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Preface

A book whose title refers to the spectroscopy of diatomic molecules is, inevitably,
going to be compared with the classic book written by G. Herzberg under the title
Spectroscopy of Diatomic Molecules. This book was published in 1950, and it dealt
almost entirely with electronic spectroscopy in the gas phase, studied by the classic
spectrographic techniques employing photographic plates. The spectroscopic resolu-
tion at that time was limited to around 0.1 cm−1 by the Doppler effect; this meant
that the vibrational and rotational structure of electronic absorption or emission band
systems could be easily resolved in most systems. The diatomic molecules studied by
1950 included conventional closed shell systems, and a large number of open shell
electronic states of molecules in both their ground and excited states. Herzberg pre-
sented a beautiful and detailed summary of the principles underlying the analysis of
such spectra. The theory of the rotational levels of both closed and open shell diatomic
molecules was already well developed by 1950, and the correlation of experimental
and theoretical results was one of the major achievements of Herzberg’s book. It is a
matter of deep regret to us both that we cannot present our book to ‘GH’ for, hopefully,
his approval. On the other hand, we were both privileged to spend time working in the
laboratory in Ottawa directed by GH, and to have known him as a colleague, mentor
and friend.

Accepting, therefore, the possible and perhaps likely comparison with Herzberg’s
book, we should say at the outset that almost everything described in our book relates
to work published after 1950, and the philosophy and approach of our book is different
from that of Herzberg, as it surely should be over 50 years on. The Doppler width of
0.1 cm−1 characteristic of conventional visible and ultraviolet electronic spectra, cor-
responding to 3000 MHz in frequency units, conceals much of what is most interesting
and fundamental to the spectroscopic and electronic properties of diatomic molecules.
Our book deals with the experimental and theoretical study of these details, revealed by
measurement of either transitions between rotational levels, or transitions within a sin-
gle rotational level, occurring between the fine or hyperfine components. This branch
of spectroscopy is often called rotational spectroscopy, and it involves much lower
frequency regions of the electromagnetic spectrum than those arising in conventional
electronic or vibrational spectroscopy. The experimental work described in this book
ranges from the far-infrared, through the microwave, to the radiofrequency regions of
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the spectrum; the intrinsic Doppler width is small because of the lower frequency, and
special techniques, particularly those involving molecular beams, sometimes result in
very high spectroscopic resolution. Molecules in open shell electronic states possess a
number of subtle intramolecular magnetic and electric interactions, revealed by these
high-resolution studies. Additional studies involving the effects of applied magnetic
or electric fields provide further information, particularly about electron and nuclear
spin magnetic moments. All of the experimental work described in this book involves
molecules in the gas phase. Consequently we include descriptions of conventional
microwave and millimetre wave rotational spectroscopy, subjects which would be fa-
miliar to most molecular spectroscopists. However, we give equal prominence to the
molecular beam magnetic resonance studies of the small magnetic interactions arising
from the presence of magnetic nuclei in closed shell molecules. These classic stud-
ies formed the basis for subsequent nuclear magnetic resonance studies of condensed
phases; similarly the magnetic interactions studied through condensed phase electron
spin resonance experiments were first understood through high-resolution gas phase
investigations described in this book. These are subjects which, more often than not,
do not appear in the same book as rotational spectroscopy, but they should.

The important threads which link these different branches of gas phase rotational
spectroscopy are, of course, those arising from the theory. We have tried to make
clear the distinction between two different types of theory. A spectroscopist analyses a
spectrum by using algebraic expressions for transition frequencies which involve ap-
propriate quantum numbers and ‘molecular constants’. These expressions arise from
the use of an effective Hamiltonian, which summarises the relevant intramolecular
dynamics and interactions, and is expressed in terms of molecular parameters and
operators, usually angular momentum operators. A central theme of our book is the
construction and use of the effective Hamiltonian, and through it some more precise
definitions of the molecular constants or parameters. We show, at length, how the effec-
tive Hamiltonian is derived from a consideration of the fundamental true Hamiltonian,
although the word ‘true’ must be used with caution and some respect. We take as our
foundations the Dirac equation for one electron, and the Breit equation for two elec-
trons. We show how the ‘true’ Hamiltonian for a molecule, in the presence of external
fields, is derived, and show how this may be applied to the derivation of an ‘effective’
Hamiltonian appropriate for any particular molecular system or spectroscopic study.
We have made a compromise in our analysis; we do not delve into quantum electro-
dynamics! One of the lessons in the life of a serious spectroscopist is that there is
always a level of understanding deeper than that being employed, and we all have to
compromise somewhere.

Chapters 2 to 7 deal with the essentials of the theory, starting with the separa-
tion of nuclear and electronic motion, and finishing with the derivation of effective
Hamiltonians. An important aspect of diatomic molecules is their high symmetry, and
the various angular momenta which can arise. Angular momentum theory is sum-
marised in chapter 5 where we show the importance of rotational symmetry by intro-
ducing spherical tensors to describe the angular momenta and their interactions, both
with each other and with applied fields. Spherical tensor methods are used throughout
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the book; we have used them to describe the analysis of particular spectra even if the
original work used cartesian tensors. Spherical tensor, or irreducible tensor methods
bring out the links between different parts of the subject; they make maximum use
of symmetry and, to our minds at least, are simpler and more reliable in their use
than the older cartesian methods. This is particularly true of problems which involve
transformations from space to molecule-fixed axes, for example, the effects of applied
magnetic or electric fields.

Chapters 8 to 11 describe the details and results of experimental studies. Chapter 8
deals with molecular beam magnetic and electric resonance, chapter 9 with magnetic
resonance of open shell molecules in the bulk gas phase, chapter 10 with pure rotational
spectroscopy in the bulk gas phase, and chapter 11 with double resonance studies. Of
course, these topics overlap and some molecules, the OH radical for example, appear
in all four chapters. We have deliberately allowed some repetition in our discussion,
because in the process of following a complicated analysis, it is very annoying to be
forced to jump to other parts of a book for some essential details. Our overriding phi-
losophy has been to choose particularly important examples which illustrate the details
for particular types of electronic state, and to work through the theory and analysis
in considerable detail. Although there is a substantial amount of experimental data in
our book, we have not intended to be comprehensive in this respect. Computerised
data bases, and the various encyclopaedic assemblies are the places to seek for data
on specific molecules. As mentioned earlier, we have analysed the experimental data
using spherical tensor methods, even if the original work used cartesian methods, as
was often the case with the earlier studies.

The question of units always poses a problem for anyone writing a book in our
field. Most authors from North America use cgs units, and most of the work described
in this book originated in the USA. Authors from the UK and Europe, on the other
hand, have largely been converted to using SI units. There is no doubt that the SI
system is the more logical, and that numerical calculations using SI units are more
easily accomplished. Nevertheless since so many spectra are still assigned and analysed
using cgs units, we have had to seek a compromise solution. The fundamental theory
describing the electronic Hamiltonian, presented in chapter 3, uses SI units. Similarly
we use SI units in describing the theory of nuclear hyperfine interactions in chapter 4.
However, chapters 8 to 11, which deal with the analysis of spectra, are written in terms
of both cgs and SI units, so that direct comparisons with the original literature can be
made. A comparison of the cgs and SI units is presented in General Appendix D. To
complicate matters even further, the use of atomic units, which is common in ab initio
electronic structure calculations because of the simplifications introduced, is described
in chapter 6.

The gestation period for this book has been particularly long, work on it having
started around 1970 when we were both members of the Department of Chemistry at
Southampton University. Research was going rather slowly at the time and we had a
keen desire to understand the foundations of our subject properly. We worked through
the various aspects together, and put the material in writing. At first we had only the
other members of the group in mind but, as things developed, we started to write for a
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wider audience. We were encouraged and greatly helped at the time by our colleague,
Dr Richard Moss, who gave an outstanding post-graduate course on relativistic quantum
mechanics. Chapters 2, 3 and 4 of the present book were essentially written at that
time. The writing process, however, eventually gave way to other things, particularly
research, and it seemed that the unfinished book, like so many others, was destined
for the scrap heap. There it remained until one of us (AC), conscious of approaching
enforced ‘retirement’, decided to revive the project as an antidote to possible vegetation.
The dusty old manuscript was scanned into a computer, revised, and over a period of
four years developed into the book now published. The passage of some thirty years
between the two phases of writing has undoubtedly had some benefits. In particular, it
has allowed the time for important new technical developments to take place, and for
the subject (and the authors) to mature generally.

The manuscript for this book was produced using MSWord text and equation editor,
with MATHTYPE used to control equation numbering and cross-referencing. Those
figures which include an experimental spectrum were produced using SigmaPlot, each
spectrum being obtained in XY array form by a digitising scan of the original paper.
All other figures were produced using CoralDraw.

We are grateful to several friends and colleagues who have read parts of the book
and given us their comments. In particular we thank Professors B.J. Howard, T.A.
Miller, T.C. Steimle, M. McCarthy, M.S. Child and Dr I.R. McNab. We will always be
glad to receive comments from readers, kind, helpful, or otherwise! Alan Carrington
would like to thank the Leverhulme Trust for an Emeritus Fellowship which has enabled
him to keep in close touch with the subject through attendances at conferences.

This book is dedicated to the memory of Bill Flygare, Harry Radford and
Ken Evenson.

Alan Carrington
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Summary of notation

Throughout this book we have used, at different times, space-fixed or molecule-fixed
axis systems, with arbitrary origin, origin at the molecular centre of mass, origin at
the nuclear centre of mass, or origin at the geometrical centre of the nuclei. We use
CAPITAL letters for SPACE-FIXED axes, and lower case letters for molecule-fixed
axes. The various origins are denoted by primes as follows.

(i) Space-fixed axes: arbitrary origin.
Rα = position vector of nucleus α

Pα = momentum conjugate to Rα

Ri = position vector of ith electron
P i = momentum conjugate to Ri

Si = spin of i th electron
X, Y, Z = space-fixed axes

(ii) Space-fixed axes: origin at molecular centre of mass.
R ′

α, P ′
α, R ′

i , P ′
i , defined by analogy with Rα , etc.,

RO = position vector of molecular centre of mass with respect to the arbitrary
origin

PO = momentum conjugate to RO, i.e., translational momentum
R = internuclear vector = R2 − R1 = R ′

2 − R ′
1

Si = spin of i th electron
(iii) Space-fixed axes: origin at nuclear centre of mass.

P ′′
α , R ′′

α , P ′′
i , R ′′

i , R, Si

(iv) Space-fixed axes: origin at geometrical centre of nuclei.
P ′′′

α , R ′′′
α , P ′′′

i , R ′′′
i

(v) Molecule-fixed axes: origin at nuclear centre of mass.
r i , pi , si

When dealing with components of vector quantities we usually use subscripts X, Y, Z or
x, y, z for space-fixed or molecule-fixed components, the origin of coordinates usually
being denoted in the primary subscripted symbol. For the electron spin we use capital Si

for space-fixed axes and small si for molecule-fixed; it is not necessary to distinguish the
origin of coordinates. A difficulty with this notation is that, in conformity with common
practice, we also use the symbol S to denote the total spin (�i si or �i Si ).We hope
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to avoid confusion in the appropriate text. We use M or Ms to denote the component
of S in the space-fixed Z direction, and m or ms to denote the component of s in the
molecule-fixed z direction, i.e. along the internuclear axis. We shall also sometimes
use Σ to denote ms . Hence ψM denotes a spinor in the space-fixed axis system and ψm

refers to the molecule-fixed axes.
Other symbols used are as follows:

i ′, j ′, k ′ = unit vectors along X, Y, Z
i, j, k = unit vectors along x, y, z

εi = electric field strength at electron i arising from other electrons and
nuclei

Ei = applied electric field strength at electron i
Bi = applied magnetic flux density at electron i
Ai = total magnetic vector potential at electron i
Ae

i = contribution to Ai from other electrons
AB

i = contribution to Ai from external magnetic field
φi = total electric potential at electron i
Aα = total magnetic vector potential at nucleus α

Ae
α = contribution to Aα from electrons

AB
α = contribution to Aα from external magnetic field

φα = total electric potential at nucleus α

Bα = applied magnetic flux density at nucleus α

Eα = applied electric field strength at nucleus α

B = Bi = Bα for homogeneous magnetic field
E = Ei = Eα for homogeneous electric field
Λ = projection of L along internuclear axis

Σ, ms = projection of S along internuclear axis
Ω = |Λ +Σ| = projection of total electronic angular momentum along internuclear

axis
D

(1/2)
M,m (φ, θ, χ) = rotational matrix for spin transformation

V or v= classical velocity vector
L = Lagrangian
E = energy
t = time

σ′ = Pauli spin vector
σ= Dirac spin vector
µS = electron spin magnetic moment
µI = nuclear spin magnetic moment

µr or µJ = rotational magnetic moment
µe = electric dipole moment

S̄ = Foldy–Wouthuysen operator
∇ = gradient operator

∇2 = Laplacian
δ( ) = Dirac delta function



Summary of notation xxi

π = pi, 3.141 592 653. . .
Mα = mass of nucleus α

mi (or m) = mass of electron
Mp = proton mass
µ = reduced nuclear mass (possible confusion here with magnetic

moment)
µα = M1 M2/(M1 − M2)
M = total molecular mass
h = the Planck constant
h = h/2π

µB = electron Bohr magneton = eh/2m
µN = nuclear Bohr magneton = eh/2Mp

c = speed of light
e = elementary unit of charge (defined to be positive)

−e = electron charge
Zαe = nuclear charge
α, β denote ms or Ms = +1/2, −1/2

π = mechanical momentum in presence of electromagnetic fields
α= Dirac momentum operator
β= Dirac matrix
L = orbital angular momentum
S = electron spin angular momentum
P = total electronic angular momentum
J = total angular momentum excluding nuclear spin
N = total angular momentum excluding electron and nuclear spin
R = rotational angular momentum of the bare nuclei
I = nuclear spin angular momentum
F = grand total angular momentum including electron and nuclear spin
R = internuclear distance

φ, θ, χ = Euler angles
R̄ = mean position operator in the Dirac representation

R ′′ = position operator in the F–W representation (confusion)
Iα = spin of nucleus α

gS = electron g factor: value = 2 in the Dirac theory, 2.002 32 from quan-
tum electrodynamics

gN = nuclear g factor
gL = orbital g factor

gr or gJ = rotational g-factor
i = √ −1
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Some additional notes

Vector quantities are denoted by bold font. Although the square of a vector, i.e. the scalar
product of the vector with itself, is a scalar quantity, we have followed the commonest
convention of also denoting the vector squares in bold font.

An applied magnetic field is denoted BZ throughout this book; we use the alterna-
tive B0, to denote the rotational constant for the v = 0 level.

Additional molecular parameters which arise in effective Hamiltonians are listed
in Appendix 7.1.
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1 General introduction

1.1. Electromagnetic spectrum

Molecular spectroscopy involves the study of the absorption or emission of electromag-
netic radiation by matter; the radiation may be detected directly, or indirectly through
its effects on other molecular properties. The primary purpose of spectroscopic studies
is to understand the nature of the nuclear and electronic motions within a molecule.

The different branches of spectroscopy may be classified either in terms of the
wavelength, or frequency, of the electromagnetic radiation, or in terms of the type
of intramolecular dynamic motion primarily involved. Historically the first method
has been the most common, with different regions of the electromagnetic spectrum
classified as shown in figure 1.1. In the figure we show four different ways of describing
these regions. They may be classified according to the wavelength, in ångström units
(1A

� = 10−8 cm), or the frequency in Hz; wavelength (λ) and frequency (ν) are related
by the equation,

ν = c/λ, (1.1)

where c is the speed of light. Very often the wavenumber unit, cm−1, is used; we denote
this by the symbol ν̃. Clearly the wavelength and wavenumber are related in the simple
way

ν̃ = 1/λ, (1.2)

with λ expressed in cm. Although offensive to the purist, the wavenumber is often taken
as a unit of energy, according to the Planck relationship

E = hν = hcν̃, (1.3)

where h is Planck’s constant. From the values of the fundamental constants given in
General Appendix A, we find that 1 cm−1 corresponds to 1.986 445 × 10−23 J
molecule−1. A further unit of energy which is often used, and which will appear in this
book, is the electronvolt, eV; this is the kinetic energy of an electron which has been
accelerated through a potential difference of 1 V; 1 eV is equal to 8065.545 cm−1.

In the classical theory of electrodynamics, electromagnetic radiation is
emitted when an electron moves in its orbit but, according to the Bohr theory of the atom,
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Electromagnetic radiation 3

emission of radiation occurs only when an electron goes from a higher energy orbit
E2 to an orbit of lower energy E1. The emitted energy is a photon of energy hν,
given by

hν = E2 − E1, (1.4)

an equation known as the Bohr frequency condition. The reverse process, a transi-
tion from E1 to E2, requires the absorption of a quantum of energy hν. The range of
frequencies (or energies) which constitutes the electromagnetic spectrum is shown in
figure 1.1. Molecular spectroscopy covers a nominal energy range from 0.0001 cm−1

to 100 000 cm−1, that is, nine decades in energy, frequency or wavelength. The spec-
troscopy described in this book, which we term rotational spectroscopy for reasons to
be given later, is concerned with the range 0.0001 cm−1 to 100 cm−1. Surprisingly,
therefore, it covers six of the nine decades shown in figure 1.1, very much the ma-
jor portion of the molecular spectrum! Indeed our low frequency cut-off at 3 MHz is
somewhat arbitrary, since molecular beam magnetic resonance studies at even lower
frequencies have been described. As we shall see, the experimental techniques em-
ployed over the full range given in figure 1.1 vary a great deal. We also note here
that the spectroscopy discussed in this book is concerned solely with molecules in the
gas phase. Again the reasons for this discrimination will become apparent later in this
chapter.

So far as the classification of the type of spectroscopy performed is concerned,
the characterisation of the dynamical motions of the nuclei and electrons within a
molecule is more important than the region of the electromagnetic spectrum in which
the corresponding transitions occur. However, before we come to this in more detail, a
brief discussion of the nature of electromagnetic radiation is necessary. This is actually
a huge subject which, if tackled properly, takes us deeply into the details of classical
and semiclassical electromagnetism, and even further into quantum electrodynamics.
The basic foundations of the subject are Maxwell’s equations, which we describe in
appendix 1.1. We will make use of the results of these equations in the next section,
referring the reader to the appendix if more detail is required.

1.2. Electromagnetic radiation

Electromagnetic radiation consists of both an electric and a magnetic component, which
for plane-polarised (or linearly-polarised) radiation, travelling along the Y axis, may be
represented as shown in figure 1.2. Each of the three diagrams represents the electric
and magnetic fields at different instants of time as indicated. The electric field (E)
is in the Y Z plane parallel to the Z axis, and the magnetic field (B) is everywhere
perpendicular to the electric field, and therefore in the XY plane. Consideration of
Maxwell’s equations [1] shows that, as time progresses, the entire field pattern shifts
to the right along the Y axis, with a velocity c. The wavelength of the radiation, λ,
shown in the figure, is related to the frequency ν by the simple expression ν= c/λ. At
every point in the wave at any instant of time, the electric and magnetic field strengths
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t � π/2ν

t � 0

t � π/ν

Figure 1.2. Schematic representation of plane-polarised radiation projected along the Y axis at
three different instants of time. The solid arrows denote the amplitude of the electric field (E),
and the dashed arrows denote the perpendicular magnetic field (B).

are equal; this means that, in cgs units, if the electric field strength is 10 V cm−1 the
magnetic field strength is 10 G.

Although it is simplest to describe and represent graphically the example of plane
polarised radiation, it is also instructive to consider the more general case [2]. For
propagation of the radiation along the Y axis, the electric field E can be decomposed
into components along the Z and X axes. The electric field vector in the X Z plane is
then given by

E = i ′EX + k′EZ (1.5)

where i ′ and k′ are unit vectors along the X and Z axes. The components in
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equation (1.5) are given by

EX = E0
X cos(k∗Y − ωt + αX ),

EZ = E0
Z cos(k∗Y − ωt + αZ ), (1.6)

α = αX − αZ .

Here ω= 2πν, ω is the angular frequency in units of rad s−1, ν is the frequency
in Hz, and k∗ is called the propagation vector with units of inverse length. In a
vacuum k∗ has a magnitude equal to 2π/λ0 where λ0 is the vacuum wavelength of
the radiation. Finally, α is the difference in phase between the X and Z components
of E.

Plane-polarised radiation is obtained when the phase factor α is equal to 0 or π and
E0

X = E0
Z . When α= 0, EX and EZ are in phase, whilst for α=π they are out-of-phase

by π. The special case illustrated in figure 1.2 corresponds to E0
X = 0. Other forms of

polarisation can be obtained from equations (1.6). For elliptically-polarised radiation
we set α= ±π/2 so that equations (1.6) become

EX = E0
X cos(k∗Y − ωt),

EZ = E0
Z cos(k∗Y − ωt ± π/2) = ±E0

Z sin(k∗Y − ωt),

E± = i ′EX ± k′EZ

= i ′E0
X cos(k∗Y − ωt) ± k′E0

Z sin(k∗Y − ωt). (1.7)

If E0
X = E0

Z = � for α= ±π/2, we have circularly-polarised radiation given by the
expression

E± = �[i ′ cos(k∗Y − ωt) ± k′ sin(k∗Y − ωt)]. (1.8)

When viewed looking back along the Y axis towards the radiation source, the field
rotates clockwise or counter clockwise about the Y axis. When α= +π/2 which cor-
responds to E+, the field appears to rotate counter clockwise about Y .

Conventional sources of electromagnetic radiation are incoherent, which means
that the waves associated with any two photons of the same wavelength are, in gen-
eral, out-of-phase and have a random phase relation with each other. Laser radiation,
however, has both spatial and temporal coherence, which gives it special importance
for many applications.

1.3. Intramolecular nuclear and electronic dynamics

In order to understand molecular energy levels, it is helpful to partition the kinetic
energies of the nuclei and electrons in a molecule into parts which, if possible, separately
represent the electronic, vibrational and rotational motions of the molecule. The details
of the processes by which this partitioning is achieved are presented in chapter 2. Here
we give a summary of the main procedures and results.
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We start by writing a general expression which represents the kinetic energies of
the nuclei (α) and electrons (i) in a molecule:

T =
∑
α

1

2Mα

P2
α +

∑
i

1

2m
P2

i , (1.9)

where Mα and m are the masses of the nuclei and electrons respectively. The momenta
Pα and P i are vector quantities, which are defined by

P i = −ih-
∂

∂Ri
,

(1.10)

Pα = −ih-
∂

∂Rα
,

expressed in a space-fixed axis system (X , Y , Z ) of arbitrary origin. Rα gives the
position of nucleus α within this coordinate system. The partial derivative (∂/∂Rα) is
a shorthand notation for the three components of the gradient operator,

∂

∂Rα
≡

(
∂

∂RX

)
α

i ′ +
(

∂

∂RY

)
α

j ′ +
(

∂

∂RZ

)
α

k′, (1.11)

where i ′, j ′, k′ are unit vectors along the space-fixed axes X , Y , Z .
It is by no means obvious that (1.9) contains the vibrational and rotational motion

of the nuclei, as well as the electron kinetic energies, but a series of origin and axis
transformations shows that this is the case. First, we transform from the arbitrary origin
to an origin at the centre of mass of the molecule, and then to the centre of mass of the
nuclei. As we show in chapter 2, these transformations convert (1.9) into the expression

T = 1

2M
P2

O + 1

2µ
P2

R + 1

2m

∑
i

P ′′2
i + 1

2(M1 + M2)

∑
i, j

P ′′
i · P ′′

j . (1.12)

The first term in (1.12) represents the kinetic energy due to translation of the whole
molecule through space; this motion can be separated off rigorously in the absence of
external fields. In the second term, µ is the reduced nuclear mass, M1 M2/(M1 + M2),
and this term represents the kinetic energy of the nuclei. The third term describes
the kinetic energy of the electrons and the last term is a correction term, known as
the mass polarisation term. The transformation is described in detail in chapter 2 and
appendix 2.1. An alternative expression equivalent to (1.12) is obtained by writing the
momentum operators in terms of the Laplace operators,

T = − h-2

2M
∇2 − h-2

2µ
∇2

R − h-2

2m

∑
i

∇′′2
i − h-2

2(M1 + M2)

∑
i, j

∇′′
i · ∇′′

j . (1.13)

The next step is to add terms representing the potential energy, the electron spin
interactions and the nuclear spin interactions. The total Hamiltonian HT can then be
subdivided into electronic and nuclear Hamiltonians,

HT = Hel + Hnucl, (1.14)
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where

Hel = − h-2

2m

∑
i

∇2
i − h-2

2MN

∑
i, j

∇i · ∇ j +
∑
i< j

e2

4πε0 Ri j
−

∑
α,i

Zαe2

4πε0 Riα

+ H(Si ) + H(Iα), (1.15)

Hnucl = − h-2

2µ
∇2

R +
∑
α,β

ZαZβe2

4πε0 R
. (1.16)

The third and fourth terms in (1.15) represent the potential energy contributions (in SI
units, see General Appendix E) arising from the electron–electron and electron–nuclear
interactions, whilst the second term in (1.16) describes the nuclear repulsion term
between nuclei with charges Zαe and Zβe. The electron and nuclear spin Hamiltonians
introduced into (1.15) are described in detail later.

The total nuclear kinetic energy is contained within the first term in equation (1.16)
and we now introduce a further transformation from the axes translating with the
molecule but with fixed orientation to molecule-fixed axes gyrating with the nuclei. In
chapter 2 the two axis systems are related by Euler angles, φ, θ and χ , although for
diatomic molecules the angle χ is redundant. We may use a simpler transformation to
spherical polar coordinates R, θ , φ as defined in figure 1.3. With this transformation
the space-fixed coordinates are given by

X = R sin θ cosφ,

Y = R sin θ sinφ, (1.17)

Z = R cos θ.

θ

φ

Figure 1.3. Transformation from space-fixed axes X , Y , Z to molecule-fixed axes using the
spherical polar coordinates R, θ , φ, defined in the figure.
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We proceed to show, in chapter 2, that this transformation of the axes leads to the
nuclear kinetic energy term being converted into a new expression:

1

2µ
P2

R = − h-2

2µ
∇2

R

= − h-2

2µ

{
1

R2

∂

∂R

(
R2 ∂

∂R

)
+ 1

R2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

R2 sin2 θ

∂2

∂φ2

}
.

(1.18)

This is a very important result because the first term describes the vibrational kinetic
energy of the nuclei, whilst the second and third terms represent the rotational kinetic
energy. The transformation is straightforward provided one takes proper note of the
non-commutation of the operator products which arise.

The transformation of terms representing the kinetic energies of all the particles
into terms representing, separately, the electronic, vibrational and rotational kinetic
energies is clearly very important. The nuclear kinetic energy Hamiltonian, (1.18),
is relatively simple when the spherical polar coordinate transformation (1.17) is used.
When the Euler angle transformation is used, it is a little more complicated, containing
terms which include the third angle χ :

Hnucl = − h-2

2µR2

{
∂

∂R

(
R2 ∂

∂R

)
+ cosec θ

∂

∂θ

(
sin θ

∂

∂θ

)

+ cosec2θ

[
∂2

∂φ2
+ ∂2

∂χ2
− 2 cos θ

∂2

∂φ∂χ

]}
+ Vnucl(R). (1.19)

We show in chapter 2 that when the transformation of the electronic coordinates,
including electron spin, into the rotating molecule-fixed axes system is taken into
account, equation (1.19) takes the much simpler form

Hnucl = − h-2

2µR2

∂

∂R

(
R2 ∂

∂R

)
+ h-2

2µR2
(J − P)2 + Vnucl(R), (1.20)

where J is the total angular momentum and P is the total electronic angular momentum,
equal to L + S. Hence although the electronic Hamiltonian is free of terms involving
the motion of the nuclei, the nuclear Hamiltonian (1.20) contains terms involving the
operators Px , Py and Pz which operate on the electronic part of the total wave function.
The Schrödinger equation for the total wave function is written as

(Hel + Hnucl)Ψrve = ErveΨrve, (1.21)

and, as we show in chapter 2, the Born approximation allows us to assume total wave
functions of the form

Ψ0
rve = ψn

e (r i )φ
n
rv(R, φ, θ ). (1.22)

The matrix elements of the nuclear Hamiltonian that mix different electronic states
are then neglected; the electronic wave function is taken to be dependent upon nuclear
coordinates, but not nuclear momenta. If the first-order contributions of the nuclear
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kinetic energy are taken into account, we have the Born adiabatic approximation; if
they are neglected, we have the Born–Oppenheimer approximation. This approximation
occupies a central position in molecular quantum mechanics; in most situations it is a
good approximation, and allows us to proceed with concepts like the potential energy
curve or surface, molecular shapes and geometry, etc. Those special cases, usually
involving electronic orbital degeneracy, where the Born–Oppenheimer approximation
breaks down, can often be treated by perturbation methods.

In chapter 2 we show how a separation of the vibrational and rotational wave
functions can be achieved by using the product functions

φn
rv = χn(R)eiMJφΘn(θ )eikχ , (1.23)

where MJ and k are constants taking integral or half-odd values. We show that in the
Born approximation, the wave equation for the nuclear wave functions can be expressed
in terms of two equations describing the vibrational and rotational motion separately.
Ultimately we obtain the wave equation of the vibrating rotator,

h-2

2µR2

∂

∂R
R2 ∂χn(R)

∂R
+

{
Erve − V − h-2

2µR2
J (J + 1)

}
χn(R) = 0. (1.24)

The main problem with this equation is the description of the potential energy term (V ).
As we shall see, insertion of a restricted form of the potential allows one to express data
on the ro-vibrational levels in terms of semi-empirical constants. If the Morse potential
is used, the ro-vibrational energies are given by the expression

Ev,J = ωe(v+ 1/2) −ωexe(v+ 1/2)2 + Be J (J + 1) − De J 2(J + 1)2

−αe(v+ 1/2)J (J + 1). (1.25)

The first two terms describe the vibrational energy, the next two the rotational energy,
and the final term describes the vibration–rotation interaction.

1.4. Rotational levels

This book is concerned primarily with the rotational levels of diatomic molecules. The
spectroscopic transitions described arise either from transitions between different ro-
tational levels, usually adjacent rotational levels, or from transitions between the fine
or hyperfine components of a single rotational level. The electronic and vibrational
quantum numbers play a different role. In the majority of cases the rotational levels
studied belong to the lowest vibrational level of the ground electronic state. The de-
tailed nature of the rotational levels, and the transitions between them, depends critically
upon the type of electronic state involved. Consequently we will be deeply concerned
with the many different types of electronic state which arise for diatomic molecules,
and the molecular interactions which determine the nature and structure of the rota-
tional levels. We will not, in general, be concerned with transitions between different
electronic states, except for the double resonance studies described in the final chapter.
The vibrational states of diatomic molecules are, in a sense, relatively uninteresting.
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The detailed rotational structure and sub-structure does not usually depend upon the
vibrational quantum number, except for the magnitudes of the molecular parameters.
Furthermore, we will not be concerned with transitions between different vibrational
levels.

Rotational level spacings, and hence the frequencies of transitions between rota-
tional levels, depend upon the values of the rotational constant, Bv , and the rotational
quantum number J , according to equation (1.25). The largest known rotational con-
stant, for the lightest molecule (H2), is about 60 cm−1, so that rotational transitions
in this and similar molecules will occur in the far-infrared region of the spectrum. As
the molecular mass increases, rotational transition frequencies decrease, and rotational
spectroscopy for most molecules occurs in the millimetre wave and microwave regions
of the electromagnetic spectrum.

The fine and hyperfine splittings within a rotational level, and the transition fre-
quencies between components, depend largely on whether the molecular species has a
closed or open shell electronic structure. We will discuss these matters in more detail
in section 1.6. For a closed shell molecule, that is, one in a 1�+ state, intramolecular
interactions are in general very small. They depend almost entirely on the presence
of nuclei with spin magnetic moments, or with electric quadrupole moments. If both
nuclei in a diatomic molecule have spin magnetic moments, there will be a magnetic
interaction between them which leads to splitting of a rotational level. The interaction
may occur as a through-space dipolar interaction, or it may arise through an isotropic
scalar coupling brought about by the electrons. Dipolar interactions are much larger
than the scalar spin–spin couplings, but even so only produce splittings of a few kHz
in the most favourable cases. A molecule also possesses a magnetic moment by virtue
of its rotational motion, which can interact with any nuclear spin magnetic moments
present in the molecule. Nuclear and rotational magnetic moments interact with an
applied magnetic field, and these interactions are at the heart of the molecular beam
magnetic resonance studies described in chapter 8. The pioneering experiments in this
field were carried out in the period 1935 to 1955; they are capable of exceptionally high
spectroscopic resolution, with line widths sometimes only a fraction of a kHz, and they
form the foundations of what came to be known as nuclear magnetic resonance [3].
Nuclear electric quadrupole moments, where present, interact with the electric field
gradient caused by the other charges (nuclei and electrons) in a molecule and the result-
ing interaction, called the nuclear electric quadrupole interaction, can in certain cases
be quite large (i.e. several GHz). This interaction may be studied through molecular
beam magnetic resonance experiments, but it can also be important in conventional
microwave absorption studies, as we describe in chapter 10. Magnetic resonance stud-
ies require the presence of a magnetic moment, but in the closely related technique of
molecular beam electric resonance, the interaction between a molecular electric dipole
moment and an applied electric field is used. These experiments are also described in
detail in chapter 8. The magnetic resonance studies of closed shell molecules almost
always involve transitions between components of a rotational level, and usually oc-
cur in the radiofrequency region of the spectrum. Electric resonance experiments, on
the other hand, often deal with electric dipole transitions between rotational levels,
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and occur in the millimetre wave and microwave regions of the spectrum. Molecular
beam electric resonance experiments are closely related to conventional absorption
experiments.

Molecules with open shell electronic states, which are often highly reactive tran-
sient species called free radicals, introduce a range of new intramolecular interactions.
The largest of these, which occurs in molecules with both spin and orbital angular
momentum, is spin–orbit coupling. Spin–orbit interactions range from a few cm−1 to
several thousand cm−1 and determine the overall pattern of the rotational levels and
their associated spectroscopy. Molecules in 2� states are particularly important and
will appear frequently in this book; the OH and CH radicals, in particular, are principal
players who will make many appearances. If orbital angular momentum is not present,
spin–orbit coupling is less important (though not completely absent). However, the
magnetic moment due to electron spin is large and will interact with nuclear spin mag-
netic moments, to give nuclear hyperfine structure, and also with the rotational magnetic
moment, giving rise to the so-called spin–rotation interaction. As important, however,
is the strong interaction which occurs with an applied magnetic field. This interaction
leads to magnetic resonance studies with bulk samples, performed at frequencies in
the microwave region, or even in the far-infrared. The Zeeman interaction is used to
tune spectroscopic transitions into resonance with fixed-frequency radiation; these ex-
periments are described in detail in chapter 9. For various reasons they are capable of
exceptionally high sensitivity, and consequently have been extremely important in the
study of short-lived free radicals. It is, perhaps, important at this point to appreciate
the difference between the molecular beam magnetic resonance experiments described
in chapter 8, and the bulk studies described in chapter 9. In most of the molecular
beam experiments the Zeeman interactions are used to control the molecular trajecto-
ries through the apparatus, and to produce state selectivity. Spectroscopic transitions,
which may or may not involve Zeeman components, are detected through their effects
on detected beam intensities. No attempt is made to detect the absorption or emission
of electromagnetic radiation directly. Conversely, in the bulk magnetic resonance ex-
periments, direct detection of the radiation is involved and the Zeeman effect is used to
tune spectroscopic transitions into resonance with the radiation. Later in this chapter
we will give a little more detail about electron spin and hyperfine interactions, as well
as the Zeeman effect in open shell systems.

The final, but very important, point to be made in this section is that all of the
experiments described and discussed in this book involve molecules in the gas phase.
Moreover the gas pressures involved are sufficiently low that the molecular rotational
motion is conserved. Just as importantly, quantised electronic orbital motion is not
quenched by molecular collisions, as it would be at higher pressures. Of course, con-
densed phase studies are important in their own right, but they are different in a number
of fundamental ways. In condensed phases rotational motion and electronic orbital an-
gular momentum are both quenched. Anisotropic interactions, such as the dipolar
interactions involving electron or nuclear spins, or both, can be studied in regularly
oriented solids like single crystals, but are averaged in randomly oriented solids, like
glasses. In isotropic liquids they drive time-dependent relaxation processes through a
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combination of the anisotropy and the tumbling Brownian motion of the molecules.
It should also be remembered that the strong intermolecular interactions that occur in
solids can substantially change the magnitudes of the intramolecular interactions, like
hyperfine interactions.

1.5. Historical perspectives

A major reference point in the history of diatomic molecule spectroscopy was the
publication of a classic book by Herzberg in 1950 [4]; this book was, in fact, an
extensively revised and enlarged version of one published earlier in 1939. Herzberg’s
book was entitled Spectra of Diatomic Molecules, and it deals almost entirely with
electronic spectroscopy. In the years leading up to and beyond 1950, spectrographic
techniques using photographic plates were almost universally employed. They covered
a wide wavelength range, from the far-ultraviolet to the near-infrared, and at their best
presented a comprehensive view of the complete rovibronic band system of one or more
electronic transitions. In Herzberg’s hands these techniques were indeed presented at
their best, and his book gives masterly descriptions of the methods used to obtain and
analyse these beautiful spectra. For both diatomic and polyatomic molecules, most
of what we now know and understand about molecular shapes, geometry, structure,
dynamics, and electronic structure, has come from spectrographic studies of the type
described by Herzberg. One could not improve on his exposition of the rules leading
to our comprehension of these spectra, and there is no need to attempt to do so. It is,
however, a rather sad fact that the classic spectrographic techniques seem now to be
regarded as obsolete; most of the magnificent instruments which were used have been
scrapped. The main thrust now is to use lasers to probe intimate details with much
greater sensitivity, specificity and resolution, but such studies would not be possible
without the foundations provided by the classic techniques. Perhaps one day they will,
of necessity, return.

Almost all of the spectroscopy described in our book involves techniques which
have been developed since the publication of Herzberg’s book. Rotational energy lev-
els were very well understood in 1950, and the analysis of rotational structure in
electronic spectra was a major part of the subject. The major disadvantage of the ex-
perimental methods used was, however, the fact that the resolution was limited by
Doppler broadening. The Doppler line width depends upon the spectroscopic wave-
length, the molecular mass, the effective translational temperature, and other fac-
tors. However, a ballpark figure for the Doppler line width of 0.1 cm−1 would not
be far out in most cases. Concealed within that 0.1 cm−1 are many subtle and fas-
cinating details of molecular structure which are major parts of the subject of this
book.

In 1950, microwave and molecular beam methods were just beginning to be de-
veloped, and they are mentioned briefly by Herzberg in his book. Microwave spec-
troscopy was given a boost by war-time research on radar, with the development
of suitable radiation sources and transmission components; an early review of the
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subject was given by Gordy [5], one of its pioneers. Cooley and Rohrbaugh [6] ob-
served the first three rotational transitions of HI in 1945, whilst Weidner [7] and Townes,
Merritt and Wright [8] observed microwave transitions of the ICl molecule. Because
of the much reduced Doppler width at the long wavelengths in the microwave re-
gion, nuclear hyperfine effects were observed. Such effects were already known in
atomic spectroscopy, but not in molecular electronic spectra apart from some observa-
tions on HgH. Microwave transitions in the O2 molecule were observed by Beringer
[9] in 1946, and Beringer and Castle [10] in 1949 observed transitions between the
Zeeman components of the rotational levels in O2 and NO, the first examples of mag-
netic resonance in open shell molecules. Chapter 9 in this book is devoted to the
now large and important subject of magnetic resonance spectroscopy in bulk gaseous
samples.

The molecular beam radiofrequency magnetic resonance spectrum of H2 was first
observed by Kellogg, Rabi, Ramsey and Zacharias [11] in 1939, and was further devel-
oped in the post-war years. An analogous radiofrequency electric resonance spectrum
of CsF was described by Hughes [12] in 1947, and again the technique underwent
extensive development in the next thirty years. These molecular beam experiments,
which had important precursors in atomic beam spectroscopy, are very different from
the traditional spectroscopic experiments described by Herzberg in his book. They
are capable of very high spectroscopic resolution, partly because they usually involve
radio- or microwave frequencies, partly because of the absence of collisional effects,
and partly because residual Doppler effects can be removed by appropriate relative spa-
tial alignment of the molecular beam and the electromagnetic radiation. All of these
matters are discussed in great detail in chapter 8. Finally in this brief review of the
techniques that were developed after Herzberg’s book, we should mention the laser,
which now dominates electronic spectroscopy, and much of vibrational spectroscopy
as well. Laser spectroscopy as such is not an important part of this book, apart from far-
infrared magnetic resonance studies, but the use of lasers, both visible and infrared, in
double resonance experiments is an important aspect of chapter 11. Lasers have made
it possible to apply the techniques of radiofrequency and microwave spectroscopy to
excited electronic states, an aspect of the subject which is likely to be developed much
further.

Herzberg’s book was therefore perfectly timed. The electronic spectroscopy of
diatomic molecules was well developed and understood, and continues to be important
[13]. Hopefully our book is also well timed; the molecular beam magnetic and electric
resonance experiments are becoming less common, and may now almost be regarded as
classic techniques! Magnetic resonance experiments on bulk gaseous samples are likely
to continue to be important in the study of free radicals, particularly because of their very
high sensitivity. Double resonance is important, in the study of excited states, but also
in the route it provides towards the study of much heavier molecules where sensitivity
considerations become increasingly important. Finally, pure rotational spectroscopy
has assumed even greater importance because of its relationship with radioastronomy
and the study of interstellar molecules, and because of its applications in the study of
atmospheric chemistry.
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1.6. Fine structure and hyperfine structure of rotational levels

1.6.1. Introduction

We outlined in section 1.4 the coordinate transformations which enable us to sepa-
rate the rotational motion of a diatomic molecule from the electronic and vibrational
motions. We pointed out that the spectroscopy described in this book involves either
transitions between different rotational levels, or transitions between the various sub-
components within a single rotational level; additional effects arising from applied
electric or magnetic fields may or may not be present. We now outline very briefly the
origin and nature of the sub-structure which is possible for a single rotational level in
different electronic states. All of the topics mentioned in this section will be developed
in considerable depth elsewhere in the book, but we hope that an elementary intro-
duction will be useful, especially for the reader approaching the subject for the first
time. As we will see, the detailed sub-structure of a rotational level depends upon the
nature of the electronic state being considered. We can divide the electronic states into
three different types, namely, closed shell states without electronic angular momentum,
open shell states with electron spin angular momentum, and open shell states with both
orbital and spin angular momentum. There is also a small number of cases where an
electronic state has orbital but not spin angular momentum.

We will present the effective Hamiltonian terms which describe the interactions
considered, sometimes using cartesian methods but mainly using spherical tensor meth-
ods for describing the components. These subjects are discussed extensively in chap-
ters 5 and 7, and at this stage we merely quote important results without justification.
We will use the symbol T to denote a spherical tensor, with the particular operator in-
volved shown in brackets. The rank of the tensor is indicated as a post-superscript, and
the component as a post-subscript. For example, the electron spin vector S is a first-rank
tensor, T1(S), and its three spherical components are related to cartesian components
in the following way:

T1
0(S ) = Sz,

T1
1(S ) = −(1/

√
2)(Sx + iSy), (1.26)

T1
−1(S ) = (1/

√
2)(Sx − iSy).

The components may be expressed in either a space-fixed axis system ( p) or a molecule-
fixed system (q). The early literature used cartesian coordinate systems, but for the
past fifty years spherical tensors have become increasingly common. They have many
advantages, chief of which is that they make maximum use of molecular symmetry. As
we shall see, the rotational eigenfunctions are essentially spherical harmonics; we will
also find that transformations between space- and molecule-fixed axes systems, which
arise when external fields are involved, are very much simpler using rotation matrices
rather than direction cosines involving cartesian components.
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1.6.2. 1�+ states

In a diatomic, or linear polyatomic molecule, the energies of the rotational levels within
a vibrational level v are given by

E(v, J ) = Bv J (J + 1) − Dv J 2(J + 1)2 + Hv J 3(J + 1)3 + · · · , (1.27)

where the rotational quantum number, J , takes integral values 0, 1, 2, etc. Provided
the molecule is heteronuclear, with an electric dipole moment, rotational transitions
between adjacent rotational levels (�J = ±1) are electric-dipole allowed. The extent
of the spectrum depends upon how many rotational levels are populated in the gaseous
sample, which is determined by the Boltzman distribution law for a system in thermal
equilibrium. The rotational transition frequencies increase as J increases, as (1.27)
shows.

Any additional complications depend entirely on the nature of the nuclei involved.
General Appendix B presents a list of the naturally occurring isotopes, with their
spins, magnetic moments and electric quadrupole moments. Magnetic and electric in-
teractions involving these moments can and will occur, the most important in a 1�

state being the electric quadrupole interaction between the nuclear quadrupole mo-
ment and an electric field gradient at the nucleus. Nuclei possessing a quadrupole
moment must also have a spin I equal to 1 or more, and the extent of the quadrupole
splitting of a rotational level depends upon the value of the nuclear spin. One of the
most important quadrupolar nuclei is the deuteron, and quadrupole effects were prob-
ably first observed and analysed in the molecular beam magnetic resonance spectra
of HD and D2. In describing the energy levels we will often use a hyperfine-coupled
representation, written as a ket |η, J, I, F〉, where the symbol η represents all other
quantum numbers not specified, particularly those describing the electronic and vibra-
tional state. For any given rotational level J , the total angular momentum F takes all
values J + I, J + I − 1, . . . , |J − I |, so that there can be splitting into a maximum
of 2I + 1 hyperfine levels for a single quadrupolar nucleus provided J ≥ I . Such a
case is shown schematically in figure 1.4 for the AlF molecule [14]; the 27Al nucleus
has a spin I of 5/2 and a large quadrupole moment. The J = 0 rotational level has
no quadrupole splitting but J = 1 is split into three components as shown. An electric
dipole J = 1 ← 0 rotational transition between adjacent rotational levels will exhibit
a quadrupole splitting, as indicated. Alternatively, a spectrum arising from transitions
within a single rotational level is possible, as indicated for CsF in figure 1.5. In this case
[12] the 133Cs nucleus has a spin of 7/2, and there is also an additional doublet splitting
from the 19F nucleus, arising from its magnetic dipole moment, which we will discuss
shortly. There are other subtle aspects of this spectrum, one of them being that if the
spectrum is recorded in the presence of a weak electric field, the transitions shown,
which would be expected to have magnetic dipole intensity only, acquire electric dipole
intensity. The full details are given in chapter 8.

The essential features of the electric quadrupole interaction can, hopefully, be
appreciated with the aid of figure 1.6. The Z direction defines the direction of the
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Figure 1.4. Splitting of the J = 1 rotational level of 27Al19F arising from the 27Al quadrupole
interaction with spin I = 5/2, and the resulting hyperfine splitting of the rotational transition.
The magnetic interactions involving the 19F nucleus are too small to be observed in this case.

electric field gradient, produced mainly by the electrons in the molecule. The total
charge distribution of the nucleus may be decomposed into the sum of monopole,
quadrupole, hexadecapole moments; the quadrupole distribution may be represented
as a cigar-shaped distribution of charge having cylindrical symmetry about a principal
axis fixed in the nucleus, which we define as the nuclear z axis. The quadrupolar
charge distribution may be appreciated by considering the nuclear charge distribution
at symmetrically disposed points on the +z, −z, +x , −x axes. As we see from figure 1.6.
the nuclear charge is δ− at the ± x points and δ+ at the ± z points.

For a nucleus of spin I = 1 there are three allowed spatial orientations of the
spin; in figure 1.6 these three orientations may be identified with those in which the
nuclear z axis is coincident with Z , perpendicular to Z , and antiparallel to Z . These
three orientations correspond to projection quantum numbers MI = +1, 0 and −1
respectively, and it is clear from the figure that the state with MI = 0 has a different
electrostatic energy from the states with MI = ±1. This ‘quadrupole splitting’ depends
upon the sizes of the nuclear quadrupole moment and the electric field gradient.
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Figure 1.5. Nuclear hyperfine splitting of the J = 1 rotational level of CsF. The major splitting
is the result of the 133Cs quadrupole interaction, and the smaller doublet splitting is caused by
the 19F interaction (see text).
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Figure 1.6. Orientation of a nucleus (I = 1) with an electric quadrupole moment in an electric
field gradient.
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We show elsewhere in this book that the quadrupole interaction may be represented
as the scalar product of two second-rank spherical tensors,

HQ = −eT2(∇E) · T2(Q), (1.28)

where the details of the electric field gradient are contained within the first tensor in
(1.28) and the nuclear quadrupole moment is contained within the second tensor. We
show elsewhere (chapter 8, for example) that the diagonal quadrupole energy obtained
from (1.28) is given by

EQ = − eq0 Q

2I (2I − 1)(2 J − 1)(2 J + 3)
{(3/4)C(C + 1) − I (I + 1)J (J + 1)}, (1.29)

where C = F(F + 1) − I (I + 1) − F(F + 1). The quantity eq0 Q in (1.29) is called the
quadrupole coupling constant, q0 being the electric field gradient (actually its negative)
and eQ the quadrupole moment of the 133Cs nucleus. The value of eq0 Q for 133Cs in
CsF is 1.237 MHz.

The quadrupole coupling is very much the most important nuclear hyperfine inter-
action in 1�+ states, and it takes the same form in open shell states as in closed shells.
We turn now to the much smaller interactions involving magnetic dipole moments, two
types of which may be present. A nuclear spin I gives rise to a magnetic moment µI ,

µI = gNµN I, (1.30)

where gN is the g-factor for the particular nucleus in question and µN is the nuclear
magneton. In addition, the rotation of the nuclei and electrons gives rise to a rotational
magnetic moment, whose value depends upon the rotational quantum number,

µJ = µN J. (1.31)

The magnetic moments given above will interact with an applied magnetic field,
and these interactions are discussed extensively in chapter 8. In some diatomic
molecules both nuclei have non-zero spin and an associated magnetic moment. The
magnetic interactions which then occur are the nuclear spin–rotation interactions, rep-
resented by the operator

Hnsr =
∑
α=1,2

cαT1(J) · T1(Iα), (1.32)

and the nuclear spin–spin interactions. Here two different interactions are possible.
The largest and most important is the through-space dipolar interaction, which in its
classical form is represented by the operator

Hdip = g1g2µ
2
N (µ0/4π)

{
I1 · I2

R3
− 3(I1 · R)(I2 · R)

R5

}
. (1.33)

Here I1, I2 and g1, g2 are the spins and g-factors of nuclei 1 and 2 and R is the distance
between them. In spherical tensor form the interaction may be written

Hdip = −g1g2µ
2
N (µ0/4π)

√
6T2(C) · T2(I1, I2), (1.34)
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where the second-rank tensors are defined as follows:

T2
p(I1, I2) = (−1) p

√
5

∑
p1,p2

(
1 1 2
p1 p2 −p

)
T1

p1
(I1)T1

p2
(I2), (1.35)

T2
q (C) = 〈

C2
q (θ, φ)R−3

〉
. (1.36)

These expressions require some detailed explanation, and the reader might wish to
advance to chapter 5 at this point. First, here and elsewhere, the subscripts p and q refer
to space-fixed and molecule-fixed axes respectively. Equation (1.35) which describes
the construction of a second-rank tensor from two first-rank tensors contains a vector
coupling coefficient called a Wigner 3- j symbol. Equation (1.36) contains a spherical
harmonic function which gives the necessary geometric information. The equivalence
of (1.34) and (1.33) is demonstrated in appendix 8.1, which also introduces another
spherical tensor form for the dipolar interaction. The most important feature is, of
course, the R−3 dependence of the interaction. In the H2 molecule the proton–proton
dipolar coupling is about 60 kHz, which is readily determinable in the high-resolution
molecular beam magnetic resonance studies.

The second interaction between two nuclear spins in a diatomic molecule is a scalar
coupling,

Hscalar = csT
1(I1) · T1(I2), (1.37)

which is often described as the electron-coupled spin–spin interaction because the
mechanism involves the transmission of nuclear spin orientation through the interven-
ing electrons (see section 1.7). This coupling is very small compared with the dipolar
interaction, and is usually negligible in gas phase studies. It is, however, extremely
important in liquid phase nuclear magnetic resonance because, unlike the dipolar cou-
pling, it is not averaged to zero by the tumbling motion of the molecules.

The remaining important type of magnetic interaction is that between the rotational
magnetic moment and any nuclear spin magnetic moments, given in equation (1.32).
In the case of H2 the constant c has the value 113.9 kHz. The doublet splitting in the
spectrum of CsF, shown in figure 1.5, is due to the 19F nuclear spin–rotation interaction.
Note also that in this case the hyperfine basis kets take the form |η, J, I1, F1; I2, F〉
where I1 is the spin of 133Cs (value 7/2) and I2 is the spin of 19F value 1/2. Hence for
J = 1, F1 can take the values 9/2, 7/2 and 5/2 as shown, and F takes values F1 ± 1/2.
Other possible magnetic interactions in CsF are too small to be observed.

The remaining important magnetic interactions to be considered are those which
arise when a static magnetic field B is applied. The Zeeman interaction with a nuclear
spin magnetic moment is represented by the Hamiltonian term

HZ = −
∑
α=1,2

gαNµN T1(B) · T1(Iα), (1.38)

and since the direction of the magnetic field is usually taken to define the space-fixed
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Z or p = 0 direction, the scalar product in (1.38) contracts to

HZ = −
∑
α=1,2

gαNµN T1
0(B)T1

0(Iα). (1.39)

The nuclear spin Zeeman levels then have energies given by

EZ = −
∑
α=1,2

gαNµN BZ MIα , (1.40)

where the projection quantum number MI takes the 2I + 1 values from −I to + I .
The nuclear spin Zeeman interaction in discussed extensively in chapter 8. In molec-
ular beam experiments it is used for magnetic state selection, and the radiofrequency
transitions studied are usually those with the selection rule�MI = ±1 observed in the
presence of an applied magnetic field. We will also see, in chapter 8, that the simple
expression (1.38) is modified by the inclusion of a screening factor,

HZ = −
∑
α=1,2

gαNµN T1(B) · T1(Iα){1 − σα(J)}, (1.41)

arising mainly because of the diamagnetic circulation of the electrons in the presence
of the magnetic field. In liquid phase nuclear magnetic resonance this screening gives
rise to what is known as the ‘chemical shift’.

The rotational magnetic moment also interacts with an applied magnetic field, the
interaction term being very similar to (1.41) above, i.e.

HJZ = −grµN T1(B) · T1(J){1 − σ (J)}, (1.42)

where gr is the rotational g-factor. In a molecule where there are no nuclear spins
present, the rotational Zeeman interaction can be used for selection of MJ states.

Finally in this section on 1�+ states we must include the Stark interaction which
occurs when an electric field (E) is applied to a molecule possessing a permanent
electric dipole moment (µe):

HE = −T1(µe) · T1(E). (1.43)

As with the Zeeman interaction discussed earlier, (1.43) is usually contracted to the
space-fixed p = 0 component. An extremely important difference, however, is that in
contrast to the nuclear spin Zeeman effect, the Stark effect in a 1� state is second-
order, which means that the electric field mixes different rotational levels. This aspect
is thoroughly discussed in the second half of chapter 8; the second-order Stark effect
is the engine of molecular beam electric resonance studies, and the spectra, such as
that of CsF discussed earlier, are usually recorded in the presence of an applied electric
field.

Whilst the most important examples of Zeeman and Stark effects in 1� states are
found in molecular beam studies, they can also be important in conventional absorption
microwave rotational spectroscopy, as we describe in chapter 10. The use of the Stark
effect to determine molecular dipole moments is a very important example.
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1.6.3. Open shell � states

We now proceed to consider the magnetic interactions involving the electron spin S
in � states with open shell electronic structures. The magnetic dipole moment arising
from electron spin is

µS = −gSµB S, (1.44)

where gS is the free electron g-factor, with the value 2.0023, and µB is the electron
Bohr magneton; µB is almost two thousand times larger than the nuclear magneton,
µN , so we see at once that magnetic interactions from electron spin are very much
larger than those involving nuclear spin, considered in the previous sub-section.

With the introduction of electronic angular momentum, we have to consider how
the spin might be coupled to the rotational motion of the molecule. This question be-
comes even more important when electronic orbital angular momentum is involved.
The various coupling schemes give rise to what are known as Hund’s coupling cases;
they are discussed in detail in chapter 6, and many practical examples will be en-
countered elsewhere in this book. If only electron spin is involved, the important
question is whether it is quantised in a space-fixed axis system, or molecule-fixed. In
this section we confine ourselves to space quantisation, which corresponds to Hund’s
case (b).

We deal first with molecules containing one unpaired electron (S = 1/2) where
magnetic nuclei are not present. The electron spin magnetic moment then interacts
with the magnetic moment due to molecular rotation, the interaction being represented
by the Hamiltonian term

Hsr = γT1(S) · T1(N), (1.45)

in which γ is the spin–rotation coupling constant. As was originally shown by Hund
[15] and Van Vleck [16], each rotational level in a given vibrational level (v) of a 2�

state is split into a spin doublet, with energies

F1(N ) = BvN (N + 1) + (1/2)γvN ,

F2(N ) = BvN (N + 1) − (1/2)γv(N + 1). (1.46)

The F1 levels correspond to J = N + 1/2 and the F2 levels to J = N − 1/2. A typical
rotational energy level diagram is shown in figure 1.7(a); each rotational transition
(�N = ±1) is split into a doublet (with�J = ±1) and a weaker satellite (�J = 0). This
seems a simple conclusion, except that Van Vleck [16] showed that the spin splitting
of each rotation level is only partly the result of the rotational magnetic moment in
the direction of N. The other part comes from electronic orbital angular momentum in
the � state which precesses at right angles about the internuclear axis; in other words,
although the expectation value of L is zero in a pure � state, the spin–orbit coupling
operator mixes the � state with excited � states. This introduces an additional non-
zero magnetic moment in the direction of N, which contributes to the spin–rotation
coupling. We will return to this important subject in the next section; it represents
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(a) (b)

1

Figure 1.7. (a) Lower rotational levels and transitions in a case (b) 2� state, showing the spin
splitting of a rotational transition. (b) Lower rotational levels and transitions in a case (b) 3�

state, showing the spin splitting of a rotational transition.

our first encounter with the very important concept of the effective Hamiltonian. What
looks like a spin–rotation interaction is not entirely what it seems!

The lower rotational levels for a case (b) 3� state are shown in figure 1.7(b).
The spin–rotation interaction takes the same form as for a 2� state, given in
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equation (1.45), but in addition there is an important interaction between the spins
of the two unpaired electrons, called the electron spin–spin interaction; this is usually
larger than the spin–rotation interaction. The spin–spin interaction can be represented
in a number of different ways, depending upon the molecule under investigation. Ini-
tially we might regard the interaction as being analogous to the classical interaction
between two magnetic dipole moments so that, following equation (1.33) for nuclear
spins, we write the interaction as

Hss = g2
Sµ

2
B(µ0/4π)

{
S1 · S2

r3
− 3(S1 · r )(S2 · r )

r5

}
, (1.47)

where S1 and S2 are the spins of the individual electrons, and r is the distance between
them. Of course, the electrons are not point charges, so that r is an average distance
which can be calculated from a suitable electronic wave function. Again, by analogy
with our previous treatment of nuclear spins, the electron spin dipolar interaction can
be represented in spherical tensor form by the operator

Hss = −g2
Sµ

2
B(µ0/4π)

√
6T2(C) · T2(S1, S2), (1.48)

where, as before, T2(C) represents the spherical harmonic functions, the q = 0 com-
ponent being given by

T2
0(C) = C2

0 (θ, φ)(r−3) =
(

4π

5

)1/2

Y2,0(θ, φ)(r−3) = 1

2
(2z2 − x2 − y2)(r−5). (1.49)

In appendix 8.3 we show that (1.48) with q = 0 leads to the simple expression,

Hss = 2

3
λ
(
3S2

z − S2
)
, (1.50)

where z is the internuclear axis andλ is called the spin–spin coupling constant. Provided
λ is not too large compared with the rotational constant, Kramers [17] showed that each
rotational level is split into a spin triplet, with relative component energies

F1(N ) = BvN (N + 1) − 2λ(N + 1)

(2N + 3)
+ γv(N + 1),

F2(N ) = BvN (N + 1), (1.51)

F3(N ) = BvN (N + 1) − 2λN

(2N − 1)
− γvN .

where F1, F2, F3 refer to levels with J = N + 1, N and N − 1. More accurate formulae
were given by Schlapp [18] and, neglecting the small vibrational dependence of λ and
γ , these are

F1(N ) = BvN (N +1)+ (2N +3)Bv−λ−{
(2N +3)2 B2

v +λ2 −2λBv
}1/2 +γv(N +1),

F2(N ) = BvN (N +1), (1.52)

F3(N ) = BvN (N +1)− (2N −1)Bv−λ+{
(2N −1)2 B2

v +λ2 −2λBv
}1/2 −γvN .

The molecule O2 in its 3�−
g ground state is a good example of a case (b)

molecule, and the triplet energies agree with (1.52), the values of the constants
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being B0 = 1.437 77 cm−1, λ= 1.984 cm−1 , γ0 = −0.0084 cm−1. Note that yet another
spherical tensor form for the dipolar interaction which is sometimes used is

Hss = 2λT2(S, S) · T2(n, n), (1.53)

where n is a unit vector along the internuclear axis and S is the total spin of 1. Again, the
relationship of this form to the others is described in appendix 8.3. A typical pattern of
rotational levels for a 3� state with the spin splitting is shown in figure 1.7(b), together
with the allowed rotational transitions. Once again, spin–orbit coupling can mix a 3�

state with nearby � states and contribute to the value of the constant λ. We show in
chapter 9 that in the SeO molecule the spin–orbit coupling is so strong that the case
(b) pattern of rotational levels no longer holds, and a case (a) coupling scheme is more
appropriate. The formulae given above are then not applicable.

The remaining important interactions which can occur for a 2� or 3� molecule
involve the presence of nuclear spin. Interactions between the electron spin and nuclear
spin magnetic moments are called ‘hyperfine’ interactions, and there are two important
ones. The first is called the Fermi contact interaction, and if both nuclei have non-zero
spin, each interaction is represented by the Hamiltonian term

HF = bFT1(S) · T1(I). (1.54)

The Fermi contact constant bF is given by

bF =
(

2

3

)
gSµB gNµNµ0

∫
ψ2(r )δ(r ) dr , (1.55)

where the function δ(r ), called the Dirac delta function, imposes the condition that r = 0
when we integrate over the probability density of the wave function of the unpaired
electron. Hence the contact interaction can only occur when the unpaired electron has
a finite probability density at the nucleus, which means that the wave function must
have some s-orbital character (i.e. ψ(0)2 
= 0).

The second important hyperfine interaction is the dipolar interaction and by analogy
with equations (1.34) and (1.48) it may be expressed in spherical tensor form by the
expression

Hdip =
√

6gSµB gNµN (µ0/4π)T2(C) · T2(S, I). (1.56)

There are some situations when this is the most convenient representation of the dipolar
coupling, for example, when S and I are very strongly coupled to each other but weakly
coupled to the molecular rotation, as in the H+

2 ion. However, an alternative form which
is often more suitable is

Hdip = −
√

10gSµB gNµN (µ0/4π)T1(I) · T1(S,C2). (1.57)

The spherical components of the new first-rank tensor in (1.57) are defined, in the
molecule-fixed axes system, by

T1
q (S,C2) =

√
3
∑
q1,q2

(−1)qT1
q1

(S)T2
q2

(C)

(
1 2 1

q1 q2 −q

)
, (1.58)
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where, as before,

T2
q2

(C) = C2
q2

(θ, φ)(r−3). (1.59)

The relationships between the various forms of the dipolar Hamiltonian are explained
in appendix 8.2. As we see from (1.59), the dipolar interaction has various components
in the molecule-fixed axis system but the most important one, and often the only one
to be determined from experiment, is T2

0(C). This leads us to define a constant t0, the
axial dipolar hyperfine component, given in SI units by,

t0 = gSµB gNµN (µ0/4π)T2
0(C) = 1

2
gSµB gNµN (µ0/4π)

〈
(3 cos2 θ − 1)

r3

〉
. (1.60)

The most important examples of 2� states to be described in this book are CO+,
where there is no nuclear hyperfine coupling in the main isotopomer, CN, which has
14N hyperfine interaction, and the H+

2 ion. A number of different 3� states are de-
scribed, with and without hyperfine coupling. A particularly important and interesting
example is N2 in its A 3�+

u excited state, studied by De Santis, Lurio, Miller and Freund
[19] using molecular beam magnetic resonance. The details are described in chapter 8;
the only aspect to be mentioned here is that in a homonuclear molecule like N2, the
individual nuclear spins (I = 1 for 14N) are coupled to form a total spin, IT , which
in this case takes the values 2, 1 and 0. The hyperfine Hamiltonian terms are then
written in terms of the appropriate value of IT . As we have already mentioned, the
presence of one or more quadrupolar nuclei will give rise to electric quadrupole hy-
perfine interaction; the theory is essentially the same as that already presented for 1�+

states.
Finally we note that the interaction with an applied magnetic field is important

because of the large magnetic moment arising from the presence of electron spin
(see (1.44)). The Zeeman interaction is represented by the Hamiltonian term

HZ = gSµBT1(B) · T1(S) = gSµB Bp=0T1
p=0(S) = gSµB BZ T1

0(S), (1.61)

which, as we show, may again be contracted to a single p = 0 space-fixed component.
As we will see, the Zeeman interaction is central to magnetic resonance studies, either
with molecular beams as described in chapter 8 where radiofrequency spectroscopy is
involved, or with bulk gases (chapter 9) where microwave or far-infrared radiation is
employed. The magnetic resonance studies are, in general, of two kinds. For magnetic
fields which are readily accessible in the laboratory, the Zeeman splitting of different
MS (or MJ ) levels often corresponds to a microwave frequency. In many studies, there-
fore, the transitions studied obey a selection rule �MS = ±1 or �MJ = ±1, and take
place between levels which are otherwise degenerate in the absence of a magnetic field.
There are, however, very important experiments where the transitions occur between
levels which are already well separated in zero field; fixed frequency radiation is then
used, with the transition energy mismatch being tuned to zero with an applied field.
Far-infrared laser magnetic resonance studies are of this type. As we will see, the the-
oretical problem which must be solved concerns the competition between the Zeeman
interaction, which tends to decouple the electron spin from the molecular framework,
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and intramolecular interactions like the electron spin dipolar coupling which tends to
couple the spin orientation to the molecular orientation.

1.6.4. Open shell states with both spin and orbital angular momentum

Many free radicals in their electronic ground states, and also many excited electronic
states of molecules with closed shell ground states, have electronic structures in which
both electronic orbital and electronic spin angular momentum is present. The preces-
sion of electronic angular momentum, L, around the internuclear axis in a diatomic
molecule usually leads to defined components, Λ, along the axis, and states with
|Λ| = 0, 1, 2, 3, etc., are called �, �, �, �, etc., states. In most cases there is also
spin angular momentum S, and the electronic state is then labelled 2S+1�, 2S+1�,
etc.

Questions arise immediately concerning the coupling of L, S and the nuclear
rotation, R. The possible coupling cases, first outlined by Hund, are discussed in detail
in chapter 6. Here we will adopt case (a), which is the one most commonly encountered
in practice. The most important characteristic of case (a) is thatΛ, the component of L
along the internuclear axis, is indeed defined and we can use the labels �, �, �, etc.,
as described above. The spin–orbit coupling can be represented in a simplified form
by the Hamiltonian term

Hso = AT1(L) · T1(S) = A
∑

q

(−1)qT1
q (L)T1

−q (S), (1.62)

expanded in the molecule-fixed axis system as shown. The q = 0 term gives a diagonal
energy AΛΣ, whereΣ is the component of the electron spin (S) along the internuclear
axis. The component of total electronic angular momentum along the internuclear axis
is called Ω; it is given by Ω=Λ+Σ.

If we are dealing with a 2� state, the possible values of the projection quantum
numbers are as follows:

Λ= +1, Σ= +1/2, Ω= +3/2;
Λ= −1, Σ= −1/2, Ω= −3/2;
Λ= +1, Σ= −1/2, Ω= +1/2;
Λ= −1, Σ= +1/2, Ω= −1/2.

(1.63)

The occurrence ofΛ= ±1 is calledΛ-doubling orΛ-degeneracy; in addition, the spin
coupling gives rise to an additional two-fold doubling. The states with |Ω| = 3/2 or 1/2
are called fine-structure states, with spin–orbit energies +A/2 and −A/2 respectively;
the value of |Ω| is written as a subscript in the state label. Hence we have 2�3/2 and
2�1/2 fine-structure components; if A is negative the 2�3/2 state is the lower in energy,
and we have an ‘inverted’ doublet, the opposite case being called a ‘regular’ doublet.
The NO molecule has a 2�1/2 ground state (regular), whilst the OH radical has a 2�3/2

ground state (inverted).
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The rigid body rotational Hamiltonian can be written in the form

Hrot = B R2 = B(J − L − S)2

= B(J2 + L2 + S2 − 2J · L − 2J · S + 2L · S). (1.64)

The expansion of (1.64) is discussed in detail in chapter 8, and elsewhere, so we present
only a brief and simplified summary here. Expanded in the molecule-fixed axis system,
the diagonal part of the expression gives the result:

Erot(J ) = B{J (J + 1) + S(S + 1) + 2ΛΣ+Λ2 − 2Ω2}. (1.65)

There is, therefore, a sequence of rotational levels, characterised by their J values,
for each fine-structure state. According to the discussion above, each J level has a two-
fold degeneracy, forming what are calledΩ-doublets or Λ-doublets. The off-diagonal
(q = ±1) terms from (1.64), together with the off-diagonal components of the spin–
orbit coupling operator (1.62), remove the degeneracy of theΛ-doublets. The resulting
pattern of the lower rotational levels for the OH radical is shown in figure 1.8, which is
discussed in more detail in chapters 8 and 9. Transitions between the rotational levels,
shown in the diagram, have been observed by far-infrared laser magnetic resonance, and
transitions between the Λ-doublet components of the same rotational level have been
observed by microwave rotational spectroscopy, by microwave magnetic resonance,
by molecular beam maser spectroscopy, and by radio-astronomers studying interstellar
gas clouds.

3/2
2

1/2
2

−1

Figure 1.8. Lower rotational levels of the OH radical, and some of the transitions that have been
observed. The size of the Λ-doublet splitting is exaggerated for the sake of clarity.
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Interactions with an applied magnetic field are particularly important for open shell
free radicals, many with 2� ground states having been studied by magnetic resonance
methods. The Zeeman Hamiltonian may be written as the sum of four terms:

HZ = gLµBT1(B) · T1(L) + gSµBT1(B) · T1(S) − gNµN T1(B) · T1(I)

− grµBT1(B) · {T1(J) − T1(L) − T1(S)}. (1.66)

All of these terms must be included in an accurate analysis and their effects are described
in detail in chapter 9. The most important terms, however, are the first two. Putting
the orbital g-factor, gL , equal to 1 one can show that for a good case (a) molecule the
effective g-value for the rotational level J is

gJ = (Λ+Σ)(Λ+ gSΣ)

J (J + 1)
. (1.67)

If we put gS = 2, we find that for the lowest rotational level of the 2�3/2 state, J = 3/2,
the g-factor is 4/5. For any rotational level of the 2�1/2 state, however, (1.67) predicts
a g-factor of zero. For a perfect case (a) molecule, therefore, we cannot use magnetic
resonance methods to study 2�1/2 states. Fortunately perhaps, most molecules are
intermediate between case (a) and case (b) so that both fine-structure states are magnetic
to some extent. The other point to notice from (1.67) is that the g-factor decreases
rapidly as J increases.

We will see elsewhere is this book many examples of the spectra of 2�molecules.
We will see also that although our discussion above is based upon a case (a) coupling
scheme for the various angular momenta, case (b) is often just as appropriate and, as
we have already noted, many molecules are really intermediate between case (a) and
case (b). We will also meet electronic states with higher spin and orbital multiplicity.
For S ≥ 1, the terms describing the interaction between electron spins play much the
same role in� and� states as they do for � states. Nuclear hyperfine interactions are
also similar to those described already, with the addition of an orbital hyperfine term
which may be written in the form

HIL = aT1(I) · T1(L), (1.68)

where the orbital hyperfine constant is given by

a = 2µB gNµN (µ0/4π)〈r−3〉; (1.69)

r is the distance between the nucleus and the orbiting electron, with the average calcu-
lated from a suitable electronic wave function.

The purpose of this section has been to introduce the complexity in the sub-structure
of rotational levels, and the richness of the consequent spectroscopy which is revealed
by high-resolution techniques. Understanding the origin and details of this structure also
takes us very deeply into molecular quantum mechanics, as we show in chapters 2 to 7.
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1.7. The effective Hamiltonian

The process of analysing a complex diatomic molecule spectrum with electron spin,
nuclear hyperfine and external field interactions has several stages. We need to derive
expressions for the energies of the levels involved, which means choosing a suitable
basis set and a suitable ‘effective Hamiltonian’. The best basis set is that particular
Hund’s case which seems the nearest or most convenient approximation to the ‘truth’.
The effective Hamiltonian is a sum of terms representing the various interactions within
the molecule; each term contains angular momentum operators and ‘molecular param-
eters’. Our choice of effective Hamiltonian is also determined by the basis set chosen.
The procedure is then to set up a matrix of the effective Hamiltonian operating within
the chosen basis. The matrix is often truncated artificially, and we then diagonalise the
matrix to obtain the energies of the levels and the effective wave functions. Armed
with this information we attempt to assign the lines in the spectrum. The spectral fre-
quencies are expressed in terms of the molecular parameters, and usually a first set of
values is determined. If the assignment is correct, a program designed to minimise the
differences between calculated and measured transition frequencies is employed. The
final best values of the molecular parameters may then be used for comparison with
the predictions of electronic structure calculations. In this way we hope to develop a
better description of the electronic structure of the molecule.

The choice of the effective Hamiltonian is often far from straightforward; indeed
we have devoted a whole chapter to this subject (chapter 7). In this section we give a
gentle introduction to the problems involved, and show that the definition of a particu-
lar ‘molecular parameter’ is not always simple. The problem we face is not difficult to
understand. We are usually concerned with the sub-structure of one or two rotational
levels at most, and we aim to determine the values of the important parameters relat-
ing to those levels. However, these parameters may involve the participation of other
vibrational and electronic states. We do not want an effective Hamiltonian which refers
to other electronic states explicitly, because it would be very large, cumbersome and
essentially unusable. We want to analyse our spectrum with an effective Hamiltonian
involving only the quantum numbers that arise directly in the spectrum. The effects of
all other states, and their quantum numbers, are to be absorbed into the definition and
values of the ‘molecular parameters’. The way in which we do this is outlined briefly
here, and thoroughly in chapter 7.

The development of the effective Hamiltonian has been due to many authors. In
condensed phase electron spin magnetic resonance the so-called ‘spin Hamiltonian’
[20, 21] is an example of an effective Hamiltonian, as is the ‘nuclear spin Hamiltonian’
[22] used in liquid phase nuclear magnetic resonance. In gas phase studies, the first
investigation of a free radical by microwave spectroscopy [23] introduced the ideas of
the effective Hamiltonian, as also did the first microwave magnetic resonance study
[24]. Miller [25] was one of the first to develop the more formal aspects of the subject,
particularly so far as gas phase studies are concerned, and Carrington, Levy and Miller
[26] have reviewed the theory of microwave magnetic resonance, and the use of the
effective Hamiltonian.
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Figure 1.9. Possible pairwise interactions of L, S, R and I .

As a simple introduction to the subject [27], let us consider the four angular
momentum vectors illustrated in figure 1.9. They are as follows:

R: the rotational angular momentum of the bare nuclei,
L: the electronic orbital angular momentum,
S: the electronic spin angular momentum,
I: the nuclear spin angular momentum.

Each angular momentum can interact with the other three, and figure 1.9 draws attention
to the following pairwise interactions:

(L)(S): spin–orbit coupling,
(L)(R): rotational–electronic interaction,
(L)(I): hyperfine interaction between the electron orbital and nuclear spin magnetic

moments,
(S)(I): hyperfine interaction between the electron and nuclear spin magnetic moments,
(S)(R): interaction between the electron spin and rotational magnetic moments,
(I)(R): interaction between the nuclear spin and rotational magnetic moments.

The direct interactions listed above and illustrated in figure 1.9 can occur in the
effective Hamiltonian, but figure 1.10 shows how the effective Hamiltonian can also
contain similar terms which arise indirectly. In figure 1.10(a) we illustrate the interac-
tion of R with L, which in turn couples with the spin S. Consequently the effective
Hamiltonian may contain a term of the form (R)(S), part of which arises from the direct
coupling shown in figure 1.9, but with the remaining part coming from the indirect
coupling via L. If we are dealing with a diatomic molecule in a � state, there is no
first-order orbital angular momentum, but the spin–orbit coupling can mix the ground
state with one or more excited � states, thereby generating some orbital angular mo-
mentum in the ground state [28]. Consequently the spin–rotation constant γ comprises
a first-order direct contribution, plus a second-order contribution arising from admix-
ture of excited states. In all but the lightest molecules, this second-order contribution
is the largest in magnitude.
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S1 S2

I1 I2

Figure 1.10. (a) Second-order spin–rotation interaction occurring via L. (b) Second-order
pseudo-contact hyperfine interaction occurring via L. (c) Electron coupled nuclear spin–spin
interaction. (d) Second-order interaction of R and L.

Another example is the pseudo-contact hyperfine interaction illustrated in
figure 1.10(b); spin–orbit mixing of excited � states with a � ground state gener-
ates orbital angular momentum in the ground state, which interacts with the nuclear
spin magnetic moment. Overall, therefore, the interaction looks somewhat like a direct
Fermi contact interaction, S · I. A third example, illustrated in figure 1.10(c), involves
two electron spins (S1 and S2) and two nuclear spins (I1 and I2). The nuclear spin I1

interacts with the electron spin S1; S1 is coupled with S2, which in turn interacts with
I2. The net result is an interaction which is represented in the effective Hamiltonian
by a term of the form I1 · I2. This interaction is called the ‘electron-coupled nuclear
spin–spin interaction’, and it is the origin of the spin–spin splittings observed in liquid
phase nuclear magnetic resonance spectra. Note that it is not necessary for the total
spin S = S1 + S2 to be non-zero; the interaction can and does occur in closed shell
molecules.

Our final example, illustrated in figure 1.10(d), involves the rotational angu-
lar momentum R and the orbital angular momentum L. The second-order effect
of the coupling for a ground 1� state, operating through admixture of excited
states, involves the product of matrix elements containing the operator products
(R · L)(R · L). The net effect is a term in the effective Hamiltonian which contains
the operator R2. Remembering that the rotational angular momentum of the nu-
clei is also represented in the effective Hamiltonian by a term B R2, we see that
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the rotational constant B must be interpreted with some care, because it contains a
very small contribution from the electrons, added to the major contribution of the
nuclei.

Many different procedures for reducing the complete Hamiltonian to a suitable
effective Hamiltonian have been devised. These are reviewed in detail in chapter 7; we
will see that the methods involve different forms of perturbation theory [29].

1.8. Bibliography

The subject matter of this book is scattered between many other books, and much of
it does not yet appear in any book. The most important book which deals exclusively
with diatomic molecules is that by Herzberg [4], combined with the later supplement
by Huber and Herzberg [13] which lists data up to 1979. This takes us into the era of
computerised data bases (see below), which are the best sources for numerical data,
and are the reason why we have made no attempt at a comprehensive data coverage in
this book. A further important book is that by Lefebvre-Brion and Field [29]; the title of
this book suggests a rather specialised treatment but it is actually both wide and deep in
its coverage. Other books which deal specifically with theoretical aspects of diatomic
molecules are those by Judd [30], dealing with angular momentum theory, Kovács
[31] and Mizushima [32]. Angular momentum theory occupies a central position in
understanding the energy levels of both diatomic and polyatomic molecules. In this
book we use the methods and conventions of Edmonds [33], but have also benefited
from the reader-friendly accounts provided by Rose [34], Zare [35] and Brink and
Satchler [36]. Quantum mechanics is the fundamental theory which must be mastered
if molecular spectroscopy is to be understood. This is not the place for a comprehensive
listing of the many books on this subject, but we have found the books by Flygare [2],
Moss [37] and Hannabuss [38] to be helpful; in particular, our treatment of relativistic
quantum mechanics in chapters 3 and 4 owes much to those by Moss and Hannabuss.
The book by Bunker and Jensen [39] is our standard source for problems involving
symmetry and group theory.

Molecular beams are important in this book. For the early work the book by
Ramsey [3] is indispensable, and a recent two-volume comprehensive survey edited by
Scoles [40] covers recent developments in the technology. However, books dealing with
microwave, millimetre wave or far-infrared spectroscopy, whether using beams or not,
are scarce. The early books of Townes and Schawlow [41], Kroto [42] and Carrington
[27] still have some value, and more recently Hirota [43] has described spectroscopic
work (mainly Japanese) on transient molecules. There is, however, a vast amount of
published original work on the high-resolution spectroscopy of transient species, using
far-infrared or lower radiation frequencies. This book is devoted to a description of
this type of work applied to diatomic molecules. More general books on molecular
spectroscopy, including diatomic molecules, are those by Hollas [44], Demtröder [45]
and Bernath [46]. In the field of radio astronomy we have found the book by Rohlfs
and Wilson [47] to be most helpful.
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There are, of course, a number of review articles from which we select three, all
written by Hirota and all dealing with free radicals and molecular ions. The first of
these covers the period up to 1992 [48] and deals with diatomic and polyatomic species.
It is supplemented by further reviews published in 1994 [49] and 2000 [50]. Finally
we should draw attention to a computer data base covering all types of spectroscopy
of diatomic molecules, produced by Bernath and McLeod [51]. This is available free
of charge on the Internet and may be seen at <http://diref.uwaterloo.ca>. It will be
maintained for the indefinite future.

Appendix 1.1. Maxwell's equations

An important connection between optical and electromagnetic phenomena was first dis-
covered by Faraday in 1846. He observed that when plane-polarised radiation passes
through certain materials exposed to a magnetic field that is parallel to the propagation
direction of the radiation, the plane of polarisation is rotated. The degree of rotation
depends upon the nature of the material and the strength of the magnetic field. The
union of optical and electromagnetic properties was subsequently put on firm founda-
tions by Maxwell in the form of his wave theory of electromagnetic interactions. As we
shall see, Maxwell’s equations also provide the explanation for optical properties like
dispersion and refraction. The nature of electromagnetic radiation, which is central to
almost everything in this book, was described earlier in this chapter, but without much
justification. Maxwell’s equations, which form the basis for understanding electromag-
netic radiation, will now be described. There are, in fact, four equations that connect
macroscopic electric and magnetic phenomena, and two further equations that describe
the response of a material medium to electric and magnetic fields.

(i) The first equation is

∇ ∧ E + 1

c

∂B

∂t
= 0 (in cgs units),

(1.70)

∇ ∧ E + ∂B

∂t
= 0 (in SI units).

∇ is the vector operator given by

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (1.71)

where i , j , k are orthogonal unit vectors. When ∇ operates on a scalar φ the
resulting vector ∇φ is called the gradient of φ (i.e. grad φ). When ∇ operates
on a vector A there are two possibilities. The scalar product, ∇ · A, results in a
new scalar, and is known as the divergence of A (i.e. div A). The vector product,
∇ ∧ A, is a vector called the curl of A; c, as elsewhere, is the speed of light.

Equation (1.70) is Faraday’s law of electromagnetic induction; it shows that
a time-dependent magnetic flux density, B, gives rise to an electric field, E, in a
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direction perpendicular to the original magnetic field. Equations (1.70) are often
written in the abbreviated form

curlE + 1

c

∂B

∂t
= 0 (in cgs units),

(1.72)

curlE + ∂B

∂t
= 0 (in SI units).

(ii) The second equation is

∇ ∧ H − 1

c

∂D

∂t
= 4π

c
J (in cgs units),

(1.73)

∇ ∧ H − ∂D

∂t
= J (in SI units).

H is the magnetic field vector and D is called the electric induction or displace-
ment field. This equation is known as the Ampere–Oersted law and shows that
a magnetic field will exist near an electric current density J. The displacement
field, D, is necessary to propagate electromagnetic energy through space. J has
units charge · area−1 · t−1

(iii) The third equation is

∇ · D = 4πρ̄ (in cgs units),
(1.74)∇ · D = ρ̄ (in SI units).

∇ · is called the div and ρ̄ is the electric charge density with units charge ·
volume−1. There is a relationship between J and ρ̄, given by

J = ρ̄v, (1.75)

where v is the velocity of the charge distribution. J and E are also related by

J = � · E, (1.76)

where � is the conductivity. Equation (1.74) is actually the Coulomb law in
electrostatics.

(iv) The fourth equation is the same in both cgs and SI units, and is

∇ · B = 0. (1.77)

This equation states that there are no sources of magnetic field except currents;
in other words, there are no free magnetic poles.
The remaining two equations both relate to properties of the medium.

(v) The fifth equation may be written

D = ε · E (in cgs units),
(1.78)

D = ε0ε · E (in SI units).

ε is the relative electric permittivity, or dielectric constant, of the medium, ex-
pressed in general as a tensor, and ε0 is the permittivity of a vacuum.
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(vi) The sixth equation is the magnetic analogue of the fifth:

B = µp · H (in cgs units),
(1.79)

B = µ0µp · H (in SI units).

B is the magnetic induction or magnetic flux density, and µp is the relative
magnetic permeability of the medium, also expressed in general as a tensor.
For an anisotropic medium the scalars ε and µp are used; their values are unity
for a vacuum (so that B and H are then equivalent). ε has a wide range of
values for different substances, but µp is usually close to unity. If µp is less than
1.0 the substance is diamagnetic, and if it is greater than 1.0 the substance is
paramagnetic.

The permittivity of a vacuum is

ε0 = 8.854 187 818 × 10−12 s4 A2 kg−1 m−3, (1.80)

and the permeability of free space is

µ0 = 4π × 10−7 kg m s−2 A−2. (1.81)

It also follows from the above equations that

(1/ε0µ0)1/2 = c. (1.82)

Appendix 1.2. Electromagnetic radiation

The oscillating electric and magnetic fields of a plane wave, shown in figure 1.2, may
be represented by the following simple equations:

E = kE0 sin(Y − vt),
(1.83)

B = i B0 sin(Y − vt),

in which E0, B0 and v are simply constants. We now show that this electromagnetic
field satisfies Maxwell’s equations provided certain conditions are met. We find the
following results:

divE = 0,

curlE = i
∂EZ

∂Y
= i E0 cos(Y − vt) (1.84)

∂E

∂t
= −vkE0 cos(Y − vt).

divB = 0,

curlB = −k
∂BX

∂Y
= −kB0 cos(Y − vt), (1.85)

∂B

∂t
= −vi B0 cos(Y − vt).
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We note also that J = 0 in empty space. If these results are combined with (1.72)
and (1.73), the conditions that must be satisfied are, in SI units,

E0 = vB0, B0 =µ0ε0vE0. (1.86)

Taken together, these equations require that

v = ±c, E0 = cB0. (1.87)

In the old cgs units, the second relationship is even simpler:

E0 = B0. (1.88)

We have therefore established three important features of the electromagnetic ra-
diation. The first is that the field pattern travels with the speed of light, c. The second
is that at every point in the wave at any instant of time, the electric and magnetic field
strengths are directly related to each other. The third is that the electric and magnetic
fields are perpendicular to one another, and to the direction of travel.
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2 The separation of nuclear and
electronic motion

2.1. Introduction

A molecule is an assembly of positively charged nuclei and negatively charged electrons
that forms a stable entity through the electrostatic forces which hold it all together.
Since all the particles which make up the molecule are moving relative to each other,
a full mechanical description of the molecule is very complicated, even when treated
classically. Fortunately, the overall motion of the molecule can be broken down into
various types of motion, namely, translational, rotational, vibrational and electronic.
To a good approximation, each of these motions can be considered on its own. The
basis of this classification was established in a ground-breaking paper written by Born
and Oppenheimer [1] in 1927, just one year after the introduction of wave mechanics.
The main objective of their paper was the separation of electronic and nuclear motions
in a molecule. The physical basis of this separation is quite simple. Both electrons and
nuclei experience similar forces in a molecular system, since they arise from a mutual
electrostatic interaction. However, the mass of the electron, m, is about four orders-
of-magnitude smaller than the mass of the nucleus M . Consequently, the electrons are
accelerated at a much greater rate and move much more quickly than the nuclei. On
a very short time scale (less than 10−16 s), the electrons will move but the nuclei will
barely do so; as a first approximation, the nuclei can be regarded as being fixed in
space.

Born and Oppenheimer expanded the molecular Hamiltonian in terms of a param-
eter κ given by the ratio of a typical nuclear displacement to the internuclear distance
R. Simple order-of-magnitude arguments showed that

κ = (m/M)1/4 (2.1)

which has a value close to 1/10. Born and Oppenheimer went on to show that, in a
typical situation,

�Enucl/�Eel ≈ κ2, (2.2)

where�Eel is the separation between electronic energy levels and�Enucl similarly for
nuclear (i.e. vibrational) energy levels. An extension of these ideas revealed a further
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separation of nuclear motion into vibrational and rotational parts for which

�Erot/�Evib ≈ κ2. (2.3)

In terms of κ , the electronic energy is of zeroth order, the vibrational energy of sec-
ond order and the rotational energy of fourth order; the first- and third-order ener-
gies vanish. This general approach to the classification of molecular energy levels is
known as the Born–Oppenheimer separation (or the Born–Oppenheimer approxima-
tion). For the vast majority of situations, particularly for molecules in their closed
shell ground states, it is extremely reliable. It forms a reassuringly sound foundation
for molecular quantum mechanics and is very robust when subjected to quantitative
test.

In this chapter we show how the separation of the quantum mechanical prob-
lem into translational, rotational, vibrational and electronic parts can be achieved.
The basis of our approach is to define coordinates which describe the various
motions and then attempt to express the wave function as a product of fac-
tors, each of which depends only on a small sub-set of coordinates, along the
lines:

ψ(X, x) = R(X )S(x). (2.4)

Such a clean separation cannot generally be achieved in practice. One has instead
to settle for second best, getting as close to the separation as possible. There is
one exception to this statement, however, the case of translational motion of the
molecule as a whole through three-dimensional space. In the absence of external
electric and magnetic fields, space is isotropic. Translation of the body from one
point to another (or translation of the coordinate system which is used to describe
it) is a symmetry operation. For this reason, translational motion can be separated
rigorously from the other three types of motion. In the detailed description of a
molecular system, this motion is separated off by moving the origin of our arbitrary
space-fixed coordinate system to one with its origin fixed at the molecular centre of
mass. As the molecule moves through laboratory space, this coordinate system moves
with it.

In this chapter we describe the various stages of the factorisation process. Following
the separation of translational motion by reference of the particles’ coordinates to the
molecular centre of mass, we separate off the rotational motion by referring coordinates
to an axis system which rotates with the molecule (the so-called molecule-fixed axis
system). Finally, we separate off the electronic motion to the best of our ability by
invoking the Born–Oppenheimer approximation when the electronic wave function is
obtained on the assumption that the nuclei are at a fixed separation R. Some empirical
discussion of the involvement of electron spin, in either Hund’s case (a) or (b), is also
included. In conclusion we consider how the effects of external electric or magnetic
fields are modified by the various transformations.
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2.2. Electronic and nuclear kinetic energy

2.2.1. Introduction

The kinetic energy of the nuclei and electrons in field-free space may be written in the
form

T = −h2
2∑
α=1

1

2Mα

∇2
α − h2

n∑
i=1

1

2mi
∇2

i , (2.5)

where α and i sum over the nuclei and electrons of masses Mα and mi respectively.
This operator may also be written in terms of the momenta,

T =
∑
α

1

2Mα

P 2
α +

∑
i

1

2mi
P2

i , (2.6)

where P i = −ih(∂/∂Ri ) and Pα = −ih(∂/∂Rα) are expressed in a space-fixed axis
system of arbitrary origin; ∂/∂Rα is a shorthand notation for the three components of
the gradient operator in a particular coordinate system:

∂

∂Rα
≡

(
∂

∂Xα

)
i ′ +

(
∂

∂Yα

)
j ′ +

(
∂

∂Zα

)
k′ (2.7)

where i ′, j ′ and k′ are unit vectors along the X , Y and Z axes.
In order to discuss the spectroscopic properties of diatomic molecules it is use-

ful to transform the kinetic energy operators (2.5) or (2.6) so that the translational,
rotational, vibrational, and electronic motions are separated, or at least partly sepa-
rated. In this section we shall discuss transformations of the origin of the space-fixed
axis system; the following choices of origin have been discussed by various authors
(see figure 2.1):

(a) centre of mass of the molecule,
(b) centre of mass of the two nuclei,
(c) geometrical centre of the two nuclei,
(d) the position of one nucleus.

Transformation from an arbitrary origin to (a) allows the translational motion of the
whole molecule to be separated. Transformation to (b), first discussed by Kronig [2]
and by Van Vleck [3], is a useful starting point for examination of the coupling of
electronic and nuclear motions. Transformation (c) to the geometrical centre of the
nuclei is independent of nuclear mass and so is useful in the discussion of electronic
isotope effects (Kolos and Wolniewicz [4], Bunker [5]). Transformation (d) has been
discussed by Pack and Hirschfelder [6], particularly in connection with long-range
interactions between two atoms. All of these various coordinate systems have the same
orientation in space as the original space-fixed axis system.
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O

Figure 2.1. Axis systems for origin transformations.

2.2.2. Origin at centre of mass of molecule

We transform the origin of the space-fixed coordinates through RO to the centre of
mass of the molecule; the vector RO is thus given by

RO = 1

M

{
m

∑
i

Ri +
∑
α

MαRα

}
(2.8)

where M is the total mass of all particles,

M =
∑

i

mi +
∑
α

Mα. (2.9)

The new coordinates R′
i and R′

α are given by the relations

R′
i = Ri − RO, (2.10)

R′
α = Rα − RO, (2.11)

and it follows from the definitions of R′
i and R′

α that∑
i

mi R′
i +

∑
α

MαR′
α = 0. (2.12)

The state of the system consisting of n electrons and two nuclei is now specified in
terms of 3n + 6 spatial coordinates referred to the centre of mass plus three centre-
of-mass coordinates. Three of the spatial coordinates are redundant and can therefore
be eliminated. Various choices of redundant coordinates can be made; we choose to
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introduce the internuclear vector R defined by

R = R′
2 − R′

1 = R2 − R1. (2.13)

The transformation therefore involves a change from the coordinates Ri , Rα of equa-
tion (2.6) to the new coordinates, R′

i , RO and R, and we must rewrite P2
i , P2

1, and P2
2

in terms of P ′
i , P R and PO, conjugate to R′

i , R and RO respectively. Using the chain
rule we find (see appendix 2.1)

P i =
(

∂RO

∂Ri

)
PO +

(
∂R

∂Ri

)
P R +

∑
j

(
∂R ′

j

∂Ri

)
P ′

j . (2.14)

Similar equations for P1 and P2 yield the required results,

1

2m

∑
i

P2
i = nm

2M2
P2

O + 1

2m

∑
i

P ′2
i + nm

2M2

(∑
i

P ′
i

)2

+ 1

M
PO ·

∑
i

P ′
i − nm

M2
PO ·

∑
i

P ′
i − 1

M

(∑
i

P ′
i

)2

, (2.15)

1

2M1
P2

1 = M1

2M2
P2

O + 1

2M1
P2

R + M1

2M2

(∑
i

P ′
i

)2

− 1

M
PO · P R

− M1

M2
PO ·

∑
i

P ′
i + 1

M
P R ·

∑
i

P ′
i , (2.16)

1

2M2
P2

2 = M2

2M2
P2

O + 1

2M2
P2

R + M2

2M2

(∑
i

P ′
i

)2

+ 1

M
PO · P R

− M2

M2
PO ·

∑
i

P ′
i − 1

M
P R ·

∑
i

P ′
i . (2.17)

Taking the sum of these last three equations, we obtain the required operator

T = 1

2M
P2

O + 1

2µ
P2

R − 1

2M

n∑
i, j=1

P ′
i · P ′

j + 1

2m

n∑
i=1

P ′2
i (2.18)

where µ is the reduced nuclear mass, M1 M2/(M1 + M2). The first term in equa-
tion (2.18) represents the kinetic energy due to the translational motion of the whole
molecule and in field-free space it can be omitted at this stage. Symmetry arguments
show that translational motion can be separated rigorously from the other molecular
motions in the absence of external fields. The third term on the right-hand side of
equation (2.18) is called the mass polarisation term. It describes the small fluctuations
in the position of the centre of mass as the electrons move around within the molecule.

