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Foreword

The field of Complex Metallic Alloys can, although its roots reach back to the nineteen
twenties, be considered one of the most recent research areas in modern materials
science. The term Complex Metallic Alloys denotes a broad family of binary or
multinary compounds consisting of either metallic elements or mixtures of metals
to which metalloids, rare earth elements or chalcogenides are added. Their crystal
structure is based on extraordinary large unit cells containing typically some ten to
some hundred atoms. Cases with more than a thousand atoms per unit cell are also
known. To understand how nature can organise such a high number of atoms into a
highly ordered crystalline lattice presents a challenge to science as well as a chance to
obtain new insights into the properties of condensed-matter systems. On the other
hand the unusual structure gives rise to unusual physical properties with a potential
for new technological applications.

In a pioneering paper published in 1923 Linus Pauling described for the first
time the structure of an intermetallic compound [1]. He reported on an X-ray
diffraction study of NaCd,. In spite of the apparently “harmless” stoichiometry the
diffraction patterns of this crystal were so complicated, however, that it was not then
possible to assign indices to many of the diffraction spots. Only more than thirty
years later, in 1955, Pauling was able to publish a model of the structure [2] based on
a cubic space groupFd3m. Pauling’s unit cell has an edge length of about 3 nm and
contains 384 sodium and 768 cadmium atoms, making a total of 1152. For metallic
materials this is a very large number. Apart from the cases of elementary metals
with 2, 2, and, 4 atoms per unit cell for the body-centred cubic, hexagonal close
packed and face-centred cubic structure, respectively, we have, for example, 4 atoms
for the y'-phase, Ni3Al, 16 atoms for Fe;Al and the Heusler alloy AlICu,Mn, and 52
atoms per unit cell in the y-brass phase, CusZng. For these new structures the term
“giant unit cell crystals” was coined by Sten Samson, another pioneer in the field of
intermetallic compounds [3]. Inside the giant unit cells a cluster substructure
exists. For example, there is a large group of alloys based on the 55 atom Mackay
icosahedron, another group is based on the 105 atom Bergman cluster [4]. Today
hundreds of such compounds are known whose structures are based on giant unit
cells [5]. However, taking into account that in each new ternary phase diagram
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studied, more phases based on giant unit cells are found, their number should run
into thousands.

Although crystallographers learned to solve these challenging giant unit cell
structures the field was essentially abandoned during the nineteen seventies. The
primary reason for this was that the tiny single crystals sufficient for structure
determination were by far not enough for physical property studies which could have,
on the long run, justified the effort. The growth of larger single crystals as a pre-
requisite for studies into the intrinsic properties of these compounds was far outside
the scope of what metallurgy was able to do at that time. Furthermore, in the pre-
computer age, solid-state theory was not developed enough to justify hopes that such
systems could ever be understood.

The momentum for the rediscovery of giant unit cell compounds was provided by
Danny Shechtman’s discovery of the quasicrystalline form of solid matter [6]. In fact
quasicrystals and giant unit cell compounds share a number of common structural
features, the most prominent being the internal cluster substructure. In a sense
quasicrystals can be considered giant unit cell structures with an infinitely large unit
cell. Indeed considerable progress in the development of models for the structure of
quasicrystals was made starting from the known structure of related giant unit cell
intermetallics. Nevertheless, giant unit cell intermetallics were for a long time not
considered a field of materials science of its own. The term “approximants (to the
quasicrystal structure)” indicated that the essentially crystallographic interest was
limited to an auxiliary part to be played in the quest for a solution of the structure of
quasicrystals. This changed with a programmatic lecture [7] on “Structurally Com-
plex Alloy Phases” given on September 9", 2002 on the “Eighth International
Conference on Quasicrystals” in Bangalore, India, which was meant as an appeal
to dedicate intensive research efforts to “one of the last white spots on the map of
metal physics”. Today, last but not least, after more than two decades of quasicrystal
research, the tools are available to deal with giant unit cell materials. Large single
crystals can be grown for many systems allowing intrinsic physical property studies,
and the last 30 to 40 years have seen an extraordinary development of solid-state
theory allowing today to tackle the difficult consequences of the particular atom
arrangement for all kinds of properties.

For purely practical reasons it appeared useful to change, sometime later on, from
the term “Structurally Complex Alloy Phases” to “Complex Metallic Alloys” and the
acronym “CMA” during the application for a European Network of Excellence in the
6™ framework Programme of the European Union. There is no clear division line
between the family of Complex Metallic Alloys and more conventional small-unit cell
alloys, on the one end, and quasicrystalline alloys, on the other end. The authors of the
present volume find it useful to leave the “boarders” open and to benefit from ideas
growing on a wide platform accommodating also Zintl-phases, skutterudides,
clathrates and Heusler-alloys.

To what extent it is useful to treat quasicrystals as a part of the Complex Metallic
Alloy family remains to be seen. From a phenomenological point of view it is useful to
define two physical correlation lengths, one related to the lattice parameter, the other
referring to correlation effects related to the cluster substructure inside the crystal
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unit cell. A division criterion between giant unit cell alloys and quasicrystalline
phases can then be derived on the basis of the relative importance of the lattice-
periodicity related correlation length for a particular feature or property of interest.
Although this can help to better understand the properties of either type of atom
arrangement, it has to be pointed out that things remain complicated. From an
experimental point of view the attempts to construct a correlation between the size of
the unit cell volume and the measured electronic density of states at the Fermi level
provided valuable insight but they were not entirely successful. On the other hand, an
ideal quasicrystal is fully long-range ordered. Its construction rules, although in
principle simple in its six-dimensional reference lattice, are complicated in three-
dimensional space. Therefore, to build up such a largely defect-free quasicrystal
structure as observed experimentally, e.g. in the Al-Mn-Pd system, requires a long-
range correlation of an even more stringent nature than that governing conventional
crystal formation. In periodic crystals the symmetry of the individual building blocks
is compatible with a periodic lattice and therefore both long-range and short-range
atomic ordering are driving the system in the same direction. To build up a
quasiperiodic lattice requires a long-range structural correlation length exceeding
that occurring in conventional crystals.

The use of the term “complex” and the discussion of “complexity” in science is
rapidly increasing in recent years. As already pointed out by Warren Weaver in his
pioneering paper [8] this can be attributed, on the one hand, to an increasing
awareness of the fact that sciences have in the past neglected complexity as a
constitutive element of what is happening in nature and in society. On the other
hand, sciences have developed to such an extent that phenomena too complex to be
dealt with in the past can now be tackled employing the tools and techniques available
today.

The field of Complex Metallic Alloys is typical for either group of arguments.
Complex Metallic Alloys are characterised by their large crystal unit cells, by a
pronounced cluster substructure with a large variety of coordination polyhedra and
by inherent disorder both structurally and chemically as well as by partial site
occupation, i.e. lattice sites are left vacant as a result of constraints of electronic
origin and simple atom size effects. Furthermore, the recent work, in particular on
plasticity, has shown that there is another very important feature of this class of
materials and this is the existence of a high number of structurally similar phases
within a very narrow region (a few atomic percent wide) of the thermodynamic phase
diagram. These provide the system with an additional degree of freedom which is, for
instance, used by nature in the formation of metadislocations and for plastic
deformation. Often these phases differ so little from each other that it is difficult
to isolate them and investigate them individually. And, typical for a complex system,
the phenomenology of how these materials develop in time, temperature and
composition space depends, in a way that is difficult to grasp, on kinetics as well
as on the (difficult to define) starting and boundary conditions. A situation not much
different from the situation described by Friedrich August von Hayek in his 1974
Nobel Prize Lecture for complexity in Economics [9] applies to such elementary
physical phenomena as diffusion in giant unit cell materials. Although mass
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transport in Complex Metallic Alloys and quasicrystalline phases has been extensively
studied experimentally, there is not even an idea how this transport occurs on an
atomistic scale and of what nature the decisive variables are or how they can be
properly defined maintaining the full complexity of the systems.

Seth Lloyd has compiled a list of about forty different measures of complexity that
have been proposed in recent years. Melanie Mitchell, External Professor at the Santa
Fe Institute dedicated to complexity research, comments: “...people are going to
have to figure out how these diverse notions . . . are related to one another and how to
most usefully refine the overly complex notion of complexity. This is work that largely
remains to be done. ..” [10]. In the present volume, some of the authors directly or
indirectly use as a measure for complexity the size of the crystal unit cell. Such type of
measures have been discussed before and linked to Shannon Entropy, Algebraic
Information Content, Thermodynamic Depth, Degree of Hierarchy and so forth [10].
As it is the case with all attempts to quantify complexity since Murray Gell-Mann’s
pioneering early paper [11] such definitions, although they may be useful at times,
have still to stand the test of practical applicability and usefulness.

Apart from the general scientific insight gained by experimental and theoret-
ical work on Complex Metallic Alloys this field has recently seen a number of
surprising discoveries. Among these are particular transport properties, e.g.

”

metallic, semiconducting electronic conductivity and isolating behaviour, the
observation of superconductivity [12], the observation of a novel magnetic
memory effect [13] and the observation of entirely new mechanisms of plastic
deformation [14].

The current volume written by experts in the field of Complex Metallic Alloys gives
in separate chapters an overview on the current state of research in this field as well as
on first applications which provide excellent examples of the variety of properties. At
the same time this book can serve as a comprehensive guide to the literature and as a
starting point of further in-depth studies in the future.
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Preface

The European Network of Excellence CMA, for Complex Metallic Alloys, was active
during the five years from July 2005 until the end of June 2010. It has assembled in a
joint effort twenty research institutions based in twelve different European coun-
tries, with more than 500 individuals on board. The areas of focus were metallurgy
and crystal growth, crystallography and defects, electronic, phononic and mechan-
ical properties, surface physics and chemistry, surface treatment and coating tech-
nologies, as well as a number of applied topics such as composites, thermoelectricity,
magnetocaloric materials, and catalysts.

The present book is an attempt to summarize the knowledge gained by the
network over this short period of time. Addressing specifically beginners in the
field, it complements the more detailed Series of Books on Complex Metallic
Alloys,") which was edited by one of us (EBF) in combination with the annual
sessions of the so-called EuroSchool of the network. It is organised in ten self-
contained chapters, with the view to begin with the more general notions, explain
how complex metallic alloys may be grown using standard metallurgical routes, see
how specific their properties are, either in bulk or at the surface, and finish with
application-driven issues: coatings, magnetocalorics, thermoelectrics and catalysts.

The editors are deeply indebted to the authors of the chapters, who have accepted
— within a tight schedule — to describe in a pedagogical way the many facets of the
science and engineering of complex metallic alloys. They are grateful to the many
colleagues, throughout Europe, who have contributed, in one way or another, to the
life of the network, especially as task leader or as responsible of the Virtual
Integrated Laboratories of CMA-NoE, and who took care to achieve a very high
degree of integration of our research teams in order to counterbalance the fragmen-
tation of research within the European Research Area.

Special thanks go to Annemarie Gemperli, the secretary general of CMA-NOoE, to
Mr Karl Hoehener and Prof. Louis Schlapbach, who acted with one of us (JMD) as
executive officers to lead the CMA-NoE. In this respect, the inspiration and dedica-
tion gained from Prof. Knut Urban during the early period of the network was
instrumental in the success of the whole process. As a pioneer in the field of complex

1) Book Series on Complex Metallic Alloys, Vols. I, II, III & IV, World Scientific, Singapore, 2008-2010.
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metallic alloys, Prof. Urban has kindly accepted to write the foreword of the present

book. Last, but not least, we acknowledge the financial support offered by the
European Commission under contract N° NMP3 — CT — 2005 — 500140.

Nancy, July 14, 2010 Jean-Marie Dubois
Esther Belin-Ferré
Directors of Research at CNRS
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1
Introduction to the Science of Complex Metallic Alloys

Jean-Marie Dubois, Esther Belin-Ferré, and Michael Feuerbacher

1.1
Introduction

Complex metallic alloys (or CMA for short), also called SCAPs (for structurally
complex alloy phases) for some time [1] encompass a broad family of crystalline
compounds made of metals, alloyed with metalloids or rare earths or chalcogen-
ides. They exhibit large unit cells, containing up to thousands of atoms. The
periodicity of the crystal unit cell is no longer a relevant property since it becomes
much larger than the average first-neighbor distance, and more specifically exceeds
the distance that characterizes basic interactions in the crystal. As a consequence,
most physical properties, and especially transport of electrons and phonons, depart
significantly from the ones observed in conventional metals and alloys that are
characterized by smaller unit cells, containing just a few atoms. The conduction of
heat for instance in an Al-Cu-Fe CMA of appropriate composition, although made
of good heat conductors, is as low as in zirconia, a typical heat insulator used in
aerospace industry [2].

Several types of CMAs exist, depending on the nature of the constitutive elements
and their respective concentrations. The most widely studied so far are based on
aluminum [3]. They comprise quasicrystals, which were first pointed out by Shecht-
man in the period 1982-1985 in metastable, melt-spun ribbons of an Al-Mn alloy
[4, 5]. Later, the existence of stable quasicrystals was revealed by different groups,
among which the most decisive contributions came from Tsai et al. who demon-
strated that quasicrystals may be grown in various Al-based alloys at very specific
compositions, but by slow cooling of the molten alloy [6-9]. A large research effort
was dedicated to understanding better the crystalline structure of quasicrystals and its
relationship to their properties, see reference 3 for a review of this work.

The challenge was indeed, and to a large extent still is, first to describe the atomic
positions in quasicrystals (where are the atoms? as Bak used to write [10]) and
secondly to discover the building principle that leads quasicrystals to abandon
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translational periodicity, although it is seemingly") at work in the whole world of
ordered solid matter known so far (why are the atoms where they are?). The first part
of the challenge has been met very successfully and the new tools developed to match
this goal have proven to apply to many complex materials, including the CMAs that
we shall address in this book. This is not true as far as the second aspect of the
challenge is considered. To the best of our knowledge, complexity is observed in
metallic alloys, but no unifying principle has yet clearly emerged to show us why it is
so in any given alloy, and help us design new alloys of controlled complexity based on
a fully self-consistent theory. Empirical rules, and fragmentaiy understanding,
nevertheless, do exit and will be explained in this book.

Most of this knowledge emerged from careful studies of a large variety of complex
metallic alloys, which is the major focus of the present book. It started long ago, when
the most famous chemist Linus Pauling was still a PhD student in the mid-1930s [12].
This research stopped, however, about 40 years later, when it appeared that the most
complex crystalline structures known at that time could no longer be solved with the
tools then available. The discovery of quasicrystals, which unfortunately arose in an
undue controversy [13], forced crystallographers and physicists to reconsider very
complex atomic architectures and revisit CMAs for their properties and potential
applications. More than two decades after the discovery of quasicrystals, the crys-
tallographic tools to describe complexity in metallic alloys were available. The
moment had come to see whether the field of CMAs, to a very large extent unexploited
until then, was offering a new frontier in condensed-matter physics or not.

1.2
Complex Metallic Alloy: What Is 1t?

A complex metallic alloy is characterized by (i) its chemical formula, (ii) the size of its
unit cell, and (iii) the variety of atomic clusters that this unit cell contains. The
composition often, but not always, is that of a ternary, or a quaternary, and so on, alloy,
that is, a multicomponent alloy. Yet, quite a few binary complex crystalline com-
pounds have been studied in depth in recent years, which led to the remarkable
discovery of a stable binary quasicrystal [14]. The upper limit of the unit cell size is of
course infinite in quasicrystals. It is more difficult to assess the lower limit.
Conventionally, a crystal that contains a few tens of atoms in its unit cell is considered
a CMA, which corresponds to lattice parameters of a few angstroms. Very frequently,
the atom clusters exhibit icosahedral symmetry. This leads to incorporation of Laves
phases, with a small unit cell size and only 12 atoms per unit cell into the family of
CMAs.

A simple definition of complexity in CMAs is difficult to express and different
equivalent definitions may apply. For instance, the diffraction pattern of a CMA is
characterized in reciprocal space by its many spots, some being close to the origin,

1) A natural Al-Cu-Fe quasicrystal discovered recently in a million-year old rock tends to prove that
Nature had discovered quasicrystals long before human beings [11].
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and the closer as the size of the unit cell increases. If one is looking for a single
parameter, the distance from origin to the first diffraction spot could be used.
Theoretically, it would be equal to 0 in a perfect quasicrystal. However, due to the
necessarily limited experimental resolution on diffracted intensities, the first mea-
surable spot with nonzero intensity is located at some distance from origin, which
opens a possibility to confuse a true quasicrystal with a high-order approximant.? For
this reason, we will rely on a more reliable definition in Section 1.2.2. We will see
also in Section 1.2.3 how specific defects signal complexity in CMAs.

1.2.1
Composition and Varieties

The best-studied example of a CMA system that comprises both quasicrystalline
and crystalline CMAs is the Al-Cu-Fe system (for references, see ref. 3). An
isothermal cut through the phase diagram is shown in Figure 1.1. Many different
compounds appear: binary alloys comprise simple Al-Cu crystals, like the 8-A1,Cu

% at. Cu

Figure1.1 Isothermal cut through the Al-Cu-Fe phase diagram in the Al-rich corner. See text for the
labels of the compounds.

2) An approximant is a crystalline CMA the structure of which may be derived from the same high-
dimensional lattice as the quasicrystal that lies nearby, in the same composition field.

3
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phase with 16 atoms per unit cell (at/uc in the following), or more complex ones
like the y-brass Al,Cuy compound with 52 at/uc (not visible on this diagram
because it is located outside the concentration region drawn here). The nearly
binary Al;yCu;oFe compound is labeled ¢ in this diagram. The letter ) labels an
hexagonal compound closely related to the B2-CsC1 type p-phase that shows a
broad stability region in the ternary system and plays an important role since it is
the primary solidification phase that appears first when growth from the liquid state
is applied [15]. Similarly, Al-Fe binary compounds comprise the A-Al;3Fe, and
u-AlsFe, compounds, which are intermetallics of quite different complexity with,
respectively, 102 and 12 at/uc.

The stable, ternary quasicrystal, marked 1, shows up approximately in the middle
of the diagram, in a narrow composition region located around Alg,Cu,s sFe;; 5 (at.
%). Within the region labeled v, but not visible at this enlargement scale, coexist at
least 3 high-order approximants of very similar compositions [16]. They contain
hundreds of atoms per unit cell. In contrast, the much simpler w phase, with 48 at/uc,
lies only slightly apart from the previous composition region, and shows definitely
different electron-transport properties [17].

Such a variety of compositions and structures in a metallic alloy system is a
characteristic of CMA-forming alloys. It is an indication for the formation of a stable
quasicrystal that has guided Tsai et al. in the hunt for these compounds at the
beginning of the history of the field. Unfortunately, it does not supply us with a
number that may be used to quantify complexity in a very simple way.

1.2.2
Complexity at a Glance

Indeed, we need a single number, preferably, that could possibly be used to correlate
some, if not all, properties of a given alloy system to the complexity of its CMAs. This
number does exist at least in Al-based CMAs, like the ones encountered in the Al-Cu-
Fe phase diagram of the previous subsection. This is:

Bec = In(Nuyc)

where Nyc is the number of atoms in the unit cell.

By definition, Nyc — oo ina quasicrystal. However, since the size of the specimen
is always finite, ¢ is finite as well, and is close to In(N), where N is Avogadro’s
number, that is, 23 <fc <55 depending on the size of the sample. We will take
arbitrarily B¢ =23 in the following, which does not change our conclusions.

To exemplify, we show in Figure 1.2, two very different properties plotted as
functions of B¢ for a large number of AI-TM (TM: transition metal) CMAs of varying
complexity according to the choice of TM and Al concentrations. In quite a few
examples, a second TM’ element was added, like for instance in the Al-Cu-Fe w-phase
or in the quasicrystal. The first property, labeled n(Eg) is the density of Al 3p states
obtained by soft X-ray emission spectroscopy (SXES) measurements at room
temperature [18]. We will come back to this data in Section 1.3.1. The second
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(left) and adhesion against steel in vacuum concentration of valence electrons, see

(right) for a variety of AI-TM CMAs. The data Figure 1.20.
property is friction in vacuum against hard steel of the very same specimens, after
correction for the plowing component of friction and noted pc. This correction is
explained later in this chapter (Section 1.4.3).

The two properties, which cannot be related a priori, show the same decreasing
dependence with increasing complexity of the crystal (in this system).Furthermore, a
In—In plot of the data of Figure 1.2 demonstrates that they vary according to a same
power law of B¢, that is, n(Eg) and pc ~pc*/* (Figure 1.3).

To the best of our knowledge, this provides one of the scarce but clear indications
available so far that friction in vacuum between two metals is dominated by adhesion
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Figure 1.3 Log-log plot of the data shown in Figure 1.2, demonstrating the same power law

dependence towards fc. The dashed lines have a

slope of —1/3.
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of electronic origin. Most presumably, the underlying mechanism is the formation of
a hybrid band between d states in the steel pin and sp states in the CMA sample (as is
often observed in the CMA itself, see Section 1.3.1).

1.2.3
Defects

Generally, in CMAs all types of defects known from simple metallic structures, can
occur. This includes zero-dimensional defects, for example, vacancies and inter-
stitials, and planar defects, for example, stacking faults and antiphase boundaries.
Line defects such as dislocations also exist in CMAs, but, due to the particular
structural properties of CMAs, require more detailed discussion.

As a basic structural feature, CMAs possess large lattice parameters. A direct
consequence is that conventional dislocation-based deformation mechanisms are
prone to failure. The elastic line energy of a dislocation is proportional to b* where bis
the length of the Burgers vector [19]. For most materials, Burgers vector lengths larger
than about 5A are energetically unfavorable. Accordingly, perfect dislocations in
CMAs, which frequently would require Burgers vectors exceeding 10 A in length, are
highly unfavorable and not likely to form. In common materials, dislocations with
large Burgers vectors split into partials. However, for the case of very large lattice
constants as in CMAs, splitting into a high number of partials, each possessing its
individual energy cost would be required. Moreover, the corresponding planar faults,
which necessarily have to be introduced as soon as partials are involved, cost
additional energy.

On the other hand, it has been shown that CMAs, atleast at high temperatures, are
ductile and that in all cases studied dislocations mediate plastic deformation [20-23].
It is therefore a central question in CMA research, to explore the deformation
mechanisms structure of the defects involved.

Furthermore, in some CMA structures, salient one-dimensional defects exist.
These defects, referred to as “phason lines” do not exist in simple metals. Even
though they are linear in character, they are not dislocations. Nevertheless, they are
pivotally involved in the deformation process of some CMA structures (see below) but
also in phase transitions between related CMAs.

As aresult of the structural hindrances for the formation of regular dislocations, in
many CMAs novel types of dislocations are formed. Taking advantage of structural
features of the host CMA, they allow, via their particular construction, for the
accommodation of Burgers vectors corresponding to energetically acceptable strain
fields. Particular examples of such defects in CMAs are the metadislocations.

Metadislocations were discovered in 1999 [24] and are today known to exist in
various forms in different CMA structures. They mediate the plastic deformation
process in these CMAs, which additionally involves phason defects. Metadislocations
were firstly observed in orthorhombic e-phases. These are based on €¢-Al-Pd-Mn [25],
which has an orthorhombic unit cell (space group Pnma) with cell parameters
a=23.541A, b=16.566 A and c=12.339 A. The structure can be represented in
terms of a tiling of flattened hexagons arranged in two different orientations. The
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Figure 1.4 Transmission electron microscopy images of dislocations in a deformed €,3-Al-Pd-Mn
single crystal.

vertices of the hexagons are decorated with 52-atom clusters of local icosahedral
order, the so-called pseudo-Mackay clusters.

