter 8 should be done.
Additionally, peaks resulting from neutral losses from the precursor (water −18 Da,
ammonia −17 Da) can be removed. Neutral losses from product ions should also be
identified and the original product ion rewarded. This means that if there is a peak at
mass −17 or −18 Da from a peak r , there is more reason to believe that r is not a noise
peak. Note that several other types of neutral losses may occur, but loss of water and
ammonia are the most common ones.

Selecting the correct number of peaks for constructing the graph is essential for achiev-
ing an optimal solution. Too few peaks give incomplete paths, and too many result in
noisy nodes that will easily confound the analysis. A straightforward method for reducing
the numbers of nodes in the graph is to use an intensity filter for the peaks used to create
the spectrum graph. The idea relies on the assumption that the b and y ions generally
have the highest intensities among the fragment ions. A sliding window is often used,
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selecting the k most intense peaks in the window. Examples of values are k = 4 and a
window size of 60 Da. If it is possible to justify that it is unlikely that a specific peak r
in the experimental spectrum is of type i, then it is not necessary to make a basis peak of
r using i.

Trying to classify the peaks into different fragment types is an ambitious task. Machine
learning techniques are used for learning the typical ‘pattern’ of each fragment type using
spectra from known peptides. The neighborhood of a peak in an experimental spectrum
is then compared to the different patterns and the probabilities of its being a b or y ion,
or any other considered type, are estimated.

Errors in the measured masses are a source of complications in this approach. Peaks
corresponding to the same fragmentation site in the peptide should ideally have one of the
constructed peaks in Q in common. Due to inaccuracies in the mass measurements this is
not always the case, however. A greedy algorithm could be used for merging two peaks,
provided that the mass difference between them is less than �, starting with the peaks
having the smallest mass difference. � will depend on the accuracy of the instrument.
After merging, several methods can be used for determining the intensity and mass of the
merged peak, for example the mean of the masses of the merged peaks could be used for
the mass, and the geometric mean of the original intensities could be used for the intensity
of the merged peak. Because the mass of a merged peak need not correspond with any of
the original peaks, the merging is repeated iteratively until all peaks are at least � apart.

12.3 Node scores
A spectrum graph is compared against existing sequences, or is used for de novo sequenc-
ing. Programs for these tasks will generally produce numerous potential solutions. In
order to rank them, the different proposed sequence solutions should be scored, based
on how good they match the experimental spectrum. Since the inferred spectrum graph
is used, and not the original experimental spectrum, the different components (nodes,
edges) of the graph should also have a score showing how much support they have from
the experimental spectrum. Let r be a peak in the experimental spectrum, and q be a peak
in the sequence spectrum such that if r is of fragment type i, then q is the corresponding
basis type peak. We say that peak r supports peak q through fragment type i. Let the
support for q be denoted 	q. A simple method for scoring is to give each fragment type i
a weight 
i, reflecting how often ions of this type are present in spectra produced by the
instrument used, under the actual experimental conditions (Chapter 9).

Example Suppose � = �a� b� c� x� y� z� �
a = 8� 
b = 12� 
c = 3� 
x = 10� 
y = 12� 
z =
9�. Let the basis be b ions. Take MP = 774, and the following masses for the spectrum
peaks: (263, 400, 485, 513, 610, 668, 676, 694). There will be a peak at mass 263 in the
sequence spectrum that is supported by the original peak at 263 (assuming it is a b ion,
since M∗

b �b� = Mo). The original peak at 513 also supports the sequence spectrum peak
at 263 if 513 is assumed to be a y ion. Both of the supporting peaks carry weight 12, so
the score of the sequence spectrum peak at 263 becomes 24.

�



CONSTRUCTING THE SPECTRUM GRAPH 185

A more advanced method relies on ion type probability while taking into account that
peaks can occur at a given position by chance in the experimental spectrum (noise).
Assume that peaks of type �i� are produced independently with probabilities �
i� (the
ion probabilities can be learned from a set of spectra for the actual instrument). Then
there is a peak in R that supports a peak at position q through ion type i, with probability
hi = 
i + �1 −
i�hR, where hR is the probability of a peak being generated by noise. A
scoring formula can then use ‘a bonus for explained ions’ and ‘a penalty for unexplained
ions’. This is normalized by hR, giving the following formula for the score of a peak q:

∏

i∈	q

hi

hR

∏

i∈�−	q

1−hi

1−hR

(12.1)

Log-odds may also be used to calculate the probability that the observed peak intensity
is derived from a real fragmentation event, as opposed to simply being a noise.

12.4 Constructing the spectrum graph
The peaks of the sequence spectrum become the nodes of a spectrum graph, and in
addition two end nodes are constructed, as illustrated in Figure 12.3.

Depending on how the nodes are assigned a score, one can get different types of graphs.
Referring to the classification of theoretical spectra (Section 11.1) we get:

U-graph, the nodes have uniform scores.

F-graph, the scores are calculated from the fragment types of the supporting peaks in
the experimental spectrum. This is the graph type that is most commonly used.

R-graph, this is more artificial, as advanced analysis can only be performed if residue-
specific information is available (that is, we must know the fragmentation site of the
ion).

A directed edge is drawn between two nodes if the mass difference corresponds to
one or several residue masses. The number of edges can be constrained by how large an
edge mass can be, or how many residues an edge can represent. Modifications can also
be taken into account in the determination of the edges, by simply allowing edges to be
drawn between nodes with mass differences corresponding to modified residues.

Scores (or weights) can be attached to the edges. If an edge corresponds to the mass
of one amino acid a, and the basis is an N-terminal fragment type, the start node n of the
edge corresponds to a fragmentation site xa, where x means any amino acid. In order to
provide additional support for the occurrence of n, the edge can then be weighted by the
probability of such a fragmentation occurring for the considered fragment types.

Chen et al. (2001) describe an efficient algorithm for determining the edges of a
spectrum graph. Let the maximum mass corresponding to an edge be M , and let the
precision of (the sum of) the amino acid masses be �. Then there are M/� different
masses. Define an array A with an entry for each of the different masses, and let A�m = 1
if the mass m corresponds to the (added) mass of some amino acids (otherwise it is zero).
A can be determined for increasing m in that A�m = 1 if m corresponds to an amino acid
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mass, or if A�m−ma = 1 for an amino acid mass ma. The edges of G can then be found
easily by direct lookup in A by the node mass differences. There is an edge between
nodes (ni� nj) if and only if �0 < m�nj�−m�ni� < M� and �A�m�nj�−m�ni� = 1�, where
m�ni� means the mass of ni.

12.5 The sequencing procedure using spectrum graphs
The general procedure for de novo sequencing using spectrum graphs can be formulated
as follows:

1. An MS/MS spectrum R is experimentally produced from a real peptide P.

2. From R a spectrum graph G is constructed. This is possible via a sequence spec-
trum Q.

3. From G there are derived sequences �Ei� corresponding to the peptide mass MP :

P → R → Q → G → E

The goal is to achieve an E with the best match to P. P is unknown, however, so we
must search for an E with the best match to R, according to some scoring scheme. The
general procedure is to first find a set of sequences that give a high score against G, and
then compare these against R, for example by the methods described in Chapter 11.

Deriving E from G means finding high-scoring paths through G. The score for each
path can be calculated from the node and edge scores included in the path. A dynamic
edge scoring can also be calculated as follows. When entering the node n one can record
the amino acid b corresponding to the incoming edge, and if a is the amino acid on
the selected outgoing edge, the amino acid of the fragmentation site becomes ba, and a
probability associated with this can be used.

The mass similarities between some of the amino acids present problems for both
practical and theoretical handling of MS/MS data. These mass similarities include:

• the mass equality of L and I;

• the mass similarity of Q and K;

• the similarity of the mass of some large amino acids to the sum of the masses of
two small amino acids, for example the mass of W is equal to the sum of the masses
of E and G;

• ambiguous pairs or tuples of amino acids, for instance the sum of S and F is similar
to the sum of P and H;

• the mass of oxidized M (M readily oxidizes in vitro) is similar to that of F.

12.5.1 Searching the graph

A crucial point in searching for paths through the graph is that a path corresponding to a
sequence should not include two nodes resulting from the same fragmentation site of P.
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This can be indirectly controlled by assuring that a path cannot include two nodes originated
from the same peak in R, but remember that there can also be complementary peaks in R.

The straightforward method for sequencing is to traverse the graph from the start node
(N-terminus), and this can be done in either a depth-first or a breadth-first manner. Depth
first means that subsequences are extended, one at a time, until the end node (C-terminus)
is reached, or until it is found that the subsequence cannot be extended to a complete
path. Breadth first means that one traverses the graph one node at the time, assuring that
when visiting a node, this node has a data structure with all subpaths matching the graph
from the start node to this node. This data structure is populated by scanning one node
ahead each time to find all potential edges.

Example Given a spectrum R={72, 175, 303, 406} from a precursor with mass MP =
604. Assuming a single charge, the complementary peaks become {534, 431, 303, 200},
with the final spectrum graph shown in Figure 12.5. An edge corresponds to the mass of
one or two amino acids. The depth-first approach will follow a path for as long as it can,
for example along the nodes (a, b, c, e, f, h).

Note thatachoiceofpathmustbemadeat someof thenodes(b,e).Whenthepath isatadead
end (h), backtracking is done to the last node where a choice was made (e), and the alternative
path is followed to nodes g and i. A path is then found from start to end, corresponding to the
sequence alternatives AC({GA}|K|Q)({GA}|K|Q)R. Then backtrack to b (for finding
alternative paths), and visit for example (d, e, f, h), and afterwards also visit (g, i) from e.
Some form of intelligence could, however, be included, such that f is not visited this second
time, since it could be recorded the first time that this path through f resulted in a dead end.
Breadth first means that the nodes are visited in the order (a, b, c, d, e, f, g, h, i). When visiting
b, for example, scanning ahead for possible edges reveals a path from a to d along (a, b, d).
When d is then visited, after c, this path is known.

Heuristics can be used for pruning in both approaches: subsequences with little likeli-
hood of being extended to a sequence matching the graph are abandoned. This likelihood
is calculated based on scoring of subsequences.

�
Since the nodes (and possible edges) have weights, and the scores of the sequences

are calculated from these weights, one can consider using general algorithms for finding
the path(s) with the highest score in a graph, for which there exist efficient solutions.
These algorithms cannot, however, be directly used, since complementary nodes must
be avoided. This is discussed in Dancik et al. (1999) for the program SHERENGA, for
the case in which only b and y ions are considered. For a graph G define a set T of

1751 303 406 431 534 581200
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{GA}|K|Q

{GA}|K|Q

{GA}|K|Q
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C

C

R

a c e g h ib 72 d f

Figure 12.5 The spectrum graph corresponding to the example in Section 12.5.1
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forbidden pairs in G. Two nodes in G are forbidden if they are complementary. A path
in G is antisymmetric if it contains at most one node from every forbidden pair. The
sequencing problem can then be formulated as finding the antisymmetric path with the
highest score in a graph G with a set of forbidden pairs T . Unfortunately, solving this
problem has exponential time complexity (NP-hard). Using the special characteristics of
spectral graphs, however, an efficient algorithm can be constructed, as follows:

• The graph is acyclic, since the mass of the end node of an edge is always larger
than the mass of its start node.

• Every two forbidden pairs of complementary nodes �bi� yi′� and �bj� yj′� are non-
interleaved. This can be shown by assuming, without loss of generality, that bi < bj .
Then we have three possibilities for placing yi′ , which also determine the placements
of yj′ (remember that m�bi�+m�yi′� = m�bj�+m�yj′�, when m means mass). Then
we have the following for the forbidden pairs:

yi′ < bi implies yj′ < yi′ ;

bi < yi′ < bj implies yj′ < bi;

bj < yi′ implies bi < yj′ < yi′ .

A graph with a set of forbidden pairs is called proper if every two forbidden pairs of
nodes are non-interleaving. There are efficient algorithms for finding the antisymmetric
maximum path in a proper graph.

Chen et al. (2001) describe a method for de novo sequencing using dynamic program-
ming for finding the maximal path through a spectrum graph. They consider only b and
y ions. A possible path of the graph G = �V�E� can be found in O��V ��E�� time and
O��V �2� space complexity.

The method is extended to sequencing where one of the residues in the peptide is
modified. Chen et al. first assume that a solution to the original unmodified problem is
not found. The modified problem, given G = �V�E�, is solved by asking for two nodes vi

and vj , such that there does not exist an edge �vi� vj�, but adding this edge to G creates
a (plausible) solution that contains this edge. If the mass difference between vj and vi

corresponds to the mass of a modified amino acid, then the found path corresponds to
a sequence containing one modification. The algorithm is of O�max��V �2� �V ��E��� time
and O��V �2� space complexity.

Partition of the spectrum graph

If the fragment types of the peaks in R were known, then the sequencing problem would
become much easier. Methods for trying to classify the peaks into separate fragment
types have therefore been developed. However, Bern and Goldberg (2005) assert that
such classification is unnecessary, and propose a method for trying to divide the peaks of
the spectrum into two classes, one containing the b ions and the other the y ions, without
knowing which are which. This is done by constructing a graph consisting of only the
peaks of R, and using several rules for constructing the edges. Partition of the nodes of
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the graph into two parts is formulated as an eigenvalue problem. Each part can then be
sequenced separately.

Sequencing from incomplete spectra

A complete spectrum is a spectrum that contains at least one fragment type for each
fragmentation site, resulting in a spectrum graph with a node for all possible fragments
of the basis type. Incomplete spectra are quite common, however, and are generally dealt
with by allowing an edge to represent the sum of several amino acid masses. Another
procedure is to start at several places in the spectrum graph, and thereby produce several
subsequences. One can for example find ACD at the lower end of the spectrum and PPT at
the higher end. If the gap between them corresponds to a set of amino acids, for example
LFR, a proposal for the complete peptide becomes ACD{LFR}PPT.

12.5.2 Scoring the derived sequences against the spectrum

The highest scoring sequences derived from G are subsequently scored against R. The
amount of sequences that need to be compared to R depends on how advanced G is:
whether G is a U-, F-, or R-graph. More advanced graphs result in less sequences,
assuming that the scoring is already fairly restrictive.

Since the score is assigned to a match between a spectrum and a sequence, the scoring
methods described in Chapter 11 can be used.

12.6 Combined spectra to improve de novo sequencing
The largest problem of de novo sequencing is incomplete fragmentation of the peptide
bonds, and a low signal-to-noise ratio. To increase the fragment coverage, and improve
the reliability of the annotated peaks, at least two techniques are proposed for collecting
more information before attempting the sequencing. One is using several spectra from the
same peptide, where some of the spectra preferably come from a posttranslational form
of the peptide. This is described in Section 14.6.4. The other method is the use of two
fragmentation techniques, and is described next.

12.6.1 Use of two fragmentation techniques

The methods explained so far are all based on using a single fragmentation technique, CID.
The reliability of the derived sequences depends on finding complementary fragments.
This can be taken to another level by combining two fragmentation techniques, CID and
ECD, as in Savitski et al. (2005a,b). Ions derived from both CID and ECD spectra then
furnish highly reliable data.

CID mainly produces b and y ions, and ECD preferentially gives variants of c and z
ions, and occasionally a ions. The fragment diagram presented in Figure 8.14 (Section 8.6)
refers to ions formed with CID. Using the notation aE for the a ions (and similar for c
and z ions) produced by ECD, we have

aE = a+H� cE = c� zE = z+H
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The idea is then to try to relate the following pair of ions in the two spectra:
�b� cE�� �y� zE�� �y� cE�� �b� zE�� Using the formulas in Section 8.6 we get the following
equations for the masses (remember that the ion masses include a proton for the charge,
and that MP is the neutral peptide mass):

1. b− cE = −17;

2. y − zE = 16;

3. y + cE −19 = MP ;

4. b+ zE +14 = MP .

Nodes are constructed in the spectrum graph for the masses that satisfy one of these
equations and that are part of a complementary pair in the CID spectrum as well. This
does not commonly cover the whole spectrum, so progressively less reliable masses are
iteratively added until a graph covering the full spectrum is obtained, making it possible
to derive a full peptide sequence.

Example Consider a precursor mass of MP = 692, producing a CID spec-
trum RCID = �129� 232� 276� 363� 418� 462� 519� 565� and an ECD spectrum RECD =
�146� 159� 206� 347� 348� 446�. Then the following peaks in RCID are complementary
(129, 565) (232, 462) (276, 418). We also find the following pairs from RCID and RECD

that satisfy one of the equations given above (129, 146) (equation 1), (363, 347) (equa-
tion 2), (462, 446) (equation 2), (519, 159) (equation 4). Four pairs are therefore found
between the two spectra, but only two of these are also part of a complementary pair in
RCID. From the matching pairs we also suppose that 129 is a b ion, 363 and 462 are y
ions, and that 519 is a b ion.

�

Exercises
12.1 Propose a data structure for quickly assigning amino acids to mass differences, both

single and tuples.

12.2 An MS/MS spectrum {72, 175, 258, 333, 387, 444, 535} is obtained from a peptide
with mass MP = 718.

(a) Construct a sequence spectrum for this (assuming b and y ions). Note that the
spectrum may contain noise peaks.

(b) Try to derive the sequence of the peptide from the sequence spectrum.

12.3 Consider the example in Section 12.3. Assume that a peak has support from b,
c, and y ions, and that the probability that this peak is a noise peak is 0.08. Use
Equation 12.1 to calculate the score for this peak.

12.4 Find which fragment ions the masses in the spectral graph in Figure 12.5 corre-
spond to.
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12.5 Show that two forbidden pairs of nodes are non-interleaved, as explained in Section
12.5.1.

12.6 Derive the four equations in Section 12.6.1.

Bibliographic and additional notes
Spectrum graph

The term sequence spectrum was first used by Bartels (1990), and idealized spectrum
was used by Hines et al. (1992) and Scarberry et al. (1995). The greedy algorithm for
the merging of calculated peaks is described in Dancik et al. (1999).

Preprocessing and peak reductions are described in Frank and Pevzner (2005),
Grossmann et al. (2005), and Zhang (2004). Lubeck et al. (2002) try to classify the
fragments into b and y ions (program PepSUMS), as do Zhong and Li (2005).

Simple methods for peak scorings are described in Bartels (1990) and Fernández-de-
Cossío et al. (1995). A more advanced method is described in Dancik et al. (1999). A
comprehensive analysis for calculating ion probabilities (
i) is described in Scarberry
et al. (1995). Node score using log-odds is in Frank and Pevzner (2005).

The method using the combined fragmentation technique is described in Horn et al.
(2000) and Savitski et al. (2005a,b).

Other approaches

A few other methods not using sequence graphs have been developed.

Sequencing by constraint satisfaction

A method using constraint satisfaction for deriving a sequence E is presented in Bruni
et al. (2004). A set of variables �xaj� is defined, where a ∈ A, the set of all amino acids,
and j ∈ N , the residue positions of E. xaj = 1 if amino acid a is in position j, 0 otherwise.
The task is then to determine values to �xaj� and �N � under the following constraints:

• Compatibility of the peptide mass:
∑

a�j xajra +�N�+ �C� = MP , where ra is the
residue mass of amino acid a.

• Each peak in the spectrum R should correspond to a fragment of P (that is, a
substring of E). This means that each peak k ∈ R with mass pk must satisfy an
equation dk +∑a�j xajra = pk, where dk is one of the residue mass deviations for
one of the actual fragment types, that is 1 for b ions, −27 for a ions, etc.

• E must have exactly one amino acid for each position,
∑

a xaj = 1�∀j ∈ N .

Branch and bound techniques are used to reduce the search space.

Sequencing by genetic algorithms

De novo sequencing can be looked upon as an optimization problem, with general search
techniques used. A method using genetic algorithms is described in Heredia-Langner
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et al. (2004). The initial individuals (possible sequences) are found by SEQUEST, hence
the method can be looked upon as ‘pseudo sequential’. The individuals must be evaluated
in each generation, both to (i) test if a satisfying solution is found (the score), and (ii)
decide which individuals to use in reproduction (the fitness). The score indicates how
well an individual sequence matches the experimental spectrum.

Sequencing by divide and conquer

Zhang (2004) describes a method using divide-and-conquer techniques. Such techniques
work by breaking a larger problem into two or more subproblems, which are similar to
the original problem but of smaller size. The subproblems are then solved recursively.
For de novo sequencing the spectrum is divided into smaller and smaller subspectra until
a subspectrum is small enough to allow an exhaustive search of all possible sequences
to be performed. A subspectrum is defined by the demarcating peaks bstart and bend. If
the difference between these two masses is larger than a preset threshold, it is divided
in two new subsequences by choosing a pivot ion bpivot between them. In order to be
reasonably sure that an actual b ion is found to act as the pivot, several (3–10) pivot
ions are used, selected on the basis of their intensities. The obtained subsequences are
ultimately combined into sequences for the whole spectrum.

Some programs for de novo sequencing

Lutefisk Taylor and Johnson (1997, 2001)
SHERENGA Dancik et al. (1999)
PEDANTA Pevzner et al. (2000)

Chen et al. (2001); Lu and Chen (2003a)
SeqMS Fernández-de-Cossío et al. (1998, 2000)
PepSUMS Lubeck et al. (2002)
PEAKS Ma et al. (2003)
DACSIM Zhang (2004)
AUDENS Grossmann et al. (2005)

Zhong and Li (2005)
PepNovo Frank and Pevzner (2005)



13 Database searching for
de novo sequences

When de novo sequencing of a peptide is performed, it is commonly followed by a
sequence database search. However, the spectra are rarely of such a high quality that a
unique sequence is derived for the complete peptide. There are also uncertainties in the
sequencing due to the similarity of amino acid residue masses, depending on the accuracy
of the measurements. One way of presenting a derived sequence to a search program is
to use a notation that allows for ambiguity. It should be possible to specify the different
results of the sequencing, such as:

• unambiguously derived amino acids;

• ambiguous amino acids (either single amino acids or pairs, very rarely also of larger
tuples);

• unknown order (normally of two residues);

• masses that could not be assigned.

Example An example of a derived sequence specification can be represented as
CD[AS]QT[FA|CD]<69.1>[I|L]R. The notation indicates the following: the unam-
biguously identified sequence CD, then a mass difference corresponding to the residue
masses of AS (note that this implicitly means that the order is unknown). The next two
amino acids QT are again clearly identified, followed by a mass corresponding to either
FA or CD. The sequence stretch is then interrupted by an unassigned mass of 69.1 Da.
The sequence finally documents the occurrence of either I or L before ending on an
unambiguous R. Note the different notation for the two occurrences of CD. In the first
instance, both amino acids could be unambiguously identified due to the presence of a
peak separating C and D in the spectrum, whereas in the second instance the sum of their
masses corresponds to the difference between two peaks. Additionally, in the second
occurrence of CD, the observed mass difference between the peaks can also be explained
by another pair of amino acids (FA).

Computational Methods for Mass Spectrometry Proteomics I. Eidhammer, K. Flikka, L. Martens and S.-O. Mikalsen
© 2007 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51297-5
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If the de novo sequencing had considered modifications, it would have discovered that
�69�1� corresponds to dehydration (neutral loss of water) of serine, and (using slightly
more sophistication) that the mass of FA (218.1 Da) also corresponds to the mass of CT
if C is considered methylated. �

A database search program should be able to deal with such ambiguities and unassigned
masses as mentioned above, but the actual representation will vary depending on how the
search program works. This is discussed below when the different methods are treated.
A general strategy is to search ‘simultaneously’ with several derived sequences from a
single sample, and taking into account that they may all come from the same protein.
Also, if several (high-scoring) sequences, which are different enough that they cannot
readily be described together in the notation used, are derived for a spectrum, each of
them should be included in the search.

