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Most of the shaping in the manufacture of polymeric objects is car-
ried out in the melt state, as is a substantial part of the physical pro-
perty development. Melt processing involves an interplay between
fluid mechanics and heat transfer in rheologically complex liquids, and
taken as a whole it is a nice example of the importance of coupled
transport processes. This book is about the underlying foundations of
polymer melt processing, which can be derived from relatively straight-
forward ideas in fluid mechanics and heat transfer; the level is that
of an advanced undergraduate or beginning graduate course, and the
material can serve as the text for a course in polymer processing or for
a second course in transport processes.
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Preface

Most of the shaping in the manufacture of polymeric objects is carried out in the
melt state, as is a substantial part of the physical property development. Melt pro-
cessing involves an interplay between fluid mechanics and heat transfer in rheolog-
ically complex liquids, and taken as a whole it is a nice example of the importance
of coupled transport processes. This is a book about the underlying foundations
of polymer melt processing, which can be derived from relatively straightforward
ideas in fluid mechanics and heat transfer; the level is that of an advanced under-
graduate or beginning graduate course, and the material can serve as the text for
a course in polymer processing or for a second course in transport processes. The
book is based on a course that has evolved over thirty years, which I first taught
at the University of Delaware and subsequently at the University of California,
Berkeley; the Hebrew University of Jerusalem; and the City College of New York.
The target audience is twofold: engineers and physical scientists interested in poly-
mer processing who seek a firm command of basic principles without getting into
details of the process geometry or the fluid rheology, and students who wish to
apply the basic material from courses in transport processes to practical processing
situations. The only background necessary is some prior study of the fundamentals
of fluid flow and heat transfer and a command of mathematics at a level typically
expected of an advanced undergraduate student in engineering or the physical sci-
ences; the text is otherwise self-contained.

The book begins with introductory material and a brief review of fundamen-
tals, after which the first part focuses on analytical treatments of basic polymer pro-
cesses: extrusion, mold filling, fiber spinning, and so forth. The thin gap (lubrica-
tion) and thin filament approximations are employed, and all analyses in this part
are for inelastic liquids. An introduction to finite element calculation follows, where
full numerical solutions are compared to analytical results. Polymer rheology is then
introduced, with an emphasis on relatively simple viscoelastic models that have been
used with some success to model processing operations. Applications in which melt
viscoelasticity is important are then revisited, followed by a chapter on stability and
sensitivity that focuses on melt spinning and a chapter on wall slip and extrusion
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x Preface

instabilities. There are brief concluding chapters on structured fluids and mixing
and dispersion.

The viscoelastic character of polymer melts reflects the entangled microstruc-
ture and plays an important role in property development and in flow stability. Vis-
coelasticity has little effect on the evolution of many processing flows, however,
where the mechanics are dominated by the temperature and shear-rate dependence
of the viscosity; this statement is especially true of extrusion and some mold fill-
ing, but it applies as well to some extensional flows when the polymer is a rela-
tively inelastic polyester or nylon. I have therefore chosen to develop the subject
for inelastic liquids, and only then, with the complete framework in place, to intro-
duce the effects of elasticity where appropriate. This sequence is in contrast to the
usual approach of starting with polymer melt rheology, but I believe that exploiting
students’ understanding of purely viscous liquids to lay the foundation is superior
pedagogy.

I am grateful to Benoit Debbaut, George Vassilatos, and Kurt Wissbrun for
detailed comments on every chapter. Benoit Debbaut also contributed his exper-
tise in numerical simulation as the coauthor of Chapter 8. I am also grateful to the
many authors whose work is used and cited at the appropriate places in the text,
and of course to students and co-workers who have contributed so much to my
understanding throughout the years. The late Arthur B. Metzner first introduced
me to problems in polymer processing more than forty years ago, and I believe that
his influence will be evident throughout the text. My wife, Vivienne, contributed in
more ways than I can possibly express.

Morton M. Denn
New York

November 2007



1 Polymer Processing

1.1 Introduction

Polymeric materials – often called plastics in popular usage – are ubiquitous in mod-
ern life. Applications range from film to textile fibers to complex electronic inter-
connects to structural units in automobiles and airplanes to orthopedic implants.
Polymers are giant molecules, consisting of hundreds or thousands of connected
monomers, or basic chemical units; a polyethylene molecule, for example, is simply
a chain of covalently bonded carbon atoms, each carbon containing two hydrogen
atoms to complete the four valence sites. The polyethylene used to manufacture
plastic film typically has an average molecular weight (called the number-average
molecular weight, denoted Mn) of about 29,000, or about 2,000 ---CH2--- units, each
with a molecular weight of 14. The symbol “---” on each side of the CH2 denotes a
single covalent bond with the adjacent carbon atom. (The monomer is actually ethy-
lene, CH2 ------CH2, where “------” denotes a double bond between the carbons that opens
during the polymerization process, and a single “mer” is ---CH2---CH2---; hence,
the molecular weight of the monomer is 28 and the degree of polymerization is
about 1,000.) The ultra-high molecular weight polyethylene used in artificial hips
and other prosthetic devices has about 36,000 ---CH2--- units. Polystyrene is also a
chain of covalently bonded carbon atoms, but one hydrogen on every second car-
bon is replaced with a phenyl (benzene) ring. Two or more monomers might be
polymerized together to form a copolymer, appearing on the chain in either a regu-
lar or random sequence. The monomers for some common engineering plastics are
shown in Table 1.1.

The polymers used in commercial applications are solids at their use tempera-
tures. The solid phase might be brittle or ductile, depending on the chemical com-
position and, to some extent, on the way in which the polymer has been processed.
The chemical composition of the backbone of some polymers, such as polyethylene,
is such that crystallization can occur; other polymers, such as polystyrene, cannot
form crystalline structures and solidify only as amorphous solids, or glasses. The
glass transition occurs when the temperature is sufficiently low to prevent large-
scale chain motion. Crystallization and glass transition temperatures are shown for
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2 Polymer Melt Processing

Table 1.1. Repeat units and transition temperatures of some common polymers

Polymer Monomer Tg (◦C) Tm(◦C)

Linear polyethylene (HDPE)

H H| |
(–C—C–)| |

H H

∼ 110 134

Branched polyethylene (LDPE)

H H| |
(–C—C–)| |

H H

∼ 110 115

Polystyrene

H H| |
(–C—C–)| |

H φ

90–100 none

Poly(ethylene terephthalate)

H H O O| | || ||
(–O–C—C–O–C–φ–C–)| |

H H

70 260

Poly(methylmethacrylate)

H CH3| |
(–C—C–)| |

H C—O–CH3||
O

90–100 none

Note: φ denotes a phenyl group (a benzene ring); the substitution is in the para position in poly(ethylene
terephthalate).

the polymers in Table 1.1. Polymers are very viscous in the liquid state, and molec-
ular diffusion is slow; hence, the molecular reorganization necessary to permit crys-
tallization can sometimes be so slow that a crystallizable polymer will reach the
glass transition temperature and solidify as a glass before crystallization can occur.
Indeed, there are always amorphous regions in any crystalline polymer.

Polymers are often blended or contain additives to affect the properties of the
solid phase; high-impact polystyrene, for example, is a blend in which particles of a
rubbery polymer, typically polybutadiene or a styrene-butadiene copolymer, are dis-
persed in polystyrene. Many polymer composites used in molding applications con-
tain solid fillers, such as calcium carbonate particles, glass fibers, or even nanoscale
fillers like exfoliated clays or carbon nanotubes.

The polymer manufacturer, starting from raw materials like natural gas and
other low molecular weight chemicals, produces the polymer – say, polyethylene –
as a powder or in the form of chips or flakes, which are often converted (densified)
into pellets by extrusion. This resin must be processed to produce the desired prod-
uct – a molded part, for example. Most processing takes place in the liquid state. The
resin must first be melted (we will use the term melt to denote the change from any
form of solid to a liquid state, although technically only a crystal has a true melting
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transition), then conveyed through one or more steps to form an object of the
desired shape, and finally solidified again. A polymer pipe, for example, is pro-
duced by continuously extruding the molten polymer through an annular die and
then cooling it quickly to retain the shape. An injection-molded part is produced
by forcing the molten polymer into a mold of the desired shape, where the polymer
cools until it has solidified, after which the mold is opened, the part removed, and the
process repeated.

We typically draw the backbone carbons in a polymer chain in a straight line, but
in fact sequential covalent bonds between carbon atoms form an angle of 109.5◦, not
180◦. Rotation about the bonds between adjacent carbon atoms permits substantial
lateral motion of the chain, and any directional correlation of the backbone usually
vanishes over lengths of five or ten monomer units; this distance is known as a Kuhn
length. A single polymer molecule therefore has the appearance of a very long, flex-
ible string of beads, or even simply a very long flexible rope, and the dynamics of
isolated polymer molecules in dilute solutions are very well described by a statis-
tical mechanics treatment of a string of beads undergoing random motion in the
presence of Brownian forces. If these molecules are now packed together in a melt
or a concentrated solution, it is clear that the motion of one string of beads is highly
constrained by all the other strings in its neighborhood. The best visual picture is a
bowl of spaghetti; if we put a fork into the bowl and attempt to move one strand,
we impose a motion on all the other strands with which that strand is in contact,
and we cause a macroscopic motion that tends to align the entangled strands. In a
similar manner, the deformation we impose on a polymer melt during processing
can induce orientation in the chains at a molecular level, and this orientation in turn
manifests itself in the distribution of stresses, the ability of the melt to crystallize
during cooling, and the mechanical and optical properties of the bulk material. The
properties of the final shaped object thus depend in part on the chemical nature of
the particular polymer and in part on the details of the mechanical process and the
stress and thermal fields to which the melt has been subjected.

Our goal in this text is to use mathematical modeling to develop the basic
principles necessary to understand polymer melt processing, to analyze and predict
behavior, and ultimately to develop the tools needed to guide process operation and
design. A mathematical model is an abstraction that captures the essential features
of a physical process in a set of equations that can be manipulated, analytically or
numerically, to explain and predict behavior. A good model is based on fundamen-
tal physical principles, with essential compromises between the detail required for
fidelity to the underlying physical phenomena and the simplicity required for prac-
tical implementation. The level of the model is determined by the anticipated appli-
cation. The academic tools we will employ in modeling polymer melt processes are
fluid mechanics and heat transfer. The natural language of these subjects is multi-
variable calculus, at a level commonly taught during the second year in U.S. science
and engineering curricula; because we are interested in phenomena that vary spa-
tially in more than one direction and may vary in time, the physical phenomena will
be described by partial differential equations. The actual applications, however, in



4 Polymer Melt Processing
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Figure 1.1. Schematic of a single-screw extruder.

contrast to the language itself and the formal structures of the models, require lit-
tle or no experience in the solution of partial differential equations; indeed, simple
quadratures of the type encountered in an introductory calculus course suffice for
most situations that we will encounter.

1.2 Typical Processes

In the following sections we briefly describe some of the most important melt pro-
cesses, and we will return to the modeling of these processes in subsequent chapters.
We will be looking at generic features, and we will not focus on mechanical detail,
which is of course very important in actual operation.

1.2.1 Extrusion

Extrusion is the most fundamental and most widely used unit operation in melt pro-
cessing. An extruder is a device that pressurizes a melt in order to force it through
a shaping die or some other unit. A ram extruder, for example, is simply a piston
that forces a melt from a cylinder through a die. We are usually concerned with
continuous extrusion over long periods of time, in which case a ram, which must
operate in a semibatch mode (i.e., the cylinder must be refilled periodically), is not
appropriate. The most common device for continuous extrusion is the single-screw
extruder, shown schematically in Figure 1.1. The single-screw extruder is analogous
to the meat grinder that was once a fixture in kitchens. In a meat grinder, chunks
of meat are placed in a hopper and fall onto a rotating Archimedes screw. The meat
is compressed and carried forward by the screw flights until it is forced through a
perforated plate, producing the strands that make up “ground” meat. The counter-
intuitive feature here, which we rarely think about in the context of a meat grinder,
is that the meat enters at atmospheric pressure and is forced through the perforated
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Figure 1.2. Schematic of injection molding.

plate to emerge at atmospheric pressure; hence, the pressure must increase from
the hopper to the upstream side of the plate in order to provide the force neces-
sary to push the meat through the plate. We are accustomed to thinking in terms of
pressure drop in flow situations. Similarly, in a screw extruder the polymer, in the
form of flakes, chips, or pellets, is fed through the hopper onto the screw, where
melting takes place because of frictional and conductive heating and perhaps also
deformation heating of the softening solid. The polymer is conveyed forward by the
screw, becoming completely molten by the time it reaches the metering section. Pres-
sure builds up in the flow direction until the end of the screw, where the polymer
is forced through a shaping die. The pressure drop through the die must equal the
pressure buildup along the screw.

Twin-screw extruders, in which the screws intermesh while conveying the poly-
mer, are also in common use. Twin screws are very effective mixing devices, and
they are commonly used for compounding blends and composites, as well as for
reactive processes, in which a chemical reaction occurs in the extruder.

1.2.2 Injection Molding

Injection molding is a semibatch operation shown schematically in Figure 1.2. The
process is conceptually very straightforward: Molten polymer is forced into a closed
mold from a ram extruder or a screw extruder with a reciprocating screw and
allowed to solidify, after which the mold is opened, the part is removed, and the
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Figure 1.3. Schematic of compression molding.

process is repeated. There are a number of practical issues, however. The mold
walls are typically cold, so the polymer is cooling during the filling cycle. If the
mold is filled too slowly and too much solidification occurs, the mold cavity will be
closed off before filling is complete. Indeed, incomplete filling can occur even with-
out solidification because of a large melt viscosity increase from cooling during the
filling process. Incomplete filling is a particular problem in the manufacture of com-
plex molded parts, like those used for electronic interconnects. In addition, the flow
inside the mold is very important. The flow plays a significant role in determining the
morphology of the finished part, which in turn determines the physical properties.
Many molds have inserts around which the polymer must flow, or multiple “gates”
to facilitate filling, and the weld lines where the flow fronts meet can be mechani-
cally weak points; hence, design to ensure optimal placement of the weld lines is an
important consideration. Finally, it is common to fill more than one mold cavity from
a single extruder, as indicated in the schematic. Flow balancing to ensure equal flow
to all molds is therefore very important. Very high pressures can be reached in injec-
tion molding; polymer melts are usually considered to be incompressible, but this is
one application where compressibility of the melt may be important because of the
very high pressures. The high pressures also have implications regarding mechani-
cal design; leakage around the mold face can be important because of inadequate
pressure to keep the mold sealed, for example.

1.2.3 Compression Molding

Compression molding, shown schematically in Figure 1.3, is also conceptually sim-
ple. Polymer is placed between two mold faces and flows out to fill the cavity as the
mold is closed. The charge for compression molding of large parts – an automotive
hood, for example – often consists of stacked layers of sheet molding compound,
which is a fiber-filled polymer sheet that can be handled at room temperature. The
plies may be oriented in various directions to achieve desired fiber orientation in the
final product, especially if the fibers are long (continuous fibers). When the fibers are
short, the fiber orientation distribution is determined by the flow field during mold
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Figure 1.4. Schematic of a “cross-head” wire coating die.

closing. The programming of mold closing, especially in a large mold that might
weigh several tons, is an interesting exercise; the feedback signal controlling the rate
of closure can be position, force, or some combination of both. Compression mold-
ing is usually carried out with thermosetting polymers, which polymerize during the
processing.

1.2.4 Coating

There are many types of coating operations. We will focus here on the coating of
wire and film, shown schematically in Figure 1.4. A wire or film (the substrate) is
passed through the die. The thickness of the coating for a given die geometry is
determined by the substrate speed and the upstream pressure, since both parame-
ters contribute to the polymer flow rate. Coating uniformity is an important con-
sideration here, especially when the visual appearance of the coating is important;
small variations in coating thickness in certain wavelength ranges can have a large
impact on reflectivity, for example. The interior design of the die is important in
order to prevent regions of melt recirculation, in which the organic polymer spends
long times in the die at high temperature, since polymer degradation can occur and
produce coating defects when the degraded polymer finally leaves the die. In some
film extrusion coating processes, the polymer is extruded onto the moving substrate,
rather than being contacted inside the die. This latter process, in which the extruded
melt is stretched as it passes from the die to the sheet, is very similar to fiber spin-
ning, which is described next. An instability known as draw resonance, in which the
film thickness varies periodically, is a major concern in this process and one that we
shall discuss subsequently.
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Figure 1.5. Schematic of fiber spinning.

1.2.5 Fiber Spinning

The melt spinning process for the manufacture of textile fibers is shown schemat-
ically in Figure 1.5. Let us first focus on a single filament. The polymer from the
extruder, after passing through a filter to remove small gel particles, is forced
through a small hole known as a spinneret, which is typically on the order of
200–400 µm in diameter. The jet, which might be at a temperature of 290 ◦C for
poly(ethylene terephthalate), or PET, the polyester typically used in textile fibers,
emerges into an ambient environment that is below the solidification temperature,
which for poly(ethylene terephthalate) is about 80 ◦C. The filament is taken up on
a roll moving at a much higher linear velocity than the extrusion velocity; the take-
up speed is typically in excess of 3,000 m/min (50 m/s, or about 120 mph), while
the average linear velocity through the spinneret is typically two orders of magni-
tude smaller. Mass conservation therefore requires that the filament at the point
of takeup be drawn down in area by a factor roughly equal to the ratio of the
takeup velocity to the extrusion velocity (“roughly” because the densities at the
spinneret and takeup will be different because of the large temperature difference).



Polymer Processing 9

The filament solidifies between the spinneret and the takeup, and the drawdown will
occur mostly in the melt phase.

The mechanics of this process clearly depend on the interplay between the fluid
mechanics causing melt stretching and the very high rate of air cooling; cooling
affects the viscosity and hence the resistance of the fluid to stretching. The high
speeds involved introduce aerodynamic considerations; air drag and filament inertia
are important contributors to the filament mechanics, and the nature of the bound-
ary layer in the air stream around the filament plays a significant role. In most cases
the spinneret plate contains a large number of holes, and the individual filaments
are taken up together as a yarn. The cooling air therefore contacts each filament in
a different way, causing each filament to deform differently. Stretching flow is an
efficient means of polymer chain orientation, which helps determine the final fiber
morphology and properties; different stretching histories on different filaments will
therefore cause some property variation within the yarn.

The primary operating concern is filament uniformity and the avoidance of
breaks. The melt zone below the spinneret but prior to solidification is short, typi-
cally on the order of one meter. The residence time in the melt zone is therefore on
the order of fractions of a second. Feedback control of the average filament diam-
eter on this time scale is not feasible. Furthermore, each extruder feeds many spin-
ning stations, and a fiber plant will contain hundreds of stations. Thus, this process
essentially operates in an “open loop” mode, with operator adjustments taking place
over time scales that are very long relative to the time a fluid element spends on the
line. Models are very helpful in defining process operating strategies, and major
process improvements have been effected with the guidance of spinline models.

Polymer films are formed in a number of ways, but one common film process
looks like a two-dimensional version of the spinning process, in which a molten
sheet is extruded into air and stretched, after which the film is solidified and taken
up on a cold roll. Film processes tend to operate at much lower speeds than fiber
processes, but the basic mechanics are the same except near the edges of the film,
where three-dimensional effects are important.

1.2.6 Film Blowing

The blown film process, shown schematically in Figure 1.6, is commonly used to
manufacture biaxially oriented films and plastic bags. A thin cylindrical film is
extruded through an annular die. The inside pressure is slightly above ambient, caus-
ing the film to expand (like a rubber balloon). The film is flattened at “hauloff” and
taken up at a linear speed higher than the linear extrusion velocity, so stretching
occurs both in the “machine direction” and in the transverse direction. Solidifica-
tion occurs prior to hauloff. The flattened annular film is slit on the sides if film
is the desired product or processed further to form periodic seals if bags are the
product. The blown film process is very sensitive to operate, and the aerodynamics
around the air ring seem to have a major effect on bubble stability.
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Figure 1.6. Schematic of the blown film process.

1.2.7 Blow Molding and Thermoforming

The blow molding process, which is used for the manufacture of bottles and indus-
trial components such as automotive fuel tanks, combines elements of a number
of the previous processes. A tube that is closed at one end, known as a parison, is
first formed, either by injection molding or by extrusion. The heated parison is then
pressurized and stretched to conform to the shape of the mold, where it solidifies.
The blowing portion of the cycle is a biaxial stretch.

Classical thermoforming is a similar process in which a sheet is heated and
deformed by vacuum from inside the mold or by pressurization from outside to
stretch and conform to the shape of the mold. Some thermoforming processes utilize
a mechanical device for part or all of the deformation of the sheet. Thermoforming
is used to produce high-volume thin-walled products such as drinking cups and food
packaging as well as large items like cargo bed liners for pickup trucks.

The modeling of the inflation and solidification portions of blow molding and
thermoforming do not introduce major new concepts beyond those incorporated in
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other free-surface processes, and we will not address these processes separately in
later chapters, despite their processing importance.

1.3 Polymer Melt Rheology

Rheology is the study of deformation and flow. Since melt processing entails a large
amount of deformation and flow, we may expect melt rheology to play a significant
role, and this is indeed the case. Polymer melts are non-Newtonian in that the rela-
tion between the stress and deformation rate is nonlinear. They are also viscoelastic,
which means that the entangled network of polymer chains sometimes responds in a
manner more reminiscent of a rubbery solid than of a liquid. We will find that we can
make considerable headway in understanding polymer processing without taking
the melt rheology explicitly into account, and this will be our starting point. Ulti-
mately, of course, we will have to address the non-Newtonian, viscoelastic nature
of the melts in a quantitative manner, but it is pedagogically advantageous to put
that time off. For now, it suffices to introduce only a few concepts relating to melt
rheology.

1.3.1 Viscosity

Viscosity is defined as the ratio of shear stress to shear rate. The viscosity of a New-
tonian fluid is a material constant that depends on temperature and pressure but is
independent of the rate of shear; that is, the shear stress is directly proportional to
the shear rate at fixed temperature and pressure. Low molar-mass liquids and all
gases are Newtonian. Complex liquids, such as polymers and suspensions, tend to
be non-Newtonian in that the shear stress is a nonlinear function of the shear rate.
Some typical melt viscosities are shown in Figure 1.7. The viscosity approaches a
constant value at low shear rates, known as the zero-shear viscosity and denoted
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Figure 1.8. Oscilloscope trace showing thick-
ness versus time for squeezing flow of a sili-
cone polymer with a constant force. Re-
printed from Lee et al., J. Non-Newtonian
Fluid Mech., 14, 301 (1984).

ηo. At intermediate shear rates the viscosity decreases with increasing shear rate,
a property known as shear thinning. It is believed that the viscosity approaches
another limiting value at high shear rates, and this behavior is observed in poly-
mer solutions, but it is extremely difficult to reach this regime experimentally with
polymer melts. The zero-shear viscosity of linear polymers increases linearly with
molecular weight until there are sufficient entanglements per chain, after which ηo

varies with the molecular weight to a power that is usually close to 3.4.

1.3.2 Melt Elasticity

The entangled polymer chains require time to move relative to one another follow-
ing imposition of a stress. Hence, we can expect to find a characteristic time scale
λ for the polymer melt such that for times t � λ, before the chains have had an
opportunity to move within the entangled network, the system will respond like
a rubbery solid, with a characteristic elastic modulus G. For times t � λ the net-
work has an opportunity to respond and the behavior is fluidlike. Figure 1.8 shows
a particularly dramatic manifestation of the elastic character of a polymer melt,
in this case a silicone polymer (i.e., a polymer in which the backbone consists of
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Figure 1.9. Shear stress following appli-
cation of a constant shear rate of 1 s−1.
Data for eight samples of a low-density
polyethylene fall within the shaded
region. Reprinted with permission from
Meissner, Pure Appl. Chem., 42, 553
(1975).

Si atoms in place of the carbons). This is a compression molding-like squeezing
experiment carried out between two circular plates under constant force, with the
spacing between the plates monitored as a function of time. We see a rapid change
in the thickness, accompanied by damped oscillations, followed by a more gradual
closing of the plates. An undamped oscillation would be a purely elastic response,
which is energy conserving (sum of kinetic and potential energy = constant), while
the gradual decay is a dissipative response typical of a viscous liquid. The elastic
modulus required to represent this behavior is 6.65 × 105 pascal; the modulus for
typical polyethylenes tends to be slightly higher. The characteristic response time for
the network from this experiment seems to be on the order of 0.2 s; response times
for carbon-based polymers range from this magnitude to several seconds and more,
with the latter value typical of polyethylenes at processing temperatures. Figure 1.9,
for example, shows the stress response in a linear low-density polyethylene follow-
ing the imposition of a constant shear rate. The transient here is on the order of
seconds.

The characteristic time constant for the polymer network response means that
any dimensional analysis of a melt process will involve at least one more dimension-
less group than would exist for a Newtonian fluid under the same conditions. If the
process itself has a characteristic time, which we will denote tp – the residence time
on a spinline, for example – then a group that arises naturally is the ratio λ/tp, the
ratio of the characteristic time of the fluid to the characteristic time of the process.
If this dimensionless group is large, the process occurs too quickly for the entangled
network to adjust and the response is dominated by the network elasticity. If the
group is small, however, the network can adjust and the response is dominated by
viscous dissipative processes. This dimensionless ratio of time scales has come to be
known as the Deborah number, denoted De, after the Biblical prophetess Deborah
(from the Song of Deborah, Judges 5:5, “The mountains quaked [sometimes trans-
lated as “flowed”] at the presence of the Lord,” suggesting that even solid moun-
tains flow like a liquid on an appropriately long process time scale), and we speak of
“high Deborah number processes” in which an elastic response dominates and “low
Deborah number processes” in which a viscous response dominates.
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Figure 1.10. Extrudate swell, 5% solu-
tion of polyisobutylene in decalin. This
drawing is based on the original photo-
graph. Reprinted with permission from
Metzner et al., Chem. Eng. Progress,
62 (12), 81 (1966). Copyright American
Institute of Chemical Engineers.

1.3.3 Extrudate Swell

Extrudate swell is a dramatic manifestation of melt elasticity and is one of the distin-
guishing characteristics of polymer melts. When a low molar-mass liquid is extruded
at a low Reynolds number from a cylindrical tube, the emerging jet has a diameter
that is approximately 13% greater than the diameter of the tube because of the
velocity profile rearrangement at the exit. (The high Reynolds number jet, in which
the jet diameter is approximately 82% of the tube diameter, is the more familiar
phenomenon. There is a smooth transition from slight swelling to contraction in the
Reynolds number range from 1 to 50.) A molten polymer can swell to a diame-
ter that is as much as 200% of the tube diameter. An example is shown in Figure
1.10. This phenomenon is caused by the relaxation of normal stresses, which are
another manifestation of melt elasticity. Normal stresses are stresses transverse to
the direction of shear; they are the fluid equivalent of the Poynting effect in nonlin-
ear elasticity, in which torsion of an elastic rod causes a stress in the axial direction.
Qualitatively, these stresses push out against the walls of the tube; when the poly-
mer emerges and the walls are “removed,” the polymer melt is able to expand. Large
extrudate swell is obviously a concern in die design since the desired size is that of
the extrudate, not the die. It is a particularly interesting issue in dies of noncircu-
lar shape, where the swell is likely to be uneven around the periphery, and the die
shape may need to be different from that of the desired extrudate. Extrudate swell
is also an issue in the design of the gate in an injection mold.

1.4 Polymer Chain Characteristics

There are several properties of the chain that are important in processing, in large
measure because they affect the rheological properties or the solidification process.

1.4.1 Branching

We tend to visualize a polymer chain as a straight sequence, and some polymers
exist only in this form. The synthetic chemistry can lead to other structures, how-
ever, either by design or because of competing reactions. One such structure is
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Figure 1.11. Schematic of branching.

branching, which is illustrated in Figure 1.11 for polyethylene. The linear molecule
packs more easily in the solid state and hence is more crystalline and has a higher
solid-phase density than the branched molecule (960–970 vs. 915–930 kg/m3); the
linear molecule is known as high-density polyethylene (HDPE), while the molecule
with long branches is known as low-density polyethylene (LDPE). There is a syn-
thetic route involving copolymerization of ethylene with 1-butene, 1-hexene, or 1-
octene that produces a low-density molecule (density 915–940 kg/m3) with short
branches, known as linear low-density polyethylene (LLDPE). Branched polymers
tend to be more shear thinning than linear molecules. The effect of branching on
the zero-shear viscosity is complex because long branches change the nature of the
network disentanglement process. Linear molecules disentangle by a process known
as reptation (“snakelike motion”), in which the molecule moves along its backbone
direction because it is precluded from large sideward motions by the presence of
the neighboring chains in the network. This mechanism is hindered by the presence
of long branches, making the disentanglement process more difficult. Hence, the
zero-shear viscosity of a branched molecule is lower than that of a linear molecule
of the same molecular weight for relatively short branches, but for sufficiently long
branches the reverse occurs, and the zero-shear viscosity for a branched molecule
can have a much stronger dependence on molecular weight than the 3.4-power char-
acteristic of linear polymers.

1.4.2 Molecular Weight Distribution

The synthetic processes for manufacturing polymers result in a distribution of
molecular weights within any batch. Two different moments of the distribution are
commonly used to characterize a polymer. The mean of the distribution is known
as the number-average molecular weight and denoted Mn. Let Mo be the molecular
weight of the repeat unit, and let fi be the fraction of the molecules containing i
repeat units in the chain. The number-average molecular weight is then simply

Mn = Mo

∞∑
i=1

ifi ∼ Mo

∞∫
1

if (i)di. (1.1)
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The integral approximation is useful if the distribution is represented by a con-
tinuous function. A second moment that is used is known as the weight-average
molecular weight, denoted Mw and defined as

Mw = Mo
∑∞

i=1 i2 fi∑∞
i=1 ifi

∼ Mo
∫∞

1 i2 f (i)di∫∞
1 if (i)di

. (1.2)

The weight-average molecular weight is related to the variance of the distribution.
The breadth of the distribution can be described in a number of ways using these two
moments. The most common way to describe the breadth is by the polydispersity,
defined as Mw/Mn, which is always greater than or equal to unity. A monodisperse
polymer, in which all chains are exactly the same length, will have a polydisper-
sity of 1. Nearly monodisperse polymers can be synthesized by special methods, but
commercial polymers generally have very broad distributions. Condensation poly-
mers (polyesters, polyamides, and polyacetals) have values of Mw/Mn close to
the value of 2 that is predicted theoretically for the given chemistry. Linear
polyethylenes typically have Mw/Mn values of about 4, while values for branched
polyethylenes are typically 10 or greater. The transition from the zero-shear viscos-
ity to shear thinning is very sharp for narrow-distribution polymers, while it is very
gradual for polymers with a broad molecular weight distribution; this difference can
be seen for the two sets of polystyrene data in Figure 1.7. Other rheological proper-
ties are similarly affected. The molecular weight distribution is typically obtained by
chromatographic methods, but there are many difficulties in this approach, includ-
ing the limited solubility of many polymers and the absence of reliable standards.
Because of the strong dependence of rheological behavior on the molecular weight
distribution, there is considerable activity in the use of rheological measurements as
a means of obtaining online information about the distribution. The weight-average
molecular weight is the appropriate value to use when applying the 3.4-power rule
for the molecular-weight dependence of the zero-shear viscosity.

1.4.3 Transitions

Solid polymers undergo a variety of physical transitions. The most obvious from the
processing perspective are crystallization and melting and the glass transition. These
transitions are usually determined by differential scanning calorimetry (DSC), a
thermal method in which the temperature of a very small sample is slowly changed
and the heat flow is measured. (The glass transition temperature is also determined
by mechanical rheometry, which we discuss in Chapter 9.) A transition is marked by
a large change in the heat flux, characterizing the phase transition enthalpy. A typ-
ical DSC result is shown in Figure 1.12 for blends of branched and linear polyethy-
lene. The broad melting peaks in the pure samples indicate that melting takes place
over a finite temperature range, in contrast to the sharp melting temperatures of
crystals of low molar-mass materials. The presence of two peaks in the blends indi-
cates the formation of separate crystalline phases of the two components, while the
formation of a single peak at low LDPE concentrations indicates miscibility and the
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Figure 1.12. Differential scanning calorimetry traces for
blends of HDPE and LDPE. Reprinted from Lee and Denn,
Polym. Eng. Sci., 40, 1132 (2000).

formation of a single crystalline phase. The glass transition and melting tempera-
tures of some common polymers are shown in Table 1.1. The melting temperatures
are the peak temperatures from the DSC trace.
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2 Fundamentals

2.1 Introduction

Polymer flow in any melt processing geometry is governed by three fundamental
principles of physics: conservation of mass, conservation of linear momentum, and
conservation of energy. Linear momentum is a vector quantity that must be con-
served in each of three independent coordinate directions, so we must expect five
conservation statements in the most general case. The natural language of these
conservation statements is differential and integral calculus (recall that Newton
invented the calculus to enable him to describe problems of motion); in particu-
lar, because we have four independent variables – time and three spatial variables –
our language will employ partial derivatives, and the conservation equations will
be stated as partial differential equations. The problems we will address in this text
do not generally require familiarity with methods of solution of partial differential
equations because the equations will usually simplify to forms that can be analyzed
using elementary concepts of the calculus of one independent variable. (An apt lin-
guistic analogy might be the contrast between understanding basic prose – our task
here – and writing poetry.) Hence, the subject is open to any student who has com-
pleted a basic sequence in calculus.

The conservation equations are derived in many textbooks on fluid mechanics
and transport phenomena, and we shall simply state them here, with an explanation
of the meanings of terms where appropriate.

2.2 Conservation Principles

2.2.1 Conservation of Mass

The principle of mass conservation simply states that mass is neither created nor
destroyed. (Note that individual species can be created and destroyed.) Thus, in any
arbitrarily defined region of space, known as a control volume, the rate of change
of mass contained within the volume must equal the net rate at which mass crosses
the boundaries. To express mass and flow we clearly require the density, ρ, and

18
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the velocity, v; v is a vector with components vx , vy, and vz in the three Cartesian
coordinate directions.

Conservation of mass is expressed in the following form, known as the continu-
ity equation:

∂ρ

∂t
= − ∂

∂x
ρvx − ∂

∂y
ρvy − ∂

∂z
ρvz. (2.1)

That is, the rate of change of the density with time at any position in space (∂ρ/∂t)
equals the negative sum of three terms, each of which is the spatial rate of change
of a mass flux, or a mass flow rate on a unit area basis in a specific direction. An
alternative and completely equivalent form is obtained by applying the product rule
to each term on the right side of Equation 2.1:

Dρ

Dt
= ∂ρ

∂t
+ vx

∂ρ

∂x
+ vy

∂ρ

∂y
+ vz

∂ρ

∂z
= −ρ

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
. (2.2)

The symbol Dρ/Dt , known as the substantial derivative, is shorthand for the sum of
the four terms on the left side of Equation 2.2.

Throughout this text we will assume that polymer melts are incompressible liq-
uids, by which we mean that the density never changes with position or time. This is
clearly an approximation that must be relaxed in some applications – injection mold-
ing, for example, where the compressibility of the melt becomes important because
of the extremely high pressures – but the incompressibility assumption will suffice
for our purpose here. If the density never changes in time or space, rates of change
with respect to these variables (i.e., derivatives) must be zero (∂ρ/∂t = 0, ∂ρ/∂x = 0,
etc.), and the continuity equation simplifies to

∇ � v ≡ ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0. (2.3a)

The symbol ∇ � v, known as the divergence of the velocity vector v, is shorthand for
the three terms on the left of Equation 2.3a. We can, of course, choose to employ
any coordinate system we wish, and for many problems – flow in a round pipe, for
example – rectangular Cartesian coordinates are inconvenient. It is straightforward
to transform Equation 2.3a to other coordinates; in a cylindrical (r, θ , z) coordinate
system, for example, the equivalent form of Equation 2.3a is

∇ � v ≡ 1
r

∂

∂r
(rvr ) + 1

r
∂vθ

∂θ
+ ∂vz

∂z
= 0. (2.3b)

Here, vr , vθ , and vz are the r (radial), θ (circumferential), and z (axial) components
of the velocity at each position. The equation ∇ � v = 0 is shown in Table 2.1 for
the three most common coordinate systems: rectangular Cartesian, cylindrical, and
spherical.

Let us see what we can learn from the continuity equation. Suppose we have
flow between two converging planes (Figure 2.1), such as we might experience in
a film die. The origin of a cylindrical (r, θ , z) coordinate system is put at the point
where the planes would meet, and the angle θ is measured from the plane of sym-
metry. z is the “neutral” direction into the paper, and we assume there is no flow
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Table 2.1. Continuity equation for an incompressible fluid

∇ � v = 0

Rectangular Cartesian (x, y, z) coordinates:

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0

Cylindrical (r, θ, z) coordinates:

1
r

∂

∂r
(rvr ) + 1

r
∂vθ

∂θ
+ ∂vz

∂z
= 0

Spherical (r, θ, φ) coordinates:

1
r2

∂

∂r
(r2vr ) + 1

r sin θ

∂

∂θ
(vθ sin θ) + 1

r sin θ

∂vφ

∂φ
= 0

in the z direction. Away from the entry and exit of the converging region it seems
reasonable to suppose that elements of the fluid move along radial lines; that is, if
we were to put a spot of dye into the fluid at a distance r from the origin and an
angle θ from the midplane, at a later time we would find the spot of dye at a new
value of r, closer to the origin, but at the same angle θ from the midplane. This pre-
sumption is equivalent to the mathematical statement that vθ = 0 everywhere, since
the fluid containing the dye would move in the azimuthal direction to a new value of
θ if there were an azimuthal velocity. Now, if vz and vθ are both zero, only the first
term remains in Equation 2.3b, and we may write

1
r

∂

∂r
(rvr ) = 0. (2.4)

Since the rate of change of (rvr ) with respect to r is zero, it therefore follows that
rvr is independent of r. rvr may still depend on θ , however, so we write

rvr = φ(θ), (2.5a)

where φ(θ) is a function of θ whose form we do not know; equivalently,

vr = φ(θ)
r

. (2.5b)

r

θ

Figure 2.1. Converging flow between “infinite”
parallel planes.
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Figure 2.2. Flow across a surface at a fixed radial
position in radial flow between infinite converging
planes.

Thus, the continuity equation tells us that the radial velocity at any angle varies
inversely with the radius.*

2.2.2 Conservation of Linear Momentum

Newton’s second principle states that the rate of change of momentum of a particle
equals the sum of the imposed forces. For a fluid, this principle is stated as follows
for each direction in a rectangular Cartesian coordinate system:

x: ρ
(

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)
= −∂p

∂x
+ ∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ ρgx, (2.6a)

y: ρ
(

∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

)
= −∂p

∂y
+ ∂τyx

∂x
+ ∂τyy

∂y
+ ∂τyz

∂z
+ ρgy, (2.6b)

z: ρ
(

∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

)
= −∂p

∂z
+ ∂τzx

∂x
+ ∂τzy

∂y
+ ∂τzz

∂z
+ ρgz. (2.6c)

Equations 2.6a–c are known collectively as the Cauchy momentum equation. Before
we discuss the meanings of the terms in the equations, it is useful to note that the
y-direction equation can be obtained from the x-direction equation simply by per-
muting indices: x, y, z → y, z, x. Similarly, the z direction is obtained from y, z, x →
z, x, y.

The terms on the left side of the Cauchy momentum equation sum to the rate
of change of momentum, or inertia, on a unit volume basis. There are four terms
because momentum in a given direction changes as the velocity changes with time
and as a fluid element changes direction. The first term on the right is the rate of

* The inverse radial dependence is expected. Consider the surface denoted “A” in Figure 2.2, which
is the arc of a circle of radius r. Denote the mass flow rate across that surface as ρQ, where Q is the
volumetric flow rate. (Volumetric flow rate = volume/time, while density = mass/volume, so ρQ
has dimensions of mass/volume × volume/time = mass/time.) Q = vr (2αr)L, where 2α is the angle
between the planes, L is the length into the page, and vr is the average radial velocity (flow rate =
average velocity × surface area). Thus, vr = Q/2αLr. Q/2αL is simply a constant (the flow rate is
the same across any arc, since the fluid is incompressible), so we easily establish the inverse radial
dependence for the average velocity.
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Figure 2.3. Schematic of stresses acting
on an x surface.

change of pressure with position, or the pressure gradient. It is helpful to recall
that a derivative is the limit of a ratio of differences (∂p/∂x ≈ small change in pres-
sure/small distance in the x direction, for example). This term then reflects a force
difference across a material element (pressure × area) per unit volume (area × dis-
tance). The final term in each equation is the gravitational force per unit volume
acting on the fluid element; gx, for example, is the component of the gravitational
acceleration in the x direction.

The nine terms τxx , τxy , . . . , τzz are known as the components of the extra stress.
These terms reflect the internal forces that fluid elements exert on one another
because of the deformation. The first subscript denotes the surface in the fluid that
is experiencing the force, while the second subscript denotes the component direc-
tion. For example (Figure 2.3), τ xx is a normal stress because it is a stress on an “x
surface” acting in the x direction; τ xy is a shear stress because it acts parallel to the
x surface. These stresses depend on the deformation, and they play a central role in
the analysis of the polymer processes, for it is through the stresses that differences
between materials manifest themselves.

The principle of the conservation of angular momentum is often used to argue
for the symmetry of the extra stress; that is, τ xy = τ yx, and so forth. In that case
there are six independent components, not nine. The angular momentum argument
requires an explicit but often unstated assumption that there is no structure in the
fluid that is capable of generating local torques, which seems generally to be the
case for polymers (except perhaps for liquid crystalline polymers), and, except for a
brief introduction to liquid crystals in Chapter 13, we will assume stress symmetry
throughout.

There is one aspect of the momentum equation that often causes confusion.
The pressure is an isotropic stress; that is, it acts equally in all coordinate direc-
tions. Thus, the total normal stress acting on, say, the x surface is the sum of the
pressure and the extra stress τ xx. We have implicitly adopted a sign convention that
says that pressures are positive when putting a fluid element in compression, but
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extra stresses are positive when putting an element in tension; this is the reason that
p and τ xx enter Equation 2.6a with opposite signs.* Thus, the total stress acting on
an x surface, which we denote σ xx, is

σxx = −p + τxx . (2.7a)

Similarly,

σyy = −p + τyy, (2.7b)

σzz = −p + τzz. (2.7c)

The Cauchy momentum equation can be transformed to other coordinate sys-
tems that might be more useful for particular problems. Flow in a capillary, for
example, will be described most naturally in cylindrical (r, θ , z) coordinates. The
momentum equation is shown in Table 2.2 in the three commonly used coordinate
systems. The equation is often written in the shorthand vector form

ρ
Dv
Dt

= −∇ρ + ∇ � τ + ρg, (2.8)

where the meanings of the symbols can be discerned by comparison with the com-
ponent equations.

Finally, consider the sum

P = p + ρgh, (2.9)

where h is the height above an arbitrary datum. It can be shown from trigonometric
arguments that

gx = −g
∂h
∂x

, gy = −g
∂h
∂y

, and gz = −g
∂h
∂z

.

Thus, an alternative form of Equation 2.8 for incompressible liquids (ρ = constant)
is

ρ
Dv
Dt

= −∇P + ∇ � τ ; (2.10)

that is, we simply replace p by P in any of the equations in Table 2.2 and drop the
gravity term. This form of the equation is usually the most convenient for confined
flows, such as flow in an extrusion die, but not for flows with free surfaces, such as
fiber spinning. P is sometimes known as the equivalent pressure.**

* The opposite convention is also used by some authors for the stress, in which case Equation 2.7a
would be written σxx = p + τxx . This can be confusing to the student new to the subject, but the
convention clearly must be irrelevant to the final physical result. Readers who have studied ther-
modynamics will recall a similar situation with regard to the sign convention for work; work is
sometimes defined as positive if done on the system, sometimes as positive if done by the system.

** Consider a case in which there is no flow, so vx = vy = vz = 0. Also, all τ xx = τ xy = . . . = 0 since
there is no deformation that can generate stresses. The three components of the momentum equa-
tion then reduce to ∂P/∂x = 0, ∂P/∂y = 0, ∂P/∂z = 0; that is, P is independent of x, y, and z and
hence is a constant in space. Suppose gravity points in the negative z direction; we then have
P =p + ρgz = constant with P independent of x and y at each value of z. This is simply the basic
equation of hydrostatics, which describes, for example, the operation of a manometer in which dif-
ferences in liquid height are used to measure pressure differences.
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Table 2.2. Cauchy momentum equation

ρ Dv
Dt = −∇ p + ∇ � τ + ρg

Rectangular Cartesian (x, y, z) coordinates:

x component: ρ

(
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)
= − ∂p

∂x
+ ∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ ρgx

y component: ρ

(
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

)
= − ∂p

∂y
+ ∂τyx

∂x
+ ∂τyy

∂y
+ ∂τyz

∂z
+ ρgy

z component: ρ

(
∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

)
= − ∂p

∂z
+ ∂τzx

∂x
+ ∂τzy

∂y
+ ∂τzz

∂z
+ ρgz

Cylindrical (r, θ, z) coordinates:

r component: ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z

)
= − ∂p

∂r

+ 1
r

∂

∂r
(rτrr ) + 1

r
∂τrθ

∂θ
− τθθ

r
+ ∂τrz

∂z
+ ρgr

θ component: ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vr vθ

r
+ vz

∂vθ

∂z

)
= −1

r
∂p
∂θ

+ 1
r2

∂

∂r
(r2τrθ ) + 1

r
∂τθθ

∂θ
+ ∂τθz

∂z
+ ρgθ

z component: ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r
∂vz

∂θ
+ vz

∂vz

∂z

)
= − ∂p

∂z

+ 1
r

∂

∂r
(rτrz) + 1

r
∂τθz

∂θ
+ ∂τzz

∂z
+ ρgz

Spherical (r, θ, φ) coordinates:

r component: ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
+ vφ

r sin θ

∂vr

∂φ
− v2

θ + v2
φ

r

)

= − ∂p
∂r

+ 1
r2

∂

∂r
(r2τrr ) + 1

r sin θ

∂

∂θ
(τrθ sin θ) + 1

r sin θ

∂τrφ

∂φ
− τθθ + τφφ

r
+ ρgr

θ component: ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vφ

r sin θ

∂vθ

∂φ
+ vr vθ

r
− v2

φ cot θ

r

)

= −1
r

∂p
∂θ

+ 1
r2

∂

∂r
(r2τrθ ) + 1

r sin θ

∂

∂θ
(τθθ sin θ) + 1

r sin θ

∂τθφ

∂φ
+ τrθ

r
− cot θ

r
τφφ + ρgθ

φ component: ρ

(
∂vφ

∂t
+ vr

∂vφ

∂r
+ vθ

r
∂vφ

∂θ
+ vφ

r sin θ

∂vφ

∂φ
+ vφvr

r
+ vθvφ

r
cot θ

)

= − 1
r sin θ

∂p
∂φ

+ 1
r2

∂

∂r
(r2τrφ) + 1

r
∂τθφ

∂θ
+ 1

r sin θ

∂τφφ

∂φ
+ τrφ

r
+ 2 cot θ

r
τθφ + ρgφ

2.2.3 Newtonian Fluid

We need to digress briefly from the logical presentation of conservation equations
to introduce a particular constitutive equation, that is, an equation relating the extra
stress to the deformation of the fluid. For low molecular weight liquids, such as
water and glycerol, it is found experimentally that the stress to deform the liquid is
directly proportional to the instantaneous rate of deformation. The rigorous math-
ematical expression of this experimental observation for an incompressible liquid,
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Table 2.3. Incompressible Newtonian fluid

Rectangular Cartesian (x, y, z) coordinates:

τxx = 2η
∂vx

∂x
τyy = 2η

∂vy

∂y
τzz = 2η

∂vz

∂z

τxy = τyx = η

(
∂vx

∂y
+ ∂vy

∂x

)
τxz = τzx = η

(
∂vx

∂z
+ ∂vz

∂x

)

τyz = τzy = η

(
∂vy

∂z
+ ∂vz

∂y

)

Cylindrical (r, θ, z) coordinates:

τrr = 2η
∂vr

∂r
τθθ = 2η

(
1
r

∂vθ

∂θ
+ vr

r

)
τzz = 2η

∂vz

∂z

τrθ = τθr = η

[
r

∂

∂r

(vθ

r

)
+ 1

r
∂vr

∂θ

]
τzθ = τθz = η

(
∂vθ

∂z
+ 1

r
∂vz

∂θ

)

τrz = τzr = η

(
∂vz

∂r
+ ∂vr

∂z

)

Spherical (r, θ, φ) coordinates:

τrr = 2η
∂vr

∂r
τθθ = 2η

(
1
r

∂vθ

∂θ
+ vr

r

)
τφφ = 2η

(
1

r sin θ

∂vφ

∂φ
+ vr

r
+ vθ cot θ

r

)

τrθ = τθr = η

[
r

∂

∂r

(vθ

r

)
+ 1

r
∂vr

∂θ

]
τθφ = τφθ = η

[
sin θ

r
∂

∂θ

( vφ

sin θ

)
+ 1

r sin θ

∂vθ

∂φ

]

τφr = τrφ = η

[
1

r sin θ

∂vr

∂φ
+ r

∂

∂r

(vφ

r

)]

which must be formulated to satisfy the principle of physics that a description of
nature must be invariant to changes in the frame of reference of the observer, is

τxy = τyx = η

(
∂vx

∂y
+ ∂vy

∂x

)
, (2.11a)

τxz = τzx = η

(
∂vx

∂z
+ ∂vz

∂x

)
, (2.11b)

τyz = τzy = η

(
∂vy

∂z
+ ∂vz

∂y

)
, (2.11c)

τxx = 2η
∂vx

∂x
, τyy = 2η

∂vy

∂y
, τzz = 2η

∂vz

∂z
. (2.11d,e,f)

The single parameter, η, is known as the viscosity, and it is a measure of the resis-
tance to deformation. η will depend in general on temperature and pressure. The
equivalent equations for the extra stress in other coordinate systems are shown in
Table 2.3.

When Equations 2.11a–f are substituted into the momentum equation, Equa-
tion 2.6, with the assumption that η is constant in space (that is, that temperature
and pressure changes are sufficiently small that their effects on the viscosity can be
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ignored), we obtain, after some simplification, the Navier-Stokes equations for an
incompressible Newtonian fluid:

x: ρ

(
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)
= −∂P

∂x
+ η

(
∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

)
,

(2.12a)

y: ρ

(
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

)
= −∂P

∂y
+ η

(
∂2vy

∂x2
+ ∂2vy

∂y2
+ ∂2vy

∂z2

)
,

(2.12b)

z: ρ

(
∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

)
= −∂P

∂z
+ η

(
∂2vz

∂x2
+ ∂2vz

∂y2
+ ∂2vz

∂z2

)
,

(2.12c)
or, symbolically,

ρ
Dv
Dt

= −∇P + η∇2v. (2.13)

The equivalent equations in other coordinate systems are shown in Table 2.4. These
equations do not describe the motion of most polymeric liquids, but they do provide
a useful frame of reference and are often adequate to describe the flow behavior of
polyesters, nylons, and polycarbonates at low shear rates.

2.2.4 Creeping Flow

The terms on the left side of the Cauchy momentum equation, which we have writ-
ten symbolically as ρ(Dv/Dt), represent the contribution of inertial effects to the
momentum balance. The inertial effects are negligible relative to the stresses gen-
erated within the fluid in most polymer processing operations, and to a very good
approximation the inertial terms can usually be dropped. (Commercial fiber spin-
ning is an exception.) For a Newtonian fluid the relative contribution of inertial
and viscous terms is expressed as a dimensionless group known as the Reynolds
number,

Re ≡ Dvρ

η
, (2.14)

where D is a characteristic length and v a characteristic velocity (the exit diameter
and velocity in an extrusion die, for example). We can show formally for problems
with only one characteristic length that the inertial terms can be neglected when-
ever Re � 1, which is common in polymer processing, in which case we obtain the
creeping flow equations:

0 = −∇P + ∇ � τ. (2.15)

For a Newtonian liquid the creeping flow equations are often called the Stokes
equations:

0 = −∇P + η∇2v. (2.16)
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Table 2.4. Navier-Stokes equations for an incompressible Newtonian fluid (in terms of
P = p + ρgh)

ρ
Dv
Dt

= −∇P + η∇2v

Rectangular Cartesian (x, y, z) coordinates:

x component: ρ

(
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)
= − ∂P

∂x
+ η

(
∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

)

y component: ρ

(
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

)
= − ∂P

∂y
+ η

(
∂2vy

∂x2
+ ∂2vy

∂y2
+ ∂2vy

∂z2

)

z component: ρ

(
∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

)
= − ∂P

∂z
+ η

(
∂2vz

∂x2
+ ∂2vz

∂y2
+ ∂2vz

∂z2

)

Cylindrical (r, θ, z) coordinates:

r component: ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z

)
= − ∂P

∂r

+ η

[
∂

∂r

(
1
r

∂

∂r
(rvr )

)
+ 1

r2

∂2vr

∂θ2
− 2

r2

∂vθ

∂θ
+ ∂2vr

∂z2

]

θ component: ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vr vθ

r
+ vz

∂vθ

∂z

)
= −1

r
∂P
∂r

+ η

[
∂

∂r

(
1
r

∂

∂r
(rvθ )

)
+ 1

r2

∂2vθ

∂θ2
+ 2

r2

∂vr

∂θ
+ ∂2vθ

∂z2

]

z component: ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r
∂vz

∂θ
+ vz

∂vz

∂z

)
= − ∂P

∂z

+ η

[
1
r

∂

∂r

(
r
∂vz

∂r

)
+ 1

r2

∂2vz

∂θ2
+ ∂2vz

∂z2

]

Spherical (r, θ, φ) coordinates:

r component: ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
+ vφ

r sin θ

∂vr

∂φ
− v2

θ + v2
φ

r

)
= − ∂P

∂r

+ η

[
1
r2

∂

∂r

(
r2 ∂vr

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂vr

∂θ

)
+ 1

r2 sin2 θ

∂2vr

∂φ2

− 2
r2

vr − 2
r2

∂vθ

∂θ
− 2

r2
vθ cot θ − 2

r2 sin θ

∂vφ

∂φ

]

θ component: ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vφ

r sin θ

∂vθ

∂φ
+ vr vθ

r
− v2

φ cot θ

r

)
= −1

r
∂P
∂θ

+ η

[
1
r2

∂

∂r

(
r2 ∂vθ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂vθ

∂θ

)
+ 1

r2 sin2 θ

∂2vθ

∂φ2
+ 2

r2

∂vr

∂θ

− vθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂vφ

∂φ

]

φ component: ρ

(
∂vφ

∂t
+ vr

∂vφ

∂r
+ vθ

r
∂vφ

∂θ
+ vφ

r sin θ

∂vφ

∂φ
+ vr vφ

r
+ vφvθ

r
cot θ

)
= − 1

r sin θ

∂P
∂φ

+ η

[
1
r2

∂

∂r

(
r2 ∂vφ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂vφ

∂θ

)
+ 1

r2 sin2 θ

∂2vφ

∂φ2
− vφ

r2 sin2 θ

+ 2
r2 sin θ

∂vr

∂φ
+ 2 cos θ

r2 sin2 θ

∂vθ

∂φ

]
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Note that these equations are obtained formally from the Cauchy momentum and
Navier-Stokes equations in Tables 2.3 and 2.4, respectively, by setting ρ = 0. This
is consistent with the notion that mass (density) enters the momentum balance only
through the inertial terms.