The compound &4-Al-Pd-Mn is the basic phase of a family of superstructures with
equal a and b but larger clattice parameters referred to as the orthorhombic e-phases.
The most prominent of these possesses a ¢ parameter of 57 A and has been termed
£,5-Al-Pd-Mn. Other superstructures with c=32.4 A, 44.9 A, and 70.1 A have been
reported [26].

Figure 1.4 displays transmission electron micrographs of dislocations in a de-
formed e€,5-Al-Pd-Mn single crystal. Figure 1.4a is taken under two-beam Bragg
conditions using the (10 0 0) reflection close to the [0 1 0] axis (inset). A high density of
dislocations is seen in end-on orientation. No stacking-fault contrast is seen in the
image, that is, the dislocations appear to be perfect dislocations. Contrast-extinction
analysis [27] shows that the Burgers vectors of the dislocations are parallel to the [00 1]
direction, that s, they are pure edge dislocations. Figure 1.4b shows the same sample
area imaged using a symmetric selection of reflections of the (0 1 0) zone axis (inset).
Under these conditions, it can be seen that each dislocation position is decorated by a
small area of bright contrast. Figure 1.5a shows one of the single dislocations at a
higher magnification. It consists of a dislocation-like structure with six associated
half-planes. Note, however, that the dislocation-like structure resides on alength scale
that is larger than the atomic scale by about one order of magnitude.

Figure 1.5b is a schematic representation of the defect structure of Figure 1.5a in
terms of a tiling description [28]. The dislocation core is represented by the dark-gray
polygon in the image center. The upper and lower edges as well as the right-hand side
of the figure are represented by a tiling composed of pentagons, banana-shaped
nonagons, and flattened hexagons in two different orientations. This is the repre-
sentation of the ideal €,5-Al-Pd-Mn structure [29]. The pentagon—nonagon pairs
represent phason lines, which periodically arrange along the [1 0 0] direction and
form planes referred to as “phason planes.”

7
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Figure 1.5 Core region of a single dislocation at high magnification (a) and schematic
representation of the defect structure in terms of a tiling description, see text (b).

On the left-hand side of the metadislocation core is a triangle-shaped area, the
tiling of which consists of flattened hexagons in alternating orientations. This tiling
represents the ideal €6-Al-Pd-Mn structure [25]. In the upper and lower vicinity of the
€6-Al-Pd-Mn triangle, the phason-plane arrangement, which in the undistorted €,g-
Al-Pd-Mn structure forms straight (0 0 1) planes, relaxes around the &¢’-Al-Pd-Mn
triangle.

The Burgers vector of the dislocation can be determined as b=c /t*(0 0 1)by
forming a Burgers circuit around the dark-gray core. The Burgers-vector length
amounts to 1.83 A, that is, the dislocation is a small irrational partial. The complete
defect structure is inseparably formed by the partial dislocation on the atomic scale
and the dislocation-like structure on the larger length scale formed by the associated
phason half-planes. The latter accommodate the partial dislocation to the lattice in
such a way that the ideal €,5-Al-Pd-Mn structure can be continued above and below
the dislocation core. As a direct consequence, the defect structure as a whole can
move through the lattice without introducing any additional planar defects. Later,
other types of metadislocation with 4, 10, and 16 associated phason half-planes were
discovered [30]. It was demonstrated that metadislocations mediate the plastic
deformation process in g¢- and €,g-Al-Pd-Mn [20]. The mode of dislocation motion
has not been directly identified, but strong evidence was found that the movement
takes place by a pure climb process [31].

Closely related but structurally different metadislocations were observed in e-type
phases in the system Al-Pd-Fe [32]. Figure 1.6a is a micrograph of a metadislocation
in &-Al-Pd-Fe. The metadislocation core islocated in the lower-left part of the image. It
is associated with three planar defects extending to the upper right (dark contrast),
which can be identified as phason half-planes. A Burgers circuit around the
metadislocation core reveals a closure failure of 1/21* [1 0 1] in terms of the & lattice,
which corresponds to the metadislocations Burgers vector. The Burgers vector length
is 1.79 A. Figure 1.6b shows two metadislocations in the structure £,,-Al-Pd-Fe. The
left metadislocation is associated with five phason half-planes and that on the right
with eight phason half-planes. In the areas directly below both metadislocation cores,
regions of § structure can be identified. The metadislocations in Figure 1.6 are typical
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10 nm

Figure 1.6 Transmission electron microscopy images of metadislocations in E-phases.

for monoclinic host structures. As for the case of the metadislocations in ortho-
rhombic e-phases described above, we find series of metadislocation with different
numbers of associated phason half-planes, corresponding to different Burgers
vectors. While for the orthorhombic e-phases we find that the numbers of associated
phason half-planes follow double Fibonacci numbers, for the monoclinic case we find
single Fibonacci numbers. In a tiling representation, the metadislocation cores are
for both types described by the same tiles, which of course, correspond to the same
Burgers vector length with respect to the individual lattice constant.

In the orthorhombic Al;;Coy4 phase, metadislocations that are less closely related
are found. Al;3Coy is an orthorhombic phase with space group Pmn21 and lattice
parameters a =8.2 A, b=12.3 A, and ¢ = 14.5 A [33]. The main structural features are
pair-connected pentagonal-prismatic channels extending along the [1 0 0] direction.
Within the (1 00) plane, the structure can be matched by a tiling consisting of regular
pentagons and rhombs, where the rhombs are arranged in an antiparallel manner.
Figure 1.7 displays a transmission electron micrograph of a deformed Al;3Co, single
crystal [34]. A high density of dislocations (black arrow) and trailing planar defects
(white arrow) can be seen. The dislocations have [0 1 0] Burgers vectors and [1 0 0] line
direction, and their movement takes place in (0 0 1) planes. That is, the dislocations
are of pure edge type and move by pure glide.

Figure 1.8a is a micrograph of the dislocation core at higher magnification. A tiling
representing the unit-cell projection along the [1 0 0] direction is superposed.
Rectangular tiles represent the orthorhombic Al;3Co, phase and rhomb-shaped
tiles represent a closely related monoclinic modification [33, 35]. The dislocation core
is localized in the open center, and the stacking fault stretches out to the right. It can
clearly be seen that the planar fault consists of a slab of monoclinic structure within
the otherwise orthorhombic lattice. Figure 1.8b is a schematic of the defect in terms
of a pentagon tiling [36]. The superposed unit-cell projections correspond to those
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Figure1.7 Transmission electron micrograph of a deformed Al;3Co, single crystal. The black arrow
shows a dislocation, trailing planar defect (white arrow).

Figure 1.8 Dislocation core at high magnification onto which a tiling representing the unit
cell projection along the [1 0 0] direction is superimposed (a) and corresponding tiling
representation (b).

shown in the experimental image. The dislocation core is represented by the dark-
gray tile. The planar defect corresponding to the slab of monoclinic phase stretches
out to the right and is represented by a parallel arrangement of pentagon and rhomb
tiles, while the surrounding orthorhombic phase is represented by an alternatively
oriented arrangement of pentagon and rhomb tiles.

Other types of metadislocations were observed in the orthorhombic Taylor phases
based on Al;Mn. A review, describing all types of metadislocations in great depth, is
given by Feuerbacher and Heggen [37].
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Figure1.9 Bright-field Bragg-contrastimage of atypical defect arrangementin plastically deformed
C,-Al-Pd-Fe (a) (the insert is an enlargement of part of the figure) and (b) high-resolution image of
the arrangement shown in the insert of (a) along the [—1 1 0] direction.

An apparently different mechanism was observed in C,-Al-Pd-Fe. The structure of
this phase was determined by Edler et al. [38]. It is cubic with a lattice constant of
15.5 A and a unit cell containing 248 atoms. The structure can be described in terms
of icosahedral cages generated by Pd atoms. These cages are alternatively filled with
two different cluster motifs. The resulting two types of clusters are distributed on a
cubic lattice such that the different fillings lead to a face-centered ordering.

Figure 1.9a shows a bright-field Bragg-contrast image of a typical defect arrange-
ment in plastically deformed C,-Al-Pd-Fe. The presence of dislocations attached to
planar faults showing fringe contrast is clearly seen. The inset presents a contrast-
enhanced enlargement of the boxed area, showing two dislocations separated by
about 300 nm terminating a stacking-fault fringe contrast. Figure 1.9b shows a high-
resolution TEM image of such an arrangement along the [—1 1 0] direction. The
defect appears as a dumbbell-shaped object with two almost rectangular-shaped
extremities. The stacking fault is seen in edge-on orientation. The terminating
dislocations, marked by white arrows, are located at the upper ends of the rectangular
brighter-contrast areas.

The defect can be analyzed by back-transform Fourier filtering analysis. This yields
a Burgers vector ag/2 [0 0 1] for both terminating dislocations. The whole arrange-
ment hence has Burgers vector a, [0 0 1] and consists of a perfect [0 0 1] dislocation
with a Burgers vector length of 15.5 A, which is split into two energetically more
favorable partials with Burgers vector lengths of 7.8 A at the cost of a stacking fault
between the latter.

Fourier filtering analysis reveals that the rectangular bright-contrast areas are of
body-centered structure, that is, a structure locally differing from the face centered
host. Phase-diagram investigations [39] revealed that in the Al-Pd-Fe system indeed a

1
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body-centered phase, C;-Al-Pd-Fe, exists in the compositional range around
Alg3Pds;Feg. This phase possesses a slightly smaller lattice constant of 15.4 A

These findings are consolidated in the following interpretation: In order to lower the
elastic line energy of the perfect dislocation the latter splits into two partials. These,
however, still possess rather large Burgers vector lengths of 7.8 A, which have to be
accommodated by the structure. The experimental findings suggest that it is ener-
getically favorable to transform a small portion of the structure, which is lying in the
compressive part of the dislocation strain field, to a body-centered structure possessing
a slightly smaller lattice constant. By this means, the dislocation with the large Burgers
vector can be more easily accommodated into the face-centered structure at the cost of
a portion of “wrong” structure considering the composition of the crystal.

In CMAs, hence, dislocations of different nature from that in simple metals occur.
Besides metadislocations in a number of CMA phases, we also find other unusual
mechanisms, such as the dislocations in cubic Al-Pd-Fe described above. While these
mechanisms at a first glance seem completely different, they have one major
common property. in all cases we find that accommodation of the dislocation in
the host structure involves a local area of different but related structure. This locally
differing structure occurs in the form of a slab in the wake of the moving dislocation
(e.g., in the case of Al;3Co,) or in the form of a bar around the dislocation core. We
should, however, note that in some CMA phases investigated, for example, the
Samson phase -AlsMg,? or the Bergman phase in the system Mg-Zn-Al [40], rather
conventional deformation mechanisms, involving ordinary partial dislocations trail-
ing stacking faults, have been observed.

13
Complex Metallic Alloy: Why Is It Complex?

For many years, the key point in understanding CMAs, and especially quasicrystals,
was to know where the atoms are [10]. This question is now solved to a very
satisfactory degree [41], using various techniques derived from high-dimensional
crystallography and, as often as possible, comparison to a known, high-order
approximant when it exists [42]. Nowadays, the central question is to understand
“why the atoms are where they are,” which by the way is a question that is simply not
solved in all crystals of simpler structure known so far. We address this issue in the
following section from the electronic structure standpoint, in a way that is very much
reminiscent of the early works by Hume-Rothery [43], Jones [44] and Blandin [45] and
in more recent years Friedel and Dénoyer [46] and Mizutani [47].

1.3.1
Electronic Densities of States and Hume-Rothery Rules

Does the particular atomic structure of complex metallic systems engender charac-
teristic features in their electronic structure? A theoretical approach is most often
pretty uneasy because of the too large number of atomic sites in the unit cell that, in
addition, may not be all fully occupied. Information is gained from experimental
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results derived from resistivity and specific heat measurements or densities of states
(DOS) investigations using spectroscopic techniques, but results are available only
for arestricted number of theses compounds. Hence, to figure out what the electronic
structure may be in CMAs, one may rely on data obtained either for stable
quasicrystalline compounds (QCs), which we shall consider as the ultimate state
of complexity in CMAs, with a single unit cell containing an infinite number of sites,
or their approximants, also with large unit cells, but of finite size.

For quasiperiodic lattices, theoretical studies of the energy spectrum pointed out
that the wavefunctions should be critical, hence the corresponding electronic states
differ from conventional systems since they are neither extended nor localized
[48,49]. Due to the lack of periodicity, exact DOS calculations cannot be carried out for
QCs. However, they are available for structures whose atomic order mimics the local
arrangement of the QCs [50-52] and in some cases, also for true QC systems owing to
the Rietveld method applied to experimental diffraction patterns combined with first-
principles methods [53]. Many calculations have been also carried out for series of
Al-TM conventional intermetallics [54, 55]. In all cases, a pseudogap was found at or
nearby the Fermi energy (Eg).

Hume-Rothery found empirically that in many systems such as Cu-Zn, Al-Cu, and
so on, for specific values of the valence electron to atom ratio (¢/a), there exist alloys
displaying different crystal structures that do not behave as free-electron systems do,
but are stabilized owing to the creation of a depletion in the DOS at Eg, namely a
pseudogap [43]. These specific alloys are denoted Hume-Rothery (H-R) phases. The
mechanism by which such a pseudogap occurs may be summarized as follows [56].
Electronic waves in the alloy are scattered by the Bragg planes of the Brillouin zone.
This mechanism opens up gaps in reciprocal space. For specific electron concentra-
tions, the Fermi sphere overlaps with the Brillouin-zone boundary, which in turn
produces a depletion in the DOS at the Fermi energy after integration over all
directions in reciprocal space of the scattered waves. As a consequence, electronic
states from the top of the valence band (VB) are repelled towards lower binding
energies as shown in Figure 1.10, thus stabilizing the crystal structure for that specific
electron concentration.

DOs

e

Er
Binding energy

Figure 1.10 Total density of states (DOS) of a free-electron system (dotted line) and of a H-R alloy
(full line).
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Friedel and Dénoyer [46] noticed that (i) many quasicrystals and approximants are
made from elements with small differences in atomic radii and electronegativities
and (ii) there is a large number of spots, several with high intensity, in their X-ray
diffraction patterns the position of which in reciprocal space demonstrates that the
Hume-Rothery rule introduced above is obeyed. Actually, a pseudo-Brillouin zone
(PBZ) can be constructed from the location of the most intense peaks in reciprocal
space, although a true Brillouin zone can not be defined due to the loss of
translational periodicity. This assessment was successfully taken as a thumb rule
for the search of new stable quasicrystalline compounds and, indeed, many QCs and
approximants were found this way with e/a values around 1.86 e /at (electrons per
atom) and 2.04 e”/at, mainly in Al-based systems as for example Al-Pd-Mn, Al-Cu-Ru,
Al-Mg-Zn, ... QCs [7-9].

The pseudogap at the Fermi energy is perhaps one of the most emblematic features
of QCs as well as of CMAs and is of great importance to interpret many of their
physical properties [3, 57, 58]. Its existence was checked experimentally for a number
of Al-based QCs and CMAs as well as for conventional H-R crystals using spectro-
scopic techniques among which soft X-ray emission spectroscopy (SXES). SXES
scans separately occupied partial and local DOSs in a compound, whatever it is
[18, 59-63]. It was ascertained that the intensity of the Al 3p states distribution at Eg (I
(Al3p/ E) reflects the metallic character of the specimens and is directly connected to
the importance (depth and width) of the pseudogap [18].

Furthermore, it was established that the Hume-Rothery mechanism alone cannot
explain the formation of the pseudogap since in genuine H-R alloys such as 6-Al,Cu or
¢$-Al;CuypFe, it is rather faint as compared to Al-based approximants and QCs that
contain the same transition metals. This is shown in Figure 1.11 as a plot of I(A13p/EF)
in various simple and complex phases versus the e/a ratio [64]. The data is the same as
the one in Figure 1.2, but is shown versus the e/a ratio that is directly related to the
position of the CMA specimen in the composition field, assuming a contribution to the
valence band of +3 electrons for Al, +1 for Cu and a negative valence of Fe of —2.6
e /at. Clearly, I(Al3p/Eg) is almost constant for the true Al-Cu H-R alloys and
decreases progressively when going to approximants and QCs, a signature of increas-
ing complexity of the lattice, as we pointed out earlier in this chapter. From the study of
all electronic distributions in the VB of these samples, it was pointed out that sp states
at the top of the VB are mixed to TM d states in agreement with the above-mentioned
DOS calculations done on series of conventional Al-transition metal (TM) alloys [18].

Further studies of complex alloys highlighted the importance of hybridization
between p and d states [63]. A beautiful assessment of the respective weights of
H-R and hybridization mechanisms was given recently by Mizutani and cow-
orkers [65—68] while studying a series of y-brass phases to determine whether they
are stabilized following or not the e/a rule (or H-R mechanism). The authors
pointed out that the H-R stabilization mechanism produces a pseudogap across Eg
as aresultof a resonance between electron waves and particular sets of lattice planes
that differ from each other, depending on the studied specimens. They also pointed
out that e/a does not keep the canonical 21/13 value for all the y-brass samples,
but rather varies from 1.6 e /at for example in CugAl, to 1.8 e /at in Fe,Zn;; and
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Figure 1.11 Al 3p intensity at Er as a function  increasing from left to right, dark squares for

of the valence electron to atom ratio e/a for a
series of Al based alloys as obtained from SXES
experiments. The symbols are as follows:
narrow rectangle at efa=3 for pure fcc Al,
diamonds for genuine Al-Cu Hume-Rothery
phases, narrow diamond for w-Al,Cu,Fe, gray
squares for B2 cubic Al-Cu-Fe phases with
structural complexity due to vacancies,

approximants of icosahedral Al-Cu-Fe QC, dark
dots are for icosahedral QCs, namely from top
to bottom Al-Cu-Fe, Al-Cu-Ru and Al-Pd-Mn,
whereas the lowest dot corresponds to Al-Pd-Re
system. The value of n(Eg) for specimens
represented by diamonds, squares, and the top
circle were already shown in Figures 1.2and 1.3,
left, but as a function of fc.

1.46 e~ /at in AlgVs. For this latter alloy, using LMTO-ASA DOS calculations, they
clearly demonstrated the key role played by V 3d — Al 3p hybridization in the
formation of the pseudogap across the Fermi level (Figure 1.12, left side). This
theoretical result was confirmed experimentally, again using soft X-ray emission
spectroscopy, as displayed in the same figure (Figure 1.12, right side) [63]. The
interaction between the Al and TM states can be viewed as a Fano-like interaction,
namely an interaction between extended and localized states, as described by
Terakura [69].

To summarize, in CMAs made of Al (or Mg) alloyed with other elements among
which TMs, the pseudogap present in the DOS at Eg results from the combination of
two mechanisms, on the one hand, the so-called H-R mechanism and on the other
hand, hybridization (interaction) between extended and localized states at Er and
nearby, which results in the presence of states with a localized character at the top of
the VB.

1.3.2
Self-Hybridization in Al-Mg Alloys

Whatis the situation in CMAs made only of sp elements, for which there are normally
no real localized states at the top of the VB? Let us consider the case of an emblematic
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Figure 1.12  Left: DOS calculations by the
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SXES experiments. The various distribution
curves are normalized to their own maximum
intensity. The mixed Al3p-V3d states are found
atabout 2 eV below Er whereas in the calculation
the V states are set at 1eV below Eg.

top panel. Right: Partial DOS as obtained from

CMA, namely the so-called Samson phase [70]. This is cubic -AlsMg,, with cell
parameter a = 28.24 A, containing 1168 at/uc distributed over icosahedra and Friauf
polyhedra. Many atomic sites are not fully occupied, which induces an important
degree of disorder. As far as transport properties are concerned, this compound
behaves similarly to a simple mixture of the pure metals. This result is to be
contrasted to the extremely complex structure of the Samson phase (fc=7.07),
which raises the question to understand why the two simplest ways of staking metal
atoms (Al is fcc and Mg is hep) end at this specific composition in such a complex
architecture. So, what is the electronic structure? Clearly, exact DOS calculations are
extremely difficult to carry out or even impossible in this system, at least for the
moment. On the contrary, experiments, again using X-ray emission spectroscopy that
analyzes separately Al and Mg contributions to the VB, may give qualitatively valuable
information about the bulk specimen.

The data presented in Figure 1.13 may be summarized as follows [71, 72]. First, Al
3p and Mg 3p states overlap over the extent of the VB, which points to the strong
covalency in this energy range of the VB. However, chemical bonding is not so
simple, since the maximum of the Mg 3p curve coincides with a depletion of the Al 3p
curve, which indicates some degree of repulsion existing between Mg and Al 3p states
in this energy range [69]. Secondly, the intensity of both Al and Mg 3p curves at Eg is
about 25 +2% of the maximum intensity (set to 100%) and the edges are shifted
towards lower binding energies since they are distant from Er by 0.3 & 0.05 eV at half-
maximum intensity. Note that in both pure metals, the intensity at Er is 50% of the
maximum intensity and the edges very steeply crossing the Fermi level axis at half-
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Figure1.13  Partial DOS distributions in 3-Al;Mg,. Al 3s,d: stared line, Mg 3s,d: line with triangles,
Al 3p full line, Mg 3p: line with open dots.

maximum intensity of their respective distribution curves. All these observations
suggest that in cubic B-Al;Mg,, a faint pseudogap is present at Er. The maximum of
the Al 3p curve is found at the same energy as a depletion of the Al 3s,d curve and of a
plateau on the Mg 3s,d curve, indicating repulsive interaction between the Al 3p and
the 3s,d states.

The most striking feature is the rather narrow peaks present at about 1.5 eV below
Er in the 3s,d distribution curve for both Al and Mg in the compound. These narrow
peaks are distant by about 0.2 eV from each other, which suggests that some repulsion
takes place between the spectral distributions at the top of the VB, whereas the peakin
the Al 3s,d curve overlaps totally the Al 3p and Mg 3p curves. Here, we shall mention
that SXES studies of compounds containing Al and two TM that are neighbors in the
classification of the elements, have shown that the d states are located at the top of the
VB and repel each other [62, 63]. Thus, the narrow shapes of the Aland Mg 3s,d curves
close to Ep, their slight separation along the binding energy scale and the presence of
the faint pseudogap suggest that these states are to some extent localized, namely
have a d-like character. Let us mention that in fcc Al, as well as in hcp Mg, only a very
small fraction of states with a d-like character is found near Er [73]. In f-AlsMg, we
see that the proportion of the d-like states is strongly enhanced, in line with the results
described in the previous section where we reported that in AI-TM CMAs, localized
states present at the top of the VB hybridize to sp states for a pseudogap is formed and
stabilizes the system. Therefore, the mechanism in B-Al;Mg, is not the same as in
compounds containing a TM bringing d states to the VB.

Instead, achieving stabilization of the -AlsMg, system is a little more complex.
First, Al and Mg states self-hybridize in such a way that states with a localized
character are found at the top of the VB. Secondly, the localized Al and Mg states thus
formed slightly repel each other and interact with Al-Mg covalently bonded states. Itis
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interesting to mention that the same mechanism occurs in other Al-Mg compounds,
but of lesser complexity such as the Zn,Mg Laves phase (Nyc =12, fc = 2.48), the
low-temperature variant of the Samson phase [74], or the Al-Mg-Zn Bergman phase
(Nuc =148, Bc =5). In these latter compounds, the same peak of localized d states is
pointed out by SEXS at the same energy position, but with intensity (amplitude)
varying smoothly with the complexity index and almost unchanged width [72]. The
result of this analysis is presented in Figure 1.14. It has an interesting issue, namely
that Nature selects preferably a complex structure when the self-hybridization
mechanism is at work, although far simpler atom packings exist nearby in the
phase diagram (not taking into account the role of configuration entropy that is able to
further reduce the free energy of the system).