The kinetic energy expression can also be written in terms of the Laplace operators:

T = − h2

2M
∇2

O − h2

2µ
∇2

R + h2

2M

n∑
i, j=1

∇′
i · ∇′

j − h2

2m

n∑
i=1

∇′2
i . (2.19)
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2.2.3. Origin at centre of mass of nuclei

We now transform from the centre of mass of the molecule to the centre of mass of the
nuclei which is located at

R′
N = 1

(M1 + M2)

∑
α

MαR′
α (2.20)

in the (X ′, Y ′, Z ′) coordinate system. The new coordinates are RO, R and R′′
i , where

R′′
i is defined by

R′′
i = R′

i − 1

M1 + M2

∑
α

MαR′
α (2.21)

= R′
i + 1

M1 + M2

∑
i

mi R′
i . (2.22)

Equation (2.22) follows from (2.21) because of (2.12). Hence we can rewrite equation
(2.18) by expressing P ′

i in terms of P ′′
i , the momentum conjugate to the new coordinate

R′′
i . By the chain rule

P ′
i =

∑
j

∂R′′
j

∂R′
i

P ′′
j (2.23)

= P ′′
i + m

M1 + M2

∑
i

P ′′
i , (2.24)

from which we obtain the results

− 1

2M

∑
i, j

P ′
i · P ′

j = − 1

2M

{
1 + 2nm

M1 + M2
+ n2m2

(M1 + M2)2

}∑
i, j

P ′′
i · P ′′

j , (2.25)

1

2m

∑
i

P ′2
i = 1

2m

∑
i

P ′′
i

2 + nm

2(M1 + M2)2

∑
i, j

P ′′
i · P ′′

j

+ 1

M1 + M2

∑
i, j

P ′′
i · P ′′

j . (2.26)

Substituting into equation (2.18) we obtain the new operator,

T = 1

2M
P2

O + 1

2µ
P2

R + 1

2m

∑
i

P ′′
i

2 + 1

2(M1 + M2)

∑
i, j

P ′′
i · P ′′

j . (2.27)

As before the kinetic energy may also be written in terms of the Laplace operators:

T = − h2

2M
∇2

O − h2

2µ
∇2

R − h2

2m

∑
i

∇′′2
i − h2

2(M1 + M2)

∑
i, j

∇′′
i · ∇′′

j . (2.28)

The above terms represent the kinetic energy due to translation, the kinetic energy of
the nuclei, the kinetic energy of the electrons, and finally a correction term, commonly
known as the mass polarisation term.
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2.2.4. Origin at geometrical centre of the nuclei

Starting from equation (2.6) with arbitrary origin we first transform to the molecular
centre of mass (which ensures that the translational motion is separable), and then to
the geometrical centre of the nuclei. The total transformation from arbitrary origin to
the new origin is represented by

R = R2 − R1, (2.29)

R′′′
i = Ri − (1/2)(R1 + R2), (2.30)

RO = 1

M

{
m

∑
i

Ri +
∑
α

MαRα

}
. (2.31)

Hence the momenta P i , P1 and P2 of equation (2.6) are now given by

P i = m

M
PO +

∑
i

P ′′′
i , (2.32)

P1 = M1

M
PO − P R − (1/2)

∑
i

P ′′′
i , (2.33)

P2 = M2

M
PO + P R − (1/2)

∑
i

P ′′′
i . (2.34)

Substituting in equation (2.6) we obtain the new Hamiltonian

T = 1

2M
P2

O + 1

2µ
P2

R + 1

2m

∑
i

P ′′′
i

2 + 1

8µ

∑
i, j

P ′′′
i · P ′′′

j − 1

2µα
P R ·

∑
i

P ′′′
i (2.35)

where µα = M1 M2/(M1 − M2).

2.3. The total Hamiltonian in field-free space

In our subsequent development we shall take the origin of coordinates to be at the centre
of mass of the two nuclei, although we could equally well have chosen the molecular
centre of mass as origin. Setting aside the translational motion of the molecule, we
use equation (2.28) to represent the kinetic energy of the electrons and nuclei. To this
we add terms representing the potential energy, electron spin interactions, and nuclear
spin interactions. We subdivide the total Hamiltonian HT into electronic and nuclear
Hamiltonians,

Hel = − h2

2m

∑
i

∇2
i − h2

2MN

∑
i, j

∇i · ∇ j +
∑
i< j

e2

4πε0 Ri j

−
∑
α,i

Zαe2

4πε0 Riα
+ H(Si ) + H(Iα), (2.36)

Hnucl = − h2

2µ
∇2

R +
∑
α,β

ZαZβe2

4πε0 R
. (2.37)
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H(Iα) is included in the electronic Hamiltonian since, as we shall see, its most im-
portant effects arise from interactions involving electronic motions. The interactions
which arise from electron spin, H(Si ), will be derived later from relativistic quantum
mechanics; for the moment electron spin is introduced in a purely phenomenological
manner. The electron–electron and electron–nuclear potential energies are included in
equation (2.36) and the purely nuclear electrostatic repulsion is in equation (2.37). The
double prime superscripts have been dropped for the sake of simplicity. We remind
ourselves that µ in equation (2.37) is the reduced nuclear mass, M1 M2/(M1 + M2).

We wish to divide HT into a part describing the nuclear motion and a part describing
the electronic motion in a fixed nuclear configuration, as far as possible. Equations
(2.36) and (2.37) do not themselves represent such a separation because Hel is still a
function of R, φ and θ and cannot therefore commute with Hnucl which, as we shall see,
involves partial differential operators with respect to these coordinates. The obvious
way to remove the effects of nuclear motion from Hel is by transforming from space-
fixed axes to molecule-fixed axes gyrating with the nuclei.

In the Born–Oppenheimer approximation the basis set for Hel would consist of
products of electronic space and spin functions. Transformation to the gyrating axis
system may involve transformation of both space and spin variables, leading to a
Hamiltonian in which the spin is quantised in the molecule-fixed axis system (as, for
example, in a Hund’s case (a) coupling scheme) or transformation of spatial variables
only, in which case spatially quantised spin is implied (for example, Hund’s case (b)).
We will deal in detail with the former transformation and subsequently summarise the
results appropriate to spatially quantised spin.

2.4. The nuclear kinetic energy operator

The rotational and vibrational kinetic energies of the nuclei are represented by the term
−(h2/2µ)∇2

R in equation (2.37); we now seek its explicit form and the relation between
the momentum operators P R and Pα in equation (2.6). If we take components of P R

in a space-fixed frame, we have the straightforward relationship:

P R = −ih

{
∂

∂RX
i ′ + ∂

∂RY
j ′ + ∂

∂RZ
k′
}
. (2.38)

However, it is more convenient to use curvilinear cartesian coordinates to describe the
rotational motion of the nuclei. To this end we relate a set of rotating, molecule-fixed
axes to the space-fixed axes by the three Euler rotations. In our experience the Euler
angles and the rotations based upon them are not easily visualised; Zare [7] has given as
good a description as any. Figure 2.2 defines the Euler angles φ, θ ,χ , and the operations
involved are as follows:

(i) a rotation about the initial Z axis through an angle φ(0<φ≤ 2π),
(ii) a subsequent rotation about the resultant Y axis through an angle θ(0 ≤ θ ≤π),

(iii) a final rotation about the resultant Z axis through an angle χ (0 ≤χ ≤ 2π).
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X

χ

θ
φ

θ

Figure 2.2. Definition of the Euler angles used in the transformation from space-fixed to
molecule-fixed axes.

These rotations are performed sequentially and a rotation which takes one along an
axis in the sense of a right-handed screw is defined as being positive. The nuclei are
labelled so that the molecule-fixed z axis points from nucleus 1 to nucleus 2. It must
be appreciated that this rotating coordinate system is a completely new one; it was
not mentioned in section 2.3 where all the various coordinate systems have a fixed
orientation in laboratory space.

The transformation between the space- and molecule-fixed coordinate systems is
thus expressed by 

 X
Y
Z


 = M


 x

y
z


 , (2.39)

where M is the following unitary matrix:


cosφ cos θ cosχ − sinφ sinχ −sinφ cosχ − cosφ cos θ sinχ cosφ sin θ

sinφ cos θ cosχ + cosφ sinχ cosφ cosχ − sinφ cos θ sinχ sinφ sin θ

−sin θ cosχ sin θ sinχ cos θ


 .

(2.40)

We require only three nuclear coordinates to define the nuclear motion and we choose
these to be R, the internuclear distance, φ and θ ; the third Euler angle χ is a redundant
coordinate. In fact, because there are no nuclei lying off-axis in a diatomic molecule,
χ is undefineable; it is, however, expedient to retain it because of simplification in the
final form of the rotational Hamiltonian. We shall examine this point in more detail in
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chapter 7. It is a simple matter to relate the components of R to R, θ , φ:

RX = X2 − X1 = R cosφ sin θ, (2.41)

RY = Y2 − Y1 = R sinφ sin θ, (2.42)

RZ = Z2 − Z1 = R cos θ. (2.43)

These equations do not involve the redundant coordinate χ and can thus be inverted to
give:

R2 = R2
X + R2

Y + R2
Z , (2.44)

tanφ = RY /RX , (2.45)

tan2 θ = (
R2

X + R2
Y

)/
R2

Z . (2.46)

We wish to evaluate P R from equation (2.38) and therefore need the following partial
differentials:

∂

∂RX
= ∂R

∂RX

∂

∂R
+ ∂φ

∂RX

∂

∂φ
+ ∂θ

∂RX

∂

∂θ
,

∂

∂RY
= ∂R

∂RY

∂

∂R
+ ∂φ

∂RY

∂

∂φ
+ ∂θ

∂RY

∂

∂θ
, (2.47)

∂

∂RZ
= ∂R

∂RZ

∂

∂R
+ ∂φ

∂RZ

∂

∂φ
+ ∂θ

∂RZ

∂

∂θ
.

We use equations (2.44), (2.45) and (2.46) to evaluate the partial differentials, and
obtain the results given below. First the partial differentials of R with respect to RX ,
RY and RZ using (2.44):

2R
∂R

∂RX
= 2RX = 2R sin θ cosφ: hence

∂R

∂RX
= sin θ cosφ,

2R
∂R

∂RY
= 2RY = 2R sin θ sinφ: hence

∂R

∂RY
= sin θ sinφ, (2.48)

2R
∂R

∂RZ
= 2RZ = 2R cos θ : hence

∂R

∂RZ
= cos θ.

Next, the partial differentials of θ using (2.46):

2 tan θ sec2 θ
∂θ

∂RX
= 2RX

R2
Z

= 2 sin θ cosφ

R cos2 θ
: hence

∂θ

∂RX
= cos θ cosφ

R
,

2 tan θ sec2 θ
∂θ

∂RY
= 2RY

R2
Z

= 2 sin θ sinφ

R cos2 θ
: hence

∂θ

∂RY
= cos θ sinφ

R
, (2.49)

2 tan θ sec2 θ
∂θ

∂RZ
= −2

(
R2

X + R2
Y

)
R3

Z

= − 2 sin2 θ

R cos3 θ
: hence

∂θ

∂RZ
= − sin θ

R
.
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Thirdly, the partial differentials of φ using (2.45):

sec2 φ
∂φ

∂RX
= − RY

R2
X

= − sinφ

R sin θ cos2 φ
: hence

∂φ

∂RX
= − sinφ

R sin θ
,

sec2 φ
∂φ

∂RY
= 1

RX
= 1

R sin θ cosφ
: hence

∂φ

∂RY
= cosφ

R sin θ
, (2.50)

∂φ

∂RZ
= 0.

We may now substitute in (2.38) to obtain

P R = −ih

{(
sin θ cosφ

∂

∂R
− sinφ

R sin θ

∂

∂φ
+ cos θ cosφ

R

∂

∂θ

)
i ′

+
(

sin θ sinφ
∂

∂R
+ cosφ

R sin θ

∂

∂φ
+ cos θ sinφ

R

∂

∂θ

)
j ′

+
(

cos θ
∂

∂R
− sin θ

R

∂

∂θ

)
k′
}
. (2.51)

We now note that the nuclear kinetic energy operator in equations (2.35) and (2.37) is

1

2µ
P2

R = − h2

2µ
∇2

R . (2.52)

The required expression for the nuclear kinetic energy operator is therefore

1

2µ
P2

R = − h2

2µ

{
1

R2

∂

∂R

(
R2 ∂

∂R

)
+ 1

R2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

R2 sin2 θ

∂2

∂φ2

}
,

(2.53)

or equivalently,

1

2µ
P2

R =− h2

2µ

{
1

R2

∂

∂R

(
R2 ∂

∂R

)
+ cosec θ

R2

∂

∂θ

(
sin θ

∂

∂θ

)
+ cosec 2θ

R2

∂2

∂φ2

}
. (2.54)

The partial derivatives in (2.53) or (2.54) are performed with the electronic coordi-
nates in the space-fixed axis system held constant. The first term, which involves the
internuclear distance only, represents the vibrational motion of the nuclei, whilst the
second and third terms describe the rotational motion. We will examine them in more
detail in due course.

We now investigate the relationship between P R and the original nuclear momenta
Pα in more detail. We have introduced a redundant coordinate χ in the transformation
matrix M (2.40). We therefore need to define our original (3n + 6) coordinates in terms
of the (3n + 7) final coordinates. To do this, we note that the position of the molecular
centre of mass in the (X ′′, Y ′′, Z ′′) coordinate system is

R′′
O = 1

M

{∑
α

MαR′′
α + m

∑
i

R′′
i

}
= m

M

∑
i

R′′
i . (2.55)
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Thus

Rα = RO − R′′
O + R′′

α = RO − m

M

∑
i

R′′
i ∓ µ

Mα

R, (2.56)

and

Ri = RO − R′′
O + R′′

i = RO − m

M

∑
j

R′′
j + R′′

i . (2.57)

In equation (2.56) the upper sign is taken for α= 1 and the lower for α= 2. From (2.56)
we see that differentials such as (∂Rα/∂φ) are uniquely defined so that we can express
P R in terms of Pα (and P i ) but again we cannot in general write down the inverse
relationships. We see that

P R =
∑
α

∂Rα
∂R

Pα +
∑

i

∂Ri

∂R
P i (2.58)

=
∑
α

∓ µ

Mα

Pα. (2.59)

The analogous expressions for PO and pi are

PO =
∑
α

Pα +
∑

i

P i , (2.60)

pi = P i − m

M

{∑
α

Pα +
∑

j

P j

}
. (2.61)

These expressions will be useful in a later section; for the moment we turn our attention
to the explicit form of (2.59). If we substitute equations (2.41), (2.42) and (2.43) in
(2.56) we obtain

Xα = ∓ µ

Mα

R sin θ cosφ + XO − m

M

∑
i

X ′′
i , (2.62)

Yα = ∓ µ

Mα

R sin θ sinφ + YO − m

M

∑
i

Y ′′
i , (2.63)

Zα = ∓ µ

Mα

R cos θ + ZO − m

M

∑
i

Z ′′
i . (2.64)

Therefore we have

∂

∂R
= ∓ µ

Mα

(
sin θ cosφ

∂

∂Xα
+ sin θ sinφ

∂

∂Yα
+ cos θ

∂

∂Zα

)
, (2.65)

∂

∂φ
= ∓ µ

Mα

R

(
−sin θ sinφ

∂

∂Xα
+ sin θ cosφ

∂

∂Yα

)
, (2.66)

∂

∂θ
= ∓ µ

Mα

R

(
cos θ cosφ

∂

∂Xα
+ cos θ sinφ

∂

∂Yα
− sin θ

∂

∂Zα

)
, (2.67)
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and (
∂

∂χ

)
X ′′

i ,Y
′′
i ,Z

′′
i

= 0. (2.68)

We have included the double-primed subscripts in (2.68) to emphasise that the dif-
ferentiation is performed with space-fixed nuclear centre-of-mass electronic coordi-
nates held constant. Equation (2.68) can be appreciated when we realise that the total
Hamiltonian is independent of χ so that we can take the eigenfunctions Ψrve to be
independent of χ also. This relationship provides a crucial restriction on the redundant
coordinates; its form is such that we could, if we wished, write down the inverses of
equations (2.59), (2.60) and (2.61).

From (2.68) we see that we can add selected terms in ∂/∂χ to our expression for
P R in (2.51) and hence to the nuclear Hamiltonian, without altering the values of any
of the physical observables. We choose these terms so that the rotational Hamiltonian
has the same form as the rotational Hamiltonian of a spherical top molecule. We shall
see later that with this choice for the rotational Hamiltonian, we can make use of the
very powerful techniques of angular momentum theory, in particular, irreducible tensor
methods, which would otherwise be denied to us. Accordingly, we modify equation
(2.51) to be

P R = −ih

{(
sin θ cosφ

∂

∂R
− sinφ

R sin θ

∂

∂φ
+ cos θ cosφ

R

∂

∂θ
+ cot θ sinφ

R

∂

∂χ

)
i ′

+
(

sin θ sinφ
∂

∂R
+ cosφ

R sin θ

∂

∂φ
+ cos θ sinφ

R

∂

∂θ
− cot θ cosφ

R

∂

∂χ

)
j ′

+
(

cos θ
∂

∂R
− sin θ

R

∂

∂θ

)
k′
}
. (2.69)

We can simplify this expression by introducing the components of the angular mo-
mentum operator N of the rotating coordinate system. These components are defined
by

NX = i

{
cot θ cosφ

∂

∂φ
+ sinφ

∂

∂θ
− cosec θ cosφ

∂

∂χ

}
, (2.70)

NY = i

{
cot θ sinφ

∂

∂φ
− cosφ

∂

∂θ
− cosec θ sinφ

∂

∂χ

}
, (2.71)

NZ = −i
∂

∂φ
. (2.72)

Hence we can write

P R = h

{
− 1

R
(k ∧ N) − ik

∂

∂R

}
(2.73)

where k is the unit vector along the molecule-fixed z axis:

k = sin θ cosφi ′ + sin θ sinφ j ′ + cos θk′. (2.74)
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Note that the two terms in (2.73) do not commute since k is a function of the Euler
angles. We can substitute either (2.69) or (2.73) into (2.38) to obtain the modified form
of (2.53),

1

2µ
P2

R = − h2

2µR2

∂

∂R

(
R2 ∂

∂R

)
− h2

2µR2

{
cosec θ

∂

∂θ

(
sin θ

∂

∂θ

)

+ cosec 2θ

[
∂2

∂φ2
+ ∂2

∂χ2
− 2 cos θ

∂2

∂φ∂χ

]}
(2.75)

= − h2

2µR2

∂

∂R

(
R2 ∂

∂R

)
+ h2

2µR2
N2. (2.76)

Along with the introduction of the redundant coordinate χ , we define the normalisation
condition as ∫ ∫ ∫ ∫ ∫

Ψ∗
rveΨrve R2 sin θ dR′′

i dR dφ dθdχ = 1, (2.77)

where R′′
i represents the 3n cartesian coordinates of the electrons. The modified form

of Hrot in equation (2.75) is equivalent to the following expression for the original
nuclear momenta:

Pα = −ih

{
Mα

M

[
i ′ ∂

∂X0
+ j ′ ∂

∂Y0
+ k′ ∂

∂Z0

]
− Mα

MN

∑
i

[
i ′ ∂

∂X ′′
i

+ j ′ ∂

∂Y ′′
i

+ k′ ∂

∂Z ′′
i

]

∓
[

i ′
(

cosφ sin θ
∂

∂R
− sinφ cosec θ

R

∂

∂φ
+ cosφ cos θ

R

∂

∂θ
+ sinφ cot θ

R

∂

∂χ

)

+ j ′
(

sinφ sin θ
∂

∂R
+ cosφ cosec θ

R

∂

∂φ
+ sinφ cos θ

R

∂

∂θ
− cosφ cot θ

R

∂

∂χ

)

+ k′
(

cos θ
∂

∂R
− sin θ

R

∂

∂θ

)]}
. (2.78)

2.5. Transformation of the electronic coordinates to molecule-fixed axes

2.5.1. Introduction

We have derived the total Hamiltonian expressed in a space-fixed (i.e. non-rotating)
coordinate system in (2.36), (2.37) and (2.75). We can now simplify the electronic
Hamiltonian Hel by transforming the electronic coordinates to the molecule-fixed axis
system defined by (2.40) because the Coulombic potential term, when expressed as
a function of these new coordinates, is independent of θ , φ and χ . From a physical
standpoint it is obviously sensible to transform the electronic coordinates in this way
because under the influence of the electrostatic interactions, the electrons rotate in
space with the nuclei. We shall take the opportunity to refer the electron spins to the
molecule-fixed axis system in this section also, and leave discussion of the alternative
scheme of space quantisation to a later section. Since we assume the electron spin
wave function to be completely separable from the spatial (i.e. orbital) wave function,
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the decision as to whether the spin is quantised in the space- or molecule-fixed axis
system can be made independently of the choice of axis system for the electronic spatial
coordinates, and will depend on the particular molecule that one is trying to describe.
In addition we can deal with each transformation separately.

We shall later be seeking solutions Ψrve(x1, y1, z1, . . . , zn; R, θ , φ; Σ1, . . . ,Σn) to
the total Hamiltonian where this eigenfunction is to be considered as one component
of a 2n-rank spinor and Σi can be either αi or βi, corresponding to quantisation of
the spin parallel or antiparallel to the molecule-fixed z axis. When we perform partial
differentiation with respect to R, φ, θ or χ in the nuclear Hamiltonian (2.75), we must
take care to include both the explicit functional dependence ofΨrve on these coordinates
and the implicit dependence that arises because xi , yi , zi and Σi are functions of the
three Euler angles (see (2.39), for example). It is desirable to rewrite the Hamiltonian in
such a form that, when we operate on Ψrve with ∂/∂θ , ∂/∂φ or ∂/∂χ , only the explicit
dependence ofΨrve on the Euler angles is to be considered; in other words, we can ignore
the implicit effects resulting from the θ , φ and χ dependence of the transformations
of electronic spatial and spin coordinates from the fixed to the gyrating axis system
in our final Hamiltonian. In the case that Ψrve can be expressed as a product function
ψe(xi , yi , zi ; Σi)ψrv(R, θ, φ), this means that ∂/∂θ , ∂/∂φ, and δ/δχ operate only on
the factor ψrv .

2.5.2. Space transformations

The operators in (2.36) are easily re-expressed in the molecule-fixed coordinate system
since the ∇′′

i operator merely becomes the ∇i operator in the new coordinate system
and, as mentioned earlier, Vel,nucl becomes independent of the Euler angles. We must
also consider the transformation of the partial differential operators ∂/∂φ, ∂/∂θ and
∂/∂χ from space to molecule-fixed axes. Thus

(
∂

∂θ

)
s

=
(

∂

∂θ

)
m

+
∑

i

{(
∂xi

∂θ

)
s

(
∂

∂xi

)
m

+
(

∂yi

∂θ

)
s

(
∂

∂yi

)
m

+
(

∂zi

∂θ

)
s

(
∂

∂zi

)
m

}
,

(
∂

∂φ

)
s

=
(

∂

∂φ

)
m

+
∑

i

{(
∂xi

∂φ

)
s

(
∂

∂xi

)
m

+
(

∂yi

∂φ

)
s

(
∂

∂yi

)
m

+
(

∂zi

∂φ

)
s

(
∂

∂zi

)
m

}
,

(
∂

∂χ

)
s

=
(

∂

∂χ

)
m

+
∑

i

{(
∂xi

∂χ

)
s

(
∂

∂xi

)
m

+
(

∂yi

∂χ

)
s

(
∂

∂yi

)
m

+
(

∂zi

∂χ

)
s

(
∂

∂zi

)
m

}
.

(2.79)

The subscripts ‘s’ and ‘m’ denote that space or molecule-fixed electron coordinates
are held constant; for example, (∂/∂θ )s means (∂/∂θ)R,φ,χ,X ′′

i ,Y
′′
i ,Z

′′
i

. The desirability
of rewriting the total Hamiltonian in terms of (∂/∂θ)m, (∂/∂φ)m and (∂/∂χ )m is thus
evident; (∂/∂θ)s corresponds to the effect on the wavefunction of an infinitesimal
rotation of the nuclei alone, with the electrons held fixed in space, whereas (∂/∂θ)m

corresponds to the effect of an infinitesimal rotation of the molecule-fixed axis system
and all the particles with it.
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In order to carry out the differentiations in (2.79), we use the transformation matrix
between the two coordinate systems given in equation (2.40) and obtain(

∂

∂θ

)
s

=
(

∂

∂θ

)
m

+
∑

i

{
[−cosφ sin θ cosχX ′′

i

− sinφ sin θ cosχY ′′
i − cos θ cosχ Z ′′

i ]

(
∂

∂xi

)
m

+ [cosφ sin θ sinχX ′′
i + sinφ sin θ sinχY ′′

i + cos θ sinχ Z ′′
i ]

(
∂

∂yi

)
m

+ [cosφ cos θX ′′
i + sin θ cos θY ′′

i − sin θ Z ′′
i ]

(
∂

∂zi

)
m

}
, (2.80)(

∂

∂φ

)
s

=
(

∂

∂φ

)
m

+
∑

i

{
[(−sinφ cos θ cosχ − cosφ sinχ )X ′′

i

+ (cosφ cos θ cosχ − sinφ sinχ )Y ′′
i ]

(
∂

∂xi

)
m

+ [(−cosφ cosχ + sinφ cos θ sinχ )X ′′
i

+ (−sinφ cosχ − cosφ cos θ sinχ )Y ′′
i ]

(
∂

∂yi

)
m

+ [−sinφ sin θX ′′
i + cosφ sin θY ′′

i ]

(
∂

∂zi

)
m

}
, (2.81)

(
∂

∂χ

)
s

=
(

∂

∂χ

)
m

+
∑

i

{
[(−cosφ cos θ sinχ − sinφ cosχ )X ′′

i

+ (−sinφ cos θ sinχ + cosφ cosχ )Y ′′ + sin θ sinχ Z ′′
i ]

(
∂

∂xi

)
m

+ [(sinφ sinχ − cosφ cos θ cosχ )X ′′
i

+ (−cosφ sinχ − sinφ cos θ cosχ )Y ′′
i + (sin θ cosχ )Z ′′

i ]

(
∂

∂yi

)
m

}
.

(2.82)

We now revert to molecule-fixed coordinates, obtaining(
∂

∂θ

)
s

=
(

∂

∂θ

)
m

+
∑

i

{
−cosχ zi

(
∂

∂xi

)
m

+ sinχ zi

(
∂

∂yi

)
m

+ (cosχxi − sinχyi )

(
∂

∂zi

)
m

}
, (2.83)(

∂

∂φ

)
s

=
(

∂

∂φ

)
m

+
∑

i

{
(cos θyi − sin θ sinχ zi )

(
∂

∂xi

)
m

+ (−cos θxi − sin θ cosχ zi )

(
∂

∂yi

)
m

+ (sin θ sinχxi + sin θ cosχyi )

(
∂

∂zi

)
m

}
(2.84)
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(
∂

∂χ

)
s

=
(

∂

∂χ

)
m

+
∑

i

{
yi

(
∂

∂xi

)
m

− xi

(
∂

∂yi

)
m

}
. (2.85)

Now the orbital angular momentum operator hL has components in the space-fixed
axis system which are defined as

L X = −i
∑

j

{
Y ′′

j

(
∂

∂Z ′′
j

)
s

− Z ′′
j

(
∂

∂Y ′′
j

)
s

}
, (2.86)

LY = −i
∑

j

{
Z ′′

j

(
∂

∂X ′′
j

)
s

− X ′′
j

(
∂

∂Z ′′
j

)
s

}
, (2.87)

L Z = −i
∑

j

{
X ′′

j

(
∂

∂Y ′′
j

)
s

− Y ′′
j

(
∂

∂X ′′
j

)
s

}
. (2.88)

When we refer these components to the gyrating axis system, we find that the resultant
operators Lx , L y and Lz are the same functions of the molecule-fixed coordinates and
their conjugate momenta as L X , LY and L Z are of the space-fixed electronic coordinates
and their conjugate momenta. Thus Lx , L y and Lz are given by expressions of the same
form as (2.86), (2.87) and (2.88) respectively. However, since the partial differentiations
are performed with θ ,φ, andχ held constant, these components are not the components
of the orbital angular momentum measured in the gyrating axis system but are the
components measured in a space-fixed axis system which is instantaneously coincident
with the moving axis system. Similar remarks apply to the components of the spin
angular momentum operator which will be introduced in section 2.5.3.

We thus have the final results:(
∂

∂θ

)
s

=
(

∂

∂θ

)
m

− i sinχLx − i cosχL y, (2.89)(
∂

∂φ

)
s

=
(

∂

∂φ

)
m

+ i sin θ cosχLx − i sin θ sinχL y − i cos θLz, (2.90)(
∂

∂χ

)
s

=
(

∂

∂χ

)
m

− iLz . (2.91)

It is interesting to note that since (∂/∂χ )s is zero for a diatomic molecule, (∂/∂χ )m is,
by (2.91), equivalent to iLz .

2.5.3. Spin transformations

We now consider some aspects of the theory of electronic spin angular momentum.
What follows here is a relatively brief and simple exposition; we will return to a
comprehensive description of the details of electron spin theory in chapter 3. For a
single electron, the spin vector S is set equal to (1/2)�′ and in the representation where
SZ (or σ ′

Z ) is diagonal, the components of the vector �′ may be represented by 2 × 2
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matrices, first introduced by Pauli [8],

σ ′
X =

[
0 1
1 0

]
, σ ′

Y =
[

0 −i
i 0

]
, σ ′

Z =
[

1 0
0 −1

]
. (2.92)

For S = 1/2, functionsψM are eigenfunctions of the operators S2 and SZ if they satisfy
the equations

S2ψM = S(S + 1)ψM = (3/4)ψM , (2.93)

SZψM = MψM , where M = ±1/2. (2.94)

There are therefore two eigenfunctions ψM=±1/2 and from the matrix representation of
S2 and SZ each ψM must be a two-component function,

ψ+1/2 =
[

1
0

]
, ψ−1/2 =

[
0
1

]
. (2.95)

These functions are called spinors and any other two-component function (spinor) can
be written as a linear combination of them,[a

b

]
= aψ1/2 + bψ−1/2. (2.96)

Let us now consider a representation in which the component of �′ in any direction
n (i.e. �′ · n) is diagonal. Then

(�′ · n)m = λψm where ψm =
∑

M

aMψM . (2.97)

Since (�′ · n)2 = 1 it follows thatλ= ±1. A rotation from the first representation (which
we now identify as space-fixed) to the second (instantaneous molecule-fixed) can be
represented by a rotational matrix, i.e.,

ψm(S) =
∑

M

D
1/2
M,m(φ, θ, χ)ψM (S) (2.98)

where the rotational matrix is given by

D
1/2(φ, θ, χ) =

[
e−iφ/2 cos(θ/2)e−iχ/2 −e−iφ/2 sin(θ/2)eiχ/2

eiφ/2 sin(θ/2)e−iχ/2 eiφ/2 cos(θ/2)eiχ/2

]
. (2.99)

We are now in a position to investigate the effects of ∂/∂φ, ∂/∂θ and ∂/∂χ on the
electron spin functions. When the electron spins are quantised in the molecule-fixed
axis system, we see that each component of the 2n-rank spinor is an implicit function
of φ, θ and χ through its dependence on the transformation matrix (2.99). The total
spinor ψ(S) may be expressed as a product of one-electron spinors,

ψ(S) =
∏

i

ψm(si ) (2.100)

where m equals either +1/2 or −1/2; we therefore first consider the effects of operating
with ∂/∂φ, ∂/∂θ and ∂/∂χ on the one-electron spinors (for simplicity we drop the
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subscript i):

∂

∂φ
ψm=±1/2(s) =

∑
M

∂

∂φ
D

1/2
M,±1/2(φ, θ, χ)ψM (s)

=
∑

M

i

2

{∓cos θD
1/2
M,±1/2(φ, θ, χ)+ sin θe∓iχ

D
1/2
M,∓1/2(φ, θ, χ)

}
ψM (s)

= i

2

{∓cos θψ±1/2(s) + sin θe∓iχψ∓1/2(s)
}
, (2.101)

∂

∂θ
ψm=±1/2(s) =

∑
M

±(1/2)e∓iχ
D

1/2
M,∓1/2(φ, θ, χ)ψM (s)

= ±(1/2)e∓iχψ∓1/2(s), (2.102)

∂

∂χ
ψm=±1/2(s) =

∑
M

∓(i/2)D
1/2
M,±1/2(φ, θ, χ)ψM (s)

= ∓(i/2)ψ±1/2(s). (2.103)

We next use the Pauli matrix representations of the spin angular momentum operator
components in the instantaneous molecule-fixed axis system from equation (2.92) to
rewrite the above relationships:

∂

∂φ
ψm=±1/2(s) = −i{cos θsz + sin θ(sinχsy − cosχsx )}ψm=±1/2(s), (2.104)

∂

∂θ
ψm=±1/2(s) = −i{sinχsx + cosχsy}ψm=±1/2(s), (2.105)

∂

∂χ
ψm=±1/2(s) = −iszψm=±1/2(s). (2.106)

We are interested in the result for the total spinor ψ(S) and we find, for example,

∂

∂θ
ψ(S) =

∑
j

∏
i 
= j

ψm(si )
∂

∂φ
ψm(s j )

=
∑

j

∏
i 
= j

ψm(si ){−i[sinχ (s j )x + cosχ (s j )y]}ψm(s j )

=
∑

i

[−i sinχ (si )x − i cosχ (si )y]
∏

i

ψm(si )

= (−sinχ Sx − i cosχ Sy)ψ(S), (2.107)

where Sx and Sy are molecule-fixed components of the total spin S = ∑
i si . Similarly:

∂

∂φ
ψ(S) = (−i cos θ Sz + i sin θ cosχ Sx − i sin θ sinχ Sy)ψ(S), (2.108)

∂

∂χ
ψ(S) = −iSzψ(S). (2.109)

In addition to these modifications on transforming the electron spin to molecule-
fixed quantisation, we must rewrite the electron spin interactions H(Si ) as

H(si ) = UH(Si )U
−1 (2.110)
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where the unitary transformation matrix U is the product of the transposed rotation
matrices

U =
∏

i

U(si ; Si ) (2.111)

and

[U(si ; Si )]m,M = [
D

1/2
M,m(φ, θ, χ)

]trans
. (2.112)

We have now derived the results necessary to write the total Hamiltonian HT with
the electronic coordinates expressed in the molecule-fixed axis system. The electronic
Hamiltonian (2.36) becomes

HT =− h2

2m

∑
i

∇2
i − h2

2MN

∑
i, j

∇i ·∇ j +Vel,nucl(r i , R) +
∑

i

H(si )+H(Iα). (2.113)

We have not, in fact, transformed the nuclear spin term but we leave discussion of this
term until a later chapter.

The nuclear Hamiltonian obtained earlier is, in the space-fixed coordinate system,
given by (2.75)

Hnucl = − h2

2µR2

{
∂

∂R

(
R2 ∂

∂R

)
+ cosec θ

∂

∂θ

(
sin θ

∂

∂θ

)

+ cosec 2θ

[
∂2

∂φ2
+ ∂2

∂χ2
− 2 cos θ

∂2

∂φ∂χ

]}
+ Vnucl(R), (2.114)

and it may now be rewritten in order to take account of the effects of the transformation
of electronic coordinates by using the results given in equations (2.83), (2.84), (2.85),
(2.107), (2.108) and (2.109). If we define the total electronic (orbital and spin) angular
momentum hP by

P = L + S, (2.115)

the complete effect of the transformation on the partial differential operators may be
expressed as

(
∂

∂φ

)
s

=
(

∂

∂φ

)
m

− i cos θ Pz + i sin θ cosχ Px − i sin θ sinχ Py, (2.116)

(
∂

∂θ

)
s

=
(

∂

∂θ

)
m

− i sinχ Px − i cosχ Py, (2.117)

(
∂

∂χ

)
s

=
(

∂

∂χ

)
m

− iPz . (2.118)
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Substitution in equation (2.114) gives

HT = − h2

2µR2

{
∂

∂R

(
R2 ∂

∂R

)
+ cosecθ

[(
∂

∂θ

)
m

− i sinχ Px − i cosχ Py

]
sin θ

×
[(

∂

∂θ

)
m

− i sinχ Px − i cosχ Py

]
+ cosec2θ

[(
∂

∂φ

)
m

+ i sin θ cosχ Px

− i sin θ sinχ Py − i cos θ Pz

]2

+ cosec2θ

[(
∂

∂χ

)
m

− iPz

]2

− 2 cot θ cosec θ

×
[(

∂

∂φ

)
m

+ i sin θ cosχ Px − i sin θ sinχ Py − i cos θ Pz

]

×
[(

∂

∂χ

)
m

− iPz

]}
+ Vnucl(R). (2.119)

This may be rewritten in the simpler form

HT = − h2

2µR2

∂

∂R

(
R2 ∂

∂R

)
+ h2

2µR2
(J − P)2 + Vnucl(R) (2.120)

where the molecule-fixed components of J are defined [7] by

Jx = −i

{
cosχ

[
cot θ

(
∂

∂χ

)
m

− cosec θ

(
∂

∂φ

)
m

]
+ sinχ

(
∂

∂θ

)
m

}
, (2.121)

Jy = −i

{
−sinχ

[
cot θ

(
∂

∂χ

)
m

− cosec θ

(
∂

∂φ

)
m

]
+ cosχ

(
∂

∂θ

)
m

}
, (2.122)

Jz = −i

(
∂

∂χ

)
m

. (2.123)

We present a detailed description of angular momentum theory in chapter 5, and the
reader may wish to examine the results given there at this stage. It emerges that the
angular momentum operator J commutes with L and S in this axis system and its
molecule-fixed components obey the usual commutation relations for angular momen-
tum operators provided that the anomalous sign of i is used,

[Ji , Jj ] = −iεijk Jk, (2.124)

where εijk is equal to +1 or −1 depending on whether ijk form a cyclic permutation
of x, y, z or not, and equal to 0 if any two of ijk are identical. By loose analogy with
classical mechanics, Jx , Jy and Jz are the instantaneous components in the molecule-
fixed axis system of the total angular momentum of the system of nuclei and electrons.
J − P is therefore just the nuclear rotational angular momentum expressed in the same
coordinate system.

We have thus achieved our aim of eliminating the effects of nuclear motion from
Hel; on the other hand, Hnucl now contains the operators Px , Py and Pz which operate
on the electronic part of the total wave function.
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2.6. Schr..odinger equation for the total wave function

The total Hamiltonian with the electronic coordinates expressed in the molecule-fixed
axis system is given by (2.120). If the total wave function for electronic and nuclear
motion is written as Ψrve (r i , si , R, φ, θ) the Schrödinger equation can be expressed as

(Hel + Hnucl)Ψrve = ErveΨrve. (2.125)

In order to develop this equation we assume that Ψrve can be expanded as a complete
set of electronic functions multiplied by nuclear functions

Ψrve =
∑

n

ψn
e (r i , R)ψn

rv(R, φ, θ ) (2.126)

where the electronic functions ψn
e (r i , R) are eigenfunctions of the electronic

Hamiltonian

Helψ
n
e (r i , R) = En

e (R)ψn
e (r i , R). (2.127)

The electronic functions ψn
e (r i , R) are also eigenfunctions of the operator Pz , since Pz

commutes with Hel,

Pzψ
n
e (r i , R) =Ωnψ

n
e (r i , R). (2.128)

This exact form of the molecular wavefunction Ψrve was first introduced by Born and
Huang [9]. The equation to be solved, equation (2.125), may therefore be written

{Hel + Hnucl − Erve}
{∑

n

ψn
e (r i , R)ψn

rv(R, φ, θ )

}
= 0. (2.129)

Multiplication on the left by the complex conjugate functionψn′∗
e and expansion yields

ψn′∗
e Hel

∑
n

ψn
e (r i , R)ψn

rv(R, φ, θ ) +ψn′∗
e Hnucl

∑
n

ψn
e (r i , R)ψn

rv(R, φ, θ )

−ψn′∗
e Erve

∑
n

ψn
e (r i , R)ψn

rv(R, φ, θ ) = 0. (2.130)

The first and third terms in this expression immediately simplify on integration over
the electronic coordinates, and this allows us to express the eigenvalue problem in the
more compact form,

{
En′

e (R) − Erve
}
ψn′

rv +
∑

n

Cn′,nψ
n
rv = 0, (2.131)

where

Cn′,nψ
n
rv =

∫
ψn′∗

e

(
− h2

2µ
∇2

Rψ
n
e dr i

)
φn

rv + h2

2µ
∇2

Rφ
n
rvδn,n′ . (2.132)
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2.7. The Born–Oppenheimer and Born adiabatic approximations

The complete solution of the eigenvalue problem would require that we solve equation
(2.127) for the infinite complete set of functions ψn

e and then solve the infinite number
of coupled equations (2.131) in a self-consistent manner with the infinite number of
functionsψn

rv . This is clearly an impossible task and our procedure is to find approximate
solutions to Ψrve which can then be improved by perturbation theory.

Suppose we approximate Ψrve to the simple product form

Ψ0
rve =ψn

e (r i , R)φn
rv(R, φ, θ ), (2.133)

where ψn
e (r i , R) is an eigenfunction of Hel in (2.127) and φn

rv is approximately equal
to ψn

rv in equation (2.126). In this approximation the electrons follow the nuclear
motion adiabatically; the electronic states are not mixed and an electronic state is itself
deformed progressively by the nuclear displacements, maintaining its integrity. The
electronic wave function is dependent upon the nuclear coordinates but independent of
the nuclear momenta. We can use the variational principle to arrive at the best choice for
the function φn

rv in (2.133). We minimise the energy Erve with respect to small changes
in φn

rv where

Erve =
∫ ∫

Ψ 0∗
rveHΨ 0

rve dr i dr

/∫ ∫
Ψ 0∗

rveΨ
0
rve dr i dr . (2.134)

We can always choose ψn
e to be a real function, even if it represents one component of

a doubly-degenerate state, so that we can put∫
ψn

e (∂/∂R)ψn
e dr i = (1/2)(∂/∂R)

∫
ψn

eψ
n
e dr i = 0. (2.135)

With this relation, substitution of (2.133) in (2.134) leads to the result that the best
choice for φn

rv is one of the solutions of[
En

e (R) − h2

2µ

∫
ψn

e ∇2
Rψ

n
e dr i + Hnucl

]
φn

rv = Erveφ
n
rv,

i.e.
[
En

e (R) + Cn,n + Hnucl
]
φn

rv = Erveφ
n
rv. (2.136)

Thus in this approximation the φn
rv constitute a complete set of rovibrational wave

functions for each electronic state ψn
e and [En

e (R) + Cn,n + Hnucl(R)] is an effective
potential function governing the motion of the nuclei. This choice for φn

rv is called the
Born adiabatic approximation and amounts to neglect of the off-diagonal terms Cn′,n,
in equation (2.131) which mix different electronic states.

If En
e (R) is a doubly-degenerate eigenvalue of Hel and ψna

e , ψ
nb
e are the two real,

orthogonal components of this electronic state, it can be shown that Cna,nb is zero for a
diatomic molecule because there is only one, totally symmetric, vibrational mode. Thus
the Born approximation is equally valid for degenerate and non-degenerate electronic
states of a diatomic molecule.

In order to determine the form of Cn,n, we first expand ∇2
R from equation (2.120)

and group together terms which are diagonal in the electronic states and those which



Separation of the vibrational and rotational wave equations 61

are off-diagonal. We obtain

∇2
R = 1

R2

∂

∂R

(
R2 ∂

∂R

)
− 1

R2
(J2 − 2Jz Pz + P2) + 2

R2
(Jx Px + Jy Py). (2.137)

Integrating (−h2/2µ)∇2
R over electronic coordinates and using (2.135) we obtain

Cn,n = Qn,n + Pn,n + h2

2µR2
Ω2

n − h2

µR2
Ωn Jz (2.138)

where

Qn,n = − h2

2µ

∫
ψn∗

e

(
∂2ψn

e

/
∂R2

)
dr i , (2.139)

and

Pn,n = h2

2µR2

∫
ψn∗

e

{(
P2

x + P2
y

)
ψn

e

}
dr i . (2.140)

Note that, becauseψn
e is independent of the Euler angles θ andφ, there is no contribution

from the term in J2. Substituting (2.138) into (2.136), we obtain the wave equation for
the rotation–vibration wave functions in the Born adiabatic approximation:{

− h2

2µ
∇2

R + En
e (R) + Qnn + Pnn − h2

2µR2

(
2Ωn Jz −Ω2

n

)+ Vnucl(R)

}
φn

rv = Erveφ
n
rv.

(2.141)

The third, fourth and fifth terms in braces in equation (2.141) represent small adia-
batic corrections to the potential energy function. They all have a µ−1 reduced mass
dependence, unlike Vnucl(R), and so are the origin of the isotopic shifts in the electronic
energy [5].

The corresponding rotation-vibration wave equation in the Born–Oppenheimer
approximation, in which all coupling of electronic and nuclear motions is neglected, is{

− h2

2µ
∇2

R + En
e (R) + Vnucl(R) − Erve

}
φn

rv = 0. (2.142)

It is, therefore, still necessary to solve equation (2.127) for the electronic energies and
wave functions.

2.8. Separation of the vibrational and rotational wave equations

We can separate the coordinates in ψn
rv by writing it as a product

φn
rv =χn(R)eiMJφΘn(θ )eikχ (2.143)

where MJ and k are constants taking integral or half-integral values. MJ will later be
identified as the quantum number labelling the component of total angular momentum
J along the space-fixed Z axis; it takes 2J+1 values from −J to +J . However, the
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quantum number k associated with the redundant Euler angle χ is restricted in the
values that it can take. From equation (2.128) we have

JzΨ
n
rve = PzΨ

n
rve =ΩnΨ

n
rve (2.144)

or

Jzφ
n
rv =Ωnφ

n
rv. (2.145)

Hence, by combining (2.143) and (2.145) we obtain the important result that k =Ωn.
Now substitution in (2.141), and use of the standard methods of separating the variables,
yields separate equations for χn(R) and eiMJφΘn(θ)eikχ which are{

− h2

2µ

1

R2

∂

∂R

(
R2 ∂

∂R

)
+ En

e (R) + Qn,n(R) + Pn,n(R) + Vnucl(R)

+ h2

2µR2
Ω2

n + Erot(R) − Erve(R)

}
χn(R) = 0, (2.146)

{ −h2

2µR2
cosec θ

∂

∂θ

(
sin θ

∂

∂θ

)
− h2

2µR2
cosec2θ

(
∂2

∂φ2
+ ∂2

∂χ2
− 2 cos θ

∂2

∂φ∂χ

)

− h2

2µR2
2iΩn

∂

∂χ
− Erot(R)

}
eiMJφΘn(θ)eiΩnχ = 0. (2.147)

Equation (2.146) governs the vibrational motion of the nuclei and (2.147) describes
the rotational motion of the molecule-fixed axis system. We deal with the latter by
separating off the variables φ and χ to yield an equation in θ which is{

− h2

2µR2

[
cosec θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ cosec2θ

(−M2
J −Ω2

n + 2 cos θMJΩn
)]

+ h2

µR2
Ω2

n − Erot(R)

}
Θn(θ) = 0. (2.148)

The eigenfunctions of (2.148) are given by

Θn(θ) =
(

2J + 1

2

)1/2[ (J + MJ )!(J − MJ )!

(J +Ωn)!(J −Ωn)!

]1/2

× [cos(θ/2)]MJ +Ωn [sin(θ/2)]MJ −Ωn P
(MJ −Ωn,MJ +Ωn)
J−Ωn

(cos θ) (2.149)

where P is a Jacobi polynomial; Θn(θ) is normalised so that

π∫
0

Θn∗(θ)Θn(θ) sin θ dθ = 1. (2.150)

The eigenvalues of (2.148) are given by

Erot(R) = h2

2µR2

[
J (J + 1) −Ω2

n

]
. (2.151)
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We can therefore substitute for Erot(R) in the vibrational wave equation (2.146) to give{
h2

2µ

1

R2

∂

∂R

(
R2 ∂

∂R

)
+ Erve − En

e (R) − Qn,n(R) − Pn,n(R) − Vnucl(R)

− h2

2µR2

[
J (J + 1) −Ω2

n

]}
χn(R) = 0. (2.152)

2.9. The vibrational wave equation

Equation (2.152) is the wave equation of the vibrating rotator,

h2

2µ

1

R2

d

dR
R2 dχn(R)

dR
+

{
Erve − V − h2

2µR2
J (J + 1)

}
χn(R) = 0, (2.153)

in which the potential function V is given by

V = En
e (R) + Qn,n(R) + Pn,n(R) + Vnucl(R) − h2

2µR2
Ω2

n (2.154)

and χn(R) is normalised thus:

∞∫
0

χn∗(R)χn(R)R2 dR = 1. (2.155)

The main difficulty in solving (2.153) lies in the evaluation of the potential energy term
(2.154). Even in the case of H2, calculation of V from the electronic wavefunctions for
different values of R is no easy matter. Usually, therefore, the vibrational wave equation
is solved by inserting a restricted form of the potential; experimental data on the
rovibrational levels are then expressed in terms of constants introduced semiempirically,
as we shall show.

In a classic paper, Dunham [10] introduced a dimensionless vibrational variable ξ
defined by

ξ = R − Re

Re
, (2.156)

where Re is the equilibrium nuclear separation, that is, the value of R when the poten-
tial energy is a minimum. With the substitution of this variable, the vibrational wave
equation becomes

d2ψn(ξ )

dξ 2
+ 2µR2

e

h2

{
E − V − h2

2µR2
e (1 + ξ )2

J (J + 1)

}
ψn(ξ ) = 0, (2.157)

where ψn(ξ ) = Rχn(R). Alternatively one can introduce the mass-weighted normal
coordinate Q, defined by

Q =µ1/2(R − Re). (2.158)
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The eigenfunctions of the resultant wave equation, ψn(Q), are now normalised as

∞∫
0

ψn∗(Q)ψn(Q) dQ = 1 (2.159)

which must be compared with (2.155). Neglecting, for the moment, the rotational term
in (2.120), the vibrational Hamiltonian then becomes

Hvib = −h2

2

d2

dQ2
+ V (2.160)

= 1

2
P2

Q + V (2.161)

where PQ is the momentum conjugate to Q,

PQ = h

2πi

d

dQ
. (2.162)

The simplest approximation for V is to assume that the vibration is harmonic, in which
case the Hamiltonian becomes

H0 = (1/2)
(
P2

Q + λQ2
)

(2.163)

where

λ= (hγ )2 (2.164)

and

γ = 2πν

h
. (2.165)

This form of the harmonic oscillator equation is particularly convenient for solution
by the methods of matrix mechanics, based on the commutation relationships:

[PQ, Q] = −ih. (2.166)

The eigenvalues and eigenfunctions of the simple harmonic oscillator are well known.
A detailed account of the solution of the wave equation in (2.157) is given by Pauling
and Wilson [11]. The solution of equation (2.163) using creation and annihilation
operators is described in the book by Bunker and Jensen [12]. The energy levels of the
harmonic oscillator are given by

Ev = (v+ 1/2)hν v= 0, 1, 2, etc.,
(2.167)= (v+ 1/2)h2γ

and the eigenfunctions are given by

ψv(Q) =
[(
γ

π

)1/2 1

2v(v!)

]1/2

e−(1/2)γ Q2
Hv

(
γ 1/2 Q

)
(2.168)
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where the Hv(γ l/2 Q) are Hermite polynomials of degree v in Q. The first four Hermite
polynomials are

H0(y) = 1, (2.169)

H1(y) = 2y, (2.170)

H2(y) = 4y2 − 2, (2.171)

H3(y) = 8y3 − 6y. (2.172)

In general, Hn(y) contains y to the powers v, v− 2, v− 4, . . . , 1 or 0, that is, either all
even powers or all odd powers as v is even or odd respectively.

The wavefunctions for the harmonic oscillator in terms of the Dunham coordinate
ξ are

ψv(ξ ) =
{

1

Re

(
α

π

)1/2 1

2v(v)!

}1/2

exp

(
−1

2
y2

)
Hv(y), (2.173)

where

y = α1/2ξ,
(2.174)

α = µR2
eγ.

Although the vibrational motion of a diatomic molecule conforms quite closely to
that of a harmonic oscillator, in practice the anharmonic deviations are quite significant
and must be taken into account if vibrational energy levels are to be modelled accurately.
A general form of the potential function V in equation (2.157) was proposed by Dunham
[10]:

V = a0ξ
2{1 + a1ξ + a2ξ

2 + a3ξ
3 + · · ·}, (2.175)

where

a0 = hω2
e

/
4Be

(2.176)= (1/2)h2γ 2µR2
e .

Since the rotational term in equation (2.157) can also be expanded as a power series in
ξ , the complete perturbation to the harmonic oscillator Hamiltonian is

H
′ = a0ξ

2{a1ξ + a2ξ
2 + a3ξ

3 + · · ·} + h2

2µR2
e

J (J + 1){1 + c1ξ + c2ξ
2 + c3ξ

3 + · · ·}

= k0 + k1ξ + k2ξ
2 + k3ξ

3 + · · · , (2.177)

where, in the rotational term,

cn = ( − 1)n(n + 1) (2.178)

from the binomial expansion.
The effects of H

′ may be treated using ordinary non-degenerate perturbation theory
or, as in Dunham’s original work, by means of the Wentzel–Kramers–Brillouin method
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[13], which is described in chapter 6. The result is that the rovibrational energies are
given by

Ev,J =
∑
k�

Yk�(v + 1/2)k J �(J + 1)� (2.179)

= Y00 + Y10(v + 1/2) + Y20(v + 1/2)2 + · · · + Y01 J (J + 1)

+ Y02 J 2(J + 1)2 + · · · + Y11(v + 1/2)J (J + 1) + · · · . (2.180)

Formulae for the leading coefficients Yk� have been given explicitly by Dunham.
The generalised potential function (2.175) can be cumbersome to use and more

restricted functions have often been employed. Of these the most important and satis-
factory is the Morse potential [14],

V = D
(
1 − e−β(R−Re)

)2
(2.181)

in which D is the dissociation energy of the molecule and β is a constant. A graphical
representation of the Morse potential is shown and discussed in chapter 6. Using the
Morse potential in the vibrational wave equation, the rovibrational energies are given
exactly by

Ev,J
hc

= ωe(v + 1/2) − xeωe(v + 1/2)2 + Be J (J + 1)

− De J 2(J + 1)2 −αe(v + 1/2)J (J + 1) (2.182)

in which the parameters, in cm−1, are given by

ωe = β

2πc

√
2D

µ
, xe = hcωe

4D
, Be = h

4πµR2
e c
, De = h3

16π3µ3ω2
e R6

e c3
= 4B3

e

ω2
e

αe = 3h2ωe

4µR2
e D

(
1

a Re
− 1

a2 R2
e

)
= 6

√
xe B3

e

ωe
− 6

B2
e

ωe
. (2.183)

Comparing the results obtained from the Morse potential with those from the Dunham
expansion, we see that the coefficients are related as follows,

Y10 =ωe, Y20 = −xeωe, Y01 = Be, Y02 = −De, Y11 = −αe. (2.184)

These relationships ignore some small, higher-order corrections which arise from the
Dunham expansion in equation (2.177). The five terms in (2.182) can be identified
with the solutions obtained using more restricted potential functions. The first term
has the same form as that obtained for a pure vibrator with a harmonic potential, the
second term is obtained with a cubic term (anharmonic) in the potential, the third term
is obtained in the treatment of the rigid rotator, the fourth term comes from centrifugal
stretching of the rotating molecule, and the final term allows for change in the average
moment of inertia on vibrational excitation.

In conclusion, we note that experimental data, usually from infrared or ultraviolet
spectroscopy, are often expressed by giving values of the parameters presented in
equation (2.182). The formula is able to model low-lying vibrational levels of a molecule
in a closed shell state quite accurately.
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2.10. Rotational Hamiltonian for space-quantised electron spin

All of the results derived so far are for the situation in which the electronic spin
orientation is coupled to the molecular orientation. The essential steps were described
in section 2.5 where we transformed both the spin and space coordinates from space-
fixed to molecule-fixed axes. Now the situation often arises in which the electron spin
is quantised in the space-fixed axis system, i.e. is not strongly coupled to the molecular
axis. Evidently, therefore, we need only to omit the spin transformation in deriving
a Hamiltonian suitable for this situation. Our previous equations must be modified,
simply by replacing P, the total electronic angular momentum, by L, the orbital angular
momentum, and also by replacing J by N, the total angular momentum exclusive of
spin; in Hund’s case (b), J will be constructed by adding N and S. Thus the operator
form of the Hamiltonian for space-quantised spin is

H = h2

2µR2
(N − L)2 − h2

2µR2

∂

∂R

(
R2 ∂

∂R

)
+ Vnucl(R) + Hel. (2.185)

This is, of course, similar to (2.120) for molecule-quantised electron spin; the expansion
of Hel will, however, be somewhat different, as we shall see.

2.11. Non-adiabatic terms

It will be recalled that our use of the Born adiabatic approximation in section 2.6
enabled us to separate the nuclear and electronic parts of the total wave function. This
separation led to wave equations for the rotational and vibrational motions of the nuclei.
We now briefly reconsider this approximation, with the promise that we shall study it
at greater length in chapters 6 and 7.

We could return to the exact equation (2.131) and examine the matrix elements
of the Cn′,n terms in the same manner as we dealt with the diagonal Cn,n terms. It is,
however, easier to turn to the form of the exact Hamiltonian given in equations (2.113)
and (2.120). The terms in this Hamiltonian which cause a breakdown of the adiabatic
separation of nuclear and electronic motion are

− h2

2µR2

∂

∂R

(
R2 ∂

∂R

)
− h2

µR2
(Jx Px + Jy Py). (2.186)

If we define the shift operators by

J+ = Jx + iJy, J− = Jx − iJy, P+ = Px + iPy, P− = Px − iPy (2.187)

we can rewrite the second term in (2.186) as

− h2

2µR2
(J+ P− + J− P+). (2.188)

This term has matrix elements off-diagonal inΩ, i.e. between different electronic states.
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We shall show in chapter 7 that these matrix elements are of the form

〈η, v,Ω| −h2

2µR2
P∓|η′, v′,Ω± 1〉[(J ±Ω+ 1)(J ∓Ω)]1/2 (2.189)

and they therefore remove the degeneracy of an electronic state with orbital angular
momentum. The most important consequence of this is the observation ofΛ-doubling,
which is particularly significant in diatomic hydrides and other light molecules which
rotate rapidly (i.e. they have a large B value). The matrix elements (2.189) thus represent
a coupling of the rotational and electronic motions of the molecule.

It is important to note that the Hamiltonian (2.120) contains the terms which
produce both the adiabatic and non-adiabatic effects. In chapter 7 we shall show how
the total Hamiltonian can be reduced to an effective Hamiltonian which operates only in
the rotational subspace of a single vibronic state, the non-adiabatic effects being treated
by perturbation theory and incorporated into the molecular parameters which define
the effective Hamiltonian. Almost for the first time in this book, this introduces an
extremely important concept and tool, outlined in chapter 1, the effective Hamiltonian.
Observed spectra are analysed in terms of an appropriate effective Hamiltonian, and
this process leads to the determination of the values of what are best called ‘molecular
parameters’. An alternative terminology of ‘molecular constants’, often used, seems
less appropriate. The quantitative interpretation of the molecular parameters is the link
between experiment and electronic structure.

2.12. Effects of external electric and magnetic fields

The equations derived thus far take no account of the effects of applied electric or
magnetic fields, or even of the fields created by the motion of the nuclei and electrons.
We shall discuss these effects explicitly in the derivation of the electronic Hamiltonian,
but for the moment we aim to correct our equations for the motion of the nuclei by
appealing to classical mechanics. We here sketch the main points which are covered in
detail by Landau and Lifshitz [15], among others.

In non-relativistic classical mechanics a mechanical system can be characterised
by a function called the Lagrangian, L(q, q̇) where q denotes the coordinates, and the
motion of the system is such that the action S, defined by

S =
t2∫

t1

L(q, q̇, t) dt (2.190)

is minimised. The Lagrangian for a system of n particles is given by

L =
n∑

a=1

(1/2)ma V 2
a − U (r1, r2, . . . , rn) (2.191)

where the two terms denote the kinetic and potential energies respectively.
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The equations of motion are written

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (2.192)

and are called Lagrange’s equations.
Now for a single particle in an external field, the Lagrangian is given by

L = (1/2)mV 2 − U (r , t). (2.193)

The three equations of motion of the particle can be written by (2.192) as

mV = −∂U

∂r
. (2.194)

Since the momentum Pi conjugate to the coordinate qi is defined by

Pi = ∂L

∂q̇i
, (2.195)

the total momentum of the particle is given by

P = mV . (2.196)

These equations are modified when we turn to relativistic mechanics. The
Lagrangian for a free particle is now given by

L = −mc2

√
1 − V 2

c2
(2.197)

and the momentum of the particle is given by

P = ∂L

∂V
= mV√

1 − (V 2/c2)
. (2.198)

An electromagnetic field is described in relativistic theory by a four-vector Ai ,
where the three space components A1,2,3 = Ax,y,z are called the vector potential A and
the fourth (time) component A4 is equal to iφ where φ is called the scalar potential.
The Lagrangian for a particle in an electromagnetic field is now given by

L = −mc2
√

1 − (V 2/c2) + q A · V − qφ (2.199)

where q is the charge on the particle. By analogy with equation (2.198), the momentum
P which is now a generalised conjugate momentum, is given by

P = ∂L

∂V
= mV√

1 − (V 2/c2)
+ q A=π + q A (2.200)

where π is called the mechanical momentum. If we adopt the accepted convention that
e is a positive quantity, the charge on the electron is then −e, and the charge of nucleus
α is Zαe. It is assumed that the results from classical mechanics may be taken over into
quantum mechanics. Since our previous equations involved mechanical momentum
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only, we make the replacements

P i → πi = P i + eAi (2.201)

Pα → πα = Pα − ZαeAα (2.202)

for electrons and nuclei respectively, to take account of the effects of external fields.
We do not specify the form of Aα at this stage; in general it will arise from the motion
of other electrons and nuclei, and from the presence of an external magnetic field.

The nuclear kinetic energy, which was written initially in equation (2.35) as P2
R/2µ

and related to Pαshould now evidently be rewritten as

1

(M1 + M2)2
{−M2(P1 − Z1eA1) + M1(P2 − Z2eA2)}2. (2.203)

We wish to find the corrected form of the Hamiltonian (2.120). On expansion (2.203)
leads to

Hnucl = µ

2

{(
P1

M1
+ P2

M2

)2

+ 2e

(
− P1

M1
+ P2

M2

)
·
(

Z1 A1

M1
− Z2 A2

M2

)

+ e2

(
Z1 A1

M1
− Z2 A2

M2

)2}
+ Vnucl(R) (2.204)

since (Pα · Aα) = (Aα · Pα). The components of P1 and P2 in the original space-fixed
coordinate system are given in equation (2.78). It is convenient to transform part of
this expression to the molecule-fixed coordinate system, thus:

Pα = −ih

{
Mα

M

[
i ′ ∂

∂X0
+ j ′ ∂

∂Y0
+ k′ ∂

∂Z0

]
− Mα

MN

∑
i

[
i

∂

∂xi
+ j

∂

∂yi
+ k

∂

∂zi

]

∓
[

i
1

R

(
cosec θ sinχ

∂

∂φ
+ cosχ

∂

∂θ
− cot θ sinχ

∂

∂χ

)

+ j
1

R

(
cosec θ cosχ

∂

∂φ
− sinχ

∂

∂θ
− cot θ cosχ

∂

∂χ

)
+ k

∂

∂R

]}
, (2.205)

= −ih

{
Mα

M

[
i ′ ∂

∂X0
+ j ′ ∂

∂Y0
+ k′ ∂

∂Z0

]
− Mα

MN

∑
i

[
i

∂

∂xi
+ j

∂

∂yi
+ k

∂

∂zi

]}

∓
[
− h

R
(k ∧ J) − ihk

∂

∂R

]
, (2.206)

where the upper sign refers to α= 1 and the lower to α= 2. The partial derivatives
in (2.206) are performed with space-fixed electronic coordinates held constant. When
these coordinates are transformed to the molecule-fixed axis system and the resultant
expression is substituted in Hnucl we obtain

Hnucl = h2

2µR2
(J − P)2 − h2

2µR2

∂

∂R

(
R2 ∂

∂R

)
+ e

{
− h

R
k ∧ (J − P) + ihk

∂

∂R

}
·

{
Z1 A1

M1
− Z2 A2

M2

}
+ µe2

2

(
Z1 A1

M1
− Z2 A2

M2

)2

+ Vnucl(R). (2.207)
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It will, of course, be necessary to replace the conjugate momenta in Hel by the mechan-
ical momenta; this matter is dealt with at length in the next chapter.

The corresponding corrected expression for a molecule in which the electron spins
are spatially quantised is

Hnucl = h2

2µR2
(N − L)2 − h2

2µR2

∂

∂R

(
R2 ∂

∂R

)
+ e

{
− h

R
k ∧ (N − L) + ihk

∂

∂R

}
·

{
Z1 A1

M1
− Z2 A2

M2

}
+ µe2

2

(
Z1 A1

M1
− Z2 A2

M2

)2

+ Vnucl(R). (2.208)

We shall see later how, with the appropriate expressions for the magnetic vector po-
tentials, the effects of an external magnetic vector potentials, the effects of an external
magnetic field can be introduced into the vibration–rotation Hamiltonian.

Appendix 2.1. Derivation of the momentum operator

We now give an explicit derivation of equation (2.14). The chain rule is:

∂

∂X
= ∂A

∂X

∂

∂A
+ ∂B

∂X

∂

∂B
+ · · · . (2.209)

Writing P i in terms of R′
i , R and RO we have:

P i = −ih
∂

∂Ri
= −ih

{
∂

∂Xi
i ′ + ∂

∂Yi
j ′ + ∂

∂Zi
k′
}
. (2.210)

If we consider only the X component along the i ′ axis, we have:

[P i ]X = −ih

[
∂

∂Xi

]
= −ih

{
∂X ′

i

∂Xi

∂

∂X ′
i

+ ∂Y ′
i

∂Xi

∂

∂Y ′
i

+ ∂Z ′
i

∂Xi

∂

∂Z ′
i

+ ∂X

∂Xi

∂

∂X
+ ∂Y

∂Xi

∂

∂Y
+ ∂Z

∂Xi

∂

∂Z

+∂XO

∂Xi

∂

∂XO
+ ∂YO

∂Xi

∂

∂YO
+ ∂ZO

∂Xi

∂

∂ZO

}
. (2.211)

Given the definition of P ′
i , we can write each of the above terms as the X component

of the dot product of P ′
i , P R and PO with R′

i , R and RO, i.e.

[P i ]X = ∂

∂Xi
R′

i · (P ′
i ) + ∂

∂Xi
R · (P R) + ∂

∂Xi
RO · (PO). (2.212)

Taking all three cartesian components gives us

P i = ∂

∂Ri
R′

i · P ′
i + ∂

∂Ri
R · P R + ∂

∂Ri
RO · PO. (2.213)

For n electrons this gives us

P i = ∂

∂Ri
RO · PO + ∂

∂Ri
R · P R +

n∑
j=1

∂

∂Ri
R′

j · P ′
j (2.214)

which is equation (2.14).
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3 The electronic Hamiltonian

3.1. The Dirac equation

The analysis of molecular spectra requires the choice of an effective Hamiltonian, an
appropriate basis set, and calculation of the eigenvalues and eigenvectors. The effective
Hamiltonian will contain molecular parameters whose values are to be determined
from the spectral analysis. The theory underlying these parameters requires detailed
consideration of the fundamental electronic Hamiltonian, and the effects of applied
magnetic or electrostatic fields. The additional complications arising from the presence
of nuclear spins are often extremely important in high-resolution spectra, and we shall
describe the theory underlying nuclear spin hyperfine interactions in chapter 4. The
construction of effective Hamiltonians will then be described in chapter 7.

In this section we outline the steps which lead to a wave equation for the electron
satisfying the requirements of the special theory of relativity. This equation was first
proposed by Dirac, and investigation of its eigenvalues and eigenfunctions, particularly
in the presence of an electromagnetic field, leads naturally to the property of electron
spin and its associated magnetic moment. Our procedure is to start from classical me-
chanics, and then to convert the equations to quantum mechanical form; we obtain a
relativistically-correct second-order wave equation known as the Klein–Gordon equa-
tion. Dirac’s wave equation is linear in the momentum operator and is so constructed
that its eigenvalues and eigenfunctions are also solutions of the Klein–Gordon equa-
tion. We shall show that the electron kinetic energy term introduced in the previous
chapter emerges from the Dirac equation, together with additional terms previously
represented by H(S ) in the electronic Hamiltonian. Our discussion is by no means a
derivation of the Dirac equation; it is only intended to explain some of the more im-
portant steps, and to lead the reader into the more complete descriptions provided by
Dirac [1], Schiff [2], and Rose [3], among others. Somewhat more gentle introductions
to the theory which we have found particularly valuable are the books by Moss [4] and
Hannabuss [5].

The problem of units is discussed in the Preface to this book. In this and all of the
following chapters, we use SI units. It is a fact, however, that almost all of the relevant
original literature gives expressions in terms of cgs units. The relationships between
cgs and SI units are straightforward and are summarised in General Appendix E. We
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therefore hope that the reader of chapters 8 to 11 will not find it too difficult to relate
the theory and analysis of specific spectra described in this book to those presented in
the original literature.

We start by considering the relativistic classical mechanics of a particle in free
space. As we have already seen in chapter 2, the momentum P of the particle is given
by

P = mV

[1 − (V 2/c2)]1/2
, (3.1)

and the relativistic Lagrangian is

L = −mc2[1 − (V 2/c2)]1/2. (3.2)

Now the energy of the particle is given by the sum of the kinetic and potential energies,
and is equal to

E = P · V − L (3.3)

= mc2

[1 − (V 2/c2)]1/2
. (3.4)

Note from this equation that when the particle is at rest (V = 0) the energy E is equal
to mc2, which is therefore known as the rest energy. Note also that for small velocities,

E � mc2 + (1/2)mV 2, (3.5)

i.e. the rest energy plus the non-relativistic kinetic energy.
Now by combining equations (3.1) and (3.4) we obtain an important relationship

between the energy and momentum of the particle, namely,

E2 = c2 P2 + m2c4. (3.6)

We now pass from classical to quantum mechanics by means of the usual substitutions,

E → ih
∂

∂t
, P → −ih∇. (3.7)

Equation (3.6) may then be rewritten as a wave equation,(
∇2 − 1

c2

∂2

∂t2
− m2c2

h2

)
Ψ = 0. (3.8)

This important equation is known as the Klein–Gordon equation, and was proposed
by various authors [6, 7, 8, 9] at much the same time. It is, however, an inconvenient
equation to use, primarily because it involves a second-order differential operator with
respect to time. Dirac therefore sought an equation linear in the momentum operator,
whose solutions were also solutions of the Klein–Gordon equation. Dirac also required
an equation which could more easily be generalised to take account of electromagnetic
fields. The wave equation proposed by Dirac was [10]

(E − cα · P − βmc2)Ψ = 0, (3.9)
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and we can compare this with the Klein–Gordon equation in order to learn about the
quantities α and β, which make the eigenfunctions of (3.9) also eigenfunctions of (3.8).
If we premultiply (3.9) by (E + cα · P + βmc2) we obtain the expression{

E2 − c2
[
α2

x P2
x + α2

y P2
y + α2

z P2
z + (αxαy + αyαx )Px Py

+ (αyαz + αzαy)Py Pz + (αzαx + αxαz)Pz Px

]
− mc3[(αxβ + βαx )Px + (αyβ + βαy)Py

+ (αzβ + βαz)Pz] − m2c4β2}Ψ = 0. (3.10)

Noting that the Klein–Gordon equation can be written in the form

{
E2 − c2

(
P2

x + P2
y + P2

z

) − m2c4
}
Ψ = 0, (3.11)

we see that equations (3.10) and (3.11) agree with each other if

α2
x = α2

y = α2
z = β2 = 1, (3.12)

αxαy + αyαx = αyαz + αzαy = αzαx + αxαz = 0, (3.13)

αxβ + βαx = αyβ + βαy = αzβ + βαz = 0. (3.14)

Thus the four quantities αx ,αy,αz and β anticommute with each other, and their
squares are unity. Investigation of these properties reveals that β and the components
of α can be represented by 4 × 4 matrices which are, explicitly

β =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 αx =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 αy =




0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0




(3.15)

αz =




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


 ·

These matrices may be conveniently abbreviated by writing them in the form

β =
[
1 0
0 −1

]
, α =

[
0 σ′

σ′ 0

]
, (3.16)

where each element is a 2 × 2 matrix. Note that the matrices αx ,αy,αz are regenerated
from (3.16) if the components of σ′ are the Pauli matrices introduced in the previous
chapter.

Hence the Dirac Hamiltonian is given by

H = cα · P + βmc2, (3.17)

and for an electron in the presence of an electromagnetic field this becomes

H = cα · (P + eA) + βmc2 − eφ (3.18)
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where, as in chapter 2, the charge on the electron is −e, and A and φ are the magnetic
vector potential and scalar potential respectively.

Since α and β are represented by 4 × 4 matrices, the wave functionΨmust also be
a four-component function and the Dirac wave equation (3.9) is actually equivalent to
four simultaneous first-order partial differential equations which are linear and homo-
geneous in the four components of Ψ. According to the Pauli spin theory, introduced
in the previous chapter, the spin of the electron requires the wave function to have only
two components. We shall see in the next section that the wave equation (3.9) actually
has two solutions corresponding to states of positive energy, and two corresponding
to states of negative energy. The two solutions in each case correspond to the spin
components.

3.2. Solutions of the Dirac equation in field-free space

The wave function Ψ ≡ Ψ (R, t) may be written as a four-component spinor

Ψ (R, t) =



ψ1(R, t)
ψ2(R, t)
ψ3(R, t)
ψ4(R, t)


 , (3.19)

and solutions of the form

ψ j (R, t) = u j e
i(k·R−ωt) ( j = 1, 2, 3, 4), (3.20)

where the u j are numbers, can be found. These functions are eigenfunctions of the
operators ih(∂/∂t) and −ih∇ with eigenvalues hω and hk respectively. Substitution
of (3.20) into the Dirac equation (3.9) yields four simultaneous equations in the u j

coefficients, which are

(E − mc2)u1 − cPzu3 − c(Px − iPy)u4 = 0,

(E − mc2)u2 + cPzu4 − c(Px + iPy)u3 = 0,

(E + mc2)u3 − cPzu1 − c(Px − iPy)u2 = 0,

(E + mc2)u4 + cPzu2 − c(Px + iPy)u1 = 0.

(3.21)

The condition for non-trivial solutions is that the determinant of the coefficients is zero,
yielding

(E2 − m2c4 − c2 P2)2 = 0. (3.22)

Note that this relationship is in agreement with our previous equation (3.6) connecting
the energy and momentum. Now equation (3.22) reveals the existence of positive and
negative energy solutions, i.e.

E+ = +(c2 P2 + m2c4)1/2, (3.23)

E− = −(c2 P2 + m2c4)1/2. (3.24)
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For the positive energy value we obtain two linearly independent solutions, which are

u1 = 1, u2 = 0, u3 = cPz

E+ + mc2
, u4 = c(Px + iPy)

E+ + mc2
, (3.25)

u1 = 0, u2 = 1, u3 = c(Px − iPy)

E+ + mc2
, u4 = − cPz

E+ + mc2
. (3.26)

Similarly, for the negative energy value, two new solutions are obtained,

u1 = cPz

E− − mc2
, u2 = c(Px + iPy)

E− − mc2
, u3 = 1, u4 = 0, (3.27)

u1 = c(Px − iPy)

E− − mc2
, u2 = − cPz

E− − mc2
, u3 = 0, u4 = 1. (3.28)

Hence, in general, three of the components are non-zero. In the non-relativistic limit, as
E+ = E− ≈ mc2, the eigenfunctions corresponding to positive energy states approach
ψ1(R, t) and ψ2(R, t) and, conversely, ψ3(R, t) and ψ4(R, t) become the solutions
with negative energy. Now we shall only be seriously interested in the positive energy
solutions, which correspond to electron wave functions. Nevertheless the existence of
coupling terms between the positive and negative energy states (the latter are referred to
as positron states) must be taken into account if the theory is to be relativistically correct.
The positron was, in fact, discovered some five years later by Anderson [11]. Foldy
and Wouthuysen [12] showed that the four-component Dirac equation can be reduced
to a relativistically correct two-component wave equation for the electron by means of
a unitary transformation. The importance of the Foldy–Wouthuysen transformation is
that it can also be applied to the Dirac Hamiltonian for an electron in an electromagnetic
field (equation (3.18)); we shall describe the method in detail in section 3.4.

3.3. Electron spin magnetic moment and angular momentum

We now show that the Dirac Hamiltonian (3.18) leads naturally to the result that the
electron has an intrinsic magnetic moment arising from angular momentum of magni-
tude (1/2) h, which we describe as spin angular momentum. The Dirac Hamiltonian
for an electron (charge −e) in an electromagnetic field (3.18) is

H = −eφ + cα · (P + eA ) + βmc2. (3.29)

Rearranging and squaring leads to the result,{
H

c
+ eφ

c

}2

= {α · (P + eA ) + βmc}2 (3.30)

= [α · (P + eA )]2 + m2c2. (3.31)

In passing from (3.30) to (3.31) we have made use of the anticommutation relations
(3.14) and also of the fact that β2 = 1. It is now convenient to express α as ρσ where
σ is a three-component vector, each component of which is represented by a 4 × 4
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matrix, called a Dirac spin matrix. To be explicit,

ρ =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 σx =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




(3.32)

σy =




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0


 σz =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 ;

ρ commutes with σ and with [P +eA ]; also ρ2 = 1, therefore

[α · (P + eA )]2 = [σ · (P + eA )][σ · (P + eA )]. (3.33)

The commutation properties of σ allow one to establish the vector identity,

(σ · B)(σ · C ) = (B · C ) + iσ(B ∧ C ). (3.34)

We thus obtain the results

[σ · (P + eA )][σ · (P + eA )] = (P + eA )2 + iσ · (P + eA ) ∧ (P + eA ) (3.35)

= (P + eA )2 + ieσ · [(A ∧ P) + (P ∧ A )] (3.36)

= (P + eA )2 + iσ · [−ihe curlA ] (3.37)

= (P + eA )2 + eh(σ · B). (3.38)

We have here made use of Maxwell’s result that curl A gives the magnetic field intensity
B. Combining equations (3.31) and (3.38) we obtain the result,{

H

c
+ eφ

c

}2

= (P + eA)2 + eh(σ · B) + m2c2. (3.39)

Now for an electron which is moving slowly (i.e. with small momentum) we may
put H equal to mc2 + H1, where H1 is small compared with mc2. If we make this
replacement in (3.39), neglect H

2
1 and terms involving c−2, and divide through by 2m,

we obtain a non-relativistic Hamiltonian,

H1 = 1

2m
(P + eA )2 + he

2m
(σ · B) − eφ. (3.40)

This equation is the same as the classical Hamiltonian for a slowly moving electron,
except for the middle term. This term represents an additional potential energy and may
be interpreted as arising from the electron having a magnetic moment −(eh/2m)σ. It
was shown in equations (3.25) and (3.26) that the ψ3 and ψ4 components of the wave
function are large in comparison with theψ1 andψ2 components for the positive energy
solutions. Now the relations

α =
[

0 σ′

σ′ 0

]
, σ =

[
σ′ 0
0 σ′

]
, (3.41)
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show that σ operating on the four-component wave function is the same asσ′ operating
on the large components alone.

Equation (3.40) reveals the existence of the spin magnetic moment through its
coupling with an external magnetic field. The electron spin carries no energy itself
and can therefore only be observed through its coupling with the orbital motion of
the electron. This coupling can be made apparent, either through demonstration of
the conservation of total angular momentum, or through derivation of the spin–orbit
coupling energy. We shall be dealing with spin–orbit coupling later in this chapter, so
we here consider the first proposition.

We use the Dirac Hamiltonian in field-free space,

H = cα · P + βmc2, (3.42)

and see if the orbital angular momentum L commutes with the relativistic Hamiltonian
H, as it does with the classical Hamiltonian. We can deal with each component of L in
turn, and consider first the Lz component.

We have

[H, Lz] = HLz − LzH = c[α · (P Lz) − α · (Lz P)] (3.43)

= cρσ · [P, Lz] (3.44)

= cρ{σx [Px , Lz] + σy[Py, Lz] + σz[Pz, Lz]}. (3.45)

Remembering that

hLz = x Py − y Px , (3.46)

and also noting the commutation relations between Px , Py , Pz we readily establish the
results

[Px , Lz] = −iPy, [Py, Lz] = iPx , [Pz, Lz] = 0. (3.47)

Consequently (3.45) yields the result that H and Lz do not commute, but that

[H, Lz] = −icρ{σx Py − σy Px }. (3.48)

Let us now consider the commutation of H and σz . We have

[H,σz] = cρ[(σ · P),σz]

= cρ{[σx ,σz]Px + [σy,σz]Py + [σz,σz]Pz}. (3.49)

Noting now the commutation relations

[σx ,σz] = −2iσy, [σy,σz] = 2iσx , [σz,σz] = 0, (3.50)

we find that H and σz do not commute, but that

[H,σz] = 2icρ{−σy Px + σx Py}. (3.51)

Hence the relativistic Hamiltonian H does not commute with either Lz or σz separately,
but by combining equations (3.48) and (3.51) we find that H does commute with
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Lz + (1/2)σz , i.e.

[H, Lz + (1/2)σz] = [H, Lz] + (1/2)[H,σz] (3.52)

= −icρ{σx Py − σy Px − σx Py + σy Px } (3.53)

= 0. (3.54)

Now similar results are readily obtained for the x and y components of L and σ, so
that although H does not commute separately with L and σ, it does commute with
L + (1/2)σ,

[H, L + (1/2)σ] = 0. (3.55)

L + (1/2)σ is therefore a constant of the motion and we conclude that, in addition
to possessing orbital angular momentum L, the electron also possesses spin angular
momentum hS, where S = (1/2)σ. Moreover, if the spin magnetic momentµS is given
by

µS = −gSµB S, (3.56)

where µB is the Bohr magneton, equal to eh/2m, we see from (3.40) that the electron
spin g value, gS , is equal to 2. The corresponding result for the orbital magnetic moment
is that gL = 1. These predictions are in agreement with experiment. Thus the Dirac
theory not only predicts the existence of electron spin angular momentum, but also
accounts for what had previously been called the anomalous magnetic moment of the
electron.

3.4. The Foldy–Wouthuysen transformation

In section 3.2 we pointed out that the Dirac Hamiltonian contains operators which
connect states of positive and negative energy. What we now seek is a Hamiltonian
which is relativistically correct but which operates on the two-component electron
functions of positive energy only. We require that this Hamiltonian contain terms
representing electromagnetic fields, and Foldy and Wouthuysen [12] showed, by a
series of unitary transformations, that such a Hamiltonian can be derived. The Dirac
Hamiltonian

H = βmc2 − eφ + cα · (P + eA), (3.57)

contains the even operator E = −eφ, which has vanishing matrix elements between
electron and positron wave functions, and the odd operator O = cα · [P + eA] whose
corresponding matrix elements are non-vanishing. Thus we can write (3.57) as

H = βmc2 + E + O, (3.58)

and seek a unitary transformation which, to a certain level of accuracy, yields a
Hamiltonian containing only even operators. The term βmc2 is an even operator but is
kept separate from the other even operator (−eφ) because they are of different orders
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of magnitude. In the Foldy–Wouthuysen transformation the odd operator O in the Dirac
Hamiltonian is removed by a unitary transformation, as we shall see. Although other
odd operators are introduced by the transformation, they are of higher order in α; the
aim is to obtain a Hamiltonian correct to order mc2α4.

Before proceeding we must state a few important properties of the operators E and
O. These are

(i) E commutes with β, but O anticommutes with β, i.e.

Eβ = βE, Oβ = −βO, βEβ = E, βOβ = −O since β2 = 1; (3.59)

(ii)

E × E = E, E × O = O, O × O = E. (3.60)

Now the Schrödinger equation is written

ih
∂ψ

∂t
= Hψ, (3.61)

and we consider the unitary transformationψ ′ = eiS̄ψ where S̄ is a Hermitian operator.
We find that

ih
∂ψ ′

∂t
= ih

∂

∂t
(eiS̄ψ) (3.62)

= ih

(
∂eiS̄

∂t

)
ψ + i heiS̄

(
∂ψ

∂t

)
(3.63)

= ih

(
∂eiS̄

∂t

)
e−iS̄ψ ′ + eiS̄

He−iS̄ψ ′. (3.64)

Hence ψ ′ is an eigenfunction satisfying the transformed Schrödinger equation

ih
∂ψ ′

∂t
= H

′ψ ′, (3.65)

where

H
′ = eiS̄

He−iS̄ + ih

(
∂eiS̄

∂t

)
e−iS̄. (3.66)

The transformed Hamiltonian H
′can be written in a more useful form by expanding

the exponentials in (3.66), i.e.

H
′ =

[
1 + iS̄ + i2

2
S̄2 + · · ·

]
H

[
1 − iS̄ + i2

2
S̄2 − · · ·

]

+ ih

[
i
∂S̄

∂t
+ i2

2
S̄

∂S̄

∂t
+ i2

2

∂S̄

∂t
S̄ + · · ·

] [
1 − iS̄ + i2

2
S̄2 − · · ·

]
(3.67)

= H + i[S̄,H] + i2

2!
[S̄,[S̄,H]] + i3

3!
[S̄, [S̄, [S̄,H]]] + · · ·

− h
∂S̄

∂t
− ih

2

[
S̄,

∂S̄

∂t

]
− i2

2!

h

3

[
S̄,

[
S̄,

∂S̄

∂t

]]
− i3

3!

h

4

[
S̄,

[
S̄,

[
S̄,

∂S̄

∂t

]]]
− · · · .

(3.68)
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Now Foldy and Wouthuysen suggested that if H is the Dirac Hamiltonian (3.58), the
operator S̄ should be given by

S̄ = − iβO

2mc2
. (3.69)

The transformed Hamiltonian H
′ will then be given by (3.68) and we therefore evaluate

the commutator brackets occurring in that expression. We find, for example,

[S̄,H] =
[
− iβO

2mc2
,βmc2

]
+

[
− iβO

2mc2
, E

]
+

[
− iβO

2mc2
, O

]
(3.70)

= i

{
O − β

2mc2
[O, E] − βO

2

mc2

}
, (3.71)

[S̄, [S̄,H]] = βO
2

mc2
+ 1

4m2c4
[O, [O, E]] + O

3

m2c4
, (3.72)

[S̄, [S̄, [S̄,H]]] = iO
3

m2c4
− iβ

8m3c6
[O, [O, [O, E]]] − iβO

4

m3c6
, (3.73)

etc.
Similarly we find that

∂S̄

∂t
= − iβ

2mc2

∂O

∂t
, (3.74)

[
S̄,

∂S̄

∂t

]
= 1

4m2c4

[
O,

∂O

∂t

]
, (3.75)

[
S̄,

[
S̄,

∂S̄

∂t

]]
= − iβ

8m3c6

[
O,

[
O,

∂O

∂t

]]
, (3.76)

etc.
We substitute these results in equation (3.68) and obtain the transformed Hamiltonian

H
′ = βmc2 + E + βO

2

2mc2
− 1

8m2c4

{[
O, [O, E] + ih

∂O

∂t

]}
− βO

4

8m3c6
+ · · ·

+ β

2mc2

{
[O, E] + ih

∂O

∂t

}
− O

3

3m2c4
+ higher-order terms. (3.77)

Now the first row in the transformed Hamiltonian (3.77) consists of terms which contain
even operators only, and the second row contains odd operators only. We have carried
out the expansion up to terms including 1/c2, higher-order terms being neglected.
However the significant feature of H

′ is that whereas it contains even terms of order c2,
c0and c−2, the odd terms are of order c−1; in the starting Hamiltonian (3.58) the odd
term was of order c+1. The transformation has therefore reduced the importance of the
odd terms, and if we wish to proceed further and obtain a Hamiltonian which, to order
c−2, contains only even operators, we can repeat the transformation process. The new
starting Hamiltonian is written as

H
′ = βmc2 + E

′ + O
′, (3.78)
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where

E
′ = E + βO

2

2mc2
− 1

8m2c4

{[
O, [O, E] + ih

∂O

∂t

]}
− βO

4

8m3c6
+ O(mc2α6), (3.79)

and

O
′ = β

2mc2

{
[O, E] + ih

∂O

∂t

}
− O

3

3m2c4
+ O(mc2α5). (3.80)

To order 1/c2, the new transformed Hamiltonian H
′′ is given by

H
′′ = H

′ + i[S̄′,H
′], (3.81)

where H
′ is given by (3.77) and S̄′ is put equal to −iβO

′/2mc2, by analogy with (3.69).
We readily find that

i[S̄,H
′] = − β

2mc2

{
[O, E] + ih

∂

∂t

}
+ O

3

3m2c4
+ higher–order terms (3.82)

and substitution in (3.81) yields the result

H
′′ = βmc2 + E + βO

2

2mc2
− 1

8m2c4

{[
O, [O, E] + ih

∂O

∂t

]}
− βO

4

8m3c6
. (3.83)

We have therefore achieved our objective in that equation (3.83), which is correct to
order 1/c2, contains even operators only. It would, of course, be possible to proceed
further with the Foldy–Wouthuysen transformation but there is little point in doing
so, since the theory is inaccurate in other respects. For example, we have treated the
electromagnetic field classically, instead of using quantum field theory. Furthermore,
we shall ultimately be interested in many-electron diatomic molecules, for which it
will be necessary to make a number of assumptions and approximations.

Since equation (3.83) contains even operators only, we may set β equal to 1, and
substituting for E and O we obtain the Hamiltonian which is appropriate to positive
energy states only,

H
′′ = mc2 − eφ + 1

2m
(α · π)2 − 1

8m2c2

[
(α · π), [(α · π), (−eφ)] + ih

∂

∂t
(α · π)

]

− 1

8m3c2
(α · π)4, (3.84)

whereπ = P + eA. We now expand (3.84) and examine the various terms which arise.
We deal first with the third term in (3.84) and using equation (3.34), together with the
fact that ρ2 = 1, we obtain

(α · π)2 = ρ2(σ · π)2 (3.85)

= π2 + iσ · (π ∧ π). (3.86)

Equation (3.86) can be further expanded using the previous results given in (3.35) to
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(3.38) and we find that

1

2m
(α · π)2 = 1

2m
{π2 + eh(σ · B)} (3.87)

= π2

2m
+ gSµB S · B (3.88)

We next consider the fourth term in the Hamiltonian (3.84). First we note the results

[(α · π), (−eφ)] = −eα · (πφ − φπ) (3.89)

= iheα · (∇φ), (3.90)

ih
∂

∂t
(α · π) = ihα · ∂

∂t
(P + eA) (3.91)

= iheα · ∂A

∂t
. (3.92)

We then combine equations (3.90) and (3.92), obtaining the result

[(α · π), (−eφ)] + ih
∂

∂t
(α · π) = iheα ·

{
(∇φ) + ∂A

∂t

}
(3.93)

= −iheα · E. (3.94)

In passing from (3.93) to (3.94) we have made use of the definition of the electric field
intensity E. We complete our expansion of the fourth term in (3.84) by using (3.94)
and find that

[(α · π), (−iheα · E)] = −ihe[(α · π), (α · E)] (3.95)

= −ihe{π · E − E · π + iσ · (π ∧ E − E ∧ π)} (3.96)

= −h2e∇ · E + 2heS · (π ∧ E − E ∧ π). (3.97)

Finally, the last term in (3.84) gives, on expansion,

− 1

8m3c2
(α · π)4 = − 1

8m3c2
{π2 + eh(σ · B)}2 (3.98)

= − 1

8m3c2
{π4 + 2eh(σ · B)π2 + e2h2(σ · B)2} (3.99)

= − π4

8m3c2
− gSµB

m2c2
(S · B)π2 + · · · . (3.100)

The last term in equation (3.99) is of too high an order to be retained.
We can now collect the results given in equations (3.88), (3.97) and (3.100) and

obtain the required Hamiltonian (we drop the primes on H
′′),

H = mc2 − eφ + π2

2m
+ gSµB S · B + eh2

8m2c2
∇ · E − eh

4m2c2
S · (π ∧ E − E ∧ π)

− π4

8m3c2
− gSµB

m2c2
(S · B)π2. (3.101)

The first term is the rest mass energy and the second term represents the electric
potential (which we shall examine in detail later). The third term is the kinetic energy
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of the electron, whilst the seventh term (−π4/8m3c2) is a relativistic correction to
the kinetic energy. The fourth term gSµB S · B represents the interaction of the spin
magnetic moment with the magnetic field B; we met this term previously in equation
(3.40). The fifth term (eh2∇ · E/8m2c2), which has no analogue in non-relativistic
quantum mechanics, is called the Darwin term [13]. The sixth term represents the
fact that a moving magnetic moment creates a perpendicular electric moment, which
interacts with the electric field E. Finally, the last term is a relativistic correction to the
electron g factor.

In due course we shall expand the Hamiltonian (3.101) still further by replacing π

by (P + e A) and proceed to examine the magnetic vector potential and scalar electric
potential in detail.