Another issue with consequences for the score calculation is whether the peptides in
the sample are assumed to come from a single protein, or from several proteins. If all
peptides come from a single protein, the score for a database sequence should increase as
the number of matching derived sequences increases. This correlation between number of
matching sequences and total database entry score has less validity when several proteins
are included. In general, the score against a database sequence is calculated through a
combination of (i) how many derived peptides match that sequence, and (ii) how good
the individual matches are. It is important that overlapping matches must be avoided
when applying this scoring scheme, since they do not contribute additional sequence
information and therefore should not increase the score. In practice, this means that if
there are several identical derived sequences, which all match a database sequence, only
one of them should take part in the scoring.

Regardless of the actual method used for searching, there may be a huge number of
spectra/segment comparisons, resulting in unsatisfactory search time. Filtering techniques
are therefore used for skipping those segments that are unlikely to be correct.

The search programs should be able to deal with errors in the sequencing (sequencing
error tolerant search), mutations in the precursor peptide in relation to database segments
(homology tolerant search), and preferably also modifications.

The task can be formulated as follows given a set of spectra �= �R1� � � � �Ri� � � � �Rn�,
each Ri is first sequenced, producing derived sequences � = �E1� � � � �Ei� � � � �En� =
�� � � �E1

i � � � � �E
im
i �� � � �. The sequences from � are subsequently searched against a

sequence database in order to identify the protein(s) of origin and/or homologous proteins.
Advanced methods will allow for the possibility that the peptides are modified.

13.1 Using general sequence search programs
There are several high-performance programs available that are intended for finding
homologous sequences in protein sequence databases. It is a reasonable idea to use one of
them for MS/MS-derived peptide sequences. However, these programs typically require
a complete, unambiguous protein sequence as input, whereas the input in the context
of de novo sequencing after mass spectrometry consists of a set of (ambiguous) small
peptide sequences. These programs must therefore be adapted to accept this kind of input
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data, but their main strategy of operation should be kept (otherwise new programs could
just as well be developed). Most of the homology searching programs rely on a scoring
matrix (for example, a PAM or BLOSUM matrix), which provides the ‘similarity’ scores
for the different amino acids. By changing these score matrices in accordance with the
representation for the derived sequences, the programs can be adapted to handle the
ambiguities in the derived sequences.

In the rest of this chapter we also use the term query sequences for derived sequences
from MS/MS experiments, since this is the terminology most often used in such programs.
The most popular sequence database search programs are FASTA and BLAST, and we
will start by briefly sketching the main operational principle of these algorithms.

13.1.1 The main principle of FASTA and BLAST

FASTA and BLAST build on the same main principle that can be briefly outlined as
follows:

1. Preprocess the query sequence E, by dividing E into (overlapping) words (BLAST)
or k-tuples (FASTA), and store these in a fast lookup table or state diagram.

2. Search along the database sequence D for similar words or k-tuples to those in E.

3. Extend the alignments from the similar word pairs found to higher scoring local
alignments without gaps. In BLAST such alignments are called HSP (High-Scoring
Segment Pairs).

4. Perform dynamic programming around the high scoring (sub)alignments found. It
is possible that gaps are introduced at this stage.

For dealing with derived sequences, Step 3 is changed, and Step 4 is usually skipped.
Note that this means that gaps are not allowed.

FASTA is the starting point for the programs CIDentify and FASTS, MS BLAST
builds on BLAST. CIDentify assumes that all peptides are coming from one protein while
the other two accept peptides derived from several proteins.

13.1.2 Changing the operation of FASTA/BLAST

The main changes for adapting these programs to MS/MS-derived sequences are:

• the program must accept uncertainties in the query, and also mass specifications;

• the scoring matrix must be changed in accordance with the input representation;

• the original programs initially searched for local alignments, while now the align-
ments should be global for the queries (the whole derived sequence), but remain
local for the database sequence;

• the scoring scheme of the alignments can be kept, but calculation of statistical
significance has to be changed.
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A more detailed discussion is provided as follows:

• The mass equality of leucine and isoleucine. L can for example be used in the queries
for both of them, and the scoring for (L,L) and (L,I) in the scoring matrix can
be changed to reflect the average of the identity score for L and I. Average values
can also be used for the scoring of L to the other amino acids.

• The mass similarity of glutamine and lysine. How this is handled depends on whether
information about the cleavage protease is taken into account in the search. For
instance, if trypsin is used, K can be used if the residue is at the C-terminus of the
derived sequence, and Q elsewhere. Otherwise K and Q can be handled in the same
way as leucine and isoleucine.

• Ambiguous order and/or assignment of residues. An example of such an ambiguous
mass assignment is a mass delta of 186.1 Da, which can be explained by W, EG,
GE, AD, or DA. Such ambiguities must be specified, and a search in the database
sequence should cover all possibilities.

• Unidentified mass. This can be represented by an X, corresponding to one, two,
or several residues, depending on how advanced the sequencing procedure is. An
alternative is to use the mass value directly.

• If trypsin is used for digestion, B (trypsin cleavage symbol representing either K or
R) can be inserted in front of the query sequence (but this prefixing by B should
obviously be ignored when matching the query against the N-terminus of a database
sequence). Also, (soft) constraints for B at the C-terminus can be included. Similar
end letters can be used to reflect the specificities of other proteases.

Example One illustrating example is shown below, comparing a query Q to a database
sequence D:

Q � A C D A S V 186.1 X G E R
| | | |\ |
| | | | \ |

D � . . V K D C D S A V A D L W R I . .

CD is recognized in both sequences in Step 2 of the search, and an extension of the
alignment follows. (AS, SA) is not considered a match here, since the order in the query
Q is determined from the sequencing. AD is considered a match to 186.1, and the score
can be calculated as the sum of the identity scores of A and D. W in the database sequence
D is not considered a match to GE, although they have the same mass. It could, however,
be interpreted as an indication that the peak used for recognizing G and E is potentially
a noise peak.

�

The example illustrates that we should appreciate the possibility of alternative interpre-
tations of the derived sequence, and that we should be open for errors in the experimental
sequencing. Other possibilities for differences between the derived sequence and the



USING GENERAL SEQUENCE SEARCH PROGRAMS 197

database sequence are mutations (polymorphisms) and alternative mRNA splicing that
was not previously registered in the sequence databases. The node scores of the spectrum
graph could contribute valuable information in such situations.

A two-step procedure presents a reasonable strategy for the comparison between the
query and the database. Such a method is used by CIDentify, in which the segments in
the database that give a high scoring match to the unambiguous residues of the query are
identified first, and only then are the unknown mass specifications aligned against these
segments.

An important difference in searching with derived sequences, as opposed to a regular
search, is that in the former case there is a set of (small) query sequences, and several
of these can match the same database sequence. The search can be performed separately
for each query, or for all queries together. The latter approach is used in MS BLAST,
where the query sequences are concatenated into one large query sequence, with a minus
sign �−	 inserted between each individual query (a high negative score is assigned to the
minus sign in order to prevent matches that include (parts of) two derived sequences).
MS BLAST also allows the inclusion of several alternative sequences derived from the
same spectrum.

When several queries match the same protein sequence from the database, they should
be joined to produce the best overall alignment, taking care to use only one derived
sequence from each spectrum.

13.1.3 Scoring and statistical significance

The final match to a database sequence often consists of several individual query matches.
Calculating a score for each query match is normally done simply by adding the scores
(from the scoring matrix) of each residue pair match, and the final score for the database
sequence can be the sum of the scores of each query match. In this way the database
sequences can be ranked by decreasing score. However, since such scores do not provide
any information about the likelihood of the matched sequence(s) really corresponding to
the protein(s) originally in the sample, a statistical significance should also be calculated.
As explained in Chapter 7, this is usually done by calculating the P-value. Note that
the P-value (defining a probability) is related to the E-value (defining an expectation) in
the following way: P = 1− e−E . The calculation, or estimation, of the P-value becomes
more difficult in this context since not all the spectra will find a match, and they can
match in any order along the database sequence. This makes it hard to calculate a scoring
distribution for random sequences, and computer simulation is often used for performing
an (informal) statistical analysis.

Example We describe how significance is estimated in MS BLAST. The significance
of a score should depend on how many sequences there are in the combined query, and
how many of these match (as HSP) the considered database sequence. Then searches with
10, 20, and 50 (concatenated) non-redundant, randomly generated sequences of length
11 are carried out, and this is repeated 1000 times for each peptide set size. The total
score and the number of HSPs used in the score are then recorded for the best match
in each search. For each of the three set sizes (10, 20, and 50) the searches are divided
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Table 13.1 Threshold scores determined via simulation experiments
when a modified PAM-30 scoring matrix was used; 99 % of the top
hits that matched the specified number of HSPs had a score below the
presented thresholds. After Shevchenko et al. (2001)

No. of unique peptides in the query

No. of reported HSPs 10 20 50
1 68 72 75
2 102 106 111
3 143 146 153
4 …

into categories depending on the number of HSPs that were used in the scoring. For each
individual category, the threshold is fixed at the point where 99 % of the best matches
had scores below this threshold, as shown in Table 13.1.

Suppose a search with 18 queries resulted in three HSPs that match a database sequence,
yielding a total score of 148. From Table 13.1 this can be considered to be significant at
the 1 % level.

�

Changing existing homology database search programs has some shortcomings. They
are restricted in the number of isobaric equivalences (similar masses) that can be used,
they are not well suited for spectra of poor quality, and the possibilities for posttransla-
tional modifications are not explicitly taken care of. They also do not explicitly consider
sequencing errors.

These programs are thus not suited for application in a high-throughput environ-
ment, and specialized search programs for these more demanding conditions have been
developed.

13.2 Specialized search programs
Below we describe two programs which are specifically developed for searching sequence
databases with derived sequences, using different approaches.

13.2.1 OpenSea

OpenSea deals with derived sequences from all MS/MS spectra from a given experi-
ment. It is based on the fact that a de novo derived sequence consists of a series of
uniquely derived subsequences, separated by unidentified masses (gaps), for example
AGFR<243.1>VD. OpenSea identifies unique sequence tags of a defined length. It then
searches the database sequences with these sequence tags, and when one is found the
remaining part of this specific database sequence is aligned to the (ambiguously or erro-
neously) derived sequence. (Note the difference between OpenSea and the use of peptide
sequence tags as described in Section 13.3 of this chapter. Those methods only extract
sequence tags from the spectrum, while OpenSea uses the whole sequence.)



SPECIALIZED SEARCH PROGRAMS 199

The alignment is done in steps of short local alignments of length 1, 2 or 3 residues.
A gap of length 1 is allowed in the short alignments (aligning for example three database
residues to two residues in the derived sequences). The procedure is illustrated in the
next example. Note that a requirement for OpenSea to find the correct segment is that
the derived sequence must contain at least one correct sequence tag.

Example We illustrate the main working procedure of OpenSea with an example.
Suppose we have a derived sequence and a database sequence as follows:

Database sequence ...VKT CT MPDAMF TG RY...
6 5 4 1 2 3

Derived sequence T<218.0>EVDAMS<158.1>R

(1) A sequence tag match (DAM) is found between the derived sequence and the database
sequence, illustrated by the number 1. Five additional short local alignments were then
performed in order to achieve the final alignment: (2) F is first compared to S and then
to S<158.1>, both without yielding a match. FT is then (in principle) compared to S,
to S<158.1>, and finally to S<158.1>R, again without finding a match. Then FTG is
compared to S<158.1>, finding a match (TG to <158.1>) with a substitution (F to S).
(3) The matching residue R is found. (4) After some trial comparisons MP is aligned to
EV, since they have similar masses. This indicates that the derived sequence may contain
an error. (5, 6) After some trials the common T is found, and a (mass) mismatch between
CT and <218.0>.

�

The individual local alignments are given a score separately using a scoring matrix,
where an alignment between an amino acid a and a mass specification is scored as the
average non-identity value for a. The scores of the local alignments are added by a
linear combination to give the final (segment) alignment score. The linearity comes from
the fact that the local alignment scores are weighted, depending on the type of matches
(one-to-one, one-to-many, or many-to-many). In the example above, alignments 1, 2, and
4 are all many-to-many and therefore grouped together and given a specific weight; 5 is
an example of one-to-many. This scoring mechanism is called OSAS.

Determination of substitutions and modifications

Consecutive mass mismatches are grouped into one mismatch (since modifications or
substitutions of consecutive residues are less likely). Each mass mismatch is then explored
to determine if it can be explained by substitutions or modifications. The mass difference
is used as an index for a substitution lookup table, or a modification lookup table. These
tables contain a log-odds score of how likely the corresponding substitution/modification
is for each mass difference. If there are different explanations for a mass difference, the
one with the highest log-odds score is chosen.

Example Consider the mass mismatch in the example above, of 14.0 between CT and
<218.0>. This corresponds to a substitution of T into D. If methylation is included in
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the lookup table, this will also be detected as a possible explanation. The log-odds scores
are then used to choose the most probable of these two explanations.

�

Final scoring

The final score between the spectrum and the detected database segment consists of two
(sub)scores:

1. A measure of mass-based sequence homology, by the OSAS score explained above.

2. A measure of the similarity between the experimental (normalized) MS/MS spec-
trum and a theoretical spectrum constructed from the database segment. This is
performed by a rank-based score, as explained in Section 11.2.4. This expression
is extended by a value depending on the number (n) of assigned modifications and
substitutions; this value is 1 if n = 0, or 1 − �n− 1	2 otherwise. The result is that
segments that have many substitutions and/or modifications are penalized.

The two scores are then combined in a linear fashion (with weights 0.9 and 6.0,
respectively).

If there are several possible locations for a modification (for example, a cysteine
methylation in a subsequence CTC), the position is chosen by using the second (sub)score.
Finally, mass mismatches that are not explained are explicitly specified.

The total protein sequence score is then calculated as the sum of the individual segment
scores.

13.2.2 SPIDER

SPIDER uses an interesting approach in that it considers the sequencing error tolerant
search and the homology tolerant search separately. Consider the process

P(peptide) → R(spectrum) → E(sequence) → S(segment)

Define f�E�P	 as a measure of the sequencing error, and g�P�S	 as the homology
difference between the original peptide and a database segment. The homology difference
is measured by the edit distance. The edit distance between two sequences is the minimum
number of operations for transforming one of the sequences to the other, where the
operations are substitution, deletion, and insertion of single symbols.

The task is to find the S in the database that best suits the derived sequence E, when
the sequencing error and homology difference is considered. A measure for the distance
between E and S is therefore needed, and a distance score that takes the sequencing error
and homology difference into account is f�E�P	+g�P�S	. But P is (usually) unknown,
so this formula cannot be used directly. Instead, the SPIDER distance between S and E
is defined as

d�E�S	 = min
P

�f�E�P	+g�P�S		
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When f and g are defined, the problem becomes finding the P that minimizes this
expression.

Defining f and g

f measures the distance (cost) between a derived sequence (E) and a peptide (P). These
two can be aligned, and a block of the alignment can be defined as a column of equal
amino acids, or conflicts due to sequencing error. The cost f ∗�a	 of the first depends on
the amino acid a, and the last f ′�m	 on the mass of the conflicting amino acids, m. Then
the total distance f can be calculated as the sum of the costs of all blocks.

g measures the distance between a peptide and a segment (S), and a best alignment
with cost g can be found in a traditional dynamic programming approach using a scoring
matrix g′�a� b	 and a gap cost g.

When E�P, and S are known, the alignments for �E�P	 and �P�S	 can be found, and
then combined in an alignment for the three of them.

Example Let E=AQSFVLR, P=AQPHVIR, S=ASQHVR. Then the following alignments
can be constructed:

(E,P) (P,S) (E,P,S)
E AQ[SF]VLR AQ[SF]VLR
P AQ[PH]VLR AQPHVLR AQ[PH]VLR
S ASQHV-R AS[QH]V-R

where [] denotes a block with different amino acids but similar masses. The different costs
are then f�E�P	 = f ∗�A	 + f ∗�Q	 + f ′�234�1	 + f ∗�V	 + f ∗�L	 + f ∗�R	 and g�P�S	 =
g′�A�A	+g′�Q�S	+g′�P�Q	+g′�H�H	+g′�V�V	+g +g′�R�R	.

�

The SPIDER distance between E and S can therefore be found by making alignments,
calculating the distances for all possible P, and recording the minimum distance. This is of
course not realistic, but the authors have developed a polynomial dynamic programming
procedure to construct the sequence for P giving the minimum distance. Thus each
segment in the database can in principle be compared to the derived sequence.

13.3 Peptide sequence tags
Trying to derive the complete sequences from a lot of spectra can be time consuming,
and an alternative is to derive only small tags. When such a tag is combined with
knowledge about the precursor mass, it is possible to construct a structure called a peptide
sequence tag (PST), and this tag can then be used for searching. (See the comments in
the bibliographic notes about the different use of the terms ‘peptide sequence tag’ and
‘sequence tag’.)

Suppose that we have derived the subsequence e1� � � er from a stretch of peaks, using
peaks at mass positions x0� x1� � � � � xr . This divides the precursor peptide into three parts,
which are: (i) the mass before the derived subsequence �m1	, (ii) the derived subsequence
(a sequence tag), and (iii) the mass after the derived subsequence �m3	. This construction
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x0 x1 x2

m2 m3m1

m2 m1m3

xr−1

trt2t1

trt2t1

xr

x0 x1 x2 xr−1 xr

Search direction

Search direction

Assume b ions

Assume y ions

Figure 13.1 Illustration of how a peptide sequence tag is constructed. Note that the search in
the database sequence moves from left (N-terminal) to right (C-terminal) in both cases. See text
for a detailed explanation

is called a peptide sequence tag. Exactly what is meant by ‘before’ and ‘after’ depends on
whether the subsequence is identified byb ions ory ions, which is unknown. The construction
of a PST is illustrated in Figure 13.1. Note that the search direction (along the PST) depends
on the ion type of the used peaks. Since this is unknown, both directions should be used.

A PST is then specified by �m1	e1� � � er�m3	. The mass of the sequence tag, �m2	,
equals the sum of the masses of the tag residues �me1 + � � � +mer	. Depending on whether
the spectrum consists of b or y ions, �m1	 or �m3	 is read from the spectrum, and the
remaining mass is calculated from m1 + m2 + m3 = MP . The database search locates a
segment which consists of three parts, S1� S2� S3, with residue masses (using the notation
and equations from Section 8.6 and that 
 means residue mass) 
S1

�
S2
�
S3

, such that
m1 = 
S1

+�N��m2 = 
S2
�m3 = 
S3

+�C�. The calculations are done separately for b
and y ions.

b ions: m1 = x0;
m3 = MP − �m1 +m2	 = MP −xr .

y ions: From xr = 
S2
+
S3

+�C�+2H we get 
S1
= 
P −�
S2

+
S3
	 = MP −�C�−

�N�− �xr −�C�−2H	 = MP −xr +H . Then we have

m1 = 
S1
+H = MP −xr +2H ;

m3 = 
S3
+�C� = xo −�C�−2H +�C� = x0 −2H .

Example We have a peptide with mass MP = 1624�7 Da, and let the amino acids
PS be derived from the peaks x0 = 819�3� x1 = 916�4� x2 = 1003�4. Assume first b
ions. Then m1 = x0 = 819�3�m3 = MP − x2 = 621�3. Searching with this results in the
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database segment QTSESTGQPSSEGLSM. The monoisotopic summed residue masses of
the subsequence corresponding to m1 is 818�3�= m1 −�N�	. The mass of the other subse-
quence is 604�3 �= m3 −�C�	. If we assume y ions instead, we get m1 = MP −x2 +2H =
1624�7−1003�4+2 = 623�3 and m3 = x0 −2H = 817�3�

�

In some programs it is not necessary to use all three values; in these only one of the
masses and the derived sequence need be used (partial search). After a match is found
between the peptide sequence tag and a segment, a theoretical spectrum can be created
for the segment, and compared to the experimental spectrum.

13.3.1 A general model for PST search programs

In the last few years several programs that use PSTs have been developed. With intelligent
methods for sequence tag extraction and their identification in the database, these programs
work fairly fast. They also commonly include the possibility to allow identification of
sequences with modifications.

Such programs typically consist of five steps:

1. Extract a set of (scored) sequence tags (25–50), where the tags typically are of a
fixed length of three residues.

2. Search the database for matches to the sequence tags, sequence tag hits.

3. Extend the sequence tag hits with the flanking residues to investigate if there is a
match to the PST.

4. Score the PST matches.

5. Calculate the statistical significance for the highest scoring segment.

The procedure described is for one spectrum, but several PSTs can be used in the
searching, and more than one of these can match to the same segment.

There is a certain similarity between this approach and some of the programs described
in the previous section, in that one first searches for hits between small amino acid
tuples. Note also that this approach can be looked upon as a hybrid of the sequential
and structural approach, since some de novo sequencing is used for finding the tags, and
structural scorings are employed for scoring the PST matches.

We will mainly use two newly developed programs for discussing the listed steps,
GutenTag and InspecT.

13.3.2 Automatic extraction and scoring of sequence tags

In extracting a set of sequence tags from a spectrum there are two important points: a
correct sequence tag should be in the set, such that the correct segment can be identified
in the database; and the number of sequence tags should not be too large, to prevent an
unsatisfactory running time. A reasonable approach for the automatic extraction of tags
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relies on the use of spectrum graphs. A tag is identified by a path of r + 1 nodes with
uniquely labeled edges. (This labeling can include modified amino acids, if desired.) To
extract the most informative ones, the tag candidates should be scored using node and
edge scores, calculated as described in Chapter 12. The scoring components used by
GutenTag and/or InspecT are the following:

• the observed intensities are compared to the expected intensities, where the latter are
calculated based on a fragmentation model (the mass relative to the peptide mass,
and one or both of the amino acids of the fragmentation site are known);

• the accuracy of the measured m/z value as compared to the mass of the derived
amino acid;

• the supporting fragment types (b� y�a, including water and ammonia losses);

• observed isotopic patterns.

13.3.3 Database search

Effective methods should be used for finding sequence tag hits in databases. One way
to do this is by indexing the database. An index table contains entries for all amino acid
combinations of the sequence tag length (203 for tags of length 3). Each entry contains a
list of database positions where the entry tag occurs. It could also be extended with the
ability to index whole PSTs, if the flanking masses were included. The index organization
has the drawback that it must be recomputed when the database is changed, and that the
number of indices grows exponentially with the number of modifications allowed in the
flanking masses. Another approach is to use a trie, as in InspecT. A trie is a tree data
structure for storing a set of strings, where there is one node for every prefix. Instead
of preprocessing the database, as is done when using an index table, the set of extracted
tags is collected in a trie. The prefix of a node is recognized by a path from the root to
the node. Figure 13.2 shows an example. The trie is then searched against the database,
such that a search for all tags from several spectra can be performed in a single scan of
the database.

13.3.4 Extending the sequence tag hits with flanking amino acids

For each of the sequence tag hits, we then must explore if the flanking residues can match
the sequence tag masses m1 and/or m3. This may be performed by testing for m1 and m3
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Figure 13.2 A trie for the set of tags {AKR, AKT, KVR, KLA, KLT, SRH}
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separately. The challenge is to include possible substitutions and/or modifications. One
simple strategy is to require that one of the masses matches, and assume modifica-
tion if the other does not match. This can be explored further to see if the mass
difference corresponds to a known modification/substitution. A more advanced tech-
nique works as follows. Let p be the first position in the database sequence S after
the tag hit. A straightforward strategy is to search for a segment S�p� � � n	 where n is
found by

n = arg min
n∈�1 � � � �

	
S�p � � � n	 −m3	

(
S�p � � � n	 is the residue mass of the subsequence S�p� � � n	.) One can then test if the
minimum mass difference is less than , corresponding to a match without substitu-
tion/modification, or that the minimum mass difference corresponds to a known substi-
tution/modification.