1.4
A Brief Survey of Properties

1.4.1
Transport Properties

Resistivity measurements performed for specimens with increasing structural
complexity up to quasicrystalline compounds have pointed out a different behavior
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Figure 1.15 Variation of the resistivity coefficient versus temperature for Al-based alloys ranging
from simple structures to CMAs and quasicrystals.

from that of conventional alloys. This is exemplified in Figure 1.15 as a plot of the
variation of the electrical resistivity against temperature for a series of Al-based alloys.
The curves at the bottom of the figure, with resistivity below 100 uQ cm, correspond
to structurally simple alloys, namely CsCl-cubic Al-Cu-B and tetragonal w-Al,Cu,Fe.
They show a normal increase of the resistivity with temperature, characteristic of
conventional alloys and metals. The curves in the middle of the figure were obtained
from approximants of quasicrystalline compounds. Their resistivity values are much
larger than for conventional alloys and the variation with temperature is almost zero
or very weak. In strong contrast to normal alloys, genuine quasicrystals exhibit
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resistivity values at low temperature that are high to very high and the variation of the
resistivity with increasing temperature is of opposite sign to that of simple alloys and
metals [58].

Hence, attention was paid to the electronic properties of CMAs in relation to their
structures. Magnetic, electrical and thermal transport properties have been probed so
far for series of CMAs [75]. Recent data refer to A, TM and Al;3TM, families whose
atomic structure can be viewed as a stacking of flat and corrugated atom layers with
structural complexity and unit cell size increasing from AL TM to Al;3TM, families.
For completeness, the investigations were carried out perpendicular as well as along
the stacking direction. These data are detailed in Chapter 3.

Basically, magnetic susceptibility, electrical resistivity, thermoelectric power, Hall
coefficient and thermal conductivity all displayed anisotropic behavior that is
more marked with increasing structural complexity from Al-Ni-Co to Al;3Co4 and
Al4(Cr,Fe). The temperature coefficient is of Boltzmann-type in Al-Ni-Co and Al;3Coy
for all crystallographic directions and non-Boltzmann as far as the temperature-
dependent in-plane resistivity is concerned for Aly(Cr,Fe). The thermal conductivity
of the same specimens behaves similarly to the electric conductivity. It is about one
order of magnitude lower when measured along the stacking axis than in-plane [76].
The Hall coefficient is also anisotropic. It is the lowest when the external field is
applied along the stacking direction and higher when it is applied in-plane. However,
no clear connection with structural complexity was evidenced in these series of
samples. All these investigations pointed out strong differences in the respective
contributions of the lattice and conduction electrons. They led to the conclusion that
the anisotropy of the atomic structure of CMAs extends to their electronic properties,
thus departing from those of conventional alloys and their elemental constituents.
These results are detailed in Chapter 3.

1.4.2
Surface Physics and Chemistry

The physical and chemical properties of the surfaces of CMAs depend on their
preparation, namely whether it is a clean surface worked out in ultrahigh vacuum
(UHV) or a “dirty” surface kept in ambient atmosphere with an important contri-
bution of the native oxides lying above the top layers of the CMA material.

The outermost layers of clean CMAs surfaces (including quasicrystals) as prepared
in UHV by successive cycles of sputtering and in situ annealing are similar to simple
bulk terminations with steps and islands. So far, no reconstruction of the surface and
no chemical segregation effects were observed on highly complex CMAs. The atomic
density is high and the topmost layers host the elements that have the lowest surface
energy. This latter characteristic governs nucleation and growth on CMA surfaces
used as templates for nanostructuration of foreign atoms.

The electronic structure of such sputtered-annealed CMAs surfaces has been
investigated using several spectroscopic techniques. A main issue is that the
pseudogap that exists at the Fermi level in the electronic density of states of the
bulk specimen is also present in the surface top layers. However, this is nolonger true
for surfaces obtained from mechanical fracture in UHV with no further treatment.
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Actually, such cleaved surfaces display a more metallic character, as shown by the
reduction of the importance of the pseudogap with respect to the bulk sample. Band
gaps have also been predicted by theoretical means in the phonon density of states,
but this is still a matter of experimental investigations. These characteristics of the
electronic and phononic structures at the surface of CMAs influence physical
properties such as adhesion, friction and energy dissipation [77]. Chemical reactivity
is also affected by the electronic structure and atomic structural complexity, but to a
far lesser extent.

Oxidation in UHV of CMA surfaces shows selective oxidation of Al and the
formation of a passive amorphous overlayer that is similar to the one that forms on
pure Al The thickness of this oxide layer depends on the conditions under which
oxidation is carried out [78]. Note that the oxide layer formed on Al-Cr-Fe CMAs after
water immersion is relatively thin, giving this CMA a significant corrosion resistance,
especially with respect to the action of water [79].

Wetting by ultrapure water of Al-based CMA surfaces kept in ambient air and
cleaned using a strict protocol avoiding contamination was studied by measurements
of contact angles. Strong differences were pointed out from sample to sample,
despite their outermost oxide layer being the same from the chemical point of view
(Figure 1.16). It was concluded [59] that the reversible adhesion energy of water
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Figure 1.16 Variation of the reversible for Al—Cu(—Fe) specimens. The open symbols
adhesion energy of water, Wii50, against n2/t2  located on the y-axis are for Teflon (diamond)
where n=n(E) is the intensity of the Al 3p and alumina (square). They define, respectively,

partial DOS at Er and t is the oxide thickness.  the lowest and largest values that can be

The two straight lines correspond to specimens  observed with the present set of Al-based

with different contributions of 3d states at EF.  samples. The inset presents an enlargement of
The line with the largest slope corresponds to  the data in the region n2/t2 below 0.003.
Al—Cr—Fe(—Cu) samples, whereas the other is
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(Wh,0) deduced from contact angle depends on the Al 3p density of states at the
Fermi level of the bulk CMA substrate and on the inverse of the squared thickness of
the oxide layer. Using image force theory, the wetting properties of the oxidized
surfaces of Al-based CMAs appeared to be dependent on long-range forces between
the dipole sitting on water molecules above the oxide top layer and their image dipoles
developed into the conduction sea, far beneath the surface oxide. For the i-Al-Pd-Mn
quasicrystalline phase, the oxidation, low adhesive properties and reduced surface
reactivity as compared to pure Al were found to be consistent with the more ionic
character of alumina that grows on this sample in ambient air [80]. It was also found
that the oxidation kinetics of CMAs significantly departs from that of classical
intermetallics [81]. In addition, the adsorption behavior of molecules other than
oxygen or water suggests that CMAs surfaces can be more reactive than their pure
metal constituents or related conventional intermetallics.

The high chemical reactivity of CMAs makes them good candidates for catalysis
purposes. Actually, the performance of powdered quasicrystals was investigated for
several specific catalytic reactions after various chemical treatments. Ithas been shown
that, for example, Al-Cu-Fe or Al-Pd-Mn CMAs are good candidates for replacing at
low cost, expensive catalysts that are necessary to the chemical industry [82].

1.4.3
Surface Energy

Surface energy is an essential property of a material. It determines the equilibrium
shape of a single crystal, itis directly related to its cleavage energy, itis involved in the
height of the crystal nucleation barrier when the crystal grows from the liquid state, it
is related to its adhesion energy to another solid, and so on. It is, however, very
difficult to measure experimentally and as far as CMAs are concerned, it is nearly
impossible to compute owing to the limited power of present computers. A variety of
experimental facts, based on friction measurements or on contact-angle measure-
ments of small droplets deposited at the surface of CMAs, indicates that the surface
energy of CMAs with large unit cell may be characterized by a reduced surface energy.
Experiments performed in ultrahigh vacuum show the same trend, namely that the
surface energy of icosahedral compounds might be much smaller than that of the
constituent species.

A series of pin-on-disk friction experiments performed in high vacuum allows us
to quantitatively estimate the surface energy of a large number of CMAs [3, 83]. A
pin-on-disk experiment is housed in a vacuum chamber in which the residual
pressure of oxygen is small enough to forbid the growth of a complete oxide layer
between two successive passages of the indenter. Under such conditions, and if the
applied load is small enough to produce no third body, or equivalently, if friction is
performed at equilibrium, friction takes place between the two naked bodies (pin
and surface of interest) after just a few rotations of the disk during which the native
oxide layer is destroyed by the contact and escapes from the trace due to the rotation
of the sample. The friction coefficient is given by u= Fy/Fy, where Fr stands for
the force that works against the movement of the sample relative to the pin, in the
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plane of the contact, and Fy is the applied load. To first order, for hard enough
samples, we may write:

M:G/Hv+BWsp

with Hy, the (Vickers) hardness of the disk material, Wsp the work of adhesion
between surface of interest S and pin P and a and 3, two fit parameters that can be
determined experimentally for that specific experimental setup, using materials of
known, or measurable, hardness and surface energy (see why below). Assuming
friction does indeed take place at equilibrium, which can easily be ascertained after
the end of the experiment by inspection of the trace, Wsp becomes the reversible
adhesion energy between S and P:

Wsp = Y5 +Yp—Ysp

with vs and vp the surface energy, respectively, of the studied CMA surface and pin,
and ysp the interfacial energy developed between (naked) S and P bodies.

In avery crude assumption, we will take the term yp — ysp equal to 0, which leads to
an overestimate of p by combining the equation above to the previous one:

w=>a/Hy+pys (1.1)

and therefore estimate the upper limit of the surface energy of the CMA specimen:
Ys < (w—a/Hy)/p

Despite this model being very crude, compared to more sophisticated ones
published in the literature [84], it turns out to fit very satisfactorily the hardness
and surface energy of many reference samples like transition metals, window glass,
aluminum, aluminum oxide, and so on, which were used to calibrate the pin-on-disk
apparatus used in the present study, thus delivering reliable values for a and f3
(Figure 1.17). It must be stressed, however, that a few metals, like Co and W, do not
obey the same simple model, essentially because the sticking coefficient of oxygen on
those metals is so high that friction is always lubricated in the conditions of the
experiment, and therefore forbids naked surfaces to come into contact.

Application of the previous equation to CMAs of unknown vys, but easily
measurable hardness, delivers an upper value for their surface energy [83]. The
results are summarized versus the experimental m data in Figure 1.18. They are
consistent with other experimental data supplied by ultrahigh vacuum growth
experiments [85] and show that the surface energy of a quasicrytal of high crystal
perfection is smaller than that of its pure constituents by a factor comprised
between 2 (Al) and 4 (Cu, Fe).

Furthermore, the term uc = pu—a/ Hy represents the adhesive part of friction, when
w is corrected for the mechanical deformation of the specimen under the stress
developed by the contact to the pin. Relevant values of uc were presented earlier in
this chapter in the right side of Figure 1.2 for a series of Al-Cu-Fe CMAs of varying
crystal structure and complexity. Another view at the adhesive part of friction against
hard steel in vacuum is given in Figure 1.19 as a function of the partial densities of Al
3p, Al 3s,d and TM 3d states probed separately at the Fermi energy by XSES. The
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Figure 1.17 A set of pin-on-disk experiments
in vacuum allows us to measure the friction
coefficient w against hard steel for various
reference samples of known hardness and
surface energy. Right: the plot shows that u
values calculated according to Equation 1.1 fit
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Figure1.19 Adhesive part of friction in vacuum against hard steel versus partial density of states at
Er for a series of CMAs of (nearly) identical complexity (Bc =1n2), but varying nature of the TM
constituent.

CMA crystals are all of about the same complexity and belong to the B2 CsCl-type of
cubic phases. The overall trend observed on the figure is that the adhesive part of
friction increases with increasing TM 3d DOS in the CMA sample, whereas it
decreases with increasing Al 3p and Al 3s,d intensities. Since the DOS in the pin is
determined by the nature of the hard steel used for the pin ball, this behavior is
equivalent to that expected from the formation of a band between CMA sample and
pin when the two bodies come into contact.

The tendency to decrease adhesion in vacuum (once more, against hard steel) with
the filling of the band is further exemplified in Figure 1.20 where we show an
overview on all surface energy data gained from the same specimens asin Figure 1.18,
but plotted as a function of VCE, the total number of valence electrons of the sample.
The surface energy decreases with increasing VCE, until a minimum is reached at
VCE =8 e /at. Beyond this value, a copper-rich sample and fcc Cu itself show the
opposite trend. It is worth noting that the quasicrystal in this family of CMAs (star in
Figure 1.20) is found significantly below the other specimens. This result, again,
stresses the electronic origin of adhesion in vacuum between the solids considered
herein. Empirical rules may be derived from the present study to optimize the choice
of materials that are placed in contact under severe load, whereas vacuum hinders the
formation of a diffusion barrier at the contact interface. We will come back to this
aspect later in this chapter.

1.4.4
Plasticity

The plasticity of CMAs is a novel field of materials science. To date, only a very limited
number of different CMA phases have been experimentally investigated. It is a

25



26| 1 Introduction to the Science of Complex Metallic Alloys
1.0 7

He
0.8 -

0.6

3¢
] +?++t+¢_’_\ !

0.2

NVE
0.0
0.00 200 400 600 8.00 10.00 12.00

Figure 1.20 Adhesive part of friction in shown by a star and is found below the other
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squares are for fcc Al (left) and fcc Cu (right),  theright side of Figures 1.2 and 1.3 were taken in
respectively. The Al-Cu-Fe icosahedral CMA is  the range 5.5 <NVE <6.2.

common property of all these materials that they are brittle at room temperature.
Ductility sets in at temperatures of the order of 70% and higher of the melting point of
the individual materials. This is a feature discriminating CMAs from essentially all
other simple crystalline metals — the latter typically show ductile behavior at room
temperature and even below. In this respect, the plastic behavior of CMAs rather
resembles that of covalently bond crystals such as for example, silicon.

In the following, we will discuss experimental results on three CMA phases, e-Al-
Pd-Mn, $-AlsMg,, and Al;3Co,. The phases g-Al-Pd-Mn and Al;;Coy are ortho-
rhombic and have 320 and 102 atoms per unit cell, respectively. Their structures were
described in Section 1.2.3. The compound R-Al-Mg is cubic, space group Fd3m. We
already mentioned that the lattice parameter is a = 2.82 nm and the unit cell contains
about 1168 atoms [70]. The coordination polyhedra in the structure comprise 672
icosahedra (ligancy 12), 252 Friauf polyhedra (ligancy 16), 24 polyhedra of ligancy 15,
48 polyhedra of ligancy 14 and 172 more or less irregular coordination shells of
ligancy 10-16. Because of incompatibilities in the packing of the Friauf polyhedra,
this structure features a high amount of inherent disorder, which is apparent as
displacement disorder, substitutional disorder and fractional site occupation.

Figure 1.21 shows the stress—strain curve of an €,-Al-Pd-Mn sample, deformed at
700 °C with a strain rate of 10> s ' The compression axis was chosen parallel to the
[0 1 0] lattice direction. For a discussion of the main features of the stress—strain
curve, ignore the three sharp dips, which are the result of stress-relaxation tests to be
discussed below. The course of the curve is at the positions of the relaxation dips
interpolated by dotted lines. At very small strains ¢, the curve shows an almost linear
behavior. This is the elastic regime, where the deformation is reversible and,
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Figure 1.21 True stress—true strain curve recorded in compression at 700 °C for an g¢-Al-Pd-Mn
single grain sample. The three dips visible on the curve come from relaxation experiments
performed at different stages of deformation.

according to Hooke’s law, the stress o is proportional to the strain. Plastic defor-
mation sets in atabout 0.70% strain, where first deviations from a linear course occur.
At 1% strain the curve reaches an upper yield point at about 350 MPa. Subsequently,
the stress decreases down to a value of about 280 MPa, where it reaches a lower yield
point at about 2.5%. After the lower yield point, the stress—strain curve goes through
two further stages. First, from about 3 to 5% strain, the stress decreases with strain,
that is, the material shows a work-softening stage. Second, from about 5% to the
termination of the experiment at 8%, the stress—strain curve is essentially horizontal.
In this stage, the material is in a dynamic equilibrium, corresponding to a steady state
where hardening and softening processes in the microstructure balance.

Figure 1.22 displays a set of stress—strain curves of Al;3Co4 samples, deformed
alongthe [6 4 5] direction atastrain of 107> s™" and temperatures between 650
and 800 °C [23]. Each curve shows signatures of additional temperature cycling tests
and a stress-relaxation test, marked “TC” and “R,” respectively, in the uppermost
curve. The corresponding results will be considered below.

At all temperatures the curves have common qualitative features. After the elastic
regime, a strong yield-point effect is observed in the strain range between 0.25 and
0.55%. At 700 °C, for instance, a stress difference as large as 45% between the lower
and upper yield stress was measured. Additional yield-point effects are seen after the
temperature changes and after stress relaxation. At high strains, above about 2%, the
curves show an almost constant flow stress or, at some temperatures, a very weak
work-hardening stage. The deformation behavior is strongly temperature dependent:
the stress strongly decreases with increasing temperature, leading to high-strain flow
stresses between about 320 MPa at 650 °C to 120 MPa at 800°C.

Figure 1.23 displays stress—strain curves of f-AlsMg, samples at 10 *s™*. The
black curves represent deformations of single crystalline samples along the [1 0 0]
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Figure 1.22  Stress—strain curves for single grains of Al;3Co4 deformed at various temperatures as
indicated.
g00 b 104571
SO0 225°C |
400+ 1
@
o
= 300t = 0c A
o / ~L¥
a00k 1/ . 350°C i
i o — i
— —~ i 300°C
100 f/ | - ! J
l a0
0 L i i L I L I
0 1 2 3 4 5 6 7 |

el %

Figure 1.23  Stress—strain curves of 3-Al;Mg, at different temperatures as indicated.

direction, the gray curves represent deformations of polycrystalline samples (grain
size about 20 um). Temperature changes and relaxations were carried out during
most of the experiments. The single-crystal deformations show similar features to
those of Alj3Co4, with a generally smaller yield-point effect. The polycrystals
deformations, on the other hand, show considerably different behavior. The yield
points are much broader, the curves show work softening, and the high-strain flow
stresses are considerably smaller than for the single-crystalline case. Also, the single-
crystalline samples can be deformed at temperatures down to about 225 °C, while the
polycrystals are ductile only above 300°C.
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Figure 1.24  Activation volume (a), activation enthalpy and work term (b) deduced from relaxation
experiments performed on €-Al-Pd-Mn (a) and 3-AlsMg, (b) single crystals, respectively.

The activation parameters are determined by dedicated incremental tests, that is,
stress-relaxation tests (R in Figure 1.22) and temperature changes (T in Figure 1.22).
Figure 1.24a displays the activation volume of &€-Al-Pd-Mn, determined by stress
relaxation as a function of stress. The activation volume is strongly stress dependent.
It decreases with increasing stress, following a hyperbolic curve. The absolute values
vary within the range of about 0.5-2 nm>. This stress dependence and the absolute
values of V are typical for CMAs. Let us compare different CMA phases for a given
stress value of 300 MPa: Values of V = 0.45 nm? (e-Al-Pd-Mn), V= 0.8 nm” (Al;3Coy),
and V=0.6nm?’ (B-Al;Mg,) are found. Scaled by the respective atomic volumes, we
find VJV, =30 for &-Al-Pd-Mn. For Al;3Co,4 and (3-AlsMg, we find V/V,=53 and V/
V, =32, respectively.

The values found for the activation volume of different CMAs obviously exceed
the atomic volumes by more than an order of magnitude, which indicates that
large obstacles containing some tens of atoms control dislocation motion. Recall
that we have accounted for the presence of a cluster substructure as a distinct
structural feature of CMAs. Accordingly, it was concluded for several CMA phases,
that the cluster substructure provides the rate-controlling obstacles for dislocation
motion [20, 22].

Figure 1.24b shows the activation enthalpy and the work term of B-Al;Mg, single
crystals as a function of deformation temperature, obtained from combined tem-
perature-change and stress-relaxation tests. The values for the activation enthalpy AH
are shown as solid squares. Values increasing with temperature from about 1.8 to
2.6eV are found. A linear fit under the boundary condition AH(T=0K)=0eV is
shown as a dashed line. The work term, corresponding to the part of the energy, which
is supplied by the applied stress, is shown by circles. It is roughly constant in the
observed temperature range and amounts to about 0.4 eV.

The activation enthalpy AH is larger by about a factor of six than the work term. It
can hence be concluded that the deformation is a thermally activated process. Similar
behavior of the energetic activation parameters is also found for other CMAs. For
Al;;Co, AH=2.2eV*? and for e-Al-Pd-Mn AH =5 eV is found [20]. The activation
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enthalpy is always much larger than the work term, and the enthalpies are consid-
erably larger than the corresponding self-diffusion energies. As the latter finding
indicates that the deformation-rate-controlling mechanism is not given by a single-
atom diffusion mechanism, this is consistent with the conclusions drawn from the
results for the activation volumes.

1.5
Potential Applications

1.5.1
Applications Related to Surface Energy

It is a well-known fact that technological developments often anticipate a full
understanding of the property they are based upon. This has been the case for
Al-Cu-Fe-Cr quasicrystals and approximants, which were shown to yield appreciate
antistick properties and interesting corrosion resistance, making them suitable for a
new generation of cookware [86]. This type of utensil was combining low adhesion
and excellent mechanical resistance to scratch, in contrast to many modern devices
that do not offer both performances together. Figure 1.25 summarizes the basics
behind the performance of such utensils. It is based on the reduction of the apparent
surface energy of a CMA coating, equipped with its native Al,O; oxide that forms in
ambient conditions. The reversible adhesion energy of water (taken as a model
material representative of food, although the chemical reactions that take place
during cooking are far more complicated) is then related to the contact angle, as
discussed earlier in this chapter. It may be divided into two parts, coming respectively
from fluctuations of the electric charges on both sides of the water/oxide interface
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Figure 1.25 Lifshitz—Van der Waals (left) and ~ Al3p DOS at E¢ (n(Ef)). Observe that I*® cancels
I8 (right) components measured using various ~ for selected samples when n(Eg) ~0.12, which
liquids for pure alumina (square), fccaluminum  corresponds to quasicrystals and high-rank
(star) and a series of Al-Cu-Fe-Cr CMA materials  approximants in Figure 1.11.

of changing complexity and therefore, different
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and from a component accounting for the presence of permanent electric charges at
the interface and its vicinity. The first component is called the Lifshitz—Van der Waals
term, and the second is often termed simply I*®.

Then, the reversible adhesion energy of water reads:

Wit2o = vy (1+cos 0) = 2(v§¥ +y{¥) "2 + 14

where the subscripts S and L stand for solid and liquid, respectively, 0 is the contact
angle, and LW is for Lifshitz—Van der Waals. The part of the surface energy of water y,
thataccounts for LW interactions is well known. The equation above is valid only if the
film pressure of water on the surfaces of interest is negligible, which is the case in the
present work for all CMA samples of large complexity that were studied. Now, using
various liquids, which allows us to vary the ratio y;/ytV, it is possible to assess the
respective weights of YV and I*® for a given solid (Figure 1.25). It turns out that I*®
vanishes for CMA materials of high complexity, like the Al-Cu-Fe quasicrystal and the
Al-Cu-Fe-Cr orthorhombic approximant of the decagonal phase that was designed for
this purpose [87], in strong contrast to fcc aluminum or conventional Al-based
intermetallics. Since Y5V is merely constant in all alloys, the low stick property
pointed out for those CMAs is an intrinsic property related to complexity, via the I*®
component and its reduction with the decreasing Al3p DOS at Er (or equivalently,
increasing B¢, Figure 1.2).