It is interesting to note that terms involving rates of change with time no longer
appear in the momentum equation in the creeping flow approximation. Hence,
this is a quasi-steady-state approximation, where time dependence does not appear
explicitly. This is an important simplification, as we shall see when we consider the
modeling of compression molding.

To see how we might use the momentum equation, let us return again to the
analysis of flow between converging planes, shown in Figure 2.1. We have already
seen (Equation 2.5) that rvr = φ(θ), which is a consequence of our assumption that
vz = vθ = 0 (purely radial flow). We will assume we have a Newtonian liquid in
creeping flow, so we use the equations for cylindrical coordinates in Table 2.4 with
ρ = 0. When we substitute the given form of the velocity into the equations, we find
that most terms are identically zero, and the equations simplify to the following:

r : 0 = −∂P
∂r

+ η

r3

d2φ

dθ2
, (2.17a)

θ : 0 = −1
r

∂P
∂θ

+ 2η

r3

dφ

dθ
, (2.17b)

z: 0 = −∂P
∂z

. (2.17c)

Equation 2.17c simply tells us that the equivalent pressure does not depend on z,
which is consistent with the assumption that z is a neutral direction.

Now, Equations 2.17a and b contain two variables, P and φ(θ); P may depend
on both r and θ . There are several ways to solve this pair of equations in two vari-
ables, but it is not our goal here to discuss methods of solving partial differential
equations. The simplest (but least elegant) approach is to eliminate the pressure
between the two equations to obtain a single equation for φ(θ). To do this we use
the fact that ∂2P/∂r∂θ = ∂2P/∂θ∂r ; that is, the order of differentiation does not mat-
ter for “smooth” functions. We multiply Equation 2.17b by r so that we can write
the two equations as follows :

∂P
∂r

= η

r3

d2φ

dθ2
, (2.18a)

∂P
∂θ

= 2η

r2

dφ

dθ
. (2.18b)

Equation 2.18a is valid at every r and θ , so we can differentiate both sides with
respect to θ to obtain

∂2P
∂θ∂r

= η

r3

d3φ

dθ3
. (2.19a)
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Similarly, we differentiate Equation 2.18b with respect to r to obtain

∂2P
∂r∂θ

= −4η

r3

dφ

dθ
. (2.19b)

The right sides of these equations must be equal, so we obtain, finally,

d3φ

dθ3
+ 4

dφ

dθ
= 0. (2.20)

Equation 2.20 is a linear ordinary differential equation for φ(θ) with constant coef-
ficients whose solution is

φ(θ) = C1 + C2 sin 2θ + C3 cos 2θ. (2.21)

C1, C2, and C3 are constants of integration. The mathematical reason they arise is
that we have performed three indefinite integrations in going from d3φ/dθ3 to φ(θ),
but the physical reason is what interests us: To complete the description of the flow
problem, we must be able to specify three things about the flow at the boundaries of
the region. We shall return to this important topic subsequently.

2.2.5 Conservation of Energy

The equation of conservation of energy for an incompressible, nonreactive, single-
phase liquid in rectangular Cartesian coordinates is

ρcp
DT
Dt

≡ ρcp

(
∂T
∂t

+ vx
∂T
∂x

+ vy
∂T
∂y

+ vz
∂T
∂z

)
= κ

(
∂2T
∂x2

+ ∂2T
∂y2

+ ∂2T
∂z2

)
+ �

= κ∇2T + �. (2.22)

The heat capacity at constant pressure, cp, may be temperature dependent, but we
have assumed that the thermal conductivity, κ , is a constant. � is the dissipation
function, which has the following form in rectangular Cartesian coordinates:

� = τxx
∂vx

∂x
+ τyy

∂vy

∂y
+ τzz

∂vz

∂z
+ τxy

(
∂vx

∂y
+ ∂vy

∂x

)
+ τxz

(
∂vx

∂z
+ ∂vz

∂x

)

+ τyz

(
∂vy

∂z
+ ∂vz

∂y

)
. (2.23)

Note that � is a sum of squares for a Newtonian fluid, shown in Equation 2.11.
The energy equation and the dissipation function, with the latter specialized for
incompressible Newtonian fluids, are given in Tables 2.5 and 2.6, respectively, for
the major coordinate systems.

Equation 2.22 is a bit difficult to interpret physically because it is an equation
for the change in temperature, not the change in energy, from which it is derived.
Roughly, the left side represents the accumulation of the internal energy in a fluid
element. The term with the thermal conductivity κ represents the heat flow to and
from the fluid element because of thermal conduction, while the viscous dissipa-
tion term reflects the rate of increase in internal energy because of work done on
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Table 2.5. Energy equation for an incompressible fluid with constant thermal conductivity

ρcp
DT
Dt

= κ∇2T + �

Rectangular Cartesian (x, y, z) coordinates:

ρcp

(
∂T
∂t

+ vx
∂T
∂x

+ vy
∂T
∂y

+ vz
∂T
∂z

)
= κ

(
∂2T
∂x2

+ ∂2T
∂y2

+ ∂2T
∂z2

)
+ �

Cylindrical (r, θ, z) coordinates:

ρcp

(
∂T
∂t

+ vr
∂T
∂r

+ vθ

r
∂T
∂θ

+ vz
∂T
∂z

)
= κ

[
1
r

∂

∂r

(
r
∂T
∂r

)
+ 1

r2

∂2T
∂θ2

+ ∂2T
∂z2

]
+ �

Spherical (r, θ, φ) coordinates:

ρcp

(
∂T
∂t

+ vr
∂T
∂r

+ vθ

r
∂T
∂θ

+ vφ

r sin θ

∂T
∂φ

)
= κ

[
1
r2

∂

∂r

(
r2 ∂T

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂T
∂θ

)
+ 1

r2 sin θ

∂2T
∂φ2

]
+ �

the fluid element by the surrounding fluid. The “p–V” work associated with push-
ing fluid elements into and out of the system is partially hidden in the fact that the
heat capacity at constant pressure, cp, appears in the equation in place of the heat
capacity at constant volume, cv . The two heat capacities are essentially equal for liq-
uids because of the near incompressibility, but there are delicate issues that do not
concern us here in deriving energy equations. The literature is full of analyses using
incorrectly derived energy equations, and it is always a challenge when using com-
mercial software to determine that the energy equation being employed is correct.
(Elegant graphics to show the solution to an incorrect equation is of little use.)

2.2.6 Boundary Conditions

The conservation equations are differential equations, and their solution re-
quires integration, hence, unknown constants of integration. This is illustrated in

Table 2.6. Dissipation function (�/η) for an incompressible Newtonian fluid and one half the
second invariant of the deformation rate ( 1

2 IID) for any fluid

Rectangular Cartesian (x, y, z) coordinates:

2

[(
∂vx

∂x

)2

+
(

∂vy

∂y

)2

+
(

∂vz

∂z

)2
]

+
[

∂vy

∂x
+ ∂vx

∂y

]2

+
[

∂vz

∂y
+ ∂vy

∂z

]2

+
[

∂vx

∂z
+ ∂vz

∂x

]2

Cylindrical (r, θ, z) coordinates:

2

[(
∂vr

∂r

)2

+
(

1
r

∂vθ

∂θ
+ vr

r

)2

+
(

∂vz

∂z

)2
]

+
[

r
∂

∂r

( vθ

r

)
+ 1

r
∂vr

∂θ

]2

+
[

1
r

∂vz

∂θ
+ ∂vθ

∂z

]2

+
[

∂vr

∂z
+ ∂vz

∂r

]2

Spherical (r, θ, φ) coordinates:

2

[(
∂vr

∂r

)2

+
(

1
r

∂vθ

∂θ
+ vr

r

)2

+
(

1
r sin θ

∂vφ

∂φ
+ vr

r
+ vθ cot θ

r

)2
]

+
[

r
∂

∂r

( vθ

r

)
+ 1

r
∂vr

∂θ

]2

+
[

sin θ

r
∂

∂r

( vφ

sin θ

)
+ 1

r sin θ

∂vθ

∂φ

]2

+
[

1
r sin θ

∂vr

∂φ
+ r

∂

∂r

( vφ

r

)]2
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Equation 2.21 for the θ -dependent portion of the velocity field in the converging
flow problem, where we must evaluate the constants C1, C2, and C3. Differential
equations apply within a spatial domain, while constants of integration are deter-
mined by conditions at boundaries. Typical boundary conditions for fluid flow prob-
lems are the specifications of velocities, stresses, and overall flow rates, while for the
energy equation we typically specify temperatures or heat fluxes at boundaries.

The most common boundary condition in fluid mechanics is the no-slip condi-
tion, which states that the fluid in contact with a solid surface has a velocity equal
to that of the surface. If the surface is stationary, as in our converging flow example,
then the fluid must have a zero velocity at the surface. This condition is not intu-
itively obvious; Navier (1823), for example, one of the founders of the modern dis-
cipline of fluid mechanics, believed that there should be a relative velocity between
the fluid and the adjacent solid surface that is proportional to the wall shear stress.
No-slip is now generally accepted as the appropriate condition for problems in fluid
mechanics, but there is considerable evidence that the no-slip condition fails for at
least some polymer melts and concentrated solutions at high stress levels. We shall
return to this issue in Chapter 12.

For the converging flow problem, the no-slip condition requires vr = φ(θ)/r to
vanish at θ = ±α or, equivalently, φ(α) = φ(−α) = 0. From Equation 2.21,

φ(α) = C1 + C2 sin 2α + C3 cos 2α = 0, (2.24a)

φ(−α) = C1 − C2 sin 2α + C3 cos 2α = 0. (2.24b)

It readily follows that C2 = 0, C1 = −C3 cos 2α, and

φ(θ) = C3 (cos 2θ − cos 2α) (2.25)

The constant C3 must still be determined, and we note that the flow rate has not yet
been specified. Let q = Q/L denote the volumetric flow rate per unit length into
the paper. To calculate the flow rate per unit length through the surface A in Fig-
ure 2.2, we first note that the differential flow rate through the differential arc
denoted “dθ” is vr rdθ (velocity × arc length); the total flow rate per unit area is
then

q =
α∫

−α

vr rdθ =
α∫

−α

φ(θ)
r

rdθ =
α∫

−α

φ(θ)dθ = C3

α∫
−α

(cos 2θ − cos 2α) dθ

= C3 (sin 2α − 2α cos 2α) . (2.26)

q is the same at all radial positions because of incompressibility, so Equation 2.26
can be solved to give C3, from which we obtain the velocity at all r and θ as

vr = q
r

cos 2θ − cos 2α

sin 2α − 2α cos 2α
. (2.27)

Note that the velocity is negative (flow is in the direction of decreasing r), with the
maximum magnitude along the center plane and a zero velocity at the walls. The
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V
Figure 2.4. Schematic of a shearing ex-
periment.

shear stress τθr is computed with the help of Table 2.3:

τθr = η

[
r

∂

∂r

(vθ

r

)
+ 1

r
∂vr

∂θ

]
= η

r
∂vr

∂θ
= −2ηq

r2

sin 2θ

sin 2α − 2α cos 2α
. (2.28)

The shear stress τθr vanishes on the plane of symmetry, θ = 0. The magnitude of the
shear stress at the wall, θ = ±α, is∣∣τθr (r, θ = ±α)

∣∣ = 2ηq
r2

sin 2α

sin 2α − 2α cos 2α
= 2ηq

r2

1
1 − 2α cot 2α

. (2.29)

It is a useful exercise to consider Navier’s boundary condition, in which there
is a relative velocity between the fluid and the wall that is proportional to the shear
stress. We write this relation as

ηvr = bτθr at θ = ±α. (2.30)

b has dimensions of length and would presumably be a parameter that has a char-
acteristic value for each liquid–solid pair. Using vr = φ(θ)/r and τrθ = (η/r)∂vr/∂θ

then gives ηφ/r = ηbφ′/r2, where φ′ = dφ/dθ, or

φ = b
r

dφ

dθ
at θ = ±α. (2.31)

There is clearly an inconsistency because this boundary condition would require
that φ be a function of r, which is contrary to the assumption of radial flow. Hence,
we can conclude that purely radial flow is impossible if the fluid exhibits wall “slip.”
(The exception is the case of complete slip, or b → ∞, which corresponds to τrθ = 0
at θ = ±α. It readily follows for this case that vr = q/2αr ; that is, the velocity is the
same at all angles and the fluid experiences no shear stress.)

2.3 Viscosity

Every fluid is characterized by a viscosity, which is a quantitative measure of the
resistance to flow. Viscosity is best defined in terms of an experiment. Consider
two very large (“infinite”) parallel plates, as shown in Figure 2.4. The upper plate
is moved relative to the lower plate with a velocity V . If we ignore the very small
region near the edges of the plates, which are assumed to be at infinity, it is reason-
able to assume that fluid elements move only in the same direction as the moving
surface; in terms of the components vx , vy, and vz of the velocity vector v, this means
that vy = vz = 0 and vx depends only on y:

vx = vx(y), vy = vz = 0. (2.32)
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This velocity field clearly satisfies the continuity equation (∂vx/∂x + ∂vy/∂y +
∂vz/∂z = 0). If we examine the terms in the Cauchy momentum equation, Table 2.2,
we find that all terms on the left-hand side vanish at steady state (∂/∂t = 0). In
this infinite geometry there is no preferred origin, so any x position in the plane
should be equivalent to any other; this implies that stresses cannot vary with x, in
which case ∂τxx/∂x = 0. Similarly, z is a neutral direction in which nothing varies,
so ∂τzx/∂z = 0. (In fact, we expect τ zx = 0, since there is no shearing taking place
along a z face.) Finally, we will take the direction of gravitational acceleration to be
orthogonal to the planes, so gx = 0. The x component of the momentum equation
therefore simplifies to

∂p
∂x

+ ∂τyx

∂y
= 0. (2.33)

Now, we might do things to the flow field to cause a pressure gradient (∂p/∂x) in
the flow direction, and we will consider one such important case subsequently in our
analysis of the single-screw extruder. For this experiment, however, we assume that
the plates are open to the atmosphere at both ends and there are no obstructions
to the flow, in which case there is no reason to expect the pressure to vary from
position to position. We therefore assume ∂p/∂x = 0, in which case Equation 2.33
simplifies to ∂τyx/∂y = 0, or

τyx = constant. (2.34)

∂τyx/∂y = 0 states only that τyx is independent of y, but we know from the infinite
geometry that it must also be independent of x and z.

We have already defined a Newtonian fluid, and for this flow we simply obtain
(Table 2.3)

τyx = η
dvx

dy
= constant. (2.35)

If dvx/dy is a constant, vx must be linear; with the no-slip condition we have vx = 0
at y = 0 and vx = V at y = H, so

vx = V
y
H

, (2.36a)

dvx

dy
= V

H
. (2.36b)

dvx/dy is known as the shear rate, with dimensions of time−1. We see from this
result that if we measure the shear stress (force/area) required to move the plate as
a function of shear rate (V/H), we will obtain a straight line for all V and H , and
the slope will be the viscosity, η. Typical data are shown in Figure 2.5 for an oil used
as a viscosity standard; the stress is measured in pascals (Pa), and the viscosity at 24
◦C is approximately 0.03 pascal-seconds (Pa s).*

* While the pascal second is the accepted SI unit for viscosity, data are often reported in the CGS
unit poise (P). 1 P = 0.1 Pa s, so the viscosity of the oil is 0.3 P, or 30 cP (centipoise). The viscosity
of water at room temperature is about 1 cP = 1 mPa s (milli pascal second).
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Figure 2.5. Shear stress as a function
of shear rate, NBS Oil J, Lot 100, at
approximately 24 ◦C.

Polymer melts rarely behave as Newtonian fluids, but we can still determine
the viscosity with this experiment. Let us suppose that the stress depends on the
deformation gradient in a completely arbitrary way. With the assumption we have
made about the flow, the only nonvanishing part of the deformation gradient,
regardless of how we define it, is dvx/dy. Thus, while τ yx may be an arbitrary func-
tion of dvx/dy, the condition τ yx = constant means that dvx/dy must also be con-
stant.* Thus, Equations 2.36a–b still follow, and the definition of the shear rate is
unchanged.

The shear rate is commonly written
�

γ , although other notation is in use. Viscos-
ity is defined as the ratio τ yx/

�

γ :

η
(∣∣ �

γ
∣∣) ≡ τyx(

�

γ )
�

γ
. (2.37)

The viscosity is in general a function of the shear rate; the argument used here shows
that viscosity is a unique function of shear rate for a given fluid at fixed temperature
and pressure. Viscosity functions for some typical polymer melts are shown in Fig-
ure 1.7. Data are typically plotted on log–log coordinates, and, as noted in Chapter 1,
two features are commonly observed: There is an approach to a region of constant
viscosity at low shear rates (denoted ηo, the zero-shear viscosity), and there is a
region of power-law behavior (a straight line on a logarithmic plot) at intermediate
shear rates. There may also be a region of constant viscosity at high shear rates,
but this region is rarely observed experimentally. Because the viscosity functions
of polymer melts decrease with increasing shear rate, melts are often referred to as
shear thinning.

There are molecular theories relating the viscosity of a linear polymer melt to
chain length, but the most useful viscosity equations are empirical. Data are often
represented by a power law (sometimes called the Ostwald-de Waele model):

τyx = K
∣∣ �

γ
∣∣n−1 �

γ , (2.38a)

η = K
∣∣ �

γ
∣∣n−1

. (2.38b)

* We are assuming that τ yx is a monotonic function of dvx/dy, so there is a unique solution to the
equation τ yx (dvx/dy) = constant. The argument is essentially unchanged if multiple solutions are
possible, but some interesting physical issues arise in that case.
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This empirical equation may be a good fit to data over several decades in shear rate.
The absolute value of the shear rate is needed to ensure that shear stress and shear
rate, both of which are directional quantities, remain collinear, and that the viscosity
is always real and positive. (It can be shown from the second law of thermodynam-
ics that η must be non negative.) The consistency index K is strongly temperature
dependent, while n is usually insensitive to temperature (although the shear rate
range over which power-law behavior is observed will change with temperature).

The empirical Carreau-Yasuda (or, sometimes, Carreau-Yasuda-Elbirli) model
contains two additional parameters and is extensively used to correlate melt data:

η = ηo

(
1 + β

∣∣ �

γ
∣∣a) n−1

a
. (2.39)

This equation goes to a zero-shear viscosity as
�

γ→ 0 and to a power law for∣∣ �

γ
∣∣� β−a ; in the latter case, η0β

n−1
a corresponds to the consistency index, K. The

parameters appear to correlate with changes in molecular structure for polyolefins.
The Cross equation, in which a = 1 – n, works well for many polymers, including
polyesters and polyacetals.

We need to recognize that we have defined the viscosity entirely in terms of
the response of the fluid to a single experiment. Other shearing geometries (flow
between a rotating cone and plate, flow between rotating parallel plates, pressure-
driven flow in a long cylindrical or planar channel) can be shown to be mathemati-
cally equivalent to the experiment described here, so the scope of measuring tech-
niques is much greater than suggested by the elementary analysis. It can be shown
that the viscosity is a material function that is a general property of the material and
independent of any particular experimental or processing geometry.

Finally, the shear rate as defined by Equation 2.36b is clearly the appropriate
argument for the viscosity function only for one-dimensional flows like the one used
here. We need a quantity that reduces to |dvx /dy| for the one-dimensional flow but
is properly invariant to the way in which we choose to define our coordinate sys-
tem. The appropriate function, which follows directly from the principles of matrix
algebra, is one half the second invariant of the rate of deformation, which is usually
denoted 1

2 IID. 1
2 IID is shown in Table 2.6, where it is identical to the dissipation

function � divided by η for the special case of Newtonian fluids. (It is important to
keep in mind that the function �/η in Table 2.6 is the proper form for the dissipa-
tion only for a Newtonian fluid, whereas 1

2 IID is a universally valid definition that
depends only on the velocity field.) For an arbitrary flow field, then, the power-law
and Carreau-Yasuda equations would be written, respectively,

η = K
( 1

2 IID
) n−1

2 , (2.40a)

η = ηo

(
1 + β( 1

2 IID)
a
2

) n−1
a

. (2.40b)

At this point we need to classify fluids into those that are inelastic, by which we
mean that the stress at a given time depends only on the deformation rate at that
time, and those that are viscoelastic, by which we mean that the stress at a given
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time depends on the past as well as the present deformation rate. Polymer melts
are usually viscoelastic; Figure 1.9, for example, shows the evolution of the shear
stress in a polyethylene melt at a constant shear rate over a time scale of several
seconds. The viscosity at this shear rate is determined from the ultimate steady-state
shear stress, but the shear stress at any time during the transient clearly depends on
the history of deformation. Despite this dependence on prior deformation, we can
gain considerable insight into melt processing by first considering inelastic liquids
(and an inelastic description of the stress is frequently adequate, especially for some
polyesters, nylons, and polycarbonates). The extra stress for incompressible inelastic
liquids is as given in Table 2.3, but the viscosity η is a function of 1

2 IID – as given,
for example, by Equation 2.40a or 2.40b. It is important to recall that substitution of
this extra stress with a variable viscosity into the Cauchy momentum equation does
not lead to the Navier-Stokes equations.

BIBLIOGRAPHICAL NOTES

The continuity and momentum equations are derived in most of the textbooks on fluid
mechanics; see, for example,

Denn, M. M., Process Fluid Mechanics, Prentice Hall, Englewood Cliffs, NJ, 1980.

For an elegant and rigorous treatment, see

Aris, R., Vectors, Tensors, and the Basic Equations of Fluid Dynamics, Prentice Hall, Engle-
wood Cliffs, NJ, 1962; reprinted by Dover Publications, Mineola, NY, 1990.

The development of the correct energy equation is delicate and is often done incorrectly.
Correct derivations may be found in Aris and in

Bird, R. B., W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley,
New York, 2006.

There is a catalogue of applications of incorrect energy balances in

Denn, M. M., Process Modeling, Longman Scientific and John Wiley, New York, 1986, Ch. 5.

For an analysis of converging flow with a Navier slip condition for Newtonian, power-law,
and Carreau-Yasuda fluids, see

Joshi, Y. M., and M. M. Denn, J. Non-Newtonian Fluid Mech., 114, 185 (2003).



3 Extrusion

3.1 Introduction

The extruder, shown schematically in Figure 1.1, is central to most melt processing
operations. We can achieve considerable insight into the operation and design of
single-screw extruders by remarkably simple models, despite the mechanical com-
plexity. We begin this chapter by obtaining velocity, stress, and temperature dis-
tributions for flow in straight channels with parallel walls of “infinite” length. The
infinite channel results are important in and of themselves, but we shall see here
that they lead immediately to a model for the single-screw extruder as well. The
results also provide an important framework for the modeling of flows in situations
in which the walls are not parallel, which we address in Chapter 5.

3.2 Plane Channel

3.2.1 Stress Distribution

Let us suppose we have steady isothermal flow (i.e., the temperature is constant
throughout the flow field and all ∂/∂t = 0) between two infinite parallel planes, as
shown in Figure 3.1. The flow is in the x direction. We assume for generality that
there is a finite pressure gradient (∂p/∂x �=0) and that the surface at y = 0 moves
relative to the surface at y = H with a constant velocity V. We shall see subsequently
that the results obtained here will form the foundation for the modeling of single-
screw extrusion and the extrusion coating of flat sheets.

If we place a drop of colored dye in the flow field, we will find that the dye
moves parallel to the wall. This is expected, since the walls are parallel and there
is no driving force to cause fluid to move orthogonal to the walls or into the plane
of the paper. Thus, we may assume that the Cartesian components of the velocity
vector may be written

vx = vx(y), vy = vz = 0. (3.1)

37
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Figure 3.1. Flow between infinite parallel
planes.

(We know that vx must be nonzero because we are assuming that there is a net flow
in the x direction. vx must be a function of y because the no-slip condition requires
vx = V at y = 0 and vx = 0 at y = H.) This velocity field automatically satisfies the
continuity equation, ∂vx/∂x + ∂vy/∂y + ∂vz/∂z = 0. We do need to keep in mind
that the velocity field might be more complex near the beginning and end of the
flow field, where fluid enters and leaves the channel, but for now we assume that
these positions are located an infinite distance away and do not affect the flow.

With the assumed velocity field, all terms on the left side of the three compo-
nents of the Cauchy momentum equation, Equations 2.6a–c and Table 2.2, are zero.
The equations in terms of the equivalent pressure P thus simplify to

x component: 0 = −∂P
∂x

+ ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
, (3.2a)

y component: 0 = −∂P
∂y

+ ∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
, (3.2b)

z component: 0 = −∂P
∂z

+ ∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
. (3.2c)

This is still a formidable-looking set of equations, but they simplify considerably
more. The z direction is a “neutral” direction in which nothing is happening (all
z planes are identical), so all ∂/∂z = 0. There is no preferred origin in this infinite
geometry, so all x positions must be equivalent as far as the stress and flow field
are concerned. Thus, even though we have not specified a particular constitutive
relation for the stress, we can conclude that stress will not change with position in
the x direction, in which case ∂τxx/∂x = ∂τxy/∂x = ∂τxz/∂x = 0. Finally, because
there is no relative motion in the z direction between adjacent xy planes, there can
be no shear stress τxz = τzx . Thus, our equations reduce to

0 = −∂P
∂x

+ ∂τyx

∂y
, (3.3a)

0 = −∂P
∂y

+ ∂τyy

∂y
= ∂

∂y
(−P + τyy) , (3.3b)

0 = −∂P
∂z

. (3.3c)

Equation 3.3c simply tells us that the equivalent pressure does not change in the
z direction, which is obvious. Equation 3.3b tells us that the sum σ yy = –P + τ yy is
independent of y, so we can write

P = τyy + function of x. (3.4)
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Now, τ yy might depend on y but, like the other stresses, it cannot depend on the flow
direction, x. Thus, P might depend on both x and y, but only in the form of a sum of
a function of x and a function of y; hence, ∂P/∂x will depend only on x. We are now
in a position to solve our flow problem.

We rewrite Equation 3.3a as

∂P
∂x

= dτyx

dy
. (3.5)

We use the ordinary derivative d/dy on the right because τ yx can be a function only
of y. The left-hand side of Equation 3.5 is a function only of x, whereas the right-
hand side is a function only of y. x and y are independent variables, and we are free
to change one while keeping the other constant. If we change x but keep y con-
stant, then dτyx/dy cannot change, hence, neither can ∂P/∂y; thus, ∂P/∂x must be
independent of x, since it cannot change when we change x. By a similar argument,
dτyx/dy must be independent of y. We can therefore write

∂P
∂x

= dτyx

dy
= constant. (3.6)

We therefore conclude that for any fluid, the equivalent pressure varies linearly in
the flow direction and the shear stress varies linearly across the flow channel. Since
∂P/∂x is a constant, we can integrate Equation 3.6 with respect to y to obtain

τyx = ∂P
∂x

y + C1, (3.7)

where C1 is a constant of integration.

3.2.2 Newtonian Fluid

We can now obtain the velocity distribution for any viscosity function – the power
law given by Equation 2.38, for example. For analytical simplicity we begin with the
Newtonian fluid, in which case Equation 3.7 becomes

τyx = η
dvx

dy
= ∂P

∂x
y + C1. (3.8)

Since the derivative of the velocity is linear, the velocity itself must be quadratic.
Integration of both sides of Equation 3.8 thus yields

vx(y) = 1
2η

∂P
∂x

y2 + C1

η
y + C2. (3.9)

The constants C1 and C2 are determined from the conditions vx = V at y = 0 and
vx = 0 at y = H:

vx(0) = V = C2, (3.10a)

vx(H) = 0 = 1
2η

∂P
∂x

H 2 + C1

η
H + C2. (3.10b)
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Figure 3.2. Schematic of an elementary
plane extruder.

Solving for C1 and C2, we thus obtain

vx(y) = H 2

2η

∂P
∂x

y
H

( y
H

− 1
)

+ V
(

1 − y
H

)
. (3.11)

In the absence of a pressure gradient (∂P/∂x = 0) we obtain a linear velocity pro-
file, as in Section 2.3. If both plates are stationary (V = 0) the velocity profile is a
parabola that is symmetric about the center plane y = H/2, and the shear stress
vanishes at the center plane.

The flow rate in the x direction per unit width, q, is found by integration of the
velocity:

q =
H∫

0

vx(y)dy = − H 3

12η

∂P
∂x

+ V H
2

. (3.12)

There are two contributions to the overall flow, the drag flow proportional to V
and the pressure-driven flow proportional to the pressure gradient. Note that if the
pressure at the channel entrance is greater than the pressure at the exit, the pressure
decreases along the channel length, so ∂P/∂x < 0 and the pressure term contributes
to a flow in the positive x direction.

3.3 An Elementary Extruder

3.3.1 Design Equation

Now consider the flow geometry shown in Figure 3.2. We again have two infinite
plates, with the lower plate moving with relative velocity V, but we now suppose that
the channel is obstructed at a position x = L, where it is connected to a channel of
height h < H and length l. (There are clearly mechanical problems in implementing
this flow, which we shall ignore for the present.) There is a fluid reservoir at x =
0 that is maintained at atmospheric pressure, which we can take without loss of
generality to be p = 0, and the exit of the small channel is also assumed to be at
atmospheric pressure.

Let us first consider the small channel of width h and length l. We assume
l � h, so the flow rearrangements near the beginning and the end of the channel
are not important to the analysis of the overall behavior. We will ignore differences
between p and P in this analysis because we assume h and H are both small and the
gravitational contribution across the channel is negligible. There is no moving plane
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in the small channel, so the drag term in Equation 3.12 is zero and we may write

P |x=L − 0(atmospheric)

l
= 12ηq

h3
. (3.13a)

We have made use of the fact that the pressure gradient is constant, which allows
us to replace ∂P/∂x with (final pressure – initial pressure)/length. Alternatively, we
may write Equation 3.13a as

P |x=L = 12ηql
h3

. (3.13b)

This is the pressure required at x = L to ensure that we will have a flow rate/unit
width q in the x direction in the small channel. Thus, we must choose the wall veloc-
ity V in the large channel to ensure that we obtain this pressure. Note that we are
asking for something counterintuitive, because we want to bring about a pressure
increase in the flow direction in the large channel.

If we ignore the small regions around x = 0 and x = L, where the assump-
tion that vx = vx(y), vy = 0 is clearly incorrect, Equations 3.11 and 3.12 should
apply. Because the pressure gradient is constant, we can replace ∂P/∂x by (P |x=L −
P |x=0)/L, or

∂P
∂x

= P |x=L − P |x=0

L
= 12ηql

h3L
. (3.14)

Equation 3.12 then becomes

q = −
(

H 3

12η

)(
12ηql
h3L

)
+ V H

2
(3.15a)

or

V = 2q
H

[
1 +

(
H
h

)3 l
L

]
. (3.15b)

Equation 3.15b is the design equation for a simple extruder, which takes fluid
from a reservoir and extrudes it at a rate q through a die of gap height h. The veloc-
ity profile away from the constriction and the reservoir is obtained by substituting
Equations 3.14, 3.15a, and 3.15b into Equation 3.11 to obtain

vx

V
= 3β

(1 + β)
ξ(ξ − 1) + (1 − ξ), (3.16a)

where

ξ = y/H, β = (H/h)3l/L. (3.16b,c)

From Equation 3.15b, β reflects the relative increase in wall velocity to achieve the
required pressure increase from the reservoir in order to extrude the fluid through
the small die. The velocity profile away from the constriction and the reservoir is
shown in Figure 3.3; the pressure buildup causes a backflow, with the velocity van-
ishing at an intermediate position y/H = (1 + β)/3β and becoming negative over
a portion of the channel if β > 1/2. The ratio of pressure-driven backflow (qp) to
drag flow (qd) is given by −β/(1 + β); the maximum backflow is equal in magnitude
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Figure 3.3. Velocity profiles in a plane channel. (a) qp/qd = 0, β = 0; (b) qp/qd = −1/3, β =
1/2; (c) qp/qd = −2/3, β = 2; (d) qp/qd = −1, β = ∞.

to the drag flow, which occurs in the limit β → ∞. Clearly there will be a region
near the constriction where the fluid carried forward by the drag flow reverses and
returns with the pressure-driven backflow, but we cannot account for this flow with
the simplified analysis used here.

Finally, we have not computed the cost of operating this device in terms of
power. The power input per unit width in the z direction is simply the product of
the wall shear stress, the length, and the wall velocity.∗ The shear stress at the wall
is obtained from Equation 3.11 as

τyx
∣∣

y=0 = d
dy

{[
H 2

2
∂P
∂x

y
H

(
1 − y

H

)]
+ ηV

(
1 − y

H

)}∣∣∣∣
y=0

= − η

H
2q
H

(1 + 4β) ,

(3.17)
and the power per unit width in the z direction, ℘/W , is

℘

W
= 4ηLq2

H 3
(1 + β) (1 + 4β) , (3.18)

where we have made use of all the intermediate equations. The power requirement
for a fixed throughput scales quadratically when β is greater than unity.

EXAMPLE 3.1. Suppose we wish to produce 10 kg/hr of a polymer with ρ = 782
kg/m3 and η = 30,000 Pa s through a slit die with a gap of h = 2.5 mm, l/h = 30,
and a width W = 1.5 m. The dimensions of the upstream channel are H = 20
mm and L = 0.75 m. The volumetric throughput per unit width is

q =
(

10
kg
hr

)(
1

782 kg/m3

)(
1

1.5 m

)(
1

3,600 s/hr

)
= 2.37 × 10−6 m2/s.

The average velocity from the die, q/h, is about 1 mm/s, which is very slow.
We find the pressure at the entrance to the die (hence, the pressure buildup in
the extruder and the pressure drop across the die) from Equation 3.13b as

P = 12(3 × 104 Pa s)(2.37 × 10−6 m2/s)(75 × 10−3 m)/(2.5 × 10−3 m)3

= 4.1 × 106 Pa

∗ Work = force × distance. Power = rate of doing work = force × rate of change of distance = force ×
velocity. Force = shear stress × area. Force/unit width = τ yxL. Power/unit width = τ yxLV.
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The wall shear stress in the die is computed from the balance between
pressure drop multiplied by cross-sectional area and wall shear stress multiplied
by surface area as

τw = P h/2l = (4.1 × 106 Pa)(2.5 × 10−3 m)/2(75 × 10−3 m) = 6.8 × 104 Pa

= 0.068 MPa.

As we shall see subsequently, the maximum wall stress for most extrusion oper-
ations is in the neighborhood of 0.1 MPa, so this is a reasonable value.

β is given by Equation 3.16c:

β =
(

20
2.5

)3 (0.075
0.75

)
= 51.2.

The power requirement is then obtained from Equation 3.18 as

℘ = 4(3 × 104 Pa s)(0.75 m)
(20 × 10−3 m)

(
2.37 × 10−6 m2/s

20 × 10−3 m

)2

(52.2)(1 + 4 × 51.2)(1.5)

= 1,018 W ∼= 1 kW.

Note that everything is computed using SI units, so no conversions are needed.
1 kW is about 1.3 hp. From Equation 3.15b we find the velocity of the moving
wall to be

V = 2 × (2.37 × 10−6 m2/s)
20 × 10−3 m

(52.2) = 1.24 × 10−2 m/s = 12.4 mm/s.

3.3.2 Temperature Development

We have not addressed the issue of cooling, which may be necessary to keep the
temperature from rising because of the power input and the viscous dissipation;
this requires solution of Equation 2.22. The detailed design of heat transfer sys-
tems is beyond the scope of what we wish to accomplish in this text, but it is use-
ful to sketch out a simplified analysis. We will assume that all physical properties
are independent of temperature, thus ignoring the strong dependence of viscosity
on temperature for polymer melts, which we address in Chapter 4. This assump-
tion uncouples the momentum and energy equations and permits us to use the
velocity and pressure fields that we have already calculated with the assumption of
isothermality.

We make one important assumption here in applying Equation 2.22, namely,
that energy transport in the flow direction by convection (ρcpvx∂T/∂x) is far more
important than transport in the flow direction by conduction (κ∂2T/∂x2). The
validity of this assumption follows from the small thermal conductivity of poly-
mer melts; it can be established from a scaling argument for ρcpq/κ � 1, which is
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generally true.∗ The conduction term in the transverse direction, κ∂2T/∂y2, must
be retained; there is no transverse flow; hence, conduction is the only mechanism
available to provide a heat flow to the walls, where the heat transfer takes place.
The only nonzero term in the dissipation function is η(dvx/dy)2), so at steady state
(∂T/∂t = 0) Equation 2.22 becomes

ρcpvx
∂T
∂x

= κ
∂2T
∂y2

+ η

(
dvx

dy

)2

. (3.19)

There will be one integration with respect to x and two with respect to y, so
we will need to provide one piece of boundary information in the x direction and
two in the y direction. The x condition appears to be straightforward: We assume
that at x = 0 the melt is uniformly at the reservoir temperature, which we denote
Ti (for initial). The thermal boundary condition at a wall is typically written as an
equality between the heat flux into the wall from conduction in the fluid and the
heat flux from the wall to the surrounding heat transfer medium. It is an equality
because the wall is assumed to have no thermal capacitance, so the flux into the
wall must equal the flux out. The heat flux in the fluid is equal to −κ∂T/∂y. (This
is known as Fourier’s law, but it is an empirical constitutive equation, not a law of
nature.) The flux to the surroundings is usually written as U(T − Ta), where Ta is
the temperature of the ambient environment, which might be air or a heat exchange
fluid. U is an overall heat transfer coefficient, which is characteristic of the particular
geometry, materials, and flow. The appropriate boundary conditions are then

− κ
∂T
∂y

= U (T − Ta) at y = 0, H, (3.20)

where U may be different on the two surfaces. Equation 3.20 is often called Newton’s
law of cooling, but it is actually a definition of the heat transfer coefficient and not a
law of nature.

Equation 3.19, with vx given by Equation 3.16, does not lend itself to a simple
analytical solution, but we can gain insight from an approximation. A quantity that
often arises in heat transfer analysis is the cup-mixing temperature, defined as

Tcm =
∫ H

0 vxT dy

q
. (3.21)

Tcm is the average temperature of an extrudate that has been collected and mixed,
hence, the name “cup mixing.” Note that Tcm depends only on x. We can express
Equation 3.19 in terms of Tcm by integrating both sides with respect to y from zero
to H, making use of the fact that the physical properties are all constant:

ρcp

H∫
0

vx
∂T
∂x

dy = κ

H∫
0

∂2T
∂y2

dy + η

H∫
0

(
dvx

dy

)2

dy. (3.22)

∗ The grouping κ/ρcp is known as the thermal diffusivity. The value for high- and low-density
polyethylene at typical processing temperature is 1.2 × 10−7 m2/s, while the value for polystyrene
is 0.8 × 10−7 m2/s. If we use the value q = 2.4 × 10−6 m2/s from Example 3.1, we then obtain
ρcpq/κ ∼ 20–30, which certainly satisfies the condition ρcpq/κ � 1.
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Now, vx is independent of x, so vx∂T/∂x = ∂(vxT )/∂x, and, since H is a constant,
we can interchange the order of integration with respect to y and differentiation
with respect to x. Thus,

ρcp

H∫
0

vx
∂T
∂x

dy = ρcp
d

dx

H∫
0

vxT dy = ρcpq
dTcm

dx
. (3.23a)

Also,

κ

H∫
0

∂2T
∂y2

dy = κ

[
∂T
∂y

∣∣∣∣
y=H

− ∂T
∂y

∣∣∣∣
y=0

]
. (3.23b)

Finally, from Equation 3.16a,

∂vx

∂y
= ∂vx

∂ξ

∂ξ

∂y
= 1

H
∂vx

∂ξ
= 12βq

H 3
y − 2q

H 2
(1 + 4β) = αy − γ, (3.23c)

where

α = 12βq
H 3

, γ = 2q
H 2

(1 + 4β). (3.23d,e)

Thus, Equation 3.22 becomes

ρcpq
dTcm

dx
= κ

[
∂T
∂y

∣∣∣∣
y=H

− ∂T
∂y

∣∣∣∣
y=0

]
+ η

H∫
0

(αy − γ )2dy (3.24)

or, making use of the boundary condition Equation 3.20 and carrying out the inte-
gration of the dissipative term,

ρcpq
dTcm

dx
= −UH (TH − TaH ) + Uo(To − Tao) + 4ηq2

H 3
(4β2 + 2β + 1). (3.25)

Subscripts H and O refer, respectively, to quantities evaluated at y = H and y = 0.∗

If we assume that both walls of this simple extruder are insulated, there will be
no heat flux and UH = UO = 0. In that case, which we denote adiabatic operation,
Equation 3.25 simplifies to

dTcm

dx
= 4ηq

ρcp H 3
(4β2 + 2β + 1) = constant. (3.26)

Thus, the temperature increases linearly and can never reach a steady state, and
the cup-mixing temperature at the outlet of the extruder (neglecting any further
dissipation in the die) is

adiabatic: Tcm (L) = Ti + 4ηqL
ρcp H 3

(4β2 + 2β + 1). (3.27)

∗ Readers who have studied thermodynamics will note, by comparison of Equations 3.13b, 3.18, and
3.25, that

℘/W = qP|x=L + L
H∫
0

�dy;

that is, the power input equals the sum of the total dissipation and the rate of doing “flow work.”
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Equation 3.27 will give a good estimate of the adiabatic temperature rise, hence,
an upper bound on the effluent cup-mixing temperature, but it is important to note
that it gives no details about the temperature distribution in the extruder in the
transverse direction. Thus, we have no way of knowing the maximum temperature
to which the polymer is exposed during the processing.

EXAMPLE 3.2. Now suppose we wish to calculate the adiabatic temperature rise,
Tcm(L) − Ti, for the flow problem in Example 3.1. The specified melt density of
782 kg/m3 is that of polyethylene. We will suppose we have a low-density
polyethylene, for which the heat capacity at 150 ◦C is 2.57 × 103 J/(kg K); the
value for high-density polyethylene is 2.65 × 103 J/(kg K), so the result will be
essentially the same. We are given η = 3 × 104 Pa s, q = 2.37 × 10−6 m2/s, L =
0.75 m, H = 0.2 × 10−3 m, and β = 51.2. Substituting into Equation 3.27 then
gives

Tcm(L) − Ti = 4ηqL
ρcp H 3

(4β2 + 2β + 1) = 139 ◦C.

This is a large number, and the assumption of constant physical properties is
sure to fail. Furthermore, if we assume that the feed temperature is 140 ◦C,
which is 20–25 ◦C above the melting temperature of LDPE (cf. Table 1.1 and
Figure 1.12), the average temperature will be 280 ◦C, at which polyethylene is
likely to degrade.

It is more realistic to assume that there is a heat transfer medium on the sta-
tionary wall, but that the moving wall is adiabatic. (In a real situation we might have
to consider conduction along the metallic moving wall in accounting for all heat
transfer mechanisms.) Equation 3.25 then becomes

ρcpq
dTcm

dx
= −UH TH + UH TaH + 4ηq2

H 3
(4β2 + 2β + 1). (3.28a)

Both Tcm and TH are functions of position x along the flow channel, and neither is
known, so this equation cannot be solved without further information relating Tcm

and TH. We have lost this information by integrating Equation 3.19 to obtain an
equation for the cup-mixing temperature. If there is wall cooling, we expect that TH

will be the lowest temperature in the system at each value of x, so we expect TH(x) <

Tcm(x), 0 < x ≤ L. We could make a crude estimate that TH(x) ∼= Tcm(x), but it is
probably better to write TH(x) = �Tcm(x), � ≤ 1 and to take � as a constant over
the length of the flow channel. (This is also a very crude assumption, but we shall
see that it will suffice for our purposes here.) We can then write Equation 3.28a as

ρcpq
dTcm

dx
+ �UH Tcm = UH TaH + 4ηq2

H 3
(4β2 + 2β + 1). (3.28b)
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This is a linear, first-order, ordinary differential equation with constant coefficients
and a constant forcing term, for which we can immediately write the solution (after
a bit of algebra) as

Tcm = Ti exp(−�x/χL) + 1
�

[TaH + χ (Tad − Ti )] [1 − exp(−�x/χL)] , (3.29a)

where

χ = ρcpq/LUH (3.29b)

and Tad is the adiabatic solution given in Equation 3.27. The striking result here is
that the cup-mixing temperature cannot become fully developed (i.e., independent
of x) even with wall cooling unless χ � 1 [exp(−�x/χL) → 0 for x/L < 1], which
is unlikely. This conclusion is not affected by uncertainties in �, which is unlikely
to be outside the range 0.5 ≤ � < 1 for absolute temperatures. (Surprisingly, there
are very limited data available to estimate UH. Hay and co-workers report values
in the range 3–90 [and one 240] in SI units for seven experiments with polyethylene
and polystyrene in slit dies. The limited data do not correlate well on a traditional
dimensionless plot, making extrapolation to other conditions difficult. χ = 8.4/U in
SI units for the parameters used in Examples 3.1 and 3.2. The best estimate of U
from the dimensionless plot of Hay and co-workers for these conditions is of order
0.1; in that case χ � 1. This value seems unreasonable, however, because of the
large multiplier of the adiabatic temperature rise and the concomitant low wall tem-
perature required to ensure that the temperature rise with cooling cannot exceed the
adiabatic temperature rise. This is an area in which good data are critically needed.)

Finally, it is useful to have an estimate of the fully developed temperature dis-
tribution, even though we know that it cannot be reached, since the maximum fully
developed temperature will establish a bound on the temperature anywhere in the
flow channel. We again return to Equation 3.19, and we now assume that T is inde-
pendent of x; T = T(y) and ∂T/∂x = 0. The equation then becomes

d2T
dy2

= −η

κ

(
dvx

dy

)2

= −η

κ
(αy − γ )2 = −η

κ
(α2 y2 − 2αγ y + γ 2). (3.30)

The function is a quartic if the second derivative is a quadratic; it is straightforward
to integrate Equation 3.30 twice to obtain

dT
dy

= −η

κ

(
α2 y3

3
− αγ y2 + γ 2 y

)
+ C1, (3.31a)

T = −η

κ

(
α2 y4

12
− αγ y3

3
+ γ 2 y2

2

)
+ C1 y + C2. (3.31b)

Equation 3.31a contains some interesting physical insight. If we specify the
flux −κdT/dy at one surface, it is fixed at the other. This is reasonable, since by
requiring that the flow be fully developed we have lost a degree of freedom.

We continue to assume that the moving surface at y = 0 is adiabatic, so
dT/dy = 0 at y = 0. It then follows from Equation 3.31a that C1 = 0. Setting y = 0
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in Equation 3.31b, we find that C2 = To, the polymer temperature at y = 0; this is
the maximum temperature in the system, and it is unknown. We can then write

T = To − η

κ

(
α2 y4

12
− αγ y3

3
+ γ 2 y2

2

)
. (3.32)

We now impose the heat transfer boundary condition at y = H:

−κ
dT
dy

∣∣∣∣
y=H

= η

(
α2 H 3

3
− αγ H 2 + γ 2 H

)
= UH (TH − TaH )

= UH

[
To − η

κ

(
α2 H 4

12
− αγ H 3

3
+ γ 2 H 2

2

)
− TaH

]
. (3.33)

With some considerable rearrangement, we can solve for To as follows:

To = TaH + χ (Tad − Ti )
[

1 + 6β2 + 4β + 1
2 (4β2 + 2β + 1)

Bi
]

. (3.34a)

The Biot number, Bi, is defined

Bi = HUH/κ. (3.34b)

(Hay and co-workers refer to this quantity as the Nusselt number, but the Nusselt
number is properly defined using the thermal conductivity of the ambient medium,
not of the polymer.) Bi is a measure of the efficiency of heat transfer to the sur-
roundings (UH) relative to heat transfer by conduction through the polymer (κ/H).
The thermal diffusivity (κ/ρcp) of most polymers is about 10−7 m2/s, giving a value
of κ of about 0.27 W/(m K) for polyethylenes. The Biot number would thus be of
order 10−2 for U ∼ 0.1, but of order unity for U ∼ 10. The latter value seems more
realistic. Note that the coefficient of Bi is insensitive to β, varying only between 0.5
and about unity and approaching the asymptotic value of 0.75 for β ∼ 1.

3.3.3 Final Comments on the Elementary Extruder

The simple extruder design analyzed here would not be implemented in practice
because of obvious mechanical problems, but, as we shall see subsequently, it is
sufficiently close to the description of a true single-screw extruder that the calcula-
tions done here are all relevant. There are three weaknesses in the analysis. First, we
have considered only a Newtonian fluid, while most real polymers have highly shear-
dependent viscosities. Second, our heat transfer analysis is inadequate, both because
we have considered temperature- and pressure-independent physical properties and
because we have been able to obtain explicit solutions only for certain limiting cases.
Finally, we have not dealt with the flow in the neighborhood of the transition from
the extruder channel to the die. All of these restrictions can be relaxed, as we shall
see, but to do so for the latter two generally requires the use of numerical algorithms
to solve the full equation set. We shall address this topic in Chapter 8.
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3.4 Plane Channel Revisited: Power-Law Fluid

One important limitation in the preceding analysis is the restriction to a Newtonian
fluid. This is easily resolved, but at the expense of considerable algebraic complex-
ity, and we simply indicate the approach here without going into the details of the
solution. For simplicity we will assume that the fluid viscosity is described by the
power-law Equation 2.40a.

Our starting point is again Equation 3.7, which was derived for any fluid with
the single assumption that the velocity is of the form vy = vz = 0 and that vx is a
function only of y. With this assumption, the only nonzero term in the function IID

(Table 2.6) is the one involving dvx/dy, so we obtain

η = K

[(
dvx

dy

)2
] n−1

2

= K

∣∣∣∣dvx

dy

∣∣∣∣
n−1

. (3.35)

The absolute value sign is required to ensure the positivity of η. Equation 3.35 is
equivalent to Equation 2.38. Equation 3.7 then becomes

τyx = K

∣∣∣∣dvx

dy

∣∣∣∣
n−1 dvx

dy
= ∂P

∂x
y + C1. (3.36)

Equation 3.36 is still straightforward to solve by quadrature (direct integration),
but there is a complication. dvx/dy can be positive or negative, depending on the
design parameters and on the position between the two walls; compare Figure 3.3 for
the special case n = 1, which we may assume to be qualitatively representative of all
values of n. For dvx/dy > 0, |dvx/dy| = dvx/dy, while for dvx/dy < 0, |dvx/dy| =
−dvx/dy. Thus, we must write

τyx = K
(

dvx

dy

)n

= ∂P
∂x

y + C1 ≥ 0,
dvx

dy
> 0, (3.37a)

τyx = −K
(

−dvx

dy

)n

= ∂P
∂x

y + C1 ≤ 0,
dvx

dy
< 0. (3.37b)

The simplest case to analyze is the one for which ∂P/∂x > 0 but dvx/dy ≤ 0
over the entire gap width, corresponding to a pressure-driven backflow that is
smaller in magnitude at each value of y than the drag flow caused by the moving
plate. We can then write Equation 3.37b as

dvx

dy
= − 1

K1/n

[
−∂P

∂x
y − C1

]1/n

= −
(

1
K

∂P
∂x

)1/n

(C2 − y)1/n
, (3.38)

where C2 ≥ H is a new constant defined as −C1/(∂P/∂x). C2 is positive, since we
know from Equation 3.37b that C1 ≤ 0. Note the care with which it has been neces-
sary to keep track of positive quantities in order to avoid the possibility of seeking
fractional powers of negative numbers.
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Equation 3.38 is readily integrated, most easily by changing the independent
variable from y to C2 − y. The result is

vx(y) = n
n + 1

(
1
K

∂P
∂x

)1/n

(C2 − y)(n+1)/n + C3. (3.39)

The constants C2 and C3 are obtained from the boundary conditions:

at y = 0,vx = V = n
n + 1

(
1
K

∂P
∂x

)1/n

C(n+1)/n
2 + C3, (3.40a)

at y = H,vx = 0 = n
n + 1

(
1
K

∂P
∂x

)1/n

(C2 − H)(n+1)/n + C3. (3.40b)

C2 is thus the solution of the equation

C(n+1)/n
2 − (C2 − H)(n+1)/n = n + 1

n

(
1
K

∂P
∂x

)−1/n

V, (3.41)

while C3 is obtained from Equation 3.40b, and the velocity profile is

vx (y) = n
n + 1

(
1
K

∂P
∂x

)1/n [
(C2 − y)(n+1)/n − (C2 − H)(n+1)/n

]
. (3.42)

Equation 3.41 is linear in C2 for the special case n = 1, and it is readily established
in that case that Equation 3.42 reduces to Equation 3.11. It is a polynomial equation
of order m for integer values m = 1/n, but except for a few special cases numerical
solution is required. Note that the requirement vx ≥ 0 for all y does not permit us to
go to the limit V → 0.

We could continue this analysis to parallel the full development for n = 1, but
to do so would not be informative. The cases of real interest, of course, are those
for which ∂P/∂y is sufficiently large to cause a negative velocity over some part of
the channel, corresponding to profiles like these in Figure 3.3(c) and (d) for n = 1.
The analysis is carried out exactly as above, but now it is necessary to divide the
channel into two regions, one where dvx/dy < 0 and one where dvx/dy > 0. We
solve Equation 3.37b in the former and Equation 3.37a in the latter. The (unknown)
value of y where the two solutions must match is given by dvx/dy = 0. It is readily
established that the no-slip boundary condition at y = 0 and H and the condition that
the velocity be continuous at the point dividing the two regions (where dvx/dy = 0)
are sufficient to evaluate all constants of integration.

3.5 Single-Screw Extruder

3.5.1 Geometry and Kinematics

The analysis in the preceding sections is readily extended to describe flow in the
melt zone of a single-screw extruder. A section of the extruder is shown schemat-
ically in Figure 3.4. The screw has a radius R, and the spacing between the screw
and the barrel is H. The flights are at an angle θ to the screw axis, and the spac-
ing between the flights measured orthogonal to the flight surface is W (that is, the
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W

H

θ

R Ω
Figure 3.4. Schematic of a section of the melt
zone of a single-screw extruder (not to scale).

distance between flights along the screw axis is W cos θ). We assume R � H and
W � H . We also assume that there is no “leakage” flow through the space between
the flights and the barrel. The screw turns with an angular velocity �. We are assum-
ing here that H is a constant throughout the melt zone, which may not be true, but
this assumption is easily relaxed using the methodology developed in the next chap-
ter. The assumption W � H may be a poor one, and it, too, can be relaxed, but only
by turning to a numerical solution.