3.5. The Foldy–Wouthuysen and Dirac representations for a free particle

One can gain some insight into the nature of the Dirac wave equation and the spin
angular momentum of the electron by considering the Foldy–Wouthuysen transforma-
tion for a free particle. In the absence of electric and magnetic interactions, the Dirac
Hamiltonian is

H = βmc2 + cα · P. (3.102)

In field-free, four-dimensional space, the sequence of Foldy–Wouthuysen transforma-
tions can be summed to infinity and written in closed form,

ψ ′ = eiS̄ψ, (3.103)

where the operator S̄ is now given by

S̄ = − iβ(α · P)

2P
f. (3.104)

The f is a function of (P/mc), to be chosen 1ater, which will remove odd operators
from the transformed Hamiltonian, and P = (P2)1/2. Now since S̄ is not explicitly
time-dependent, the transformed Hamiltonian is given from equation (3.66) by

H
′ = eiS̄

He−iS̄. (3.105)

S̄ and H anticommute, and by expanding the exponentials it may readily be proved
that

He−iS̄ = eiS̄
H, (3.106)

from which

H
′ = e2iS̄

H. (3.107)
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We now expand the exponential in equation (3.107) obtaining

e2iS̄ = 1 + 2iS̄ + 4i2S̄2

2!
+ 8i3S̄3

3!
+ 16i4S̄4

4!
+ 32i5S̄5

5!
+ · · · (3.108)

=
[

1 − 4S̄2

2!
+ 16S̄4

4!
− · · ·

]
+

[
2iS̄ + 8i3S̄3

3!
+ 32i5S̄5

5!
+ · · ·

]
. (3.109)

Now consider the first series in (3.109) containing even powers of S̄. From (3.104) we
obtain

S̄2 = − [β(α · P)]2

4P2
f 2 = 1

4
f 2, since [β(α · P)]2 = −P2. (3.110)

Similarly S̄4 = (1/16) f 4, etc., so that the first series may be written[
1 − 4S̄2

2!
+ 16S̄4

4!
− · · ·

]
=

[
1 − f 2

2!
+ f 4

4!
− · · ·

]
= cos f. (3.111)

Next consider the second series in (3.109) which contains odd powers of S̄. From
(3.104) it is clear that

2iS̄ = β(α · P)

P
f, (3.112)

8i3S̄3

3!
= (2iS̄)(4S̄2)

3!
= β(α · P)

P

f 3

3!
, (3.113)

etc.
The series may therefore be expressed as[

2iS̄ + 8i3S̄3

3!
+ 32i5S̄5

5!
+ · · ·

]
= β(α · P)

P

[
f − f 3

3!
+ f 5

5!
− · · ·

]
(3.114)

= β(α · P)P−1 sin f. (3.115)

Hence by using (3.111) and (3.115) we see that the transformation (3.107) can be
written

H
′ = [cos f + β(α · P)P−1 sin f ]H (3.116)

= [cos f + β(α · P)P−1 sin f ][βmc2 + cα · P] (3.117)

= βmc2 cos f − β2mc2(α · P)P−1 sin f + cα · P cos f

+βc(α · P)2 P−1 sin f (3.118)

= β[mc2 cos f + cP sin f ] + c(α · P)P−1[P cos f − mc sin f ]. (3.119)

Note that the minus sign appears in (3.118) because β anticommutes with the compo-
nents of α, equation (3.14). We have now to make a choice for the function f and it
is clear that our aim should be to eliminate the second term in (3.119) which contains
the odd operators. The appropriate choice is

f = tan−1(P/mc), (3.120)
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in which case

sin f = (P/mc) cos f. (3.121)

Substituting for sin f in (3.119) we obtain the result

H
′ = β[mc2 + (P2/m)] cos f. (3.122)

We can eliminate cos f from this expression by squaring, using equation (3.121) to
substitute for cos f , and then taking the square root,

H
′ = β

[(
mc2 + P2

m

)2

cos2 f

]1/2

(3.123)

= β

[(
m2c4 + P4

m2
+ 2c2 P2

)
(m2c2/(P2 + m2c2))

]1/2

(3.124)

= β[m2c4 + c2 P2]1/2. (3.125)

Equation (3.125) is the required transformed Hamiltonian, and we see that in the
representation in which β is diagonal, the Dirac equation decomposes into uncoupled
equations for the upper and lower components of the wave function, i.e. for electron
and positron wave functions. Setting β equal to +1 gives the positive energy (electron)
states, whilst β equals −1 gives the negative energy (positron) states.

In performing the similarity transformation above, we have changed our represen-
tation of the particle from a Dirac representation to the so-called Foldy–Wouthuysen
representation. This new representation provides a very simple link with the non-
relativistic Schrödinger–Pauli representation. The latter, which is a two-component re-
presentation, just corresponds to the two upper components of the Foldy–Wouthuysen
representation (3.125). It must be noted that under a similarity transformation such as
(3.105), the operators which represent physical observables are also transformed. For
example, the position observable whose operator is R in the Dirac representation is
transformed to R ′′ in the Foldy–Wouthuysen representation where

R ′′ = eiS̄ Re−iS̄

= R + i[S̄, R] + (i2/2)[S̄, [S̄, R]] + · · · . (3.126)

Appreciation of this fact leads to an understanding of some of the peculiar properties
of the electron, including electron spin.

The explicit form of the position operator R ′′ in the Foldy–Wouthuysen repre-
sentation can be obtained by substituting S̄ from equations (3.104) and (3.120) into
(3.126). After some manipulation, the final result is

R ′′ = R − ihcβα

2E+
+ ihc3β(α · P)P

2E2+(E+ + mc2)
− hc2σ ∧ P

2E+(E+ + mc2)
(3.127)

where

E+ = (m2c4 + c2 P2)1/2. (3.128)
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We must therefore ask what is the significance of the operator R ′′ in the Foldy–
Wouthuysen representation. This new observable, which is called the mean position,
has an operator representative in the Dirac representation R̄ where

R̄ = e−iS̄ ReiS̄ = R + ihcβα

2E+
− ihc3β(α · P)P

2E2+(E+ + mc2)
− hc2σ ∧ P

2E+(E+ + mc2)
. (3.129)

The significance of (3.127) is that a wave function which corresponds to the particle
being located at a definite point in the Dirac representation changes to a wave function
in the Foldy–Wouthuysen representation which now corresponds to the particle being
spread out over a finite region. Equation (3.129) shows that the converse is also true.
These relationships are more easily appreciated if we consider the motion executed
by a free electron. The instantaneous value of any one component of the electron’s
velocity is +c or −c, but the periodic frequency of such motion is very high and the
amplitude of the motion is very small. This motion, which Schrödinger [14] called the
Zitterbewegung (literally, quivering motion), is superimposed on whatever slow motion
the electron may have. Thus we can visualise the electron following a tight helical spiral
on top of a comparatively lazy orbital motion through space. We now see that the mean
position operator, R̄, corresponds to the mean position of the Zitterbewegung; the
electron is actually executing a very rapid motion of very small amplitude about this
position and so it appears to have a non-local distribution in the Foldy–Wouthuysen
representation.

The electron moves in a similar way in the presence of an external electromag-
netic field except that the Zitterbewegung is no longer exactly periodic. In the Foldy–
Wouthuysen representation, therefore, the interaction between the electron and the field
is similar to that arising from a spatially extended charge and current distribution. It is
the spiralling motion of the electron that gives rise to its magnetic moment rather than
any spinning motion about an axis through the particle, a concept which is entirely
bogus. The effective spatial extension of the electron about its mean position is also
responsible for the Darwin correction to the electrostatic energy that occurs in equation
(3.101).

We saw in section 3.3 that neither the orbital (hL = R ∧ P) nor the spin (1/2)hσ

angular momenta commute with the Dirac Hamiltonian and are not therefore separate
constants of motion, although their sum is. However, we can construct the mean orbital
angular momentum and mean spin angular momentum operators in the same way as
in equation (3.129). These operators are, respectively,

R ∧ P and (1/2)hσ (3.130)

in the Foldy–Wouthuysen representation, and

R̄ ∧ P and (1/2)h

{
σ − icβ(α ∧ P)

E+
− c2 P ∧ (σ ∧ P)

E+
(
E+ + mc2

)
}

(3.131)

in the Dirac representation. Both operators in (3.131) commute with the Dirac
Hamiltonian and are separately constants of motion for the free particle. Note that
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it is the mean spin observable which is to be associated with the spin observable in the
Schrödinger–Pauli representation, not (1/2)hσ itself.

3.6. Derivation of the many-electron Hamiltonian

In section 3.4 we derived the Hamiltonian for a single electron in the presence of
external magnetic and electric fields. The starting point was the Dirac equation, which
is invariant to a Lorentz transformation of the space and time coordinates. When we
consider more than one electron, however, we encounter the problem that a wave
equation which is properly Lorentz invariant is not available. In a later section we shall
discuss the Breit equation for two electrons, which is approximately Lorentz invariant.
For the moment we follow the usual course of assuming that the Dirac equation can be
generalised to many electrons, the main justification for which is that the predictions
of the resulting theory are in remarkable agreement with experiment. The effects of
electron–electron and electron–nuclear interactions are incorporated into the theory
by calculating the magnetic and electric potentials at electron i which arise from the
motions and positions of all the other electrons and nuclei. In this section we derive
a Hamiltonian which excludes effects that arise from external magnetic and electric
fields; in the following section we shall include external fields, and in the next chapter
we will examine the additional effects arising from nuclear spin. We use classical
theory to calculate the magnetic and electric potentials, but Itoh [15] has shown that
essentially the same Hamiltonian is obtained if quantum field theory is employed.

From classical magnetostatic theory, the magnetic vector potential at electron i is
given by

Ae
i = 1

(4πε0c2)

{
−

∑
j 
=i

µ j ∧ R j i

R3
j i

−
∑
j 
=i

e j V j

R ji

}
(3.132)

= gSh

(8πε0c2)

∑
j 
=i

e j

m j R3
j i

(S j ∧ R j i ) − 1

(4πε0c2)

∑
j 
=i

e j

m j R ji
π j . (3.133)

The first term arises from the spin magnetic moments of the other electrons, and the
second term comes from the orbital motions. R j i is equal to R j − Ri , the vector which
gives the position of electron j relative to electron i . Strictly speaking the second term
in (3.133) is incorrect for several reasons, but we will return to this point later.

The electric potential at electron i is given by

φi =
∑
α

Zαe

4πε0 Rαi
−

∑
j 
=i

e j

4πε0 R ji
, (3.134)

where the first term describes the potential due to the nuclei (α) of charge Zαe, and
the second term arises from the other electrons ( j). Again we shall consider a more
general form of the electrostatic potential in the next chapter, but (3.134) will suffice
for our present needs.
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In section 3.4 we carried out a Foldy–Wouthuysen transformation on the Dirac
Hamiltonian and obtained the result (3.84), correct to order c−2,

H = −eφ + 1

2m
(α · π)2 − 1

8m2c2

[
(α · π), [(α · π), (−eφ)] + ih

∂

∂t
(α · π)

]

− 1

8m3c2
(α · π)4, (3.135)

where π = P + eA. This Hamiltonian operates on the positive energy states only; in
other words, it has a two-component representation. In addition, the constant energy
term mc2 has been subtracted.

We now expand the different terms in (3.135), retaining only terms which are linear
in A, and obtain the results,

1

2m
(α · π)2 = 1

2m
{π2 + gSehS · (∇ ∧ A)}, (3.136)

1

8m3c2
(α · π)4 = 1

8m3c2
{π2 + gSehS · (∇ ∧ A)}2 (3.137)

= π4

8m3c2
+ gSµB

2m2c2
S · (∇ ∧ A)π2 + · · · , (3.138)

1

8m2c2

[
(α · π), [(α · π), (−eφ)] + ih

∂

∂t
(α · π)

]

= − eh2

8m2c2
∇ · ε − gSµB

2mc2
S · (ε ∧ π), (3.139)

where ε = −∇φ and is the electric field intensity at electron i due to the other electrons
and nuclei. Equation (3.136) is obtained by making use of (3.35) to (3.37), and (3.139)
follows from (3.90), (3.94) and (3.97), except that ε = −∇φ where φ is given by
(3.134). Our previous equations contained E, the applied electric field intensity, rather
than ε. If we now substitute (3.136), (3.138) and (3.139) in (3.135) we obtain the
Hamiltonian for electron i in the presence of other electrons:

Hi = −eiφi + π2
i

2mi
+ gSµB Si · (∇i ∧ Ae

i

)
− π4

i

8m3
i c2

+ ei h2

8m2
i c2

(∇i · εi ) + gSµB

2mi c2
Si · (εi ∧ πi ). (3.140)

The procedure is now to expand the terms in (3.140), using (3.133) and (3.134) to
evaluate Ae

i and φi and replacing πi by P i + eAe
i . Clearly, many terms are obtained

but we can simplify matters by neglecting all terms which are quadratic or higher order
in Ae

i and by neglecting terms in c−3 or higher. We examine each of the six terms in
(3.140) in turn. It is, of course, obvious that ei = e j = e and mi = m j = m in what
follows but we retain the subscripts to keep track of the two identical particles.

(i) −eiφi

From equation (3.134) we obtain

−eiφi =
∑
j 
=i

ei e j

4πε0 R ji
−

∑
α

Zαeei

4πε0 Rαi
. (3.141)



Derivation of the many-electron Hamiltonian 91

These are just the familiar Coulomb potentials.
(ii) π2

i

/
2mi

Since πi = P i + ei Ae
i we have

π2
i

2mi
= 1

2mi

{
P2

i + 2ei Ae
i · P i + Order

(
Ae

i

)2}
. (3.142)

Now from the first term of equation (3.133) we find

ei

mi
Ae

i · P i = gS hei

(8πε0mi c2)

∑
j 
=i

e j

m j R3
j i

(S j ∧ R j i ) · P i (3.143)

= gShei

(8πε0mi c2)

∑
j 
=i

e j

m j R3
j i

S j · (R j i ∧ P i ). (3.144)

Equation (3.144) represents the interaction of the spin of electron j with the
orbital motion of electron i relative to electron j ; it therefore makes a contribution
to the ‘spin–other-orbit’ interaction.
We could now proceed to substitute the second term of (3.133) for Ae

i in (3.142)
but, as mentioned earlier, the second term of (3.133) is incorrect. It has been found
that the correct form of the interaction between the momentum P i and this part
of the vector potential is obtained only if the retardation of the electromagnetic
potentials is included. We do not go into the details here but simply quote the
resulting contribution to (3.142),

ei

mi
Ae

i · P i = − ei

(8πε0mi c2)

∑
j 
=i

e j

m j

[
P j · 1

R ji
P i + (P j · R j i )

1

R3
j i

(R j i · P i )

]
.

(3.145)
This term represents the interaction between the orbital motions of the electrons
and is therefore known as the ‘orbit–orbit’ interaction.

(iii) gSµB Si · (∇i ∧ Ae
i

)
This term represents the scalar interaction between the spin of electron i and
the magnetic field created by the spin and orbital motions of the other electrons.
Substituting the first term of (3.133) for Ae

i yields

gSµB Si · (∇i ∧ Ae
i

) = g2
Sh2

(16πε0c2)

∑
j 
=i

ei e j

mi m j
Si ·

{
∇i ∧ (S j ∧ R j i )

R3
j i

}
(3.146)

= g2
Sh2

(16πε0c2)

∑
j 
=i

ei e j

mi m j
Si ·

{
S j

(
∇i · R j i

R3
j i

)
− (S j · ∇i )

R j i

R3
j i

}
.

(3.147)

The first term in (3.147) involves(
∇i · R j i

R3
j i

)
= −∇2

i

(
1

R ji

)
= −4πδ(3)(R j i ), (3.148)

where δ(3)(R j i ) is a Dirac delta function. Equation (3.148) is only strictly true
for a non-relativistic situation. Difficulties arise because the Foldy–Wouthuysen
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transformation is non-local over a domain characterised by the Zitterbewegung
(see section 3.4). The problem is particularly acute because it is just at the source
of the potentials that Ae

i and φi cease to be small enough to be treated non-
relativistically. However if we effect a cut-off of the singular potential at a distance
from the source which corresponds to the Zitterbewegung (≈ h/mc) it can be
shown that the non-relativistic approximation is valid provided that the energy
of the potential interaction is much less than mc2 at the cut-off point, which is
true for the cases that we deal with here.

The second term in (3.147) depends on

(S j · ∇i )
R j i

R3
j i

= S j
1

R3
j i

∇i · R j i + S j · R j i∇i
1

R3
j i

− S j
4π

3
δ(3)(R j i ) (3.149)

= −S j
1

R3
j i

+ 3(S j · R j i )
R j i

R5
j i

− S j
4π

3
δ(3)(R j i ). (3.150)

If we now combine (3.147) and (3.150) we obtain

gSµB Si · (∇i ∧ Ae
i

) = g2
Sh2

(16πε0c2)

∑
j 
=i

ei e j

mi m j

×
{

Si · S j

R3
j i

− 3(Si · R j i )(S j · R j i )

R5
j i

− 8π

3
δ(3)(R j i )Si · S j

}
.

(3.151)

This important term represents the ‘spin–spin’ interaction between pairs of
electrons.

We must now consider the orbital contribution to the magnetic vector potential
in (3.133). It can be shown that the magnetic field derived from this term in Ae

i

is given accurately by the expression in (3.133) since the curl of the correction
terms is zero. Thus we have

gSµB Si · (∇i ∧ Ae
i

) = − gSei h

8πε0mi c2

∑
j 
=i

e j

m j
Si ·

(
∇i ∧ 1

R ji
P j

)
(3.152)

= − gSei h

8πε0mi c2

∑
j 
=i

e j

m j
Si ·

(
R j i

R3
j i

∧ P j

)
. (3.153)

This term is another contribution to the spin–other-orbit interaction.

(iv) − π4
i

8m3
i c2

As before, we substitute P i + eAe
i for πi ; however only the leading term is

acceptable on the basis of our order of magnitude criterion so that we have

− π4
i

8m3
i c2

= − P4
i

8m3
i c2

+ order(1/c4). (3.154)
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(v)
eh2

8m2
i c2

(∇i · εi )

This term is very similar to the Darwin term. It is evaluated using equation
(3.134):

ei h
2

8m2
i c2

(∇i · εi ) = − ei h
2

8m2
i c2

(∇2
i φi

)
(3.155)

= − ei h
2

32πε0m2
i c2

[
∇2

i

{∑
α

Zαe

Rαi
−

∑
j 
=i

e

R ji

}]
(3.156)

= ei h
2

8ε0m2
i c2

{∑
α

Zαeδ(3)(Rαi ) −
∑
j 
=i

e jδ
(3)(R j i )

}
. (3.157)

Once again we have introduced the Dirac delta functions in a non-relativistic
approximation. The terms in (3.157) represent a correction to the Coulomb
potential.

(vi)
gSµB

2mi c2
Si · (εi ∧ πi )

This term is potentially the most complicated of the six terms in (3.140) since πi

can be replaced by a sum of three terms (i.e. P i + eAe
i with Ae

i given by (3.133)),
whilst from (3.134), φi gives rise to two terms. Thus six separate contributions
are possible. Once again, however, many of the possible terms are smaller than
permissible. We therefore simply replace πi by P i and use (3.134) to evaluate
εi , obtaining

εi = −∇iφi = −
∑
α

Zαe

4πε0 R3
αi

Rαi +
∑
j 
=i

e j

4πε0 R3
j i

R j i . (3.158)

Thus we find that

gSµB

2mi c2
Si · (εi ∧ πi ) = − gSei h

16πε0m2
i c2

Si ·
∑
α

Zαe

R3
αi

(Rαi ∧ P i )

+ gSei h

16πε0m2
i c2

∑
j 
=i

e j
Si

R3
j i

· (R j i ∧ P i ) + order (1/c4).

(3.159)

Equation (3.159) describes the spin-orbit coupling, the two terms involving the
nuclear and electronic potentials respectively. It is interesting to note that these
terms arise from the interaction between the electron spin magnetic moment and
the effective magnetic field created by the passage of the electron through the
electric field created by the other particles.

We are now in a position to present the total electronic Hamiltonian by summing
over all possible electrons i . We must be very careful, however, not to count the
various interactions twice. Thus on summing over i , we modify all terms which
are symmetric in i and j by a factor of 1/2. These terms are the electron–electron
Coulomb interaction (3.141), the orbit–orbit interaction (3.145), the spin–spin
interaction (3.151) and the spin–other-orbit interaction from (3.144) and (3.153).
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This last term actually has the explicit form

gSei h

8πε0mi c2

∑
j 
=i

e j

m j

{
1

R3
j i

S j · (R j i ∧ P i ) − 1

R3
j i

Si · (R j i ∧ P j )

}
. (3.160)

It can be seen that this term is indeed symmetric to interchange of i and j .
The second term in equation (3.157) is not exactly symmetrical with respect to
interchange of i and j and therefore does not require a factor of 1/2.

We have now completed our derivation of the electronic Hamiltonian when
external fields and nuclear spin effects are absent. In summary, the Hamiltonian
is as follows:

Hel =
1

2mi

∑
i

P2
i :electron kinetic energy

− 1

8m3
i c2

∑
i

P4
i :relativistic correction

+
∑
i, j 
=i

e2

8πε0 R ji
−

∑
i,α

Zαe2

4πε0 Rαi
:Coulomb energy

+ h2

8ε0c2

{∑
i,α

Zαe2

m2
δ(3)(Rαi ) −

∑
i, j 
=i

e2

m2
δ(3)(R j i )

}
:Darwin correction to

Coulomb energy

− gSh

16πε0c2

∑
i

e

m2
Si ·

{∑
α

Zαe

R3
αi

(Rαi ∧ P i ) −
∑
j 
=i

e

R3
j i

(R j i ∧ P i )

}
:spin–orbit

coupling

− gSh

8πε0c2

∑
i, j 
=i

e2

m2

1

R3
j i

Si · (R j i ∧ P j ) :spin–other-orbit coupling

− 1

16πε0c2

∑
i, j 
=i

e2

m2

{
P i · 1

R ji
P j + (P i · R j i )

1

R3
j i

(R j i · P j )

}
:orbit–orbit coupling

+ g2
Sh2

32πε0c2

∑
i, j 
=i

e2

m2

{
Si · S j

R3
j i

− 3(Si · R j i )(S j · R j i )

R5
j i

− 8π

3
δ(3)(R j i )Si · S j

}
.

:spin–spin coupling

(3.161)

3.7. Effects of applied static magnetic and electric fields

We now derive the additional terms in the Hamiltonian which arise from the application
of an external magnetic field. The magnetic vector potential will be a sum of the
contributions from the electrons (Ae

i ) and from the additional term

AB
i = (1/2)(B ∧ Ri ), (3.162)
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where B is the intensity of the applied magnetic field, assumed to be uniform (i.e.
the same at all electrons). Hence we re-examine the terms in equation (3.140) which
are linear in Ai , but this time we substitute AB

i rather than Ae
i . We also carry out the

summation over electrons at the same time.
With the substitution of (3.162), the contribution from the scalar product of AB

i

and P i in the second term of equation (3.140) is given by

e

m

∑
i

AB
i · P i = e

2m

∑
i

(B ∧ Ri ) · P i (3.163)

= µBh−1 B ·
∑

i

(Ri ∧ P i ). (3.164)

This term represents the interaction of the external magnetic field with the magnetic
moment arising from the orbital motion of the electrons. Next we investigate the third
term in (3.140) and find∑

i

gSµB Si · (∇i ∧ AB
i

) = gSµB

∑
i

Si · B. (3.165)

This term represents the coupling of the spin magnetic dipole moment with the applied
field, and was derived previously for a single electron in equation (3.101). Turning to
the fourth term in (3.140) we note that in the field free case we retained only the leading
term (i.e. P4

i ). However, the term linear in AB
i , although formally of order c−3, has been

found to contribute measurably to the Zeeman effect in some cases. The resulting term

−
∑

i

π4
i

8m3c2
= − 1

8m3c2

∑
i

4e
(

AB
i · P i

)
P2

i (3.166)

= − µB

2m2c2h
B ·

∑
i

(Ri ∧ P i )P2
i (3.167)

represents a correction to (3.164), arising from the relativistic increase in electron
mass and consequent decrease in its orbital magnetic moment.

A similar relativistic correction to the spin magnetic moment which is again of
order c−3 but nevertheless measurable comes from equations (3.135) and (3.138); if
we replace πi by P i we find that

− gSµB

2m2c2

∑
i

Si · (∇i ∧ AB
i

)
π2

i = − gSµB

2m2c2

∑
i

(Si · B)P2
i . (3.168)

The fifth term in (3.140) does not contain the magnetic vector potential and we proceed
to look at the last term. The expansion proceeds as outlined in (3.159) except that we
now consider the AB

i term in πi . Thus

gSµB

2mc2

∑
i

Si · (εi ∧ πi ) = gSµB

8πε0mc2

∑
i

Si ·
{∑

α

Zαe

R3
αi

Rαi −
∑
j 
=i

eR j i

R3
j i

}
∧ eAB

i

(3.169)



96 The electronic Hamiltonian

= gSµBe2

16πε0mc2

∑
i,α

Zα
R3
αi

Si · [Rαi ∧ (B ∧ Ri )]

− gSµBe2

16πε0mc2

∑
i, j 
=i

1

R3
j i

Si · [R j i ∧ (B ∧ Ri )]. (3.170)

Equation (3.170), which is again of order c−3, represents the influence of the external
magnetic field on the spin–orbit coupling, and although we have now dealt with all the
terms linear in AB

i we might expect to find similar modifications to the spin–other-orbit
and orbit–orbit interactions. In section 3.6 we neglected terms in (Ae

i )2 since they were
necessarily of order c−4. This is not true, however, of terms containing (AB

i )2 or the
cross-product Ae

i · AB
i . Inclusion of such terms in the expansion of π2

i yields

∑
i

π2
i

2m
→ e2

2m

∑
i

(Ai )
2

= gSe3h

16πε0m2c2

∑
i, j 
=i

1

R3
j i

(S j ∧ R j i ) · (B ∧ Ri )

− e3

8πε0m2c2

∑
i, j 
=i

1

R ji
P j · (B ∧ Ri ) + e2

8m

∑
i

(B ∧ Ri )
2 + · · · (3.171)

= gSe3h

16πε0m2c2

∑
i, j 
=i

1

R3
j i

Si · [Ri j ∧ (B ∧ R j )]

− e2

8πε0m2c2

∑
i, j 
=i

1

R ji
(B ∧ Ri ) · P j + e2

8m

∑
i

(B ∧ Ri )
2 + · · · . (3.172)

The first term represents the modification to the spin–other-orbit coupling by the exter-
nal field, the second term is the corresponding modification of the orbit–orbit coupling,
and the third term represents the electronic contribution to the diamagnetism. As with
the original orbit–orbit coupling term, the second term in (3.172) is incorrect since
it does not take account of the retardation effects. The correct form of this term is
actually

− e2

16πε0m2c2

∑
i, j 
=i

{
1

R ji
(B ∧ Ri ) · P j + 1

R3
j i

[Ri j · (B ∧ Ri )(Ri j · P j )]

}
. (3.173)

We now collect together the results of this section and summarise the Zeeman
Hamiltonian as

HZ =
gSµB

∑
i

Si · B

(
1 − P2

i

2m2c2

)
:interaction of B with spin magnetic moment

+µBh−1
∑

i

(Ri ∧ P i ) · B

(
1 − P2

i

2m2c2

)
:interaction of B with orbital magnetic

moment
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− gSµBe2

16πε0mc2

∑
i, j 
=i

1

R3
j i

Si · [R j i ∧ (B ∧ Ri ) − 2Ri j ∧ (B ∧ R j )]

:effect of B on spin–orbit and spin–other-orbit interactions

− e2

16πε0m2c2

∑
i, j 
=i

{
1

R ji
(B ∧ Ri ) · P j + 1

R3
j i

Ri j · (B ∧ Ri )(Ri j · P j )

}

:effect of B on spin–orbit interaction

+ e2

8m

∑
i

(B ∧ Ri )
2. :electron diamagnetism

(3.174)

Now we consider the results of applying a static uniform electric field E. The
electrostatic potential φi (see (3.134)) will now contain the extra term

φi = −E · Ri (3.175)

and hence the first, fifth and sixth terms of equation (3.140) will, in principle, be
modified. Substitution of (3.175) in the first term of (3.140) yields directly the result∑

i

−eφi = e
∑

i

E · Ri , (3.176)

which describes the interaction of the electronic charge cloud with the applied field E.
The fifth term in (3.140) does not give a contribution for homogeneous E since

∇i · εi = ∇i · ∇i (E · Ri ) = ∇i · E = 0. (3.177)

Term six, however, yields the result

gSµB

2mc2

∑
i

Si · (εi ∧ πi ) = gSµB

2mc2

∑
i

Si · (∇i (E · Ri ) ∧ πi ) (3.178)

= gSµB

2mc2

∑
i

Si · (E ∧ πi ). (3.179)

This term was encountered previously in the Hamiltonian for a single electron (3.101);
(E ∧ πi ) is essentially equivalent to a magnetic field, which interacts with the spin
magnetic moment. The term is, however, usually negligible in laboratory experiments.

Summarising, the electric field, or Stark, Hamiltonian may be written

HE = e
∑

i

E · Ri + gSµB

2mc2

∑
i

Si · (E ∧ πi ). (3.180)

3.8. Retarded electromagnetic interaction between electrons

3.8.1. Introduction

In the derivation of the many-electron Hamiltonian (section 3.6) the interactions be-
tween electrons were introduced in the expressions for the magnetic and electric
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potentials. In (3.133) the magnetic vector potential at electron i due to the motion
of the other electrons ( j) was given by

Ae
i = − gSµB

4πε0c2

∑
j 
=i

(S j ∧ R j i )
1

R3
j i

−
∑
j 
=i

e

4πε0mc2

1

R ji
π j , (3.181)

in which the first term arises from the spin motion of the other electrons and the second
term comes from their orbital motion. The scalar electric potential arising from the
electrons was given as

φi = −
∑
j 
=i

e j

4πε0 R ji
. (3.182)

We commented that the second term in (3.133) is incorrect, and gave for the orbit–orbit
interaction the correct form in (3.145),but without justification. We now examine the
interaction between electrons more carefully, both to justify the earlier assumption and
also to prepare the ground for our later discussion of the Breit equation.

The second term in (3.133) is incorrect for several reasons. First, as pointed out in
section 3.6, R−1

j i and π j do not commute; this could, however, be remedied by taking a
Hermitian average. Second, the first contribution to Ae

i in (3.133) satisfies the condition
that div Ae

i = 0 whereas the second term does not. We shall discuss the significance of
this later in this section. Third, and most important, we have not taken account of the
fact that the potential interaction is actually retarded. If we consider the interaction of
just two electrons, we must take account of the fact that the potential at electron 1 will
depend upon the position and motion of electron 2 at some earlier time, since it takes
a finite time for the effect of electron 2 to be felt by electron 1. Similarly, electron 1 is
also not stationary. Although the interaction travels at the speed of light, we are seeking
a Hamiltonian which is relativistically correct, and we must therefore take account of
this retardation effect in the electromagnetic potential. Since we are concerned with the
consequences of the relative motion of two electrons, we commence the discussion by
examining aspects of the theory of special relativity that lead to the so-called Lorentz
transformation. We have mentioned this transformation already in this chapter, and
must now describe it in some detail.

3.8.2. Lorentz transformation

We consider two inertial frames of reference, S and S′, with origins O and O′ and axes
Ox , Oy, Oz in S and O′x ′, O′y′, O′z′ in S′. (An inertial frame of reference is defined
as a coordinate frame in which the laws of Newtonian mechanics hold; one of the
consequences of the special theory of relativity is that any pair of such inertial frames
can only move with a uniform velocity relative to each other.) Now an observer at the
origin O will describe an event in his frame by values of x , y, z, t where t is the time
measured by a clock at rest in S. Similarly an observer at O′ will describe the same
event in terms of the corresponding values x ′, y′, z′, t ′ measured in S′.

We are interested in the relationship between observations in S and S′ when the
two frames of reference are in uniform relative motion. For the sake of simplicity, we
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Figure 3.1. Relationship between the inertial frames S and S′.

choose the two frames so that they are coincident at t = t ′ = 0 and so that S′ is in uniform
motion in the x direction with velocity v relative to S (see figure 3.1). The Lorentz
transformation is a coordinate transformation which enables the interval between two
events measured in the S frame to be related to the interval between the same two events
measured in the S′ frame. For our choice of inertial frames, it has the explicit form:

x ′ = γ (x − vt),

y′ = y,

z′ = z,

t ′ = γ

(
t − vx

c2

)
, (3.183)

where γ = {1 − (v2/c2)}−1/2. The pair of events referred to by this transformation are
at (0, 0, 0, 0) and at (x , y, z, t) or at (x ′, y′, z′, t ′), the second event depending on the
frame of reference. The complete symmetry between space and ‘time’ coordinates can
be seen by rewriting (3.183) as

x ′ = γ {x − (v/c)ct}, (3.184)

ct ′ = γ {ct − (v/c)x}. (3.185)

In other words, it is the distance, ct, travelled by light in a given time interval which
fulfills the role of the fourth coordinate, rather than the time interval itself. The special
theory of relativity requires that after a Lorentz transformation the new form of all laws
of physics is the same as the old form. The Dirac equation, for example, is invariant
under a Lorentz transformation.

3.8.3. Electromagnetic potentials due to a moving electron

We have already made implicit use of the fact that an electromagnetic field can be
represented as a four-dimensional vector with components Ax , Ay , Az and iφ, where
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the three-dimensional vector potential A is the magnetic vector potential and φ is the
scalar electric potential. Under a Lorentz transformation the components of this four
vector transform in a manner similar to (3.183), i.e.

Ax ′ = γ {Ax − (v/c2)φ}, Ay′ = Ay, Az′ = Az, φ′ = γ {φ − vAx }. (3.186)

The inverse relations to these are

Ax = γ {Ax ′ + (v/c2)φ′}, Ay = Ay′ , Az = Az′ , φ = γ {φ′ + vAx ′ }. (3.187)

We now wish to derive the potentials due to an electron with charge −e moving
with uniform velocity v along the x axis of the inertial frame S introduced in the
previous section, i.e. the electron is at rest in the S′ frame (see figure 3.1). Suppose
that we wish to calculate the potentials at the field point (x , y, z) at time t = 0 in S. By
(3.183) this corresponds to the space-time point (x ′, y′, z′, t ′) in S′ where

x ′ = γ x, y′ = y, z′ = z, t ′ = γ vx/c2. (3.188)

Now the potentials at this point in S′ are easily derived since the electron is stationary
in this frame:

φ′(R′, t ′) = −e/4πε0 R′, A′(R′, t ′) = 0. (3.189)

The expressions are, of course, time independent. If we transform these potentials to
the S frame we obtain

φ(R, 0) = γφ′(R′, t ′) = − γ e

4πε0 R′ , (3.190)

Ax (R, 0) = γ
v

c2
φ′(R′, t ′) = −

(
v

c2

)
γ e

4πε0 R′ . (3.191)

Since R′ = [(x ′)2 + (y′)2 + (z′)2]1/2 , we have the final results

φ(R, 0) = − γ e

4πε0[γ 2x2 + y2 + z2]1/2
, (3.192)

Ax (R, 0) = − vγ e

4πε0c2[γ 2x2 + y2 + z2]1/2
. (3.193)

Note that these expressions refer to a particular instant of time in the S frame. The
potentials in this frame are time-dependent, since they follow the charge during its
motion. At a general time t , for example,

φ(R, t) = − γ e

4πε0[γ 2(x − vt)2 + y2 + z2]1/2
. (3.194)

It is important to realise that the Lorentz transformation describes accurately both the
relativistic effects which are significant because of the high velocity of the electron
and also the retardation effects which occur because of the finite time the field takes to
reach the field point from the charge (which is a non-relativistic effect).
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Now for an electron, (v/c) ≈ 10−2 so that we can expand the square roots in the
denominators of (3.192) and (3.193) using the binomial theorem to give

φ(R, 0) = − e

4πε0 R

[
1 + v2

2c2
− v2x2

2c2 R2
+ · · ·

]
, (3.195)

Ax (R, 0) = v

c2
φ(R, 0). (3.196)

Since we require our final results to be accurate to 1/c2, we need only calculate A to
this order in equation (3.196). However, φ and A as given in (3.195) and (3.196) are
still not satisfactory for our purposes since they do not conform to a Coulomb gauge.
We consider this in more detail in the next section.

If we use the potentials derived above in our molecular Hamiltonian, they are open
to the further serious objection that they refer only to an electron moving with uniform
velocity, a situation which is not very realistic in the context of the molecular problem.
However, the theory of special relativity does not provide a means of describing the
motion of a rapidly moving and accelerating particle exactly. An approximate treatment
is possible, but since the effects of the non-uniform motion of an electron on its vector
and scalar potentials give terms with higher powers of 1/c than we require in the final
expansion of our Hamiltonian, we can ignore them.

3.8.4. Gauge invariance

From classical field theory we know that the force on a particle of mass m, charge e,
and velocity v which is moving in an electromagnetic field is given by

Force = dπ

dt
= e

[
−∇φ − ∂A

∂t

]
+ ev ∧ (∇ ∧ A). (3.197)

The electric and magnetic field intensities, E and B, are

E = −∇φ − ∂A

∂t
, (3.198)

B = ∇ ∧ A. (3.199)

Now if we know the vector and scalar potentials A and φ, equations (3.198) and (3.199)
show that the field intensities E and B are uniquely determined. The converse is not
true, however, as we now show. Suppose that A and φ are transformed to A′ and φ′

according to

A′ = A − ∇ f, (3.200)

φ′ = φ + ∂ f

∂t
. (3.201)

where f is any scalar function. Then from equation (3.198)

E′ = −∇φ′ − ∂A′

∂t
(3.202)
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= −∇φ − ∇ ∂ f

∂t
− ∂A

∂t
+ ∂

∂t
∇ f (3.203)

= E.

Similarly from equation (3.199),

B′ = ∇ ∧ A′

= ∇ ∧ A − ∇ ∧ (∇ f ) (3.204)

= B.

Hence the transformation of A and φ to A′ and φ′ does not change the fields E and B
and it therefore follows that A and φ are not uniquely determined. The transformation
(3.200), (3.201) is known as a gauge transformation and, in general, we require expres-
sions for B and E to be invariant to such a transformation, i.e. to be gauge-invariant.
We therefore have some freedom in choosing A and φ and two particular choices are
common. In the so-called Coulomb gauge we define A such that

∇ · A= 0, (3.205)

whilst in the Lorentz gauge the relationship to be satisfied is

∇ · A + 1

c2

∂φ

∂t
= 0. (3.206)

These gauges are equivalent for time-independent problems; our previous expressions
for A have satisfied (3.205) and we shall continue to use the Coulomb gauge.

Turning now to our previous expressions for A and φ we note that the result given
in (3.193) is not satisfactory since ∇ · A 
= 0. The recipe is therefore to make a gauge
transformation

A → A + ∇ f, (3.207)

φ → φ − ∂ f

∂t
, (3.208)

choosing the scalar function f so that ∇ · A= 0. With the choice

f = e

8πε0c2

v · R

R
(3.209)

we find that

∂ f

∂t
= e

8πε0c2

{
−v2

R
+ (v · R)2

R3

}
, (3.210)

∇ f = e

8πε0c2

{
v

R
− (v · R)R

R3

}
. (3.211)

(In deriving these equations it must be appreciated that (∂R/∂t) = −v.) By substituting
(3.210) and (3.211) in (3.207) and (3.208) we obtain the results

A = − e

8πε0c2

{
v

R
+ (v · R)R

R3

}
+ order(v/c)3, (3.212)
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φ = − e

4πε0 R
+ order(v/c)4. (3.213)

These expressions now correspond to a Coulomb gauge (3.205) to order 1/c2; note
that the very simple result for φ is correct to order 1/c2.

3.8.5. Classical Lagrangian and Hamiltonian

We can rewrite equations (3.212) and (3.213) so that they represent the vector and
scalar potentials at a point R1 due to a moving electron at R2:

A1 = − e

8πε0c2

{
Ṙ2

R12
+ (Ṙ2 · R12)R12

R3
12

}
+ order (1/c3), (3.214)

φ1 = − e

4πε0 R12
+ order (1/c4). (3.215)

Now suppose that at the instant in time to which these expressions refer, we have
another electron at R1. The Lagrangian for this electron is

L = −mc2γ−1
1 + eφ1 − e(Ṙ1 · A1), where γ1 = [1 − (Ṙ1/c)2]−1/2. (3.216)

If we substitute for A1 and φ1 using (3.214) and (3.215) we obtain the Lagrangian for
electron 1 when the motion of electron 2 is regarded as known,

L = −mc2γ−1
1 − e2

4πε0 R12
+ e2

8πε0c2

{
(Ṙ1 · Ṙ2)

R12
+ (Ṙ1 · R12)(R12 · Ṙ2)

R3
12

}
. (3.217)

If we now add the term −mc2γ−1
2 we obtain the expression

L = −mc2γ−1
1 −mc2γ−1

2 − e2

4πε0 R12
+ e2

8πε0c2

{
(Ṙ1 · Ṙ2)

R12
+ (Ṙ1 · R12)(R12 · Ṙ2)

R3
12

}
,

(3.218)

which is symmetrical with respect to electrons 1 and 2; it is, in fact, the Lagrangian
for the simultaneous motion of the two electrons. The interaction term is only correct
to 1/c2; although γ1 and γ2 should only be expanded to this order, it is appropriate to
retain the next higher-order term:

−mc2γ−1
1 = −mc2 + m Ṙ2

1

2
− m Ṙ4

1

8c2
+ · · · . (3.219)

Hence

L = −2mc2 +
∑

i

m Ṙ2
1

2
−

∑
i

m Ṙ4
1

8c2
− e2

4πε0 R12

+ e2

8πε0c2

{
(Ṙ1 · Ṙ2)

R12
+ (Ṙ1 · R12)(R12 · Ṙ2)

R3
12

}
, (3.220)
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where i = 1, 2. The corresponding classical Hamiltonian is

H = 2mc2 +
∑

i

P2
i

2m
−

∑
i

P4
i

8m3c2
+ e2

4πε0 R12

− e2

8πε0m2c2

{
P1 · P2

R12
+ (P1 · R12)(R12 · P2)

R3
12

}
, (3.221)

which may be converted into a quantum mechanical Hamiltonian by making the usual
replacement P = −ih∇ and regarding all terms as operators. One must, however, then
take care over the order of the operators in the interaction term, the correct term
being

− e2

8πε0m2c2

{
π1 · 1

R12
π2 + (π1 · R12)

1

R3
12

(R12 ·π2)

}
(3.222)

where we have replaced P by π to take account of any external fields. Our previous
term given in equation (3.161) for the orbit–orbit interaction was of this form, and
we shall see soon that the interaction term in the Breit equation is closely similar
to (3.222).

3.9. The Breit Hamiltonian

3.9.1. Introduction

The most unsatisfactory features of our derivation of the molecular Hamiltonian from
the Dirac equation stem from the fact that the Dirac equation is, of course, a single
particle equation. Hence all of the inter-electron terms have been introduced by includ-
ing the effects of other electrons in the magnetic vector and electric scalar potentials.
A particularly objectionable aspect is the inclusion of electron spin terms in the mag-
netic vector potential Ae

i , with the use of classical field theory to derive the results. It
is therefore of interest to examine an alternative development and in this section we
introduce the Breit Hamiltonian [16] as the starting point. We eventually arrive at the
same molecular Hamiltonian as before, but the derivation is more satisfactory, although
fundamental difficulties are still present.

The Breit Hamiltonian for two electrons consists essentially of a Dirac Hamiltonian
for each electron, with interaction terms. It may be written

H = β1m1c2 − e1φ1 + cα1 · (P1 + e1 A1) + β2m2c2 − e2φ2 + cα2 · (P2 + e2 A2)

+ e1e2

4πε0 R12
− e1e2

8πε0 R12

{
α1 · α2 + (α1 · R12)(α2 · R12)

R2
12

}
. (3.223)

The first interaction term is, of course, the Coulomb interaction; the second interaction
term has the same form as the classical expression for the retarded interaction of
two particles, derived in section 3.8. However, the Breit Hamiltonian suffers from the
defect that the interaction terms are not Lorentz invariant. Detailed investigations using
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quantum electrodynamics show that the interaction term is satisfactory, provided it is
treated only to the first order in perturbation theory. The wave function corresponding
to the Hamiltonian (3.223) has sixteen components, so that the operators in (3.223) are
represented by matrices of dimension sixteen. Nevertheless we anticipate that it should
be possible to reduce the wave equation to a non-relativistic form appropriate for two
electrons in positive energy states; the associated wave function would then have four
components, with two spin orientations for each electron.

3.9.2. Reduction of the Breit Hamiltonian to non-relativistic form

The first stage in deriving a molecular Hamiltonian is to reduce the Breit equation
to non-relativistic form and Chraplyvy [17] has shown how this reduction can be
performed by using an extension of the Foldy–Wouthuysen transformation. First let
us remind ourselves of the most important features in the transformation of the Dirac
Hamiltonian. The latter was written (see (3.57) and (3.58)) as

H = βmc2 − eφ + cα · (P + eA) (3.224)

= βmc2 + E + O, (3.225)

where the even operator E(= −eφ) has vanishing matrix elements between the upper
(electron) and lower (positron) components of the four-component spinor, and the odd
operator O(=cα · (P + eA)) has corresponding non-vanishing matrix elements. The
aim of the Foldy–Wouthuysen transformation is to convert (3.225) into a Hamiltonian
which, to order (c−2), contains only even operators. A transformed time-independent
Hamiltonian H

′ is related to the starting Hamiltonian H by

H
′ = H + i[S̄,H] + i2

2!
[S̄, [S̄,H]] + i3

3!
[S̄, [S̄, [S̄,H]]] + · · · (3.226)

and if S̄ is given by

S̄ = − iβO

2mc2
, (3.227)

the transformed Hamiltonian H
′ contains even operators of order c2, c0, c−2, etc., but

odd operators of order c−1, c−3, etc. (in the initial Hamiltonian, the odd operator is of
order c+1). Repetition of the transformation converts H

′ into H
′′ which to order c−2

now contains only even operators; thus each transformation reduces the importance of
the odd operators and, after two transformations, we obtain a Hamiltonian which, to
order c−2, operates only on the upper (electron) components of the wave function.

Now the Breit Hamiltonian for two electrons in the presence of electromagnetic
fields is, as we have seen,

H = β1m1c2 + β2m2c2 − e1φ1 − e2φ2 + e1e2

4πε0 R12
+ cα1 ·π1 + cα2 ·π2

− e1e2

8πε0 R12

{
α1 · α2 + (α1 · R12)(α2 · R12)

R2
12

}
. (3.228)
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The Breit Hamiltonian (3.228) can be written in a form analogous to (3.225), namely,

H = β1m1c2 + β2m2c2 + EE + OE + EO + OO. (3.229)

By comparison with (3.228) the even–even, odd–even, even–odd and odd–odd opera-
tors are

EE = −e1φ1 − e2φ2 + e1e2

4πε0 R12
,

OE = cα1 ·π1,

EO = cα2 ·π2,

OO = − e1e2

8πε0 R

{
α1 · α2 + (α1 · R12)(α2 · R12)

R2
12

}
. (3.230)

The Breit Hamiltonian operates on sixteen-component spinor functions which contain
four types of function, designatedψuU, ψuL, ψ�U, ψ�L , which represent upper and lower
components as previously defined, the small letters u, � referring to the first particle
(1) and the capital letters U, L referring to the second particle (2). Our aim is to find
a transformation which gives a Hamiltonian operating only on the components ψuU;
in other words, we seek a Hamiltonian which, to order c−2, contains only terms which
are overall even–even in character.

As a preliminary to this it is worthwhile noting a few properties of the matrix
operators (3.230). As examples of the four types we may list,

EE : I(unit),β1,β2,

EO : α2x ,α2y,α2z,
(3.231)

OE : α1x ,α1y,α1z,

OO : direct product of α1 and α2 matrices.

The commutation relations which are important are

[β1, EE] = [β1, EO] = 0, [β1, OE]+ = [β1, OO]+ = 0,
(3.232)

[β2, EE] = [β2, OE] = 0, [β2, OO]+ = [β2, EO]+ = 0,

where [A,B]+ ≡ AB + BA denotes the anticommutator of A and B.
In his first paper Chraplyvy used the transformation (3.226) with iS̄ given by

iS̄ = β1

2m1c2
OE + β2

2m2c2
EO + β1m1 − β2m2

2
(
m2

1 − m2
2

)
c2

O O. (3.233)

These three terms remove the OE, EO and OO terms respectively from (3.229) and repe-
tition of the transformation ultimately yields a Hamiltonian which, with β1 = β2 = 1,
operates only on the ψuU functions, as desired (to order c−2). However, as (3.233)
shows, this transformation is unacceptable if the two particles have equal masses (e.g.
two electrons). It was realised subsequently that there exists a family of related trans-
formations, of which (3.233) is just one member. The transformation using (3.233)
in fact goes further than we require, in that it leads to complete separation of all four
types of function. We would be satisfied with the more limited objective of separating
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ψuU from the other components, and in his second paper Chraplyvy showed that a
transformation which accomplishes this is

iS̄ = 1

4m1c2
(β1 + β1β2)OE + 1

4m2c2
(β2 + β1β2)EO + 1

4(m1 + m2)c2
(β1 + β2)OO.

(3.234)

If we take account of the fact that OE and EO commute, the resulting Hamiltonian to
order c−2 is

H = m1c2 + m2c2 + EE + 1

2m1c2
(OE)2 + 1

2m2c2
(EO)2 + 1

8m2
1c4

[[O E, EE], OE]

+ 1

8m2
2c4

[[EO, EE], EO] + 1

4m1m2c4
[[OE, OO]+, EO]+ − 1

8m3
1c6

(OE)4

− 1

8m3
2c6

(EO)4 + 1

2(m1 + m2)c2
(OO)2 + · · · . (3.235)

Noting that E × E = E, E × O = O × E = O and O × O = E we see that each term is overall
of the desired type, EE. We can keep track of the two electrons by writing m1 and
m2, although in this case the masses are, of course, equal.

It now remains to expand the operators in (3.235) using the definitions given
in (3.230) but before we do so we must draw attention to a difficulty with (3.235).
The final term, containing the operator (OO)2 is not obtained if a more sophisticated
treatment starting from the Bethe–Salpeter equation is used. The reader will recall
our earlier comment that the interaction term in the Breit Hamiltonian is acceptable
provided it is treated by first-order perturbation theory. Rather than launch into quantum
electrodynamics at this stage, we shall proceed to develop (3.235) but will omit the
(OO)2 term without further comment.

Straightforward vector algebra yields the following results for the operators in
(3.235):

(OE)2 = c2
{
π2

1 + e1h(σ1 · B1)
}
, (3.236)

(EO)2 = c2
{
π2

2 + e2h(σ2 · B2)
}
, (3.237)

(OE)4 = c4
{
π4

1 + 2e1h(σ1 · B1)π2
1 + e2

1h2(σ1 · B1)2
}
, (3.238)

(EO)4 = c4
{
π4

2 + 2e2h(σ2 · B2)π2
2 + e2

2h2(σ2 · B2)2
}
, (3.239)

[[OE, EE], OE] = −e1e2c2

4πε0

{
4πh2δ(R12) + 2h

R3
12

σ1 · (R12 ∧ π1)

}

+ e1c2{2hσ1 · (E1 ∧ π1) + h2∇1 · E1}, (3.240)

[[EO, EE], EO] = −e1e2c2

4πε0

{
4πh2δ(R12) + 2h

R3
12

σ2 · (R12 ∧ π2)

}

+ e2c2{2hσ2 · (E2 ∧ π2) + h2∇2 · E2}, (3.241)
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[[OE, OO]+, EO]+ = e1e2c2

4πε0

{
h2

R3
12

(σ1 · σ2) − 8πh2

3
δ(R12)(σ1 · σ2)

− 3h2

R5
12

(σ1 · R12)(σ2 · R12) + 2h

R3
12

σ1 · (R12 ∧ π2)

− 2h

R3
12

σ2 · (R12 ∧π1) − 2

R12
(π1 ·π2) − 2

R3
12

(π1 · R12)(R12 ·π2)

}
.

(3.242)

We now substitute these results in equation (3.235) to obtain the molecular Hamiltonian,
which may be divided into terms which are additive for each electron, and terms which
describe interaction between the electrons:

H =
∑

i

Hi + Hi j , (3.243)

where

Hi =
2∑

i=1

{
mi c

2 + 1

2mi
π2

i − eiφi + ei h

2mi
(σi · Bi ) − 1

8m3
i c2

π4
i

+ ei h
2

8m2
i c2

∇i · Ei − ei h

8m2
i c2

σi · (πi ∧ Ei − Ei ∧ πi ) − ei h

4m3
i c2

(σi · Bi )π
2
i

}
,

(3.244)

Hi j = ei e j

4πε0 Ri j
− ei e j

8πε0mi m j c2

{
πi ·π j

(
1

Ri j

)
+ (πi · Ri j )(Ri j ·π j )

R3
i j

}

+ ei e j h

8πε0mi m j c2

1

R3
i j

{σi · (Ri j ∧ π j ) − σ j · (Ri j ∧ πi )}

− ei e j h

16πε0c2

1

R3
i j

{
1

m2
i

σi · (Ri j ∧ πi ) − 1

m2
j

σ j · (Ri j ∧ π j )

}

− ei e j h
2π

8πε0c2

{
1

m2
i

+ 1

m2
j

}
δ(Ri j ) + ei e j h

2

16πε0mi m j c2

×
{

1

R3
i j

(σi · σ j ) − 3

R5
i j

(σi · Ri j )(σ j · Ri j ) − 8π

3
δ(Ri j )σi · σ j

}
. (3.245)

The last stage is now to replace πi by P i + eAi and to use explicit expressions for the
potentials Ai and φi . Our previous expressions for Ai and φi were given in equations
(3.133) and (3.134). However, the inter-electron interactions have now been derived
more naturally by starting with the Breit Hamiltonian and the vector and scalar poten-
tials therefore contain only terms describing external fields or electrostatic interactions
involving the nuclear charge. Hence we make the substitutions

Ai = (1/2)(Bi ∧ Ri ), (3.246)
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φi =
∑
α

Zαe

4πε0 Rαi
− Ei · Ri , (3.247)

and further assume the magnetic and electric fields to be uniform, i.e. Bi = B j and
Ei = E j . This leads to a Hamiltonian which, on generalisation to many electrons, is
identical to that derived from the Dirac equation, given in equations (3.161), (3.174)
and (3.180). The same Hamiltonian has also been derived by Itoh [15] from quantum
electrodynamics.

3.10. Electronic interactions in the nuclear Hamiltonian

In order to complete our derivation of the molecular Hamiltonian we must consider
the nuclear Hamiltonian in more detail. A thorough relativistic treatment analogous to
that for the electron is not possible within the limitations of quantum mechanics, since
nuclei are not Dirac particles and they can have large anomalous magnetic moments.
However, the use of quantum electrodynamics [18] shows that we can derive the correct
Hamiltonian to order 1/c2 by taking the non-relativistic Hamiltonian:

Hnucl =
∑
α

1

2Mα

(
Pα − ZαeAe

α

)2 + Z1 Z2e2

4πε0 R
, (3.248)

and including the effects of other particles on nucleus α in a vector potential Ae
α

provided we make the additional restriction that we retain only terms involving M−1
α .

Thus, for example, the relativistic correction to the nuclear kinetic energy, which by
analogy with equation (3.161) is of order 1/M3

αc2, is not included in (3.248). The
explicit form that we use for Ae

α is

Ae
α = gSµB

4πε0c2

∑
i

1

R3
iα

(Si ∧ Riα) − e

8πε0mc2

∑
i

{
P i

1

Riα
+ (P i · Riα)

1

R3
iα

Riα

}
,

(3.249)

where Riα is equal to (Ri − Rα). The first term represents the vector potential at nucleus
α arising from the spin magnetic moments of the electrons, while the second represents
the potential derived from the orbital motion of the electrons. We have attempted to
include the latter in the correct relativistic form by taking an expression analogous to that
required in the electronic Hamiltonian. There is a third possible contribution to Ae

α ,
namely, that arising from the orbital motion of the second nucleus relative toα; however,
it produces terms of order 1/M2

αc2 and so need not be considered.
Substitution of (3.249) into (3.248) leads in a straightforward manner to the result:

Hnucl =
∑
α

1

2Mα

P2
α − gSµBe

4πε0c2

∑
i

∑
α

Zα
Mα

1

R3
iα

Si · (Riα ∧ Pα)

+ e2

8πε0mc2

∑
i

∑
α

Zα
Mα

{
P i

1

Riα
· Pα + (P i · Riα)

1

R3
iα

(Riα · Pα)

}
+ Z1 Z2e2

4πε0 R
.

(3.250)
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The second term in (3.250) yields the spin–rotation and spin–vibration interactions,
whilst the third term leads to the orbit–rotation and orbit–vibration interactions. We
will examine these terms in more detail in the next section.

A point which we discuss here before developing the molecular Hamiltonian further
is the value of gS . The electron magnetic moment was at one time described as being
anomalous because the g value was found to be 2, rather than 1 as for the orbital g
factor, gL . It was one of the triumphs of the Dirac theory that it predicted a g value
of exactly 2, although later more accurate measurements gave a value slightly larger,
2.002 319. This value, too, is now well understood, the correction being the result
of effects of quantum electrodynamics. We will not go into the details, but note that
experiment and theory are in agreement to at least eight decimal places.

3.11. Transformation of coordinates in the field-free total Hamiltonian

When we combine the results of sections 3.6 and 3.10, we can write down a total
molecular Hamiltonian in field-free space:

Htotal = Hel + Hnucl

= 1

2m

∑
i

P2
i − 1

8m3c2

∑
i

P4
i +

∑
i, j 
=i

e2

8πε0 R ji
−

∑
i,α

Zαe2

4πε0 Rαi

+ e2h2

8ε0m2c2

∑
i

{∑
α

Zαδ
(3)(Rαi ) −

∑
j 
=i

δ(3)(R j i )

}

− gSµB

8πε0mc

∑
i

Si ·
{∑

α

Zαe

R3
αi

(Rαi ∧ P i ) −
∑
j 
=i

e

R3
j i

(R j i ∧ P i )

}

+ gSµBe

4πε0mc

∑
i, j 
=i

1

R3
j i

Si · (Ri j ∧ P j )

− 1

4πε0

(
e

2mc

)2 ∑
i, j 
=i

{
P i

1

R ji
· P j + (P i · Ri j )

1

R3
i j

(Ri j · P j )

}

+ g2
Sµ

2
B

8πε0c2

∑
i, j 
=i

{
1

R3
j i

(Si · S j )− 3

R5
j i

(Si · R j i )(S j · R j i )− 8π

3
δ(3)(R j i )(Si · S j )

}

+
∑
α

P2
α

2Mα

− gSµBe

4πε0c2

∑
i,α

Zα
Mα

1

R3
iα

Si · (Riα ∧ Pα)

+ e2

8πε0mc2

∑
i,α

Zα
Mα

{
P i

1

Riα
Pα + (P i · Riα)

1

R3
iα

(Riα · Pα)

}
+ Z1 Z2e2

4πε0 R
.

(3.251)

This represents the total field-free Hamiltonian for a diatomic molecule, to order 1/c2

in the purely electronic terms and to order 1/Mαc2 in the nuclear terms, in a space-fixed
axis system of arbitrary origin. We showed in chapter 2 that the solution of a Hamiltonian
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of this type was simplified if we first performed various coordinate transformations.
In section 2.2 we re-expressed the Hamiltonian in terms of the coordinates RO, the
molecular centre of mass, R, the nuclear coordinate and R′′

i , the electronic coordinates
measured in a non-rotating frame with origin at the nuclear centre of mass and the
momenta conjugate to these coordinates. Specifically we used

RO = 1

M

{
m

∑
i

Ri +
∑
α

MαRα

}
, (3.252)

R = R2 − R1, (3.253)

R′′
i = Ri − 1

(M1 + M2)

∑
α

MαRα, (3.254)

from which one can readily show

P i = mi

M
PO + P ′′

i , (3.255)

Pα = Mα

M
PO ∓ P R − Mα

(M1 + M2)

∑
i

P ′′
i , (3.256)

where, as before, the upper sign in (3.256) refers to α= 1 and the lower to α = 2.
This transformation enabled us to separate off the translational motion of the molecule
completely, and also went some way towards separating electronic and nuclear motions.
Then in section 2.5 we transformed the electronic spatial and spin coordinates to an axis
system rotating with the nuclear framework but with origin still at the nuclear centre of
mass. This removed awkward cross terms between nuclear and electronic coordinates
in the Coulombic interaction term and gave as complete a separation of nuclear and
electronic motions as possible. The explicit relationships between coordinates and
momenta that we used were

R′′
i = Mr i , (3.257)

P ′′
i = M pi , (3.258)

where M is a unitary matrix defined in equation (2.40) and each vector equation (3.257)
and (3.258) represents three transformations, one for each component. Similarly for
the spin operators

Si = U
−1si U, (3.259)

where U is defined in (2.111) and si is defined by

si = sx i + sy j + szk. (3.260)

Because the unit vectors in the two coordinate systems are also related by the M matrix,
it is easy to show that

∂

∂X ′′
i

i ′ + ∂

∂Y ′′
i

j ′ + ∂

∂Z ′′
i

k′ = ∂

∂xi
i + ∂

∂yi
j + ∂

∂zi
k (3.261)
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and

SX i ′ + SY j ′ + SZ k′ = sx i + sy j + szk. (3.262)

Thus the coordinate transformation can be realised simply by making the replacements

R′′
i → r i , (3.263)

P ′′
i → pi , (3.264)

Si → si . (3.265)

We now consider the overall effect of these coordinate transformations on the total
Hamiltonian (3.251). We have already shown in chapter 2 that

1

2m

∑
i

P2
i +

∑
α

1

2Mα

P2
α = 1

2M
P2

O + 1

2m

∑
i

p2
i + 1

2(M1 + M2)

∑
i, j

pi · p j

− h2

2µR2

∂

∂R

(
R2 ∂

∂R

)
+ h2

2µR2
(J − P)2. (3.266)

When we substitute equations (3.255) and (3.256) in the remaining terms of (3.251) we
find that we retain a number of awkward cross terms involving PO whereas symmetry
considerations suggest that translational terms should be completely separable for the
field free case. The explanation seems to be that we have made a coordinate transfor-
mation to the centre of rest mass of all particles rather than to the centre of relativistic
mass. Since the translational velocities of molecules are very much less than the speed
of light, the contributions of these cross terms in PO are expected to be very small and
we ignore them in further discussion.

With this reservation, the Hamiltonian appropriate to a molecule with electronic
spin quantised in the molecular frame of reference becomes

Htotal = 1

2M
P2

O + 1

2m

∑
i

p2
i + 1

2(M1 + M2)

∑
i, j

pi · p j − 1

8m3c2

∑
i

p4
i

+ 1

8πε0

∑
i, j 
=i

e2

ri j
−

∑
i,α

Zαe2

4πε0rα,i
+ Z1 Z2e2

4πε0 R
+ e2h2

8ε0m2c2

∑
i

{∑
α

Zαδ
(3)(rαi )

−
∑
j 
=i

δ(3)(r j i )

}
− gSµB

8πε0mc

∑
i

si ·
{∑

α

Zαe

r3
αi

(rαi ∧ pi )−
∑
j 
=i

e

r3
j i

(r j i ∧ pi )

}

+ gSµBe

4πε0mc2

∑
i, j 
=i

1

r3
j i

si · (r i j ∧ p j )

−
(

e

2mc

)2 1

4πε0

∑
i, j 
=i

{
pi

1

r ji
· p j + (pi · r j i )

1

r3
j i

(r ji · p j )

}

+ g2
Sµ

2
B

8πε0c2

∑
i, j 
=i

{
si · s j

r3
j i

− 3(si · r j i )(s j · r j i )

r5
j i

− 8π

3
δ(3)(r j i )si · s j

}
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− h2

2µR2

∂

∂R

(
R2 ∂

∂R

)
+ h2

2µR2
(J − P)2 + Hspin,nucl + Horb,nucl

+ gSµBe

4πε0c2

∑
i,α

Zα
(M1 + M2)

1

r3
iα

si ·
(

r iα ∧
∑

j

p j

)

− e2

8πε0mc2

∑
i,α

Zα
(M1 + M2)

{
pi

1

ri j
·
∑

j

p j + (pi · r j i )
1

r3
j i

(
r j i ·

∑
j

p j

)}
.

(3.267)

The last two terms in (3.267) represent mass polarisation corrections to the spin–orbit
and orbit–orbit interactions respectively. From equations (2.73) and (3.250), the term
Hspin,nucl is given by

Hspin,nucl = − gSµBe

4πε0c2

∑
i,α

(∓)
Zα
Mα

1

r3
iα

si · (r iα ∧ P R)

= −gSµBeh

4πε0c2

1

µR2

∑
i

si ·
{

Z1 M2

M1 + M2

r i1

r3
i1

− Z2 M1

M1 + M2

r i2

r3
i2

}
∧{R ∧ (J − P)}

− gSµBe

4πε0c2

∑
i

si ·
[{

Z1

M1

r i1

r3
i1

− Z2

M2

r i2

r3
i2

}
∧ k

]
ih

∂

∂R
. (3.268)

The first of these two terms describes the interaction of the magnetic moments due to
electron spin and nuclear rotation and it is therefore called the spin–rotation interaction;
the second term is the corresponding spin–vibration interaction. Similarly we have,

Horb,nucl = e2

8πε0mc2

∑
i,α

(∓)
Zα
Mα

{
pi

1

riα
· P R + (pi · r iα)

1

r3
iα

(r iα · P R)

}

= e2h

8πε0mc2

1

µR2

∑
i

pi ·
{

Z1 M2

M1 + M2

(
1

ri1
+ r i1

1

r3
i1

r i1

)

− Z2 M1

M1 + M2

(
1

ri2
+ r i2

1

r3
i2

r i2

)}
· [R ∧ (J − P)]

+ e2

8πε0mc2

∑
i

pi ·
{

Z1

M1

(
1

ri1
+ r i1

1

r3
i1

r i1

)
− Z2

M2

(
1

ri2
+ r i2

1

r3
i2

r i2

)}
· kih

∂

∂R
,

(3.269)

where the first term represents the orbit–rotation interaction and the second the orbit–
vibration interaction.

Finally, in section 2.10 we considered the alternative transformation scheme in
which the electron spin remained quantised in the space-fixed coordinate system. The
Hamiltonian for this situation is easily derived from (3.267), (3.268) and (3.269) by
making the substitutions

si → Si , (3.270)

(J − P) → (N − L). (3.271)
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Note that when we come to consider terms in this Hamiltonian such as Si · (r j i ∧ pi )
which represents the scalar product of two vectors that are defined in different coordinate
systems, we must necessarily transform one operator to the coordinate system of the
other before we can evaluate these terms.

3.12. Transformation of coordinates for the Zeeman and Stark terms
in the total Hamiltonian

We dealt with the effects of applied static fields on the electronic Hamiltonian in
section 3.7. In this section we first give the relevant terms for the nuclear Zeeman and
Stark Hamiltonians and then perform the same coordinate transformations that proved
to be convenient for the field-free molecular Hamiltonian.

We introduced the field-free nuclear Hamiltonian in section 3.10. Again by analogy
with the electronic Hamiltonian, we include the effects of external magnetic fields by
replacing Pα by [Pα − ZαeAB

α ] in equation (III.248) and the effects of an external
electric field by addition of the term

∑
α Zαeφα; this treatment is only really justified

if the nuclei behave as Dirac particles. The nuclear Zeeman Hamiltonian is thus:

H
N
Z = −e

∑
α

Zα
Mα

AB
α · Pα + e2

2

∑
α

Z2
α

Mα

(
AB
α

)2 + order (1/c3) (3.272)

where we have chosen AB
α to conform to a Coulomb gauge, (∇α · Aα) = 0. The nuclear

Stark Hamiltonian is simply

H
N
E =

∑
α

Zαeφα. (3.273)

We could now choose explicit vector and scalar potential functions as we did in
section 3.7. However, when we come to perform the various coordinate transformations
outlined in the previous section, it is more convenient to treat the Zeeman and Stark
Hamiltonians for the molecule as a whole. Accordingly we combine the expressions
from section 3.7 with equations (3.272) and (3.273) to give

HZ = e

m

∑
i

AB
i · P i +

∑
i

gSµB Si · (∇i ∧ AB
i

) − e

2m3c2

∑
i

(
AB

i · P i

)
P2

i

− gSµB

2m2c2

∑
i

Si · (∇i ∧ AB
i

)
P2

i + e2

2m

∑
i

(
AB

i

)2 − e
∑
α

Zα
Mα

AB
α · Pα

+ e2

2

∑
α

Z2
α

Mα

(
AB
α

)2
, (3.274)

and

HE =
∑

i

−eφi +
∑
α

Zαeφα − gSµB

2mc2

∑
i

Si · {(∇iφi ) ∧ P i }. (3.275)

We deal with the Zeeman Hamiltonian first. We must first choose an origin for
the vector potentials; this origin is completely arbitrary (indeed, this is the physical
significance of gauge invariance). In our expansions above we have selected a Coulomb
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gauge so we adopt the obvious choice

AB
i = (1/2)(B ∧ Ri ), AB

α = (1/2)(B ∧ Rα), (3.276)

where the potentials are referred to the arbitrary origin that we introduced in chapter 2.
We now proceed to make the coordinate transformations

Ri = r i + RO − m

M

∑
i

r i , (3.277)

Rα = ∓ µ

Mα

R + RO − m

M

∑
i

r i , (3.278)

and the associated momentum transformations

P i = m

M
PO + pi , (3.279)

Pα = Mα

M
PO ∓ P R − Mα

(M1 + M2)

∑
i

pi . (3.280)

We deal with the terms in (3.274) in turn. The first term gives

e

m

∑
i

AB
i · P i = e

2m
B ·

{
m

M

∑
i

(
r i − m

M

∑
j

r j + RO

)
∧ PO

+
∑

i

(
r i − m

M

∑
j

r j + RO

)
∧ pi

}
. (3.281)

The second and fourth terms in equation (3.274) lead directly to the interaction between
the electron spins and the external field and its relativistic correction respectively:

∑
i

gSµB Si · (∇i ∧ AB
i

) −
∑

i

gSµB

2m2c2
Si · (∇i ∧ AB

i

)
P2

i

=
∑

i

gSµB Si · B

{
1 − (pi )

2

2m2c2

}
+ smaller terms. (3.282)

The third term in (3.274) gives the corresponding relativistic correction to the interac-
tion between the field and the orbital motion of the electrons:

− e

2m3c2

∑
i

(
AB

i · P i

)
P2

i = − e

4m3c2
B ·

∑
i

(r i ∧ pi )p2
i + smaller terms. (3.283)

The fifth term represents the electronic contribution to molecular diamagnetism

e2

2m

∑
i

(
AB

i

)2 = e2

8m

∑
i

{B2(r i + RO)2 − (B · (r i + RO))2} + smaller terms.

(3.284)
Turning now to the sixth term in equation (3.274) we obtain the results,
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−e
∑
α

Zα
Mα

AB
α · Pα

= − e

2M
B ·

{
µ

(
− Z1

M1
+ Z2

M2

)
R ∧ PO − (Z1 + Z2)

(
m

M

∑
j

r j − RO

)
∧ PO

}

− e

2
B ·

{∑
α

Zα
M2
α

µR ∧ P R +
(

Z1

M1
− Z2

M2

)(
m

M

∑
j

r j − RO

)
∧ P R

}

− e

2(M1 + M2)
B ·

{
µ

(
Z1

M1
− Z2

M2

)
R ∧

∑
i

pi

+ (Z1 + Z2)

(
m

M

∑
j

r j − RO

)
∧

∑
i

pi

}
. (3.285)

Finally, the last term in (3.274) gives the nuclear contribution to the molecular diamag-
netism:

e2

2

∑
α

Z2
α

Mα

(
AB
α

)2 = e2

4

∑
α

Z2
α

Mα

{
B2

(
∓ µ

Mα

R + RO

)2

−
(

B ·
(

∓ µ

Mα

R + RO

))2}
+ smaller terms. (3.286)

We now collect together terms in PO ,P R and pi . We shall need the electric dipole
moment operator which we define by

µe = −e

{∑
i

r i + µ
(

Z1

M1
− Z2

M2

)
R

}
, (3.287)

and a residual charge number by

q =
∑
α

Zα − n, (3.288)

where n is the number of electrons. Thus for a neutral molecule q is zero and we obtain
from (3.281) and (3.285) the results given below:
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(
m

M

∑
j

r j − RO

)
∧ pi

}
. (3.289)
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The first term of (3.289) represents a translational ‘Stark’ effect. A molecule with a
permanent dipole moment experiences a moving magnetic field as an electric field and
hence shows an interaction; the term could equally well be interpreted as a Zeeman
effect. The second term represents the nuclear rotation and vibration Zeeman interac-
tions; we shall deal with this more fully below. The fourth term gives the interaction
of the field with the orbital motion of the electrons and its small polarisation correc-
tion. The other terms are probably not important but are retained to preserve the gauge
invariance of the Hamiltonian. For an ionic species (q 
= 0) we have the additional
translational term

e

2M
q B ·

{(
m

M

∑
j

r j − RO

)
∧ PO

}
. (3.290)

We now simplify the term which describes the interaction between the external
field and the rotational and vibrational motion of the nuclei. We have from equation
(2.73) in chapter 2:

P R = − h

R
k ∧ (J − P) − ihk

∂

∂R
. (3.291)

We also need the result

R ∧ [k ∧ (J − P)] = k[R · (J − P)] − (k · R)(J − P) = −R(J − P), (3.292)

in which we have made use of the fact that the component of (J − P) along the
molecule-fixed z axis is zero. Thus we have

−eµ

2
B ·

∑
α

Zα
M2
α

(R ∧ P R) = −ehµ

2

∑
α

Zα
M2
α

B · (J − P). (3.293)

This term describes the rotational Zeeman effect, that is, the coupling between the
external field and the magnetic moment of the rotating nuclei. We note that there is no
corresponding vibrational contribution since R ∧ k is zero. The physical reason for this
lack is that it is not possible to generate vibrational angular momentum in a diatomic
molecule because it possesses only one, non-degenerate, vibrational mode.

In summary we have the total Zeeman Hamiltonian for a neutral molecule:
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+Hdiam, (3.294)

where Hdiam is the sum of (3.284) and (3.286).
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The Stark Hamiltonian is more straightforward. We use the scalar potentials

φi = −E · Ri , φα = −E · Rα, (3.295)

where E is the applied electric field intensity. We substitute equations (3.277), (3.278)
and (3.295) into (3.275) and obtain

HE = −E ·µe − qeE ·
(

RO − m

M

∑
j

r j

)
+ gSµB

2mc

∑
i

si · (E ∧ pi ). (3.296)

The first term in (3.296) is the usual Stark interaction while the second term vanishes
for a neutral molecule. We have met the third term before in section 3.4; one physical
explanation of its occurence is that a moving spin magnetic moment creates an electric
moment perpendicular to both its direction and its velocity which interacts with the
applied electric field.

3.13. Conclusions

In this chapter our aim has been to derive a Hamiltonian for the electronic motion of
a diatomic molecule, starting from first principles. Our ‘first principles’ have been the
Dirac equation for a single particle, and the Breit equation for two interacting particles,
but we have nevertheless met a number of limitations; a satisfactory derivation of
the molecular Hamiltonian must use the methods of quantum electrodynamics. The
derivation represented here is therefore a compromise, but a not too unhappy one, since
the resulting Hamiltonian is undoubtedly accurate enough to provide a quantitative
interpretation of most spectroscopic investigations. In any case we shall encounter fur-
ther difficulties in the next chapter when we deal with nuclear spin effects, although the
methods expounded in this chapter will again provide an acceptable final Hamiltonian.

The most important effect arising from quantum electrodynamics, which is quan-
titatively significant, is a correction to the electron spin g factor. Up to now the symbol
gS has been taken to represent the Dirac g factor for the electron and to have the value
of 2 exactly. As we mentioned earlier, quantum electrodynamics shows the existence
of radiative corrections to this value, and the best theoretical value of gS , which agrees
with experiment [19], is 2.002 32.

In conclusion we summarise the total Hamiltonian (excluding nuclear spin effects),
written in a molecule-fixed rotating coordinate system with origin at the nuclear centre
of mass, for a diatomic molecule with electron spin quantised in the molecular axis
system. We number the terms sequentially, and then describe their physical significance.
The Hamiltonian is as follows:
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As before, this Hamiltonian can be converted into a Hamiltonian for a diatomic
molecule with space-quantised spin by making the replacements,

si → Si , (J − P) → (N − L). (3.298)

The thirty-two terms in equation (3.297) have the following physical significance.

(1) Translational kinetic energy of the whole molecule.
(2) Kinetic energy of the electrons.
(3) Mass polarisation correction to the electron kinetic energy.
(4) Relativistic correction to the electron kinetic energy.
(5) Rotational kinetic energy of the nuclei.
(6) Vibrational kinetic energy.
(7) Electrostatic Coulomb potential energy between pairs of electrons.
(8) Electron–nuclear Coulomb potential energy.
(9) Electrostatic Coulomb potential energy between the nuclei.

(10) Darwin-type correction to the Coulomb potential.
(11) Spin–orbit coupling.
(12) Spin-other-orbit coupling.
(13) Orbit–orbit coupling.
(14) Mass polarisation correction to the spin–orbit coupling.
(15) Mass polarisation correction to the orbit–orbit coupling.
(16) Spin–spin interaction.
(17) Spin–rotation interaction.
(18) Spin–vibration interaction.
(19) Orbit–rotation interaction.
(20) Orbit–vibration interaction.
(21) Electron spin Zeeman interaction with relativistic correction.
(22) Orbital Zeeman interaction.
(23) Relativistic correction to the orbital Zeeman interaction.
(24) Translational ‘Stark’ effect.
(25) Rotational Zeeman interaction.
(26) Additional small Zeeman terms.
(27) Translational ‘Stark’ effect for a charged molecule.
(28) Stark effect.
(29) Electrostatic interaction for a charged molecule.
(30) Interaction of the spin-induced electric moment with an applied electric field.
(31) Electronic contribution to molecular diamagnetism.
(32) Nuclear contribution to molecular diamagnetism.

Appendix 3.1. Power series expansion of the transformed Hamiltonian

In section 3.4 the transformed Hamiltonian is expressed as a formal power series in
1/c so that the limitations imposed by neglect of specifically quantum electrodynamic
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effects can be assessed in a later section. From other considerations it is perhaps more
useful to order the terms according to their magnitude, that is, according to the exponent
n in the expression (V/c)nmc2, where V is a typical electron velocity. The terms in
the original Dirac Hamiltonian can be classified by comparison with a simple model
(e.g. the hydrogen atom), yielding

βmc2 ≈ (V/c)0mc2

cα ·π ≈ (V/c)1mc2

(3.299)
eφ ≈ (V/c)2mc2

eα · A ≈ (V/c)3mc2.

The orders of magnitude of the terms in the transformed Hamiltonian are then easily
calculated from their explicit form. This order of magnitude scheme is readily related
to the power series expansion; thus (V/c)4mc2 corresponds to the 1/c2 term, etc.
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4 Interactions arising from nuclear
magnetic and electric moments

4.1. Nuclear spins and magnetic moments

In the course of developing a Hamiltonian for diatomic molecules, we have so far
introduced and discussed two nuclear properties. We considered at length the nuclear
kinetic energy in chapter 2, and in chapter 3 we took account of the nuclear charge
in considering the potential energy arising from the electrostatic interaction between
electrons and nuclei. With respect to the electrostatic interaction, however, we have im-
plicitly treated the nucleus as an electric monopole, and this assumption is re-examined
in section 4.4. First, however, we consider another important property of many nuclei,
namely their spin and the important magnetic interactions within a molecule which
arise from the property of nuclear spin. The possibility that a nucleus may have a spin
and an associated magnetic moment was first postulated by Pauli [1], following the
observation of unexpected structure in atomic spectra. The first quantitative theory of
the interaction between a nuclear magnetic moment and the ‘outer’ electrons of an
atom was provided by Fermi [2], Hargreaves [3], Breit and Doermann [4] and Fermi
and Segrè [5]. In the case of diatomic molecules with closed shell electronic states,
the magnetic interaction of the nuclear moment with the magnetic angular momentum
vector, an I · J coupling, was treated by a number of authors [6, 7, 8]. The interaction
between the nuclear electric quadrupole moment and the electronic charges, an inter-
action which has nothing to do with nuclear spins or magnetic moments, was treated
by Bardeen and Townes [9]. The most important and pioneering theoretical study of
the magnetic interactions between nuclei and electron spins in diatomic molecules was
described by Frosch and Foley [10]. Their treatment, which was based upon the Dirac
equation, is described in the next section.

The main relevant facts concerning nuclei are as follows.

(a) Many nuclei have spin angular momentum hI, where I is dimensionless. The
value of the spin I is defined as the maximum possible component of I in any
given direction.

(b) The nuclear spin I is half-integral (strictly half-odd) if the mass number
of the nucleus is odd, and integral (including zero) if the mass number is
even.
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(c) A nucleus with spin I has a resulting magnetic moment µI given by

µI = γI hI = gIµN I, (4.1)

where γI and gI are called the nuclear gyromagnetic ratio and nuclear g-factor
respectively. µN is the nuclear magneton and is equal to eh/2Mp, where Mp is
the proton mass.

(d) A nucleus of spin I has 2I + 1 allowed orientations with respect to any chosen
direction. These are distinguished by different values of the quantum number MI

which measures the component of I along an arbitrary space-fixed axis.
(e) A nucleus with spin I equal to 1 or greater possesses an electric quadrupole

moment, i.e. the nuclear charge distribution departs from spherical symmetry.

General Appendix B lists the spins, magnetic moments and electric moments of all
the known naturally occurring nuclei. The molecular spectroscopist is usually prepared
to accept such data as part of the starting point in any investigation, and a detailed
discussion of nuclear structure theory is certainly beyond the scope of this book and
its authors. It is, however, of interest to note that many of the observations can be
rationalised in terms of the shell theory of the nucleus. According to this theory the
nucleons (neutrons and protons) are grouped in energy shells in a manner analogous to
the grouping of electrons in atoms. There appears to be particular stability associated
with 2, 8, 50, 82 and 126 protons or neutrons which can be rationalised in terms of
nucleon shells 1s, 1p, 1d , 2s, etc. An important difference in the description of nuclear
structure compared with atoms is that there are two types of particle to be put into the
shells, protons and neutrons, whereas there is only one for atoms, namely, the electron.
Thus the first filled-shell nucleus, with 2 protons and 2 neutrons, is the α-particle,
4He; this is the nuclear analogue of the helium atom which contains two electrons.
Both species are particularly stable in comparison with their neighbours. The observed
nuclear spin is the resultant of the coupling of the nucleon angular momenta; in other
words, the nuclear spin is the total angular momentum of the nucleus. If there is an even
number of either neutrons or protons the angular momenta compensate each other with
zero resultant. If, however, there is an odd number of either neutrons or protons, the
nuclear spin results from the uncompensated angular momentum of a single nucleon.
Finally, with an odd number of neutrons and an odd number of protons it is necessary
to take account of both the spin and orbital angular momenta of the nucleons within
the nucleus, and several resultants are possible and observed. The magnitude of the
nuclear magnetic moment can be readily calculated if the total number of nucleons is
odd, the calculation and formulae being very similar to the Landé formulae for atoms.

As an example, let us consider the deuteron for a moment. It is built up from one
proton and one neutron, each of which has a spin of 1/2. When these two angular
momenta couple through nuclear interactions, they give rise to a resultant angular
momentum of 1 or 0. The former state, in which the angular momenta are parallel, is
lower in energy and so constitutes the ground state. Thus we see that the deuteron has a
nuclear spin of 1. There is also an excited state, with lower binding energy, in which the
angular momenta are antiparallel (I = 0). However, the energy required to access this
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state is many orders of magnitude greater than that encountered in molecular physics.
In fact, the interactions in this state are so weak that it is not even bound.

In conclusion it should be noted that detailed study of the magnetostatics of an
assembly of nuclei and electrons shows that only 2�-pole nuclear magnetic moments,
where � is odd, are allowed. In contrast to this we shall show later that in the expansion of
the electrostatic interaction, it is the 2�-pole electric moments with � even which are non-
vanishing. The most important nuclear magnetic moment is, of course, the magnetic
dipole moment. The next highest moment (� = 3), which is non-vanishing if I ≥ 3/2,
is expected to be very small, but evidence for nuclear octupole magnetic moments
in iodine, indium and gallium atoms has been obtained. In molecular spectroscopy,
however, it appears at present that we may safely confine our attention to nuclear
magnetic dipole moments.

4.2. Derivation of nuclear spin magnetic interactions through
the magnetic vector potential

We now show how the many-electron Hamiltonian developed in the previous
chapter may be extended to include magnetic interactions which arise from the pres-
ence of nuclear spin magnetic moments. Equation (3.140) represents the Hamiltonian
for electron i in the presence of other electrons; we present it again here:

Hi = −eiφi + π2
i

2mi
+ gSµB Si · (∇i ∧ Ae

i

) − π4
i

8m3
i c2

+ ei h2

8m2
i c2

(∇i · εi )

+ gSµB

2mi c2
Si · (εi ∧ πi ). (4.2)

The effects of the other electrons were introduced through the magnetic vector poten-
tial Ae

i defined by equation (3.133), and also through the electrostatic scalar potential
(3.134). Similarly the effects of external magnetic fields were included by adding an
additional term AB

i to the vector potential, given in (3.162). It therefore follows that the
effects of nuclear magnetic moments may be incorporated by adding a further contri-
bution AN

i to the magnetic vector potential. This was indeed the approach introduced
by Breit and Doermann [4]. Thus, the total magnetic vector potential Ai at electron i
is given by

Ai = Ae
i + AB

i + AN
i (4.3)

where, by (3.133) and (3.162),

Ae
i = gSµB

4πε0c2

∑
j 
=i

(S j ∧ R j i )R−3
j i − e

8πε0mc2

∑
j 
=i

{
P j · 1

R j i
+ (P j · R j i )

1

R3
j i

R j i

}

(4.4)

AB
i = 1

2
(B ∧ Ri ), (4.5)
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AN
i = −µN

4πε0c2

∑
α

gα(Iα ∧ Rαi )R−3
αi . (4.6)

As before, the vector Rαi gives the position of the nucleus α relative to electron i .
In writing equation (4.6), we have assumed that the nuclei can be treated as Dirac

particles, that is, particles which are described by the Dirac equation and behave in the
same way as electrons. This is a fairly desperate assumption because it suggests, for
example, that all nuclei have a spin of 1/2. This is clearly not correct; a wide range
of values, integral and half-integral, is observed in practice. Furthermore, nuclei with
integral spins are bosons and do not even obey Fermi–Dirac statistics. Despite this,
if we proceed on the basis that the nuclei are Dirac particles but that most of them
have anomalous spins, the resultant theory is not in disagreement with experiment.
If the problem is treated by quantum electrodynamics, the approach can be shown to
be justified provided that only terms of order (nuclear mass)−1 are retained.

Let us therefore re-examine the lowest-order terms in (3.140) containing the mag-
netic vector potential, including the effects of nuclear spin and an applied magnetic
field, but excluding Ae

i whose consequences were investigated fully in chapter 3. The
important terms are

∑
i
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π2
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)
. (4.7)

On expansion of the first term in (4.7) we obtain
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Three of these terms have, of course, been examined already in the previous chapter.
These are the first term, representing the electron kinetic energy, the second term
representing the diamagnetic energy of the electrons, and the fourth term, which yields
an expression for the interaction of the applied field B with the electron orbital magnetic
moment, i.e. (3.164),

e

m

∑
i

AB
i · P i = e

2m

∑
i

(B ∧ Ri ) · P i = e

2m

∑
i

B · (Ri ∧ P i ). (4.9)

The remaining terms in (4.8) are new, however, and we develop each of them in turn.
The third term gives, on expansion,

e2

2m

∑
i

(
AN

i

)2 = e2µ2
N

2m(4πε0c2)2

∑
i,α,α′

gαgα′
(Iα ∧ Rαi )

R3
αi

· (Iα′ ∧ Rα′i )

R3
α′i

. (4.10)
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This expression represents a coupling between the nuclear spins which we consider
again in due course. We merely note in passing that it is of order c−4 and thus strictly
smaller than the acceptable magnitude of c−2 adopted in the previous chapter. The fifth
term in (4.8) gives

e

m

∑
i

AN
i · P i = − eµN

4πmε0c2

∑
i,α

gαR−3
αi (Iα ∧ Rαi ) · P i

= − eµN

4πmε0c2

∑
i,α

gα Iα · (Rαi ∧ P i )R−3
αi , (4.11)

which describes interactions between the nuclear moments and the electron orbital
magnetic moment. The sixth and last term in (4.8) yields

e2

m

∑
i

AB
i · AN

i = − e2µN

8πmε0c2

∑
i,α

(B ∧ Ri ) · (Iα ∧ Rαi )R−3
αi gα, (4.12)

which represents coupling between the nuclear spin magnetic moments and the mag-
netic field arising from currents induced by the orbital precession of the electrons in
the applied magnetic field B. We note that this term is formally of order c−3.

So much for the first term on the right-hand side of in equation (4.7). The second
term is a familiar one and yields the interaction between B and the electron spin
magnetic moment. The third term is new, however, and may be developed in much
the same manner as the corresponding term involving Ae

i in chapter 3 (see (3.146) to
(3.151)). We have

gSµB

∑
i

Si · (∇i ∧ AN
i

)
= −gSµBµN

4πε0c2

∑
i,α

gαSi · {∇i ∧ (Iα ∧ Rαi )R−3
αi

}

= −gSµBµN

4πε0c2

∑
i,α

gαSi · {Iα(∇i · Rαi )R−3
αi − (Iα · ∇i )Rαi R−3

αi

}

= −gSµBµN

4πε0c2

∑
i,α

gαSi · {−4πIαδ
(3)(Rαi ) + IαR−3

αi

− 3(Iα · Rαi )Rαi R−5
αi + Iα(4π/3)δ(3)(Rαi )

}
=

∑
i,α

gSµB gαµN

4πε0c2
(8π/3)δ(3)(Rαi )Si · Iα

−
∑
i,α

gSµB gαµN

4πε0c2

{
Si · Iα

R3
αi

− 3(Si · Rαi )(Iα · Rαi )

R5
αi

}
. (4.13)

This is a very important result. The first term in the last line of (4.13) represents the
so-called Fermi contact interaction between the electron and nuclear spin magnetic
moments, and the second term is the electron–nuclear dipolar coupling, analogous to
the electron–electron dipolar coupling derived previously in (3.151). The Fermi contact
interaction occurs only when the electron and nucleus occupy the same position in
Euclidean space, as required by the Dirac delta function δ(3)(Rαi ). This seemingly
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impossible requirement is a wholly relativistic effect; the two particles do not have
to occupy the same position in four-dimensional space. The dipolar coupling term on
the other hand is much more familiar; it corresponds to the classical dipole–dipole
interaction.

It will be recalled that in section 3.10 we developed the nuclear Hamiltonian by
calculating the magnetic vector potential Ae

α at nucleus α arising from the spin and
orbital motion of the electrons. Clearly we should now also include the nuclear spin
contribution to Aα , the complete magnetic vector potential being (3.249) plus the
additional term from the other nucleus α′,

AN
α = − µN gα′

4πε0c2
(Iα′ ∧ Rαα′ )R−3

αα′ , (4.14)

where α′ 
= α.

Hence, the nuclear kinetic energy is given by∑
α

1

2Mα

{
Pα − ZαeAN

α

}2 =
∑
α

1

2Mα

P2
α−

∑
α

Zαe

Mα

AN
α · Pα + · · ·

=
∑
α

1

2Mα

P2
α+

∑
α

Zαe

Mα4πε0c2
gα′µN R−3

αα′ Iα′ · (Rαα′ ∧ Pα).

(4.15)

The second term in (4.15) above yields terms representing coupling between the rota-
tional and vibrational motions of the nuclei and the nuclear spin magnetic moments.
These terms will become more explicit when we later transform to new coordinates,
analogous to those used in section 3.11.

There remain two other important magnetic interactions involving the nuclear spin
magnetic moments, which cannot be derived from the present analysis, although their
presence is reasonably self evident by analogy with corresponding electron spin terms
which we have derived earlier. They are the nuclear Zeeman interaction,

H = −
∑
α

gαµN Iα · B (4.16)

and the direct dipole–dipole interaction between the nuclear spin magnetic moments.
The latter is analogous to the electron–electron (3.151) and electron–nuclear (4.13)
dipolar couplings and may be written, for a diatomic molecule,

H = g1µN g2µN

4πε0c2

{
I1 · I2

R3
− 3(I1 · R)(I2 · R)

R5

}
, (4.17)

where g1 and g2 are the nuclear g factors of nuclei 1 and 2 respectively. We shall show
later how these terms may, in fact, be derived from the Breit equation.

In summary the complete nuclear spin Hamiltonian is given by

H(Iα) = −
∑
α

gαµN Iα · B :nuclear Zeeman interaction

+ g1µN g2µN

4πε0c2

{
I1 · I2

R3
− 3(I1 · R)(I2 · R)

R5

}
:direct nuclear–nuclear dipole coupling
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+
∑
i,α

gSµB gαµN

4πε0c2
(8π/3)δ(3)(Rαi )Si · Iα :electron–nuclear Fermi contact interaction

−
∑
i,α

gSµB gαµN

4πε0c2

{
Si · Iα

R3
αi

− 3(Si · Rαi )(Iα · Rαi )

R5
αi

}
:electron–nuclear dipole
coupling

− eµN

4πmε0c2

∑
i,α

gα Iα · (Rαi ∧ P i )R−3
αi :nuclear spin–electron orbital magnetic

interaction

− e2µN

8πmε0c2

∑
i,α

gα(B ∧ Ri ) · (Iα ∧ Rαi )R−3
αi :interaction between nuclear moments

and fields arising from diamagnetic
electron currents

+ e2µ2
N

2m(4πε0c2)2

∑
i,α,α′

gαgα′
(Iα ∧ Rαi )

R3
αi

· (Iα′ ∧ Rα′i )

R3
α′i

:high-order nuclear–nuclear
dipole coupling

+
∑
α 
=α′

∓Zαe

4Mαπε0c2
gα′µN R−3 Iα′ · (R ∧ Pα) :nuclear spin–nuclear rotation and

vibration coupling. (4.18)

As elsewhere, the upper sign choice in the last contribution is for nucleus 1 and the
lower for nucleus 2. The last three terms in equation (4.18) are, strictly speaking, too
small to be completely reliable. This point is discussed in more detail in the next
section.

The reader who is familiar with nuclear magnetic resonance spectroscopy will
notice the absence in (4.18) of certain well-known terms, for example, the electron-
coupled nuclear spin–spin interaction, and the correction to the nuclear Zeeman inter-
action known as the ‘chemical shift’. The reason is that these are terms which belong
to an effective Hamiltonian, obtained after integration over electronic spatial coordi-
nates. We shall discuss the effective Hamiltonian in detail in chapter 7, but it might be
worthwhile at this stage to indicate some of the developments so far as equation (4.18)
is concerned. We shall find that the nuclear Zeeman interaction in molecules can be
represented by a term in the effective Hamiltonian of the form I · σ · B where σ is a
second-rank tensor, called the screening tensor (not to be confused with the σ matrices
of chapter 3). The fifth term in (4.18) gives a first-order diamagnetic contribution to
σ, whilst a cross-term between the electron orbital Zeeman interaction (4.9) and the
sixth term in (4.18) gives, in second order, a paramagnetic contribution to the screen-
ing tensor. Nuclear spin–nuclear spin interaction terms in the effective Hamiltonian
come from the second and seventh terms of (4.18) in the first order, the Fermi contact
interaction alone in second-order, and various less important cross-terms in second
order.