Definite attempts were made by one of the present authors to transfer this
discovery to industry. A process able to produce large amounts of atomized powder
(up to 1000 kg/day) was designed in association with the preparation at large scale
of coatings by plasma spray (Figure 1.26). Demonstrators were supplied to
restaurants and to a number of participants in the study. Unfortunately, when
marketing started, the pans that were sold had not undergo the thermal treatment
designed to stabilize the mixture of icosahedral and B-CsCl type phase that are
quenched in a metastable state during the fast cooling that follows the projection
from liquid state [88]. As a consequence, the high corrosion resistance character-
istic of the alloy selected for this application was lost, especially in washing
machines. It resulted in a massive return of the products, and customers claimed
for reimbursement, which sadly concluded the story. The inventor, who had never
been informed of the change in the process, gave up with this type application of
quasicrystals and approximant CMAs.

Other possible applications related to the surface energy of Al-based CMAs were
looked at over the years. They revolve around friction and adhesion in vacuum, which
is a concern for the aerospace industry and microelectronics. Satellites, for instance,
make a broad use of mechanical devices, which must be kept closed under high
mechanical stress during launch and travel, to avoid uncontrolled movement, and
must open when they arrive at their final destination. A lot of vibration during the
travel phase, and event later, produces what is called cold welding in the vacuum of
space. Metallic alloys usually bond under such conditions, and the parts do not
separate when demanded from earth, which causes the loss of the mission, that is,
billions of US Dollars or Euros. To avoid such problems, surface coatings are often
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Figure 1.26 One of the many 1-kg ingots of  then a plasma torch for the sake of producing

Alg,CusgFe10Crip (at.%) CMA alloy that was low-stick coatings for frying pans. A utensil then
prepared by a conventional metallurgical route  had to be thermally treated and polished before
for feeding a powder atomization tower and sale.

used, with the purpose to forbid direct contact between the naked metal surfaces.
Fretting tests performed at Austrian Institute of Technology, in Seibersdorf, Aus-
tria [89], have shown that Al-based CMAs are excellent candidates for this purpose
(Figure 1.27). They exhibit both high hardness, which is mandatory to sustain the
high applied stress during launch of the rocket, and do not bond against hard steel or
aluminum alloys. For the moment, the limitation to the use of these coatings is
basically the process of covering complex shapes like the ones encountered in this
field with a coating made of a CMA of excellent lattice perfection, and no macroscopic
defects like cracks or pores. A later chapter deals with this side of CMA metallurgy.

In order to insist a little more on the care that must be taken to produce coatings of
excellent microstructural quality to achieve the level of performance expected for
CMA materials, we show in Figure 1.28 a successful attempt made at the Josef Stefan
Institute by Cekada et al. [90]. The starting point (Figure 1.28a) is a multilayer stacking
of Al, Cu and Fe films the respective thicknesses of which are selected in order to
reproduce the adequate stoichiometry of the material. After thermal mixing
(Figure 1.28Db), a homogeneous thick coating is formed. It can be used for example,
to coat cutting inserts made of a WC-Co sinter, covered by the Al-Cu-Fe film.
Alternatively, physical vapor deposition (PVD) can process the same quality of
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Figure 1.28 Al, Cu and Fe layers stacked on top of each other on a WC-Co substrate (a) transform
upon thermal treatment in a homogeneous coating (b).

coatings, starting from a target the composition of which was designed to take into
account the shift from stoichiometry that results from preferential sputtering rates
encountered for different elements like Al, Cu and Fe. Standard tests defined
according to the state-of-the-art prove that the lifetime of the tools under represen-
tative machining conditions is increased by 25% (Figure 1.29), which represents a
very significant saving for the profession, provided the production costs are kept low.
This step for the time being is not yet achieved.

15.2
Applications Related to Transport Properties

Applications related to transport properties are of four types: heat insulation, light
absorption in view of solar heating of houses, applications connected with the
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Figure1.29 Standardized wear rate of cutting insert, according to the state-of-the-art (left), and for
various multilayers after thermal mixing (center of the figure) or two PVD coatings (right).

magnetocaloric effect (MCE), namely the heating or cooling of a magnetic material in
response to the variation of an external magnetic field and finally, applications
referring to the thermoelectric effect, namely the transformation of caloric energy
into electric energy or vice versa. These two latter aspects are treated in Chapters 8 and
9, hence we will not detail them any further. Let us just mention that as far as the
magnetocaloric effect is concerned, much effort is done nowadays with the purpose
of finding materials with a high MCE around room temperature [91], easy to prepare
and suitable for designing the first magnetic refrigerator usable in everyday life. Also,
an investigation is being carried out with the goal of discovering new environmentally
friendly energy sources, as for example, for achieving electricity generation from
waste of heat via thermoelectric modules. These two potential applications of CMAs
are dealt with in Chapters 8 and 9, respectively.

The potential of CMAs for applications in the domain of heat insulation, namely
the production of thermal barriers for the automotive and aeronautic industries, and
solar-light absorption for the purpose of low-cost house heating was recognized and
secured by one of the present authors quite some time ago (see references in Ref. 3).
Thermal barriers were produced by plasma spray technology and demonstrators
were submitted to tests [92]. A limitation comes from the too low melting point of the
CMA coatings known so far. However, for certain niche applications like turbine
blades of helicopter engines or military aircrafts, the potential of CMA coatings has
been recognized and studied to some extent (Figure 1.30).

Successful attempts were also carried out by Eisenhammer [93] to replace the so-
called TiNO,, technology by Al-Cu-Fe films of equivalent light-absorption perfor-
mance, but much higher working temperature, and therefore better thermodynamic
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Figure 1.30 A small helicopter turbine blade covered by magnetron plasma sputtering with a 0.3-
mm thick Al-Co-Fe-Cr thermal barrier. The thumbnail on the left gives an approximate scale for the
figure (Courtesy S. Drawin, Onera, France).

efficiency. In fact, all trials have failed so far due to the nonmature film deposition
industrial processes of CMAs layers and coatings, which increase the cost of the
layers above the thresholds that industry may accept.

1.5.3
Applications Related to Dispersion of Particles in a Matrix

In Section 1.4.4, we have seen that CMAs are ductile only at elevated temperatures. In
temperature ranges of 70% of the melting temperature and above, the flow stresses
are of the order of some hundreds of MPa. The flow stress is strongly temperature
dependent and increases with decreasing temperature. Accordingly, at lower tem-
peratures, for example, at room temperature, the yield strength of CMA materials is
very high, albeit at very low ductility. Consistently with the low surface energy, the
toughness constants are small, if not negligible.

These properties can be taken as an advantage for using CMA particles to harden
ductile metals and alloys of lower yield strength. For instance, in situ precipitation of
nanoparticles of icosahedral symmetry was used long ago to produce maraging
steels [94] of amazingly large yield strength that are used in a commercial application
by Philips (razor blades). Other metal-matrix composites can be produced under
such conditions that CMA particles precipitate in a soft matrix, for example, in Al-
based alloys, or by mechanical alloying and sintering. It has, for example, been
demonstrated that volume fractions of $-Al;Mg, as low as 20% spread in an Al-matrix
lead to an increase of strength by 400% at a still high ductility of about 40% (Eckert
et al., Chapter 7). Particle strengthening using CMA composites is treated in detail in
Chapter 6.

A real breakthrough was recently achieved using laser selective sintering, a rapid
prototyping method able to produce a variety of composites based either on polymer
or aluminum matrices [95, 96]. Figure 1.31 shows an example of a toy part made
according to this process, with very high mechanical properties that exceed the
current state-of-the-art and may find application in many areas of the transport
industry.
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Figure 1.31 Example of a complex shape produced by laser selective rapid prototyping and
sintering of a very complex shape of embedded polyhedra made of CMA powder in a polymer matrix.
The object is a few cm in diameter.

1.6
Conclusion and Introduction of the Following Chapters

This book is intended to introducing the reader to a state-of-the-art comprehension of
the most salient features of the science of CMAs, which the editors selected in view of
their relevance to potential technological applications. The book is organized in 10
self-contained chapters. In addition to the present introduction, the following
chapters are dedicated to the study of the properties of CMAs from theoretical and
experimental standpoints (Chapters 2 and 3), to the surface science and surface
chemistry of CMAs (Chapters 4 and 6), to metallurgy, preparation, processing and
engineering properties of CMAs (Chapters 5 and 7), to magnetocaloric properties and
thermoelectricity (Chapters 8 and 9) and finally to CMAs as catalysts (Chapter 10).
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2
Properties of CMAs: Theory and Experiments

Enrique Macia and Marc de Boissieu

2.1
Introduction

CMA encompasses different kinds of structurally complex materials sharing a basic
property: a full description of their atomic arrangement requires the consideration of
more than one spatial scale. Thus, on the scale of several nanometers, these alloys
exhibita well-defined atomic long-range order, whereas on a shorter scale, they locally
resemble cluster aggregates.

In order to gain some understanding about the role played by this multiscale
feature on the physical properties of CMAs it is convenient to broadly classify them
by two main criteria: the nature of the long-range order present in the sample and
the size and local atomic distribution of its unit cell. The extreme case corresponds
to quasicrystals (QCs) which can be regarded as a natural extension of the notion of
a crystal to structures with quasiperiodic, rather than periodic, long-range order. As
a consequence, ideal three-dimensional QCs exhibit a self-similar distribution of
icosahedral clusters at all scales and are characterized by an effective unit cell of
infinite size. In the case of decagonal QCs, two kinds of long-range order
simultaneously coexist in the same sample, namely periodic order along one
direction and quasiperiodic order in the planes perpendicular to the previous one.
Due to this fact, these alloys exhibit highly anisotropic effects in most of their
physical properties, and they will be discussed in a separate chapter. The next step
corresponds to the so-called approximant alloy phases exhibiting a well-defined,
huge unit cell that periodically repeats through the three directions of space, though
the local distribution of atoms inside this unit cell is completely isomorphous to
that corresponding to closely related QCs in the phase diagram. Finally, we have
those CMAs with giant unit cells that are not related to any QC structure. According
to this approximate classification scheme the role played by the local symmetry of
the structural clusters progressively increases from the non-QC related CMAs to
the QC-related ones.
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2 Properties of CMAs: Theory and Experiments

From a fundamental point of view one reasonably expects that the presence of two
physically relevant length scales — one defined by the unit-cell parameters and the
other by the cluster substructure — will have a significant impact on the physical
properties of these materials. In this chapter we will focus on those properties
determined by their electronic structure and lattice dynamics. Following the struc-
tural approach previously described we will start by considering the transport
properties of QCs and their related approximants. As we will describe in Section 2.2.1,
it is now well established that transport properties of thermodynamically stable QCs
of high structural quality are quite unusual by the standard of common metallic
alloys, as most of their transport properties resemble a more semiconductor-like than
metallic character. Thus, high-quality QCs provide an intriguing example of solids
made of typical metallic atoms that do not exhibit most of the physical properties
usually signaling the presence of metallic bonding, a topic that will be addressed in
Section 2.2.2. Subsequently, the main features of the electronic structure close to the
Fermi level will be discussed along with the nature of the so-called critical electronic
wavefunctions and their role in the resulting charge transport efficiency. Finally, in
Section 2.2.4 we will briefly describe a phenomenological approach that allows for a
unified description of different transport coefficients, providing some illustrative
application examples.

In Section 2.3 we turn our attention to the lattice dynamics related properties. The
section opens with a brief review introducing the basic notions and experimental
procedures usually considered in the study of phonons in solid-sate physics. A
Particular attention to the role of anharmonic effects is devoted in Section 2.3.3, since
these effects have a relevant impact in the thermal conductivity of the considered
systems. In the following sections these basic tools are systematically applied to the
derivation and analysis of the phonon dispersion relations of several CMAs repre-
sentatives. For the sake of comparison the considered samples are arranged accord-
ing to the structural classification scheme previously introduced. Thus, the proper-
ties of phonons in QCs and approximant phases are described in detail in Sec-
tion 2.3.4. The samples considered include the high-quality icosahedral Al-Pd-Mn
and Zn-Mg-Sc phases, for which accurate structural models have been recently
reported. Afterwards, in Section 2.3.5 we consider the lattice dynamics of the so-
called cage compounds, typically including clathrates and skutterudites. These
compounds are characterized by the presence of a framework of cages or large
structural vacancies that can be filled with heavy atoms which interact with the
propagating phonons by activating “rattling” modes, hence reducing the resulting
thermal conductivity. The potential of these compounds in the field of thermoelectric
materials research is also discussed, complementing the thermoelectric figure of
merit results presented in Section 2.2.2 for QCs and approximant phases.

The emerging view is that attending to their physical properties CMAs appear as
very promising alloys that can be efficiently used in order to obtain materials with
novel capabilities, like a combination of metallic electrical conductivity with low
thermal conductivity, tuneable electrical and thermal resistances by varying the
composition, or an improved thermoelectric efficiency.



2.2 Electronic-Structure-Related Properties

2.2
Electronic-Structure-Related Properties

2.2.1
Transport Properties of Quasicrystals and Approximants

The first QCs obtained were metastable, preventing a significant study of several
physical properties, in particular the temperature dependence of their transport
properties. Even the first thermodynamically stable QCs, obtained in the systems Al-
Cu-Li and Ga-Mg-Zn, were unsuitable to this end, since they were usually contam-
inated with small crystalline inclusions and exhibited a relatively large number of
structural imperfections. Nevertheless, shortly after the discovery of thermodynam-
ically stable quasicrystalline alloys of high structural quality in the Al-Cu(Fe,Ru,Os),
Al-Pd(Mn,Re), Zn-Mg(RE), and Cd(Yb,Ca) icosahedral systems, as well as the Al-Co
(Cu,Ni) decagonal system, it was progressively realized that these materials occupy an
odd position among the well-ordered condensed-matter phases. In fact, since QCs
consist of metallic elements one would expect they should behave as metals.
Nonetheless, as we will describe below, it is now well established that transport
properties of stable QCs are quite unusual by the standard of common metallic alloys,
as most of their transport properties resemble a more semiconductor-like than
metallic character [1].

2.2.1.1 Inverse Matthiessen Rule
For typical metals resistivity decreases as the temperature is decreased and it
can even completely vanish at low enough temperatures for those materials
reaching the superconducting state. Conversely, the electrical resistivity of QCs
progressively increases as the temperature is decreased, suggesting the possibility
of reaching a metal-insulator transition in high-quality icosahedral quasicrystals
at low temperatures [2-5]. On the other hand, the electrical conductivity steadily
increases as the temperature increases up to the melting point, and its value
very sensitively depends on minor variations of the sample stoichiometry
(Figure 2.1).

Quite remarkably, the conductivity curves of different quasicrystalline samples are
nearly parallel up to about 1000 K, so that one can write [6]

o(T) = 0 + Ao(T) (2.1)

where 0y measures the sample-dependent residual conductivity, and A(T) is pro-
posed to be a general function. According to this expression the contribution to the
sample conductivity due to different sources of scattering seems to be additive. This is
just the opposite to what happens to normal metals, where the resistivities due to
different sources of disorder are additive. This unexpected behavior, referred to as the
inverse Matthiessen rule [6], has been also observed in quasicrystalline approxi-
mants [7], and even in amorphous phases prior to their thermally driven transition to
the QC phase (see Figure 2.7) [8].
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Figure2.1 Temperature dependence of the electrical conductivity for four different quasicrystalline
samples up to 1000 K. The inset illustrates the sensitivity of the residual conductivity value to minor
variations in the sample composition. (Adapted from reference [6]. Courtesy of C. Berger).

Accordingly, the inverse Matthiessen rule may be a quite general property of
CMAs and the question concerning the possible existence of a suitable physical
mechanism supporting the presumed universality of the Ag(T') function naturally
arises. In fact, the parallelism of the o(T') curves is difficult to understand in terms
of a classical thermally activated mechanism, since the temperature dependence of
0(T) does not follow an exponential law of the form exp (~ Eg = kgT'); where kg is the
Boltzmann constant, which implies the absence of a conventional semiconducting-
like gap in QCs [9]. In addition, the o(T) curves do not decrease at high enough
temperatures, as one should expect if QCs were comparable to heavily doped
semiconductors, which show up a conductivity saturation when all the impurity
levels have become ionized.

2.2.1.2 Current-Voltage Curves

Another clear indication that QCs cannot be regarded as standard semiconducting
materials came from the fact that their characteristic current—voltage (I-V) curves
exhibit a perfect Ohmic behavior at low temperatures (T ~ 4 K) for bias voltages that
vary by several orders of magnitude [10]. Such a linear behavior holds as the sample
temperature is progressively increased (Figure 2.2), clearly indicating that a linear
I-V behavior is not restricted to low-temperature regimes. This behavior lends
support to the possible presence of relatively extended states close to the Fermi level
and should be interpreted in the light of the electronic structure of icosahedral QCs
(see Sections 14.3 and 1.2.3) which is characterized by the presence of three relevant
energy scales close to the Fermi level, namely: (i) a broad pseudogap on the energy
scale of about 1eV (related to the Hume-Rothery stabilization mechanism); (ii) a
narrow dip of about 0.1 eV (due to hybridization effects among d-states and sp-states);
and (iii) some narrow features in the density of states (DOS), on the scale of about
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Figure 2.2 Double logarithmic |-V plots of an icosahedral Alg3Cu,sFeq, phase sample (kindly
provided by Jean Marie Dubois) at T=19; 45; 65; 100. 175 and 230K. The inset shows the linear
representation of the same data. (Courtesy of Javier Garcia-Barriocanal).

0.01eV (stemming from resonant effects among quasiperiodically distributed
transition-metal atoms) [11]. Thus, one would expect to observe some nonlinearity
related to the presence of these spectral features as soon as the energy change of the
charge carriers involved in the measurement process is in the range 0.01-1eV.

Now, the highest electric fields applied in these experiments are in the range
E=50-100V/cm, so that we get the electron energy & ~ eEly ~ 107> eV, where
lo = 20 A, is a rough estimate of the electronic mean free path in these materials [10].
Certainly, this figure is small enough to play a subsidiary role in the considered I-V
measurements. Consequently, stronger electric fields should be applied in order to
observe any possible effect related to finer electronic structure features in these
materials.

2.2.1.3 Optical Conductivity

Suitable information about relatively fine details of the electronic structure and
the spectrum of excitations of a solid can be gained from the study of its optical
properties. To this end, one experimentally obtains the reflectivity curve as a function
of the incoming electromagnetic radiation frequency, R(w), and derives from it the
optical conductivity curve o(w) by means of the so-called Kramers—Kronig transfor-
mation of the reflectivity spectrum. The o(w) curve of metallic alloys is determined by
several contributions. First, we have intraband transitions involving conduction
electrons that can be analyzed using the Drude model for free electrons

o(w) = —2 (2.2)
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where o(0) is the dc conductivity and is the relaxation time. This contribution
dominates the optical response at low frequencies and results in a characteristic
Lorentzian function centered at the zero frequency, known as the Drude peak,
followed by a rapid decay of the optical conductivity at low frequencies. A second
contribution (mainly affecting the far-infrared region of the spectrum) is related to
the presence of optical phonon modes, which are activated when the incoming
radiation frequency is equal to or exceeds the necessary excitation energy. Additional
contributions come from transitions involving both the valence and conduction
bands (interband transitions) in the visible spectral range. Accordingly, good con-
ductors show a reflectance close to 100% at frequencies below the onset of absorption
due to interband transitions and a characteristic sudden decay (known as the plasma
edge) as the frequency increases approaching the so-called plasma frequency value
determining the free electrons coupling to the oscillating electromagnetic field of
incoming photons. Thus, a metal is basically transparent to light for wavelengths
smaller than the plasmon cut-off, and absorbing and reflecting above.

On the other hand, in semiconducting materials the absorption of a photon of
energy hw, is possible as soon as it equals the gap width E, (direct transitions) or if the
top of the valence band and the minimum of the conduction band in reciprocal space
are separated by a wavevector belonging to the lattice (indirect transitions).

As a matter of fact, the optical conductivity of icosahedral QCs studied so far is
quite different from that of either a metal or a semiconductor. Thus, reflectance of
high-quality icosahedral samples was found to be significantly small in a wide
wavelength region from about 300 nm (UV region) to 15 um (IR region), and the
following unusual features were observed in the optical conductivity:

1) The far-infrared o(w) response is very weak and no Drude peak appears at low
frequencies (Figure 2.3), though extrapolation to the zero frequency yields
conductivity values in good agreement with the measured dc conductivity
[12-16]. Two different explanations have been proposed to account for the
unusual absence of a Drude peak: (a) the low o(w) would be related to an
extremely low density of states at the Fermi level due to the presence of a
pseudogap in the band structure of QCs, hence leading to a substantially small
value of 0(0) in Equation 2.2 [17] (b) the localization of charge carriers due to the
quasiperiodicity of the structure would lead to an anomalous diffusion mech-
anism. In that case, Drude’s formula for the optical conductivity would adopt the
more general form

T >zﬁ—1

o(w) = Ae’N(Ep)T(28 +1) (1—iu)‘c

(2.3)
where A is a constant, I is the Gamma function, N(Eg) is the density of states at the
Fermi level, and B is a diffusion exponent that depends on the energy [18]. The real
part of this expression reduces to Equation 2.2 in the case 3 = 1. Quite remarkably,
values as low as § =0:07 and f§ = 0:03 were found from fitting analysis of the o(w)
curves of Al-Cu-Fe-B and Al-Pd-Mn QCs, respectively, whereas the value § = 0:4 was
obtained for the O;/0,- Al-Cr-Fe CMA (Figure 2.3) [16].
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The peaks around 0.03 eV are associated to
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2) All the studied QCs exhibit a typical absorption feature overlapping the low-
frequency tail of the far-infrared region (Figure 2.3). This relatively broad feature
(which splits into two separate contributions at about 25 and 35 meV in several
cases) is ascribed to phonon effects. At higher energies (~0.4 eV) the optical
conductivity progressively rises reaching a peak at about 0.7 eV (i-Zn-Mg-Y, i-Zn-
Mg-Tb), 1.2-1.5eV (i-A-Cu-Fe, i-Al-Pd-Mn), or 2.6-2.9eV (i-Al-Pd-Re), after
which the conductivity decreases. This absorption feature is commonly ascribed
to excitations across a characteristic pseudogap related to the Hume-Rothery
stabilization mechanism

In summary, unlike disordered metals (where a Drude model is applicable) or
semiconductors (with a well-developed conductivity gap), the reflectivity spectra
of icosahedral phases display low optical conductivity on the far-infrared energy
range and a marked absorption in the visible.