The critical assumption enabling us to use the results in the preceding section
is H � R. In that case, observers in the gap between the screw and the barrel
would be unaware of the curvature and would feel as though they were in a plane
channel (just as humans are unaware of the local curvature of the surface of the
earth); the further assumption W � H places the side walls far away, giving the
channel the appearance of the gap between two infinite plates. The “unwrapped”
screw is shown schematically in Figure 3.5. The x axis is aligned with the helical
channel. The relative linear velocity between the plates is R�, with components
Vx = R� cos θ and Vz = R� sin θ .

The approach is identical to that in Section 3.2, except that now, because the
direction of rotation of the screw is at an angle θ to the direction of the flow channel,
we have both x and z components of velocity at the surface y = 0, hence, finite
vx and vz. We assume vy = 0 and vx = vx(y), vz = vz(y); the continuity equation
∂vx/∂x + ∂vy/∂y + ∂vz/∂z = 0 is thus automatically satisfied. The same arguments
used in Section 3.2 permit us to write the components of the creeping flow equations
as

x: 0 = −∂P
∂x

+ ∂τyx

∂y
, (3.43a)

y: 0 = −∂P
∂y

+ ∂τyy

∂y
, (3.43b)

z: 0 = −∂P
∂z

+ ∂τyz

∂y
. (3.43c)

It then follows that

P = τyy + function of (x, z) , (3.44)
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Figure 3.5. Schematic of an unwrapped section
of the melt zone of a single-screw extruder.

where τ yy cannot depend on y. Hence,

∂P
∂x

= dτyx

dy
= constant,

∂P
∂z

= dτyz

dy
= constant, (3.45a,b)

where we conclude that the terms in Equations 3.45a and 3.45b, respectively, must
equal constants because the left-hand sides are independent of y and the right-hand
sides depend on y. Finally, then, in analogy to Equation 3.7, we write

τyx = ∂P
∂x

y + Cx
1 τyz = ∂P

∂z
y + Cz

1 , (3.46a,b)

where Cx
1 and Cz

1 are constants.

3.5.2 Newtonian Fluid

For the Newtonian fluid we write

η
dvx

dy
= ∂P

∂x
y + Cx

1 , (3.47a)

η
dvz

dy
= ∂P

∂z
y + Cz

1 . (3.47b)

These equations are completely uncoupled, so we may immediately apply the solu-
tion given by Equations 3.11 and 3.12, simply replacing V by R� cos θ and R� sin θ
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for the x and z components, respectively:

vx (y) = H 2

2η

∂P
∂x

y
H

( y
H

− 1
)

+ R� cos θ
(

1 − y
H

)
, (3.48a)

vz (y) = H 2

2η

∂P
∂z

y
H

( y
H

− 1
)

+ R� sin θ
(

1 − y
H

)
, (3.48b)

qx =
H∫

0

vxdy = − H 3

12η

∂P
∂x

+ R�H cos θ

2
, (3.49a)

qz =
H∫

0

vzdy = − H 3

12η

∂P
∂z

+ R�H sin θ

2
. (3.49b)

Now, qx is the flow rate in the channel direction, Q, divided by the width, W, and
it is the quantity of processing interest. If we interpret L as the length of the melt
zone measured along the helical channel, we can then simply repeat the analysis in
Section 3.3.1 leading up to Equation 3.16 without change, except to substitute Q/W
for qx and R� cos θ for V, to obtain

� = 2Q (1 + β)
W H R cos θ

, (3.50)

vx

R� cos θ
= 3β

(1 + β)
ξ(ξ − 1) + (1 − ξ), (3.51)

where β = (H/h)3l/L, as defined previously, and ξ = y/H . (β will have a different
definition if the die cross section has a shape different from a slit. For a circular
die of radius R and length l, for example, β = 2W H 3l/3πR4L.) If we assume no
leakage across the flights, there can be no net flow in the z direction; that is, qz = 0
and

∂P
∂z

= 6ηR� sin θ

H 2
. (3.52a)

Hence, Equation 3.48b becomes

vz

R� sin θ
= 3ξ (ξ − 1) + (1 − ξ) . (3.52b)

This is simply Equation 3.16a with β → ∞ (pressure flow = drag flow, Figure 3.3d).
The power consumption calculation in Equations 3.17 and 3.18, with q replaced

by qx = Q/W , gives only the portion of the power associated with the flow along the
the channel. To this must be added the power consumption associated with cross-
channel flow, τ yz|y=0 LWR�sinθ . The calculation of the additional term is straight-
forward, and with some algebra we obtain the result

℘ = 4ηLQ2

W H 3
(1 + β) (1 + 4β)

[
1 + 4

1 + β

1 + 4β
tan2 θ

]
. (3.53)

The tan2θ correction term will generally be small compared to unity.



54 Polymer Melt Processing

3.5.3 Temperature Development

Development of the temperature profile in the unwrapped model of the single-screw
extruder is essentially unchanged from that given in Section 3.3.2. The dissipation
term in the energy equation contains an additional contribution η(dvx/dy)2, but
this is again simply a quadratic in y and leads to a correction approximately equal to
1 + 4tan2θ , which can easily be incorporated. Equation 3.19 is replaced by

ρcp

(
vx

∂T
∂x

+ vz
∂T
∂z

)
= κ

∂2T
∂y2

+ η

[(
dvx

dy

)2

+
(

dvz

dy

)2
]

. (3.54)

As before, we assume that conduction is negligible relative to convection in direc-
tions in which there is flow.

We cannot expect ∂T/∂z to vanish, even away from the flights (where the flow
is far more complex than the one we are considering here, but where the overall
contribution is small because of the assumption H � W), because fluid is being
convected downstream even as it flows transversely across the channel. We can get
a sense of what is happening by defining an average temperature with respect to z
at each x and y as

T (x, y) = 1
W

W∫
0

T (x, y, z)dz. (3.55)

Integrating each term in Equation 3.54 with respect to z and dividing by W then
gives

ρcpvx
∂T
∂x

+ ρcpvz [T (x, y; z = W) − T (x, y; z = 0)]

= κ
∂2T
∂y2

+ η

[(
dvx

dy

)2

+
(

dvz

dy

)2
]

. (3.56)

(The limits of integration in Equation 3.55 are a bit delicate. Clearly, vz vanishes
at z = 0 and z = W, the locations of the flights, but our assumed flow pattern is
also in error there. Thus, we should think of these limits as being “near” z = 0 and
z = W, but still in a region where the kinematic assumptions apply.) The second
term on the left represents a contribution to temperature profile development from
the transverse flow. We have no a priori way of estimating its magnitude, although
we expect it to be small, and in general we will estimate thermal effects by setting
T(x, y; z = W) = T(x, y; z = 0), in which case the analysis is identical to that in
Section 3.3.2, except for multiplication of the dissipation term by a factor of approx-
imately 1 + 4 tan2 θ .
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3.5.4 Power-Law Fluid

For a power-law fluid,

η = K

∣∣∣∣∣
(

dvx

dy

)2

+
(

dvz

dy

)2
∣∣∣∣∣

n−1
2

, (3.57)

Equations 3.46a and 3.46b are now coupled, and an analytical solution is not possi-
ble. Based on our analysis of the dissipation term for a Newtonian fluid, we could
anticipate that we will often have (dvx/dy)2 � (dvz/dy)2 and neglect the second
term, in which case the equation for vx can be solved independently of the equation
for vz. We would not obtain any new insight into the physical processes, however,
so we will not pursue this approach. Modern computational tools, which we will dis-
cuss in Chapter 8, provide a more useful approach to the solution of problems with
complex rheology once we have a good understanding of the basic phenomena from
appropriate limiting cases, including the Newtonian liquid.
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4 Temperature and Pressure Effects in Flow

4.1 Introduction

The analysis of extrusion in the preceding chapter was based on the assumption
that the temperature and pressure dependence of physical properties, especially the
viscosity, could be neglected. This assumption simplifies the analysis, especially in
the case of temperature dependence, because it introduces an uncoupling between
the fluid mechanics and the heat transfer. The assumption is dangerous if not used
with care, however, as we shall demonstrate in this chapter.

4.2 Pressure-Dependent Viscosity and “Choking”

4.2.1 Isothermal Flow

The viscosity of organic liquids depends on both temperature and pressure; molec-
ular motion becomes more difficult as free volume is reduced, and the viscosity
increases. To a first approximation, the viscosity of polymer melts can be written*

η = ηoe−α(T −To)eβp. (4.1)

ηo is the viscosity at atmospheric pressure (p = 0) and the reference temperature
To; ηo may depend on the shear rate. β is typically 1–5 × 10−8 Pa−1, while α is typ-
ically 1–8 × 10−2 K−1. Thus, temperature differences of 10 degrees can have a sig-
nificant effect on the viscosity, and we expect the pressure dependence to become
important at a pressure of about 5 × 106 Pa (50 atm), which can be reached in extru-
sion and is routinely seen in injection molding. The density change at these elevated
pressures is small, so compressibility is rarely important, and it usually suffices to
retain the incompressible form of the continuity equation, even when accounting
for the pressure dependence of the viscosity. For illustrative purposes, it suffices
to consider only the case of die flow, where the wall velocity V = 0 and the exit

* exp[−α(T − To)] is an approximation to an Arrhenius relation. exp[−(E/To − E/T )] =
exp[−E(T − To)/T To] ∼ exp[−E(T − To)/T 2

o ]. Thus, α = E/T 2
o , where E is the activation

energy in units of absolute temperature.
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pressure is zero. We also consider only the case of a Newtonian fluid, although the
generalization to a shear rate-dependent viscosity is straightforward.

We start by considering an isothermal flow, where T = To everywhere. As
before, we assume that the flow is rectilinear, so the only nonzero velocity com-
ponent is vx , and vx is a function only of y. The x component of the momentum
equation then becomes

∂p
∂x

= ∂

∂x
τyx = ∂

∂y
ηoeβp dvx

dy
. (4.2)

To proceed further, we need to assume that p = p(x); that is, the pressure is inde-
pendent of the transverse coordinate. This is at best an approximation because it
readily follows from the y component of the momentum equation that p cannot be a
function of x alone. The transverse dependence of p can be shown to be very small,
however, and in fact an exact solution without the approximation p = p(x) is avail-
able for flow in a cylindrical cross section. We will therefore proceed by taking p to
be independent of y. Equation 4.2 can then be written

e−βp dp
dx

= d
dy

ηo dvx

dy
. (4.3)

The left-hand side of Equation 4.3 is a function only of x, while the right-hand
side is a function of y, so both must be constant. The right-hand side can be inte-
grated for any viscosity function ηo(

•
γ ); for a Newtonian fluid we simply obtain the

parabolic velocity distribution,

vx = 6q
H 3

y(H − y). (4.4)

It then follows that

e−βp dp
dx

= − 1
β

d
dx

e−βp = −12ηoq
H 3

(4.5)

and, with p = 0 at x = L,

p = − 1
β

ln
[

1 − 12ηoβq
H 3

(L − x)
]

. (4.6)

The overall pressure drop across the die is then

|�p| = − 1
β

ln
[

1 − 12ηoβqL
H 3

]
(4.7a)

or

|�p| = − 1
β

ln
[
1 − β

∣∣�po
∣∣] , (4.7b)

where |�po| is the pressure drop for β = 0 (i.e., no pressure dependence of viscos-
ity). It is easily shown that Equation 4.7b is valid for any viscosity dependence on
shear rate with an appropriate interpretation of |�po|, and not just for a Newtonian
fluid.

The striking thing about Equation 4.7 is that the pressure will begin to increase
rapidly with flow rate, and will become infinite for a finite flow rate. Hence, there
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is a maximum flow rate that is possible, regardless of the pressure drop. This phe-
nomenon is known as choking, and it is analogous to a superficially similar phe-
nomenon in compressible gas dynamics.

It is of course possible to redo the simple extruder analysis with a pressure-
dependent viscosity. Equation 4.7b defines the die characteristic equation. Solution
of the momentum equation with a moving wall then leads directly to Equation 3.15b
for the wall velocity as a function of the flow rate and system geometry, even when
the viscosity is pressure dependent.

4.2.2 Viscous Dissipation

Choking flow is rarely, if ever, encountered in practice, although pressure increases
because of the pressure dependence of the viscosity do occur. The reason for the
absence of choking is the effect of viscous dissipation, which by itself causes the
viscosity to decrease. The problem of die flow with a viscosity that is dependent on
both temperature and pressure can be attacked fully only by numerical methods,
but substantial insight can be obtained from a rather simple approximate analytical
solution.

We start with the energy and momentum equations in their most general form
(except for conduction in the flow direction) for one-dimensional flow:

ρcpvx
∂T
∂x

= κ
∂2T
∂y2

+ τyx
∂vx

∂y
, (4.8a)

dp
dx

= dτyx

dy
. (4.8b)

The solution to Equation 4.8b, with the assumption that p = p(x), is

τyx = dp
dx

(y − C) , (4.9)

where C is a constant. We now integrate Equation 4.8a from y = 0 to y = H. It is
straightforward to show, using Equation 4.9, that

H∫
0

τyx
dvx

dy
dy = −q

dp
dx

. (4.10)

Hence, the integrated form of Equation 4.8a is (cf. Equation 3.21)

ρcpq
dTcm

dx
= κ

∂T
∂y

∣∣∣∣
y=H

y=0
− q

dp
dx

. (4.11)

The first term on the right is expressed in terms of a heat transfer coefficient and a
temperature driving force. We limit ourselves here to adiabatic flow, in which case
the first term on the right vanishes and

ρcp
dTcm

dx
= −dp

dx
. (4.12)
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For constant ρcp we then obtain

ρcp (Tcm − Ti ) = − (p − pi ) = |�p| − p, (4.13)

where the subscript i denotes inlet conditions and we have taken the exit pressure
to be zero.

We now assume that we can replace the temperature in the viscosity with the
cup-mixing temperature and write

η = ηoe−α(Tcm−Ti )eβp, (4.14)

where we have chosen the reference temperature To to be the inlet temperature.
The approximation that the temperature over the entire cross section equals the
cup-mixing temperature is crude at best, but it will suffice for the insight that we
seek. In that case, the viscosity can be written

η = ηoe−α|�p|/ρcp e
(
β+ α

ρcp

)
p
. (4.15)

ρcpβ/α is typically of order unity, so the two terms multiplying p in the exponential
are of comparable importance.

The viscosity is now an exponential function only of pressure, and, with some
change of nomenclature (ηo replaced with ηo exp(−α|�p|/ρcp) and β with β +
α/ρcp), the problem is identical to the one already solved in the preceding section.
Using Equation 4.8b we can then immediately write(

β + α

ρcp

)
|�p| = − ln

[
1 −

(
β + α

ρcp

)
|�po|e−α|�p|/ρcp

]
(4.16a)

or, equivalently, (
β + α

ρcp

)
|�po| = eα|�p|/ρcp − e−β|�p|. (4.16b)

Equation 4.16b is an explicit expression for the flow rate in terms of the pressure
drop. The second term on the right can be neglected with less than 5% error for (β +
α/ρcp)|�p| > 3, which corresponds roughly to pressure drops greater than 108 Pa.
In that case we obtain an explicit expression for the pressure drop and the adiabatic
temperature rise in terms of the flow rate:

α (Tcm − Ti ) = α|�p|
ρcp

≈ ln
[(

β + α

ρcp

)
|�po|

]
. (4.17)

Hence, choking never occurs when viscous heating is taken into account. The adi-
abatic pressure drop without accounting for the pressure dependence of viscosity
follows from Equation 4.16b by letting β → 0:

β → 0: |�p| = ρcp

α
ln
(

1 + α|�po|
ρcp

)
. (4.18)

The same equations hold for flow through a round capillary.
The adiabatic pressure drop with and without taking the pressure dependence

of viscosity into account is shown in Figure 4.1, where a value of β = 2.5α/ρcp was
used. These normalized curves depend only on the relative values of α and β. Some
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Figure 4.1. Effect of temperature and pressure dependence of viscosity on pressure drop for
adiabatic flow through a plane channel or tube. Reprinted from Denn, Polym. Eng. Sci., 21,
65 (1981).

computed pressure drops are shown for β = 3 × 10−8 Pa−1, which is typical of poly-
mers of commercial interest. A substantial increase in pressure drop above that for
isothermal flow is found over part of the region, which corresponds to the region in
which injection molding is practiced.

4.3 Multiplicity and Instability

The coupling of flow and thermal effects with a temperature-dependent viscosity
can lead to situations in which more than one solution to the model equations is
possible, suggesting that the process can exist in more than one state for a given set
of flow conditions. This phenomenon of multiplicity is often a surprise when first
encountered, but it is a common characteristic of nonlinear systems. In combustion,
for example, it is known that there is a finite range of flow conditions for which the
system can exist in either of two states: a low-temperature, low-conversion state, and
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a high-temperature, high-conversion state. (A third intermediate state is also a solu-
tion of the combustion equations but is inherently unstable and cannot be observed
experimentally.) Laminar (streamline) flow is an exact solution of the Navier-Stokes
equations for isothermal tube flow at Reynolds numbers above 2,100, but turbulence
is the flow state that is usually observed, indicating the existence of a second solution
to the equations; indeed, laminar flow has been observed up to Reynolds numbers
of 50,000 in careful vibration-free experiments.

Consider the following scenario for flow of a polymer melt. Hot polymer is fed
to a channel with wall cooling at a fixed overall pressure drop. If the flow rate is
small, there will be substantial cooling because of the long residence time in the
channel, and the viscosity will increase. If the flow is rapid, however, there will be lit-
tle cooling, the temperature will remain high, and the viscosity will be low. A low vis-
cosity supports a fast flow for a given pressure drop, while a high viscosity supports a
slow flow for the same pressure drop. It is possible that there can be conditions
where low-flow-rate/high-viscosity and high-flow-rate/low-viscosity solutions both
correspond to the same pressure drop. The same scenario can exist with a cold feed
if we introduce viscous heating, since the viscous heating at a high flow rate can
serve to increase the temperature and obviate the need for a hot feed.

We now consider the quantitative treatment of this problem. For simplicity we
will consider the case of a plane channel in which the feed temperature Ti is greater
than the ambient temperature Ta, and we will neglect viscous dissipation. The start-
ing point is then Equation 4.11 without the qdp/dx term. We write the wall heat
transfer rate from the melt to ambient as U (Tcm − Ta); this definition of the heat
transfer coefficient suffices to illustrate the point that we wish to make, and the
results would be essentially the same if we followed the procedure used for the
extruder and set the wall temperature to a fixed fraction of Tcm. There are two walls
in the channel, so Equation 4.10 then becomes

ρcpq
dTcm

dx
= −2U (Tcm − Ta). (4.19)

It is convenient to define dimensionless quantities as follows:

� = α(Tcm − Ta), B = α(Ti − Ta), ξ = x/L, Gz = ρcpq/2U L.

(4.20a,b,c,d)
Gz is known as the Graetz number; for this problem we can think of it as a dimen-
sionless flow rate. Equation 4.19 then becomes

Gz
d�

dξ
= −�, (4.21)

which has a solution

� = Be−ξ/Gz. (4.22)

We now turn to the momentum equation,

0 = −dp
dx

+ ∂

∂y
τyx, (4.23)
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which, with one integration, becomes

τyx = dp
dx

(
y − H

2

)
= ηoe−α(T −Ta) ∂vx

∂y
. (4.24)

Here we have taken the reference temperature To for the viscosity to be Ta .
The next steps in the development are not intuitive and seem to require that

we know where we wish to go. Clearly, we will integrate with respect to y, but the
right-hand side of Equation 4.24 presents two difficulties. The obvious one is that we
have no detailed information about the temperature profile, so it will be necessary
to replace the term exp [−α(T − Ta)] with a suitable average, which we take to be
exp(−�). The other problem is that direct integration will simply produce 0 = 0
because of the symmetry of the flow about the center plane and the vanishing of
the velocity at the walls. We can get around this difficulty and obtain an equation
in terms of q if we multiply both sides of Equation 4.23 by y and integrate from
y = 0 to y = H ; one integration by parts, together with Equation 4.24, then yields

dp
dx

= − 12
H 3

ηoe−�q (4.25)

or, integrating with respect to x and making use of the fact that p(L) = 0,

|�p| = p (0) = 12ηoqL
H 3

1∫
0

e−�dξ. (4.26)

It is convenient to express this result entirely in terms of the Graetz number, in
which case we write

� ≡ ρcp H 3|�p|
24ηoU L2

= Gz

1∫
0

e−B exp(ξ/Gz)dξ. (4.27)

The dimensionless pressure drop � is plotted as a function of Gz in Figure 4.2
for a range of values of the dimensionless temperature difference B. The curve is
monotonically increasing for small values of B; that is, the pressure drop increases
monotonically with flow rate, as expected. There is an inflection point for B ∼ 3,
however, and for higher values of B there is a maximum and a minimum. Hence,
a horizontal line drawn at a pressure drop below the maximum but above the min-
imum for a given value of B will intersect the curve three times, indicating that
three different flow rates will satisfy the momentum and energy equations (with the
approximations employed here) for the same pressure drop.

The decreasing branch of the curve, where d�/dGz < 0, appears to be unphys-
ical; a small decrease in pressure is predicted to give a small increase in flow rate. It
is likely that operating points on this branch are unstable and cannot be maintained
in practice, but a definitive answer would require an analysis of the full transient
equations. If we imagine a sequence of experiments at increasing pressure drop for
B > 3, we expect an increasing flow rate as we proceed along the first (ascending)
branch of the curve. At the maximum there should be a discontinuous jump in flow
rate to the third (ascending) branch, and it is the latter branch that is followed for
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Figure 4.2. Dimensionless pressure drop
� as a function of Graetz number (dimen-
sionless flow rate) for flow through a
plane channel with wall cooling. The hor-
izontal line shows three intersections, cor-
responding to the three values of Gz that
satisfy Equation 4.27 at fixed B for a
given �.

still further increases in pressure drop. Conversely, as we decrease the pressure drop
from a large value and move down the third branch, the flow rate will decrease con-
tinuously until we reach the minimum in the curve. With any further decrease in
the pressure drop, there will be a discontinuous jump to the first branch and a large
decrease in flow rate. Hence, there will be discontinuities and hysteresis in the flow
curve. Steady flow rates between the maximum and the minimum in the curve can-
not be achieved under pressure control. (It is possible, of course, that the transition
between branches takes place at an intermediate point or that the system oscillates
between branches. Pearson and co-workers have done a dynamic stability analysis
of this situation, using the methodology described in Chapter 11, and do find, in fact,
that the transition occurs before the maximum in the flow curve.)

We have not even speculated on the system response if the flow rate, rather
than the pressure drop, is controlled. It is possible that steady operation could be
achieved on the descending branch in that case, since the pressure drop is a single-
valued function of Gz; that is, there is only one pressure drop for each flow rate.

Viscous heating introduces an additional dimensionless group, and the analysis
of the energy equation is slightly less straightforward, but the qualitative behavior is
the same. Now, however, a multivalued flow curve can be obtained even for negative
values of B, where the feed temperature is less than that of the surroundings.

Finally, we note that the wall cooling is essential for multiplicity to occur for this
approximate set of equations. As we saw in the preceding section, the pressure drop
is a monotonically increasing function of flow rate for adiabatic flow.

4.4 Concluding Remarks

These two examples were selected to illustrate the interesting behavior that can
occur in highly coupled systems and to serve as a caution about the limitations and
possible dangers of models that oversimplify the physics by uncoupling phenomena.
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Heat transfer, in particular, can be the overriding transport process in many polymer
processing applications, and the strong temperature dependence of the viscosity of
polymer melts needs to be kept in mind. This, rather than the specific applications
considered here, is the major lesson to be learned from this chapter.
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5 The Thin Gap Approximation

5.1 Introduction

The preceding chapters addressed flows with a single velocity component that is par-
allel to the conduit walls. Most confined polymer processing operations are charac-
terized by flows in thin gaps, but in many cases the walls are not parallel, so there
must be more than one component of velocity. It is often the case, however, that the
gap between the confining surfaces changes slowly in the direction of mean flow, a
situation we call nearly parallel. Such flows can be treated analytically, and we can
gain considerable insight into process performance and design. We will illustrate the
approach in this chapter with an application of polymer coating of a sheet, but the
methodology applies equally well to calendaring, extrusion, and compression and
injection molding.

The analysis of nearly parallel flows originated in the study of problems of lubri-
cation, and the approach is often called the lubrication approximation. The terminol-
ogy is unfortunate from our perspective, given that this approach is at the heart of all
analytical treatments of polymer processing operations – we would prefer that it be
called the polymer processing approximation – but the historical name is well estab-
lished. The major figure in the analysis of lubrication flows was Osborne Reynolds,
and one widely used form of the resulting equations is often called the Reynolds
lubrication equation.

5.2 Basic Equations, Newtonian Liquid

We restrict ourselves to two-dimensional flows, where all changes occur in the xy
plane and there is no flow in the “neutral” z direction. We found in Section 3.2 that
the following equations apply for parallel flow of a Newtonian fluid with a moving
surface at y = 0 and a stationary surface at y = H:

vx(y) = H 2

2η

∂P
∂x

y
H

( y
H

− 1
)

+ V
(

1 − y
H

)
, (5.1)
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Figure 5.1. Schematic of a nearly paral-
lel flow.

q = − H 3

12η

∂P
∂x

+ V H
2

. (5.2)

Now consider flow in the geometry shown in Figure 5.1, where the surface at
y = 0 moves with velocity V. The stationary surface is defined by the line y = H(x),
and the local angle α relative to the surface at y = 0 is given by α = d H/dx. If
α is small, the fluid locally experiences an environment that differs from the flow
between parallel walls by only a small amount (i.e., with a correction to parallel
flow that should be of order α). Thus, for small dH/dx we expect the flow field at
each value of x to be closely approximated by Equation 5.1, with H evaluated at the
appropriate value H(x). We therefore write

vx(x, y) = H(x)2

2η

∂P
∂x

y
H(x)

(
y

H(x)
− 1
)

+ V
(

1 − y
H(x)

)
. (5.3)

Similarly,

q = − H(x)3

12η

∂P
∂x

+ V H(x)
2

. (5.4)

Because we are dealing with incompressible liquids, q is a constant for all x.
Unlike flow between parallel planes, however, where we showed that the pressure
gradient ∂P/∂x is a constant, we see from Equation 5.4 that ∂P/∂x is itself a function
of x; indeed, we may consider Equation 5.4 to be an equation that defines the spatial
distribution of pressure, which we know is not linear, and write

∂P
∂x

= 12η

[
V

2H(x)2
− q

H(x)3

]
. (5.5)

Equation 5.3 can then be rewritten, after some algebraic manipulation, as

vx(x, y) = V
(

1 − y
H(x)

)[
1 − 3

(
1 − 2q

V H(x)

)
y

H(x)

]
. (5.6)

vx will take on negative values in a region adjacent to the upper surface whenever
H(x) > 3q/V .



The Thin Gap Approximation 67

Ht

V
Moving sheet

Die wall

Liquid
reservoir

Figure 5.2. Schematic of a sheet-coating
die.

Equation 5.5 can be solved for the pressure as a function of position by integrat-
ing both sides with respect to x to obtain*

P(x) = Po + 12η

x∫
0

[
V

2H(x)2
− q

H(x)3

]
dx. (5.7)

Po is a constant of integration that equals the pressure at x = 0. Finally, we obtain
a useful expression relating the overall pressure change Po − P (L), the flow rate q,
and the relative velocity V by setting x = L in Equation 5.7 and rearranging:

q = Po − P (L)

12η
∫ L

o H (x)−3dx
+ V

2

∫ L
0 H(x)−2dx∫ L
0 H(x)−3dx

. (5.8)

5.3 Sheet Coating

A process for polymer coating of a sheet is shown schematically in Figure 5.2. The
schematic is the same for wire coating, except that we then understand the figure
to represent a section taken through the axisymmetric cylindrical geometry. The
analysis for sheet coating applies directly to wire coating if the maximum spacing
between the wire and the die wall is small compared to the radius of the wire.

The coating thickness Ht, multiplied by the speed of the sheet, must equal the
flow rate per unit width, q:

q = V Ht . (5.9)

* The integration is with respect to x at fixed y because we are integrating a partial derivative. Thus,
we might expect to find an additional term in Equation 5.7 that depends only on y. We can show that
such a term will be negligible. Equation 3.4 will still be correct to within an error of order d H/dx, so
we may expect any y dependence of P to be equal to τyy . But τyy = 2η∂vx/∂y = (from the continuity
equation) −2η∂vx/∂x. From Equation 5.6 we may then write, after some simplification,

τyy = −2η
∂vx

∂x
= 2ηV

H(x)

(
1 − 3q

V H(x)

)
d H
dx

.

Thus, τyy is independent of y in this approximation and is in any event of order d H/dx, which we
assume to be small.
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Figure 5.3. Recirculating flow in a sheet-
coating die.

The pressure at the die exit, P (L), is atmospheric and can be taken as equal to zero.
Equation 5.8 can then be written

Ht = Po

12ηV
L∫
o

H(x)−3dx

+ 1
2

L∫
0

H(x)−2dx

L∫
0

H(x)−3dx

. (5.10)

The coating thickness depends only on the die geometry if there is no net pressure
drop through the die (i.e., the reservoir is at atmospheric pressure and Po = 0).
We gain a degree of freedom, however, by pressurizing the reservoir, perhaps by
feeding the polymer with an extruder. The reservoir pressure required for a given
film thickness can be obtained by rewriting Equation 5.10 as

Po = 12ηV

L∫
o

1

H (x)2

[
Ht

H (x)
− 1

2

]
dx. (5.11)

It follows from Equation 5.11 that the coating thickness of a Newtonian liquid can
never be less than one half the exit gap of a converging die, or else a negative pres-
sure drop would be required. [Ht/H(L) < 1/2 is in fact sufficient but not necessary
for a negative reservoir pressure; the actual condition is more stringent and depends
on the die shape H(x).]

By replacing q with V/Ht in Equation 5.6, we obtain

vx (x, y) = V
(

1 − y
H(x)

)[
1 − 3

(
1 − 2Ht

H(x)

)
y

H(x)

]
. (5.12)

There will be a region of negative velocity whenever H(x) > 3Ht . The situation in
the die is shown in Figure 5.3, where the wall is taken to be planar. There is a region
of zero net flow (the forward flow is exactly compensated for by the reverse flow) in
the region Ho ≤ y ≤ H , where Ho is defined by the equation

H∫
Ho

vxdy = 0. (5.13)
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closely spaced surfaces.

Substituting Equation 5.12 into the integral and rearranging the result leads to the
explicit equation for Ho:

Ho(x) = H(x)Ht

H(x) − 2Ht
. (5.14)

The melt in the region y < Ho(x) is swept from the die and forms the coating, while
liquid in the region Ho ≤ y ≤ H(x) simply recirculates. Good die design will avoid
recirculation, since the recirculating liquid will have a long residence time at high
temperature and degradation of the coating material could result.

This analysis can clearly be repeated for a power-law or other non-Newtonian
viscosity function, as discussed in Section 3.4, but we would gain little additional
insight here to justify the considerable algebraic complexity. In practice, more com-
plex situations would be handled numerically, as discussed in Chapter 8.

5.4 Two-Dimensional Flows

Now suppose we have a thin gap geometry – a mold, for example – in which flow
occurs in both the x and z directions. The geometry is shown schematically in Figure
5.4, where the x–z coordinate system is embedded in the lower surface and the upper
surface is located at a distance y = H(x,z). The lower surface moves relative to the
upper with a velocity V; V is a vector with components Vx and Vz in the x and z
directions, respectively. Note that we could always align the coordinates in the x–z
plane so that either Vx or Vz is zero but, as we saw with the screw extruder, this
might not be the most physically meaningful choice.

Consistent with the lubrication approximation, we assume that the flow is locally
parallel to the surface at y = 0, and we neglect the component vy of the velocity
vector v. The continuity equation is then

∂vx

∂x
+ ∂vz

∂z
= 0. (5.15)

We will consider only the Newtonian fluid for simplicity. The components of the
creeping flow equation then become

x:
∂P
∂x

= η
∂2vx

∂y2
, (5.16a)

y:
∂P
∂y

= 0, (5.16b)
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z:
∂P
∂z

= η
∂2vz

∂y2
. (5.16c)

We are assuming that the flow is fully developed at each value of x and z. P is inde-
pendent of y, so we may integrate the x and z components to obtain

vx(y) = Vx

(
1 − y

H

)
+ yH

2η

(
∂P
∂x

)( y
H

− 1
)

, (5.17a)

vz(y) = Vz

(
1 − y

H

)
+ yH

2η

(
∂P
∂z

)( y
H

− 1
)

. (5.17b)

We have used the boundary conditions vx = vz = 0 at y = H(x, z) and vx =
Vx, vz = Vz at y = 0. We integrate with respect to y from y = 0 to y = H to obtain

qx =
H∫

0

vxdy = Vx H
2

+ H 3

12η

(
−∂P

∂x

)
, (5.18a)

qz =
H∫

0

vzdy = VzH
2

+ H 3

12η

(
−∂P

∂z

)
. (5.18b)

H = H(x,z) in all these equations.
Equations 5.17 and 5.18 are formally equivalent to those we used for the

unwrapped model of the screw extruder, and they provide the starting point for con-
sidering cases with a channel depth that varies with x. It is often useful to employ a
different formulation when H varies with both x and z, however, for in that case we
cannot expect either qx or qz to remain constant. Now, we recall the Leibniz rule for
differentiating an integral:

∂qx

∂x
= ∂

∂x

H(x,z)∫
0

vxdy =
H(x,z)∫

0

∂vx

∂x
dy + vx (H)

∂ H
∂x

. (5.19)

The second term vanishes in our application because of the boundary condition
vx = 0 at y = H. There is a similar equation for ∂qz/∂z, and by summing the two
equations we obtain

∂qx

∂x
+ ∂qz

∂z
=

H∫
0

(
∂vx

∂x
+ ∂vz

∂z

)
dy = 0, (5.20)

from which it follows that

∂

∂x

(
H 3 ∂P

∂x

)
+ ∂

∂z

(
H 3 ∂P

∂z

)
= 6η

[
∂ H
∂x

Vx + ∂ H
∂z

Vz

]
. (5.21)

Equation 5.21, which is the Reynolds lubrication equation, is a linear partial differ-
ential equation for P (x,z) of a type that is known as elliptic and whose properties
are well understood. Elliptic equations require that the dependent variable (P in
our case), its derivative, or a linear combination of both be specified everywhere on
the boundary of the flow domain. It is likely that P will be specified at inflow and
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outflow boundaries. Walls through which there is no flow will be characterized by
qx and/or qz = 0; a boundary at which at qx = 0, for example, will have boundary
condition ∂P/∂x = 6ηVx/H 2. The velocity field can be determined from Equations
5.17a–b once the function P (x,z) is known, after which we can calculate the stress,
power, and so forth. We will not use Equation 5.21 in our applications, but it is
often introduced as the starting point for a lubrication approximation analysis, and
it is important to recognize that it is equivalent to the formulation that we have
developed and employed here.

BIBLIOGRAPHICAL NOTES

Our starting point for the lubrication approximation was intuitive, where we assumed that
flow in a nearly parallel channel would approximate flow in a channel with a slowly varying
cross section to within terms of order α. It can be shown that the approximate is valid provided
αρV H/η � 1, where H is a characteristic gap spacing. This is a less restrictive condition than
creeping flow, which requires ρV H/η � 1; since α � 1, the Reynolds number need not be
small. The development of the ordering analysis can be found in many fluid mechanics books,
including
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1967, pp. 217ff.
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Sherman, F. S., Viscous Flow, McGraw-Hill, New York, 1990, pp. 229ff.

The sheet-coating example in this chapter is from Denn. See also the following texts on poly-
mer processing, where the lubrication approximation is applied to a variety of processing
flows in subsequent chapters after it is introduced:

Middleman, S., Fundamentals of Polymer Processing, McGraw-Hill, New York, 1977, pp.
172ff.

Pearson, J. R. A., Mechanics of Polymer Processing, Elsevier Applied Science, London, 1985,
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New York, 2007, pp. 64ff.

Middleman introduces the approximation with an assumption of creeping flow. Pearson has
a rather formal development following an intuitive introduction.



6 Quasi-Steady Analysis of Mold Filling

6.1 Introduction

The creeping flow approximation to the momentum equation, which we obtain in
a formal way by setting ρ = 0 on the left side of the equations in Table 2.2 or 2.4,
has the interesting property that time never appears explicitly. Thus, creeping flow
solutions to time-dependent problems are quasi-steady in the sense that they corre-
spond to the steady-state solution for the given geometry at each time. This property
can be exploited to obtain analytical solutions to simple transient problems in mold
filling, and the same concepts are utilized for numerical solutions to more complex
problems. We illustrate the use of the quasi-steady character of the creeping flow
equations with two model mold filling problems, one in injection molding and one
in compression molding.

6.2 Center-Gated Disk Mold

6.2.1 Isothermal Newtonian Liquid

A mold to form a thin circular disk is shown in Figure 6.1. Molten polymer is fed
through a small circular hole at the center of the mold (the gate) and then flows out
radially to fill the mold cavity. We assume that the mold is vented, allowing air to
escape as the polymer fills the cavity, so the pressure at the polymer/air interface is
always close to atmospheric. The disk has a thickness H and a radius RD. The radius
of the circular gate is RG. The pressure at the gate is Po, and the polymer enters with
a volumetric flow rate Q; Po and Q may vary with time.

We assume isothermal flow and a Newtonian fluid. (Isothermality is the more
serious of the two assumptions. Even if the physical properties of the melt are
independent of temperature, we must deal with the possibility of solidification of
the melt near the cold mold faces during filling.) For radial flow we have a single
velocity component in cylindrical coordinates, vr , and the continuity equation from
Table 2.1 is

1
r

∂

∂r
rvr = 0. (6.1)
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Figure 6.1. Schematic of filling a center-gated mold.

rvr must be independent of r since the rate of change of rvr with respect to r is zero;
that is,

rvr = f (z). (6.2)

The components of the creeping flow equations are obtained from Table 2.4 by
setting ρ = 0; with the velocity of the form vr = f (z)/r, vθ = vz = 0, we obtain

r component:
∂P
∂r

= η
∂2vr

∂z2
= η

r
d2 f
dz2

, (6.3a)

z component:
∂P
∂z

= 0. (6.3b)

Thus, P is a function only of r (and perhaps of time, which does not appear explic-
itly). Equation 6.3a can be rewritten as

η
d2 f
dz2

= r
dP
dr

= dP
d ln r

= C1. (6.4)

Since z and r are independent variables, the function of z on the left of Equation 6.4
can equal the function of r on the right for all r and z only if both are constant.

The function f (z) must be a quadratic, since its second derivative is a constant.
After two integrations we obtain

f (z) = C1

2η
z2 + C2z + C3. (6.5)

vr will vanish at the upper and lower mold faces, z = 0 and z = H, so we must have
f (0) = f (H) = 0. It readily follows that C3 = 0 and C2 = −C1 H/2η, so

f (z) = C1

2η
(z2 − zH). (6.6)

The differential flow rate through a cylindrical section of height dz and radius
r is 2πrvr dz (2πrdz is the differential area); the total flow rate at any radius r is
therefore

Q =
H∫

0

2πrvr dz =
H∫

0

2π f (z)dz = −C1π H 3

6η
, (6.7)

which establishes the value of C1 as −6π Q/π H 3.
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The pressure is obtained from Equation 6.4 as

P (r) = Po + C1 ln
r

RG
= Po − 6ηQ

π H 3
ln

r
RG

. (6.8)

Suppose the mold is filled to a radius R(t) at time t; the pressure P (R) is zero because
the mold is vented, so we have a relation between the instantaneous fill pressure, the
instantaneous flow rate, and the amount of material in the mold:

Po(t) = 6ηQ
π H 3

ln
R(t)
RG

. (6.9)

It is a consequence of the quasi-steady description that time enters only implicitly.
Now, suppose we are filling the mold at constant pressure Po and wish to know

the time required to fill the cavity completely (R = RD). The filled volume at any
time is πR2 H . The flow rate equals the rate of change of the volume, so

Q = d(πR2 H)
dt

= 2πR
dR
dt

H. (6.10)

Equation 6.10 can then be written ¡label>(6.11b)¡/label>¡mime type=”graphic”
xlink:href=”899696eqn13”>¡alt-text>¡?CDATA ¡label>(6.12)¡/label>¡mime
type=”graphic” xlink:href=”899696eqn14”>¡alt-text>¡?CDATA

tD = 3η

Po H 2

[
2R2

D ln
(

RD

RG

)
− (R2

D − R2
G

)]
. (6.11b)

The analysis is valid only for RD � RG, so we obtain, finally,

tD ≈ 3ηR2
D

Po H 2

[
2 ln

(
RD

RG

)
− 1
]

. (6.12)

ln (RD/RG) is a weak function of its argument; it varies only from 2.3 for RD/RG =
10 to 3.9 for RD/RG = 50, so the estimated fill time is relatively insensitive to the
radius of the gate.

It is clear that we have neglected all details of the flow near the free surface,
including any curvature. The flow near the three-phase moving contact line, where
the melt, the mold wall, and the air all meet, is very difficult to analyze with the no-
slip boundary condition and is not completely understood.∗ The time to fill the mold
isothermally is insensitive to the details of this flow, but the flow near the contact line
has a significant effect on the orientation of polymer chains and on the temperature
profile under nonisothermal conditions.

∗ As the mold fills, liquid must wet the surface of the mold. According to the no-slip boundary con-
dition, once a fluid element is in contact with the solid surface it must remain in the same place, so
fluid at the mold surface cannot be moving outward along the surface. Hence, the fluid covering the
surface of the mold must come from the interior. It is possible to construct kinematics that permit
fluid to “roll” in a way that the contact line moves outward while the no-slip boundary condition
is satisfied, but this rolling motion leads to a stress that, when integrated over any region including
the interface, produces an infinite force. (Infinite stresses at a point are permissible, but they must
integrate to finite forces.) The usual practice in numerical schemes is to relax the no-slip condition
in a very small region near the contact line. Computed results in the remainder of the mold do not
depend on the details of the way in which the no-slip condition is modified.
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6.2.2 Isothermal Power-Law Fluid

The extension to non-Newtonian fluids, for which the viscosity is a function of
1/2IID (Table 2.5), is not straightforward. With vr = f (z)/r, vθ = vz = 0, the invari-
ant has the form

IID = 2
r2

(
df
dz

)2

+ f 2

r4
. (6.13)

Since there are two different powers of r in the functional dependence of the viscos-
ity, it will clearly be impossible to obtain an equation for f (z) in the manner used
for the Newtonian liquid.

There is an approximate approach, in the spirit of the lubrication approx-
imation, that can be used, and we will illustrate it for the power-law fluid.
We expect that over most of the mold volume the stretch rate ∂vr/∂r will be
substantially less than the shear rate ∂vr/∂z. In that case, the second term on
the right of Equation 6.14 becomes negligible relative to the first, and some
small terms vanish from the creeping flow equations. The r component of
the momentum equation in the creeping flow approximation then becomes
¡label>(6.15b)¡/label>¡mime type=”graphic” xlink:href=”899696eqn18”>¡alt-
text>¡?CDATA ¡p>Equation ¡xref xlink:href=”c-899696-22”>6.15a¡/xref>
can be written ¡disp-formula id=”c-899696-24”>¡label>(6.16)¡/label>¡mime
type=”graphic” xlink:href=”899696eqn19”>¡alt-text>¡?CDATA

rn ∂P
∂r

= K
d
dz

( f ′)n = −Cn
1 , (6.15b)

where C1 > 0 is a constant. This equation is integrated once with respect to z and
rearranged to obtain

f ′ = C1

Kn

(
H
2

− z
) 1

n

, 0 ≤ z ≤ H
2

, (6.16)

where we have employed the condition f ′(H/2) = 0. A second integration gives

f (z) = n
n + 1

C1

K1/n

((
H
2

) n+1
n

−
(

H
2

− z
) n+1

n

)
, 0 ≤ z ≤ π

2
. (6.17)

Finally, we obtain the flow rate Q from

Q =
H∫

0

2πrvr dz = 2

H/2∫
0

2πrvr dz = πnC1 H
2n+1

n

21/n (2n + 1)
. (6.18)

This gives the constant C1 in terms of Q. The pressure profile is then determined
from Equation 6.16, and the time to fill the mold for a given gate pressure is found
as in the preceding section.

The key question is “How good an approximation is it to neglect the terms
involving ∂vr/∂z?” We can get an estimate of the error by evaluating the ratio
of the two terms in Equation 6.14 as follows: ¡label>(6.20b)¡/label>¡mime
type=”graphic” xlink:href=”899696eqn24”>¡alt-text>¡?CDATA ¡/sec>¡sec
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Figure 6.2. Schematic of compression mold-
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Po = 1
β

ln
(

1 + 6βηo Q
π H 3

ln
R

RG

)
. (6.20b)

The cross-sectional averaging to obtain the analysis leading to Equation 4.20 for
developing flow with heat transfer is a bit more delicate because of the radial depen-
dence of vr , but the procedure is the same and no new phenomena are expected.

6.3 Closing a Compression Mold

6.3.1 Isothermal Newtonian Fluid

A schematic of a simple compression molding process is shown in Figure 6.2. A
polymer charge is contained between two mold faces, one of which moves toward
the other. The polymer fills the space as the mold faces close. For simplicity we
assume that the mold faces are flat circular disks with radius RD, and we assume
that the initial polymer charge is a cylinder with height Ho and radius Ro. We can
therefore assume axisymmetry in the flow. The upper face moves toward the lower
with a velocity V, and the force required to close the mold is F; both V and F can be
functions of time.

The key to analyzing the flow in the mold is recognizing that layers of fluid are
stretched radially as the mold is closed. We assume that the stretching is uniform;
that is, if we mark a fluid layer of constant thickness, the layer will move toward the
stationary plate uniformly and stretch radially such that it will still be of constant
(smaller) thickness. This assumption is equivalent to the kinematic assumption that
vz is a function only of z; we add the assumption of no circumferential flow and take
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as a starting point

vz = φ(z), vθ = 0. (6.21)

The equation of continuity in cylindrical coordinates can then be written

1
r

∂

∂r
rvr = −dφ (z)

dz
. (6.22)

This is integrated to ¡label>(6.24b)¡/label>¡mime type=”graphic”
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r component:
∂P
∂r

= −1
2
ηr

d3φ

dz3
, (6.24ba)

z component:
∂P
∂z

= η
d2φ

dz2
. (6.24bb)

We can eliminate the pressure by differentiating the first equation with respect to z
and the second with respect to r, then equating ∂2P/∂z∂r to ∂2P/∂r∂z; the result will
be to show that d4φ/dz4 = 0. We gain more insight into the structure of the solution,
however, by first examining the equations. The right-hand side of Equation 6.25b is
a function of z, so ∂P/∂z depends only on z. It thus follows that P must be separable
into the sum of a function of z and a function of r. In that case, ∂P/∂r depends
only on r, so it follows from Equation 6.25a that d3φ/dz3 = (2r/η)∂P/∂r must be a
constant, since that is the only way in which a function of z can equal a function of
r. φ(z) must therefore be a cubic, with four coefficients to be determined.

The boundary conditions at the lower and upper plates, respectively, are

z = 0: vz = φ(0) = 0, vr = −r
2

dφ(0)
dz

= 0, (6.25a)

z = H : vz = φ(H) = −V, vr = −r
2

dφ(H)
dz

= 0, (6.25b)

or

z = 0: φ(0) = dφ (0)
dz

= 0, (6.26a)

z = H : φ(H) = −V,
dφ (H)

dz
= 0. (6.26b)

The velocity is then

vz = φ (z) = −3V
( z

H

)2
(

1 − 2
3

z
H

)
, (6.27a)

vr = −r
2

dφ

dz
= 3rzV

H 2

(
1 − z

H

)
. (6.27b)
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Note that H = H(t) and, in general, V = V(t). We will subsequently make use of the
fact that d H/dt = −V .

We will need a relationship between the flow field and the force required to
close the mold. The force is obtained by integrating the stress σzz over the wetted
surface at z = H. Since σzz = −P + τzz, we must compute the pressure. (We will
not distinguish between P and p, since the maximum gravitational term ρg H will
be negligible.) From Equation 6.25a it is obvious that P is quadratic in r (∂P/∂r is
proportional to r), while from Equation 6.25b it is obvious that P is quadratic in z;
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n

R

σ rrFigure 6.3. Liquid–air interface in a compression
mold.

the coefficients are easily obtained by substituting the function φ(z) into Equations
6.25a–b, leading to

P = Po + 3ηV
H

[
2

z
H

( z
H

− 1
)

− r2

H 2

]
. (6.28)

Po is a constant of integration.
Determination of Po is rather delicate and illustrates a problem that is seen

frequently in systems with polymer/air interfaces. We have not yet specified any
boundary conditions in the radial direction, despite the finite size of the system.
This is because the kinematics we have assumed ignore the finite size; hence, they
ignore any changes in the flow in the neighborhood of the free surface. The free
surface is shown in Figure 6.3, where the shape of the surface has been exaggerated
to make a point. The location R of the edge of the melt needs to be defined; we can
think of it as the average over z, although some weighting of the average might be
appropriate. The stress normal to the interface at any point will differ from atmo-
spheric pressure only by an amount equal to the surface tension multiplied by the
sum of the reciprocals of the two radii of curvature, and the surface tension contri-
bution will always be negligible relative to the viscous stresses for polymer melts, so
we may take the stress normal to the surface to be equal to zero. This is not a helpful
observation, however, because we have no knowledge of the details of the flow near
the interface; hence, there is no way to calculate either the normal direction n or the
components of the stress.

If we could take the interface to be a cylinder (i.e., a liquid–solid contact angle of
90 ◦), then our free surface condition would be σrr = −P + τrr = 0. This approxima-
tion is also inadequate in the present context, however, since if we take the assumed
kinematics to be valid right up to r = R we will find that σrr is a function of z and
cannot vanish everywhere. The best resolution at this level of approximation is to
take the interface to be a cylinder, to take the kinematics in Equations 6.28a–b to
be valid at r = R, and to set the average value of σrr at r = R equal to zero. Thus, we
determine Po from the equation

1
H

H∫
0

σrr dz = 1
H

H∫
0

(−P + τrr )dz = 0 at r = R. (6.29)
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P is obtained from Equation 6.29 and τrr = 2η∂vr/∂r from Equation 6.28b; the
result is

Po = 2ηV
H

+ 3ηV
H

(
R
H

)2

. (6.30)

To calculate the force we need to integrate σzz = −P + τzz over the moving sur-
face at z = H. It readily follows that τzz = 2η∂vz/∂z = 0 at z = H , and the term
involving z in Equation 6.29 also vanishes. We thus calculate the force as

F = 2π

R∫
0

P (r, H) rdr = 2π

R∫
0

[
3ηV
H 3

(R2 − r2) + 2ηV
H

]
rdr

= 3πηV R4

2H 3

[
1 + 4

3

(
H
R

)2
]

. (6.31)

We are generally concerned with H << R, so we may neglect the second term∗ and
write

F ≈ 3πηV R4

2H 3
. (6.32)

At this point we need to consider the mode of operation of the molding
machine: controlled speed, controlled force, or some combination of the two. If the
speed of the mold surface is controlled, V and H are known functions of time and
R2 = R2

o Ho/H , so F is known for all time until the mold is closed. We will consider
here the case in which the closing force is kept constant. Since V = −d H/dt we can
then rewrite Equation 6.33 as

− d H
dt

= 2F H 3

3πηR4
= 2F H 5

3πηR4
o H 2

o
, (6.33)

where we have used R2 H = R2
o Ho. This separable equation can be integrated

immediately to obtain

1
4

(
H−4 − H−4

o

) = 2F t
3πηR4

o H 2
o
. (6.34)

We will generally have H−4
o � H−4, so Equation 6.35 can be rearranged to give an

estimate of the time tD to fill the mold to radius RD as

tD ≈ 3πηR8
D

8F R4
o H 2

o
. (6.35)

The very strong dependence on the radius of the mold is a reflection of the rapid
decrease in velocity at fixed force as H gets small (cf. Equation 6.34).

∗ The equivalent of the second term can be very important if the viscosity varies across the gap. Such
a situation would arise with a bicomponent charge, for example, in which there is a central layer
of very high viscosity sandwiched between outer layers of low viscosity. The traditional treatment
of the edge boundary condition in the fluid mechanics and lubrication literature differs from the
approach used here and does not lead to the second term in Equation 6.32.
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6.3.2 Isothermal Power-Law Fluid

The treatment of non-Newtonian fluids is analogous to that in Section 6.2.2 for the
center-gated disk mold. It is assumed that the function IID is dominated by the term
∂vr/∂z = −1/2dφ(z)/dz and that terms involving ∂vr/∂r can be neglected in gen-
eral; in that case an ordinary differential equation can be obtained for φ(z), and
the solution for a power-law fluid follows the procedure in the preceding section.
There is nothing qualitatively different from the result for a Newtonian fluid, but
of course the velocity, pressure, force, and fill time now depend on the power-law
exponent n.

6.3.3 Nonisothermal Flow

The analysis of nonisothermal flow in a compression mold is complex for two rea-
sons. The first is that the quasi-steady approximation that is inherent in the creeping
flow equations does not carry over to the energy equation, so the full transient equa-
tion for the temperature must be solved in two spatial dimensions, where the spatial
regime is changing with time. The second is that as in the problem of filling an injec-
tion mold, the “fountain flow” near the free surface is the source of the fluid that
coats the mold face as the mold closes and the radius of the charge increases. Thus,
fluid from the center of the flow is carried to the wall, and this fluid will have a differ-
ent temperature from the fluid in the wall region. The deviation from the assumed
velocity profile near the front is therefore an important factor in determining the
temperature distribution.

Some useful insight can be obtained by considering the special case in which
the viscosity is a function of z but independent of r; this situation might arise, for
example, during the first moments after a cold charge is put into a mold with hot
faces. If the viscosity of the fluid near the mold face is much lower than the viscosity
of the fluid along the center plane of the mold, we might expect the near-wall fluid
to flow more quickly and encapsulate the more viscous center fluid. It is straightfor-
ward to show, however, that with the assumed kinematics the radial velocity must
increase monotonically from the wall to the center plane, thus precluding encapsu-
lation. Numerical solutions of the type described in Chapter 8 show that encapsula-
tion is possible under some conditions, and a lubrication-like approximate solution
is possible. The structure of the solution is determined by the dimensionless group
S= ηmax H 2/ηminR2, where ηmax and ηmin are the maximum and minimum viscosities
in the system, respectively. Encapsulation is possible when S� 1, and the analytical
solution for this condition agrees very well with the numerical simulation.

6.4 Concluding Remarks

The main point of this chapter has been to demonstrate the way in which the quasi-
steady creeping flow equations can be used to solve transient mold filling problems



82 Polymer Melt Processing

in polymer processing. The same logic can be used for numerical solutions, wherein
the flow field is determined at each time from the creeping flow equations for the
given geometry. The new domain occupied by the polymer at the next time step is
then determined from the velocity at the moving surface.
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7 Fiber Spinning

7.1 Introduction

The processes we have considered thus far – extrusion, wire coating, and injection
and compression molding – are dominated by shear between confined surfaces. By
contrast, in fiber and film formation the melt is stretched without confining surfaces.
It is still possible to gain considerable insight from very elementary flow and heat
transfer models, but we must first parallel Section 2.2 and develop some basic con-
cepts of extensional flow. The remainder of the chapter is then devoted to an anal-
ysis of fiber formation by melt spinning.