It should be noted that the interaction terms derived in this section are expressed
in a space-fixed axis system of arbitrary origin. We shall later investigate the results of
coordinate transformations analogous to those described in the previous two chapters.
Our analysis is essentially the same as that presented by Frosch and Foley [10] in their
determination of the electron spin–nuclear spin interaction terms.
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4.3. Derivation of nuclear spin interactions from the Breit equation

It is possible to obtain the nuclear spin magnetic interaction terms by starting from
the Breit equation. We recall that the Breit Hamiltonian describes the interaction of
two electrons of spin 1/2, each of which may be separately represented by a Dirac
Hamiltonian:

H = β1m1c2 − e1φ1 + cα1 · (P1 + e1 A1) + β2m2c2 − e2φ2 + cα2 · (P2 + e2 A2)

+ e1e2

4πε0 R
− e1e2

8πε0 R

{
α1 · α2 + (α1 · R)(α2 · R)

R2

}
. (4.19)

In chapter 3 we showed how the relativistic Breit Hamiltonian can be reduced to
non-relativistic form by means of a Foldy–Wouthysen transformation. We obtained
equations (3.244) and (3.245) which represent the non-relativistic Hamiltonian for
two particles of masses mi and m j and electrostatic charges −ei and −e j and from
this Hamiltonian we were able to derive the interelectronic interactions. We could,
however, consider using (3.244) and (3.245) as the Hamiltonian for an electron of
charge −ei = −e and mass mi = m, and a nucleus of mass m j = Mα and charge
−e j = +Zαe. As before, we make the assumption that the nucleus has spin 1/2, behaves
like a Dirac particle and has an anomalous magnetic moment compared with that given
by the Dirac theory. Consequently we may rewrite (3.245) by making the replacements

ei h

mi
= gSµB, (4.20)

e j h

m j
= −gαµN , (4.21)

σi = 2Si , σ j = 2Iα. (4.22)

Confining attention to those terms in (3.245) which contain � j and which are of order
M−1
α we obtain expressions for the electron–nuclear interactions which are

− e

4πε0mc2
gαµN

1

R3
αi

Iα · (Rαi ∧ πi ) − gSµB gαµN

4πε0c2

{
Si · Iα

R3
αi

− 3(Si · Rαi )(Iα · Rαi )

R5
αi

}

+ gSµB gαµN

4πε0c2
(8π/3)δ(3)(Rαi )Si · Iα. (4.23)

(Other electron–nuclear interaction terms involving πα rather than Iα arise from this
treatment. However, these terms have all been dealt with in the previous chapter and we
do not repeat them here.) The terms in (4.23) are the same as those obtained previously
starting from the Dirac equation. Equation (3.244) will yield both the electron and
nuclear Zeeman terms and a Breit equation for two nuclei, reduced to non-relativistic
form, would yield the nuclear–nuclear interaction terms. Although many nuclei have
spins other than 1/2, and even the proton with spin 1/2 has an anomalous magnetic
moment which does not fit the simple Dirac theory, the approach outlined here is fully
endorsed by quantum electrodynamics provided that only terms involving M−1

α are
retained (see equation (4.23)). The interested reader is referred to Bethe and Salpeter
[11] for further details. In our present application we see that the expressions for both
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the direct dipole–dipole interaction between nuclear spin magnetic moments, and the
nuclear spin–rotation interactions, involve M−2

α and so are not completely reliable.

4.4. Nuclear electric quadrupole interactions

4.4.1. Spherical tensor form of the Hamiltonian operator

So far we have considered the magnetic interactions between the nuclear spin dipole
moment and other magnetic dipole moments arising from electronic and nuclear motion
in molecules. We now examine the electrostatic interactions which might be expected
to exist between a nucleus, containing positively charged protons, and the surrounding
negatively charged electrons (and also the other nucleus). We allow the nucleus to
have a finite size and define the position vectors of the protons in the nucleus and the
outer electrons relative to the centre of charge of the relevant nucleus. The classical
electrostatic interactions involving the protons in the nucleus and the surrounding
electrons are represented by a Hamiltonian containing an infinite series of Legendre
polynomials,

Hel = 1

4πε0

∑
i,p

ei ep

|Ri − Rp| = 1

4πε0

∑
i,p,�

ei ep

R�
p

R�+1
i

P�(cos θi p). (4.24)

The coordinates are illustrated in figure 4.1. ep is the charge of the pth proton in the
nucleus, having position vector Rp, and ei is the charge of the i th electron (−e) with
position vector Ri in the remainder of the atom or molecule. θi p is the angle between
the vectors Ri and Rp.

We now expand the Legendre polynomial P�(cos θi p) using the spherical harmonic
addition theorem,

P� (cos θi p) = 4π

2� + 1

∑
q

Y�q (θp, φp)∗Y�q (θi , φi ), (4.25)

where the polar angles θi , φi and θp, φp are defined in figure 4.1, and q takes all integer
values from +� to −�. If we introduce the definition

C (�)
q (θ, φ) =

(
4π

2� + 1

)1/2

Y�q (θ, φ), (4.26)

then equation (4.25) may be rewritten in the form

P�(cos θi p) =
∑

q

C (�)
q (θp, φp)∗C (�)

q (θi , φi )

=
∑

q

(−1)qC (�)
q (θi , φi )C

(�)
−q (θp, φp). (4.27)

Hence the electrostatic interaction (4.24) may be expressed in the form

Hel =
∑
i,p,�

ei ep

4πε0

R�
p

R�+1
i

∑
q

(−1)qC (�)
q (θi , φi )C

(�)
−q (θp, φp). (4.28)



132 Interactions arising from nuclear magnetic and electric moments
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Figure 4.1. Electron and proton coordinates. X, Y, Z are space-fixed axes with origin at the
nucleus.

The electrostatic quadrupole term in this sum is that for which � = 2, so that the
quadrupole Hamiltonian is given by

HQ =
∑
i,p,q

(−1)q ei ep

4πε0

R2
p

R3
i

C (2)
q (θi , φi )C

(2)
−q (θp, φp). (4.29)

This may be written as the scalar product of two second-rank irreducible tensors,

HQ = −eT2(∇E) · T2(Q), (4.30)

where the first of these,

T2(∇E) = − 1

4πε0

∑
i

ei

R3
i

C2(θi , φi ), (4.31)

involves electron and proton coordinates outside the nucleus only, and defines what is
known as the electric field gradient. The other second-rank tensor in (4.30),

eT2(Q) = e
∑

p

R2
pC2(θp, φp), (4.32)

involves proton coordinates inside the nucleus only, and defines the quadrupole moment
of the nucleus. Spherical tensors are dealt with in detail in the next chapter.

Some authors use equation (4.30) to represent the quadrupole interaction, as we
will in this book, and others prefer to use the form

HQ = T2(∇2V ) · T2(Q), (4.33)

which differs only by a factor of e because ∇2V = − ∇E.
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4.4.2. Cartesian form of the Hamiltonian operator

We now return to the spherical harmonic form of the quadrupole Hamiltonian, equation
(4.29), which is

HQ =
∑
i,p,q

(−1)q ei ep

4πε0

R2
p

R3
i

C (2)
q (θi , φi )C

(2)
−q (θp, φp). (4.34)

The dominant term is that with q = 0; it may be rewritten in the form

HQ = − e2

8πε0

∑
i,p

R2
p

R3
i

(3 cos2 θi p − 1), (4.35)

provided that we consider only the electronic contributions to the electric field gradient.
Equation (4.35) can now expanded in the Cartesian coordinate system defined

in figure 4.1. We replace Rp Ri cos θi p by
∑

j
X pj Xi j where the X j represent X, Y, Z .

Hence equation (4.35) becomes

HQ = − e2

8πε0

∑
i,p

1

R5
i

{
3
∑

j,k

Xi j Xik X pj X pk − R2
i R2

p

}
. (4.36)

This result may be written in the form

HQ = 1

6

∑
j,k

Q jk Vjk, (4.37)

where

Q jk =
∑

p

e
(
3X pj X pk − δ jk R2

p

)
, (4.38)

Vjk = −
∑

i

e

4πε0 R5
i

(
3Xi j Xik − δ jk R2

i

)
. (4.39)

These results follow since

1

6

∑
j,k

(
3Xi j Xik − δ jk R2

i

)(
3X pj X pk − δ jk R2

p

)

=
∑

j,k

{
3

2
Xi j Xik X pj X pk − 1

2
Xi j Xikδ jk R2

p − 1

2
X pj X pkδ jk R2

i + 1

6
δ jk R2

p R2
i

}

= 3

2

∑
j,k

Xi j Xik X pj X pk − 1

2
R2

i R2
p, (4.40)

because
∑
j,k
δ jk = 3 and

∑
j

Xi j Xi j = R2
i . Thus we see that, as in equation (4.30), we

have reduced the quadrupole interaction to the product of two operators, one of which
depends only on the coordinates of protons in the nucleus and the other of which
depends only on the coordinates of electrons and protons outside that nucleus.
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The Q jk are components of a second-rank cartesian tensor called the nuclear
quadrupole tensor, and the Vjk are components of the electric field gradient tensor.
Both Q and V are traceless, symmetric tensors of the second rank. The electric field
gradient tensor components can be written in a more compact form by noting that

∂

∂X j

∂

∂Xk

(
1

R

)
= (3X j Xk − δ jk R2)

R5
. (4.41)

This relationship may be demonstrated by considering the two possible cases, j = k
and j 
= k. First we let X j = Xk = X ; then

∂2

∂X2

(
1

R

)
= ∂

∂X

∂

∂X
(X2 + Y 2 + Z2)−1/2

= − ∂

∂X
X (X2 + Y 2 + Z2)−3/2

(4.42)= −(X2 + Y 2 + Z2)−3/2 + 3X2(X2 + Y 2 + Z2)−5/2

= 1

R5
(3X2 − R2).

Second, we let X j = X , Xk = Y ; then

∂

∂X

∂

∂Y
(X2 + Y 2 + Z2)−1/2 = − ∂

∂X
{Y (X2 + Y 2 + Z2)−3/2} = 3XY

R5
. (4.43)

Clearly these relationships can be established for all other derivatives, thereby verifying
equation (4.40). Hence, we can write the field gradient tensor components in the form

Vjk = − 1

4πε0

∑
i

e
∂

∂Xi j

∂

∂Xik

(
1

Ri

)
. (4.44)

We note that the quantity Vjk is the second derivative of the electrostatic potential
which is actually the negative of the electric field gradient.

4.4.3. Matrix elements of the quadrupole Hamiltonian

In both of the above treatments, spherical tensor and cartesian, we have factored the
quadrupole interaction into the product of two terms, one of which operates only on
functions of proton coordinates within the nucleus and the other only on functions of
coordinates of electrons and protons outside the nucleus. We shall see in subsequent
chapters that the spherical tensor form is rather more convenient for the calculation
of matrix elements of HQ. However, we shall find this easier to appreciate once we
have considered some of the theory of angular momentum in chapter 5 so we defer
discussion until later.

Both equations (4.30) and (4.37) are rather inconvenient for our purposes since
their explicit evaluation demands that we treat the nucleus as a many particle system.
In fact, these forms would allow us to treat problems of greater complexity than those
encountered in molecular spectroscopy. In general, we shall only be concerned with
the nucleus in its ground state, and it is only necessary to characterise the nuclear
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eigenstates in terms of the total angular momentum I and its 2I + 1 components in a
given direction, MI . Consequently, the nuclear quadrupole moment tensor components
Q jk in equation (4.38) or

∑
p

eR2
pC2(θp, φp) in equation (4.32) can be expressed in an

equivalent operator form which is adequate for our purposes. Although this subject
is more properly part of the next chapter, we shall continue the development for the
cartesian coordinates form, equation (4.37), here since in molecular spectroscopy the
electrostatic interaction is always expressed in terms of nuclear spin operators, even
though the interaction does not, in fact, involve the nuclear spin directly. The interaction
depends upon I only to the extent that the angular dependence of the nuclear state is
related to the total nuclear angular momentum I.

The matrix elements which arise in molecular spectroscopy are always diagonal
in I , but may be off-diagonal in MI . It can be shown that the operator

∑
j,k

{
3

(I) j (I)k + (I)k(I) j

2
− δ jk I 2

}
(4.45)

has the same angular dependence with respect to nuclear orientation as
∑
j,k

Q jk . Hence
Q jk may be replaced by

Q jk = C

{
3

(I) j (I)k + (I)k(I) j

2
− δ jk(I)2

}
, (4.46)

where the constant C can be expressed in terms of a scalar quantity Q conventionally
called the nuclear quadrupole moment. Q is defined by

eQ = 〈I,MI = I |
∑

p

e
(
3Z2

p − R2
p

)|I,M = I 〉

= C〈I, I |3(I )2
z − I2|I, I 〉 (4.47)

= C{3I 2 − I (I + 1)}
= C I (2I − 1).

Hence the nuclear quadrupole tensor components are given by

Q jk = eQ

I (2I − 1)

{
3

(I ) j (I )k + (I )k(I ) j

2
− δ jk I2

}
, (4.48)

and the computation of matrix elements in a nuclear spin basis set is straightforward.
The procedure described in this section, in which the matrix elements of the electric
quadrupole operator are replaced by those of a combination of nuclear spin operators,
is based on the replacement theorem. This theorem is justified and described in more
detail in section 5.5.3.

We will return to the quadrupole interaction in following chapters, but we now
re-examine the general expansion of the electrostatic interaction and, in particular, the
possibility of other nuclear electrostatic multipole moments. Because our multipole
expansion is performed in a coordinate system with origin at the centre of charge of
the protons p in the nucleus, the nuclear electric dipole moment is zero. However,
this result arises only from our choice of origin and we now show that there are much
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more general restrictions on the expectation values of electric multipole moments. First
we assume that all nuclear eigenstates have a definite parity, an assumption which is
supported by all the available evidence. It can then be shown from parity considerations
that no odd (� odd) nuclear electrostatic multipole moment can exist. If all possible
nuclear states have eigenfunctions ψn that are multiplied by +1 or −l on inversion
of coordinates, it follows that the product of a particular function ψn and its complex
conjugate ψ∗

n is unaltered. In spherical polar coordinates, the 2�-pole moment tensor
operator is given by

Q(�)
q =

∑
p

eR�
pC (�)

q (θp, φp) (4.49)

(see equation (4.32)) and its expectation value is∫
ψ∗

n

∑
p

eR�
pC (�)

q (θp, φp)ψn dτn. (4.50)

For this integral to be non-zero, the integrand must be invariant to the inversion
operation. We have shown above that the product ψ∗

nψn is invariant under inver-
sion, and the changes in the spherical polar coordinates under this operation are
θ→ π − θ, φ→ π +φ and R → R. Hence inversion of C (�)

q (θ, φ) gives

C (�)
q (π − θ,π + φ) = (−1)�C (�)

q (θ, φ), (4.51)

i.e. a change of sign when � is odd. Hence the integral (4.50) vanishes if � is odd and
therefore no odd nuclear electrostatic multipole moment can exist.

So far as even values of � are concerned, it can be further shown that for a nuclear
spin I, the 2�-pole electrostatic moment is zero if � is greater than 2I. The expectation
value of the 2� multipole moment is given in equation (4.50). In this equationψn andψ∗

n

are eigenfunctions corresponding to angular momentum I, and since R�
p has no angular

dependence, R�
pψ

∗
n is also an eigenfunction with angular momentum I. However, we

shall see in chapter 5 that C (�)
q (θp, φp) corresponds to angular momentum �; the product

of C (�)
q and ψn must therefore correspond to any angular momentum between � + I

and � − I . Now the integral (4.50) vanishes unless R�
pψ

∗
n and C (�)

q ψn correspond to
eigenfunctions with the same angular momentum eigenvalues and I must therefore lie
between � + I and |� − I |, i.e. it is necessary that � be less than or equal to 2I . Hence,
a nucleus with an electric quadrupole moment must have a nuclear spin I of at least 1;
the next highest electrostatic multipole moment is the hexadecapole moment (� = 4) for
nuclei of I = 2 or more. Interactions involving the nuclear electrostatic hexadecapole
moment are too small to be detected at present.

4.5. Transformation of coordinates for the nuclear magnetic dipole
and electric quadrupole terms

The nuclear spin magnetic dipole interactions are listed in equation (4.18) in a space-
fixed coordinate system of arbitrary origin. The two forms of the electric quadrupole
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interaction are given in equations (4.30) and (4.37); each is expressed in a space-fixed
coordinate system with origin at the centre of the nucleus concerned, this choice of
origin being necessary to ensure the validity of the multipole expansion (4.25) and
the vanishing of odd electric multipole moments. In chapters 2 and 3, we showed that
the electronic and nuclear Hamiltonian operators could be simplified somewhat by a
change of variables. For the sake of consistency, we now apply the same transformation
of coordinates to the terms derived in this chapter. Since the method follows exactly
the same lines as those laid down in sections 3.11 and 3.12, we do not repeat the details
here.

We deal with the effect of the transformations on the nuclear quadrupole term first,
because it is straightforward. Examination of equation (4.30) or (4.37) shows that the
interactions depend only on the relative coordinates of the electrons (or protons) and the
nuclei, Ri . Thus, when the quadrupole interactions are expressed in the molecule-fixed
rotating frame, they have exactly the same form, except that Ri is replaced by r i . We
also note in passing that when the cartesian field gradient tensor Vjk , given in equation
(4.44), is expressed in a coordinate system which is instantaneously coincident with the
molecule-fixed axes, the axial symmetry of the molecule results in only the diagonal
elements being non-zero. For a diatomic molecule with z as the internuclear axis, the
component Vzz is given by

Vzz = −
∑

i

e

4πε0

∂2

∂z2

(
1

ri

)
. (4.52)

It is often written simply as q and called, somewhat erroneously, the field gradient. The
quantity (Vxx − Vyy)/Vzz measures the deviation from axial symmetry and is called the
asymmetry parameter, η.

We are now in a position to write down the Hamiltonian operator for all nuclear spin
and quadrupole terms for a diatomic molecule; we allow for the possibility that both
nuclei are involved and therefore sum over the nuclear index α. The terms are expressed
in a molecule-fixed rotating coordinate system with origin at the nuclear centre of mass,
except that we retain Iα as being quantised in a space-fixed axis system. We number
the terms sequentially and then describe their physical significance.

We split the Hamiltonian into a sum of two parts, H(Iα) and HQ, where

H(Iα) = g1g2µ
2
N

4πε0c2

{
I1 · I2

R3
− 3(I1 · R)(I2 · R)

R5

}
:(1)

+
∑
i,α

gSµB gαµN

4πε0c2
(8π/3)δ(3)(rαi )si · Iα :(2)

−
∑
i,α

gSµB gαµN

4πε0c2

{
si · Iα

r3
αi

− 3(si · rαi )(Iα · rαi )

r5
αi

}
:(3)

− eµN

4πε0mc2

∑
i,α

gα Iα ·
{

1

r3
αi

rαi ∧ pi

}
:(4)

+ eµN h

4πε0c2 R3

{
Z1g2

M1
I2 + Z2g1

M2
I1

}
· (J − P) :(5)
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+
∑
α 
=α′

∓Zαe

(M1 + M2)4πε0c2

gα′µN

R3
Iα′ ·

(
R ∧

∑
i

pi

)
:(6)

−
∑
α= 1,2

gαµN Iα · B :(7)

− e2µN

8πmε0c2

∑
i,α

gα
r3
αi

(B ∧ r i ) · (Iα ∧ rαi ). :(8)

(4.53)

HQ = − e2

4πε0

∑
α

∑
c,p

∑
q

(−1)q
r2

pα

r3
cα

C (2)
q (θcα, φcα)C (2)

−q (θpα, φpα). (4.54)

The eight terms in equation (4.53) have the following physical significance.

(1) Nuclear spin–nuclear spin dipolar interaction.
(2) Fermi contact interaction between the electron and nuclear spins.
(3) Electron spin–nuclear spin dipolar interaction.
(4) Nuclear spin–electron orbital interaction.
(5) Nuclear spin–rotation interaction.
(6) Mass polarisation correction to the nuclear spin–electron orbital interaction.
(7) Nuclear Zeeman interaction.
(8) Interaction between nuclear magnetic moments and fields arising from diamag-

netic electron currents.

The term in equation (4.54) represents the nuclear electric quadrupole interaction.
We note that the nuclear spin–vibration interaction, anticipated in equation (4.15),

is actually identically zero. This is because the only vibrational mode for a diatomic
molecule is that associated with bond stretching. Such motion does not generate any
angular momentum and so does not produce a magnetic field with which the nuclear
spin can interact.
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5 Angular momentum theory and
spherical tensor algebra

5.1. Introduction

Much of the beauty of high-resolution molecular spectroscopy arises from the pat-
terns formed by the fine and hyperfine structure associated with a given transition.
All of this structure involves angular momentum in some sense or other and its
interpretation depends heavily on the proper description of such motion. Angular
momentum theory is very powerful and general. It applies equally to rotations in
spin or vibrational coordinate space as to rotations in ordinary three-dimensional
space.

All the laws of physics are easier to accept (and even to understand) when
the underlying symmetry of the problem is appreciated. For example, classical Eu-
clidean space is isotropic and a physical system is invariant to any rotation in
this space. By this we mean that all the measurable properties of the system are
unaffected by the rotation. An investigation of the behaviour of a quantum state
under such rotations allows the properties of the state to be defined. These proper-
ties are most succinctly expressed as quantum numbers. Although quantum numbers
are frequently used to label the eigenstates or eigenvalues of a molecule, they re-
ally carry information about the symmetry properties of the associated eigenfunc-
tions.

In this chapter we give only a brief description of angular momentum theory,
sufficient to introduce the various techniques required for the description of molec-
ular energy levels and the transitions between them. In particular, we will present
the ideas of spherical tensor algebra, a discipline which allows considerable simpli-
fication of the theoretical model when there are several different angular momenta
involved. Our treatment is neither rigorous nor complete. Fortunately there are several
excellent text books on this beguiling topic already in existence [1, 2, 3, 4, 5, 6, 7].
The reader who wishes to know more should turn to them. The book on angular mo-
mentum by Zare [4] is nowadays the textbook of choice for workers in the field of
molecular physics. There is also a companion volume [6] which lists the typograph-
ical errors in the original book [4] and contains a large number of useful practice
problems.
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In section 5.2, we introduce the symmetry operations and irreducible representa-
tions of the full rotation group. This is followed in section 5.3 by the application of
these ideas to the rotation of a rigid body in space; to a first-order approximation, we
can think of a molecule as a rigid body. In section 5.4, we explain how to deal with
the situation in which there are two or more independent angular momenta which are
coupled together by a physical interaction. This situation arises very often in this book.
The scene is then set for the introduction of spherical tensor operators in section 5.5.
This provides the framework for a very powerful method for the description of angular
momenta in molecules, a method which is capable of dealing with the most complex
situations imaginable. Some special aspects of the application of spherical tensor meth-
ods to molecular problems and molecule-fixed coordinate systems are dealt with at this
point. Finally, in an appendix at the end of this chapter, we collect together all the
useful spherical tensor relationships for the application to molecular problems. This
has something of the character of a recipe book and indeed can be used as such with a
little experience.

5.2. Rotation operators

5.2.1. Introduction

The symmetry group with which we are concerned in the discussion of angular mo-
mentum is the full rotation group. This group is defined by the infinite set of rotation
operators R(αn̂) which cause a rotation through an angle α about an axis pointing in
the direction of the unit vector n̂. A positive rotation is taken to be one which causes a
(right-handed!) corkscrew to advance along the positive n̂ direction. We need also to
define the physical meaning of R(αn̂) and there are two possible conventions, both un-
fortunately with their adherents. The operator R(αn̂) can either be considered as being
applied to the system under discussion (the active convention) or to the coordinate axes
used to describe it (the passive convention). In this book we shall use the active
convention, that is that R(αn̂) means a rotation of the physical system through an angle
α about the axis n̂, which is equivalent to a rotation of the coordinate system through
−α. This is the convention which is used in most text books on the subject (Rose [2],
Brink and Satchler [3], Zare [4]) but not all (most notably, not by Edmonds [1]).

The full rotation group is infinite and its operators are continuous. In this context,
it is useful to define an operator Jn̂ which produces an infinitesimally small rotation

Jn̂ = i lim
α→0

R(αn̂) − 1

α
. (5.1)

For small α this equation can be rewritten to make R(αn̂) the subject:

R(αn̂) = 1 − iα Jn̂ + O(α2) + · · · . (5.2)

Since successive rotations about a given axis are additive, we can form the finite rotation
operator R(αn̂) from a series of m infinitesimal rotations, each through an angle α/m
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as follows:

R(αn̂) = lim
m→∞

(
1 − iα

m
Jn̂

)m

=
(

1 − iα Jn̂ − 1

2!
α2 J 2

n̂ + 1

3!
iα3 J 3

n̂ + · · ·
)

= exp(−iα Jn̂). (5.3)

Let us consider a rotation about the laboratory-fixed Z axis. The effect of R(α Ẑ )
on a general function f is to transform it to a new function f ′, related to f by

f ′(φ) = R(α Ẑ ) f (φ) = f (φ−α) (5.4)

as shown in figure 5.1. It then follows from equation (5.1) that

JZ f (φ) = i lim
α→0

{
f (φ − α) − f (φ)

α

}
= −i

∂

∂α
f (φ). (5.5)

Thus the infinitesimal rotation operator JZ is the same as the familiar angular
momentum operator h JZ (note that we use dimensionless angular momentum operators
in this book).

φ−α

φ

α

Figure 5.1. Rotation about the space-fixed Z axis, R(α Ẑ ), through an angle α of a function f
to produce a new function f ′. The value of the transformed function at a particular point with
azimuthal angle φ is the same as that of the original function at azimuthal angle (φ − α).
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θ

α

α

αcosθ

αsinθ

Figure 5.2. Rotation through α about n̂, R(αn̂), in the space-fixed Y Z plane.

5.2.2. Decomposition of rotational operators

Let us now consider a rotation R(αn̂) in which n̂ is an axis in the Y Z plane and α is
very small (see figure 5.2). If θ is the angle between n̂ and the Z axis, a rotation through
α about n̂ can be decomposed into a rotation through α cos θ about Z , followed by a
rotation through α sin θ about Y (in either order to this level of approximation) so that

R(αn̂) = R([α sin θ ]Ŷ )R([α cos θ ]Ẑ ) + O(α2),

i.e. 1 − iα Jn̂ = (1 − iα sin θ JY )(1 − iα cos θ JZ ) + O(α2), (5.6)

or Jn̂ = JY sin θ + JZ cos θ.

A generalisation of this result allows us to express the infinitesimal rotation operator
about any axis n̂ in the form

Jn̂ = nX JX + nY JY + nZ JZ , (5.7)

where (nX , nY , nZ ) are the direction cosines of n̂. Thus any infinitesimal rotation and
hence any finite rotation can be expressed in terms of JX , JY and JZ . The transformation
(5.7) demonstrates that Jn̂ transforms as a vector.

5.2.3. Commutation relations

All rotations through a finite angle α form a single class of the full rotation group. Thus

S R(αn̂)S−1 = R(αSn̂), (5.8)

where S is a rotation which transforms the rotation axis n̂ to a new one n̂′ = Sn̂. Thus
for the situation in figure 5.2 with any α and θ , we have

R(αn̂) = R(−θ X̂ )R(α Ẑ )R(θ X̂ ), (5.9)

or

R(θ X̂ )R(αn̂) = R(α Ẑ )R(θ X̂ ). (5.10)
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Expanding equation (5.10) as a power series in the infinitesimal rotations, we obtain

(1 − iθ JX + · · ·)(1 − iα[JY sin θ + JZ cos θ] + · · ·) = (1 − iα JZ + · · ·)(1 − iθ JX + · · ·).
(5.11)

If we now expand sin θ and cos θ as power series and equate coefficients of αθ , we
obtain

−JX JZ − iJY = −JZ JX (5.12)

or

[JZ , JX ] ≡ JZ JX − JX JZ = iJY . (5.13)

We have thus arrived at a familiar commutation relationship for components of J
without any mention of quantum mechanics. It can therefore be appreciated that the
properties of Ji follow simply from the geometric properties of rotations.

The more general form of the commutation relations is

[Ji , Jj ] = iεi jk Jk, (5.14)

where εi jk is known as the Levi–Civita symbol, or the unit antisymmetric tensor in
three dimensions. It equals +1 if i jk = XY Z or any permutation which preserves this
cyclic order, it equals −1 for any permutation which disrupts this order, and it equals
zero if any two of ijk are identical. Defining J2 = J 2

X + J 2
Y + J 2

Z , it is easy to show that
J2 commutes with JX , JY and JZ . It is also convenient to define the shift or ladder
operators J± = JX ± iJY . They also commute with J2. In addition,

[JZ , J±] = ±J±, (5.15)

J+ J− = J2 − J 2
Z + JZ , (5.16)

J− J+ = J2 − J 2
Z − JZ . (5.17)

5.2.4. Representations of the rotation group

We next seek the irreducible representations of the full rotation group, formed by the
infinite number of finite rotations R(αn̂). Because all such rotations can be expressed
in terms of the infinitesimal rotation operators JX , JY and JZ (or equivalently J+, J−
and JZ ), we start from these.

It is a well-known piece of bookwork which we do not reproduce here (see, for
example, Mandl [8]) to show that, starting from the commutation relations, the simul-
taneous eigenfunctions of J2 and JZ are:

J2| j,m〉 = j( j + 1)| j,m〉, (5.18)

JZ | j,m〉 = m| j,m〉, (5.19)

where m can take any of the (2 j + 1) possible values for a given j , m = − j , − j + 1,
− j + 2, . . . , + j .
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The various eigenfunctions for a given j can be interconverted by use of the ladder
operators J+ and J−. For example, J+ has the effect of raising the value of m by one:

J+| j,m〉 = [ j( j + 1) − m(m + 1)]1/2| j,m + 1〉, (5.20)

whereas J− lowers it by one:

J−| j,m〉 = [ j( j + 1) − m(m − 1)]1/2| j,m − 1〉. (5.21)

There is a phase convention implicit in these two equations, the so-called Condon and
Shortley convention [9], which is universally adopted.

The (2 j + 1) eigenfunctions | j,m〉 for a given value of j and for m values ranging
from j in integer steps down to − j are transformed among themselves and with no
other functions by the operators JZ and J±, and hence by rotations in general. They
thus form the basis for an irreducible representation of dimension (2 j + 1) which must
be an integer. From this we see that j can take the possible values 0, 1/2, 1, 3/2, 2, . . . .

5.2.5. Orbital angular momentum and spherical harmonics

Orbital angular momentum is associated with rotational motion in three-dimensional
space. In terms of the operators representing the position r and linear momentum p of
a particle, we have the important expression for the orbital angular momentum

h L = r ∧ p. (5.22)

From this we obtain the following results:

L X = −i

(
Y

∂

∂Z
− Z

∂

∂Y

)
= i

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
, (5.23)

LY = −i

(
Z

∂

∂X
− X

∂

∂Z

)
= i

(
−cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
, (5.24)

L Z = −i

(
X

∂

∂Y
− Y

∂

∂X

)
= −i

∂

∂φ
, (5.25)

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
. (5.26)

Here θ and φ are the spherical polar angles (only two angles are required to define the
orientation of the vector r in space). Since these operators are the same as the infinitesi-
mal rotation operators, all the results of the previous sections apply. The eigenfunctions
of L2 and L Z are known as the spherical harmonics,

Y�m(θ, φ) =Θ�m(θ )Φm(φ), (5.27)

where the Φm(φ) obey the equation

L ZΦm(φ) = mΦm(φ), (5.28)
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Table 5.1. Explicit forms of the first few spherical harmonics Y �m (θ, φ)

� m Y�m(θ, φ)

0 0 (1/4π)1/2

1 0 (3/4π)1/2 cos θ

1 ±1 ∓(3/8π)1/2 sin θ exp(±iφ)

2 0 (5/16π)1/2(3 cos2 θ − 1)

2 ±1 ∓(15/8π)1/2 cos θ sin θ exp(±iφ)

2 ±2 (15/32π)1/2 sin2 θ exp(±2iφ)

3 0 (7/16π)1/2(5 cos3 θ − 3 cos θ )

3 ±1 ∓(21/64π)1/2(5 cos2 θ − 1) sin θ exp(±iφ)

3 ±2 (105/32π)1/2 cos θ sin2 θ exp(±2iφ)

3 ±3 ∓(35/64π)1/2 sin3 θ exp(±3iφ)

with solutions

Φm(φ) =
√

1

2π
exp(imφ). (5.29)

For a single-valued solution, m must be an integer (and so therefore must �). The
functions Θ�m(θ ) can be found by solving

L2Y�m = �(� + 1)Y�m, (5.30)

which, after factoring out theφ dependence, becomes the associated Legendre equation.
The functions Θ�m are proportional to the associated Legendre functions Pm

� (cos θ ):

Θ�m(θ) = (−1)m

[
2� + 1

2

(� − m)!

(� + m)!

]1/2

Pm
� (cos θ ) for m ≥ 0

or (−1)mΘ�,−m(θ) for m < 0. (5.31)

The spherical harmonics are normalised with respect to integration∫ ∫
Y�m(θ, φ)∗Y�m(θ, φ) sin θ dθ dφ= δ��′δmm ′ . (5.32)

The explicit forms of the first few spherical harmonics are given in table 5.1. It is
sometimes more convenient to use modified spherical harmonics C�m , defined by

C�m(θ, φ) =
√

4π

2� + 1
Y�m(θ, φ), (5.33)

which satisfy

C�m(0, 0) = δm,0. (5.34)
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5.3. Rotations of a rigid body

5.3.1. Introduction

It is easy to see that the orientation of a vector in space can be described by the two
spherical polar angles, θ and φ. From a reference position parallel to the Z axis, the
required orientation is obtained as follows:

(i) rotate the vector through an angle θ about the space-fixed Y axis,
(ii) rotate the vector through an angle φ about the space-fixed Z axis.

For a general body, however, a third angle is needed. The three angles are known
as Euler angles and are usually labelled φ, θ and χ . φ and θ are used to define the
orientation of some defined axis in the body itself (the so-called figure axis) in the
same way as φ and θ respectively are used to define the orientation of a vector; χ then
measures a rotation about the figure axis. In order to describe the final orientation of
the body, let us attach a second coordinate system (x , y, z) to it according to some
prescription; this is the body-fixed axis system. We start from a reference orientation
with x , y, z coincident with the space-fixed axis system X , Y , Z , and then carry out
the following three rotations:

(i) rotate (in a positive sense) through χ about the space-fixed Z axis,
(ii) rotate through θ about the space-fixed Y axis,

(iii) rotate through φ about the space-fixed Z axis.

The overall rotation is then defined by

R(φ, θ, χ) = exp(−iφ JZ ) exp(−iθ JY ) exp(−iχ JZ ). (5.35)

We note that the three Euler angles have the following ranges:

0 ≤φ ≤ 2π; 0 ≤ θ ≤ π; 0 ≤ χ ≤ 2π. (5.36)

The symbol ω is commonly used as a short-hand for the orientation (φ, θ , χ ). The
volume element for integration is

dω= sin θ dφ dθ dχ, (5.37)

and ∫
dω= 8π2. (5.38)

The inverse of the rotation in equation (5.35) is

R−1(φ, θ, χ) = R(−χ,−θ,−φ). (5.39)

It can be shown that a sequence of rotations about axes fixed in space is equivalent to the
same sequence of rotations but performed in the reverse order about axes which rotate
with the body (provided that the body-fixed and space-fixed axes coincide initially).
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φ

θ

θ

χ

X

Figure 5.3. The Euler angles φ, θ , χ which define a general orientation of the body-fixed x , y,
z axes relative to the space-fixed axes X , Y , Z . The line OY ′, which is the intersection of the
XY and xy planes, is called the line of nodes. Note that: x = X ′′′, Y ′ = Y ′′, y = Y ′′′, z = Z ′′ = Z ′′′,
Z ′ = Z , 
 Y OY ′ =φ, 
 X ′OX ′′ = θ and 
 Y ′Oy =χ .

The seeds of this idea can be seen in equation (5.10). For our general rotation, this
means

R1 R2 R3 = R′
3 R′

2 R′
1 (5.40)

where we have written the space-fixed rotations on the left-hand side and the body-
fixed rotations on the right-hand side. Consequently, the Euler angles can be defined
equivalently by specifying the following sequence of rotations. As before, we start
with a set of axes (x, y, z) fixed in the body and coincident with the space-fixed axes
(X, Y, Z ). We then perform the following sequence, which is shown in figure 5.3:

(i) rotate in a positive sense through φ about the body-fixed z axis (coincident at this
stage with the space-fixed Z axis), bringing the xyz system into position X ′Y ′ Z ′,

(ii) rotate through θ about the y or Y ′ axis which brings the xyz system into position
X ′′Y ′′ Z ′′,

(iii) rotate through χ about the z or Z ′′ axis which brings xyz to its final position
X ′′′Y ′′′ Z ′′′.

This definition occurs in several textbooks, perhaps because it is easier to appreciate
physically. However, it is not so convenient mathematically because it refers to rotations
in different axis systems.

It can be seen from figure 5.3 that, while the polar coordinates of z in XYZ are
(θ, φ), the polar coordinates of Z in xyz are (θ,π −χ ). In addition, the inverse rotation
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through ω−1 in equation (5.39) is

R−1(φ, θ, χ ) = R(π −χ, θ,π −φ). (5.41)

We can also define infinitesimal rotation operators Jx , Jy and Jz for rotations about
the body-fixed axes in accordance with equation (5.7). These commute with the usual
space-fixed infinitesimal rotation operators JX , JY and JZ . In addition, because of
equation (5.40), they obey anomalous commutation relationships with each other:

[Jx , Jy] = −iJz, etc. (5.42)

Now it is obvious that

J 2
x + J 2

y + J 2
z = J 2

X + J 2
Y + J 2

Z , (5.43)

so that both share the same eigenvalue j( j + 1). However, because Jz commutes with
JZ , it is possible to find eigenfunctions which are eigenfunctions of Jz with eigenvalue
k (say) as well as being eigenfunctions of JZ with eigenvalue m; m and k both take
values from − j to + j in unit steps.

At first sight, the anomalous result in equation (5.42) is very surprising. It comes
about because, although Jx , Jy and Jz commute with the space-fixed components JX ,
JY and JZ in equation (5.7), they do not commute with the direction cosines nX , nY

and nZ [10]. Physically speaking, a body-fixed rotation is not strictly a rotation about
an axis in the moving body but rather a rotation about a space-fixed axis which is
instantaneously coincident with that axis. Van Vleck [10] is thus careful to describe
these components as being referred to the body-fixed axes, not measured along them.

5.3.2. Rotation matrices

We recall that the square of the total angular momentum J2 commutes with all the
components of J and hence with the rotation operator R(φ, θ, χ). Consequently, when
a rotation operator is applied to an angular momentum eigenfunction | j,m〉, the result
is also an eigenfunction of J2 with the same eigenvalue j( j + 1):

R(φ, θ, χ)| j,m〉 =
∑
m ′

| j,m ′〉D
( j)
m ′,m(φ, θ, χ), (5.44)

where the expansion coefficients D
( j)
m ′,m(φ, θ, χ) are elements of a (2 j + 1) × (2 j + 1)

matrix called a Wigner rotation matrix. It can be seen that

D
( j)
m ′m(φ, θ, χ) = 〈 j,m ′|R(φ, θ, χ)| j,m〉

= 〈 j,m ′| exp(−iφ JZ ) exp(−iθ JY ) exp(−iχ JZ )| j,m〉
= exp(−iφm ′ − iχm)〈 j,m ′| exp(−iθ JY )| j,m〉
≡ exp(−iφm ′ − iχm)d ( j)

m ′m(θ). (5.45)

The quantity d ( j)
m ′m(θ ) is an element of a reduced rotation matrix.
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The D
( j) matrix forms an irreducible representation of the full rotation group.

Because the basis vectors | j,m〉 are orthonormal and remain so on rotation, the matrices
are unitary:

D
−1 = D

† or
∑
m ′′

{
D

( j)
m ′m ′′ (ω)

}†
D

( j)
m ′′m(ω) =

∑
m ′′

D
( j)
m ′′m ′ (ω)∗D

( j)
m ′′m(ω) = δm ′m, (5.46)

where the dagger (†) denotes the adjoint, that is the transpose complex conjugate, of
the matrix. Explicitly we have

D
( j)
mn(φ, θ, χ)∗ = D

( j)
nm(−χ,−θ,−φ), (5.47)

where (−χ,−θ,−φ) is the rotation inverse to (φ, θ, χ). The orthogonality theorem
of finite group theory has its analogue in the continuous rotation group (which is an
infinite group); the sum over group elements becomes an integration over the rotation
angles: ∫

D
( j)
mn(ω)∗D

( j ′)
m ′n′ (ω) dω= 8π2

(2 j + 1)
δ j ′ jδm ′mδn′n. (5.48)

The elements of the reduced matrix are real and can be expressed explicitly as

d ( j)
mn(θ ) =

∑
t

(−1)t [( j + m)!( j − m)!( j + n)!( j − n)!]1/2

( j + m − t)!( j − n − t)!(t)!(t + n − m)!

×
(

cos
θ

2

)2 j+m−n−2t(
sin
θ

2

)2t−m+n

, (5.49)

where the sum is taken over all integral values of t which do not lead to negative
factorials. The following symmetry properties of d ( j)

mn(θ) can be readily derived from
the above expression:

d ( j)
mn(θ) = d ( j)

−n,−m(θ),

d ( j)
mn(θ) = (−1)m−nd ( j)

nm(θ),

d ( j)
mn(−θ) = d ( j)

nm(θ), (5.50)

d ( j)
mn(π + θ) = (−1) j+md ( j)

−m,n(θ),

d ( j)
mn(π − θ) = (−1) j+md ( j)

n,−m(θ).

In addition,

d ( j)
mn(0) = δmn. (5.51)

The rotation matrix elements reduce to spherical harmonics when j is an integer and
m or n is zero:

D
( j)
m0(φ, θ, χ) = C jm(θ, φ)∗ =

√
2 j + 1

4π
Y jm(θ, φ)∗. (5.52)
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5.3.3. Spin 1/2 systems

We recall from section 5.2.4 that, from the general theory of angular momentum, j can
take half-integral (more strictly half-odd) values as well as integral ones. The particular
case of j = 1/2 deserves special mention because of its importance in the discussion
of electron or proton spin. For j = 1/2, there are two possible states |1/2, 1/2〉 and
|1/2, −1/2〉 which are often denoted |α〉 and |β〉 respectively. The spin operators which
define these states are particularly simple. For example,

S+|β〉 =
[

1

2

(
1

2
+ 1

)
−

(
−1

2

)(
−1

2
+ 1

)]1/2

|α〉 = |α〉,

S+|α〉 = 0. (5.53)

From such considerations, we can write out the matrices which represent S+, S− and
SZ using |α〉 and |β〉 as a basis set:

S+ =
[

0 1
0 0

]
, S− =

[
0 0
1 0

]
, SZ =

[
1/2 0
0 −1/2

]
. (5.54)

It is often convenient to use the Pauli spin operator σ= 2S, whence:

σX = S+ + S− =
[

0 1
1 0

]
, σY = −i(S+ − S−) =

[
0 −i
i 0

]
, σZ = 2SZ =

[
1 0
0 −1

]
.

(5.55)

The components of σ anticommute, that is:

[σi , σ j ]+ ≡ [σiσ j + σ jσi ] = 2δi j

[
1 0
0 1

]
. (5.56)

The three matrices σX , σY , σZ plus the unit 2 × 2 matrix 1 form a complete represen-
tation of a j = 1/2 system.

The rotation matrices take a particularly simple form for j = 1/2 because
JY = (1/2)σY and σ 2

Y = 1. Using these relationships, we can write

d (1/2)(θ) = exp(−iθ SY )

= exp(−(1/2)iθσY )

= 1− iσY (1/2)θ− (1/2!)σ 2
Y (θ/2)2 + (i/3!)σ 3

Y (θ/2)3 + (1/4!)σ 4
Y (θ/2)4 − · · ·

= 1 cos(θ/2) − iσY sin(θ/2)

=
[

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

]
. (5.57)

5.3.4. Symmetric top wave functions

The Hamiltonian which represents the rotational kinetic energy of an asymmetric top
with three unequal moments of inertia is

Hrot = AP2
x + B P2

y + C P2
z , (5.58)



Rotations of a rigid body 151

where P represents the rotational angular momentum of the body, x , y and z refer to the
molecule-fixed principal inertial axes, and the rotational constants A = h 2/2Iaa , etc.,
with A ≥ B ≥ C . Since the rotations about space-fixed axes commute with rotations
about body-fixed axes, the operators J2 and JZ both commute with Hrot and so J and
M are good quantum numbers (we use upper case letters for the rotational angular
momentum quantum numbers in this section). We therefore write the eigenfunctions
of Hrot as φ J

M (ω) ≡φ J
M (φ, θ, χ).

Let us consider the behaviour of this function, with a particular value φ J
M (ω1) at

(φ1, θ1, χ1), under a rotation of the body throughω2. Under the rotation, the eigenfunc-
tion is transformed to a new function φ′ where

φ′(ω1) ≡ R(ω2)φ J
M (ω1) =

∑
K

φ J
K (ω1)D

(J )
K M (ω2). (5.59)

We know that the value of the transformed wave function in the new orientation is the
same as that of the original wave function φ J

M in the original orientation, i.e.

φ′(ω2, ω1) =φ J
M (ω1) or φ′(ω1) =φ J

M

(
ω−1

2 , ω1
)
. (5.60)

The second equation states that the value of the new function at a particular coordinate
position (φ, θ, χ) is the same as the value of the original function at the point (φ′, θ ′, χ ′)
which transforms into (φ, θ , χ ) under the rotation through (φ2, θ2, χ2) (see figure 5.1).
From equations (5.59) and (5.60) we have

φ J
M

(
ω−1

2 , ω1
) = R(ω2)φ J

M (ω1)

=
∑

K

φ J
K (ω1)D

(J )
K M (ω2). (5.61)

If we start out with the principal inertial axes coincident with (X, Y, Z ), that is,
ω1 = (0, 0, 0) and set ω−1

2 = (φ, θ, χ) =ω, we can write

φ J
M (ω) =

∑
K

φ J
K (0)D

(J )
K M (−ω)

=
∑

K

φ J
K (0)D

(J )
K M (ω)∗. (5.62)

This is the general expression for the wave function of an asymmetric top molecule.
For a symmetric top, two of the three rotational constants are equal. Either B = A

and we have an oblate symmetric top:

Hrot = B P2 − (B − C)P2
z , (5.63)

or B = C and we have a prolate symmetric top:

Hrot = B P2 + (A − B)P2
z . (5.64)

In either case, Pz also commutes with Hrot and the wave functions satisfy

Pzφ
J
M (ω) = −i

∂

∂χ
φ J

M (ω) = Kφ J
M (ω), (5.65)
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for some value of K . As a result of this condition, only one term in the general solution
(5.62) survives, i.e.

φ J
M (ω) =φ J

K (0) exp(iφM)d (J )
M K (θ) exp(iχK ). (5.66)

In other words, the wave function for a symmetric top molecule is given by

φ J
M K (φ, θ, χ) = D

(J )
M K (φ, θ, χ)∗ × constant. (5.67)

From equation (5.48), the constant is [(2J + 1)/8π2]1/2 if the function is to be nor-
malised to unity.

5.4. Addition of angular momenta

5.4.1. Introduction

Let us consider two angular momenta J1 and J2 which are independent, that is, act on
different parts of a system, and have eigenfunctions | j1,m1〉 and | j2,m2〉 respectively.
If the two parts of the system interact through some physical mechanism, the two
angular momenta become coupled and it is meaningful to define a resultant angular
momentum,

J = J1 + J2. (5.68)

It is easy to show that the components of J obey the standard commutation relation-
ships (5.13). The commuting operators J and JZ therefore have eigenfunctions | j,m〉.
In this section we describe how these eigenfunctions are related to those of J2

1 and
J2

2. We can describe the combined system by a simple product of the wavefunctions
| j1,m1〉| j2,m2〉 which we write as | j1m1; j2m2〉; this is known as the uncoupled or
decoupled representation. These products are still eigenfunctions of J2

1, J1Z , J2
2 and

J2Z . They are also eigenfunctions of JZ with eigenvalue m = m1 + m2:

JZ | j1,m1; j2,m2〉 = (J1Z + J2Z )| j1,m1; j2,m2〉 = (m1 + m2)| j1,m1; j2,m2〉. (5.69)

However, they are not eigenfunctions of J2 since

J2 = (J1 + J2) · (J1 + J2)

= J2
1 + J2

2 + 2J1 · J2

= J2
1 + J2

2 + 2J1Z J2Z + J1+ J2− + J1− J2+. (5.70)

Remembering that the J1 operator acts only on the | j1,m1〉 part of the decoupled
representation and J2 acts only on the | j2,m2〉 part, we see that J2 connects states with
different values of m1 and m2 but with constant (m1 + m2).

In order to determine the allowed values of the total angular momentum quantum
number j , let us apply J2 in equation (5.70) to the uncoupled state | j1, j1; j2, j2〉, that
is, with the maximum values for m1 and m2:

J2| j1, j1; j2, j2〉 = [ j1( j1 + 1) + j2( j2 + 1) + 2 j1 j2]| j1, j1; j2, j2〉
= [( j1 + j2)( j1 + j2 + 1)]| j1, j1; j2, j2〉. (5.71)
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This particular product wavefunction is therefore an eigenfunction of J2 with eigen-
value j = j1 + j2:

| j = j1 + j2,m = j1 + j2〉 = | j1,m1 = j1; j2,m2 = j2〉. (5.72)

This is the largest possible value for j because mmax = j1 + j2. We can then obtain
other coupled eigenfunctions | j1, j2, j,m〉 by applying the lowering operator J− =
J1− + J2−:

J−| j1, j2, j = j1 + j2,m = j1 + j2〉 = (J1− + J2−)| j1, j1; j2, j2〉. (5.73)

The effects of the lowering operators on each side of this equation are given in equation
(5.21). With these results we obtain

(2 j)1/2| j1, j2, j = j1 + j2,m = j1 + j2 − 1〉
= (2 j1)1/2| j1, j1 − 1; j2, j2〉 + (2 j2)1/2| j1, j1; j2, j2 − 1〉. (5.74)

States with the same value of j but lower values of m can be obtained in this way by
successive operations of J−. Equation (5.74) describes a state with m = j1 + j2 –1. At
the same time, there exists a second, independent state with the same value for m:

| j1, j2, j ′,m = j1 + j2 − 1〉
= ( j)−1/2

{
( j1)1/2| j1, j1 − 1; j2, j2〉 − ( j2)1/2| j1, j1; j2, j2 − 1〉}. (5.75)

Operation on this state with J+ = J1+ + J2+ , using equation (5.20) leads to zero. This
means that m already possesses its maximum value so this second state has angular
momentum j ′ = j1 + j2 − 1. This can be confirmed by operating on the state with J2.
All lower values of m for this value of j ′ can then be obtained by successive application
of the lowering operator J− = J1− + J2−.

For the next lower value of m (= j1 + j2 − 2), there are three possible decoupled
states. Two linear combinations of these states are associated with j = j1 + j2 and
j = j1 + j2 − 1; the remaining orthogonal combination must therefore be the one
with the maximum value of m for j = j1 + j2 − 2. This procedure is continued until
either m1 reaches − j1, or m2 reaches − j2. Thereafter, no new values for j can be
generated. Consequently, the smallest value for j is ( j1 − j2) or ( j2 − j1), whichever
is the larger, i.e.,

jmin = | j1 − j2|. (5.76)

The relationship between the coupled states | j,m〉 and the uncoupled states
| j1,m1〉| j2,m2〉 can be written in the general form:

| j,m〉 =
∑

m1,m2

| j1,m1〉| j2,m2〉〈 j1, j2,m1,m2| j,m〉. (5.77)

This form follows directly from the closure relationship

|a〉 =
∑

b

|b〉〈b | a〉. (5.78)

The coefficients 〈 j1, j2,m1,m2| j,m〉 are called the Clebsch–Gordan coefficients. As
we have seen, they are zero unless m1 + m2 = m. The coefficients are defined by
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equation (5.77) only when j takes one of the values j1 + j2, j1 + j2 − 1, . . . , | j1 − j2|.
This condition can be expressed more symmetrically: none of the j values may exceed
the sum of the other two and the sum of all three j values must be an integer. It is
usually called the triangle condition and can be written as �( j1, j2, j), which is 1 if
the triangle condition is satisfied and 0 otherwise. The Clebsch–Gordan coefficients
are thus zero when the triangle condition is not satisfied. These two conditions for the
Clebsch–Gordan coefficients to be non-zero reflect the fact that the angular momenta
add vectorially (the triangle condition) and their components along an arbitrary Z axis
add algebraically (m1 + m2 = m).

The Clebsch–Gordan coefficients for given values of j1 and j2 form a square matrix
labelled by the j,m values one way and by m1,m2 the other. This matrix is always real
and orthogonal, so that the inverse transformation to (5.77) is

| j1,m1〉| j2,m2〉 =
∑
j,m

| j,m〉〈 j1, j2,m1,m2| j,m〉. (5.79)

5.4.2. Wigner 3-j symbols

The Clebsch–Gordan coefficient is unsymmetrical between j1 and j2 on the one hand
and j on the other. There is also an asymmetry between j1 and j2 which arises from
the order of the coupling and leads to a different phase factor. A more symmetrical
formulation of the coupling coefficients is possible, as shown by Wigner [11]. Consider
first the coupling of two angular momenta, both with quantum number j , to give a scalar
( j = 0) result. We have

|0, 0〉 =
∑

m

〈 j, j,m,−m|0, 0〉| j,m〉| j,−m〉. (5.80)

It is relatively easy to show that all the possible coefficients on the right-hand side are
equal in magnitude, specifically

〈 j, j,m,−m|0, 0〉 = (−1) j−m

√
2 j + 1

. (5.81)

We next consider the coupling of three angular momenta to give a scalar. We first couple
j1 and j2 together to give a resultant of magnitude j3 and then couple this with j3 to
produce a scalar, thus:

|0, 0〉 =
∑
m3m ′

3

〈 j3, j3,m3,m
′
3|0, 0〉| j3,m3〉

∑
m1m2

〈 j1, j2,m1,m2| j3,m
′
3〉| j1,m1〉| j2,m2〉

= δm ′
3,−m3

∑
m1m2m3

(−1) j3−m3 (2 j3 + 1)−1/2

× 〈 j1, j2,m1,m2| j3,−m3〉| j1,m1〉| j2,m2〉| j3,m3〉. (5.82)

This equation provides the basis for the Wigner 3- j symbol, defined as(
j1 j2 j3

m1 m2 m3

)
≡ (−1) j1− j2−m3 (2 j3 + 1)−1/2〈 j1, j2,m1,m2| j3,−m3〉 (5.83)
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where a further factor of (−1) j1− j2− j3 has been introduced to make the 3- j symbol as
symmetrical as possible between the three angular momenta. The contraction to the
scalar product in equation (5.82) thus becomes

|0, 0〉 =
∑

m1m2m3

(
j1 j2 j3

m1 m2 m3

)
| j1,m1〉| j2,m2〉| j3,m3〉 (5.84)

to within a phase factor; the equal status of each angular momentum is evident.
The 3- j symbol is invariant under an even or cyclic permutation in the order of its

columns. An odd permutation of the columns multiplies the 3- j symbol by the phase
factor (−1) j1+ j2+ j3 , as does a change of sign of all the projection quantum numbers:(

j1 j2 j3
m1 m2 m3

)
= (−1) j1+ j2+ j3

(
j2 j1 j3

m2 m1 m3

)

= (−1) j1+ j2+ j3

(
j1 j2 j3

−m1 −m2 −m3

)
. (5.85)

The 3- j symbol also has the advantage that the projection quantum numbers are shown
below their associated vectors, consistent with their subordinate role. The orthogonality
properties of the 3- j symbols are written as

∑
j3m3

(2 j3 + 1)

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j3

m ′
1 m ′

2 m3

)
= δm1m ′

1
δm2m ′

2
,

(5.86)∑
m1m2

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j ′

3

m1 m2 m ′
3

)
= (2 j3 + 1)−1δ j3 j ′

3
δm3m ′

3
�( j1, j2, j3).

The corresponding form of the coupled angular momentum functions given in equation
(5.77) can thus be written:

| j,m〉 = (−1) j1− j2+m(2 j + 1)1/2
∑
m1m2

(
j1 j2 j

m1 m2 −m

)
| j1,m1〉| j2,m2〉. (5.87)

The 3- j symbols have explicit functional forms dependent on their arguments. We give
the simplest of these formulae in General Appendix C at the end of this book. It should
also be appreciated that expressions for particular symbols can be derived algebraically
by computer software [12] in less time than it takes to look them up in a table.

5.4.3. Coupling of three or more angular momenta: Racah algebra, Wigner
6-j and 9-j symbols

The general procedure for coupling two angular momenta can be extended to describe
the coupling of three or more angular momenta. The uncoupled basis for three angular
momenta is | j1,m1〉| j2,m2〉| j3,m3〉 but there are several alternative coupling schemes
for arriving at the coupled description. We can, for example, first couple j1 and j2 to
give j12 and then couple j12 with j3 to give the resultant j . We note that the resulting
wave function |(( j1, j2) j12, j3) j,m〉 for given values of j and m will be different for
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differing values of j12 whose value must therefore be specified. Alternatively, we can
choose to couple j1 with the resultant j23 of j2 and j3 to give |( j1, ( j2, j3) j23) j,m〉
and again the value of the intermediate quantum number j23 must be specified. It is
also important to state the order of the coupling clearly; the coupling ( j1, j2) j12 differs
from ( j2, j1) j12 by a phase factor.

Either of these two types of coupled function can be expressed in terms of the other
using the closure relationship:

|(( j1, j2) j12, j3) j,m〉
=

∑
j23

|( j1, ( j2, j3) j23) j,m〉〈( j1, ( j2, j3) j23) j,m|(( j1, j2) j12, j3) j,m〉. (5.88)

Operating on both sides of this equation with J± shows that the transformation coeffi-
cients are independent of m. We can therefore rewrite this equation more simply (with
an obvious change of notation) as

|((a, b) e, d)c〉 =
∑

f

|(a, (b, d) f )c〉〈(a, (b, d) f )c|((a, b)e, d)c〉

≡
∑

f

[(2e + 1)(2 f + 1)]1/2W (a, b, c, d; e, f )|(a, (b, d) f )c〉. (5.89)

The quantity W (a, b, c, d; e, f ) defined by equation (5.89) is called the Racah coeffi-
cient; the normalisation factor [(2e + 1)(2 f + 1)]1/2 is chosen to simplify the symme-
try properties. A closely related quantity is the Wigner 6-j symbol:{

a b e
d c f

}
= (−1)a+b+c+d W (a, b, c, d; e, f ). (5.90)

The 6- j symbol has a higher symmetry, being invariant with respect to interchange of
any two columns and also under the interchange of the upper and lower arguments in
each of any two columns.

It can be seen from equations (5.88) and (5.89) that the 6- j symbols can be ex-
pressed in terms of products of the 3- j symbols:{

a b e
d c f

}
=

∑
αβγ δεφ

(−1)d+c+ f +δ+γ+φ
(

a b e
α β ε

)(
a c f
α γ −φ

)

×
(

d b f
−δ β φ

)(
d c e
δ −γ ε

)
. (5.91)

Another useful formula is obtained from this expression, using the second of the
equations (5.86):(

a b e
α β ε

){
a b e
d c f

}
=

∑
δγ φ

(−1)d+c+ f +δ+γ+φ
(

a c f
α γ −φ

)

×
(

d b f
−δ β φ

)(
d c e
δ −γ ε

)
. (5.92)

Explicit formulae for the 6- j symbols can be obtained from equations (5.91) and (5.92);
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a valuable collection is given in Edmonds’ book [1] (see also General Appendix D).
Once again, they can be generated analytically by Mathematica [12].

When there are four angular momenta to couple together, there are again several
alternative coupling schemes and as before the basis functions in any two schemes are
related. In this case, the relationship defines a Wigner 9-j symbol:

|((a, d)g, (b, e)h)i〉 =
∑
c f

[(2c + 1)(2 f + 1)(2g + 1)(2h + 1)]1/2

×



a b c
d e f
g h i


 |((a, b)c, (d, e) f )i〉. (5.93)

The 9- j symbol is multiplied by (−1)p, where p is the sum of all 9 arguments, on
exchanging any two rows or columns. It is unchanged by an even permutation of rows
or columns, or by a reflection about a diagonal. When one argument of the 9- j symbol
is zero, it reduces to a 6- j symbol:

[(2c + 1)(2g + 1)]1/2




a b c
d e f
g h 0


 = δc f δgh(−1)b+c+d+g

{
a b c
e d g

}
. (5.94)

Note that the 9- j symbol, like the 6- j symbol, is independent of m and therefore makes
no reference to the projection quantum numbers.

Wigner’s n- j symbols may well look unfriendly and even intimidating on first
acquaintance. To overcome this impression, it is helpful to remember that they are only
coefficients in the linear expression of a wave function of a quantum system and simply
take numerical values in any given application. Furthermore, what is often important
in practice is the ability to recognise when they are zero from constraints such as the
triangle rule because this leads to useful selection rules, as we shall see later in this
chapter and elsewhere in this book.

5.4.4. Clebsch–Gordan series

It is possible to derive some general and useful properties of the rotation matrices from
the relationship between the decoupled functions | j1,m1〉| j2,m2〉 and the coupled
functions | j1, j2, j3,m3〉, equation (5.79). Operating with R(φ, θ, χ) on both sets of
functions, we obtain:

∑
m ′

1

∑
m ′

2

D
( j1)
m ′

1m1
(ω)D

( j2)
m ′

2m2
(ω)| j1,m

′
1〉| j2,m

′
2〉

=
∑

j3

∑
m ′

3

〈 j1,m1; j2,m2| j1, j2, j3,m3〉D
( j3)
m ′

3m3
(ω)| j1, j2, j3,m

′
3〉. (5.95)
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If we multiply each side from the left by 〈 j1,m1; j2,m2| and introduce 3- j symbols,
we obtain:

D
( j1)
m ′

1m1
(ω)D

( j2)
m ′

2m2
(ω) =

∑
j3

(2 j3 + 1)

(
j1 j2 j3

m ′
1 m ′

2 m ′
3

)(
j1 j2 j3

m1 m2 m3

)
D

( j3)
m ′

3m3
(ω)∗.

(5.96)

Similarly,

D
( j3)
m ′

3m3
(ω)∗ =

∑
m1m ′

1m2m ′
2

(2 j3 + 1)

(
j1 j2 j3

m ′
1 m ′

2 m ′
3

)(
j1 j2 j3

m1 m2 m3

)
D

( j1)
m ′

1m1
(ω)D

( j2)
m ′

2m2
(ω).

(5.97)

The expressions are particularly useful in the evaluation of integrals over products of
rotational matrices, as we shall see. They are widely used in many branches of physics
and chemistry from multipole expansions through to statistical mechanical averaging.

5.4.5. Integrals over products of rotation matrices

If we recall the definition of the rotation matrix D
( j)
m ′m(φ, θ, χ) from equation (5.45) and

integrate over the volume element dω = sin θ dφ dθ dχ , we obtain

∫
D

( j)
m ′m(φ, θ, χ) dω = δ j0δm ′0δm0. (5.98)

We can then use this result in the integration of equation (5.96) to give

∫
D

( j1)
m ′

1m1
(ω)∗D

( j2)
m ′

2m2
(ω) dω = 8π2

(2 j1 + 1)
δ j1 j2δm ′

1m ′
2
δm1m2 , (5.99)

a normalisation equation which we have anticipated in equation (5.48). Using a similar
approach, we can derive an expression for the integral over a product of three rotation
matrix elements which arises in atomic theory and elsewhere. We multiply equation
(5.96) by D

( j3)
m ′

3m3
(ω) and integrate over ω to obtain

∫
D

( j1)
m ′

1m1
(ω)D

( j2)
m ′

2m2
(ω)D

( j3)
m ′

3m3
(ω) dω= 8π2

(
j1 j2 j3

m ′
1 m ′

2 m ′
3

)(
j1 j2 j3

m1 m2 m3

)
. (5.100)

The evaluation of this integral by conventional methods (even for the special case m1 =
m2 = m3 = 0 when the rotation matrices reduce to spherical harmonics) is extremely
laborious. We shall use this result in the derivation of the Wigner–Eckart theorem and
other angular momentum relationships later in this chapter.
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5.5. Irreducible spherical tensor operators

5.5.1. Introduction

We recall from section 5.3.2 that the transformation of an angular momentum state
| j,m〉 under a finite rotation of the axis system through Euler angles (φ, θ, χ) is
described by

R(φ, θ, χ)| j,m〉 = | j,m〉′ =
∑
m ′

| j,m ′〉D
( j)
m ′m(φ, θ, χ). (5.101)

This equation specifies the eigenstates of JZ ′ in the new coordinate system (X ′, Y ′, Z ′)
in terms of the eigenstates of JZ , in the original coordinate system (X, Y, Z ). It tells us
that the state | j,m〉 transforms only into states with the same value for j under rotations
in three-dimensional space. It may seem a little wayward to drop the active convention
(rotation of the physical system) in favour of the passive convention (rotation of the axis
system) at this point. However, it is conventional to define cartesian tensors by the way
they are affected by transformations of the coordinate system, and the same is true for
spherical tensors. It is worthwhile remembering that a rotation of the coordinate system
through Euler angles ω = (φ, θ, χ) is equivalent to a rotation of the physical system
through ω−1 = (−χ,−θ,−φ). The behaviour of the spherical harmonic functions
under rotation of the coordinate system,

R(ω)C�m(θ, φ) ≡ C�m(θ ′, φ′) =
∑
m ′

D
(�)
m ′m(ω)C�m(θ, φ), (5.102)

is a special example of the transformation rule stated above. Such transformation
properties form the basis for the definition of a general spherical tensor,

Tk
p(T) =

∑
p′

Tk
p′ (T)D

(k)
p′ p(ω), (5.103)

where ω stands for the Euler angles of the rotation which takes the old, unprimed to the
new, primed axis system. Since the matrix D

(k)(ω) forms an irreducible representation
of the rotation group of rank k, it follows directly that Tk

p(T) is also an irreducible
representation of the same rank.

The same ideas can be readily extended to cover quantum mechanical operators.
The formulation is slightly different because, although a transformation S turns a wave
function ψ into S ψ , it turns an operator T into S T S−1. Thus an irreducible spherical
tensor operator (usually abbreviated to spherical tensor operator) Tk(T) of rank k is de-
fined as an entity with (2k + 1) components, Tk

p(T), which transform under rotations as

R(ω)Tk
p(T)R−1(ω) =

∑
p′

Tk
p′ (T)D

(k)
p′ p(ω). (5.104)

Each component is labelled by a different value for p which, as usual, runs from −k to
+k in steps separated by unity. This definition can be re-cast in a more useful form as
follows. We consider a small, finite rotation through an angle δχ about the space-fixed
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axis ξ . From equation (5.2), we can write

R(δχ ) = 1 − i δχ Jξ + · · ·
(5.105)

R−1(δχ ) = 1 + i δχ Jξ + · · ·
We then substitute these expressions in equation (5.104) and equate coefficients linear
in δχ to obtain

JξT
k
p(T) − Tk

p(T)Jξ =
∑

p′
Tk

p′(T)〈k, p′|Jξ |k, p〉. (5.106)

From this, it is a short step to the alternative definition of a spherical tensor operator
Tk(T): [

JZ ,T
k
p(T)

] = pTk
p(T),

(5.107)[
J±,Tk

p(T)
] = [k(k + 1) − p(p ± 1)]1/2Tk

p±1(T).

5.5.2. Examples of spherical tensor operators

The most obvious example of a spherical tensor operator is the angular momentum
itself (a spherical tensor of rank one):

T1
1(J) = − 1√

2
(JX + iJY ) = − 1√

2
J+,

T1
0(J) = JZ , (5.108)

T1
−1(J) = 1√

2
(JX − iJY ) = 1√

2
J−.

The difference between the definitions of the shift operators J± and the spherical tensor
components T1

±1(J) should be noted because it often causes confusion. Because J is
a vector and because all vector operators transform in the same way under rotations,
that is, according to equation (5.104) with k = 1, it follows that any cartesian vector
V has spherical tensor components defined in the same way (see table 5.2). There is
a one-to-one correspondence between the cartesian vector and the first-rank spherical
tensor. Common examples of such quantities in molecular quantum mechanics are the
position vector r and the electric dipole moment operator µe.

Just as angular momentum wave functions can be coupled together using the
Clebsch–Gordan coefficients, so too can spherical tensors. Two spherical tensors Rk1

and Sk2 can be combined to form a tensor of rank K which takes all possible values
from (k1 + k2) to (k1 − k2), assuming k1 ≥ k2:

TK
P (Rk1 , Sk2 ) =

∑
p1 p2

〈k1, k2, p1, p2|K , P〉Tk1
p1

(R)Tk2
p2

(S ). (5.109)

This result may be compared with equation (5.77). It often happens that k1 = k2, in
which case a zeroth-rank tensor K = 0, as well as others, can be produced by their
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Table 5.2. The relationship between spherical tensors of ranks 1 and 2
and cartesian vectors V and second-rank tensors T

spherical tensors cartesian vectors and tensors

vector T1
0(V) VZ

T1
±1(V) ∓(1/

√
2)(VX ± iVY )

second-rank tensor T0
0(T) −(1/

√
3)(TX X + TY Y + TZ Z )

T1
0(T) (i/

√
2)(TXY − TY X )

T1
±1(T) ∓(i/2){(TY Z − TZY ) ± i(TZ X − TX Z )}

T2
0(T) (1/

√
6){2TZ Z − TX X − TY Y }

T2
±1(T) ∓(1/2){(TX Z + TZ X ) ± i(TY Z + TZY )}

T2
±2(T) (1/2){(TX X − TY Y ) ± i(TXY + TY X )}

interaction:

T0
0(Rk, Sk) =

∑
p

〈k, k, p,−p|0, 0〉Tk
p(R)Tk

−p(S )

=
∑

p

(−1)k−p(2k + 1)−1/2Tk
p(R)Tk

−p(S ), (5.110)

by use of equation (5.81). Such a resultant is invariant under rotations and so is a scalar
quantity. However, in spherical tensor algebra, the scalar product is defined slightly
differently, namely

Tk(R) · Tk(S ) =
∑

p

(−1)pTk
p(R)Tk

−p(S ). (5.111)

This differs from equation (5.110) in both phase and normalisation factors. We have
seen that, for k = 1, the spherical tensor corresponds to a cartesian vector; the spherical
scalar product in this case is the same as the cartesian scalar product of two vectors:

T1(A) · T1(B) =
∑

p

(−1)pT1
p(A)T1

−p(B)

= AX BX + AY BY + AZ BZ

= A · B. (5.112)

Although there is a one-to-one correspondence between the first-rank cartesian and
spherical tensors, the same is not true for second- and higher-rank cartesian tensors.

From equation (5.109) we see that two vectors u and v can be coupled together
to give a scalar product T0(u,v), a vector T1(u,v) which is proportional to the vector
product u ∧ v and a second-rank spherical tensor T2(u,v). The explicit expressions for
their components can be obtained as follows:

T0
0(u,v) =

∑
mm ′

〈1, 1,m,m ′ | 0, 0〉umvm ′ = 1√
3

(u1v−1 − u0v0 + u−1v1)

= − 1√
3

(u XvX + uY vY + uZvZ ), (5.113)
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T1
0(u,v) =

∑
mm ′

〈1, 1,m,m ′ | 1, 0〉umvm ′ = 1√
2

(u1v−1 + u−1v1)

= 1√
2

(u XvY − uY vX ), (5.114)

T1
±1(u,v) = 1√

2

[
J±,T1

0

] = ± 1√
2

(u±1v0 − u0v±1)

= 1

2
[(u XvZ − uZvX ) ∓ i(uY vZ − uZvY )], (5.115)

T2
0(u,v) =

∑
mm ′

〈1, 1,m,m ′ | 2, 0〉umvm ′ = 1√
6

(u1v−1 + 2u0v0 + u−1v1)

= 1√
6

(2uZvZ − u XvX − uY vY ), (5.116)

T2
±1(u,v) = 1√

6

[
J±,T2

0

] = 1√
2

(u±1v0 + u0v±1)

= ∓1

2
[u XvZ + uZvX ± i(uY vZ + uZvY )], (5.117)

T2
±2(u,v) = 1

2

[
J±,T2

±1

] = u±1v±1

= 1

2
[u XvX − uY vY ± i(u XvY + uY vX )]. (5.118)

Since a second-rank cartesian tensor Tαβ transforms in the same way as the set of
products uαvβ , it can also be expressed in terms of a scalar (which is the trace

∑
α

Tαα),

a vector (the three components of the antisymmetric tensor (1/2)(Tαβ − Tβα)), and a
second-rank spherical tensor (the five components of the traceless, symmetric tensor,
(1/2)(Tαβ + Tβα) − (1/3)

∑
α

Tαα). The explicit irreducible spherical tensor compo-

nents can be obtained from equations (5.114) to (5.118) simply by replacing uαvβ by
Tαβ . These results are collected in table 5.2. It often happens that these three spherical
tensors with k = 0, 1 and 2 occur in real, physical situations. In any given situation,
one or more of them may vanish; for example, all the components of T1 are zero if
the tensor is symmetric, Tαβ = Tβα . A well-known example of a second-rank spherical
tensor is the electric quadrupole moment. Its components are defined by

eQαβ =
∑

i

qiαiβi , (5.119)

where the sum is performed over all charges which make up the system, for example, a
molecule or a nucleus. Expressed as the components of a second-rank spherical tensor,
these become

eT2
q (Q) =

∑
i

qir
2
i C2

q (θi , φi ) (5.120)

where (ri , θi , φi ) are the spherical polar coordinates of the point charge qi .
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5.5.3. Matrix elements of spherical tensor operators:
the Wigner–Eckart theorem

We now consider how to evaluate the matrix elements of a spherical tensor operator,
written as 〈η, j,m|Tk

q (A)|η′, j ′,m ′〉 where η and η′ denote any further quantum num-
bers required to characterise the states (for example, vibrational quantum numbers v).
If we now rotate the bra, operator and ket through Euler anglesω using equations (5.44)
and (5.102), the result must be unaffected. Thus:

〈η, j,m|Tk
q (A)|η′, j ′,m ′〉 =

∑
nn′ p

D
( j)
nm(ω)∗D

(k)
pq (ω)D

( j ′)
n′m ′ (ω)〈η, j, n|Tk

p(A)|η′, j ′, n′〉.

(5.121)

We now integrate over all ω, making use of equation (5.100), and divide each side by
8π2. The result is

〈η, j,m|Tk
q (A)|η′, j ′,m ′〉

=
∑
nn′ p

(−1)n−m

(
j k j ′

−m q m ′

)(
j k j ′

−n p n′

)
〈η, j, n|Tk

p(A)|η′, j ′, n′〉

= (−1) j−m

(
j k j ′

−m q m ′

){∑
nn′ p

(−1) j−n

(
j k j ′

−n p n′

)

× 〈η, j, n|Tk
p(A)|η′, j ′, n′〉

}
. (5.122)

The quantity in braces in the second line of (5.122) is independent of the projection
quantum numbers because it is a summation over all possible values of n, n′ and p.
Thus we have

〈η, j,m|Tk
q (A)|η′, j ′,m ′〉 = (−1) j−m

(
j k j ′

−m q m ′

)
〈η, j‖Tk(A)‖η′, j ′〉. (5.123)

This is the Wigner–Eckart theorem, a very important result which underpins most
applications of angular momentum theory to quantum mechanics. It states that the
required matrix element can be written as the product of a 3- j symbol and a phase
factor, which expresses all the angular dependence, and the reduced matrix element
〈η, j‖Tk(A)‖η′, j ′〉 which is independent of component quantum numbers and hence
of orientation. Thus one quantity is sufficient to determine all (2 j + 1) × (2k + 1) ×
(2 j ′ + 1) possible matrix elements 〈η, j,m|Tk

q (A)|η′, j ′,m ′〉. The phase factor arises
because the bra 〈η, j,m| transforms in the same way as the ket (−1) j−m |η, j,−m〉. The
definition of the reduced matrix element in equation (5.123), which is due to Edmonds
[1] and also favoured by Zare [4], is the one we shall use throughout this book. The
alternative definition, promoted by Brink and Satchler [3],

(J‖Tk(A)‖J ′) = [2J + 1]
−1/2〈J‖Tk(A)‖J ′〉, (5.124)
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is less widely used in molecular quantum mechanics. The Wigner–Eckart theorem,
when expressed in terms of Clebsch–Gordan coefficients, has the form

〈η, j,m|Tk
q (A)|η′, j ′,m ′〉 = (−1)2k〈 j ′km ′q| jm〉[2 j + 1]−1/2〈η, j‖Tk(A)‖η′, j ′〉.

(5.125)

We next consider how to evaluate the reduced matrix element. Although it is
defined in equation (5.123), this is not a useful relationship for its evaluation. The
usual approach is to calculate the matrix element and then derive 〈η, j‖Tk(A)‖η′, j ′〉
from the result. The evaluation of the reduced matrix element for the total angular
momentum J itself is a good example. From the Wigner–Eckart theorem, we write

〈 j,m|T1
p(J)| j ′,m ′〉 = (−1) j−m

(
j 1 j ′

−m p m ′

)
〈 j‖T1(J)‖ j ′〉. (5.126)

Taking the p = 0 component we can write

〈 j,m|JZ | j ′,m ′〉 = δ j j ′δmm ′m. (5.127)

The analytical expansion of the 3- j symbol is (see General Appendix C):(
j 1 j

−m 0 m

)
= (−1) j−mm[ j( j + 1)(2 j + 1)]−1/2. (5.128)

Hence we have the result

〈 j‖T1(J)‖ j ′〉 = δ j j ′ [ j( j + 1)(2 j + 1)]1/2. (5.129)

We can also form a second rank tensor by coupling the angular momentum J with
itself. In this case, the Wigner–Eckart theorem is expressed as;

〈 j,m|T2
p(J, J)| j ′,m ′〉 = (−1) j−m

(
j 2 j ′

−m p m ′

)
〈 j‖T2(J, J)‖ j ′〉. (5.130)

If we again take the p = 0 component (from Table 5.2), we have

〈 j,m|(1/
√

6)
[
3J 2

Z − J2
]| j ′,m ′〉 = δ j j ′δmm ′ (1/

√
6){3m2 − j( j + 1)}. (5.131)

Again we use the analytical expression for the 3- j symbol in (5.130) which is:(
j 2 j

−m 0 m

)
= (−1) j−m 2[3m2 − j( j + 1)]

[(2 j − 1)(2 j)(2 j + 1)(2 j + 2)(2 j + 3)]1/2
. (5.132)

Combining the results given in the last three equations we obtain:

〈 j‖T2(J, J)‖ j ′〉 = δ j j ′
1

2
√

6
[(2 j − 1)(2 j)(2 j + 1)(2 j + 2)(2 j + 3)]1/2. (5.133)

Smith and Thornley [13] have derived a general expression for the reduced matrix
elements of this type, namely,

〈 j‖Tk(J, . . . , J)‖ j ′〉 = δ j j ′k!

[
(2 j + k + 1)!

2k(2k)!(2 j − k)!

]1/2

. (5.134)

Another immediate corollary of the Wigner–Eckart theorem is the replacement
theorem, which allows one to write the matrix elements of one spherical tensor operator,
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Tk(S), in terms of another Tk(R):

〈η, j,m|Tk
p(S)|η′, j ′,m ′〉 = 〈η, j‖Tk(S)‖η′, j ′〉

〈η, j‖Tk(R)‖η′, j ′〉 〈η, j,m|Tk
p(R)|η′, j ′,m ′〉. (5.135)

When the replacement theorem is used, Tk
p(R) is often constructed from components

of J (total angular momentum) or I (total nuclear spin). The first- and second-rank
spherical tensor components of J (or I) are given in equations (5.108) and equations
(5.116) to (5.118) respectively. However, since J only connects states of the same j
value, these operators can only be used as replacements for other angular momentum
operators when the effects of mixing of states with j 
= j ′ can be ignored. Similar
remarks apply to the use of I as the replacement operator although the effects of
mixing of states with I ′ 
= I are not usually significant in molecular physics.

5.5.4. Matrix elements for composite systems

When states or operators can be characterised by a single angular momentum la-
bel, that is one j value and one m value, the evaluation of a matrix element such as
〈 j,m|Tk

p( j)| j ′,m ′〉 is simply a matter of coupling j ′ and k together and seeking the
component which transforms like j under rotations, or equivalently, of coupling j ,
k and j ′ together to form a scalar. When states are characterised by several angular
momenta, however, life becomes more complicated and we must use the more power-
ful techniques developed by Racah [14] to evaluate matrix elements; we have already
introduced these methods in section 5.4.3.

It is a common occurrence that we wish to evaluate the reduced matrix element of
an operator which acts on only one part of a coupled scheme. For example, the general
formula for the reduced matrix element of an operator Tk(A1) which acts only on part
1 of a coupled scheme j1 + j2 = j is:

〈 j1, j2, j‖Tk(A1)‖ j ′
1, j ′

2, j ′〉

= δ j2 j ′
2
(−1) j ′

1+ j2+ j ′+k[(2 j + 1)(2 j ′ + 1)]1/2

{
j ′
1 j ′ j
j j1 k

}
〈 j1‖T1(A1)‖ j ′

1〉. (5.136)

To derive this result, we express a typical matrix element in terms of the coupled
representation on the one hand and in terms of the decoupled on the other:

〈 j1, j2, j,m|Tk
p(A1)| j ′

1, j ′
2, j ′,m ′〉

= (−1) j−m

(
j k j ′

−m p m ′

)
〈 j1, j2, j‖T1(A1)‖ j ′

1, j ′
2, j ′〉

=
∑

m1m2m ′
1m ′

2

〈 j1, j2,m1,m2|Tk
p(A1)| j ′

1, j ′
2,m

′
1,m

′
2〉

× 〈 j1, j2,m1,m2| j,m〉〈 j ′
1, j ′

2,m
′
1,m

′
2| j ′,m ′〉

=
∑

m1m2m ′
1

δ j2 j ′
2
δm2m ′

2
〈 j1‖Tk(A1)‖ j ′

1〉(−1) j1−m1

(
j1 k j ′

1

−m1 p m ′
1

)

× 〈 j1, j2,m1,m2| j,m〉〈 j ′
1, j ′

2,m
′
1,m

′
2| j,m〉. (5.137)
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The rest of the derivation is performed by expressing the Clebsch–Gordan coefficients
in terms of 3- j symbols and making use of equation (5.92). The corresponding equation
for a spherical tensor operator Tk(A2) which acts only on part 2 of the coupled scheme is

〈 j1, j2, j‖Tk(A2)‖ j ′
1, j ′

2, j ′〉 = δ j1 j ′
1
(−1) j1+ j ′

2+ j+k[(2 j + 1)(2 j ′ + 1)]1/2

×
{

j ′
2 j ′ j
j j2 k

}
〈 j2‖Tk(A2)‖ j ′

2〉. (5.138)

Equations (5.136) and (5.138) are special cases of a more general result for the reduced
matrix elements of a tensor operator TK (k1, k2) obtained by coupling together Tk1 (A1)
and Tk2 (A2) which act on parts 1 and 2 respectively of the composite system. In this
case, we require the reduced matrix element 〈 j1, j2, j‖TK (k1, k2)‖ j ′

1, j ′
2, j ′〉. We get

it by considering the transformation from the coupling scheme (( j ′
1, j ′

2) j ′, (k1, k2)K ) j
to the coupling (( j ′

1, k1) j1, ( j ′
2, k2) j2) j. The result is

〈 j1, j2, j‖Tk(k1, k2)‖ j ′
1, j ′

2, j ′〉 = [(2 j + 1)(2k + 1)(2 j ′ + 1)]1/2




j ′
1 j ′

2 j ′

k1 k2 K

j1 j2 j




× 〈 j1‖Tk1 (A1)‖ j ′
1〉〈 j2‖Tk2 (A2)‖ j ′

2〉. (5.139)

Equation (5.136) results from this equation when we set Tk2 (A2) = 1 with k2 = 0
and equation (5.138) follows when Tk1 (A1) = 1 and k1 = 0. Another important
result arises when k1 = k2 = k and K = 0. In this case T0

0 is just the scalar product
Tk(A1) · Tk(A2), apart from a phase and a normalisation factor, see equation (5.110).
In this case, we can use equation (5.94) to replace the 9- j symbol by a 6- j symbol
and so arrive at the important result

〈 j1, j2, j‖Tk(A1) · Tk(A2)‖ j ′
1, j ′

2, j ′〉

= δ j, j ′ (2 j + 1)1/2(−1) j ′
1+ j2+ j

{
j ′
1 j ′

2 j

j2 j1 k

}
〈 j1‖Tk(A1)‖ j ′

1〉〈 j2‖Tk(A2)‖ j ′
2〉.

(5.140)

Finally, we consider the composite tensor Tk(A1, B1) which is the tensor product of
Tk1 (A1) and Tk2 (B1), both of which act on part 1 only of the coupled scheme:

TK
p (A1, B1) = (−1)k1−k2+p(2K + 1)1/2

∑
p1 p2

(
k1 k2 K
p1 p2 −p

)
Tk1

p1
(A1)Tk2

p2
(B1).

(5.141)

In this case, the reduced matrix element of TK (A1, B1) is related to those of Tk1 (A1)
and Tk2 (B1) by

〈η, j‖TK (A1, B1)‖η′, j ′〉 = (2K + 1)1/2(−1)K+ j+ j ′ ∑
η′′ j ′′

{
k1 k2 K

j ′ j j ′′

}

×〈η, j‖Tk1 (A1)‖η′′, j ′′〉〈η′′, j ′′‖Tk2 (B1)‖η′, j ′〉.
(5.142)
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5.5.5. Relationship between operators in space-fixed and molecule-fixed
coordinate systems

In molecular quantum mechanics, we often find ourselves manipulating expressions so
that one of a pair of interacting operators is expressed in laboratory-fixed coordinates
while the other is expressed in molecule-fixed. A typical example is the Stark effect,
where the molecular electric dipole moment is naturally described in the molecular
framework, but the direction of an applied electric field is specified in space-fixed
coordinates. We have seen already that if the molecule-fixed axes are obtained by
rotation of the space-fixed axes through the Euler angles (φ, θ, χ) = ω, the spherical
tensor operator in the laboratory-fixed system Tk

p(A) can be expressed in terms of the
molecule-fixed components by the standard transformation

Tk
p(A) =

∑
q

D
(k)
pq (ω)∗Tk

q (A), (5.143)

where D
(k)
pq (ω)∗ is the complex conjugate of the pq element of the kth rank rotation

matrix D
(k)(ω). In this book, we use p to label space-fixed components and q to label

molecule-fixed. The inverse of equation (5.143) is

Tk
q (A) =

∑
p

D
(k)
pq (ω)Tk

p(A) =
∑

p

(−1)p−q
D

(k)
−p,−q (ω)∗Tk

p(A). (5.144)

We recall also that the D
(k)
pq (ω)∗ are proportional to the eigenfunctions of a symmetric

top rotational Hamiltonian (section 5.3.4). Realising that a diatomic molecule behaves
as a symmetric top (albeit a rather special one), we write the rotational part of the wave
function as

|J,Ω,M〉 = [(2J + 1)/8π2]1/2
D

(J )
MΩ(ω)∗. (5.145)

From this, we can derive two other useful relationships for tensor operators which can
be quantised in both molecule- and space-fixed coordinate systems:

〈J,Ω,M |D(k)
pq (ω)∗|J ′,Ω′,M ′〉 = (−1)M−Ω [(2J + 1)(2J ′ + 1)]1/2

×
(

J k J ′

−Ω q Ω′

)(
J k J ′

−M p M ′

)
. (5.146)

This result follows directly from equation (5.100) in conjunction with the relationship

D
(k)
pq (ω)∗ = (−)p−q

D
(k)
−p,−q (ω). (5.147)

Applying the Wigner–Eckart theorem to this equation, we obtain an expression for the
reduced matrix element:

〈J,Ω,M‖D
(k)
.q (ω)∗‖J ′,Ω′,M ′〉 = (−1)J−Ω[(2J + 1)(2J ′ + 1)]1/2

(
J k J ′

−Ω q Ω′

)
.

(5.148)

The dot in the first subscript of the rotation matrix shows that this matrix element is
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reduced as far as orientation in the space-fixed coordinate system is concerned, but not
for the molecule-fixed axes.

We will make use of the results derived in this section many times elsewhere in
this book.

5.5.6. Treatment of the anomalous commutation relationships
of rotational angular momenta by spherical tensor methods

We have seen in section 5.5.1 that the definition of a spherical tensor depends on
the components of the rotational angular momentum obeying standard commutation
relationships:

[JX , JY ] = i JZ , etc. (5.149)

For example, the components of the spherical tensor operator T1
p(J) obey the definition:[

JZ ,T
1
p(J)

] = pT1
p(J),

(5.150)[
J±,T1

p(J)
] = [(1)(2) − p(p ± 1)]1/2T1

p±1(J),

only if the normal commutation relationships hold. We have also seen in section 5.3.1
that, if we refer the angular momentum operator to a rotating, molecule-fixed axis
system,

Jx = λx X JX + λxY JY + λx Z JZ , etc. (5.151)

(where λx X , λxY and λx Z are the direction cosines), we find that such components
obey anomalous commutation relationships:

[Jx , Jy] = −iJz, etc. (5.152)

It is tempting to construct spherical tensors from J acting within the molecule-fixed
coordinate system. From Table 5.2 the components would be expected to have the form:

Tq=0(J) = Jz,
(5.153)

Tq=±1(J) = ∓(1/
√

2)(Jx ± iJy).

However, when we come to check whether such operators satisfy the general definition
of spherical tensor operators, equation (5.107), we find that they do not because of
the anomalous commutation relations, equation (5.42). It is important to appreciate
that such difficulties arise only for the operators which represent rotational angular
momenta in three-dimensional space. Thus it is only the angular momentum J which
shows anomalous behaviour for a Hund’s case (a) coupling scheme, and the angular
momentum N for Hund’s case (b). These are angular momenta associated with rotation
of the molecule-fixed frame; the operators depend on the same angular coordinates as
those which define the orientation of the coordinate system. For the internal angular
momenta of a molecule, such as L or S, the normal commutation relationships are
obeyed by components in either space- or molecule-fixed coordinate systems. There is
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therefore no difficulty in constructing spherical tensors for such operators in any axis
system. The essential difference in behaviour of these operators can be appreciated by
writing the expressions for the molecule-fixed components such as:

Lx = λx X L X + λxY LY + λx Z L Z , etc. (5.154)

Each term on the right-hand side of this equation consists of the product of a direction
cosine and an orbital angular momentum operator. Of these two factors, only the
first depends on the Euler angles which define the instantaneous orientation of the
molecule. In the corresponding equation (5.151) for Jx , however, both factors depend
on the Euler angles.

Various methods have been developed for dealing with the anomalous commutation
relationships in molecular quantum mechanics, chief among them being Van Vleck’s
reversed angular momentum method [10]. Most of these methods are rather complicated
and require the introduction of an array of new symbols. Brown and Howard [15],
however, have pointed out that it is quite possible to handle these difficulties within
the standard framework of spherical tensor algebra. If matrix elements are evaluated
directly in laboratory-fixed coordinates and components are referred to axes mounted
on the molecule only when necessary, it is possible to avoid the anomalous commutation
relationships completely. Only the standard equations given earlier in this chapter are
used to derive the required results; it is just necessary to keep a cool head in the process!

Let us consider the scalar product of a rotation operator J and an internal angular
momentum P which is quantised in the molecule-fixed axis system. Although it might
appear sensible to evaluate J · P in a molecule-fixed axis system where both angular
momenta operate, we shall instead expand the tensor product in a space-fixed axis
system and then refer the components of P to the molecular axis system using a
rotation matrix D

(1)
pq (ω):

J · P =
∑

p

(−1)pT1
p(J)T1

−p(P), (5.155)

and

T1
p(P) =

∑
q

D
(1)
pq (ω)∗T1

q (P). (5.156)

Here, as usual, the suffices p and q refer to space- and molecule-fixed components
respectively and ω stands for the three Euler angles (φ, θ, χ) which relate the two
coordinate systems. From equations (5.155) and (5.156) we have

J · P =
∑
p,q

(−1)pT1
p(J)D

(1)
−pq (ω)∗T1

q (P). (5.157)

The right-hand side of this equation appears to be non-Hermitian since T1
p(J) does not

commute with D
(1)
pq (ω)∗ but the summation over p removes all non-commuting terms.

To take a specific example, let us consider P = S, the electron spin angular mo-
mentum for a diatomic molecule in a Hund’s case (a) coupling scheme where the basis
functions are simple products of orbital, rotational and spin functions. Using standard
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nomenclature, we have

〈η,Λ; J,Ω,M ; S,Σ|J · S|η′,Λ′; J ′,Ω′,M ′; S′,Σ′〉
=

∑
p,q

(−1)p〈J,Ω,M |T1
p(J)D

(1)
−pq (ω)∗|J ′,Ω′,M ′〉〈η,Λ, S,Σ|T1

q (S)|η′,Λ′, S′,Σ′〉

=
∑
p,q

(−1)p〈J,Ω,M |T1
p(J)D

(1)
−pq (ω)∗|J ′,Ω′,M ′〉〈η,Λ|η′,Λ′〉〈S,Σ|T1

q (S)|S′,Σ′〉.

(5.158)

The spin term is straightforward to evaluate by the Wigner–Eckart theorem but the
rotational term requires further consideration. Let us introduce the projection operator
onto the complete set of rotational functions between the operators T1

p(J) and D
(1)
−pq (ω)∗

(the closure relationship):∑
p

(−1)p〈J,Ω,M |T1
p(J)D

(1)
−pq (ω)∗|J ′,Ω′,M ′〉

=
∑

p

∑
J ′′ ′′ M ′′

(−1)p〈J,Ω,M |T1
p(J)|J ′′,Ω′′,M ′′〉

× 〈J ′′,Ω′′,M ′′|D(1)
−pq (ω)∗|J ′,Ω′,M ′〉. (5.159)

For non-zero results, the first matrix element requires J ′′ = J,M ′′ = M − p andΩ′′ =
Ω, see equation (5.129). Thus

RHS =
∑

p

(−1)p〈J,Ω,M |T1
p(J)|J,Ω,M − p〉〈J,Ω,M − p|D(1)

−pq (ω)∗|J ′,Ω′,M ′〉

=
∑

p

(−1)p(−1)J−M

(
J 1 J

−M p M − p

)

× [J (J + 1)(2J + 1)]1/2(−1)J−M+p(−1)J−Ω
(

J 1 J ′

−Ω q Ω′

)

×
(

J 1 J ′

−M + p −p M ′

)
[(2J + 1)(2J ′ + 1)]1/2, (5.160)

by the use of equation (5.146). Using the orthogonality of the 3- j symbols,

∑
p

(
J 1 J

−M p M − p

)(
J 1 J ′

−M + p −p M ′

)
= (2J + 1)−1δJ J ′δM M ′ , (5.161)

we can simplify equation (5.160) to give∑
p

(−1)p〈J,Ω,M |T1
p(J)D

(1)
−pq (ω)∗|J ′,Ω′,M ′〉

= (−1)J−Ω
(

J 1 J
−Ω q Ω′

)
[J (J + 1)(2J + 1)]1/2δJ J ′δM M ′ . (5.162)

In this way, it can be seen that all the equipment required to evaluate matrix elements
in molecular angular momenta coupling problems exists in standard spherical tensor
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theory, irrespective of complexity. It may appear rather laborious to evaluate the matrix
elements of the rotational angular momentum operator in this way but it should be
appreciated that the result in equation (5.162) needs only to be derived once; thereafter
it is only the result which is required. There is thus some point in defining a symbol
for the operator combination on the left hand side of equation (5.162), such as

Jq ≡
∑

p

(−1)pT1
p(J)D

(1)
−pq (ω)∗. (5.163)

Although Jq behaves rather like a tensor operator in the molecule-fixed axis system,
we must remember that it is not a tensor operator because it does not satisfy the
conditions in (5.152). Elsewhere in this book, we shall often make use of this short
hand. We expand a scalar product J · P as

J · P =
∑

q

JqT1
q (P), (5.164)

and then use equation (5.162) for the matrix elements of Jq .