These characteristic features are also observed in typical approximant phases, such
as 1/1 Al-Mn-Si, but for decagonal phases different behaviors of the o(w) curve can
be clearly established between the quasicrystalline and the periodic directions
(Figure 2.4) [19]. In fact, a Drude peak is present when light is irradiated within a
narrow area parallel to the periodic axis, whereas no peak is detected in a plane
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Figure 2.4 The optical conductivity of the icosahedral Al-Cu-Fe studied in reference [12]
decagonal Al-Co-Cu-Si quasicrystal for the (solid dots). In the inset the quasiperiodic
periodic (short-dashed line) and the conductivity in the far-infrared part of the
quasiperiodic (solid line) directions is spectrum is shown. (From reference [19]. With

compared with the conductivity of the permission).
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perpendicular to it. The analysis of the optical data shows that contrary to the case of
icosahedral QCs, there is no clear evidence for the presence of a marked pseudogap at
the Fermi level.

2.2.1.4 Seebeck Coefficient

Thermoelectric power describes the electric response of a sample due to the
application of an external temperature gradient through the relationship AV=1S
(T)AT, where S(T) is the so-called Seebeck coefficient. During the last decade the
thermoelectric power of samples belonging to different icosahedral families has been
measured. Reported data refer to a broad range of stoichiometric compositions and
cover different temperature ranges in the interval from 1K to 900K. From the
collected data the following general conclusions can be drawn for high-quality QCs
containing transition metals [20-22].

e Room-temperature thermoelectric power usually exhibits large values (50-120 uV
K ') when compared to those of both crystalline and disordered metallic systems
(1-10uvK ™).

o The temperature dependence of the Seebeck coefficient usually deviates from the
linear behavior, exhibiting pronounced curvatures (either positive or negative) at
temperatures above ~50-100 K. This behavior is at variance with that exhibited by
ordinary metallic alloys where the S(T) curve is dominated by electron diffusion
yielding a linear temperature dependence.

o Small variations in the chemical composition (of just a few atomic per cent) can
give rise to sign reversals in the thermopower curve.

e The S(T) curves exhibit well-defined extrema in several cases. Both the magnitude
and position of the extrema observed in the thermoelectric power curves are
extremely sensitive to minor variations in the chemical stoichiometry of the
sample.

On the other hand, thermopower measurements of rare-earth-bearing QCs in
the system i-Zn-Mg(Y,Tb,Ho,Er) exhibit markedly linear temperature depen-
dences above ~50K [23]. An analogous behavior has been reported for the
thermodynamically stable Cd-Yb QC, which also contains rare-earth atoms [24].
Such different behaviors among the i-Al-Cu-(Fe,Ru,Os) and i-Al-Pd-(Mn,Re)
families (bearing transition metals) and the i-Zn-Mg(RE) and i-Cd-Yb families
(bearing rare-earth atoms), strongly suggest that chemical effects may be playing a
significant role.

2.2.1.5 -Wiedemann—Franz Law

In the study of the thermal transport properties of CMAs the Wiedemann—Franz law
(WFL) is routinely applied in order to estimate the phonon contribution to the
thermal conductivity, Kpn(T). As is well known, this law links the electrical conduc-
tivity, 6(T), and the charge carriers contribution to the thermal conductivity, k(T), of a
substance by means of the relationship «.(T) = LoTo(T), where T is the temperature
and Ly = (kp/ e)2 Mo is the Lorenz number, where kg is the Boltzmann constant, e is
the electron charge, and 1, depends on the sample’s nature (for metallic systems
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Table2.1 Values of the ratio K./, at T =300 K for different CMAs derived from the experimental
transport curves reported in the literature making use of Equation (2.4).

Ke/Kph Quasicrystals Approximants Clathrates

5-1 i-Zn-Mg-Y [25] Bergman [29] Y5Ir,Geyy [32]
~1 i-Ag-In-Yb [26] CdeYD [30] EusGayeGeso [33]
0.5-0.01 i-Al-Pd(Mn,Re) [27, 28] 1/1-Al-Re-Si [31] —

Mo =", and we get the Sommerfeld’s value Ly=2:44 x 10 ® VK % whereas for
semiconductors we have 1, >~ 2). Accordingly, by subtracting to the experimental
data, K,(T),the expected electronic contribution, one gets

Kph (T) = Kn(T)—LoTo (2.4)

In so doing, the ratio K./, at room temperature has been determined for several
CMA representatives (Table 2.1). Keeping in mind that this ratio takes on values
within the range 100-10 for conventional alloys, one realizes that the thermal
transport of CMAs is largely dominated by phonons at room temperature. By
inspecting Table 2.1 we also see that the presence of transition-metal atoms is
related to smaller K./xp ratios in the studied samples, suggesting the possible
existence of some chemical bonding effect.

Physically, the WFL expresses a transport symmetry arising from the fact that the
motion of the carriers determines both the electrical and thermal currents at low
temperatures. As the temperature of the sample is progressively increased, the
validity of WFL will depend on the nature of the interaction between the charge
carriers and the different scattering sources present in the solid. In general, the
WEFL applies as far as elastic processes dominate the transport coefficients, and
usually holds for arbitrary band structures provided that the change in energy due to
collisions is small compared with kgT [34]. Accordingly, one expects some appreci-
able deviation from WFL when electron—phonon interactions, affecting in a
dissimilar way to electrical and heat currents, start to play a significant role. On
the other hand, at high enough temperatures the heat transfer is dominated by the
charge carriers again, due to Umklapp phonon scattering processes, and the WFLis
expected to hold as well. Nonetheless, since transport properties of most CMAs are
quite unusual by the standard of common metallic alloys, it seems convenient to
check up on the validity of this law for these materials, since our understanding of
thermal properties in these materials should be substantially revised if it does not
hold [35-37).

A suitable experimental measure of the WFL validity over a given temperature
range can be gained from the study of the magnitude x,,(T)/o(T) = TL(T) + ¢(T),
where the so-called Lorenz function is defined by the relationship

(2.5)
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Table 2.2 Values of the enhancement parameter ¢ for different CMAs reported in the literature.
The ¢ values were obtained from a fitting analysis of the thermal conductivity experimental
curves making use of Equation (2.6).

€ Sample Ref.
~0:00 y-AlCrFe [40]
0:03 W. AIPdMn [41)
0:14 1/0,-AlCrFe [40]
0:16 g-AlPdMn [41]
0:43 i-Zns;Mg34Ys [25]
1:1 i-A164Cu23F613 [42]

and @(T) accounts for the phonon contribution to the heat transport. A study of the
temperature variation of the x,,/0 ratio in several intermetallic compounds showed
that the experimental data may be fitted by a linear temperature dependence of the
form x,/o = LT 4+ B over the temperature range 350-800 K [38, 39]. By comparing
the slopes obtained for pure aluminum and icosahedral Al-Cu-Fe samples the ratio
Loc/Lap ~ 1.21 was obtained, hence indicating an enhanced Lorenz number for
quasicrystalline alloys at high temperatures. In a similar way, room-temperature L(T)
values larger than the Sommerfeld’s value L, were experimentally reported for other
CMAs (ranging from Lsoo/ Lo = 1.15 [40], to from L3oo/ Lo = 1.43 [25]), hence suggest-
ing the convenience of introducing a slightly modified WFL of the form

Ke(T) = (1+¢€)LoTo(T) (2.6)

By inspecting Table 2.2 we see that the enhancement parameter ¢ is roughly related
to the structural complexity of underlying lattice, progressively increasing as a fully
three-dimensional quasiperiodic order is attained in the considered sample. Fol-
lowing this trend, a generalized WFL of the form «.(T) = L(T)To(1I), which is
characterized by a nonlinearly temperature dependent Lorenz number (Figure 2.5),
has been recently proposed on a theoretical basis [37].

The impact of Lorenz’s function temperature dependence in a proper analysis of
the phonon contribution to the thermal conductivity is illustrated in Figure 2.6. In
this figure we compare the measured thermal conductivity (including contributions
from both charge carriers and phonons) with the phonon contribution derived from
the application of the WFL by either assuming a constant value for the Lorenz
number (Equation 2.4, circles) or explicitly taking into account its temperature
dependence through the expression

kpn(T) = kan(T)=L(T)(T)T 2.7)

One can clearly appreciate that the temperature dependences of the resulting
Kph(T) curves substantially differ in both cases. In fact, when one considers L(T) ~ L,
one obtains an anomalous behavior, characterized by a smooth increase of the
phonon contribution as the temperature increases. Conversely, when experimental
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data are properly corrected from the L(T) enhancement effect one gets a physically
sound phonon contribution to the thermal conductivity that steadily decreases with
the temperature starting at 72100 K, as expected on general physical principles
involving phonon-phonon interactions.
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Table 2.3 Comparison between the physical properties of QCs and typical metallic systems.

Metallic systems  Metals Quasicrystals

property

Mechanical ductility malleability brittle (I)

Tribological relatively soft easy corrosion very hard (I) low friction coefficient

corrosion resistant

Electrical high conductivity resistivity in- moderate-low conductivity (S) resistivity
creases with T small decreases with T (S) large thermopower
thermopower ()

Magnetic paramagnetic diamagnetic

Thermal high conductivity high specific very low conductivity (I) low specific heat
heat values high melting points  values

Optical metallic luster, Drude peak metallic luster, IR absorption (S)

222

Chemical Trends

As is well known, metallic substances exhibit a number of characteristic physical
properties that are directly related to the presence of a specific kind of chemical
bond among their atomic constituents: the so-called metallic bond [44]. For the sake
of comparison in Table 2.3 we list a number of representative physical properties of
both metals and QCs. By inspecting this table one realizes that quasicrystalline
alloys significantly depart from metallic behavior, resembling either ionic or
semiconducting materials (respectively labeled I or S in Table 2.3). Thus, QCs
are an intriguing example of solids made of typical metallic atoms that do not
exhibit most of the physical properties usually signaling the presence of metallic
bonding.

Therefore, the fundamental question arises concerning whether these anomalous
properties should be mainly attributed (or not) to the characteristic quasiperiodic
order of QCs structure. In this regard, several experimental evidences strongly
suggest that the nature of the chemical bonding determining the local atomic
arrangements would play a significant role in most physical properties of these
materials [45-47], namely:

1) Transport measurements show that the structural evolution from the amor-
phous to the quasicrystalline state (Figure 2.7) is accompanied by a parallel
evolution of the electronic transport anomalies, clearly indicating the importance
of short-range effects on the emergence of some transport anomalies.

2) Many unusual physical properties of QCs are also found in approximant phases,
though transport measurements also indicate that these anomalies are more
pronounced for QCs than for their related approximant phases, hence suggest-
ing that the relative intensity of the anomalous behavior is significantly em-
phasized due to the presence of long-range quasiperiodic order.
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Figure 2.7 Temperature-dependent electrical conductivity of an Al-Cu-Fe Film for different
annealing states leading from the amorphous to the icosahedral quasicrystalline phase. (From
reference [48]. Courtesy of Peter Haussler).

3) Certain anomalous transport properties, like a high resistivity value or a negative
temperature coefficient, are also observed in some crystalline alloys consisting of
normal metallic elements whose structure is unrelated to the structure of QCs
(as, for instance, the Héusler-type Fe,VAl alloy) which share with them certain
characteristic feature in the electronic structure (i.e. a narrow pseudogap) [49].

4) Transport properties of metallic alloys with complex unit cells, having a similar
number of atomic species to those of approximant phases, but not exhibiting the
local isomorphism property, are typically metallic [29].

5) Other kinds of aperiodic crystals, like incommensurately modulated phases and
composites do not show the physical anomalies observed in QCs.

According to (1)—(3) the emergence of physical anomalies in QCs should be traced
back to chemical bonding effects (short-range), giving rise to some characteristic
features in the electronic structure close to the Fermi level (such as the presence of a
narrow pseudogap), which are generic but not specific of QCs [50]. Thus, chemical
effects may ultimately become more important than quasiperiodic order effects in
explaining the unusual behavior of these materials. Accordingly, crystalline approx-
imants, which exhibit a local atomic environment very similar to their related QC
alloys, appear as natural candidates to investigate the relative importance of short-
range versus long-range order effects on the transport properties. This conclusion is
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Figure 2.8 Chemical elements found in thermodynamically stable quasicrystal alloys. Main
forming elements (Al, Ti, Zn, and Cd) are circled. The second major constituents are squared. Minor
constituents are marked with a diamond.

further supported by (4) and (5), which indicate that mere structural complexity is not
a sufficient condition to give rise to the emergence of anomalous transport properties
in complex metallic alloys.

Most atomic elements composing thermodynamically stable quasicrystalline
alloys observed to date belong to the chemical family of metals, located at either
alkaline, earth-alkaline, transition metals, or rare-earth groups (Figure 2.8). From this
chart we see that most metallic atoms are able to participate in the formation of
quasicrystalline phases under the proper stoichiometric conditions. On the other
hand, certain chemical trends can also be appreciated in different QC families. For
instance, the minor atom constituent in the systems Alg;Cu,s(Fe,Ru,Os);, and
Al;oPd;0(Mn,Re) o belongs to the same group of the Periodic Table, hence indicating
the importance of their chemical valence for the stability of the compound. This fact
has been successfully exploited in order to obtain the family of stable quaternary QCs
given by the formula [51] Al;oPd,o(V, Cr, Mn, W)s(Co, Fe, Ru, Os)s.

Several chemical trends are also observed in the transport properties of QCs
belonging to the Al-Cu(Fe,RuOs) and Al-Pd(Mn,Re) families. Thus, it is seen that
increasing the atomic number of the third (incomplete d band) transition metal
significantly increases the low-temperature electrical resistivity of the sample as well
as its temperature dependence as measured in terms of the ratio R= (4 K)/0(300
K) [52]. This trend may be due to the relativistic contraction of the s and p states
relative to the d and fstates. As a consequence of this contraction the orbital energies
of s and p states are lowered which, in turn, screens the nucleus, causing the outer d
electrons to experience less binding and therefore a larger spatial extent. Thus, the
relativistic lowering of the energy of the s and p bands, and the associated raising of
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the energy of the d bands brings these bands closer to each other, hence favoring sp-d
hybridization effects leading to an increase of cohesive energy.

223
Electronic Structure

2.2.3.1 Fermi-Level -Pseudogap

It was pointed out by William Hume-Rothery (1899-1968) that certain metallic
compounds with closely related structures but apparently unrelated stoichiometries
exhibit the same ratio of number of valence electrons to number of atoms (the so-
called e/a ratio) [53]. This fact is explained as resulting from a perturbation of the
energy of the valence electrons by their diffraction by the crystal lattice. The
perturbation is of such a nature as to stabilize electrons with energy just equal to
or less than that corresponding to Bragg reflection and to destabilize electrons with a
larger energy. Hence, special stability would be expected for metals with just the right
number of electrons. This number is proportional to the volume of a polyhedron in
reciprocal space (the so-called Brillouin—Jones zone), corresponding to the crystal-
lographic planes giving rise to the perturbation.

Although QCs have a dense reciprocal space, only a few diffraction peaks have very
strong intensities. The Hume-Rothery criterion can then be applied to QCs by
introducing a pseudo-Brillouin zone determined by the most intense diffraction
spots [54, 55]. Due to their great symmetry, in the case of icosahedral QCs this zone is
quite close to spherical shape, so that the diffraction condition can be expressed in the
form

Ky = 2 kg (2.8)

where Ky, is the reciprocal vector of the considered diffraction plane, kr = v/372n is
the radius of the Fermi sphere, and n is the electron number per unit volume.
Equation 2.8 has been successfully used to explain the stability of i-QCs containing
elements with a full d-band, like AlssLi33Cuyq (e/a = 2.12), Zny3Mgs,Gay (e/a = 2.:2);
ZngoMg30(RE) 1o (e/a=2.1) or ZngySci;sMgs (e/a=2.15), by adopting the valence
values Li=1, Mg=2, Sc=3; Ga=3, and RE=3. In all these samples the redistri-
bution of electronic states due to the Fermi-sphere—pseudo-Brillouin zone interac-
tion gives rise to a significant reduction of the density of states (pseudogap) close to
the Fermi energy [46, 50, 56].

For alloys containing a small concentration of a transition element one can
properly extend the Hume-Rothery mechanism by assuming a negative effective
valence arising from a combined effect of strong hybridization between the sp states
and the transition metal d orbitals along with the diffraction of sp states by Bragg
planes. As a consequence, there is an increase of the sp component of the DOS below
the Fermi energy as compared to the free electron DOS [11]. Thus, in QCs bearing
transition-metal atoms, such as Al-Cu(Fe,Ru,Os) or Al-Pd(Mn,Re), the presence of
hybridization effects between sp aluminum states and 3d transition metal states
enhances the (structure related) Fermi-surface-Brillouin-zone diffraction effect,
further deepening the pseudogap close to the Fermi level [57-60].
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Making use of the values Fe =— 2.66, Mn =— 3.66, and Pd =0 one obtains e/
a=1.75and e¢/a =1.73 for AlgsCuyoFe;s and Al,oPd,oMn;0, respectively. The binary
i-Cd(YD,Ca) family, which is composed of divalent atoms, has e/a = 2.0, a value that
lies close to that of the full d band representatives. Notwithstanding this, the role
played by hybridization effects in the stability of the i-Cd(YDb,Ca) phase is significantly
larger than that coming from the Fermi-surface—Brillouin-zone mechanism in this
binary QC [61, 62]. In this case, the orbitals involved in the hybridization process
come from occupied Cd-5p and unoccupied Yb-5d (or Ca-3d) orbitals, which high-
lights the importance of chemical bonding aspects in these quasicrystalline
compounds.

In summary, two main features can be observed in the DOS close to the Fermi
energy in high-quality, thermodynamically stable QCs containing transition-metal
atoms: a structurally induced broad minimum (1 eV width) due to the Hume-Rothery
mechanism and a narrow and sharply confined dip (0.1eV width) due to hybrid-
ization effects involving the transition-metal bands. The physical existence of a
relatively broad pseudogap has received strong experimental support during the last
decade, as indicated by measurements of the specific heat capacity [63], photoemis-
sion [64], soft X-ray spectroscopies [65, 66], magnetic susceptibility and nuclear
magnetic resonance probes [67]. In addition, experimental investigation of Al-Cu-Fe
quasicrystalline films by scanning tunneling spectroscopy at low temperatures gave
evidence for a narrow, symmetric gap of about 60 meV wide located around the Fermi
level [68]. The existence of a sharp DOS valley of about 20 meV at the Fermi level in
both quasicrystalline and approximant phases has also been confirmed by nuclear
magnetic resonance studies, which probe the bulk properties of the considered
samples [69]. All these observations indicate that the dip centered at the pseudogap is
not a surface feature and that both its width and depth are sample dependent. The
dependence of the pseudogap structure with the temperature was also investigated by
means of tunneling and point-contact spectroscopy, and it was reported that the width
of the broad pseudogap remains essentially unmodified as the temperature is
increased from 4 K to 77 K. On the contrary, the dip feature centered at the Fermi
level exhibits a significant modification, deepening and narrowing progressively as
the temperature is decreased [70].

For the sake of illustration, in Figure 2.9 we show low-temperature tunneling
spectroscopy measurements corresponding to the quasicrystalline sample i-Alg;.
CuysFe;,. These measurements reveal a broad pseudogap extending over an energy
scale of about 0.6 eV (shown in the inset) along with some fine structure close to the
Fermi level (labeled 1 and 2 in the main frame). The broad pseudogap stems from
the Fermi-surface—pseudo-Brillouin-zone interaction, while the dips may be re-
spectively related to hybridization effects between d-Fe states and sp-states (feature
labeled 1 in Figure 2.9) and d-orbital resonance effects (feature labeled 2 in
Figure 2.9).

2.2.3.2 Fine Spectral Features
The possible existence of very narrow features in the electronic DOS over an energy
scale of about 10 meV, obtained in self-consistent ab initio calculations dealing with
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Figure2.9 The differential conductance for the Alg3CuysFeq,-Al tunnel junction at a temperature of
T=2K at two different energy scales: 60 meV (main frame) and 300 meV (inset). (Adapted
from reference [70]. Data file courtesy of R. Escudero).

several suitable quasicrystalline approximants [71], was considered as a possible
characteristic feature of quasiperiodic crystals DOS. In this sense, it was argued that
these peaks may stem from the structural quasiperiodicity of the substrate due to
cluster aggregation [72], or d-orbital resonance effects [73]. However, several STM
investigations of Al-Cu-Fe and Al-Pd-Re quasicrystalline ribbons confirming the
presence of a dip of about 50 meV wide around the Fermi level, did not show evidence
for finer structures in the DOS over the energy region extending about 0.5 eV from
the Fermi level [74].

Accordingly, the possible existence of the spiky component of the DOS is still
awaiting for a definitive experimental confirmation [76, 77]. In fact, difficulties in the
experimental investigation of fine structure in the DOS arise form the requirement of
a high energy resolution, as the peaks and gaps to be observed are only a few meV
wide. Thus, both high-resolution photoemission and tunneling spectroscopies have
failed to detect the theoretically predicted dense distribution of spiky features around
the Fermi level. Several reasons have been invoked in order to explain these
unsuccessful results. Among them the existence of some residual disorder present
even in samples of high structural quality has been invoked as a plausible agent to
smear out the finer details of the DOS [78]. It has also been argued that photoemission
and STM techniques probe the near-surface layers, so that sharp features close to the
pseudogap could be removed by subtle structural deviations near the surface from
that of the bulk, as those reported for annealed QC surfaces [79].

On the other hand, detailed analysis of higher-resolution, extensive ab-initio
calculations of several QC approximants suggests that a significant contribution
to the spiky DOS component may probably stem from numerical artifacts [80].
Notwithstanding this, recent tunneling spectroscopy measurements performed in



2.2 Electronic-Structure-Related Properties

icosahedral QCs at low temperature (5.3 K) have provided some experimental
support for the existence of a large number of energetically localized features close
to the Fermi level in the electronic structure of the fivefold surface of an i-Al-Pd-Mn
sample at certain local regions [81].

2.2.3.3 Spectral Conductivity Models

Anyway, in order to make a meaningful comparison between band-structure calcula-
tions and experimental measurements one should take into account possible phason,
finite lifetime and temperature broadening effects. In so doing, it is observed that
most finer details in the DOS are significantly smeared out and only the most
conspicuous peaks remain in the vicinity of the Fermi level at room temperature [49].
These considerations suggest to reduce the number of main spectral features
necessary to capture the most relevant physics of the transport processes. To this
end, it is useful to consider the spectral conductivity function, o(E); defined as
the T — 0 conductivity with the Fermi level at energy E. Generally speaking, the
conductivity spectrum should take into account both the DOS structure and
the diffusivity, D(E)of the electronic states, according to the relationship o(E)
N(E)D(E): Thus, although it may be tempting to assume that the o(E) function
should closely resemble the overall structure of the DOS, it has been shown that
dips in the 0(E) curve can correspond to peaks in the DOS at certain energies [82, 83].
This behavior is likely to be related to the peculiar nature of critical electronic
states close to the Fermi level [83-86].