Example Suppose that the sequence tag is QPS, with m3 = 385�7, and that this tag
is found in the database sequence ... TGQPSSEGLSM... . The added masses of the
residues after the tag are 87.03, 216.07, 273.09, 386.17, and 473.20. We conclude that
the best match is given for n = 4, implying that m3 corresponds to SEGL. Note that if
tryptic digestion is assumed, the fact that the last amino acid is L and not R/K will reduce
the likelihood that the segment correctly reflects the original peptide.

�

Another approach is to search with a defined set of modifications, as in InspecT. The
masses of a set of modifications are ordered by increasing mass in a table t. One then
searches for all segments S�p� � � n	 and index i such that 	
S�p � � � n	 + t�i	−m3	 ≤ . An
algorithm with linear time in 	t	 exists for this approach.

When a sequence tag hit is found with mass matches to both m1 and m3, it is important to
verify that the assigned (attached) modifications are feasible. Also, if several attachments
are possible, the most likely candidate should be found. In InspecT this is done by a
dynamic programming procedure.

Example Suppose we have a sample where carboxyamidomethylation of cysteines has
been performed. However, we are not sure that all cysteines have been modified. In
the peptide analysis we then allow for up to one carboxyamidomethylation (57.02 Da
mass difference) and one phosphorylation (79.96 Da mass difference). The allowed mass
modifications are then {0, 57.02, 79.96, 136.98}. Let m3 = 513�1, and the subsequence
following the sequence tag hit in the database sequence be SCVSH... . The sum of
residues masses of SCVSH is 513.20, and the mass of SCVS with the addition of one
phosphorylation and one carboxyamidomethylation is 513.12. Phosphorylation is possible
on one of the serines, and carboxyamidomethylation on the cysteine. Both alternatives
are possible (to the required accuracy), but information about the protease specificity can
be used here to resolve the dilemma. If the alternative with the modification is accepted,
one should try to determine which serine the modification is on. One can of course also
explore which modification suits the MS/MS spectrum best, the first or second serine.

�
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13.3.5 Scoring the PST matches

Normally a set of segments is found that (more or less) matches the PSTs, and these
should be scored in order to rank them. Two approaches are used. A score can be directly
calculated from how well each of the three parts (S1� S2� S3) of the PST match the segment.
A more informative approach is to construct theoretical spectra for the segments, and
perform scoring as described in Chapter 11. However, as mentioned in Tanner et al.
(2005), the score functions must be changed if modifications are considered. This is due
to the fact that the length of the retrieved segments may then vary more, and longer
segments will have more putative fragments, which can either match or be missing. Thus
several of the scoring schemes will have a length bias, and a length normalization has to
be performed. This is done in the scoring scheme of InspecT, which uses a probabilistic
model, with a log-odds score.

If several spectra are included, there can be several disjunct matches to the same protein
sequence, and protein sequence scores must therefore be calculated.

13.3.6 Statistical significance

As mentioned earlier, the highest scoring segment need not be the correct match, and a sta-
tistical significance should be calculated. A method for calculating the P-value is included
in InspecT. A linear combination of four factors is formed by (1) the score C, (2) how
much of the total intensity of the spectrum can be explained by matched peaks, (3) how
many of the peaks can be explained, and (4) b/y ion score as the fraction of the theoret-
ical b/y ions found in the experimental spectrum. These four components are indepen-
dent of the database size. A fifth factor, the score difference between the best and second
best score, depends on the database size, and is not included, but reported separately.

13.4 Comparison by threading
Two methods that are different from the previous approaches (spectral and sequential) are
classified as threading. One uses suffix trees, and one uses deterministic finite automata.

13.4.1 Use of suffix tree

A method using a suffix tree is described in Lu and Chen (2003b). The experimental
spectrum is transformed to a spectrum graph, and the database is represented as a gen-
eralized suffix tree (see Gusfield (1997) for a description of suffix trees). Two different
algorithms are used for the search, and these are outlined below. Intensities are not used
in this program.

Searching the suffix tree against the spectrum graph

The suffix tree, ST, is exhaustively traversed in a depth-first order, checking against the
spectrum graph G (threading the sequences on the spectrum). When a current path from
the root to u in ST matches a path from the first node to a node g in G, the path in ST is
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extended to v. It is then examined if (the mass of) uv corresponds to an edge going out
from g. Note that uv can represent several (successive) amino acids. The algorithm has
space complexity O�n+	V 		 and time complexity O�n	, where n is the total length of
the sequences, and 	V 	 is the number of vertexes in the spectrum graph.

Searching the spectrum graph against the suffix tree

The spectrum graph is exhaustively searched according to the topological order of the
spectrum graph (in a breadth-first-like search). When visiting a node h in G, this node
should contain all paths from the root in ST that correspond to any path from the root
in G to h. To achieve this, each node g of the spectrum graph is extended by an ST
field which is a collection of pointers. Each of them points to a position p in the suffix
tree where the path from the root (of the suffix tree) to the position p corresponds to a
path from the first node in G to g. Suppose we traverse the edge �g�h	. Then for each
pointer in the ST field of g, let u be the position that is pointed at. A search is then
performed down the suffix tree, to see whether there exists a corresponding path �u� v	
to �g�h	. If such a path is found, a pointer to v will be included in the ST field of node
h. When reaching the end node in G, the ST contains the paths in ST matching G. The
algorithm has space complexity O�n+	V 		 and time complexity O�n+	E		, where 	E	
is the number of edges in the spectrum graph.

Modifications

Modifications can easily be included, by drawing edges in the spectrum graph for dif-
ferences corresponding to defined modifications. This will increase the number of edges,
but the execution time is still claimed to be linear.

13.4.2 Use of deterministic finite automata

A method using deterministic finite automata (DFA) is described in Falkner and Andrews
(2005). The idea is to see if a segment (theoretical peptide) can match the spectrum,
without constructing a theoretical spectrum or performing de novo sequencing. First
a spectrum graph is constructed from the spectrum. A spectrum graph is (principally)
equivalent to a non-deterministic finite automaton (NDFA) where the nodes are the states,
and the edges represent the transitions. There is also a start state and an end state. The
automaton is non-deterministic, since there may be several transitions from a state for
the same amino acid, for example both a modified and unmodified amino acid, or a
single residue and a part of an unresolved pair. A comparison between a segment and an
automaton can be made by verifying if there is a path from the start state to the end state
performing the transitions specified by the amino acids in the segment.

Example Assuming b ions, a spectrum graph is constructed with nodes at 71.0, 174.1,
244.1, 275.1, 372.2, 471.2, � � � . Considering the possibility for crotonaldehyde modifica-
tion (70.04 Da mass difference), an NDFA can be obtained as shown in Figure 13.3.

�
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Figure 13.3 (a) An NDFA, from the peaks in the example. The states are numbered by increasing
order of mass. State 3 is reached by crotonaldehyde modification of C. (b) A deterministic version
of the automata

The search time for an NDFA can at worst be proportional to the sum of the number of
states in every possible path, since every path may be searched. To reduce this time, the
automaton can be transformed to a deterministic finite automaton (DFA), as described in
general books about formal languages and automata. For a search in a DFA there is always
only one transition for a given symbol, hence the search time becomes proportional to
the number of amino acids in the segment.

A set of NDFAs from several spectra can be combined into one by combining the start
states, and then transform it to a DFA. In this way one can compare a segment to several
spectra by a single scan of the automata. Several segments will commonly be recognized
by the automata, and these must afterwards be scored by a scoring scheme.

Exercises
13.1 Suppose a search with MS BLAST with 11 queries resulted in two HSPs. Estimate

what the mininum total score should be to be significant at the 1 % level.

13.2 A sequence T<140.2>LMAVT<250.2>K is derived, and a database search
is performed by OpenSea. Show how a search against the sequence
� � � YFTQLVMAVSHIKVG � � � is done, when a requirement is that identical tags with
a length at of least three residues should be found.

13.3 An MS/MS spectrum {72, 142, 232, 331, 402, 418, 565} from a peptide with mass
MP = 692 exists. Find a peptide sequence tag where the length of the derived
subsequence is three. Calculate the flanking masses, assuming both b and y ions.

13.4 Develop an algorithm linear in 	t	 which searches with a set of specified
modifications, as explained in Section 13.3.4.
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A method for tag extraction is presented in Lie et al. (2006a).



14 Large-scale proteomics

Large-scale proteomics usually means analyzing the whole proteome of an organelle, cell,
tissue, or organism in one analysis. At the present time it mainly means identification,
though some form of characterization and/or quantification can be included. Essentially,
the goal is to analyze as many of the proteins in the sample as possible in a reasonable
time.

The common (bottom-up) large-scale procedure is to start with a protein mixture, and
perform all or some of the following steps, depending on the approach used:

1. Chemically treat the proteins for the succeeding steps. The exact kind of treatment
depends on the specific method used for the further processing, see for example the
description of COFRADIC in Section 14.2.

2. Digest the whole protein mixture into peptides (shotgun proteomics).

3. Select a representative sample from the peptide mixture. This step is performed
in some large-scale approaches, and omitted in others. Possible protein treatments
(Step 1) are often performed to enable or facilitate this selection step.

4. Separate the (selected) peptides into fractions. HPLC is typically used for this step,
and often multiple separation steps are included.

5. Record MS/MS spectra. This step is usually performed simultaneously (on-line
LC-MS) with the last separation step.

6. Filter out bad (for example, derived from non-biopolymer contaminants) spectra.

7. Recognize (and cluster) spectra coming from the same peptide.

8. Assign peptide identifications to the spectra.

9. Infer from which protein(s) these peptides may come.

10. Score the identified proteins.

14.1 Coverage and complexity
We have defined (protein) sequence coverage as the coverage of a specific protein
sequence by the identified peptides. In large-scale proteomics we consider a large number
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of proteins, and the number of proteins correctly identified from the sample will be called
sample coverage.

In large-scale analyses the peptide mixture is usually very complex: a sample of 10 000
proteins will produce about 300 000–400 000 tryptic peptides upon digest. Experiments
have shown that it is difficult or even impossible to analyze all these peptides during a
single analysis, as the mass spectrometer is essentially overwhelmed. One way to achieve
high sample coverage is to try to reduce the peptide mixture complexity by reducing
the number of different peptides, ideally maintaining at least one peptide from each
protein. This approach, however, results in poor protein sequence coverage and as a
result there is a trade-off between loss of protein sequence coverage and loss of sample
coverage.

When trying to maintain high sequence coverage, the result is usually poor sample
coverage. Some approaches are trying to alleviate this by performing many independent
(protein or peptide) separation steps, such that the peptides are presented to the mass
spectrometer over a longer time. If the peptides are roughly equally spread out over this
time interval, the mass spectrometer has more time to analyze each peptide, resulting
in good sample coverage. However, the many separation steps each incur a loss of
sample (for example, through adsorption to columns, precipitation, incomplete chemical
transformation, etc.) and this typically results in the disappearance of the more low-
abundance peptides before the well-separated sample reaches the mass spectrometer. As
shown in Section 1.7.3, if Fn is the number of fractions after separation step n, then the
number of times the �n+1�th step needs to be applied is

∏n
i=0 Fi. Another way to increase

sample coverage is to avoid choosing the same peptide several times for fragmentation
analysis in the mass spectrometer. This is called dynamic exclusion and typically increases
the number of different peptides analyzed.

14.2 Selecting a representative peptide sample – COFRADIC
A simple yet effective method for reducing the sample complexity, or for studies of
specific peptides of interest, is to select only a subset of peptides from the mixture after
digest. The challenge is to discard certain peptides without reducing the possibility for
high sample coverage. The optimal reduction is to select just one unique peptide from
each protein, preferably in such a way that high-quality MS/MS spectra are produced for
all the selected peptides. We describe one such procedure, called COFRADIC (COm-
bined FRActional DIagonal Chromatography). Also, note that COFRADIC performs a
separation in combination with the selection.

COFRADIC relies on two identical chromatographic runs for the selection:

1. The whole peptide mixture is separated into a set of chromatographic fractions in
a primary run.

2. Each fraction is chemically treated, such that the peptides one wants to select will
be modified and therefore change their chromatographic properties, while the prop-
erties of the unwanted peptides will remain unmodified and their chromatographic
properties are maintained.
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3. Each fraction is presented for a second separation in a secondary run, using the
same column under exactly the same conditions. The unwanted, unmodified pep-
tides will elute at the same time as in the primary run, but the modified peptides
will elute either earlier or later, depending on the effect of the chemical modifica-
tion. The peptides one wants can therefore be isolated by selecting only shifting
peptides, and these can be subjected to subsequent MS/MS analysis, as illustrated in
Figure 14.1.

The actual type of chromatography used is reverse phase HPLC, implying that the
chemical modification step should alter the hydrophobicity of the peptides.

As described, the fractions are run separately in the secondary runs, meaning that a
large number of runs have to be performed, resulting in a long duration time for the
whole experiment. To reduce the overall time required, secondary runs can be combined
to reduce the total number of runs. Suppose each fraction is collected in a time interval t.
Let the maximum decrease in retention time for a modified peptide be �tM . Then peptides
eluting from fraction f and fraction f − i will not interfere if i · t > �tM . Therefore several
fractions can be combined, as shown in Figure 14.2. The figure also illustrates that the
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Figure 14.1 Illustration of the COFRADIC principle. (a) The first run. The separation starts after
40 minutes, and the whole peptide sample is separated in fractions, with a fraction consisting
of peptides eluted in one minute interval. (b) The secondary run for fraction 10. The unmodified
peptides are eluted at the same time as in the first run, but the modified peptides are (in this
example) eluted at an earlier time. (After Gevaert et al. (2002))
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Figure 14.2 Illustration of the principle of COFRADIC. It is assumed that the decrease in retention
time is such that fractions 6, 14, 22, 30, etc., can be run together. The figure also illustrates that
each collected secondary fraction can be further separated into subfractions. (After Gevaert et al.
(2002))

modified peptides retrieved from each secondary fraction can be further separated into
subfractions, such that each subfraction can be analyzed in a subsequent LC-MS/MS
experiment.

Example Suppose the first run results in 35 fractions, and each fraction contains the
peptides eluted during 1 minute. Furthermore, let the reduction in retention time for
the modified peptides be greater than 1 and less than 5 minutes. To have a 1 minute
‘buffer time’ between modified and unmodified peptides, the second runs should combine
fractions that have a retention time difference of 7 minutes. The first secondary run can
then combine five fractions {1, 8, 15, 22, 29}, thus resulting in seven secondary runs in
total. Each of the five fractions collected from the seven secondary runs is further divided
into four subfractions, thus yielding a total separation of the modified peptides into 140
fractions, which can be submitted to MS analyses.

�

Different methods for chemical modifications

Several chemical modification methods can be used to isolate specific peptides, of which
some published examples are given below. Note that identifiable peptides here simply
means peptides with a mass in the range of 600–4000 Da.

Methionine-containing peptides For the human subsection of Swiss-Prot of 24 January
2006, this results in a reduction in (tryptic) peptide complexity of 74 % (only 26 % of
the identifiable peptides contain at least one methionine residue), with only 1.73 %
of all proteins being lost due to the absence of identifiable tryptic methionine-containing
peptides.
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N-terminal peptides This presents a theoretically optimal selection, since each protein
contains exactly one N-terminal peptide. The actual chemistry employed here alters the
elution time of the non-N-terminal peptides while maintaining the elution characteristics
of the N-terminal peptides. The secondary fractions of interest are therefore the ones that
do not exhibit a shift. This approach is therefore also called reverse COFRADIC.

Cysteine-containing peptides Similar to the isolation of methionine-containing pep-
tides, the reduction in (tryptic) peptide complexity here is 75 % (thus 25 % of the
identifiable peptides contain cysteine), yet 4.22 % of the proteins in the human subset
of Swiss-Prot of 24 January 2006 will not be represented in this case. COFRADIC can
also be applied to selectively isolate modified amino acids, such as phosphorylated or
glycosylated peptides.

14.3 Separating peptides into fractions
Another method to obtain high sequence and sample coverage consists of using sev-
eral (orthogonal) separation techniques in series. The most popular of these methods
is called MudPIT (for Multidimensional Protein Identification Technology), in which
an SCX column is coupled to an RP column. The first separation dimension is there-
fore based on electrostatic interaction, and the second on hydrophobic interaction (thus
employing orthogonal separation techniques). MudPIT can therefore be considered the
high-throughput, peptide analog of 2D-PAGE separation for proteins.

This is illustrated in Figure 14.3. The peptide sample is injected into the SCX column
under acidic conditions (typically a pH of 2–3), which will result in the protonation of
most peptides. These charged peptides bind to the column, while those peptides that
remain uncharged pass through. These uncharged peptides are then further separated by
hydrophobicity when they enter the RP column. The charged peptides are subsequently

2+ 2+
3+

3+ +
3+

2+

+

+ 3+

2+

+

2+2+
2+

2+
+

+ +

+

2+

2+
2+ 2+

2+
2+ 2+

2+
2+

+

+ ++

+ +
+ + +

1

2

3

SCX column E
lu

tio
n 

tim
e

RP column (the same column)

Chromatogram 1

Chromatogram 3

Chromatogram 2

Figure 14.3 Illustration of tandem LC, where the first separation occurs on an SCX column and
the second on an RP column. The numbers 1, 2, 3 indicate that fractions from the SCX column are
trapped and separately run on the RP column. As the SCX column separates the peptides based on
charge, the first SCX fraction will contain peptides with no charge (or negative charge, if any),
and the subsequent SCX fractions will contain peptides with increasing numbers of charges
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eluted from the SCX column, by using either a linear or a stepwise salt gradient, and
each of the charged fractions is also further separated by the RP column.

The MudPIT approach can be set up in a variety of ways, resulting in both on-line
and off-line separations. In the method most suited to high-throughput analysis, biphasic
columns (containing SCX material on top of RP material) are used, and a voltage is
applied over the end of the RP column. This allows the column to be directly coupled
to the inlet of a mass spectrometer with an ESI source, requiring no further handling or
transfer steps after the sample has been applied to the SCX end of the biphasic column.

14.4 Producing MS/MS spectra
In Figure 14.4 we repeat an illustration of the production of MS and MS/MS spectra. The
spectra are obtained in time frames, in which the instrument alternates between MS and
MS/MS operation modes. The time interval between two MS operations is often chosen
as the average elution time of a peptide from the chromatography column. In this example
the three most intense peaks are subsequently chosen for MS/MS analysis. During the
first time slice after the initial MS scan, an MS/MS spectrum from peptide A is obtained
by selectively fragmenting this mass only. In the next time slice a spectrum for peptide B
is produced, followed by a third time slice for recording the MS/MS spectrum for peptide
C. After these three fragmentation spectra have been obtained, a new MS scan is started.
From this scan, three peptides A′� B′� C′ are selected for fragmentation and the cycle
starts over again. This approach is often called data-dependent acquisition. Typical time
slices for recording fragmentation spectra are 0.1–8 seconds.

This method of alternating production of MS/MS spectra involves some characteristics
that one should be aware of (referring to Figure 14.4):

• Peptides enter into the mass spectrometer in a continuous manner, so that by the
time peptide C is selected for MS/MS analysis, most of the peptide ions may have
already eluted, leaving only a few (or even none) ions of that m/z to be analyzed
in the instrument. If there are not enough ions to be analyzed, the spectrum quality
and overall signal intensity will typically be low.

• When choosing the peptides for MS/MS analysis, some of them may have been
chosen at an earlier analysis cycle. This will result in the creation of several MS/MS

MS MS/MS MS/MS MS/MS MS MS/MS MS/MS MS/MS MS
Time

A

D
B

E

A B

C´
B´A´C

F

C

Figure 14.4 Illustration of the alternating production of MS and MS/MS spectra
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spectra for the same peptide. To reduce this generation of redundant spectra, the
instruments may remember the last several m/z values chosen, and will attempt to
avoid fragmenting any of these again. The time during which these m/z values are
remembered (and during which they will therefore be ignored for analysis) must be
a trade-off between the desire to avoid redundant fragmentation, while minimizing
the danger of ignoring a different peptide with a different elution time that happened
to have the same m/z.

• Note that the selection of only three peptides for MS/MS analysis in the figure
precludes the recording of fragmentation spectra for peptides D, E, and F.

To achieve ‘optimal’ efficiency in an experiment, one must fine-tune the following
instrument parameters:

• The time period for acquiring the MS spectra.

• The time period for acquiring the MS/MS spectra. In Figure 14.4 the time periods
for MS and MS/MS are chosen to be equal, but this does not need to be the case.

• The number of peptides that will be selected for MS/MS analysis from an MS
scan, and the method by which to select them (for example, by intensity rank or a
predefined inclusion mass list).

• The time period during which an m/z value will be excluded from being selected
again.

14.5 Spectrum filtering
From the discussion above it is clear that many low-quality spectra can be produced,
meaning that they do not contribute to the identification of peptide sequences. Removing
these before starting a search could save computational time in the analysis. In large-
scale proteomics, manual assessment of spectrum quality is not possible, and automatic
methods are therefore desirable. It is also probable that automatic methods are better
than manual ones as they are typically more consistent. One way of assessing quality
relies on classifying the spectra into two classes: good and bad. Spectra classified as
good are supposed to lead to an identification, and those classified as bad are not. Such
a classification is then used as a filter to select against bad spectra.

14.5.1 Classifying good and bad spectra

In order to perform the classification, a classifier has to rely on a number of attributes
(or features) whose values can be extracted from the spectra. The first challenge is to
determine the attributes to use. Some attributes that correlate with spectrum quality have
been discovered through manual inspection of spectra, including the number of peaks and
the total intensity. By building a filter that utilizes these attributes, it has been shown to be
possible to remove up to half of the bad spectra. The cumulative intensity normalization
(Section 6.2.6) is also used as a filter, as it measures how well real peaks deviate from
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noise in terms of intensity. This system establishes the intensity rank of each peak (from
1 to n+1, with n the number of peaks and rank n+1 an artificial rank), and then creates
a coordinate system in which the rank (in increasing order) forms the horizontal axis and
the normalized intensities (0 to 1) the vertical axis. If the original intensities of all peaks
are equal, the curve will be a straight line from �1� 1� to �n+ 1� 0�. The more the real
peaks deviate from the noise peaks in intensity, the more the curve will deviate from this
line. This deviation can be measured as the size of the area between the curve and the
straight line, and can be used as one attribute of a classifier.

A complicating factor in constructing classifiers (or filters) is that they must generally
be different for each type of mass spectrometer and for each set of experimental conditions.
It must also be considered whether there should be different classifiers for different types
of spectra, for example as derived from precursors with different charges. The procedure
for constructing classifiers should therefore be:

1. Collect a large set of spectra, the training set, for the specific instrument and set of
experimental conditions one wants to construct a classifier for.

2. Divide the training set into good and bad spectra.

3. Define a set of attributes that potentially correlate with the quality.

4. Use the training set to investigate which of the proposed attributes actually correlate
with the quality, and how this correlation is expressed. This can be accomplished
by machine learning techniques.

5. Construct a classifier based on the suggested attributes.

6. Test the classifier on other spectra (that is, spectra not in the training set) to verify
correct functioning.

The training set

One way of producing the training spectra is to collect a large number of spectra from
a mixture of known proteins. Redundant (similar) spectra should be removed, since the
inclusion of redundant spectra can easily bias the classifier towards the characteristics
of highly abundant peptides. Next, the training spectra should be grouped into the good
and bad categories. Since the training set should be large, this cannot be easily done
manually, and some form of automatic grouping should be performed. One way to do this
is to search the spectra against a sequence database with a reliable search program (for
example, SEQUEST or Mascot). Spectra matched to proteins known to be in the mixture
are denoted good, all others bad. Note that this approach may result in high-quality spectra
that are considered bad, if they for instance carry modifications that are not considered
in the search, or are derived from unexpected (contaminating) proteins in the mixture.