Appendix 5.1. Summary of standard results from spherical tensor algebra

In our own work on both diatomic and polyatomic molecules, we have found it valuable
to have a summary of the most important results from irreducible spherical tensor
algebra, particularly those relating to the evaluation of matrix elements in various
angular momentum coupling schemes. We now provide a summary of those results;
detailed derivations are, of course, to be found in the main body of the text.

(i) Angular momenta and tensor operators
Tk1

p1
(A1) is a tensor of rank k1 with components p1 which operates on angular

momentum j1.
Tk2

p2
(A2) is a tensor of rank k2 with components p2 which operates on angular

momentum j2.
Tk3

p3
(A3) is a tensor of rank k3 with components p3 which operates on angular

momentum j3.
j1, j2 and j3 all commute with each other.

(ii) Tensor product
The tensor product of Tk1

p1
(A1) and Tk2

p2
(A2) is defined by

Tk1 (A1) × Tk2 (A2) = Wk12
p12

(k1, k2)

=
∑

p1

Tk1
p1

(A1)Tk2
p12−p1

(A2)

(
k1 k2 k12

p1 p12 − p1 −p12

)

× (2k12 + 1)1/2(−1)−k1+k2−p12 . (5.165)
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(iii) Scalar product
The scalar product is obtained from the tensor product by putting k12 = p12 = 0;
it is only defined for k1 = k2 = k (say). Then

W0
0(k, k) =

∑
p

Tk
p(A1)Tk

−p(A2)

(
k k 0
p −p 0

)

=
∑

p

Tk
p(A1)Tk

−p(A2)(−1)k−p(2k + 1)−1/2

= Tk(A1) · Tk(A2)(−1)k(2k + 1)−1/2, (5.166)

where the scalar product is given by

Tk(A1) · Tk(A2) =
∑

p

(−1)pTk
p(A1)Tk

−p(A2). (5.167)

Hence

Tk(A1) · Tk(A2) = W0
0(k, k)(−1)k(2k + 1)1/2. (5.168)

(iv) Matrix elements of a tensor product
If angular momenta j1 and j2 couple to form j12 and the tensor product is
defined by Tk1 (A1) × Tk2 (A2) = Wk12 (k1, k2), then the reduced matrix elements
of the tensor product are given by

〈 j1, j2, j12‖Wk12‖ j ′
1, j ′

2, j ′
12〉

= [(2 j12 + 1)(2 j ′
12 + 1)(2k12 + 1)]1/2




j12 j ′
12 k12

j1 j ′
1 k1

j2 j ′
2 k2




× 〈 j1‖Tk1 (A1)‖ j ′
1〉〈 j2‖Tk2 (A2)‖ j ′

2〉. (5.169)

Similarly if j12 is coupled with j3 to form j , and

[Tk1 (A1) × Tk2 (A2)] × Tk3 (A3) = Xk, (5.170)

then the reduced matrix elements of Xk are as follows:

〈 j1, j2, j12, j3, j‖Xk‖ j ′
1, j ′

2, j ′
12, j ′

3, j ′〉

= [(2 j + 1)(2 j ′ + 1)(2k + 1)]1/2




j j ′ k
j12 j ′

12 k12

j3 j ′
3 k3


〈 j12‖Wk12‖ j ′

12〉〈 j3‖Tk3 (A3)‖ j ′
3〉

= [(2 j12 + 1)(2 j ′
12 + 1)(2k12 + 1)(2 j + 1)(2 j ′ + 1)(2k + 1)]1/2




j j ′ k
j12 j ′

12 k12

j3 j ′
3 k3




×



j12 j ′
12 k12

j1 j ′
1 k1

j2 j ′
2 k2


〈 j1‖Tk1 (A1)‖ j ′

1〉〈 j2‖Tk2 (A2)‖ j ′
2〉〈 j3‖Tk3 (A3)‖ j ′

3〉. (5.171)
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(v) Wigner–Eckart theorem
Reduced matrix elements are defined by using the Wigner–Eckart theorem to
evaluate the dependence on projection quantum numbers:

〈 j,m|Tk
p(A)| j ′,m ′〉 = (−1) j−m

(
j k j ′

−m p m ′

)
〈 j‖Tk(A)‖ j ′〉. (5.172)

(vi) Matrix elements of a scalar product
Using the result in equation (5.169) with k1 = k2 = k and k12 = 0, we obtain:

〈 j1, j2, j12,m|Tk(A1) · Tk(A2)| j ′
1, j ′

2, j ′
12,m

′〉

= (−1) j ′
1+ j12+ j2δ j12, j ′

12
δm,m ′

{
j ′
2 j ′

1 j12

j1 j2 k

}
〈 j1‖Tk(A1)‖ j ′

1〉〈 j2‖Tk(A2)‖ j ′
2〉. (5.173)

(vii) Matrix elements of a single operator in a coupled scheme
For the matrix elements of Tk1 (A1) only we put Tk2 (A2) = 1 and k2 = 0, k12 = k1

in equation (5.169); we then obtain

〈 j1, j2, j12‖Tk1 (A1)‖ j ′
1, j ′

2, j ′
12〉

= [(2 j12 + 1)(2 j ′
12 + 1)(2k1 + 1)]1/2




j12 j ′
12 k1

j1 j ′
1 k1

j2 j2 0


 〈 j1‖Tk1 (A1)‖ j ′

1〉〈 j2‖1‖ j ′
2〉

= δ j2 j ′
2
(−1) j ′

12+ j1+k1+ j2 [(2 j12 + 1)(2 j ′
12 + 1)]1/2

{
j ′
1 j ′

12 j2

j12 j1 k1

}
〈 j1‖Tk1 (A1)‖ j ′

1〉.

(5.174)

Similarly, for the matrix elements of Tk2 (A2) we have

〈 j1, j2, j12‖Tk2 (A2)‖ j ′
1, j ′

2, j ′
12〉 = δ j1 j ′

1
(−1) j12+ j1+k2+ j ′

2 [(2 j12 + 1)(2 j ′
12 + 1)]1/2

×
{

j ′
2 j ′

12 j1
j12 j2 k2

}
〈 j2‖Tk(A2)‖ j ′

2〉. (5.175)

(viii) Tensor operators acting on the same inner part of a coupled system
If the scalar product is formed from spherical tensor operators which both act
on the same inner part of a coupled scheme, it is intuitively obvious that

〈 j1, j2, j12,m12|Tk(A1) · Tk(B1)| j ′
1, j ′

2, j ′
12,m

′
12〉

= δ j12 j ′
12
δm12m ′

12
δ j2 j ′

2
〈 j1|Tk(A1) · Tk(B1)| j ′

1〉. (5.176)

This result can be proved formally by application of the Wigner–Eckart theorem,
equation (5.172), followed by equation (5.174).
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For a tensor operator Wk12 (k1, k2) which acts only on, say, part 1 of a coupled
scheme, the reduced matrix element is given by

〈 j1, j2, j‖Wk12 (k1, k2)‖ j ′
1, j ′

2, j ′〉

= δ j j ′δ j2 j ′
2
(2k12 + 1)1/2(−1)k12+ j1+ j ′

1

∑
j ′′
1

{
k1 j1 j ′′

1

j ′
1 k2 k12

}

× 〈 j1‖Tk1 (A1)‖ j ′′
1 〉〈 j ′′

1 ‖Tk2 (B1)‖ j1〉. (5.177)

Hence, for the scalar product of two operators which both act on the j1 part of
a coupled scheme, we have

〈 j1, j2, j12,m12|Tk1 (A1) · Tk2 (B1)| j ′
1, j ′

2, j ′
12,m

′
12〉

= δ j12 j ′
12
δm12m ′

12
δ j2 j ′

2
δ j1 j ′

1

∑
j ′′
1

(−1) j1− j ′′
1 (2 j1 + 1)−1〈 j1‖Tk1 (A1)‖ j ′′

1 〉〈 j ′′
1 ‖Tk2 (B1)‖ j1〉.

(5.178)

A similar result applies when two operators act on part 2 of the coupled scheme.
(ix) Evaluation of reduced matrix elements

The reduced matrix element of a first-rank tensor is given by

〈 j‖T1( j)‖ j ′〉 = δ j, j ′ [ j( j + 1)(2 j + 1)]1/2. (5.179)

The reduced matrix elements of second and third rank tensors are to be found
elsewhere in this book (see equations (5.133) and (7.167)).

(x) Rotational matrices
Symmetric top eigenfunctions can be expressed in terms of rotational matrices
as follows for a Hund’s case (a) coupling scheme:

|J,Ω,M〉 =
√

(2J + 1)

8π2
D

(J )
MΩ(ω)∗. (5.180)

The corresponding equation for Hund’s case (b) is

|N ,Λ,M〉 =
√

(2N + 1)

8π2
D

(N )
MΛ(ω)∗. (5.181)

The transformations of a spherical tensor from space (p) to molecular (q) axes,
and vice versa, are given by:

Tk
p(A) =

∑
q

D
(k)
pq (ω)∗Tk

q (A). (5.182)

Tk
q (A) =

∑
p

D
(k)
pq (ω)Tk

p(A). (5.183)

The matrix elements of rotational matrices are given by

〈J,Ω,M |D(k)
pq (ω)∗|J ′,Ω′,M ′〉 = [(2J + 1)(2J ′ + 1)]1/2(−1)M−Ω

×
(

J k J ′

−M p M ′

)(
J k J ′

−Ω q Ω′

)
. (5.184)
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From the Wigner–Eckart theorem we obtain

〈J,Ω,M |D(k)
pq (ω)∗|J ′,Ω′,M ′〉 = (−1)J−M

(
J k J ′

−M p M ′

)
〈J,Ω‖D

(k)
.q (ω)∗‖J ′,Ω′〉.

(5.185)

Hence by combining equations (5.185) and (5.184) we obtain the result:

〈J,Ω‖D
(k)
.q (ω)∗‖J ′,Ω′〉 = (−1)J−Ω

(
J k J ′

−Ω q Ω′

)
[(2J + 1)(2J ′ + 1)]1/2. (5.186)

(xi) Relationship between the matrix elements of a scalar product in coupled and
decoupled representations
The coupled and decoupled representations are related by

| j1, j2, j,m〉 = (−1) j2− j1+m(2 j + 1)1/2
∑
m1m2

(
j1 j2 j

m1 m2 −m

)
| j1,m1〉| j2,m2〉.

(5.187)

Hence the matrix elements of a scalar product Tk(A1) · Tk(A2) in a decoupled
basis set can be obtained from the corresponding expressions in the coupled
basis set simply by making the replacement:

δmm ′δ j j ′ (−1) j1+ j2+ j

{
j ′
1 j ′

2 j

j2 j1 k

}

→
∑

p

(−1)p(−1) j1−m1

(
j1 k j ′

1

−m1 p m ′
1

)
(−1) j2−m2

(
j2 k j ′

2

−m2 −p m ′
2

)
. (5.188)
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6 Electronic and vibrational states

6.1. Introduction

In chapter 3 we derived a Hamiltonian to describe the electronic motion in a diatomic
molecule, starting from first principles. In our case, the first principles were the Dirac
equation for a single particle, and the Breit equation for two interacting particles. We
pointed out that even at this level our treatment was a compromise because it did not in-
clude quantum electrodynamics explicitly. Nevertheless we concluded the chapter with
a rather complete and complicated Hamiltonian, and added yet more complications in
chapter 4 with the inclusion of nuclear spin effects. In the next chapter, chapter 7, we will
show how terms in the ‘true’ Hamiltonian may be reduced to ‘effective’ Hamiltonians
designed to handle the particular cases which arise in spectroscopy. We will make
extensive use of angular momentum theory, described in chapter 5, to describe the
electronic and nuclear dynamics in diatomic molecules, and the interactions with ap-
plied magnetic and electric fields. The experimental study of these dynamical effects is
dealt with at length in chapters 8 to 11. We will be classifying these studies according to
molecular electronic states, and demonstrating how the high-resolution spectroscopic
methods described probe the structural details of these electronic states. That, indeed,
is one of the main purposes of spectroscopy.

Before we proceed to these details we must describe some aspects of the theory
of the electronic and vibrational states of diatomic molecules. To this end we return to
the ‘master equation’ displayed at the end of chapter 3, and develop the consequences
of some of the terms contained therein. This is a huge subject, described in many
textbooks, and at any level of detail which one might require. In this chapter we present
what we consider to be the minimum required for a satisfactory understanding of what
follows in later chapters. What is satisfactory is a subjective matter for the reader, and
in many cases there are aspects to be explored in much greater depth than is to be found
here. Some of these aspects are presented in later chapters, but here we deal with the
essential fundamentals.
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6.2. Atomic structure and atomic orbitals

6.2.1. The hydrogen atom

We start by considering the hydrogen atom, the simplest possible system, in which one
electron interacts with a nucleus of unit positive charge. Only two terms are required
from the master equation (3.161) in chapter 3, namely, those describing the kinetic
energy of the electron and the electron–nuclear Coulomb potential energy. In the space-
fixed axes system and SI units these terms are

H = 1

2m
p 2 − e 2

4πε0r
, (6.1)

where m is the electron mass, r is the electron–nuclear distance, and e is the elementary
charge. The linear momentum p is given by the quantum mechanical expression

p = −i h

{
∂

∂X
i + ∂

∂Y
j + ∂

∂Z
k

}
, (6.2)

where i, j, k are the unit vectors in the X , Y , Z directions. Therefore p 2 is given by

p 2 = − h 2

{
∂2

∂X2
+ ∂2

∂Y 2
+ ∂2

∂Z2

}
≡ −h 2 ∇2, (6.3)

where ∇2 is called the Laplacian operator. We may rewrite equation (6.1) by referring
the coordinate system to one with an origin fixed at the centre of mass, so that we
replace the electron mass m by the reduced mass of the system, µ. We thereby obtain
the result

H = − h 2

2µ
∇2 − e 2

4πε0r
. (6.4)

The Schrödinger equation for the hydrogen atom may therefore be written

Hψ = E ψ, (6.5)

where the Hamiltonian operator H is given by (6.4). The task is to find the eigenfunctions
ψ and eigenvalues E of (6.5).

It turns out that the solutions of (6.5) are much simpler if one transforms from
cartesian to spherical polar coordinates, as defined in figure 6.1. The relationships
between the two are

X = r sin θ cosφ, Y = r sin θ sinφ, Z = r cos θ, (6.6)

so that, in spherical polar coordinates, the Laplacian is given by

∇2 = 1

r 2

∂

∂r

(
r 2 ∂

∂r

)
+ 1

r 2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r 2 sin2 θ

∂2

∂φ2
. (6.7)

The solutions of the Schrödinger equation in these spherical polar coordinates are
described in many books. They can be factorised and have the following form:

ψ(r, θ, φ) = Rnl(r ) Ylm(θ, φ). (6.8)
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Table 6.1. The first few !lm wave functions for the hydrogen atom

l m !lm(θ) l m !lm (θ)

0 0 1/
√

2 2 0 (
√

10/4)(3 cos2 θ − 1)

1 0 (
√

6/2) cos θ 2 ±1 (
√

15/2)(sin θ cos θ)

1 ±1 (
√

3/2) sin θ 2 ±2 (
√

15/4)(sin2 θ )

θ

φ

Figure 6.1. Relationship between cartesian (X , Y , Z ) and spherical polar coordinates (r , θ , φ).

The Ylm(θ, φ) functions are angular functions known as spherical harmonics, which
we have already met in chapter 5. They can be further factorised into θ - andφ-dependent
parts:

Ylm(θ, φ) = 1

2π
!lm(θ ) exp(imφ). (6.9)

The!lm(θ ) functions are related to the associated Legendre polynomials, and the first
few are listed in table 6.1. The Rnl(r ) are the radial wave functions, known as associated
Laguerre functions, the first few of which are listed in table 6.2. The quantities n, l
and m in (6.8) are known as quantum numbers, and have the following allowed values:

n = 1, 2, 3, . . . ,∞
l = 0, 1, 2, . . . , (n − 1) (6.10)

m = 0, ±1,±2, . . . ,±l.
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Table 6.2. The first few radial wave functions Rnl(r ) for the hydrogen
atom (note that ρ= Zr/a0 where Ze is the nuclear charge)

n l Rnl (r )

1 0 (Z/a0)3/22 exp(−ρ)

2 0

(
Z

a0

)3/2 (
1√
2

)(
1 − ρ

2

)
exp

(
−ρ

2

)

2 1

(
Z

a0

)3/2 (
1

2

)(
1√
6

)
ρ exp

(
−ρ

2

)

Here n is the principal quantum number, l is called the azimuthal quantum number, and
m is the magnetic quantum number. We return to discuss these quantum numbers short-
ly, but note that the energies E obtained from the Schrödinger equation are given by

E = − µe 4

32π2ε 2
0 h 2n 2

. (6.11)

Alternatively, this formula can be rewritten as

E = − h 2

2µa 2
0 n 2

, (6.12)

where a0 is the radius of the Bohr orbit for n = 1,

a0 = 4πε0 h 2

µe 2
. (6.13)

The important point to emerge from (6.11) is that the energies depend only upon the
value of n, and not upon l and m.

The wave functions (6.8) are known as atomic orbitals; for l = 0, 1, 2, 3, etc., they
are referred to as s, p, d , f , respectively, with the value of n as a prefix, i.e. 1s, 2s, 2p,
3s, 3p, 3d , etc., From the explicit forms of the wave functions we can calculate both the
sizes and shapes of the atomic orbitals, important properties when we come to consider
molecule formation and structure. It is instructive to examine the angular parts of the
hydrogen atom functions (the spherical harmonics) in a polar plot but noting from (6.9)
that these are complex functions, we prefer to describe the angular wave functions by
real linear combinations of the complex functions, which are also acceptable solutions
of the Schrödinger equation. This procedure may be illustrated by considering the 2p
orbitals. From equations (6.8) and (6.9) the complex wave functions are

ψ2p,+1 = R21(r ) Y1,+1(θ, φ) = R21(r )
1√
2π
!1,+1(θ ) exp(iφ)

= R21(r )
1√
2π

√
3

2
sin θ exp(iφ),

ψ2p,−1 = R21(r ) Y1,−1(θ, φ) = R21(r )
1√
2π
!1,−1(θ ) exp(iφ)

= R21(r )
1√
2π

√
3

2
sin θ exp(−iφ). (6.14)
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Linear combinations of these functions may then be formed:

ψ2px = 1√
2

[ψ2p,+1 + ψ2p,−1] =
√

3

2
√

4π
R21(r ) sin θ [exp(iφ) + exp(−iφ)]

=
√

3

4π
R21(r ) sin θ cosφ,

ψ2py = − i√
2

[ψ2p,+1 − ψ2p,−1] = i
√

3

2
√

4π
R21(r ) sin θ[exp(iφ) − exp(−iφ)]

=
√

3

4π
R21(r ) sin θ sinφ, (6.15)

In addition to these two functions, the third member of the set is already real, i.e.,

ψ2pz = ψ2p0 =
√

3

4π
R21(r ) cos θ. (6.16)

Similar treatments may be applied to the other wave functions; the ψns wave functions
are always real, as also are those members of the d , f , etc., sets which have m = 0.
These real wave functions may now be plotted in the form of polar diagrams, as shown
in figure 6.2. When we refer to the shape or spatial orientation of an atomic orbital, we
are actually referring to a specific member of the set shown in figure 6.2. We could, of
course, continue the process to include f orbitals, and higher.

The quantum number m, which distinguishes the three p orbitals, or the five
degenerate d orbitals, is known as the magnetic quantum number. It actually gives the
z component of the orbital angular momentum vector, h lz, that is

lz = ml . (6.17)

This is strictly an operator equation. For example, for a p state, with l = 1, the projec-
tions of the orbital angular momentum in the z direction, lz , have the values +1, 0,−1
as shown in figure 6.3.

So far we have three quantum numbers. However, we know from the relativistic
treatment of the electron due to Dirac, which we described in chapter 3, that there
is a fourth quantum number, called electron spin. In the first instance the need for a
fourth quantum number became evident from experiment; in the Dirac theory it is a
consequence of introducing time as the fourth dimension. The spin angular momentum
h s has the value (1/2)h, so that the magnitude of the spin angular momentum is
[(1/2)(3/2)]1/2 h. It can be oriented in two possible directions, with the fourth quantum
number mS taking the values +1/2 or −1/2. Conventionally, these two orientations
are described as α or β respectively.

6.2.2. Many-electron atoms

In an atom containing more than one electron, each electron can be considered as
having its own set of values of n, l,ml and mS . An extremely important rule, known
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z x y

x2 − y2z2

Figure 6.2. Polar diagrams for 1s, 2p and two of the five 3d atomic orbitals, illustrating the
angular parts of the wave functions.

as the Pauli exclusion principle, is that no two electrons in the same atom may have
the same values for all four quantum numbers. An equivalent but more fundamental
statement of the Pauli principle is that the total wave function for electrons, including
spins, must be antisymmetric with respect to the interchange of any pair of electrons.
It is instructive to consider a two-electron system, such as the helium atom in its lowest
energy state where two electrons occupy the 1s atomic orbital. Knowing that each
electron may have α or β spin, there are four possible combinations:

α(1)α(2), α(1)β(2), β(1)α(2), β(1)β(2).

The first and fourth of these combinations have a definite symmetry when electrons 1
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Figure 6.3. Space-quantised orientations for the angular momentum vector h l of a state with
l = 1. The length of hl is [l(l + 1)h2]1/2.

and 2 are exchanged; they are unchanged, that is, symmetric with respect to this sym-
metry operation. The second and third combinations do not have a definite symmetry,
but the two linear combinations of them do, i.e.

(1/
√

2)[α(1)β(2) + β(1)α(2)], (1/
√

2)[α(1)β(2) − β(1)α(2)].

The first combination is symmetric, and the second is antisymmetric with respect
to permutation. In the ground state of the helium atom both electrons occupy the same
spatial orbital (1s), so that they must have the antisymmetric spin function for the total
wave function to be antisymmetric; they therefore form a singlet spin state. In order to
find a helium atom with a triplet spin state (so-called spins parallel), the spatial part of
the wave function must be antisymmetric with respect to interchange.

Whilst we are discussing the Pauli principle, it is worthwhile to introduce a further
method of expressing the antisymmetric nature of the electronic wave function, namely,
the Slater determinant [1]. Since both electrons in the ground state of the helium atom
occupy the same space orbital, the wave function may be written in the form

ψ(r1, r2) = ψ1s(r1)ψ1s(r2)(1/
√

2){α(1)β(2) − α(2)β(1)}

= 1√
2

∣∣∣∣∣ψ1s(r1)α(1) ψ1s(r1)β(1)

ψ1s(r2)α(2) ψ1s(r2)β(2)

∣∣∣∣∣ . (6.18)

This may be expressed in a more abbreviated form by introducing the spin-orbital
ψσ1s(1), with σ =α or β, so that (6.18) can be written in the form

1ψ(1, 2) = 1√
2

∣∣∣∣∣
ψα1s(1) ψ

β

1s(1)

ψα1s(2) ψ
β

1s(2)

∣∣∣∣∣ . (6.19)

The antisymmetric nature of the wave function when written as a Slater determinant is
now apparent, since exchanging electrons 1 and 2 means that the first and second rows
of the determinant are interchanged; under such an operation, the sign of a determinant
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changes. Obviously, if electrons 1 and 2 have exactly the same quantum numbers,
interchange of the first and second rows of the determinant shows that 1ψ(1, 2) must
be zero, as required by the Pauli principle. We will meet determinantal wave functions
frequently elsewhere in this book.

In the hydrogen atom the 2s and 2p orbitals have the same energy, but in polyelec-
tronic atoms the 2s electrons have a lower energy than the 2p. In general the orbital
energies for a given value of the principal quantum number n follow the general order

ns< np< nd < n f . . . .

The reasons for this are described in many books on atomic structure, but are connected
with the fact that as l increases for a given n value, the electrons are increasingly shielded
from the full electrostatic interaction with the positively charged nucleus because of
shielding due to the inner electrons. Figure 6.4 shows what is known as the Grotrian
diagram for a sodium atom; it displays the energies of the atomic orbitals, largely
determined from experimental atomic spectroscopy. Note that the shielding effects are
sufficiently large for the 4s level to lie below the 3d .

6.2.3. Russell−Saunders coupling

The electronic structure of an atom depends on the way in which the various orbital
and spin angular momenta interact with each other. In the lighter atoms the electronic
states can usually be described in terms of Russell–Saunders coupling. The individual
electron spin angular momenta s, each with the value 1/2, combine to give a resultant
spin S. For two electrons, each with s = 1/2, the total spin S may be 1 or 0. Similarly, the
individual orbital angular momenta of the electrons l combine to give a resultant orbital
angular momentum L. For two p electrons, each with l equal to 1, L may take values of
2, 1 or 0. Now L and S couple together to give a total resultant angular momentum J; J
is also quantised and takes values from L + S to |L − S|. The vector coupling scheme
is illustrated in figure 6.5. As we shall see later, similar vector coupling schemes are
important in describing the electronic states of diatomic molecules.

We see that a single electron configuration can give rise to several different elec-
tronic states because of the coupling of angular momenta. These states are referred to
as terms and are described by term symbols; the value of L may be 0, 1, 2, 3, etc., and
this is denoted by the symbol S, P, D, F, respectively. If the value of the total spin is S,
the corresponding spin multiplicity is 2S + 1 and this is indicated as a pre-superscript.
Finally the value of J is indicated as a post-subscript. Consequently for two p electrons
we might appear to have the following possible electronic states, or term symbols:

L = 2, S = 1: 3D3,
3D2,

3D1. L = 2, S = 0: 1D2.

L = 1, S = 1: 3P2,
3P1,

3P0. L = 1, S = 0: 1P1.

L = 0, S = 1: 3S1. L = 0, S = 0: 1S0.

However, when two electrons are in equivalent orbitals (same value of n), the Pauli
principle must be taken into account so that the permitted states are restricted to 1D,
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Figure 6.4. Grotrian diagram for the sodium atom, showing the energies of the atomic orbitals.

3P and 1S. Note that states with different values of L or S have different energies,
partly because of the electron–electron interaction term in the electronic Hamiltonian.
A further symmetry classification that should be mentioned is the parity of an atomic
state which depends on the behaviour of the total wave function under space-fixed
inversion. This is either even (g) or odd (u) and is determined by

∑
li , summed over

all the electrons in the atom.
The electron spin and orbital angular momenta give rise to intrinsic magnetic

moments which interact with other; this interaction is known as the spin–orbit coupling
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2

2

1

1

Figure 6.5. Russell–Saunders vector coupling scheme for two electrons.

and it can be represented by the simple expression

Hso = ζ L · S, (6.20)

where ζ is the spin–orbit coupling parameter. Since J = L + S, it follows at once that
J2 = (L + S)2. Consequently

J 2 = L 2 + 2L · S + S 2, (6.21)

so that

L · S = (1/2){J 2 − L 2 − S 2} = (1/2){J (J + 1) − L(L + 1) − S(S + 1)}. (6.22)

The spin–orbit coupling therefore removes the degeneracy of the so-called ‘fine-
structure’ states listed above. For example, simply by substituting the appropriate
values of J , L and S, the three fine-structure components arising from the L = 1,
S = 1 configuration are calculated to have the following first-order spin–orbit energies:

3P2: E = ζ, 3P1: E = −ζ, 3P0: E = −2ζ.

Values of the spin–orbit coupling constants for different atomic states have been deter-
mined from atomic spectra, or may be calculated from relativistic quantum mechanics.
A more detailed examination of the matrix elements reveals that the spin–orbit coupling
operator mixes states of different L and S values; spin–orbit matrices for many of the
most common electron configurations have been given by Condon and Shortley [2].

Russell–Saunders, or LS, coupling is one limiting case which is usually a very good
approximation for light atoms. However, for heavy atoms, jj coupling is often a better
approximation. Considering again a two-electron system, for each electron l i and si

combine to give a resultant angular momentum j i , and the individual values of j i are
then coupled to give a resultant total angular momentum J. In detail for a system of,
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for example, one s and one p electron:

l1 = 0, s1 = 1/2: j1 = 1/2; l2 = 1, s2 = 1/2: j2 = 3/2, 1/2;

j1 = 1/2, j2 = 3/2: J = 2, 1; j1 = 1/2, j2 = 1/2: J = 1, 0.

In practice, for many atomic states, the coupling will be intermediate between LS and jj.
Our understanding of the electron configurations of the atoms leads ultimately to the

periodic classification of the elements. As we have seen, a given electron configuration
often leads to more than one term symbol, and additional criteria are required to
establish which term will be the lowest in energy. Hund’s rules, which address this
problem are (i), the state with the highest spin multiplicity will be lowest in energy,
(ii), if more than one term with the same spin multiplicitiy exists, that with the highest
L value will be lowest in energy. In addition, for a term giving rise to more than one
level, that with the lowest J value is lowest in energy for a less than half-full outer
shell; conversely for a more than half-full shell (i.e. p4, d6, etc.) the level of highest J
value will be lowest in energy.

We will see in due course that there are important correlation rules between atomic
term symbols and molecular electronic states, rules that are important in understanding
both the formation and dissociation of diatomic molecules. Elementary accounts of the
theory of atomic structure are to be found in books by Softley [3] and Richards and
Scott [4]. Among the more comprehensive descriptions of the quantum mechanical
aspects, that by Pauling and Wilson [5] remains as good as any whilst group theoretical
aspects are described by Judd [6].

6.2.4. Wave functions for the helium atom

In many places elsewhere in this book we describe the analysis of spectra, the defini-
tion and determination of molecular parameters from the spectra, and the relationships
between these parameters and the wave functions for the molecules in question. Later
in this chapter we will outline the principles and practice of calculating accurate wave
functions for diatomic molecules. Before we can do that, however, we must discuss
the calculation of atomic wave functions; the methods originally developed for atoms
were subsequently extended to deal with molecules. This is not the book for an ex-
haustive discussion of these topics, and so many accounts exist elsewhere that such
a discussion is not necessary. Nevertheless we must pay some attention to this topic
because the interpretation of spectroscopic data in terms of molecular wave functions
is one of the primary motivations for obtaining the data in the first place.

We have already dealt with the calculation of the wave functions of the hydrogen
atom. We now proceed to consider many-electron atoms, first dealing with the simplest
such example, the helium atom which possesses two electrons. The Hamiltonian for
a helium-like atom with an infinitely heavy nucleus can be obtained by selecting the
appropriate terms from the master equation in chapter 3. The Hamiltonian we use is

H = − h 2

2m
∇2

1 − Ze 2

4πε0r1
− h2

2m
∇2

2 − Ze2

4πε0r 2
+ e 2

4πε0r12
, (6.23)
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where Ze is the nuclear charge, m is the electron mass, r1 and r2 are the electron–nucleus
distances for the electrons (1) and (2) respectively, and r12 is the interelectronic distance.
The Schrödinger equation is, as usual,

Hψ(r1, r2) = Eψ(r1, r2), (6.24)

and our aim is to find solutions to (6.24) which are transferable to more complex atoms
and subsequently to molecules.

Almost all approaches to many-electron wave functions, for both atoms and
molecules, involve their formulation as products of one-electron orbitals. If the in-
terelectronic repulsion term in (6.23) is small compared with the other terms, the
Hamiltonian is approximately separable into independent operators for each electron
and the two-electron wave function, ψ(1, 2), can be written as a simple product of
one-electron functions,

ψ(1, 2) = φ1(1)φ1(2), (6.25)

in which φi ( j) denotes the i th spatial orbital containing the j th electron.
There are several different ways of proceeding from here, but following others we

use the variation method. Multiplication of both sides of the Schrödinger equation by
ψ∗ and integration over all coordinates gives an expression for the energy,

W0 =
∫
ψ∗

Hψdτ∫
ψ∗ψdτ

. (6.26)

Any approximate wave function ψ will give a calculated energy W0 from (6.26) which
is greater than the true energy E0, and the objective is to find a wave function which
minimises the value of W0. Ultimately a trial wave function will contain one or more
variable parameters, and we will look to find parameter values which minimise the
calculated energy; however we first develop (6.26).

If we substitute (6.25) in (6.26) we obtain

E0 ≤ W0 =
∫

1

∫
2 ψ

∗(1, 2)Hψ(1, 2) dV1 dV2∫
1

∫
2 ψ

∗(1, 2)ψ(1, 2) dV1 dV2∫
1

∫
2 φ

∗
1 (1)φ∗

1 (2)[−(h2/2m)∇2
1 − (Ze2/4πε0r1) − (h2/2m)∇2

2 − (Ze2/4πε0r2)

= + (e2/4πε0r12)]φ1(1)φ1(2) dV1 dV2∫
1 φ

∗
1 (1)φ1(1) dV1

∫
2 φ

∗
1 (2)φ1(2) dV2

.

(6.27)

The spatial integral and volume elements in (6.27) are given by

∫
1

dV1 =
2π∫

0

π∫
0

∞∫
0

r2
1 sin θ1 dr1 dθ1 dφ1,

∫
2

dV2 =
2π∫

0

π∫
0

∞∫
0

r2
2 sin θ2 dr2 dθ2 dφ2,

(6.28)

using spherical polar coordinates for each electron.
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The problem now is to evaluate (6.27) for various choices of φ1(i), and the most
obvious first choice is the ground state 1s hydrogen-like orbitals which we calculated
earlier in this chapter:

φ1(i) = 1√
π

(
Z

a0

)3/2

exp

(
− Zri

a0

)
. (6.29)

For the hydrogen-like atom,

E1 = − Z2e2

8a0πε0
, (6.30)

where the Schrödinger equation is(
− h2

2m
∇2

1 − Ze2

4πε0r1

)
φ1(1) = E1φ1(1). (6.31)

Substituting the orbitals (6.29) into (6.27) and making use of (6.31) we obtain the
following result:

W0 = E1(1) + E1(2) +
∫
1

∫
2

φ∗
1 (1)φ∗

1 (2)

(
e2

4πε0r12

)
φ1(1)φ1(2) dV1 dV2

= 2E1 + 1

π2

(
Z

a0

)6 ∫
1

∫
2

exp

[
−
(

2Z

a0

)
(r1 + r2)

](
e2

4πε0r12

)
dV1 dV2. (6.32)

The integral in (6.32) is evaluated in a number of standard texts, for example that
by Kauzmann [7], and is found to be equal to (5Ze2/32πε0a0). Consequently (6.32)
becomes

W0 = 2E1 + 5

8
Z

e2

4πε0a0

=
(

− Z2e2

a0
+ 5

8
Z

e2

a0

)(
1

4πε0

)

=
(

e2

4πε0a0

)(
−Z2 + 5

8
Z

)
. (6.33)

The quantity (e2/4πε0a0) is the atomic unit of energy, called the Hartree, and it has the
value 27.2116 eV. If we put Z = 2 for the helium nucleus, (6.33) gives W0 = −74.832 eV,
compared with the experimental energy required to remove both electrons from a helium
atom which is 79.0052 eV. This is a remarkably good result (94.7% of the true value)
for such a simple orbital model, containing no variable parameters as yet.

The energy of the helium atom calculated above is the first-order energy, which
differs from the true energy by an amount called the correlation energy; this is a measure
of the tendency of the electrons to avoid each other. The simplest improvement to the
trial wave function is to allow Z in (6.29) to be a variable parameter, which we call
ζ (not to be confused with the spin-orbit coupling parameter in equation (6.20)); Z
in the Hamiltonian (6.23) remains the same. The expression for the calculated energy,
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equation (6.27) and (6.32), now becomes the following:

W0 = 1

π2

(
ζ

a0

)6 ∫
1

∫
2

exp

[
−
(
ζ

a0

)
(r1 + r2)

][(
− h2

2m
∇2

1 − ζe2

4πε0r1

)

+
(

− h2

2m
∇2

2 − ζe2

4πε0r2

)
+ e2

r12
− (Z − ζ )

4πε0

(
e2

r1
+ e2

r2

)]

× exp

[
−
(
ζ

a0

)
(r1 + r2)

]
dV1 dV2. (6.34)

It is not difficult to show [8] that this equation reduces to

W0 =
[
−ζ

2e2

a0
+ 5

8
ζ

e2

a0
+ 2(ζ − Z )ζ

e2

a0

][
1

4πε0

]
= e2

4πε0a0

[
ζ 2 + ζ

(
5

8
− 2Z

)]
.

(6.35)

Minimising W0 with respect to ζ gives ζ = Z − 5/16, and putting Z = 2 for helium we
obtain W0 = −77.490 eV, which is 98% of the true value, a considerable improvement
over the previous value. In this case the value of ζ is 27/16 = 1.6875, rather than 2, a
measure of the shielding of the nuclear charge by the second electron. Further improve-
ments to the calculated ionisation energy may be made by increasing the number of vari-
able parameters in the trial wave function. Hylleraas [9] used a fourteen-parameter func-
tion and obtained an ionisation energy which was almost exactly equal to the true value.

6.2.5. Many-electron wave functions: the Hartree−Fock equation

In section 6.2.2 we introduced the Pauli principle and showed how, in the case of a
two-electron system like the helium atom, the wave function could be written in the
form of a determinant, called a Slater determinant (6.19). In a two-electron system the
spin and spatial parts of the wave function can be separated, but for more than two
electrons the general form of the wave function, written as a Slater determinant, is

ψ(1, 2, 3, . . . , n) =
(

1

n!

)1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1)α(1) φ1(1)β(1) φ2(1)α(1) . . . φn/2(1)β(1)

φ1(2)β(2) φ1(2)β(2) . . . . φn/2(2)β(2)

φ1(3)α(3) φ2(2)α(2) . . . . φn/2(3)α(3)

φ1(4)β(4) φ2(2)β(2) . . . . .

φ1(5)α(5) φ3(2)α(2) . . . . .

. . . . . . .

. . . . . . .

φ1(n)β(n) . . . . . φn/2(n)β(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(6.36)

whereφi (a) denotes the i th spatial orbital containing the ath electron; each orbital holds
2 electrons so that for n electrons there are n/2 orbitals for a closed shell configuration.
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The complete Hamiltonian for the many-electron system is written

H =
∑

a

H
0(a) +

∑
a>b

e2

4πε0rab
, (6.37)

where H
0(a) is the ath one-electron hydrogen-like operator, called the core Hamilto-

nian, and defined by

H
0(a) = − h2

2m
∇2

a − Ze2

4πε0ra
. (6.38)

Since the determinantal wave function (6.36) is normalised to unity and the spin
functions are orthonormal, the variation function (6.26) takes a simple form, given by,

W0 =
∫
1

∫
2

∫
3

. . .

∫
n

ψ∗(1, 2, 3, . . . , n)Hψ(1, 2, 3, . . . , n) dV1 dV2 . . . dVn

=
n/2∑
i=1

[
2H

0
i i +

n/2∑
j=1

(〈i j |i j〉 − 〈i j | j i〉)
]
. (6.39)

Note that i and j run over the orbitals in this closed shell case. There are three different
types of integral in equation (6.39), and they are defined in the manner shown below.

(i) Core integrals

H
0
i i =

∫
a

φ∗
i (a)H

0(a)φi (a) dVa =
∫
a

φ∗
i (a)

(
− h2

2m
∇2

a − Ze2

4πε0ra

)
φi (a) dVa .

(6.40)
(ii) Coulomb integrals

〈i j |i j〉 =
∫
a

∫
b

φ∗
i (a)φ∗

j (b)

(
e2

4πε0rab

)
φi (a)φ j (b) dVa dVb

=
∫
a

φ∗
i (a)

[∫
b

φ∗
j (b)

(
e2

4πε0rab

)
φ j (b) dVb

]
φi (a) dVa

=
∫
a

φ∗
i (a)Jj (a)φi (a) dVa . (6.41)

Jj (a) is called the Coulomb operator.
(iii) Exchange integrals

〈i j | j i〉 =
∫
a

∫
b

φ∗
i (a)φ∗

j (b)

(
e2

4πε0rab

)
φ j (a)φi (b) dVa dVb

=
∫
a

φ∗
i (a)

[∫
b

φ∗
j (b)

(
e2

4πε0rab

)
φi (b) dVb

]
φ j (a) dVa

=
∫
a

φ∗
i (a)K j (a)φ j (a) dVa . (6.42)

K j (a) is called the exchange operator; it exchanges electrons a and b in the i
and j orbitals.
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The problem to be solved is expressed by Parr [10] in the following way. For an
electronic system containing an even number of electrons, how can we find the best
single determinantal wave function of the form (6.36)? We calculate the energy using
(6.39) for successive sets of orthonormal trial functions φi until the minimum energy
is obtained. This process is known as the Hartree–Fock or self-consistent-field (SCF)
method [11, 12].

The process in detail is as follows. We use what is known as Lagrange’s method
of undetermined multipliers, introducing constants ε j i such that the quantity W ′,
defined by

W ′ = W0 − 2
n/2∑
i, j

ε j i Si j , (6.43)

is a minimum; Si j is the overlap integral

Si j =
∫
φ∗

i (a)φ j (a) dVa . (6.44)

On expansion, equation (6.43) takes the form

W ′ = 2
n/2∑

i

H
0
i i +

n/2∑
i, j

(2〈i j |i j〉 − 〈i j | j i〉) − 2
n/2∑
i, j

ε j i Si j . (6.45)

Minimisation is achieved by requiring that the energy is unchanged with respect to
first-order changes in the wave functions, i.e.

δW ′ = 0 = 2
∑

i

δH
0
i i +

∑
i, j

(2δ〈i j |i j〉 − δ〈i j | j i〉 − 2ε j iδSi j ). (6.46)

The variations in the four different types of integral must now be derived. For the core
integral we have

δHi i = δ

∫
a

φ∗
i (a)H

0(a)φi (a) dVa

=
∫
a

δφ∗
i (a)H

0(a)φi (a) dVa +
∫
a

φ∗
i (a)H

0(a)δφi (a) dVa

= 2
∫
a

δφ∗
i (a)H

0(a)φi (a) dVa . (6.47)

The one-electron Hamiltonian for the ath electron, H
0(a), is defined in equation

(6.40); it is a Hermitian operator.
Next we look at the variation of the Coulomb integral:

δ〈i j |i j〉 = 2
∫
a

∫
b

δφ∗
i (a)φ∗

j (b)

(
e2

4πε0rab

)
φi (a)φ j (b) dVa dVb

+ 2
∫
a

∫
b

φ∗
i (a)δφ∗

j (b)

(
e2

4πε0rab

)
φi (a)φ j (b) dVa dVb

= 2
∫
a

δφ∗
i (a)Jj (a)φi (a) dVa+2

∫
b

δφ∗
j (b)Ji (b)φ j (b) dVb. (6.48)
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Similarly the variation of the exchange integral is given by

δ〈i j | j i〉 = 2
∫
a

δφ∗
i (a)K j (a)φi (a) dVa + 2

∫
b

δφ∗
j (b)Ki (b)φ j (b) dVb. (6.49)

Finally, the variation in the overlap integral is given by

δSi j = δ

∫
φ∗

i (a)φ j (a) dVa

=
∫
a

δφ∗
i (a)φ j (a) dVa +

∫
a

φ∗
i (a)δφ j (a) dVa . (6.50)

We now substitute the expressions for the variations of the four different types of
integral into equation (6.46) and obtain the following result:

0 =
∑

i

4
∫
δφ∗

i H
0φi dV +

∑
i

∑
j

(
4
∫
δφ∗

i J jφi dV + 4
∫
δφ∗

j Jiφ j dV

− 2
∫
δφ∗

i K jφi dV −2
∫
δφ∗

j Kiφ j dV −2ε j i

∫
δφ∗

i φ j dV −2ε j i

∫
δφ∗

jφi dV

)
. (6.51)

The index identifying the electrons is unnecessary and has been dropped, and if the
order of summation over i and j is interchanged, (6.51) simplifies to

0 =
∑

i

∫
δφ∗

i

[
H

0φi +
∑

j

(2Jiφi − K jφi − ε j iφ j )

]
dV . (6.52)

The magnitude of δφi in this equation is arbitrary, and therefore not zero; consequently
the term in square brackets must be zero, so that we obtain the result[

H
0 +

∑
j

(2Jj − K j )

]
φi ≡ Fφi =

∑
j

φ jε j i . (6.53)

This is the Hartree–Fock equation for atoms, and F is the Hartree–Fock operator.
Equation (6.53) can be written in matrix form,

Fφ=φε (6.54)

where ε is not necessarily a diagonal matrix. A setφmust be chosen in order to compute
the Hartree–Fock operator F , and then a new set φ is computed with (6.54). The new
set is then used to recompute F and a new solution is again obtained. The process is
repeated until the functions used to compute F are equal to the final solutions: at this
point the self-consistent-field (SCF) limit has been reached. Numerical methods have
been developed to solve for the atomic orbitals φi and eigenvalues εi . Normally only
the radial functions are determined numerically, the angular parts being represented by
spherical harmonics. It should be noted that a modified treatment is required for open
shell systems, and the unrestricted Hartree–Fock method is applied to atoms which
have unpaired electrons in different orbitals.
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6.2.6. Atomic orbital basis set

We have not yet addressed the problem of choosing the set of atomic orbitals φ with
which to solve the Hartree–Fock problem. This is a huge subject in itself but we should
indicate one general method which has been much used. Let us return to the problem
of the helium atom which we left in section 6.2.4 having used hydrogen-like orbitals
but with a variational parameter ζ replacing the nuclear charge Z . The hydrogen-like
radial functions, the first few of which were listed in table 6.2, can be represented in
general normalised form by the expression

ηnl(r ) = −
[(

2Z

na

)3 (n − l − 1)!

2n[(n + l)!]3

]1/2(2Zr

na

)l

exp

(−Zr

na

)
L2l+1

n+l

(
2Zr

na

)
. (6.55)

In this expression l = 0, 1, 2, 3, . . . , n = 1, 2, 3, . . . ; n ≥ l + 1 and a is the Bohr radius
for the one-electron atom or ion with reduced mass µ, i.e. a = 4πε0h2/µe2. The L2l+1

n+l

are associated Laguerre functions. Slater-type orbitals (STOs) have been defined as the
product of functions (6.55) with l = n − 1, and spherical harmonics:

Snlm(r, θ, φ) = (2ζ/a)n+1/2[(2n)!]−1/2rn−1 exp(−ζr/a)Ylm(θ, φ). (6.56)

Equation (6.56) comes from (6.55) if ζ = Z/n but more generally ζ is defined by

ζ = Z − S

n
, (6.57)

where S is the shielding factor, Z is the atomic number and n is now a variable not
necessarily integral in value. If both ζ and n are treated as variables in the Slater orbital
(6.56), the variation method used earlier gives an ionisation energy for the helium atom
of –77.667 eV, now 98.3% of the true value.

Our main reason for introducing the Slater atomic orbitals, however, is that linear
combinations of them have often been used to approximate the SCF Hartree–Fock
numerical orbitals. If χ represents a set of analytical orbitals, such as the STOs of
equation (6.56), then we may expand φ in the Slater determinant (6.36) in terms of χ,

φ = χa, (6.58)

representing a linear combination of atomic orbitals. We repeat the development be-
ginning at equation (6.39), using (6.58) for the atomic orbitals φi ; the variation is,
however, applied to the coefficients in the a column matrix. If N is the order of the
expansion basis, χ, then N equations similar to (6.53) are obtained:{∫

χtr

[
H

0 +
∑

j

(2Jj − K j )

]
χ dV

}
ai =

∑
j

ε j i S χa j . (6.59)

Here S χ is the overlap matrix in the χ basis. From (6.59) we may write[∫
χtr Fχ dV

]
ai =

∑
j

S χa jε j i , (6.60)
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so that

F χai =
∑

j

S χa jε j i . (6.61)

If ε j i is restricted to δi jε j i we obtain

F χai =
∑

j

S χa jε j iδi j = S χaiεi i , (6.62)

from which

(F χ − S χεi i )ai = 0. (6.63)

If the determinant of the coefficients of ai is set equal to zero, the secular determinant
is obtained,

Det(F χ − S χεi i ) = 0, (6.64)

where the number of roots equals the order of the χ basis.
The problem is now solved again by an iterative process, which starts with a choice

of the χ set and the expansion (6.58). The Hartree–Fock operator F and the matrix
representation Fχ are calculated, (6.64) is solved for the orbital energies, and these
are used to compute a new set of coefficients in (6.63). If these are different from
the starting set, the cycle is repeated until the self-consistent-field limit is reached. The
total electronic energy is obtained by adding the SCF energy to the core energy for the
lowest occupied n/2 levels:

W0 =
n/2∑
i=1

(Hi i + εi i ). (6.65)

Many calculations for atoms have led to the development of a number of recipes
for deciding the best values of ζ and n. A further important issue is the size of the
basis set. A minimal basis set of STOs for an atom would include one function for
each SCF occupied orbital with different n and l quantum numbers in equation (6.56);
for the chlorine atom, therefore, the minimal basis set would include 1s, 2s, 2p, 3s
and 3p functions, each with an optimised Slater orbital exponent ζ . A higher order
of approximation would be to double the number of STOs (the double zeta basis set),
with orbital exponents optimised; ultimately the Hartree–Fock limit is reached, as it
has been for all atoms from He to Xe [13].

Among the alternative basis functions which have been used in SCF calculations,
mention should be made of Gaussian orbitals, which by analogy with the Slater orbitals
of (6.56) may be written

Gnlm(r, θ, φ) = Nrn exp(−αr2)Ylm(θ, φ), (6.66)

where N is the normalisation constant, α is the Gaussian orbital exponent and n is
the analogue of n in the Slater-type orbital. Alternatively the Gaussian orbitals may be
expressed in cartesian form as

Gnlm(x, y, z) = N ′xn yl zm exp(−αr2). (6.67)
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Compared with the STOs, there are both advantages and disadvantages to Gaussian
orbitals. The main disadvantage is that larger basis sets are required for Gaussians; on
the other hand several of the integrals which arise in molecular calculations are easier
to compute.

Perhaps the most important point to emphasise in conclusion is that the Hartree–
Fock atomic orbitals are represented by a single determinant.

6.2.7. Configuration interaction

The difference between the true non-relativistic electron energy and the best single
determinant Hartree–Fock energy is called the correlation error; it arises from the true
instantaneous repulsion (1/ri j ) energy being repaced by a self-consistent average. To
improve matters beyond this point the effects of mixing of the ground state Hartree–
Fock determinant with additional determinants representing alternative electron config-
urations in the atom are included. The resulting many-electron wave function is written

Ψ(1, 2, . . . , n) =
∑

I

CIΨI , (6.68)

where the CI are variation coefficients and ψI is the I th determinantal wave function
of the type (6.36). The method is called, not surprisingly, configuration interaction
(CI). The coefficients in (6.68) are determined by using the variation method already
outlined, which leads to the secular equation

(H − E S)C = 0, Det(H − E S) = 0. (6.69)

C is a column matrix whose elements are the CI in (6.68) and E are the eigenvalues.
The other matrix elements are given by

HJ I =
∫
1

∫
2

. . .

∫
n

Ψ∗
J HΨI dV1 dV2 . . . dVn,

SJ I =
∫
1

∫
2

. . .

∫
n

Ψ∗
JΨI dV1 dV2 . . . dVn. (6.70)

The question always arises as to how many configurations should be included. In the
helium atom the radial correlation is improved by expanding in s orbitals, for example,

Ψ(1, 2) = C1Ψ(1s2) + C2Ψ(1s, 2s) + C3Ψ(2s2) + · · · , (6.71)

where only states of the same symmetry (1S) are included. Extensive calculations
have been performed for many different atoms, giving accurate descriptions of both
the ground and excited states, including open shell systems. Configuration interaction
calculations are important for molecular wave functions also, as we shall see later in
this chapter.
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6.3. Molecular orbital theory

In chapter 2 we discussed at length the separation of nuclear and electronic coordinates
in the solution of the Schrödinger equation. We described the Born–Oppenheimer
approximation which allows us to solve the Schrödinger equation for the motion of the
electrons in the electrostatic field produced by fixed nuclear charges. There are certain
situations, particularly with polyatomic molecules, when the separation of nuclear and
electronic motions cannot be made satisfactorily, but with most diatomic molecules the
Born-Oppenheimer separation is acceptable. The discussion of molecular electronic
wave functions presented in this chapter is therefore based upon the Born–Oppenheimer
approximation.

There are a number of different approaches to the description of molecular elec-
tronic states. In this section we describe molecular orbital theory, which has been by
far the most significant and popular approach to both the qualitative and quantitative
description of molecular electronic structure. In subsequent sections we will describe
the theory of the correlation of molecular states to the Russell–Saunders states of
the separated atoms; we will also discuss what is known as the united atom approach
to the description of molecular electronic states, an approach which is confined to
diatomic molecules.

The most common and important approach to the description of the wave func-
tions for a molecule is the linear combination of atomic orbitals (l.c.a.o.) method. As
the name implies, this method involves consideration of the interaction of the atomic
orbitals on the separated atoms to form molecular orbitals which accomodate the avail-
able electrons. The method takes a relatively simple form in diatomic molecules, as
figure 6.6 illustrates for a homonuclear molecule. The 1s atomic orbitals on the two
atoms a and b can interact in-phase to form a bonding molecular orbital, or out-of-phase
to form an antibonding orbital. The bonding orbital is called σg1s, and the antibonding
orbital is σ ∗

u 1s; in the H2 molecule, the two electrons are accomodated in the bonding
molecular orbital, forming a stable system. Similar considerations apply to the inter-
action of the next highest atomic orbitals, the 2s orbitals, and the Li2 molecule, with
six electrons, has the electron configuration (σg1s)2(σ ∗

u 1s)2(σg2s)2.

The 2p atomic orbitals fall into one of two categories. If z is the internuclear
axis, the 2pz atomic orbitals interact to form a bonding σg2p and an antibonding
σ ∗

u 2p molecular orbital. On the other hand, the 2px and 2py atomic orbitals, whose
axes are perpendicular to the internuclear axis, interact to form degenerate bonding
πu2p and antibonding π∗

g 2p orbitals. A molecular orbital energy level diagram for
homonuclear diatomic molecules is shown in figure 6.7; by progressively filling the
molecular orbitals with electrons, having due regard to the Pauli principle, the sequence
of electron configurations for the lighter diatomic molecules can be established, as
shown in table 6.3. We will, in due course, deal with the more complex situations
which arise when atomic d orbitals are involved.

We have included in table 6.3 the electronic state nomenclature, the definition of
which we now describe. First, we deal with the resultant orbital angular momentum
about the internuclear axis, which is denotedΛ, and is equal to the sum of the individual
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σg

σu

σu

πu

πg

σg

Figure 6.6. The symmetries of the linear combinations of atomic orbitals giving the lowest energy
bonding and antibonding molecular orbitals.

electron orbital angular momenta, λi ; that is

Λ =
∑

i

λi . (6.72)

The vectors lie along the internuclear axis, so that we have a simple algebraic addition.
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Figure 6.7. Molecular orbital energy level diagram for the homonuclear diatomic molecules of
the first row of the periodic table.

For a single π electron, Λ= λ= ±1, and the electronic state is called a � state. For
two π electrons, the resultantΛ is equal to ±2 or 0, each of these states arising in two
different ways. For |Λ| = 2 we have a� state, which is two-fold degenerate. ForΛ= 0
the electronic state is a � state; although there are two such states arising from the
vectorial addition, they are not degenerate but split into a �+ and a �− state. We will
define the difference between these states in due course. If Λ= ±3, which can arise
when d orbitals are involved, the state is a � state, and so on. The resultant spin is
equal to the sum of the individual spins, that is,

S =
∑

i

si . (6.73)

The resulting spin multiplicity, 2S + 1, is indicated in the electronic state symbol as a



200 Electronic and vibrational states

Table 6.3. Ground state electron configurations and states for homonuclear diatomic
molecules in the first row of the periodic table

Molecule Electron configuration State

H+
2 (σg1s)1 2�+

g

H2 (σg1s)2 1�+
g

He+
2 (σg1s)2(σ ∗

u 1s)1 2�+
u

He2 (σg1s)2(σ ∗
u 1s)2 1�+

g

Li+2 (σg1s)2(σ ∗
u 1s)2(σg2s)1 2�+

g

Li2 (σg1s)2(σ ∗
u 1s)2(σg2s)2 1�+

g

Be2 (σg1s)2(σ ∗
u 1s)2(σg2s)2(σ ∗

u 2s)2 1�+
g

B2 (σg1s)2(σ ∗
u 1s)2(σg2s)2(σ ∗

u 2s)2(πu2p)2 3�−
g

C2 (σg1s)2(σ ∗
u 1s)2(σg2s)2(σ ∗

u 2s)2(πu2p)3(σg2p)1 3�u

N+
2 (σg1s)2(σ ∗

u 1s)2(σg2s)2(σ ∗
u 2s)2(πu2p)4(σg2p)1 2�+

g

N2 (σg1s)2(σ ∗
u 1s)2(σg2s)2(σ ∗

u 2s)2(πu2p)4(σg2p)2 1�+
g

O+
2 (σg1s)2(σ ∗

u 1s)2(σg2s)2(σ ∗
u 2s)2(πu2p)4(σg2p)2(π∗

g 2p)1 2�g

O2 (σg1s)2(σ ∗
u 1s)2(σg2s)2(σ ∗

u 2s)2(πu2p)4(σg2p)2(π∗
g 2p)2 3�−

g

F2 (σg1s)2(σ ∗
u 1s)2(σg2s)2(σ ∗

u 2s)2(πu2p)4(σg2p)2(π∗
g 2p)4 1�+

g

Ne2 (σg1s)2(σ ∗
u 1s)2(σg2s)2(σ ∗

u 2s)2(πu2p)4(σg2p)2(π∗
g 2p)4(σ ∗

u 2p)2 1�+
g

prefix superscript. Third, the subscripts g and u, which only arise for the homonuclear
systems, are readily decided; only an odd number of u electrons can give rise to an
overall u state. The ground electronic state is labelled the X state, and successive excited
states of the same spin multiplicity but increasing energy are labelled A, B, C , etc.
The lowest energy excited state of different spin multiplicity (higher or lower) is the a
state, with higher energy states being labelled b, c, d, etc.

We now return to the question of the distinction between�+ and�−states, which
requires a more detailed consideration of the electronic wave function. In a diatomic
molecule any plane containing the internuclear axis is a plane of symmetry, and the
electronic eigenfunction of a non-degenerate � state either remains unchanged when
reflected through such a plane, in which case it is a�+ state, or changes sign, in which
case it is a�− state. To illustrate this and other aspects, let us consider the O2 molecule
which, according to table 6.3, has its two outermost electrons in a degenerate π∗

g 2p
molecular orbital. Since each electron can occupy the π orbital with λ= +1 or λ= −1,
there are four possible arrangments:

φ+1(1)φ+1(2):Λ = +2; φ+1(1)φ−1(2): Λ= 0;

φ−1(1)φ+1(2): Λ = 0; φ−1(1)φ−1(2): Λ= − 2. (6.74)

The permutation operator P12 which interchanges the electrons leaves the Λ= ±2
functions unchanged; they are symmetric and form the degenerate components of
a �g state which, since it must be combined with the antisymmetric spin function
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(1/
√

2){α(1)β(2) − β(1)α(2)} by the Pauli principle, is actually a 1�g state, the lowest
excited electronic state of the O2 molecule. The Λ= 0 functions above are converted
into each other by the permutation operator P12, but the symmetric and antisymmetric
combinations have definite symmetry under P12:

P12{φ+1(1)φ−1(2) ± φ−1(1)φ+1(2)} = ±{φ+1(1)φ−1(2) ± φ−1(1)φ+1(2)}. (6.75)

The symmetric combination corresponds to a�+ state, and since it must be combined
with the antisymmetric spin function, we have a 1�+

g state, the highest energy state
arising from the ground electron configuration. The antisymmetric combination in
(6.75) is a �− state, and combined with the symmetric triplet spin functions forms
the ground state, 3�−

g . We discuss permutation and inversion symmetry in much more
detail later in this chapter.

We mentioned at the beginning of this section that there is a related approach to
the electronic structure of diatomic molecules, namely, the united atom approach. We
consider the motion of an electron about a core which consists of two nuclei, at a
fixed distance from each other, and of the remaining electrons. For this system, which
we may regard as a two-centre system, the field of force acting on the outer electron
may be regarded as axially symmetric about the internuclear axis. If we disregard
electron spin, the stationary states of this atom-like system can be characterised by three
quantum numbers. Of these, only one, the component of orbital angular momentum
of the electron about the internuclear axis (λ), is precisely defined for all separations
of the two nuclei. The possible values of λ are 0, ±1, ±2, ±3, etc., and the electron
is described as a σ , π , δ, φ, etc., electron respectively. Two other quantum numbers,
which are only strict for the true united atom with internuclear distance R = 0, are
n and l. These quantum numbers have the same significance as we described in the
previous section on atomic wave functions, but become less significant as R increases. A
correlation diagram connecting the molecular orbitals and the united atom descriptions
for homonuclear molecules is shown in figure 6.8. The united atom orbitals are shown
on the extreme left, and the separated atom molecular orbitals are on the extreme
right. This diagram, taken from Herzberg [14], shows the molecular orbitals for a large
range of R values, and indicates the positions of certain particular molecules. Note that
the notation distinguishes between united atom and molecular orbitals; the symbols
denoting the n, l values are listed first in the united atom description, but last in the
molecular orbital case.

Heteronuclear diatomic molecules are naturally somewhat more complicated than
the homonuclear; comprehensive comparisons with homonuclear molecules were given
by Mulliken [15]. The atomic orbital coefficients in the molecular orbitals of heteronu-
clear diatomic molecules are no longer determined by symmetry alone, and the elec-
trons in the molecular orbitals may be shared equally between atoms, or may be almost
localised on one atom. The molecular orbitals can still be classified as σ or π , but in
the absence of a centre-of-symmetry the g/u classification naturally disappears. Some
heteronuclear molecules contain atoms which are sufficiently similar that the molecular
orbitals resemble those shown in figure 6.7. In many other cases, however, the atoms are
very different. This is particularly the case for hydride systems, like the HCl molecule,
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where the hydrogen 1s electron has an energy similar to that of a chlorine 3pz electron,
and the main σ -type molecular orbital will be formed between the two corresponding
orbitals; even so, the electron distribution is likely to be strongly polarised in favour
of the chlorine atom. Electrons in the 3px and 3py chlorine orbitals remain essentially
lone pair electrons.

A correlation diagram relating the molecular orbitals to the united atom orbitals
can be drawn for heteronuclear systems, as shown in figure 6.9; it is similar to that
for homonuclear systems. The combination of like atomic orbitals on atoms a and b
will, in each case, give rise to two complementary molecular orbitals, as shown on the
right-hand side of figure 6.9.

6.4. Correlation of molecular and atomic electronic states

We have described the orbital approaches to the electron configurations of diatomic
molecules, both the molecular orbital and the united atom models. We now turn to
the question of what types of molecular states result from given states of the separate
atoms. If Russell–Saunders coupling is valid for the separate atoms, the correlation
rules, due to Wigner and Witmer [16] provide a valid and complete summary of the
molecular states. This information is extremely important for an understanding of both
the formation and dissociation of diatomic molecules.

If two atoms with orbital and spin angular momentum values L1, S1 and L2, S2 are
brought up to each other, an electric field is created in the direction of a line joining
the nuclei; this produces space quantisation of L1 and L2 with respect to this direction,
with components M1 and M2. The resultant angular momentum about the internuclear
axis is therefore M1 + M2, and the molecule formed has values of the quantum number
Λ given by M1 + M2. Clearly, consideration of all of the possible values of M1 and
M2 will give the possible values of Λ. This is best appreciated by working through
a particular example, so we consider the interaction of two atoms, both in P states
(electron spin will be considered later).

The problem is most readily understood with the aid of a vector coupling diagram,
such as that presented in figure 6.10. Each atom has L1 = L2 = 1, and the three allowed
orientations of the vectors L1 and L2 with respect to the direction of the internuclear axis
are shown. As can be seen from the figure, there is a total of nine relative orientations
of the two vectors; combining M1 = +1, 0, −1 with M2 = +1, 0, −1 gives nine values
of M1 + M2, with two different ways of obtaining total components of +1, and −1, and
three ways of obtaining 0, as shown. We therefore obtain a � state, two � states and
three� states. The� and� states retain their two-fold degeneracy, but the two similar
� states split into �+ and �−states of different energies. Table 6.4 is an abbreviated
version of a similar table in Herzberg’s book [14], giving the molecular electronic states
resulting from given states of the separated unlike atoms.

The possible spin multiplicities are readily determined because the resultant spin
quantum number S is given by

S = (S1 + S2), (S1 + S2 − 1), (S1 + S2 − 2), . . . , |S1 − S2|, (6.76)
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Figure 6.10. Vector diagram showing the molecular states arising from the interaction of two
atoms, both in P states. The arrows show the orientations of the orbital angular momentum
vectors L1 and L2 with respect to the direction of the internuclear axis, and the numbers show
the values of M1 and M2.

and each of the orbital states listed in table 6.4 can be combined with each of the spin
states. For example, if both atoms are in quartet states (S = 3/2), the resulting molecular
states can be septet (S = 3), quintet (S = 2), triplet (S = 1) and singlet (S = 0).

Similar rules hold for the combination of two like atoms, the main difference being
that the resulting molecular states must be either even or odd. Again an abbreviated
list is presented in table 6.5; more comprehensive lists are available in the literature.
Note that it is not necessary to specify the parities of the separated atoms, since we are
dealing with combinations of like atoms.

Similar correlation rules exist for atoms which follow j j coupling, rather than
Russell–Saunders coupling, but such cases are relatively rare and will not be discussed
here.
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Table 6.4. Molecular electronic states resulting from
given states of the separated unlike atoms

States of the separated atoms Resulting molecular states

Sg + Sg or Su + Su �+

Sg + Su �−

Sg + Pg or Su + Pu �−,�
Sg + Pu or Su + Pg �+,�
Sg + Dg or Su + Du �+,�,�
Sg + Du or Su + Dg �−,�,�
Sg + Fg or Su + Fu �−,�,�,�
Sg + Fu or Su + Fg �+,�,�,�
Pg + Pg or Pu + Pu �+(2), �−,�(2),�

Pg + Pu �+, �−(2),�(2),�

Table 6.5. Molecular electronic states resulting from identical states of the separated
like atoms

States of the separated atoms Molecular states

1S + 1S 1�+
g

2S + 2S 1�+
g ,

3�+
u

3S + 3S 1�+
g ,

3�+
u ,

5�+
g

4S + 4S 1�+
g ,

3�+
u ,

5�+
g ,

7�+
u

1P + 1P 1�+
g (2), 1�−

u ,
1�g,

1�u,
1�g

2P + 2P 1�+
g (2), 1�−

u ,
1�g,

1�u,
1�g,

3�+
u (2), 3�−

g ,
3�g,

3�u,
3�u

6.5. Calculation of molecular electronic wave functions and energies

6.5.1. Introduction

Many of the principles and techniques for calculations on atoms, described in section
6.2 of this chapter, can be applied to molecules. In atoms the electronic wave func-
tion was written as a determinant of one-electron atomic orbitals which contain the
electrons; these atomic orbitals could be represented by a range of different analytical
expressions. We showed how the Hartree–Fock self-consistent-field methods could be
applied to calculate the single determinantal best energy, and how configuration inter-
action calculations of the mixing of different determinantal wave functions could be
performed to calculate the correlation energy. We will now see that these technques
can be applied to the calculation of molecular wave functions, the atomic orbitals of
section 6.2 being replaced by one-electron molecular orbitals, constructed as linear
combinations of atomic orbitals (l.c.a.o. method).
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Before discussing the problems of many-electron wave functions for molecules, it
is instructive to consider the special cases of the H+

2 and H2 molecules, containing one
and two electrons respectively. The electronic wave function for H+

2 can actually be
calculated exactly within the Born–Oppenheimer approximation, not analytically but
by using series expansion methods; an excellent description of the calculation has been
given by Teller and Sahlin [17], and we give a summary of the method in appendix 6.1.
We will, however, use the H+

2 and H2 molecules to illustrate the l.c.a.o. method in the
next two subsections.

6.5.2. Electronic wave function for the H+
2 molecular ion

The hydrogen molecular ion has long been a test bed for quantum theoretical methods,
and continues so to be. We now present first the simplest quantitative treatment, leading
to calculations of the electronic energy as a function of the internuclear distance, R.

The Hamiltonian for the H+
2 molecule may be written in the form

H = − h2

2m
∇2 − e2

4πε0ra
− e2

4πε0rb
+ e2

4πε0 R
, (6.77)

where ra and rb are the distances from the nuclei a and b to the electron. The molecular
orbitals (φ) for H+

2 must reflect the symmetry of the molecule, and as we have seen
in our earlier qualitative descriptions, they may be written as linear combinations of
atomic orbitals (χ) located on each atom:

φ± = 1

[2 ± 2Sab]1/2
[χa ± χb]. (6.78)

Sab is the overlap integral defined by

Sab =
∫
χ∗

aχb dV . (6.79)

In order to determine the ground state energy of the molecule at a fixed value of R we
use the Variation Theorem, that is,

E0 ≤ W =
∫
φ∗

Hφ dV . (6.80)

Substituting for the Hamiltonian, equation (6.77), and the molecular orbitals (6.78),
equation (6.80) becomes

W± =
∫

(χa±χb)∗[−(h2/2m)∇2 − e2/4πε0ra − e2/4πε0rb + e2/4πε0 R](χa ±χb) dV

2(1±Sab)

= Haa + Hbb ± 2Hab

2(1 ± Sab)
. (6.81)

In order to progress we must now choose analytical forms for the atomic orbitals χa

and χb, and the most obvious choice is the hydrogen atom 1s orbitals given earlier. All
of the integrals required to evaluate (6.81) are to be found in the literature [18] and we
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may proceed as follows. For Haa we have

Haa =
∫
χ∗

a

(
− h2

2m
∇2 − e2

4πε0ra

)
χa dV − e2

∫
χ∗

aχa

4πε0rb
dV + e2

4πε0 R

∫
χ∗

aχa dV

=
(

1

4πε0

){
− e2

2a0
− e2

∫
χ∗

aχa

rb
dV + e2

R

}
. (6.82)

The first matrix element in (6.82) arises in the treatment of the hydrogen atom, and the
second can be evaluated by transforming to elliptical coordinates [18], giving∫

χ∗
aχa

rb
dV = −

(
1

a0
+ 1

R

)
exp

(
−2R

a0

)
+ 1

R
. (6.83)

Consequently

Haa =
(

1

4πε0

){
− e2

2a0
+ e2

(
1

a0
+ 1

R

)
exp

(
−2R

a0

)}
= Hbb. (6.84)

The remaining integrals in (6.81) can be evaluated by similar methods [18] and lead to
the final result for the energies:

W±

= −(e2/2a0) + (e2/a0)[1 + (1/r )] exp(−2r ) ± (e2/a0){[(r2/3) + r + 1][−(1/2) + (1/r )] − (r + 1)} exp(−r )

(4π ε0){1 ± [(r2/3) + r + 1] exp(−r )} .

(6.85)

In this expression r = R/a0 . Equation (6.85) gives a dissociation energy of 1.76 eV
and a minimum in the ground state potential energy at R = 1.32 A

�

, compared with the
experimental values of 2.79 eV and 1.058 A

�

. For such a simple model the results are
not too bad.

6.5.3. Electronic wave function for the H2 molecule

In the H2 molecule the lowest energy electron configuration is obtained by placing both
electrons in the σg1s molecular orbital with their spins paired so as to satisfy the Pauli
exclusion principle. The Slater determinant for this arrangement is

ψ(1, 2) =
(

1√
2

) ∣∣∣∣∣φσg1s(1)α(1) φσg1s(1)β(1)

φσg1s(2)α(2) φσg1s(2)β(2)

∣∣∣∣∣
=

(
1√
2

)[
φσg1s(1)φσg1s(2)

]
[α(1)β(2) − α(2)β(1)]. (6.86)

If we now represent the σg1s molecular orbital as a linear combination of the 1s atomic
orbitals on the two atoms, we can expand (6.86) as follows:

ψ(1, 2) = 1

2
√

2

[
χ1sa (1) + χ1sb (1)

][
χ1sa (2) + χ1sb (2)

]
[α(1)β(2) − β(1)α(2)]

= 1

2
√

2

[
χ1sa (1)χ1sa (2) + χ1sa (1)χ1sb (2) + χ1sb (1)χ1sa (2)

+χ1sb (1)χ1sb (2)
]
[α(1)β(2) − β(1)α(2)]. (6.87)
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Note that, in this two-electron system, the spatial and spin parts of the wave function
can be separated.

The electronic Hamiltonian for H2, including the nuclear repulsion term is

H = − h2

2m
∇2

1 − h2

2m
∇2

2 −
(

1

4πε0

){
e2

r1a
+ e2

r1b
+ e2

r2a
+ e2

r2b
− e2

r12
− e2

R

}
. (6.88)

This Hamiltonian can be combined with the wave function given in (6.87) and, using the
hydrogen atom 1s atomic orbitals once more, Coulson [19] obtained a calculated disso-
ciation energy of 2.681 eV and an equilibrium internuclear separation of R = 0.850 A

�

,
compared with the experimental values of 4.75 eV and 0.740 A

�

.
A large number of variation calculations have been performed for H2, some of

the most accurate employing elliptical coordinates with the nuclei as foci to de-
scribe electronic positions relative to the nuclei. The electron coordinates may be
written

ξ = (ra + rb)/R, η = (ra − rb)/R, (6.89)

together with an angleφmeasured about the internuclear axis. A trial variation function
for hydrogen is then written in the form

Φ(1, 2) =
∑

p,q,r,s,t

Apqrst

(
ξ

p
1 η

q
1ξ

r
2η

s
2 + ξ r

1η
s
1ξ

p
2 η

q
2

)
exp[−α(ξ1 + ξ2)]r t

12. (6.90)

One can use as many terms as one might wish with this function. In 1933 James and
Coolidge [20] used 13 terms and obtained an energy only 0.02 eV less than the full
value of 4.75 eV, whilst Kolos and Roothaan [21] extended the basis set to 50 terms
and obtained a calculated energy in exact agreement with experiment.

A modification of (6.90) which replaces the difficult r12 term by an appropriate
expansion is

Φ(1, 2) =
∑

p,q,r,s,m

Bpqrsm

(
ξ

p
1 η

q
1ξ

r
2η

s
2 + ξ r

1η
s
1ξ

p
2 η

q
2

)
exp[−α(ξ1 + ξ2)] cos[m(φ1 − φ2)],

(6.91)

and using 40 such terms Kolos and Roothaan [21] obtained a binding energy only
0.01 eV less than the true value. A slightly different and more general form is

Φ(1, 2) =
∑
i, j

Ci j [χ
i
a(1)χ j

b (2) + χ j
b (1)χ i

a(2)], (6.92)

with, for example, on nucleus a,

χa(i) = exp(−δaξi − αaηi )ξ
na
i η

ma
i exp(iνaφi )

[(
ξ 2

i − 1
)(

1 − η2
i

)]1/2|νa |
. (6.93)

Harris [22] and Davidson [23] used such a function in variation calculations for both
the ground and excited states of H2, with excellent results.

So much for complicated analytical expressions which are useful for H2 but less
likely to be valuable for more complex molecules. We return to the use of atomic
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orbitals, the first and most famous example being the Heitler–London treatment [24]
using 1s orbitals on each atom. This valence bond Heitler–London wave function may
be written

Φvb(1, 2) = 1

[2 + 2S2]1/2
[1sa(1)1sb(2) + 1sb(1)1sa(2)], (6.94)

where S is, as usual, the overlap integral. Alternatively we may use the l.c.a.o.molecular
orbital wave function, placing both electrons in the bonding orbital:

Φmo(1, 2) = 1

2(1 + S)
[1sa(1) + 1sb(1)][1sa(2) + 1sb(2)]. (6.95)

Using the hydrogen 1s orbitals with optimised ζ parameters shows that there is not
much to choose between these two approaches; neither is particularly good. It is,
however, possible to obtain a better description, even confining attention to the 1sa and
1sb atomic orbitals. First, following Parr [10], we note that the valence bond function
(6.94) represents a covalent structure, with the electrons shared between the two atoms.
Alternatively, a function which places both electrons on the same atom,

1sa(1)1sa(2) + 1sb(1)1sb(2), (6.96)

represents an ionic structure. It seems likely that a mixture of the covalent and ionic
structures would be a better representation, and Weinbaum [25] confirmed this with a
function

Ψ = c1[1sa(1)1sb(2) + 1sb(1)1sa(2)] + c2[1sa(1)1sa(2) + 1sb(1)1sb(2)], (6.97)

finding the best energy with c1/c2 = 3.9.
An apparently different approach is to use a molecular orbital description which

includes configuration interaction between the ground electron configuration (6.95) and
the doubly excited configuration in which both electrons occupy the lowest antibonding
orbital,

Φ′
mo = 1

2(1 − S)
[1sa(1) − 1sb(1)][1sa(2) − 1sb(2)]. (6.98)

A mixture of (6.95) and (6.98) actually gives an identical result to that obtained with
the function (6.97). This is, in fact, an example of a general result that the valence bond
method, including ionic terms, is equivalent to the molecular orbital method including
configuration interaction.

In order to obtain increased accuracy it is necessary to include atomic orbitals
higher than 1s and such a configuration interaction calculation by McLean, Weiss
and Yoshimine [26] which employed atomic 1s, 2s and 2p atomic orbitals gave a
binding energy of 4.55 eV. Later calculations, particularly by Kolos and Wolniewicz
[27], produced energies for dissociation and ionisation of H2 which were within 10−4

eV or less of the experimental values.
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Many other calculations on H2 in its electronic ground state have been described,
and they continue to be reported. Calculations of excited electronic states of H2 are
also important, particularly in the light of experimental studies described elsewhere
in this book, notably in chapters 8 and 11. We should, therefore, say something about
these calculations.

In equation (6.98) we wrote the wave function for an excited state of H2 in which
both electrons occupy the σ̄u1s molecular orbital; this symmetric spatial function must
be combined with the antisymmetric spin function

(1/
√

2)[α(1)β(2) − β(1)α(2)], (6.99)

to give an excited 1�+
g state. Lower energy excited states, however, will arise from pro-

motion of a single electron from the σg1s bonding to the σ̄u1s antibonding orbital. Both
singlet and triplet states are possible; the singlet state has the following wave function:

ΦS = (1/
√

2)[σg1s(1)σ̄u1s(2) + σg1s(2)σ̄u1s(1)](1/
√

2)[α(1)β(2) − α(2)β(1)].

(6.100)

The triplet spin state is associated with the antisymmetric spatial function:

Φt = (1/
√

2)[σg1s(1)σ̄u1s(2) − σg1s(2)σ̄u1s(1)](1/
√

2)[ α(1)β(2) + α(2)β(1)],

α(1)α(2),

β(1)β(2). (6.101)

This triplet state is actually the b 3�+
u state; it is repulsive at all internuclear distances

and, like the ground state, correlates with H(1s) + H(1s) at the dissociation limit.
Indeed it is responsible for the continuum ultraviolet and visible light produced by a
hydrogen discharge lamp. The singlet state (6.100) is the B 1�+

u state, a high-lying state
which nevertheless possesses a potential minimum and is therefore stable. The even
higher energy state with both electrons in the lowest antibonding orbital, represented
by (6.98), actually has two distinct minima in its potential energy curve, which
have been identified spectroscopically. These two virtually distinct states are known
as the E 1�+

g and F 1�+
g states. There are therefore four states, namely, the ground

state and three excited states (one being a triplet state) which can be constructed from
the 1s atomic orbitals. A potential energy diagram showing these states is presented
in figure 6.11. Many more excited states of H2 exist, involving the 2s and 2p atomic
orbitals. The singly excited states involve one electron remaining in the σg1s molecular
orbital, whilst the second electron occupies a higher energy orbital; in effect one has
an H+

2 core, with a second electron orbiting at long range. Highly excited states of
this type are known as molecular Rydberg states; several of them have been studied
by high resolution spectroscopy and are discussed at length in chapters 8 and 11.

It is hoped that we have now explored the theory of the pre-eminent H2 molecule
in sufficient detail for us to approach many-electron molecules with increased insight.
We emphasise again that all of the preceding discussion has presumed the validity of
the Born–Oppenheimer separation. Life is not always so kind, and we return to this
aspect later in this chapter.
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Figure 6.11. Potential energy curves for the ground state and first few excited electronic states
of H2. In the order of increasing energy the states are X 1�+

g , b 3�+
u , B 1�+

u , a 3�+
g and C 1�u.

6.5.4. Many-electron molecular wave functions

(i) Introduction

Throughout this book we refer to the interpretation and understanding of molecular
parameters determined from spectroscopic analysis. The first essential objective in
analysing a spectrum is to establish the most suitable form of an effective Hamiltonian
which represents the important intramolecular interactions present in a specific case;
procedures for deriving an effective Hamiltonian are described in chapter 7. Using
an effective Hamiltonian, one proceeds to calculate the appropriate energy levels and
the frequencies and intensities of the transitions between them which give rise to the
observed spectrum. Algebraic expressions for the transition frequencies will contain
quantities which can be called the molecular constants or, as we prefer, the molecular
parameters. The precise meaning of these molecular parameters is defined in the process
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of deriving the effective Hamiltonian. The values of the parameters are related directly
to the electronic wave function, so that the ultimate value of the parameters lies in
the information they provide about the electronic structure of the molecule under
investigation. The links between the molecular parameters and the electronic wave
function are not simple, however. There are, in general, two different approaches to
understanding these links, and both are important. We may describe one approach as
semi-empirical; the electronic structure is described in terms of a somewhat idealised
model which, in some sense, provides a physical picture which we can visualise. A
successful model is one which provides a semi-quantitative understanding of the values
of the molecular parameters. In addition, it will often be predictive and rationalise trends
to some level of satisfaction.

The other approach to the electronic wave function and its links with the molecular
parameters is the ab initio calculation; we often use this term or mode of description
elsewhere in this book. An ab initio calculation is one which uses only the fundamental
laws of physics and the values of the fundamental constants. It is easy to define, but
efforts to achieve success for molecules with many electrons, even diatomic molecules,
have occupied the attention of many for the past seventy years. The electronic wave
function produced by an ab initio calculation is often too complicated algebraically
to provide something which can reasonably be described as a physical picture. In this
situation the value of a molecular parameter, determined by experiment, is best regarded
as a benchmark which can be used to test the accuracy of an ab initio calculation.

The development of ab initio methods, which has come to be known as quantum
chemistry, is one of the outstanding cumulative intellectual and technical achievements
of the past fifty years. Fifty years ago, at the time of the publication of Herzberg’s
classic book [14], quantum mechanics had been applied to the calculation of the wave
functions of the very simplest molecules, but for most systems the problems were
considered intractable. At the turn of the millenium we have come a long way, but
many difficult problems remain. Progress has been closely related to the development
of the digital computer, and the technical achievements in the use of computers to solve
problems in quantum mechanics have been impressive. There has always, however,
been an accompanying and continual need for intellectual advances to make use of the
technology. This section describes the nature of the problems to be solved, and some
of the methods which have been developed to tackle them.

(ii) The electronic Hamiltonian

Within the Born–Oppenheimer approximation [28], the electron distribution is sup-
posed to depend only on the instantaneous positions of the nuclei and not on their
velocities. The Schrödinger equation for the electrons in the field of the fixed nuclei,
which we have met before, and was derived in chapter 2, is

H
elecΨ elec(r , R) = Eelec(R)Ψ elec(r , R). (6.102)

The electronic wave function Ψ elec(r , R) depends on both the electronic coordinates,
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r, and nuclear coordinates, R, whilst the electronic Hamiltonian corresponds to the
motion of the electrons in the field of the fixed nuclei. It is the sum of two terms,

H
elec = T elec + V . (6.103)

The electronic kinetic energy is given by

T elec = −
(

h2

2m

) electrons∑
i

(
∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

)
. (6.104)

The Coulomb potential energy, V , is the sum of three different types of term, as follows:

V = −
electrons∑

i

nuclei∑
s

e2 Zs

4πε0ris
+

electrons∑
i< j

∑ e2

4πε0ri j
+

nuclei∑
s<t

∑ e2 Zs Zt

4πε0 Rst
. (6.105)

The third term does not involve the electron coordinates and is a constant for any fixed
configuration of the nuclei; this sum reduces to a single term for a diatomic system.

A summary of the theory has been provided by Pople [29]. The convention in this
field is to use atomic units, such that h = e = m = 1. In this system, length is measured
as a multiple of the Bohr radius a0 and energy as a multiple of twice the ionisation
energy of the H atom in its ground state (an amount of energy known as the Hartree).
Thus the Rydberg constant RH and the Bohr magneton µB each have a value of 1/2
in this scheme. As we discussed earlier for atoms, the task is to find a wave function
Ψelec (r, R) which minimises the energy, calculated as the expectation value of the full
Hamiltonian H. In the foundations of the theory due to Hartree, Fock and Slater, the
n electrons in a closed shell molecule are assigned to a set of n/2 molecular orbitals
ψi (i = 1, . . ., n/2) and the total wave function is written as a single configuration
Slater determinant, which we introduced for atoms in (6.36), and which we repeat for
a molecule here:

Ψ = 1

(n!)1/2

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(1)α(1) ψ1(1)β(1) ψ2(1)α(1) ψ2(1)β(1) . . . ψn/2(1)α(1) ψn/2(1)β(1)
ψ1(2)α(2) ψ1(2)β(2) ψ2(2)α(2) ψ2(2)β(2) . . . ψn/2(2)α(2) ψn/2(2)β(2)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

ψ1(n)α(n) ψ1(n)β(n) ψ2(n)α(n) ψ2(n)β(n) . . . ψn/2(n)α(n) ψn/2(n)β(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(6.106)

An important development was the introduction by Roothaan [12] and Hall [30]
of the expansion of the molecular orbitals as linear combinations of three-dimensional
one-electron functions, χµ , where µ= 1, 2, . . . , N , N > n,

ψi =
N∑
µ=1

cµiχµ. (6.107)
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The set {χµ} is referred to as the basis set, the basis functions being normally chosen
to be centred at the nuclei and to depend only on the positive charge of the nucleus.
The chosen functions may be atomic orbitals of the component atoms, but are not
necessarily so. Variation of the total energy with respect to the coefficients cµi leads to
a set of algebraic equations which can be written in matrix form:

FC = SC E. (6.108)

We now examine the elements of the matrices in (6.108). First, F is called the Fock
matrix, with elements:

Fµν = Hµν +
∑
λσ

Pλσ [(µν|λσ ) − (1/2)(µλ|νσ )]. (6.109)

In this expression, Hµν is a matrix representing the energy of a single electron in the
field of the bare nuclei. Its elements are given by, for example,

Hµν(1) =
∫
χ∗
µ(1)

{
−1

2

(
∂2

∂x2
1

+ ∂2

∂y2
1

+ ∂2

∂z2
1

)
−

∑
s=1,2

Zs

r1s

}
χν(1) dτ . (6.110)

Pλσ are the elements of a one-electron density matrix,

Pλσ = 2
n∑
i

cλi cσ i , (6.111)

where the sum is over the occupied orbitals only. Finally in (6.109), we have, for
electrons 1 and 2, the repulsion integrals,

(µν|λσ ) =
∫ ∫

χµ(1)χν(1)
1

r12
χλ(2)χσ (2) dτ1 dτ2. (6.112)

Returning to the matrix equation (6.108), the elements of the N × N overlap matrix
S are given by

Sµν =
∫
χµ(1)χν(1) dτ1. (6.113)

Finally,

Ei j = εiδi j , (6.114)

where the eigenvalues εi are the one-electron Fock energies.
The Roothaan–Hall equations are nonlinear because the Fock matrix Fµν depends

upon the orbital coefficients cµi through the density matrix expression (6.111). Solution
therefore involves an iterative process, as we discussed previously for atomic systems,
and the technique is therefore called self-consistent-field (SCF) theory.

The equations require to be modified for open-shell systems, in which some or-
bitals are doubly occupied and some singly (this is called spin-restricted Hartree–Fock
theory). A further extension to the theory involves electrons of α and β spin being
assigned to different molecular orbitals, ψα and ψβ , so that there are two sets of co-
efficients cαµi and cβµi . The corresponding Roothaan-type equations are described as
unrestricted Hartree–Fock [31].
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(iii) Atomic basis functions

Evaluation of the integrals that arise in the calculations was for some time a primary
problem in the field. A most important development in this context was the introduction
of Gaussian-type basis functions by Boys [32], who showed that all of the integrals in
SCF theory could be evaluated analytically if the radial parts of the basis functions were
of the form P(x, y, z) exp(−r2). The first ten functions are listed by Hehre, Radom,
Schleyer and Pople [33] and we repeat them here:

gs(α, r ) =
(

2α

π

)3/4

exp(−αr2), (6.115)

gx (α, r ) = N1x exp(−αr2), gy(α, r ) = N1 y exp(−αr2),

gz(α, r ) = N1z exp(−αr2) where N1 =
(

128α5

π3

)1/4

, (6.116)

gxx (α, r ) = N2x2 exp(−αr2), gyy(α, r ) = N2 y2 exp(−αr2),

gzz(α, r ) = N2z2 exp(−αr2), gxy(α, r ) = N2xy exp(−αr2),

gxz(α, r ) = N2xz exp(−αr2), gyz(α, r ) = N2 yz exp(−αr2),

where N2 =
(

2048α7

π3

)1/4

. (6.117)

The function (6.115) has the angular symmetry of an s orbital and the functions
(6.116) have the angular symmetry of p orbitals. Three of the second-order functions,
gxy, gxz, gyz , have the angular symmetry of atomic d orbitals, whilst linear combina-
tions of the other three give the remaining d orbitals and a further s orbital:

g3zz−rr = (1/2)(2gzz − gxx − gyy), gxx − gyy = (3/4)1/2(gxx − gyy),
(6.118)

grr = (5)−1/2(gxx + gyy + gzz).

Higher-order gaussians may be combined to produce f -type functions. In many cases
linear combinations of gaussians have been used as basis functions; such combinations
are known as contracted gaussians.

Many different variants in the choice of basis functions have been used in electronic
structure calculations, and computer programs developed for general use; some of these
variants are described by Pople [29]

(iv) Multiple-determinant wave functions: configuration interaction

Our earlier discussion of electronic wave functions for many-electron atoms drew at-
tention to the main inadequacy of the Hartree–Fock single determinant treatment; it
does not take account of the correlation between the motions of electrons with opposite
spins. In molecules this can even lead to qualitative deficiencies in the description of
electronic structure, such as the failure to describe dissociation correctly. For exam-
ple, the correct wave function for the singlet state of the hydrogen molecule at large
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internuclear separation,

(1/2)[1sa(1)1sb(2) + 1sb(1)1sa(2)][α(1)β(2) − β(1)α(2)], (6.119)

cannot be expressed in terms of a single determinant.
In (6.106) we gave a single-determinantal wave function for a system of n electrons;

if there are N functions ψµ , we can define 2N so-called spin-orbital basis functions
of the type ψµ(α) and ψµ(β) which may be linearly combined into 2N spin-orbitals
χi . Solution of the Hartree–Fock problem yields the single-determinant wave function,
written in abbreviated form,

Ψ0 = (n!)−1/2|χ1χ2 . . . χn|. (6.120)

The spin-orbitals appearing in (6.120) are a subset of the total set determined in the
variational calculation; the unoccupied or virtual spin-orbitals are denoted χa where
a = n + 1, n + 2, . . . , 2N .

The convention is to denote occupied spin-orbitals by the subscripts i , j , k, . . .
and virtual or unoccupied spin-orbitals by subscripts a, b, c, . . . . Further determinantal
wave functions can now be written down by replacing one or more of the occupied spin-
orbitalsχi ,χ j , which appear in the Hartree–Fock function#0 above (6.120), by virtual
spin-orbitals χa , χb, . . . . These determinants may be classified as single-substitution
functions, Ψa

i , if χi is replaced by χa , double-substitution functions, Ψab
i j , in which χi

is replaced by χa and χ j by χb, and so on. The general substitution determinant may
be written Ψabc ...

i jk ... where i < j < k . . . and a< b< c . . . , a series which can continue
until all occupied spin-orbitals are replaced by virtual spin-orbitals. A general multi-
determinant wave function can then be written as

Ψ = a0Ψ0 +
∑

ia

aa
i Ψ

a
i +

∑
i jab

aab
i j Ψab

i j + · · · . (6.121)

This series could be continued to include all possible substituted determinants, in which
case it would correspond to a full configuration interaction wave function,

Ψ= a0Ψ0 +
∑
s>0

asΨs, (6.122)

the summation being over all substituted determinants. The unknown coefficients as

are determined by the usual variation method, leading to the result∑
s

(Hst − Eiδst )asi = 0, (6.123)

where t = 0, 1, 2, . . . . Hst is now a configurational matrix element

Hst =
∫

· · ·
∫

Ψs HΨt dτ1 dτ2 . . . dτn. (6.124)

Equations (6.123) are similar to the Roothaan–Hall equations used to obtain the
Hartree–Fock energy. A full configuration interaction treatment is feasible only for
the simplest molecular systems, and therefore much effort has been expended on es-
tablishing the best ways to achieve the optimum limited configuration interaction. One
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method of choosing the configurations that has been widely employed is known as
CASSCF (complete active space SCF); a helpful review of this and other methods,
particularly for open shell systems, has been provided by Bally and Borden [34]. It
should also be pointed out that some of the most acute computational problems do not
arise for diatomic molecules.

Three other approaches towards the problem of incorporating electron correlation
should be mentioned. The first is Moeller–Plesset perturbation theory, a method first
introduced in 1934 by Moeller and Plesset [35]. Suppose that a perturbed Hamiltonian
is defined by

H(λ) = F0 + λ{H − F0}, (6.125)

where F0 is the Fock Hamiltonian for which the single determinants in (6.122) are
exact eigenfunctions. If λ= 0 then #0 is the eigenfunction, but if λ= 1 the exact full
configuration interaction wave function in (6.122) is obtained. The computed energy
is expanded in powers of λ,

E(λ) = E0 + λE1 + λ2 E2 + λ3 E3 + · · · , (6.126)

the series cut off at some point, and λ then set equal to 1. This perturbation method is
denoted by MPn if it is terminated at order n. The MP1 energy is therefore E0 + E1,
identical to the Hartree–Fock value. MP2 and MP3 incorporate the effects of double
substitutions, as described above, MP4 includes all singles and doubles, with some
triples and quadruple substitutions also [36, 37].