Our analysis of fiber spinning in this chapter will be based on an inelastic rhe-
ological model of the stresses. This rheological description appears to be adequate
for polyesters and nylons, which comprise the bulk of commercial spinning appli-
cations, and our spinning model is essentially the one used in industrial computer
codes. This is a process in which melt viscoelasticity can sometimes play an impor-
tant role, however, and we will revisit the process in Chapter 10.

7.2 Uniaxial Extensional Flow

Consider a cylindrical rod of a very viscous polymer melt, as shown in Figure 7.1,
with radius R and length L. We impose a stress σ zz in the axial direction in order to
stretch the rod; hence, R and L are both functions of time, but R2L is a constant
for an incompressible melt. We assume that the rod draws down uniformly as it is
stretched, so R is independent of z. The cylindrical coordinate system is embedded
at one end of the rod, so we may consider the end at z = 0 to be fixed and the end
at z = L to be moving.

One’s first reaction is to wonder how such an experiment can be carried out.
If suffices here to say that clever experimental designs for highly viscous materials
have been implemented and even commercialized, although the experiment is a dif-
ficult one to do well. In fact, the first reported measurements, by Trouton, were done
one hundred years ago, together with an analysis paralleling the one given here.

83
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L

R
σzz

r
z Figure 7.1. Uniform, uniaxial extension.

The primary kinematical assumption is that the axial component of velocity, vz,
is independent of r. Thus, layers of fluid at different distances from the axis do not
move past one another, in which case no shear stresses are generated. We thus see
the fundamental difference between this flow and the ones we have encountered
previously. vz will, however, depend on z; this is obvious since we have assumed
that the end at z = 0 is fixed (vz = 0 at z = 0), while the end at z = L must have a
finite velocity if the rod is to be extended.

Now, let us first apply the continuity equation. We assume axisymmetry (∂/∂θ =
0) and no circumferential flow (vθ = 0). In cylindrical coordinates we thus have,
from Table 2.1,

1
r

∂

∂r
(rvr ) + ∂vz

∂z
= 0. (7.1)

∂vz/∂z is independent of r, so we can rearrange Equation 7.1 and integrate with
respect to r to obtain

rvr = −r2

2
∂vz

∂z
+ C1. (7.2)

vz must remain finite as r → 0, so the integration constant C1 must equal zero and
we have

vr = −r
2

∂vz

∂z
. (7.3)

We assume that the filament is drawn down uniformly; that is, the radius must
be independent of z. In that case, the radial velocity must be independent of z, since
the filament will remain uniform only if the rate of thinning (the radial velocity)
is the same everywhere. It therefore follows from Equation 7.3 that ∂vz/∂z must
be independent of z; we denote ∂vz/∂z by

�

γ E , the rate of extension.
�

γ E may be
a function of time. We have assumed that vz = 0 at z = 0, so it follows that the
velocity field is of the form

vz = �

γ E z, vr = −r
2

�

γ E . (7.4a,b)

Note that this result is not dependent on the stress constitutive relation for the fluid.
Now, if there are no shear stresses, the r and z components of the creeping flow

equations (Table 2.2 with ρ = 0) become

r : 0 = −∂P
∂r

+ 1
r

∂

∂r
(rτrr ) − τθθ

r
= −∂P

∂r
+ ∂τrr

∂r
+ τrr − τθθ

r
, (7.5a)

z: 0 = −∂P
∂z

+ ∂τzz

∂z
= ∂

∂z
(−P + τzz) . (7.5b)
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From Equation 7.5b we see that −P + τzz is independent of z, although we know it
will depend on time. Equation 7.5a can be written

∂

∂r
(−P + τrr ) = −τrr − τθθ

r
, (7.6a)

or

−P + τrr = −
r∫

0

τrr − τθθ

r
dr + C2. (7.6b)

The total radial normal stress inside the polymer cylinder (Equation 2.7), σ rr =
− p + τ rr, must be exactly balanced at r = R by the pressure of the atmosphere
(which we can take to be zero) plus the pressure change across the curved inter-
face caused by the surface tension. It is almost always possible to neglect the surface
tension contribution for polymer melts (but not for solutions!), and the radial gravi-
tational contribution over the thin cylindrical cross section will be negligible, regard-
less of orientation, so we may ignore the distinction between P and p in Equation
7.5b. Thus, at r = R we may take – P + τ rr = 0 and write

C2 =
R∫

0

τrr − τθθ

r
dr (7.6c)

or

P = τrr −
R∫

r

τrr − τθθ

r
dr. (7.7)

The total axial stress, σ zz, is thus

σzz = −p + τzz = −P + τzz + ρgh = τzz − τrr +
R∫

r

τrr − τθθ

r
dr + ρgh. (7.8)

The gravitational term is usually negligible for very viscous liquids, and we shall
ignore it henceforth and write

σzz = τzz − τrr +
R∫

r

τrr − τθθ

r
dr. (7.9)

Equation 7.9 expresses the total axial stress in terms of the extra stress, so the stress
constitutive equation provides the link to the kinematics.

We now assume that the melt is inelastic, although perhaps with a deformation-
dependent viscosity. From Table 2.3, with vz independent of r and vr given by Equa-
tion 7.3, we then obtain

τrr = 2η
∂vr

∂r
= −η

∂vz

∂z
, (7.10a)

τθθ = 2η
vr

r
= −η

∂vz

∂z
= τrr , (7.10b)

τzz = 2η
∂vz

∂z
. (7.10c)
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The integral in Equation 7.9 vanishes because of the equality of τ rr and τ θθ . From
Equations 7.10a and 7.10b we therefore obtain

σzz = τzz − τrr = 3η
∂vz

∂z
= 3η

�

γ E . (7.11)

Equation 7.11 is sometimes written

σzz = ηE
�

γ E , (7.12)

where ηE is known as the extensional viscosity (and sometimes the Trouton viscos-
ity). The ratio ηE/η is known as the Trouton ratio, and it is equal to 3 for inelastic
liquids. If the viscosity is deformation rate dependent, the comparison must be made
at the same value of IID for consistency. The function

√
1/2IID in Table 2.6 is simply

�

γ for a shear flow with vx = vx(y) and vy = vz = 0, while for an extensional flow
described by Equation 7.11 we obtain

√
1/2IID = √

3
�

γ E . Thus, any comparison of
extensional and shear viscosities should be made when

�

γ = √
3

�

γ E , not at equal val-
ues of

�

γ and
�

γ E .
Many highly elastic polymer melts, including polypropylene, which is spun into

fibers and hence is directly relevant to the discussion here, show considerably more
complex behavior in extension than that given by Equation 7.11. Equation 7.11
does seem to be adequate for many polymers that are spun commercially, however,
including poly(ethylene terephthalate); hence, we will employ it in this chapter. (We
use the qualifier “seem” because these polymers tend to be insufficiently viscous to
carry out the extensional experiment as analyzed here, and the extensional behavior
must be inferred from other measurements.) We therefore proceed with an analysis
of spinning that, at the point where we require a constitutive equation, presumes the
applicability of Equation 7.11.

7.3 Melt Spinning Equations

7.3.1 Formulation

The process for spinning a single fiber is shown schematically in Figure 7.2. Melt is
extruded continuously through a small hole (the spinneret) into an ambient environ-
ment that is below the solidification temperature. Solidification occurs somewhere
between the point of extrusion and a takeup device; takeup is at a much higher speed
than the extrusion velocity, so the filament is drawn down in diameter as it passes
through the melt zone. (We assume there is no permanent deformation of the solid-
ified filament so that all of the area reduction occurs in the melt zone, which is not
strictly true.) The commercial process usually has many spinnerets spaced across a
single spinneret plate, all fed from the same spinning head, and the multiple filaments
are gathered together into a yarn prior to takeup.

It is obvious that there is a strong interaction between the fluid dynamics and
heat transfer in the melt zone. Our approach parallels the heat transfer analysis
in Section 3.2.2 and is very similar in philosophy to the thin gap approximation
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Figure 7.2. Schematic of melt spinning.

developed in Chapter 5, except that the flow field here is primarily extensional, not
shear. The resulting model, known as the thin filament equations, can be derived in
a number of ways, and we present a rather simpler but less informative derivation
than the one used here in Appendix 7B.

We assume axisymmetry and a steady state. Commercial fiber spinning takes
place at speeds on the order of 4,000 m/min (240 km/hr) and greater, so in this
case inertia is important, as is aerodynamic drag; this is perhaps the only polymer
melt process where inertia must be considered. We therefore use the full Cauchy
momentum equations, and we write the basic equations in cylindrical coordinates
(Tables 2.1, 2.2, and 2.5) as follows:

continuity:
1
r

∂

∂r
(rvr ) + ∂vz

∂z
= 0, (7.13)

r momentum: ρ

(
vr

∂vr

∂r
+ vz

∂vr

∂z

)
= −∂p

∂r
+ 1

r
∂

∂r
(rτrr ) − τθθ

r
+ ∂τrz

∂z
, (7.14a)

z momentum: ρ

(
vr

∂vz

∂r
+ vz

∂vz

∂z

)
= −∂p

∂z
+ 1

r
∂

∂r
(rτrz) + ∂τzz

∂z
+ ρg, (7.14b)

energy: ρcp

(
vz

∂T
∂z

+ vr
∂T
∂r

)
= κ

1
r

∂

∂r

(
r
∂T
∂r

)
. (7.15)
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Figure 7.3. Spinline surface geometry.

Here, we have assumed that vθ = 0, that axial conduction can be neglected relative
to convection, and that viscous dissipation is not important. This last assumption can
easily be relaxed, as will be evident in the development, but the term does not gen-
erally seem to be significant. We have also assumed that the spinline is vertical (as
it always is in commercial spinning), so gravity enters only in the axial component.

The feature that makes the analysis of this process different from those we have
already studied is the presence of the free surface, which introduces a small geomet-
rical complication in expressing the boundary conditions. The surface is shown in
Figure 7.3. At the axial position z, the radius is given by R(z). The outward normal
vector is n, which is at an angle θ to the radial direction. The slope of the surface is
given by

R′ ≡ dR
dz

= − tan θ. (7.16)

Now, there is no flow across the surface, so the projection of the velocity vector v
in the direction n must vanish. (In fluid mechanics terminology we would say “the
surface is a streamline.”) Thus,

r = R: v � n = vr cos θ + vz sin θ = 0 (7.17a)

or, dividing by cos θ and using Equation 7.16,

r = R: vr − R′vz = 0. (7.17b)

The total stress normal to the surface must be balanced by atmospheric pressure
plus the surface tension contribution across the curved interface. We can usually
neglect surface tension effects for melts, and we can always take atmospheric pres-
sure to be zero. The tangential stress at the surface is finite because of aerodynamic
drag; it is conventional to represent the stress from air drag as 1

2ρav
2cD, where ρa is

the density of the air, v is the magnitude of the relative velocity between the surface
and the air, and cD is a dimensionless drag coefficient that depends on shape and on
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the Reynolds number, Rvρa/ηa , where ηa is the viscosity of the air. If the surface
were cylindrical, the stress normal to the interface would simply be σ rr = – p + τ rr

and the tangential stress would be τ rz, but we have to deal here with the fact that n
does not point in the r direction. Hence, there will be a small contribution from the
tangential stresses to the r component and a small normal stress contribution to the
z component; the resolved stress balance at the interface is thus as follows:

r direction: p − τrr + R′τzr = 1
2ρav

2cDR′, (7.18a)

z direction: R′ (p − τzz) + τzr = − 1
2ρav

2cD, (7.18b)

where v is understood to be the magnitude of the surface velocity (i.e., we are assum-
ing that the air velocity in the spinning direction is negligible relative to the spinline
speed).

Finally, the heat transfer boundary condition is the usual expression in terms of
a heat transfer coefficient:

r = R: − κ
∂T
∂r

= h (T − Ta) , (7.19)

where Ta is the ambient temperature and h is a local heat transfer coefficient. (The
change in nomenclature from U to h for the heat transfer coefficient is consistent
with common usage, whereby h refers to a local contribution and U to an overall
coefficient that incorporates a series of heat transfer mechanisms.)

7.3.2 Thin Filament Equations

Our formal approach now follows the development that led to the equation for
the cup-mixing temperature in Section 3.2.2, with two small changes. First, we are
working in cylindrical coordinates, so the differential area element for integration is
2πrdr . Second, we must take account of the fact that the area is changing with axial
position.

Consider any dependent variable (radius, velocity, stress, temperature), which
we denote φ(r, z). We define the area average φ(z) as

πR2φ (z) =
R∫

0

2πrφ (r, z)dr, (7.20a)

or

φ (z) = 2
R2

R∫
0

rφ (r, z)dr. (7.20b)

Recall that R is itself a function of z. To obtain the rate of change, dφ/dz, we need
to use both the product rule for differentiation and Leibniz’s rule for differentiating
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an integral:

dφ

dz
= −4R′

R3

R∫
0

rφdr + 2
R2

R∫
0

r
∂φ

∂z
dr + 2

R
φ (r, z) R′ (7.21a)

or
R∫

0

r
∂φ

∂z
dr = 1

2
R2 dφ

dz
+ RφR′ − Rφ (R, z) R′ = 1

2
d
dz

(
R2φ

) − Rφ (R, z) R′.

(7.21b)
Let us illustrate the approach with the continuity equation, Equation 7.13. We

multiply both terms by r (the factor 2π will simply drop out) and obtain

∂

∂r
(rvr ) + r

∂vz

∂z
= 0. (7.22)

Integrating from r = 0 to r = R gives

rvr

∣∣∣∣
R

0
+

R∫
0

r
∂vz

∂z
dr = 0 (7.23a)

or, using Equation 7.21b,

Rvr (R, z) + 1
2

d
dz

(
R2v

) − Rvz (R, z) R′ = 0, (7.23b)

where we denote vz simply by v. The first and third terms sum to zero because of
Equation 7.17b, which relates vr and vz at r = R, so we obtain

d
dz

(
R2v

) = 0. (7.24a)

πR2ρv is the mass flow rate, which we denote w, so (with our usual assumption of a
constant density) Equation 7.24a states simply that the mass flow rate is the same at
every point on the spinline at steady state, which of course is what we expect:

w = πR2ρv = constant. (7.24b)

The details of the term-by-term integration of the r and z components of the
momentum equation, Equations 7.14a and 7.14b, are carried out in Appendix 7A.
The only assumption is that inertial terms can be neglected in the radial component,
an assumption that is easily justified a posteriori, although the inertial terms must
be retained in the axial component. We then obtain the following two averaged
equations (Equations 7A.7 and 7A.10b):

r component: p (z) = 1
2

(τ rr + τ θθ ) + 1
2
ρav

2cDR′ − 1
R2

d
dz

R∫
0

r2τrzdr, (7.25a)

z component:
d
dz

(
πρR2v2

)
= d

dz

[
πR2 (−p + τ zz)

] − πRρav
2cD + πρR2g .

(7.25b)
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v2 is the area average of v2
z , and v2 is the square of the interfacial velocity. We now

assume that the deformation locally approximates a uniform, uniaxial extension, in
which case we take vz to be independent of r at each axial position, and we can
neglect the contribution from the shear stress τ rz relative to the normal stresses.
Consistency with the assumption of a locally uniform, uniaxial extension further
requires that R′ � 1 (tan θ ∼ θ in Figure 7.3), in which case v2 will differ from v2

only by a negligible amount, and the air drag contribution to p will be negligible
relative to the air drag term in the z component. Equations 7.25a and 7.25b then
combine to give us

w
dv

dz
= d

dz

{
πR2

[
τ zz − 1

2
(τ rr + τ θθ )

]}
− πRρav

2cD + πρR2g . (7.26)

Here, we made use of the fact that v2 ≈ v2 and w = πρR2v.
The details of the averaging of the energy equation, Equation 7.15, are carried

out in Appendix 7A. Since we have already assumed that vz is independent of r
in deriving the final form of the momentum equation, Equation 7.26, we make the
same assumption in deriving the energy equation, so the final form of the equa-
tion is expressed in terms of T , rather than the cup-mixing temperature, as follows
(Equation 7A.13):

wcp
dT
dz

= −2πRh [T (R, z) − Ta] . (7.27)

Equation 7.27 is reminiscent of Equation 3.25 for the extruder in that we again
obtain an equation for the evolution of an average temperature in terms of a heat
transfer term expressed through the temperature at the boundary. What has typ-
ically been done in the spinning literature has been to replace T(R, z) in Equa-
tion 7.27 by T and to write the working equation as

wcp
dT
dz

= −2πRh
(
T − Ta

)
. (7.28)

The magnitude of this error has been estimated through numerical solution of the
full partial differential equations, as discussed below, and the two temperatures can
differ by 5 ◦C under typical polyester spinning conditions.

7.3.3 Stress Constitutive Equation

The momentum equation in the form of Equation 7.26 is valid for any relation
between the stress and the rate of deformation. For our purposes here we will
assume that the melt can be described as an inelastic liquid and write (Table 2.3)

τzz = 2η
∂vz

∂z
, τrr = 2η

∂vr

∂r
, τθθ = 2η

vr

r
. (7.29)

We therefore have

τrr + τθθ = 2η

(
∂vr

∂r
+ vr

r

)
= 2η

1
r

∂

∂r
(rvr ) = −2η

∂vz

∂z
. (7.30)
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Hence,

τzz − 1
2

(τrr + τθθ ) = 3η
∂vz

∂z
. (7.31)

The averaging to obtain τ zz − 1
2 (τ rr + τ θθ ) is not straightforward because η will

depend on temperature (and, for a non-Newtonian fluid, on deformation rate) and
will therefore be an unknown function of radial position.

Since we have already assumed that vz is independent of r, consistency requires
that we take the stretch rate ∂vz/∂z to be independent of r and equal to ∂vz/∂z, in
which case obtaining the average of the right side of Equation 7.31 requires averag-
ing only the viscosity; hence, we have

τ zz − 1
2

(τ rr + τ θθ ) = 3η
∂v

∂z
. (7.32)

Our final form for the momentum equation for an inelastic melt is therefore

w
dv

dz
= d

dz

(
3πR2η

dv

dz

)
− πRρav

2cD + πρR2g (7.33a)

or, equivalently,

w
dv

dz
= d

dz

(
3wη

ρv

dv

dz

)
−

(
πw
ρ

)1/2

ρav

3/2cD + gw
v

. (7.33b)

7.3.4 Boundary Conditions

For the steady-state analysis being carried out here, the radius R can always be
expressed in terms of v through the averaged form of the continuity equation, Equa-
tion 7.24b. We therefore have two dependent variables, v and T . The differential
equation for momentum is second order in v, meaning that two constants of inte-
gration must be evaluated, while the differential equation for temperature is first
order, requiring one constant of integration.

We know the temperature and mass flow rate at the spinneret; since the spin-
neret diameter is given, we know the melt velocity at the spinneret. Thus, we appear
to know v(0) and T (0). In fact, this is not quite correct because the thin filament
equations are unlikely to be a good approximation right at the spinneret, where the
flow is greatly affected by the rearrangement associated with emerging from the con-
fined spinneret flow and adjusting to the extensional free-surface deformation. Thus,
the origin is typically assumed to be at an undefined position “near” the spinneret,
where the thin filament equations first apply. Use of the spinneret velocity and tem-
perature as initial conditions therefore introduces a small error, and some authors
have employed correlations or simple theories for extrudate diameter adjustment
(“extrudate swell” or “die swell”) to obtain the initial velocity. The error introduced
by using the spinneret conditions seems to be small, however, at least for PET and
nylon, and well within the uncertainties introduced by other approximations in the
analysis.
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We know two conditions at the point of solidification, which we denote z = L.
The solidification temperature for amorphous and slowly crystallizing polymers will
typically be close to the glass transition temperature, which is known. We assume
little or no deformation of the solidified fiber, so the spinline velocity at solidification
will equal the takeup velocity, which is also known. Hence, for simulation purposes
we may assume that we are given v(L) and T (L).* The boundary conditions are
therefore

z = 0: v = vo, T = To, (7.34a,b)

z = L: v = vL, T = TL. (7.34c,d)

We have a third-order system (three spatial derivatives), which requires eval-
uation of three integration constants, but we have four conditions to be satisfied.
The problem is not overspecified, however, because L is in fact unknown, so we
require four conditions to fix four constants, the three integration constants and the
unknown length.

7.3.5 Transport Coefficients

Equations 7.26 and 7.28 contain two transport coefficients: h, the heat transfer coef-
ficient, and cD, the aerodynamic drag coefficient. Determining the proper values
of these coefficients turns out to be a significant factor in successful modeling of the
process. The simulation results are sensitive to these coefficients, and their measure-
ment is difficult. Transport coefficients can be expected to depend on the Reynolds
number of the air stream adjacent to the filament,

Re ≡ 2Rvρa/ηa, (7.35)

where the subscript a indicates that we are using the properties of air, not of the
polymer. The product Rv = w/πρv is dependent on position along the spinline, so we
expect h and cD to be position dependent. Determination of the proper functional
forms for h and cD by direct measurement on an attenuating spinline is fraught with
experimental uncertainty, and most measurements reported in the literature have
been made on solid wires of constant diameter. Good “first principles” analyses
are not available, in part because the nature of the air flow in the hydrodynamic
boundary layer is not well understood.

Drag coefficient data from a number of investigators follow the form

cD = βRe−0.61, (7.36)

* This is obviously an oversimplified picture. To handle solidification properly, it is necessary to
include an equation that describes the growth of a glassy or crystalline phase and a stress equa-
tion that accounts for the biphasic nature of the system. Such descriptions are the subject of recent
research, and these results should be used in new simulation codes, especially for semicrystalline
polymers, but the approximation of an instantaneous transition from a liquid to an undeformable
solid at a fixed average temperature T = TL captures the important features of the spinline and
suffices for our purposes here.
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where the reported values of β range from 0.27 to more than 1.0; the most widely
accepted value is 0.37. Heat transfer coefficient data are usually expressed in terms
of the dimensionless Nusselt number,

Nu = 2Rh
/
κa, (7.37)

where κa is the thermal conductivity of the air. Published simulations typically use a
correlation developed by Kase and Matsuo:

Nu = 0.42Re
1/3

[
1 +

(
8vcf

v

)2
]1/6

, (7.38)

where vcf is the velocity of the “cross-flow” air pumped orthogonal to the filament
axis. It is generally believed that this correlation overestimates heat transfer rates,
and commercial fiber producers typically use proprietary heat transfer correlations
in their in-house codes.*

7.4 Spinline Simulation

7.4.1 Temperature Development

We can obtain some useful information about spinline cooling and the distance to
solidification by considering Equation 7.28, with Equation 7.38 for the heat transfer
coefficient and no cross-flow air. The equation can then be written

dT
dz

= −Cw−5/6v
1/6

[
T − Ta

]
(7.39)

with C = 1.38κa(ρa/ηa)1/3/cpρ
1/6. The dependence on v is very weak; if we assume a

hundred-fold increase in spinline velocity from spinneret to solidification, for exam-
ple, the coefficient Cw−5/6v1/6 changes only by a factor of 2.2. Thus, we should be
able to bound the solution by approximating v1/6 by a constant value and using the
maximum and minimum values of v for that constant. For fixed v the solution of
Equation 7.39 is

ln
T − Ta

To − Ta
= −Cw−5/6v

1/6z, (7.40)

and setting z = L and T = Tf we obtain

L =
w

5/6v−1/6 ln
(

To − Ta

TL − Ta

)
C

. (7.41)

The minimum value of L is obtained by setting v = vL. We see that the distance to
solidification is strongly dependent on the mass throughput (w5/6) but only weakly

* Analogies between momentum and heat transfer suggest that a value of 0.60 should be used in
Equation 7.36 and that the heat transfer correlation should be taken to be Nu = 0.27Re0.39 multi-
plied by the Kase–Matsuo cross-flow correlation factor.
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Figure 7.4. Temperature profile for PET spinning at three takeup speeds. Reprinted with
permission from George, Polym. Eng. Sci., 22, 292 (1982).

dependent on the takeup or extrusion velocities. Furthermore, the temperature pro-
file and the distance to solidification will be insensitive to the details of the fluid
rheology for fixed throughput and takeup speeds.

Figure 7.4 shows the measured spinline temperatures, using a contact pyrome-
ter, from a series of pilot plant experiments by George with a 0.675 intrinsic viscos-
ity (IV) poly(ethylene terephthalate), corresponding to a molecular weight of about
45,000. The experiments are described more fully below, but it suffices here to note
that throughput was held constant, while the takeup speed was varied from 1,000 to
3,000 m/min. It is clear that the profile is very insensitive to the velocity profile, as
predicted by Equation 7.39. The apparent solidification point is in the midrange of
the values computed from Equation 7.41 by setting v to vo and vL, respectively. The
line through the data was computed by George from the spinline model, as discussed
below.

7.4.2 Isothermal Newtonian Spinning

Commercial melt spinning processes involve substantial filament cooling, and con-
trol of the quench profile is one of the practical considerations for design and opera-
tion. Laboratory experiments are often designed to operate isothermally, however,
typically by spinning in a temperature-controlled chamber with rapid solidification
effected at a fixed position (by spinning into a water bath, for example) or by taking
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the filament up on a roller as a liquid. The viscosity is independent of tempera-
ture for isothermal spinning, and we further assume that the liquid is Newtonian, in
which case η is a constant. Equation 7.33 cannot be solved analytically for constant
η, but some special cases can be solved. The simplest case to consider is spinning
at a low takeup speed, where inertial (wdv/dz) and aerodynamic drag contributions
can be neglected. Equation 7.33b then becomes simply

3wη

ρ

d
dz

(
1
v

dv

dz

)
= 3wη

ρ

d
dz

(
d ln v

dz

)
= 0 (7.42)

or d ln v/dz = C = constant, and

v = voecz. (7.43)

The takeup velocity vL is specified at z = L, so

C = ln (vL/vo) /L = ln DR/L, (7.44)

where the draw ratio DR is equal to the area reduction ratio. Hence,

v = voez ln DR/L, (7.45a)

R =
(

w
πρv

)1/2

e− 1
2 z ln DR/L

, (7.45b)

σzz = 3η
dvz

dz
= 3ηvo ln DRez ln DR/L

L
. (7.45c)

The force F on the spinline is πR2σ zz:

F = πR2σzz = 3ηw ln DR

ρL
. (7.45d)

The force is independent of position on the spinline, as we expect; Equation 7.33a
is simply d F/dz = 0 when we neglect inertia, aerodynamic drag, and gravity. The
solution obtained here is useful for analyzing process instabilities, where the essen-
tial features are often present even without the phenomena we have neglected. We
address spinline instabilities in Chapter 11.

7.4.3 Numerical Solution

Numerical solution of Equations 7.28 and 7.33 is straightforward. We are given vo

and To. We assume a value of d v/dz at z = 0 (equivalent to assuming the initial
stress). These three conditions define a well-posed initial value problem and are
sufficient to integrate the equations numerically, using any algorithm. The equa-
tions are integrated until T = TL, defining the length L. If v = v f at z = L, we have
a solution to the boundary value problem; if not, we change the assumed initial con-
dition d v/dz and repeat. Alternatively, we can use the condition v = v f to define L
and check to see if T = TL, or we can use the first of the two conditions at z = L
to be satisfied. The process involves only a one-dimensional search for the proper
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Table 7.1. Conditions for George’s spinning studies
on 0.675 IV PET

Extrusion temperature 295 ◦C
Quench air temperature 30 ◦C
Air cross-flow velocity 0.2 m/s
Spinneret hole diameter 0.254 mm (10 mil)
Throughput/spinneret hole 2.5 g/min
Spinneret velocity 18.2 m/min (0.3 m/s)

initial value of d v/dz, and the stress–takeup velocity relation is monotonic, so con-
vergence is usually rapid. The search can be carried out efficiently, for example,
using a Newton-Raphson scheme. There is no difficulty in principle in including a
position dependence of the cross-flow air velocity and of the physical properties of
the air.

Nondimensionalization of the equations, which is usually desirable, can lead in
this case to a computational complication. Many authors have used the length L to
nondimensionalize axial position so that the dimensionless length varies from 0 to 1.
In that case L enters the problem formulation explicitly, and both the length and ini-
tial stress must be adjusted on each iteration, requiring a two-variable search. Con-
vergence of the iterations is still rapid, in part because Equation 7.41 gives an excel-
lent initial approximation for L, but clearly such a formulation should be avoided.

7.4.4 Simulation of PET Pilot Plant Data

A number of authors have reported experimental spinning data and simulations.
Early work by Kase and co-workers at Toyobo was very influential, but we prefer to
use an excellent data set by Henry George of Celanese, who studied the spinning of
0.675 intrinsic viscosity poly(ethylene terephthalate) fibers on a pilot-scale spinning
machine under commercial conditions. (We have already seen some of these data
in Figure 7.4.) The spinning conditions are given in Table 7.1. Solidification was
taken to occur at 70 ◦C in the simulations, which is approximately the glass transition
temperature of PET. We show results here from simulations carried out by Gagon
and Denn and by George, with the assumption that PET is a Newtonian liquid. (PET
is in fact slightly viscoelastic, although the viscosity is insensitive to deformation
rate, and we will return to this example in Chapter 10.)

The viscosity of PET was reported by Gregory in 1973 as

η = 1.13 × 10−14Mw3.5 exp
(−11.98 + 6800

/
T

)
(7.46)

with η in pascal seconds and T in Kelvins. Gregory’s data were reported at 265 ◦C
and above, and it was assumed in the simulations that the same temperature depen-
dence applied all the way to 70 ◦C. In fact, a different temperature dependence
(the Williams-Landel-Ferry [WLF] equation) should be used within 100 ◦C of the
glass transition temperature; this change is incorporated in a computer code by Kase
and commercialized by Toyobo, but the difference in computed behavior is not
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Figure 7.5. Simulation of PET spinline data. Reprinted from Gagon and Denn, Polym. Eng.
Sci., 21, 844 (1981).

significant. All physical properties were taken as temperature dependent, with the
relations obtained from standard sources. Air properties were evaluated at the mean
of the polymer and ambient temperatures to reflect the heating of the air boundary
layer.

Gagon and Denn used the Kase–Matsuo heat transfer correlation (Equa-
tion 7.38) as a base case, while George used a correlation derived from in-house
Celanese data. George’s correlation tends to give higher heat transfer rates than
Kase and Matsuo’s. (There is a suggestion in the text that George averaged two cal-
culations with different quench air temperatures to account for the different envi-
ronments experienced by filaments in different locations, but this is not clear.) Both
studies employed Equation 7.36 for the drag coefficient; Gagon and Denn took
β = 0.37, while George took β = 0.44 but apparently included a correction fac-
tor to account for reduced drag because of the presence of multiple filaments. The
initial filament radius was estimated in both cases from a Celanese correlation for
extrudate swell that predicted an area increase of 100%, so vo was taken to be
9.1 m/min.

Simulation results are shown together with velocity profiles in Figure 7.5 for
takeup speeds of 1,000 and 3,000 m/min. Gagon and Denn’s calculations with the
Kase–Matsuo heat transfer coefficient overestimate the rate of velocity increase for
the 3,000 m/min data, but they are in reasonable agreement at 1,000 m/min. There
is a substantial improvement in the fit to the higher takeup speed data when the
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melts. Reprinted with permission from George, Poly. Eng. Sci., 22, 292 (1982).

coefficient in Equation 7.38 is reduced by 25%, from 0.42 to 0.315, which is within
the uncertainty of most heat transfer data, but at the expense of a somewhat poorer
fit at the lower takeup speed. George’s calculations are close to the latter curves,
suggesting that the actual heat transfer rate used in his simulations is less than that
given by his reported correlation, perhaps because of a multifilament correction.
The sensitivity to the choice of β in Equation 7.36 is considerably less, and while the
fit to data is better with β = 0.37, one could not rule out even a value of β = 0.60
based on this data set.

The two simulations, which differ only in minor detail, indicate that velocity and
temperature profiles for PET can be computed with sufficient confidence to inves-
tigate trends, and this is the primary use of computer codes implementing these and
similar models. We can ask “what if” questions about operating conditions, physical
properties and so forth, and use the model to guide experiment.

Many important physical properties of amorphous yarns (e.g., tenacity, elonga-
tion to break, modulus) correlate with the optical birefringence, which is the differ-
ence in indices of refraction in orthogonal directions. The birefringence is caused by
orientation of the polymer chains, which is also the cause of the frozen stress in the
filament. Simple molecular theories of polymer melt mechanics predict proportion-
ality between stress and birefringence, and this is observed experimentally; indeed,
knowledge of the proportionality factor, or the stress–optical coefficient, enables the
use of nonintrusive methods to measure stresses. One potential use of a spinline
model thus becomes obvious: If we can predict the stress at solidification, we can,
with a knowledge of the stress–optical coefficient, predict the birefringence; hence,
we can predict the properties that correlate with birefringence.

Figure 7.6 shows a plot by George of measured birefringence plotted versus
calculated stress at the solidification point for a range of takeup speeds and three
different PET resins, the 0.675 IV resin used for the previous simulations and two of
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higher molecular weight. (g/denier is an industry unit equal to grams/9,000 meters of
length.) There is scatter, but the points fall near a straight line, indicating a constant
stress–optical coefficient. The straight line labeled 1 is from a similar modeling study
limited to low stresses, whereas Lines 2 and 3 are the results of experimental studies
where the stress was measured by a variety of methods. The good agreement is a
further indication of the usefulness of the spinline model.

7.4.5 Radial Temperature Variation

Radial temperature variation across the filament can be important. There are
patents, for example, based on differential birefringence, the radial variation of
optical birefringence on the drawn filament; from the modeling point of view, the
radial variation in birefringence is determined by the radial variation in the tensile
stress, which results from a temperature-induced radial variation in the viscosity.
There is an elementary and seemingly adequate approach to finding the radial vari-
ation, in which we continue to assume that the kinematics are locally extensional,
so vr (r, z) = −1/2rdv/dz (cf. Equation 7.3). We continue to solve the thin filament
Equation 7.33 for v(z), but we solve the full partial differential Equation 7.15 for
T(r, z). We compute η(z) from the radial temperature profile at each step of the
integration. The stress (hence, birefringence) distribution is calculated from

σzz (r, z) = 3η (T (r, z))
dv (z)

dz
. (7.47)

The computational algorithm required is more complex than the one used to solve
the strictly one-dimensional model, but it employs straightforward methodologies.
Figure 7.7 shows a calculation of the temperature by Vassilatos and co-workers
using parameters similar to those in the preceding example, but with To = 290 ◦C,
w = 4.0 g/min, vL = 3,500 m/min, and no cross-flow air. There is about a 10◦ temper-
ature difference from the surface (TR) to the centerline (TC).

It is possible to obtain an analytical estimate of the temperature profile in the
lower portion of the melt zone, which is the region of interest in terms of drawn-
filament properties. If we change the independent variables from (r, z) to (ξ ,z),
where ξ = r/R(z), Equation 7.15 becomes

∂T
∂z

= πκ

wcp

1
ξ

∂

∂ξ
ξ
∂T
∂ξ

(7.48)

with boundary conditions

∂T
∂ξ

= 0 at ξ = 0,
∂T
∂ξ

= −Bi (T − Ta) at ξ = 1. (7.49a,b)

Bi = hR/κis a Biot number, where κ is the thermal conductivity of the polymer; the
Biot number is related to the Nusselt number by

2Bi = κa

κ
Nu. (7.50)
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Figure 7.7. Spinline radial temperature variation.
Reprinted from Vassilatos et al., Int. Polym. Proc.,
VII, 144 (1992).

Equation 7.48 with boundary conditions 7.49 is simply the equation for transient
conductive heat transfer in a cylinder, where z is the timelike variable, except that
Bi varies with z. We know that Bi is relatively insensitive to the velocity and can be
approximated by a constant value in the lower portion of the spinline, where little
attenuation occurs. The solution to Equations 7.48 and 7.49 for constant Bi is

T − Ta =
∞∑

n=1

Cn Jo (λnr/R) exp
(−λ2

nπκz/wcp
)
. (7.51)

Jo is the Bessel function of the first kind of zero order (a tabulated function); the
{λn} are roots of

λJ1 (λ) = Bi Jo (λ) , (7.52)

where J1 is the Bessel function of the first kind of first order. These roots are tabu-
lated. The constants {Cn} are determined from known conditions at some value of
z, using the orthogonality property of the Bessel functions.

We can obtain the temperature distribution near the solidification region with-
out solving for the constants {Cn}. The first term in the series for T dominates when
λ2

2πκz/wcp ≥ 3, since exp(−3) is essentially zero; λ2 is close to 4 over a large range
of Bi, so this inequality will be satisfied even in the upper portion of the spinline. In
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that case we have

T ∼= Ta + C1 Jo (λ1r/R) exp
(−λ2

1πκz/wcp
)

(7.53a)

and

T ∼= Ta + C1


 2

R2

R∫
0

r Jo (λ1r/R)dr


 exp

(−λ2
1πκz/wcp

)

= Ta + 2C1

λ1
J1(λ1) exp

(−λ2
1πκz/wcp

)
. (7.53b)

Thus, with Equation 7.51, we obtain

T − Ta

T − Ta

∼=
(

λ2
1

2Bi

)
Jo

(
λ1r

/
R

)
Jo (λ1)

. (7.54)

Values of Nu ∼ 2 are typical. κ for PET is about 0.19 J/m.s.K, while κa for air is about
0.03. A typical value for Bi would thus be of order 0.1, and for such small values of
Bi we have 2Bi ∼ λ2

1. Thus, setting r = R in Equation 7.52 we find a difference of
about 7 ◦C between the surface and average temperatures when T = 70 ◦C and Ta =
30 ◦C.

7.5 Outstanding Issues

The spinline model described here has a number of important limitations. The first,
of course, is the assumption of an inelastic description for the melt rheology. This
description is adequate for PET, and probably for nylon, but it will be inadequate
for polypropylene. We will return to this issue subsequently, after we discuss the
relevant rheology in Chapter 9.

Next, we are generally concerned with multifilament spinning, in which large
numbers of filaments extruded from a single spinning head are gathered together
following solidification to form a yarn. The aerodynamic drag and heat transfer
coefficients for the individual filaments must be adjusted to allow for the effect
of filament–filament interaction on the aerodynamic boundary layer. A number
of ways of dealing with the multifilament problem have been proposed and imple-
mented, but a truly satisfying solution has not been described in the literature.

We have said little here about the proper selection of initial conditions for the
thin filament equations. This issue has received some attention through the use of
numerical methods like those described in the next chapter, which make it possible
to link the shear and exit flow in the spinneret to the spinline. A related but more
difficult problem that has received very little attention is the proper modeling of heat
transfer at the top of the spinline, where crossflow air is likely to be impeded by the
geometry, and heat transfer from the metal spinneret plate might be important.

Finally, the assumption that solidification occurs instantaneously at a speci-
fied temperature seems to be adequate for an amorphous polymer like PET, but
it is clearly inadequate when there is significant crystallinity, as there will be with
polypropylene, nylon, and even PET at takeup speeds well above 5,000 m/min. It is
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not difficult in principle to include crystallinity in a model like the one developed
here: We need a kinetic equation for the rate of crystallization, a term in the energy
equation to account for heat effects associated with crystallization, and modification
of the stress term to account for the portion of the stress carried by the solid phase.
Stress-induced crystallization is poorly understood, but recent results by Doufas and
McHugh using the approach outlined here show good agreement with pilot-scale
data for nylon and high-speed spinning of PET. The latter work is based on a vis-
coelastic model of spinning, which we address in Chapter 10.
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Appendix 7.A Thin Filament Equations

The z momentum equation is

ρvr
∂vz

∂r
+ ρvz

∂vz

∂z
= −∂p

∂z
+ 1

r
∂

∂r
(rτrz) + ∂τzz

∂z
+ ρg . (7.14b)

(a) (b) (c) (d) (e) (f)

We multiply each term by rdr and integrate. The first term on the left becomes

R∫
0

rρvr
∂vz

∂r
dr = ρrvrvz

∣∣∣∣
R

0
−

R∫
0

ρvz
∂

∂r
(rvr ) dr = ρrvrvz

∣∣∣∣
R

0
+

R∫
0

ρrvz
∂vz

∂z
dr, (7A.1)

where the last substitution has employed the continuity equation, Equation 7.13.
We thus have two identical terms,

∫ R
0 rρvz

∂vz
∂z dr , one in (a) and one in (b). Turning
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to term (b) on the left,

R∫
0

rρvz
∂vz

∂z
dr = 1

2
ρ

R∫
0

r
∂v2

z

∂z
dr = 1

4
ρ

d
dz

(
R2v2

z

)
− 1

2
ρRv2

z (R, z) R′. (7A.2)

Summing the terms in Equation 7A.1 and 7A.2, we therefore obtain

(a) + (b) = 1
2
ρ

d
dz

(
R2v2

z

)
+ ρRvz (R, z) [vr (R, z) − vz (R, z) R′]

= 1
2

d
dz

(
R2v2

z

)
, (7A.3)

where we recall again that the integral appears twice, and we have used Equation
7.17b to relate vr and vz at r = R. Note that the only remaining term in Equation
7A.3 involves the average of v2

z, not of vz.
Turning now to the right-hand side of Equation 7.14b, we combine terms (c)

and (e) to write

R∫
0

r
∂

∂z
(−p + τzz)dr = 1

2
d
dz

[
R2 (−p + τ zz)

] − R [−p (R, z) + τzz (R, z)] R′.

(7A.4)
Term (d) becomes

R∫
0

∂

∂r
(rτrr )dr = Rτrr (R, z) . (7A.5)

Combining these two expressions, and noting that the ρg term integrates simply to
1/2R2ρg , we obtain

(c) + (d) + (e) = 1
2

d
dz

[
R2 (−p + τzz)

] − 1
2
ρav

2cDR + 1
2
ρR2g, (7A.6)

where we have used Equation 7.18b for the stress at r = R. v is the magnitude of the
relative velocity between the filament and the air at r = R. Multiplying each term by
2π and combining thus gives us

d
dz

(
πρR2v2

z

)
= d

dz

[
πR2 (−p + τ zz)

] − πρav
2RcD + πρR2g . (7A.7)

The averaging of the r component, Equation 7.14a, is more delicate. First, we
neglect the inertial terms in the radial direction. Second, after multiplying the
remaining terms by r and integrating, we find that in place of the desired forms
∫ r pdr, ∫ rτθθdr , and so forth, we obtain integrals of the form ∫ pdr, ∫ τθθdr . This
leads us to conclude that the proper way to average the terms is to multiply by r2

and integrate; that is,

0 = −
R∫

0

r2 ∂p
∂r

dr+
R∫

0

r
∂

∂r
(rτrr ) dr−

R∫
0

rτθθdr+
R∫

0

r2 ∂τrz

∂z
dr.

(a) (b) (c) (d)

(7A.8)
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The integrations are carried out as follows:

(a) : −
R∫

0

r2 ∂p
∂r

dr = −R2 p (R) + 2

R∫
0

r pdr = −R2 p (R) + R2 p, (7A.9a)

(b) :

R∫
0

r
∂

∂r
(rτrr ) dr = R2τrr (R) −

R∫
0

rτrr dr = R2τrr (R) − 1
2

R2τ rr , (7A.9b)

(c) : −
R∫

0

rτθθdr = −1
2

R2τ θθ , (7A.9c)

(d) :

R∫
0

r2 ∂τrz

∂z
dr = d

dz

R∫
0

r2τrzdr − R2τrz (R) R′. (7A.9d)

Summing the four terms, we obtain

R2
[

p − 1
2

(τ rr + τ θθ ) − p (R) + τrr (R) − τrz (R) R′
]

+ d
dz

R∫
0

r2τrzdr = 0

(7A.10a)
or, using Equation 7.18a for the stresses at the boundary,

p = 1
2

(τ rr + τ θθ ) + 1
2
ρav

2cDR′ − 1
R2

d
dz

R∫
0

r2τrzdr. (7A.10b)

To average the energy equation, Equation 7.15, we again multiply by r and
integrate as follows:

ρcp

R∫
0

rvz
∂T
∂z

dr+ ρcp

R∫
0

rvr
∂T
∂r

dr = κ

R∫
0

∂

∂r

(
r
∂T
∂r

)
dr.

(a) (b) (c)

(7A.11)

Looking at the second term on the left, we have

R∫
0

rvr
∂T
∂r

dr = Rvr (R) T (R) −
R∫

0

T
∂

∂r
(rvr ) dr = Rvr (R)T (R) +

R∫
0

rT
∂vz

∂z
dr.

(7A.12a)
Noting that term (a) contains vz∂T/∂z and term (b) contains T ∂vz/∂z, we combine
the two using the product rule for derivatives to a single term ∂(T vz)/∂z and write

(a) + (b) : ρcp


Rvr (R) T(R) +

R∫
0

r
∂ (vzT )

∂z
dr




= ρcp

[
Rvr (R) T(R) + 1

2
d
dz

(
R2vzT

) − Rvz (R) T(R) R′
]

. (7A.12b)
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Figure 7B.1. Free-body diagram of a spinline segment.

The first and third terms sum to zero because of the kinematic boundary condition
Equation 7.17b. We have already assumed that vz is independent of r, in which case
vz can be removed from the integral in computing vzT , and we have vzT = vz T .
Hence, the remaining term in Equation 7A.12b can be written as wcp

(
dT /dz

)
/2π .

Integration of the right-hand side of Equation 7A.11 gives

κ

R∫
0

∂

∂r

(
r
∂T
∂r

)
dr = κR

∂T
∂r

∣∣∣∣
r=R

= −Rh [T (R) − Ta] , (7A.12c)

where the final equality follows from the boundary condition Equation 7.19. Equat-
ing the terms in Equation 7A.12b and 7A.12c then gives

wcp
dT
dz

= −2πRh [T (R) − Ta] . (7A.13)

APPENDIX 7.B Macroscopic Derivation

Consider the control volume, or “free body,” shown in Figure 7B.1. Conservation
of mass states that the rate of change of mass in the control volume equals the rate
at which mass flows in at surface z less the rate at which mass flows out at surface
z + �z. The mass flow rate is πR2ρv, while the total mass in the control volume is
πR2π�z; thus,

∂

∂t
πR2ρ�z = πR2ρ v|z − πR2ρ v|z+�z . (7B.1)
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The time derivative is a partial derivative because position is being held constant.
Dividing by �z and taking the limit as �z → 0 then gives

∂

∂t
πR2ρ = − ∂

∂z
πR2ρv (7B.2a)

or, since ρ is assumed to be a constant,

∂R2

∂t
= − ∂

∂z
R2v. (7B.2b)

At steady state ∂R2/∂t = 0, so πR2ρv = w is a constant, independent of z.
Conservation of linear momentum states that the rate of change of linear

momentum in the control volume equals the net flow rate of linear momentum
in and out, plus the sum of the imposed forces. Momentum per unit mass is the
velocity; thus, the total z momentum in the control volume is (πR2ρ�z)v, and
the flow rate of z momentum is (πR2ρv)v. The tensile stress imposed by the sur-
rounding fluid is σ zz; the direction for this stress as shown in Figure 7B.1 repre-
sents the usual convention in mechanics, in which a positive stress puts the control
volume in tension (i.e., a pressure is negative stress). Air drag, which is written
as the product of an impact pressure (1/2ρav

2), the surface area over which the
stress operates (2πR�z), and a drag coefficient cD, acts opposite to the direc-
tion of motion. We assume the spinning direction is in the direction of grav-
ity. Surface tension forces can usually be neglected for melt spinlines. Thus, we
obtain

∂

∂t
πR2ρv�z = πR2ρ v2

∣∣
z+�z − πR2ρ v2

∣∣
z + πR2 σ zz|z+�z − πR2 σ zz|z

−
(

1
2
ρav

2
)

(2πR�z) cD + πR2�zg . (7B.3)

Dividing by �z and taking the limit �z → 0 gives

∂

∂t
πR2v = − ∂

∂z
πR2ρv2 + ∂

∂z
πR2σ zz − ρaπRv2cD + πR2ρg . (7B.4a)

This equation is simplified somewhat by expanding derivatives of products and using
Equation 7B.2 to obtain

πR2ρ
∂v

∂t
= −w

∂v

∂z
+ ∂

∂z
πR2σ zz − ρaπRv2cD + πR2ρg . (7B.4b)

Conservation of energy states that the rate of change of the total energy in the
control volume equals the net rate of energy flow in and out, plus the net rate at
which work is done on the control volume by the surroundings, plus the rate of heat
flow into the control volume. Kinetic and potential energy changes are usually small
relative to internal energy changes, so only internal energy needs to be considered.
Total internal energy in the control volume is EπR2ρ�z, where E is the internal
energy per unit mass. The work/unit mass done to move fluid into and out of the
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control volume,∗ p/ρ, is combined with the internal energy flow term to give the
flow of enthalpy per unit mass, H = E + p/ρ. We then have

∂

∂t
EπR2ρ�z = πR2ρv H

∣∣
z − πR2ρv H

∣∣
z+�z − 2πRh�z

(
T − Ta

)
, (7B.5)

where h is the heat transfer coefficient. We have neglected work done on the control
volume by the extra stresses. Dividing by �z and taking the limit as �z → 0 gives

∂

∂t
EπR2ρ = − ∂

∂z
πR2ρvH − 2πRh

(
T − Ta

)
(7B.6a)

or, using Equation 7B.2,

πR2ρ
∂E
∂t

= −w
∂ H
∂z

− 2πRh
(
T − Ta

)
. (7B.6b)

If E and H are taken to depend only on temperature, then ∂E = cv∂T and ∂ H =
cp∂T , where cv and cp are the heat capacities at constant volume and constant pres-
sure, respectively. For liquids, cp and cv are numerically almost equal. Thus, we
obtain

πR2ρcp
∂T
∂t

= −wcp
∂T
∂z

− 2πRh
(
T − Ta

)
. (7B.7)

∗ The flow work should include the full normal stress, σ zz = –p + τ zz, rather than just the isotropic
pressure. The derivation then requires some additional steps that lead to Equation 7B.7, but with
the viscous dissipation term included.



8 Numerical Simulation∗

8.1 Introduction

The examples we have studied thus far have had rather simple kinematics: flow par-
allel or nearly parallel to a wall and ideal or nearly ideal extension. Thus, we have
been able to obtain exact solutions for the flow or to obtain approximate solutions
based on the small difference between the actual flow and an ideal case for which an
exact solution is available. Even for the case of fiber spinning, where an analytical
solution to the thin filament equations cannot be obtained under conditions rele-
vant to industrial practice, we simply need to obtain a numerical solution to a pair
of ordinary differential equations, which is a task that can be accomplished using
elementary and readily available commercial software.

The flow in many real processing geometries is too complex for us to apply the
analytical methods utilized in the preceding chapters. Indeed, even when the flow
field is a simple one, the coupled heat transfer problem may not be amenable to a
simple treatment; the elementary extruder in Chapter 3 is an example of a case in
which we are unable to obtain an exact or even approximate solution for the spatial
development of the two-dimensional temperature field.

Complex coupled flow and heat transfer problems can be solved using numeri-
cal techniques in which the partial differential equations are converted to a large set
of coupled algebraic equations, and the algebraic equations are then solved using
conventional methods developed specifically to be efficient on digital computers.
The concept by which the numerical solution of the partial differential equations is
obtained is rather straightforward, and we will describe it here. Actual implementa-
tion into an efficient, user-friendly computer code is difficult and tedious, however,
and most users employ commercial software.

8.2 Galerkin’s Method

Most modern computer codes for low Reynolds number flow, the case in which we
are generally interested in polymer processing applications, use an approximation

∗ This chapter was coauthored by Benoit Debbaut, ANSYS/Polyflow s.a., Belgium.
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technique known as Galerkin’s method, which is one of a group of methods known
collectively as methods of weighted residuals. The general idea behind all methods
of weighted residuals is the same: Assume a shape (i.e., a functional form) for the
solution to the differential equation, but with one or more unknown coefficients that
must be specified; we call this the approximate solution. The approximate solution is
then put into the differential equation. It will not satisfy the differential equation
everywhere because it is an approximate solution, so there is an error – that is,
something is left over – at each point in space; we call this error the residual, and the
residual will depend on the set of unknown coefficients, which we denote {Cn}. We
then seek to distribute the error by setting a weighted average of the residual to zero.
In fact, we set as many weighted averages to zero as we have unknown coefficients
{Cn}, thus obtaining a set of algebraic equations for the unknown coefficients.

We must therefore select the set of functions {ϕn} that we will use to approxi-
mate the solution and the set of weighting functions {wn} that we will use to com-
pute the weighted averages of the residual. Galerkin’s method uses the same set of
functions for both purposes. This is an unexpected and seemingly curious choice, but
it has a rigorous foundation for certain classes of problems in a branch of mathemat-
ics known as the calculus of variations, which is the study of maxima and minima.
Possibly the most familiar connection between a minimization problem and a prob-
lem in mechanics is linear elasticity, where the stress field over the interior of an
object resulting from forces imposed at the boundary minimizes the total energy.
The creeping flow equations have a mathematical structure that is analogous to lin-
ear elasticity. In general, all differential equations that are self-adjoint, a class that
includes many of the equations of mathematical physics, correspond to minimiza-
tion problems in the calculus of variations.

As an example of the application of Galerkin’s method, consider the following
linear boundary-value problem:

y′′ + y + x = 0, y(0) =y(1) = 0. (8.1)

This equation has an analytical solution y = (sin x/ sin 1) − x. Now suppose we wish
to seek an approximate solution in the form

y =
∑

n

Cnxn(1 − x); (8.2)

that is, the approximating functions ϕn are of the form xn(1 − x), n = 1, 2, . . . , N .
The residual � is then

�({Cn}; x) =
∑
n=2

Cnn(n − 1)xn−2 −
∑
n=1

Cnn(n + 1)xn−1 +
∑
n=1

Cnxn(1 − x) − x.

(8.3)
We now multiply the residual by each of the approximating functions xm(1 − x) in
turn for m = 1 to N, integrate from x = 0 to x = 1, and set the integral to zero:

1∫
0

�({Cn}; x)xm(1 − x)dx = 0, m = 1, 2, . . . , N. (8.4)
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Figure 8.1. Exact solution (◦) and one- (�) and two- (♦) term Galerkin approximations to
Equation 8.1.

Equation 8.4 is a set on N linear algebraic equations for the N constants {Cn}.
Suppose we decide that a one-term approximation is sufficient. We then set

N = 1 and obtain
 1∫

0

[−2 + x(1 − x)x(1 − x)]dx


C1 −

1∫
0

x2(1 − x)dx = 0, (8.5)

and C1 = 5/18 = 0.2777 . . . , or

y ≈ 0.278x(1 − x). (8.6)

We obtain a higher order polynomial approximation by retaining two terms in the
expansion, in which case we obtain two coupled linear equations for the constants
C1 and C2:

3
10

C1 + 3
20

C2 = 1
12

, (8.7a)

3
20

C1 + 13
105

C2 = 1
20

. (8.7b)

We then obtain C1 = 0.192 and C2 = 0.171; hence,

y ≈ 0.192x(1 − x) + 0.171x2(1 − x). (8.8)

The symmetry of the matrix of coefficients in Equations 8.7a–b is a consequence of
the self-adjointness of the starting equation. The one- and two-term approximations
are plotted in Figure 8.1 together with the exact solution. It is clear that for this
simple problem the two-term approximation is sufficient.