Attributes to consider

We can roughly divide the possible attributes into two groups:

• General attributes for which a numerical value can be calculated. Attributes that
have been shown to have an impact on the quality are: the number of peaks in a



SPECTRUM FILTERING 219

spectrum, the number of peaks with a relative intensity greater than k, the average
distance between peaks, the intensity difference between the top two peaks, etc.

• m/z-related attributes that specify which m/z peak values and m/z differences
(delta values) are significant in the classification. To find these values one first
needs to define what kind of values to extract, for example only integer mass values,
and delta values in the range of 0–150. Next, the training set must be examined to
find the relative importance of these attributes. This can for example be done by
performing a chi-square test or by maximizing the entropy. Typical attributes that
would be selected are for example m/z values corresponding to commonly observed
ions or delta values corresponding to amino acid residue masses.

Constructing the classifier

Different machine learning techniques are used for constructing a classifier. The classi-
fier is trained using the training set(s) and the proposed attributes. Examples of some
commonly used techniques are (i) Bayesian classifiers; (ii) neural networks; (iii) sup-
port vector machines (SVM), which try to construct an �n− 1�-dimensional hyperplane
for the n attributes, such that the good and the bad spectra fall on different sides of
the plane; (iv) quadratic discriminant analysis (QDA), which uses a quadratic classifier,
trying to separate the good and the bad spectra by a quadric surface (hypersurface);
(v) decision trees.

14.5.2 Use of the classifier

The classifier calculates two values, one related to the probability of the spectrum being
good, and one to the spectrum being bad, or a value related to the relative probabilities of
these two cases. The spectrum is assigned to the class with the highest score (probability).
This behavior can, however, be changed if ‘symmetry’ between the classes is not desired,
for example when it is considered much worse to classify good spectra as bad than
vice versa.

Using a spectrum classifier can produce two types of error:

• Good spectra are classified as bad (which we will call false negatives here). This may
result in a loss of peptide identifications, since identifiable spectra (good spectra) are
not considered for identification (classified as bad). Note, however, that the end goal
is usually to recognize proteins, not peptides. This means that if a protein can also
be identified by other peptides, removal of a good spectrum for that protein is not
such a big problem. How deleterious false negative classifications are can therefore
vary based on the type of experiment and the desired result. Naturally, if a highly
efficient peptide selection is performed (for instance, using N-terminal COFRADIC),
the impact of a false negative classification is more severe, and therefore completely
undesired.

• Bad spectra are classified as good (false positives). This will imply longer search
time, but can also lead to false positive identification, albeit still to a lesser degree
than when using unfiltered data. False positive classifications are therefore typically
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less severe than false negatives, although in specific applications they might still be
very annoying (for instance, in building spectral libraries).

Trying to avoid these two types of potential errors is often regarded as a trade-off
situation, and the software should consider this trade-off as an input parameter. The user
can then decide which error should be minimized and which can be tolerated depending
on the relative importance of the two errors with regards to the desired results. Such a
trade-off can be implemented by imposing a higher cost for one of the two error types,
to bias the classifier towards the desired outcome.

14.6 Spectrum clustering
As explained in the introduction to this chapter, several spectra may have been recorded
for a given peptide ion with a given charge (fragmentation of that same peptide but with
different charge typically results in a different spectrum). This leads to some form of
redundancy in the complete set of acquired MS/MS spectra. Such spectra are often called
sibling spectra. Experience has shown that it is not unusual for over 20 % of the spectra
to have siblings.

Sibling spectra are seldom exactly equal, due to different reasons:

• The abundance of the peptide ions may have been different each time the peptide
was selected for MS/MS analysis, resulting in spectra of different quality (ions of
higher abundance generally result in less noisy spectra).

• The fragmentation may have been different at different time points (for example,
due to variations in the collision energy or the collision gas pressure).

• Random noise may influence which peaks are detected, as well as their intensities.

It has, however, been observed that sibling spectra typically result in differing intensities
rather than in different m/z values.

There are several reasons why sibling spectra should be recognized:

• To reduce the computational processing time.

• Spectra from independent fragmentation (of the same peptide) may complement each
other, increasing the total amount of information that is available during the identi-
fication process (for example, if two spectra each have one unique fragment ion).

• To avoid the assignment of sibling spectra to different subsequences or protein
sequences.

• To remove noise, based on the assumption that noise occurs more randomly in the
spectra than real peaks do. Peaks occurring in only one (or a few) sibling spectra
can then be considered candidates for being noise.

• If a group of sibling spectra remains unidentified, the reasons for investigating them
further are increased compared to single, unidentified spectra.
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Often only spectra with a similar precursor mass are considered potential siblings.
However, if the precursor mass equality criterion is relaxed, the clustering can be used to
discover differently modified versions of the same peptide. If one for example discovers
that a group of sibling spectra consists of two subgroups that are differentiated by a
specific mass, one can suppose that the two groups correspond to both a modified and an
unmodified version of the same peptide. One can then use a more comprehensive method
to try to discover these modifications, as described in Section 14.6.4.

14.6.1 Recognizing sibling spectra

Sibling spectra are found by first performing pairwise spectrum comparisons. It is there-
fore essential to have a scoring function � for scoring the similarity between two spectra.
� should satisfy some properties:

• � should be large and have a small variance when two sibling spectra are compared;

• there should be a significant difference between the � for sibling spectra and the �
for non-sibling spectra (that is, � should yield good discrimination).

In Chapter 11 we described several methods for comparing spectra, with the slight
nuance that the focus was to compare experimental and theoretical spectra. The situation
is typically different for directly comparing two experimental spectra. Mass spectrometers
may for instance have systematic deviations in their m/z measurements, which must be
dealt with when comparing them to theoretical spectra. In the case where two spectra
that originate from the same peptide and mass spectrometer are compared, however, there
should be comparable systematic shifts in the two spectra. In the latter case one can there-
fore apply tighter constraints on m/z similarity for finding corresponding fragment peaks.

Spectrum preprocessing

As explained in Section 11.2, the comparison can be based either on the peaks themselves,
or on the intensities in m/z bins (intervals). In the former case one must select the peaks
that should take part in the comparison, a decision that is usually based on their intensity.
In the latter case the intensities inside a bin are added up to compute the bin’s intensity.
In both cases the intensities should be normalized, however.

It has been observed that spectra from different peptides with a similar mass can
erroneously be reported as siblings due to strong peaks in the fragmentation spectra that
correspond to their unfragmented precursor mass, or neutral losses thereof. Such peaks
should therefore be removed in the preprocessing.

Similarity scoring

The most often used scoring functions are spectral contrast angle or some form of (cross)
correlation. In order to take advantage of the potentially higher accuracy due to the
assumed similar systematic deviation in the measurement, the score can include a weight
factor based on the m/z difference between corresponding peaks. Such a weight can for
instance be implemented as a sigmoid function.
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One general scoring function can be described as follows. Let there be m and n peaks
in the two spectra �R1�R2�, and let the peaks of the spectra be indexed by i and j
respectively. Then the score between two peaks �i� j� is calculated as

s�i� j� = f��mi −mj��g�Ii� Ij�

where mi� Ii are the mass and intensity of peak i, respectively, and f and g are two
functions. f should be a (steeply) decreasing function, for example f�x� = 1/�1+ e

x−a
b �,

in which constants a and b influence the location and the pivot of the sigmoidal curve,
respectively. g�x� y� could for example be the minimum, maximum, or average intensity
of the matched peaks. A similarity score for two spectra can then be calculated as

S�R1�R2� =
m∑

i=1

n∑

j=1

s�i� j�

In order to obtain comparable scores for sequences of different lengths, the score should
be divided by the ‘selfscore’ for R1 and R2:

SC�R1�R2� = S�R1�R2�

F�S�R1�R1�� S�R2�R2��

where F can for example be the average. Note that this score is symmetric.

MS/MS specific scoring The scoring method described above does not specifically
utilize the information that the comparison is made for MS/MS spectra. This piece of
information, however, is directly used in a method described in Bandeira et al. (2004).

Based on a spectrum R, a new spectrum is constructed as the union of R and the
inverse of R. Each peak therefore corresponds to a node in a spectrum graph where b and
y ions are considered, see Section 12.1. Each peak is given a weight, in the same way as
the nodes are scored in the spectrum graph. The spectrum is called PRM (Prefix Residue
Mass spectrum), indicating that one aims to construct a spectrum including many peaks
corresponding to prefix masses (b ions). It is called sparse if no two peaks are less than
57 Da (the mass of glycine, the lightest amino acid) apart. The peaks are supposed to be
b ions, so subsets of the sparse PRMs are constructed that contain no complementary
peaks. Such a spectrum is called antisymmetric. A subset of a PRM spectrum R is optimal
if it is antisymmetric and achieves the maximum total weight of all such subsets. Optimal
subset(s) can be found by dynamic programming. A simple score between two spectra
can then be defined as the score of the optimal sparse subset of the intersections of their
PRMs. Note, however, that this does not need to be the optimal score between the two
spectra, see Section 14.6.4.

Example Suppose we have two spectra R1 and R2, in which the peptide masses
are equal to MP = 692, namely R1 = �129� 276� 331� 363� 519� 622�, R2 = �129� 363�
418� 462� 519� 565�. The number of common peaks is three.

The inversed spectra are found as R̄1 = �72� 175� 331� 363� 418� 565�, R̄2 = �129�
175� 232� 276� 331� 565�. The PRM spectra become
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RPRM
1 = �72� 129� 175� 276� 331� 363� 418� 519� 565� 622�

RPRM
2 = �129� 175� 232� 276� 331� 363� 418� 462� 519� 565�

Taking the intersection we get �129� 175� 276� 331� 363� 418� 519� 565�. This includes
several masses less than 57 apart and also complementary masses.

The optimal sparse subset will contain four masses, which masses depend on the weight
of the peaks. For an interpretation of the masses, see Exercise 14.1.

�

It was observed that the mass range of the intersection of sibling spectra was generally
larger than the mass range of the intersection of non-sibling spectra with the same
similarity scores. To take this observation into account, the original score was multiplied
by a factor d/m, where d was the mass range of the intersected spectrum and m the
precursor mass.

14.6.2 Clustering of sibling spectra

Clustering or grouping of objects, based on pairwise similarity measures, is a well-studied
subject. Two objects are considered to be similar if their similarity score exceeds a given
threshold T . Different approaches are used to decide if two objects should be in the same
group. The strongest criterion is that all objects in a group should be pairwise similar,
thus forming a clique. This is called complete linkage. The weakest criterion is that each
object should be similar to at least one of the others, called single linkage. A drawback
with the latter is that it can end up as a ‘chain’ in which many of the group pairs have
similarity scores below the threshold. Contaminating spectra can typically contribute to
such a chaining effect. On the other hand, single linkage has the advantage that not all
pairwise scores between the spectra need to be accessible simultaneously, which is the
case for most of the other techniques. Single linkage may therefore be the best alternative
when a high number of spectra are to be clustered on a standard desktop computer with
limited memory.

Many clustering techniques occupy a position somewhere between complete linkage
and single linkage. An example of such a technique requires that each object must be
similar to at least k − 1 of the others. A further specialization of this approach is that
each group must include a clique of size k and that all other spectra in the group must be
similar to at least k−1 of the spectra in the clique. Such a group is called a paraclique
(Tabb et al. (2005)), and a typical value for k is three. Another example consists of
forming a star, with one spectrum as the ‘kernel’, and with all the other spectra in the
star similar to the kernel.

Example Assume we have six spectra, with mutual scores as in Table 14.1. Assume
that a score of five or more is required before two spectra are considered sibling spectra.
If single linkage is used, all spectra will be collected in one group. If complete linkage is
used, three groups form: {A,B,C}, {E,F}, {D}. If paracliques of minimal size 3 are used,
there will be only one group satisfying the paraclique constraint, {A,B,C,D}.

�
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Table 14.1 Mutual scores of six spectra
as used in the example

A B C D E F

A 5 6 4 3 2
B 6 7 4 3
C 5 5 4
D 4 4
E 6

14.6.3 Representative spectra for the groups

When a group of (supposedly sibling) spectra has been formed, it can be useful to let
one spectrum represent the group, and to use this spectrum for subsequent identification.
There are two main methods used for obtaining such a representative spectrum:

1. Choose the best (usually the most intense) spectrum in the group.

2. Construct a synthetic spectrum representing all the spectra in the group.

Neither of these methods have been shown to hold significant advantages over the other,
but they will generally lead to different spectra being identified. Synthetic spectra in some
cases identify peptides which could not be identified using any of the grouped spectra
separately. The synthetic spectrum can therefore increase the chances of identifying low-
quality spectra by combining them. On the other hand, peptides identified by only a
single spectrum in a group (with the rest of the group remaining unidentified) may not be
found when using a representative spectrum. A method using both the ‘best’ spectrum in
a group as well as a synthetic spectrum therefore seems to be a reasonable and exhaustive
approach.

The synthetic spectrum can be constructed in different ways. The goal of this spectrum
is to contain all the peaks that are found in spectra obtained after fragmenting the same
precursor peptide. The task is thus to decide which peaks to include, and to determine
an intensity for each of the included peaks. A reasonable way is to construct a peak at a
mass that occurs in at least k of the spectra, where k is a value in the interval between
one and n, with n the number of spectra in the group. If k = 1, we effectively take the
union of the peaks found in the spectra, whereas if k = n we take the intersection. To
avoid inclusion of too many noise peaks in the synthetic spectrum, k should be chosen
such that the probability that a noise peak will occur in k spectra should be less than a
predefined value, for example 0.01.

Because some groups will consist of many sibling spectra, each one with its unique
peak profile, the construction of good synthetic spectra is not a trivial task. Especially in
the case of large-scale proteomics, the number of recorded spectra is very high, resulting
in many redundant recordings of the same MS/MS spectrum. This leads to a situation in
which some of the groups could best be represented by a synthetic spectrum with k = 1,
others with 1 < k < n, and yet others with k = n. Since k is typically chosen as a global
parameter, however, the resulting synthetic spectrum will be suboptimal for a considerable
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number of groups. Many of these suboptimal synthetic spectra may subsequently elude
identification, leading to a loss of peptide identifications.

14.6.4 De novo sequencing from representative PRM spectra

A motivation for the clustering of spectra is that a consensus spectrum should contain
more explicit information from the original peptide than each spectrum separately. With
respect to de novo sequencing this should imply a more reliable derived sequence. This
is analyzed in Bandeira et al. (2006). They treat the case in which at least two spectra
come from peptides that overlap, or in which one is a modified version of the other. Such
pairs of spectra are called spectral pairs. The approach requires:

• an efficient method for discovering spectral pairs;

• an efficient method for de novo sequencing.

These two tasks are solved by a combined procedure. Let �rx�b
i �� �r

x�y
i � be the masses of

the b and y ions of spectrum Rx. Let the number of peaks in the two spectra be m and n,
respectively. Furthermore, let the suffix of length m− i of R1 overlap with the prefix of
R2, as shown in Figure 14.5(a). Then we have

r1�b
i+k = r2�b

k + r1�b
i � i < k < m− i	 r

2�y
j+k = r

1�y
k + r

2�y
j � j < k < n− j

A product matrix of two spectra is a matrix with the masses of the two spectra along the
horizontal and vertical axes respectively, and with a dot at all points �r1�x

i � r2�z
j �, where

x� z are from the set �b� y�. This means that there will be two subdiagonals in the product
matrix of the b and y ion masses corresponding to the overlap, as shown in Figure 14.5(b).
The presence of two such subdiagonals with many dots in a product matrix indicates a
large overlap between the original peptides. The problem of finding siblings is therefore
solved by exploring if the product matrix contains two subdiagonals with a sufficient
number of dots. To increase the number of dots in the subdiagonals, both spectra are first
transformed to the PRM representation. Note that if claiming i = 0 or j = 0 the search
is for spectral pairs where one is a subspectrum of the other. This will drastically reduce
the computational time, but it is shown that the reduction in identification is not reduced
correspondingly.

An important aspect of the method is that the two subdiagonals divide the ions into b
and y ions (without specifying which is which), hence making de novo sequencing much
simpler.

The product matrix can also be used for examining if two spectra correspond to the same
peptide that is differently modified. Let the spectra of the unmodified peptide be R1, and
that of the modified peptide be R2. Then the masses corresponding to the ‘unmodified’
fragments are equal in R1 and R2, but those corresponding to modified fragments are
increased by a mass 
 in R2. Finding the optimal path of the PRMs of R1 and R2 when
including modifications can be done by spectral alignment, as described in Section 11.4.2.
However, the alignment procedure must be changed such that the path found is both a
sparse as well as an antisymmetric subpath of both R1 and R2. Without going into the
details of the algorithm we provide an example next.



226 LARGE-SCALE PROTEOMICS

R1

r2,y
n−1

r2,b
n−j−1

r2,b
n−1

r1,b
m−1

1

1 n

b direction
y direction

b direction
y directionn 1

r1,b
1

r 2,b
1

m
m
1

i
m−i

n−j
j

r1,y
1 r1,b

i+1

r 2,y
j+1

r1,y
m−i−1

R2

L C D

C D F K

F KP1

P2

(a)

(b)

A

Figure 14.5 Illustration of two spectra R1 and R2 from overlapping peptides P1 and P2. The
overlap will show up as subdiagonals in the product matrix, as explained in the text

Example Assume we have a spectrum R1 = �129� 175� 276� 331� 519� 565� with peptide
mass MP1

= 692. The inverse spectrum becomes R̄1 = �129� 175� 363� 418� 519� 565�, and
the PRM spectrum RPRM

1 = �129� 175, 276� 331� 363� 418� 519� 565�. From this we can
derive the sequence (AG)(CV)STR.

Assume another spectrum with R2 = �345� 363� 476� 533� with peptide mass MP2
= 706.

The inverse is R̄2 = �175� 232� 345� 363�, and RPRM
2 = �175� 232� 345� 363� 476� 533�.

One should then try to find an optimal path through the combined graph, such that it is
sparse and that the projection on both of the spectra is antisymmetric. One such path is
�129� 232� 331� 345� 418� 519� 533�. The projection on RPRM

1 is �129� 331� 418� 519�, cor-
responding to the sequence (AG)(CV)STR. The projection on RPRM

2 is �232� 345� 533�,
corresponding to the sequence (AGC)V+(ST)+R+, where + means that a mass of 14 Da
is added to the amino acid masses. Combining these two, we derive the common sequence
(AG)CVSTR, where the sequence for R2 has an addition of 14 Da at amino acid V.
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Since modifications on V are extremely rare, the R2 sequence could probably represent a
polymorphism where V has been changed to L.

�

The example shows that the use of sibling spectra can increase the quality of the derived
sequences. This is utilized in Bandeira et al. (2006) by constructing star clusters. The
kernel spectrum is pairwise compared to each of the other spectra, and the common peaks
in the PRMs of such a pairwise comparison are recognized. The representative spectrum
is the union of the results from all the pairwise comparisons. De novo sequencing is then
performed on that representative spectrum.

To increase the number of sibling spectra containing modifications Bandeira et al.
(2006) propose to perform chemical modifications of peptides.

14.7 Searching the database
The methods that have been described in the preceding chapters can also be used for the
identification of spectra. In this application of the algorithms, the experimental spectra
are compared against theoretical spectra obtained from a sequence database rather than
against other experimental spectra.

14.8 LIMS
It is important to realize that the large amount of data generated in high-throughput
experiments presents both a challenge with regard to data management, as well as a
treasure trove of information to mine for optimizing algorithms or improving experimental
design. Many approaches are described throughout this book that highlight the importance
of having access to learning and testing sets for training machine learning algorithms, so
we will briefly discuss the data management challenge in this section.

Since large-scale, high-throughput experiments can generate several tens of thousands
of spectra per run, and several runs can be performed in a day, integration of the
acquired data into a robust data management infrastructure has become increasingly
important for proteomics labs. The software systems that are developed for this purpose
are called Laboratory Information Management Systems (LIMS). LIMS packages are
available from commercial companies, and freely available and open-source systems
produced by academia also exist. LIMS can vary from the extremely complex, detailed,
and comprehensive systems used in pharmaceutical companies, to the relatively simple
and focused versions developed to support the specific needs of a single academic lab.
The data management backbone of typical LIMS consists of a Relational Database
Management System (RDBMS). The relational storage used in an RDBMS is particularly
suited to the fast and efficient retrieval of specific linked information amongst vast
amounts of data. Software applications are provided to manage the import and retrieval of
the various results obtained during a typical proteomics workflow: importing spectra from
the mass spectrometer, constructing clusters of sibling spectra and creating representative
spectra from these, submitting spectra to a search engine, interpreting and storing the
results of the search, filtering for suspect identifications, etc.
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Exercises
14.1 The spectra in the example in Section 14.6.1 are supposed to come from the peptide

AGCVSTR. Assign the spectra masses to different b and y ions.
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15 Quantitative MS-based
proteomics

The main topics of this book address the use of mass spectrometry to deal with the qual-
itative aspects of proteomics, mainly the identification and characterization of proteins.
It is, however, useful to add a quantitative dimension to proteomics experiments. The
reason for this is that some proteins can be up- or down-regulated in certain cell states or
disease states. Other proteins might be translocated to different subcellular compartments,
or modified. In order to utilize the full potential of proteomics, quantitative techniques
are therefore needed as part of the analytical toolbox.

In this chapter, the main techniques for obtaining quantitative measurements of peptides
and proteins are described, together with certain computational challenges associated with
these techniques.

15.1 Defining the quantification task
We have a set of n samples, each containing a set of molecular components. The majority
of the components are the same in each sample, and in our context the components are
mainly peptides, but in some cases they are proteins. The task is to explore how the
abundance of the corresponding peptides varies from sample to sample. Due to the way
the instruments detect the ions, relative quantification is the easiest form of quantification,
meaning that, instead of the absolute concentration, we measure fold changes in the
molecules between samples. The relative measurements are performed either within a
sample or across the samples, and both label-based methods and label-free methods exist.

Example Let the amount of three components in sample S1 be (10, 20, 18) (of an
undefined unit), and in sample S2 be (30, 20, 17). The relative increase in the first
component between S1 and S2 is then 300 %, corresponding to a three-fold increase.

�

Relative quantification is the main topic of this chapter. However, absolute quantifica-
tion is briefly described at the end.

The challenge in quantitative proteomics is to perform the experiments (sample gath-
ering and preparation, mass measurement, etc.) such that the resulting outcomes from the
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230 QUANTITATIVE MS-BASED PROTEOMICS

different samples can be compared. This implicitly requires that the samples are similar,
for example having approximately the same total amount of protein content, and that only
a few of the molecular components vary.

Two-dimensional gels can be used for quantitative proteomics, as described in Chapter 2.
The quantitation aspect is reflected in the size and intensity of a protein spot, where a
big and intense spot usually implies an abundant protein. The large majority of the quan-
titative methods, however, rely on mass spectrometry, in which comparing abundances
means comparing peaks in spectra. We will concentrate on these methods in this chapter.

15.2 mRNA and protein quantification
The quantification and comparison of mRNA (or cDNA) expression levels has already
been extensively studied. Since mRNA is the source of protein production, a reasonable
question is to ask whether there is a correlation between the levels of an mRNA and the
protein it encodes. Such a (general) correlation exists, but it is not strong enough to be
used on individuals; it is therefore not possible to predict the protein amount from the
corresponding mRNA amount. This can partly be explained by the fact that RNA levels
depend on the transcription efficiency and degradation rates of mRNA, while protein level
also depends on translational and posttranslational mechanisms (including degradation of
proteins).