Two fruitful results have been reported regarding the main features of the
spectral conductivity function in QCs. On the one hand, it has been shown that the
main qualitative features of the o(T), S(T); and Ry(T) curves, can be accounted for
by considering an asymmetric spectral conductivity function characterized by a
broad minimum exhibiting a pronounced dip within it, hence encompassing the
transport properties of both amorphous phases and QCs within a unified
scheme [8]. On the other hand, a series of ab-initio studies have shown that the
electronic structure of both QCs and approximant phases belonging to the
Al-Cu(Fe,Ru) and Al-Pd(Mn,Re) icosahedral families can be satisfactorily described
in terms of a spectral resistivity, o(E) = 0~ *(E), exhibiting two basic spectral features
close to the Fermi level, namely, a wide and a narrow Lorentzian peaks, according to
the expression [82],

- Y1 ay, B
o) = °{(E—61>2 (o) +v%} @9)

where the wide Lorentzian peak is related to the Hume-Rothery mechanism and
the narrow Lorentzian peak is related to sp-d hybridization effects. This model
includes six parameters, determining the Lorentzian’s heights (6/y;) and widths
(~Y,), their positions with respect to the Fermi level, §;, and their relative weight in
the overall structure, o > 0. The parameter G is a scale factor measured in (R
cmeV) " units. Suitable values for these electronic model parameters can be
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Figure 2.10 Spectral conductivity curve in the energy interval 1eV around the Fermi level as
obtained from Equation (2.9) for the electronic model parameter values v; and 9; indicated in the
frame.

obtained by properly combining ab-initio calculations of approximant phases with
experimental transport data of icosahedral samples within a phenomenological
approach [75, 87]. In Figure 2.10 the overall behavior of the o(E) curve is shown for
a suitable choice of the model parameters. By comparing this figure with
Figure 2.9 we see that Equation 2.9 properly captures the main spectral features
of realistic samples.

2.2.3.4 The Role of Critical States

An important open question in the field regards whether the purported anomalies in
the transport properties observed in high-quality quasicrystals can be satisfactorily
accounted for by merely invoking band-structure effects or, conversely, they must be
traced back to the critical nature of the electronic states. At this stage, it seems quite
reasonable that the proper answer should likely require a proper combination of both
kinds of effects.

Generally speaking, critical states exhibit a rather involved oscillatory behavior,
displaying strong spatial fluctuations that show distinctive self-similar features in
some instances (Figure 2.11). As we can see, the wavefunction is peaked on short
chain sequences but reappear far away on chain sequences showing the same lattice
ordering. Thisis a direct consequence of the underlying lattice self-similarity and, as a
consequence, the notion of an envelope function, which has been most fruitful in the
study of both extended and localized states, is mathematically ill-defined in the case of
critical states, and other approaches are required to properly describe them and to
understand their structure.

From a rigorous mathematical point of view the nature of a state is uniquely
determined by the measure of the spectrum to which it belongs. In this way, since it
has been proven that Fibonacci lattices have purely singular continuous energy
spectra [92], we must conclude that the associated electronic states cannot, strictly
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Figure2.11 Squared amplitude distribution of a critical phonon normal mode in a Fibonacci lattice
composed of N =2584 atoms with a mass ratio ms/mg=134/21.

speaking, be extended in Bloch’s sense. This result holds for other aperiodic lattices
(Thue—Morse, period doubling) as well, and it may be a general property of the spectra
of self-similar aperiodic systems [93]. However, this fact does not necessarily imply
that all these critical states behave in exactly the same way from a physical viewpoint.
In fact, physically states can be classified according to their transport properties.
Thus, conducting states in crystalline systems are described by periodic Bloch
functions, whereas insulating systems exhibit exponentially decaying functions
corresponding to localized states.

A first step towards a better understanding of critical states was provided by the
demonstration that the amplitudes of critical states in a Fibonacci lattice do not tend
to zero at infinity, but are bounded below through the system [94]. This result
suggests that the physical behavior of critical states might be more similar to that
corresponding to extended states than to localized ones, supporting the convenience
of widening the very notion of extended state in aperiodic systems to include critical
states that are not Bloch functions [86]. Accordingly, the possible existence of
extended critical states in several kinds of aperiodic systems, including both
quasiperiodic [86, 95, 96, 98-100] and nonquasiperiodic ones [97, 101], has been
discussed in the last years spurring the interest on the precise nature of critical
wavefunctions and their role in the physics of aperiodic systems.

In more precise terms one can describe a critical state in a quasiperiodic system in
the following qualitative way [102]. Let us assume that a given state L spreads over a
region of characteristic length L. Then, Conway’s theorem implies that a similar
region must exist at a distance <2L. If Lis sufficiently long, then both regions will be
good candidates for a tunneling process between them, so that we might express
2L = zp*, where z is a damping factor roughly measuring the probability amplitude
of the tunneling event. Within such a description the case z = 0 corresponds to strictly
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localized states, whereas | z | = 1 is the signature of extended states. For intermediate
localization cases, one can write

,LPL ~ L*ln‘z‘/lnz ~ L*a (210)

where the precise value of |z| will be dependent on the parameters of the considered
model. In this way, the spatial structure of the wavefunction amplitudes is directly
related to the topological properties of the quasiperiodic substrate. In particular, the
self-similar properties of most critical wavefunctions can be traced back to the self-
similarity of the lattice itself, through a series of hierarchical tunneling events
involving the overlap of different subsystems at different length scales. Accordingly,
one of the main results concerning electronic localization in quasiperiodic chains is
the power-law behavior of the envelope of the wavefunction (N ~ N~ that char-
acterizes most critical states.

In a quasiperiodic system the algebraic localization of typical wavefunctions, as
described by Equation 2.10, gives rise to a scaling behavior of the bandwidths of the
form W ~ tL=?, where the exponent 3 > 1is related to the distribution of o’s [102]. An
overall estimation of the influence of critical states in the transport properties of
quasiperiodic systems can be inferred from this expression by taking into account
that the mean group velocity for a critical state can be approximated as
v~ LW ~ tL'~P, This expression indicates that the mobility of the charge carriers
goes to zero as the system size grows, but this asymptotic limit is reached more slowly
than it is achieved in the case of exponentially localized states, whose mobility
vanishes at a rate determined by the relationship v ~ t LPe—!/%, This qualitative result
provides strong support to the view of critical states as occupying an intermediate
position between localized and extended states, although one may be tempted to
consider them closer to the last from a physical point of view.

In fact, among the broad diversity of critical states belonging to general aperiodic
and fractal systems one can find a class of critical wavefunctions that are extended
from a physical point of view. These states arise from the very existence of resonant
effects and correspond to specific energy values related to certain model parameters
in the considered system. For instance, in the case of Fibonacci chains the energy
values energy satisfying the relation

E, =€ (2.11)

where Y = ty4/tap measures the ration between the transfer integrals and the origin
of on-site energies is defined in such a way that €, = € =— g correspond to extended
states whose transmission coefficient equals unity irrespectively of the chain length
(i.e. Tn(E) =1,VYN) [86]. The presence of theses states widens the notion of
extended wavefunction to include electronic states that are not Bloch functions, and
itis a relevant first step to clarify the precise manner in which the aperiodic order of
these systems influences their transport properties. Subsequent numerical studies of
the energy spectrum of mixed Fibonacci lattices have shown that a significant
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number of electronic states exhibiting very large transmission coefficients
(Tn(E)=0.99999) are located around the transparent states given by Equa-
tion 2.11 [103]. This result suggests that these critical states behave in a way quite
similar to conventional extended states from a physical viewpoint, albeit they can not
be rigorously described in terms of Bloch functions. To further analyze this important
issue the study of the ac conductivity at zero temperature is very convenient, since itis
very sensitive to the distribution nature of eigenvalues and the localization properties
of the wavefunction close to the Fermi energy. In this way, by comparing the ac
conductivities corresponding to periodic and mixed Fibonacci lattices it was con-
cluded that both systems exhibit a similar behavior, though the value of the ac
conductivity takes on systematically smaller values in the Fibonacci case, due to the
fact that the ac conductivity involves the contribution of nontransparent states within
an interval of fiw around the Fermi level in this case [103]. In this way, although most
critical functions exhibit rather low transmission coefficients, it is possible to find
transparent states exhibiting a physical behavior completely analogous to that
corresponding to usual Bloch states in periodic systems for a given choice of the
model parameters, prescribed by Equation 2.11.

The rich variety of critical states in general Fibonacci systems suggests the
appealing possibility of modulating the transport properties of normal modes
propagating through a Fibonacci lattice by properly selecting the values of the masses
composing the chain (isotopic effect). In fact, when studying band-structure effects in
the thermal conductivity of Fibonacci quasicrystals a great variety of critical normal
modes are found [104]. These modes exhibit quite different physical behaviors, which
range from highly conducting extended states to critical states whose transmission
coefficient oscillates periodically between two extreme values, depending on the
system’s length [98, 104]. Similar results concerning the existence of extended states
in other kinds of self-similar structures, like Thue-Morse chains and hierarchical
lattices, have been reported in the literature [95, 105], and its role in the transport
properties has been analyzed in detail in terms of multifractal formalism on the basis
that fractal dimension is directly associated to the localization degree of the
eigenstates [106, 107].

2.2.4
Phenomenological Approaches

2.2.4.1 Kubo-Greenwood Formalism of Transport Coefficients

From the knowledge of the spectral conductivity function introduced in Section 2.3.3
the temperature-dependent transport coefficients can be obtained by means of the
Kubo-Greenwood version of the linear response theory [108-110]. Within this
approach the electrical, j, and thermal, h, current densities are, respectively, related
to the voltage and temperature gradients according to the expression:

()= (2 &) (%) -

63



64| 2 Properties of CMAs: Theory and Experiments

The central information quantities are the kinetic coefficients
ivj [ ivj2f O
Ly(T) = (-1)"" | o(E)(E—p)'™ ~3E dE (2.13)

where f{E, w, T) is the i-Fermi-Dirac distribution function, E is the electron energy,
and p is the chemical potential. In this formulation all the microscopic details of the
system are included in the o(E) function. From the knowledge of the kinetic
coefficients one obtains the electrical conductivity

o(T) = £u(T) (2.14)

The thermoelectric power,

_ 1yp(T)
S(T) = T o(T) (2.15)
the electronic thermal conductivity,
1
Ke(T) = =4 (T) =T o(T)S(T)* (2.16)
and the Lorenz function
_ %e(T)
L(T) = To(T) (2.17)

in a unified way. As a first approximation one generally assumes (I) Ep: Then, by
expressing Equations 2.14-2.17 in terms of the scaled variable x = (E-—u)f3, where
B = (ksT)" ", the transport coefficients can be rewritten as [36, 37

o(T) :%" (2.18)
S(T) = _%I% (2.19)
() =57 (-4 (220)
L(T) = (Z‘Z)Z ;‘1’ ﬁ (2.21)

in terms of the reduced kinetic coefficients

Ju(T) = Jx"(j(x)sec H2(*/5)dx (2.22)
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Making use of Equation 2.9 these kinetic coefficients can be expressed in the
form

4 _
Jocg* :Tf’ z+a3[3 YHy + asHo + 4ao,

47

Jiegt = 5-mB™ +asHi +asf(4—qo Hy), (2.23)
28wt 472

]zcal = Tﬁ 24 asBH1 + ﬂ5(4_‘J0H0)[52 + Tdo

where ¢y = 6(y; + @ vy,) ', and the coefficients a; were defined in reference [36]. We
have introduced the auxiliary integrals

o0

o 3
H(B) = J g T g e (/e (2.24)

where qo = eefed (v, +ay,) ", @1 = (V02 +0d17,) (v, +av,), € =y} +8] and
€= Y87+ e, .

By inspecting Equation 2.24 we realize that the auxiliary integral H; identically
vanishes in the case q; = 0, due to the odd parity of the integrand. In that case, taking
into account the Fourier transform relationship

0

1 1 _ .

xz——o—azzﬂ [ e a‘m‘elwxd(}). (225)
—00

the auxiliary integral Hy can be properly rearranged in the form

H (B) — BZ T 7““”‘(1(,0 i iwx hZ (x)d (2 26)

oBy=7|e e“sech” (7 )dx .

where a? = qof®. Now, the second integral in Equation 2.26 is just the Fourier
transform of the function 4mw cosech (mw), so that one finally obtains [37]
J e*lmcosech(tw)dw = 4q51f$gH(2, 1/2+p) (2.27)
where B = ,/goP/2misascaled variable and Ty (s, a) = > (k+ @)~ isthe Hurwitz
Zeta function, which reduces to the Riemann Zeta function in the case a=1[111].

Making use of these analytical expressions Equation 2.23 can be rearranged in the
matrix form

2np?

H()E

3.
Jo oo 01 1
4n’c ~ _
M= o Ju o ||s" (2.28)
~ 2
h Jao 0 7% [:’)72
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where Joo = a0+ a4y 'Blu, J11 = a1 + 120305 'f (B). Jop = 0 + 12a4q5 ' f (B) with
f(p) = Bz(l—BCH)L In this way, under the assumption that g; is negligible in
Equation 2.24, one obtains closed analytical expressions for the different transport
coefficients. It turns out that this assumption is a reasonable one for several QCs of
interest. In fact, the values g; =— 0.025 eV, g; =— 0.015eV, and g; =— 8.8 x 10 > eV,
are, respectively, obtained for Al-Mn-Si approximant phases [88], i-Al-Cu-Fe QCs [75]
and i-AlPdRe QCs [112]. We notice that the smaller g; value corresponds to higher
structural quality QCs, whereas the largest one is obtained for an approximant crystal.
Accordingly, we can confidently assume the limiting behavior g; — 0 properly
applies to ideal QCs.

In the more realistic case g; # 0 we can obtain useful information by expanding
Equation 2.24 in Taylor series around the Fermi level to get

4 7 4qi—qo ,_,
Hy ~ — [ 14+ = —LF ,
° @0( 3 4 b

(2.29)
2. -1 292
Hy ~ 81 q1p <1+ 14n* 297 —qo |32>

3q 5 4

In this way, one obtains approximate analytical expressions for the electrical
conductivity and Seebeck coefficient curves [113],

o(T) = 0(0)[1 + bT>A(T)] (2.30)
with

A(T) = & +E,bT? +EH*T* (2.31)
and

€, +E&;bT?
11 E,bT? + 0T

S(T) = —2|el 4T (2.32)

where b = €24, £, = n’k} /3¢’ = 2.44 x 18 8 V2 K~ is the Lorenz number. These
expressions are valid in the low temperature regime, up to about 50-100 K [36]. The
coefficients &, can be explicitly expressed in terms of the electronic model parameters
and contain detailed information about the electronic structure of the sample. For
instance, the first-order phenomenological coefficients are defined in terms of the
electronic model parameters as [113]

_ idE oy, O]
e (2.33)

€8 (e2—48%) + ay,e8 (e2—452
g, " 2(e1—497) _ 6Yz 1(e3—483) + 48 (2.34)
eedes
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and can be related to the topology of the spectral conductivity function o(E) by means
of the following expressions,

& = % (‘MZ—Z(E)) . (2.35)

and

1 &mowv (236
E

_og2 (2 PR
EZ*ZEﬁz( dE?

Thus, from the knowledge of the phenomenological coefficients &; and &, we can
obtain suitable information concerning the slope and curvature of the DOS close
to Ef.

For instance, in the low-temperature limit Equation 2.32 reduces to the linear form

S(T—0) = —2|e|do&; T=mT (2.37)

The sign of the slope m is determined by the sign of the parameter &; that, in turn,
depends on the electronic structure of the sample according to Equation 2.35.
Therefore, Equation 2.37 reduces to the well-known Mott’s formula

dlno(E))
S = —lel& (4
lel4o| — 45 -

in the low-temperature limit: It then follows that Mott’s formula will properly
describe the thermoelectric power of QCs as far as the remaining coefficients &,,
E; and &, in Equation 2.32 are negligible as compared to &;. Since these coefficients
are multiplied by the temperature-dependent factors bT> and b*T*, respectively, it is
clear that the range of validity of Mott’s formula will be strongly dependent on the
electronic structure of the sample.

2.2.4.2 Application Examples

In this section we will illustrate the phenomenological framework introduced in the
previous one by relating the main topological features of the experimental 6(T) and S
(T) curves to certain characteristic features of the electronic structure of the samples.
The key point of this approach relies on the analytical coefficients &,, which can be
regarded as phenomenological parameters containing information about the elec-
tronic structure of the sample. Since the values of the &, coefficients can be also
determined from the analysis of the experimental transport curves, one can obtain
useful information about the spectral conductivity function (E) from the topological
features present in these curves. The first step consists in determining the values of
the &, coefficients from suitable fits to the experimentally obtained transport curves.
The next step will be then to determine the electronic model parameters v;, 9;, and a,
from the obtained n values making use of previously derived analytical formulae. Due
to the involved nature of the analytical expressions relating the phenomenological
coefficients to the model parameters, this is a rather cumbersome task. Fortunately,
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Figure 2.12  Electrical conductivity as a +0.08) x 1076 K™% C=(1.91
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even the partial knowledge of some phenomenological coefficients suffices to gain
some physical insight onto certain relevant features of the electronic spectrum of the
sample.

As a suitable sample let us first consider the Alg, ¢ ,Mn;7 4Si, (x=9) -phase [114],
which is a well-documented representative of the 1/1-cubic approximants class. In
Figure 2.12 we show the temperature dependence of the electrical conductivity for the
Al;3 6Mny7 4Sig cubic approximant. The curve exhibits a typical metallic behavior up
to ~100K, where the conductivity attains a minimum and then it progressively
increases as the temperature is further increased. In Figure 2.13 we show the
temperature dependence of the thermoelectric power for the same approximant
phase. The thermopower shows a remarkable nonlinear behavior, exhibiting a broad
minimum at about T; = 160K, and changes its sign twice at about To=50K and
260K, respectively. This anomalous behavior resembles that observed for several
icosahedral QCs [21-23].

From the knowledge of the complete set of phenomenological parameters listed in
the corresponding figure captions one can derive the corresponding electronic model
parameters following the algebraic procedure described in reference (92). Finally,
making use of Equation 2.9 one determines the spectral conductivity function, which
is shown in Figure 2.16 along with the (E) curves derived for other CMA represen-
tatives. By inspecting this figure we see that the spectral conductivity of the
quasicrystalline phase is both deeper and broader than that corresponding to the
approximant phase, thus indicating a less effective Hume-Rothery mechanism for
the approximant crystal. On the other hand, the presence of a well-defined spectral
feature at about ~0.03 eV may be indicative of hybridization effects likely related to
bond formation in the approximant sample.
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Another illustrative example is provided by the orthorhombic 0 phase of the Al-Pd-
Mn alloys system exhibiting a complex unit cells, composed of 258 atoms. The
electrical resistivity of this phase shows an almost negligible temperature depen-
dence between 4 and 300K (Figure 2.14) [115]. Whereas weakly temperature-
dependent resistivities are not uncommon for both amorphous alloys and bulk

5400

£’ AIPdMn-2

d
52004

5000+

o (Qcm)™

0 50 100 150
T(K)

Figure 2.14 Electrical conductivity of Al-Pd-Mn complex alloys as a function of temperature. Solid
curves are best fits obtained by a simultaneous analysis of the conductivity and thermopower data.
(From reference [89]. With permission).
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Figure 2.15 Thermoelectric power of Al-Pd-Mn complex alloys as a function of temperature. Solid
curves are best fits obtained by a simultaneous analysis of the conductivity and thermopower data.
(From reference [89]. With permission).

metallic glasses lacking long-range ordered crystalline lattices [50], the temperature
independent resistivity of £'-Al-Pd-Mn was observed on monocrystalline samples of
good lattice perfection and structural homogeneity. The corresponding thermopower
curves are displayed in Figure 2.15. Their values are small and show a rather smooth
behavior with several changes of the slope within the investigated temperature range.
Following the procedure previously described one obtains the spectral conductivity
functions shown in Figure 2.16.
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Figure 2.16 Comparison among the spectral conductivity functions corresponding to
quasicrystals, approximant phases, and complex metallic alloys. (From reference [89]. With
permission).
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The absence of a pseudogap in the case of E-Al-Pd-Mn samples is clearly
appreciated, indicating that the Hume-Rothery mechanism there is less effective
and the electrical conductivity is consequently higher. The (E) curves of the &'-Al-
Pd-Mn samples are relatively flat as compared to those corresponding to Alg;.
CuysFeq; and Aly3 ¢Mn;y7 4Si9 compounds. Thus, the origin of the almost temper-
ature-independent electrical conductivity of the &'-Al-Pd-Mn complex alloys can
then be traced back to the specific form of the spectral conductivity, which exhibits
very weak variation over the energy scale of several meV around the Fermi level. Yet,
they show some fine structure that yields observable effects in the temperature-
dependent thermoelectric power curves. These electronic structure related effects
highlight the difference between &'-Al-Pd-Mn phase and conventional free-electron
alloys.

23
Phonons

2.3.1
Phonons: An Introduction

The study of phonons in CMA bears some similarities with what has been presented
for electrons. The large unit cell, the eventual aperiodic character will influence the
vibrational properties of the material. The very notion of Bloch waves even is
questionable and the nature of the eigenmodes is still an open question.

There are, however, important differences. On one hand, although eigenmodes are
no longer scalar but vectors for phonons, the situation is somewhat simpler since we
do not deal with the difficulties of electrons bands and interaction. On the other hand,
it is possible to measure experimentally the dispersion relation using inelastic
neutron or X-ray scattering, which provides an extremely powerful experimental
tool for phonon studies.

As a simple toy model let us first consider a one-dimensional system of identical
atoms with mass mlocated on a periodic lattice with a lattice constant @ and connected
by identical springs characterized by their stiffness K. We consider only first-
neighbor interactions [116, 117].

Because of the long-range periodic order, the solution to the dynamical problem is
a superposition of plane waves, characterized by their wavevector q (module g=
27t/)) an energy E=hw and a polarization e. In the one-dimensional case there is
only one “longitudinal” polarization, whereas in a three-dimensional case one has
to consider three polarizations, one longitudinal and two transverse.

Because of the periodicity we only need to consider plane waves whose wavevectors
lie in the first Brillouin zone, that is, g < m/a. The dynamics of the lattice is thus
entirely characterized by the knowledge of the plane waves or vibrational modes. One
key parameter is the dispersion relation, which relates q and E for each vibrational
mode. The other important parameter is the eigenmodes that characterize the pattern
of atomic vibration. These are eigenmodes that may carry the eventual signature of
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structural complexity. Finally, it is important to recall that phonons are quantum
excitations that obey the Bose—Einstein statistics.

If we now come back to the monoatomic 1D system, the solution of the dynamical
problem is easily solved and the dispersion relation writes:

E= 2\/§|Sin(qa/2)| (2.38)

In the limit of long-wavelength excitations (or when g goes to zero) the dispersion
relationship is linear with a slope related to the sound velocity: this is the acoustic
regime. In this regime all atoms vibrates almost in phase. As g increases, the
dispersion relation departs from the linear regime to get a zero slope at the Brillouin
zone boundary: at this particular point the solution is a stationary wave.

Let us now consider a system with two atoms with masses m; and m, regularly
placed on a periodic lattice and connected with identical springs. The crystal lattice
parameter is now 2a, that is, twice that of the single atom, and the corresponding
Brillouin zone is half. There are now two branches in the dispersion relation, which
means that for each wavevector g there are two modes with different energies. When g
is close to zero, the two modes are (i) an acoustic mode where all atoms are moving in
phase and (ii) an optic mode where two neighboring atoms are moving in phase
opposition. There is also a gap in the dispersion relation, which defines an energy
region for which there are no phonons. This gap is related to the mass difference in
this simple example (Figure 2.17).
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The next step toward a complex system is to increase the number of atoms in the
unit cell. This can be achieved by using an approximant to the Fibonacci chain. If we
consider the two masses m; and m, with m,/m; =T where 1 is the golden mean, the
distribution of masses in the unit cell can be described by successive approximant LS,
LSL,LSLLS. . ..If we consider the LSLLS approximant with 5 atoms in the unit cell the
dispersion relation, shown in Figure 2.17, contains now 5 branches. The Brillouin
zone is now smaller, and to exemplify similarities with the 2-atom model the
dispersion relation is displayed in an extended zone scheme. There are now 4 gaps,
shown by gray areas, but some of them are very small: this is the case for the gap
around 7 meV. One can also notice some similarities with the simple 2-atom model:
in particular the largest gap is located in the same energy range around 17 meV. The
phonon eigenvectors and the corresponding pattern of displacement is, however,
much more complex than in the simple 2 atoms per cell. As the number of atoms
increases, with for instance 13 atoms in the unit cell, shown on the right panel, the
number of gaps will of course increase. There are now 12 gaps, but some of them are
extremely small and cannot be seen in the figure and the similarities between the two
models are quite clear.