The application of Galerkin’s method to a linear boundary value problem
is particularly straightforward because the resulting equations for the coefficients
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are linear and can easily be solved. Galerkin’s method has therefore been used
extensively for the solution of linear eigenvalue problems; the eigenvalue problem
for a differential equation is transformed using Galerkin’s method into a matrix
eigenvalue problem, for which efficient computer programs are available. Most
problems of interest are nonlinear, however. In that case the resulting algebraic
equations for the coefficients are also nonlinear, and they may involve integrals
that can be evaluated only numerically. The overall procedure is the same, but
now the nonlinear equations for the coefficients must be solved iteratively, typi-
cally using a multidimensional Newton-Raphson approach. We first evaluate the
residual using a nominal set of coefficients {Cn}. The new estimates Cn = Cn + δCn

are then evaluated by linearizing about the nominal solution to obtain the linear
equations

∑
k

AmkδCk = bm, (8.9a)

Amk =
∫

ϕm
∂�
∂Ck

dx, (8.9b)

bm = −
∫

ϕm�dx, (8.9c)

where the integrals are evaluated using the nominal values {Cn}. The process is then
repeated until the coefficients converge.

8.3 Finite Elements

As developed in the preceding section, Galerkin’s method employs a single set of
functions that approximate the solution over the entire spatial domain. This restric-
tion is not necessary, and we could employ different functions in different parts of
the domain. The formalism is a straightforward extension of what we have already
done, but it is demanding in detail in a way that is inappropriate for our focus, so we
will simply sketch out the idea without going into the specifics of implementation.

We divide the spatial domain into a set of subdomains (finite elements), and we
define an approximate solution over each element; the approximation must usually
be continuous across the element boundary. The elements need not all be the same
size. By applying Galerkin’s method we now obtain a set of algebraic equations for
the coefficients associated with the approximate solution in each element, but the
equations for the coefficients are coupled by the requirement that the solution be
continuous in passing from one finite element to the next. This approach has an
obvious advantage over the traditional application of Galerkin’s method, in that the
elements can be made large in regions where the function is changing slowly and
small in regions where the function is changing rapidly. In that way, very simple
approximating functions in each element – linear or quadratic functions in most
cases – can be expected to provide good local approximations to the solution. The
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use of low-order approximations means that integrations can be carried out easily
and in a general form that applies to any element.

Now, suppose we have a partial differential equation to solve in a two-
dimensional domain. As in the one-dimensional problem, we divide the region into
a set of M elements; quadrilaterals and triangles are the shapes most commonly
used in two dimensions, and these are generally adequate for fitting complex shapes.
We then use Galerkin’s method to approximate the solution in each element, using
a low-order polynomial as the approximating function. The sum of the number of
equations resulting from setting weighted residuals to zero in all M elements, match-
ing continuity conditions at all common faces, and satisfying essential boundary con-
ditions equals the total number of unknown coefficients.

This sketchy description suggests the potential advantage of the finite element
method over other approximate methods of the solution of partial differential equa-
tions. In the more familiar finite difference method, derivatives are approximated
by differences of the values of the function between two different grid points, thus
also generating a set of algebraic equations for the dependent variables at the spa-
tial grid points. It is difficult to write a general finite difference code that permits
different grid spacings in different regions in order to incorporate large distances
between grid points where the function is changing slowly and small distances where
the function is changing rapidly, however, whereas this is relatively straightforward
with finite elements. Because of the universal nature of the integrals that arise when
setting weighted residuals to zero, it is also straightforward to write general codes
that permit efficient remeshing if the user wishes to re-solve the problem with a
different distribution of elements. In addition, finite elements are very convenient
for representing nonrectangular regions, including regions with odd shapes such as
might be encountered in typical molding applications. Finite differences are more
difficult to apply in such situations, although techniques do exist.

One typically uses quadratic functions in each element in two dimensions to
approximate velocities and linear elements to approximate the pressure. There is
a theoretical foundation for incompressible Newtonian fluid flows for this selection
based on the fact that the incompressibility equation, which is associated with the
pressure, acts as a constraint on the momentum equation in the variational formula-
tion. Selecting the same order of approximation for the velocity and pressure would
overconstrain the velocity field. The momentum equation for a Newtonian fluid
involves a second derivative of the velocity with respect to the spatial coordinates,
but a partial integration is performed in creating the weighted residual that leads to
a first derivative; hence, only continuity of the approximating function is required,
while the first-order derivative can be discontinuous across the element boundary.
The partial integration also provides a natural way to impose force boundary con-
ditions. It is obvious that the integrations to obtain the weighted averages of the
residuals are straightforward with low-order polynomials, and they are the same for
all interior elements of the same shape. The major problem in implementation is one
of bookkeeping, since a rigorous system of numbering elements must be employed
to maintain the generality that makes the method attractive.
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Figure 8.2. Finite element mesh for a sheet-coating die.

8.4 Sheet-Coating Die

We consider the sheet-coating die as a first example of the use of the finite ele-
ment method to solve a processing problem. This process was analyzed in Section
5.3 using the lubrication approximation, where we found that there can be a region
of backflow within the die. The finite element mesh is shown in Figure 8.2. In con-
trast to the analysis in Section 5.3, here we include an entry region orthogonal to the
moving sheet, and we include the developing free surface of the film on the sheet
after it has left the die. The free surface is calculated with an iterative scheme that
includes the points defining the surface as unknowns and requires that the kinemat-
ical condition of no flow through the surface (compare Equation 7.17 in the spinline
analysis) be satisfied; the final mesh is shown. The elements in the converging region
of the die are smaller in the transverse direction close to the moving sheet than in
the interior because the largest gradients in the velocity are expected below the
region of recirculation. There is a singularity in the lower left-hand corner of the
flow region, where the no-slip condition on the vertical wall meets the fixed velocity
condition on the horizontal moving sheet; this is resolved in the numerical simula-
tion shown here by having a small region near the corner where the wall velocity
increases quadratically from zero to the velocity of the sheet.

The calculations are for an isothermal Newtonian fluid. Because of the quasi-
linearity of the flow equations with respect to velocity, it is not necessary to spec-
ify absolute magnitudes for the dimensions and physical properties; all lengths and
velocities simply scale linearly with the reference length and velocity, respectively,
while the pressure and stresses scale linearly with a characteristic stress defined by
the reference length and velocity and the magnitude of the viscosity. (It is neces-
sary, of course, that the reference quantities make physical sense when converted
to real-world dimensions; in particular, Reynolds numbers must be sufficiently low
to ignore inertial effects, and shear rates must be sufficiently low to neglect vis-
cous heating.) The values given here are dimensional, but other magnitudes can be
accommodated by simply changing the scales of length, velocity, and viscosity. The
geometry is as follows: exit gap spacing = 1 mm; width of the entry region = 5 mm;
total height of the entry region above the moving sheet = 20 mm; height of the die
where the upper wall intersects the entry region = 10 mm; length of the converging
region of the die = 25 mm; length of the sheet after emerging from the die = 20 mm.
The speed V of the moving plate is 1,000 mm/s, and the flow rate per unit width q is
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Figure 8.3. Streamlines for flow in a sheet-coating die.

1,500 mm2/s; hence, the average velocity at the die exit is 1,500 mm/s, and the final
film thickness is 1.5 mm. The viscosity is 30 Pa s; results of calculations with a vis-
cosity equal to 30,000 Pa s were identical except for the magnitude of the pressure.

The computed streamlines are shown in Figure 8.3. The slight “wiggle” on one
streamline is typical and reflects the discrete nature of the computation. The stream-
line that separates the recirculating region from the portion of the flow that exits the
die is clearly seen; this corresponds to the line Ho(x) in Figure 5.3. Pressure profiles
are shown in Figure 8.4. The numerical solution incorporates features that are not
accessible with the lubrication approximation. The latter is valid only as far back
as the center of the recirculating region and cannot predict the closed streamlines
or the region of rearrangement between the entering flow and the flow in the con-
verging region of the die, nor can it predict the flow in the immediate neighborhood
of the die exit. The lubrication approximation also predicts straight, vertical pres-
sure contours, which are seen over only a portion of the flow regime. The pressure
becomes infinite at the point where the melt separates from the die wall, but this is
known to be an “integrable” singularity in which the force (the integrated pressure)
over any region is finite; infinite stresses at a point are permitted in a continuum
theory, but infinite forces, of course, are not. The pressure contours in the region
of the die exit are shown on a magnified scale in Figure 8.5, where it is to be noted
that large negative pressures (relative to atmospheric) will exist in a small region.
Negative pressures of more than one atmosphere over a finite region in a quiescent
fluid can cause cavitation, but the continuum equations used here do not address
issues like nucleation and the growth of voids. (Care must be taken in any event in
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Figure 8.4. Computed pressure profiles in a sheet-coating die.
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Figure 8.5. Pressure contours near the die exit.

interpreting negative pressure for a viscous incompressible fluid in motion, since the
total stress is the sum of the isotropic pressure and the extra stress.)

8.5 Extruder

We now turn to the planar model of an extruder considered in Chapter 3. The
dimensions and parameters are those used in Examples 3.1 and 3.2. A Newtonian
melt with viscosity 30,000 Pa s and density 782 kg/m3 is to be extruded through a slit
die with a gap of 2.5 mm, a length of 75 mm, and a width of 1.5 m. The upstream
plane channel is 0.75 m long and has a height of 20 mm. The geometry is shown
drawn to scale in Figure 8.6. (Note the presence of a small vertical entry region at
the upper left, which is not included in the analytical solution that assumes rectilin-
ear flow. We will see that this detail is important.) The moving lower surface, which
approximates the extruder screw, has a linear velocity of 12.4 mm/s. The melt is fed
at a temperature of 140 ◦C. The upper surface is also maintained at 140 ◦C, as is the
temperature along the vertical left-hand wall. (The former is equivalent to assuming
an infinite Biot number, in which the wall temperature can be fixed directly, while
the latter is intended to approximate a well-mixed feed stream with a uniform tem-
perature.) The lower (moving) surface is adiabatic, as is the vertical surface at the
entry to the die. The flow in the die is taken to be adiabatic. The pressure at the
entrance and exit of the system is atmospheric; this is implemented in the computer
code by setting the normal force to zero along these surfaces. The temperature gra-
dient in the flow direction is set to zero at the exit of the die; this condition reflects
the fact that there is no axial conduction and implicitly assumes that further vertical
heat transfer beyond the exit will also be negligible. The die is sufficiently short that
the specific exit boundary condition has little effect on the calculations. The no-slip
condition is implemented for the velocity at all solid surfaces. We assume that the
physical properties are independent of temperature, so the velocity field is uncou-
pled from the temperature field. A more realistic calculation would include at least
the temperature dependence of the viscosity, but we wish to be able to make a direct
comparison to the asymptotic solutions obtained for this system in Chapter 3.

Figure 8.6. Geometry of the one-dimensional extruder, drawn to scale.
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Left-hand part Right-hand part

Figure 8.7. Finite element meshes for the left- and right-hand portions of a one-dimensional
extruder.

The left- and right-hand portions of the finite element mesh are shown in Fig-
ure 8.7. The elements are smaller in regions where more rapid changes in the depen-
dent variables are expected, with the densest mesh being used in the entry region
to the die. The mesh shown here, using quadratic approximating functions for the
velocities and temperature and linear interpolating functions for the pressure, leads
to 44,389 coupled algebraic equations; a calculation using a mesh leading to 66,457
equations gave equivalent results. There is one important computational issue that
was already mentioned in the previous example: There are different boundary con-
ditions on the orthogonal surfaces arbitrarily close to the two lower corners of the
upstream channel. In view of the quadratic interpolation selected for the velocity,
the computational scheme cannot resolve the large gradients caused by the sudden
transition from a zero velocity on the vertical surfaces to a finite velocity on the mov-
ing plate if the change is made only over the corner element, and spurious velocity
oscillations result. Thus, a gradual transition was used for this calculation; for the
examples shown here the velocity was changed quadratically from 0 to 12.4 over a
length of 5 mm.

The computed streamlines are shown in Figure 8.8, with a magnified view of the
exit region in Figure 8.9. (Recall that the relative horizontal and vertical scales in
Figure 8.8 have been adjusted for clarity.) It is clear that the parallel flow assumed
in the analysis in Chapter 3 exists over most of the region, with small regions near

Figure 8.8. Computed streamlines for a planar extruder.
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Figure 8.9. Streamlines in the exit region.

the ends of the upstream channel in which the flow reverses. Most of the fluid recir-
culates for the parameters used in this example, with the incoming melt moving
rapidly downward to the moving plate, where it is then conveyed to the exit. Pres-
sure contours, which are not shown, are vertical except in the immediate area of the
exit. The pressure profile along the midplane is shown in Figure 8.10, and it is clear
that the expected linear profile is obtained in both the upstream “extruder” channel
and in the die. The computed maximum pressure is 3.97 × 106 Pa, which is slightly
less than the value of 4.1 × 106 computed from the analytical solution. Similarly,
the computed throughput is 2.26 × 10− 6 m2/s, compared to 2.37 × 10−6 from the
analytical solution. These small differences are likely a consequence of the more
complex flow in the finite geometry. (A calculation in which the melt simply enters
from the left in parallel flow gives a flow rate of 2.32 × 10−6 m2/s.) It is important
to note one fundamental difference in the formulation between the analytical and
numerical problems. In the analytical solution the flow rate is specified and the wall
velocity is computed. In the numerical solution the wall velocity is specified and the
flow rate is computed. The recirculating flow therefore has an effect on the flow rate
in the numerical solution for a specified wall velocity.
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Figure 8.10. Pressure profile.
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Figure 8.11. Computed temperature contours for a planar extruder. For a color version of
this figure, please go to the plate section.

Temperature contours are shown in Figure 8.11, with a magnified image of the
exit region and die in Figure 8.12. The temperature profile along the moving plate
is shown in Figure 8.13a, and the profile along the midplane, including the die, is
shown in Figure 8.13b. The effect of cooling along the upper wall is obvious, since
the maximum temperature rise is only about 20 ◦C, in contrast to the computed
adiabatic temperature rise of 140 ◦C for the analytical solution in Chapter 3. It is
notable that the maximum temperature is in the interior, rather than at the adiabatic
wall, over about the first two thirds of the channel; this is because the feed, which
is at the lowest temperature in the system, is carried quickly to the moving plate.
Thus, conclusions about the temperature distribution based on the assumption of a
fully developed profile can be very misleading.
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Figure 8.12. Computed temperature contours in the region near the die. For a color version
of this figure, please go to the plate section.
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Figure 8.13. Computed temperature profile along the (a) moving plate and (b) center plane.

The assumption about the upstream conditions is crucial. If we assume instead
that the fluid enters with parallel streamlines and that the axial temperature deriva-
tive at x = 0 is zero, we obtain the temperature map shown in Figure 8.14, which
is very different qualitatively and quantitatively from the one in Figure 8.11. These
boundary conditions are equivalent to assuming that the temperature profile is fully
developed at the entrance (i.e., that the upstream channel is infinitely long), with the
subsequent distortion in the final section caused by the recirculating flow at the exit.
The computed temperature at the bottom plate at x = 0 is 196 ◦C, which is essen-
tially the value obtained from Equation 3.34a with the parameters used here and
in Chapter 3 if the heat transfer coefficient U is set to zero. (The limit corresponds
to the case Bi → ∞ and �→ 0, with the product �Bi remaining finite.) This com-
putation emphasizes the importance of the proper problem formulation; the output
from a computer simulation is only as meaningful as the input.

There is little difficulty in extending the computation to a non-Newtonian fluid.
The recirculating region near the entrance to the die is shown in Figure 8.15 for the
Newtonian fluid and for power-law fluids with n = 1/2 and 1/4. Shear thinning effects
a qualitative change in the flow. The small recirculating region in the upper corner,
which is sometimes known as a Moffatt vortex and can be theoretically predicted for
corner flows, loses strength with decreasing power-law index.
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Figure 8.14. Computed temperature profile with uniform flow from the left. For a color ver-
sion of this figure, please go to the plate section.
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n = 1

n = 1/2

n = 1/4

Figure 8.15. Flow near the die entry for power-
law fluids.

8.6 Squeeze Flow and Fountain Flow

Squeeze flow between parallel plates was analyzed in Section 6.3 as an elementary
model of compression molding. In that treatment we were able to obtain an ana-
lytical solution to the creeping flow equations for isothermal Newtonian fluids by
making the kinematical assumption that the axial velocity is independent of radial
position (or, equivalently, that material surfaces that are initially parallel to the
plates remain parallel). In this section we show a finite element solution for non-
isothermal squeeze flow of a Newtonian liquid. The geometry is shown schemat-
ically in Figure 8.16. We retain the inertial terms in the Navier-Stokes equations,
thus including the velocity transient, and we solve the full transient equation for
the temperature, including the viscous dissipation terms. The computational details,

fluid

V

Figure 8.16. Schematic of axisymmetric squeeze
flow. Reprinted from Debbaut, J. Non-Newtonian
Fluid Mech., 98, 15 (2001). Copyright Elsevier.
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Figure 8.17. Finite element mesh for squeeze flow. Reprinted from Debbaut, J. Non-
Newtonian Fluid Mech., 98, 15 (2001). Copyright Elsevier.

including the handling of the no-slip boundary condition and the transition to a
stress-free boundary condition at the outer radial contact point, are described in
the cited article by Debbaut. Solving the transient equations requires some modi-
fication of the basic Galerkin finite element method outlined in Section 8.2, and a
special technique was used to permit the internal elements to deform as the flow
progresses without leading to shapes that are inefficient for accurate computation.
These details are beyond our consideration in this introductory treatment, however,
and they are incorporated in any event into commercial finite element codes. The
calculations were carried out using the mesh shown in Figure 8.17, which contains
1,746 elements.

The calculations shown here were carried out for a fluid with a constant viscosity
of 1,000 Pa s, a density of 1,000 kg/m3, and a heat capacity and thermal conductivity
of 2,000 J/kg/K and 0.5 W/m/K, respectively. All calculations were started from rest
at a uniform temperature of 200 ◦C, a plate spacing of 1 cm, and a sample radius
of 5 cm, with the upper plate moving at a constant downward speed of 10 cm/s and
the lower plate stationary. Figure 8.18 shows the sample shape and temperature
contours as functions of time for a calculation in which the plates are assumed to

t = 0.00 s

t = 0.02 s

t = 0.04 s

t = 0.05 s

t = 0.55 s
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Figure 8.18. Shape and temperature evolution in time for adiabatic plates. Reprinted from
Debbaut, J. Non-Newtonian Fluid Mech., 98, 15 (2001). Copyright Elsevier. For a color ver-
sion of this figure, please go to the plate section.



Numerical Simulation 123

204

203

202

201

200
0.0 0.2 0.4

(a) (b)

0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

204

203

202

201

200

Temperature [°C] Temperature [°C]
t = 0.055 s

t = 0.05 s

t = 0.04 s

t = 0.02 s

t = 0.055 s

t = 0.05 s

t = 0.04 s

t = 0.02 s

z [cm] z [cm]

Figure 8.19. Axial temperature profiles 5 cm from the center: (a) adiabatic plates; (b) plates
maintained at 200 ◦C (dashed lines are adiabatic curves). Reprinted from Debbaut, J. Non-
Newtonian Fluid Mech., 98, 15 (2001). Copyright Elsevier.

be adiabatic. Shear-induced temperature boundary layers develop rapidly near the
outer edge. (There is a negligible temperature rise for these parameters if the no-
slip boundary condition is replaced by perfect slip.) Axial temperature profiles are
shown in Figure 8.19a at a distance of 5 cm from the center. Figure 8.19b shows the
development of the temperature profiles for a case in which the fluid temperature
at the plates was fixed at 200 ◦C; the dashed lines in Figure 8.19b are the adiabatic
curves, which are nearly the same as those with fixed temperature (infinite heat
transfer coefficient) except in the thin layer immediately adjacent to the wall. The
calculations were not carried out for times longer than 0.055 s because of the distor-
tion of the mesh. It should be recalled that the flow equations are decoupled from
the temperature profile development because of the assumption of a constant vis-
cosity, but the relatively small localized temperature increases from dissipation for
the assumed viscosity will not have a major effect on the flow.

The basic assumption in the analytical solution to the creeping flow equations
is that material planes that are initially parallel to the plates remain parallel. The
deformation of material planes is shown in Figure 8.20. (Although the calculation
includes the inertial terms, the effect of inertia is small after an initial transient, so
the comparison is meaningful.) The material planes do remain parallel over much
of the original sample radius, but there is substantial deformation near the outer
edge, where the fountain flow caused by the no-slip condition can be seen. Fountain
flow is the name given to the stagnation flow near the free surface. Because of the
no-slip condition, fluid cannot move along the wall to fill the mold; hence, fluid must
move to the wall from the bulk. The effect can also be seen in the contours of the
axial velocity at t = 0.02 s shown in Figure 8.21, where the axial velocity is indepen-
dent of radial position except near the free surface. Fountain flow exists in all mold-
filling operations and is a major factor in the development of morphology. The flow
field near the stagnation point is purely extensional, for example; extensional flow is
much more efficient at aligning polymer chains and glass or carbon fibers than shear
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Figure 8.20. Deformation of material planes that were originally horizontal. Reprinted from
Debbaut, J. Non-Newtonian Fluid Mech., 98, 15 (2001). Copyright Elsevier.

flow, so the fluid deposited on the plate that originated in the interfacial region is
likely to be much more oriented than the material in the core. The fountain flow
is therefore the cause of layered morphologies that are often observed in molded
parts.

8.7 Concluding Remarks

Computational fluid dynamics now plays a major role in process and product
design in many fields, including, of course, polymer processing. The basic concepts
are straightforward, but the details are complex and require the study of special-
ized texts and the periodical literature for implementation. Commercial codes are
designed with user-friendly “front ends” that facilitate use without a detailed under-
standing of the methodology; this simplicity is a mixed blessing, since issues that are
related to the computational methodology rather than the underlying physics may
be masked, and spurious results can sometimes be obtained.

The examples in this chapter were selected to illustrate the way in which numeri-
cal simulation complements and enhances the understanding of polymer processing
operations that is gained from analytical solutions based on idealizations (infinite
geometries and the lubrication approximation, for example). The analytical solu-
tions are invaluable for providing insight, but detailed information and complete

+

+Vz
Figure 8.21. Contours of axial velocity at
t = 0.02 s. The interval between con-
tours is 2 cm/s. Reprinted from Debbaut,
J. Non-Newtonian Fluid Mech., 98, 15
(2001). Copyright Elsevier.
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understanding in all but the simplest geometries can come only from the numerics;
this is especially true when there are major thermal effects.

Until this point we have considered only inelastic liquids in both the analyti-
cal and numerical treatments of polymer processing. The viscoelasticity of polymer
melts sometimes plays a major role in the mechanics of processing behavior, and
we take up this important issue in the next and subsequent chapters. Numerical
problems are greatly compounded by the presence of fluid elasticity, but the overall
approach is unchanged. We will return to the use of computational fluid dynamics
with complex rheology after taking up the subject of viscoelasticity.
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9 Polymer Melt Rheology

9.1 Introduction

Our analysis of polymer melt processing operations has thus far assumed that the
polymer melt can be described as an inelastic liquid, and in fact we have gener-
ally assumed for simplicity that the melt is Newtonian. An inelastic liquid has no
memory; that is, the stress in the fluid at a given time and place depends only on
the deformation rate at that time and place. Entangled polymers should have mem-
ory, since the response to a deformation must depend on the reorganization of the
entangled macromolecules, which cannot be instantaneous. We saw a manifestation
of such memory in Figure 1.8, where a silicone polymer being squeezed between
two plates under constant force “bounced,” causing transient increases in the gap
spacing. Another way to think about memory is to imagine the polymer melt at rest,
with the chains forming an entangled network. The chains cannot respond instanta-
neously if we attempt to deform the melt rapidly because they are entangled, so the
initial short-time response must be that of a rubberlike network, not a viscous fluid,
including shape recovery if the stress causing the deformation is quickly removed. In
general, we expect to see a superposition of two responses: the short-time rubber-
like response caused by deformation of the entangled network and the long-time
viscous response caused by the dissipative process of relative chain motion in the
flowing melt. Hence, polymer melts are viscoelastic liquids.

Rheology is the study of the response of materials to deformation, and one of
the general goals of the discipline is to obtain the appropriate stress-deformation
constitutive equation for a given material. Polymer melt rheology is a subject with
an enormous literature that has developed over five decades. Constitutive equations
for melts range from the phenomenological to the molecular. Some are available as
differential or integral equations that relate the stress state directly to the deforma-
tion rate, hence permitting (in principle) simultaneous solution with the momentum,
continuity, and energy equations. Others are indirect, sometimes requiring the solu-
tion of subsidiary equations describing the chain morphology, perhaps in the form
of an equation for the distribution function of chain orientations. Modeling appli-
cations in polymer processing have been restricted to continuum equations that can
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be solved together with the conservation equations, and many applications have
been further restricted to constitutive equations that can be expressed as differen-
tial equations. The preference for the differential equation form over the integral
equation is mainly associated with technical details of the computation.

Our goal in this chapter is modest. We will consider the most common exper-
imental manifestations of viscoelasticity in shear and elongational flows. We will
then examine the most elementary forms for constitutive equations that can repre-
sent this behavior, namely, a class of equations consisting of generalizations of the
Maxwell model. The generalized Maxwell models do a reasonable job of describing
the behavior of polymer melts, and they have been used extensively in simulations.
They contain little or no molecular structure information, however, unlike more
recent continuum theories that start from a more complete molecular framework,
but the transition to the use of molecularly based continuum theories in simulations
is largely a matter of detail at the programming level.

9.2 Linear Viscoelasticity

9.2.1 Linear Dynamical Systems

We focus initially on small deformations of the entangled melt, which is the province
of linear viscoelasticity. While processing operations clearly involve large deforma-
tions, we can learn a great deal about the melt response, even to large deformations,
by probing the linear regime. The framework of linear viscoelasticity is identical to
the frequency response methodology used in many other fields, including process
dynamics and control.

Consider any dynamical system that can be characterized by an input a(t) and
an output b(t), where a and b are functions of the independent variable, which we
will assume is time. The input is often called the forcing function, and the output the
response. The system is linear if the following criterion is satisfied:

1. input a1(t) ⇒ output b1(t);
2. input a2(t) ⇒ output b2(t).

Then
3. input a1(t) + a2(t) ⇒ output b1(t) + b2(t).

It further follows from this relation that

4. input α1a1(t) + α2a2(t) + · · · + αN aN (t) ⇒ output α1b1(t) + α2b2(t) + · · · +
αN bN (t).

Integration and differentiation are linear operations, so processes described by lin-
ear differential and integral equations are linear dynamical systems.

An autonomous linear system is one in which all system parameters are inde-
pendent of time, and integrals that exist in the system description are of convo-
lution type (a convolution integral has the form

∫∞
0 f (t − t ′)a(t ′)dt ′). It is readily
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established that an input a(t) = A sin ωt to any autonomous linear dynamical system
results in an output b(t) = B sin (ωt + δ). The ratio B/A is known as the amplitude
ratio, which we will denote AR. The amplitude ratio AR and the phase angle δ are
functions of the forcing frequency, ω. There are several equivalent ways of repre-
senting the output b(t):

b (t) = B(ω) sin (ωt + δ) = B(ω) cos δ sin ωt + B(ω) sin δ cos ωt

= C(ω) sin ωt + D(ω) cos ωt, (9.1)

AR = B/A = (C2 + D2
)1/2

/A, (9.2a)

tan δ = D/C. (9.2b)

It can be shown that knowledge of AR(ω) and δ(ω), or, equivalently, of C(ω)
and D(ω), for all frequencies ω is equivalent to complete knowledge of the equations
describing the dynamical system. (Readers who have studied Fourier analysis will
recognize that this is simply a statement that the same information is contained in
a function and its Fourier transform.) In the discipline of process dynamics and con-
trol, it is common to represent system behavior with the functions AR(ω) and δ(ω),
usually in the form of a Bode diagram, in which the logarithm of AR is plotted versus
the logarithm of ω and δ is plotted on a linear scale versus the logarithm of ω. Data
in the field of process control are sometimes represented on a Nyquist diagram, in
which C is plotted on a linear scale versus D, with ω as a parameter; this representa-
tion is also known as a Cole-Cole plot, and the latter name is commonly used in the
spectroscopy and rheology literature.

Physical systems are typically nonlinear. For sufficiently small variations about
an equilibrium state, however, most systems will respond in a linear manner, with
an error that is on the order of the amplitude of the input. The experimental test of
linearity is to ensure that the amplitude ratio remains constant with changes in the
amplitude of the input.

9.2.2 Linear Viscoelastic Functions

Now let us consider the mechanical experiment shown schematically in Figure 9.1.
A material, fluid or solid, is placed between two plates that are separated by a dis-
tance H. One plate is oscillated sinusoidally relative to the other, with amplitude L
and frequency ω. We measure the shear stress τ on the upper plate as a function
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of time. (The experiment is usually done by rotating one of the plates around an
axis, rather than by imposing a linear motion, so the stress is determined from a
torque measurement. In fact, the rotational instrument often employs a cone and a
plate or concentric cylinders, rather than parallel plates. These are details that do
not concern us, however, since it is readily shown that the same physical quantity is
measured in all these geometries.) The shear strain γ is the displacement normal-
ized with respect to the gap spacing. The input a(t) is therefore γ (t) = (L/H) sin ωt ,
while the output b(t) is the shear stress, τ (t). It is useful to note that the rate of
shear strain, which is called both the shear rate and the strain rate interchangeably,
is (Lω/H) cos ωt .

We test the experimental system to ensure that the imposed strains are in the
linear regime. The output will then be in the form of Equation 9.1 as follows:

τ (t) = G′ [(L/H) sin ωt] + G′′ [(L/H) cos ωt] . (9.3)

The “prime” notation G′ and G′′ is conventional and does not mean differentiation.
G′(ω) is known as the storage modulus, and G′′(ω) is known as the loss modulus. The
nomenclature follows from our understanding of classical materials. A linear elastic
material (a Hookean solid) is a material for which the stress is proportional to the
strain, and the deformation is completely recoverable; that is, the energy required
for displacement is stored elastically, and the body returns to its undeformed shape
when the stress is removed. The stress for a linear elastic material will be in phase
with the strain in an oscillatory experiment. Hence, G′ defines the magnitude of an
elastic response to a deformation. A linear viscous material (a Newtonian liquid) is
a material for which the stress is proportional to the strain rate, and the deforma-
tion is completely nonrecoverable; that is, the energy required for displacement is
dissipated, and the body remains deformed when the stress is removed. The stress
for a linear viscous material will be in phase with the strain rate, or 90◦ out of phase
with the strain.

Alternatively, the output is sometimes written

τ (t) = η′′ [(Lω/H) sin ωt] + η′ [(Lω/H) cos ωt] . (9.4)

η′(ω) is known as the dynamic viscosity; it is the coefficient of the term proportional
to the strain rate; hence, it is a measure of the dissipative response. η′′(ω) is rarely
used. Clearly, η′ = G′′/ω, while η′′ = G′/ω. Still another equivalent form for the
output is

τ (t) = G′ [(L/H) sin ωt] + η′ [(Lω/H) cos ωt] = G′γ + η′dγ /dt . (9.5)

Finally, it follows that

tan δ = G′′/G′ = η′/η′′. (9.6)
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Figure 9.2. Linear viscoelastic response
of a silicone polymer. Data of F. N.
Cogswell.

The amplitude ratio is equal to ω|η∗|, where the magnitude of the complex viscosity
|η∗| is defined

∣∣η∗∣∣ = [(η′)2 + (η′′)2]
1/2. (9.7a)

Similarly,

∣∣G∗∣∣ = [(G′)2 + (G′′)2]
1/2. (9.7b)

Only two of the many functions defined here are independent, but all are used. The
input is sometimes taken to be a cosine rather than a sine, in which case there may be
differences in algebraic signs in some of the equations, but this is not important. The
functions G′, G′′, η′, and η′′ are always positive. (Positivity of G′′ and η′ is required
by the second law of thermodynamics. There does not seem to be a thermodynamic
requirement for positivity of G′.)

Figure 9.2 shows experimental data for a silicone polymer similar to the one
used in the squeeze flow experiment shown in Figure 1.9. The material is viscoelas-
tic, since both the storage modulus and the dynamic viscosity are nonzero. At low
frequencies the storage modulus goes to zero and the dynamic viscosity goes to a
low-frequency asymptotic value. The deformation at low frequencies is sufficiently
slow to allow the individual polymer chains to respond to the imposed strain; hence,
the response is viscous, and it is clear that the low frequency limit of η′ must be
the zero-shear viscosity, η0. At high frequencies the individual chains are unable to
respond and the stress is entirely the consequence of deformation of the entangled
network. In this limit the polymer melt is indistinguishable from a cross-linked rub-
ber network, and the deformation is that of an elastic body, with G′ going to an
asymptotic value and η′ to zero. The value of G′ in this rubbery plateau region is
known as the shear modulus and is usually denoted G.
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Figure 9.3. Linear viscoelastic response of two polyethylene resins at 170 ◦C. Reprinted with
permission from Tsang and Dealy, J. Non-Newtonian Fluid Mech., 9, 203 (1981). Copyright
Elsevier.

The data in Figure 9.2 are atypical in one important regard. The transi-
tion between the low-frequency viscous response and the high-frequency elastic
response is very sharp, occurring over about one decade of frequency. The data in
Figure 9.3, for two polyethylene (PE) resins studied by Tsang and Dealy, with prop-
erties listed in Table 9.1, are more typical of commercial polymers. The transition
region is very broad, reflecting the broad molecular weight distribution of the melts,
and it is sometimes difficult to reach either the low frequency or rubbery plateau
regions with commercial instrumentation.

9.2.3 Relaxation Spectrum

The data in Figure 9.2 are characteristic of a first-order process, in which the dynam-
ical response is described by a single first-order linear differential equation. If we
write the equation for the stress as

λ
dτ

dt
+ τ = η

dγ

dt
, (9.8)

Table 9.1. Properties of polyethylene resins

McGill stock number 10 22
Manufacturer Union Carbide Canada DuPont of Canada
Trade name/number DFDQ4400 Sclair 59C
Type Film resin (highly branched) Blow molding resin (linear)
Solid density (kg/m3) 915 (low-density PE) 960 (high-density PE)

Data of Tsang and Dealy, J. Non-Newtonian Fluid Mech., 9, 203 (1981).
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then it readily follows that

η′ = η

1 + λ2ω2
, G′ = η

λ

λ2ω2

1 + λ2ω2
. (9.9a,b)

The solid lines through the data in Figure 9.2 are computed from Equations 9.9a–
b with η = 8 × 104 Pa s and λ = 0.31 s. (The silicone polymer in Figure 1.9 had
η = 6.65 × 104 Pa s and λ = 0.1 s.) The ratio η/λ is dimensionally a stress, cor-
responding to the shear modulus, G. Equation 9.8 is known as a linear Maxwell
model, after the nineteenth-century Scottish physicist James Clerk Maxwell, who
first proposed such an equation to describe the dynamics of gases. We recover
the one-dimensional description of a Newtonian fluid, in which the shear stress is
proportional to the shear rate, for dτ/dt � τ/λ. We recover the one-dimensional
description of a Hookean solid in differentiated form, in which the rate of change of
the stress is proportional to the rate of change of the strain, for dτ/dt � η/λ. The
Maxwell model is a linear superposition of the two limits.

It is clear that Equation 9.8 cannot describe the data in Figure 9.3. It is cus-
tomary to view the dynamics of the polymer melt as being made up of a number of
modes, each of which is described by an equation of the form of Equation 9.8. We
thus write the total shear stress τ as a sum of partial stresses,

τ =
∑

n

τn, (9.10a)

where each τn satisfies an equation of the form

λn dτn/dt + τn = λnGndγ /dt . (9.10b)

The functions η′ and G′ are then easily shown to satisfy

η′ =
∑

n

λnGn

1 + λ2
nω

2
, (9.11a)

G′ =
∑

n

Gnλ
2
nω

2

1 + λ2
nω

2
. (9.11b)

(It is customary to use λn and Gn as the parameters in the equation, rather than
λn and ηn; ηn = λnGn.) This representation is simply a finite Fourier transform if
the λn are calculated from the zeros of the trigonometric functions. The multiple
modes follow from the different motions of segments of various lengths on individ-
ual chains, as well as the distribution of chain lengths in the melt, and molecular
theories of polymer dynamics predict specific relations between the coefficients for
different modes. It suffices for our purposes to think of the set {λn,Gn} as fitting
parameters. What is usually done is to select the time constants, typically with an
even distribution on a logarithmic scale, and to fit the moduli. The allowable range
of the time constants is clearly limited to the interval bounded by the reciprocals
of the highest and lowest frequencies for which data are available, since this is the
only range in which the dynamics have been probed. (The limits can be made more
precise, and are actually somewhat narrower, but that is a technical detail that goes
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Table 9.2. Discrete spectra for data of Tsang
and Dealy in Figure 9.3

λn (s) Gn (Pa)

Resin 10 Resin 22

0.00316 20,954
0.01 15,895 31,715
0.0316 11,783 26,379
0.1 8,342 19,782
0.316 5,386 13,221
1.0 3,245 7,966
3.16 1,703 4,086

10.0 797.6 1,703
31.6 317.2 590.6

100.0 8.54 166.5

beyond the issues we are considering here.) Fits to the data in Figure 9.3 are shown
in Table 9.2. Most fits employed in practice use fewer modes. The solid lines in Fig-
ure 9.3 were computed from these parameters.

The storage and loss moduli are not independent functions. We define the relax-
ation modulus G(t) through an experiment in which a sample is subjected to an
instantaneous infinitesimal strain γ , after which the stress is allowed to relax. G(t)
is the ratio of the time-dependent stress to the strain γ . It can readily be shown that
the two moduli are the Fourier sine and cosine transforms of G(t):

G′ = ω

∞∫
0

G (t) sin ωtdt, (9.12a)

G′′ = ω

∞∫
0

G (t) cos ωtdt. (9.12b)

Equations 9.11a–b represent the case in which the relaxation modulus G(t) is fit with
a series of exponentials. G(t) can be obtained in principle from the inverse transform
of either G′ or G′′, but the inversion is an ill-defined problem because of the finite
frequency range for which data are available.

It is often convenient to use complex number notation and define the complex
modulus G∗(ω) = G′(ω) + iG′′(ω), where i2 = −1. Equations 9.12a–b can then be
written concisely as

G∗(ω) = G′(ω) + iG′′(ω) = iω

∞∫
0

G (t)e−iωt dt, (9.12c)

where we have made use of the fact that eiωt = cos ωt + i sin ωt . There are related
linear viscoelastic functions derived from other experiments, but we will not pursue
them here.
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9.2.3 Memory Integral Formulation

It is straightforward to show by integration that Equations 9.10a–b are equivalent
to the integral equation

τ (t) =
t∫

−∞

∑
n

Gn

λn
e−(t−t ′)/λnγ (t ′) dt ′. (9.13)

Here the strain γ (t ′) is taken relative to the current state, so γ (t) = 0. This memory
integral formulation is a special case of Boltzmann’s superposition integral,

τ (t) =
t∫

−∞
m (t − t ′)γ (t ′) dt ′. (9.14)

The equivalence between the differential and integral equation formulations exists
only when the memory function m(t) is expressed as a sum of one or more exponen-
tials, but the exponential representation is invariably used for the memory function.

9.2.4 Time–Temperature Superposition

The dynamics of polymer chains are strong functions of temperature; chains move
easily at temperatures well above the glass transition temperature, while motion
becomes increasingly more difficult as the glass transition is approached. The effect
of temperature is to change the free volume in the melt, hence increasing or decreas-
ing the mobility of the polymer chains. This obvious observation can be quantified
by use of the time–temperature superposition principle, which states that the only
effect of temperature on the melt is to scale the time axis. Thus, if we take linear
viscoelastic data as functions of frequency at a variety of temperatures, we expect
the data to superimpose onto master curves with the correct time scaling. The scal-
ing function is usually denoted aT(T) and is called the shift factor. Since the low-
frequency asymptote of G′′ equals the product of ω with the zero-shear viscosity
ηo, it follows that the shift factor has the temperature dependence of the zero-shear
viscosity.

Figures 9.4 and 9.5 show G′ and G′′ for two linear polymers, a poly(vinyl methyl
ether) (PVME) with a molecular weight of 138,000 and a polystyrene (PS) with a
molecular weight of 123,000, respectively. The data for each polymer have been
moved horizontally along the frequency axis until they form a single curve. There
is a substantial region of overlap, extending over three decades of frequency, so the
superposition is clearly established. The shift factors needed to obtain overlap of the
curves are shown as inserts. The reference temperature for each case was taken to
be 84 ◦C; this temperature has no significance other than being a convenient value
for the particular application for which the data were obtained, which was a study
of phase separation in blends of the two polymers. One of the significant uses of
time–temperature superposition is made evident by focusing on the open and closed
symbols in the PVME curves. The dynamic moduli are available over five orders
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Figure 9.4. Master curves for a poly(vinyl methyl ether) with a molecular weight of 138,000.
Data of Diana Hess.

of magnitude, while the range for any single temperature is considerably smaller.
Even in this case the rubbery plateau has not been reached for PVME, although the
low-frequency asymptotes (G′ ∼ ω2, G′′ ∼ ω) have been achieved. The polystyrene
data illustrate another important point. The reduced curve for G′′ goes through a
maximum and starts to decrease, as required by Equation 9.11a. (Recall that G′′ =
ωη′.) There is then an upturn in the curve that is not predicted by the equation, and
a second crossover between G′ and G′′; these frequencies are probing very short
time scales beyond the rubbery region and reflect the start of a glassy response by
the chains.

There are two common ways of representing the temperature dependence
of the shift factor. One is as an exponential in reciprocal absolute temperature
[exp(E/RT )], as done with the polystyrene data; this functionality is usually valid
at temperatures well above the glass transition temperature, which is 104 ◦C for
the polystyrene. The polystyrene data are fit with E/R = 9,300 K; a value of order
4,000 K is typical of polyethylene, reflecting the wide variation in this parameter.
The other commonly used functionality is the Williams-Landel-Ferry (WLF) equa-
tion, which is written

log aT = −Co
1 (T − To)

Co
2 + T − To

. (9.15)

To is the reference temperature. The WLF equation follows from free volume con-
siderations and is usually used within about 100 ◦C of the glass transition tempera-
ture. The data for the PVME are seen to follow the WLF equation quite well, with
Co

1 = 7.3 and Co
2 = 220 K. (There are “universal” values of the WLF parameters
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Figure 9.5. Master curves for a polystyrene with a molecular weight of 123,000. Data of Diana
Hess.

that can be used when no data are available.) The free volume theory also accounts
for the effect of pressure; hence, one expects to find a pressure shift factor aP as
well, and it does indeed exist. This is the source of the term exp(βp) in the pressure-
dependent viscosity in Equation 4.1.

The data are sometimes shifted vertically by a ratio ρ0T0/ρT , where ρ is the
density. This temperature dependence follows from the theory of rubber elasticity,
in which the modulus is proportional to absolute temperature. The vertical shift is
generally small and is rarely applied.

9.3 Shear Rheology

9.3.1 Normal Stress Difference

Polymer melts undergo large deformations in steady shear, and nonlinear effects
associated with the dynamics of the polymer chains are expected. The existence of
a finite normal stress is one manifestation of such nonlinearity. Suppose we shear
a liquid between two parallel plates, one of which is moved relative to the other.
The shear stress is equal to the ratio of the force required to move the plate at a
given rate to the plate area, and it is from this measurement that we obtain the
viscosity. With a polymeric liquid we find that a finite force is required to keep the
spacing between the plates constant; in the absence of such a force the plates will
move apart. A stress normal to the direction of shear is not observed for inelastic
liquids. (A similar phenomenon is well known in the mechanics of solids. If a rod of
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Figure 9.6. Schematic of rectilinear shear flow.

a rubbery material is twisted, there is a stress in the axial direction, orthogonal to
the plane of deformation. This phenomenon is known as the Poynting effect.)

Consider the geometry shown in Figure 9.6. The velocity is in the “1” direction
and the velocity gradient in the “2” direction; “3” is a neutral direction, sometimes
known as the vorticity direction because it is the direction of the vorticity vector. The
stress acting to push the plates apart in shear is σ22 = −p + τ22; the stress required
to keep the plates together is −σ 22. We assume the velocity is only in the 1 direc-
tion, with a gradient only in the 2 direction, in which case it follows immediately
from the momentum equation that σ11 and σ22 are constant throughout the flow
field. The pressure in an incompressible liquid is a dynamical variable that needs
to be eliminated in order to relate the stress to the deformation rate. To do this,
we carry out an analysis analogous to the force calculation for the squeeze flow in
Section 6.3. The stress at the edge, where the melt meets the atmosphere, must bal-
ance atmospheric pressure, which we can take to be zero. (We neglect the surface
tension contribution, which will generally be negligible for polymer melts.) Thus,
σ11 = −p + τ11, the stress in the flow direction, must equal zero at the interface, in
which case it must be zero everywhere. Hence, p = τ 11 and the stress required to
keep the plates from separating is τ11 − τ22. This normal stress difference is usually
denoted N1 and is called the first normal stress difference. N1 is a function of shear
rate; it can be shown from general continuum principles that N1 is a quadratic func-
tion of shear rate at low shear rates and that N1 plotted versus the square of the
shear rate at small shear rates must be identical to 2G′ plotted versus the square of
the frequency at low frequencies. A second normal stress difference, N2 = τ 22 – τ 33,
is usually numerically small relative to N1 and of the opposite algebraic sign.

9.3.2 Measurement

Any flow field in which an orthogonal coordinate system can be embedded at each
point along a streamline such that the velocity is a function of only one orthogonal
coordinate direction and the magnitudes of the velocity and the velocity gradient
are constant along the streamline can be shown to be mathematically equivalent to
the rectilinear flow in Figure 9.6, and symmetry arguments can be used to show that
there are three independent functions of the second invariant of the rate of defor-
mation that are the same in all such flows: the viscosity, η, and the two normal stress
differences, N1 and N2. Such geometries include cylindrical and plane channels in
which drag or a pressure difference is employed to effect the flow, and a variety of
torsional flows, including parallel plates, cone and plate, and concentric cylinders.
Such flow fields are known as viscometric flows because they comprise all the flows
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Figure 9.7. Steady shear and normal stress data at 170 ◦C for two polyethylenes: (a) low-
density Resin 10 and (b) high-density Resin 22. The lines are the fit to the Phan-Thien/Tanner
model, discussed below. Reprinted with permission from Tsang and Dealy, J. Non-Newtonian
Fluid Mech., 9, 203 (1981). Copyright Elsevier.

used in viscometry; they are also known in the continuum mechanics literature as
flows with constant stretch history, a categorization that includes a few flows in addi-
tion to the ones cited here.

There are important experimental differences between the various viscomet-
ric flows, despite their mathematical equivalence. The torsional geometries require
only a few grams of polymer, while the pressure-driven flows require tens of grams.
Torsional flows of polymer melts tend to become unstable at shear rates on the
order of 1 s−1, however, which is orders of magnitude below the range of interest
for most processing applications. N1 and N2 can be measured in torsional flows,
although the measurement of N2 is quite difficult because of the small magnitude.
The pressure drop in a capillary or slit is typically used to measure the viscosity at
high rates; there is no established way to measure normal stresses in a capillary or
slit, although there have been attempts based on approximate theories, and instru-
mentation is available. The major experimental problem with capillary and slit flow
for measuring the viscosity of melts has to do with entrance and exit effects, where
the flow is not viscometric. Very long channels can be used to minimize end effects,
but this leads to excessive pressure drops and possible pressure dependence of the
viscosity; the use of short capillaries or slits, which is the usual practice, requires a
correction for the end effects. Temperature control is a serious problem in all rheo-
logical measurements for polymer melts.

The measured viscosities and first normal stress differences for Tsang and
Dealy’s two polyethylenes are shown in Figure 9.7. The data at shear rates up to
1 s–1 were obtained in a torsional flow between a cone and plate, while the data at
higher shear rates were obtained from the pressure drop in a capillary. The high- and
low-shear rate data appear to be consistent, but it is difficult to obtain overlap with
a commercial piston-driven capillary viscometer because of the importance of fric-
tional losses at very low rates. These data are typical of many commercial polymers.
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Note that the normal stresses can become quite large relative to the shear stresses.
(The simplest comparison is at 1 s–1, where the viscosity is numerically equal to the
shear stress in consistent SI units.) The lines in the figure refer to a constitutive
equation that is discussed subsequently.

9.3.3 Cox-Merz Rule

Linear viscoelastic measurements can provide surprising insight into the steady
shear behavior of many polymer melts through an empiricism known as the Cox-
Merz rule. According to this relation, a plot of |η∗| = [(η′)2 + (η′′)2]

1/2 versus fre-
quency has the same functionality as a plot of shear viscosity η versus shear rate. The
Cox-Merz rule is illustrated for the two polyethylene melts in Figure 9.8. The spectra
in Table 9.2 were used to calculate |η∗| as a function of frequency, so the compari-
son is made at the precise rates where the steady shear data exist. The agreement is
good for the high-density Resin 22, and not bad for the low-density Resin 10. Good
agreement is expected at very low shear rates and frequencies, since |η∗| is domi-
nated at low frequencies by η′, which must become equal to the zero-shear viscosity
ηo in the limit. What is completely unexpected, however, is that the curves are close
at high frequencies and shear rates; the linear viscoelastic measurement probes the
small-amplitude response of an equilibrium structure that is at rest, while the shear
viscosity determines the response at very large deformations. The practical signifi-
cance of this empiricism is profound. Oscillatory shear data can be obtained at much
higher frequencies than the shear rates accessible in a torsional geometry in steady
flow, especially with the use of time–temperature superposition, and they require
much smaller samples. Hence, the Cox-Merz rule is used routinely in many labora-
tories for the measurement of shear viscosities at rates up to 100 s–1. The theoretical
foundations of the Cox-Merz rule are not well established, but recent developments
in molecular modeling have begun to unravel the reason for this curious and impor-
tant phenomenon.
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9.4 Extensional Rheology

The description of the kinematics and tensile stress in uniform uniaxial flow was
developed in Section 7.2. The experimental design of a system to carry out this flow
is very difficult. A number of designs exist, and commercial instruments have been
offered, but the measurement is not a routine one and reliable data are limited to a
small number of polymer melts. The stretch rates that can be achieved are typically
1 s–1 and less.

Figure 9.9 shows a classical data set by Meissner on the low-density polyethy-
lene whose transient shear stress was shown in Figure 2.6. The tensile stress divided
by the stretch rate is plotted versus time, together with three times the transient
development of the zero-shear viscosity. The data deviate from a single curve at
values of the strain (stretch rate multiplied by time) of about 2. There is a plateau
at low stretch rates at a Trouton ratio of 3, but the plateau is followed by a sharp
increase, and in general the tensile stress greatly exceeds three times the shear vis-
cosity. (The shear viscosity for this polymer decreases with shear rate, so the devi-
ation from three times the viscosity is greater than it would appear when the com-
parison is based only on the zero-shear viscosity.) The fact that the data lie above
the band of three times the shear values at short times is probably an experimental
artifact. A steady-state stress is not reached in these experiments, except perhaps at
the highest and lowest stretch rates. An apparent steady state has been reported in
other measurements.
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Figure 9.10. Tensile stress as a function of time for two polyethylenes at 170 ◦C: (a) low-
density Resin 10; (b) high-density Resin 22. The lines are the fit to the Phan-Thien/Tanner
model, discussed below. Reprinted with permission from Tsang and Dealy, J. Non-Newtonian
Fluid Mech., 9, 203 (1981). Copyright Elsevier.

Tensile stress measurements as a function of time are shown in Figure 9.10 for
Tsang and Dealy’s two polyethylenes at stretch rates of 0.03 s–1. Results from two
runs for each polymer give some idea of the reproducibility. The lines again corre-
spond to constitutive equations to be discussed below. Note that a linear time scale
is used for the low-density Resin 10, while the time scale is logarithmic for the high-
density Resin 22. There appears to be an approach to a steady-state stress for both
polymers. It is interesting to note that the branched resin exhibits a higher tensile
stress, whereas it has a lower viscosity than the linear resin.

9.5 Constitutive Equations

9.5.1 Introduction

Equations 9.8 and 9.10b are written for rectilinear flows and infinitesimal deforma-
tions. We need equations that apply to finite, three-dimensional deformations. Intu-
itively, one might expect simply to replace the strain rate dγ /dt by the components
of the symmetric deformation rate tensor (∂vx/∂y + ∂vy/∂x, etc.) to obtain a three-
dimensional formulation, as in Section 2.2.3, and dτ/dt by the substantial derivative
D/Dt of the appropriate stress components. The first substitution is correct, but
intuition would lead us badly astray regarding the second. Constitutive equations
must be properly invariant to changes in the frame of reference (they must sat-
isfy the principle of material frame indifference), and the substantial derivative of a
stress or deformation-rate tensor is not properly invariant. The properly invariant
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generalization of the derivative of a tensor is known, and it involves nonlinear terms
in the components of the stress and the components of the deformation rate. There
is, in fact, a three-parameter infinity of such invariant generalizations, but common
usage, which we follow here, employs a one-parameter family.

The equivalent problem also arises in the integral equation formulation, Equa-
tion 9.13, where it is somewhat easier to appreciate. Here the issue is formulated as
the proper definition of strain as measured by an observer in the laboratory frame
of reference, and ambiguity can be observed even in one dimension. Consider a
material element of length Lo that is stretched an infinitesimal distance dL. The
infinitesimal strain is clearly dL/Lo. Now suppose the element is stretched a finite
distance, to a length L1. Selection of the appropriate reference length to use in cal-
culating the strain is no longer obvious. The traditional engineering strain uses the
initial length as the reference, so the total strain is (L1 − Lo)/Lo. It is reasonable
to argue, however, that the strain should be based on the instantaneous length at
every step in the deformation; in that case the strain would be the integral of dL/L,
or ln (L1/Lo). This logarithmic measure of strain is known as Hencky strain. Both
strain measures are in use, as are others. The issue in three-dimensional constitutive
equations is deeper, but not fundamentally different. We will limit our considera-
tion here to the differential equation forms of constitutive equations, so we will not
pursue the issue of strain measures further.