However, several investigations have shown that there is some correlation when the
codon bias is high (> 0�5). Codon bias is a measure of the propensity of an organism to
selectively utilize certain nucleotide codons over others that encode the same amino acid
residue. Several measures for codon bias exist, and the result is often a value between
zero and one.

Since proteins are the executive molecules in the cells, the main focus should be on
the protein level. However, quantitative analyses on mRNA level are easier to perform,
and they also help in exploring the mechanism for protein production. The end result
is that studies on these two levels are complementary rather than mutually exclusive or
redundant.

15.3 Quantification of peaks
In nearly all the MS-based methods, the expression levels of the peptides or proteins are
measured by observing the signal intensity detected by the mass spectrometer. As shown
in Section 6.2.4, this can essentially be done in two different ways, either by using the
maximum height of a given peak, or by calculating the area under the curve representing
the peak.

In Figure 15.1 a zoomed view of two peptide peaks is shown, and the two ways of
describing their intensities are depicted. It is not obvious which method gives the most
reliable results, since some reports indicate that peak area is best, but has limited value if
the signal intensity is too low. In this example, it can be observed that the ratio between
the highest and lowest peak is 2.15 when calculated using the peak height, and 2.00 using
the area. Which approach to choose is largely dependent on the signal intensity, the shape
of the peaks, the instrument type, and other, experiment-specific conditions.
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Figure 15.1 Two MS peaks, where numbers indicate intensities, based either on height (number
above each peak) or on area (number connected to line)

15.4 Normalization
Usually, the signal intensities from run to run are not directly comparable. This is
caused by a systematic intensity shift, which causes the total ion count between runs
to differ, even though the samples are identical. In order to compare samples we must
therefore first correct for such shifts. This is typically done by normalizing the signal
intensities. Normalization is briefly treated in Sections 6.2.6 and 9.2.1, but is especially
important for quantitative comparisons. After the normalization, statistical analyses are
often performed to discover the peptide differences between samples. The normalization
should obviously be such that the change in peptide amounts in the samples is reflected
in the normalized values.

Several procedures exist for signal intensity normalization, of which we mention three:

• Normalization using internal standards by adding known components (pep-
tides/proteins) to the sample. The intensity of each peak can now be normalized
relative to that of the internal standard closest in m/z.

• Normalization to constant sum implies using the total ion intensity as the normal-
ization factor, expressed as the normalized intensity xN = x/

∑n
i=1 xi.

• Normalization to unit length; that is, if the vector of intensities is denoted x, xN =
x/��x��, where ��x�� =√∑n

i=1 xi
2.

The normalization used depends on the spectra and the experimental conditions. One
issue to consider is the potential presence of high peaks. These can sometimes be prob-
lematic, because the intense peaks typically show a higher variability than less intense
peaks, and this variation affects the normalized values of all data points. This is a major
drawback of normalization to unit length, since it gives more impact to intense peaks
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as compared to normalization to constant sum, because the denominator will be more
affected by the most intense peaks.

Example Given two vectors of intensities, for example x = 1� 3� 2 and y = 1� 1� 4,
normalization to constant sum will yield the vectors xN = 1

6 � 3
6 � 2

6 and yN = 1
6 � 1

6 � 4
6 ,

whereas normalization to unit length gives xN = 1/
√

14� 3/
√

14� 2/
√

14 and
yN = 1/

√
18� 1/

√
18� 4/

√
18.

�

In this example, when using normalization to constant sum, both x and y are normalized
using the same normalization factor, whereas when unit length is used, the denominator
is higher for y, because of the presence of a higher peak.

15.5 Different methods for quantification
Several options exist for turning a proteomics experiment into a quantitative protein
measurement setup. We will divide the discussion into methods related to label-free
peptide methods and label-based peptide methods. In this context, a label is simply
something attached to the peptides of a sample to enable the distinction of this sample
from a differently labeled or unlabeled sample.

15.6 Label-free quantification
The general procedure for performing label-free quantification using peptides is described
below, but note that not all steps are included in all methods:

1. Separate the samples into subsamples (or fractions). This must be done if the samples
contain too many peptides for being handled in one mass analyzing procedure. The
separation should ideally ensure that the subsamples will contain the same proteins
or peptides for all the original samples. In practice, however, the extensive pre-
analysis fractionation required to resolve all the main peptide components easily
introduces differences between samples.

2. Record the mass spectra and obtain the intensities for the peptide ions. The number
of detected peptides depends on the overall method and instrument used.

3. Normalize the intensities inside each subsample, such that the intensities of peptides
in corresponding subsamples can be compared.

4. Find corresponding peptides over the subsamples.

5. Explore how the intensities of corresponding peptides vary over the samples.

6. Identify the proteins from which the interesting peptides are cleavage products.

Each sample or subsample is performed in one analysis. The spectra from corresponding
subsamples are then compared. Ideally, the same peptide in corresponding subsamples
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Figure 15.2 A zoomed view of a set of MALDI-TOF spectra before (left) and after (right) alignment
in SpecAlign

should occur at the same m/z value in the produced spectra. In practice, imperfect
precision usually results in slightly different m/z values for the same peptide, and this
problem is discussed next. In the following subsections we then describe three different
quantification methods.

Using label-free MS methods to quantify peptide samples will not give any indication
of the identity of the components under analysis, but has a greater potential for discovering
low-abundance molecules compared to MS/MS-based methods, because the instrument
does not need to spend time in MS/MS mode. If interesting candidates are discovered,
these can be selected for subsequent identification by MS/MS if suitable spectrometers
are used.

15.6.1 Comparing spectra

The main reason for the observation that the same peptide may occur at different m/z
values in different spectra lies in the lack of sufficient instrument precision. This is
particularly noticeable in the higher mass regions. In order to correlate peptides over a
set of (sub)samples, the spectra therefore often need to be aligned first. See Figure 15.2
for an illustration of the effect of an alignment of a set of raw MALDI-TOF spectra using
the SpecAlign software.

When spectra are aligned and normalized, differences between various samples can be
discovered. Traditionally, peak lists have been a common way to represent a spectrum,
with the advantage that only the relevant parts of the spectra are retained for subsequent
analysis. The disadvantage is that the algorithms that generate such peak lists sometimes
fail to detect certain peaks. This can lead to situations where a given peak can only be
found in some of the analyzed spectra, which can potentially be erroneously interpreted
as signaling the absence of that peptide or protein in the samples where it is missing
(a false negative error). An alternative to peak lists is to use the raw data spectrum. In
that way no information is lost due to flawed peak detection, but at the same time large
amounts of noise and background data remain present, which may confound analysis. In
some cases this may lead to a complicated data analysis, simply because the number of
data points or variables will be high (typically up to 50 000 points for one MALDI-TOF



234 QUANTITATIVE MS-BASED PROTEOMICS

spectrum). The binning procedure provides a compromise between peak detection and
retaining all points, by reducing the complexity by collapsing adjacent mass values into
bins (intervals) of for example 1 m/z unit. This has the advantage of avoiding peak-
detection errors while still reducing the number of data points. Where the peak-detection
algorithm can result in completely discarding potential peptide or protein peaks, a binning
procedure will only gradually degrade the information content, depending on the width
chosen for the bins. If bins are used, the comparison between different samples is also
made easier, because one can directly compare the bins, and avoid the need for matching
peaks.

15.6.2 MALDI-TOF-based methods

MALDI-based methods do not include on-line separation during the MS analysis, but
an off-line separation into subsamples can be performed beforehand if the samples
are very complex. Since each subsample is spotted on one spot, only one spectrum is
produced for each subsample. Therefore the analysis becomes simple, only comparing
spectra.

15.6.3 SELDI-TOF-based methods

In SELDI-TOF (Surface-Enhanced Laser Desorption Ionization-TOF) analysis, separation
is obtained by using different chromatographic surfaces on the different spots on the
ionization plate. Such a plate is often called a SELDI chip. Surfaces with different
properties and affinity bind to different classes of proteins and peptides. In this way
different classes of molecules will be analyzed on each spot, with a single spectrum
produced from each spot. Figure 15.3 illustrates a SELDI chip with five different surfaces,
and three of the resulting spectra. In a multi-sample setup, each sample will (in this
case) generate five different spectra. In this way the spectrum from a subsample can
be identified by the spot-surface identifier, and corresponding spectra from different
(sub)samples can be compared.

Figure 15.3 Illustration of a SELDI chip and some of the resulting spectra. The sample is applied
to all spots on the chip, but after washing, different peptides are stuck on the different surfaces.
Each spot therefore corresponds to a subsample
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15.6.4 LC-MS quantification

Chromatographic separation systems (gas chromatography, liquid chromatography) cou-
pled to mass spectrometers have been used to directly quantify components in samples
such as urine or air pollution samples for a long time. This way of quantification was not
applied to quantitative LC-MS analysis of peptides and proteins, however, mainly due to
the poor reproducibility obtained for these complex samples. Because of the availability
of techniques that have increased reproducibility in recent years, this approach has now
become more commonly used in proteomics quantification as well.

The way these methods work is simply to load a peptide sample onto the LC column
coupled to an MS instrument. For simplicity, assume that every sample (a patient, a given
experimental condition, a time point in a time series, etc.) is run as only one LC-MS
experiment, thus no pre-analysis separation is performed. The mass of a peptide (peak)
is usually found during several consecutive MS scans, depending on how much time it
takes the analyte (peptides) to elute from the column (corresponding to the width of its
chromatographic peak). See Figure 15.4 for an example. Some of the peaks in scan 1 are
clearly present in all three scans, whereas analyte B is practically gone in the last scan.
This example shows that in order to quantify peaks from an LC-MS experiment, a total
intensity for each analyte should be obtained by combining the signal contributions for
that analyte over several scans.

Numerous spectra are produced over the course of an LC-MS run. Ideally, it should
be easy to identify corresponding spectra from different (sub)samples based on their
retention time. However, the exact retention time of an analyte (and thus the occurrence
of its chromatographic peak) may shift from run to run. An analyte can also occur in
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Figure 15.4 Example showing the elution profile of a chromatographic peak (left), and three
consecutive MS scans taken at the highlighted time points (1, 2, and 3, right)
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Figure 15.5 Example of an LC-MS run converted to a two-dimensional image, where each spot
represents a measured ion. Horizontal lines correspond to background noise caused by non-
biopolymers that consistently elute from the LC column over the entire run

several spectra from the same (sub)sample as outlined above. The relative simplicity of
comparing only one spectrum from each sample is therefore lost in this approach.

To correct for the variation in retention time from run to run, linear or nonlinear
transformations of the retention times must be performed, to ensure comparable times
from sample to sample. Such a computational alignment often takes into account user-
supplied input about the location of some common peaks across the different samples,
which are used as ‘landmarks’.

A useful way to visualize a quantitative LC-MS experiment is to represent it as an
image, as seen in Figure 15.5. Most of the peptides appear as spots, and the representation
resembles that of traditional 2D gels. Notice that some of the peptides appear ‘smeared
out’ over the retention time, an effect due to the fact that some peptides elute over a broad
retention time range on the LC column. Other molecules are ‘background contaminants’,
and result in bands that cover the entire LC run. It is possible to use such images directly
for analysis, by comparing them with methods similar to those used for 2D gel images.

15.7 Label-based quantification
Together with 2D gel methods (with or without DIGE labeling) and SELDI-TOF,
quantification by MS labeling is by far the most frequently applied technique. Roughly,
the concept is to make originally identical peptides from a limited number of different
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samples distinguishable by their masses. The exact way this is accomplished is described
in the following subsections for each technique. Quantification methods based on signals
from both MS and MS/MS analyses are discussed. Common to the methods described
is that they simultaneously analyze more than one sample in each experiment, removing
the difficulties associated with between-run variability, as outlined above.

15.7.1 MS-based labeled quantification

The peptide molecules are labeled differently for each sample, with each label contributing
a different mass delta (see the next example for a detailed explanation). The samples are
then mixed and analyzed as a single sample. The same peptide from different samples
will turn up as different m/z peaks in a mass spectrum due to their different labels,
and their intensities can be compared. In order to do this, the peaks of corresponding
peptides in the spectrum must be found. If the masses of the labels are known, this is a
straightforward exercise.

Example The SILAC (Stable Isotope Labeling by Amino acids in Cell culture) method
for comparing two samples relies on feeding cells either normal (‘light’ label), or heavy
(essential) amino acids (‘heavy’ label) in culture. Heavy arginine and lysine (or only one
of these) are typically used for this. One way to make these amino acids heavy is to
substitute the normal 12C atoms with 13C atoms. Both these amino acids have six carbon
atoms, thus the heavy forms will be 6 Da heavier than the normal, light forms. A tryptic
peptide normally contains one of these amino acids, so a typical MS spectrum of a peptide
from such a light/heavy two-sample mixture will look as depicted in Figure 15.6. This
doubly charged peptide is identified as SYELPDGQVITIGNER. In this example, each
peptide consists of five visible peaks that compose the isotopic envelope of the peptide.
The first peak is the one originating from those peptide molecules that are uniquely
composed of light isotopes, while the second peak contains peptides with one 13C (or
deuterium, or 15N, etc.) atom, and the third contains peptides with (for instance) two 13C
atoms etc. Typically, at least three naturally occurring isotopes can be observed if the
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Figure 15.6 MS spectrum of the doubly charged peptide SYELPDGQVITIGNER (from human
actin). The monoisotopic m/z value of the normal peptide is 895.9, whereas the peptide with the
heavy (13C-containing) arginine has an m/z value of 898.9
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mass spectrometer has sufficient resolution. From the isotope peaks in the figure, one
can easily determine that the peptides are doubly charged. The difference between the
heavy and light versions of a tryptic, doubly charged peptide (assuming it contains only
one residue of arginine/lysine) is then expected to be 3 units, as can indeed be seen in
the spectrum (898�90 for the heavy peptide versus 895�90 for the original light version).

�

When representing this couple as a quantitative entity, it is often expressed as a ratio,
for example heavy/light, or as a percentage heavy/�heavy + light� ∗ 100 %. In Figure
15.6 the light version is less abundant than the heavy one, thus the ratio as calculated
above will be greater than 1, with the percentage greater than 50 %.

When using such labeling techniques for tryptic peptides the mass difference between
the light and heavy peptides is normally 6 Da, and the corresponding peptide peaks can
easily be found if their charge is known. However, uncertainties in the measurement and
about the charge state usually necessitate a successful identification of MS/MS spectra in
order to correctly couple the light and heavy versions of a peptide. The introduction of
MS/MS analyses means that the sample coverage will be limited compared to methods
that only require LC-MS to function (less peptide ions will be recorded due to the time
lost during MS/MS analysis of a single precursor). The obvious advantage of the MS/MS-
based methods, on the other hand, is that the identity of a quantified peptide is known
instantly.

In addition to SILAC (which only works for samples that can be fed a specific diet
of (essential) heavy amino acids), some of the more generally applicable post-isolation
labeling strategies include ICAT (Isotope-Coded Affinity Tags), 16O/18O labeling, and
ICPL (Isotope-Coded Protein Label).

15.7.2 MS/MS-based quantification

In contrast to the MS-based methods described above, these methods use special label-
ing techniques that only allow sample differentiation for a specific peptide during
MS/MS mode. In MS mode, a peptide ion from different samples will appear with
exactly the same (modified) mass. This is accomplished by incorporating isobaric labels
(having equal mass) that result in charged fragments with different masses (so-called
marker ions or reporter ions) upon fragmentation. iTRAQ (isobaric Tags for Relative
and Absolute Quantification) is the most commonly used MS/MS-based labeling strat-
egy, typically consisting of up to four different labels, marking up to four different
samples.

As already outlined above, the label consists of a marker ion and a neutral balancing
part. The masses of the four marker ions are different and they detach under MS/MS
conditions, allowing sample differentiation upon fragmentation. In order to achieve the
same overall mass delta for the intact peptides from different samples, the balancing
parts consequently need to have masses as well. Simply put, for an introduced peptide
mass delta of x, with four marker ions a1� a2� a3, and a4, and with four different masses
ma1�ma2�ma3, and ma4, four balancer parts b1� b2� b3, and b4 are required that satisfy
mbi = x−mai, where mbi is the mass of balancer part i.
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When a peptide (peak) is selected for MS/MS processing, it contains occurrences from
all the four samples. In MS/MS mode the labels then fragment, yielding marker ions that
occur in the fragmentation spectrum. Since the marker ions will occur at their different
m/z values, the relative abundances of that peptide in the four different samples can be
deduced from the relative intensities of the marker ions.

Figure 15.7 shows an example of an MS/MS spectrum from four different samples.
The masses of the four marker ions (mai) for iTRAQ are 114, 115, 116, and 117 Da,
respectively. In this example, the sample labeled with iTRAQ marker ion 115 has the
highest expression of the fragmented peptide among the four samples.

Quantification by isobaric tags that are distinguishable in MS/MS often enable a higher
number of samples to be analyzed simultaneously, but the fact that MS/MS spectra are
the basis of quantitation reduces the accuracy of the results. The reason for this is that
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Figure 15.7 Illustration of MS/MS-based quantification using iTRAQ. The MS/MS spectrum of the
peptide KVPQVSTPTLVEVSR is shown (top spectrum), with the m/z interval containing the four
highlighted iTRAQ marker ions zoomed in (bottom spectrum)
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the acquisition of MS/MS spectra often results in a limited amount of fragments, thus
reducing the actual ion count. The causes for this effect are described in Chapter 8.
Some MS/MS spectra will contain high-intensity fragments, while others will only have
low-intensity fragment ions. This strongly influences the accuracy of the measured ratios,
because strong signals give more reliable ratios, as outlined below.

15.8 Variance-stabilizing transformations
Common to the above-mentioned methods is that the measurement variance is often
dependent on signal intensity. This means that if the variance is calculated between
identical samples for all variables (mass points), it will not be equal for masses with
high and low intensity. In such cases there will be a correlation between average signal
intensity and variance, resulting in too much emphasis put on intense signals. It also
hampers most statistical methods that assume constant variance for all variables. This is
often referred to as heteroscedastic noise.

Various methods have been explored to remedy this effect. Common transformations
include taking the logarithm of the intensity or relying on nth roots. The method of choice
will depend on the actual level of the noise; if there is a small increase of variance with
increasing intensities, taking the square root may be sufficient.

15.9 Dynamic range
All of the above methods rely on a correlation between the signal intensity and the actual
number of molecules in the original sample. Ideally, this correlation would always be
linear (two times the signal means two times the number of molecules), and constant
across many orders of magnitude (one-tenth the signal still means one-tenth the number of
molecules). In reality, however, the most commonly used detectors in mass spectrometers
can only resolve a limited dynamic range (typically four orders of magnitude), with an
even smaller section of that resolvable range following a linear correlation. The reason
for this is that the response to very intense signals levels off as the detector reaches its
maximum output capacity; stronger input signals will either result in a smaller relative
detector output (when approaching the maximum output) or remain at the maximum
detector output level (if the maximum output capacity has been reached). For weak
signals, on the other hand, detector output is only observed when a minimal amount of
ions is present. When plotting ion intensities against a range of fold changes for known
calibrants, the curve will follow a sigmoidal path, leveling off at both ends. It is therefore
important to experimentally determine the dynamic range (and the linear part of this
range) for an instrument prior to using it for quantification purposes.

15.10 Inferring relative quantity from peptide
identification scores

An indirect method for deducing the relative quantity of a given peptide or protein within
a sample involves using peptide identification scores. For a hint about a given protein’s
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abundance in a sample, the sum of constituent peptide scores has been shown to yield
useful results (Colinge et al. (2005)). With this method, 2.5–5-fold changes are reported
to be detected with 90–95 % confidence, using an abundance indicator. The abundance
indicator of a protein p is calculated using the following formula:

E�p� = ∑

�∈T�p�

∑

�∈I���

s����� (15.1)

T�p� is the set of tryptic peptides in p, � is a tryptic peptide, I��� is the set of
experimental spectra identifying �, and s����� is a normalized score of the match between
� and � (Colinge et al. (2003c)).

15.11 Absolute quantification methods
Some methods have also been developed to supply absolute quantities of analytes, usually
expressed as the molar concentration (M), rather than the relative quantification discussed
so far. One example where the absolute concentration of a given peptide can be of interest
is when looking for biomarkers, where the absolute concentration of a peptide biomarker
will provide useful information about the suitability of different assays to detect this
peptide in a subsequent diagnostic procedure.

The simplest methods for the determination of absolute concentration levels rely on
utilizing a feature of the relationship between the number of molecules in the sample and a
mass spectrometer’s signal. For the three most intense tryptic peptides, the signal per mole
of protein was shown (Silva et al. (2006)) to be constant within a coefficient of variation
of ±10 %. When this is known, the protein concentrations in a sample can be calculated
by establishing the relationship between the signal and the known concentration of an
internal standard. To do this, a number of samples spiked with increasing concentrations
of known test proteins were analyzed. After the concentrations of these proteins were
plotted against the raw signal generated for these proteins, a regression function was
obtained. This calibration function was then used to quantify compounds of unknown
concentration. In this approach, the signal for a protein was defined as the average signal
of the three most intense peptides in the protein.

A different approach to absolute quantification involves the synthesis of an isotopically
labeled partner for each analyzed peptide. In practice, this is both expensive and time
consuming. As an alternative to chemical synthesis, one tryptic peptide from each moni-
tored protein is chosen to represent this protein. Then, DNA is synthesized that represents
the polypeptide chain obtained after concatenating each of these peptides. When this
nucleotide sequence is added into an expression vector and thereafter transfected into a
bacterium, the resulting protein (denoted QCAT protein) will consist of the necessary
tryptic peptides. By growing these bacteria on a medium that contains one or more heavy
amino acids, the peptides can be labeled. Each of these peptides can then serve as a basis
for finding the absolute quantities of the corresponding proteins, since they can be spiked
in known amounts into the sample.
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Figure 15.8 Schematic overview of the generation of a synthetic protein designed to monitor
five different proteins. One peptide from each protein is selected, and concatenated into the QCAT
expression module

Figure 15.8 illustrates the process of generating the QCAT protein. The output for each
peptide in this analysis is a ratio between the sample peptide intensity and the QCAT
peptide intensity. Since the absolute quantity of the QCAT protein is known, the absolute
intensity of the sample peptide can now be inferred.

Bibliographic notes
Different forms of alignments
Fischer et al. (2006); Nordstrom et al. (2006); Wong et al. (2005)

Quantification by identification scores
Colinge et al. (2005, 2003c)

Absolute quantification
Beynon et al. (2005); Silva et al. (2006)

Software

VEMS http://personal.cicbiogune.es/rmatthiesen/
MSQuant http://msquant.sourceforge.net/
SpecAlign http://physchem.ox.ac.uk/ jwong/specalign/
I-Tracker http://www.dasi.org.uk/download/itracker.htm



16 Peptides to proteins

As has been highlighted previously in this book, the fundamental unit of proteomics is
the protein. It has also become clear, however, that information about protein identity is
usually based on indirect information as derived from the sequence of peptides, obtained
after proteolytic digest of one or more proteins. It is therefore important to investigate
the issues that may arise when one attempts to retrace the origin of the identified peptide
sequences to their precursor proteins.

16.1 Peptides and proteins
As we have already seen, peptides are the short stretches of amino acids that are obtained
after the proteolytic cleavage of proteins. Peptides are usually around 10–15 amino
acids long, and a single protein yields approximately 35 peptides on average. While it
would be convenient to uniquely identify proteins directly based on their physicochemical
properties, there are several reasons why this is almost impossible in practice, as discussed
in Chapter 1. Since peptides are more readily identifiable, processing of the proteins into
peptides at some stage during the sample preparation is used to overcome this problem.