The second general approach to correlation theory, also based on perturbation
theory, is the coupled-cluster method, which can be thought of as an infinite-order
perturbation method. The coupled-cluster wave function ΨCC is expressed as a power
series,

ΨCC = exp(T )Ψ0 =
(

1 + T + 1

2!
T 2 + 1

3!
T 3 + · · ·

)
Ψ0. (6.127)

The exponential operator T creates excitations from #0 according to T =
T1 + T2 + T3 + · · · , where the subscript indicates the excitation level (single, dou-
ble, triple, etc.). This excitation level can be truncated. If excitations up to TN (where
N is the number of electrons) were included, ΨCC would become equivalent to the full
configuration interaction wave function. One does not normally approach this limit,
but higher excitations are included at lower levels of coupled-cluster calculations, so
that convergence towards the full CI limit is faster than for MP calculations.

The third and final approach to the electron correlation problem included briefly
here is density functional theory (DFT), a review of which has been given by Kohn
in his Nobel lecture [38]. The Hohenberg–Kohn theorem [39] states that there is a
one-to-one mapping between the potential V (r ) in which the electrons in a molecule
move, the associated electron density ρ(r ), and the ground state wave function #0. A
consequence of this is that given the density ρ(r ), the potential and wave function #0

are functionals of that density. An additional theorem provided by Kohn and Sham [40]
states that it is possible to construct an auxiliary reference system of non-interacting
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electrons that has exactly the same electron density ρ(r ) as that of the real system of
interacting electrons. There must therefore be an associated potential Vn(r ) in which
the non-interacting electrons move, with a wave function #n, which gives the same
electron density as that in the real system.#n can be formulated as a Slater determinant;
the molecular orbitals in the determinant may be described as linear combinations of
atomic orbitals. In both DFT and Hartree–Fock calculations one iteratively solves for a
set of orbitals so that the associated density minimises the energy. There are, however,
important differences between the two methods in their respective treatments of electron
exchange and correlation [41].

Many of the objectives that exercise ab initio theorists do not exist for diatomic
molecules. These objectives for polyatomic systems include obvious aspects like molec-
ular geometry, chemical reaction mechanisms of formation and destruction, thermo-
chemistry, transition states, etc. In diatomic molecules the main thrust of the spectro-
scopic studies is to provide very detailed and accurate information about the electronic
wave function. In the past this information has related primarily to electronic ground
states, but an increasing amount of complementary information about excited states
is now being obtained. Furthermore the development of techniques that have the sen-
sitivity required to probe much heavier molecules means that problems arising from
the close proximity of several electronic states are often encountered. Molecules in
which electronic and vibrational energy spacings are similar in magnitude are also be-
ing studied, and formidable problems of spectroscopic assignment arise. The interplay
of experiment and ab initio calculations which have sufficient accuracy is likely to
become increasingly important in the future.

6.6. Corrections to Born–Oppenheimer calculations for H+
2 and H2

It is a fortunate fact that, for the vast majority of molecules and their electronic states,
the Born–Oppenheimer approximation is so good as to be adopted implicitly without
further consideration. If it were not so, almost all of the guiding rules and principles
which we take for granted would be invalid. In polyatomic molecules there are certain
special cases involving electronic degeneracy when the Born–Oppenheimer approxi-
mation collapses. Naturally these special cases have attracted a great deal of interest;
there are many papers which discuss the Jahn–Teller effect in polyatomic molecules of
high symmetry, or the Renner–Teller effect in linear molecules. In diatomic molecules
breakdown of the Born–Oppenheimer approximation is, in most cases, much less spec-
tacular and its effects on the energy levels much smaller. Nevertheless, because the
Born–Oppenheimer approximation is so central to an understanding of the energy lev-
els and spectra even of diatomic molecules, it is important to understand the range and
nature of its validity.

Much of the detailed attention paid to calculations beyond the Born–Oppenheimer
limit has applied to one- and two-electron molecules; the literature up to 1980 was
reviewed by Bishop and Cheung [42], and for the hydrogen molecular ion more recent
summaries have been given by Carrington and Kennedy [43], Carrington, McNab and



220 Electronic and vibrational states

Montgomerie [44] and Leach and Moss [45]. We will make use of the analyses given in
these reviews. Not surprisingly, the most accurate treatments have been for one-electron
molecules, the principal example being H+

2 and its isotopomers. Spectacular breakdown
of the Born–Oppenheimer approximation in diatomic molecules is observed for the
HD+ ion, which we will describe in some detail.

As we have mentioned before, the complete non-relativistic Hamiltonian for a
system of point charges interacting electrostatically and moving through field-free
space can be written in the form

H =
∑

i

−h2∇2
i

2mi
+

∑
i

∑
j>i

zi z j e2

4πε0ri j
. (6.128)

The motion of the centre-of-mass of the particles is separated out by applying the
transformation


 r g

R
Rcm


 =




− 1
2 − 1

2 1

−1 1 0
m1
M

m2
M

me

M





 r1

r2

r e


 , (6.129)

where M = m1 + m2 + me. The coordinate systems are illustrated in figure 6.12; r1, r2

and re are the position vectors of the three particles relative to an arbitrary space-fixed
origin O. The new basis vectors are the internuclear vector (R = r2 − r1), the position
vector Rcm of the centre-of-mass of the system, CM, relative to the space-fixed origin,
and the position vector of the electron rg relative to the geometric centre of the nuclei
G. Applying the transformation to the Hamiltonian (6.128), converting to atomic units,
and removing the translational term describing the motion of the centre-of-mass we

electron

cm

1e

2e

e

g

1

2

Figure 6.12. Coordinate system for the hydrogen molecular ion. O is the arbitrary space-fixed
origin, CM is the centre-of-mass of the system, and G is the geometric centre of the nuclei. This
diagram, although similar to figure 2.1, differs in some important aspects.
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obtain the new Hamiltonian

H = −∇2
g

2
− ∇2

R

2µ
− ∇2

g

8µ
− ∇g · ∇R

2µa
+ 1

R
− 1

r1e
− 1

r2e
. (6.130)

Here µ is given by 1/µ= (1/m1) + (1/m2) and 1/µa = (1/m1) − (1/m2); conse-
quently 1/µa is zero for the homonuclear case.

Equation (6.130), which we will call the complete non-relativistic Hamiltonian,
contains terms which couple the electronic and nuclear motions, making it impossible
to obtain exact eigenfunctions and eigenvalues. This is where the Born–Oppenheimer
approximation enters, in a method suggested by Born and Huang [46]. We choose to
expand the complete molecular wave function as the series

ψmol(R, r g) =
∑

t

Ft (R)φt (R, r g), (6.131)

where the φt (R, r g) are the exact solutions of the electronic Born–Oppenheimer equa-
tion for the hydrogen molecular ion

(
−∇2

g

2
− 1

r1e
− 1

r2e
+ 1

R

)
φt (R, r g) = Et (R)φt (R, r g). (6.132)

The Born–Oppenheimer electronic Hamiltonian was given previously in (6.77) and a
method of obtaining exact solutions is described in appendix 6.1. If the Born expansion
(6.131) is substituted into the complete non-relativistic Schrödinger equation, using the
Hamiltonian (6.130), we obtain a set of coupled differential equations for the functions
Ft (R), which are

H

∑
t

Ft (R)φt (R, r g) = E
∑

t

Ft (R)φt (R, r g). (6.133)

We now premultiply by φ∗
s (R, r g) and integrate over the electronic coordinates rg to

obtain

Es(R)Fs(R) +
∫
φ∗

s (R, r g)

[
−∇2

R

2µ
− ∇2

g

8µ
− ∇g · ∇R

2µa

]
Fs(R)φs(R, r g) drg

+
∑
t 
=s

∫
φ∗

s (R, r g)

[
−∇2

R

2µ
− ∇2

g

8µ
− ∇g · ∇R

2µa

]
Ft (R)φt (R, r g) dr g = E Fs(R).

(6.134)

Fortunately we are able to simplify this expression somewhat by using symmetry ar-
guments. The functions φ∗

s (R, r g) must be either symmetric or antisymmetric with
respect to exchange of nuclei, and electron inversion through the geometric centre of
the nuclei. The operator ∇R is antisymmetric with respect to nuclear permutation, while
∇g is antisymmetric under electron inversion. Consequently by symmetry we have the
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results ∫
φ∗

s (R, r g)∇Rφs(R, r g) dr g = 0,∫
φ∗

s (R, r g)∇gφs(R, r g) dr g = 0, (6.135)∫
φ∗

s (R, r g)∇g · ∇Rφs(R, r g) dr g = 0.

Consequently equation (6.134) is simplified to the following:{
Es(R) − ∇2

R

2µ
−

∫
φ∗

s (R, r g)

[
∇2

g

8µ
+ ∇2

R

2µ

]
φs(R, r g) dr g

}
Fs(R)

+
∑
t 
=s

{∫
φ∗

s (R, r g)

[
−∇2

g

8µ
− ∇2

R

2µ
− ∇g · ∇R

2µa

]
φt (R, r g) dr g

+
∫
φ∗

s (R, r g)

[
−∇R

µ
− ∇g

2µa

]
φt (R, r g) dr g · ∇R

}
Ft (R) = E Fs(R). (6.136)

If all terms in (6.136) coupling the electronic and nuclear motions are neglected,
we obtain the Born–Oppenheimer equation for nuclear motion:{

Es(R) − (∇2
R

/
2µ

)}
F BO

s (R) = E BO F BO
s (R). (6.137)

The next level of approximation is to retain the terms in (6.136) which couple the
electronic and nuclear motion, but which are diagonal in the electronic state. This is
known as the adiabatic approximation, and at this level, equation (6.136) becomes{

Es(R)−
∫
φ∗

s (R,r g)
∇2

g

8µ
φs(R,r g) dr g −

∫
φ∗

s (R,r g)
∇2

R

2µ
φs(R,r g) dr g − ∇2

R

2µ

}
FAD

s (R)

= EAD FAD
s (R). (6.138)

The result of the approximation is that the nuclear motion is now governed by an
effective potential

Es(R) −
∫
φ∗

s (R, r g)
∇2

g

8µ
φs(R, r g) dr g −

∫
φ∗

s (R, r g)
∇2

R

2µ
φs(R, r g) dr g, (6.139)

which is obtained by averaging the complete Hamiltonian (6.130) over the Born–
Oppenheimer electronic wave functionφs(R, r g). This effective potential is now isotope
dependent because of the presence of µ, whereas the Born–Oppenheimer potential
Es(R) is isotope independent. The electronic and nuclear motions are still effectively
separated, but the inclusion of the diagonal corrections increases the accuracy. Provided
there are no close-lying electronic states which can be coupled non-adiabatically to the
state of interest, the adiabatic approximation gives an accurate potential. This is true
for H+

2 , but it is not true for HD+ where, as we will see, the ∇g · ∇R/2µa term in
equation (6.136) leads to strong coupling of the ground and first excited electronic
states, particularly for levels close to the dissociation limit.
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Table 6.6. Born–Oppenheimer potential energies (with respect to
dissociation at zero) and adiabatic corrections (all in cm−1) for the H+

2

molecular ion

R(a0) B–O energy ∇2
R correction ∇2

g correction

1.0 10 581.681 21.738 58.138

2.0 −22 525.607 20.893 35.983

3.0 −17 023.081 21.914 28.382

4.0 −10 114.463 24.178 26.185

5.0 −5359.635 26.551 26.387

6.0 −2626.902 28.233 27.414

7.0 −1227.742 29.135 28.406

8.0 −564.135 29.548 29.083

9.0 −262.372 29.728 29.472

10.0 −127.016 29.806 29.677

The adiabatic corrections for H+
2 were calculated by Bishop and Wetmore [47]

and an abbreviated selection of their results is given in table 6.6; the third and fourth
columns of this table give the corrections due to the third and second terms respectively
in (6.139). Notice that the corrections are remarkably insensitive to the value of the
internuclear distance R.

Finally we come to the terms in equation (6.136) which result in the mixing of
different electronic states, the so-called non-adiabatic terms. Of these terms, the most
important, which only arises in the heteronuclear molecule, HD+, is that involving the
operator product ∇g · ∇R/2µa . The non-adiabatic couplings in H+

2 were treated using
variational methods by Bishop and Cheung [48] and Bishop and Solunac [49], but
only the lowest vibrational levels of the ground state could be treated adequately. A
different approach, which was designed particularly for the HD+ ion, was developed
by Carrington and Kennedy [50]. The problem with HD+ is that the two dissociation
limits, H+ + D and H + D+ are not degenerate, but differ in energy by 29.84 cm−1;
this difference can be attributed to the dissimilar electron reduced masses (and hence
ionisation energies) of the hydrogen and deuterium atoms. The ground 1sσ and excited
2pσ electronic states cannot be associated uniquely with either of the two dissociation
limits, and it is not possible to draw potential energy curves. Carrington and Kennedy
[50] formed suitably asymmetric electronic wave functions for the two electronic states
by considering normalised linear combinations of the 1sσg (φ1) and 2pσu(φ2) adiabatic
states,

Φ1sσ = aφ1 + bφ2, Φ2pσ = bφ1 − aφ2. (6.140)

We note that the g and u labels are not strict symmetry labels for HD+. The adiabatic
states are mixed by the operator which couples nuclear and electronic motion in the
Hamiltonian (−∇g · ∇R/2µa), and the electronic Hamiltonian matrix for the two states
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is decomposed according to

H(R) =
(

EAD
1sσ (R) H (R)

H (R) EAD
2pσ (R)

)
+

(
0 A(R)

−A(R) 0

)
, (6.141)

where

H (R) = 1

2

{∫
φ∗

1sσHφ2pσ dr g +
∫
φ∗

2pσHφ1sσ dr g

}
,

(6.142)

A(R) = 1

2

{∫
φ∗

1sσHφ2pσ dr g −
∫
φ∗

2pσHφ1sσ dr g

}
.

H is the complete non-relativistic Hamiltonian given in (6.130). The Hermitian matrix
in (6.141) is diagonalised to obtain the coefficients in the wave functions (6.140) and
effective potential curves for the coupled states using these wave functions as a function
of R.

Other methods of treating the HD+ ion have been developed by Moss and Sadler
[51] and relativistic [52] and radiative [53] corrections have also been calculated. These
are small, but still significant in comparison with the accuracy of the experimental
data. We should also note that the other one-electron molecule to have been studied
theoretically [54] is HeH2+; although the ground state is predicted to be repulsive,
some excited states are calculated to have potential minima. No spectroscopic studies
of this molecular ion have been described.

Adiabatic corrections for H2 were first calculated by Kolos and Wolniewicz [27],
and much later confirmed by Bishop and Cheung [55]. The best potential curves for H2

and D2, incorporating both adiabatic and relativistic corrections, have been tabulated
by Bishop and Shih [56]. Bishop and Cheung [55] have also carried out non-adiabatic
calculations for H2, the energy of the lowest level being lowered by 0.42 cm−1 compared
with the adiabatic value. A small number of calculations for excited states have also
been reported.

Formidable problems arise for many-electron molecules, and the non-adiabatic
effects will, in general, be smaller for molecules with heavier atoms.

6.7. Coupling of electronic and rotational motion: Hund's
coupling cases

6.7.1. Introduction

We have already seen in chapter 5 the importance of angular momenta in diatomic
molecules. We now consider the various ways in which these angular momenta can be
coupled in diatomic molecules, giving rise to Hund’s coupling cases [57]. As we will
see many times elsewhere in this book, Hund’s coupling cases are idealised situations
which help us to understand the pattern of rotational levels and the resulting spectra.
They are also central to the theory underlying the quantitative analysis of spectra and
the consequent definition and determination of molecular parameters.
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The angular momenta which are involved are as follows:

L – the electronic orbital angular momentum,
S – the electronic spin angular momentum,
J – the total angular momentum,
N – the total angular momentum excluding electron spin, so that N = J – S,
R – the rotational angular momentum of the nuclei, so that R = N – L.

In addition there will often be nuclear spin angular momentum (I), which is coupled
to the electronic orbital and spin angular momenta; these coupling cases are described
in section 6.7.8.

6.7.2. Hund’s coupling case (a)

In Hund’s case (a), illustrated in the vector diagram shown in figure 6.13, the orbital
angular momentum L is strongly coupled to the internuclear axis by electrostatic forces;
the electron spin angular momentum in turn is strongly coupled to L through spin–orbit
coupling. The axial components of L and S are well defined and are denoted Λ and
Σ; their sum is denoted Ω, i.e. Ω=Λ+�. The angular momentum of the rotating
nuclei is R; this is coupled to a vector Ω pointing along the axis to form the resulting
total angular momentum J. The precession of L and S about the internuclear axis is
presumed to be much faster than the nutation of Ω and R about J.

The precessions of L and S about the internuclear axis have two equal and opposite
senses, so that the projections also have magnitudes ±Λ, ±Σ. Consequently the total

W

SL

Figure 6.13. Vector coupling diagram for Hund’s case (a).



226 Electronic and vibrational states

Table 6.7. Hund’s coupling cases

Coupling case Good quantum numbers Requirements

(a) η,Λ, S,Σ, J ,Ω AΛ� B J

(b) η,Λ, N , S, J AΛ� B J

(c) η, (Ja),Ω, J AΛ��Eel

(d) η, L , R, N , S, J B J ��Eel

(e) η, Ja , R, J AΛ� B J ��Eel

projection of electronic angular momentum also has two senses, ±Ω. The two-fold
degeneracy inΛ is calledΛ-doubling, and that inΩ is calledΩ-doubling; we will see
elsewhere how the molecular rotation can remove this degeneracy.

The various Hund’s coupling cases can be defined more rigorously in terms of their
good quantum numbers (see table 6.7). Thus case (a) wave functions may be written in
ket notation as |η,Λ; S,Σ; J,Ω,MJ 〉. The symbol η here denotes all other quantum
numbers not expressed explicitly, for example, electronic and vibrational. MJ is the
component of J in a space-fixed Z direction, and is important when we discuss the
effects of external magnetic or electric fields. It should be appreciated that Hund’s case
(a) is a decoupled basis set, that is, L and S are decoupled along the internuclear axis.
The operator describing the rotational energy in Hund’s case (a) notation is given by

Hrot = B R2 = B[J − L − S]2. (6.143)

B is called the rotational constant, and will be discussed in detail later; the operator
form of the rotational energy in (6.143) has profound consequences, as we shall see.

Case (a) is a good representation whenever AΛ is much greater than BJ, A being
the spin-orbit coupling constant. In a good case (a) system there are 2S + 1 fine-
structure states, characterised by their Ω values, with spin-orbit energies AΛΣ. Each
fine-structure state has a pattern of rotational levels, with relative energies BJ(J + 1),
the lowest rotational level having J =Ω. As J increases, case (a) becomes less appro-
priate; we will see why in due course.

6.7.3. Hund’s coupling case (b)

When Λ= 0 and S 
= 0 the spin vector S is no longer coupled to the internuclear axis
because spin-orbit coupling vanishes in this case. ConsequentlyΩ is not defined. Even
in some very light molecules withΛ 
= 0, the coupling of the spin to the internuclear axis
is so weak that case (a) coupling does not apply. Hund’s case (b) may then be appropriate,
and the corresponding vector coupling diagram is shown in figure 6.14. Once again,
L precesses very rapidly about the internuclear axis with a well-defined component,
Λ. Λ is coupled to R to form N; N is then coupled with S to form the total angular
momentum J. Basis functions in this coupling scheme are written |η,Λ; N , S, J,MJ 〉
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L

Figure 6.14. Vector coupling diagram for Hund’s case (b).

(see table 6.7). The projection of N on the internuclear axis isΛ. In the older literature,
the symbol K is used rather than N.

The operator which describes the rotational kinetic energy in Hund’s case (b)
notation is

Hrot = B R2 = B[N − L]2, (6.144)

so that the rotational levels have energies B N (N + 1), with the lowest N level having
N =Λ. If S = 1/2, each N level for N ≥ 1 is then split into a doublet by the spin–
rotation interaction, represented in the effective Hamiltonian by a term γN · S; the
resulting levels are characterised by values of the total angular momentum J . The
series which has J = N + 1/2 is called the F1(J ) series, whilst that with J = N − 1/2
is the F2(J ) series. If S ≥ 1 there is still a spin–rotation splitting but the pattern of levels
is more complicated, as we will see elsewhere.

The operator form for the rotational kinetic energy, given in (6.144), can be ex-
panded to give

Hrot = B[N − L]2 = B[N2 + L2 − 2N · L] = B[N (N + 1) + L2 − 2N · L]. (6.145)

The second and third terms in (6.145) have no effect within a case (b) state, but do have
non-zero matrix elements between different electronic states.

Cases (a) and (b) are the most widely observed for diatomic molecules; most
molecules, indeed, conform to coupling which is intermediate between cases (a) and
(b). We will discuss the nature and origin of this intermediate coupling in due course,
but first deal with three other limiting coupling cases which can be important in certain
specific situations.
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W

Figure 6.15. Vector coupling diagram for Hund’s case (c).

6.7.4. Hund’s coupling case (c)

In some cases the coupling between L and S may be stronger than the interaction
with the internuclear axis; this situation can arise in heavy molecules. In this case the
projections Λ and Σ are not defined; instead L and S first couple to form a resultant
Ja , which then precesses rapidly about the internuclear axis with a component Ω.
The nuclear rotational angular momentum now adds vectorially to Ω to form the
total angular momentum J. The vector diagram illustrating case (c) coupling is given
in figure 6.15. Case (c) basis functions are specified in the form |η, Ja, J,Ω,MJ 〉;
different electronic states are characterised by different values of Ω. The component
of total angular momentum along the internuclear axis is also Ω. If Ω= 0 the states
are non-degenerate, but forΩ 
= 0 we have states which would be degenerate for a non-
rotating molecule. This degeneracy is removed by rotation, and is called Ω-doubling.
The rotational levels have relative energies B J (J + 1), just as in case (a).

A particularly clear example of Hund’s case (c) coupling has been observed for
the HeAr+ ion in its near-dissociation vibration–rotation levels [58]; it also occurs for
the I2 molecule [59].

6.7.5. Hund’s coupling case (d)

In Hund’s case (d) the coupling between L and the nuclear rotation R is much stronger
than that between L and the internuclear axis. As shown in figure 6.16, the result of the
coupling between L and R is N, which can be further coupled with S in suitable open
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Figure 6.16. Vector coupling diagram for Hund’s case (d).

Figure 6.17. Vector coupling diagram for Hund’s case (e).

shell systems. The value of N is given by

N = (R + L), (R + L − 1), (R + L − 2), . . . , |R − L|, (6.146)

so that there are 2L + 1 different N values for each R, except when R< L . The rota-
tional energy in case (d) is given by

Erot = B R(R + 1), (6.147)

each level being then further split into 2L + 1 components. Hund’s case (d) coupling
is an appropriate description for the electronic states of many Rydberg molecules,
where the Rydberg electron interacts only very weakly with the molecular core. We
will discuss the transition from case (b) to case (d) coupling in section 6.7.7.

6.7.6. Hund’s coupling case (e)

Although not identified by Hund, a fifth vector coupling case is possible, which we
will call Hund’s case (e); it is described in the vector coupling diagram shown in
figure 6.17. L and S are strongly coupled to each other, to form a resultant Ja . However,
the interaction of L and S with the internuclear axis is very weak; their resultant Ja is
combined with the nuclear rotation R to form the total angular momentum J. Different
J components of the rotational levels arise, since for given values of Ja and R,

J = R + Ja, R + Ja − 1, R + Ja − 2, . . . , |R − Ja|. (6.148)
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Notice that in both case (d) and case (e) there is no molecular projection quantum
number. An example of case (e) coupling, probably the first, has been observed [60]
for vibration–rotation levels of the HeKr+ ion which lie very close to the dissociation
limit. The Kr+ atomic ion has L = 1 and S = 1/2, so that Ja is 3/2 or 1/2, and the
spin–orbit interaction is strong. When a very weak bond is formed with a He atom, Ja

remains a good quantum number, at least for the most weakly bound levels, but there
are nevertheless series of rotation levels, with rotational energy B R(R + 1). The details
are described in chapter 10, where we show that case (e) coupling is identified, both
by the observed pattern of the rotational levels, and by the measured Zeeman effects
and effective g factors for individual rotational levels.

6.7.7. Intermediate coupling

As Lefebvre-Brion and Field [61] point out, the only coupling cases for which the
electronic and nuclear motions can be separated are cases (a) and (c); consequently only
in these cases can potential curves be defined unambiguously and accurately. However,
as we have already pointed out, Hund’s coupling cases are idealised descriptions and for
most molecules the actual coupling corresponds to an intermediate situation. Moreover,
the best description of the vector coupling often changes as the molecular rotation
increases. In this section we consider the nature of the intermediate coupling schemes
in more detail; some of these will appear elsewhere in this book in connection with the
observed spectra of specific molecules.

The general procedure for analysing a spectrum, particularly one which involves
the fine and hyperfine structure of rotational levels, is to choose a convenient Hund’s
case basis set for defining the effective Hamiltonian, and for calculating its matrix
elements and eigenvalues. Whilst, in a sense, the choice of basis may be irrelevant, it
always makes both physical and analytical sense to choose, if possible, the basis which
most nearly diagonalises the effective Hamiltonian. Amongst other things, this points
to the most appropriate quantum numbers to use to label the eigenstates. It is, however,
always possible to express the basis functions of one Hund’s coupling case in terms
of those of another. For example, case (b) basis functions can be expressed as linear
combinations of case (a) functions, by using Wigner 3- jsymbols:

|η,Λ; N , S, J 〉 =
+S∑

Σ=−S

(−1)J−S+Λ(2N + 1)1/2

(
J S N
Ω −Σ −Λ

)
|η,Λ; S,Σ; J,Ω〉.

(6.149)

In many instances in this book we shall discuss the transition from one Hund’s
coupling case to another, in connection with the spectra of specific molecules. We now
summarise a particularly common example, the transition from case (a) to case (b). This
is probably the most frequently encountered example; it is discussed in considerable
detail in chapter 9 so we will confine ourselves to a brief outline here. Figure 6.18, which
reappears in chapter 9 in our description of the NO molecule, shows the correlation
between case (a) levels on the left-hand side, and case (b) on the right-hand side.
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Figure 6.18. Transition from case (a) to case (b) for the rotational levels of a regular 2� state.

For NO the 2�1/2 fine structure component lies lower than the 2�3/2; this is called
a ‘regular’ 2� state. Each level in figure 6.18 is actually doubly-degenerate, because
of the Λ-doubling, which is indeed resolved in the rotational spectrum of NO. The
transition from case (a) to case (b) coupling, which is also called spin-decoupling,
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can be understood by considering the rotational kinetic energy term in the effective
Hamiltonian, equation (6.143), which may be expanded in a molecule-fixed coordinate
system (q), in spherical tensor form, as follows:

B{T1(J) − T1(L) − T1(S)}2

= B

{
J (J + 1) + S(S + 1) + 2

∑
q

(−1)q
[
T1

q (L)T1
−q (S) + (1/2)T1

q (L)T1
−q (L)

]}

− 2B
∑

q

{
T1

q (J)T1
q (S) + T1

q (J)T1
q (L)

}
. (6.150)

The important term in this equation so far as the transition towards case (b) coupling is
concerned is the penultimate term, which in a case (a) basis has matrix elements given by

〈η,Λ; S,Σ; J,Ω| − 2B
∑

q

T 1
q (J)T 1

q (S)|η,Λ; S,Σ′; J,Ω′〉

= − 2B
∑

q

(−1)J+S−Ω−Σ
(

J 1 J
−Ω q Ω′

)(
S 1 S
−Σ q Σ′

)

× {J (J + 1)(2J + 1)S(S + 1)(2S + 1)}1/2. (6.151)

The q = ±1 terms link the fine structure states; the importance of this mixing is
maximised when the separation between the fine-structure states is small (i.e. small
spin–orbit splitting), and when the rotational constant B is large. Consequently
molecules like ClO, BrO and IO are good case (a) 2� systems, whereas CH obeys case
(b) coupling, even in its lowest rotational levels. The OH radical approximates more
closely to case (a) in its lowest rotational levels, but goes over to case (b) as the rotational
quantum number increases. As we mentioned above, the transition from case (a) to case
(b) is discussed in detail in chapter 9; it is not, of course, confined to 2� molecules.

6.7.8. Nuclear spin coupling cases

In chapter 4 we described the theory of magnetic and electric nuclear hyperfine in-
teractions in diatomic molecules, and we will encounter many examples of observed
hyperfine structure elsewhere in this book. In the analysis of such structure we will
choose an appropriate form of the effective hyperfine Hamiltonian, as well as a basis
set which describes the coupling of the nuclear spin angular momentum with other
angular momenta in a molecule. The best coupling scheme in any particular molecule
is usually fairly self-evident, and in this subsection we outline possible schemes as-
sociated with case (a) or case (b) coupling of the electron spin, orbital, and rotational
angular momenta. The first person to present these coupling schemes in a systematic
manner seems to have been Dunn [62].

In case (a) coupling two main possibilities arise. The first, which is expected to
arise very rarely, if at all, implies that the magnetic interaction of the nuclear spin
magnetic moment with the electronic orbital and spin moments is sufficiently strong to
force the nuclear spin to be quantised in the molecular axis system. The basis kets may
be expressed in the form |η,Λ; S,Σ,Λ,Ω;Ω, Iz,Ω

′;Ω′, N , J 〉; this scheme is known
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as case (aα) and we will not discuss it further. The most common situation, described
as case (aβ), is a straightforward extension of Hund’s case (a) in which the nuclear spin
angular momentum I is coupled to J to form a grand total angular momentum, F. The
basis kets are therefore expressed in the form |η,Λ; S,Σ,Λ,Ω; J, I, F〉 and we will
encounter many examples in which the matrix elements of the hyperfine Hamiltonian
are calculated in this basis.

When the coupling of the angular momenta, exclusive of nuclear spin, is described
by Hund’s case (b), three ways of including the nuclear spin may be considered. In the
first, known as case (bβN ), the nuclear spin I is coupled to N, forming an intermediate
F1 which is then coupled with S to form F. The corresponding basis kets take the form
|η,Λ; N ,Λ, I, F1; F1, S, F〉, but they are unlikely to be used because the coupling of
S to N is invariably much stronger than that between I and N.

In the second scheme to be considered, labelled case (bβS), S and I are coupled
to form an intermediate G, which is then coupled with N to form F. This scheme is
appropriate when the hyperfine interaction between S and I is strong compared with
spin–rotation coupling, and we will meet it elsewhere, most notably in the H+

2 ion. The
basis kets are written in the form |η,Λ; S, I,G; G, N , F〉 and the hyperfine matrix
elements is this basis are calculated in later chapters. The most natural extension of
Hund’s case (b), known as case (bβ J ), is that in which J, the resultant of N and S coupling,
is coupled with I to form F. The corresponding basis kets are |η,Λ; N , S, J ; J, I, F〉
and we will often meet matrix elements calculated in this basis.

6.8. Rotations and vibrations of the diatomic molecule

6.8.1. The rigid rotor

In chapter 2 we showed how the wave equation of a vibrating rotator was derived
through a series of coordinate transformations. We discussed the solutions of this wave
equation in section 2.8, and the particular problem of representing the potential in which
the nuclei move. We outlined the relatively simple solutions obtained for a harmonic
oscillator, the corrections which are introduced to take account of anharmonicity, and
derived an expression for the rovibrational energies. Our treatment was relatively brief,
so we now return to this subject in rather more detail.

It is instructive to start with the simplest possible model of a rotating diatomic
molecule, the so-called dumbbell model, as illustrated in figure 6.19. The two atoms,
of masses m1 and m2, are regarded as point-like, and are fastened a distance R apart

1

1

2

2

Figure 6.19. The rigid dumbbell model of a diatomic molecule.
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to the ends of a rigid weightless rod. In classical mechanics the energy of rotation Erot

of this body is given by

Erot = (1/2)Iω2, (6.152)

where ω is the angular velocity of the rotation (about the centre of mass), related to the
frequency of rotation νrot by ω= 2πνrot. I is the moment of inertia, defined by

I = m1 R2
1 + m2 R2

2, (6.153)

where R1 and R2, the distances of the masses m1 and m2 from the centre-of-gravity
(CG), are given by

R1 = m2

m1 + m2
R, R2 = m1

m1 + m2
R. (6.154)

Substitution for R1 and R2 in equation (6.153) gives an important result for the moment
of inertia,

I = m1m2

m1 + m2
R2 = µR2. (6.155)

Here µ is called the reduced mass of the molecule, and the above analysis shows that
this simple system is actually equivalent to the rotation of a single point of mass µ at
a fixed distance R from the axis of rotation; such a system is called a rigid rotor (or
rotator).

This result leads us naturally into a quantum mechanical description of the system
because, for the wave motion of a single point of mass µ, the Schrödinger equation is

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
+ 2µ

h2
Eψ = 0. (6.156)

The standard transformation of the Laplacian from cartesian coordinates to polar co-
ordinates leads to the following Hamiltonian, derived previously in chapter 2:

H = − h2

2µR2

∂

∂R

(
R2 ∂

∂R

)
− h2

2µR2 sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ ∂2

∂φ2

]
. (6.157)

Two points should be made about this expression. First it has exactly the same form as
that introduced in our discussion of the hydrogen atom, equation (6.7). Second, for the
rigid rotor the first term in (6.157) disappears, and the Schrödinger equation becomes

− h2

2µR2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
ψ(θ, φ) = Eψ(θ, φ), (6.158)

which may be rewritten in the form

h2

2µR2
J2ψ(θ, φ) = Eψ(θ, φ), (6.159)

where J is the (dimensionless) rotational angular momentum. We have already shown
that µR2 is the moment of inertia, I , for the two-body system, and the angular eigen-
functions ψ(θ , φ) are spherical harmonics. We have, therefore, obtained the solutions
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of the rotational Schrödinger equation for a linear molecule,

h2 J2

2I
YJ M (θ, φ) = h2

2I
J (J + 1)YJ M (θ, φ). (6.160)

The rotational constant, B, in frequency units (Hz), is given by

B = 1

h

h2

2I
. (6.161)

Substituting this expression, the rotational term value (in Hz) is given by

F(J ) = B J (J + 1), (6.162)

In practice values of B are also often quoted in cm−1. For the simple rigid rotor the
rotational quantum number J takes integral values, J = 0, 1, 2, etc. The rotational
energy levels therefore have energies 0, 2B, 6B, 12B, etc. Elsewhere in this book we
will describe the theory of electric dipole transition probabilities and will show that
for a diatomic molecule possessing a permanent electric dipole moment, transitions
between the rotational levels obey the simple selection rule �J = ±1. The rotational
spectrum of the simple rigid rotor therefore consists of a series of equidistant absorption
lines with frequencies 2B, 4B, 6B, etc.

6.8.2. The harmonic oscillator

The next stage in our development of the internal dynamics of a diatomic molecule is
to recognise that the molecule is not rigid. The atoms with point masses m1 and m2 are
at distances R1 and R2 from the centre-of-mass at any given instant, but actually move
with respect to each other, with displacements from each equilibrium position given
by

q1 = R1 − R1e, q2 = R2 − R2e. (6.163)

The simplest definition of the vibrational coordinate, q, for a diatomic molecule is, in
fact,

q = R − Re, (6.164)

where R and Re are the instantaneous and equilibrium bond lengths respectively. The
condition for the centre-of-mass requires that

m1 R1 = m2 R2 or m1q1 = m2q2, (6.165)

and the total displacement (q1 + q2) is the vibrational coordinate q . It follows that

q1 = m2q

(m1 + m2)
, q2 = m1q

(m1 + m2)
. (6.166)

The kinetic energy is given by

k.e.= (1/2)m1v2
1 + (1/2)m2v2

2, (6.167)



236 Electronic and vibrational states

and since the velocities are given by

v1 = dR1/dt = dq1/dt, v2 = dR2/ dt = dq2/dt, (6.168)

we find that the kinetic energy is given by

k.e.= 1

2

[
m1m2

(m1 + m2)

](
dq

dt

)2

≡ 1

2
µ

(
dq

dt

)2

= 1

2

p2

µ
. (6.169)

The final result in (6.169) follows from the fact that the momentum p is equal to
µ(dq/dt).

Equation (6.169) gives the kinetic energy, but we have still to obtain a classical
expression for the potential energy. A harmonic oscillator can be defined as a mass
point m which is acted upon by a force F proportional to the distance x from the
equilibrium position and directed towards the equilibrium position. Since force equals
mass times acceleration, we have

F = m
d2x

dt2
= −kx, (6.170)

where the proportionality constant k is called the force constant. The solution to the
differential equation (6.170) is

x = x0 sin(2πνosct + ϕ), (6.171)

where the vibrational frequency νosc is given by

νosc = 1

2π

√
k

m
, (6.172)

and x0 is the amplitude of the vibration. The force F is the negative derivative of the
potential energy V ; it therefore follows that

V = (1/2)kx2, (6.173)

since

−dV

dx
= F = − kx . (6.174)

In terms of the vibrational coordinate, we have by analogy with (6.173),

V =
(

1

2

)
kq2, (6.175)

so that the total vibrational energy is given by

Wvib = p2

2µ
+ kq2

2
. (6.176)

By referring the motion to the centre of mass, the two-body problem has been reduced
to a one-body problem of the vibrational motion of a particle of mass µ against a fixed
point, under the restraining influence of a spring of length R with a force constant k.
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We can now convert the problem from one in classical mechanics to one in quantum
mechanics by making the changes,

q → q, p → p = −ih(∂/∂q), (6.177)

so that the Schrödinger equation for the harmonic oscillator becomes

− h2

2µ

d2#v

dq2
+ 1

2
kq2Ψv = EvΨv. (6.178)

Equation (6.178) is an ordinary second-order differential equation, the solution of
which is discussed in detail by Pauling and Wilson [5]. The approach to its solution
may be divided into two stages; first we express #v in the trial form

#v = exp(−αq2/2)H (q), (6.179)

where α2 = kµ/h2. This ensures that the wave function shows the correct behaviour as
q → ∞, that is, it goes exponentially to zero. We are then left with a standard differential
equation for the function H (q):

d2 H

dξ 2
− 2ξ

dH

dξ
+ (λ/α − 1)H = 0, (6.180)

where λ= 2µEv/h2 and ξ is a dimensionless coordinate equal to q/Re . The solutions
of this differential equation are a set of special polynomial functions, known as the
Hermite polynomials Hv(ξ ), which were described in chapter 2 and are discussed
again below.
Let us first consider the energy levels, Ev , which arise from (6.178). These are

Ev = (v + 1/2)hν, (6.181)

where v is the vibrational quantum number which takes integral values 0, 1, 2, . . . , and
ν is the harmonic vibrational frequency in Hz,

ν= 1

2π

(
k

µ

)1/2

, (6.182)

(compare equation (6.172)). In fact, the unit used most often in vibrational spectroscopy
is the wavenumber unit, cm−1, designated by the symbol ωe which is equal to ν/c. It
is important to note, from (6.181), that for v= 0, the lowest vibrational level, there
remains a zero-point energy of (1/2)hcωe.We now return to the eigenfunctions, given
earlier in (6.179). In normalised form these may be written

#v(q) =
(
v!π1/2

2v

)1/2

Hv( y) exp(−y2/2), (6.183)

where y is a dimensionless coordinate defined by

y = 2π

(
µν

h

)1/2

q. (6.184)



238 Electronic and vibrational states

The first few Hermite polynomials are as follows:

H0( y) = 1

H1( y) = 2y

H2( y) = 4y2 − 2
(6.185)

H3( y) = 8y3 − 12y

H4( y) = 16y4 − 48y2 + 12

H5( y) = 32y5 − 160y3 + 120y.

The wave functions for v= 0 to 4 are plotted in figure 6.20; the point where the function
crosses through zero is called a node, and we note that the wave function for level v
has v nodes. The probability density distribution for each vibrational level is shown in
figure 6.21, and the difference between quantum and classical behaviour is a notable
feature of this diagram. For example, in the v= 0 level the probability is a maximum at
y = 0, whereas for a classical harmonic oscillator it would be a minimum at y = 0, with
maxima at the classical turning points. Furthermore the probability density is small
but finite outside the classical region, a phenomenon known as quantum mechanical
tunnelling.

A harmonic oscillator potential with vibrational levels is illustrated in figure 6.22.
The levels are equally spaced and, as we show later, the main vibrational transitions
occur between adjacent levels, with �v= ±1. The v= 1 ← 0 transition is called the
fundamental and occurs at the harmonic frequency ν. However transitions which obey
the selection rule �v= ±2, known as overtone transitions, also have finite intensity
and are often observed.

6.8.3. The anharmonic oscillator

Equation (6.173) shows that for the harmonic oscillator the potential energy curve is
represented by a parabola, as shown in figure 6.22; the potential energy, and therefore
the restoring force, increases indefinitely with increasing distance from the equilibrium
position. This cannot, however, be a correct representation for a real molecule because
when the atoms are an infinite distance apart, the attractive force between them must
be zero, and the potential energy then has a constant value. As a first approximation to
the true potential energy we might add a cubic term to the quadratic term of equation
(6.173), representing the potential energy by the equation

V (R) = f (R − Re)2 − g(R − Re)3, (6.186)

with the constant g being much smaller than f . This combination would give a better
representation around the minimum and, of course, one could continue to add higher
terms to (6.186), or adopt an alternative functional form for the potential. A particularly
important analytical potential is that due to Morse [63], written in the form

V (R) = De{1 − exp[−β(R − Re)]}2. (6.187)
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Figure 6.20. Form of the wave functions for the first few vibrational levels of a harmonic oscil-
lator. These are plotted as a function of y, defined in the text.

Figure 6.23 shows the potential for the ground state of H2 plotted from this equation;
β is a constant, and De is the dissociation energy, defined in the figure. A mass point
which moves under the influence of a potential such as that shown in figure 6.23 is
called an anharmonic oscillator. Apart from its simplicity, an advantage of the Morse
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Figure 6.21. Probability density distribution for the v= 0 to 4 vibrational levels of the harmonic
oscillator.
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internuclear distance

v � 0

v � 1

v � 2

v � 3

v � 4

Figure 6.22. Potential energy curve for a harmonic oscillator, and the first few vibrational levels.

potential is that it enables the wave equation to be solved rigorously. In the general case
it is found that the term values for the vibrational levels of the anharmonic oscillator
are given by

G(v) =ωe(v + 1/2) − ωexe(v + 1/2)2 + ωe ye(v + 1/2)3 + · · · , (6.188)

although for the Morse potential the series in (6.188) does not extend higher than the
quadratic term. As a consequence of the quadratic and higher terms in (6.188) the
vibrational spacings decrease as v increases, with the levels essentially converging to
the dissociation asymptote.

The ‘true’ potential energy curve can be determined from experiment if sufficient
data about the vibrational levels are obtained; we will describe how this is accomplished
later in this chapter. As we mentioned earlier, improvements over the Morse potential
have been described, a particularly important one being due to Hulburt and Hirschfelder
[64]:

V (x) = De[(1 − exp(−βx)2 + cβ3x3 exp(−2βx)(1 + bβx)]. (6.189)

Here x = R − Re and b and c are constants which depend upon both vibrational and
rotational constants, as we will describe later. This form of the potential works very
well for a large number of molecules and electronic states.
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Figure 6.23. Potential curve for an anharmonic oscillator, the potential being represented by the
Morse function, equation (6.187).

6.8.4. The non-rigid rotor

So far we have used the models of the rigid rotor, and the harmonic or anharmonic
oscillator to describe the internal dynamics of the diatomic molecule. Since the period
for rotational motion is of the order 10−11 s, and that for vibrational motion is 10−14 s, the
Born–Oppenheimer type separation of the two different types of motion is justified. It
is not rigorous, however, and a better model for describing the rotations of the molecule
is that of the non-rigid rotor. As a result of centrifugal forces when the molecule rotates,
the internuclear distance and hence the moment of inertia will increase with increasing
rotation. In the rotating molecule the internuclear distance, Rc, is determined by the
requirement that the centrifugal force Fc is balanced by the restoring force k(Rc − Re).
If ω is the angular velocity, the angular momentum P is given by

P = Iω=µR2
cω. (6.190)

The centrifugal force Fc is given by

Fc =µω2 Rc = P2

µR3
c

, (6.191)
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so that since Fc = k(Rc − Re), we have

Rc − Re = P2

µR3
c k

≈ P2

µR3
e k
. (6.192)

The total rotational energy is now the sum of the kinetic and potential energies, given
by

E = P2

2Ic
+ 1

2
k(Rc − Re)2 = P2

2µR2
c

+ 1

2
k(Rc − Re)2. (6.193)

If we substitute for Rc using equation (6.192), expand the denominator in the first term
in (6.193) and neglect cubic and higher powers of Rc − Re we obtain

E = P2

2µR2
e

− P4

2µ2 R6
e k

+ · · · . (6.194)

We have already seen that, in quantum mechanics, the eigenvalue of J 2 is J (J + 1) so
that from (6.194) we obtain, for the non-rigid rotor,

E = h2

2µR2
e

J (J + 1) − h4

2µ2 R6
e k

J 2(J + 1)2 + · · · . (6.195)

The rotational term values are therefore given by the power series

F(J ) = B J (J + 1) − D J 2(J + 1)2 + H J 3(J + 1)3 + · · · . (6.196)

The coefficients B, D, H , etc., are determined from an analysis of the experimental
spectrum; it is rarely necessary to go beyond the cubic term, except when very high J
values are involved. The parameters D, H , etc., are known as the centrifugal distortion
corrections to the rotational kinetic energy.

As we will see later, there is an alternative formulation of the rotational (and
vibrational) energies due to Dunham [65], which is often used.

6.8.5. The vibrating rotor

If there was no interaction between vibration and rotation, the energy levels would
be given by the simple sum of the expression giving the vibrational levels for the
anharmonic oscillator, equation (6.188), and that describing the rotational levels of
the rigid rotor, equation (6.162). There is an interaction, however; during a vibration
the moment of inertia of the molecule changes, and therefore so also does the rotational
constant. We may therefore use a mean value of Bv for the rotational constant of the
vibrational level considered, i.e.

Bv = h

8π2cµ

[
1̄

R2

]
, (6.197)

where [1/R2] is the value of 1/R2 averaged over the vibrational motion [66]. In general
Bv will be smaller than Be because of the anharmonicity. To a first approximation the
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rotational constant Bv is given by

Bv = Be − αe(v + 1/2) + γe(v + 1/2)2 + · · · , (6.198)

and similarly a mean rotational constant Dv for the vibrational level v is given by

Dv = De + βe(v + 1/2) + · · · . (6.199)

Consequently for the rotational levels in a given vibrational level, the term values are
given by

Fv(J ) = Bv J (J + 1) − Dv J 2(J + 1)2 + Hv J 3(J + 1)3 + · · · . (6.200)

The full expression for the term values of the vibrating rotor is therefore

T = G(v) + Fv(J ) =ωe(v + 1/2) − ωexe(v + 1/2)2 + ωe ye(v + 1/2)3

+ · · · + Bv J (J + 1) − Dv J 2(J + 1)2 + Hv J 3(J + 1)3 + · · · . (6.201)

Relationships connecting αe, βe, γ e with ωe, ωexe and Be have been given by
Pekeris [67] and Dunham [65]. In a very detailed study of vibration–rotation inter-
actions, Dunham [65] has shown that the term values for a vibrating rotor should
actually be expressed as a double power series, given by

T =
∑

kl

Ykl

(
v + 1

2

)k

[J (J + 1)]l . (6.202)

The coefficients in (6.202) are very closely related to the standard spectroscopic pa-
rameters according to the following:

Y10 ≈ωe, Y20 ≈ωexe, Y01 ≈ Be, Y02 ≈ De, Y11 ≈αe, · · · . (6.203)

The approximate equalities arise because there are higher order corrections, of the
order (Be/ωe)2, in the Dunham treatment. For very light molecules, like H2 and some
hydrides, the precise interpretation of the spectroscopic parameters obtained from
experiment has to be considered carefully in the light of the Dunham theory. For most
molecules, however, it is satisfactory to use the parameters given above in spectroscopic
analyses.

In this book, which is concerned predominantly with rotational transitions and their
fine and hyperfine structure, we will have only a peripheral interest in the details of
vibrational structure. Similarly we will not usually be concerned directly with electronic
transitions, except in double resonance studies. Nevertheless it is important to see the
broader picture, in order to understand better the detailed structure.

6.9. Inversion symmetry of rotational levels

6.9.1. The space-fixed inversion operator

The inversion operator E∗ is defined as the operator which transforms a function
f (Xi , Yi , Zi ) into a new function which has the same value as f (−Xi ,−Yi ,−Zi )
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where (Xi , Yi , Zi ) are the coordinates of a point measured in an arbitrary space-fixed
axis system:

E∗ f (Xi , Yi , Zi ) = f ′(Xi , Yi , Zi )

= f (−Xi ,−Yi ,−Zi ). (6.204)

Clearly, if this operator is applied twice to a wave function, the system reverts to its
original configuration:

E∗E∗ψ(Xi , Yi , Zi ) = ψ(Xi , Yi , Zi ). (6.205)

The following behaviour is consistent with this result:

E∗ψ(Xi , Yi , Zi ) = ±ψ(Xi , Yi , Zi ). (6.206)

If a quantum system transforms according to the upper sign, the state has a positive
parity and, if according to the lower sign, a negative parity.

It is important to distinguish between the space-fixed inversion operator E∗ defined
here and the molecule-fixed inversion operator, denoted i . The latter defines the g,u
character of functions of molecule-fixed coordinates in appropriate systems (i.e. those
with a centre of symmetry) but says nothing about the overall parity of the state. It is
therefore a less powerful operator than E∗.

6.9.2. The effect of space-fixed inversion on the Euler angles
and on molecule-fixed coordinates

In chapter 2 we introduced the molecule-fixed axis system (x, y, z) which rotates in
space with the molecule. This axis system is related to the non-rotating (but translating)
axis system (X, Y, Z ) by the three Euler angles (φ, θ, χ). The coordinates of a point i in
the molecule-fixed axis system are related to its coordinates expressed in the space-fixed
axis system by the transformation



xi

yi

zi




=




cosφ cos θ cosχ − sinφ sinχ sinφ cos θ cosχ + cosφ sinχ −sin θ cosχ

−sinφ cosχ − cosφ cos θ sinχ cosφ cosχ − sinφ cos θ sinχ sin θ sinχ

cosφ sin θ sinφ sin θ cos θ






Xi

Yi

Zi


.

(6.207)

Thus if we know how φ, θ , and χ transform under E∗, we can easily determine
how xi , yi and zi transform.

A particular problem arises for linear molecules in that it is not possible to de-
fine the third Euler angle χ uniquely. The first two Euler angles (which correspond
to the two spherical polar angles) bring the space-fixed Z axis into coincidence with
the molecule-fixed z axis. The third angle χ is a rotation about the z axis and, since
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there are no off-axis nuclei to define this rotation, we have to adopt an arbitrary con-
vention about the way in which χ transforms under E∗. The convention we choose is
that the molecule-fixed y axis is unchanged in direction after space-fixed inversion, as
a result of which the x coordinate of a point is unaltered after inversion:

E∗ x = x . (6.208)

We note that the molecule-fixed axis system must be placed back on the inverted
molecule so that it is still right-handed. Since the first two Euler angles are defined to be
the spherical polar angles, it is fairly easy to see that they transform as follows under E∗:

E∗ φ = (π + φ), E∗ θ = (π − θ). (6.209)

The transformation properties of χ can be best appreciated from figure 6.24, from
which we obtain:

E∗ χ = (π − χ ). (6.210)

Using these results we have

E∗ sinφ = − sinφ, E∗ sin θ = sin θ, E∗ sinχ = sinχ,

E∗ cosφ = − cosφ, E∗ cos θ = −cos θ, E∗ cosχ = − cosχ. (6.211)

Substituting these results in equation (6.207), we obtain the transformation properties
of the molecule-fixed coordinates of a point i under space-fixed inversion:

E∗ xi = xi , E∗ yi = −yi , E∗ zi = zi . (6.212)

We note the interesting result that the transformation properties of functions of
coordinates which are defined in the molecule-fixed axis system (that is, electronic
or vibrational) are the same under E∗ as they are under σv in the xz plane in our
convention. Thus we can use E∗ to determine the reflection symmetry of electronic or
vibrational states of diatomic molecules.

In conclusion, we have determined that a function of the Euler angles transforms
under E∗ as

E∗ f (φ, θ, χ) = f (π + φ,π − θ,π − χ ) (6.213)

and a function of molecule-fixed coordinates transforms as

E∗ f (xi , yi , zi ) = f (xi ,−yi , zi ). (6.214)

In the next section we use these results to show how a total wave function (and hence
state) transforms under E∗.

6.9.3. The transformation of general Hund’s case (a) and case (b)
functions under space-fixed inversion

In Hund’s case (a) coupling scheme, the electron spin angular momentum is quantised
along the internuclear axis. The symmetry properties of such a function can be obtained
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θ

φ

χ

π−θ

π−χ

π+φ

Figure 6.24. The effect of the space-fixed inversion operator E∗ on the molecule-fixed coordinate
system (x, y, z). The molecule-fixed coordinate system is always taken to be right-handed. After
the inversion of the electronic and nuclear coordinates in laboratory-fixed space, the (x, y, z)
coordinate system is fixed back onto the molecule so that the z axis points from nucleus 1
to nucleus 2 and the y axis is arbitrarily chosen to point in the same direction as before the
inversion. As a result, the new values of the Euler angles (φ′, θ ′, χ ′) are related to the original
values (φ, θ, χ) by φ′ = π + φ, θ ′ = π − θ , and χ ′ = π − χ .
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from a consideration of the product representation

|η,Λ; v; S,Σ; J,Ω,M〉 = |η,Λ〉|v〉|S,Σ〉|J,Ω,M〉. (6.215)

We deal with each of the factors of the right-hand side of (6.215) in turn.

(i) Electronic orbital function |η,Λ 〉
There is not a generally accepted form for the electronic basis function |η,Λ〉. The
only common factor is a term exp(iΛφe) where φe is an electronic azimuthal angle,
which is required so that

hLz|η,Λ〉 = −ih
∂

∂φe
|η,Λ〉 = hΛ|η,Λ〉. (6.216)

In this book, we adopt a form in which the function is expressed as a linear combination
of spherical harmonics. This form is particularly appropriate for systems with near-
spherical symmetry (such as Rydberg states or molecules which conform to Van Vleck’s
pure precession hypothesis [68, 69]) and is also consistent with the spirit of spherical
tensors, which have the same transformation properties under rotations as spherical
harmonics. The functional form of the ket |η,Λ〉 is written

|η,Λ 〉 =
∑

L

FL (ρe)YL ,Λ(θe, φe), (6.217)

where (ρe, θe, φe) can be regarded as spherical polar coordinates of an electron mea-
sured in the molecule-fixed axis system. This interpretation is consistent with a many-
electron wave function also.

For a general function f (ρe, θe, φe) we know that

E∗ f (ρe, θe, φe) = f (ρe, θe, 2π − φe) (6.218)

from equation (6.214). Thus

E∗ |η,Λ〉 =
∑

L

FL (ρe)YL ,Λ(θe, 2π − φe)

=
∑

L

FL (ρe)YL ,Λ(θe, φe)∗

= (−1)Λ
∑

L

FL (ρe)YL ,−Λ(θe, φe)

≡ (−1)Λ|η,−%〉. (6.219)

In addition, we must treat�± states as a special case. There are two possible functions
depending on their behaviour under σv; the �− combination requires at the very least
a two-electron wave function. Let us take as a model wave function one constructed
with two electrons in π orbitals:

ψel(�
s) = 1√

2
{|π+1π−1〉 + (−1)s |π−1π+1〉}, (6.220)
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where electron 1 is in the first orbital and electron 2 in the second. Using the result in
equation (6.219) we have

E∗|�s〉 = 1√
2
{(−1)1−1|π−1π+1〉 + (−1)s(−1)−1+1|π+1π−1〉}

= (−1)s 1√
2
{|π+1π−1〉 + (−1)s |π−1π+1〉}

= (−1)s |�s〉. (6.221)

Equations (6.221) and (6.219) can be combined to give

E∗|η,Λs〉 = (−1)Λ+s |η,−Λs〉, (6.222)

where s is even for Σ+ (and higher Λ) states and odd for Σ−.

(ii) Vibrational wave function |v〉
The vibrational coordinate is simply R, the magnitude of the separation between the
two nuclei (0 ≤ R ≤ ∞). We see that this coordinate is unaffected by the operation E∗

and so therefore is any function of R:

E∗ ψvib(R) = ψvib(R). (6.223)

Thus for a diatomic molecule, the vibrational factor is always symmetric with respect
to E∗ and so does not play any part in the symmetry classification scheme.

(iii) Electron spin function |S,Σ〉
In a case (a) basis set, the electron spin angular momentum is quantised along the linear
axis, the quantum numberΣ labelling the allowed components along this axis. Because
we have chosen this axis of quantisation, the wave function is an implicit function of
the three Euler angles and so is affected by the space-fixed inversion operator E∗. An
electron spin wave function which is quantised in an arbitrary space-fixed axis system,
|S,MS〉, is not affected by E∗, however. This is because E∗ operates on functions of
coordinates in ordinary three-dimensional space, not on functions in spin space. The
analogous operator to E∗ in spin space is the time reversal operator.

Thus to see how |S,Σ〉 transforms under E∗, we must make its Euler angle depen-
dence explicit:

|S,Σ〉 =
∑
MS

|S,MS〉D
(S)
MS ,Σ

(φ, θ, χ). (6.224)

Therefore

E∗|S,Σ〉 =
∑
MS

|S,MS〉D
(S)
MS ,Σ

(π + φ,π − θ,π − χ )

=
∑
MS

|S,MS〉 exp(−iMSπ) exp(−iMSφ)d (S)
MS ,Σ

(π − θ) exp(−iΣπ) exp(iΣχ)
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=
∑
MS

|S,MS〉(−1)−MS−Σ exp(−iMSφ)(−1)S+MS d (S)
MS ,−Σ(θ) exp(−iΣχ )

= (−1)S−Σ|S,−Σ〉. (6.225)

We have used the relationship

d (J )
M,N (π − θ ) = (−1)J+M d (J )

M,−N (θ) ≡ (−1)3J−M d (J )
M,−N (θ) (6.226)

from chapter 5 to obtain our result.

(iv) Rotational function |J,Ω,M〉
With our choice of phases, the symmetric top wave function is related to the corre-
sponding rotation matrix element by

|J,Ω,M〉 = [(2J + 1)/8π2]1/2
D

(J )
M,Ω(φ, θ, χ)∗. (6.227)

Hence

E∗|J,Ω,M〉 = [(2J + 1)/8π2]1/2
D

(J )
M,Ω(π + φ,π − θ,π − χ )∗

= [(2J + 1)/8π2]1/2(−1)M+Ω(−1)3J−M
D

(J )
M,−Ω(φ, θ, χ)∗

= (−1)3J+Ω|J,−Ω,M〉 ≡ (−1)J−Ω|J,−Ω,M〉. (6.228)

We have now dealt with the effect of E∗ on each of the factors in the case (a)
function, (6.215). The results, which are quoted in equations (6.222), (6.225) and
(6.228), can be combined to give the overall effect:

E∗|η,Λs ; v ; S,Σ; J,Ω,M〉 = (−1)Λ+s(−1)S−Σ(−1)J−Ω

× |η,−Λs ; v ; S,−Σ; J,−Ω,M〉. (6.229)

For a linear (diatomic) molecule we have the restriction

Ω = Λ+Σ. (6.230)

Thus we have

E∗|η,Λs ; v ; S,Σ; J,Ω,M〉 = (−1)p|η,−Λs ; v ; S,−Σ; J,−Ω,M〉 (6.231)

where

p = J − S + s. (6.232)

It often happens that it is more convenient to set up the problem in a Hund’s
case (b) basis set, |η,Λs ; v ; N ,Λ, S, J,M〉. Using the same conventions as above, the
transformation which corresponds to that given in equation (6.231) is

E∗|η,Λs ; v ; N ,Λ, S, J,M〉 = (−1)N+s |η,−Λs ; v ; N ,−Λ, S, J,M〉. (6.233)
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6.9.4. Parity combinations of basis functions

It can be seen from equations (6.231) and (6.233) that the simple case (a) or case (b) basis
functions are not eigenfunctions of E∗. In the language of group theory, they are not
irreducible representations of the space-fixed inversion group and the states which they
represent do not have a definite parity. The appropriate combinations which do have
a definite parity are easily projected out (we are never concerned with a degeneracy
higher than two for diatomic molecules). For the case (a) functions, the combinations
of positive and negative parity are given by

|η,Λs ; J,M ;+〉 = 1√
2
{|η,Λs ; S,Σ; J,Ω,M〉+(−1)p|η, −Λs ; S, −Σ; J,−Ω,M〉}

(6.234)

|η,Λs ; J,M ;−〉 = 1√
2
{|η,Λs ; S,Σ; J,Ω,M〉−(−1)p|η, −Λs ; S, −Σ; J,−Ω,M〉}.

If there is a perturbation which lifts the two-fold degeneracy without destroying parity,
the two functions in (6.234) are eigenfunctions of the system in the limit of a small
perturbation.

The (−1)J−S+s phase factor in equation (6.234) causes the parity labels to alternate
as J increases, that is, the lower of the near-degenerate pair for a given J might be +
and the upper −, the designation swaps over for the next J value and then back again
and so on. To avoid this alternation, an alternative parity labelling system, the so-called
e/ f convention has been introduced [70]. For integral J values, levels with parities
(−1)J or (−1)J+1 are designated as e or f respectively; for half-integral J values,
levels with parities (−1)J−1/2 or (−1)J+1/2 are designated e or f respectively. Using
this convention, all the lower components of parity doublets have the same label, say
e, and all the upper components have the opposite label, say f . For the situation where
Λ= 0, a�+ state has rotational levels of even (+) or odd (−) parity for N even or odd
respectively; for �− states this rule is reversed. Thus all the levels of a 1�+ state are
e levels and those of a 1�− state are f .

6.10. Permutation symmetry of rotational levels

6.10.1. The nuclear permutation operator for a homonuclear
diatomic molecule

A second useful symmetry operation exists for homonuclear diatomic molecules,
namely the permutation of two identical nuclei, P12. In the same way that E∗ has
two possible eigenfunctions ±1 in equation (6.206), so there are two possible ways in
which the molecular wave function can transform under P12:

P12ψtot = ±ψtot. (6.235)

The upper sign choice (symmetric behaviour) corresponds to the interchange of iden-
tical nuclei with integral spins; such particles are called bosons. The lower sign
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choice (antisymmetric behaviour) is the transformation followed by fermions, with
half-integral spin. This symmetry property is a generalisation of the Pauli exclusion
principle as applied to the permutation of pairs of electrons. Electrons, with S = 1/2,
are fermions and therefore show antisymmetric behaviour.

Let us suppose that nuclei 1 and 2 have coordinates (X1, Y1, Z1) and (X2, Y2, Z2)
in the translating but not rotating coordinate system. Since the origin of the axis system
is at the nuclear centre of mass of the homonuclear molecule, we have

X2 = −X1, Y2 = −Y1, Z2 = −Z1. (6.236)

Now

P12(X1, Y1, Z1; X2, Y2, Z2) = (X2, Y2, Z2; X1, Y1, Z1)

= (−X1,−Y1,−Z1; −X2,−Y2,−Z2). (6.237)

Thus, so far as the nuclei are concerned, P12 produces the same effect as E∗ and, since
the position of the molecule-fixed axes depends on the location of the nuclei only, P12

has the same effect on a function of the Euler angles as does E∗:

P12 f (φ, θ, χ) = f (π + φ,π − θ,π − χ ). (6.238)

Now, the permutation of the nuclei P12 has no effect on the positions of the electrons
measured in the space-fixed coordinate system. Thus for an electron at (Xi , Yi , Zi ) we
have

P12(Xi , Yi , Zi ) = (Xi , Yi , Zi ). (6.239)

P12 will, however, affect the molecule-fixed coordinates of the electrons through its
effect on the orientation of this axis system. Substitution of equations (6.238) and
(6.239) into the transformation equation (6.207) leads directly to the result

P12 f (xi , yi , zi ) = f (−xi , yi ,−zi ). (6.240)

By applying E∗ and P12 in succession, it is easy to show that

P12 E∗ (xi , yi , zi ) = E∗ P12(xi , yi , zi ) = (−xi ,−yi ,−zi ). (6.241)

Thus we have the interesting result that P12 E∗ = E∗ P12 corresponds to inversion i in
the molecule-fixed axis system.

6.10.2. The transformation of general Hund’s case (a) and case
(b) functions under nuclear permutation P12

As in section 6.9.3, we start out with the case (a) functions and consider the effect of
P12 on each of its three factors in turn. For a homonuclear diatomic molecule, we write
the electronic orbital wave function as a linear combination of spherical harmonics:

|η,Λt 〉 =
∑

L

′
FL (ρe)YL ,Λ(θe, φe) (6.242)
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where the subscript t identifies the state as either g or u. In the summation on the
right-hand side, L is even for g wave functions and odd for u wave functions. Thus,
using equation (6.240), we have

P12|η,Λt 〉 =
∑

L

′
FL (ρe)YL ,Λ(π − θe,π − φe)

=
∑

L

′
FL (ρe)(−1)LYL ,Λ(θe, φe)∗

=
∑

L

′
FL (ρe)(−1)L+ΛYL ,−Λ(θe, φe)

= (−1)t+Λ|η,−Λt 〉, (6.243)

where the exponent t is even for g states or odd for u states. If the electronic state is a�s

state we must include an additional factor of (−1)s in equation (6.243) to distinguish
between �+

g and �−
g states.

In the same way that we dealt with the transformation of the vibrational, case (a)
spin and rotational wave functions in section 6.9.3, it is easy to show that

P12|v〉 = |v〉, (6.244)

P12|S,Σ〉 = (−1)S−Σ|S,Σ〉, (6.245)

P12|J,Ω,M〉 = (−1)J−Ω|J,−Ω,M〉. (6.246)

The corresponding transformation for a Hund’s case (b) function can be derived in a
similar fashion:

P12|η,Λs
t ; v ; N ,Λ, S, J,M〉 = (−1)s(−1)t (−1)N |η,−Λs

t ; v ; N ,−Λ, S, J,M〉.
(6.247)

When considering the effect of P12 on a Hund’s case (a) or case (b) wave function,
we must also take the nuclear spin wave function into account. The nuclear spin is
usually very weakly coupled to the other angular momenta and so can be described
by a separate factor |ψns〉. We shall discuss the detailed form of this function shortly
but for the moment, we simply need to recognise that there are two types of functions
which can arise from the coupling scheme

I1 + I2 = IT . (6.248)

These are ortho functions which are symmetric with respect to P12 and para functions
which are antisymmetric. The ortho combinations always have the greater weight, that
is, the greater number of independent nuclear spin functions. Thus we have

P12|ψns〉 = ±1|ψns〉 = (−1)IT −I1−I2 |I1, I2, IT 〉. (6.249)

It will not come as a great surprise to learn that there is a connection between the
way in which the wave functions of homonuclear diatomic molecules transform under
E∗ and under P12. We recall from equation (6.234) that the positive and negative parity
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combinations of the case (a) wave functions are given by

|η,Λs
t ; J,M ; ±〉 = 1√

2
{|η,Λ; S,Σ; J,Ω,M〉 ± (−1)p|η,−Λ; S,−Σ; J,−Ω,M〉}.

(6.250)
Using equations (6.243) to (6.246) we have

P12

[
1√
2
{|Λt ; S,Σ; J,Ω,M〉 ± (−1)p|−Λt ; S,−Σ; J,−Ω,M〉}

]

= ±(−1)t

[
1√
2
{|Λt ; S,Σ; J,Ω,M〉 ± (−1)p|−Λt ; S,−Σ; J,−Ω,M〉}

]
. (6.251)

Thus for a Λg state, positive parity states are symmetric and negative parity states are
antisymmetric with respect to P12 and vice versa for a Λu state.

6.10.3. Nuclear statistical weights

The requirement set by the exclusion principle, given in equation (6.235), restricts the
nuclear spin states which can combine with a rotational level of a given parity. They can
be either symmetric or antisymmetric with respect to P12. The number of symmetric
(ortho) states is always greater than the number of antisymmetric (para) states. For
equivalent nuclei with spin I1,

number of symmetric states = (I1 + 1)(2I1 + 1),

number of antisymmetric states = I1(2I1 + 1). (6.252)

Consequently the rotational levels of a given parity with which they combine will have
different weights (the so-called nuclear statistical weights). The consequences of this
are readily observable in spectroscopy, as we will see elsewhere.

Let us consider some specific examples whose spectra occur in this book. A very
simple case is O2 in its excited 1�g state. The predominant nucleus, 16O, has I = 0 and so
is a boson. IT is also zero and there is only one nuclear spin function (IT = 0,MIT = 0)
which is symmetric with respect to P12. Thus for each value of J only one Λ-doublet
component is allowed by the exclusion principle, namely, that which has positive parity;
all the rotational levels of O2 in its 1�g state therefore have positive parity. The other
Λ-doublet component is missing.

A slightly more complicated example is that of H2 in its X 1�+
g state. The hydrogen

nucleus is, of course, the proton with I = 1/2. In this case there are four possible nuclear
spin wave functions, which are

α(1)α(2), β(1)β(2), (1/
√

2)(α(1)β(2) +β(1)α(2)), (1/
√

2)(α(1)β(2) −β(1)α(2)).

(6.253)

The first three of these functions are symmetric with respect to P12 and constitute the
three components of a spin triplet with IT = 1; the fourth spin function is antisymmetric
with respect to P12 and represents a spin singlet. Recalling that the total wave function
consists of factors for electron orbital, electron spin, vibrational, rotational and nuclear
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spin motion, we have

P12ψtot = ψ
(

1Σ+
g

)
ψvib(−1)Jψrot(−1)IT −1ψns = −ψtot. (6.254)

The second part of this equation follows because the proton is a fermion. Thus for
the lowest rotational level with J = 0, the nuclear wave function must be the fourth
in equation (6.253) with IT = 0. In the second rotational level, on the other hand, ψns

must be symmetric and so corresponds to the triplet spin function. In general, therefore,
rotational levels with even J are associated with the singlet nuclear spin state and are
called para-H2 (with the lower nuclear statistical weight of one). Rotational levels with
odd J have triplet nuclear spin states and are called ortho-H2(with the higher nuclear
statistical weight of three).

Finally, we consider the N2 molecule in its A 3�+
u state. In the predominant iso-

topomer, both nuclei are 14N with I = 1 (bosons); the total wave function must therefore
satisfy

P12ψtot = ψtot. (6.255)

The coupling scheme for N2 in this state is Hund’s case (b). Therefore we have

P12ψtot = (−1)ψ
(

3Σ+
u

)
ψvib(−1)Nψrot(−1)ITψns (6.256)

where N labels the rotational levels. Hence, for levels of even N , we require that

P12ψns = −ψns, (6.257)

whilst for odd N the opposite result is required, i.e.

P12ψns = ψns. (6.258)

We must therefore examine the possible nuclear spin states and classify them accord-
ing to (6.257) or (6.258). Since each 14N nucleus has spin I = 1, and three spatial
orientations with MI = +1, 0,−1, there are nine basis spin functions, which are

a1b1, a1b0, a1b−1, a0b1, a0b0, a0b−1, a−1b1, a−1b0, a−1b−1, (6.259)

where a and b refer to nuclei 1 and 2 and the subscripts are the individual values of
MI . It is necessary to form linear combinations of these basis functions which have a
definite permutation symmetry. The vector addition of the two nuclear spins gives a
total spin IT of 2, 1 or 0, and it is a straightforward exercise to form the appropriate
linear combinations; they are as follows:

IT = 2 (symmetric): MI = 2; a1b1

MI = 1; (1/
√

2)(a1b0 + a0b1)

MI = 0; (1/
√

6)(2a0b0 − a1b−1 − a−1b1)

MI = −1; (1/
√

2)(a−1b0 + a0b−1)

MI = −2; a−1b−1 (6.260)

IT = 1(antisymmetric): MI = 1; (1/
√

2)(a1b0 − a0b1)

MI = 0; (1/
√

2)(a1b−1 − a−1b1)

MI = −1; (1/
√

2)(a−1b0 − a0b−1) (6.261)
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IT = 0 (symmetric): MI = 0; (1/
√

2)(a1b−1 + a−1b1). (6.262)

Clearly the symmetric IT = 2 and 0 functions satisfy (6.258) and are therefore as-
sociated with rotational levels having odd N . Conversely, the antisymmetric IT = 1
functions satisfy (6.257) and must be associated with even N levels. These nuclear
spin statistical results are very important, because they determine the nature of the nu-
clear hyperfine structure; if the different nuclear spin states remain degenerate, the spin
statistics then help to determine rotational level populations and hence spectroscopic
intensities.

One final symmetry aspect for homonuclear diatomic molecules to be mentioned
here is that g/u states can, under some circumstances, be mixed by the nuclear spin
part of the molecular Hamiltonian. This mixing, which is explained by Bunker and
Jensen [71], has some interesting spectroscopic consequences, particularly in the H+

2

molecular ion, which are described elsewhere in this book.

6.11. Theory of transition probabilities

6.11.1. Time-dependent perturbation theory

Spectroscopy is concerned with the observation of transitions between stationary states
of a system, with the accompanying absorption or emission of electromagnetic radi-
ation. In this section we consider the theory of transition probabilities, using time-
dependent perturbation theory, and the selection rules for transitions, particularly those
relevant for rotational spectroscopy.

We will consider a two-level system with states ψa and ψb which have energies
Ea and Eb. The system is acted upon by a time-dependent perturbation,

H
′(t) = V f (t), (6.263)

where V is a time-independent operator and f (t) is a fluctuating factor which measures
the strength of V at different times. We will be more specific about the form of f (t) in
due course. We suppose that the Hamiltonian matrix takes the form∣∣∣∣∣ Ea Vab f (t)

Vba f (t) Eb

∣∣∣∣∣, (6.264)

where the off-diagonal elements Vab = V ∗
ba induce transitions between the levels.

We look for a solution of the time-dependent Schrödinger equation

ih
∂ψ

∂t
= Hψ, (6.265)

which has the following form:

ψ = Ca(t)ψa exp(−iEat/h) + Cb(t)ψb exp(−iEbt/h). (6.266)

If we substitute (6.266) into (6.265) and (6.264) we find that the coefficients satisfy the
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equations

ih
∂Ca

∂t
= f (t) exp(i[Ea − Eb]t/h)VabCb, (6.267)

ih
∂Cb

∂t
= f (t) exp(i[Eb − Ea]t/h)VbaCa . (6.268)

We now suppose that at time t = 0 the system starts in ψa ; in other words
Ca(0) = 1,Cb(0) = 0. Integration of equation (6.268) with Ca = 1 gives the first-order
correction to Cb, and after a time T we find

Cb(T ) = − i

h
Vba

T∫
0

f (t) exp[i(Eb − Ea)t/h] dt. (6.269)

The probability that the system has made a transition to state b is |Cb(T )|2, or

P(a, b) = 1

h2
|Vab|2

T∫
0

dt1

T∫
0

dt2 f (t1) f (t2) exp(i(Eb − Ea)(t1 − t2)/h). (6.270)

We may now simplify the time integral in (6.270) by changing to the new variables
t1 = (t + τ ), t2 = t so that (6.270) becomes

P(a, b) = 1

h2
|Vab|2

T∫
0

dt

T −t∫
−t

f (t + τ ) f (t) exp(i(Eb − Ea)τ/h) dτ. (6.271)

We now consider the specific case when f (t) is a periodic function, given by

f (t) = 2 cosωt. (6.272)

We substitute for f (t) in equation (6.269) and integrate directly, obtaining the result

Cb(t) = Vba

h

{
exp(i[ωba − ω]t) − 1

(ωba − ω)
+ exp(i[ωba + ω]t) − 1

(ωba + ω)

}
, (6.273)

where hωba = Eb − Ea . We consider the case that Eb> Ea ; the first term in (6.273)
is very large at resonance and the second may be neglected, so that the transition
probability is given by

Pab = |Cb(t)|2 = 2π

h2
|Vab|2

{
sin2[(1/2)(ωba − ω)T ]

2π [(1/2)(ωba − ω)]2

}
. (6.274)

The expression in curly brackets is plotted as a function of the frequency in figure 6.25;
the condition ω = ωba is called the resonance condition. This expression represents
an idealised situation because in practice one does not use a strictly monochromatic
perturbing field, and one is not concerned with transitions to a perfectly defined
state.

One of the most important quantities in equation (6.274) is |Vba|2 because it con-
tains all of the information concerning the detailed nature of the interaction between the
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0

(1/2)(ωba−ω)t

Figure 6.25. Dependence of the transition probability Pab from |a〉 to |b〉 on the frequency of
the driving radiation.

electromagnetic radiation and the appropriate properties of the molecule under inves-
tigation. We will return to a detailed discussion of this aspect a little later.

6.11.2. The Einstein transition probabilities

As we have seen, a transition from one state to another will be accompanied by the
absorption or emission of radiation of frequency νba , where

νba = Eb − Ea

h
. (6.275)

We now assume that a system in the lower energy state a is immersed in a bath of
radiation which has a density ρ(νba) ; the radiation density ρ(ν) is defined such that the
energy of radiation between frequencies ν and ν + dν in unit volume is ρ(ν) dν. The
probability that the system will absorb a quantum of radiation and undergo a transition
to the upper state b in unit time is given by

Babρ(νba), (6.276)

where Bab is called the Einstein B coefficient of absorption [68]. When it comes to
emission, however, it is necessary to postulate that the probability is the sum of two
parts, one of which is independent of the radiation density and the other proportional
to it. These are referred to as spontaneous and induced processes respectively. We
assume, therefore, that the probability that the system in the upper state b will undergo
a transition to the lower state a with the emission of radiation is given by

Aba + Bbaρ(νba). (6.277)
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Aba is the Einstein coefficient of spontaneous emission and Bba is the Einstein coefficient
of induced emission.

We now consider an assembly of systems identical to that described above which
are in equilibrium with radiation at a temperature T . The density of radiation is given
by Planck’s radiation law as

ρ(ν) = 8πhν3

c3

1

exp(hν/kT ) − 1
, (6.278)

where k is the Boltzmann constant. Now let the initial number of systems in state b be
Nb, and that in state a be Na . The number of systems undergoing transitions from the
lower state a to the upper state b is then

Na Babρ(νba), (6.279)

whilst the number undergoing the reverse transition is

Nb{Aba + Bbaρ(νba)}. (6.280)

At equilibrium these two numbers are equal,

Na Babρ(νba) = Nb{Aba + Bbaρ(νba)}, (6.281)

so that

Na

Nb
= Aba + Bbaρ(νba)

Babρ(νba)
. (6.282)

However, the Boltzmann distribution law states that at thermal equilibrium the ratio of
the numbers in the lower and upper states is given by

Na

Nb
= exp[−(Ea − Eb)/kT ] = exp(hνba/kT ). (6.283)

Consequently from equations (6.282) and (6.283) combined we obtain an expression
for the radiation density at the transition frequency:

ρ(νba) = Aba

Bab exp(hνba/kT ) − Bba
. (6.284)

This is identical with equation (6.278) if the three Einstein coefficients are related as
follows:

Bab = Bba, (6.285)

Aba = 8πhν3
ba

c3
Bba . (6.286)

Notice the presence of the ν3 factor in (6.286); whilst spontaneous emission is a
characteristically fast phenomenon for electronic transitions occurring in the visible
and ultraviolet regions of the spectrum, it is a slow process in the microwave region. This
is a very important difference, as we will appreciate in many other places in this book.

Let us now consider a number of different situations and their experimental con-
sequences with the aid of figure 6.26. This diagram illustrates four different situations
concerning the relative populations of the two non-degenerate states. In case (i) the
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Figure 6.26. Population cases in a two-level system and the consequences of stimulated transi-
tions.

populations are determined by thermal equilibrium conditions and obey the Boltzmann
distribution law in which the relative populations are given by the simple expression

Nb

Na
= exp[−(Eb − Ea)/kT ], (6.287)

where Eb and Ea are the energies of the states and T is the absolute temperature of the
bulk gas. This is by far the most common case, and would apply in the majority of the
studies described in chapters 9 and 10.

Case (ii), where the populations are equal, is known as the saturation condition,
or infinite temperature case. It can be achieved in many experiments if sufficient elec-
tromagnetic radiation power is available, and in some double resonance experiments
it is actually an aim. Case (iii) represents a population inversion, sometimes referred
to as a negative temperature, whilst case (iv) is described as a population cooling, in
the sense that it corresponds to an abnormally low temperature, even though in other
respects the temperature may be considered to be normal.

We now make use of our knowledge of the Einstein A and B coefficients in the
light of the population cases outlined above. If Na is the number of molecules in the
lower (a) state, then the rate of absorption of energy from the radiation field is

Iab = Na Babρ(νba)hνab. (6.288)

The power returned by stimulated emission is

Iba = Nb Bbaρ(νba)hνab, (6.289)

so that the net change is

�I = Iab − Iba = (Na − Nb)Bρ(ν)hν. (6.290)

We may now examine the four population cases in the light of equation (6.290).
In case (i) when the populations are in accord with the Boltzmann distribution law,
�I is positive and we observe a net absorption of power. Substituting the Boltzmann
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distribution into (6.290) we obtain for the absorption intensity

Iabs = �I = Na[1 − exp(−hν/kT )]Bρ(ν)hν. (6.291)

Since at microwave frequencies and normal temperatures, hν � kT , we can expand
the exponential as a convergent power series to yield

Iabs = Na(hν)2

kT
Bρ(ν)

[
1 − 1

2

hν

kT
+ · · ·

]

� Na(hν)2

kT
Bρ(ν). (6.292)

Provided a Boltzmann distribution is maintained the absorption intensity is proportional
to the square of the frequency. It is important, however, that there be collisions in the
gas which maintain thermal equilibrium; if there is insufficient thermal relaxation, the
population difference is reduced by absorption of radiation. Consequently case (ii)
is approached and ultimately, from (6.290), there is no net observable absorption of
radiation.

Population case (iii), where we have an inversion (Nb> Na), is a particularly in-
teresting and important one. Equation (6.290) tells us that �I is negative and that
therefore stimulated emission of radiation will be observed. The difficulty is that in or-
der to obtain a population inversion and maintain it, the effects of molecular collisions
must be overcome; the radiation-induced transitions themselves lead towards equalisa-
tion of the populations. This problem is overcome in molecular beam experiments by
presenting the radiation with a continuous supply of fresh molecules in state b, using
electric or magnetic state selection to reject molecules in state a. The result of the
experiment is essentially an amplification of the incident microwave radiation and the
first successful device was termed a MASER by its inventors. In experiments involving
infrared, visible or ultraviolet radiation, population inversions are usually produced by
optical pumping and collisional processes, and the Light Amplification produced by
the Stimulated Emission of Radiation gives rise to the LASER device.

Finally, case (iv) leads to the observation of enhanced stimulated absorption; again
molecular beam techniques which select the lower (a) state can be used. It is interesting
to note that all four population cases are observed in different interstellar gas clouds.

6.11.3. Einstein transition probabilities for electric dipole transitions

As promised at the end of section 6.11.1 we now consider a specific example of the
time-dependent perturbation introduced in equations (6.263) and (6.272). The radia-
tion density for electromagnetic radiation with unit dielectric constant and magnetic
permeability is given by [5, 72]

ρ(ν) = ε0

2
E2(ν), (6.293)
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where E2(ν) is the time-averaged value of the square of the electric field strength
corresponding to the radiation. For plane wave radiation, we can write

E(ν) = EX (ν),
(6.294)

EY (ν) = EZ (ν) = 0.

EX (ν) represents the component of the electric field in the X direction, and we may
describe the time variation, by analogy with (6.272), by writing

EX (ν) = 2E0
X (ν)cos2πνt, (6.295)

Since the average value of cos22πνt is 1/2, we find that

ρ(ν) = ε0
[
E0

X (ν)
]2
. (6.296)

The perturbation of a molecular system of electrically charged particles (electrons
and nuclei) by an oscillating electric field applied parallel to the X axis is represented
by the operator

H
′ = −EX

∑
j

q j X j , (6.297)

q j and X j being the charge and X coordinate of the j th particle in the system. When
the sum is taken over all particles of the system, the quantity∑

j

q j X j = µX , (6.298)

is called the component of the electric dipole moment (µ) of the system along the X
axis. The analysis now follows the same lines as those described in section 6.11.1; if
Cb(t) is the coefficient of the upper state, initially with zero value, its time evolution is
given by

∂Cb(t)

∂t
= −2πi

h

∫
ψ0∗

b H
′ψ0

a dτ

= 2πi

h

∫
ψ0∗

b exp[(2πi/h)Ebt]E0
X (ν)[exp(2πiνt)

+ exp(−2πiνt)]
∑

j

q j X jψ
0
a exp[(−2πi/h)Eat] dτ. (6.299)

We now use the expression µX (b, a) to represent the integral

µX (b, a) =
∫
ψ0∗

b

∑
j

q j X jψ
0
a dτ

=
∫
ψ0∗

b µXψ
0
a dτ. (6.300)

Integration of (6.299) and retention, as before, of the resonance term leads to the result

C∗
b (t)Cb(t) = 4[µX (b, a)]2

[
E0

X (ν)
]2 sin2{(π/h)(Eb − Ea − hν)t}

(Eb − Ea − hν)2
. (6.301)
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This expression includes only the terms due to a single frequency, but we can integrate
over the range of frequencies concerned. Since the integrand in (6.299) makes a sig-
nificant contribution only when ν is near the resonance value νba we obtain the final
result

C∗
b (t)Cb(t) = 4[µX (b, a)]2

[
E0

X (νba)
]2

∫
sin2{(π/h)(Eb − Ea − hν)t}

(Eb − Ea − hν)2
dν

= 4π2

h2
[µX (b, a)]2

[
E0

X (νba)
]2

t. (6.302)

Equation (6.302) tells us that the probability of an electric dipole transition per unit
time from state a to state b under the influence of electromagnetic radiation polarised
in the X direction is

4π2

ε0h2
[µX (b, a)]2ρ(νba), (6.303)

where we have used (6.296) for the radiation density. Similar expressions would be
obtained for the components of the oscillating electric fields in the Y and Z directions,
so that we obtain a result for the Einstein Bab coefficient for absorption, which is

Bab = 4π3

3ε0h2
{[µX (b, a)]2 + [µY (b, a)]2 + [µZ (b, a)]2}. (6.304)

One can repeat the above exercise for the time evolution of Ca(t) , yielding an expression
for the complementary Einstein coefficient Bba ; this is found to be identical to Bab

above, as required in equation (6.285).
The important result of the analysis above is that the calculation of spectroscopic

line intensities and the determination of selection rules is reduced to an assessment of
the electric moment integrals given in (6.300). We now consider the main examples in
more detail.

6.11.4. Rotational transition probabilities

We recall from our discussion (section 6.8.1) of the rigid rotor model of a diatomic
molecule that the Schrödinger equation is

− h2

2µR2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
ψ(θ, φ) = Eψ(θ, φ), (6.305)

which may be rewritten in the more compact form

h2

2µR2
J2ψ(θ, φ) = Eψ(θ, φ), (6.306)

where J 2 is the rotational angular momentum. The wave functions can be written,

ψ(θ, φ) = Klm Plm(cos θ ) exp(imφ), (6.307)
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where the Plm(cos θ) are the associated Legendre polynomials and the Klm are normal-
isation constants. The rotational energy levels, E(J ), are given by

E(J ) = h2

2µR2
J (J + 1), (6.308)

where, in this simple example, J takes integral values 0, 1, 2, etc., and µ is the reduced
mass.

The components of the dipole moment operator in polar coordinates are

µX = µe sin θ cosφ,

µY = µe sin θ sinφ, (6.309)

µZ = µe cos θ.

The integrals which determine the transition probabilities between states l,m and l ′,m ′

of a molecule in a non-degenerate state are, from equation (6.300),

µX (lm, l ′m ′) = µe Klm Kl ′m ′

∫
sin θ Plm(cos θ )Pl ′m ′ (cos θ) sin θ dθ

×
∫

cosφ exp[i(m ′ − m)φ]dφ,

µY (lm, l ′m ′) = µe Klm Kl ′m ′

∫
sin θ Plm(cos θ )Pl ′m ′ (cos θ) sin θ dθ

×
∫

sinφ exp[i(m ′ − m)φ] dφ, (6.310)

µZ (lm, l ′m ′) = µe Klm Kl ′m ′

∫
cos θ Plm(cos θ)Pl ′m ′ (cos θ ) sin θ dθ

×
∫

exp[i(m ′ − m)φ] dφ.

We now make use of some relations; first we have the familiar

cosφ = (1/2)[exp(iφ) + exp(−iφ)], sinφ = (1/2i)[exp(iφ) − exp(−iφ)]. (6.311)

Next we make use of three recurrence relationships involving the associated Legendre
polynomials:

(2l + 1) sin θ Plm(cos θ ) = Pl+1,m+1(cos θ) − Pl−1,m+1(cos θ ). (6.312)

(2l + 1) cos θ Plm(cos θ ) = (l − m + 1)Pl + 1,m(cos θ) + (l + m)Pl−1,m(cos θ). (6.313)

(2l + 1) sin θ Plm(cos θ ) = (l + m)(l + m − 1)Pl−1,m−1(cos θ)

− (l − m + 1)(l − m + 2)Pl+1,m−1(cos θ ). (6.314)

One can now show that

sin θ Plm(cos θ ) = [Pl+1,m+1(cos θ) − Pl−1,m+1(cos θ )]/(2l + 1)

= [(l + m − 1)(l + m)Pl−1,m−1(cos θ )

− (l − m + 2)(l − m + 1)Pl+1,m−1(cos θ )]/(2l + 1). (6.315)

cos θ Plm(cos θ ) = [(l − m + 1)Pl+1,m(cos θ) + (l + m)Pl−1,m(cos θ )]/(2l + 1).

(6.316)
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From these results we obtain the selection rules

µX (lm, l ′m ′) = µY (lm, l ′m ′) = 0 unless m = m ′ ± 1 and l = l ′ ± 1,

µZ (lm, l ′m ′) = 0 unless m = m ′ and l = l ′ ± 1. (6.317)

The important result, therefore, is the selection rule �l = ±1, or in terms of the
conventional rotational quantum number J,�J = ±1.

In most of the examples described in this book, the rotational angular momentum
is coupled to other angular momenta within the molecule, and the selection rules
for transitions are more complicated than for the simplest example described above.
Spherical tensor methods, however, offer a powerful way of determining selection rules
and transition intensities. Let us consider, as an example, rotational transitions in a good
case (a) molecule. The perturbation due to the oscillating electric component of the
electromagnetic radiation, interacting with the permanent electric dipole moment of
the molecule, is represented by the operator

H
′(t) = −T1(Et ) · T1(µe)

= −T1
p=0(Et )T

1
p=0(µe). (6.318)

We have taken the direction of the electric field to define the space-fixed p = 0 direction
in the expansion of the scalar product. The electric dipole moment of the molecule, µe,
is, however, quantised in the molecule-fixed axis system (q); we therefore rotate the
space-fixed component of µe into the molecular axis system using a rotation matrix,
so that the perturbation (6.318) becomes

H
′(t) = −T1

p=0(Et )
∑

q

D
(1)
0q (ω)∗T1

q (µe)

= −E0(t)D
(1)
00 (ω)∗T1

0(µe). (6.319)

In the second line of (6.319) we have used the fact that the permanent electric dipole
moment of the molecule lies along the internuclear axis (q = 0). The matrix elements
of (6.319) in a case (a) basis are

〈J,Ω,MJ | − E0(t)T1
0(µe)D

(1)
00 (ω)∗|J ′,Ω′,M ′

J 〉

= −E0(t)µ0(−1)J−MJ

(
J 1 J ′

−MJ 0 MJ

)
〈J,Ω‖D

(1)
.0 (ω)∗‖J ′,Ω′〉,

= −E0(t)µ0(−1)J−MJ

(
J 1 J ′

−MJ 0 MJ

)
(−1)J− 

(
J 1 J ′

−Ω 0 Ω′

)
× {(2J + 1)(2J ′ + 1)}1/2. (6.320)

This expression gives the selection rules immediately; the 3- j symbols are non-zero
if J ′ = J, J ± 1, and we note the additional selection rule �Ω= 0. In the event that
Ω = 0, the second 3- j symbol in (6.320) is only non-zero for J ′ = J ± 1.

We now repeat the exercise for a case (b) open shell molecule like the CN radical
which has a 2�+ ground state. We again transform the perturbation Hamiltonian into
the molecule-fixed axis system, and find the following matrix element in a case (b)
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basis:

〈η,Λ; N ,Λ, S, J,MJ | − E0(t)T1
0(µe)D

(1)
00 (ω)∗|η,Λ′; N ′,Λ′, S, J ′,M ′

J 〉

= −E0(t)µ0(−1)J−MJ

(
J 1 J ′

−MJ 0 MJ

)
〈η,Λ; N ,Λ, S, J‖D

(1)
.0 (ω)∗‖η,Λ′; N ′,Λ′, S, J ′〉

= −E0(t)µ0(−1)J−MJ

(
J 1 J ′

−MJ 0 MJ

)

× (−1)J ′+N+1+S{(2J ′ + 1)(2J + 1)}1/2

{
J N S
N ′ J ′ 1

}
〈N ,Λ‖D

(1)
.0 (ω)∗‖N ′,Λ′〉

= E0(t)µ0(−1)J+J ′+N+S−MJ

(
J 1 J ′

−MJ 0 MJ

)
{(2J ′ + 1)(2J + 1)}1/2

×
{

J N S
N ′ J ′ 1

}
(−1)N−Λ

(
N 1 N ′

−Λ 0 Λ

)
{(2N + 1)(2N ′ + 1)}1/2. (6.321)

For an electronic � state we have Λ = 0; the last 3- j symbol in (6.321) then requires
that N ′ = N ± 1 in order to be non-zero, which gives the most important selection
rule. We see also that there is a selection rule for J , namely�J = 0, ±1. We will meet
examples of other coupling cases elsewhere in this book.

We should not leave this discussion of the intensity of rotational transitions without
some mention of the parity selection rule. Electric dipole transitions involve the inter-
action between the oscillating electric field and the oscillating electric dipole moment
of the molecule. The latter is represented in quantum mechanics by the transition mo-
ment µX (b,a) given in equation (6.300). For this transition moment to be non-zero, the
integrand ψ0∗

b µXψ
0
a must be totally symmetric with respect to all appropriate symme-

try operations, which includes the space-fixed inversion operator E∗. Now the electric
dipole moment operator,

µX =
∑

i

qi Xi , (6.322)

changes sign under E∗ because of the result

E∗(Xi ) = −Xi . (6.323)

Therefore the product ψ0∗
b ψ0

a must also be antisymmetric with respect to E∗ if the
transition moment is to be non-zero. Put another way, electric dipole transitions must
obey the parity selection rule + ↔ −, that is, they only connect states of opposite
parity. This selection rule is general for all electric dipole transitions.

6.11.5. Vibrational transition probabilities

Vibrational transitions play only a minor role in the spectroscopy described in this
book, although they do occur in some of the double resonance experiments described
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in chapter 11. It does seem important, however, to understand the factors which govern
their intensity, at least in a qualitative manner.

In section 6.8.2 we described and solved the Schrödinger equation for a harmonic
oscillator, equation (6.178). The potential energy was expressed in terms of a vibrational
coordinate q which was equal to R − Re, Re being the equilibrium bond length. The
dependence of the electric dipole moment on the internuclear distance may be expressed
as a Taylor series,

µe = µ0 +
(

∂µe

∂R

)
0

q + 1

2!

(
∂2µe

∂R2

)
0

q2 + 1

3!