When the system goes to infinity for the one-dimensional quasicrystal with the
Fibonacci chain structure, the number of gaps goes to infinity. Some of them are of
course very small, but this large number of gaps will play a role in the nature of the
vibrational modes. In fact, an acoustic regime still exists in the 1D quasicrystal,
although with a smaller range, which of course will affect thermal conductivity
properties. The most characteristic signature of the long-range aperiodic order, as
for electrons, is that in some energy range the modes are critical: phonons do not
behave as in a simple periodic structure, with propagating extended plane waves.
Modes are neither like in disordered solid, where the modes decay exponentially
with the distance around a defect. Modes are “critical:” the phonon wave propagates
but with a decay that follows a power law. This is related to the quasiperiodic
distribution of similar local environments in the structure: the phonon wave
somehow “propagates” from one such environment to another similar one with
which it will “resonate” (for an introduction to aperiodic crystals and their
dynamics see reference [118]).

Within the harmonic approximation, the above simple results can be generalized
to three-dimensional systems. The solution of the dynamical problems is written in
the form of plane waves or Bloch waves. If both the structure and the interactions are
known the dynamical problem may be written in a matrix form (dynamical matrix),
the solution being the eigenvalues (energies) and eigenvectors (pattern of vibration).
If there are n atoms in the unit cell, there are 3n modes, 3 of which are acoustic,
namely one longitudinal and two transverse acoustic modes.

For a 3D quasicrystal, there are no exact solutions, and the nature of the phonon
modes is still an open question. In the low-energy range it has been shown that there
is an acoustic regime, although in a limited energy range. The definition of
pseudozone boundaries is also important: this defines the most important points
in reciprocal space, for which one may expect a gap opening in the dispersion
relation. At higher energy, simulations show that only a limited number of atoms
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participate in a given mode, and it has been postulated that modes should also be
critical, as in the one-dimensional case, but this has not been proved yet even on large
simulations.

We will show in the following that in several complex systems it is now possible to
carry outrealistic simulations that compare well with the experimental results. This is
arather demanding simulation, which requires knowledge of both the structure and
of the interaction Hamiltonian. Even for a “simple” structure, the atomic structure
might not be as simple, for in most cases disorder is present (partially occupied sites,
split positions, mixed occupancy. . ..) which in most cases is not taken into account
properly. The Hamiltonian is derived from ab initio methods using the DFTapproach,
but this is restricted to periodic cells with only a few hundred atoms. For larger
numbers of atoms one generally uses adapted Hamiltonian, such as the embedded
atom method (EAM potentials) or pair potentials, etc.

Besides the dispersion relation, the vibrational density of states (VDOS), n(E), is an
important quantity. It represents the number of vibrational modes whose energy lies
between E and E + dE. The VDOS is, for instance, of importance to compute
macroscopic thermodynamical quantities such as the specific heat. As this will be
used in the following we give here two important properties of the VDOS: (i) in the
acoustic regime where the dispersion relation is linear the VDOS goes like E*; when
the dispersion relation slope is equal to zero, there is a so-called van Hove singularity
in the dispersion. This will be the case at the Brillouin zone boundary but also at each
tile there is a gap opening.

The Debye approximation, frequently used in the field of complex systems, is a very
crude approximation that replaces the complex VDOS shape, by a simple quadratic
behavior. In other words, the Debye approximation considers that the vibrational
modes are only in the acoustic regime.

Figure 2.18 illustrates the above concepts in the case of a relatively simple system,
CaF, with three atoms in the unit cell (9 modes altogether). The dispersion relation

T T -
4,10 aouT 4L 4 4 5 B dso
o 50
T T o == = &
] T “.4: ‘;‘
.~ + Han 7
A, 1008 =
A0 -1 -1 - =0
¢ Ayl L] é h‘ =0
2
9 T 5 o F
I X Ayl 20 5
+ A LAY Al A T 1T T T w 1LY
M PSRN, | — . | | . | o
DOS [arb. units] I X r L XX W K L W
z A A Z 0

Figure 2.18 Middle and right: Phonon-
dispersion curves from inelastic neutron

scattering (data points with thin connecting
lines) at RT and from ab initio theory (thick

lines). Triangles refer to longitudinal, and
squares to transverse polarization. Left: Phonon
density of states from ab initio theory (From
reference [132]).
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has been measured along high symmetry axes by inelastic neutron scattering on a
single grain, and is compared to DFT calculations. The left panel presents the
corresponding VDOS. Note the w” dependence at low energy, and van Hove
singularities corresponding to dispersionless branches generally located close to
Brillouin zone boundaries.

23.2
Measuring Phonons: Inelastic Neutron and X-Ray Scattering

Measuring macroscopical quantities such as the specific heat allows one to get
indirect information on the vibrational density of states but the inelastic neutron
scattering method, invented in the 1950s by the Nobel Prize winner B. Brockhouse,
remains the experimental method of choice for the study of lattice dynamics. We will
show in the following that this method not only allows determination of the
dispersion relation, but also provides some insight into the nature of the modes
and eigenvectors, which makes them a unique tool.

Neutron sources (research nuclear reactors or spallation sources), can deliver
thermal neutrons whose energy is of the order a few tens of meV, that is, of the same
order of magnitude as phonon excitations. The incoming neutron can thus interact
inelastically with the sample, resulting in a neutron energy change that can be
analyzed.

Two main techniques are used to study phonons: the coherent inelastic neutron
scattering on a single crystal using the triple axis instrument, allowing the direct
measurement of the dispersion relation, and the vibrational DOS measurement
using incoherent neutron scattering on polycrystalline samples.

The neutron-matter interaction is a complex phenomenon, where the neutron
interacts with the nucleus of the atoms via strong nuclear interaction. The interaction
is characterized by the scattering cross-section, which contains two terms, the
coherent scattering cross-section and the incoherent (or self-) scattering cross-
section. The coherent scattering is the important one for processes such as the
diffraction, and is characterized by the scattering length b, which is the equivalent of
the atomic scattering factor used for X-rays.

2.3.2.1 Coherent Inelastic Neutron Scattering
The principle of the coherent inelastic neutron scattering is relatively simple. A
monochromatic neutron beam with a wavevector k;, is sent onto a single-crystal
sample. During the interaction the neutron can exchange energy with the crystal
[120, 121]. It can be shown that the energy transfer corresponds to the “creation”
when the neutron loses energy, or the annihilation, when the neutron gain energy, of
a phonon. This is illustrated in Figure 2.19, where the incoming neutron has
“created” a phonon in the system, the scattered neutron now having a wavevector
ke. In order to detect only those scattered neutron a crystal analyzer is installed
between the sample and the detector.

There are two important relations given by the momentum and energy conser-
vation law:
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Figure 2.19 lllustration of the inelastic scattering process. Left panel: the incoming neutron
exchanges one phonon with the sample. Middle panel: a constant-Q scan and the resulting scan in
the right panel.

kp—k; = Q= QBragg *q (239)

where Qgyagg is the closest Bragg peak. During the scattering process there has been
an energy exchange between the neutron and a phonon characterized by its
wavevector q and mode s, with an energy E=hw. This is expressed by the energy
conservation law, where Er and E; are the final and incoming energy of the neutron:

These two relations thus express the fact that the inelastic scattering signal is
directly related to a particular phonon characterized by its wavevector g, its mode label
s and energy fiw;.

The measured inelastically scattered intensity is given by the differential scattering
cross-section related to the coherent scattering law S(Q, E) by:

620 kF
<m) wonn = ?I X Scoh,n(Q7 E) (241)

For the case of the creation or annihilation of a single phonon characterized by the

quantum number g, s the scattering law is related to the inelastic structure factor by
the following relation:

1
Se(Q B)|1 | Finet o(Q, )| 3(Q~Qprigg + Q) 5 M(E)[10(E £ E(q)) (2.42)

This is a very important relation expressing that a delta peak appears in the
measured signal for both a wavevector q and an energy E,. The inelastically measured
signal is thus directly related to the phonon dispersion relation. This expression also
contains the inelastic structure factor defined by:

where e is the polarization of the mode (g,s) for the atom j, R; the coordinate of the
atom inside the unit cell, b; its scattering length and wj the corresponding Debye—
Waller factor.

Fias(Qa) = 3 p, (Q- eW) exp(i Q- Ry)exp(—wj(Q)) (2.43)
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This last expression is particularly important since it relates the observed in-
elastically scattered intensity to a Fourier transform where the polarization or
eigenmodes of the phonon are included. This means that the measured intensity
contains information on the eigenmodes, which we emphasize again, is a unique
experimental tool. The above expressions stand for a single mode. For a crystal with
3nmodes the resulting measured signal is obtained by summing up on the 3n modes
that is,

S(Q,E) = ZS:L“,}MSS(Q, E) (2.44)

The scalar products Q.e in the expression (2.43) of the inelastic structure factors, is
a selection rule and allows, in favorable cases, to single out a single mode. This is
particularly true for the three acoustic modes: the relative position of Q and q and thus
e, allows one to select a position in reciprocal space such that two of the three acoustic
signals are equal to zero. This is a particularly important tool for measuring accurately
acoustic dispersions. Moreover, because all atoms are vibrating in phase, the
integrated intensity for the acoustic inelastic signal (in the limit of high temperature
and for a linear dispersion) is given by the expression:

kg T

T 5 (Q- ) Ioogs(Q)

45
(E(0)’ 245)

where Ip,g, is the Bragg peak intensity and T the temperature of the measurement.
This relation implies that acoustic phonons are best measured close to strong Bragg
peaks and at high value of Q since the signal grows quadratically with Q. On the other
hand, the intensity decays rapidly with the energy of the mode, so that high-energy
modes are generally difficult to measure. We will show in the following that the
relation (2.45) is particularly useful for checking the acoustic character of a mode. In
particular, we define a normalized intensity as

Inorm = Iint. B (2.46)
which is a constant as long as the phonon has an acoustic character.

Experimentally, the measurement is carried out by performing energy scans while
keeping the Q vector constant. This is exemplified in Figure 2.20 in the case of a single
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Figure 2.20 |Illustration of the phonon—phonon interaction for a cubic term in the anharmonic
expansion (From reference (130)).
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phonon mode. In the energy scan, a peak appears for the energy of the phonon. In a
triple-axis experiment, the determination of the experimental resolution is complex
and depends on the incoming neutron energy, on the monochromator and crystal
analyzers, on the sample mosaic and on the dispersion relation. As an order of
magnitude, the energy resolution is equal to about 1 meV on a thermal neutron
source and 0.1 meV on a cold neutron source.

Recently, with the advent of third-generation synchrotron radiation X-ray sources,
the inelastic X-ray scattering technique has been greatly developed [122]. It requires a
tremendous resolution of the crystal analyzer: indeed for an incoming beam of the
order 20keV, energy resolution of the order 1.5 meV is achieved with a Si (11 11 11)
crystal monochromator and analyzer in backscattering geometry, that is, an excep-
tional value of d E/E is equal to 10" The principle of measurement is similar to the
one explained for the neutron case, although the main advantages is that small
sample size of the order 0.1 mm can be used, whereas inelastic neutron scattering
requires sizes of the order of 1cm.

2.3.2.2 Incoherent Inelastic Neutron Scattering

For polycrystalline samples, time-of-flight spectrometers are generally used. One
measures the response function S(Q,E) but averaged over all orientations, which
makes it more difficult to interpret. On the other hand, this technique is very efficient
for measuring the vibrational density of states. In effect, for a monoatomic system,
within the incoherent approximation (i.e. for an incoherent scattering, where only the
incoherent cross-section plays a role) it can be shown that the integral over Q of the
measured signal is proportional to the vibrational density of state. In the case of a
polyatomic system the measured signal is the generalized vibrational density of states
(GVDOS), which is a sum of each single atomic partial vibrational density of state
weighted by the incoherent scattering length divided by the mass of each constituent.
This approach also applies, within some approximation, to the case of a purely
coherent signal.

233
Beyond the Harmonic Approximation

So far, all the presented results have been obtained under the harmonic approxi-
mation. The energy of the system can be expressed as a Taylor expansion as a function
of the atomic displacements, as shown in expression (2.47). In the harmonic
approximation only the first quadratic term is retained. This is of course most of
the time a valid approximation, for potential interactions are generally close to this
quadratic dependence near their minimum. It is important to point out that the
harmonic approximation is the only one allowing an exact calculation of the
dynamical matrix and thus of phonon dispersion relations and eigenmodes deter-
mination.
1 ’E ,
E:Eo-i-z Z,WMGJMG'J'+"' (2.47)

u,w 0,0
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When higher-order terms are taken into account, an exact solution to the
dynamical problem is no longer possible and approximate solutions have to be
derived. Thisis whatis called anharmonic processes. An elegant way of dealing with
anharmonic processes is using the Feynman diagrams. Indeed, it can been shown
that anharmonic perturbations are equivalent to phonon—phonon “collisions”
together with creation or annihilation of phonons. In the case of the cubic term
in the Taylor expansion 3 phonons are involved, whereas in the case of the term of
order 4, 4 phonons are involved. In this process, which is summarized Figure 2.20
for the cubic term, there is of course energy and momentum conservation: created
phonons thus have energy and a wavevector different from the initial ones as
illustrated in Figure 2.20. For periodic crystals changes of the wavevector can be
accomplished modulo a vector of the reciprocal vector G so that the resulting
wavevector writes:

kk=k+K +G (2.48)

When the final wavevector is close to a Brillouin zone boundary, this can lead to a
wavevector having a direction opposite to the two initial one: the phonon will
propagate “backward,” and thus limit the phonon thermal conductivity. This is
called the Umklapp process, which plays a major role in the understanding of phonon
thermal conductivity. This Umklapp process has been generalized to quasicrystals
and used to interpret the temperature dependence of the thermal conductivity.

Using perturbation theory it can be shown that anharmonic interactions have two
consequences on the observed phonon spectrum: (i) phonons have a finite lifetime.
(ii) The energy of the phonon is displaced towards the low energy. Both effects can be
measured experimentally. If the phonon has a finite lifetime 1, the amplitude of the
mode will decay exponentially has exp(—t/t). This will produce a broadening of the
observed excitation in the energy domain, which is the Fourier transform of the time
domain. The Fourier transform of an exponential decay is a Lorentzian function, so
that the observed phonon peak now has the shape of a Lorentzian with a half-width at
half-maximum I' equal to 1/t, instead of being a delta peak in the harmonic case.
More accurately, the observed signal is that of a damped harmonic oscillator, which
can be approximated by a Lorentzian for small broadening.

Itis interesting to give hand-waving arguments concerning the expected evolution
of anharmonic effects as the temperature is increased. When the temperature is
increased, the population of the different energy levels increases and thus the
probability of phonon—phonon interactions increases also. One thus expects the
observed signal to broaden as the temperature increases. In the meantime, as the
temperature increases the interaction potential generally becomes slightly softer so
thata displacement of the phonon mode towards lower energy is expected. In general,
the anharmonic broadening is rather small and a high-resolution setup is required
for a detailed measurement of the anharmonic effect.

We illustrate the above results with the case of the CaF, crystal. A particularly large
anharmonic effect has been observed in this case, as illustrated in Figure 2.21. As the
temperature is increased a clear broadening is observed, together with a change of the
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Figure 2.21 Evolution of the inelastic scattering signal measured for an optical phonon as a
function of the temperature in CaF,. The position and width of each fitted excitation is given on the
right part of the panel (From reference [132]).
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shape of the measured signal that is characteristic of a damped harmonic oscillator
response [119]. The position, together with the width (in meV) is given on the right
side of each panel: as expected when the temperature increases, the width is
increasing and the position of the excitation is lower in energy.

Although itis not an anharmonic effect, itis interesting to briefly discuss the effect
of disorder on the phonon modes. The “simplest” disorder in that respect is the so-
called mass defect, which has been intensively studied. If we consider a monoatomic
crystal, one atom can be randomly substituted by an isotope: the interatomic potential
interaction is in principle not changed, but the mass is changed randomly on the
periodic lattice. If the concentration of the substituted atom is small, a perturbative
calculation can be carried out. In that case the mass defect is an isolated defect, and
because it has a different mass it will vibrate as an isolated oscillator with its own
frequency. This localized vibrational mode is seen as a dispersionless horizontal line
in the dispersion curve. If the substituting atom is heavier than the atom it is
replacing, the localized mode occurs at rather low energy (remember that roughly the
energy scales as 1/,/m) and will interact with the acoustic branch. When the
dispersionless branch crosses the acoustic branch, the two modes interact and
resonate, giving rise to an anticrossing scheme (see below). This mass defect is
thus a new channel for a finite lifetime of the phonon. Indeed, simulations and
measurements show that the acoustic phonon lifetime is reduced.

If the substituting atom is lighter, it will vibrate at high energy, outside the energy
range of the dispersion curve.

Similar arguments can also be applied for chemical disorder, a frequently
encountered case in CMA. The chemical disorder certainly will reduce the phonon
lifetime, or will “broaden” the dispersion curve with new branches.

In summarizing the previous paragraphs we have shown that phonons can be
measured by inelastic neutron or X-ray scattering. This allows the determination of
the dispersion curve, but also to get some insight into the nature of the modes. In
particular, the broadening of the observed signal is directly related to the finite
lifetime of the phonon. Finally, it is important to recall that a lot of information is also
contained in the intensity distribution of the measured S(Q,E) function, since it is
indirectly related to the eigenvectors of the phonon modes. This is a particularly
important point in order to determine the influence of long-range aperiodic order on
vibrational properties. It also constitutes a very severe test of any modeling.

In the following we present some experimental results. We will first present
quasicrystal and their approximants and then some results obtained in thermoelec-
tric compounds in particular for cage compounds.

234
Phonons in Quasicrystals and their Approximants

2.3.4.1 The Zn,Mg Laves Phase

Although the Laves phase is not exactly a quasicrystal approximant, it is a phase of
moderate complexity whose atomic structure can be described by a periodic packing
of the Friauf polyhedron, a building block common to the Franck-Kasper-type
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Figure 2.22  Structure of the Zn,Mg Laves phase (left) and the Bergman Zn-Al-Mg phase (right).
The “soccer ball” cluster in the Bergman phase is obtained by the union of 20 Friauf polyhedra.

quasicrystal or approximant such as Al-Li-Cu or Zn-Al-Mg. The structure is char-
acterized by the packing of alarge (Mg) and a small (Zn) atom. The Friauf polyhedron
consists of a central Mg atom, surrounded by 12 Zn atoms located at the vertices of a
truncated tetrahedron and 4 Mg atoms that cap their hexagonal face. A layer of the
Zn,Mg phase is displayed on the Figure 2.22, the next layer being obtained by mirror
symmetry. The unit cell is hexagonal and contains 12 atoms. This leads to 36
branches, which can be dealt with by DFT calculations.

The phonon dispersion relations have been measured by inelastic neutron
scattering from single grains [101] along high-symmetry axes [123]. Excitations have
been measured along the main high-symmetry directions A, T, T and X of the
hexagonal Brillouin zone, parallel to the (001), (110) and (100) directions of the
hexagonal reciprocal lattice, respectively. To enhance the acoustic part of the signal,
measurements have been carried out for excitations originating from the strong
(006), (220) and (300) Bragg reflections.

When considering general features characterizing the behavior for all the mea-
sured acoustic excitations, only 2 different behaviors are observed among the four
acoustic modes studied.

The first one is represented by the dispersion curve of transverse acoustic (TA)
modes propagating along the (T) direction and polarized along the (001) one. In the
dispersion curve shown in Figure 2.23, full symbols correspond to the acoustic mode
and open symbols to the optical excitations. The acoustic dispersion curve rapidly
bends over and departs significantly from linearity, becoming almost flat at the
Brillouin zone boundary. At the same time, the intensity of the optical excitation
located around 2.7 THz increases, while the intensity of the TA mode vanishes
progressively. This is exemplified in Figure 2.23 (right panel), which shows the
evolution of the normalized integrated intensity (expression (2.45) and (2.46)) for
both excitations. As previously explained, the intensity should remain constant as
long as the signal is purely acoustic. The strong intensity variation is reminiscent of
an “anticrossing” of two branches. When considering the width of the acoustic mode
as a function of the wavevector, we observe a slight increase, going as ¢
(Figure 2.19a). The width of the TA excitation remains, however, small when
compared to what is observed in quasicrystals.
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Figure 2.23 Left panel: Dispersion relation for
modes propagating along the TT’ direction and
polarized along c*. The acoustic excitation is
shown with a full circle; open symbols are for the
two observed optical modes. Error bars are
smaller than the symbols size. The solid line is a
guide for the eye. Right panel: (a) Evolution of

the width of the acoustic excitation (full circle)
and of the optical one (open circle) of

Figure 2.18. The acoustic excitation width
increases as g* (solid line). (b) Same for the
evolution of the normalized integrated intensity.
There is a clear intensity exchange between the
acoustic and optical mode.

The second behavior is represented by the dispersion of TA modes propagating
along the direction A and polarized along the (110) direction. Unlike the previous
case, the dispersion of the acoustic mode only slightly departs from linearity up to
relatively high energy values, of the order of 2.6 THz, and for wavevectors values up to
0.8 A=, For g values beyond the first Brillouin zone, the measured transverse
excitation is no longer an acoustic mode but an optical mode. However, the excitation
remains of acoustic character, as shown by the evolution of its normalized integrated
intensity: the norm is almost constant up to 0.6 A~'. Two optical excitations have also
been measured. The evolution of the width of the acoustic mode as a function of the
wavevector shows a broadening rate going as g*.

These experimental results have been compared to simulations using two different
methods to compute both the dispersion relation and the intensity distribution,
which is a much tougher test than the dispersion relation alone. In the first method,
the dynamical structure factor can be obtained from the eigenvalues of the dynamical
matrix determined in harmonic approximation. In principle, this method can be used
also with classical interaction potentials, but in our case we determine the dynamical
matrix from ab initio forces, which should result in the best possible accuracy. In a
second method, the dynamical structure factor is interpreted as a certain correlation
function, which can be measured in a molecular dynamics (MD) simulation. This
requires much larger samples, prohibiting the direct use of ab initio methods.
Classical interaction potentials are therefore necessary. For the best possible reli-
ability, these potentials are fitted to reproduce ab initio data, however. The main
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advantage of this approach is that it does not rely on the harmonic approximation.
Moreover, the possibility of using larger samples also has the advantage that
structural or occupational disorder can be taken into account, which may prove
useful for the more complex structures, as will be shown later.

The Laves phase of MgZn, has 12 atoms in the primitive unit cell, so that ab initio
calculations can be performed relatively easily, using the VASP code with the PAW
method. The relaxed unit cell is promoted to an orthorhombic supercell with 48
atoms and relaxed again. The dynamical matrix in harmonic approximation is then
determined by displacing one atom ata time (by 0.05 A), and computing the resulting
forces on all other atoms. This has to be repeated for 12 independent displacements
and is most conveniently done by using the PHONON package, which generates the
configurations for VASP with the required displacements, and computes and
diagonalizes the dynamical matrix from the VASP forces. The response function
can then be calculated using expressions (2.42), (2.43) and (2.44).