As explained in the previous chapters, the different techniques used for peptide-centric
protein identification fall into two broad categories: the first approach relies only on the
masses of the peptides obtained after proteolytic cleavage, while the second approach
attempts to retrieve actual sequence information from one or more of the peptides. It is
clear that the first approach, relying solely on the masses of the peptides, has less overall
distinguishing power than the second approach, which relies on mass as well as (partial)
sequence information. Finally, both approaches are also influenced by the amount of
additional information that may be collected during sample preparation and separation
and both methods may also be confounded by biological variation.

16.2 Protein identification using peptide
masses: an example revisited

In order to get a more realistic picture of the problems encountered in matching peptide
masses to unique proteins, let us revisit a revised version of the example given in
Section 1.7.1. This example originally assumed that there are five proteins in a sample
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(A�B�C�D�E), and that they are separated by their isoelectric point, resulting in the
separated groups �A�D�� �B�� �C�E�. The following ideal digestion table was produced
for the five proteins:

Protein Peptides

A A1�A2�A3�A4

B B1�B2�B3

C C1�C2�C3�C4�C5

D D1�D2�D3�D4

E E1�E2�E3

There were substantial simplifications involved, however: (i) all peptide masses were
considered unique, (ii) no (partial) missed cleavages were considered, (iii) only five
proteins were considered to be in the sample, rather than the thousands readily encountered
in real samples, and (iv) each protein resulted in only 3–5 peptides rather than the average
of 35 peptides. However, even a slight revision of the example will adequately serve to
explain the complexity typically encountered in real samples. Indeed, since in practice the
cleavage of the protein may not occur at every theoretical cleavage site, we can assume
that digestion of the first group resulted in the peptides A1, A2�3, A4, D1�2, D3, D4, which
means that there is one missed cleavage in each of the proteins. The second revision is to
allow indistinguishable masses for some of these peptide, along with a failure to detect
certain other peptides. Suppose, therefore, that:

• A4 and D1�2 have a similar mass, m1.

• A2�3 has a similar mass to C2, m2.

• A1 and D4 are not recognized in the experiment, hence these masses are not available.

This means that three masses are ultimately observed in the experiment: m1 (for peptides
A4 and D1�2), m2 (for A2�3), and m3 (for D3). Assuming that proteins A, C, and D are
all present in the database, a search with one allowed missed cleavage will yield the
following hit table:

Protein Peptide mass

A m1, m2

C m2

D m1, m3

We can exclude protein C from the identification list since we have found that the
calculated pI of protein C does not correspond to the experimentally obtained pI for
this fraction, which does correspond to the calculated values for both A and D. This
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illustrates the usefulness of additional information obtained from the sample processing
or separation in resolving identification ambiguity. We are still confronted with our
inability to distinguish between proteins A and D, however. Since there is unambiguous
evidence for the presence of protein D through the detection of m3 (which uniquely
matches peptide D3), it is reasonable to consider D as identified. Protein A can only
be considered identified because we eliminated the possibility that m2 was derived from
peptide C2. Indeed, the occurrence of mass m1 by itself would not have allowed the
identification of protein A as we already positively identified protein D through mass m3,
and mass m1 can therefore be explained without invoking the presence of the additional
protein A.

We can, however, remove yet another idealization from our example by supposing
that 50 % of all protein C is modified by phosphorylation in vivo, and that this modi-
fication occurs on a serine residue in peptide C4. Let us further postulate that the pI of
the modified protein C ′ is very similar to the pI of proteins A and D. It is clear that
we are now no longer certain whether protein C is present in the fraction or not. This
problem extends to the identification of protein A that is now suspect as well. Indeed,
only one of the two proteins A and C is sufficient to account for mass m2, with mass
m1 already explained by protein D. We are now confronted with a situation in which
the following identification sets are indistinguishable based on the peptide mass mea-
surements: �A�D�, �C�D�, and �A�C�D�. Although it is possible to argue in favor of
the �A�D� set as the most reasonable answer (by invoking the principle of parsimony,
also known as Occam’s razor, over the extra modification required for sets �C�D� and
�A�C�D�, for instance), the conclusion is necessarily subjective and unverifiable based
on the available evidence. Further experiments are clearly required to come to definitive
conclusions.

16.2.1 Extension to MS/MS-derived peptide sequences instead of masses

The example developed above can easily be adapted to peptide sequences instead of
masses. Indeed, we can compose a hit table between proteins and identified peptide
sequences, assuming that sx represents a unique peptide sequence, that sequence s1 is
present in both protein A and D, and that s2 is shared between protein A and C:

Protein Peptide sequence

A s1, s2

C s2

D s1, s3

We are again faced with the same situation as for the peptide masses, yielding exactly
the same problems. It can be noted in this context that many proteins belong to large
protein families, in which the members share a substantial sequence similarity. It is
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therefore not a rare occurrence to see one peptide match to multiple proteins. Since the
same problems with regard to unambiguous protein identification occur in both peptide
mass and peptide-sequence-based inference, we will treat both cases together in the
subsequent sections.

16.3 Minimal and maximal explanatory sets
As shown in the previous example, the identification of proteins can sometimes lead to
several potential sets of identified proteins. When these datasets cannot be distinguished
using the available evidence, one can wield both Occam’s razor as well as an anti-
razor in an attempt to resolve the issue. The former dictates that one should not invoke
novel entities for phenomena that can readily be explained without them. In our previous
example, a first iteration based on this principle will reduce the number of possible sets
to two: �A�D� and �C�D�. The second iteration will then settle on set �A�D� since set
�C�D� necessarily invokes the presence of a modification for which no other evidence
is found. An anti-razor would instead choose set �A�C�D� as the correct answer, since
these three proteins could potentially all be there, and any other choice would throw away
potential identifications without proper empirical justification.

These two views are reflected in what is commonly referred to as minimal and maximal
explanatory sets. The actual protein composition of the sample can then be any set that
is equal to or broader than the minimal set, and smaller than or equal to the maximal set.
Usually, a distinction between equally valid minimal sets (such as between �A�D� and
�C�D� in our example) is not made, resulting in indistinguishable subsets of proteins in
minimal datasets.

16.3.1 Minimal and maximal sets in peptide-centric proteomics

In Section 1.7.2, we discussed the general outline of peptide-centric proteomics, in which
proteolytic digest of the proteins in the sample is performed prior to separation. As such,
no protein properties will have been recorded in these analyses. This can increase the
difficulty involved in retracing identified peptides to their parent proteins, yet it is at
the same time free of the risk of false negative associations due to differences between
calculated and observed protein properties. We have seen that such discrepancies can
occur when unexpected posttranslation modifications take place on (at least a subset of)
the protein. This is in essence the benefit of the undirected peptide-centric proteomics
experiments, and it is therefore particularly important to calculate and report both minimal
and maximal explanatory sets for these types of experiment.

The problems encountered with regard to ambiguous protein identification in peptide-
centric proteomics essentially led to the investigation of the problem as well as to the
development of several tools to help construct meaningful protein identification lists from
the amassed peptide identifications. This has been well summarized in Nesvizhskii and
Aebersold (2005). It is important to note that, although mostly studied in peptide-centric
proteomics, these problems also exist in more traditional gel-based proteomics and similar
protein-based proteomic methods.



BIBLIOGRAPHIC NOTES 247

16.3.2 Determining maximal explanatory sets

A maximal explanatory set is necessarily dependent on the database used, as well as on the
optional search parameters such as allowed missed cleavages and potential modifications.
Yet once these have been decided upon, the maximal set can easily be determined by
matching each recorded peptide mass or identified sequence against all theoretically
derived peptides. For each matching peptide, the precursor protein is added to the set
(note that we consider a ‘set’ to automatically exclude redundant additions). The resulting
set composes the maximal explanatory set of proteins for the database used and the search
settings employed.

It should be noted that the maximal explanatory set does not necessarily encompass
the complete protein composition of the original mixture. Indeed, a substantial number of
proteins may have eluded detection altogether. The old adage therefore holds true here:
that absence of evidence is not evidence of absence.

16.3.3 Determining minimal explanatory sets

Contrary to the maximal explanatory set, construction of a minimal explanatory set
of proteins for a given list of peptide masses or peptide sequences is a non-trivial
task. Usually a probability is calculated for each matching protein to be present in
the sample. These probabilities are typically derived from the confidence one has in
the underlying peptide identifications and as such are mostly designed to work with
the results of MS/MS identification algorithms, incorporating for instance the scores
attributed to the identifications. It is clear that this strategy will render the construction of
a minimal set dependent on external factors such as the underlying search algorithm and
any search and/or validation parameters used. Examples of such algorithms are given in
the bibliographic notes.

These different algorithms all attempt to solve what is essentially an ill-posed problem;
there is no way to accurately reconstruct the original protein composition of the sample
based on the peptide properties measured. The output delivered by the algorithms therefore
necessarily has its limitations and it should be stressed again that follow-up experiments
are often the best way to proceed when validation of protein presence (or absence) is
required.

Bibliographic notes
Protein inference Nesvizhskii and Aebersold (2005)

Search algorithms
Protein Prophet Nesvizhskii et al. (2003)
Experimental Peptide Identification Repository (EPIR)

Kristensen et al. (2004)
Isoform Resolver Resing et al. (2004)
DBParser Yang et al. (2004)



17 Top-down proteomics

The main reason for digesting proteins into peptides, as performed in traditional bottom-
up proteomics, is that peptides are much more suitable to analysis by mass spectrometry.
Also, since many (independent) peptides are created for each protein, a certain redun-
dancy is introduced making protein identification more reliable. However, as explained in
Section 6.1.3, not all peptides are ionized and detected in a mass spectrometer, resulting
in a lack of coverage for (sometimes a large part of) the sequences. This makes full
characterization (primarily PTM detection) difficult and haphazard.

An alternative approach is to perform mass spectrometric analysis on intact proteins,
without any digestion into peptides. Such an approach has the potential to yield full
protein characterization. On the other hand, the requirements for the resolution and
accuracy of the instruments are much higher. Since such instruments are now available,
this approach (called top-down proteomics) is gaining in popularity. It must be noted
that top-down proteomics is not new; analysis by 2D gel only is for example a form of
top-down proteomics. The novelty lies in the considerable gain in efficiency by using
mass spectrometry.

Figure 17.1 illustrates the main differences and similarities between bottom-up and
top-down proteomics using MS/MS.

17.1 Separation of intact proteins
2D gel electrophoresis is the most popular technique for the separation of proteins. In
Meng et al. (2002), however, an alternative 2D separation for top-down proteomics is
described. The protein sample is first separated by size using ALS-PAGE, a 1D gel system
in which the familiar SDS denaturing agent is replaced by ALS (Acid-Labile Surfactant).
Each resulting fraction is then further separated by reverse phase LC. The number of
proteins in each fraction in the top-down experiments typically performed today varies
from one up to six or eight.

17.2 Ionization of intact proteins
Both MALDI and ESI are used as ionization sources, but ESI is more popular. If ESI is
used as a source, the proteins may get a large number of charges: up to 30 charges for a

Computational Methods for Mass Spectrometry Proteomics I. Eidhammer, K. Flikka, L. Martens and S.-O. Mikalsen
© 2007 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51297-5



250 TOP-DOWN PROTEOMICS

Peptide
sample

Ionization

Peptide
ions

m/z selection Fragmentation
MS/MS
peptide

spectrum

MS/MS
protein

spectrum

Protein
sample

Peptide
separation

Ionization

Protein
ions

Peptide
fraction

Peptide
fraction

Protein
fraction

Protein
fraction

MS
protein

spectrum

Fragmentationm/z selection

Digestion

Bottom up proteomics

Top down proteomics

Protein
separation

Figure 17.1 Illustration of the bottom-up and top-down paradigms for proteomics

20 kDa protein is not unusual. Since some ions of the same protein will end up carrying
more charges than others, a protein typically shows up in an MS spectrum as a collection
of several peaks, each corresponding to a different charge state.

Liu et al. (2007) describe a simple method to estimate the possible charge state
distribution of proteins ionized by ESI. This method was based on constraints derived
from empirical observations of ESI of proteins. The highest possible charge number was
estimated by dividing the protein mass value by 700 and rounding down to the next
integer value, and the lowest charge number was estimated by dividing the protein mass
value by 2000 and rounding down to the next integer value. Furthermore, it is important to
realize that the average protein charge state is influenced by the electrospray conditions,
as described by Sze et al. (2002).

This parallel occurrence of different charge states does not need to confound analysis,
as a single peak can be selected for MS/MS analysis. It is important, however, that the
charge of the protein corresponding to the selected peak is determined.

17.3 Resolution and accuracy requirements for charge state
determination and mass calculation

As explained earlier, the most common method for determining the charge of an ion
relies on the analysis of the isotopic distribution of the peak in the mass spectrum. Thus
the spectrometer must be able to resolve the individual isotopes, and for a large number
of charges this requires a high resolution. The minimal required resolution Rm can be
calculated for an ion with an m/z of mz and a charge of z as Rm = mz/

1
z
= mz · z.

Once the charge is determined, the original mass can be calculated from the measured
m/z. The absolute error on this calculated mass will be the absolute error on the m/z
multiplied by the charge, however. It is therefore important that the m/z measurement
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is sufficiently accurate. We can calculate the allowed error x (in ppm) for an observed
m/z value mz with charge z to achieve a maximal predefined error of � (in Da) on the
calculated mass as x ≤ �/�mz · z� ·106.

Example Suppose we have a protein ion of m/z = 1600 and z = 25. Then the distance
between the isotopic peaks is 0.04. For the peaks to be resolved at FWHM, the width
of the peaks �m must satisfy �m < 0�04. This means that the resolution must satisfy
mz/�m > 1600/0�04 = 40 000.

The minimum required accuracy in ppm to obtain the original mass of this protein to
within ±0.5 Da is 0�5/�1600 ·25� ·106, which works out to 12.5 ppm. �

17.4 Fragmentation of intact proteins
The only instruments that routinely achieve the specific requirements for resolving power
and accuracy are FT-ICR analyzers. Recently, Macek et al. (2006) have also demonstrated
the suitability of the new hybrid linear ion trap–Orbitrap mass spectrometer for top-
down proteomics. An additional requirement is an efficient fragmentation of large ions,
with many methods developed specifically for FT-ICR instruments. The most common
fragmentation mechanism is ECD (Electron Capture Dissociation; used in FT-ICR instru-
ments), but other methods such as electron transfer dissociation (ETD; used in ion trap
instruments), infrared multiphoton dissociation (IRMPD), and sustained off-resonance
irradiation are also in use. In the top-down experiment described by Macek et al. (2006),
CID is used for fragmentation. They show that CID for large proteins mostly fragments
at the terminal areas. ECD, on the other hand, can fragment nearly anywhere along the
backbone, but has low overall efficiency (resulting in a lower sensitivity).

The goal of achieving a total sequence coverage of 100 % can be attained by this
fragmentation of intact proteins, as shown in Figure 17.2. The figure illustrates that
complementary pairs (for example, b and y ions) can be found for intact proteins as well.

C termN term

Illustration of peptide coverage with bottom up 

A protein
sequence

Illustration of fragment coverage with top down 

Figure 17.2 Illustration of the difference between typical sequence coverage for bottom-up and
top-down approaches. In bottom-up experiments, coverage is achieved through small peptides,
whereas in top-down studies the increased coverage results from much larger fragments
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Analyzing efficiency can be further increased by combining CID and ECD, as explained
in Section 12.6.1.

17.5 Charges of the fragments
As the precursor is typically highly charged, the product ions will also carry a large
number of charges, which must be determined as well.

Because of the difficulties in determining the charge state of highly charged ions
on lower resolution instruments, an alternative approach has been developed, which
incorporates chemical steps to reduce the charge of the product ions to one. This method
is applied for top-down proteomics in the relatively low-resolution quadrupole ion trap
instruments, by using gas phase ion chemistry as described by Reid and McLuckey
(2002).

17.6 Protein identification
Basically, the intact protein mass (measured with high accuracy) can be used to identify
possible protein sequences in a database. A defined modification mass can be taken into
account by allowing the experimental and theoretical protein masses to differ by the mass
of that modification. If complementary fragment masses are found in the spectrum, these
can be used to further verify a potential sequence. The test is then to simply find backbone
fragmentation positions in the candidate protein sequence that result in the formation of
the two observed complementary fragment ions. Note that the presence of fragment ions
also allows more precise localization of a modification, if present. Non-complementary
peaks can also be matched against predicted b or y ions of the proposed proteins to
enhance confidence in the identification.

When one cannot rely on a match in protein mass (for example, due to many modifi-
cations occurring on the protein, if a splice variant of the database protein is measured,
or if incomplete protein sequence databases for the organism under study are avail-
able) one can search for sequence tags in the spectrum instead. As CID fragmentation
mostly occurs at the terminal parts of the sequence, sequence tags can often be found
in these areas. Note that complete de novo sequencing cannot be expected from such
studies, and that spectral comparison is not used due to the large number of theoretical
fragment ions.

17.7 Protein characterization – detecting modifications
When a protein is identified, one can try to localize possible modifications. Consider an
offset mass �m between the experimental and theoretical protein masses, corresponding
to a possible modification (or an amino acid substitution) with mass difference �m. Upon
protein fragmentation, a set of b and y ions, and possibly some internal product ions, will
be observed. When the MS/MS spectrum is deconvoluted (to a singly charged spectrum),
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peaks corresponding to (either modified or unmodified) b and y ions can be found. Let
bi and yj be the largest of the b and y ions that have the same mass as their theoretical
ions. Furthermore, let bk and yl be the smallest of these ions with modified masses. With
the length of the protein given as n, the modification is then localized between residue
max �i� n− l−1� and residue min �k+1� n− j�. If ions bk or yl are not observed, k or l
is set to n respectively.

Example Suppose n = 93 and b ions of length 	23� 45� 52� 63
 are identified as unmod-
ified, but b78 is modified. Suppose further that the y ions of length 	6� 11� 12
 are
identified as not modified, and y28 as modified. Then the modified residue is local-
ized between residue max �63� 93−28−1� and residue min �79� 93−12�, which means
between residues 64 and 79.

�

17.8 Problems with top-down approach
Although top-down proteomics studies have some benefits over bottom-up experiments,
several reasons contribute to their relatively slow adoption. As we have seen, efficient
top-down proteomics relies on specialized and expensive instrumentation to achieve the
required resolution and accuracy. Indeed, until recently only the FT-ICR could rou-
tinely be used for such studies. The high price and corresponding maintenance costs,
as well as the high demands on infrastructure that come with these instruments (they
use liquid helium to supercool magnets that deliver immense magnetic fields), have
greatly limited their adoption. Additionally, proteins need to be separated prior to intro-
duction in the mass spectrometer, limiting the high-throughput potential of top-down
proteomics. Bottom-up proteomics is also more suited to identify proteins, and is more
readily amenable to high-throughput approaches. Finally, top-down proteomics requires
more sophisticated data processing software, which typically has to be developed in-
house. The availability of the much simpler and more affordable Orbitrap mass ana-
lyzer and the proof that it can be used for top-down proteomics might help boost
the popularity of this approach, although it is likely that it will remain a more spe-
cialized tool which deals with the thorough characterization of one or a few proteins
rather than the mapping of an entire proteome. The realization that many of the most
interesting studies in top-down proteomics to date have been performed on highly cus-
tomized top-of-the-line instruments further illustrates that some time will probably be
required before entire proteomes can be run through affordable standard production
instruments.

Exercises
17.1 Derive the formula for the maximal allowed error in ppm, given a maximal absolute

error on the calculated precursor mass as at the end of Section 17.3.

17.2 Suppose that the following values are found for the variables in Section 17.7:
i = 5� k = 9� j = 9� l = 15. Derive limits for where the modification can be.
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18 Standards

Standards are a very important part of our daily lives. Although we may not always be
aware of their influence, commonplace things such as postcodes and the geometry of
electric power sockets are dictated by standards. The standardized postcodes make sure
your letters arrive quickly and the standardized power sockets will allow your newly
bought appliance to connect to the electric power grid.

18.1 Standard creation
A standard represents a model item that is established as the consensus through one
of three means: by authority, by general consent, or by custom. It is worthwhile to
briefly discuss these three mechanisms of standard creation, along with an example from
proteomics for each.

Standard creation by authority can be interpreted as a standard that is derived from a
single source yet subsequently adopted by others through either enforcement (relatively
infrequent in science) or general consent. An example of the latter case in proteomics
is the nomenclature of the fragment ions obtained after fragmentation of a precursor
peptide. The a, b, c, x, y and z ions (amongst others) have been named by Roepstorff
and Fohlman (1984) and Biemann (1988) and these names are commonly referred to as
‘Biemann nomenclature’. The component of general consent can be found in the inherent
logic of the fragment ion naming. Indeed, since a, b and c ions are derived from the
N-terminus and x, y and z ions are derived from the C-terminus, the proposed standard
appealed to scientists familiar with the Roman alphabet, which eased its widespread
adoption.

Standard creation by general consent relies on representative committees working out
a standard. Usually the proposed standard is then communicated to a wider audience
and can be corrected or revised according to the public comments received. After final
approval, the standard is released and should therefore be adhered to. An example in
proteomics is the mzData standard for MS-derived data.

Standard creation by custom occurs when the usage of a particular model has been
so widely adopted that a de facto standard can be said to have developed. An example
in proteomics (and the life sciences in general) is the usage of the FASTA format for
sequence databases. Originally developed as the input format for the FASTP/FASTA
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program family (Lipman and Pearson (1985)), the simplicity of the format appealed to
many programmers, eventually making it popular enough to be supported by default by
almost all sequence-related software tools.

18.1.1 Types of standards

Standards can take a variety of forms, ranging from the mass defined by 1 kilogram or
the length of 1 meter, to the way an mp3 file is formatted. A possible way to divide the
many different types of standards follows:

• measurement standards, for example the SI standards for mass, length, and temperature;

• dimensional standards, for example the size of a battery or the diameter of the central
hole in a compact disc;

• design standards, for example the maximum electric current that a particular wire
can carry or the way to conduct a clinical trial;

• test standards, for example calibrants or a protocol for measuring the toxicity of a
compound;

• terminology standards, for example the sign for toxic substances or the E numbers
for food additives;

• formatting standards, for example MIME, XML, CSS.

18.2 Standards from a proteomics perspective
In this section we will be discussing some of the properties of standards that are related
to proteomics. In particular, properties that are relevant for computational access to
proteomics data will be covered in more detail. There are three broad areas of proteomics
where standards come into play:

Standard operating procedures are design standards and belong squarely in the
laboratory, as they detail the exact conditions for sample preparation, separation,
and mass analysis.

Test samples are test standards and are located halfway between the laboratory and
the computer.

Data standards are composed of both formatting and terminology standards and are
the domain of computational approaches.

The latter two will be dealt with in subsequent subsections.

18.2.1 Creation of test samples

Test samples are often used in analytical chemistry, where they serve as a quality control
for the performance of a laboratory. They can be thought of as ‘blind calibrants’ in that
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the experimentalist does not know the analyte, but the issuing body does. As such, the
laboratory as a whole is ‘calibrated’ through test samples rather than the instrument. In
practice, failure to reproduce the correct measurements from a test sample can result
in severe consequences for the analyzing laboratory, including a loss of reputation. It
is therefore important that any test sample is judiciously constructed, that it is stable
over time, and that it does not introduce a bias by favoring one analytical approach
over another.