9.5.2 Maxwell Equation

The simplest generalization of the linear Equation 9.10 that satisfies the principle of
material frame indifference is as follows:

λ

[
Dτ

Dt
− ∇vT

� τ − ∇v � τ

]
+ τ = λGD. (9.16)

We have dropped the subscript n for convenience, but it is implied throughout. D
denotes the terms multiplying the viscosity on the right-hand sides of the entries
in Table 2.3. The substantial derivative D/DT equals ∂/∂t + vx∂/∂x + vy∂/∂y +
vz∂/∂z in rectangular Cartesian coordinates; the form in other coordinate systems
can be deduced from Table 2.2. The component equations are given in Table 9.3 in
rectangular Cartesian coordinates for two-dimensional flow in the xy plane and in
cylindrical coordinates for axisymmetric flow with no θ variation or θ component
of velocity. (Note that the hoop stress σθθ need not vanish in the latter case.) These
reduced forms suffice for our purposes. The full three-dimensional equations can be
found in texts on rheology. λG(i.e., η) is temperature dependent for nonisothermal
flows; λ will usually have the same temperature dependence, since G is insensitive to
temperature. Time–temperature superposition also requires a term λτD ln T/Dt on
the left side of Equation 9.16, but this term does not generally seem to be important
and is usually ignored.
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Table 9.3. Components of the Maxwell fluid, Equation 9.16, for
two-dimensional flows

Two-dimensional flow in the xy plane

xx: τxx + λ

[
Dτxx

Dt
− 2

∂vx

∂x
τxx − 2

∂vx

∂y
τyx

]
= 2λG

∂vx

∂x

yy: τyy + λ

[
Dτyy

Dt
− 2

∂vy

∂x
τxy − 2

∂vy

∂y
τyy

]
= 2λG

∂vy

∂y

xy = yx: τxy + λ

[
Dτxy

Dt
− ∂vx

∂y
τyy − ∂vy

∂x
τxx

]
= λG

(
∂vx

∂y
+ ∂vy

∂x

)

Axisymmetric flow with no θ variation and vθ = 0

rr : τrr + λ

[
Dτrr

Dt
− 2

∂vr

∂r
τrr − 2

∂vr

∂z
τzr

]
= 2λG

∂vr

∂r

θθ : τθθ + λ

[
Dτθθ

Dt
− 2

vr

r
τθθ

]
= 2λG

vr

r

zz: τzz + λ

[
Dτzz

Dt
− 2

∂vz

∂r
τrz − 2

∂vz

∂z
τzz

]
= 2λG

∂vz

∂z

rz = zr : τrz + λ

[
Dτrz

Dt
− ∂vr

∂z
τzz − ∂vz

∂r
τrr

]
= λG

(
∂vr

∂z
+ ∂vz

∂r

)

We first consider the case of a rectilinear flow, in which vx = vx(y) and vy =
vz = 0. With

•
γ ≡ dvx/dy the components of Equation 9.16 then simplify to

τxx − 2λ
•
γ τyx = 0, (9.17a)

τyy = 0, (9.17b)

τxy − λ
•
γ τyy = λG

•
γ . (9.17c)

Combination of Equations 9.17b and c then gives, for each value of n,

τn,xy = λnGn
•
γ , (9.18a)

whereas the nonzero normal stress is then given by

τn,xx = 2λ2
nGn

•
γ

2
. (9.18b)

The shear rate terms factor out in the summation over all modes, so we obtain,
finally,

τxy =
(∑

n

λnGn

)
•
γ , (9.19a)

N1 =
∑

n

(τn,xx − τn,yy) = 2

(∑
n

λ2
nGn

)
•
γ

2
. (9.19b)

The Maxwell equation with one or multiple modes therefore predicts a shear stress
that varies linearly with shear rate and a finite first normal stress difference that
varies quadratically with shear rate. The second normal stress difference is predicted
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to be zero. The linear/quadratic behavior is consistent with steady shear behavior at
low shear rates, but it does not correctly reflect the shear thinning at high rates. The
shear viscosity η equals

∑
λnGn, which is the limiting value of η′ at low frequency,

as required (cf. Equation 9.11a). The coefficient of the quadratic term in the normal
stress is 2

∑
λ2

nGn, which equals twice the coefficient of the quadratic term in G′ at
low frequencies (Equation 9.11b). A mean relaxation time is often defined as

λ =
∑

λ2
nGn∑

λnGn
= N1

2τxy
•
γ

. (9.20)

We now turn to uniform uniaxial extensional flow, with (cf. Equation 7.4a–b)
the velocity field vz = •

γE z, vr = − 1
2

•
γE r . The velocity gradients are all constant in

space, so it follows that the stresses are independent of spatial position. It is easily
shown with this velocity field that τrz = 0 and τθθ = τrr . The total axial stress σzz

is then equal to the stress difference τzz − τrr (cf. Equation 7.9). The component
equations for each dynamical mode are

τrr + λ

[
∂τrr

∂t
+ •

γE τrr

]
= −λG

•
γE , (9.21a)

τzz + λ

[
∂τzz

∂t
− 2

•
γE τzz

]
= 2λG

•
γE . (9.21b)

We assume a constant stretch rate, in which case these are simply uncoupled first-
order linear ordinary differential equations, which are easily integrated. When the
modes are summed to give the total stress, we then obtain the equation

σzz = 3


∑

n

λnGn(
1 − 2λn

•
γE

) (
1 + λn

•
γE

)

 •

γE −
∑

n

2λnGn
•

γE

1 − 2λn
•

γE

e−(1−2λn
•

γE )t/λn

−
∑

n

λnGn
•

γE

1 + λn
•

γE

e(1+λn
•

γE )t/λn . (9.22)

The dynamical behavior is striking. A steady-state stress is reached as long as
2λn

•
γE < 1 for all modes; the Trouton ratio of 3 is attained at steady state when

2λn
•

γE � 1 for all modes, while for all finite values of this product the ultimate
steady-state Trouton ratio is greater than 3. If 2λn

•
γE > 1 for any single mode –

clearly, the longest relaxation time is the one that matters here – the stress will
ultimately grow without bound. The response for any single mode is shown in
Figure 9.11. The response for two modes, using mean parameters characteristic of
a polyethylene, is shown in Figure 9.12. The mean relaxation time is defined as in
Equation 9.20. Even two dynamical modes are sufficient to permit a plateau (seen
here as the inflection) followed by a second region of increasing stress, but an ulti-
mate steady state will not be achieved with this simple model.
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9.5.3 Phan-Thien/Tanner Model

The Phan-Thien/Tanner (PTT) model is one of many generalizations that have been
introduced to deal with the deficiencies of the basic Maxwell model: constant vis-
cosity, quadratic first normal stress difference, zero second normal stress difference,
and infinite tensile stress at a finite extension rate. Many of these models, includ-
ing the PTT, are derived from microstructural models that attempt to account for
aspects of chain morphology and interactions. PTT is a network model, in which the
chains are assumed to interact at entanglement points. There are kinetic expressions
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Figure 9.12. Tensile stress divided by 3η
•

γE as a function of reduced time for a two-mode
Maxwell fluid. η is the viscosity and λ is the mean relaxation time. Reprinted from Denn,
in R. S. Rivlin, ed., The Mechanics of Viscoelastic Fluids, AMD Vol. 22, ASME, New York,
1977, p. 101.
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Table 9.4. Components of the Phan-Thien/Tanner Fluid, Equation 9.23, for two-dimensional flows

Two-dimensional flow in the xy plane

xx: Yτxx + λ

[
Dτxx

Dt
− 2

∂vx

∂x
τxx − 2

∂vx

∂y
τyx + 2ξ

∂vx

∂x
τxx + ξ

(
∂vx

∂y
+ ∂vy

∂x

)
τxy

]
= 2λG

∂vx

∂x

yy: Yτyy + λ

[
Dτyy

Dt
− 2

∂vy

∂x
τxy − 2

∂vy

∂y
τyy + 2ξ

∂vy

∂y
τyy + ξ

(
∂vx

∂y
+ ∂vy

∂x

)
τxy

]
= 2λG

∂vy

∂y

xy = yx: Yτxy + λ

[
Dτxy

Dt
− ∂vx

∂y
τyy − ∂vy

∂x
τxx + 1

2
ξ

(
∂vx

∂y
+ ∂vy

∂x

)
(τxx + τyy)

]
= λG

(
∂vx

∂y
+ ∂vy

∂x

)
Y = exp [ε (τxx + τyy + τzz)/G]

Axisymmetric flow with no θ variation and vθ = 0

rr : Yτrr + λ

[
Dτrr

Dt
− 2

∂vr

∂r
τrr − 2

∂vr

∂z
τzr + 2ξ

∂vr

∂r
τrr + ξ

(
∂vr

∂z
+ ∂vz

∂r

)
τrz

]
= 2λG

∂vr

∂r

θθ : Yτθθ + λ

[
Dτθθ

Dt
− 2

vr

r
τθθ + 2ξ

vr

r
τθθ

]
= 2λG

vr

r

zz: Yτzz + λ

[
Dτzz

Dt
− 2

∂vz

∂r
τrz − 2

∂vz

∂z
τzz + 2ξ

∂vz

∂z
τzz + ξ

(
∂vr

∂z
+ ∂vz

∂r

)
τrz

]
= 2λG

∂vz

∂z

rz=zr : Yτrz+λ

[
Dτrz

Dt
− ∂vr

∂z
τzz− ∂vz

∂r
τrr − vr

r
τrz+ξ

(
∂vr

∂z
+ ∂vz

∂r

)
(τrr +τzz)−2ξ

vr

r
τrz

]
= λG

(
∂vz

∂r
+ ∂vr

∂z

)
Y = exp [ε (τrr + τθθ + τzz)/G]

describing the rate of formation and disappearance of entanglements; the former
is driven by the distance from equilibrium, while the latter depends on the stress.
(The Maxwell equation is obtained rigorously from such a kinetic model when both
rates are independent of the deformation.) There are, of course, approximations
and empiricisms introduced in passing from the basic network formulation to the
final constitutive equation. The model, which contains only two additional parame-
ters beyond those measured in a linear viscoelastic experiment, has been relatively
successful in describing melt rheology and it has been used extensively in simula-
tions of polymer processing flows. Each term τn in the PTT equation satisfies the
following Maxwell-like equation:

λ

[
Dτ

Dt
− ∇vT

�τ − τ �∇v + ξ (τ �D + D �τ)
]

+ Y (trτ/G) τ = λGD. (9.23)

The components for two-dimensional flows are shown in Table 9.4. trτ is the trace
of the stress; the trace is the sum of the diagonal components and is a scalar invari-
ant (the first invariant) that is the same in all coordinate systems. Two forms have
commonly been used for the function Y:

Y (trτ/G) = exp (εtrτ/G) , (9.24a)

Y (trτ/G) = 1 + εtrτ/G. (9.24b)

The exponential form is preferred for polymer melts and has been used in all the
examples cited here. The function Y plays an important role in extensional flows,
where it prevents the stress from growing without bound for finite stretch rates.
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(The structure is essentially that of a Maxwell fluid if Equation 9.23 is multiplied by
Y–1, but with a relaxation time equal to λY−1 that decreases with increasing stress.)
Values of ε are typically of order 0.02 or less, and at this level the shear viscosity and
normal stress differences are insensitive to ε. The parameter ξ arises in the network
model as a slip coefficient that reflects the motion of the network relative to the
continuum.

The equations for the PTT fluid do not have a closed-form analytical solution
for a rectilinear flow vx = vx(y), vy = vz = 0. To a good approximation, however,
we can take Y equal to unity in a shear flow, in which case the viscometric functions
are obtained approximately as follows:

τxy =
∑

n

λnGn
•
γ

1 + ξ (2 − ξ)
(
λn

•
γ
)2 , (9.25a)

N1 = τxx − τyy =
∑

n

2λ2
nGn

•
γ 2

1 + ξ (2 − ξ)
(
λn

•
γ
)2 , (9.25b)

N2 = τyy − τzz = − 1
2ξ N1. (9.25c)

Thus, the fluid is shear thinning for 0 < ξ < 2, with a finite second normal stress dif-
ference. −N2/N1 is typically of order 0.1, so ξ will typically be of order 0.2. There is
no simple analytical solution to the equations for transient stress growth in uniform
uniaxial extension, and the coupled ordinary differential equations must be solved
numerically.

Phan-Thien and Tanner used data of Meissner for the low-density polyethylene
in Figure 9.9 to test the model, with ξ = 0.2 and ε = 0.01. The fit to steady shear
viscosity and normal stresses is good, and the transients are fit reasonably well; the
shear data are insensitive to the value of ε as expected. The fit to the extensional
data at three stretch rates is shown in Figure 9.13. The agreement is quite good,
especially when it is recalled that there is probably an experimental artifact at short
times that causes the data to be high. The model predicts an approach to a steady
extensional viscosity that scales as 1/ε, but the data do not extend sufficiently far to
test the prediction.

The fit of the PTT equation to the steady shear data of Tsang and Dealy is shown
as the lines in Figures 9.7, with ξ = 0.1 for LDPE Resin 10 and ξ = 0.3 for HDPE
Resin 22. The fits are reasonable, given that the nonlinearity in the shear data is
accounted for by only a single parameter, but the model predicts shear thinning that
is more rapid than found in the data, especially for the HDPE. The fit to the exten-
sional data at a stretch rate of 0.03 s–1 is shown in Figure 9.10. The fit is much poorer
than that found by Phan-Thien and Tanner for the Meissner data, and the apparent
steady state is attained earlier and at a lower stress than predicted by the equation.
The Maxwell model, which corresponds to ξ = ε = 0, is shown for comparison. The
Maxwell model does a better job of fitting these extensional data, but of course the
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Maxwell model cannot account for the variable viscosity and nonquadratic normal
stress.

9.5.4 Other Constitutive Equations

There are numerous other constitutive equations of both differential and integral
type for polymer melts, and some do a better job of matching data from a variety of
experiments than does the PTT equation. The overall structure of the differential
equations is usually of the form employed here: The total stress is a sum of individual
stress modes, each associated with one term in the linear viscoelastic spectrum, and
there is an invariant derivative similar in structure to the one in the PTT equation,
but with different quadratic nonlinearities in τ and ∇v. The Giesekus model, for
example, which is also widely used, has the following form:

λ

[
Dτ

Dt
− ∇vT

�τ − τ �∇v + α

λG
(τ �τ)

]
+ τ = λGD, 0 ≤ α ≤ 1. (9.26)

This model also has a shear-thinning viscosity, a finite second normal stress differ-
ence, and bounded extensional stresses.

The modern approach to constitutive equations for melts and concentrated
solutions has evolved from the reptation idea popularized by de Gennes and Doi
and Edwards. In this picture, the mobility of a polymer chain in any direction except
along the backbone is visualized as constrained to an imaginary tubelike region
formed by the entanglements with the neighboring chains, which serve to restrict
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any transverse motion. This concept leads to an expression for the linear viscoelas-
tic spectrum of linear chains, a particular strain measure, and, with approximations,
an explicit constitutive equation that can be closely approximated by a differential
equation of the generalized Maxwell type. The advantage of this formulation is that
molecular weight scaling is incorporated directly into the coefficients. The simple
reptation idea is powerful, but the equation that results is too simple and sometimes
aphysical, so considerable effort has been devoted to improved formulations of tube
models. The tube approach has enabled the development of models that account for
molecular weight distributions, and the concepts can be extended to include branch-
ing. The pom-pom model, a tube model that was developed for branched polymers
but also works well for linear polymers, can be expressed in differential equation
form and seems to be quite versatile. It has been used for some processing simu-
lations and has become a component of some commercial codes. Passing from the
PTT model to one of these improved differential constitutive equations is a matter
of programming detail rather than new basic concepts, and we will not pursue them
further.

Invariant integral generalizations of Equation 9.14 lead to a class of constitutive
equations known as BKZ or K-BKZ (for Kaye, Bernstein, Kearsley, and Zapas)
models. This class includes most of the equations derived from the tube concept.
A rigorous one-to-one correspondence between integral and differential constitu-
tive equations exists only for the basic Maxwell fluid, but good differential equation
approximations exist for many of the tube models. Implementation of an integral
constitutive equation requires exact tracking of the strain for each fluid element,
which involves very different programming considerations from simultaneous solu-
tion of the differential equation models with the momentum and energy equations.
The advantage of the integral formulation is that the computational intensity is inde-
pendent of the number of modes in the memory function, but this advantage is bal-
anced by the more difficult implementation.

9.6 Entry and Exit Losses

Viscosity determination using pressure-driven flow in a capillary or slit is con-
founded by losses in the entry and exit regions, where the flow is readjusting and
the velocity profile is not fully developed. It is possible to use very long capillaries
or slits in order to minimize this effect, but the resulting large pressure drops can
then introduce problems associated with the pressure dependence of the viscosity,
as well as viscous dissipation.

The excess pressure drop associated with the entrance and exit is shear-rate
dependent for polymer melts. If the excess pressure drop can be measured, then it
can be subtracted from the total pressure drop to provide the value for fully devel-
oped flow, and the latter can be used to compute the shear stress at a given shear
rate. The method commonly used is known as a Bagley plot. Here, the pressure drop
as a function of shear rate is measured in capillaries of varying length-to-diameter
(L/D) ratios. The data are then plotted as pressure drop versus L/D at fixed shear
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Reprinted with permission from Kim
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rate and extrapolated to L/D = 0. An example by Kim and Dealy is shown in Fig-
ure 9.14 for a linear metallocene polyethylene with Mw = 109,000 and Mw/Mn =
2.3. Only the highest and lowest shear rates are extrapolated here for clarity. Data
for L/D = 40, which results in a nonlinear curve at each shear rate because of pres-
sure effects, are not included. Kim and Dealy showed that the same result could be
obtained using a properly designed capillary with L/D < 0.5 (an orifice die). Stan-
dard practice in many laboratories is to use a capillary with L/D of 10 or 15 and an
orifice die, and then to subtract the pressure drop through the orifice from the total
pressure drop in the longer die to obtain the fully developed value.

The entry and exit losses for a Newtonian fluid at very low Reynolds number
are equivalent to fully developed flow in an extra capillary length of about one
diameter. The extra losses can be significantly larger for polymer melts, however.
Many authors believe that the large entry and exit losses for polymer melts are a
consequence of the stretching flow along the centerline of the entry region, and
approximate analyses by Cogswell and Binding are often used to infer extensional
viscosities from the entry losses. These analyses involve some rather severe approxi-
mations and assumptions, and direct comparisons with uniform uniaxial extensional
measurements in the same range of deformation rates are rare. It can be shown
rigorously for slits that the first order correction to the losses through a contraction
resulting from fluid elasticity is negative (although this first-order regime is unattain-
able in practice and negative values are never observed), in which case the Cogswell
and Binding analyses would give a thermodynamically impossible negative exten-
sional viscosity.

Extrapolation of the pressure profile in a slit right up to the exit sometimes
results in a positive nonzero value. If fully developed flow were to exist right up
to the exit, it could then be shown that the first normal stress difference could be
extracted from this exit pressure, and the method has been used. It is easy to show,
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however, that the error resulting from flow rearrangement near the exit is larger
than the normal stress, and the uncertainty in the extrapolation of the pressure also
introduces an error that is larger than the normal stress. Hence, data obtained using
this method should not be used.

9.7 Concluding Remarks

The Phan-Thien/Tanner constitutive equation does not represent the state of the art
in modeling melt flow at the time of this writing, but it is adequate to illustrate the
response of melts of flexible polymers in complex flows and it has a mathematical
structure that does not differ substantively from other equations with a firmer basis
in molecular theory. Furthermore, it has been widely used in simulation studies to
date. Hence, we will use it for illustrative purposes in this text, recognizing that it
is likely to be replaced as the preferred constitutive equation for applications. The
minimum rheological information required for simulations is thus the temperature-
dependent linear viscoelastic spectrum and the temperature-dependent viscosity as
a function of shear rate. Extensional data should be used, but they are often unavail-
able; when the PTT equation is employed it is therefore common to select a “rea-
sonable” value of ε to describe the extensional response.

Finally, it is important to note that our focus in this chapter and throughout the
text is on single-phase polymers with flexible backbones. The rheology of polymers
with rigid elements in the backbone, which are often liquid crystalline in the melt, is
quite different from that described here. Immiscible blends and filled polymers may
have behavior similar to that of the flexible melts, but there are often important
differences. Structured fluids are discussed briefly in Chapter 13.
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molecules.



10 Viscoelasticity in Processing Flows

10.1 Introduction

Viscoelasticity will clearly have a large effect in some processing operations and lit-
tle or none in others, and we require a way to discriminate between these cases.
One clue follows from the linear viscoelastic experiments shown in Figures 9.2 and
9.3 and the accompanying spectral description in Equations 9.11a–b. The entangled
network is able to relax at low frequencies, so the elastic contribution to the stress is
negligible and the deformation is mostly dissipative (G′ → 0). The stress at high fre-
quencies cannot relax, so dissipation is negligible and the deformation is recoverable
(η′ → 0). The transition between these two extremes is sharp for a liquid with a sin-
gle Maxwell mode and occurs in the neighborhood of λω ∼ 1. ω−1 is the characteris-
tic time for the oscillatory deformation, so we may think of the two limiting cases as
representing processes that are slow and fast, respectively, relative to the character-
istic time of the fluid. The transition is murkier for most polymer melts, where there
are many dynamical modes, but there will be some relaxation time – a mean value
like that given by Equation 9.20 or the longest relaxation time in the spectrum – such
that the same criterion can be usefully applied. The ratio of the characteristic time of
the fluid to the characteristic time of the process is known as the Deborah number*

and is usually denoted De. The time scale for the process is usually the residence
time. Thus, extrusion, which has a very long residence time relative to the relax-
ation time of the melt, is a low Deborah number process and should be dominated
by dissipative effects. Melt spinning, in which the residence time in the melt zone is
very short, may be a high Deborah number process in which elasticity will dominate.

Another useful dimensionless measure follows from a traditional dimensional
analysis approach. Consider the Maxwell equation,

λ

[
Dτ

Dt
− ∇vT

� τ − τ � ∇v
]

+ τ = λGD. (10.1)

* From the Song of Deborah, Judges 5:5, “The mountains quaked (sometimes translated as “flowed”)
at the presence of the Lord.” The concept of different types of deformation on different time scales
and the name of the dimensionless group were introduced by Marcus Reiner in 1964, although
Reiner’s definition of De was the inverse of the definition now in use.
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We suppose that there is only one characteristic length in the system, L, and one
characteristic velocity, V. We further assume that the only characteristic time is
L/V . We then define dimensionless quantities, denoted by an asterisk (∗), in the
usual way:

t = t∗L/V , v = v∗V , ∇ = ∇∗/L, D = D∗V/L.

There are two possible choices of the characteristic stress, G and λGV/L. The for-
mer is the modulus, while the latter is proportional to the shear stress. (Recall that
the viscosity η = λG for a Maxwell fluid.) We choose to normalize with the shear
stress, so

τ = τ∗λGV/L.

Substitution of these new variables into Equation 10.1 then leads immediately to the
dimensionless equation

λ
V
L

[
Dτ∗

Dt∗ − ∇∗v∗T
� τ∗ − τ∗

� ∇∗v∗
]

+ τ∗ = D∗. (10.2)

There is a single dimensionless group, λV/L, which is known as the Weissenberg
number, denoted by various authors as We or Wi. (We is more common, but it can
lead to confusion with the Weber number, so Wi will be used here.) The shear rate
in any viscometric flow is equal to a constant multiplied by V/L, so it readily fol-
lows that the ratio of the first normal stress difference to the shear stress is equal to
twice that constant multiplied by Wi. Hence, Wi can be interpreted as the relative
magnitude of elastic (normal) stresses to shear stresses in a viscometric flow. The
ratio of the shear stress to the shear modulus, G, is sometimes known as the recov-
erable shear and is denoted SR. SR differs from Wi for a Maxwell fluid only by the
constant that multiplies V/L to form the shear rate for a given flow. In fact, many
authors define Wi as the product of the relaxation time and the shear rate, in which
case Wi = SR. It is important to keep the various definitions of Wi in mind when
comparing results from different authors.

The residence time in many flows is of order L/V (flow past a sphere, for exam-
ple), in which case De and Wi are the same. This has caused some confusion, and
there are papers in the literature where De is used in place of Wi. Both groups will
appear naturally, and are independent, in flows in which there are two characteristic
length scales, one defining local shear stresses and the other defining the residence
time; consider flow in a channel, for example, where De is usually small while Wi
can be large.

10.2 Extrudate Swell

As a first example of elastic effects, consider a low Reynolds number jet emerging
from a cylindrical tube. We assume that the tube is sufficiently long that the flow
is fully developed prior to the exit (De = 0). It is well known – indeed, it is a stan-
dard problem in first courses in fluid mechanics – that the diameter of a jet of a
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Figure 10.1. Computed extrudate swell of a Phan-Thien/Tanner fluid with ξ = 0 for various
values of ε. ε = 0 corresponds to a Maxwell fluid. Reprinted by permission of Oxford Uni-
versity Press from Tanner, Engineering Rheology, 2nd ed., Oxford, New York, 2000, p. 429.

Newtonian fluid is different from the tube diameter because of the rearrangement
from a parabolic laminar velocity profile in the tube to a flat profile in the developed
jet. The standard result in fluid mechanics texts is that the jet-to-tube diameter ratio,
Dj/D, is 0.82. This is a high Reynolds number result, however. It is less well known
that there is a transition in the neighborhood of Re = 50 and that the ratio Dj/D
for low Re is 1.13; that is, the low Reynolds number jet swells upon exiting, as shown
in Figure 1.10.

We should expect even greater extrudate swell for a viscoelastic liquid since the
first normal stress difference “pushes” against the walls of the tube until the exit,
after which the resistance vanishes. Tanner has developed an approximate theory
for extrudate swell based on the elastic recovery when the tube wall is instantly
removed, giving the following result:

Dj

D
= 0.13 +

[
1 + 1

8

(
N1

τ

)2
]1/6

. (10.3)

τ is the shear stress, and the stresses are evaluated at the shear rate at the wall, which
is 8V/D for a fluid with a constant viscosity. The additive factor 0.13 is an empirical
addition to give the correct result for a Newtonian fluid. Equation 10.3 provides a
rough fit to experimental data for polymer melts and concentrated solutions.

Figure 10.1 shows numerical calculations of extrudate swell for a single-mode
Phan-Thien/Tanner equation with ξ = 0 and various values of ε, together with
Equation 10.3. The dashed curve for ε = 0 corresponds to a Maxwell fluid. Note
the small, unexpected decrease in the extrudate swell for very small values of Wi.
Extrudate swell is clearly very important, and swell needs to be taken into account
in relating the shape of an extrudate to the die from which it emerges. The prob-
lem of designing the shape of a die for an extrudate of complex shape requires
a three-dimensional calculation and a constitutive equation that is a very good
representation of the polymer properties. Some progress has been made on
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this problem, but practical calculations would require significant computational
resources.

The curves for ε = 0 and 0.005 terminate before the curve for ε = 0.01 because
the numerical scheme failed to converge. (These calculations were done using a
boundary element method rather than a finite element method, but the results from
the latter are essentially the same, as they are for finite difference methods.) The rea-
son for the convergence failure is the stress singularity at the point of departure from
the die. The stress in a Newtonian fluid increases roughly like the −1/2 power of dis-
tance from the singular point, and most numerical schemes are sufficiently robust to
deal with this very rapid change over a small distance. The strength of the singular-
ity is not known for viscoelastic fluids, but at least for the Maxwell fluid it appears to
be much stronger than for the Newtonian fluid, and all computational schemes ulti-
mately fail at some throughput because of the development of a (numerical) stress
boundary layer that propagates through the flow field and contaminates the calcula-
tions. The more shear thinning the fluid, the greater the range of flow rates that can
be accommodated. This observation can be understood in terms of the PTT equa-
tion with ξ = 0 by noting that the equation is equivalent to a Maxwell fluid with a
relaxation time equal to λ exp(−εtrτ/G); hence, the higher the stress, the smaller
the relaxation time and the smaller the effective Weissenberg number. The high
Weissenberg number problem in viscoelastic computation always arises, and while
there has been considerable progress on extending the range of convergence, the
fundamental problem is unsolved and convergence will fail at some value of Wi for
this flow and other flows with singularities.

10.3 Fiber Spinning Revisited

Fiber spinning, discussed in Chapter 7, is a process in which the residence time is
short; hence, transient viscoelastic effects are likely to be important. Our starting
point for a steady-state thin filament analysis is Equation 7.26:

w
dv

dz
= d

dz

[
πR2 (τzz − τrr )

]− πRρav
2cD + πρR2g . (10.4)

Here we have removed the overbars from the averaged quantities and made use of
the fact that τrr = τθθ . (This equality does not hold for hollow-fiber spinning.) The
steady-state equations for each mode of a Phan-Thien/Tanner fluid (Table 9.4) are
as follows:

Yτzz + λ

[
v

dτzz

dz
− 2(1 − ξ)

dv

dz
τzz

]
= 2λG

dv

dz
, (10.5a)

Yτrr + λ

[
v

dτrr

dz
− (1 − ξ)

dv

dz
τrr

]
= −λG

dv

dz
, (10.5b)

Y = exp [ε(τzz + 2τrr )/G] . (10.5c)

The Maxwell fluid corresponds to ξ = ε = 0.
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Figure 10.2. Velocity profile in a Maxwell fluid with τrr/τzz = 0 at z = 0. Reprinted with per-
mission from Denn et al., AIChE J., 21, 791 (1975). Copyright American Institute of Chemical
Engineers.

An analytical solution to these equations is not possible, but asymptotic solu-
tions in the absence of heat transfer, inertia, air drag, and gravity can be obtained
for the single-mode Maxwell fluid in small- and large-force limits. The latter is of
the most interest to us here and is written in terms of two dimensionless groups,
De = λvo/L and B = 4F/3πλ Gdovo. vo and do are the initial velocity and diame-
ter, respectively. F is the force, which is a constant along the entire spinline in this
limit. The velocity profile is as follows:

v

vo
= 1 + z

LDe
− 1

2BDe
do

L
ln
(

1 + z
LDe

)

− 1
2

[
1

2BDe
do

L
+ 3

τrr (0)
τzz(0)

]
1 − 1(

1 + z
LDe

)2


+ · · · . (10.6)

Note that the natural length scale LDe is λvo. The grouping BDeL/do is simply the
initial spinline stress divided by the tensile (Young’s) modulus, 3G. The initial ratio
of the radial to axial extra stress, τrr (0)/τzz(0), is required. As F → ∞ (B → ∞)
the velocity profile approaches the straight line 1 + z/LDe, and there is a maximum
achievable draw ratio DR = vL/vo = 1 + De−1. This result is the analog of the infi-
nite force in a Maxwell fluid at a finite rate of extension.

The solution to the thin filament equations for an isothermal Maxwell fluid in
the absence of inertia, air drag, and gravity is shown in Figure 10.2 for DR = 20.
The calculation is for the initial value of the ratio τrr/τzz set to 0, but the stress
ratio approaches 0 on the spinline for all choices in the permissible range from 0



158 Polymer Melt Processing

8

7

6

5

4

3

2

1

0 0.5 1 1.5 2 2.5 3

B

In Dr

Newtonian

PTT, De  = 1/80

Maxwell, De = 1/80

Maxwell, De = 1/40

Figure 10.3. Draw ratio at z = 5do as a function of dimensionless force for Maxwell and
Phan-Thien/Tanner fluids. Reprinted with permission from Keunings et al., Ind. Eng. Chem.
Fundam., 22, 347 (1983). Copyright American Chemical Society.

to −1/2 for finite De, and the result is insensitive to the initial value. The approach
to a linear profile is clearly seen as De approaches the limiting value defined by
(DR − 1)−1 = 1/19 = 0.0526. . . .

Results of a finite element solution without inertia, air drag, or gravity are shown
in Figure 10.3 for the isothermal Maxwell and Phan-Thien/Tanner equations, the
latter with ξ = 0 and ε = 0.015. The computational domain included the final por-
tion of the spinneret and the portion of the spinline up to z = 5do. The calculations
were carried out by imposing a dimensionless force B at z = 5do as the downstream
boundary condition; the upstream flow was taken to be fully developed in the spin-
neret at z = −2do. The computed draw ratios for the Maxwell fluid are approaching
the limiting values of 81 and 41 defined by the thin-filament analysis for De = 1/80
and 1/40, respectively, with increasing force (increasing B), whereas the PTT fluid,
which does not have a limiting value, shows a gradual increase. The values of De
shown are the largest for which convergent solutions could be obtained. Contours
of constant values of the velocity are shown in Figure 10.4 for the Maxwell fluid
for increasing values of the dimensionless force B. There is flow rearrangement
near the spinneret exit, and a uniform velocity profile is obtained on the spinline
within one spinneret diameter downstream of the exit. A small degree of extrudate
swell can be observed for B = 0.5, but the swell appears to be overcome by the ten-
sile stress for B = 1. The ratio −τrr/τzz at z = 0 was less than 0.2 for all B greater
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Figure 10.4. Contours of constant veloc-
ity for a Maxwell fluid with dimensionless
forces B = (a) 0.5, (b) 1.0, and (c) 1.5 at z =
5do. Reprinted with permission from Keun-
ings et al., Ind. Eng. Chem. Fundam., 22,
347 (1983). Copyright American Chemical
Society.

than 1.25, supporting the usual practice in thin filament calculations of taking this
ratio to be zero.

Figure 10.5 shows a simulation of the poly(ethylene terephthalate) pilot plant
experiments of George that were discussed in Section 7.4.4. PET is a difficult
material to work with, and it has very small G′ and normal stresses. No uniform uni-
axial extensional data are available. As noted in Chapter 7, Gregory has published
extensive data on the zero-shear viscosity and relaxation time of PET, where the
relaxation time is defined as the reciprocal of the shear rate at which non-Newtonian
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Figure 10.5. Simulation of George’s PET pilot plant spinning experiments using the PTT
model with N = 2. Reprinted from Gagon and Denn, Polym. Eng. Sci., 21, 844 (1981).
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effects first appear, as follows:

ηo = 1.13 × 10−14Mw
3.5 exp ( − 11.98 + 6800/T ) in Pa s.

λ = 1.17 × 10−9Mw
3.5 exp ( − 11.98 + 6800/T ) in s.

Gagon and Denn estimated the linear viscoelastic parameters for two modes from
Gregory’s viscosity and relaxation time data by choosing a “wedge” spectrum, in
which Gi = ηo/Nλi , where N is the number of relaxation modes. They arbitrarily
chose λ2/λ1 = 5. The parameter ξ was taken to be zero to reflect the shear insensi-
tivity of the viscosity of PET, while ε was taken to be 0.015. The results were insen-
sitive to ε in the range from 0 to 0.015, so the simulation was in effect carried out for
a two-mode Maxwell model. The results depended on the choice of the coefficient
for the air drag coefficient, but the variation was small in the range 0.37 to 0.6.

These experiments were simulated in Figure 7.5 using a Newtonian fluid model,
where it was shown that the fit to the data was improved somewhat if the value
of the heat transfer coefficient given by the Kase-Matsuo correlation was reduced
by 25%. The same comparison is shown in Figure 10.5 for the PTT model. The
fit to the data is now better using the original heat transfer correlation, and the
quality of the fit is about the same as for the Newtonian fluid simulation. Devereux
and Denn obtained essentially the same result by fitting the PTT model with a very
different set of parameters, ξ = 0.15 and ε = 0.2, using a different spectrum shape
with λ2/λ1 = 56.

These calculations point to a profound issue in the simulation of spinning for
relatively inelastic melts like PET. Variations in the predicted results because of
the uncertainty in the heat transfer coefficient are of the same magnitude as varia-
tions because of the inclusion or neglect of viscoelasticity. This is unimportant for
spinning speeds below 4,000 m/min, where either way of modeling will predict the
correct trends, and Newtonian models have been used very effectively in process
analysis for PET spinning. It could become very important at significantly higher
takeup speeds, however, where the stress development and the initiation of stress-
induced crystallization could be quite different for the viscoelastic and Newtonian
models. The viscoelastic model is clearly required for elastic polymers like poly-
propylene.

The major problem with the spinline simulations shown here, and with others
like them, is the naı̈ve way in which the solidification process is handled. It is simply
assumed that the velocity no longer changes after a predetermined temperature has
been reached. This approach has proved to be adequate for modeling PET at rela-
tively low spinning speeds, where there is little crystallization and the solidification
occurs at the glass transition temperature. It is less likely to be adequate for spin-
ning nylon, which crystallizes rapidly. It has been shown to be inadequate for high-
speed spinning of PET, where stress-induced crystallization occurs rapidly at a high
temperature, but glass formation is also important. McHugh and co-workers have
addressed this problem by adding a kinetic equation to the model for the formation
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Figure 10.6. Simulation of George’s PET
pilot plant spinning experiments using a
single-mode Giesekus fluid in a spinline
model that incorporates crystallization. Re-
printed with permission from Shrinkhande
et al., J. Appl. Polym. Sci., 100, 3240 (2006).
Copyright John Wiley & Sons, Inc.

and orientation of crystals under stress, together with a mixing rule for the stress in
a biphasic system. The melt rheology is described either by a single-mode Giesekus
model or by the tube-derived XPP model. Their crystallization model does a good
job of matching George’s PET data, as shown in Figure 10.6, as well as industrial
nylon spinning data. What is particularly impressive, however, is the ability of the
coupled model to predict the diameter profile in the high-speed spinning of PET,
where the rapid onset of stress-induced crystallization causes a nearly discontinuous
neck that cannot be described by the simple equations used here.

10.4 Film Blowing

The blown film process was briefly described in Section 1.2.6. The process is shown
schematically in Figure 10.7. There are many similarities between the blown film and
the fiber spinline because of the free surface and the very small transverse dimension
relative to the distance between melt extrusion and solidification, and “thin sheet”
equations analogous to the thin filament equations are typically used, although the
hoop stress must now be taken into account. The equations for a Newtonian fluid
were first published by Pearson and Petrie in 1970, and their approach has been
used by nearly all investigators since. There are two steady-state momentum equa-
tions because variations in both thickness and width in the stretching direction are
important. The mechanics of the solid region above the ill-defined freezeline are
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Figure 10.7. Schematic of the blown film process.

important, and details of the heat transfer, which may include radiation, are less
well developed for film blowing than for fiber spinning. The air flow from an air
ring at the point of exit from the annular die is very important regarding both heat
transfer and shape and stabilization of the polymer bubble, but the air ring is rarely
considered in simulations. The blown film process can be very sensitive to operate,
and different bubble shapes, especially in the neck region, are sometimes observed
under the same operating conditions.

There are two operating parameters, the dimensionless pressure B and the
dimensionless axial takeup stress Tz, defined, respectively, as

B = R2
0�P

2ηV0 H0
, TZ = F

2πηH0V0
.

�P is the pressure difference between the inside and outside of the bubble, and F
is the takeup force. V0 is the average melt velocity at the exit of the annular die, and
the other geometrical variables are defined in the figure. The viscosity in the dimen-
sionless groups is taken at a reference temperature, usually the feed. The thin sheet
equations for the evolution of the dimensionless radius, r, and the dimensionless
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thickness, w, both normalized with respect to their initial values, are as follows for a
Newtonian fluid:

2r2[T − B(BUR)2 + Br2]r ′′ = 6r ′ + r(1 + r ′2)[T − B(BUR)2 − 3Br2], (10.7a)

w′

w
= − r ′

2r
− (1 + r ′2)[T − B(BUR)2 + Br2]

4
. (10.7b)

The blowup ratio, BUR, is the ratio of the final bubble radius to the initial radius and
is an analog of the draw ratio in spinning. Primes denote differentiation with respect
to the dimensionless axial length, which is normalized with respect to R0. The differ-
ential equations are more complex for viscoelastic liquids, and the stress equations
must be solved in parallel with the momentum equations. r = w = 1 at the exit from
the die, and r ′ = 0 at the freezeline. The last boundary condition assumes that the
viscosity becomes infinite at the freezeline and that there is no further deformation.
(This condition is approximate at best and need not be used when a solidification
model in which the solid phase evolves and locks in structure is employed.) Heat
transfer is very important, although it has usually been handled with rather simplis-
tic assumptions about the heat transfer coefficient.

The boundary value problem is usually solved using a “shooting” method, in
which the third initial condition is assumed at the origin and adjusted with each
iteration until the condition at the freezeline is satisfied. The system is very sen-
sitive, and use of the shooting method precluded examination of the full parame-
ter space for a long time after the initial work of Pearson and Petrie. The calcu-
lations shown here were carried out using an efficient finite difference algorithm
designed for boundary value problems known as the band method. The operating
parameter space for isothermal film blowing of a Newtonian fluid is shown in Fig-
ure 10.8 for a fixed distance to the freezeline. There are two possible operating states
for a fixed dimensionless pressure difference (B) and fixed dimensionless takeup
force (TZ), one with a blowup ratio greater than unity and one in which the radius
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is drawn down. The shapes of the contours are changed somewhat by including
heat transfer, but the qualitative results are the same. The shapes of the contours
change for a Maxwell fluid, as shown in Figure 10.9; the constant pressure contours
separate into two branches for B in excess of 0.23 for the parameters shown here.
All contours converge to the point for which the blowup ratio is 1.0 and the thick-
ness reduction ratio is 1 + Z/λV0 as Tz grows without bound and the velocity profile
becomes linear; this is the analog of the “unattainable” limiting behavior observed
in spinning for the Maxwell fluid, as illustrated in Figure 10.2. The singular point for
TZ → ∞ moves off to infinite thickness reduction and BUR = 1 if the Maxwell fluid
is replaced by a fluid with bounded extensional stresses.

Multiple solutions with different bubble shapes and different freeze points can
be found for the same values of B and TZ when heat transfer is included with the
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1.19. Reprinted from Cain and Denn, Polym. Eng.
Sci., 28, 1528 (1988).
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Figure 10.11. Comparison of model calculations of bubble radius and film velocity with blown
film data for a low-density polyethylene, 3.84-cm radius × 0.8-mm thickness die, 4.1-kg/hr
throughput. Data of Tas. Experiment 12: inflation pressure = 118 Pa, takeup force = 7.6 N.
Experiment 15: 108 Pa, 7.7 N. Experiment 18: 95 Pa, 6.8 N. Reprinted with permission from
Muslet and Kamal, J. Rheol., 48, 525 (2004).

Maxwell fluid. Figure 10.10 shows three different solutions obtained for a Maxwell
fluid with λV0/R0 = 0.335 at B = 0.0061 and Tz = 1.19 using the thermal properties
of polystyrene and a constant heat transfer coefficient. The parameters correspond
to an experiment on blowing a polystyrene film by Gupta and Metzner, and the
shortest profile was observed for experiments with the polystyrene.

Several investigators have modeled the blown film process with attention to the
mechanics associated with crystallization and the elastic deformability of the mate-
rial above the freezeline. Figure 10.11 shows predicted radius and velocity profiles
from a simulation by Muslet and Kamal for an eight-mode Phan-Thien/Tanner vis-
coelastic fluid with parameters matched to the linear viscoelastic and steady shear
rheology of the low-density polyethylene used in the film experiments; ξ = 0.15 and
ε = 0.05 for all modes. The model includes allowance for the temperature varia-
tion across the thickness, and it contains a crystallization model, but it still utilizes
the final condition r ′ = 0. The heat transfer coefficient is not in a form that scales
with the usual dimensionless groups. The agreement between the model predic-
tions and experimental data for three inflation pressures is quite good, and similar
good agreement was obtained with other experiments. Predictions of the average
degree of crystallinity were also in good agreement with experimental data. Hen-
richsen and McHugh have analyzed film blowing using their two-phase formulation
to account for crystallization, which does not require the condition r ′ = 0 to define
the freeze point. They showed very good agreement with a different data set on both
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Table 10.1. Phan-Thien/Tanner model parameters used by
Verbeeten and co-workers for DSM Stamylan LD 2008 XC43
LDPE (Mw = 1.55 × 105, Mw/Mn = 11.9) at T = 170 ◦C

Mode λi (s) Gi (Pa) εi ξi

1 3.89 × 10−3 7.20 × 104 0.30 0.08
2 5.14 × 10−2 1.58 × 104 0.20 0.08
3 5.03 × 10−1 3.33 × 103 0.02 0.08
4 4.59 3.01 × 102 0.02 0.08

low-density and linear low-density polyethylene films. Their heat transfer coefficient
was also empirical and not easily scalable.

10.5 Converging Flow

Flow through a converging section is a common feature of polymer melt processes.
The flow along the centerline is purely extensional, so we may expect large stresses
to develop. In addition, it is well known that recirculating vortices develop in cor-
ners, even for Newtonian fluids. The vortices typically grow with increasing flow
rate (increasing Wi) for branched polymers, becoming much larger than the Newto-
nian fluid vortex, but not for linear polymers. Flow through a contraction has been
the most widely studied application of computational fluid dynamics for viscoelas-
tic liquids because of the importance of the problem and because of the challenge
presented by the corner singularity at the contraction entrance and the apparent
dependence of the vortex structure on chain architecture. The example we use here
is by Verbeeten and co-workers from the polymer processing group at the Technical
University of Eindhoven.

The polymer is a branched polyethylene melt with Mw = 1.55 × 105 and
Mw/Mn = 11.9, flowing at 170 ◦C in a 3.3:1 planar contraction. The linear viscoelas-
tic properties and the nonlinear parameters for a four-mode PTT equation are
shown in Table 10.1. Different values of ε were used for each mode, but with a
constant value of ξ = 0.08. These parameters provide a reasonable fit to the tran-
sient and steady-state shear and extensional data, although the nonlinear param-
eters for the two longest relaxation times cause small oscillations in startup of
simple shear that are not observed experimentally; using parameters that elimi-
nate the shear oscillations causes the calculated extensional stresses to be too low,
and the contraction flow results are sensitive to the extensional stresses. The mean
relaxation time was 1.74 s, the average velocity in the downstream channel was
7.47 mm/s, and the downstream channel half-width (the characteristic length) was
0.775 mm. The Weissenberg number based on downstream channel properties
was therefore 16.8.

Measured and computed isochromatic fringe patterns, which are contours of
the characteristic stress (N2

1 + 4τ 2
xy)1/2, are shown in Figure 10.12. The experimen-

tal values were obtained from birefringence measurements. The experimental and
computed fringe patterns are in good agreement, including the large corner vortices,
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Figure 10.12. Experimental and calculated isochromatic fringe patterns for planar converging
flow of a low-density polyethylene melt, Wi = 16.8, T = 170 ◦C. Reprinted with permission
from Verbeeten et al., J. Non-Newtonian Fluid Mech., 117, 73 (2004). Copyright Elsevier.

the concentration of stresses near the reentrant corner, and the “butterfly” pattern.
The measured and computed characteristic stresses along the centerline and across
the contraction plane are shown in Figure 10.13, which also includes results from a
version of the pom-pom model (XPP). There is little difference between the stress
predictions of the two models, although the PTT model with the selected parameters
gives a better overall fit to the isochromatic fringes.
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Figure 10.13. Experimental and calculated characteristic stresses for planar converging flow
of a low-density polyethylene melt, Wi = 16.8, T = 170 ◦C: (a) along the centerline; (b) at the
plane of convergence. Reprinted with permission from Verbeeten et al., J. Non-Newtonian
Fluid Mech., 117, 73 (2004). Copyright Elsevier.
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Table 10.2. Linear viscoelastic parameters
used by Baaijens and co-workers for DSK
Stamylan LD 2008 XC43 LDPE
(Mw = 1.55 × 105, Mw/Mn = 11.9) at
T = 190 ◦C

Mode λi (s) Gi (Pa)

1 3.16 × 10−5 2.69 × 105

2 1.00 × 10−3 1.37 × 105

3 3.16 × 10−2 2.09 × 104

4 1.00 1.65 × 103

10.6 Flow Past an Obstruction

As a final example of viscoelastic simulation of melt flow in a complex geometry, we
consider flow of the same branched polyethylene, now at 190 ◦C, in a planar channel

in which a cylinder has been placed asymmetrically. The example is by J. P. W.
Baaijens, also from the polymer processing group at Eindhoven. The cylinder has a
diameter of 2.5 mm, which is the same as the half-width of the channel. The cylinder
center is placed 1.75 mm from one surface, so the gaps between the cylinder and the
two walls are 0.5 and 2 mm. A geometry of this type might arise in a mold, for exam-
ple. This is a complex flow. There is a high level of shear in the gaps between the
cylinder and the wall, as well as flow development both approaching and leaving the
gaps. There are also fore and aft stagnation points on the cylinder; the flow near
the upstream stagnation point is approximately compressive, while the flow near
the downstream stagnation point is approximately elongational, so large stresses
are anticipated.

The mean velocity in the upstream and downstream channel was 8.53 mm/s. The
linear viscoelastic parameters at 190 ◦C are shown in Table 10.2; the mean relax-
ation time is 0.68 s. The Weissenberg number in the region of fully developed flow
upstream and downstream of the cylinder was therefore around 2. The flow should
distribute between the two gaps roughly as the gap ratio cubed (cf. Equation 5.8
for Newtonian fluids), so the average velocity in the 0.5 mm gap was approximately
1.3 mm/s, while the average velocity in the 2.0 mm gap was approximately 21 mm/s.
The characteristic Weissenberg numbers for the small and large gaps were then,
respectively, 0.8 and 14. The mean residence time in each gap was on the order
of the mean velocity divided by the cylinder diameter, so characteristic Deborah
numbers for the small and large gaps were, respectively, 0.3 and 5.3, indicating the
likelihood of strong elastic effects.

The experimental isochronal fringes are shown in Figure 10.14. Baaijens carried
out finite element calculations for PTT fluids with ξ = 0.1, ε = 0.1 and ξ = 0.2, ε =
0, using the same values of ξ and ε for all modes, as well as for a Giesekus fluid.
Both sets of PTT parameters were adequate for the shear data, and no elongational
data were available at 190 ◦C. The computed results for ξ = 0.1, ε = 0.1 are super-
imposed on the experiments in Figure 10.14. Convergence could not be obtained
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Figure 10.14. Experimental and calculated isochromatic fringe patterns for planar channel
flow of a branched polyethylene melt past a cylinder, T = 190 ◦C: PTT fluid with four modes,
ξ = 0.1 and ε = 0.1. Reprinted with permission from F. P. T. Baaijens et al., J. Non-Newtonian
Fluid Mech., 68, 173 (1997). Copyright Elsevier.

at a higher Weissenberg number with either the second set of PTT parameters or
the Giesekus model. The computations are in qualitative agreement with the exper-
iments and show the development of an asymmetric wake in which the stresses are
very high downstream of the aft stagnation point. The experimental wake extends
farther in the downstream direction than the calculated wake. The fringes appear
to be more densely packed in the lower upstream region close to the cylinder in the
experiments than in the calculations, indicating that the experimental stress gradi-
ents were stronger than the computed gradients.

10.7 Secondary Flows

Viscoelasticity can cause changes in flow fields that are unexpected from our expe-
rience with Newtonian liquids. It can be shown in complete generality, for example,
that rectilinear flow (i.e., flow streamlines that are parallel to the wall) is possible
in a closed channel of constant noncircular cross section only if the second normal
stress difference is zero. There must be a transverse flow if the second normal stress
difference is nonzero.

Figure 10.15 shows an elegant study by Dooley in which a special feedblock was
used to create continuous layers of colored and uncolored high-impact polystyrene
(Dow Styron 484) with identical properties at the entrance to a 61-cm-long channel
with a square cross section that is 0.9525 cm on a side. The thirteen concentric rings
in Figure 10.15a evolved to the complex pattern in Figure 10.15b because of the
transverse flow. The computed secondary flow using a finite element code is shown
in Figure 10.15c. The published computations, which are two-dimensional since the
flow is the same at all cross sections, were done using a Giesekus model, but a Phan-
Thien/Tanner model was reported to have given the same result.

The motivation for this study was interface movement in the coextrusion of
multilayer films. Figure 10.16 shows the computed and experimental deformation of
the interface for flow of a low-density polyethylene (Dow 641I) through the same
61-cm channel. Here, only two layers were used. A three-dimensional finite element
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(a) (b) (c)

Figure 10.15. Flow of a high-impact polystyrene resin (Dow Styron 484) through a 61-cm
channel with a square cross section that is 0.9525 cm on a side. A special feedblock brings
in concentric layers, which are colored for contrast. (a) At the channel entrance. (b) At
the channel exit. (c) Computed secondary flow. Reprinted with permission from J. Dooley,
Viscoelastic Flow Effects in Multilayer Polymer Coextrusion, Ph.D. dissertation, Technical
University of Eindhoven, the Netherlands, 2002.

computation was done using a five-mode Giesekus fluid; a two-dimensional calcu-
lation could have been used to track the interface movement, but the 3-D code
was being tested. The agreement between the computed and experimental interface
evolution is quite good, despite some quantitative differences.

The example is an impressive demonstration both of a physical phenomenon
that is driven by nonlinear viscoelasticity and of the use of numerical simulation.
It is probably not the dominant mechanism for interface movement in multilayer
systems, however, where viscosity and normal stress jumps across the interface are
more important than the rather weak effect of the nonzero second normal stress
difference.

2.54 15.2 27.9 40.6 53.3

Figure 10.16. Flow of a low-density polyethylene (Dow 641I) through a 61-cm channel with
a square cross section that is 0.9525 cm on a side. The two layers are identical except for the
color to define the interface. Cross sections were cut at the positions shown. Top: numerical
simulation; Bottom: experiment. Reprinted with permission from Debbaut and Dooley, J.
Rheol., 43, 1525 (1999).
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10.8 Concluding Remarks

The flows discussed in this chapter are good examples of how numerical simula-
tion can be used to predict streamlines and stress levels for viscoelastic polymer
melts in complex geometries. Qualitative agreement is very good, and quantitative
agreement is sufficient to make informed engineering judgments. In keeping with
the general introductory level of this text, we have omitted any discussion of strictly
numerical issues, other than to note that convergence can be difficult to achieve in
flows with strong singularities at a boundary or a stagnation point, where large stress
gradients that can propagate through the flow must be resolved. The more realistic
the constitutive equation, the better the convergence seems to be, probably because
realistic constitutive equations exhibit smaller stress gradients at singularities than,
say, the Maxwell model. Improvement between simulations and experiments can
be expected with the growing use of constitutive equations that incorporate molec-
ular information, such as the pom-pom model. The article by Lee and co-workers
listed in the Bibliographical Notes is a good example of the application of the dif-
ferential form of the pom-pom model to flow through a contraction followed by an
expansion.

Some important issues have not been addressed at all here. One is the question
of the correct formulation of the wall boundary condition in a region of very high
stress, where chain disentanglement or adhesive failure may occur in the wall region
and the conventional no-slip condition may fail. This topic is addressed in Chap-
ter 12. Another is the modeling of flows of polymer melts that have rigid backbones
or are highly filled with particulates and cannot be described by constitutive equa-
tions of the general class employed here. This topic, which is still in a rather unde-
veloped state, is addressed briefly in Chapter 13. Finally, computation for mixing
and dispersion is touched on in Chapter 14.
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André, J.-M., J.-F. Agassant, Y. Demay, J.-M. Haudin, and B. Monasse, Int. J. Forming Proc.,

1, 187 (1998).