In order to account for the instrumental resolution, S(Q, E) has been convoluted
with a Gaussian, whose width was chosen so as to obtain the best fit with experiment.
The final comparison is shown for the direction (§, §, 6) in reciprocal space
(Figure 2.24). This means that the scans in Q-space are started at the Bragg peaks
(0 0 6) and proceed along the directions g = (€ § 0). The graphs show the results for
selected values of E; the corresponding magnitudes of g are indicated in the upper
right corner of each subgraph. To obtain this comparison, a constant background was
added to the calculated intensities, which were also uniformly rescaled for each
direction. Furthermore, the energies had to be rescaled by a constant factor of 1.14.
This seems to indicate that the sound velocities are not accurately reproduced by the
ab initio calculations. Apart from this, the agreement is extremely good, not only for
the overall dispersion but also for the intensity distribution. In particular, the bending
of the dispersion and the intensity transfer from the acoustic to the optic mode is well
reproduced for the TT' direction, as shown in Figure 2.24.

Experimental data have also been compared with EAM potentials calculations
using a molecular dynamic simulation, which, as already pointed out, does notrely on
the harmonic approximation. Potentials of EAM type have been fitted to reproduce
forces, energies and stresses computed ab initio. This so-called force-matching
method, which is implemented in the potential-fitting code potfit, ensures that even
classical potentials make best possible use of quantum-mechanical information. In
Figure 2.25, the dynamical structure factor is shown in an intensity diagram for the
TT' and A directions. Again, there is a good qualitative agreement both for the
dispersion relation and for the intensity distribution. However, since the EAM
potentials are a bit too “soft” the energies have been rescaled proportionally. These
results thus validate the use of EAM potentials to compute the lattice dynamics of
larger samples either to include disorder or to study structurally complex phases such
as quasicrystals.

From the ab initio simulation it is also possible to compute the eigenmodes and
look for the pattern of vibrations in the unit cell. Although there are only 12 atoms per
unit cell, this is already quite complex. As a general trend, the light Mg atoms are
participating in high-energy modes, whereas in this high-energy range Zn atoms do
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Figure 2.24 Measured (circles) and calculated by DFT (solid line) intensities for direction (€ € 6),
(TT') for eight different g values. The error bars in the measurement are smaller than the symbol size.
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Figure 2.25 Comparison between data (symbols) and the simulation using EAM potentials and
molecular dynamic along the TT' and A directions. The intensity transfer between the acoustic and
the optic excitation along the TT' direction is well accounted for.

not move much. A detailed analysis has to be conducted though, so as to extracta clear
picture of vibrations.

2.3.4.2 The i-Al-Pd-Mn Icosahedral Quasicrystal

The icosahedral Al-Pd-Mn phase was the first quasicrystal that had a high structural
quality [123] and could be grown as large single crystals of several cm? [124, 125]. It
was thus in this system that the first detailed study of the lattice dynamic could be
achieved, although previous measurements were carried out in the i-Al-Li-Cu
[126, 127] and i-Al-Cu-Fe phases [128, 129].

Figure 2.26, left panel, displays a typical measurement of the scattering law
5(Q, E) = S(Qgragg + 9, E) carried out in the transverse geometry, and going away
from a strong twofold Bragg reflection [130, 131]. Close to the Bragg peak there is a
well-defined acoustic signal, whose width is limited by the instrumental resolution.
Uptogq=0.3 A", this signal remains resolution limited and its normalized intensity,
as defined in 2.45 remains constant, as a signature of a purely acoustic mode. This is
what is expected in the long-wavelength limit also for quasicrystals. Above g=0.3
A~ the signal broadens very rapidly. In the meantime, the normalized intensity is no
longer exactly constant, and slightly increases, as a signature of mode mixing.
Nevertheless, the signal was interpreted as a single damped harmonic oscillator
(see Section 3.3) whose width is increasing. This is already clearly visible at g = 0.45
A~ for instance, where the signal is significantly broader than at g=0.15A"". The
width is reported as open symbols on the right panel, which displays the extracted
dispersion relation, with the strong twofold reflections chosen as zone center. Up to
q=0.7 A" the signal can be considered to be mainly acoustic in character, although
their width is quite large at this point. Athigher g, the signal can be analyzed as a set of
broad dispersionless excitations centered at 7, 12, 16 and 24 meV. The width of these
excitations is of the order 4 meV and certainly corresponds to the mixing of several
excitations. This can be viewed in a similar way to what is represented for the
Fibonacci chain in Figure 2.17, where the signal around 15 and 20 meV will be broad
as a result of the superposition of several modes.
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Figure 2.26 Experimental study of the lattice  different measurements. Filled black symbols
dynamics of the i-Al-Pd-Mn phase. Left panel:  are for the TA acoustic modes, gray symbols for
successive constant g-scans measured around  optic like excitations. The open circle stands for
the strong twofold reflection. The distance from  the FWHM of the acoustic excitations, the solid
the Bragg peak is indicated inside each panel. line is a g* fit. The vertical dashed lines indicate
Right panel: Dispersion relation extracted from  the first pseudo-Brillouin zone boundaries.

A useful concept, already introduced, is that of pseudo-Brillouin zone boundaries
in quasicrystals, as proposed by Niizeki [132, 133]. Although the quasicrystal is
nonperiodic, the long-range quasiperiodic order results in a distribution of strong
Bragg peaks or strong Fourier component. Phonons are no longer Bloch waves, but
there is some quasiperiodic distribution of the eigenvectors. This is true for acoustic
modes, whose signature will be identical around strong Bragg peaks. The concept of
pseudo-Brillouin zone boundary (PBZB) can be derived within a weak-coupling-type
theory [133-137]. Within this framework one can show that the acoustic dispersion
curve should display a gap opening at pseudo-Brillouin zone boundaries (PBZB),
whose position in reciprocal space is defined by qpgzs = Qpragg/2, Where Qpyagg is a
reciprocal lattice vector of the quasicrystal. Although the reciprocal space is densely
filled in a QC, only the strongest Fourier components are relevant, the width of the
gap being proportional to the amplitude of the structure factor F(Qgragg). At the PZB,
the phonon acoustic wave is “Bragg reflected” as in a standard Brillouin-zone
boundary. To select the main zone boundaries we have to consider the intensity of
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the Bragg peaks structure factors. Unlike the case of electrons, where the important
Bragg planes are those with a length close to the Fermi sphere radius, in the case of
phonons one has to consider rather small Qgpyage Wavevectors in the range 0 to 2 A,

or qppzs in the range 0 to 1A~ since the acoustic regime only holds for g smaller
than 0.6 A", These PBZB are placed around the strong Bragg peaks acting as zone
centers and are displayed as vertical dashed line in Figure 2.26. This approximation is
only valid in the vicinity of the zone center, where the acoustic mode is well defined.

As seen in Figure 2.26, the dispersionless modes at 7 and 12 meV do correspond to
the crossing of the transverse acoustic mode with the PZB: they can thus be viewed as
the trace of the mode interaction occurring at the PZB. The higher energy dispersion-
less excitations correspond to the crossing of longitudinal acoustic excitation with the
PZB.

From the broadening rate and the slope of the acoustic excitation one can extracta
phonon lifetime and more interestingly a phonon mean free path. At the limit of the
acoustic regime, both the mean free path and the wavevector points towards a
characteristic length of the order of 10 A [138].

Similar measurements have been carried out for the i-Zn-Mg-Y quasicrystal [139].
In this case a similar situation has been observed with acoustlc modes showing an
abrupt broadening for wavevectors 1arger than 0.3 A~". However, the broadening
rate is smaller and goes as g¢° instead of g* in the i-Al-Pd-Mn case. Moreover, for the
same wavevector the broadening is significantly smaller in i-Zn-Mg-Y than in i-Al-
Pd-Mn, leading to a mean free path of 20 A. The atomic structure is different, but
also the structural quality is higher in Zn-Mg-Y, which may explain the observed
differences.

2.3.4.3 The i-Zn-Mg-Sc Quasicrystal and its 1/1 Zn-Sc Approximant

The most detailed study so far has been conducted in the Zn(Mg)Sc system [140].
Indeed the discovery of a binary Cd-Yb quasicrystal by the group of An-Pang Tsai in
2000 [141] was a real breakthrough in the field that led to the first accurate structural
determination of a quasicrystal. The stable binary i-Cd-YDb [141] icosahedral (i-) phase
and the isostructural i-Zn-Mg-Sc [142] phase are particularly interesting in that
respect since both a quasicrystal and a periodic approximant can be synthesized, with
almost the same chemical composition [143, 144]. As shown recently [145], their
structure can be described by a packing of a large rhombic triacontahedral (RTH)
unit with a diameter of about 1.52 nm and containing about 158 atoms arranged on
successive shells (Figure 2.27). In both the quasicrystal and the 1/1 approximant the
RTH units are connected along their twofold axes by shared faces, and along their
threefold axes where they overlap. In the 1/1 approximant the RTH are located on the
vertices of a BCC lattice (lattice parameter a=1.57 and 1.38 nm for Cd-Yb and
Zn-Sc, respectively). In the QC 94% of the atoms are parts of the RTH units that are
located on vertices of a quasiperiodic network, with two small structural units filling
the gaps between the clusters. A section of the quasicrystalline structure perpen-
dicular to a fivefold axis is shown in Figure 2.27: only the cluster centers are
represented. Clusters are arranged in a hierarchical way forming a cluster of clusters
(orange decagonal disk), which in turn forms a cluster of “cluster of clusters” at an
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Figure 2.27  Structure of the CdYb icosahedral  the cluster distribution. Only the clusters
quasicrystal. Left panel: successive shells of the  centers have been represented. Yellow and pink
cluster found both in the QC and approximants.  colors are for cluster centers slightly above (or
White and blue color stand for Cd and Yb atoms  below) the plane. The hierarchical packing of the
respectively. Right panel: 5 fold section showing  clusters is shown with the orange disks.

inflated scale. This hierarchical organization, typical of the quasiperiodic long-range
order, has been invoked as an important characteristic for physical properties
[146-148).

The QC and its approximant thus offer a unique possibility of comparing the
respective effect of the short-range order (RTH units) and long-range order (periodic
versus quasiperiodic) on physical properties and on their lattice dynamics. The
similarity and differences of the QC and its approximant are also visible in reciprocal
space, as shown in Figure 2.28. Whereas the intensity distribution and the position in
reciprocal space of the strongest Bragg peaks are similar, there are significant
differences for weaker reflections, and of course a much larger number of Bragg
peaks in the case of the quasicrystal.

The inelastic scattering function S(Q, E) = S(Qgragg + q. E) has been measured by
inelastic neutron scattering and X-ray scattering for both the QC and its 1/1
approximant. Some results are reported in Figures 2.29 and 2.30 for transverse
excitations. The extracted dispersion relation has an overall similar shape in both
cases. In particular, there is an acoustic branch, separated by a pseudogap from an
optical excitation located around 14 meV. However, significant differences are also
observed. In particular, the width of the pseudogap is larger and better defined in the
1/1 approximant than in the quasicrystal: this is visible in the dispersion relation but
also in the intensity distribution displayed in Figure 2.30: the scan recorded at
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Figure 2.28 Distribution of the Bragg peak intensity in the 1/1 Zn-Sc approximant and Zn-Mg-Sc
quasicrystal. The top panels correspond to the experiment, the bottom panel to the simulation.

q=0.54 Alisa good example of the differences, where the two excitations are much
better separated in the 1/1 approximant. The second difference is a slightly lower
energy for the 1/1 approximant optical modes than for the quasicrystal. This is the
first clear evidence of a difference in physical properties and in particular lattice
dynamics between an approximant and a quasicrystal.

These differences can be qualitatively interpreted using the concept of PBZB
previously introduced in the case of the quasicrystal. Indeed, as already explained the
important PZB have rather small wavevector and corresponds to Bragg peaks having
ahigh Qpe; component. As a result, the single ZB in the 1/1 approximant is replaced
by two PZB shown as vertical dashed lines in the figure. This means that the
“efficiency” of the phonon wave Bragg reflection is smaller in the QC than in the 1/1
approximant. This is also confirmed by the intensity of the corresponding Fourier
components, which is smaller in the QC than in the 1/1 approximant. As a result, the
pseudogap between the acoustic and optical excitation is smaller in the QC.

Finally similarly to other quasicrystals one observes a rapid broadening of the
acoustic excitations for qlarger than 0.3 A" in both cases, although excitations in the
QC are slightly broader than the one in the 1/1 approximant.
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comparison between the measured dispersion  triangles stand for the acoustic signal, whereas
relation (symbols) and the simulated response  other symbols correspond to optical excitations.
function S(Q,E) (temperature color-coded) in Black triangles indicate the g positions for which
the 1/1 approximant (left panel) and the the normalized acoustic intensity is no longer
quasicrystal (right panel). The figure shows the  constant. Vertical white dashed lines indicate
intensity distribution of the simulated response  the position of the (pseudo) Brillouin zone

function on a temperature color-coded scale. boundaries. The simulation reproduces both
The experimental positions of the excitations, as  the general trend and the differences observed
measured by neutron inelastic scattering, are between the QC and its approximant.

The above experimental results have been compared with simulations on realistic
atomic models. This is possible thanks to the detailed knowledge of the atomic
structure. To model the interactions in the Zn—Sc system, oscillating pair potentials
that have been fitted against ab initio data [149] have been used and are shown
Figure 2.31. Note that the minimum of Sc—Sc distances is larger than the Zn-Zn, as
expected for those two atoms with different sizes. The right panel of Figure 2.31
illustrates the quality of the force-matching fitting using oscillating pair potentials.

A difficulty encountered in the modeling of the 1/1 approximant and the quasi-
crystal is the orientational correlations of the central tetrahedra of the atomic cluster
(see Figure 2.27). Indeed in the 1/1 approximant whereas tetrahedra have a
disordered orientations at room temperature, an ordering takes place below 150 K
leading to a superstructure [150, 151]. Structural analysis of the 1/1 ordered low-T
phase showed that the tetrahedron orientation induces a strong distortion of the
successive icosahedral shells, breaking their icosahedral symmetry [151]. To model
the room-temperature random tetrahedron orientations, a larger supercell has
been used, containing 8 clusters and with lattice parameters equal to a; =2a,
by = c; =/2a, where a is the lattice parameter of the 1/1 approximant and equals
t0 13.76 A. Tetrahedra were randomly placed at each of its 8 cluster centers, followed
by a molecular dynamics annealing of the structure at room temperature, followed by
quench to T= 0 K. Introducing this disorder has been found to be crucial in order to
have a reasonable comparison with experimental data.
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Figure 2.31 Left panel: Radial dependence of  showing the forces calculated with ab initio
the energy of the oscillating pair potentials used  (VASP) as a function of the one calculated with
in the simulation of the Zn-Sc approximant and  the oscillating pair potentials. There is very good
QC dynamics. Right panel: Force matching fit, — agreement.

To compute the dynamical response of the QC, we needed a unique realization of
the structure with periodic boundary condition. A 3/2 cubic approximant, which
contains 32 clusters in the unit cell, and has lattice parameter equal to 36.13 A has
been used. A binary decoration Zn-Sc, based on the related i-CdYDb atomic struc-
ture [145] and on the ternary 2/1 Mg-Sc-Zn [152] has been used. The modeling was
achieved by positioning the RTH units on the vertices of the so called canonical cell
tiling [153] of the 3/2 approximant with a decoration procedure as described i [154].
Ambiguous atomic sites positions were determined by total-energy minimization. As
for the 1/1 approximant, the tetrahedral orientations were obtained by a molecular
dynamic annealing followed by a quench. Induced deviations from icosahedral
symmetry of the successive shells around the tetrahedron are, as for the 1/1
approximant, a crucial parameter. The resulting model has a composition
Z1n;,5785¢C456, contains 2984 atoms per unit cell and presents a diffraction pattern
which compares well to the QC one (see Figure 2.28).

Using these models and the fitted pair potentials the inelastic response function
S(Q,E) has been calculated either in the harmonic approximation and by direct
diagonalization of the dynamical matrix, or from atom trajectories generated by
room-temperature molecular dynamics, using the method described in ref [155]. The
latter approach does not rely on the harmonic approximation, which might have been
an issue due to suspected shallow minima in the energy landscape related to
tetrahedron librations. However, the two approaches did not show any significant
differences.

Figures 2.29 and 2.30 display the calculated S(Q,E) in the transverse geometry for
both the approximant and the quasicrystal. The calculation is temperature color
coded, and does not include the term n(E)/E (where n(E) is the Bose occupation
factor), so that the acoustic mode presents a constant intensity. In both figures, the
simulation has been convoluted with a Gaussian distribution with full width at half-
maximum intensity (FWHM) of 1 meV. Although the calculated transverse acoustic
excitations are slightly too soft, the main features are nicely reproduced by the
calculation: acoustic modes and pseudogap, high-energy optical excitations, low lying
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optical excitation in longitudinal geometry. Even the detailed differences between the
QC and the approximant are reproduced: a larger pseudogap in the approximant than
in the QC, the interaction with an optical excitation around 7.5 meV at the BZB in
transverse geometry for the approximant, lower positions of the optical bands in the
QC than in the approximant.

Not only are the dispersion relations matched by the calculation, but also the
intensity distribution is qualitatively well reproduced. To illustrate this point,
simulated spectra have been superimposed on the experimental data for a few
characteristic scans in Figure 2.30. Neutron and X-ray simulated spectra have been
convoluted with a Gaussian distribution (1 and 3 meV FWHM, respectively), to
account for the effect of instrumental resolution. Although transverse modes are too
soft, the intensity distribution is well reproduced by the calculation. In particular, the
larger gap observed in the approximant is well accounted for. For longitudinal
excitations, the intensity distribution is also well reproduced. Note in particular the
good reproduction of the different intensity distribution at 4+ and — 0.45 A~" for the
mode located at 6meV. The broadening of TA mode is also well reproduced,
demonstrating that it corresponds to mixing with low-lying excitations, since the
simulation is carried out in the harmonic approximation.

We insist on the fact that the very good quantitative agreement for the intensity
distribution is exceptional. Indeed, remembering expressions (2.43) and (2.44), this
means that the simulation reproduces correctly the eigenvectors or the pattern of
vibrations of both the QC and its 1/1 approximant. In fact, there are extremely few
examples, even for simpler systems, for which such a quantitative comparison has
been achieved.

This has been only possible because a detailed structure analysis is available on the
one hand and because the oscillating pair potentials are a good approximation of the
Hamiltonian on the other hand. This is certainly because (i) there is a strong size
effect with a large and small atom, (ii) the oscillations of the pair potential are a good
approximation for the electronic stabilization and in particular the so-called Friedel
oscillations.

Now that the simulations are validated on a very firm basis, itis possible to analyze in
more details the results. In particular, it is interesting to check the eventual role of
clusters; are they clusters modes? Is the quasiperiodic order bringing in a signature?
What about critical modes? For this last question a 3 /2 approximant might be too small
and larger-scale simulations are probably necessary. But one of the main challenges is
finding new tools for the simulation analysis. Indeed, the simulations are done on a
periodic lattice, although with a rather large unit cell. This means that all wavefunc-
tions are described as plane waves, a tool that might not be adequate to grab the physics
of quasicrystals. We must admit that theoretical tools are still missing in that respect.

Some preliminary analysis is, nevertheless, available. A first simple piece of
information can be gained in computing the partial density of states [156] projected
on the different shells of the atomic cluster. An example is given in Figure 2.32. The
partial density of states for the tetrahedral central cluster displays low-energy modes,
certainly related to the possibility of having different orientations. This might be
related to the phason modes that are also present in these QC phases [157, 158]. It is
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scheme. Right panel: first dodecahedra shell with the twofold and threefold bonds.

also interesting to look for the detailed configuration of the clusters as they appear in
the simulation. The right panel of Figure 2.32 shows the first shell around the
tetrahedron. As expected, the tetrahedron induces a strong distortion of the first
dodecahedral shell that is visible on the figure and which is then also “transmitted” to
the next shell. The orientation of the neighboring tetrahedra, connected along
3- and twofold axis is also displayed. That, locally, the clusters no longer have a
quasicrystalline structure is one of the surprising results already seen in the
structure analysis and in the low-temperature phase of the 1/1 approximant [151].
Of course, the overall icosahedral symmetry is restored by the different orientations
of the clusters.

To conclude this section we would like to make the link with the following section on
thermoelectrics. In thermoelectrics, a poor phonon heat transport or phonon glass-like
state is a crucial parameter [159]. Most quasicrystals have been found to be poor
thermal conductors [160-162], which has been attributed to a generalized Umklapp
process [163] or to a hierarchically variable-range hopping on clusters [147]. The
present simulations and results show that there is a strong acoustic-optic mode mixing
for wavevectors larger than 0.3 A™". Indeed, the observed broadening of the acoustic
excitation, which is certainly a signature for the low thermal conductivity, has been
attributed to a mode mixing in the simulation. We suggest that this mode mixing is
another route for producing low thermal conductivity, as already pointed out[138, 164].

235
Phonons in Cage Compounds and Thermoelectricity

The “tailoring” of physical properties has been the subject of intense research in the
field of thermoelectrics. In particular, it has been shown that a very powerful way of
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improving the efficiency of thermoelectrics (increasing their dimensionless ther-
moelectric figure of merit ZT) is achieved by diminishing the lattice thermal
conductivities of those materials (See the chapter 9 on cage compounds). The
concept of the phonon-glass electron-crystal (PGEC) has been proposed by
Slack [165]: in this case the system behaves as a glass for phonons, with a very low
thermal conductivity, while maintaining its crystal-like character for electrons so that
the figure of merit ZT is increased. Various routes have been used along this concept
to tailor new thermoelectric materials. One widely explored field recently is that of
cage compounds such as clathrates or skutterudites [166]. It is believed that a well-
defined host framework structure and weakly bound guest atoms enables a simul-
taneous large charge-carrier conductivity similar to crystalline structures and a low
thermal conductivity similar to glasses. Indeed, the host framework structure is made
of oversized cages, which can accommodate the guest atoms. Those atoms will
“rattle” atlow energy inside the cages and thus reduce the lattice thermal conductivity
when interacting with the acoustic branches.

A good understanding of phonons in these systems is of course important if one
wants to understand the thermal conductivity properties. Indeed, thermoelectrics are
semiconductors and the thermal transport properties are dominated by phonon-
transport properties, the electron contribution being most of the time negligible. It is
only recently that detailed phonon analysis has been achieved experimentally and we
present in the following some of the results.

2.3.5.1 Clathrates

Clathrates have a structure that is made of a framework of cages in which a guest atom
can be included. When the size of the cage is larger than the guest atom, the latter will
be only weakly coupled to the host framework structure and thus vibrate as an isolated
Einstein oscillator. The frequency of this vibration will be low if the guest atom mass
is large. This has been denominated rattling modes. The interaction between the
acoustic modes of the framework and the localized Einstein mode lead to a drastic
reduction of the phonon lifetime and thus of the thermal conductivity.

A large number of results on the dynamics have been obtained on clathrate
hydrates, which do not have any thermoelectrical applications but have important
implication in the energy and environment fields. The framework structure of type-I
clathrate is made of water molecules located at the vertices of a dodecahedron
(20 sites) and a tetrakaidecahedron with additional 2 hexagons as shown in
Figure