Computational methods can be applied to achieve a standard test sample that corre-
sponds to these requirements. Potential candidate proteins can be analyzed for hydropho-
bicity, pI range, and mass in order to construct a sample that either covers as much of
the parameter space as possible, or is aimed at testing performance in a particular range
of these parameters. The same type of analyses can be performed on the peptides that
are obtained after proteolytic digest. Important factors here can be sequence diversity,
peptide length, number of charged residues, and uniqueness of the peptide sequence in
the overall peptide mixture.

The creation of suitable test samples for proteomics is currently undertaken by the
Human Proteome Organization (HUPO).

18.2.2 Data standards in proteomics

Data standards concern both the structure and content of the information. The relevant
types of standards are formatting and terminology standards, respectively. It should be
noted that data standards are usually about data communication rather than data storage
and that the field of proteomics is no exception. The objective of data standards in
computational proteomics therefore is to allow different software tools to exchange
information.

Terminology standards in proteomics We have already discussed a terminology exam-
ple when explaining the Biemann nomenclature above, but there are more complex
examples as well. For instance, the different types of mass spectrometers are all composed
of a number of parts (an ion source, one or more m/z analyzers, and a detector) which
can be named. A particular analyzer can be called ‘TOF’, ‘TOF tube’, ‘Time-of-flight’,
etc., depending on the person reporting. It would be much easier if the field were to settle
on a unique name for this part. Even better would be an abstraction of such a concept to
a number or accession string, since we could then tie an unlimited number of synonyms
to the concept. One example is shown in Figure 18.1.

Such a structure of unambiguous concepts linked to synonyms is called a controlled
vocabulary, or CV for short. Any concept in a CV is called a term. Although it is already
a good thing to have such a CV, another improvement can be made by linking terms by
their relationships. The result ideally represents a model of the entire domain, also called
an ontology. Figure 18.2 shows a section of a possible ontology.

Formatting standards in proteomics Apart from a common, unambiguous language
to describe information, the structure of this information also needs to be standardized.
Fortunately, several data formatting standards already exist, including ASN.1, MIME,
and XML. Since XML provides a number of interesting advantages (both human and



258 STANDARDS

TOF T.O.F.

time-of-flight 100173

time of flight

Figure 18.1 A particular concept (the time-of-flight mass analyzer) is abstracted to a number.
All relevant synonyms reference this number. Note that one of the synonyms is selected to be the
preferred name, indicated here by the bold face and underscoring
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Figure 18.2 A representation of a small part of an ontology, illustrating some of the relationships
by which terms can be linked. Note that the relationships are annotated in italics next to the
arrows linking the boxes

machine readable, validatable, readily transformable through XSL transformation), most
proposed data standards in proteomics are written in it. One of the difficulties in tying
a format to an ontology lies in the overlap between the two in terms of structure. For
instance, we can model the XML to show the hierarchical relationship of a time-of-flight
analyzer to a mass spectrometer, or we can rely on the ontology to implicitly model this
relationship. The resulting XML structure in the latter case will obviously be relatively
flat. A balance between the modeled structure in the format and the implicit structure in
the ontology can usually be found, however, yielding a very flexible data standard that
can cope with possible future modifications.

18.2.3 Requirements for data standards

When data standards are used for the communication of information between software
programs, they should cater to certain requirements. The most important of these are
as follows:
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• adequately model at least the minimal information required to perform basic func-
tionalities on the data;

• enforce the presence of this minimal information in the standard, so that any data
consumer knows what information can always be reliably retrieved;

• allow as much as possible (ideally, any) additional detail to be communicated along
with the core information in optional fields;

• accommodate future extensions and additions while ideally remaining fully back-
wards compatible (new files should be readable by older software, while new
software should be able to read older files);

• adoption of the standard should be relatively straightforward (for example, by pro-
viding model implementations for popular programming languages or by enlisting
support from commercial instrument and software vendors to support input and
output of their data in the standard format).

It is not trivial to adhere to this list of requirements, and even when a standard does
adhere to all of these points, some problems can still occur.

18.2.4 Problems with data standards

There are many different problems that can interfere with the successful adoption of a
data standard. We summarize here several of the most common problems:

• Competing standards for the same purposes have the tendency to divide the field,
necessitating a multiplication of efforts for each software programmer who wants to
read and/or write both standards. Multiple coexisting standards also lead to confusion
and often even erroneous interpretation of information. An unfortunate example of
problems due to conflicting standards is the failed NASA Mars Climate Orbiter
mission, where confusion about the exact units of measurement used (imperial units
were reported, metric units were expected) resulted in the loss of a spacecraft worth
well over 100 million dollars.

• Relatively flexible standards can sometimes be achieved through a simple structure,
such as in the case of the FASTA format highlighted earlier. An important caveat
is that the simplicity of the format usually results in a lack of detailed modeling.
As such, the actual fine-grained structure of the information in the format is up to
the implementer and therefore can no longer be considered standard. In the FASTA
database format, for instance, it is impossible to automatically extract accession
numbers from the most popular formats in a consistent way.

• Standards that are very complex, on the other hand, often resist adoption due to
the large overhead their implementation incurs. This is one reason why the ASN.1
format never caught on as an interchange format for sequence databases.

• When a standard needs to be revised often in order to keep in step with the
developments of the field it tries to standardize information for, the overhead of
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implementing the standard quickly rises. While not necessarily presenting a thresh-
old for implementation in the first iteration of the standard, support for the standard
during subsequent iterations might rapidly decline as the overhead of reimplementing
the changes increases.

18.3 The Proteomics Standards Initiative
The Proteomics Standards Initiative (PSI) was founded in April 2002, at the HUPO
meeting in Washington. It was founded to define community standards for data represen-
tation in proteomics to facilitate data comparison, exchange, and verification. The PSI
consists of several working groups, each of which covers a specific area of interest within
the field of proteomics. The current working groups are: Molecular Interactions (MI),
Mass Spectrometry (MS), Sample Processing (SP), Gel Electrophoresis (Gel), Proteomics
Informatics (PI), and Protein Modifications (Mod).

The PSI welcomes contributions from people in the field and allows anybody to join
any of the working groups. Two meetings are held each year (one in spring and one in
autumn) where the individual working groups present their progress to the participants.
These meetings are free and are meant to allow interested parties to comment on the work
of the PSI. Working groups stay in touch through phone conferences that are also open
to interested parties, and sometimes organize workshops where working group members
convene to work on their standard.

Through the PSI website, several open mailing lists, and publications in the scientific
literature, the PSI attempts to reach as wide an audience as possible.

18.3.1 Minimal reporting requirements

The PSI also requires each working group to develop minimal reporting requirements
for its specific field. A minimal reporting requirement consists of a document that spec-
ifies the minimal amount of information about the experiment or analysis that should
be provided upon publication. The combined documents form the Minimal Informa-
tion About a Proteomics Experiment (MIAPE) specification. The MIAPE documents
should capture sufficient information for the understanding and reproducing of the
work, while remaining practical for the submitter at the same time. It is important
to emphasize that MIAPE specifications are not aimed at prescribing how an experi-
ment should be done, but instead informs researchers how best to describe what they
have done.

18.4 Mass spectrometry standards
Mass spectrometers accumulate substantial amounts of information during a data acquisi-
tion period as raw data. The primary storage format of this data typically consists of one
or more binary files with a proprietary layout. These files are difficult to read directly,
yet may sometimes be accessed programmatically through software libraries provided
by the instrument vendor. These files can also be very large, easily comprising several
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gigabytes per LC run for modern LC-MS instruments. As such, these formats are seldom
used for further analysis. Instead, highly processed digests of these files are exported as
text-based peak lists, which are more convenient for submission to search engines.

Peak lists can be formatted differently depending on the type of analysis performed.
For MS analysis (peptide mass fingerprinting), a simple list of recorded m/z values is
the minimal information in such a peak list. Sometimes a two-column table of values
is reported, in which the first column holds m/z values while the second column holds
the corresponding intensity of these signals. In MS/MS studies (fragmentation spectra),
a peak list will also contain the selected precursor m/z and its charge (if known) along
with a table of m/z values and their intensities.

There are many formats for peak lists in existence, the most prominent of which
are DTA, PKL, and MGF. Examples of these three formats are shown in Figure 18.3.
Historically, instrument vendors settled on slightly different peak list formats, while
search engine vendors typically preferred yet other formats as input for their software.
It is obvious that these many competing formats cause some unnecessary overheads and
potential misinterpretations,1 yet another flaw in the peak list formats is the oversimpli-
fication of the data structure. For instance, finding out from which instrument the peak
list is derived is impossible. Another perceived problem with peak lists is the lack of
peak-specific metadata that can be stored. This makes it impossible to record potentially
important pieces of information such as fragment peak charge state or precursor peak
elution time.

1823.78 2
113.34 654
125.10 345
238.91 1120
315.67 619
450.73 8415
517.33 10765
599.12 312
610.08 9371
780.76 6541
980.36 3201
1100.95 1201

DTA file

912.39 12304 2
113.34 654
125.10 345
238.91 1120
315.67 619
450.73 8415
517.33 10765
599.12 312
610.08 9371
780.76 6541
980.36 3201
110.95 1201

PKL file

# A comment line.
BEGIN IONS
TITLE=Spectrum title
PEPMASS=912.39 12304
CHARGE=2+
113.34 654
125.10 345
238.91 1120
315.67 619
450.73 8415
517.33 10765
599.12 312
780.76 6541
980.36 3201
110.95 1201
END IONS

MGF file

Figure 18.3 Examples of three popular peak list formats. The same fragmentation spectrum has
been formatted in DTA, PKL, and MGF format. Note the use of comments in the MGF format, as well
as the more verbose structural elements. Also note that the PKL file contains the precursor m/z
value and the DTA file holds the singly charged precursor mass

1 For instance, DTA and PKL files are very similar in format, but where PKL files contain the precursor
m/z value, DTA files hold the singly charged precursor mass.
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In order to solve the problems with existing peak list formats, the Institute for Systems
Biology (ISB) in Seattle developed the mzXML format (Pedrioli et al. (2004)). As an
XML-based format, mzXML benefits from all the underlying properties of XML: that is,
it is human and machine readable, validatable, and architecture independent. The ISB also
provided convenient tools that could extract mzXML files from several vendor-specific
raw data formats, making it relatively easy for others to generate mzXML formatted data.
Finally, a collection of freely available tools developed by the ISB provided powerful
data analysis and processing functionality based on mzXML input files.2

At the same time, the HUPO PSI Mass Spectrometry (PSI-MS) working group devel-
oped the mzData standard as another standard for peak list replacement. Also XML
based, mzData inherits the same underlying advantages of XML as mzXML. Contrary
to mzXML, which was developed by a single institute, mzData was developed by a
committee of interested people from academia, industry, and mass spectrometer vendors.
mzData also differs from mzXML in that it relies on a controlled vocabulary to annotate
data elements, rather than on the free text descriptions found in mzXML.

Currently, both teams are working on a joint standard to supersede both mzXML and
mzData under the PSI-MS umbrella.

18.5 Modification standards
The PSI effort on modifications (PSI-Mod) is building an ontology that will contain
all modifications currently held by the RESID, DeltaMass, and UniMod databases. This
ontology will therefore contain posttranslational modifications (effected by the cellular
machinery in vivo) as well as chemical modifications (due to sample handling and
processing in the lab). For more information on modifications, see Section 1.4.

18.6 Identification standards
As with the peak lists, the format of protein or peptide identifications is specific to
the software that produced the output. Some of these are based on existing formatting
standards, such as the MIME files reported by MASCOT (also known as datfiles after
their ‘.dat’ extension) and the different XML-based formats (for example, from X!Tandem
and OMSSA), while others define custom formats, such as the text-based SEQUEST
‘.dta’ files.

Additionally, Ruedi Aebersold’s group at ISB wrote its own post-analysis software to
refine peptide and protein identification, which came with its own XML-based output
formats as well. These are known as pepXML and protXML.

The PSI Proteomics Informatics (PSI-PI) working group is currently developing the
analysisXML standard which will standardize search engine output and possible postpro-
cessing steps. The format is XML based and will rely on terms from a corresponding
ontology.

2 The need to exchange information from different instruments between different software applications
was one of the driving forces behind the development of mzXML.
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Bibliographic notes
FASTA Lipman and Pearson (1985)

Standards Pedrioli et al. (2004)

HUPO http://www.hupo.org
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Pevzner PA, Mulyukov Z, Dančík V and Tang CL 2001 Efficiency of database search for identifi-
cation of mutated and modified proteins via mass spectrometry. Genet. Res. 11, 290–299.

Powell LA and Hieftje GM 1978 Computer identification of infrared spectra by correlation-based
file searching. Anal. Chim. Acta 100, 313–327.

Purvine S, Kolker N and Kolker E 2004 Spectral quality assessment for high-throughput tandem
mass spectrometry proteomics. OMICS 8, 255–265.

Rawlings ND, Tolle DP and Barrett AJ 2004 MEROPS: the peptidase database. Nucl. Acids Res.
32, D160–D164.

Reid GE and McLuckey SA 2002 Top down protein characterization via tandem mass spectrometry.
J. Mass Spectrom. 37, 663–675.

Resing KA, Meyer-Arendt K, Mendoza AM, Aveline-Wolf LD, Jonscher KR, Pierce KG, Old
WM, Cheung HT, Russell S, Wattawa JL, Goehle GR, Knight RD and Ahn NG 2004 Improving
reproducibility and sensitivity in identifying human proteins by shotgun proteomics. Anal. Chem.
76(13), 3556–3568.

Roepstorff P and Fohlman J 1984 Proposal for a common nomenclature for sequence ions in mass
spectra of peptides. Biomed. Mass Spectrom. 11, 601.

Sadygov RG, Eng J, Durr E, Saraf A, McDonald H, MacCoss MJ and Yates III, JR 2001 Code
developments to improve the efficiency of automated MS/MS spectra interpretation. J. Proteome
Res. 1, 211–215.

Salmi J, Moulder R, Filen JJ, Nevalainen OS, Nyman TA, Lahesmaa R and Aittokallio T 2006
Quality classification of tandem mass spectrometry data. Bioinformatics 22, 400–406.

Samuelsson J, Dalevi D, Levander F and Rögnvaldsson T 2004 Modular, scriptable and automatic
analysis tools for high-throughput peptide mass fingerprinting. Bioinformatics 20, 3628–3635.

Sasagawa T, Okuyarna T and Teller DC 1982 Prediction of peptide retention times in reversed-
phases high-performance liquid chromatography during linear gradient elution. J. Chromatogr.
240, 329–340.

Sauve AC and Speed TP 2004 Normalization, baseline correction and alignment of high-throughtput
mass spectrometry data. Proceedings of Gensips (Workshop on Genomic Signal Processing and
Statistics).

Savitski MM, Nielsen ML and Zubarev RA 2005a New data base-independent, sequence tag-based
scoring of peptide MS/MS data validates Mowse scores, recovers below threshold data, singles
out modified peptides, and assesses the quality of MS/MS techniques. Mol. Cell. Proteomics 4,
1180–1188.

Savitski MM, Nielsen ML, Kjeldsen F and Zubarev RA 2005b Proteomics-grade de novo sequencing
approach. J. Proteomic Res. 4, 2348–2354.

Scarberry RE, Zhang Z and Knapp DR 1995 Peptide sequence determination from high-energy
collision-induced dissociation spectra using artificial neural networks. J. Am. Soc. Mass Spectrom.
6, 947–961.



BIBLIOGRAPHY 273

Schmidt F, Schmid M, Jungblut PR, Mattow J, Facius A and Pleissner KP 2003 Iterative data
analysis is the key for exhaustive analysis of peptide mass finger-prints from proteins separated
by two-dimensional electrophoresis. J. Am. Soc. Mass Spectrom. 14, 943–956.

Schwartz R, Ting CS and King J 2001 Whole proteome pI values correlate with subcellular
localizations of proteins for organisms within the three domains of life. Genet. Res. 11, 703–709.

Searle BC, Dasari S, Turner M, Reddy AP, Choi D, Wilmarth PA, McCormack AL, David LL
and Nagalla SR 2004 High-throughput identification of protein and unanticipated sequence
modifications using a mass-based alignment algorithm for MS/MS de novo sequencing results.
Anal. Chem. 76, 2220–2230.

Searle BC, Dasari S, Wilmarth PA, Turner M, Reddy AP, David LL and Nagalla SR 2005
Identification of protein modifications using MS/MS de novo sequencing and the OpenSea
alignment algorithm. J. Proteome Res. 4, 546–554.

Shevchenko A, Sunyaev S, Loboda A, Shevchenko A, Boork P, Ens W and Standing KG 2001
Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-
of-flight mass spectrometry and BLAST homology searching. Anal. Chem. 73, 1917–1926.

Silva JC, Gorenstein MV, Li GZ, Vissers JPC and Geromanos SJ 2006 Absolute quantification of
proteins by LCMSE. Cell. Proteomics 5, 144–156.

Steen H and Mann M 2004 The abc’s (and xyz’s) of peptide sequencing. Nat. Rev. Mol. Cell. Biol.
5, 699–711.

Sunyaev S, Liska AJ, Golod A, Shevchenko A and Shevchenko A 2003 MultiTag: multiple
error-tolerant sequence tag search for the sequence-similarity identification of proteins by mass
spectrometry. Anal. Chem. 75, 1307–1315.

Sze SK, Ge Y, Oh H and McLafferty FW 2002 Top-down mass spectrometry of a 29-kDa protein
for characterization of any posttranslational modification to within one residue. Proc. Natl Acad.
Sci. USA 99, 1774–1779.

Tabb DL, MacCoss MJ, Wu CC, Anderson SD and Yates III, JR 2003a Similarity among tandem
mass spectra from proteomic experiments: detection, significance, and utility. Anal. Chem. 75,
2470–2477.

Tabb DL, Saraf A and Yates III, JR 2003b GutenTag: high-throughput sequence tagging via an
empirically derived fragmentation model. Anal. Chem. 75, 6415–6421.

Tabb DL, Smith LL, Breci LA, Wysocki VH and Yates III, JR 2003c Statistical characterization of
ion trap tandem mass spectra from double charged tryptic peptides. Anal. Chem. 75, 1155–1163.

Tabb DL, Thompson MR, Khalsa-Moyers G, VerBerkmoes NC and McDonald WH 2005
MS2Grouper: group assessment and synthetic replacement of duplicate proteomic tandem mass
spectra. J. Am. Soc. Mass Spectrom. 16, 1250–1261.

Tang WH, Halpern BR, Shilov IV, Seymour SL, Keating SP, Loboda A, Patel AA, Schaeffer
DA and Nuwaysir LM 2005 Discovering known and unanticipated protein modifications using
MS/MS database searching. Anal. Chem. 77, 3931–3946.

Tanner S, Shu H, Frank A, Wang LI, Zandi E, Mumby M, Pevzner PA and Bafna V 2005 InspecT:
identification of posttranslationally modified peptides from tandem mass spectra. Anal. Chem.
77, 4626–4639.

Taylor JA and Johnson RS 1997 Sequence database searches via de novo peptide sequencing by
tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1067–1075.

Taylor JA and Johnson RS 2001 Implementation and use of automated de novo peptide sequencing
by tandem mass spectrometry. Anal. Chem. 73, 2594–2604.

Thiede B, Lamer S, Mattow J, Siejak F, Dimmler C, Rudel T and Jungblut PR 2000 Analysis of
missed cleavage sites, trytophan oxidation and N-terminal pyroglutamylation after in-gel tryptid
digestion. Rapid Commun. Mass Spectrom. 14, 496–502.

Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM,
Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT and Nicholson DW 1997 A combinatorial



274 BIBLIOGRAPHY

approach defines specificities of members of the caspase family and granzyme b. Functional
relationships established for key mediators of apoptosis. Biol. Chem. 272, 9677–9682.

Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie L
and Davison M 2001 Validation and development of fluorescence two-dimensional differential
gel electrophoresis proteomics technology. Proteomics 1, 377–396.

Tsur D, Tanner S, Zandi E, Bafna V and Pevzner PA 2005 Identification of post-translational
modifications by blind search of mass spectra. Nat. Biotechnol. 23, 1562–1567.

Tuloup M, Hemandez C, Coro I, Hoogland C, Binz PA and Appel RD 2003 Aldente and Biograph:
an improved peptide mass fingerprinting protein identification environment. In Understanding
Biological Systems through Proteomics, Basle, Switzerland (ed. FontisMedia), pp. 174–176.
Swiss Proteomics Society.

Walker JM 2005 The Proteomics Protocols Handbook. Humana Press.
Wang Y, Zhang J, Gu X and Zhang XM 2005 Protein identification assisted by the prediction

of retention time in liquid chromatography/tandem mass spectrometry. J. Chromatogr. B 826,
122–128.

Washburn MP, Wolters D and Yates III JR 2001 Large-scale analysis of the yeast proteome by
multidimensional protein indentification technology. Nat. Biotechnol. 19, 242–247.

Weiller GF, Djordjevic MJ, Caraux G, Chen H and Weinman JJ 2001 A specialised proteomic
database for comparing matrix-assisted laser desorption/ionization-time of flight mass spectrom-
etry data of tryptic peptides with corresponding sequence database segments. Proteomics 1,
1489–1494.

Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD and Hochstrasser DF
1999a Protein identification and analysis tools in the ExPasy server. Methods Mol. Biol. 112,
531–552.

Wilkins MR, Gasteiger E, Herbert B, Molloy MP, Binz PA, Ou K, Sanchez JC, Bairoch A,
Williams KL and Hochstrasser DF 1999b High-throughput mass spectrometric discovery of
protein post-translational modifications. J. Mol. Biol. 289, 645–657.

Wilkins MR, Gasteiger E, Wheeler CH, Lindskog I, Sanchez JC, Bairoch A, Appel RD, Duun
MJ and Hochstrasser DF 1998 Multiple parameter cross-species protein identification using
MultiIdent - a World-Wide Web accessible tool. Electrophoresis 19, 3199–3206.

Wilkins MR, Lindskog I, Gasteiger E, Bairoch A, Sanchez JC, Hochstrasser DF and Appel RD
1997 Detailed peptide characterisation using PeptideMass - a World-Wide Web accessible tool.
Electrophoresis 18, 403–408.

Wolff JC, Fuentes TR and Taylor J 2003 Letter to the editor. Rapid Commun. Mass Spectrom. 17,
1216–1219.

Wolski WE, Lalowski M, Jungblut P and Reinert K 2005 Calibration of mass spectrometric peptide
mass fingerprint data without specific external or internal calibrants. BMC Bioinformatics 6, 203.

Wong JWH, Cagney G and Cartwright HM 2005 SpecAlign-processing and alignment of mass
spectra datasets. Bioinformatics 9, 2089–2090.

Wool A and Smilansky Z 2002 Precalibration of matrix-assisted laser desorption/ionization-time
of flight spectra for peptide mass fingerprinting. Proteomics 2, 1365–1373.

Wu CC, MacCoss MJ, Howell KE and Yates III, JR 2003 A method for the comprehensive
proteomic analysis of membrane proteins. Nat. Biotechnol. 21, 532–538.

Wysocki VH, Tsaprailis G, Smith LL and Breci LA 2000 Mobile and localized protons: a framework
for understanding peptide dissociation. J. Mass Spectrom. 35, 1399–1406.

Yan B, Zhou T, Wang P, Liu Z, Emanuele II, VA, Olman V and Xu Y 2006 A point-process
model for rapid identification of post-translational modifications. Proceedings of 2006 Pacific
Symposium on Biocomputing, pp. 327–338.

Yang X, Dondeti V, Dezube R, Maynard DM, Geer LY, Epstein J, Chen X, Markey SP and Kowalak
JA 2004 DBParser: web-based software for shotgun proteomic data analyses. J. Proteome Res.
3(5), 1002–1008.