(
∂3µe

∂R3

)
0

q3 + · · · , (6.324)

where µ0 is the permanent electric dipole moment at equilibrium with q = 0 and
(∂µe/∂R)0 represents the change in the dipole moment with distance evaluated at the
equilibrium internuclear distance. Since the displacement of the nuclei for a vibration
in a diatomic molecule is only a few percent of the interatomic distance, the series
(6.324) converges quite rapidly.

The electric dipole transition moment for a harmonic oscillator may now be written

µe(v,v′) =
∫
#∗
v (q)

[
µ0+

(
dµe

dR

)
0

q+ 1

2!

(
d2µe

dR2

)
0

q2+ 1

3!

(
d3µe

dR3

)
0

q3+ · · ·
]
#v′ (q) dq

=µ0 +
(

dµe

dR

)
0

〈v|q|v ± 1〉 + 1

2

(
d2µe

dR2

)
0

〈v|q2|v, v ± 2〉 + · · · . (6.325)

The dominant term for vibrational transitions is, of course, the second, which gives
the primary selection rule for a harmonic oscillator of �v = ±1. The overtone tran-
sitions �v = ±2,±3, etc., are very much weaker because of the rapid convergence
of (6.325).

As we have described before, a more accurate potential function takes account
of the vibrational anharmonicity. For a Morse potential the vibrational Hamiltonian
becomes

H = − h2

2µ

d2

dq2
+ De[1 − exp(−βq)]2 (6.326)

and the matrix representation of this Hamiltonian in a harmonic oscillator basis can be
readily computed. Using the wave functions which, as linear combinations of harmonic
oscillator functions diagonalise (6.326), the terms in (6.325) can be re-examined. The
effect of increased anharmonicity is to enhance the intensity of the overtone transitions.

6.11.6. Electronic transition probabilities

Electronic transitions in diatomic molecules are determined by matrix elements of the
dipole operator,

µe( f, i) =
∫
ψ∗

f µe( f, i)ψi dτ, (6.327)
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where the f and i subscripts indicate the final and initial states, respectively. Let us
consider the situation when a plane-polarised oscillating electric field in the radiation
is incident at an angle θ to the molecular dipole axis. The component of the electric
dipole moment µe projected along the field axis is given by

µZ =µe cos θ. (6.328)

Since µe arises from a sum over nuclear and electronic charges, we may write

µe = e

(∑
α

Zαrα −
∑

i

r i

)
, (6.329)

where e is the elementary charge, Zα is the atomic number of the αth nucleus, rα is
the centre-of-mass position of the αth nucleus, and r i is the centre-of-mass position
of the i th electron in the molecule, both measured in the molecule-fixed axis system.
We note that, because of the electronic contribution, there are instantaneous non-zero
components of µe perpendicular to the internuclear axis as well as parallel to it.

Now the total wave functions for the initial and final states can be written in the
usual form as products of electronic, vibrational and rotational functions:

ψi =ψ ′
e(Rα, ri )ψ

′
v(Rα)YJ ′ M ′ , ψ f =ψe(Rα, ri )ψv(Rα)YJ M . (6.330)

Substituting (6.330), (6.329) and (6.328) in (6.327) we obtain

µe( f, i) = 〈J,M | cos θ |J ′,M ′〉
∫
i

∫
α

ψ∗
eψ

∗
v e

(∑
α

Zαrα −
∑

i

r i

)
ψ ′

eψ
′
v dVi dVα,

(6.331)

where the integrations are over electronic (i) and nuclear (α) coordinates. The matrix
elements of cos θ lead to selection rules �J = 0,±1, �M = 0,±1 for the rotational
part of the transition. For the remaining integrals in (6.331) we have

INT = e

∫
i

∫
α

ψ∗
eψ

∗
v

(∑
α

Zαrα −
∑

i

r i

)
ψ ′

eψ
′
v dVi dVα,

= e

∫
α

∫
i

ψ∗
eψ

∗
v

∑
α

Zαrαψ
′
eψ

′
v dVi dVα − e

∫
α

∫
i

ψ∗
eψ

∗
v

∑
i

r iψ
′
eψ

′
v dVi dVα. (6.332)

We now make use of the Born–Oppenheimer approximation which allows us to separate
the electronic and vibrational wave functions, yielding

INT = e

∫
i

ψ∗
e (ri , Rα)ψ ′

e(ri , Rα) dVi

∫
α

ψ∗
v (Rα)

(∑
α

Zαrα

)
ψ ′
v(Rα) dVα

− e

∫
α

ψ∗
v (Rα)ψ ′

v(Rα) dVα

∫
i

ψ∗
e (ri , Rα)

∑
i

r iψ
′
e(ri , Rα) dVi . (6.333)

The first term in this equation is zero because the two electronic states have orthogonal
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eigenfunctions. The final expression for the matrix element of the electric dipole mo-
ment operator is therefore

µe( f, i) = 〈J,M | cos θ |J ′,M ′〉

∫
α

ψ∗
v (Rα)ψ ′

v(Rα) dVα




×

−e

∫
i

ψ∗
e (ri , Rα)

∑
i

r iψ
′
e(ri , Rα) dVi


 , (6.334)

the product of a rotational, vibrational and electronic part. The vibrational integral in
(6.334) describes the overlap of the vibrational functions in the ground and excited
electronic states; its square is referred to as the Franck–Condon factor.

Notice a very important feature of equation (6.334). Electronic transitions do not
depend for their intensity on the presence of a permanent electric dipole moment
in the molecule, so that they exist for both homonuclear and heteronuclear diatomic
molecules. This is in contrast to rotational and vibrational transitions which have elec-
tric dipole intensity only in heteronuclear molecules (apart from one extraordinary
exception for the H+

2 molecule, described in chapter 10.)

6.11.7. Magnetic dipole transition probabilities

The oscillating magnetic component of electromagnetic radiation can also interact with
a magnetic moment in a molecule, and spectroscopic transitions known as magnetic
dipole transitions then occur. There are several possible sources of a magnetic moment
in a molecule, the most important occurring in electronic open shell systems. Electron
spin gives rise to a magnetic moment

µS = −gSµB S, (6.335)

the origin of which was discussed extensively in chapter 3, where the presence
of electron spin was shown to arise naturally in the Dirac theory of the electron;
hS is the spin angular momentum, with a value (1/2)h, gS is the free electron g-
value with a value of 2.0023, and µB is the electron Bohr magneton, with a value
9.274 015 4 × 10−24 J T−1. The interaction of the electron spin magnetic moment with
an applied static magnetic field is the basis of magnetic resonance spectroscopy, which
is discussed extensively in chapter 9. However, interaction of µS with an oscillating
magnetic field can give rise to magnetic dipole transitions; we will look at an important
example shortly.

Open shell molecules may also have a magnetic moment arising from electron
orbital angular momentum,

µL = −gLµB L, (6.336)

which may be either the sole source of an electronic magnetic moment, or one in
addition to an electron spin magnetic moment. In this case gL has the value 1.0000. In
many cases, as we shall see elsewhere, L and S are strongly coupled to each other, and
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to other angular momenta in the molecule. There are, however, examples of molecules
where the orbital magnetic moment is the main source of both a static magnetic moment,
and also magnetic dipole transitions.

We will return to consider the magnitudes of the interaction of a magnetic field with
the electronic spin and orbital magnetic moments, but first we consider other sources
of magnetic moment. The most important of these is nuclear spin angular momentum,
conferring a magnetic moment given by

µI = gNµN I, (6.337)

where I is the nuclear spin angular momentum, which takes either integral or half-
integral (strictly speaking, half-odd) values, and µN is the nuclear magneton with a
value 5.050 786 6 × 10−27 J T−1. Chapter 4 was devoted to a detailed description of
interactions arising from nuclear spin magnetic moments, but we did not discuss mag-
netic dipole transition probabilities. Although these are a factor of (2 × 103)2 smaller
than electron spin magnetic dipole probabilities, and a further five orders-of-magnitude
smaller than electric dipole probabilities, they are nevertheless of extreme importance.
Combined with static Zeeman interactions, they form the basis of nuclear magnetic
resonance in condensed phases, and the molecular beam magnetic resonance studies
which are described extensively in chapter 8. The most important magnetic nucleus is
the proton, with a spin I = 1/2 and a nuclear g-factor, gN , of 2.792 847 in units of the
nuclear magneton. Many other nuclei have magnetic moments, and appear in this book.

Finally in this parade of magnetic moments we have the rotational magnetic
moment,

µR(J ) = gRµN J. (6.338)

Two protons rotating about their common centre-of-mass with an angular momentum
h will possess a magnetic moment of one nuclear magneton [73]. In the hydrogen
molecule the presence of the negatively charged electrons reduces this value to
0.8829 nuclear magnetons [74]; the value of gR is, indeed, the difference between a
contribution from the nuclei (gN

R ) and a contribution from the electrons (ge
R).

As we described above, magnetic dipole transition probabilities in closed shell
systems are many orders-of-magnitude smaller than electric dipole probabilities. In an
experiment where a spectroscopic transition is detected directly by measuring the ab-
sorption of electromagnetic radiation, this difference is very significant. In many other
experiments, however, an indirect detection method which involves energy level popu-
lation transfer is used. This is the case in most molecular beam magnetic or electric reso-
nance studies, and in most double resonance investigations. Under these circumstances,
optimum detection sensitivity is usually achieved by approaching saturation of the tran-
sition concerned, and this simply requires that adequate radiation power be available.

One other important difference between electric and magnetic dipole transition
probabilities involves the inversion symmetry of all spatial coordinates (i.e. parity). A
magnetic dipole moment is an axial vector that does not change sign under inversion,
unlike an electric dipole moment. Consequently magnetic dipole transitions occur only
between states of the same parity.
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We shall encounter many examples of magnetic dipole spectra elsewhere in this
book but note briefly here a few examples which again illustrate the importance of the
Wigner–Eckart theorem in determining the selection rules. Rotational transitions in
the metastable 1�g state of O2 provide an important example for an open shell system
which does not possess an electric dipole moment [75]. The 1�g state arises from the
presence of the two highest energy electrons in degenerate π -molecular orbitals; if
these orbitals are denoted π+1 and π−1 the wave functions for the 1�g state may be
written

ψ+2 = 1√
2
π+1(1)π+1(2){α(1)β(2) −β(1)α(2)}, Λ= +2

(6.339)

ψ−2 = 1√
2
π−1(1)π−1(2){α(1)β(2) −β(1)α(2)}, Λ= −2.

These two functions do not have definite parity, but the symmetric and antisymmetric
combinations of them do, that is,

ψs = 1

2
{π+1(1)π+1(2) +π−1(1)π−1(2)}{α(1)β(2) −β(1)α(2)},

(6.340)

ψa = 1

2
{π+1(1)π+1(2) −π−1(1)π−1(2)}{α(1)β(2) −β(1)α(2)}.

These two functions are the components of a Λ-doublet but in the homonuclear
molecule 16O16O symmetry requirements dictate that each rotational level can be asso-
ciated with only oneΛ-doublet component, and all of the rotation levels in 1�g O2 have
positive parity. (We have already discussed this result in section 6.10.3). Transitions
between them are obviously magnetic dipole transitions, and we can calculate their
relative intensities by considering the matrix elements of theperturbation:

HB(t) = −µL · B(t). (6.341)

We again expand in the space-fixed direction, choosing p = 0 to be the direction of
the oscillating magnetic field, and then rotate the orbital angular momentum into the
molecule-fixed system, retaining only the q = 0 component:

HB(t) = gLµB Bp=0(t)T1
p=0(L)

= gLµB Bp=0(t)D
(1)
00 (ω)∗T1

q=0(L) (6.342)

= gLµBΛBp=0(t)D
(1)
00 (ω)∗.

The matrix element we now require, using the unsymmetrised states (6.339), is

〈η,Λ; J,Λ,MJ |HB(t)|η,Λ; J ′,Λ,MJ 〉
= gLµBΛB0(t)〈η,Λ; J,Λ,MJ |D(1)

00 (ω)∗|η,Λ; J ′,Λ,MJ 〉

= gLµBΛB0(t)(−1)J−MJ

(
J 1 J ′

−MJ 0 MJ

)
(−1)J−Λ

×
(

J 1 J ′

−Λ 0 Λ

)
{(2J + 1)(2J ′ + 1)}1/2. (6.343)
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In terms of the symmetrised combinations (6.340) the matrix element between the
symmetric and antisymmetric combination is zero. In other words, the magnetic dipole
�J = ±1 rotational transitions occur between states of the same parity, as we expect.

For O2 in its 3�−
g ground state the rotational transitions are again magnetic dipole

allowed, but in this case arise through interaction of the oscillating magnetic field with
the electron spin magnetic moment,

HB(t) = gSµBT1(B(t)) · T1(S). (6.344)

The details of the rotational spectrum are described in chapter 10; only odd N rotational
levels exist in the homonuclear 16O16O molecule.

Finally in this brief review of magnetic dipole transitions we look at the proton
magnetic resonance spectrum of H2 in its J = 1 rotational level; in this level the two
proton spins are combined to form a total spin I = 1 (this is ortho-H2). An applied
static magnetic field defines the space-fixed p = 0 direction, the effective Hamiltonian
being

HZ = −gHµN T1
0(B)T1

0(I). (6.345)

As we show in chapter 8, the effective applied magnetic field is actually modified by a
screening factor, but we ignore this for the moment. The Zeeman effect arising from
(6.345) may be derived using the Wigner–Eckart theorem:

〈η, I,MI |HZ |η, I,MI 〉=−gHµN B0(−1)I−MI

(
I 1 I

−MI 0 MI

)
{I (I +1)(2I +1)}1/2.

(6.346)

This would imply a very simple linear Zeeman effect but, as we show in chapter 8,
additional terms describing the nuclear spin–rotation interaction and the spin–spin
interaction make the system much more interesting. The nuclear spin transitions are
induced by an oscillating magnetic field applied perpendicular to the static magnetic
field, the perturbation being represented, for example, by the term

〈I,MI |−gNµN B−1(t)T1
1(I)|I,M ′

I 〉 = −gNµN B−1(t)(−1)I−MI

×
(

I 1 I
−MI 1 MI − 1

)
{I (I + 1)(2I + 1)}1/2. (6.347)

The selection rule given by the 3- j symbol is �MI = +1; there will, of course, be a
similar term for p = −1, giving the selection rule �MI = −1. Magnetic dipole tran-
sitions arising from coupling of the rotational magnetic moment with the oscillating
magnetic field are also possible.

Apart from electric and magnetic dipole transitions, time-dependent interactions
involving higher-pole electric and magnetic moments can, in principle, occur. However,
no examples of such transitions appear in this book; they are of academic rather than
practical interest.
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6.12. Line widths and spectroscopic resolution

6.12.1. Natural line width

Line broadening processes are important in themselves, in the information they can
provide concerning the important physics of a molecular gas system. They are also
important to the experimental spectroscopist in determining the spectroscopic resolu-
tion and hence the amount and accuracy of the information which can be derived. We
here review briefly the principal effects which determine spectroscopic line widths in
different experiments.

Many of the processes which determine line widths can be removed by appro-
priately designed experiments, but it is almost impossible to avoid so-called natural
line broadening. This arises from the spontaneous emission process (governed by the
Einstein A coefficient) described in the previous section. Spontaneous emission ter-
minates the lifetime of the upper state involved in a transition, and the Heisenberg
uncertainty principle states that the lifetime of the state (�t) and uncertainty in its
energy (�E) are related by the expression

�t ·�E ≈ h. (6.348)

The corresponding spread in frequency, �ν, is

�ν= �E

h
≈ 1

2π�t
. (6.349)

We must therefore determine �t and this is straightforward since it is simply equal to
the inverse of the Einstein A coefficient,

�t = 1

A
= 3hc3

16π3ν3|µ|2 . (6.350)

Here ν andµ, the frequency and transition dipole moment, refer to a specific transition,
but a given level can usually decay by spontaneous emission to a number of different
levels. However if we take the frequency to be 10 GHz, and the dipole matrix element
to be 3 × 10−30 C m, we obtain a natural line width from (6.350) of 10−9 Hz. In the
microwave region, therefore, this contribution is negligible, but in the near ultraviolet
the natural line width of an excited electronic state is of the order 1 MHz, unless the
state is metastable.

6.12.2. Transit time broadening

A source of line broadening which is fairly common in molecular beam studies, and
often dominant in ion beam studies is transit time broadening. This arises when the
interaction time between the electromagnetic radiation field and the molecule is limited
by the time the molecule spends in the radiation field. The transit time t is equal to d/v,
where v is the molecular velocity and d is the length of the radiation field. A typical
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molecular velocity is 103 m s−1, so that a 1 m radiation field would give a line width of
the order 1 kHz. A more severe limitation arises when a laser beam crosses a molecular
beam; the interaction zone can then be very short, being determined by the laser beam
waist, and the transit time broadening correspondingly large. In ion beam experiments
which employ ions accelerated to kilovolt potentials, transit times are of the order 1µs,
which often determines a limiting spectroscopic resolution of 1 MHz.

6.12.3. Doppler broadening

The Doppler effect plays a major role in spectroscopic resolution, in both beam and non-
beam experiments. The sonic form of the Doppler shift, when a moving vehicle emits
a sound heard by the stationary observer, is familiar to everyone. The electromagnetic
radiation equivalent can be expressed in a very simple form. If a molecular source is
moving with a velocity v relative to a receiver, and is emitting radiation of frequency
ν, the observed frequency f is given by

f = 1

{1/ν+ v/νc} = ν

{1 + v/c} . (6.351)

The observed frequency f may be smaller or larger than the emitted frequency, de-
pending upon the direction of the moving source relative to the observer. The fractional
Doppler shift in wavelength, z, is given by

z = λ− λ0

λ0
= v

c
, (6.352)

provided v � c; if v is sufficiently high, as with ion beam experiments involving
light ions, a relativistic theory is necessary, but this is a straightforward extension.
In rotational spectroscopy there is a preference for measuring frequencies rather than
wavelengths. For a source moving relative to an observer, the Doppler shift in frequency,
�ν= f − ν, is given by

�ν= ν{−z/(1 + z)} ∼= −vν/c. (6.353)

We note the important result that the Doppler shift is directly proportional to the
frequency.

In the microwave and radiofrequency regions of the spectrum the Doppler contri-
bution to the line width is usually negligible because of the relatively low frequency
of the electromagnetic radiation. In the infrared, visible and ultraviolet regions, how-
ever, Doppler broadening becomes increasingly important. The Doppler effect can
contribute to line widths in several different ways, depending on the experimental
technique. In molecular beam experiments the direction of propagation of the electro-
magnetic radiation is usually arranged to be perpendicular to the trajectory direction of
the molecular beam. In a perfect perpendicular experiment the Doppler effect would be
zero. However, even in a well-collimated molecular beam the molecular trajectories are
not all perfectly parallel to the beam direction, and there is also a spread of molecular
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velocities within the beam. A good summary of these factors has been provided by
Demtröder [76]; despite the reservations above, the Doppler effect is drastically min-
imised and very high resolution is obtained, particularly for electronic spectroscopy in
the visible and near-ultraviolet regions of the spectrum. In a few experiments, partic-
ularly with those employing laser beams, the electromagnetic radiation is propagated
parallel to and coincident with the molecular beam direction. There is then a maximised
Doppler shift, often for both parallel and antiparallel radiation, and a corresponding
Doppler line width.

In studies of bulk gas samples, as in conventional microwave absorption experi-
ments, one must take account of the fact that one is studying an assembly of molecules
moving in different directions at different velocities, and suffering frequent collisions
which change both the velocity and direction. It may be shown that for a gas at thermal
equilibrium, the Doppler full line width �ν at half-height is given by

�ν= 2ν

c

(
2NAkT ln2

M

)1/2

= 7.15 × 10−7(T/M)1/2ν, (6.354)

where NA is Avogadro’s number and M is the relative molecular mass of the molecule.
For T = 300 and M = 30, at a microwave frequency of 10 GHz the Doppler width is
about 23 kHz, which is small compared with other contributions to the line width. In
the ultraviolet, however, the line width from bulk gas samples is usually limited by the
Doppler effect, and is typically of the order of 0.1 cm−1 (∼3000 MHz).

6.12.4. Collision broadening

The most important source of line broadening in microwave studies of bulk gas samples
is collisional or pressure broadening, the theory of which was first developed by Van
Vleck and Weisskopf [77]. They developed the line shape function

S(ν, ν0) = ν

πν0

[
�ν

(ν− ν0)2 + (�ν)2
+ �ν

(ν+ ν0)2 + (�ν)2

]
, (6.355)

where �ν= 1/(2πτ ), τ being the average time between collisions and ν0 being the
resonant frequency. �ν is here the half-width at half-peak height. The mechanisms
which operate during molecular collisions and their relationship to the intermolecular
forces have been considered by Anderson [78]. In standard microwave experiments,
for which �ν� ν and ν≈ ν0, the second term in (6.355) can be neglected, leaving a
Lorentzian line shape function

S(ν, ν0) = 1

π

[
�ν

(ν− ν0)2 + (�ν)2

]
. (6.356)

�ν then becomes the half-width at half-peak height. As the gas pressure is increased,
however, the second term becomes significant and the line shape departs from the
simple Lorentzian.

When the populations of the two levels involved in a transition are determined by
thermal equilibrium conditions, the Van Vleck–Weisskopf line shape function may be
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combined with the transition probability function to yield an equation giving the line
absorption coefficient, which is

γ = 8π2 Nv fa

3ckT
|µab|2ν2 �ν

(ν− ν0)2 + (�ν)2
. (6.357)

Nv is the number of molecules per unit volume and fa is the fraction in the lower state
a involved in the transition.

We see that the factors which determine line widths in microwave experiments
can, to a considerable extent, be controlled. Molecular beam methods generally give the
highest resolution, particularly if long transit times in the radiation field can be arranged.
Double resonance experiments involving the observation of microwave transitions are
subject to the same factors as those for simpler experiments, unless a radiative decay
process limits the lifetime of an excited electronic state being studied.

The usual situation in molecular spectroscopy is that there is a single dominant
contribution to the spectral line broadening. It sometimes happens that two contribu-
tions are of similar magnitude. For example, rotational transitions of light molecules
occur in the far-infrared region of the spectrum. For sample pressures of around 1 torr,
pressure broadening is similar in magnitude to Doppler broadening at these frequen-
cies. The resultant lineshape, which is a convolution of a Lorentzian and a Gaussian
line shape, is known as a Voigt profile. It cannot be described in analytic form and must
be constructed numerically in simulation.

6.13. Relationships between potential functions
and the vibration–rotation levels

6.13.1. Introduction

Earlier in this chapter we discussed the ab initio calculation of diatomic molecule
potential functions; these may be expressed as the sum of the potential for a rotationless
molecule, and a rotational energy term,

VJ (R) = V0(R) + J (J + 1)h2/2µR2. (6.358)

One of the problems we address in this section is that of calculating the vibration–
rotation energies and wave functions, given a theoretical potential function for the
molecule. We also tackle the reciprocal problem; given measurements of a set of
vibration–rotation energies, how best is the potential function determined? The first
problem has already been solved for the simple case when an analytical potential func-
tion is assumed, for example, the Morse potential, for which the vibrational energies
and wave functions follow in a straightforward manner. We are now concerned with
the more general and realistic problem of a theoretical potential which cannot be rep-
resented by a simple analytical expression. Among many books which deal with this
topic we have found those by Child [79, 80] and Lefebvre-Brion and Field [61] to be
particularly helpful.
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6.13.2. The JWKB semiclassical method

The Schrödinger equation can be written in the form

h2 d2ψ

dR2
+ p2(R)ψ = 0, (6.359)

where p(R) is the classical momentum

p(R) = {2µ[E − VJ (R)]}1/2. (6.360)

Given the potential energy curve VJ (R) it is possible, through an iterative proce-
dure which we describe shortly, to locate the vibrational levels using the semiclassical
quantisation condition

R2∫
R1

[p(R)/h] dR = (v+ 1/2)π =
√

2µ

h

R2∫
R1

[E − VJ (R)]1/2 dR. (6.361)

R1 and R2 are the lower and upper classical turning points at which the total energy E
is equal to the potential energy VJ (R). The integral in equation (6.361) is known as
the Bohr–Sommerfeld integral and the semiclassical vibrational eigenfunctions are
known as JWKB wave functions (after Jeffreys [81], Wentzel [82], Kramers [83] and
Brillouin [84]). In order to see the relationship between (6.361) and the Schrödinger
equation (6.359) we search for solutions to (6.359) of the form

ψ(R) = exp[iS(R)/h]. (6.362)

The first- and second-derivatives which we need are

dψ

dR
= iψ(R)S′(R)

h
, (6.363)

d2ψ

dR2
= i

dψ(R)

dR

S′(R)

h
+ iψ(R)S′′(R)

h

= −ψ(R)

{
(S′(R))2

h2
− iS′′(R)

h

}
. (6.364)

S′(R) and S′′(R) are the first- and second-derivatives of S(R) with respect to R. The
one-dimensional Schrödinger equation,

− h2

2µ

d2ψ(R)

dR2
= [E − V (R)]ψ(R), (6.365)

therefore becomes

− h2

2µ

{
−ψ(R)

[
(S′(R))2

h2
− iS′′(R)

h

]}
= [E − V (R)]ψ(R). (6.366)

From this equation we obtain the result

(S′)2 − ihS′′ = 2µ[E − V (R)]. (6.367)



278 Electronic and vibrational states

We now expand the phase function S(R) in powers of h:

S = S0 + hS1 + h2

2
S2 + · · · . (6.368)

We substitute in (6.367), equate terms with like powers of h, and obtain the result:

[−(S′
0)2 + p2(R)]+h[−2S′

0S′
1 + iS′′

0 ]+h2[−2S′
0S′

2 − (S′
1)2 + iS′′

1 ]+ · · · = 0. (6.369)

The term independent of h gives the result

(S′
0)2 = 2µ[E − V (R)] = p2(R). (6.370)

If we now integrate (6.370) we obtain the result

S0 = ±
∫

p(R) dR. (6.371)

We now return to equations (6.367) and (6.368), and extract the terms which are
linear in h, obtaining the results

S′ = S′
0 + hS′

1, (6.372)

(S′)2 = (
S′

0

)2 + 2hS′
0S′

1 + h2(S′
1)2. (6.373)

It follows that for terms linear in h,

2S′
0S′

1 − iS′′
0 = 0. (6.374)

Now from equation (6.371)

S′
0 = p(R), (6.375)

so that

2p(R)S′
1 − ip′(R) = 0,

S′
1 = ip′(R)

2p(R)
. (6.376)

The solution to equation (6.376) is

S1 = i ln[ p(R)]1/2. (6.377)

Hence the solution (6.362) to the radial Schrödinger equation is a linear combination
of the functions

ψ±(R) = exp[iS(R)/h]

= exp[iS0/h + iS1 + · · ·]

= exp

{
i/h

{
±

∫
p(R) dR

}
+ i

{
i ln[p(R)]1/2

} + · · ·
}

= exp

{
i/h

{
±

∫
p(R) dR + ih ln[ p(R)]1/2

}
+ · · ·

}
. (6.378)
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Taking the first term in the exponent, we obtain the first-order JWKB functions, appro-
priately normalised:

ψ±(R) = 1

[ p(R)]1/2
exp

{
± i

h

∫
p(R) dR

}
. (6.379)

The validity of equation (6.379) is restricted to classically accessible regions,
where p(R) is real. It breaks down catastrophically at any classical turning points
where p(R) is zero but methods are available to correct JWKB solutions around such
singularities. Proper real combinations of ψ±(R) in the region R1< R< R2 may be
expressed as [79, 80]

ψ(R) = A

[ p(R)]1/2
sin


 1

h

R∫
R1

p(R) dR + π

4




(6.380)

= A′

[p(R)]1/2
sin


 1

h

R2∫
R

p(R) dR + π

4


.

The first and second forms of this wave function ensure the proper connections around
R = R1 and R = R2 respectively. Consistency between equations (6.380) requires that

1

h

R2∫
R1

p(R) dR = (v+ 1/2)π (6.381)

which is the Bohr–Sommerfeld quantisation condition, and the coefficients A and A′

are related by

A′ = (−1)vA. (6.382)

The numerical evaluation of the Bohr–Sommerfeld integral in the equation,

(v+ 1/2)π =
√

2µ

h

R2∫
R1

[E − VJ (R)]1/2 dR (6.383)

is carried out by a process known as Gaussian quadrature. We define the function

F(R) =
(√

2µ

h

){
E − VJ (R)

(R2 − R)(R − R1)

}1/2

, (6.384)

so that

{E − VJ (R)}1/2 = (h/
√

2µ){(R2 − R)(R − R1)}1/2 F(R). (6.385)

The JWKB integral may therefore be rewritten in the form

v+ 1/2 =
R2∫

R1

{(R2 − R)(R − R1)}1/2 F(R) dR. (6.386)

The reason for the substitution is that the right-hand side of (6.386) can be rewritten
by making use of a standard expansion, given by Abramowitz and Segun [85], which
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is

v+ 1/2 =
(

R2 − R1

2

)2 n∑
i=1

wi F(Ri ), (6.387)

where

Ri = R2 + R1

2
+ R2 − R1

2
xi ,

xi = cos(iπ/n + 1), (6.388)

wi = (π/n + 1)
(
1 − x2

i

)
.

The calculation of the vibrational energies from a given potential V (R) therefore re-
quires the solution of (6.387) for integral values of v, R2 and R1 being the outer and
inner turning points at energy E . The number of terms n in the summation in equa-
tion (6.387) is taken to achieve adequate convergence.

A numerical method for solving the Schrödinger radial equation, which makes
use of JWKB wave functions, was described by Cooley [86]. This method is readily
available as a computer program called LEVEL from Le Roy [87]; a helpful summary
of the method is given by Cashion [88].

6.13.3. Inversion of experimental data to calculate
the potential function (RKR)

The most important method of obtaining the potential function from the experimen-
tal vibrational and rotational spectroscopic term values is the RKR method (from
Rydberg [89], Klein [90], and Rees [91]). This semi-classical procedure exploits the
dependence of the quantisation condition on phase integrals which involve the under-
lying potential function explicitly. These phase integrals can be subjected to an Abelian
transformation which provides the classical turning points at any energy. The resultant
energy-dependent turning points can then be used to define the required potential func-
tion. Thus we see that the RKR potential is not generated as an analytical function. If
it is required in this form, a suitable V (R) function must be least-squares fitted to the
turning points.

The required form of the potential function VJ (R) for a diatomic molecule has
already been given in equation (6.358). It can be seen that it is a function of both R
and J . Let us consider the integral

X (E, J ) =
R2(E)∫

R1(E)

[E − VJ (R)] dR, (6.389)

where R1 and R2 are the inner and outer classical turning points at energy E . This
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function has the convenient properties that

∂X

∂E
=

R2(E)∫
R1(E)

1 dR = R2(E) − R1(E), (6.390)

and

∂X

∂J
= (2J + 1)h2

2µ

R2(E)∫
R1(E)

1

R2
dR

(6.391)

= −(2J + 1)
h2

2µ

[
1

R2(E)
− 1

R1(E)

]
.

Hence, for J = 0,

∂X

∂J
= h2

2µ

[
1

R1(E)
− 1

R2(E)

]
. (6.392)

Thus, a knowledge of the derivatives of X with respect to E and J will allow us to
determine the turning points at energy E .

The experimental input into the RKR calculation comes from the vibrational energy
levels G(v) and the rotational constants for each level B(v). If it is possible to define the
integral X (E ,J ) in terms of G(v) and B(v), we can use equations (6.390) and (6.392)
to determine V0(R). The link is provided by the semi-classical quantisation condition,
which has a form very similar to that of equation (6.389):

(v+ 1/2)π =
√

2µ

h

R2(E)∫
R1(E)

[E − VJ (R)]1/2 dR. (6.393)

The Abelian transformation is carried out at this point. After a certain amount of work
(see, for example, Zare [92] or Miller [93] ), the variable R in the integral (6.383) can
be replaced by v, which we recall is continuous in the semi-classical world:

X (E, J ) = 2π

v(E)∫
v(0) = vmin

[E − E(v, J )]1/2 dv. (6.394)

By taking the partial derivatives of X with respect to E and J at J = 0, we obtain

∂X

∂E
= π

v(E)∫
vmin

[E − G(v)]−1/2 dv, (6.395)

∂X

∂J
= π

v(E)∫
vmin

[E − G(v)]−1/2 ∂E

∂J
dv. (6.396)
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Now we know that

∂E

∂J
= (2J + 1)B(v) − (4J 3 + 6J 2 + 2J )D(v) + · · · . (6.397)

so that, for J = 0,

∂X

∂J
= π

v(E)∫
vmin

B(v)[E − G(v)]−1/2 dv. (6.398)

Equations (6.395) and (6.398) thus provide us with the quantities which we need to
determine the turning points R1(E ) and R2(E ) in equations (6.390) and (6.392) from
a knowledge of G(v) and B(v). It is obvious from their form that RKR inversion
can only be performed up to the energy which corresponds to the highest observed
vibrational level. Furthermore, although the integrands in these equations become
infinite at the upper limits of integration, the resultant singularity is integrable by
various methods [94].

In the quantum mechanical derivation of the vibrational levels, the value of vmin at
the bottom of the potential function is −1/2, that is,

G(−1/2) = 0. (6.399)

However, this is not so in the semi-classical treatment (see, for example, Dunham [65])
for which the zero of energy is defined by

Ev0 = Y00 + G(v), (6.400)

where

Y00 = Be

4
+ αeωe

12Be
+

(
αeωe

12Be

)2 1

Be
− ωexe

4
. (6.401)

This quantity is the leading term in the Dunham expansion which is obtained by higher-
order quantisation than that given in equation (6.358). In the semi-classical treatment
therefore,

vmin
∼= −1

2
− Y00

ωe
. (6.402)

Finally, we note that this discussion of the RKR method has been given in energy units
(J). The equations must be divided throughout by hc if the equivalent expressions in
wavenumber units, for example, are required.

6.14. Long-range near-dissociation interactions

Most spectroscopic studies involve the lowest energy vibration–rotation levels, and the
determination of the values of the molecular parameters at or near the equilibrium po-
sition. This is equally true of most theoretical studies; indeed there are many published
accurate ab initio calculations of equilibrium properties which do not even extrapo-
late with the correct analytical form to the dissociation asymptote. Calculations which
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give an accurate description of equilibrium properties can be wildly inaccurate for the
long-range part of the potential. The reverse is not true, however. In order to calculate
the near-dissociation vibration–rotation levels accurately, it is necessary to obtain an
accurate description of the whole potential, not just the region close to the minimum. It
should also be recognised that the long-range part of the potential is relevant to impor-
tant aspects of the molecular physics, particularly, in the case of diatomic molecules,
the reactive and non-reactive scattering of atoms.

We may define long-range as being the region where the electron clouds on the
separate atoms no longer overlap, so that chemical valence forces, attractive or repul-
sive, are no longer significant. It is then usual to express the long-range part of the
potential near the dissociation limit as a sum of inverse (integer) power terms in the
interatomic separation R,

V (R) = De −
∑

n

Cn

Rn
, (6.403)

where De is the dissociation energy. The n value of the lowest-order term in this series
expansion is determined by the nature of the two atoms to which the molecular state
dissociates adiabatically [95]. We summarise the main rules here, but will return to
some of them in more detail in due course.

n = 1: This occurs when both atoms are charged.
n = 2: This very unusual case can occur if one atom is charged and the other is in an

electronic state with a permanent electric dipole moment [96].
n = 3: This could occur if both atoms are uncharged and in electronic states with

permanent dipole moments. More commonly, it occurs in the interaction between
two identical uncharged atoms in electronic states whose total angular momenta
differ by one (i.e. �L = 1). This interaction is a first-order dipole resonance [97]
without a classical analogue.

n = 4: This is an important and common case which arises in the interaction between a
charged and a neutral atom; it is often called the charge-induced dipole interaction.
The coefficient C4 in (6.403) is equal to (1/8πε0)Z2e2α where Ze is the charge on
the ion and α is the polarisability of the neutral atom. An important example, to
which we will return, is the H+

2 long-range potential of the molecular ion. The n = 4
case can also arise in the interaction between an atom with a permanent electric
dipole moment and a non-S-state atom with a permanent quadrupole moment.

n = 5: This is the first-order quadrupole-quadrupole interaction involving pairs of non-
S-state uncharged atoms; theoretical values of C5 are available for a wide range of
systems. C5 coefficients may be expressed [98] as the product of an angular factor,
and the product of the expectation values [99] for the squares of the electron radii
in the unfilled valence shells on the interacting atoms, [〈r2

A〉〈r2
B〉].

n = 6: This arises for the London induced-dipole induced-dipole interaction, to which
all interacting species are subject.

Higher values of n can also arise, but for obvious reasons will seldom be significant
in determining the long-range potential.
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If the relative energies and vibrational numbers of several levels lying close to
the dissociation asymptote are known, it is possible to derive information about the
dissociation energy and the long-range terms in the potential. The traditional method
of extrapolation to the dissociation limit has been the Birge–Sponer plot [100], but a
more recent theory and method has been described by LeRoy and Bernstein [101]. Their
starting point is again the first-order JWKB quantum condition for the eigenvalues of
a potential V (R):

v+ 1/2 = (2µ)1/2

πh

R2∫
R1

[E(v) − V (R)]1/2 dR, (6.404)

where E(v) is the energy of level v and R1 and R2 are its inner and outer classical
turning points. The allowed eigenvalues correspond to integer values of v, but it is
convenient to treat v as a continuous variable.

We differentiate (6.404) with respect to E(v) and obtain

dv

dE(v)
= (2µ)1/2

2πh

R2∫
R1

[E(v) − V (R)]−1/2 dR. (6.405)

Now the integral will be nearly unchanged if the exact potential V (R) is replaced by
an approximate function which is accurate near the outer turning point R2(v); in other
words the approximation

dv

dE(v)
∼= (2µ)1/2

2πh

R2∫
0

[
E(v) − De + Cn

Rn

]−1/2

dR (6.406)

becomes increasingly valid as E(v) approaches De, where R2(v) is given by

E(v) = V (R2) � De − Cn

[R2(v)]n
. (6.407)

We now make the substitution

y = R2(v)/R, (6.408)

so that (6.406) then becomes

(
dv

dE

)
= (2µ)1/2

2πh
C1/n

n (De − E(v))−(n+2)/2n

∞∫
1

y−2( yn − 1)−1/2 dy. (6.409)

After evaluation of the integral this can be rearranged [102] to give the result(
dv

dE

)
= Kn(De − E(v))(n+2)/2n, (6.410)

where

Kn = 2πhn

(2µ)1/2
C−1/n

n

&(1 + 1/n)

&(1/2 + 1/n)
. (6.411)
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The & functions are tabulated by Abramowitz and Segun [85]. An alternative and more
useful version of (6.410) is

E(v) = De − Xn(vD − v)2n/(n−2), (6.412)

where vD is the non-integral effective value of v at the dissociation limit and

Xn = [(n − 2)Kn/2n]2n/(n−2). (6.413)

As a final version, equations (6.410) and (6.412) can be rearranged to give the result(
dE

dv

)
=

(
2n

n − 2

)
Xn(vD − v)(n+2)/(n−2). (6.414)

In the application of (6.414) to experimental results, (dE/dv) can be satisfactorily
approximated by E(v+ 1) − E(v). LeRoy and Bernstein [102] have shown how very
well this approach works for I2 in its excited B 3�(0+

u ) state.
Extensions of the above method to the near-dissociation behaviour of the rotational

constants have been described by LeRoy [103, 104, 105] and Stwalley [106]. The
rotational constant Bv may be expressed in terms of the expectation value of R−2 , and
expressing this expectation value semi-classically yields the result

Bv =
(

h

4πµc

) ∫ R2

R1
R−2[E(v) − V (R)]−1/2 dR∫ R2

R1
[E(v) − V (R)]−1/2 dR

. (6.415)

We now substitute (6.403) into (6.415) and again replace the variable of integration by
y ≡ R2(v)/R, obtaining

Bv =
(

h

4πµc

)[
D − E(v)

Cn

]2/n ∫ R2/R1

1 [yn − 1]−1/2 dy∫ R2/R1

1 y−2[yn − 1]−1/2 dy
. (6.416)

The last approximation is allowing R1(v) →0 so that R2(v)/R1(v) → ∞; provided
n ≥ 2, equation (6.416) becomes

Bv =
(

h

4πcµ

)[
&(1 + 1/n)&(1/2 − 1/n)

&(1/2 + 1/n)&(1 − 1/n)

] [
D − E(v)

Cn

]2/n

= Pn[D − E(v)]2/n. (6.417)

An alternative way of expressing Bv and the other rotational constants, valid in the
region close to dissociation, is as follows [107]:

Bv = X1(n)(vD − v)2n/(n−2)−2,

Dv = −X2(n)(vD − v)2n/(n−2)−4, (6.418)

Hv = X3(n)(vD − v)2n/(n−2)−6,

etc.,
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where

Xi (n) = X̄i (n)

[(Cn)2µn]1/(n−2)
, (6.419)

with X̄i (n) being a known numerical constant [104].
Theoretical calculations of the long-range coefficients, Cn , have been described

by many authors. The simplest cases, where exact solutions are possible, involve the
interaction of a proton with a hydrogen atom. When the hydrogen atom is in its ground
electronic state, the long-range interaction has been shown by Coulson [108] to take
the form

Eab = − e2

4πε0a0

[
9/4

(Rab/a0)4
+ 0

(Rab/a0)5
+ 15/2

(Rab/a0)6

+ 213/4

(Rab/a0)7
+ 7755/64

(Rab/a0)8
+ · · ·

]
. (6.420)

Similar expressions have been derived by Coulson and Gillam [109] and Krogdahl [110]
for the interaction of a proton with an electronically excited hydrogen atom; the in-
teraction of a proton with a helium atom has also been studied by Krogdahl [111]. In
order to calculate the long-range interaction coefficients for more complex atoms a
knowledge of their static dipole polarisabilities is required; a useful list compiled from
ab initio calculations was given by Teachout and Pack [112].

6.15. Predissociation

A vibration–rotation level of a diatomic molecule which lies above the lowest disso-
ciation limit may be quasibound and able to undergo spontaneous dissociation into
the separate atoms. This process is known as predissociation, and two different cases
may be distinguished for diatomic molecules, as we will see shortly. Predissociation
does not normally play an important role in rotational spectroscopy but merits a brief
discussion here for the sake of completeness.

The two cases which arise in diatomic molecules are rotational predissociation and
electronic predissociation; the latter case applies only to excited electronic states. We
deal first with rotational predissociation, with can arise for either ground or excited
states. The potential energy curve shown for a Morse oscillator in section 6.8 is for
a rotationless (J = 0) molecule. For a rotating molecule, however, we must add a
centrifugal term to the potential,

Erot = h2

2µR2
J (J + 1), (6.421)

the effects of which become increasingly important as J increases. This is illustrated in
figure 6.27, which shows the Morse potential of figure 6.23 with J = 0 and J = 10 (say).
The curve for J = 10 exhibits an energy maximum, known as a centrifugal barrier, the
height of which becomes progressively larger as J increases. As the figure shows,
it is possible to have vibration–rotation levels which lie above the dissociation limit,
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Figure 6.27. Morse potential for J = 0 and J = 10, showing the presence of the centrifugal
barrier in the J = 10 case, and a quasibound level, QB.



288 Electronic and vibrational states

but below the centrifugal barrier maximum. Such levels are metastable, because they
can predissociate by tunnelling through the centrifugal barrier. The predissociation
lifetimes cover an almost infinite range, and at the short lifetime end of the range
they often determine spectroscopic linewidths. At the long lifetime end, quasibound
vibration–rotation levels are much like normal bound levels, and there is no reason
why rotational transitions between such levels should not be observed. We know of
no examples of such spectra, but vibration–rotation spectra involving only rotationally
quasibound levels have been observed in the HD+ ion [113].

The second type of predissociation observed for diatomic molecules is known as
electronic predissociation; the principles are illustrated in figure 6.28. A vibrational
level v of a bound state E1 lies below the dissociation asymptote of that state, but above
the dissociation asymptote of a second state E2. This second state, E2, is a repulsive
state which crosses the bound state E1 as shown. The two states are mixed, and the level
v can predissociate via the unbound state. It is not, in fact, necessary for the potential
curves of the two states to actually cross. It is, however, necessary that they be mixed
and there are a number of different interaction terms which can be responsible for the
mixing. We do not go into the details here because electronic predissociation, though
an important phenomenon in electronic spectroscopy, seldom plays a role in rotational
spectroscopy. Since it involves excited electronic states it could certainly be involved
in some double resonance cases.

The primary observable result of predissociation is, of course, line broadening.
A transition involving a predissociating level has a width at half-height Γ given

v

A + B*

A + B

R

E

Figure 6.28. Electronic predissociation. The vibrational level v belongs to an electronic state
which dissociates into a ground state atom A and an excited atom B∗. The potential curve for
this state crosses that of a second repulsive state which dissociates into ground state atoms A and
B. Coupling between the two electronic states leads to predissociation of the level v into ground
state atoms.
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by

Γ(cm−1) = (2πcτ )−1 = 5.3 × 10−12/τ (s), (6.422)

where τ is the predissociation lifetime. In electronic spectroscopy there are dramatic
examples of rotation band contours which suddenly break off when predissociation
becomes exceptionally fast.

Appendix 6.1. Calculation of the Born–Oppenheimer potential
for the H+

2 ion

(i) Hamiltonian in elliptical coordinates

We shall show how the Born–Oppenheimer potential energy for the H+
2 ion can be

calculated exactly using series expansion methods, even though an exact analytical
solution cannot be obtained. Figure 6.29 shows the coordinate system used for an
electron moving in the field of two clamped nuclei. In atomic units the Hamiltonian is

H = −1

2
∇2 − Z1

r1
− Z2

r2
, (6.423)

where r1 and r2 are the distances from the electron to the nuclei, which have charges
Z1 and Z2. We now reformulate the Hamiltonian in elliptical coordinates because, as
we shall see, the Schrödinger equation is then separable into three equations, each of
which involves only a single coordinate.

We deal first with the potential energy, described by the second and third terms in
(6.423). If R is the distance between the two nuclei, we see from figure 6.29 that

r2
1 = [z + (R/2)]2 + y2, r2

2 = [z − (R/2)]2 + y2, (6.424)

so that

r2
1 − r2

2 = 2z R. (6.425)

−

1 2

Figure 6.29. Coordinate system for the description of the H+
2 ion, showing the two-dimensional

transformation from cartesian to elliptical coordinates.
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We now transform to new elliptical coordinates λ and µ such that

λ = (r1 + r2)/R with 1 ≤ λ<∞,
(6.426)

µ = (r1 − r2)/R with −1 ≤µ≤ 1.

Hence we have

r1 = (R/2)(λ+µ), r2 = (R/2)(λ−µ). (6.427)

We can now rewrite the potential energy in terms of the new coordinates, as follows:

V = − 2Z1

(R/2)(λ+µ)
− 2Z2

(R/2)(λ−µ)
(6.428)

= − 4

R

{
Z1

(λ+µ)
+ Z2

(λ−µ)

}
(6.429)

= − 4

R(λ2 −µ2)
{Z1(λ−µ) + Z2(λ+µ)}.

Putting Z1 = Z2 = 1 for H+
2 , we obtain the final result,

V = − 8λ

R(λ2 −µ2)
. (6.430)

We now turn to the transformation of the Laplacian, which is rather more compli-
cated. In cartesian coordinates we have

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (6.431)

The transformation of the cartesian coordinates to elliptical coordinates is given by

x = (R/2) cosω[(λ2 − 1)(1 −µ2)]1/2,

y = (R/2) sinω[(λ2 − 1)(1 −µ2)]1/2, (6.432)

z = (R/2)µλ.

The lines of constant λ are ellipses and the lines of constant µ are hyperbolas; ω is the
angle between the plane passing through all three particles and some fixed plane which
passes through the two protons. By a process of straightforward but tedious partial
differentiation we can obtain the following results:

∂λ

∂x
= 2 cosωλ[(λ2 − 1)(1 −µ2)]1/2

R(λ2 −µ2)
,

∂λ

∂y
= 2 sinωλ[(λ2 − 1)(1 −µ2)]1/2

R(λ2 −µ2)
,

∂λ

∂z
= 2µ(λ2 − 1)

R(λ2 −µ2)
,

∂µ

∂x
= −2 cosωµ[(λ2 − 1)(1 −µ2)]1/2

R(λ2 −µ2)
,

∂µ

∂y
= −2 sinωµ[(λ2 − 1)(1 −µ2)]1/2

R(λ2 −µ2)
,

∂µ

∂z
= 2λ(1 −µ2)

R(λ2 −µ2)
,
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∂ω

∂x
= − 2 sinω

R[(λ2 − 1)(1 −µ2)]1/2
,

∂ω

∂y
= 2 cosω

R[(λ2 − 1)(1 −µ2)]1/2
,

∂ω

∂z
= 0. (6.433)

We now make use of these results in evaluating the following expression:

∂

∂x
= ∂λ

∂x
· ∂

∂λ
+ ∂µ

∂x
· ∂

∂µ
+ ∂ω

∂x
· ∂

∂ω
, (6.434)

from which

∂

∂x
= 2 cosωλ[(λ2 − 1)(1 −µ2)]1/2

R(λ2 −µ2)
· ∂

∂λ
− 2 cosωµ[(λ2 − 1)(1 −µ2)]1/2

R(λ2 −µ2)
· ∂

∂µ

− 2 sinω

R[(λ2 − 1)(1 −µ2)]1/2
· ∂

∂ω
. (6.435)

Since we require the expression for ∂2/∂x2, we square (6.435) and evaluate the resulting
partial differentials with respect to λ,µ, and ω; the process is straightforward but leads
to a long and messy combination of terms.

The whole process is repeated for the partial differentials ∂/∂y, ∂/∂z and their
squares; on addition of the squares, much cancellation of terms occurs and we obtain
the relatively simple result:

∇2 = 4

R2(λ2 −µ2)

{
∂

∂λ
(λ2 − 1)

∂

∂λ
+ ∂

∂µ
(1 −µ2)

∂

∂µ
+ (λ2 −µ2)

(λ2 − 1)(1 −µ2)

∂2

∂ω2

}
.

(6.436)

(ii) Separation of the Schrödinger equation

Combining equations (6.436) and (6.430) we obtain the Schrödinger equation for the
H+

2 molecular ion in elliptical coordinates:

4

R2(λ2 −µ2)

{
∂

∂λ
(λ2 − 1)

∂Ψ
∂λ

+ ∂

∂µ
(1 −µ2)

∂Ψ
∂µ

+ (λ2 −µ2)

(λ2 − 1)(1 −µ2)

∂2Ψ
∂ω2

}

+
{

8λ

R(λ2 −µ2)
+ E

}
Ψ= 0, (6.437)

which can be rewritten in the more transparent form:

∂

∂λ
(λ2 − 1)

∂Ψ
∂λ

+ ∂

∂µ
(1 −µ2)

∂Ψ
∂µ

+ (λ2 −µ2)

(λ2 − 1)(1 −µ2)

∂2Ψ
∂ω2

+
{

1

4
R2 E(λ2 −µ2) + 2Rλ

}
Ψ= 0. (6.438)

This equation has been given by a number of authors, including Bates, Ledsham and
Stewart [114], Hunter, Gray and Pritchard [115], Barber and Hasse [116], and Teller
and Sahlin [17].
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It can now be seen at once that the substitution

Ψ(R, λ, µ, ω) = L(R, λ)M(R, µ)N (ω) (6.439)

yields three separated differential equations, which are{
∂2

∂ω2
+ m2

}
N = 0, (6.440)

{
∂

∂λ
(λ2 − 1)

∂

∂λ
+ A1 − m2

(λ2 − 1)
+ 2Rλ− p2λ2

}
L = 0, (6.441)

{
∂

∂µ
(1 −µ2)

∂

∂µ
− A2 − m2

(1 −µ2)
+ p2µ2

}
M = 0, (6.442)

where

p2 = −1

4
E R2. (6.443)

Equation (6.440) can be solved directly to yield

N (ω) = 1√
2π

exp(imω), (6.444)

where m = 0, ±1, ±2, etc. We now seek solutions to equations (6.441) and (6.442)
which satisfy the condition A1 = A2, necessary if the separated equations are to be
equivalent to the unseparated equation.

(iii) Solution of the λ equation

The λ equation can be written in the form

(λ2 − 1)
d2L

dλ2
+ 2λ

dL

dλ
+

[
A − m2

(λ2 − 1)
+ 2Rλ− p2λ2

]
L = 0. (6.445)

We now show that solutions may be obtained using the Jaffé expansion [117]:

L(λ) = (λ2 − 1)m/2(λ+ 1)σ exp(−pλ)
∞∑

n=0

bn

[
λ− 1

λ+ 1

]n

, (6.446)

where

σ = (R/p) − m − 1 and p = (1/2)R|E |1/2. (6.447)

We make use of a series of successive substitutions.
(a) Put L = (λ2 − 1)m/2L1(λ). Then

dL

dλ
= (m/2)(λ2 − 1)m/2−12λL1 + (λ2 − 1)m/2 dL1

dλ

= mλ(λ2 − 1)m/2−1L1 + (λ2 − 1)m/2 dL1

dλ
, (6.448)
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d2L

dλ2
= m(λ2 − 1)m/2−1L1 + mλ

(
m

2
− 1

)
(λ2 − 1)m/2−22λL1

+ 2mλ(λ2 − 1)m/2−1 dL1

dλ
+ (λ2 − 1)m/2 d2L1

dλ2
. (6.449)

Substituting in equation (6.445) we obtain{
(λ2 − 1)

d2

dλ2
+ 2λ(m + 1)

d

dλ
+ m(m + 1) + A + 2Rλ− p2λ2

}
L1 = 0. (6.450)

(b) We now make a second substitution, L1(λ) = exp(−pλ)L2(λ).
We obtain

dL1

dλ
= exp(−pλ)

{
−pL2 + dL2

dλ

}
, (6.451)

d2L1

dλ2
= exp(−pλ)

{
p2L2 − 2p

dL2

dλ
+ d2L2

dλ2

}
. (6.452)

Substituting these results in (6.450) we obtain{
(λ2 − 1)

d2

dλ2
+ 2[(m + 1)λ− p(λ2 − 1)]

d

dλ
+ A + m(m + 1)

− p2 + [2R − 2p(m + 1)]λ

}
L2(λ) = 0. (6.453)

(c) We next make a change of variable.

Put λ = 1 +ψ
1 −ψ from which ψ = λ− 1

λ+ 1
. (6.454)

Now
dψ

dλ
= d

dλ

(
λ− 1

λ+ 1

)
= 2

(λ+ 1)2
. (6.455)

Hence
d

dλ
= 2

(λ+ 1)2

d

dψ
, (6.456)

d2

dλ2
= − 4

(λ+ 1)3

d

dψ
+ 4

(λ+ 1)4

d2

dψ2
. (6.457)

We now substitute for λ, d/dλ and d2/dλ2 in equation (6.453) and obtain the following
equation in which the variable λ has been replaced by the variable ψ :

ψ(1 −ψ)2 d2L2

dψ2
+ {(m + 1)(1 −ψ) +ψ(1 −ψ)(m − 1) − 4pψ}dL2

dψ

+
{

A + m(m + 1) − p2 + 2pσ
1 +ψ
1 −ψ

}
L2 = 0. (6.458)

(d) The final term in equation (6.458) becomes singular at ψ = 1 and may be removed
by the substitution

L2(ψ) = 4(1 −ψ)−σ L3(ψ). (6.459)
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One then finds that

dL2

dψ
= 4σ (1 −ψ)−(σ + 1)L3(ψ) + 4(1 −ψ)−σ

dL3

dψ
, (6.460)

d2L2

dψ2
= 4(1 −ψ)−σ

{
σ (σ + 1)(1 −ψ)−2L3(ψ)

+ 2σ (1 −ψ)−1 dL3

dψ
+ d2L3

dψ2

}
. (6.461)

Substituting (6.459), (6.460) and (6.461) in (6.458) we obtain

ψ(1 −ψ)2 d2L3

dψ2
+ {ψ2(1 − m − 2σ ) + 2ψ(σ − 2p − 1) + (m + 1)}dL3

dψ

+ {A + 2pσ − p2 + (σ + m)(m + 1) + σ (σ + m)ψ}L3 = 0. (6.462)

(e) We assume a power series solution to equation (6.462) and make the substitution

L3(ψ) =
∞∑

n=0

bnψn = b0 + b1ψ + b2ψ
2 + b3ψ

3 + · · · + bn−1ψ
n−1 + bnψ

n + · · · .
(6.463)

It then follows that

dL3

dψ
=

n−1∑
j=0

b j+1( j + 1)ψ j , (6.464)

d2L3

dψ2
=

n−2∑
j=0

( j + 1)( j + 2)b j+2ψ
j . (6.465)

Substituting (6.463), (6.464) and (6.465) in equation (6.462) yields the result

ψ(1 −ψ)2
n−2∑
j=0

( j + 1)( j + 2)b j+2ψ
j + {ψ2(1 − m − 2σ )

+ 2ψ(σ − 2p − 1) + (m + 1)}
n−1∑
j=0

b j+1( j + 1)ψ j + {A + 2pσ − p2

+ (σ + m)(m + 1) + σ (σ + m)ψ}
n∑

j=0

b jψ
j = 0, (6.466)

which can be rearranged in order of descending powers of ψ as

n−2∑
j=0

( j + 1)( j + 2)b j+2ψ
j+3 − 2

n−2∑
j=0

( j + 1)( j + 2)b j+2ψ
j+2

+ (1 − m − 2σ )
n−1∑
j=0

( j + 1)b j+1ψ
j+2 +

n−2∑
j=0

( j + 1)( j + 2)b j+2ψ
j+1

+ 2(σ − 2p − 1)
n−1∑
j=0

( j + 1)b j+1ψ
j+1 + σ (σ + m)

n∑
j=0

b jψ
j+1
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+ (m + 1)
n−1∑
j=0

( j + 1)b j+1ψ
j + [A + 2pσ − p2

+ (σ + m)(m + 1)]
n∑

j=0

b jψ
j = 0. (6.467)

We now put j = n − 3, n − 2, n − 1, n and compare coefficients of ψn: after some
rearrangement we obtain the recurrence relationship

bn+1{(n + 1)(n + m + 1)} + bn{A − p2 + 2pσ+(σ + m)(m + 1) + 2n(σ − 2p) − 2n2}
+ bn−1{(n − 1 − σ )(n − 1 − σ − m)} = 0. (6.468)

This result holds for all values of n except n = 0; we then require b−1 = 0. In this special
case

b1(m + 1) + b0{A − p2 + 2pσ + (σ + m)(m + 1)} = 0. (6.469)

This completes the solution of the λ equation. Combining all the replacements
made above we see that the complete solution is of the form

L(λ) = (λ2 − 1)m/2(λ+ 1)σ exp(−pλ)
∞∑

n=0

bn

[
λ− 1

λ+ 1

]2

. (6.470)

This is known as the Jaffé series [117]. The important recurrence relations (6.468) can
be represented by the matrix eigenvalue equation [118]

B · b = −Ab, (6.471)

where b is the column vector {bi (R)} and the matrix elements of B are

B j, j−1 = ( j − 1 − σ )( j − 1 − σ − m) j ≥ 1

B j, j = 2 j(σ − 2p − j) + m(m + σ + 1) + σ (1 + 2p) − p2 j ≥ 0

B j, j+1 = ( j + 1)( j + 1 + m) j ≥ 0

B j,k = 0 | j − k|> 1. (6.472)

(iv) Solution of the µ equation

The µ equation obtained earlier, (6.442), was{
d

dµ
(1 −µ2)

d

dµ
− A − m2

(1 −µ2)
+ p2µ2

}
M(µ) = 0, (6.473)

which may be rewritten in the form

(µ2 − 1)
d2 M

dµ2
+ 2µ

dM

dµ
+

[
A + m2

(1 −µ2)
− p2µ2

]
M = 0. (6.474)
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We now outline two different methods for dealing with the µ equation. In the first
method we make a first substitution

M(µ) = (1 −µ2)m/2 M1(µ). (6.475)

It then follows that

dM

dµ
=

(
m

2

)
(1 −µ2)m/2−1(−2µ)M1 + (1 −µ2)m/2 dM1

dµ
, (6.476)

d2 M

dµ2
= 2mµ2

(m

2
− 1

)
(1 − µ2)m/2−2 M1 − m(1 − µ2)m/2−1 M1

− 2mµ(1 − µ2)m/2−1 dM1

dµ
+ (1 − µ2)m/2 d2 M1

dµ2
. (6.477)

Substituting for M , dM/dµ and d2 M/dµ2 in equation (6.474) we obtain

(µ2 − 1)
d2 M1

dµ2
+ 2µ(m + 1)

d M1

dµ
+ [A + m(m + 1) − p2µ2]M1 = 0. (6.478)

We now make the series substitution

M1(µ) =
∑

n

anµ
n, (6.479)

from which we find

dM1

dµ
=

n−1∑
j=0

a j+1( j + 1)µ j , (6.480)

d2 M1

dµ2
=

n−2∑
j=0

a j+2( j + 2)( j + 1)a j+2µ
j . (6.481)

Substitution of (6.479), (6.480) and (6.481) in (6.478) gives the result

n−2∑
j=0

( j + 1)( j + 2)a j+2µ
j+2 − p2

n∑
j=0

a jµ
j+2 + 2(m + 1)

n−1∑
j=0

( j + 1)a j+1µ
j+1

−
n−2∑
j=0

( j + 1)( j + 2)a j+2µ
j + {A + m(m + 1)}

n∑
j=0

a jµ
j = 0. (6.482)

Comparing coefficients of µngives the recursion relationship

n(n − 1)an − p2an−2 + 2n(m + 1)an

− (n + 1)(n + 2)an+2 + {A + m(m + 1)}an = 0. (6.483)

This relationship holds for all anwith n odd, or all an with n even; a−2 must be zero
for even solutions, and a−1 must be zero for odd solutions. Hence

2a2 = a0[A + m(m + 1)], (6.484)

6a3 = a1[A + (m + 1)(m + 2)]. (6.485)
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The second method of dealing with the µ equation is used by Wind [119], but was
probably first employed by Hylleraas [120]. Returning to equation (6.474) we expand
M(µ) in terms of Legendre functions:

M(µ) =
∞∑

l=0

cl Pl(µ). (6.486)

There is a standard recursion relationship involving the differentials of Legendre func-
tions, which is

(1 − µ2)
d2 Pl(µ)

dµ2
− 2µ

dPl(µ)

dµ
+ �(� + 1)Pl(µ) = 0. (6.487)

When (6.486) is used to replace M(µ) and its derivatives in equation (6.474), the recur-
sion relationship (6.487) leads to a further recurrence relationship for the coefficients
cl which is

�(� − 1)

(2� − 3)(2� − 1)
p2c�−2

+
{

−A − �(� + 1) +
[

(� + 1)2

(2� + 3)(2� + 1)
+ �2

(2� + 1)(2� − 1)

]
p2

}
cl

+ (� + 2)(� + 1)

(2� + 5)(2� + 3)
p2c�+2 = 0. (6.488)

(v) Calculation of the potential energy curve

For the 1sσg ground state of H+
2 the value of m is zero, and � in (6.488) must be even.

One of the problems in dealing with the series solutions of the λ and µ equations is
that one does not know where to truncate; Wind [119] chose to truncate the M(µ)
series at ten terms, the criterion being that addition of further terms does not affect the
final results. The recurrence relation (6.488) is a set of homogeneous linear equations,
in which the coefficient matrix determinant must be zero. We choose a value of R,
an input value of p, and find the value of A for which the determinant is zero. The
value of the determinant is extremely sensitive to the value of A, and changes sign as
it passes through the required null value. This exercise is repeated for the λ equation;
acceptable solutions to the problem require that the A value be the same for both the λ
andµ equations. When this condition is satisfied, the corresponding value of p gives the
energy E for the chosen value of R since, we recall from (6.443), p2 = −(1/4)E R2. The
potential energy curve is then obtained by repeating the calculations for an appropriate
series of R values; curves for the ground state and first excited state are shown in
figure 6.30. From the numerical viewpoint the calculations are trivial for a modern
desk top or portable personal computer.
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Figure 6.30. Potential energy curves for the ground and first excited electronic states of the H+
2

molecular ion, calculated within the Born–Oppenheimer approximation.
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7 Derivation of the effective
Hamiltonian

7.1. Introduction

The Born–Oppenheimer approximation [1] is an important linch pin in the description
of molecular energy levels. It reveals the difference between electronic and nuclear
motions in a molecule, as a result of which we expect the separation between different
electronic states to be much larger than that between vibrational levels within an elec-
tronic state. An extension of these ideas shows that the separation between vibrational
levels is correspondingly larger than the separation between the rotational levels of a
molecule. We thus have a hierarchy of energy levels which reveals itself in the elec-
tronic, vibrational and rotational structure of molecular spectra. This gradation in the
magnitude of the different types of quanta also provides the inspiration for an energy
operator known as the effective Hamiltonian.

In this chapter we introduce and derive the effective Hamiltonian for a diatomic
molecule. The effective Hamiltonian operates only within the levels (rotational, spin
and hyperfine) of a single vibrational level of the particular electronic state of in-
terest. It is derived from the full Hamiltonian described in the previous chapters by
absorbing the effects of off-diagonal matrix elements, which link the vibronic level
of interest to other vibrational and electronic states, by a perturbation procedure. It
has the same eigenvalues as the full Hamiltonian, at least to within some prescribed
accuracy.

The motivation for constructing the effective Hamiltonian is one of economy and
perhaps even of feasibility. It reproduces the eigenstates of the vibronic state of interest
but with a much smaller representation than that of the full Hamiltonian. The effective
Hamiltonian provides a natural resting point in the journey from experiment to theory.
It permits data to be fitted in an unprejudiced fashion, the parameters being determined
by statistical criteria only. These parameters in turn can be interpreted in terms of
various theoretical models for the electronic states, and provide a point of comparison
for ab initio calculations. A soundly based effective Hamiltonian makes allowance for
all possible admixtures of electronic states; the relative importance of the perturbations
by these different states is determined by a detailed comparison of the parameter values
with theoretical predictions. In this way, the task of data fitting is clearly separated from
that of theoretical interpretation.
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It took several decades for the effective Hamiltonian to evolve to its modern form.
It will come as no surprise to learn that Van Vleck played an important part in this
development; for example, he was the first to describe the form of the operator for
a polyatomic molecule with quantised orbital angular momentum [2]. The present
formulation owes much to the derivation of the effective spin Hamiltonian by Pryce
[3] and Griffith [4]. Miller published a pivotal paper in 1969 [5] in which he built on
these ideas to show how a general effective Hamiltonian for a diatomic molecule can
be constructed. He has applied his approach in a number of specific situations, for
example, to the description of N2 in its A 3�+

u state [6], described in chapter 8. In
this book, we follow the treatment of Brown, Colbourn, Watson and Wayne [7], except
that we incorporate spherical tensor methods where advantageous. It is a strange fact
that the standard form of the effective Hamiltonian for a polyatomic molecule [2] was
established many years before that for a diatomic molecule [7].

7.2. Derivation of the effective Hamiltonian by degenerate perturbation
theory: general principles

We commence with some groundwork which will enable us to define the problem and
state our ultimate goal. Although the method we present in this section is completely
general for systems with discrete eigenstates, consideration of a particular example
is often a helpful way of appreciating the principles involved. With this in mind, we
shall exemplify points in this section by outlining how the method may be applied to
derive an effective Hamiltonian which operates entirely within a given vibronic state.
The actual details of how the method can be applied to this as well as the other cases
of interest are given later in this chapter.

It is always possible to divide the total Hamiltonian H into a major part H
0 (the

zeroth-order Hamiltonian) and a perturbation λH
′:

H = H
0 + λH

′, (7.1)

where λ is a dimensionless parameter in the range 0 ≤ λ≤ 1. Thus, for example, in the
derivation of an effective Hamiltonian operating in a particular vibronic state, H

0 might
be comprised of the non-relativistic electronic kinetic energy operators, the vibrational
kinetic energy and the electrostatic potential terms; λH

′ would then be composed of all
the remaining terms in the total Hamiltonian. It is now helpful to introduce two different
sorts of quantum number. The first sort, which we denote in general by η, label the
distinct eigenstates of the zeroth-order Hamiltonian; each of these eigenstates is gη-
fold degenerate. In our particular example, η would represent the quantum numbers
required to specify a particular vibronic state; the energy separation between these
states is typically between 103 and 104 cm−1. Following a well-established convention,
the lowest of these vibronic states (the ground state) is labelled |0〉. The second sort
of quantum number, denoted in general by i , identifies the individual substates in a
particular state η. In our example, i would represent the rotational, electron spin and
nuclear spin quantum numbers. Substates distinguished by different i are, of course,
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degenerate in the solution of H
0. However, there are perturbing terms in the Hamiltonian

which connect different vibronic states. These terms lift the degeneracy of some or all
of the gη states by amounts which are typically around 1 cm−1. Although these terms
in λH

′ are usually small compared with the separation of different vibronic states, their
effects can dominate high-resolution microwave or radiofrequency spectra.

Next, we show how these two types of quantum number are used to label the
eigenstates involved. The zeroth-order eigenstates and eigenvalues are defined by

H
0|0, i〉0 = E0

0 |0, i〉0, (7.2)

·
·

H
0|η, i〉0 = E0

η |η, i〉0, (7.3)

·
We note that each of these equations actually represents gη equations, corresponding to
the gη distinct values of i in each state,η. These gη functions |η, i〉0 are, for convenience,
chosen to be orthonormal to each other, that is,

0〈η, i | η, j〉0 = δi j . (7.4)

In addition, the functions |η, i〉0 define what is called a gη-fold subspace of total Hilbert
space. Furthermore, the eigenfunctions of two states with different values of ηmust be
orthogonal since H

0 is a Hermitian operator. Once again we normalise these functions
to unity so that (7.4) may be generalised to

0〈η, i | η′, j〉0 = δηη′δi j . (7.5)

Thus the members of the orthonormal set |η, i〉0 are all orthogonal to those of the
orthonormal set |η′, j〉0 for η′ 
= η; correspondingly the subspaces defined by these two
sets are said to be orthogonal to each other. For example, all the subspaces defined by
|η, i〉0 with η 
= 0 (i.e. excited vibronic states) are orthogonal to the subspace of the
ground vibronic state. The sum total of all these subspaces with η 
= 0 (itself a subspace
of total Hilbert space) is called the subspace complementary to the subspace of the
ground vibronic state.

Besides these zeroth-order eigenfunctions, we shall also be interested in the eigen-
functions of the total Hamiltonian H. In what follows, we shall assume that the effects
of the perturbation λH

′ are small enough that we can correlate the exact gη eigenstates
with their parent zero-order eigenstate η; thus we can usefully retain the quantum num-
bers η to define the exact eigenstates. (This is convenient but not essential). Thus after
including the effects of the perturbation λH

′, we have

H|0, k〉 = (
E0

0 + E0k

)|0, k〉, (7.6)

·
·

H|η, k〉 = (
E0
η + Eηk

)|η, k〉, (7.7)

where the functions |η, k〉 are orthogonal and normalised to unity. Here we distinguish
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the gη substates of a given η state by the quantum number k. There are, of course, gη
distinct values of k but we use it here rather than i to emphasise, as we shall see shortly,
that there is not a one-to-one correspondence between the gη exact eigenstates |η, k〉
and the gη zeroth-order states |η, i〉0 from which they arise. Since the sum total of the
zeroth-order eigenfunctions |η, i〉0 form a complete basis set (spanning total Hilbert
space), we can expand each exact |0, k〉 eigenfunction in terms of this basis set:

|0, k〉 =
∑
η,i

ck
ηi |η, i〉0. (7.8)

The coefficients ck
ηi can, in principle, be determined by solving the equations (7.6),

(7.7), etc. Finally, we note that the states |0, k〉 may all be non-degenerate.
Now in microwave or radiofrequency spectroscopic investigations we are generally

interested in groups of levels characterised by different values of one or two quantum
numbers of the i type, but with the vibronic quantum number η remaining unchanged.
For example, in rotational spectroscopy we measure primarily the energy dependence
on rotational quantum number within a particular vibronic state, usually the ground
state. It would be extremely inconvenient to have to work with the complete Hamiltonian
H and to try to solve (7.6), (7.7), etc., completely; even with present day computers
this would be a formidable task. Instead we seek to define an effective Hamiltonian
Heff (η) which contains the terms of primary interest, gives the correct eigenvalues
(E0
η + Eηk), but which operates solely within the zeroth-order subspace of the vibronic

state |η〉0. The effects of terms off-diagonal in η will be contained in constants or
parameters appearing in Heff. In our example, we are interested in deriving an effective
Hamiltonian which operates solely within the i-dimensional subspace of the ground
vibronic state. This effective Hamiltonian, Heff (0), must therefore satisfy an eigenvalue
equation of the form

Heff(0)
∑

i

dk
0i |0, i〉0 = (

E0
0 + E0k

)∑
i

dk
0i |0, i〉0. (7.9)

Each eigenfunction of Heff (0) is some linear combination of the zeroth-order orthonor-
mal set |0, i〉0, as yet unspecified. Hence the problem we have to solve is to derive a
general expression for Heff (0) in terms of H

0 and H
′.

Following Bloch [8], we shall tackle the problem through the use of certain pro-
jection operators, which we now define. The operator P0 is defined by

P0 =
∑

i

|0, i〉0 0〈0, i |, (7.10)

and projects any function onto the subspace spanned by the zeroth-order eigenfunctions
with η= 0; for example,

P0|0, k〉 =
∑

i

|0, i〉0 0〈0, i | 0, k〉,

=
∑

i

|0, i〉0 0〈0, i |
∑
η, j

ck
η j |η, j〉0, (7.11)

=
∑

i

ck
0i |0, i〉0.
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We note that the set of g0 functions formed by projecting the eigenfunctions |0, k〉
onto the zeroth-order subspace of the ground vibronic state are, in general, neither
orthogonal to each other nor normalised to unity. Also, as mentioned earlier, there is
not necessarily a one-to-one correspondence between the quantum numbers k and i .

The operator Q0 which is complementary to P0 is given by

Q0 = 1 − P0 =
∑

i

∑
η 
=0

|η, i〉0 0〈η, i |. (7.12)

The effect of Q0 on a particular function is to give the function’s projection in the
subspace complementary to the zeroth-order subspace of the ground vibronic state.

We also define the operator U , whose effect is essentially the opposite to that of
P0, i.e.

U
∑

i

ck
0i |0, i〉0 = |0, k〉. (7.13)

It is not difficult to show that the operator U must be given by

U =
∑

k

∑
j

bk
0 j |0, k〉 0〈0, j |, (7.14)

where the b coefficients are related to the c coefficients defined in (7.8) by the equation∑
i

bk
0i c

k ′
0i = δkk ′ . (7.15)

We can readily prove the definition (7.14) of the operator U by expanding (7.13):

U
∑

i

ck
0i |0, i〉0 =

∑
j,k ′

bk ′
0 j |0, k ′〉 0〈0, j |

∑
i

ck
0i |0, i〉0 (7.16)

=
∑
j,k ′

bk ′
0 j |0, k ′〉ck

0 j (7.17)

= |0, k〉. (7.18)

Equation (7.17) follows from the previous equation because of the orthogonality prop-
erties of the basis set, given by equation (7.4).

In our subsequent discussion we shall also require the results

U P0 = U, (7.19)

and

P0U = P0. (7.20)

Equation (7.19) follows readily from the definitions of P0 and U . To verify (7.20) we
consider the effect of the operator P0U on an exact eigenfunction |0, k〉:

P0U |0, k〉 = P0

∑
i,k ′

bk ′
0i |0, k ′〉 0〈0, i | 0, k〉

=
∑
i, j,k ′

bk ′
0i c

k ′
0 j |0, j〉0 0〈0, i |

∑
η,�

ck
η� |η, �〉0
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=
∑
i, j,k ′

bk ′
0i c

k ′
0 j c

k
0i |0, j〉0

=
∑

j

ck
0 j |0, j〉0

= P0|0, k〉. (7.21)

Consideration of the requirements of the effective Hamiltonian Heff (0), equation (7.9),
suggests that we might, with advantage, investigate the properties of the operator
product P0λH

′U , since U essentially projects the exact eigenfunctions |0, k〉 out of
the zeroth-order subspace spanned by |0, i〉0, λH

′ operates on the exact eigenfunction
according to (7.6) and (7.7), and P0 projects back into the basis set within which we
wish Heff (0) to operate. Accordingly we operate with λP0H

′U on the zeroth-order basis
functions with the following results:

λP0H
′U

∑
i

ck
0i |0, i〉0

= λ
∑

j

|0, j〉0 0〈0, j |(H − H
0)U

∑
i

ck
0i |0, i〉0 (7.22)

= λ
∑

j

|0, j〉0

{
0〈0, j |HU

∑
i

ck
0i |0, i〉0 − 0〈0, j |H0U

∑
i

ck
0i |0, i〉0

}

= λ
∑

j

|0, j〉0

{
0〈0, j |H|0, k〉 − 0〈0, j |H0

∑
�

bk ′
0� |0, k ′〉 0〈0, �|

∑
i

ck
0i |0, i〉0

}

= λ
∑

j

|0, j〉0

{
0〈0, j | 0, k〉(E0

0 + E0k

) − 0〈0, j |H0
∑

�

bk ′
0� |0, k〉ck

0�

}

= λ
∑

j

|0, j〉0

{
0〈0, j |

∑
η,�

ck
η� |η, �〉0

(
E0

0 + E0k

)− 0〈0, j |H0
∑
η,i

ck
ηi |η, i〉0

}

= λ
∑

j

|0, j〉0
{
ck

0 j

(
E0

0 + E0k

) − ck
0 j E0

0

}

= λE0k

∑
i

ck
0i |0, i〉0. (7.23)

We have now obtained the desired result because equation (7.23) is of the same form
as (7.9) provided that we set dk

0i = ck
0i ; in other words, the eigenfunctions of P0H

′U are
just the projections of the exact eigenfunctions |0, k〉 onto the zeroth-order subspace
of the ground vibronic state. Comparison of equations (7.23) and (7.9) yields the
relationship

Heff (0) = H
0 + λP0H

′U. (7.24)

The final, but fairly lengthy, stage of this analysis is to seek a recurrence relation
for U which allows us to express U in terms of P0, Q0 and H

′. First we note from (7.6)
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that (
H − E0

0

)|0, k〉 = E0k |0, k〉. (7.25)

Multiplying (7.25) on the left by P0 yields

λP0H
′|0, k〉 = E0k

∑
i

ck
0i |0, i〉

0
. (7.26)

The left-hand side of (7.26) follows because

P0
(

H − E0
0

) = P0
(

H
0 + λH

′ − E0
0

) = P0λH
′. (7.27)

We now multiply (7.26) from the left by U to give

λU P0H
′|0, k〉 = E0k |0, k〉. (7.28)

Noting that UP0 = U (equation (7.19)) we rewrite (7.28) in the form

λU H
′|0, k〉 = E0k |0, k〉, (7.29)

= (
H − E0

0

)|0, k〉. (7.30)

We therefore obtain the equation for the exact eigenfunctions |0, k〉,(
H − E0

0 − λU H
′)|0, k〉 = 0. (7.31)

Multiplication on the right by
∑

j bk
0 j

0〈0, j | and summation of the resultant expression
over k gives:(

H − E0
0 − λU H

′)∑
j,k

bk
0 j |0, k〉 0〈0, j | = (

H − E0
0 − λU H

′)U = 0. (7.32)

Equation (7.32) can be rewritten as(
E0

0 − H
0
)
U = λ(H

′U − U H
′U ) (7.33)

Now since Q0 = 1 − P0, we can write

U = P0U + Q0U. (7.34)

If we substitute this expression for U in the left-hand side of (7.33), and note that
(E0

0 − H
0)P0 is identically zero, we have(

E0
0 − H

0
)
Q0U = λ(H

′U − U H
′U ). (7.35)

Now in the subspace complementary to that which is spanned by our zeroth-order basis
set |0, i〉0, the operator (E0

0 − H
0) has a well defined inverse, which we denote by a−1.

Thus if we multiply (7.35) by Q0a−1 we have

Q0 Q0U = λ
Q0

a
(H

′U − U H
′U ), (7.36)
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i.e.

Q0U = λ
Q0

a
(H

′U − U H
′U ). (7.37)

Substituting (7.20) and (7.37) in (7.34), we finally obtain the recursion equation in U
which we are seeking:

U = P0 + λQ0

a
(H

′U − U H
′U ). (7.38)

Now U can be expanded as a power series in the perturbation λH
′; if we write U

as a sum of zeroth-order, first-order, second-order, etc., contributions,

U = U (0) + λU (1) + λ2U (2) + · · · , (7.39)

we can then rewrite (7.38) in the form

U (0) + λU (1) + λ2U (2) + · · ·
= P0 + λQ0

a

{
H

′U (0) + λH
′U (1) + λ2

H
′U (2) + · · ·}

− λQ0

a

{
U (0)

H
′U (0) + λU (1)

H
′U (0) + λ2U (2)

H
′U (0) + · · ·}

− λQ0

a

{
λU (0)

H
′U (1) + λ2U (1)

H
′U (1) + λ3U (2)

H
′U (1) + · · ·}

− λQ0

a

{
λ2U (0)

H
′U (2) + λ3U (1)

H
′U (2) + λ4U (2)

H
′U (2) + · · ·} + · · · . (7.40)

Equating like powers of λ in equation (7.40) we obtain the results

U (0) = P0,

U (1) = Q0

a

{
H

′U (0) − U (0)
H

′U (0)
}
,

U (2) = Q0

a

{
H

′U (1) − U (1)
H

′U (0) − U (0)
H

′U (1)
}
,

. . . ,

. . . ,

U (n) = Q0

a

{
H

′U (n−1) −
n−1∑
p=0

U (p)
H

′U (n−p−1)

}
. (7.41)

Noting that U (0) = P0 and that (Q0/a)P0 vanishes since Q0 and P0 are projection
operators onto orthogonal subspaces, we see that we can remove the term p = 0 from
the summation in the last line of (7.41). In other words, the general expression for U (n)

is

U (n) = Q0

a

{
H

′U (n−1) −
n−1∑
p=1

U (p)
H

′U (n−p−1)

}
. (7.42)

Using these results in equation (7.24) we are finally able to obtain an expression for
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the desired effective Hamiltonian, which is,

Heff (0) = H
0 + λP0H

′U

= H
0 + λP0H

′U (0) + λ2 P0H
′U (1) + λ3 P0H

′U (2) + λ4 P0H
′U (3) + · · ·

= H
0 + λP0H

′ P0 + λ2 P0H
′ Q0

a
H

′ P0

+ λ3

{
P0H

′ Q0

a
H

′ Q0

a
H

′ P0 − P0H
′ Q0

a2
H

′ P0H
′ P0

}

+ λ4

{
P0H

′ Q0

a
H

′ Q0

a
H

′ Q0

a
H

′ P0 − P0H
′ Q0

a
H

′ Q0

a2
H

′ P0H
′ P0

−P0H
′ Q0

a2
H

′ Q0

a
H

′ P0H
′ P0 + P0H

′ Q0

a3
H

′ P0H
′ P0H

′ P0

− P0H
′ Q0

a2
H

′ P0H
′ Q0

a
H

′ P0

}
+ · · · . (7.43)

This expression is correct to fourth-order and higher-order terms can be obtained if
required from the general expression for U (n). To remind the reader at this point, we
recall that from equation (7.10),

P0 =
∑

i

|0, i〉0 0〈0, i |

and

(Q0/a
r ) =

∑
η 
=0

∑
i

|η, i〉0 0〈η, i |/(E0
0 − E0

η

)r
. (7.44)

We note that the operator Heff (0) is constrained to act within the manifold of states |0〉
because each term on the right-hand side is sandwiched between a pair of projection
operators, P0.

The various contributions to the effective Hamiltonian operator on the right-hand
side of equation (7.43) can be represented diagramatically in a way which is very
helpful in practice. These diagrams are shown in figure 7.1. For each diagram, the
position at the bottom refers to the chosen zeroth-order manifold |0〉0 and the position
at the top refers to the states in the complementary subspace. Each line joining these
two positions stands for a connecting matrix element.

We shall return to the derivation of the individual terms of the effective Hamiltonian
listed in (7.43) for some particular cases later in this chapter. To conclude this section,
we now consider some of the general properties of the operator Heff (0) and its
eigenfunctions. Each of the terms listed in (7.43) is composed of products of the three
operators P0, Q0 and H

′. Although each of these operators is individually Hermitian
(i.e. the operator is self-adjoint, P†

0 = P0), a product of any of them is not necessarily
Hermitian. In fact, a term is only Hermitian when it is palindromic, that is, when it reads
the same forwards as backwards. Inspection of equation (7.43) reveals that Heff (0) is
Hermitian up to and including terms in λ2 but that there are non-Hermitian terms in
theλ3 and higher-order contributions. The nature of these non-Hermitian properties can
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be understood by referring back to eigenvalue equations for Heff (0), equations (7.9)
and (7.23). Because we have constructed Heff (0) to have eigenvalues identical with
those of the total Hamiltonian H (which is, of course, Hermitian), Heff (0) will have
real eigenvalues, even though it is non-Hermitian. However, we recall that the eigen-
functions of Heff (0) are

∑
i ck

0i |0, i〉0, the projections of the actual eigenfunctions of
H onto a zeroth-order subspace. These eigenfunctions are not necessarily orthogonal
or normalised with respect to each other and it is in this way that the non-Hermitian
properties of the operator Heff (0) manifest themselves.

Since we shall usually be more interested in the eigenvalues than the eigenfunc-
tions of Heff (0), the possible non-Hermitian properties need not concern us too deeply.
However, there may be certain situations, for example in the use of computer pro-
grammes to extract the eigenvalues of Heff (0), where we must take account of the
non-orthogonal eigenfunctions. In these situations, it is easiest to use a symmetrised
form of the non-Hermitian terms in Heff (0); in the third order, this would be

−1

2
λ3

{
P0H

′ Q0

a2
H

′ P0H
′ P0 + P0H

′ P0H
′ Q0

a2
H

′ P0

}
. (7.45)

Soliverez [9] has shown that errors introduced by this modification of equation (7.43)
only appear in fifth and higher orders. Since in practice it is rarely worthwhile to use
perturbation theory beyond third order, these discrepancies need not worry us.

7.3. The Van Vleck and contact transformations

We now describe two other methods of deriving an effective Hamiltonian, both of which
are widely used. Although we shall not go into details, the mathematical development
will show that the two methods are exactly equivalent and, in addition, that they are very
nearly equivalent to the method based on projection operators given in the previous
section. The equivalence of the three methods is not really very surprising since they are
all solutions of the problem by perturbation theory, differing only in the mathematical
techniques employed.

Again we start by partitioning the total Hamiltonian,

H = H
0 + H

′, (7.46)

where all terms off-diagonal in the quantum number η are included in H
′. We note that

since we choose our zeroth-order Hamiltonian to be independent of operators involving
the quantum numbers i (see previous section), our zeroth-order eigenfunctions |η, i〉0

can be completely factorised into the product

|η, i〉0 = |η〉0|i〉0, (7.47)

where |η〉0 are the eigenfunctions of H
0,

H
0|η〉0 = E0

n |η〉0. (7.48)

We first imagine that we have constructed a matrix representation of H in the
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zeroth-order basis set (7.47), and we then subject this matrix to a similarity trans-
formation to give a transformed matrix H̃ where

H̃ = T −1
HT . (7.49)

Since the matrix T is unitary (T † = T −1), H̃ will have the same eigenvalues as H but
different eigenfunctions. We then set

T = eiλS1 eiλ2 S2 eiλ3 S3 . . . , (7.50)

where Sn is Hermitian and S1, S2, S3, . . . , are chosen in the way outlined below to
remove the effects of matrix elements off-diagonal in η to order λ, λ2, λ3, . . . . Each
of the successive transformations produced by the development of T (7.50) is known
as a contact transformation [10, 11], while the first (e−iλS1 HeiλS1 ) is what is usually
referred to as the Van Vleck transformation [12, 13].

We now expand H̃ as

H̃ = H̃0 + λH̃1 + λ2
H2 + . . . , (7.51)

and equate the right-hand side with

. . . e−iλ2 S2 e−iλS1 (H
0 + λH

′)eiλS1 eiλ2 S2 . . . . (7.52)

Comparing coefficients of λ, we can obtain the results

λ0 : H̃0 = H
0. (7.53)

λ1 : H̃1 = H
′ + i[H

0, S1]. (7.54)

λ2 : H̃2 = i[H
0, S2] + i[H

′, S1] + 1

2
[[S1,H

0], S1]. (7.55)

λ3 : H̃3 = i[H
0, S3] + i[H

′, S2] − i

6
[[[H

0, S1], S1], S1]

+ 1

2
[[S1,H

′], S1] + [S2, [H
0, S1]]. (7.56)

Substituting (7.54) into (7.55) and (7.56), we have

H̃2 = i[H
0, S2] + i

2
[H

′, S1] + i

2
[H̃1, S1]. (7.57)

H̃3 = i[H
0, S3] + i[H̃1, S2] − 1

3
[[H

′, S1], S1] − 1

6
[[H̃1, S1], S1]. (7.58)

We now show how the matrix elements of S1 can be selected to remove the ef-
fects on H of matrix elements off-diagonal in η. Since it can easily be verified that
0〈η, i |[H

0, S1]|η, j〉0 is always zero, irrespective of the form of S1, we see from (7.54)
that the diagonal matrix elements of H̃1 are just the diagonal matrix elements of H

′:

0〈η, i |H̃1|η, j〉0 = 0〈η, i |H′|η, j〉0. (7.59)

Without any loss in generality therefore, we can set the matrix elements of S1 diagonal
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in η equal to zero:

0〈η, i |S1|η, j〉0 = 0 for all η. (7.60)

In addition, we require the matrix elements of H̃1 off-diagonal in η to be zero, that is,
from (7.54):

0〈η, i |H̃1|η′, j〉0 = 0〈η, i |H′|η′, j〉0 + i 0〈η, i |S1|η′, j〉0
(
E0
η − E0

η′
)= 0 for η′ 
= η.

(7.61)

Thus

i 0〈η, i |S1|η′, j〉0 = −
0〈η, i |H′|η′, j〉0(

E0
η − E0

η′
) . (7.62)

The matrix elements of S2 are chosen in a similar fashion so that 0〈η, i |H̃2|η′, j〉0 is
zero, and so on.

We now consider the diagonal matrix elements of H̃2 and H̃3 using the results
(7.60) and (7.62). It is a simple matter to establish that for H̃2, equation (7.57), only
the second term on the right-hand side has non-zero diagonal matrix elements,

0〈η, i |H̃2|η, j〉0 = i

2
0〈η, i |[H

′, S1]|η, i〉0, (7.63)

while for H̃3, equation (7.58), only the third and fourth terms have non-zero diagonal
matrix elements, irrespective of the forms of S2 and S3:

0〈η, i |H̃3|η, j〉0 = −1

3
0〈η, i |[[H

′, S1], S1]|η, j〉0 − 1

6
0〈η, i |[[H̃1, S1], S1]|η, j〉0.

(7.64)

Thus if we are only interested in deriving an effective Hamiltonian up to order λ3, we
need not concern ourselves with the explicit forms of S2 and S3. Furthermore, for the
particular situation where H

′ only has matrix elements which are off-diagonal in η (i.e.
all diagonal matrix elements of H

′ are zero), the second term in (7.64) also vanishes
and we have

0〈η, i |H̃3|η, j〉0 = −1

3
0〈η, i |[[H

′, S1], S1]|η, j〉0. (7.65)

Thus for the general case, we can separate the matrix elements of H
′ into diagonal

and off-diagonal categories and use (7.65) to evaluate contributions to H̃3 involving
off-diagonal matrix elements of H

′ and to use, from (7.59) and (7.64),

0〈η, i |H̃3|η, j〉0 = −1

2
0〈η, i |[[H

′, S1], S1]|η, j〉0, (7.66)

for contributions from diagonal elements.
In vibration–rotation theory, the λ, λ2 and λ3 contributions to the contact-

transformed Hamiltonian are commonly evaluated directly from the relationships
(7.59), (7.63), (7.65) and (7.66). This is because the particularly simple commuta-
tion relationships which exist between the normal coordinate operator Q, its conjugate
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momentum P and the simple harmonic oscillator Hamiltonian, which is commonly
taken as H

0 in equation (7.46), make the evaluation of the commutator brackets quite
straightforward. However, equations (7.59), (7.63), (7.65) and (7.66) are not very suit-
able for the derivation of an effective Hamiltonian that includes the effects of matrix
elements of H

′ off-diagonal in electronic state, since the commutation relations between
H

0 and the operators involved are generally much more complicated. In this situation,
it is easier to develop the various contributions in terms of matrix element products
using equation (7.62). After some straightforward algebra, we obtain the alternative
but completely equivalent results,

0〈η, i |H̃0|η, j〉0 = E0
η. (7.67)

0〈η, i |H̃1|η, j〉0 = 0〈η, i |H′|η, j〉0. (7.68)

0〈η, i |H̃2|η, j〉0 =
∑
η′ 
=η

∑
k

0〈η, i |H′|η′, k〉0 0〈η′, k|H′|η, j〉0(
E0
η − E0

η′
) . (7.69)

0〈η, i |H̃3|η, j〉0 =
∑
η′,η′′ 
=η

∑
k,�

0〈η, i |H′|η′, k〉0 0〈η′, k|H′|η′′, �〉0 0〈η′′, �|H′|η, j〉0(
E0
η − E0

η′
)(

E0
η − E0

η′′
)

− 1

2

∑
η′ 
=η

∑
k,�

{ 0〈η, i |H′|η, k〉0 0〈η, k|H′|η′, �〉0 0〈η′, �|H′|η, j〉0(
E0
η − E0

η′
)2

+
0〈η, i |H′|η′, k〉0 0〈η′, k|H′|η, �〉0 0〈η, �|H′|η, j〉0(

E0
η − E0

η′
)2

}
. (7.70)

If we compare these equations with the projection operator expansion given in equation
(7.43), we find that the expressions are identical up to and including the λ2 contribution
but that the λ3 term derived here corresponds not to the λ3 term in the expansion (7.43)
but to its symmetrised (Hermitian) form discussed at the end of section 7.2. Since
the discrepancies that arise from these two different forms are of order λ5 or higher,
the effective Hamiltonians derived by the two methods are identical to order λ3. In the
literature the Van Vleck transformation is normally implemented by use of equations
(7.67) to (7.70) although the λ3 contribution (7.70) has often been ignored.

In conclusion, we note that thus far we have derived matrix elements of the trans-
formed Hamiltonian H̃ for a given block in the complete matrix labelled by a particular
value of η rather than an effective Hamiltonian operating only within the subspace of the
state η. It is an easy matter to cast our results in the form of an effective Hamiltonian for
any particular case since the matrix elements involved in either the commutator bracket
formulation (contact transformation) or the explicit matrix element formulation (Van
Vleck transformation) can always be factorised into a product of a matrix element of
operators involved in H

0 associated with the quantum number η and a matrix element
of operators that act only within the subspace levels of a given η state, associated
with the quantum number i . This follows because the basis set can be factorised as in
equation (7.47). The matrix element involving the η quantum number can then either
be evaluated or included as a parameter to be determined experimentally, while the
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matrix element involving the i quantum number can be restored to operator form with
the restriction that it only operates on the functions |i〉0 which span a particular state
|η〉0. We shall see later in this chapter how this process is carried out in detail.