The first of these articles, which is in French, deals with multiplicities. The simulation of the
low-density polyethylene data using the Phan-Thien/Tanner viscoelastic liquid with crystal-
lization is from

Muslet, I. A., and M. R. Kamal, J. Rheol., 48, 525 (2004).

A film blowing application of the crystallization model first developed for spinning in the arti-
cles by Doufas and McHugh, cited above, with comparisons to spinline data for low-density
and linear low-density polyethylene, is in

Henrichsen, L. K., and A. J. McHugh, Int. Polym. Proc., XXII, 179 (2007).

There were many qualitative studies of entry flows of polymer melts in the 1960s and
1970s. These are reviewed in

White, J. L., Appl. Polym. Symp., 20, 155 (1973).
Petrie, C. J. S., and M. M. Denn, AIChE J., 22, 209 (1976).

There are excellent photographs of entry flows of viscoelastic liquids, mostly polymer solu-
tions, as well as flows in other complex geometries in

Boger, D. V., and K. Walters, Rheological Phenomena in Focus, Elsevier, Amsterdam,
1993.

Computational results and references can be found in the 1998 article by Baaijens, cited
above, and in a chapter on “Benchmark Problems” in the text by Owens and Phillips. The
example of entry flow used here is from

Verbeeten, W. M. H., G. W. M. Peters, and F. P. T. Baaijens, J. Non-Newtonian Fluid Mech.,
117, 73 (2004).



174 Polymer Melt Processing

Computations to evaluate the use of entry flows for deducing extensional viscosities can be
found in

Mitsoulis, E., S. G. Hatzikiriakos, K. Christodoulou, and D. Vlassopoulos, Rheol. Acta, 37,
438 (1998).

Rajagopalan, D., Rheol. Acta, 39, 138 (2000).

See also an exchange of letters between the authors of these two articles in Rheologica Acta,
40, 401 and 504 (2001).

Flow past a cylinder in a channel is another of the benchmark problems discussed in
Owens and Phillips. The experiments and calculations shown here are from

Baaijens, F. P. T., S. H. A. Selen, H. P. W. Baaijens, G. W. M. Peters, and H. E. H. Meier, J.
Non-Newtonian Fluid Mech., 68, 173 (1997).

There are small differences between the Weissenberg and Deborah numbers quoted in the
article and the numbers used here, but the differences are unimportant in terms of the overall
conclusions. Computations of nonisothermal flow for a symmetric cylinder, without experi-
ments, are described in

Baaijens, F. P. T., and G. W. M. Peters, J. Non-Newtonian Fluid Mech., 68, 205 (1997).

The study of transverse flows is from

Dooley, J., Viscoelastic Flow Effects in Multilayer Polymer Coextrusion, Ph.D. dissertation,
Technical University of Eindhoven, the Netherlands, 2002.

Some of the results are contained in two articles,

Debbaut, B., T. Avalosse, J. Dooley, and K. Hughes, J. Non-Newtonian Fluid Mech., 69, 255
(1997).

Debbaut, B., and J. Dooley, J. Rheol., 43, 1525 (1999).

Viscoelastic effects in some free-surface flows have been analyzed using very elemen-
tary constitutive models. For the dynamics of surface tension-driven breakup of a viscoelastic
filament, see

Bousfield, D. W., R. Keunings, G. Marrucci, and M. M. Denn, J. Non-Newtonian Fluid Mech.,
21, 79 (1986).

Transient elongational recovery of a polymer melt following stretching is in

Langouche, F., and B. Debbaut, Rheol. Acta, 38, 48 (1999).

Squeeze flow of a viscoelastic liquid, including the movement of the free edge and non-
isothermal effects, has been studied in

Debbaut, B., J. Non-Newtonian Fluid Mech., 98, 15 (2001).

A good example of the use of the differential pom-pom model to simulate a complex
flow is

Lee, K., M. R. Mackley, T. C. B. McLeish, T. M. Nicholson, and O. G. Harlen, J. Rheol., 45,
1261 (2001).

See also the reviews by Baaijens and Agassant and co-workers, the 2004 article by Verbeeten
and co-workers cited above, and

Van Os, R. G. M., and T. N. Phillips, J. Non-Newtonian Fluid Mech., 129, 142 (2005).



11 Stability and Sensitivity

11.1 Introduction

Our discussion of continuous processes like extrusion and spinning has focused thus
far on steady operation. The dynamical response of these processes is also an impor-
tant processing consideration. The field of process dynamics has paid little attention
to polymer processing, other than to apply classical control system methodology to
implement temperature control loops. In particular, models of continuous processes
have not been used extensively, and there is considerable scope for dynamical anal-
yses to improve operation and control.

There are two fundamental issues in considering the dynamics of a process.
One is operational stability: If we design a process to operate under given condi-
tions, and the process moves away from the design conditions for any reason, will
it ultimately return or will it move further away? The other is operational sen-
sitivity: If the process is operating under the design conditions, and disturbances
enter the system, will the disturbances attenuate or will they grow as they propagate
through the process? These are different questions, although they are often treated
as the same because, up to a point, they share a common mathematical frame-
work.

The dynamics of melt spinning has received more attention than any other pro-
cess, and it is the primary focus of this chapter, although other processes are also
briefly addressed. Instabilities in rectilinear flow through an extrusion die are con-
founded by issues regarding boundary conditions at high stress levels, and they are
addressed in the next chapter.

11.2 Draw Resonance

Draw resonance, also known as melt resonance, is a phenomenon that occurs under
certain conditions on a melt spinline when the extrusion rate and the takeup
speed are both constant. Figure 11.1 shows the diameter of a drawn filament of
poly(ethylene terephthalate) as a function of distance along the filament under
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Figure 11.1. Diameter of a poly(ethylene terephthalate) filament as a function of distance
along the filament, L = 10 cm, DR = 50. Reprinted with permission after Ishihara and Kase,
J. Appl. Polym. Sci., 20, 169 (1976). Copyright John Wiley & Sons, Inc.

constant spinning conditions at a draw ratio of about 50. The filament was rela-
tively short in an attempt to minimize cooling in the melt zone, and it was then
passed through a water bath to effect rapid solidification. Draw resonance occurs
infrequently in commercial spinning, since it does seem to require a nearly isother-
mal environment in the draw zone, followed by rapid solidification, and this is not
a typical commercial spinning configuration (although it is the configuration for the
“gel spinning” of high-strength fibers from liquid crystalline solutions of poly(p-
phenylene terephthalamide), sold commercially as Kevlar R© and Twaron R©, where
the draw region is very much like that in melt spinning and mass transfer consider-
ations arise only after contact with a quench bath). Draw resonance is a common
problem in the mechanically similar two-dimensional process of extrusion coating,
where the draw zone is short and solidification occurs when the melt strikes the
moving sheet. Indeed, the phenomenon first came to widespread attention because
of reports of periodic coating thickness variations that destroyed the optical quality
of coated sheets.

One’s intuition is to seek a mechanism for a resonant interaction (hence, the
term “draw resonance”) between some forcing disturbance and the viscoelastic time
scale of the polymer melt. This approach is misplaced; experiments with a vari-
ety of polymers clearly show that the characteristic period for the diameter oscil-
lations is uncorrelated from any characteristic relaxation time of the polymer, but
the period does correlate quite well with the residence time on the spinline. In fact,
draw resonance can occur even for a Newtonian fluid; Figure 11.2 shows periodic
tension variations in the steady drawing of a filament of corn syrup, a Newtonian
liquid, at a draw ratio of 26. (The takeup device was a roll from which the liquid
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Figure 11.2. Force as a function of time for continuous drawing of a filament of a Newtonian
corn syrup, DR = 26. Reprinted from Chang and Denn, J. Non-Newtonian Fluid Mech., 5, 369
(1979).

corn syrup was scraped; hence, it was not possible to obtain data on diameter
variations.)

11.3 Linear Stability Analysis of Melt Spinning

Draw resonance is a particularly good example of a processing instability because
it has a clear signature and a sharp onset. Furthermore, the onset is amenable to
rigorous analysis because of the simplicity of the thin filament spinning equations
developed in Chapter 7. The approach we use here is linear stability theory, which
asks a very specific question:

Suppose a system is designed to operate at steady state, and for some reason it is
perturbed infinitesimally away from the steady-state conditions. Will the system
return to the steady state in time, or will it move even further away?

The steady state is unconditionally unstable and cannot be maintained if the answer
is that the system will continue to move away following any infinitesimal distur-
bance. The conclusion is less definitive if the system is found to return to the steady
state following an infinitesimal disturbance, since we have no way of knowing what
will happen if the disturbance is finite. We never learn what ultimately happens
to an unstable system using this approach, since we are enquiring only about the
dynamics of infinitesimal disturbances, and a growing disturbance will cease to be
infinitesimal.

The linear stability approach can be illustrated by a simple example. Consider
the first-order ordinary differential equation

dv

dt
= Kv (1 − v) , K > 0. (11.1)

The steady state, vs , is the solution to Equation 11.1 when dv/dt = 0:

Kvs (1 − vs) = 0, (11.2)
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which has two solutions, vs = 0 and 1. We now change the frame of reference to the
steady state by defining a new variable u(t) such that v(t) = vs + u(t); this change of
variables permits us to focus on the perturbation. Equation 11.1 is then rewritten

du
dt

= K(vs + u)(1 − vs − u) = Kvs(1 − vs) + Ku(1 − vs) − Kvsu + O(u2), (11.3)

where O(u2) denotes terms that go to zero at least as fast as u2. The O(u2) terms
arise naturally in this example because the nonlinearity is quadratic; in other cases
it might be necessary to expand a nonlinear function in a Taylor series to obtain this
form. The term Kvs(1 - vs) vanishes by virtue of Equation 11.2.

We now assume that |u| is sufficiently small that terms of order u2 are negli-
gible relative to terms of order u. In that case we will neglect the O(u2) terms in
Equation 11.3 and write

du
dt

= Ku (1 − 2vs) . (11.4)

The solution to Equation 11.4 is

u (t) = u (0) exp [K (1 − 2vs) t] , (11.5)

where u(0) is an arbitrary (infinitesimal) disturbance at t = 0. The solution is a grow-
ing exponential for vs = 0, so u(t) grows in magnitude; hence, vs = 0 is absolutely
unstable, since v(t) moves away from vs following any arbitrarily small perturbation.
The solution is a decaying exponential for vs = 1, so this steady state is conditionally
stable. (We know for this equation that the solution will approach v = 1 as t → ∞
for any initial condition v(0) > 0, so in fact vs = 1 is absolutely stable, but that con-
clusion does not follow from the linearized analysis that we have done here.)

We now turn to the transient thin filament equations for a spinline, as given
in Appendix 7B. For simplicity, we will restrict ourselves to isothermal spinning of
a Newtonian fluid in the absence of inertia, air drag, or gravity, in which case the
relevant equations are

conservation of mass:
∂ A
∂t

= −∂ (Av)
∂z

, (11.6a)

conservation of momentum: 0 = −∂ (Aσ )
∂z

, (11.6b)

constitutive equation: σ = 3η
∂v

∂z
. (11.6c)

A is the cross-sectional area. We have dropped the convention of overbars to denote
averaged quantities. σ is the axial stress, σzz. We can, of course, combine Equa-
tions 11.6b and c – indeed, we can combine the three equations into a single non-
linear integro-differential equation – but we retain this structure to facilitate com-
parison with the corresponding analysis for viscoelastic liquids, where the stress and
momentum equations cannot be combined.
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The steady-state solution to Equations 11.6a–c is given by Equations 7.45a–d:

As = Ao exp (−z ln DR/L) , (11.7a)

vs = vo exp (z ln DR/L) , (11.7b)

σs = 3ηvo ln DR exp (z ln DR/L)
L

. (11.7c)

Note that unlike the elementary example employed to illustrate linearization, the
steady state on the spinline is a function of position. We now define new dependent
variables in order to use the position-dependent steady state as the frame of refer-
ence:

A (z, t) = Ao [exp (−z ln DR/L) + � (z, t)] , (11.8a)

v (z, t) = vo [exp (z ln DR/L) + � (z, t)] , (11.8b)

σ (z, t) = 3ηvo

L
[ln DR exp (z ln DR/L) + � (z, t)] . (11.8c)

We also define new independent variables,

ζ = z/L, θ = vot/L. (11.9)

We introduce the change of variables into Equations 11.6a–c and neglect nonlin-
ear terms in the perturbation variables �,�, and �. (The nonlinearities here are
quadratic, but they will not be quadratic for the energy equation or for a viscoelas-
tic constitutive equation like the PTT model.) We thus obtain the following linear
equations:

∂�

∂ζ
= − exp (−ζ ln DR)

∂�

∂θ
− ln DR� + exp (−2ζ ln DR) [� + ln DR�] , (11.10a)

∂�

∂ζ
= ln DR� − ln DR exp (2ζ ln DR)

[
∂�

∂ζ
− ln DR�

]
, (11.10b)

∂�

∂ζ
= �. (11.10c)

The velocity is specified at ζ = 0 and ζ = 1; thus, the velocity perturbation at these
points must be zero. Similarly, the initial area is fixed, so the area perturbation must
vanish at ζ = 0. The boundary conditions for these linear first-order partial differ-
ential equations are therefore

� (0, t) = � (1, t) = � (0, t) = 0. (11.11)

Time enters these equations only through the derivative ∂�/∂θ. The time
dependence of � must therefore be exponential. Furthermore, � and � must have
the same time dependence as �, since linear combinations of these terms sum to
zero at all times. Hence, we expect solutions to be linear combinations (because of
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the linearity of the equations) of terms of the form exp(
t) multiplied by a function
of ζ for each of the three variables. We therefore seek solutions of the form

� (ζ, t) = e
tφ (ζ ) , (11.12a)

� (ζ, t) = e
t� (ζ ) , (11.12b)

� (ζ, t) = e
tψ (ζ ) . (11.12c)

(� is a lowercase form of the Greek letter pi.) Upon substitution into Equations
11.10a–c we then obtain a set of linear ordinary differential equations,

dφ

dζ
= −
 exp (−ζ ln DR) φ − ln DRφ + exp (−2ζ ln DR) [ψ + ln DRψ] , (11.13a)

d�

dζ
= ln DR� − ln DR exp (2ζ ln DR)

[
∂φ

∂ζ
− ln DRφ

]
, (11.13b)

dψ

dζ
= �, (11.13c)

with boundary conditions

ψ(0) = ψ(1) = φ(0) = 0. (11.14)

This system of linear, homogeneous equations always admits the trivial solution
ψ = φ = � = 0, but we are interested only in nonzero solutions. For the reader to
whom this is a new concept, we refer to the analogous problem for a system of linear
algebraic equations of the form Au = 
u. This system always has the trivial solution
u = 0, but nontrivial solutions will exist when the determinant of the matrix A − 
I
equals zero, where I is the identity matrix. The vanishing of the determinant leads
to an algebraic equation for 
 that has as many roots as the order of the matrix A.
These roots are known as characteristic values, or eigenvalues. Similarly, Equations
11.13a–c with the boundary conditions Equation 11.14 will admit nonzero solutions
for certain characteristic values 
, and we seek these values. If all such characteristic
values are negative, then all terms of the form of Equations 11.12a–c comprising the
solution to the differential equations will be negative exponentials, and the pertur-
bation will die out in time. On the other hand, if any one such characteristic value

 is positive, then that term will grow exponentially and the solution will diverge
from the steady state for any disturbance, no matter how small. The characteristic
values are in fact complex numbers, so these comments apply to the real parts; the
exponential of an imaginary number is oscillatory.

A variety of solution methods can be applied to solve the eigenvalue prob-
lem. The most straightforward, which generalizes to the more interesting problem
that includes heat transfer, inertia, air drag, and viscoelasticity, is to solve Equa-
tions 11.13a–c numerically as an initial value problem, adjusting 
 until the down-
stream boundary condition is satisfied (a “shooting method”). Convergence is rapid.
It is important to keep in mind that all functions are complex. It can be shown from
the linearity that there is no loss of generality in taking the real part of � (0) equal
to 1 and the imaginary part equal to 0. There will be an infinite set of values {
i} for
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Table 11.1. Characteristic values for low-speed, isothermal spinning of a
Newtonian liquid


1 
2

ln DR DR Real Imaginary Real Imaginary

1.0 2.72 −3.810 7.671 −6.395 18.332
2.0 7.39 −2.025 10.845 −4.310 26.075
2.95 19.10 −0.120 13.814 −2.347 33.907
3.006 20.21 0.0 13.989 −2.219 34.380
3.15 23.34 +0.309 14.437 −1.884 35.596

which nontrivial solutions exist. The first two in magnitude are shown in Table 11.1.∗

There is a sign change to a positive real part at a value of DR = 20.2 (ln DR ∼ 3),
indicating that isothermal, low-speed spinning of a Newtonian fluid will be unstable
at draw ratios greater than that value. We cannot conclude from this analysis that
the instability will take the form of the sustained oscillations characteristic of draw
resonance, but that is a reasonable presumption and it is verified by nonlinear anal-
yses, including direct numerical solution of the full transient Equations 11.6a–c. The
experimental transition to draw resonance for fluids that are Newtonian or nearly
Newtonian is close to a draw ratio of 20, but the precise value is uncertain because
of the ambiguity in defining the initial velocity and the likelihood of deviations from
the assumed kinematics near the takeup roll.

The analysis can be repeated with the energy equation included, as well as with
inertia, air drag, gravity, surface tension, and a purely viscous or viscoelastic non-
Newtonian constitutive equation. Cooling greatly increases the critical draw ratio,
as does inertia; these effects are probably the major reasons that commercial spin-
lines rarely experience draw resonance. Shear thinning decreases the critical draw
ratio substantially; the critical draw ratio for isothermal, low-speed spinning of an
inelastic power-law fluid with n = 0.6 is 8, while the critical value is less than 3 for
n = 0.33. Melt elasticity is stabilizing.

Figure 11.3 shows the critical draw ratio computed as above as a function of
De = λvo/L for a single-mode Phan-Thien/Tanner liquid with ε = 0 and 0.015 and
various values of ξ . Line 1, with ε = 0 and ξ = 0, is a Maxwell fluid. The curve is
double valued for each De, indicating that there is a second stable region at very
high draw ratios, and no instability to infinitesimal disturbances can occur at any
draw ratio when De is greater than about 0.01. The double-valued curve is, to a
large extent, an artifact of the Maxwell fluid and parallels the “unattainable” region
defined by the line DR = 1 + De−1 (cf. Equation 10.6). The physical explanation
within the context of the constitutive model is that the spinline stress becomes so

∗ There is an important technical detail that will not concern us here. This system of equations is
not self-adjoint, so we do not have a proof that the complex eigenvalue with the smallest absolute
value will be the first to undergo a sign change in the real part. Thus, in principle we would have
to examine the entire set {
i} to determine the transition. Fortunately, the eigenvalue with the
smallest absolute value does seem to be the one that determines spinline stability. This is not a
general property of non–self-adjoint systems.
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Figure 11.3. Critical draw ratio as a function of De = λvo/L for a single-mode Phan-
Thien/Tanner fluid with various values of ε and ξ . Reprinted from Chang and Denn, Proc.
8th International Congress on Rheology, Naples, Italy, Vol. 3, 1980, p. 9.

large at draw ratios approaching 1 + De−1 that disturbances cannot overcome the
resistance to deformation and are thus unable to grow. There is only a small double-
valued region for ε = 0.015 and ξ = 0, which is a fluid with a constant viscosity but
bounded tensile stresses; these are the PTT parameters used in the polyester pilot
plant spinline simulation in Figure 10.5. Line 7 of Figure 11.3, with the unusually
large value ξ = 1, shows the destabilizing effect of shear thinning. The behavior is
qualitatively the same for a two-mode PTT calculation.

The flat film process, in which an extruded sheet is drawn up on a roll, is a two-
dimensional analog of melt spinning, and the dynamical equations and instabilities
are essentially the same. The finite aspect ratio of the film die and the presence of
an edge on the extruded sheet introduce stresses that cause necking in of the sheet.
This is a steady-state phenomenon that does not seem to have major dynamical
implications.

11.4 Sustained Oscillations and Draw Resonance

Linear stability theory can show definitively that a system is unstable, but it gives
no information about the ultimate fate of the process as the disturbance grows. Fur-
thermore, linear stability theory can show only conditional stability. There are two
ways to attack the problem of finite disturbances. One is direct numerical simu-
lation of the full set of nonlinear partial differential equations. This approach has
become increasingly popular as computer power has grown, but a fundamental dif-
ficulty of distinguishing physical from numerical instability is always present. The
other, employed less now than in the past, is to expand the nonlinear equations in
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Figure 11.4. Sustained oscillations in force and area for low-speed spinning of a Newtonian
liquid, DR = 23.34. Reprinted from Fisher and Denn, Chem. Eng. Sci., 30, 1129 (1975).

an appropriate set of spatial functions with time-dependent coefficients and then
to truncate in some predetermined manner to obtain equations for the coefficients;
the expansion is usually done using the characteristic functions of the linear prob-
lem (the set {ψn, φn,�n} corresponding to the set of characteristic values {
n} in the
spinline example, for instance).

Both approaches have been applied to low-speed spinning of a Newtonian fluid,
with equivalent results. The conclusion is that the spinline is stable to finite dis-
turbances below a draw ratio of 20.21, while at higher draw ratios the system is
unstable and approaches a limit cycle characterized by sustained oscillations of the
force and takeup area. Figure 11.4 shows the sustained oscillations computed by
the expansion method with truncation at one term for DR = 23.34, using Galerkin’s
method to obtain the ordinary differential equations for the real and imaginary parts
of the area perturbation. This method is effective only for draw ratios close to the
critical value because of the need to keep the number of terms in the expansion
small, whereas direct numerical solution can produce wave forms like those in Fig-
ure 11.1.

11.5 Spinline Sensitivity

The classical approach to process sensitivity, which is the approach used in courses
on process dynamics and control, is through transfer function analysis. The trans-
fer function contains the response of the output to small input disturbances at all
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frequencies, and a knowledge of the transfer function is equivalent to knowledge
of the dynamical response of the system to small but arbitrary disturbances. (The
disturbances must be sufficiently small to permit the use of the linearized system
equations.) Linear viscoelasticity, discussed in Section 9.2, is an example of transfer
function analysis; G′(ω) and G′′(ω) reflect the in-phase and out-of-phase responses
to the sinusoidal forcing, and |G∗(ω)| is the amplitude ratio, or the magnitude of the
ratio between input and output. Classical transfer function analysis typically uses
the amplitude ratio and the phase angle of the response as the primary variables,
rather than the separate values of the real and imaginary parts as is generally done
in linear viscoelasticity. Transfer function analysis is nothing more than a method
of converting the system description from the time domain to the Fourier transform
(frequency) domain.

A linear system that is forced sinusoidally will have a sinusoidal response at the
same frequency. One way to approach the analysis is then to assume an input of
the form exp(iωt) = cos(ωt) + i sin(ωt), where i2 = −1; the response will also have
the form exp(iωt). The linearized equations for isothermal, low-speed Newtonian
spinning, for example, Equations 11.10a–c, will then take the form of Equations
11.13a–c, with 
 replaced by iω; the functions φ, ψ , and � are complex and are
in fact the normalized Fourier transforms of A, v, and σ , respectively. The bound-
ary conditions, however, are no longer zero, but reflect the forcing; if we wish to
determine the sensitivity of the output area to disturbances in the velocity at z = 0,
for example, we would set ψ = 1 + 0i at ζ = 0. (The input condition is the Fourier
transform of an impulse, or a “delta” function, not a sinusoid, because the transfer
function is the ratio of output to input in Fourier space. There is no loss of generality
in setting the imaginary part to zero at ζ = 0.)

Figure 11.5 shows the amplitude ratio and phase angle of the transfer func-
tion relating the takeup area to inlet velocity perturbations for isothermal, low-
speed spinning of a Newtonian liquid. The conditions used for the calculation were
vo = 13.2 m/min and L = 1 m. The residence time, tR = ∫

dz/v(z), is L(DR − 1)/
voDR ln DR for isothermal Newtonian spinning and varies between 1.57 and
1.36 s for draw ratios between 15 and 25. Thus, 2π/tR is about 4 rad/s. We focus
first on DR = 15, which is below the onset of draw resonance. The amplitude ratio
approaches unity at low frequencies; this is simply steady-state conservation of mass,
which requires a unit change in relative area for a unit change in relative velocity
at a fixed throughput. The amplitude ratio decays at high frequencies, reflecting the
fact that the system is unable to respond to disturbances that are much faster than
the residence time. There is a resonant peak at about 3 rad/s, indicating that veloc-
ity disturbances in this range will be greatly amplified. What appears to be at work
here is a reinforcement mechanism resulting from “reflection” of the velocity per-
turbation at the downstream boundary, where the takeup velocity is fixed; this is the
reason that the phenomenon is seen at a frequency close to 2π/tR. The sequence of
decaying resonant peaks is characteristic of hyperbolic (wave propagating) systems
with reflecting boundaries; the transfer function of a countercurrent heat exchanger
also has this appearance, for example. The amplitude ratio for DR = 25, where this
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Figure 11.5. Transfer function between final area and inlet velocity for isothermal, low-
speed spinning of a Newtonian liquid. (a) Amplitude ratio; (b) phase angle. Reprinted from
Devereux, Computer Simulation of the Melt Fiber Spinning Process, Ph.D. dissertation, U.
California, Berkeley, 1994.

system is known to exhibit draw resonance, is qualitatively the same, but we see
very different behavior in the phase angle, which increases by 2π near the resonant
frequency. This is an indication that the amplitude ratio has passed through infinity
(all disturbances are amplified infinitely and the system runs away). Thus, stability
information is contained in this analysis, but in a subtle way. What we really seek
with this methodology is the information about sensitivity.

The issue of downstream boundary conditions becomes a bit more complex
when heat transfer and solidification are included, since the solidification point
will move dynamically when the system is perturbed. The transform methodology
requires that the frequency response equations be solved on a fixed spatial domain.
We can retain this structure as long as we retain the simplified condition that solidifi-
cation occurs when the temperature reaches a fixed value; in that case the dynamics
can be linearized about the solidification point, and the downstream boundary con-
dition can be written in terms of a linear combination of the velocity and tempera-
ture perturbations at the steady-state solidification point. (This issue does not arise
with the approach used by McHugh and co-workers, in which crystallization kinetics
are included and the fixed domain is the entire spinline.)

Figure 11.6a shows a Newtonian fluid calculation of the amplitude ratios for
the transfer functions of the final area relative to a variety of input disturbances
for PET extruded at 295 ◦C from a 0.5-mm diameter spinneret at a velocity of
13.2 m/min and a draw ratio of 100. The cross-flow air had a velocity of 0.2 m/s and
a temperature of 30 ◦C. Solidification was assumed to occur at 70 ◦C. Inertia and air
drag were included in the steady-state and linearized equations, and perturbations
were permitted in the temperature and velocity of the cross-flow air (Ta and va ,
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(Note the different vertical scales on the two figures.) Reprinted from Devereux, Computer
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1994.

respectively), as well as in the inlet and takeup parameters. Large amplitude ratios
and resonant peaks are seen at frequencies corresponding to the residence time, but
disturbances on this time scale (∼0.2 s) are not possible for most of the variables.
Only the cross-flow air velocity, which contains turbulent fluctuations, can possibly
generate perturbations in a frequency range where this system can respond dynam-
ically. Hence, we can conclude that the most likely source of diameter fluctuations
will be fluctuations in the rate of heat transfer. The same calculation is shown in Fig-
ure 11.6b for a two-mode Phan-Thien/Tanner fluid with ξ = 0.15, ε = 0.20, λ1,2 =
0.120 × 10−3 and 0.673 × 10−2 s, respectively, and G1,2 = 1.32 × 106 and 1.64 ×
104 Pa, respectively. As noted in Section 10.3, these parameters are a good fit to Gre-
gory’s rheology data and to George’s spinline data. The overall response is similar to
the Newtonian fluid, although the peaks are shifted a bit and some are modulated.

We now turn to an experimental study of spinline sensitivity to cross-flow air
by Young and Denn (1989). The system is shown schematically in Figure 11.7. A
melt filament was perturbed locally by cross-flow air variations, and perturbations
in the drawn filament diameter were recorded. Experiments were carried out for
PET and polypropylene. The spinneret diameter was 1 mm, and extrusion velocities
ranged from 0.12 to 0.048 m/s. Draw ratios ranged from 52 to 180. The maximum
takeup velocity was 450 m/min, so inertia and air drag were negligible. The exper-
imental amplitude ratios are shown in Figure 11.8 for two PET runs, with vo =
0.12 m/s and DR = 52 and 68, respectively; the water bath was located 1.32 m from
the spinneret for the data in Figure 11.8a and 0.70 m from the spinneret for the data
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Figure 11.7. Schematic of a melt dynamics
experiment.

in Figure 11.8b. Calculated amplitude ratios for Newtonian, Maxwell, and Phan-
Thien/Tanner equations, using both one and two modes, are also shown. These runs
represent the best and poorest agreement between the transfer function calculations
and the PET data. There is essentially no difference between the PTT and Maxwell
fluid calculations, nor between the use of one and two modes, although there
is a difference between one and two modes in the steady-state calculations. The
viscoelastic calculations do differ from the Newtonian. The location of the first reso-
nant peak is captured, and the maximum gain is approximately correct, although the
viscoelastic calculations overestimate the maximum sensitivity. The sharp minima in
the computed amplitude ratios do not appear in the data, however. A large amount
of “frequency cascading,” a nonlinear phenomenon in which power is transferred
to higher harmonics, was observed experimentally, as was some “smearing” of the
output fundamental into nearby frequencies. Hence, the absence of the sharp min-
ima and the overprediction of the magnitude might be caused in part by nonlinear
effects.

Young and Denn also did a series of spinning experiments with a polypropy-
lene melt. Polypropylene is highly shear thinning, and the polymer crystallizes on
solidification. The melt data were fit with two- and four-mode PTT equations, with
ξ = 0.12 and ε = 0.035. Spinning conditions were similar to the PET experiments,
except that the PP was extruded at 200 ◦C. Two typical comparisons between the
experimental and computed amplitude ratios are shown in Figure 11.9. The agree-
ment here is completely unsatisfactory. The calculated frequency response underes-
timates the amplitude ratio by a considerable amount and fails badly in predicting
the first resonant peak. In two of the five cases, the frequency response calculations



188 Polymer Melt Processing

100

100 101 102 100 101 102

G
A

f,
 v

a

100

frequency (rad/s) frequency (rad/s)

PET: run2 PET: run3

experimental
Newtonian

experimental
Newtonian

UC Maxwell (1)
UC Maxwell (2)
Phan–Thien (1)
Phan–Thien (2)

UC Maxwell (1)
UC Maxwell (2)
Phan–Thien (1)
Phan–Thien (2)

G
A

f,
 v

a
(a) (b)

Figure 11.8. Amplitude ratio as a function of frequency for the response of the takeup area
on a PET spinline to local perturbations in the cross-flow air velocity, Young’s Runs 2 and 3.
Reprinted with permission from Devereux and Denn, Ind. Eng. Chem. Res., 33, 2384 (1994).
Copyright American Chemical Society.

100

frequency (rad/s)

(a)

100 101 102

frequency (rad/s)

(b)

100 101 102

100

PP: run6
experimental
Newtonian
Phan–Thien (2)
Phan–Thien (4)

experimental
Newtonian
Phan–Thien (2)
Phan–Thien (4)

PP: run9

G
A

f,
 v

a

G
A

f,
 v

a

Figure 11.9. Amplitude ratio as a function of frequency for the response of the takeup area
on a polypropylene spinline to local perturbations in the cross-flow air velocity, Young’s
Runs 6 and 9. Reprinted with permission from Devereux and Denn, Ind. Eng. Chem. Res.,
33, 2384 (1994). Copyright American Chemical Society.



Stability and Sensitivity 189

DATA
XPP Model

Ta
ke

u
p
 A

re
a
 A

m
p
lif

ic
a
ti
o
n
 R

a
ti
o

Giesekus Model

10

1

0.1

0.01

0.001

10

1

0.1

0.01

0.001
1 10

(a) (b)

100 1 10 100

1% perturbation in air velocity

ω ω

Figure 11.10. Amplitude ratio as a function of frequency for the response of the takeup area
on a polypropylene spinline to local perturbations in the cross-flow air velocity. Young’s Runs
6 (a) and 9 (b). Reprinted with permission from Kohler and McHugh, Chem. Eng. Sci., 62,
2690 (2007). Copyright Elsevier.

indicated that the spinning should be unstable and exhibit draw resonance, whereas
draw resonance was not observed in the experiments.

Figure 11.10 shows a simulation of the same data by Kohler and McHugh, using
a model in which stress-induced crystallization occurs and the solid phase carries a
proportional fraction of the stress. The methodology for the sensitivity analysis is
identical to that of Devereux and Denn except that the fixed spatial regime is the
entire spinline and the downstream boundary condition is simply a zero perturba-
tion in the takeup velocity. The melt stress was described by the Giesekus model,
Equation 9.26, and by the XPP (extended pom-pom) model, which is a differen-
tial model based on the tube concept that has been used effectively in other studies
to describe melt flow behavior. Kohler and McHugh’s calculations indicated that
there was little crystallization in Run 6, so direct comparison with the calculations
in Figure 11.9a is appropriate (although they noted that only a small amount of
crystallization is required to “lock in” the stresses). The response of the Giesekus
model is essentially the same as the response of the Phan-Thien/Tanner model and is
equally unsatisfactory. The XPP model is closer to the data in magnitude, although
the location of the computed first resonant peak is also inconsistent with the
data.

Kohler and McHugh’s calculations for Young’s Run 9 indicated that there
was substantial crystallization. The Giesekus model for the melt is still inadequate,
despite the inclusion of stress-induced crystallization in the spinline model, and the
response does not differ greatly from the PTT simulations without crystallization.
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(a)

(b)

Figure 11.11. Failure of a polyisobutylene melt in extension. (a) Necking failure, stretch
rate = 0.058 s−1. (b) Cohesive failure, stretch rate = 5.6 s−1. Courtesy of V. C. Barrosa and
J. M. Maia.

The XPP model is again closer to the data in magnitude, but the first resonant peak
is displaced and has an amplitude ratio that is a factor of 10 greater than the experi-
mental amplification.

The conclusion based on these very limited dynamical studies is that existing
models are adequate for understanding the spinline dynamics of amorphous poly-
mers, such as PET at takeup speeds below 4,000 m/min, but they must be used with
caution for semicrystalline polymers. It is not possible to draw a firm conclusion
about the importance of the treatment of the solidification process in the frequency
response analysis, although stress-induced crystallization and the effect of the crys-
talline phase on the mechanics are likely to be important and should be included
since the theoretical framework is available.

11.6 Spinline Failure

Spinline failure is the primary dynamical problem in commercial spinning, and it is
unlikely to be related to the instability and sensitivity mechanisms discussed in the
preceding sections. The failure of polymer melt filaments in extensional flow occurs
by three distinct mechanisms in different stretch rate regimes: surface tension-driven
growth of disturbances that causes breakup into droplets, local necking that is anal-
ogous to ductile failure in solids, and cohesive failure that is analogous to brittle
failure in solids. In addition, the presence of impurities, such as cross-linked gel par-
ticles, can cause failure. Figure 11.11 shows the failure of a polyisobutylene melt
stretched at two different rates, illustrating necking at a low stretch rate and cohe-
sive failure and substantial snapback at a high rate.
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Surface tension–driven breakup into droplets is rarely important in melt spin-
ning, where the large viscous and elastic forces overwhelm the surface tension
forces. It is an important mechanism in the formation of the dispersed phase in poly-
mer blends, and it is important in solution processing. The surface tension–driven
breakup of a viscoelastic filament has been analyzed using both thin filament equa-
tions and a transient finite element analysis, but we will not pursue the topic here
because it is not relevant to our present discussion.

The onset of ductile failure in solids is determined by the Considère construc-
tion, in which a maximum in the stress–strain curve causes an instability that mani-
fests itself as a neck. This concept is unlikely to be applicable to the onset of necking
in polymer melts. All constitutive equations, including the Maxwell model, Equa-
tion 9.16, predict a maximum in the stress–strain curve for stretching at a constant
stretch rate, and this maximum normally occurs prior to the attainment of steady
state. Hence, literal interpretation of the construction as a sufficient condition for
failure would imply that uniform uniaxial extensional experiments could never be
carried out past the force maximum, which often corresponds to a relatively low
strain; such an interpretation is clearly contrary to substantial experimental expe-
rience in extensional rheometry, and several experimental studies focusing specifi-
cally on the Considère construction have shown that it does not predict the experi-
mental onset of necking in melts.

Reiner and Freudenthal proposed a theory of cohesive failure for Maxwellian
liquids in 1938; the theory requires a material “strength” with dimensions of a stress,
but it reduces to the notion that there is a critical stress for failure that is characteris-
tic of the material. The time to break for a given stretch rate is then calculated from
Equation 9.22. In this approach, the stress and strain at failure are independent of
the stretch rate, which is contrary to later careful experiments. There is no adequate
theoretical treatment of cohesive failure within the context of the continuum models
that we have been discussing.

Joshi and Denn have developed a molecular scaling argument for cohesive fail-
ure that is based on the tube concept. The model predicts a critical value of the
recoverable strain, which is the amount of strain that is recovered by recoil follow-
ing failure. The total strain at failure can then be calculated from a stress constitutive
equation for a given recoverable strain. The basic concept is that an entangled poly-
mer chain experiences a tension that is balanced by the friction with the surround-
ing chains with which it is entangled. The tension and the friction scale differently
with chain extension, and there is a critical chain extension beyond which the two
forces cannot balance. This point is interpreted as the onset of failure. All model
parameters are derived from molecular structure or independent measurements, so
the only adjustable parameter is a scaling coefficient that must be of order unity.
Data in which both the strain at failure and the recoverable strain are available are
very limited; the best data set is from the Vinogradov group in Russia in the 1970s.
Vinogradov’s failure data for a polyisoprene with a molecular weight of 575,000
and a polydispersity of 1.02 are shown in Figure 11.12, together with the calculated
lines. (Werep is the product of the stretch rate and the reptation time, which is the



192 Polymer Melt Processing

2.5

2.0

1.5

1.0

0.5

0.0
0.1 1 10

Werep

R
T

Figure 11.12. Failure data of Vinogradov for polyisoprene. The fine continuous and broken
lines are the critical recoverable and total strain, respectively, from the scaling theory with a
scaling coefficient of unity. The heavy continuous and broken lines are the critical recoverable
and total strain from the scaling theory with a scaling coefficient of 2.5. Reprinted from Joshi
and Denn, J. Rheol., 48, 591 (2004).

time scale associated with diffusion of the chain through the “tube.”) The agree-
ment is reasonably good if the scaling coefficient is set to 2.5, and it is likely that the
scaling argument captures the essential physical phenomena. Scaling arguments are
inherently crude, however, and a fundamental treatment of cohesive failure is still
lacking.

11.7 Film Blowing

The blown film process is known to be difficult to operate, and a variety of insta-
bilities have been observed on experimental and production film lines. We showed
in the previous chapter (Figure 10.10) that even a simple viscoelastic model of film
blowing can lead to multiple steady states that have very different bubble shapes
for the same operating parameters. The dynamical response, both experimental and
from blown film models, is even richer. The dynamics of solidification are undoubt-
edly an important factor in the transient response of the process, but the operating
space exhibits a variety of response modes even with the conventional approach
of fixing the location of solidification and requiring that the rate of change of the
bubble radius vanish at that point.

Housiadas and co-workers have carried out a rigorous derivation of the blown
film equations without crystallization for a class of constitutive equations that
includes the Maxwell and PTT equations. They permitted nonaxisymmetric dis-
turbances in the perturbation equations when studying stability, which had not
been done in the small number of earlier studies. Results for a PTT fluid with
ε = 0.005 and ξ = 0 are shown in Figure 11.13 for Z/R0 = 7 and λV0/R0 = 0.1.
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Figure 11.13. Contours of constant dimensionless pressure and regions of instability for a
PTT fluid with ε = 0.005, ξ = 0, Z/R0 = 7, and λV0/R0 = 0.1. Reprinted with permission
from Housiadas et al., J. Non-Newtonian Fluid Mech., 141, 193 (2007). Copyright Elsevier.

Here, T U R = (thickness reduction)/BUR and pg = 2B in terms of the nomencla-
ture used in Section 10.4; TUR and BUR are the takeup ratio and blowup ratio,
respectively. The region marked “U” is unstable according to the linear theory.
Only results for BUR > 1 are of practical interest. We see that both draw reso-
nance and helical instabilities can occur, with the latter comprising a large part of
the parameter space for dimensionless pressure B less than about 0.25 (pg < 0.50).
This is consistent with what is seen experimentally, although the comparisons are
qualitative.

Henrichsen and McHugh applied their model, which includes crystallization, to
study both the sensitivity and the stability of the blown film process with axisymmet-
ric disturbances. The sensitivity analysis showed no large resonant peaks in excess
of the steady-state gain (the low-frequency asymptote of the amplitude ratio) like
those for the spinline in Section 11.5. They did observe some effect of crystallization
when the crystallization mechanics were “turned on” and “turned off” for other-
wise identical conditions. The stability results show differences between parameters
appropriate to low-density polyethylene and linear low-density polyethylene in a
direction that is consistent with some experiments but not with others. Henrichsen
and McHugh examined a larger range of BUR but a much smaller takeup ratio range
than Housiadis and co-workers, and they did not include pressure contours, so it is
not possible to make direct comparisons between the two studies to ascertain the
importance of the crystallization model. What is needed is the incorporation of a
crystallization model into a detailed study with nonaxisymmetric disturbances like
that done by Housiadas and co-workers.
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Figure 11.14. Photograph of a cross section of an extruded bicomponent film, with a
polypropylene (Layer 1, above) and a high-density polyethylene (Layer 2, below). The flow
direction is from left to right. The initial thickness ratio PP/HDPE was 1.071. Reprinted with
permission from Wilson and Khomami, J. Rheol., 37, 315 (1993).

11.8 Interfacial Instabilities

Multilayer systems include bicomponent fibers and films with as many as several
hundred coextruded layers. Steady interface motion that is induced in noncircular
channels by the second normal stress difference was described in Section 10.6. The
more common reason for interface distortion is the growth of interfacial instabilities
as the film traverses the die. Figure 11.14 shows an extreme case of the development
of interfacial waves in the coextrusion of a two-layer film consisting of a polypropy-
lene (above) and a high-density polyethylene (below). The flow direction is from left
to right. The interfacial disturbance was initiated by subjecting the flow to pressure
fluctuations. The initial disturbance growth was exponential, as required by linear
stability theory, but the crested waves that we see in the photograph are well beyond
the linear regime.

The analysis of the growth of interfacial instabilities using a framework like
that in Section 11.3 is relatively straightforward, but it is tedious because the lin-
earized momentum and constitutive equations in both phases must be considered,
together with a linearized equation for the interfacial dynamics. It is sometimes pos-
sible to obtain analytical solutions to interfacial instability problems when the char-
acteristic wavelength can be taken to be long. Instability modes can be traced to
differences in viscosity and normal stresses across the interface, and relative layer
thickness is important. Linear stability analyses have been carried out for the multi-
mode Giesekus fluid, as well as a single-mode variant of the Phan-Thien/Tanner
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model. The phenomenon, which includes “subcritical” instabilities in which
nonlinear disturbances grow in a region where linear theory predicts stability to
infinitesimal disturbances, is very complex, but the linear stability theory for the
four-mode Giesekus fluid is in reasonable agreement with the data for interfacial
disturbance growth.

11.9 Concluding Remarks

With the exceptions of extrusion die instabilities, which are addressed in the next
chapter, instabilities in melt spinning and film blowing, and interfacial instabilities,
the experimental literature on viscoelastic flow instabilities has emphasized dilute
polymer solutions. The earliest studies were on the instability of flow between rotat-
ing concentric cylinders, known as the Taylor-Couette instability, where the steady
in-plane rotational flow spontaneously breaks down into a series of superposed vor-
tices. This is a well-studied inertial phenomenon for Newtonian fluids, and the iner-
tial transition for dilute polymer solutions turns out to be surprisingly sensitive to
the second normal stress difference. Giesekus observed a transition in this flow in
1962 at exceedingly small Reynolds numbers, but the observation appeared to be an
anomaly; nearly three decades later, Larson, Muller, and Shaqfeh reported experi-
ments and a linear stability analysis showing the existence of an “elastic” instability
in this flow in the limit of zero Reynolds number. Other instabilities for creeping
flow of viscoelastic liquids have also been observed, including torsional cone-and-
plate flow, a “lid-driven” cavity, stagnation flow, and a cylinder in a channel, and
it is quite likely that these phenomena have relevance to polymer melt processing,
although direct connections have not been made.

The common feature of these instabilities at zero Reynolds numbers seems to
be the coexistence of normal stresses and curved streamlines. McKinley has argued
that both the experimental and theoretical onsets of instabilities for this class of
flows correlate with a criterion of the form λU/(RH)1/2 > Mcrit. λ is a mean relax-
ation time, U is the characteristic velocity, H is the length scale defining the shear
rate, and R is the length scale defining the curvature of the streamlines. Mcrit is a
constant characteristic of the specific flow. U/H defines the shear rate and R /U
the residence time, so the critical value can be interpreted as the geometric mean of
the Deborah and Weissenberg numbers.
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12 Wall Slip and Extrusion Instabilities

12.1 Introduction

The no-slip boundary condition is introduced in every text on fluid mechanics as
a fundamental principle of the discipline, and students are expected to accept the
condition as “obvious.” No-slip is not obvious, however, nor was it obvious to the
founders of the discipline of fluid mechanics in the nineteenth century. Navier, in
1823, believed that there should be a relative (“slip”) velocity between the fluid and
the solid surface that would be proportional to the shear stress at the wall; in modern
terminology we would write Navier’s hypothesis as (cf. Equation 2.30)

ηvs = bτw, (12.1)

where vs is the slip velocity and τw is the shear stress. η is the viscosity, and b is
a parameter with dimension of length that would presumably be a function of the
fluid–solid pair. The no-slip condition for fully developed laminar tube flow of a
Newtonian fluid predicts a fourth-power dependence of flow rate on tube radius,
which is an extremely sensitive function. Careful experiments with water in round
capillaries in the first part of the nineteenth century by Hagen and Poiseuille verified
the fourth-power dependence, thus establishing the no-slip condition experimen-
tally. Theoreticians, notably including Stokes, cautiously accepted the no-slip con-
dition, and it became a part of the theoretical canon. Even into the mid–twentieth
century, however, one finds occasional questions in the literature about the general
validity of the boundary condition.

The development of the polymer processing industry following World War II
renewed interest in the relevance of the no-slip boundary condition; this probably
occurred because of the realization that polymer melts show rubberlike behavior on
short time scales and rubber does not adhere to the wall during compounding. Ben-
bow and Lamb, who were studying extrusion instabilities (which we address later in
this chapter), reported slippage along the die wall in 1963 during the extrusion of
a polyethylene; this was done by observing the motion of a colored dye, and they
noted that the onset of unstable flow is affected by the materials of construction of
the extrusion die. The materials of construction should have no effect on the flow
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if the no-slip condition is satisfied. Other experiments at about the same time also
reported slip in melt flow by tracking tracer particles near the wall, but these exper-
iments were discredited by calculations showing that velocity gradient across the
finite particles could have caused the motion even with the no-slip condition, and
the subject received little further attention for two decades. Experiments by Rama-
murthy in 1986 showing that linear low-density polyethylene (LLDPE) melts exhibit
very different flow behavior in geometrically identical extrusion dies fabricated from
steel and α-brass renewed interest in possible slip flow in melts. The subject has since
become of considerable interest to the microfluidics community as well, where the
focus is typically on low molar-mass liquids, since the large surface-to-volume ratio
in a microchannel greatly enhances the importance of any wall-region effects.

12.2 Experiments

It is now generally accepted that polymer melts exhibit apparent wall slip in flow at
high stress levels, with an impact on the design and control of extrusion and molding
flows. (We use the term apparent wall slip here to emphasize that most experiments
are macroscopic and cannot distinguı́sh between anomolous wall-region behavior
that looks like slip and a true absence of adhesion at the molecular level. Whenever
we use the terminology wall slip in this chapter, we mean apparent wall slip.) One
common way to determine wall slip is to perform flow experiments in a series of
capillaries of different radii, and then to plot the apparent shear rate

•
γ a = 4Q/πR3

versus 1/R at constant wall stress, where Q is the volumetric flow rate and R is the
radius. It is straightforward to demonstrate that the slope of the line is four times
the slip velocity. Results of Ramamurthy on an LLDPE in a steel die are shown
in Figure 12.1; apparent slip velocities of order 1 – 10 mm/s were observed. The
flow curves by Ghanta and co-workers, shown in Figure 12.2, were obtained for an
LLDPE in geometrically identical α-brass and stainless steel dies. The throughput is
considerably higher in the brass die relative to the steel die at the same wall stress,
indicating apparent slip. (The bars on the steel die data do not represent experi-
mental uncertainty, which is smaller than the size of the data points. They reflect
the range of certain pressure fluctuations that are discussed later in this chapter.)
Laser-Doppler velocimetry measurements of a linear high-density polyethylene by
Munstedt and co-workers are shown in Figure 12.3. These data clearly extrapolate
to a nonzero velocity at the wall.

Wise and co-workers used an infrared (IR) evanescent wave spectroscopy tech-
nique to follow the disappearance of a tracer of deuterated 1,4-polybutadiene
(PBDE) displaced in a channel by unlabeled PBDE of the same molecular weight.
Linear PBDE is a convenient polymer for experimental research because it flows
at room temperature and has a viscosity that is relatively insensitive to shear rate.
One face of the channel was fabricated from a ZnSe IR crystal, and the deuter-
ated polymer was placed on the surface. The deuterated polymer was then allowed
to equilibrate with hydrogenated polymer of the same molecular weight, and flow
was initiated. The concentration of deuterated polymer in the wall region after the
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Figure 12.1. Apparent shear rate as a function of 1/R at con-
stant wall stress for an LLDPE. Reprinted with permission
from Ramamurthy, J. Rheol., 30, 337 (1986).

initiation of flow of the undeuterated polymer was monitored by the intensity of the
IR signal, which was operated in “total reflection” mode to probe only the region
near the wall. The signal intensity is proportional to concentration. It can be shown
that normalized concentration is a unique function of the product

•
γ a

2/3t for no-
slip flow with transverse diffusion of the species at the wall. Data for normalized

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

stainless

brass

0 500 1000 1500 2000

Shear rate (1/s)

S
he

ar
 s

tr
es

s 
(M

P
a)
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absorbance plotted as a function of
•
γ a

2/3t are shown in Figure 12.4; the data do
superimpose at the lower stresses, consistent with the no-slip condition, but the
increased decay rates at higher stresses indicate that the tagged material is leav-
ing more quickly than would occur by no-slip flow and transverse diffusion; hence,
there must be slip. The IR signal averages over a distance of several microns from
the wall, so spatially resolved concentration profiles cannot be obtained, therefore
precluding the possibility of determining the actual mechanics of slip. It is possible
to conclude from the curvature of these data, however, that true slip (i.e., adhesive
failure) at the die wall did not occur at these stresses.

The only available data on polymer melt flow near a wall with resolution
approaching the size of an extended polymer chain are by Leger and co-workers,
who used optical evanescent wave spectroscopy with photobleaching of fluorescent
tracer molecules to carry out direct observations of the velocity within 100 nm of a
surface. The results of their measurements in plane Couette flow of a linear poly-
dimethylsiloxane (PDMS) with a molecular weight of about 106 past a silica surface
containing terminally grafted PDMS chains with a molecular weight of about 105

are discussed below. Their studies suggest an apparent slip plane that is located
away from the wall, with slip velocities for this system that are much smaller than
those deduced for linear polyethylene by Ramamurthy and others using macro-
scopic methods.

The general conclusion that can be reached from these experiments and oth-
ers not mentioned here is that apparent slip is observed for some highly entangled
linear polymers, while it has not been observed for branched polymers or for lin-
ear polymers with an insufficient number of entanglements per chain. None of the
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Figure 12.4. Normalized infrared intensity over a ZnSe surface, polybutadiene with Mw =
180,000. Reprinted from Wise et al., J. Rheol., 44, 549 (2000).

experimental methods has sufficient resolution to determine the mechanism of the
apparent slip, although at least at modest stress levels it appears to involve a physical
process that is operative away from the die wall.

12.3 Theories of Slip

There are three broad pictures of wall slip in polymer melts and concentrated solu-
tions: (i) Slip is the result of an adhesive failure of the polymer chains at the solid
surface, resulting in an interface that is polymer-free; (ii) slip is a cohesive failure
resulting from disentanglement of chains in the bulk from chains adsorbed at the
wall, resulting in an apparent “failure plane” within the polymer; and (iii) there is a
low-viscosity lubricated layer at the wall, perhaps the result of a stress-induced tran-
sition to an ordered low-viscosity liquid crystalline mesophase or of stress-induced
diffusion of smaller chains in the molecular weight distribution to the wall region.
(Scenarios (ii) and (iii) are not necessarily distinct, since a consequence of disen-
tanglement would be a layer of relatively unentangled polymer chains at the wall,
which would have a lower viscosity than the entangled chains in the bulk.) The dis-
entanglement picture is the most likely, except perhaps at the highest stresses, and
that is the only one that we address here in any detail.

The notion that slip in a polymer melt is a consequence of disentanglement of
chains adsorbed to the wall from those in the bulk seems to have been proposed first
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Figure 12.5. Schematic of the stochastic tube model.

by Bergem in 1976. Brochard and de Gennes developed a theoretical foundation in
1992 using scaling arguments. A number of subsequent groups have quantified the
concept using the “tube” picture of entangled polymer chains mentioned in Sec-
tion 9.5.4, and we briefly describe one such approach below. The tube theories are
based on the notion that there are two types of polymer chains, those that are at
the wall and those in the bulk. The chains at the wall are assumed to have a known
density and to be tethered to the wall at one end. The tethering assumption is neces-
sary for all formalisms, and it is consistent with the set of well-defined experiments
on PDMS by Leger and co-workers that have been used for comparison with the-
ory. It is only a crude approximation to the real extrusion situation, however, since
polymers will adsorb to the wall all along the chain and not only at the end. Hence,
chain “loops” are ignored, and the actual lengths of the “tails” that extend away
from the wall are unknown. In addition, the density of adsorbed chains is unknown
but is likely to depend on the surface chemistry; indeed, such a dependence on the
surface chemistry is the only consistent way to explain the different behavior of
LLDPE in brass and steel capillaries. (The fact that the chains are adsorbed and not
permanently attached to the wall, as assumed in the theories, is probably of lesser
importance.)

12.4 Tube Theory of Wall Slip

The starting point for the tube theory of wall slip employed by Xu and co-workers
is shown in Figure 12.5. The transverse motion of a polymer chain in a melt or con-
centrated solution is restricted by the surrounding chains, so the primary diffusive
motion must be along the backbone. (This motion is known as reptation, indicat-
ing a snakelike motion.) The surrounding chains are taken in a mean-field sense to
comprise a tube, with a diameter that is on the order of the distance between entan-
glements. (Entanglement is an abstract but useful concept in polymer physics; no
one knows precisely how polymer chains in a dense system hinder the motion of
neighboring chains. The mean distance between entanglements is a known property
of the linear molecule, however. The entanglement molecular weight is the molecular
weight at which the dependence of the viscosity on molecular weight changes from
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linear to a power of about 3.4. The equilibrium number of entanglements per chain
is simply the ratio of the molecular weight to the entanglement molecular weight.)