BIBLIOGRAPHY 275

Yates III, JR, Eng JK, McCormack AL and Schieltz D 1995 Method to correlate tandem mass
spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 67,
1426–1436.

Yates III, JR, Morgan SF, Gatlin CL, Griffin PR and Eng JK 1998 Method to compare collision-
induced dissociation spectra to peptides: potential for library searching and subtractive analysis.
Anal. Chem. 70, 3557–3565.

Zhang N, Aebersold R and Schwikowski B 2002 ProbID: a probabilistic algorithm to identify
peptides through sequence database searching using tandem mass spectral data. Proteomics 2,
1406–1412.

Zhang W and Chait BT 2000 ProFound - an expert system for protein identification using mass
spectrometric peptide mapping information. Anal. Chem. 72, 2482–2489.

Zhang X, Asara JM, Adamec J, Ouzzani M and Elmagarmid AK 2005 Data preprocessing in liquid
chromatography-mass spectrometry-based proteomics. Bioinformatics 21, 4054–4059.

Zhang Z 2004 De novo peptide sequencing based on a divide-and-conquer algorithm and peptide
tandem spectrum-simulation. Anal. Chem. 76, 6374–6383.

Zhong H and Li L 2005 An algorithm for interpretation of low-energy collision-induced dissociation
product ion spectra for de novo sequencing of peptides. Rapid Commun. Mass Spectrom. 19,
1084–1096.



Index

2D SDS-PAGE 36–9
3D ion trap 128–9

Accuracy 8–9, 12, 21, 26–7, 37, 51, 82,
85–6, 91, 93, 97, 101–2, 115, 129–32,
136–7, 166, 171, 184, 193, 204–5, 221,
239–40, 249–53

Accurate mass 9
Adduct ion 69, 82
Affinity chromatography 58
Aldente 104–5
Allele 17
Alpha carbon 5
ALS-PAGE 249
Alternative splicing 4, 17
Amide bond 5, 142
Amino acid composition 11, 14, 99, 108–9
Amino group 5, 11, 141
Amino-terminal 5
Ammonia loss 121, 162, 204
Amu 8
Analyte 31–2, 54, 57–8, 60, 70, 235, 241, 257
Antibody 16, 38
Antisymmetric path 188
Antisymmetric 188, 222, 225–6
API 125, 131
Apparent mass 9, 98
Asymmetry factor 60, 63
Atomic mass unit 8
Attribute 5–14, 15, 19, 25–7, 32, 146–7,

217–19, 247

Average mass 9, 15, 73, 92, 100
Avogadro’s number 9

Backbone 5, 49–50, 69, 88, 142, 180, 227,
251

Backbone fragment 120–1, 182, 252
Band 33–4, 36, 54–5, 58–60, 236
Base peak 88
Baseline 55, 59–60, 88, 90, 146

resolution 60
width 59–60

Basis type 182, 184, 189
Bayesian classifier 219
Bias 26–7, 108–10, 143, 149, 206, 218, 220,

230, 257
Biemann nomenclature 255, 257
Binary decision tree 147
Biological process 1–2, 99
Biphasic columns 216
BLAST 195, 197
Blind PTM identification 156
Blind search 172
Bottom-up proteomics 19, 20, 253

C-terminal 5, 11, 21, 46–7, 50, 86, 121, 133,
142, 146–50, 180, 182

CAD, see Collisionally activated dissociation
(CAD)

Calibrant 25, 240, 256
Calibration 25–6, 27, 39, 62, 82, 91–2, 97,

103, 104, 241
Capacity factor 58

Computational Methods for Mass Spectrometry Proteomics I. Eidhammer, K. Flikka, L. Martens and S.-O. Mikalsen
© 2007 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51297-5



278 INDEX

Capillary LC column 54
Carboxy-terminal 5
Carboxyl group 5, 11
Catalytic site 46
Cation 56, 57
Cellular component 1, 2, 4, 6, 99
Charge-directed fragmentation 142
Charge estimation 138
Charge-remote fragmentation 142
Chemical cleavage 50
Chemical ionization 71
Chromatogram 54–5, 59–60, 63
Chromatography 53, 55, 60

affinity 58
column 53
gas 53–4, 235
HI 57
NP 57

Chymotrypsin 47, 48, 49
CID 123–4, 126, 128, 130, 133–4, 182,

189–90, 251–2
CIDentify 195, 197
Cleavage

activator 47
point 46–7, 108
preventor 47
semi-specific 100
site 23, 46–7, 49–51, 100, 244
specificity 47–8

Clique 223
Codiagonal 175
Codon bias 230
COFRADIC 211, 212, 215, 219
Collision cell 123–4, 131
Collision-induced dissociation 123–4
Collisionally activated dissociation (CAD)

124
Column chromatography 53
Competitive ionization 81
Complementary masses 134, 169–70, 223
Complete linkage 223
Complete spectrum 154, 159, 172, 189
Contamination 45, 82, 88
Contextual property 6
Controlled vocabulary 1, 257, 262
Cross-correlation 161–2, 163, 172
Crystallization 70
CV 1, 181, 226, 257
Cyclotron 124, 130

Da 6–10, 15, 19, 67, 69, 73, 75–6, 82, 85, 99,
104, 107, 112, 115, 121, 130, 156, 170,
172–4, 184, 193–4, 196, 205, 207, 214,
222, 226, 237–9, 251

Dalton 8–9, 81, 104
Data dependent acquisition 216
Daughter ion 120, 125
DE 84
De novo sequencing 153, 179–92, 193–4,

203, 207, 225, 227, 252
Dead time 58, 61
Decision tree 146–7, 168, 219
Deconvolution 135, 183
Deisotoping 92, 135, 183
Delayed extraction 84, 92
Delta-value 219
Derived sequence 153, 162, 179, 181, 186,

189, 193–201, 203, 225, 227
Detector 54–5, 58, 61, 67, 72, 77, 83–5, 116,

124, 127–31, 240, 257
Differential In-Gel Electrophoresis (DIGE)

40, 236
DIGE, see Differential In-Gel Electrophoresis

(DIGE)
Digestion 20, 22–3, 100, 116, 196, 244, 249
Dimer 2, 3
Discriminant function 164
Dissociation constant 10–12
DTA 261
Dye 33–4, 36, 38, 40
Dye-front 34
Dynamic exclusion 212
Dynamic range 38, 129, 132, 240

E-value 111, 114, 197
ECD, see Electron capture dissociation (ECD)
Edge 180, 185–9, 204, 207
Edit distance 200
Edman degradation 8
Electron capture dissociation (ECD) 124,

130, 189–90, 251–2
Electron transfer dissociation (ETD) 124,

129, 251
Electronic noise 55, 88
Electrospray ionization (ESI) 56, 70–1, 82,

123, 125–6, 128–9, 131–2, 137, 146, 149,
216, 249–50

Eluate 54, 56–7, 61, 70
Eluent 54
ESI, see Electrospray ionization (ESI)



INDEX 279

ETD, see Electron transfer dissociation (ETD)
Exact mass 8
Experimental mass 20–1, 44–5, 92, 100,

102–4, 106–7, 109, 111, 115–16
External standard 25–6

FAB, see Fast atom bombardment ionization
(FAB)

Fast atom bombardment ionization (FAB) 71
FASTA 195, 255, 259
FASTS 195
Feature table 17, 99
FFE, see Free Flow Electrophoresis (FFE)
Filtering 39, 99, 101, 147, 153, 156, 194, 227
Filtering function 39
FIR, see Fragmentation, intensity ratio
Fold changes 229, 240–1
Forbidden pair 188, 191
Fourier transformation 89, 130, 162
Fraction 21, 23–4, 77, 112, 147, 206, 212–14,

244–5, 249
Fractional mass 75, 91
Fractionating 21
Fragment

type 144, 159–60, 185
type probability 159

Fragmentation 69, 119, 123, 144
charge-directed 142
charge-remote 142
environment class 144–5
environment 144–8
intensity ratio 145–6
model 141–50
site 144–50, 159, 180, 182, 184, 185–6,

189, 204
Fragmentation techniques 123–4
FT-ICR 124, 130–1, 132, 139, 251, 253
FT-MS 131
FT spectra 159–60
Full-scan mode 125
FWHM 77, 79, 251

Gas chromatography (GC) 53–4, 235
GC, see Gas chromatography (GC)
Gel electrophoresis 9, 31–40, 49–50, 81, 249,

260
Gene Ontology Consortium (GO) 1–2
Genetic algorithm 191
GO, see Gene Ontology Consortium (GO)
Gradient 35, 56, 61–2, 216

Gradient delay time 61–2
Graph 180, 188
GRAVY score 14
GutenTag 203–4

Half-heightwidth 59–60
Hard ionization 70
Heteroscedastic noise 240
High-energy CID 124
High pressure liquid chromatography (HPLC)

54–5
HPLC, see High pressure liquid

chromatography (HPLC)
HSP 195, 197–8
Hydrophilic 13, 62
Hydrophobic 13–14, 20, 32, 37, 56–7, 62,

149, 215
Hydrophobicity 13–14
Hydrophobicity scale 13

ICAT 238
ICPL 238
Identification approach 20–1
IEF, see Isoelectric focusing (IEF)
Immobilized pH gradient 35
Immonium fragment 121
Immonium ion 121, 163
In silico digestion 20, 43–5, 50–1, 99–101,

111–12, 159
In source decay (ISD) 123
In-space analyzer 125
In-time analyzer 125, 139
Inclusion list 132
Incomplete spectrum 189
Injection 58
InspecT 203–6
Intensity normalization 90–1, 143, 146, 217,

231
Internal fragment 121
Internal standard 25–6, 39, 231, 241
International Protein Index (IPI) 17–18
Intrinsic property 6
Inversed spectrum 136–7, 174, 181, 222
Ion exchange chromatography 57
Ion gate 126
Ion probability 185
Ion trap (IT) 124–5, 128–30, 131–2, 139,

147, 149, 251–2
Ion type 124, 134, 145, 147, 159, 167, 173,

179, 182, 185, 202



280 INDEX

Ionization
electrospray 56, 70–1
fast atom bombardment 71
hard 70
MALDI 70
soft 70, 123
source 67, 69–71, 120, 124–5, 126, 249

IPG strips 35
IPI, see International Protein Index (IPI)
IRMPD 251
ISD, see In source decay (ISD)
Isoelectric focusing 35–6
Isoelectric point 10–13, 23, 32, 35–7, 57, 62,

99, 147, 244
Isotope 8–9, 14, 19, 72–3, 76, 78–9, 92, 132,

135–6, 237–8, 250
Isotopic envelope 73, 76, 78, 92,

135–6, 237
Isotopic label 14
Isotopic resolution 78–9
IT, see Ion trap (IT)
iTRAQ 238–9

KEGG, see Kyoto Encyclopedia of Genes and
Genomes (KEGG)

Kyoto Encyclopedia of Genes and Genomes
(KEGG) 2

Label-based quantification 236–40
Label-free quantification 232–6
Laboratory Information Management Systems

(LIMS) 227
Lane 33
Laser-induced dissociation (LID) 123
LC, see Liquid chromatography (LC)
Least squares approximation 25
LID, see Laser-induced dissociation (LID)
LIMS, see Laboratory Information

Management Systems (LIMS)
Linear ion trap (LIT) 129, 132
Liquid chromatography (LC) 31, 53, 54–5,

235, 236, 249, 261
LIT, see Linear ion trap (LIT)

m/z, see Mass-over-charge (m/z)
MALDI, see Matrix assisted laser

desorption ionization (MALDI)
MALDI-TOF 81–94, 233, 234
MALDI-TOF/TOF 126, 132
Marker ion 238–9

Mass
accurate 9
analyzer 67, 70–1, 72, 119, 120, 128, 131,

253
apparent 9, 98
average 9, 15, 73, 92, 100
defect 9
detector 67
excess 9
experimental 20, 21, 44–5, 92, 100, 102,

103, 104, 106, 107, 109, 111, 115–16
filtering 156
fractional 73–6, 91, 92
gate 126
molecular 8–10, 17, 32, 34
monoisotopic 8, 9, 15, 20, 73, 115
nominal 9, 19, 20, 67, 69, 75–6, 99, 133,

170, 172, 173, 177
number 9
spectrometer 15, 19, 21, 23, 37, 43, 45,

48–9, 54, 56–7, 67, 69, 82, 89, 101, 104,
106, 112, 120, 123, 124–5, 131, 212, 216,
218, 221, 227, 230, 235, 238, 240, 241,
249, 251, 253, 257–8, 260, 262

spectrum 43, 45, 67, 73, 77, 128, 222, 237,
250

theoretical 20–1, 43–4, 99, 100, 101, 102,
103, 104, 107, 112, 116, 166, 167

Mass-over-charge (m/z) 19, 72
Mass profile fingerprinting 21
Master gel 39
Matrix 70, 75, 81–3, 86, 97, 115, 174–5,

195–9, 201, 225
Matrix assisted laser desorption ionization

(MALDI) 49, 70, 72, 81–2, 84, 88,
92–3, 123, 125–6, 129, 131, 132, 137, 249

Metastable ion 123
MGF 261
MIAPE, see Minimal Information About a

Proteomics Experiment (MIAPE)
Micro LC column 54
Milli unit 9
Minimal Information About a Proteomics

Experiment (MIAPE) 260
Missed cleavage 23, 44–5, 48–51, 100, 102,

106, 108, 111, 112, 114–15, 147, 244, 247
Mmu 9
Mobile peptide 142, 144, 149
Mobile phase 53, 54–5, 56–8, 61
Mobile proton model (MPM) 142



INDEX 281

Modification
fixed 100
mass 15, 171, 252
position 15
site 15
variable 100

Mole 9
Molecular function 1–2, 4
Molecular mass 8–10, 17, 32, 34
Molecular weight (MW) 8, 17
Monoisotopic mass 8, 9, 15, 20, 73, 115
Monoisotoping 92
MPM, see Mobile proton model (MPM)
MRM, see Multiple reaction monitoring

(MRM)
MS BLAST 195, 197
MS instrument 21, 54, 81, 83, 91, 97, 101,

115, 123, 143, 235, 261
MSA 103
MS/MS instrument 54, 123, 143
MS/MS mode 125, 129, 233, 238–9
MS/MS spectrum 119–20, 123, 125, 132,

135–7, 139, 141–2, 156, 179, 186, 200,
205, 216, 224, 239, 252

MS/MS-fragmentation 125
MSn 21
MSn-spectrum 128, 139
MS-Seq 209
MS-Tag 209
Mu 9
MudPIT 215–16
Multiple reaction monitoring (MRM) 131–2,

139
MW, see Molecular weight (MW)
MzXML 93, 262

N-terminal 5, 8, 11, 46–7, 51, 62, 120, 133,
146, 148, 182, 185, 215, 219

Nano LC 54
NCBI non-redundant database 17
NCBI nr 17–18
Neural network 61, 219
Neutral loss 15, 120, 123–4, 138, 183, 194,

221
Node 147–8, 168, 180, 182–91, 197, 204,

206–7, 222
Noise 39, 45, 55, 77, 81, 86–8, 89, 90, 93,

102, 139, 159, 165, 171, 185, 218, 220,
233, 240

Noise level 88–9

Nominal mass 9, 19–20, 67, 69, 75–6, 99,
133, 170, 172–3

Noninterleaved 188
Non-mobile peptide 144, 149
Normal ion 123
Normal phase 57
Normalization 91, 206, 231–2

intensity 90–1, 143, 146, 217, 231

OBO, see Open Biological Ontologies (OBO)
16O/18O labelling 238
OLAV 108, 166–8
Ontology 15, 257–8, 262
Open Biological Ontologies (OBO) 2
OpenSea 198–200
Orbitrap 129–30, 131

P-value 111–13, 197, 206
Packing 54
PAGE, see PolyAcrylamide Gel

Electrophoresis (PAGE)
Paraclique 223
Parent ion 120, 134
Part per million (ppm) 9, 104, 108, 251
Partially mobile peptide 144
Paul trap 128
Peak

area 63, 89–90, 230
detection 89–90, 135, 233–4
height 59–60, 63, 77, 230
list 77, 86, 90, 92–4, 97–9, 115, 233,

261–2
size 60, 63
width 59, 77–8, 89

Peptide 6, 23
bond 5, 11, 14, 54, 82, 144–5, 189
fragment 120–3
mass fingerprinting (PMF) 21, 22–3, 45,

261
mass maps 21
sequence tag (PST) 201–6

Peptide-centric proteomics 23, 49, 246
PH gradient 11, 35, 36, 37
Photoionization 71
PIR, see Protein Information Resource (PIR)
pK value 7, 11–12, 16
PKL 261
Plate number 60, 63
PMF, see Peptide, mass fingerprinting (PMF)



282 INDEX

PolyAcrylamide Gel Electrophoresis (PAGE)
9, 32–5, 36–40, 215, 249

Polypeptide 3, 5, 8, 10, 12, 13, 241
PoPS 46
Post source decay (PSD) 123
Posttranslational modification (PTM) 2, 4–5,

6, 14–16, 49, 88, 94, 97, 102, 108, 109,
115, 179, 198, 262

Ppm, see Part per million (ppm)
Precision 26–7, 37, 79, 97, 160, 166–7, 185,

233
Precursor 17, 21, 120, 122–4, 126, 131, 133,

135–9, 143, 148, 153, 156, 162–4,
166–71, 182–3, 187, 190, 194, 201, 218,
221, 223–4, 238, 243, 247, 252, 255, 261

Precursor ion 120, 123, 125, 129
Primary run 212–13
Primary structure 7
PRM spectrum 222, 226
Product ion 120, 123–4, 129, 138–9, 183, 252
Product matrix 225
Propeptide 99
Proper graph 188
Property 6, 21, 31, 62, 139
Protease 20, 23, 43, 45–50, 61, 75, 91, 93,

100–1, 114, 156, 171, 196, 205
Protein 1–27

form 3, 5
identification 2, 6, 16, 18, 26, 50, 60, 93,

97–116, 119, 141, 153, 243, 246, 249,
252, 262

identity 3–4, 243
isoform 5
quantification 2, 230
sample comparison 3
sequencing 8
variant 4–5, 32

Protein Information Resource (PIR) 16
Proteolytic cleavage 4–5, 243
Proteome 1–27, 211, 253
Proteomics 1–27
Proteomics data standards 257–8
Proteomics Standards Initiative (PSI) 93, 260

Mass Spectrometry Working Group 260,
262

Modifications Working Group 260, 262
Proteomics Informatics Working Group

260, 262
Protonated site 141
PSD, see Post source decay (PSD)

PSI, see Proteomics Standards Initiative (PSI)
PSI-Mod 260, 262
PSI-MS 260, 262
PSI-PI 260, 262
PST, see Peptide, sequence tag (PST)
PTM, see Posttranslational modification (PTM)

Q-TOF 131–2
Q-TRAP 131–2
QIT 128
Quadratic discriminant analysis 219
Quadrupole 126–8, 131
Quadrupole ion trap 124–5, 128, 252
Quantification

absolute 229, 238, 241–2
relative 229, 241

Quantitative proteomics 229–30
Quasi-molecular ion 70

Radio frequency field (RF) 127
Random cleavage 49–50
Random spectrum 114
Reactive intermediates 142
Recalibration 103
Reflectron 84, 92, 126
RefSeq 17, 18
RefSeq NP 17
RefSeq XP 18
Relative retention 59
Repeatability 26
Reporter ions 238
Representative spectrum 224, 227
Reproducibility 26, 36, 37, 39, 40, 56, 60,

143, 235
Residue 5
Resolution 22, 36, 45, 56, 58, 60, 77–9,

82–4, 89, 97, 129–32, 137, 238, 249–53
baseline 60
in chromatography 60

Resolving power 77–9, 132, 251
Retention

coefficient 61–4
factor 58
time 53–5, 58–63, 213–14, 235–6

Reverse COFRADIC 215
Reverse phase 93, 213, 249
Reverse spectrum, see Inversed spectrum
RF, see Radio frequency field (RF)
RP-chromatography 56–7
RT spectra 160



INDEX 283

S/N, see Signal-to-noise (S/N)
Sample archiving 82
Sample coverage 21, 23, 212, 215, 238
Scissile bond 46
SCOPE 165
Score components 106–7
SCX-chromatography 57, 60
SDS, see Sodium Dodecyl Sulfate (SDS)
Secondary run 213–14
Segment 139
SELDI 234, 236
SELDI chip 234
Selective fragmentation 150
Semi-specific cleavage 100
Sensitivity 20, 36, 38, 82–3, 93, 129, 132,

251
Separation 21–2
Separator factor 59
Sequence

coverage 21, 45, 49, 86, 106, 108–9, 115,
211–12, 251

filtering 156
spectrum 181–6
tag 156, 198–9, 202–5, 252
tag hit 203–5

Sequence Ontology Project (SO) 2
Sequential comparison 179–92
SEQUEST 147, 162–4, 168, 192, 218, 262
Shotgun proteomics 211
Sibling spectra 220–1, 223–4, 227
Side chain fragments 121
Sigmoid function 221
Signal-to-noise (S/N) 55, 85, 88, 129, 131,

139, 143, 189
SILAC 237–8
Single linkage 223
Size exclusion 58
SO, see Sequence Ontology Project (SO)
Sodium Dodecyl Sulfate (SDS) 32,

36, 249
Soft ionization 70, 123
Soft ionization source 70
Solute 54
Solvent 54, 71
SpecAlign 233
Spectral

alignment 172, 173–6, 225
comparison 159–76, 252
contrast angle 161, 162, 221
convolution 172–3

pair 225
subset 144

Spectrometer 67, 78
Spectrum graph 180–3, 184
SPIDER 200–1
Splice variant 4, 5, 17–18, 252
SSRC 61–2
Staining 14, 36, 38, 50, 94
Standard 25

creation mechanisms 255
Standards

design 256
dimensional 256
formatting 256–7, 262
measurement 256
proteomics

data standards 257–8
test standards 256

terminology 256–7
test 256

Stationary phase 53, 54, 56–8, 61–2
Strong cation exchange 56, 57
Subsite 46–7
Substrate 46–7
Subtraction method 111
Subunit 3
Suffix tree 206, 207
Support 37, 184, 185, 227, 259, 260
Support vector machine 219
Swiss-Prot 10, 16–17, 45, 99, 115, 214–15
Swiss-Prot Varsplic 17
Systems biology 2

Tailing factor 60
Tandem 119–39
Term 257
Test samples 256–7
Th, see Thomson
Theoretical mass 20, 99–104, 107, 112, 116,

166–7
Thomson (Th) 67
Threaded comparison 154
TIC, see Total ion count (TIC)
Time-of-flight (TOF) 72, 82–5, 257
Timed ion selector (TIS) 126
TIS, see Timed ion selector (TIS)
TOF, see Time-of-flight (TOF)
TOF/TOF 126
Top-down proteomics 20, 249–53
Total ion count (TIC) 91



284 INDEX

Total retention time 58, 61
Training set 61, 108–10, 143–4, 218, 219
Transit peptide 99
Translated EMBL (TrEMBL) 16
TrEMBL, see Translated EMBL (TrEMBL)
Trimer 3
Triple quadrupole 126–8, 131
Trypsin 48–9
Two-dimensional SDS-PAGE 36

u, see Unified atomic mass unit (u)
U-graph 185
Unified atomic mass unit (u) 8
UniParc 16
UniProt archive 16

UniProt KB 16–17
UniProt Knowledgebase 16–17
UniRef 16
UT spectra 159–60

Valid value 27
Value 6

Water loss 121
Well 33
Western blotting 38

Z 19
Zone scoring 169–71
Zone searching 169–71