The hypothetical tube is a dynamical element that convects with the surround-
ing fluid. The changes of direction of the tube shown in the figure correspond to
entanglement points in the model. The chain, which is represented by a series of
friction points (“beads”) connected by finitely extensible springs, moves within the
constraints of the tube. The beads experience Brownian and frictional forces, as well
as the tensile stress imparted by the stretched springs. There is also an osmotic-like
force that is a consequence of the restriction of the chain to the tube; this force man-
ifests itself with a tensile component that prevents chain collapse within the tube
and a transverse component with a potential that is quadratic in deviations from
the tube centerline. Application of Newton’s second law to each bead results in a
set of stochastic differential equations. (The equations are stochastic because the
Brownian force is random, with a zero mean and a prescribed variance.) If an end
of the chain retracts into the tube past an entanglement point, the entanglement is
lost and the tube segment is removed. A new entanglement is formed and a new
tube segment is created if an end of the chain moves out of the tube a distance
equal to the equilibrium length between entanglements. The calculation is carried
out for an ensemble of chains. Clearly, each entanglement must involve two chains
(we ignore the possibility that a chain might entangle with itself), so when an entan-
glement is lost because of chain retraction the complementary entanglement on the
other chain must also be lost. Similarly, a complementary entanglement must be
created on another chain when a new entanglement is created because the chain has
emerged from the tube. There are rules for these and other details, but they are not
important in the present context. Stresses are computed from an ensemble average
of an orientation tensor constructed from segment directions in the manner usually
employed for statistical theories of polymer rheology.

The theory has only a single adjustable parameter, which corresponds to the
Rouse time (the characteristic relaxation time for an unconfined chain) of the poly-
mer, and it does a quite reasonable job of predicting the linear viscoelastic response
and the transient and steady-state shear and normal stresses in simple shear. It is not
as good as more complex tube-based models like the pom-pom model, and it cannot
be used for nonviscometric flows because of the absence of a continuum represen-
tation, but it contains structural details and is very useful for providing insight into
the mechanics of slip.

The application of the stochastic tube theory to slip requires that there be three
types of chains: bulk chains that do not interact with the chains at the wall, wall
chains that do not interact with the chains in the bulk, and free chains that inter-
act with both the bulk and wall chains. The model is applied to each type of chain,
and there are again details of implementation that need not concern us here. The
wall stress is determined from the bulk behavior, and because the stress must be
continuous, the shear rate experienced by the wall chains that is required to match
the stress in the bulk is computed. The density and length of the wall-tethered chains
must be known. The only experiments with a known surface density of wall-tethered
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Figure 12.6. PDMS slip velocity data of Leger and co-workers and predictions of the stochas-
tic tube model. Reprinted from Xu et al., J. Rheol., 51, 451 (2007).

chains with known molecular weight are those by Leger and co-workers on lin-
ear PDMS, which were mentioned above. The slip velocity data are shown in
Figure 12.6, together with the predictions of the tube theory, where the only
adjustable parameter was the Rouse time of the bulk melt. The model captures the
features and magnitude of the slip data, except for the small amount of hystere-
sis in the experimental data. The difference between theory and experiment in the
shear rate at which the large increase in slip velocity occurs is within the range of
uncertainty of the Rouse time, which enters as a time-scaling parameter, but it is
more likely that the difference is a consequence of the simplicity of the model. The
calculations indicate that the density of entanglements in the wall region becomes
significantly less than in the bulk, resulting in a wall layer of relatively unentangled
chains with a viscosity lower than that in the bulk. Thus, the results of the theory are
consistent with Scenario (ii) above.

12.5 Slip In Flow Simulation

Incorporation of an empirical slip boundary condition in simulation is straightfor-
ward, and we noted in the flow examples in Chapter 8 that slip was introduced as a
means of smoothing discontinuities in boundary conditions. Most slip data for poly-
mer melts have been obtained in shear flow over a narrow range of shear rates, and
the data can usually be fit with a power relation of the form vs = constant × τm

w ,
where values of the exponent m have been reported in various studies to be in the
range from 2 to 6. The Navier boundary condition corresponds to m = 1.
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Figure 12.7. Computed streamlines for plane converging flow of a Newtonian fluid with a
Navier slip boundary condition. Reprinted from Joshi and Denn, J. Non-Newtonian Fluid
Mech., 114, 185 (2003).

The consequence of a slip boundary condition will be felt the most in a flow
with a changing cross section, since in that case there may be large changes in the
local wall stress at a fixed throughput. This point is nicely illustrated by flow between
infinite converging planes, which was used as an illustrative example in Chapter 2.
We showed there that radial streamline flow is possible in the creeping flow limit
for a Newtonian liquid only under conditions of no slip or perfect slip. The same
result easily follows for inelastic shear-thinning fluids. (Radial streamline flow is not
possible in this geometry in general for viscoelastic liquids and a no-slip boundary
condition, although the deviation from radial flow takes place primarily near the
exit, where the radial assumption probably breaks down in any event.) We can visu-
alize the nature of the flow that we expect when slip is possible. Far from the exit,
where the cross section is large, the flow is slow and the wall stress is small; here the
no-slip condition will approximately apply and the flow will be radial, with a maxi-
mum in the radial velocity at the center plane. Close to the exit the cross section is
small, the flow is rapid, and the wall stress is large; here the perfect slip condition
will approximately apply and the flow will be radial, with a uniform radial velocity.
Hence, there must be a transition region with a transverse velocity in order to effect
the change between the two limiting velocity profiles.

Computed streamlines in plane converging flow with a half-angle of π/2 for a
Newtonian fluid with the Navier boundary condition are shown in Figure 12.7. The
streamlines are shown on an orthogonal grid, where radial flow appears as a verti-
cal line, to facilitate interpretation. The dimensionless radial position, denoted �,
equals r/b, where b is the slip length defined in Equation 12.1. The solid lines are the
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Figure 12.8. Streamlines for a Carreau-Yasuda fluid with n = 0.3 and w = 4.0. The dashed
line is the streamline for a Newtonian fluid (w = 0), while the dotted line is the streamline for
the corresponding power-law fluid. Reprinted from Joshi and Denn, J. Non-Newtonian Fluid
Mech., 114, 185 (2003).

results of a finite element calculation, while the dashed lines are asymptotic solutions
for � � 1 (approaching no slip) and � � 1 (approaching perfect slip). The transi-
tion flow occurs for � = O(1), where the distance from the point of convergence is
comparable to the slip length b.

A similar asymptotic solution can be obtained for power-law fluids. One
counterintuitive phenomenon with power-law behavior occurs when n = 1/2, in that
the flow is radial everywhere with partial slip; the downstream asymptotic behavior
changes from nearly perfect slip to no slip as the power-law index n decreases below
n =1/2.

A second dimensionless group, w = qβ/2(αb)2, arises for the Carreau-Yasuda
(C-Y) shear-thinning fluid, Equation 2.40b:

η = ηo

(
1 + β( 1

2 IID)
a
2

) n−1
a

. (12.2)

The C-Y fluid approximates a power-law fluid with power-law index n at high shear
rates and approaches a Newtonian fluid with a viscosity equal to ηo for low shear
rates. Streamlines from a finite element simulation for a C-Y fluid are shown in
Figure 12.8 for a power-law index n = 0.3 and w = 0.4. � is defined as appropriate
for a Newtonian fluid with the zero-shear viscosity of the C-Y fluid; in that case
it can be shown that we expect deviations from Newtonian behavior when �2 ∼ w.
The dashed line is the streamline for a Newtonian fluid (w = 0), while the dotted line
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Figure 12.9. A streamline for a Carreau-Yasuda
fluid with n = 0.3 for various values of w; the New-
tonian fluid is w = 0. The dashed lines are the cor-
responding power-law streamlines. Reprinted from
Joshi and Denn, J. Non-Newtonian Fluid Mech.,
114, 185 (2003).

is the asymptotic solution for the power-law fluid with n = 0.3. The streamlines for
the Newtonian and C-Y fluids are identical for � � w1/2, while the C-Y streamlines
merge into the n = 0.3 power-law streamlines for � � w1/2. The azimuthal flow is
always away from the center plane for � < w1/2; it is toward the center plane for
� < w1/2, as shown here, when n < 0.5.

Figure 12.9 shows a single streamline for a C-Y fluid with n = 0.3 for various val-
ues of w. The two broken lines denoting the power-law fluid do not overlap because
of the use of length scaling based on the zero-shear viscosity. The maximum devi-
ation from the upstream no-slip Newtonian flow and downstream no-slip C-Y flow
occurs for � ≈ w1/2, where the azimuthal velocity changes direction. The substan-
tial streamline curvature exhibited by the C-Y fluid in a contraction forces one to
think about the elastic instabilities generated by curved streamlines mentioned in
the preceding chapter, and indeed this phenomenon may be related to extrusion
instabilities that are believed to originate in the die entry region. We briefly discuss
these instabilities later in this chapter.

12.6 Sharkskin

Some highly entangled linear polymers, including high-density polyethylene
(HDPE), linear low-density polyethylene (LLDPE), 1,4-polybutadiene (PBDE),
and polydimethylsiloxane (PDMS), exhibit an extrusion instability known as shark-
skin, in which a small-amplitude, high-frequency disturbance appears on the extru-
date surface at a wall shear stress that is typically on the order of the linear vis-
coelastic plateau modulus (0.1 – 0.2 MPa for most polymers). Figure 12.10 shows
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Figure 12.10. Extrudates of an LLDPE at 145 ◦C at (a) 0.12 MPa and (b) 0.29 MPa, illustrat-
ing the onset of sharkskin. Reprinted from Pudjijanto and Denn, J. Rheol., 38, 1735 (1994).

extrudates of an LLDPE at 145 ◦C at (a) 0.12 MPa and (b) 0.29 MPa, where the
latter illustrates the onset of sharkskin.

There was a widespread belief in the latter part of the twentieth century that
the onset of sharkskin was in some way associated with the onset of wall slip, and
the literature on the two subjects became inexorably intertwined. This association
was based in part on the fact that observable wall slip occurs for these polymers at
stresses of the same magnitude as those at which visible sharkskin occurs. It is now
generally accepted that sharkskin is caused by a “tearing” (tensile) failure at the
point where the melt exits the die; the periodicity is a result of dynamic crack pen-
etration and subsequent healing, after which the process repeats. There is no quan-
titative theory for tensile failure, as noted in the previous chapter, but visual data
appear to be definitive and there are (reasonably converged) finite element calcula-
tions showing that the tensile stress in the region of the point of departure from the
die at the experimental onset of sharkskin is about the same as the stress that causes
failure in extension for the same polymer. The onset of sharkskin can be delayed
by the use of “flow modifiers,” which are typically fluoropolymers that enhance slip,
minimizing the amount of flow reorganization required in the neighborhood of the
die exit, hence lowering the amount of stretching and the concomitant tensile stress
for a given throughput. The slip flow caused by the use of a brass die has the same
effect. Figure 12.11 shows extrudates corresponding to the data in Figure 12.2 at a
wall stress of 0.295 MPa. The upper extrudate, which is smooth, is from the brass die
at an apparent shear rate 8V/D of 589 s− 1, while the lower sharkskinned extrudate
is from the steel die at 8V/D = 298 s− 1.

12.7 Slip-Stick Flow

Linear polymers that exhibit sharkskin typically also exhibit a discontinuity in the
shear flow curve known as slip-stick. The phenomenon is illustrated in Figure 12.12
for an LLDPE in a piston-driven capillary rheometer. At a critical wall stress there
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Figure 12.11. Extrudates of LLDPE at
τw = 0.295 MPa from (upper) an α-brass
die at rate 8V/D = 589 s−1 and (lower)
a stainless steel die at 8V/D = 298 s−1.
Reprinted from Ghanta et al., J. Rheol.,
43, 435 (1999).

is a jump in the throughput, with a small amount of hysteresis on the return. The
behavior is reminiscent of an ignition-extinction phenomenon in combustion, in
which the system jumps discontinuously between states.

The data points in the region of discontinuity represent mean flow rates calcu-
lated from the velocity of the driving piston. In reality, the output oscillates between
the upper and lower branches of the flow curve. The bars on the stainless steel
data in Figure 12.2 denote the range of pressure fluctuations during these oscil-
lations. (The pressure fluctuations are small relative to the base pressure, so they
do not affect the flow curve in any substantive way.) There is massive slip on the
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Figure 12.12. Flow curve of an LLDPE. Reprinted from Kalika and Denn, J. Rheol., 31, 815
(1987).
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Figure 12.13. Laser-Doppler velocity profiles for a HDPE melt at the high and low parts of
the cycle. Reprinted with permission from Munstedt et al., J. Rheol., 44, 413 (2000).

upper branch. Figure 12.13 shows laser-Doppler velocimetry data by Munstedt and
co-workers on an HDPE during the two parts of the cycle at a nominal shear rate of
137 s− 1; the slip velocity on the upper branch is ten times that on the lower branch.

The fact that a nominally incompressible melt can flow at two very different
rates when driven by a piston moving at a constant rate is initially quite surprising,
but the resolution, which was first pointed out by J. R. A. Pearson, is actually quite
straightforward. There is a large reservoir of melt in the cylinder prior to the con-
traction to the capillary where the pressure drop is measured and the flow curve is
determined. The melt, like all organic liquids, has a very small degree of compress-
ibility. Because of the very large difference in volume between the reservoir and the
capillary, it turns out that the pressure difference between operations on the two
branches is sufficient to compress the melt in the cylinder by a volume that is on the
order of the volume of the capillary. Thus, the system has a very large capacitance
on the scale of the capillary, and this capacitance is what permits the oscillations.

The presence of the capacitance and our knowledge of the relative magnitudes
of the slip velocities on the two branches of the flow curve lead to a straightforward
conceptual model for the oscillatory flow. We assume for simplicity that there is
a large discontinuity in the slip velocity at a critical wall stress τ c, rather like the
behavior seen in Figure 12.6. At stresses below τ c there is little or no slip, the flow is
slow, and the pressure in the reservoir may build up and compress a small amount
of melt. When the pressure builds to a value where the wall stress must exceed τ c to
maintain the balance of forces, the melt will begin to slip, the flow rate will increase
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Figure 12.14. Extrudate of an LLDPE exhibiting melt fracture at an apparent shear rate of
6,655 s− 1. Reprinted from Kalika and Denn, J. Rheol., 31, 815 (1987).

greatly, the compressed melt will surge out of the reservoir, and the pressure will
drop. When the pressure drops sufficiently the cycle starts over. The cycle time will
depend linearly on the capacitance, hence, on the volume of melt in the reservoir,
and this is in fact what is observed experimentally. This simple picture can of course
be quantified, and a number of authors have done so. The specific response and
dynamic flow rate and pressure profile cycle will depend on the details of the slip
function and the stress-shear rate relation, but it is clear that cyclic behavior must
result with nothing more than a capacitance and a “switch” at the wall.

The brass die data in Figure 12.2 do not show a discontinuity in the flow curve,
but rather approach the high-rate slip-dominated behavior smoothly. These data
illustrate the significant role that can be played by the interfacial chemistry, which
determines the degree of polymer chain adsorption and hence stress transmission
through the melt at the surface.

12.8 Melt Fracture

All entangled polymer melts, whether or not they exhibit sharkskin or slip-stick, are
limited in throughput by the development of distorted extrudates like the LLDPE
sample shown in Figure 12.14. Such high-rate extrudate distortions are gathered
collectively under the name melt fracture; the term was coined by Tordella, who was
one of the first to study the phenomenon, because he heard crackling sounds in the
die that seemed to him to represent a real fracture of the polymer. Melt fracture
for linear polymers that exhibit slip-stick typically occurs some distance out on the
upper branch. Extrudates on the first part of the branch tend to be smooth, and there
is some tradition of ultra-high speed processing by operating in the first portion of
the upper branch; one-gallon high-density polyethylene milk bottles manufactured
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Figure 12.15. Apparent “weld” in extrusion of LLDPE.
Reprinted with permission from Pérez-González and
Denn, Ind. Eng. Chem. Res., 40, 4309 (2001). Copyright
American Chemical Society.

with the Uniloy high-rate blow-molding process are processed in this regime, for
example.

There have been attempts to explain the onset of melt fracture by using linear
stability theory, along the lines discussed in the preceding chapter for the spinline.
The procedure is the same in principle, but the computational problem to solve the
relevant linear eigenvalue problem for channel flow with any viscoelastic consti-
tutive equation is a very difficult one. Based on a number of successful solutions it
appears that plane laminar flow of viscoelastic liquids at very low Reynolds numbers
is stable to infinitesimal disturbances.

One possible mechanism for the onset of the extrudate instability is the prop-
agation of a disturbance that originates in the die flow. There is a long folkloric
tradition that melt fracture is an “entry” instability, and old flow visualization exper-
iments showed the onset of a swirling and pulsating flow in the region upstream of
a contraction that might correlate with a downstream instability. The problem here
is one of determining cause and effect, since low Reynolds number flows can be
strongly influenced by conditions far from the point of observation.

The question then is what might be the mechanism for an entry instability? One
possibility is a tensile failure in the extensional flow in the die entry. Figure 12.15
shows a section of an extrudate of an LLDPE that appears to have been ruptured
cohesively and then “welded” back together, which would be an indication of tensile
failure, but such data are limited and the connection to a flow instability is tenuous.
(The flow was stable when this sample was extruded.) Another possibility follows
from the observation that noticeable slip occurs at stresses close to, and perhaps just
below, the onset of extrusion instabilities. As noted in Section 12.5, slip in a converg-
ing region would lead to curved streamlines, and curved streamlines in highly elastic
liquids appear to drive flow instabilities.

A related idea that would put the initiation of the instability in the die land
rather than in the entry has recently been quantified. Linear stability theory does
seem to predict in all cases that plane channel flow is stable to infinitesimal distur-
bances, but the time scale for perturbations to decay is a long one. That means that
perturbed – that is, curved – streamlines will persist despite the linear stability of
the base flow, and it is conceivable that this quasi-steady streamline curvature might
be sufficient to drive an instability. The idea is still tenuous at the time of writing,
however, and the mechanism for melt fracture is still unknown.
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12.9 Concluding Remarks

There is a certain irony in the fact that the topics of wall slip and extrudate dis-
tortions, which have garnered so much attention in the periodical literature during
the past two decades, receive so little attention in this text on modeling. The fact
is, however, that our level of fundamental understanding of both of these related
topics remains quite limited. Incorporation of wall slip in asymptotic analyses or
simulations is usually straightforward, but a reliable and general slip law still does
not exist, so any implementation will be ad hoc and without generality. Rules of
thumb for the onset of extrusion instabilities have been essentially unchanged for
four decades or more, and “processing aids” to avoid unstable regimes are readily
available, so there is a certain complacency in applications based on the fact that
one usually knows where the problems will occur and, if there is no processing aid
that will fix the problem, the operating regime simply needs to be avoided.

This having been said, there are major unsettled theoretical issues regarding
highly entangled polymer melts, and it is likely that the problems discussed in this
chapter will be better understood when the fundamental issues in polymer physics
have been resolved.
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13 Structured Fluids

13.1 Introduction

Many polymeric liquids have a microstructure even at rest. This might be a conse-
quence of the presence of dispersed particulates or, in the case of liquid crystalline
polymers, because of the rigidity of the polymer molecules. Continuum equations
describing the stress and microstructure evolution are available for some limiting
cases, permitting calculations of flow in complex geometries. The levels of descrip-
tion of the stress states are not comparable to that for entangled flexible polymer
melts, so the resulting calculations are less likely to be in quantitative agreement,
but they are still very useful for gaining insight into the development of morphology.
We address three cases of structured fluids in this chapter: fiber suspensions, such as
those that might be used for thermoplastic composites; liquid crystalline polymers;
and fluids that exhibit a yield stress, which might include nanoparticle-filled melts.

13.2 Fiber Suspensions

The continuum approach to the rheology of fiber suspensions is based on a 1922
solution by Jeffery for the creeping-flow mechanics of a single ellipsoid in a shear
flow. The ellipsoid rotates in a nonsinusoidal fashion, spending most of the period
near a fixed angle to the flow direction. The ellipsoid aligns with the flow direction
at all times in the limit of an infinite aspect ratio. The key assumptions in deriving
a constitutive equation for a fiber suspension from Jeffery’s result for the ellipsoid
are that the suspending fluid is Newtonian and the suspension is dilute.

Let n be a unit vector that describes the axis of an ellipsoid of rotation. The
total stress is then derived from the Jeffery stresses on the ellipsoid in terms of the
microstructural orientation distribution tensor A =<nn> as

σ = −pI + ηmD + φ
[
µ0D + 1

2µ2D: <nnnn> +µ3(D �A + A �D)
]
. (13.1)

Here, ηm is the viscosity of the Newtonian matrix fluid and <. . .> denotes an ensem-
ble average. D = ∇v + ∇vT and � = ∇v − ∇vT . The microstructure orientation
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distribution tensor A evolves according to the equation

2
DA
Dt

= A �� − � �A + r2 − 1
r2 + 1

[D �A + A �D − 2D: <nnnn>] . (13.2)

Here, r is the aspect ratio of the ellipsoid. Equation 13.2 follows from the require-
ment that the ellipsoid rotate with the local fluid but that it retain a unit length.

These equations require the fourth-order moment <nnnn>, which is unknown;
an equation can be derived for the fourth-order moment, but it would involve the
sixth-order moment, and so forth. We therefore need to express <nnnn> in terms
of A =<nn>. This is the standard closure problem that always arises in statistical
mechanics. There have been a number of studies to derive the best closure, but for
our purposes it suffices to take the simplest form and to write

D: <nnnn> ≈ (D:A)A. (13.3)

Equation 13.3 preserves the period of rotation of the underlying particles in shear
flow, and it gives excellent agreement with the exact values of <nn> and <nnnn> in
shear and in biaxial extension, but better closures for general flows are known.

The coefficients are all proportional to the matrix viscosity and they are known
exactly in terms of the aspect ratio. We record them here only in the limit r → ∞,
which is the case of usual interest:

r → ∞: µ0 = 2ηm, µ3 = 0, µ2 = ηmr2/ln r. (13.4)

Equation 13.4 is a very good approximation to the exact result for all r ≥ 10.
In the limit r → 1 (a sphere), Equation 13.1 simplifies to σ = −pI + ηm(1 +
2.5φ)D; ηm(1 + 2.5φ) is Einstein’s equation for the viscosity of a dilute suspension
of spheres.

It is relatively straightforward in principle to implement Equations 13.1 and 13.2
in a finite element code, but there is an interesting theoretical issue that has very
practical implications for computation. The derivation of the constitutive equation
assumes that the fiber has an aspect ratio but that it has no excluded volume; the
only manifestation of the structure is the orientation tensor field A. Now consider
fully developed laminar flow in a channel. The velocity v must vanish at the wall,
and there will be a fixed value of the velocity gradient at the wall. It then follows
from Equation 13.2 that A takes on a fixed, constant value at the wall. But n follows
a rotational Jeffery orbit for any finite aspect ratio, so A =<nn> will be periodic
for a finite aspect ratio at all positions arbitrarily close to the wall, and the transition
from particles freely rotating near the wall to a fixed orientation at the wall is singu-
lar. Numerical resolution of the arbitrarily large gradients arising from this singular
behavior is not possible on any mesh. There is a similar singularity along the center-
line. This problem would not exist, of course, if particles at a finite distance from the
wall could “feel” the presence of the wall because of their excluded volume.

There are ad hoc ways to deal with this singularity, which exists in all constitu-
tive theories of this type. One approach, which complicates the programming con-
siderably, is to use finite elements to solve for the velocity field but to integrate
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Figure 13.1. Computed streamlines for flow through a 4:1 contraction for (a) a Newtonian
fluid (φµ2/ηm = 0) and (b) φµ2/ηm = 5. Reprinted from Lipscomb et al., J. Non-Newtonian
Fluid Mech., 26, 297 (1988).

Equation 13.2 directly along individual streamlines, thus avoiding the wall problem
completely but necessitating considerable interpolation in moving between the two
methodologies for different parts of the coupled equations. Another is to employ
the aligned fiber approximation, which makes use of the fact that A = vv/ |v �v| is a
stable solution to Equation 13.2 for infinite fibers under certain well-defined condi-
tions regarding the velocity field. The procedure is then to use this approximation
for A in Equation 13.1 but to compute the coefficients for the stress using the actual
aspect ratio.

Figure 13.1 shows a calculation of streamlines for flow through a 4:1 contraction
using the aligned fiber approximation and the coefficients for an infinite fiber (Equa-
tion 13.4). Figure 13.1a is for a Newtonian fluid (φµ2/ηm = 0), and Figure 13.1b is
for a suspension with φµ2/ηm = 5 (φ = 5 ln r/r2, or φ ∼ 0.2 vol% for r = 100). The
most striking feature of the suspension flow is the large increase in the size of the
recirculating corner vortex. This calculation illustrates an important feature of the
behavior of structured liquids: A small change in the structure can have a significant
effect on the flow field. It is often tempting to uncouple the structure from the flow
and to assume that the kinematics can be computed for the matrix fluid alone, after
which the stresses and orientation distribution can be computed using the computed
flow field. Such an approach (which can often be found in the fiber suspension liter-
ature) would lead to a major error in this case.

Figure 13.2 shows experimental streamlines for the flow of a 0.045-vol% sus-
pension of 3.2-mm (1/8′′) chopped glass fibers (r = 276) suspended in a corn syrup
with a viscosity of about 20 Pa s through a 4.5:1 contraction. The downstream tube
had a diameter of 5.6 mm. The computation in the left side of the picture was carried
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Figure 13.2. Comparison between computed and experimental
streamlines in a 4.5:1 contraction, 0.045% (vol) 3-mm glass fibers
in corn syrup. Reprinted from Lipscomb et al., J. Non-Newtonian
Fluid Mech., 26, 297 (1988).

out using a finite element code with the aligned fiber approximation. The agreement
between the computed and experimental flow patterns is quite good. The presence
of the fibers clearly has a substantial effect on the flow. The size of the recirculating
corner vortex is an important indicator: The reattachment point is at 0.18 upstream
column diameters for the Newtonian suspending fluid and at 0.55 diameters for the
suspension.

The dilute regime requires that fibers be noninteracting. Geometrical argu-
ments show that this regime requires that φr2 be small compared to unity, which is
a criterion that is violated by both sets of calculations shown here despite the good
agreement with experiment in Figure 13.2. It can be shown that the same form of
the equations, but with a value for µ2/ηm that depends on the actual dimensions of
the particles and the mean spacing, is valid in the semidilute regime, where φr must
be small compared to unity. This form of the equation has been used by a number
of authors, usually assuming that the mean spacing is that of a random orientation
of fibers.

Efforts to address highly concentrated systems have been of two types. One
has utilized direct simulation of particle motion and interactions. Results from this
approach are instructive, but it does not lead directly to continuum constitutive
equations that can be used for simulation in complex flow geometries. The other
approach has been to try to extend the dilute suspension theory into the concen-
trated regime by introducing irreversibility, which is an important characteristic of
concentrated fiber suspensions. Folgar and Tucker pioneered this approach in 1984
by adding an ad hoc diffusion term to the equation for the orientation distribu-
tion, based on the notion that fiber interactions cause dispersion in a manner that is
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analogous to diffusion at the molecular level. These equations have been used with
some success for mold filling simulations of fiber-filled polymer composites. The
apparent diffusion coefficient is a phenomenological parameter that is generally
taken to be proportional to the magnitude of the deformation rate. Phan-Thien
and co-workers recently fit the results of particle simulations to obtain an empiri-
cal equation for the dependence of the diffusion coefficient on φr .

13.3 Liquid Crystalline Polmers

Liquid crystals are materials that flow like liquids but are ordered in the fluid state.
They are typically made up of rigid molecules with a large aspect ratio and functional
groups that are responsive to electromagnetic fields. Nematic liquid crystals have
orientational order but no positional order (i.e., the centers of mass are randomly
distributed, but the molecules retain a preferred orientation). Because the order is
responsive to electromagnetic fields, these materials have found extensive use in
display technology.

Some polymers exist in a nematic state. Nematic polymers have high moduli
and high use temperatures, and they are resistant to chemical attack. Because of the
molecular rigidity it is relatively easy in an extensional flow to cause these polymers
to have an extended-chain morphology, so they can be processed as fibers with a
very high tenacity. The first such commercial material was poly(p-phenylene tereph-
thalamide), sold commercially as Kevlar R© and Twaron R©. Poly(p-phenylene tereph-
thalamide) decomposes before it melts, and it must be spun in a gel-like state in
a strong acid solvent. Several liquid crystalline polyesters that are marketed com-
mercially are processed in the melt (thermotropic liquid crystalline polymers) and
are used for specialized molding applications; they are not used extensively because
they are expensive to produce and because they form micron-scale domain struc-
tures in molded parts that cause a loss in properties. The domain texture can clearly
be seen in Figure 13.3, which is a polarized micrograph of Vectra B, a random
copoly(ester amide) consisting of a 3:1:1 molar ratio of 6-hydroxy-2-naphthoic acid,
terephthalic acid, and 4-aminophenol. This texture cannot be removed, even with
the application of strong fields.

The first rheological theory for liquid crystals was developed by Leslie and
Ericksen, building on Ericksen’s earlier transversely isotropic fluid. The theory is
formulated in terms of a director field n, and it is similar to the fiber theory in the
preceding section, except that it includes a contribution to the free energy from an
interactive potential that causes the molecules to align at rest. The usual form of the
free energy F resulting from distortions of the director field is

2F = K11 (∇ �n) + K22 (n �∇ × n) + K33|n × ∇ × n|2, (13.5)

where K11, K22, and K33 are Frank elastic constants corresponding to splay,
bend, and twist deformations of the director field, respectively. The stress
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µ

Figure 13.3. Vectra B observed under crossed polarizers after shearing at a stress of 500 Pa
for 500 strain units. Reprinted from E. G. Kim, M.S. thesis, U. California, Berkeley, 1996.

equation is then written

σ = −pI − ∂ F
∂∇n

�∇nT + 1
2α1D:nnnn + α2n �N + α3N �n + 1

2α4D

+ 1
2α5nn �D + 1

2α6D �nn, (13.6a)

N ≡ Dn
Dt

+ 1
2� �n. (13.6b)

Note that the contribution to the stress from the nematic potential is independent
of the deformation rate and is therefore elastic. The coefficients {αi} are known as
the Leslie viscosities. (The factors of 1/2 in the equations do not appear in the origi-
nal literature because of different definitions of D and �.) The Onsager reciprocal
relations from irreversible thermodynamics require that α2 + α3 = α6 – α5. Conser-
vation of angular momentum must also be satisfied by the director, which takes the
form

n ×
[
∂ F
∂n

− ∇ �

(
∂ F
∂∇n

)
+ (α3 − α2)N + 1

2 (α3 + α2)D �n
]

= 0. (13.6c)

The director takes on a specified orientation at the boundary. The strength of
the nematic effect in flow is determined by a dimensionless Ericksen number E =
(α3 − α2)L2

•
γ /K , where L is the characteristic length scale and K is a representative

Frank elastic constant. Orientation boundary layers will develop because of com-
petition between the alignment induced by the preferred boundary orientation and
the nematic potential in the bulk.

Figure 13.4 shows a finite difference solution of the developing flow in a
plane channel for a nematic liquid with the physical properties of 4′-octyl-4-
biphenylcarbonitrile (8CB) at 34 ◦C, as given in Table 13.1. (K22 does not enter
into this two-dimensional calculation.) The wall is at y = 0 and the midplane is at
y = 0.5. The director surface orientation is taken to be parallel to the surface. E was
varied from 10 to 70. A rather complex texture develops. This is a consequence of
the tendency of the director to rotate, just like the ellipsoids in the Jeffery theory,
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Table 13.1. Nematic coefficients of 8CB at 34 ◦C

α2(Pa s) α4 α5 α6 K11(N) K33

−7.1 6.0 6.3 −3.2 1.41 × 1011 2.09 × 1011

but with an opposing force caused by the long-range effect of surface anchoring
through the nematic potential. The sequence of textural transitions with increasing
E is sometimes known as the Ericksen number cascade.

The Leslie-Ericksen theory appears to work well in describing the mechanics
of low molar-mass liquid crystals, but it is too restrictive to describe the complex
mechanics of liquid crystalline polymers. In particular, the theory cannot predict
complex textures like the one in Figure 13.3, where the length scale of the texture
is independent of the scale of the flow geometry. The free energy minimum should
be a monodomain, but thermotropic liquid crystalline polymers appear to have a
glasslike energy landscape with deep minima that retain texture. These submicron
defect structures are not well understood, but they are believed to play a major role
in the rheology at low and intermediate stresses.

Doi developed a constitutive theory for liquid crystalline polymers that takes
into account the rotational diffusion of the large rodlike molecules and reduces
to the Leslie-Ericksen theory for slow deformation rates, and this has been gen-
eralized by Marrucci and Greco and others to incorporate a nematic potential that
accounts for gradients in the orientation tensor. The theory has a structure that is
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Figure 13.4. Developing flow between parallel planes with parameters of 8CB. E = 10 (top),
50 (middle), and 70 (bottom). Reprinted from Chono et al., J. Non-Newtonian Fluid Mech.,
79, 515 (1998).
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of the general form of Equations 13.1 and 13.2, but it is considerably more complex
in detail because of the more complex physics that it is attempting to represent, and
it includes terms involving ∇2A. The only applications to date have been to simple
shear flow, where complex textures with length scales that are independent of the
macroscopic scale of the flow have been observed.

13.4 Yield-Stress Fluids

Many complex fluids exhibit a yield stress, in which the response is solidlike below
a critical stress level and fluidlike above. Foods and consumer products often have
a yield stress, as do some block and graft copolymer melts. Polymer melts with dis-
persed colloidal or nanoscale particles above a concentration sufficient to form a
connected structure are likely to exhibit a yield stress, and such materials are of
growing interest with the development of methods for the dispersal of nanoscale
particles like exfoliated clays and carbon nanotubes.

The rheology of yield-stress (or viscoplastic) fluids is complex and often time
dependent. Considerable insight can be gained, however, by considering the sim-
plest example, the Bingham material. The classical Bingham material is defined for
a shear flow with a positive shear rate as

τ = τy + ηp
•
γ , τ ≥ τy ; (13.7a)

•
γ = 0, τ < τy. (13.7b)

There are two parameters, the yield stress τy and the “plastic viscosity” ηp. (Plastic
viscosity is a terrible name for this parameter, but it is firmly embedded in the litera-
ture. While ηp has the dimensions of a viscosity, it is not the viscosity of the material
while it is flowing. The true viscosity during flow is η = ηp + τy/

•
γ , which is highly

shear thinning.)
Oldroyd presented a properly invariant form of the extra-stress of a Bingham

material in 1947 that also permits elastic deformation below the yield stress:

τ =
[

τy

( 1
2 D : D)1/2

+ ηp

]
D, 1

2τ : τ ≥ τ 2
y ; (13.8a)

τ = GE, 1
2τ:τ < τ 2

y . (13.8b1)

E is the strain tensor. It is usually assumed that the material is inelastic prior to
yielding, in which case G → ∞ and Equation 13.8b1 is replaced by

D = 0, 1
2τ:τ < τ 2

y . (13.8b2)

These equations admit the possibility of yield surfaces when the von Mises yield
criterion 1

2τ:τ = τ 2
y is satisfied. An important consequence of Equations 13.8b1–2 in

either form is that the only admissible kinematics in regions where the yield criterion
is not satisfied are solid-body motions (rotation and translation).
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Figure 13.5. Pressure-driven flow of
a Bingham material between parallel
planes.

Consider fully developed pressure-driven laminar flow in a plane channel, with
vx = vx(y), vy = vz = 0. Following the development in Section 3.2.1, which is valid
for any fluid, we find that the pressure gradient is a constant and the shear stress
varies linearly across the channel, passing through zero at the center plane:

τxy = −(�p/L)y. (13.9a)

The stress then exceeds the yield stress only for

|y| ≥ y0 = τyL/�p. (13.9b)

There is no flow if y0 is greater than the channel half-width H . We now integrate
the x component of the momentum equation over y0 ≤ |y| ≤ Hand apply the no-
slip condition at the wall to obtain

vx = − �p
2ηpL

(y2 − H 2) + τy

ηp
(|y| − H), y0 ≤ |y| ≤ H. (13.10a)

Continuity of the velocity at y = ±y0 establishes the uniform velocity in the central
undeformed core:

vx = − �p
2ηpL

(y2
0 − H 2) + τy

ηp
(y0 − H), |y| ≤ y0. (13.10b)

The velocity profile is shown in Figure 13.5. The logical sequence for obtaining this
solution is important. The location of the region of solid-body motion is determined
by the stress condition, which defines the equation for a surface. The magnitude of
the solid-body motion cannot be specified, however; to do so would overdetermine
the problem.

If we want to consider flows of yield-stress fluids in more complex geometries,
we might expect that we could follow the development in Chapter 5 and apply
the thin gap approximation. A bit of reflection quickly shows that this approach
is not possible. Consider Figure 13.6, with a pressure-driven flow between nonpar-
allel planes. According to the thin gap approximation, the velocity profile at each
position in the flow direction would have the same shape, but the average velocity
would decrease. The gap width H is now a function of position, in which case it fol-
lows from the preceding analysis that the velocity of the plug region must decrease
as the channel width expands. But this is impossible if the plug is moving as a solid
body. A similar conclusion follows by considering the radial flow in a center-gated
disk mold, Section 6.2, shown in Figure 13.7. The unyielded region must expand, and
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Figure 13.6. Pressure-driven flow between diverging planes. (Not a possible solution as
shown.)

this is not possible if the region flows like an unyielded plug. Both of these arguments
can readily be made quantitative, but this intuitive treatment should suffice.

There are two schools of thought about the consequences of the above reason-
ing. One holds that the concept of a yield stress is simply a convenient abstraction
to represent a rapid change in properties as the shear rate goes to zero, and that
the results should not be taken so literally. In support of this position we consider
a fluid with a viscosity function like that shown in Figure 13.8; this fluid, sometimes
known as the biviscosity model, appears to approach the Bingham fluid in the limit as
ηo → ∞, and it is unlikely that we could distinguish experimentally between a fluid
with this rheology and a true yield-stress fluid. We can apply the thin gap approxima-
tion to such a purely viscous liquid, and the correct results for the two flows shown
schematically in Figures 13.6 and 13.7 differ from the incorrect solution for a Bing-
ham fluid only by terms of order ηp/ηo. The other school holds that the yield stress is
a real material property, from which we would have to conclude that true unyielded
regions are forbidden in most complex geometries. The essential difference in actual
consequences between these two perspectives applies only to long-time static situa-
tions, in which the biviscosity liquid will deform continuously under any static stress,
while the true yield-stress fluid will not.

The discontinuity in physical properties at a yield surface whose location is not
known a priori makes numerical calculation in complex geometries extremely diffi-
cult with the exact Bingham material. The usual computational procedure is to use a
regularization method, in which the Bingham material is approximated by a purely
viscous fluid that goes to the true Bingham material in the limit as a small param-
eter goes to zero. The biviscosity fluid in Figure 13.8 is such a regularization, but

Plug flow

Figure 13.7. Radial flow in a center-gated disk mold. (Not a possible solution as shown.)
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Figure 13.8. Shear stress-shear rate function of the
biviscosity model to approximate a Bingham fluid.

it is more common to use smooth functions. This approach is intuitively appealing,
but the limiting process is very delicate and true convergence to the discontinuous
Bingham limit has been demonstrated only in restricted cases.

Two smooth regularizations that are frequently employed are

τ =

 τy√

1
2 D : D + ε2

+ ηp


D (13.11a)

and

τ =




τy

[
1 − exp

(
−ε−1

√
1
2 D : D

)]
√

1
2 D : D

+ ηp


D. (13.11b)

It is impossible to go to the limit ε → 0 with any finite grid, so there will always be
a small amount of flow everywhere in the computational regime. Establishing con-
vergence to a yield surface is therefore a difficult task (although some would argue
that rigorous convergence does not matter, since the discontinuity in the constitutive
equation itself is only an approximation).

Figure 13.9 shows the creeping flow of a Bingham fluid in a channel with an off-
center disk using Equation 13.11a for the rheological model. This is the flow geom-
etry that was employed in Figure 10.4 to represent the flow in a mold with a circular

Figure 13.9. Flow of a Bingham material in a planar channel with an eccentric cylinder, Bn =
125. (Calculation by J. P. Singh.)
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insert, and the geometric parameters are the same. Flows of Bingham materials are
usually characterized in terms of the Bingham number, Bn = τyL/ηpV . In this case
the characteristic length is the radius of the cylinder, which is one-fourth the chan-
nel width, and the characteristic velocity is the mean upstream velocity. Bn = 125
for the example shown here. The shaded regions are unyielded, and the von Mises
yield criterion, 1

2τ:τ = τ 2
y , is satisfied on the boundaries. Unlike the viscoelastic fluid

shown in Figure 10.4, there is fore–aft symmetry for the Bingham fluid.
Away from the obstruction, the flow is like that for the fully developed channel

flow in Figure 13.5, with a uniform plug that extends over most of the channel width.
The flow has already started to adjust to the presence of the obstruction at the far
left of the figure, causing the slight asymmetry. There is no flow in the smaller gap
between the upper surface of the cylinder and the upper wall; for a plane channel
this would correspond to a case in which y0 in Equation 13.9b exceeds the channel
half-width. The unyielded region in the larger space between the cylinder and the
lower wall flows with a uniform velocity in the stream direction and has no trans-
verse velocity; this is the region of maximum velocity.

Real yield-stress fluids typically have nonlinear stress-shear rate relations after
yielding, and straightforward modifications to the procedures employed for the
Bingham fluid are employed. The most common approach is to use an invariant
form of the Herschel-Bulkley model, where the viscous term in the Bingham model
is replaced by a power law. The presence of a yield stress (or even a close rheolog-
ical approximation thereof) causes major changes in the deformation pattern of a
fluid. One issue of practical relevance, for example, has to do with degassing; small
bubbles may not have a sufficiently large buoyant force to overcome the integrated
yield stress in a quiescent yield-stress fluid.
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14 Mixing and Dispersion

14.1 Laminar Mixing

Mixing and blending in polymer processing applications almost always takes place
in the laminar regime. The basic idea in laminar mixing is straightforward: Adjacent
laminae of dissimilar materials are stretched – let us say doubled in length – so that
the thicknesses of the laminae are reduced by a factor of two. The stretched sections
are then folded back to create a block of the same thickness as the original, but
it now contains four lamina instead of the original two. This process is repeated,
and the number of lamina grows as 2N, where N is the number of stretching/folding
steps, while the thicknesses decrease as 2−N . This process is known as the baker’s
transformation, for it is precisely the sequence of steps that is carried out in kneading
a loaf of bread. (Push down to stretch, then fold back, turn 90o, and repeat.) Laminar
mixing is related to the theory of chaotic dynamical systems, and it has been widely
studied in the context of dynamical systems since the late 1980s.

The implementation of this methodology in polymer processing long predates
the development of the theoretical tools currently in use for analysis. Static mixers
are commonly employed to effect the baker’s transformation. A cutaway view of
a Kenics static mixer is shown in Figure 14.1. This device consists of a series of
helically twisted blades that divide the circular channel into two twisted semicircular
ducts. The leading edges of successive blades are placed at an angle, usually 90o,
to the trailing edges of the preceding blades so that the new cut splits each of the
previous segments. Thus, stretching takes place in the flow segments and folding at
the transitions. Other commercial devices have different configurations but effect
the same transformation.

Recent years have seen considerable effort to quantify this and other mixing
geometries. The difficult problem is not so much the solution of the flow field in
the mixing element, but rather the tracking of the fluid elements that make up the
exponentially growing interface as the mixture progresses through the mixing chan-
nel (or as time progresses in a simulation of a batch mixer). We shall not address
these issues here because they are highly technical and would be a major diversion
from our objectives; it suffices to say that progress has been made but the tracking
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Figure 14.1. Cutaway view of a portion of
a Kenics static mixer with two mixing seg-
ments.

problem is by no means solved for all cases of interest. Figure 14.2 shows a cross
section from a three-dimensional finite element simulation of the flow of identical
black and white, inelastic Carreau-Yasuda fluids with a power-law exponent of 0.1
through a static mixer with six blades with a twist angle of 180o. Calculations of this
type can be used to optimize the design, which was one goal of this work, where the
effect of the total twist angle of the blade was examined. The studies to date have
been restricted to pairs of inelastic liquids with comparable viscosities and no inter-
facial tension. Neglect of viscoelasticity is probably not a serious shortcoming for
this application, since most of the flow takes place through nearly parallel channels,
but calculated pressure drops are likely to be affected by reorganization in the entry
and exit regions of successive sections.

14.2 Droplet Breakup and Coalescense

Droplet breakup and coalescence are the primary physical processes in the mix-
ing of liquids with very different viscosities. There is an extensive literature on the
breakup of single droplets of Newtonian fluids in a Newtonian matrix, mostly build-
ing on a classic study by Grace that was first published in 1982 but was based on
older work. Grace created a map of the critical capillary number Ca = ηm

�

γ R/σ

Figure 14.2. Simulation of the mixing pattern for two
identical Carreau-Yasuda fluids with n = 0.1 after
passing through a static mixer with six blades with a
twist angle of 180o. Reprinted with permission from
Galaktionov et al., Int. Polym. Proc., XVIII, 138
(2003).
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at breakup in a shear flow versus the viscosity ratio p = ηd/ηm, where subscripts d
and m refer to dispersed and matrix phases, respectively. There is never breakup
in shear if p = ηd/ηm > 4 or if Ca is less than 0.4. Breakup occurs by “tip stream-
ing,” where the droplet elongates and sheds small drops from the pointed ends,
for ηd/ηm � 1, whereas breakup occurs by necking in the central portion of the
droplet for ηd/ηm = O(1). For Ca equal to about twice the critical value in shear, or
five times the critical value in extension, the droplet elongates into a filament, and
breakup occurs because of an interfacial tension-driven (Rayleigh) mechanism.

There have been a number of studies of the breakup of viscoelastic filaments
because of interfacial tension, all of which show that the viscoelastic response results
in dynamics that differ markedly from the Rayleigh breakup of inelastic filaments,
but the focus for interfacial tension-driven breakup has been on dilute polymer solu-
tions of interest in aerial spraying and inkjet technology applications. The literature
is less extensive for breakup of polymer melts, and some of the issues relevant to
dilute solutions are probably not of concern for melts because of the orders-of-
magnitude difference in the ratio of interfacial to viscous (or elastic) stresses.

The primary computational issue for studying breakup or coalescence is track-
ing the interface. This has been done in a number of ways, none of which is clearly
better than others. One approach is to track the interface explicitly and to evolve the
mesh with time, remeshing if the elements become too distorted. Another approach
is to employ the method of “level sets,” where a scalar function ϕ(x, t) that is pos-
itive in one phase and negative in the other, with a value of zero on the interface,
convects with the motion. The mass, momentum, and energy equations can then be
formulated for the entire two-phase regime, with the parameters dependent on the
algebraic sign of ϕ. (There are of course very important details regarding handling
interfacial tension and ensuring that ϕ evolves in a way the conserves mass. These
are addressed in specialized discussions.) The challenge in all methods is to con-
trol surface curvature continuity to ensure that spurious secondary flows driven by
apparent interfacial forces caused by artificially large local curvature cannot arise.
Finite element, volume of fluid, and boundary element methods have been used for
solving the continuum equations. Most calculations have been done for individual
Newtonian droplets.

Figure 14.3 shows a boundary element calculation of a sheared drop with adap-
tive discretization of the drop interface. The sequence of shapes is for a 50-µm,
100-Pa s polydimethylsiloxane droplet sheared in a 1-mm gap in a matrix of a poly-
isobutylene of nearly the same viscosity. The interfacial tension is 2.4 mN/m. The
images are experimental data and the profiles are simulations using slightly adjusted
parameters to ensure a good fit at pinch-off. The numbers are the experimental total
strains (time multiplied by shear rate), while the numbers in parentheses are the
computed total strains for the same droplet shapes. The agreement is quite good,
although viscoelasticity would be expected to play a role in the dynamics of the
pinch-off region. These calculations are typical of the state of the art at the time of
writing.
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Figure 14.3. Deformation and breakup of a polydimethylsiloxane droplet in a polyisobuty-
lene of nearly the same viscosity; viscosity ≈ 100 Pa s, interfacial tension ≈ 2.4 mN/m. Re-
printed with permission from Cristini et al., J. Rheol., 47, 1283 (2003).

14.3 Continuum Stress Equations

Very good emulsion (effective medium) models that average over the continuous
and dispersed phases to describe the continuum rheology have been developed to
describe the linear viscoelasticity of polymer blends. The Palierne model, for exam-
ple, provides a mixing rule for the complex modulus G∗ = G′ + iG′′ in terms of the
moduli for the dispersed and matrix phases as

G∗ = G∗
m

1 + 3
∑

φi H∗
i

1 − 2
∑

φi H∗
i

, (14.1a)

H∗
i = 4(σ/Ri )[2G∗

m + 5G∗
d] + [G∗

m − G∗
d][16G∗

m + 19G∗
d]

40(σ/Ri )[G∗
m + G∗

d] + [2G∗
m + 3G∗

d][16G∗
m + 19G∗

d]
. (14.1b)

Here, φi is the volume fraction of droplets with radius Ri. The volume-averaged
radius can be used instead of the distribution if the polydispersity is less than 2.3.
The fit to G′ data for a 6.5% dispersion of poly(ethylene terephthalate) in a lin-
ear fluoropolymer at 300 oC, with an average droplet radius of 5.4 µm, is shown
in Figure 14.4, where the data are plotted as the ratio of the storage modulus of
the blend to that of the matrix polymer. The peak reflects the frequency regime
where the interfacial dynamical response is sensitive to interfacial tension. Interfa-
cial tension acts like an elastic stress, so the major contribution of the interface is in
G′. The interfacial tension of the blend estimated from standard equations is about
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Figure 14.4. Scaled storage modulus of
6.5 vol% PET-FEP blend at 300 oC with
theoretical curve using Equation 14.1.
Reprinted from Lee and Denn, J. Rheol.,
43, 1583 (1999).

16 mN/m, although the fit to the data is a bit better with σ = 12 mN/m. The the-
ory is generally considered to be reliable enough to use as a means of measuring
interfacial tension. It does not give good results when the dispersed phase is a liquid
crystalline polymer.

The zero-shear viscosity of a dispersion can be extracted from Equation 14.1 by
allowing the frequency to go to zero, giving

η0 = ηm0
100(1 + p) + 3φ(2 + 5p)
10(1 + p) − 2φ(2 + 5p)

≈ ηm0

[
1 + φ

2 + 5p
2(1 + p)

+ O(φ2)
]

. (14.2)

Blend theories for finite deformations have been developed from first principles
only for two Newtonian phases. A theory of Choi and Schowalter, which is exact
through first order in the deviation from a Newtonian droplet, gives

η = ηm

[
1 + φ

2(2 + 5p) − 10(p − 1)φ7/3

4(1 + p) − 5(2 + 5p)φ + 42φ5/3 + 5(2 − 5p)φ7/3 + 4(p − 1)φ10/3

]

≈ ηm

[
1 + φ

2 + 5p
2(1 + p)

+ O(φ2)
]

. (14.3)

The Palierne and Choi-Schowalter theories agree through first order in the volume
fraction of the dispersed phase, but the quadratic term is considerably larger in
the latter theory. Other theories and heuristics, including extensions to viscoelas-
tic liquids, are discussed in a 2002 review by Tucker and Moldenaers. The rheology
depends on the morphology of the dispersed phase, and the emphasis remains on
understanding morphology and the mechanics of single droplets in viscoelastic sys-
tems. The continuum rheology of dispersed systems is therefore not well developed
and remains a subject of current research.
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14.4 Concluding Remarks

The intention of this brief chapter is to note the state of the art in two areas crit-
ical to many aspects of polymer processing, namely, laminar mixing and droplet
dynamics. Except for the very important details of issues like interface tracking
and interface smoothing, the computational methods used to attack these classes
of problems are the same as those employed for the single-phase continuum cal-
culations in the preceding chapters. There are some excellent analytical results for
droplet breakup in the classical fluid mechanics literature, and they have provided a
great deal of guidance for those interested in polymer processing. The development
of useful continuum constitutive relations for the simulation of processing flows of
dispersed systems is still a subject of research.
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Postface

This is the conclusion of the book, and an appropriate point to look back and reflect.
Our goal throughout has been to establish the foundations of polymer melt process-
ing in fluid mechanics and heat transfer without introducing unnecessary complex-
ity. In doing so we have avoided geometrical detail of the equipment; such detail is
important for specific applications, but its inclusion adds little to our overall under-
standing of the essential interplay between fluid mechanics and heat transfer in basic
process performance, which was our primary objective. Similarly, we initially devel-
oped the subject in terms of the flow of inelastic liquids; many polymer processes are
characterized by a low Deborah number, either as a consequence of the nature of
the flow or the properties of the polymer being processed, and the essential behavior
in this case does not depend on the fact that the melt is viscoelastic. We subsequently
introduced viscoelasticity for those applications where it is needed, using viscoelas-
tic constitutive equations that have been found to be effective in describing melt
flow in complex geometries but fall short of the state of the art in polymer rheol-
ogy. Viscoelasticity can be quite significant in some processing situations, notably in
steady flows with substantial elongation and in all flows when dynamical response is
of interest, and the rôle of viscoelasticity – when it is important and when it is not –
must be understood for a complete and accurate picture.

At this point the reader should have the preparation necessary to continue with
more focused texts and the periodical literature to address the important details
about geometry and materials that have been bypassed here, and to go on to study
other polymer processes and processes involving other complex liquids. The impor-
tant periodical literature includes fundamental journals such as the Journal of Rhe-
ology, Rheologica Acta, the Journal of Non-Newtonian Fluid Mechanics, Physics
of Fluids, Macromolecules, and the Journal of Applied Polymer Science, as well as
journals that focus more on applications, such as International Polymer Process-
ing, Polymer Engineering and Science, the ANTEC Proceedings of the Society of
Plastics Engineers, and Advances in Polymer Technology. More general engineer-
ing journals, especially those directed to chemical and mechanical engineers, often
have relevant articles.

We hope that this has been a fruitful endeavor that has motivated further study.
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Plate 1. Computed temperature contours for a planar extruder.
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Plate 2. Computed temperature contours in the region near the die.
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Plate 3. Computed temperature profile with uniform flow from the left.
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Plate 4. Shape and temperature evolution in time for adiabatic plates. Reprinted from Deb-
baut, J. Non-Newtonian Fluid Mech., 98, 15 (2001). Copyright Elsevier.
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