7.4. Effective Hamiltonian for a diatomic molecule
in a given electronic state

7.4.1. Introduction

It is well known from the Born–Oppenheimer separation [1] that the pattern of energy
levels for a typical diatomic molecule consists first of widely separated electronic states
(�Eelec ≈ 20 000 cm−1) . Each of these states then supports a set of more closely
spaced vibrational levels (�Evib ≈ 1000 cm−1). Each of these vibrational levels in
turn is spanned by closely spaced rotational levels ( �Erot ≈ 1 cm−1) and, in the case
of open shell molecules, by fine and hyperfine states (�Efs ≈ 100 cm−1 and �Ehfs ≈
0.01 cm−1). The objective is to construct an effective Hamiltonian which is capable of
describing the detailed energy levels of the molecule in a single vibrational level of a
particular electronic state. It is usual to derive this Hamiltonian in two stages because of
the different nature of the electronic and nuclear coordinates. In the first step, which we
describe in the present section, we derive a Hamiltonian which acts on all the vibrational
states of a single electronic state. The operators thus remain explicitly dependent on the
vibrational coordinate R (the internuclear separation). In the second step, described in
section 7.55, we remove the effects of terms in this intermediate Hamiltonian which
couple different vibrational levels. The result is an effective Hamiltonian for each
vibronic state.

In this section, we shall use the degenerate perturbation theory approach to derive
the form of the effective Hamiltonian for a diatomic molecule in a given electronic
state. Exactly the same result can be obtained by use of the Van Vleck or contact
transformations [12, 13]. The general expression for the operator up to fourth order
in perturbation theory is given in equation (7.43). Fourth order can be considered as
the practical limit to this type of approach. Indeed, even its implementation is very
laborious and has only been used to investigate the form of certain special terms in the
effective Hamiltonian. We shall consider some of these terms later in this chapter. For
the moment we confine our attention to first- and second-order effects only.

To simplify matters, we shall start out by considering the effective Hamiltonian
for a molecule in the absence of external fields. The additional effects of magnetic or
electric fields will be dealt with later. We have derived the fundamental Hamiltonian
for a diatomic molecule in chapters 2 to 4. For the present purposes it can be written:

H = Helec + 1

2µ
P2

R + hcB(R)(N − L)2 + 1

2M
P2

+ H
(e)
so + H

(n)
so + H

(scal)
ss + H

(tens)
ss + Hhfs. (7.71)
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The first term consists of both the kinetic energy of the electrons and the complete
Coulomb energy, the second is the vibrational kinetic energy, the third is the rotational
kinetic energy, the fourth is the ‘mass polarisation’ energy involving the total linear
momentum of the electrons P = ∑

i pi , the fifth and sixth are the parts of the electronic
spin–orbit and spin–other-orbit operators which contain the electronic and nuclear
momenta respectively, the seventh and eight terms are the scalar and tensor parts of
the electron spin–spin interaction, and the last term describes the nuclear hyperfine
effects (both magnetic and electric). In equation (7.71), µ and M are the reduced and
total masses of the nuclei respectively, the rotational variable B(R) is h2/2hcµR2

(in cm−1), and hL is the electron orbital angular momentum about the nuclear centre
of mass. N is equal to J − S, where h J is the total angular momentum apart from
nuclear spin, and hS is the electron spin angular momentum; as elsewhere in this book,
the angular momenta are dimensionless.

The explicit forms of terms five to eight in equation (7.71) are as follows:

H
(e)
so = he2gS

16πε0m2
ec2

∑
i

si ·
{∑
α

Zαr−3
iα (r i − rα)∧ pi −

∑
j 
=i

r−3
i j (r i − r j) ∧ (pi − 2p j )

}
.

(7.72)

H
(n)
so = − he2gS

8πε0mec2

∑
i

si ·
{∑

α

ZαM−1
α r−3

iα (r i − rα) ∧ Pα

}
. (7.73)

H
(scal)
ss = − h2e2g2

S

6ε0m2
ec2

∑
i

∑
j>i

(si · s j )δ(r i j ). (7.74)

H
(tens)
ss = h2e2g2

S

16πε0m2
ec2

∑
i

∑
j>i

[
si · s j − 3(si · r i j )(s j · r i j )r

−2
i j

][
r−3

i j − (4π/3)δ(r i j )
]
.

(7.75)

The subscripts i, j refer to electrons, α refers to nuclei, and ε0 is the permittivity of
free space. These terms were listed at the end of chapter 3, where their derivation was
described.

We now proceed to remove the effects of the terms in equation (7.71) which
couple different electronic states. For a molecule in which the spin–orbit coupling
matrix elements are small compared with the electronic intervals, a convenient starting
point is the set of Hund’s case (a) electronic state vectors |η,Λ, (S),Σ; R〉 which are
obtained by solving the electronic Schrödinger equation,

Helec|η,Λ, (S),Σ; R〉 = |η,Λ, (S),Σ; R〉Vη(R), (7.76)

as a function of the internuclear separation R. Here η is a state symbol (such as X2�)
specifying the electronic state in question, which has two-fold degenerate orbital com-
ponentsΛ= ± |Λ| ifΛ 
= 0. Although Helec is a purely orbital operator, the electronic
permutation symmetry of the orbital eigenvectors determines the electron spin quantum
number S through the Pauli principle [14]. The (2S + 1) different Σ components of S
are degenerate with each other at the level of approximation defined by equation (7.76).
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The notation for the state vector in this equation is redundant since S is contained in
η but it is useful to emphasise that S has a definite value (unlike L for a diatomic
molecule).

We shall use equation (7.76) as the basis for a perturbation treatment of the full
Hamiltonian H. Thus Helec is the zeroth-order Hamiltonian, see equation (7.1). Con-
sequently the kets |η,Λ, (S),Σ; R〉 are the zeroth-order eigenstates and Vη(R) are the
zeroth-order eigenvalues, see equation (7.2). The perturbation process has the effect
of removing terms which give matrix elements off-diagonal in η without altering the
eigenvalues of H (at least, to a desired level of accuracy). In performing these calcu-
lations, one should remember that the electronic matrix elements of H are operators
in the space of the vibrational, rotational and spin degrees of freedom. From equation
(7.43), we can write the matrix elements of the transformed Hamiltonian H

′ to the
second order as follows:

〈η,Λ, (S),Σ; R|H′|η′,Λ′, (S′),Σ′; R〉

=δηη′δSS′

{
〈η,Λ, (S),Σ; R|H|η,Λ′, (S),Σ′; R〉

+
∑

η′′ 
=η,Λ′′,Σ′′
〈η,Λ, (S),Σ; R|H|η′′,Λ′′, (S′′),Σ′′; R〉

× 〈η′′,Λ′′, (S′′),Σ′′; R|H|η,Λ′, (S),Σ′; R〉/[Vη(R) − Vη′′ (R)]

}
. (7.77)

The condition for the validity of this approach to the perturbation treatment is

|〈η,Λ, (S),Σ; R|H|η′′,Λ′′, (S),Σ′′; R〉| � |Vη(R) − Vη′′ (R)| (7.78)

for allΛ,Σ,Λ′′,Σ′′ with η 
= η′′. If this relationship is not satisfied, a different zeroth-
order coupling case must be adopted. Instead of working in terms of matrix elements,
it is usually more illuminating to employ an effective Hamiltonian operator Hη for the
electronic state η. This is an operator in the space of the Λ and Σ components of η
as well as the space of the vibrational and rotational degrees of freedom and is an
equivalent operator defined so that its matrix elements are equal to those of H

′:

〈Λ, S,Σ|Hη|Λ′, S,Σ′〉 = 〈η,Λ, (S),Σ; R|H′|η,Λ′, (S),Σ′; R〉. (7.79)

Thus, what we call Hη here is the same as the operator Heff (0) in equation (7.43) which
acts only within the manifold of states |0〉.

In the present treatment, we retain essentially all the diagonal matrix elements of H;
these are the first-order contributions to the effective electronic Hamiltonian. There are
many possible off-diagonal matrix elements but we shall consider only those due to the
terms in Hrot and H

e
so here since these are the largest and provide readily observable ef-

fects. The appropriate part of the rotational Hamiltonian is −2hcB(R)(Nx Lx + Ny L y).
The matrix elements of this operator are comparatively sparse because they are sub-
ject to the selection rules �Λ= ± 1, �S = 0 and �Σ= 0. The spin–orbit coupling
term, on the other hand, has a much more extensive set of matrix elements allowed
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by the selection rules�Ω= 0,�S = 0,±1 and�Σ= −�Λ= 0, ∓ 1. In order to see
how the effective Hamiltonian is derived, we now deal with some of the contributions
explicitly.

7.4.2. The rotational Hamiltonian

The simplest example of the way in which the various terms arise in the effective
electronic Hamiltonian involves the rotational kinetic energy operator, Hrot:

Hrot = hcB(R)R2

(7.80)= hcB(R)(N − L)2,

where h R is the end-over-end rotational angular momentum of the nuclei, and

B(R) = h2/(2µR2hc). (7.81)

The operators B(R) and N act only within each electronic state while the orbital angular
momentum L acts both within and between such states.

The first-order contribution to the effective Hamiltonian involves the diagonal
matrix element of the operator in equation (7.80):

H
(1)
eff

/
hc = |0〉〈0|B(R)(N − L)2|0〉〈0|

(7.82)
= B(1)(R)

(
N2 − L2

z

)
,

where

B(1)(R) = 〈0,Λ|B(R)|0,Λ〉, (7.83)

because the z component of (N − L), which is the only component of L which gives a
diagonal matrix element, vanishes. Note that when we use the term diagonal in this con-
text, we mean diagonal within the zeroth-order states of |0〉. The second-order contribu-
tion arises from the admixture of other electronic states |η〉 into the state in question |0〉
through the operator components Lx and L y in the form −hcB(R)(N+L− + N−L+):

H
(2)
eff

/
hc

= hc|0〉
∑
η 
=0

〈0|−B(R)(N+L− + N−L+)|η〉〈η|−B(R)(N+L− + N−L+)|0〉〈0|
[V0(R) − Vη(R)]

= hc
∑
η 
=0,Λ′

〈0,Λ|B(R)L∓|η,Λ′〉〈η,Λ′|B(R)L±|0,Λ〉
[V0(R) − Vη(R)]

(N±N∓)

= B(2)(R)
(
N 2

x + N 2
y

)
= B(2)(R)

(
N2 − N 2

z

)
. (7.84)
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The second-order contribution to B(R) is thus given by

B(2)(R) = hc
∑
η 
=0

〈0,Λ|B(R)L∓|η,Λ′〉〈η,Λ′|B(R)L±|0,Λ〉
[V0(R) − Vη(R)]

. (7.85)

Hence, to second order, we can write the effective rotational Hamiltonian as

Hrot = B(R)
(
N2 − N 2

z

)
, (7.86)

where

B(R) = B(1)(R) + B(2)(R). (7.87)

Since the matrix element of N 2
z is constant for a given electronic state (= Λ2), we see

from equation (7.87) that the second-order contribution has exactly the same operator
form as the first-order contribution. The effects of the matrix elements off-diagonal in
electronic state are therefore absorbed in the Hamiltonian to give an operator of exactly
the same form as in the full Hamiltonian, but with a slightly modified coefficient B(R).
Physically, the first-order contribution B(1)(R) describes the rotational kinetic energy
from the motion of the bare nuclei and the second-order contribution B(2)(R) adds in
the contribution to the kinetic energy from the electrons which rotate in laboratory
space with the nuclei. (The electrons follow the motion of the nuclei very closely
because of the Coulombic attraction between them.) We see also from its definition in
(7.81) that the first-order contribution to B(R) is proportional to µ−1 whereas B(2)(R)
is proportional to µ−2, provided that [V0(R) − Vη(R)] is large compared with the off-
diagonal matrix elements. The ratio of the two contributions will therefore vary between
different isotopic forms of the molecule and can thus, in principle, be separated. This
difference in reduced mass dependence must be taken into account when modelling
the effects of isotopic substitution on rotational energy levels.

We see from the way in which the effective rotational Hamiltonian is constructed
that it is naturally expressed in terms of the angular momentum operator N. In the sci-
entific literature, however, it is frequently written in terms of the vector R (which repre-
sents the rotational angular momentum of the nuclei) rather than N. While R = N − L
occurs in the fundamental Hamiltonian (7.71), its use in the effective Hamiltonian is
not satisfactory because R has matrix elements (due to L) which connect different
electronic states and so is not block diagonal in the electronic states. In practice, au-
thors who claim to be using R in their formulations usually ignore any matrix elements
which they find inconvenient such as those of Lx and L y . We shall return to this point
in more detail later in this chapter.

7.4.3. Hougen’s isomorphic Hamiltonian

There is a particular difficulty in the formulation of the full Hamiltonian for a linear
molecule (and hence for a diatomic molecule) which was first identified by Hougen
[15]. The source of this difficulty is the fact that only two rotational coordinates are
required to define the orientation of a diatomic molecule in laboratory space, the Euler



Effective Hamiltonian for a diatomic molecule in a given electronic state 321

angles φ and θ . It is customary to define the molecule-fixed z axis to point along the
diatomic molecule axis from nucleus 1 to nucleus 2. Without any loss of generality, we
can take the third Euler angle χ to be zero so that the transformation of the coordinates
Ri of a particle i in the space-fixed system to the coordinates of the same particle in
the rotating system is given by


x ′

i

y′
i

z′
i


 =


cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0
sin θ cosφ sin θ sinφ cos θ





 Xi

Yi

Zi


 . (7.88)

Using standard methods to transform differential operators, Hougen attempted to
achieve as great a separation of electronic, vibrational, rotational and spin coordi-
nates as possible. The resultant operator representing the rotational kinetic energy has
the form

Hrot = h2

2µR2

[
(Jx ′ − Wx ′ )2 + 1

sin θ
(Jy′ − Wy′ ) sin θ (Jy′ − Wy′ )

]
. (7.89)

The angular momentum operator J which emerges from this treatment has the form:

i hJx ′ + j hJy′ + khJz′ = i(cot θhWz′ − cosecθpφ) + j pθ + khWz′ , (7.90)

where hW represents all the angular momenta apart from that due to the rotation of
the nuclei:

W = L + S, (7.91)

and

pθ = −ih(∂/∂θ ), (7.92)

pφ = −ih(∂/∂φ). (7.93)

The operators Jx ′ , Jy′ and Jz′ are the instantaneous components of the total angular
momentum in the molecule-fixed axis system, including nuclear, electron orbital and
spin motion, as computed by an observer fixed in space (what Van Vleck calls the
components referred to the molecule-fixed axis system). They are not, however, what
one might naively expect from a knowledge of elementary angular momentum theory.
Because of the absence of the third Euler angle in the rotational variables for a diatomic
molecule, the components referred to the rotating axis system do not obey the usual
commutation relations for angular momenta components (even though the space-fixed
components JX , JY and JZ do behave normally). Instead, the commutation relations
are more complicated:

[Jx ′ , Jy′ ] = −i cot θJx ′ − i Wz, (7.94)

[Jy′ , Jz′ ] = [Jz′ , Jx ′ ] = 0, (7.95)

[Jx ′ ,Wy′ ] = i cot θ
∑

k

εz′ jk Wk, (7.96)

[Jy′ ,W j ] = 0, (7.97)

[Jz′ ,W j ] = i
∑

k

εz′ jk Wk, (7.98)
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where i , j , k = x ′, y′ or z′ and εi jk is equal to +1 if i jk = x ′y′z′ or any cyclic permu-
tation, equals −1 if any pair of these x ′y′z′ are interchanged, and equals zero for any
other combination. The components of W (or L and S separately) in the molecule-fixed
axis system obey the normal commutation relations:

[Wi ,W j ] = i
∑

k

εi jk Wk . (7.99)

Thus we see that the operator J is not strictly an angular momentum operator in the
quantum mechanical sense, which is why we have assigned it a different symbol.
More importantly for the present purposes, we cannot use the armoury of angular
momentum theory and spherical tensor methods to construct representations of the
molecular Hamiltonian. In addition, the rotational kinetic energy operator, equation
(7.89), takes a more complicated form than it has for a nonlinear molecule where there
are three Euler angles (rotational coordinates).

This lack of a third Euler angle, which might at the outset have seemed to be a sim-
plification, therefore turns out to be something of a nuisance. In order to avoid this prob-
lem, Hougen devised a construct which permitted the re-introduction of the Euler angle
χ in the description of the rotational motion of a linear molecule; he called the resulting
operator the isomorphic Hamiltonian [15]. Since this Hamiltonian has one more degree
of freedom than the true Hamiltonian, it has additional eigenstates which are not eigen-
states of the true Hamiltonian. However, it is simple to use a restricted set of basis states
to diagonalise the isomorphic Hamiltonian so that these extra eigenstates are excluded.

To obtain the isomorphic Hamiltonian for a diatomic molecule, χ is introduced
as an independent variable and the coordinates of the particles which make up the
molecule are measured in an axis system (x , y, z) whose orientation is described by
the Euler angles (φ, θ , χ ) in the (X , Y , Z ) axis system. We recall that we chose χ to
be zero in constructing the true Hamiltonian. The (x , y, z) axes are therefore obtained
by rotation of the (x ′, y′, z′) axis system about the z′(= z) axis through the angle χ . As
a result, we have

(Jx − Wx ) = cosχ (Jx ′ − Wx ′ ) + sinχ (Jy′ − Wy′ ), (7.100)

(Jy − Wy) = − sinχ (Jx ′ − Wx ′ ) + cosχ (Jy′ − Wy′ ), (7.101)

(Jz − Wz) = (Jz′ − Wz′ ) = 0. (7.102)

The components of J referred to the new coordinate system then have completely
standard definitions:

h Jx = cosχ
(
cot θpχ − cosecθpφ

) + sin θpθ , (7.103)

h Jy = − sinχ
(
cot θpχ − cosecθpφ

) + cosχpθ , (7.104)

h Jz = pχ . (7.105)

These components are now independent of the orbital and spin variables and so com-
mute with L and S. They also obey the commutation relations for a general angular
momentum, provided only that the anomalous sign of i is used.
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In the isomorphic Hamiltonian, the rotational kinetic energy operator has the sim-
pler (and familiar) form

H
iso
rot = h2

2µR2
[(Jx − Wx )2 + (Jy − Wy)2]

= hcB(J − W )2. (7.106)

The second line of this equation follows from (7.102) above. We note that the awkward
sin θ factors in (7.89) have now disappeared. As Hougen points out, the eigenfunctions
of the true Hamiltonian involve one less variable and so one less quantum number than
the eigenfunctions of the artificial Hamiltonian and consequently the two operators
cannot be completely isomorphic. However, a simple restriction on the extra quantum
number in the artificial problem identifies that part of the full artifical Hamiltonian
which is isomorphic with the true operator. Since the isomorphic Hamiltonian com-
mutes with (Jz − Wz), the two operators have a set of simultaneous eigenfunctions.
Equation (7.102) states that only those eigenfunctions of the isomorphic Hamiltonian
which have an eigenvalue of zero for (Jz − Wz) are eigenfunctions of the true
Hamiltonian.

Hougen’s construct thus provides considerable simplification of the theory of the
general linear molecule and has been used, often unknowingly, by countless authors.
We use it with gratitude throughout this book.

7.4.4. Fine structure terms: spin–orbit, spin–spin
and spin–rotation operators

In section 7.4.2 we dealt with perhaps the simplest contribution to the effective
Hamiltonian for a particular electronic state, that of the rotational kinetic energy. We
now turn our attention to contributions which are only slightly more complicated, the
so-called fine structure interactions involving the electron spin angular momentum S.
Obviously for S to be non-zero, the molecule must be in an open shell electronic state
with a general multiplicity (2S + 1).

The terms in the fundamental Hamiltonian given in equation (7.71) which are
involved are Hrot, H

(e)
so , H

(n)
so and H

(tensor)
ss . The first-order contributions can be written

down directly from equation (7.43) as

H
(1)
eff = hcP0

{
A(1)(R)T1

q=0(L)T1
q=0(S ) + B(1)(R)T1(J − S ) · T1(J − S )

+ γ (1)(R)T1(J − S ) · T1(S ) + (2
√

6/3)λ(1)(R)T2
q=0(S , S )

}
P0 (7.107)

with the linear molecule restriction

T1
q=0(J − L − S ) = 0. (7.108)

We recall that the component q is referred to the molecule-fixed axis system. The
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first-order contribution to the spin–orbit interaction involves H
(e)
so ,

A(1)(R) = 1

hcΛΣ
〈η,Λ(S ),Σ; R|H(e)

so |η,Λ(S ),Σ; R〉, (7.109)

where the quantum number product in the denominator is just the expectation value
of T1

q=0(L)T1
q=0(S ). The first-order contribution to the spin–rotation interaction on the

other hand involves H
(n)
so :

γ (1)(R) = − gSe2 B(R)

4πε0mec2S(S + 1)

× 〈η,Λ(S ),Σ; R|
∑
i,α

(S · si )Zαr−3
iα (zi − zα)zα|η,Λ(S ),Σ; R〉. (7.110)

Here, as elsewhere, the subscripts i and α stand for electrons and nuclei respectively.
The factor (S · si )/S(S + 1) is used to project the contribution from each open shell
electron i onto the total spin angular momentum S. We remind ourselves that the
effective Hamiltonian is constructed to operate within an electronic state with a given
multiplicity (2S + 1).

The first-order contribution to the spin–spin coupling term involves just the ex-
pectation value of H

(tensor)
ss :

λ(1)(R) = 1

hc

〈η,Λ(S ),Σ; R|H(tensor)
ss |η,Λ(S ),Σ; R〉

(2/3){3Σ2 − S(S + 1)} . (7.111)

Once again, the quantum numbers in brackets in the denominator are there simply to
produce the correct matrix element, so that equation (7.79) is satisfied. Since the spin
operators act on the spin coordinates only, the diagonal matrix element of the operator
in H

(1)
eff , equation (7.107), is

〈S,Σ|T2
q=0(S, S )|S,Σ〉 = 〈S,Σ|(1/

√
6)

(
3S2

z − S2
)|S,Σ〉

= (1/
√

6)[3Σ2 − S(S + 1)]. (7.112)

The last contribution in equation (7.107) is the first-order rotational kinetic energy,
which we have already dealt with in section 7.4.2.

We now turn our attention to the second-order contributions. In order to see how
these are derived, let us consider in particular the contributions of the spin–orbit in-
teraction, H

(e)
so . Before we can use second-order perturbation theory to evaluate these

contributions, we need to write down the general matrix elements of this operator. We
can do this easily if we write the expression in equation (7.72) in the simplified form

H
(e)
so =

∑
i

ai (R)T1(l i ) · T1(si ), (7.113)

where the summation is over all open shell electrons and h l i represents the orbital
angular momentum of an individual electron i . It requires some work to show that
this form of the spin–orbit operator, known as the microscopic form, is almost exactly
equivalent to the full expression in equation (7.72); it neglects only the spin–other-orbit
interactions between unpaired electrons [16]. However, all we need to accept at this
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stage is that the matrix elements of (7.113) obey exactly the same selection rules as
those of (7.72). We can then evaluate the matrix elements of (7.113) in a Hund’s case
(a) representation by standard spherical tensor methods:

〈η,Λ; S,Σ|H(e)
so |η′,Λ′; S′,Σ′〉

=
∑

q

(−1)q
∑

i

〈η,Λ|ai T
1
−q (l i )|η′,Λ′〉〈S,Σ|T1

q (si )|S′,Σ′〉. (7.114)

By the Wigner–Eckart theorem,

〈S,Σ|T1
q (si )|S′,Σ′〉 = (−1)S−Σ

(
S 1 S′

−Σ q Σ′

)
〈S‖T1(si )‖S′〉. (7.115)

Hence

〈η,Λ; S,Σ|H(e)
so |η′,Λ′; S′,Σ′〉

=
∑

q

(−1)q (−1)S−Σ
(

S 1 S′

−Σ q Σ′

)∑
i

〈η,Λ|ai T
1
−q (l i )|η′,Λ′〉〈S‖T1(si )‖S′〉.

(7.116)

The selection rules of H
(e)
so for Hund’s case (a) quantum numbers can be seen immedi-

ately from this equation:�S = 0,±1 (by the triangle rule),�Λ = 0,±1,�Σ = 0,∓1
so that �Ω = 0 where Ω = Λ+Σ.

The second-order contribution of the spin–orbit coupling can now be written down
using the expression in equation (7.43), namely:

H
(2) = P0

{∑
η′Λ′

∑
S′Σ′

(VηΛ(R) − Vη′Λ′ (R))−1

[∑
q

(−1)q (−1)S−Σ
(

S 1 S′

−Σ q Σ′

)

×
∑

i

〈S‖T1(si )‖S′〉〈η,Λ|T1
−q (ai l i )|η′,Λ′〉

][∑
q ′

(−1)q ′
(−1)S′−Σ′

×
(

S′ 1 S
−Σ′ q ′ Σ′′

)∑
j

〈S′‖T1(s j )‖S〉〈η′,Λ′|T1
−q ′ (a j l j )|η,Λ′′〉

]}
P0.

(7.117)

Only the unpaired electrons contribute to the sums over i and j because only these
electrons contribute to the total spin. The operator that represents this contribution in
the effective Hamiltonian is designed to act only within the manifold of the state of
interest, |η, S〉. In other words, it should not make any explicit reference to the quantum
numbers S′ and Σ′ which must therefore be suppressed. With this in mind, the pair of
3- j symbols in equation (7.117) which both include S′ andΣ′, can be re-expressed by
making use of the relationship(

j1 �2 �3

m1 µ2 −µ3

)(
�1 j2 �3

−µ1 m2 µ3

)
= (−1)p

∑
j3,m3

(2 j3 + 1)

(
j1 j2 j3

m1 m2 m3

)

×
(

�1 �2 j3
µ1 −µ2 m3

){
j1 j2 j3
�1 �2 �3

}
, (7.118)
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where p = �1 + �2 + �3 + µ1 + µ2 + µ3. Anticipating from equation (7.107) an oper-
ator which is diagonal in the quantum numbersΛ andΣ, we setΛ′′ = Λ andΣ′′ = Σ

to obtain the general second-order contribution

H
(2) = P0

{∑
η′,Λ′

∑
S′,Σ′

(Vη,Λ(R) − Vη′,Λ′ (R))−1(−1)S−Σ∑
k

(2k + 1)

(
S k S

−Σ 0 Σ

)

× (−1)2S′
{

S 1 S′

1 S k

}∑
i, j

〈S‖T1(si )‖S′〉〈S′‖T1(s j )‖S〉
∑

q

(
1 k 1

−q 0 q

)

× 〈η,Λ|T1
−q (ai l i )|η′,Λ′〉〈η′,Λ′|T1

q (a j l j )|η,Λ〉
}

P0. (7.119)

The rank k can take values 0, 1 and 2 by the triangle rule. Of these, the scalar term
with k = 0 has no Σ dependence and hence does not affect the relative positions of
the ro-vibrational energy levels. It just makes a small contribution to the electronic
energy of the state |η,Λ〉. The first-rank term produces a second-order contribution
to the spin–orbit interaction because it is directly proportional to the quantum number
Σ from the 3- j symbol in the first line of (7.119). The contribution to the spin–orbit
parameter A(R) which arises in this way is given (in cm−1) by

A(2)(R) = 1

hcΛ[S(S + 1)(2S + 1)]1/2

∑
η′,Λ′

∑
S′

(Vη,Λ(R) − Vη′,Λ′ (R))−13(−1)2S′

×
{

S 1 S′

1 S 1

}∑
i, j

〈S‖T1(si )‖S′〉〈S′‖T1(s j )‖S〉
∑

q

(
1 1 1

−q 0 q

)

× 〈η,Λ|T1
−q (ai l i )|η′,Λ′〉〈η′,Λ′|T1

q (a j l j )|η,Λ〉. (7.120)

If Λ = 0, we know that this contribution must vanish because there is no direct spin–
orbit coupling for a � state. This expected result can be proved by replacing q by −q
in equation (7.119). The effect of this replacement is to multiply the whole expression
by (−1)k . Thus the summation over q causes the k = 1 term to vanish for � states.

The third contribution from equation (7.119), that with k = 2, can be written as

H
(2)
ss = (−1)S−Σ

(
S 2 S

−Σ 0 Σ

)
P0

{∑
η′,Λ′

∑
S′

(Vη,Λ(R) − Vη′,Λ′ (R))−15

{
S 1 S′

1 S 2

}

×
∑
i, j

〈S‖T1(si )‖S′〉〈S′‖T1(s j )‖S〉
∑

q

(
1 2 1

−q 0 q

)
〈η,Λ|T1

−q (ai l i )|η′,Λ′〉

× 〈η′,Λ′|T1
q (a j l j )|η,Λ〉

}
P0. (7.121)

This result now has exactly the same form as the first-order contribution to the spin–
spin coupling term in equation (7.107) with the term in braces being equated with
(2/3)

√
6λ(2)〈S‖T2(S, S)‖S〉 to ensure this result.

In a similar manner, there is a second-order contribution to the spin–rotation pa-
rameter which arises from the cross-term between the spin–orbit coupling and the
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rotational kinetic energy. We do not go through the details, but merely quote the result:

γ (2)(R) = −2
∑
η′

′ M1 + M2

[{Vη(R) − Vη′ (R)}〈S,Σ|S−|S,Σ+ 1〉] , (7.122)

where

M1 = 〈η,Λ(S ),Σ; R|B(R)L−|η′,Λ+ 1(S ),Σ; R〉
× 〈η′,Λ+ 1(S ),Σ; R|H(e)

so |η,Λ(S ),Σ+ 1; R〉,
M2 = 〈η,Λ(S ),Σ; R|H(e)

so |η′,Λ− 1(S ),Σ+ 1; R〉
× 〈η′,Λ− 1(S ),Σ+ 1; R|B(R)L−|η,Λ(S ),Σ+ 1; R〉. (7.123)

In summary, we can write down the effective Hamiltonian which represents the fine-
structure terms for a diatomic molecule in a 2S+1Λ state as:

Heff (R)

= hcP0
{

V (ad)
η (R) + V (sp)

η (R) + A(R)T1
q=0(L)T1

q=0(S ) + B(R)T1(J − S) · T1(J−S )

+ γ (R)T1(J − S ) · T1(S ) + (2/3)
√

6λ(R)T2
q=0(S, S )

}
P0, (7.124)

where A(R) = A(1)(R) + A(2)(R), (7.125)

B(R) = B(1)(R) + B(2)(R), (7.126)

γ (R) = γ (1)(R) + γ (2)(R), (7.127)

λ(R) = λ(1)(R) + λ(2)(R). (7.128)

In other words, each of the parameters is the sum of a first-order and a second-order
contribution. We have met equation (7.126) for the effective rotational constant operator
before, in an earlier section, where we pointed out that the second-order contribution
B(2) is very much smaller than B(1) and that these two contributions have a different
reduced mass dependence. It is important to realise that this is not generally true. Indeed,
except for molecules with very light atoms such as H2, the second-order contribution to
the spin–rotation parameter is usually very much larger in magnitude than the first-order
contribution. The same is also often true for the spin–spin coupling parameter λ. The
reduced mass dependences of the two contributions to the spin–rotation parameter γ
are different from each other and quite complicated. However, Brown and Watson [17]
were able to show the rather remarkable result that when one takes the first- and second-
order contributions together as in equation (7.127), the reduced mass dependence of
the resultant parameter γ (R) is simply µ−1.

It will be noticed that two contributions to the vibrational potential energy, of the
general form V (R) and independent of the rotational and spin quantum numbers, have
also been included in equation (7.124). These are corrections to Vη(R), the zeroth-
order contribution to the electronic energy defined in equation (7.76). The first term,
V (ad)
η (R), is the adiabatic contribution to the electronic energy, which we have discussed

in section 2.7. It describes the first-order effect of the nuclear kinetic energy within the
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electronic state |η,Λ〉:
hcV (ad)

η (R)

= 〈η,Λ(S ),Σ; R|
{

1

2µ
P2

R + hcB(R)
(
L2 − 2L2

z

) + 1

2M
P2

}
|η,Λ(S ),Σ; R〉.

(7.129)

This is a relatively small contribution when compared with Vη(R) but it is nevertheless
important when considering the isotopic dependence of the electronic energy. The
second term, V (sp)

η (R), describes the contribution from spin–spin coupling (in first
order) and spin–orbit coupling (in second order) to the electronic energy:

hcV (sp)
η (R) = 〈η,Λ(S ),Σ; R|H(s)

ss |η,Λ(S ),Σ; R〉 + 1

2S + 1

∑
Σ

∑
η′,Λ′,Σ′

× |〈η′,Λ′(S′),Σ′; R|H(e)
so |η,Λ(S ),Σ; R〉|2

[Vη(R) − Vη′ (R)]
. (7.130)

The second of these contributions is just the k = 0 contribution to the energy in
equation (7.119). Neither of the contributions shows any dependence on the spin quan-
tum number Σ.

7.4.5. Λ-doubling terms for a� electronic state

The two component states of orbital degeneracy in a diatomic molecule have opposite
parity. As we described in chapter 6, parity is the symmetry label associated with the
behaviour of a wave function under the space-fixed inversion operator E∗:

E∗ f (X, Y, Z ) = f (−X,−Y,−Z ). (7.131)

Under circumstances where this operation leaves the physical system invariant, the
quantum states have either positive or negative parity,

E∗ψ(X, Y, Z ) = ±ψ(X, Y, Z ), (7.132)

that is, they transform with the upper or lower sign choice in the above equation.
The two-fold degeneracy of these orbital levels is exact for the non-rotating

molecule (strictly we have to consider spin–orbit levels: those withΩ ≥ 1/2 are degen-
erate for a non-rotating molecule). However, when the molecule rotates, the degeneracy
is lifted in a manner which increases as J increases. The precise J dependence depends
on theΩ value for Hund’s case (a) states or on theΛ value for case (b). The phenomenon
is known as lamda-doubling. All lamda-doubling effects originate from the admixture
of the rotational levels of the degenerate electronic state with the corresponding levels
of a � electronic state. Since each of these � state levels is non-degenerate, each has
a particular parity, either positive or negative. Each therefore interacts with only one
of the two degenerate components, namely, that with the same parity. This component
is therefore shifted either up or down, away from its partner with the opposite parity.
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In this way, a splitting of the Λ-doublets arises. Λ-doubling can be described very
succinctly by the effective Hamiltonian method.

For reasons which will become clear later, Λ-doubling effects are largest for
molecules in � electronic states. The electronic orbital part of the wave function for
such a state can be represented by the pair of functions |Λ = +1〉 and |Λ = −1〉, which
correspond to the angular momentum vector precessing in clockwise and anticlock-
wise directions about the internuclear axis. We shall instead take sum and difference
combinations of these functions, (1/

√
2){|Λ = +1〉 ± |Λ = −1〉}, since they reflect

the parity properties of the twoΛ-doublets more closely (although they are still not true
representations of states with a definite parity because we have not included the rota-
tional and electron spin parts of the wave function). In the effective Hamiltonian, the
Λ-doubling effects arise from the perturbations by the matrix elements of the spin–orbit
and rotational Hamiltonians, Hso and Hrot, with �Λ = ±1. In second-order perturba-
tion theory, these operators are applied twice giving rise to two types of term in the
effective Hamiltonian, those with�Λ = 0 overall and those with�Λ = ±2. The for-
mer type makes equal contributions of the same sign to both Λ-doublets; Λ-doubling
is not resolved by this type of term. On the other hand, the terms with�Λ = ±2 make
equal contributions of opposite sign to eachΛ-doublet. These are then the terms which
are responsible for Λ-doubling effects.

As mentioned above, the terms which are responsible for the coupling of the
2S+1� state to the 2S+1� states are the spin–orbit coupling and the rotational electronic
Coriolis term. Thus in the second-order perturbation expression in equation (7.43), the
perturbation term is

H
′ = Hso + Hrot, (7.133)

where, for the present purposes, we only need consider the terms with �Λ = ±1:

Hso =
∑

q=±1

′
(−1)qT1

q (ai l i )T
1
−q (si ), (7.134)

Hrot = −2hc
∑

q=±1

′
NqT1

q (BL). (7.135)

The latter expression comes from equation (V.157). We recall that Hso connects states
with�S = 0,±1, whereas Hrot couples in states of the same multiplicity only,�S = 0.

In order to construct theΛ-doubling terms, we substitute the perturbation operator
H

′ in the second-order expressions and look for terms which link the |η,Λ = +1〉 basis
state with |η,Λ = −1〉. Because H

′ contains two independent operators, we finish up
with three independent contributions to the effective Hamiltonian which are as follows:

(i) the squared term Hso × Hso which gives rise to an operator of the form
T1

q (S )T1
q (S ),

(ii) the cross term 2 × Hso × Hrot which gives rise to an operator of the form
T1

q (S )T1
q (N ),

(iii) the squared term Hrot × Hrot which gives rise to an operator of the form
T1

q (N )T1
q (N ).
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In all of these expressions, the spherical tensor component q can take the values ±1
only.

The operator terms in the effective Λ-doubling Hamiltonian can all be expressed
more concisely by combining the spherical tensors from equation (7.135),

T2
±2(A, B) = T1

±1(A)T1
±1(B). (7.136)

In this way, we arrive at the following effective Hamiltonian for Λ-doubling for a
molecule in a 2S+1� state:

HLD(R) =
∑

q=±1

′
exp(−2iqφ)

[−o(R)T2
2q (S, S ) + p(R)T2

2q (S, N ) − q(R)T2
2q (N, N )

]
.

(7.137)

The coordinate φ is the electron orbital azimuthal angle and the presence of the ex-
ponential factor exp(−2iqφ) ensures that only the matrix elements which connect the
component |η,Λ = +1〉 with |η,Λ = −1〉 are non-zero. The electron orbital basis
functions used in this book imply a choice of phase factor which leads to

〈η,Λ = ±1| exp(±2iφ)|η,Λ = ∓1〉 = −1. (7.138)

We see that for a molecule in a 2S+1� state, there are in general three Λ-doubling
parameters. However, for a singlet state (S = 0), only q is non-zero and for a doublet
state, p and q are non-zero. To second order in perturbation theory, these parameters
are given by the following expressions (in cm−1) :

o(R) = o(1)(R) + o(2)(R), (7.139)

where

o(1)(R) = −
(

6

5

)1/2

g2
Sµ

2
B(µ0/4πhc)[S(S + 1)(2S + 1)]−1

{
S 1 S
1 S 2

}−1

×
∑
i, j>i

〈S‖T2(si , s j )‖S〉〈η,Λ = 1|C2
2 (θ, φ)r−3

i j |η,Λ = −1〉, (7.140)

o(2)(R) = −(hc)−1[S(S + 1)(2S + 1)]−1

{
S 1 S
1 S 2

}−1

×
∑
η′,Λ′

∑
S′

(Vη,�(R) −Vη,�(R))−1(−1)s

{
S 1 S′

1 S 2

}∑
i, j

〈S‖T1(si )‖S′〉〈S′‖T1(s j )‖S〉

× 〈η,Λ = 1|T1
1(ai l i )|η′,Λ′ = 0s〉〈η′,Λ′ = 0s |T1

−1(a j l j )|η =,Λ = 1〉, (7.141)

p(R) = −4[S(S + 1)(2S + 1)]−1/2
∑
η′,Λ′

(Vη,�(R) − Vη,�(R))−1(−1)s

× 〈η,Λ = 1|B(R)T1
1(L)|η′,Λ = 0s〉

∑
i

〈η′,Λ = 0s |ai T
1
−1(l i )|η,Λ = 1〉

× 〈S‖T1(si )‖S〉, (7.142)
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q(R) = 4hc
∑
η′,Λ′

(Vη,�(R) − Vη,�(R))−1(−1)s |〈η,Λ = 1|B(R)T1
1(L)|η′,Λ = 0s〉|2.

(7.143)

These expressions apply for a state with total spin angular momentum S. The exponent
s is even for �+ states and odd for �− states. The factorisation of the spin and
orbital matrix elements in these expressions has been achieved by making a single
configuration approximation. If configuration interaction is not negligible, more general
expressions, given in a paper on the effective Hamiltonian by Brown, Colbourn, Watson
and Wayne [7] are used. TheΛ-doubling parameters p and q were originally introduced
by Mulliken and Christy [18].

The expressions in equations (7.139) to (7.143) are exact to second order in per-
turbation theory. There are also higher-order terms of the same operator form as given
in (7.137) but such contributions are much smaller as long as the interaction terms are
small compared with the separation of the � and � states; this is usually the case. It
is important to appreciate that the form of the Λ-doubling operator is the same even
when these higher order effects are included. This is a real advantage of the effective
Hamiltonian approach. The correct form of the Hamiltonian can be established by a
limited perturbation treatment. Thus, no approximation is made in fitting the parame-
ters of this Hamiltonian to experimental data. The limitations, such as they are, arise
only when the parameters so determined are compared with theoretical expectations.

We note that the perturbation terms in the full Hamiltonian which are responsible
for the Λ-doubling effects are the same as those which give rise to the spin–spin and
spin–rotation terms as discussed in the previous section, namely Hrot and Hso. The only
difference is that we select the effective operators with �Λ = 0 for the fine-structure
terms and those with �Λ = ±2 for the Λ-doubling terms. Because of this, the Λ-
doubling effects manifest themselves in the second order of perturbation theory, that
is, they depend on the admixture of � electronic states, whereas the fine-structure
terms have both first- and second-order contributions, as given in equations (7.125) to
(7.128). This is an important point to appreciate. In addition to terms in the effective
Hamiltonian which have the same operator form as in the full Hamiltonian, there
are others which have a completely different form. The common origin of the fine-
structure andΛ-doubling effects in the effective Hamiltonian suggests that the two sets
of parameters are related. These relationships can have a very simple form in particular
circumstances. We shall discuss them after we have included the effects of vibrational
averaging (over R) in the effective Hamiltonian.

7.4.6. Nuclear hyperfine terms

When a molecule contains an atom with a nuclear spin I ≥ 1/2, its energy levels acquire
an additional (2I + 1) degeneracy. This degeneracy is lifted in practice by magnetic
and electric interactions which are called nuclear hyperfine interactions; they have been
described in detail in chapter 4. The magnitude of these interactions is usually relatively
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small, only rarely larger than 0.03 cm−1 or 1 GHz. The size of nuclear hyperfine effects
is therefore very much less than electron spin fine structure effects, which in turn are
smaller than the electronic and vibrational contributions to the energy. Consequently,
it is usually only necessary to include the first-order effects of the nuclear hyperfine
terms in the effective Hamiltonian.

We recall from chapter 4 that there are many individual types of interaction which
involve the nuclear magnetic dipole and electric quadrupole moments. Let us take just
three of these to exemplify how the effective Hamiltonian is constructed. They are as
follows:

(i) the Fermi contact interaction

HF = (2/3)
∑
α

∑
i

gSµB gαµNµ0δ(rαi )si · Iα, (7.144)

(ii) the dipole–dipole coupling term,

Hdip = −
∑
α

∑
i

gSµB gαµN
µ0

4π

{
si · Iα

r3
αi

− 3(si · rαi )(Iα · rαi )

r5
αi

}
, (7.145)

(iii) the electric quadrupole coupling term,

HQ = −e
∑
α

T2(∇Eα) · T2(Qα). (7.146)

In these expressions the index i runs over electrons and α runs over nuclei. The Fermi
contact term describes the magnetic interaction between the electron spin and nuclear
spin magnetic moments when there is electron spin density at the nucleus. This con-
dition is imposed by the presence of the Dirac delta function δ(rαi ) in the expression.
The dipole–dipole coupling term describes the classical interaction between the mag-
netic dipole moments associated with the electron and nuclear spins. It depends on the
relative orientations of the two moments described in equation (7.145) and falls off
as the inverse cube of the separations of the two dipoles. The cartesian form of the
dipole–dipole interaction to some extent masks the simplicity of this term. Using the
results of spherical tensor algebra from the previous chapter, we can bring this into the
open as

Hdip = −(10)1/2
∑
α

∑
i

gSµB gαµN (µ0/4π)T1(Iα) · T1(Si ,C i ). (7.147)

In other words, it is a first-rank scalar product involving the nuclear spin angular
momentum with an operator defined by

T1
q (Si ,C i ) = −(−1)q

∑
q1,q2

T1
q1

(si )C
2
q2

(θαi , φαi )r
−3
αi (3)1/2

(
1 2 1
q1 q2 −q

)
, (7.148)

where (rαi , θαi , φαi ) are the spherical polar coordinates of electron i relative to nucleus
α. Finally, the quadrupole term describes the interaction between the electric quadrupole
moment of nucleus α and the electric field gradient ∇Eα at the nucleus; the latter is
made up of contributions from all nearby charges, both electrons and nuclei. This
electric field gradient also falls off as r−3

αi .
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The first-order contribution of these hyperfine interactions to the effective elec-
tronic Hamiltonian involves the diagonal matrix elements of the individual operator
terms over the electronic wave function, see equation (7.43). As before, we factorise
out those terms which involve the electronic spin and spatial coordinates. For example,
for the Fermi contact term we need to evaluate matrix elements of the type:

〈η,Λ(S )|δ(rαi )si |η,Λ(S )〉. (7.149)

The nuclear hyperfine operators therefore have essentially the same form in the effective
Hamiltonian as they do in the full Hamiltonian, certainly as far as the nuclear spin terms
are concerned. Throughout our derivation, we have assumed that the electronic state
|η,Λ〉 which is to be described by our effective Hamiltonian has a well-defined spin
angular momentum S. It is therefore desirable to write the effective Hamiltonian in
terms of the associated operator S rather than the individual spin angular momenta si .
We introduce the projection operators Φs

i for each electron i ,

si = Φs
i S. (7.150)

The operator can be evaluated by taking the scalar product of each side with S and
rearranging to give

Φs
i = si · S/{S(S + 1)}. (7.151)

For a molecule in a Hund’s case (a) state where the component of S along the z axis is
well defined as Σ, we can write

Φs
i = siz/Σ. (7.152)

Using these results, we can write

HF(R) =
∑
α

bαF Iα · S, (7.153)

where

bαF =
∑

i

2gSµB gαµNµ0

3
〈η,Λ(S )|Φs

i δ(rαi )|η,Λ(S )〉. (7.154)

In a similar fashion, the dipole–dipole coupling term becomes

Hdip(R) =
∑
α

(
√

6/3)cαT2
q=0(Iα, S), (7.155)

where

cα =
∑

i

3gSµB gαµNµ0

8π
〈η,Λ(S )|Φs

i (3 cos2 θiα − 1)r−3
iα |η,Λ(S )〉, (7.156)

and the component q = 0 refers as always to the molecule-fixed z axis. We remember
that the parameters bF and cα in equations (7.154) and (7.156) are still at this stage
functions of the molecular bond length R, albeit weak ones.

Since the electric quadrupole interaction does not involve the electron spin op-
erators, its form remains the same as in equation (7.146) with the operator T2(∇E)
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evaluated over the electronic wave function:

〈η,Λ(S )|T2
q=0(∇E)|η,Λ(S )〉. (7.157)

The effective operator is the product of one operator on three-dimensional spatial
coordinates and another which acts on nuclear spin space. This distinction can be
brought out even more clearly by making use of the operator replacement theorem in
section 5.5.3 to give

HQ(R) =
∑
α

eQαqα0
4Iα(2Iα − 1)

√
6T2

q=0(Iα, Iα). (7.158)

The expectation value over the electric field gradient is represented by the parameter
qα0 :

qα0 = −2〈η,Λ|T2
q=0(∇E)|η,Λ〉. (7.159)

This parameter is also R-dependent at this stage of the development. We note the
curiosity that, because of the way in which it is defined, the parameter actually represents
the negative of the electric field gradient.

In equations (7.155) and (7.158) we have taken the diagonal q = 0 component of the
second-rank spherical tensors T2(Iα, S) and T2(Iα, Iα). In general, these interactions
and others like them will have off-diagonal terms also, with q = ±1 and ±2. The q =
±2 components are particularly interesting because, for a molecule in a � electronic
state, they connect the |Λ = +1〉 and |Λ = −1〉 components directly. They therefore
make additional hyperfine contributions to theΛ-doubling of molecules in� electronic
states. As a result, the nuclear hyperfine splitting of one component of a Λ-doublet is
different from that of the other component. The two contributions are:

Hdip(R) =
∑
α

∑
q=±1

′
exp(−2iqφ)dαT2

2q (Iα, S), (7.160)

HQ(R) = −
∑
α

∑
q=±1

′
exp(−2iqφ)

eQαqα2
4Iα(2Iα − 1)

T2
2q (Iα, Iα), (7.161)

where

dα =
∑

i

3gSµB gαµNµ0

8π
〈η,Λ = ±1|Φs

i sin2 θαr−3
iα |η,Λ = ±1〉, (7.162)

and

qα2 = −2
√

6〈η,Λ = ±1|T2
±2(∇αE)|η,Λ = ∓1〉. (7.163)

The other off-diagonal terms, with q = ±1, mix different electronic states with�Λ =
±1. In the great majority of cases this mixing is too small to be significant, even with
the most accurate measurements. However when the states involved happen to lie close
together, or when the mixing term is unusually large, these off-diagonal effects produce
additional higher-order terms in the effective Hamiltonian. We will not discuss these
effects any further.
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7.4.7. Higher-order fine structure terms

Thus far, we have investigated the various contributions to the effective Hamiltonian for
a diatomic molecule in a particular electronic state which arise from the spin–orbit and
rotational kinetic energy terms treated up to second order in degenerate perturbation
theory. Higher-order effects of such mixing will also contribute and we now consider
some of their characteristics.

If we refer back to the explicit forms for third- and fourth-order contributions,
given in equation (7.43) and depicted in figure 7.1, we see that the number of pos-
sible pathways between the various electronic states involved increases rapidly with
the order of perturbation theory. This makes the mathematical treatment of such terms
considerably more arduous and the work involved in going beyond fourth order renders
the exercise futile. Fortunately, in the great majority of cases, these higher order contri-
butions can be safely neglected. There are two reasons for this. First, the contributions
get progressively smaller as the order of perturbation theory increases and second,
there are angular momentum constraints on the effects of such terms.

The first of these reasons can be easily appreciated by reference to equation (7.43)
again. It can be seen that the nth order terms have the general form 〈i |H′| j〉n/(E0 −
Ei )n−1, that is, the successive orders of terms in the perturbation expansion are de-
creased by the factor 〈i |H′| j〉/(E0 − Ei ). If the perturbation treatment is well con-
structed from a convergence point of view, this factor will be considerably smaller than
unity; for light molecules, it is typically on the order of 10−2. Consequently, the higher-
order effects become rapidly smaller and, for all but the most precise measurements,
are negligible compared with the experimental uncertainty. The second consideration
is more subtle but in the end more powerful because it depends on symmetry properties
of the molecular system. It is related to the rank of the electron spin operator in the
effective Hamiltonian. Though not always desirable, it is always possible to collect the
various spin terms together and to express a typical term in the effective Hamiltonian
as the scalar product

Tk(X ) · Tk(S ), (7.164)

where the operator X stands for the non-spin terms such as position r , angular momen-
tum N or orbital angular momentum L. For a molecule in a state with a well-defined
spin angular momentum S, simple application of the Wigner–Eckart theorem to the
spin term leads to a 3- j symbol with upper row arguments S, k and S. We recall
that such a symbol is subject to the triangle rule �(S, k, S ). The matrix elements of
the effective operator (7.164) within the electronic state of interest will therefore be
rigorously zero unless 2S ≥ k. We have already met examples of this constraint in
section 7.4.4. The spin–rotation term is first rank in electron spin and so appears in
states of doublet or higher multiplicity. The spin–spin fine structure term is second rank
and so only occurs in states of triplet or higher multiplicity. When the perturbation term
involves the electron spin through spin–orbit coupling, the higher-order terms are of
higher rank in the operator S and so their effects do not show up in states of lower
multiplicity.
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Table 7.1. Some higher-order contributions to the effective Hamiltonian

Perturbation form Parameter Order of perturbation Rank of spin operator

(N · S )(L · S )(L · S ) γS 3 3

(Lz · Sz)(L · S )(L · S ) η 3 3

(L · S )(L · S )(L · S )(L · S ) Θ 4 4

In order to appreciate this point more clearly, we confine our attention to the
contributions to Heff produced by perturbations from the spin–orbit coupling Hso and
the electronic Coriolis mixing Hrot. If we represent an off-diagonal matrix element of
the former by (L · S ) and the latter by (N · L), we can describe some examples of
these higher order terms, as shown in table 7.1. The third-rank terms appear only in
states of quartet or higher multiplicity and the fourth-rank terms in states of quintet
(or higher) multiplicity. With the important exception of transition metal compounds,
the vast majority of electronic states encountered in practice have triplet multiplicity
or lower.

Let us consider the derivation of the higher-order spin–rotation term γS in more
detail. The contribution of such a term to the energy levels of molecules in quartet
states was first suggested by Hougen [19] and developed in detail by Brown and Milton
[20]. The terms arise in the third order of perturbation theory, the general form of
which is given in equation (7.43) and illustrated in figure 7.1. Two examples of the
way in which these perturbations affect the levels of a 4� state are shown in figure 7.2.
In the first example, the admixture of a 4� state, the normalisation terms have to
be written in a symmetrised form to ensure that the resulting operator is Hermitian.
The second example of a 2� state shows that states of different multiplicity can also
contribute to these higher order effects. Using the same approach as that described for
the fine structure terms in section 7.4.4 but with rather more algebra, we can obtain the
following expression for the third-order spin–rotation effects,

H
(3)
sr = C (3)(R)T3(L2, N ) · T3(S, S, S ), (7.165)

where

C (3)(R) = −(10)−1/2〈Λ|T2
0(L2)|Λ〉−1〈S‖T3(S, S, S )‖S〉−1(35)

×
∑

η′,Λ′,Σ′,q

(
E0
η(R)−E0

η′ (R)
)−2

(−1)q+S−Σ+S′−Σ|〈η,Λ,S‖
∑

i

T1(si )T
1
q (ai l i )‖η′,Λ′, S′〉|2

×
(

1 2 3
q −q ± 1 ∓1

){
1 S S′

S 2 3

}

×
(

1 1 2
−q ±1 q ∓ 1

)
[S(S + 1)(2S + 1)]1/2

{
1 S′ S
S 1 2

}
× [B ′(R) − B(R)], (7.166)
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and

〈S‖T3(S, S, S )‖S〉 = (1/4)(10)−1/2[(2S − 2)(2S − 1)(2S)(2S + 1)

× (2S + 2)(2S + 3)(2S + 4)]1/2. (7.167)

The parameter γS , first introduced by Brown and Milton [20], is related to C (3)(R) in
equation (7.165) by

γS(R) = (6)1/2(10)−1C (3)(R)〈η,Λ|T2
0(L2)|η,Λ〉. (7.168)

This expression for the higher-order spin–rotation interaction probably seems at best
daunting and at worse cumbersome. However the great merit of the formulation in
equation (7.165) is that it is very straightforward to work out its matrix elements, as
we shall see later.

The experimental evidence for such a contribution to the spin–rotation interaction
in the effective Hamiltonian was somewhat elusive in the early days although there are
now well documented cases of its involvement, for example for CH in its 4�− state
[21]. Equation (7.166) suggests one reason why this parameter is not as important in
practice as might be expected. The last factor on the right-hand side of (7.166) is just
the difference of the rotational constant operators for the upper and lower states. This
causes a considerable degree of cancellation in a typical situation because the B value
is not expected to vary markedly between the electronic states.

We shall not go through the details of the derivations of the other terms in table 7.1.
Suffice it to say that they are similar to that described for the parameter γS(R). We
shall write down their operator form once we have dealt with the next stage of the
development of the effective Hamiltonian, that of vibrational averaging.

7.5. Effective Hamiltonian for a single vibrational level

7.5.1. Vibrational averaging and centrifugal distortion corrections

Once we have removed the terms which couple different electronic states (at least to a
certain level of accuracy), we can deal with the motion in the other degrees of freedom
of the molecule for each electronic state separately. The next step in the process is to
consider the vibrational degree of freedom which is usually responsible for the largest
energy separations within each electronic state. If we perform a suitable transformation
to uncouple the different vibrational states, we obtain an effective Hamiltonian for each
vibronic state. Once again, we adopt a perturbation approach.

In this case, the zeroth-order Hamiltonian is chosen to represent the vibrational
energy of the anharmonic oscillator:{

P2
R/2µ+ Vη(R)

}|η, v〉 = |η, v〉hc
{
Tηe + G(0)

ηv

}
. (7.169)

Here |η, v〉 is the radial eigenvector with vibrational quantum number v in the electronic
state |η,Λ〉. It is assumed that the potential curve Vη(R) has a minimum value Vη(Rηe)
equal to hcTηe at the equilibrium bond length Rηe, i.e. this defines the energy origin of
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the electronic state in question. The zeroth-order vibrational term value relative to this
minimum is then G(0)

ηv where

G(0)
ηv = (

v + 1
2

)
ωηe − (

v + 1
2

)2
ωηexe + (

v + 1
2

)3
ωηe ye + · · · . (7.170)

We recall that the vibrational potential energy function Vη(R) is just the zeroth-order
eigenvalue in the description of the electronic motion given in equation (7.76). Al-
though this is not the most accurate choice we could make at this level (it is possible,
for example, to add the adiabatic correction in equation (7.129)), it has the great ad-
vantage that it is isotopically independent. For heavier molecules, the spin correction
term V (sp)

η (R) in equation (7.130) could be included without spoiling the isotopic inde-
pendence but for lighter molecules we prefer to develop the Hamiltonian with a power
series dependence on the spin operators. This is achieved by avoiding spin terms in the
zeroth-order vibrational energies.

We use the operator on the left-hand side of equation (7.169) as the zeroth-order
vibrational Hamiltonian. The remaining terms in the effective electronic Hamiltonian,
given for example in equations (7.124) and (7.137), are treated as perturbations. In
a similar vein to the electronic problem, we consider only first- and second-order
corrections as given in equations (7.68) and (7.69) to produce an effective Hamiltonian
Hηv which is confined to act within a single vibronic state |η, v〉 only. Once again, the
condition for the validity of this approximation is that the perturbation matrix elements
should be small compared with the vibrational intervals. It will therefore tend to fail
for loosely bound states with low vibrational frequencies.

The first-order perturbation contribution is obtained by replacing each operator
function X (R) by its anharmonic expectation value,

Xηv = 〈η, v|Xη(R)|η, v〉 = Xηe + (Bηe/ωηe)(X ′′
ηe − 3a1ηX ′

ηe)(v + 1/2) + · · · ,
(7.171)

where X corresponds to any one of V (ad), V (sp), B, A, γ , λ, o, p, q or the nuclear
hyperfine parameters. The expansion in powers of (v + 1/2) can be obtained by a
semi-classical perturbation treatment [22]. The subscripts η and e refer to the value at
Rηe and the derivatives are defined by

X ′
ηe = (dXη(R)/dξ )Rηe , X ′′

ηe = (d2 Xη(R)/dξ 2)Rηe , (7.172)

where ξ = (R − Rηe)/Rηe, the dimensionless vibrational coordinate. The coefficient
a1η in equation (7.171) is the leading anharmonic potential coefficient in Dunham’s
power series expansion of Vη(R) [23]:

Vη(R) = (
hcω2

ηe

/
4Bηe

)
ξ 2(1 + a1ηξ + a2ηξ

2 + a3ηξ
3 + · · ·). (7.173)

This form of Vη(R) has the advantage of generality and converges well for the lower
part of the potential function. It is clear from the form of equation (7.171) that if
Xη(R) has only a weak dependence on R, the corresponding parameter in the effec-
tive Hamiltonian will not depend strongly on the vibrational quantum number either.
For example, the isotropic magnetic hyperfine interaction samples the electronic wave
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function in the immediate region around the nucleus. In consequence, it is virtually
unaware of the electrons around the other nucleus in a diatomic molecule and conse-
quently the hyperfine parameter is hardly affected by vibrational excitation.

We now turn to the second-order perturbation terms; they are rather numerous since
all possible combinations of squared and cross terms can contribute. In practice, we can
often be selective and take only those terms which are significant into consideration.
For example, the second-order terms produce only minor modifications of the fine
structure patterns and are often difficult to separate from the effects of the first-order
terms. Probably the most easily observable of the second-order terms are the centrifugal
distortion effects associated with the off-diagonal matrix elements of Bη(R). There are
two reasons for this. First, Bη(R) has a fairly strong dependence on r :

Bη(R) = (h2/2hcµR2) = (
h2/2hcµR2

ηe

)
(1 − 2ξ + 3ξ 2 − 4ξ 3 + · · ·), (7.174)

and second, levels with relatively high values of the rotational quantum number N (or
J , where appropriate) can often be observed in practice.

Let us first consider the contribution of the rotational kinetic energy,

Hrot = B(R)N2, (7.175)

with itself. In second order of perturbation theory, this produces an operator

P0H
′ Q0

a
H

′ P0 =
∑
v′

′ ∑
J ′

|v; J 〉 〈v; J |B(R)N2|v′; J ′〉〈v′; J ′|B(R)N2|v; J 〉[
G(0)
v − G(0)

v′
] 〈v; J |,

(7.176)

where the restriction to the particular electronic state η is implied. The expression on
the right-hand side can be separated into vibrational and rotational factors:

P0H
′ Q0

a
H

′ P0 =
{∑
v′

′|v〉 〈v|B(R)|v′〉〈v′|B(R)|v〉[
G(0)
v − G(0)

v′
] 〈v|

}

×
{∑

J ′
|J 〉〈J |N2|J ′〉〈J ′|N2|J 〉〈J |

}
. (7.177)

The rotational factor is further reduced to the matrix element of the operator product
(N2)(N2) by the closure rule. The contribution can then be expressed in terms of an
operator of the form

Hcd = −Dηv(N2)(N2) (7.178)

which, in the spirit of the effective Hamiltonian, is understood to act only on spin-
rotational levels of the vibrational level v in the electronic state |η,Λ〉.

The centrifugal distortion constant Dηv is the result of the second-order vibrational
contributions:

Dηv = −
∑
v′

′ 〈η, v|Bη(R)|η, v′〉〈η, v′|Bη(R)|η, v〉[
G(0)
ηv − G(0)

ηv′
]

= 4B3
ηe

ω2
ηe

+
(

6B4
ηe

ω3
ηe

)(
19 + 18a1η + 9a2

1η − 8a2η
)
(v + 1/2) + · · · . (7.179)
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As with the first-order contributions, we see that each parameter in Heff has a weak
vibrational dependence which can in general be modelled as

Pv = Pe + αP (v + 1/2) + βP (v + 1/2)2 + · · · . (7.180)

Because we have chosen the potential function Vη(R) to be independent of the reduced
mass in the zeroth-order Hamiltonian, the isotopic dependences of the various terms
in (7.179) are quite explicit. The leading term Dve is proportional to µ−2 and the
vibrational dependent term αDv is proportional to µ−5/2.

We have seen that the dependence of Bη(R) on the vibrational coordinate ξ causes
a mixing of the vibrational level of interest with neighbouring levels. This mixing
results in centrifugal distortion corrections to all the various parameters Xη(R) in the
perturbation Hamiltonian H

′ when combined in a cross term. The operator has the
same form as in the original term, for example, (2/3)

√
6T2

q=0(S, S ) for the spin–spin
dipolar term, multiplied by N2. The coefficient which qualifies this term has the general
form

XηDv =
∑
v′

′{〈η, v|Bη(R)|η, v′〉〈η, v′|Xη(R)|η, v〉 + 〈η, v|Xη(R)|η, v′〉

× 〈η, v′|Bη(R)|η, v〉}/[
G(0)
ηv − G(0)

ηv′
]
. (7.181)

Following the perturbation treatment of Watson [22], the matrix elements can be eval-
uated to give

XηDv = (
4B2

ηe

/
ω2
ηe

)
X ′
ηe + (

2B3
ηe

/
ω3
ηe

){
2X ′′′

ηe − 3
(
1 + 3a1η

)
X ′′
ηe

+ 3
(
8 + 9a1η + 9a2

1η − 8a2η
)
X ′
ηe

}
(v + 1/2) + · · · . (7.182)

We see from this equation that the centrifugal distortion of interactions which depend
only weakly on R will be very small.

7.5.2. The form of the effective Hamiltonian

At this point, it is helpful to collect all the various terms in the zero-field effective
Hamiltonian together. We remind ourselves that the effective Hamiltonian is an operator
which is confined to act only on the rotational, electron spin and nuclear spin states
spanning a given vibrational level of a single electronic state |η,Λ〉:

Hηv/hc = Tηe + Gηv + Hrot + Hcd + Hso + Hss + Hsr + HΛd + Hhfs + HQ + Hfs.

(7.183)

In this expression, Tηe is the energy origin of the electronic state |η,Λ〉 and Gηv

has absorbed the adiabatic and spin contributions to the vibrational potential energy
(vibrationally averaged):

Gηv = G(0)
ηv + V (ad)

ηv + V (spin)
ηv . (7.184)
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The other contributions are as follows:

rotational kinetic energy

Hrot = BηvN2 = {〈η, v|Bη(R)|η, v〉 + V (ad)
ηDv + V (spin)

ηDv

}
N 2 (7.185)

centrifugal distortion

Hcd = −Dηv(N 2)2 + Hηv(N 2)3 + · · · (7.186)

spin–orbit coupling

Hso = (1/2)
[
(Aηv + AηDvN 2),T1

q=0(L)T1
q=0(S )

]
+ (7.187)

spin–spin coupling

Hss = (
√

6/3)
[
(ληv + ληDvN 2),T2

q=0(S, S )
]
+ (7.188)

spin–rotation interaction

Hsr = (1/2)
[
(γηv + γηDvN 2),T1(N ) · T1(S )

]
+ (7.189)

Λ-doubling

HΛd =
∑

q=±1

′
exp(−2iqφ)(1/2)

{−[
(oηv + oηDvN 2),T2

2q (S, S)
]
+

+ [
(pηv + pηDvN2),T2

2q (N, S)
]
+ − [

(qηv + qηDvN2),T2
2q (N, N)

]
+
}

(7.190)

magnetic hyperfine interactions

Hhfs =
∑
α

{
aαηvT

1
q=0(Iα)T1

q=0(L) + bαFηvT
1(Iα) · T1(S ) + (

√
6/3)cαηvT

2
q=0(Iα, S)

+
∑

q=±1

′
exp(−2iqφ)dαηvT

2
2q (Iα, S )

}
(7.191)

electric quadrupole interaction

HQ =
∑
α

eQα

4Iα(2Iα − 1)

{√
6qα0 T2

q=0(Iα, Iα) +
∑

q=±1

′
exp(−2iqφ)qα2 T2

2q (Iα, Iα)

}

(7.192)

higher-order fine structure

H f s = C (3)
ηv T3(L2, N ) · T3(S, S, S ) + (

√
10/5)ηηvT

1
q=0(L)T3

q=0(S, S, S )

+ (
√

70/6)ΘηvT
4
q=0(S, S, S, S ). (7.193)

In these equations, the square brackets [, ]+ indicate anticommutators which are in-
troduced to ensure that the operator is Hermitian. Note that the expression for Bηv in
equation (7.185) is slightly modified from equation (7.171) by the inclusion of the small
correction terms V (ad)

ηDv and V (spin)
ηDv . These centrifugal distortion corrections show up only

in the electronic contributions to the isotope effects in Bηv where they are responsible
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for the adiabatic change in bond length on isotopic substitution. The last contribution to
the effective Hamiltonian, in equation (7.193), describes the higher-order fine structure
effects. The first of these, a spin–rotation interaction, has already been described in
some detail in section 7.4.7. The third term, involving Θηv , is a spin–spin interaction
first described by Brown and Milton [20] while the second term, involving ηηv , is a
higher-order spin–orbit interaction which was introduced by Brown, Milton, Watson,
Zare, Albritton, Horani and Rostas [24]. From the arguments presented in section 7.4.7,
the C (3)

ηv and ηηv terms only occur in states of quartet or higher multiplicity while the
Θηv term requires the state to be of at least quintet multiplicity. We remind ourselves
also that theΛ-doubling terms in equations (7.232), (7.191) and (7.192) are formulated
for � electronic states only.

The parameters in the effective Hamiltonian Hηv may not all be determinable
from spectroscopic data. When indeterminacies occur, they can often be resolved by
utilising data from different isotopic forms. The parameters Xηv and XηDv in the
equations above do not themselves have simple isotopic ratios but the coefficients of
the powers of (v + 1/2) in the expansions (7.168) and (7.182) do. The isotopic ratios
for Xe, X ′

e, X ′′
e , . . . , are the same as for X (R) itself and the ratio Be/ωe is proportional

to µ −1/2. Thus the isotopic ratio for any of the coefficients in Xηv and XηDv is readily
determined.

7.5.3. The N2 formulation of the effective Hamiltonian

We have been careful in our formulation of the effective Hamiltonian to represent the
square of the rotational angular momentum by the operator N2, as in equation (7.185),
for example. There are many papers in the literature, however, where the authors use the
operator R2 = (N − L)2 instead. Their justification for doing this is that the expression
for the rotational kinetic energy in the full Hamiltonian is

Hrot = B(R)R2 (7.194)

and so this operator might be expected to give a more faithful representation of the
rotational motion. The difficulty with the R2 operator is that, as we have seen in
section 7.4.2, it involves the orbital angular momentum operator L which in turn has
matrix elements which are off-diagonal in the electronic state as well as diagonal.
In section 7.4.2, we worked through the implications of this mixing to show that the
effective rotational Hamiltonian for a given electronic state has the form

Hrot(eff ) = Bη(R)N2 (7.195)

where the effects of the off-diagonal elements have been absorbed into the parameter
Bη(R). The same remarks apply to all second-order terms in the effective Hamiltonian
which involve the mixing of electronic states through the rotational kinetic energy op-
erator, such as the spin–rotation interaction orΛ-doubling. For all of these operators in
the effective Hamiltonian the rotational angular momentum is represented by N rather
than R. Therefore if the effective Hamiltonian is developed in the way described in this
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Table 7.2. The interconversion of parameters in the N 2 and
R 2 Hamiltonians. The symbol X represents any molecular
parameter other than G, B or D

Gηv(N2) = Gηv(R2) −Λ2 Bηv(R2) −Λ4 Dηv(R2) −Λ6 Hηv(R2) − · · ·
Bηv(N2) = Bηv(R2) + 2Λ2 Dηv(R2) + 3Λ4 Hηv(R2) + · · ·
Dηv(N2) = Dηv(R2) + 3Λ2 Hηv(R2) + · · ·
Xηv(N2) = Xηv(R2) −Λ2 XηvD(R2) +Λ4 XηvH (R2) + · · ·
XηvD(N2) = XηvD(R2) − 2Λ2 XηvH (R2) + · · ·
XηvH (N2) = XηvH (R2) + · · ·

book, there are strong grounds for using the N2 formulation. The use of R2 is not justi-
fied and indeed causes some difficulties in practice. Those parts of its matrix elements
which depend on L or L2 are not well defined because the diatomic molecule wave
functions are not eigenfunctions of L2; the quantity 〈η,Λ|L2|η,Λ〉 must be evaluated
by ab initio methods. Workers who claim to be using the R2 formulation get round this
difficulty by dropping the L2 term altogether, which can be very deceptive. Another
tricky aspect of using R2 for the formulation of centrifugal distortion terms is that

〈J |R4|J 〉 
= {〈J |R2|J 〉}2. (7.196)

Failure to recognise this leads to the introduction of extra terms in the Hamiltonian.
To summarise, a Hamiltonian formulated in terms of N2 has the highly desirable
characteristic that each term is the product of a determinable parameter which governs
the magnitude of the interaction and an angular momentum operator whose matrix
elements are fully defined. The difficulties associated with the effect of the L2 terms
are confined to the interpretation of parameters in the effective Hamiltonian and their
comparison with ab initio calculations.

When comparing one’s results with those of other workers, it is important to check
the detailed form of the Hamiltonian which has been used. If it is an R2 Hamiltonian,
the parameters will have different definitions from those in the N2 Hamiltonian and so
will have different values. The relationship between the two sets of parameters is easy
to work out provided that the R2 formulation has suppressed the off-diagonal matrix
elements of L in the manner described above, that is, R is defined as

R = Nx i + Ny j + (Nz − Lz)k. (7.197)

The relationships between the two sets of parameters for an electronic state |η,Λ〉 are
given in table 7.2.

7.5.4. The isotopic dependence of parameters in the effective Hamiltonian

To a good approximation, all the parameters in the effective Hamiltonian presented in
section 7.5.2 have a well-defined and easily constructed dependence on the reduced
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massµ of the diatomic molecule. However, as we have seen in the case of the rotational
constant Bv in equation (7.85), there are some higher-order corrections which tend to
spoil the simple isotopic dependence. In the particular case of Bv , these corrections
arise from non-adiabatic mixing of different electronic states, but there are also higher-
order terms arising in the vibrational averaging process which have a similar effect. This
more detailed isotopic dependence has been investigated by several authors [25, 26]
culminating in a definitive paper by Watson [27].

Watson’s treatment applies to vibration–rotation effects in diatomic molecules
in singlet electronic states; it has not yet been extended to include spin–dependent
phenomena. It is based on the Dunham expansion [23] which we met earlier in the
previous chapter,

E(v, J ) = hc
∑
k�

Yk�(v + 1/2)k[J (J + 1) −Λ2]�, (7.198)

where v and J are, as usual, the vibrational and rotational quantum numbers. Values
for the Dunham coefficients Yk� can be determined from experimental data; the point
at which the expansion in equation (7.198) is truncated depends on the range of v and
J values available and on the precision of the data. For different isotopic forms of the
same molecule, which have essentially the same potential energy function Vη(R) in
equation (7.169), the Yk� are related approximately by

Yk�
∼= µ−(k+2�)/2Uk�, (7.199)

where Uk� is isotopically invariant. This corresponds to the level of treatment in the
previous section. It is, however, not adequate for the most accurate of modern mea-
surements which require corrections to be added to equation (7.199).

These corrections are of two types. The first arises from quantum effects in the
calculation of vibration–rotation energy levels and was originally discussed by Dunham
himself [23]. He used semiclassical methods, discussed in section 6.13.2, to derive his
results. Use of the first-order quantisation condition

(2µ)1/2
∫ [

E0
η(v, J ) − VηJ (R)

]1/2
dR = h(v + 1/2) (7.200)

gives the familiar formula in equation (7.198) with the isotopic dependence described
in equation (7.199). The corrections to this result arise from the use of the second-order
quantisation condition,

(2µ)1/2
∫ [

E0
η(v, J ) − VηJ (R)

]1/2
dR − {

h2/32(2µ)1/2
}

×
∫

{V ′
ηJ (R)}2

[
E0
η(v, J ) − VηJ (R)

]−5/2
dR = h(v + 1/2), (7.201)

where

V ′
ηJ (R) = dVηJ (R)

dR
. (7.202)

Specifically, the corrections arise from the second-order integral in this condition. The
same result can, of course, be derived in a purely quantum calculation using perturbation
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theory. We shall not go into details but the way in which these higher-order corrections
arise can be appreciated from the following discussion.

The anharmonic corrections to the vibrational energy levels can be derived from
the solutions of the Schrödinger equation with a potential of the form

V (q) = (1/2)kq2 + gq3 + hq4 + · · · (7.203)

as discussed in section 6.8.3; in this equation, the vibrational coordinate q is
equal to (Re − R). The effects of the anharmonic terms in this potential can be
treated by perturbation theory using the harmonic oscillator eigenfunctions |v〉 as
the zeroth-order basis set. The non-zero matrix elements in this treatment are of the
form

〈v + 1|q|v〉 = A(v + 1/2)1/2 (7.204)

where

A = (h/4πµν)1/2. (7.205)

The quartic term hq4 makes a contribution in first order of perturbation theory of the
form

〈v|hq4|v〉 = h A4{(2v + 1)2 + 2v2 + 2v + 2}
= h A4{6(v + 1/2)2 + 3/2}. (7.206)

Use of equation (7.205) shows that A4 is proportional to µ−1. We thus see that there is
a contribution 6hA4 to the Dunham coefficient Y20 (or ωexe) since it is the coefficient
of (v + 1/2)2 in the expansion (7.198); this term has the expected reduced mass
dependence. However, there is also a small contribution 3hA4/2 to the coefficient
Y00 with the wrong reduced mass dependence (µ−1). This is an example of the
higher-order corrections revealed by Dunham’s calculation.

The other way in which these corrections can arise is from non-adiabatic cor-
rection terms, that is, through the breakdown of the Born–Oppenheimer separation.
They were first identified by Van Vleck [28]. We have seen how these contributions
can be given explicit form in the derivation of the effective electronic Hamiltonian
described in section 7.4. Some of the reduced mass dependencies are easy to track
because they enter explicitly into the calculation as shown, for example, in the deriva-
tion of the second order contribution B(2) to the rotational constant in section 7.4.2.
Other effects are more subtle. For example, one might naively believe that the electron
orbital angular momentum L is independent of isotopic substitution. However, this
is not so because the angular momentum is measured relative to the nuclear centre
of mass in our formulation. Since the geometrical position of the nuclear centre of
mass changes on isotopic substitution, so too does the orbital angular momentum. The
details are all laid out clearly in Watson’s paper [27]. Generally speaking, the Dun-
ham corrections are rather small compared with those from the Born–Oppenheimer
breakdown.
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Collecting all these various contributions together, Watson showed that a more
accurate description of the isotopic mass dependence is given by

Yk� = µ
−(k+2�)/2
C Uk�

{
1 + me

M1
�

(1)
k� + me

M2
�

(2)
k� + O

(
m2

e

M2
i

)}
, (7.207)

where me is the electron mass, M1 and M2 are here the atomic masses of atoms 1 and
2, and µC is a charge-modified reduced mass defined by

µC = M1 M2

(M1 + M2 − Cme)
(7.208)

in which C is the charge number of the molecule. The denominator of µC is thus the
total mass of the molecule or ion; for a neutral species it is the reduced atomic mass
(because to a good approximation the electrons follow the nuclear motion closely).
The dimensionless quantities�(i)

k�(i = 1, 2) are isotopically invariant and are expected
to be of the order unity for a well isolated electronic state. The even higher order
corrections O(me/Mi )2 in equation (7.207) are usually too small to be characterised
experimentally.

The Uk� are isotopically invariant parameters. Our discussion of the RKR potential
in section 6.13.3 showed that the potential Vη(R) can be determined from a knowledge
of Gv and Bv . Since the parameters Uk� with � ≥ 2 can be calculated from Vη(R), it
follows that they are exactly determined by the values of Uk� with � = 0 and 1. The
simplest case of U02 is a familiar one. The relationship in question,

Y02 � −4Y 3
01

/
Y 2

01, (7.209)

more usually written as

De � 4B3
e

/
ω2

e , (7.210)

is not exact because the correction terms on each side do not balance (see
equation (7.179)). However the corresponding relationship between the Uk� param-
eters,

U02 = −4U 3
01

/
U 2

01, (7.211)

is exact because the correction terms have been removed. This and similar relationships
provide convenient constraints when fitting data.

7.6. Effective Zeeman Hamiltonian

Many informative experiments can be carried out on diatomic molecules in the presence
of an external magnetic field, irrespective of whether they are in closed or open shell
states. An external magnetic field destroys the isotropy of free space, as a consequence
of which the degeneracy of the different orientations of the molecule is lifted. In other
words, the states of different orientation have different energies in the magnetic field.
These splittings are observable and provide a measurement of the magnetic dipole
moment of the molecule in the particular spin–rotational level involved. The magnetic
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moment depends on the electronic structure of the molecule; measurement of this
quantity therefore provides information about the structure.

The effect of a magnetic field on a diatomic molecule has been described in detail
in section 3.7. An extra term is added to the magnetic vector potential of each electron
i of the form

AB
i = (1/2)(B ∧ Ri ) (7.212)

where B is the uniform applied flux density. When this additional contribution is sub-
stituted into the electronic Hamiltonian and the coordinates are transformed to the
molecule-fixed axis system, the various Zeeman terms given in chapter 3 are obtained.
There are several of them, with the largest arising from the interactions with the mag-
netic moments produced by the orbital and spin motion of the electron. Most of the
terms are linear in B and represent the interaction of the flux density with the magnetic
dipole moment of the molecule:

HZ = −µm · B. (7.213)

There are also some smaller terms which are quadratic in B and have the general form

Hsusc = −B ·χ · B, (7.214)

where χ is the magnetic susceptibility tensor. It is more convenient to express this
interaction using spherical tensor notation [29]:

Hsusc = −1

2

∑
k=0,2

′
Tk(χ) · Tk(B, B). (7.215)

The scalar contribution, with k = 0, is constant for all levels of a molecule and so
cannot be measured in practice. The anisotropic k = 2 contribution, on the other hand,
is readily determinable.

We see that there are many contributions to the Zeeman Hamiltonian, all of which
must be taken into account in the construction of the effective Hamiltonian. In order to
focus our attention, let us consider just one of the dipolar terms, namely, the interaction
involving the orbital motion of the electrons:

H
′
Z = e

2m

∑
i

B ·
{

r i − m

M

∑
j

r j

}
∧ pi . (7.216)

We can write this more simply as

H
′
Z = gLµB B · L, (7.217)

where µB = e h/2m is the Bohr magneton and hL is the orbital angular momentum
of the electrons measured relative to the origin of the molecule-fixed axis system
(x , y, z). The parameter gL is the orbital g-factor. Since it has a value of 1.0, one
might query the need for its introduction. We shall see later that the value will de-
viate from unity when it is absorbed into the effective Hamiltonian. The direction
of the uniform flux density B in equation (7.217) serves to define the orientation of
the laboratory-fixed coordinate system. By convention, B is taken to point along the Z
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axis so that BX and BY are zero. The interaction therefore involves L Z which can be
written in terms of the molecule-fixed components by use of the direction cosines,

L Z = −sinθ cosχLx + sin θ sinχL y + cos θLz, (7.218)

or in spherical tensor notation by the use of rotation matrices

T1
p=0(L) =

∑
q

D
(1)
0q (ω)∗T1

q (L). (7.219)

Here, ω represents the Euler angles (φ, θ , χ ). Thus when we come to work out the
effects of the orbital Zeeman interaction, we see that it has off-diagonal matrix elements
which link electronic states with�Λ = 0,±1, as well as purely diagonal elements. It is
clearly desirable to remove the effect of these matrix elements by a suitable perturbative
transformation to achieve an effective Zeeman Hamiltonian which acts only within the
spin–rotational levels of a given electronic state |η,Λ, v〉, in the same way as the
zero-field effective Hamiltonian in equation (7.183).

In order to appreciate how the effective Zeeman Hamiltonian is derived, let us
consider the mixing effects of the orbital magnetic interaction H

′
Z in equation (7.217)

along with the rotational Hamiltonian Hrot, equation (7.80), and the spin–orbit coupling
term Hso in equation (7.72). These are absorbed into the effective Hamiltonian in a
procedure which will by now be quite familiar and involves degenerate perturbation
theory. The first-order contribution of H

′
Z simply introduces this leading term into the

Zeeman Hamiltonian. The second-order contributions involve both squared and cross
terms. It can be seen that the cross term of H

′
Z with Hrot or Hso produces a term which

is linear in the magnetic flux density B and will therefore have the same form as the
first order contribution. The cross term between H

′
Z and Hso gives an operator of the

following form:

P0H
′ Q0

a
H

′ P0 = P0

{[ ∑
q = ±1

′∑
η′Λ′

∑
S′�′

∑
J ′ ′ M ′

M E1 × M E2 + transpose

Vη(R) − Vη′ (R)

]}
P0 BZ , (7.220)

where

M E1 = 〈η,Λ; S,Σ; J,Ω,M |(−1)q AT1
q (L)T1

−q (S )|η′,Λ′; S′,Σ′; J ′,Ω′,M ′〉,
M E2 = 〈η′,Λ′; S′,Σ′; J ′,Ω′,M ′|gLµB D

(1)
0,−q (ω)∗T1

−q (L)|η,Λ; S,Σ; J,Ω,M〉.
This expression can be factorised into orbital, spin and rotational parts and then tidied
up to produce an effective operator of the form

glµB BZ

∑
q=±1

′
D

(1)
0q (ω)∗T1

q (S ). (7.221)

The dimensionless parameter gl is defined by

gl = −gL

∑
q=±1

′∑
η′Λ′

(VηΛ(R) − Vη′Λ′ (R))−1〈η,Λ|AT1
q (L)|η′,Λ′〉

× 〈η′,Λ′|T1
−q (L)|η,Λ〉. (7.222)
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The restricted summation in equation (7.221) means that, for this contribution, the
Zeeman energy depends on the x and y components of S only (i.e. it has cylindrical
symmetry). It is therefore referred to as the anisotropic correction to the electron spin
Zeeman term, which has the isotropic form gSµB B · S.

The cross term between H
′
Z and Hrot can be treated in exactly the same way. The

result is a second-order contribution to the effective Zeeman Hamiltonian of the form

ge
rµB BZ T1

p=0(N) (7.223)

where

ge
r = 2gL

∑
q=±1

′ ∑
η′Λ′

(VηΛ(R) − Vη′Λ′ (R))−1〈η,Λ|T1
q (L)|η′,Λ′〉

× 〈η′,Λ′|B(R)T1
−q (L)|η,Λ〉. (7.224)

This term describes the electronic contribution to the rotational g-factor. The contribu-
tion (7.223) represents the interaction between the applied magnetic field BZ and the
magnetic moment produced by the electrons in the molecule as it rotates in laboratory
space. It has an operator form identical to that of the first-order nuclear orbital (i.e.
rotational) Zeeman interaction

−gN
r µB BZ T1

p=0(N) (7.225)

where

gN
r = m

(
Z1 M2

2 + Z2 M2
1

)
M1 M2

(
M1 + M2

) . (7.226)

These terms are usually combined into a single operator which describes the magnetic
interaction between the external field and the rotation of the molecule as a whole, both
electrons and nuclei,

HZ,rot = −grµB BZ T1
p=0(N), (7.227)

with

gr = gN
r − ge

r . (7.228)

In rotational motion the electrons tend to follow the nuclei quite closely because of the
strong Coulombic interaction. As a consequence, there is a fair degree of cancellation
implied by equation (7.228).

The second-order contribution of the orbital Zeeman term H
′
Z with itself produces

a term in the effective Hamiltonian which is quadratic in B. It therefore has the same
form as the diamagnetic susceptibility contribution to the energy; it provides the param-
agnetic or ‘high-frequency’ contribution to the susceptibility of the molecular system.
The resultant term in the effective Zeeman Hamiltonian is

HZ,susc = LT2
q=0(B, B). (7.229)
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The parameter L is the sum of first- and second-order contributions, L
(1) and L

(2), where

L
(1) = −(e2/8m)

∑
i

〈η,Λ|T2
0(r i , r i )|η,Λ〉 (7.230)

and

L
(2) = g2

Lµ
2
B(5)1/2

∑
η′Λ′q

(VηΛ(R) − Vη′Λ′ (R))−1(−1)q

(
1 2 1

−q 0 q

)

× ∣∣〈η,Λ|T1
q (L)|η′,Λ′〉∣∣2

. (7.231)

The form of the complete Zeeman effective Hamiltonian for a diatomic molecule
in a given vibrational level of an open shell state has been given by Brown, Kaise, Kerr
and Milton [30]. It is the sum of the following terms:

electron spin ( parameter gS)

gSµB BZ T1
p=0(S )

electron orbital motion (parameter g′
L , corrected for relativistic, diamagnetic [29] and

non-adiabatic [31] effects)

g′
LµB BZ T1

p=0(L)

rotational motion (parameter gr )

−grµB BZ T1
p=0(N)

anisotropic correction to the electron spin interaction (parameter gl)

glµB BZ

∑
q=±1

′
D

(1)
0q (ω)∗T1

q (S)

nuclear spin interaction (parameter gαN , where α labels the nuclei)

−
∑
α

gαNµN BZ T1
p=0(Iα)

anisotropic susceptibility (parameter L)

LT2
q=0(B, B)

parity-dependent contributions for a� state (parameters g′
l and g′e

r )

µB BZ

∑
q=±1

′
exp(−2iqφ)

{
g′

l D
(1)
0,−q (ω)∗T1

q (S )

− ge′
r

∑
p

(−1)p
D

(1)
−p,−q (ω)∗T1

p(N )D
(1)
0,−q (ω)∗

}
. (7.232)

It should be appreciated that the Zeeman interactions are usually dominated by the
first two terms in (7.232), the electron spin and orbital terms. The other terms are
typically between two and four orders of magnitude smaller. For a molecule in a closed
shell 1� state, only the rotational Zeeman term, the nuclear spin contribution and the
susceptibility term survive.
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A recent paper [32] has suggested that the primary g-factors, gS and g′
L , should be

defined as negative quantities so that they reveal the alignment of the magnetic dipole
moment relative to the angular momentum. If this convention is adopted, the signs of the
two contributions to the effective Zeeman Hamiltonian, given above, must be reversed.

7.7. Indeterminacies: rotational contact transformations

If the values of the parameters for the vibronic state |η, v〉 are known a priori, the
spin–rotational energy levels can be calculated in a straightforward manner from the
effective Hamiltonian, equation (7.183), by computing the matrix elements in a suitable
basis set and diagonalising the sub-matrices numerically for each value of the quantum
number J (or F if hyperfine effects are included). In practice, however, Hηv is usually
used as an empirical Hamiltonian with parameters to be determined by optimisation
of the agreement between computed and observed spectra. In this inversion procedure,
the possibility of indeterminacy arises, because different terms in equation (7.183)
can make indistinguishable contributions to the eigenvalues, in much the same way as
B(1)(R) and B(2)(R), for example, make indistinguishable contributions to the effective
rotational Hamiltonian, equation (7.86). These are theoretical indeterminacies, caused
by the non-uniqueness of the solution of these equations, rather than experimental
indeterminacies due to shortage of data. The latter type of indeterminacy may also be
present, of course, and often is.

The solution to this problem which is usually adopted in practice is to constrain
particular parameters to preset values, usually zero, in a least-squares fit of the Hamil-
tonian to the data. This has the effect of modifying the values obtained for the other
parameters in the Hamiltonian. In order to interpret the results in this situation, it is
necessary to subject the effective Hamiltonian Hηv to yet another transformation to
bring it into the form which is actually used in the empirical fit. Before we do this,
however, let us consider a particular example to help us understand the nature of these
indeterminacies. There is a well-known indeterminacy between the parameters γηv and
AηDv in the Hamiltonian for a molecule in a 2� state, first pointed out by Veseth [33].
If we confine ourselves to the simple Hamiltonian

H = Hso + Hrot + Hsr (7.233)

where the three terms are given by equations (7.187), (7.185) and (7.189), the repre-
sentation for a given J value is the following 2 × 2 matrix.

|J, 3/2〉 |J, 1/2〉
|J, 3/2〉 (1/2){A + ADz} + Bz −(B − γ /2)

√
z

|J, 1/2〉 −(B − γ /2)
√

z −(1/2){A + AD(z + 2)} + B(z + 2) − γ

In this matrix

z = (J − 1/2)(J + 3/2) = (J + 1/2)2 − 1. (7.234)
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The eigenvalues of the matrix are

E± = B(z + 1) − γ /2 − AD/2 ± (1/2)[{(A − 2B + γ ) + AD(z + 1)}2

+ 4(B − γ /2)2z]1/2 (7.235)

The terms inside the square root part of this expression may be rearranged in increasing
powers of z, to give

[ ]1/2 = [{(A − 2B + γ ) + AD}2 + {2AD(A − 2B + γ ) + 4(B − γ /2)2}z + A2
Dz2

]1/2
.

(7.236)

If we make measurements of the energy levels for different J values, the coefficients
of the different powers of z are determinable. Thus the following combinations can be
determined:

(1/2)(H11 + H22) = B(z + 1) − γ /2 − AD/2, (7.237)

and, inside the square root,

coefficient of z0 = {A − 2B + γ + AD}2, (7.238)

coefficient of z1 = {2AD(A − 2B + γ ) + 4(B − γ /2)2}, (7.239)

coefficient of z2 = A2
D. (7.240)

The combination in equation (7.237) allows the value for B to be determined from the
z dependence. With this value, it is possible to determine (A + γ + AD) from equation
(7.238). Since it is preferable to produce definite values for the major parameters, let us
say that this coefficient gives a value for A. The coefficient of z1, in equation (7.239),
on the other hand, gives us a linear combination of AD and γ ; this is the equation
which defines the nature of the indeterminacy between AD and γ . If the coefficient of
z2 in equation (7.240) can be determined (it is very small in practice), it would appear
that γ and AD can be separated. In other words, the values of all four parameters in the
Hamiltonian can be obtained. However, at this level of approximation, we have also to
include the next two terms in the centrifugal expansion of Hso and Hsr (AH and γD)
which contribute to the coefficient of z2 as well. Thus only three of the four parameters
in equation (7.235) can be determined. We choose these to be B, A and the coefficient
of z1 in equation (7.239). In practice, we might choose to constrain γ to zero in the fit
and then determine an effective value for AD , denoted by ÃD . Substitution in equation
(7.239) gives

{2 ÃD(A − 2B) + 4B2} = {2AD(A − 2B + γ ) + 4(B − γ /2)2}
� 2AD(A − 2B) + 4B2 − 4Bγ, (7.241)

provided the magnitude of γ is much smaller than B. Hence we see that the effective
parameter is related to the true value for AD and γ by

ÃD = AD − 2Bγ /(A − 2B). (7.242)

Conversely, if we choose to constrain AD to zero, we determine a value for the effective
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spin–rotation parameter γ̃ where

γ̃ = γ − (A − 2B)AD/2B. (7.243)

Brown and Watson [17] have shown that it is possible to break the indeterminacy
implicit in equation (7.239) by combining data for different isotopic forms. This sepa-
ration makes use of the fact that all three parameters on the right-hand side of equation
(7.242) are, to a good approximation, proportional to µ−1 where µ is the reduced mass
of the diatomic molecule. Thus the first term on the right-hand side is proportional to
µ−1 while the second is proportional to µ−2. This allows the true values for γ and AD

to be determined. Similar arguments apply to equation (7.243). The resolution of this
method depends directly on the fractional change in µ on isotopic substitution.

Brown, Colbourn, Watson and Wayne [7] have shown that this type of indeter-
minacy occurs for any 2S+1Λ state which conforms to Hund’s case (a) coupling. This
result can be established most easily by applying a contact transformation to the effec-
tive Hamiltonian. Let us divide Hηv into a principal part H

(0)
ηv and a remainder H

(1)
ηv :

Hηv = H
(0)
ηv + H

(1)
ηv (7.244)

with

H
(0)
ηv = Tηe + Gηv + BηvN2 + AηvLz Sz + (2/3)ληv

(
3S2

z − S 2
)
. (7.245)

Following the procedure described in section 7.3, we apply a similarity transformation
to the Hamiltonian to produce a transformed Hamiltonian,

H̃ηv = eiF
Hηve

−iF , (7.246)

where F is the transformation operator for a particular vibronic state |η, v〉. Following
equations (7.53), (7.54) and (7.55), we expand the exponential operators to give

H̃ηv = H
(0)
ηv + {

H
(1)
ηv + i

[
F,H

(0)
ηv

]} + {
i
[
F,H

(1)
ηv

] − (1/2)
[
F,

[
F,H

(0)
ηv

]]} + · · · .
(7.247)

Here, terms within the same set of braces are assumed to have the same order of
magnitude. As long as F is chosen to be small, the expansion in equation (7.247)
will converge rapidly and can be truncated after the first set of braces. Apart from
this truncation, the eigenvalues of H̃ηv and Hηv are equal. The operator F is chosen
suitably to remove terms in H

(1)
ηv and so to eliminate redundancies. At the same time,

the coefficients of other terms in H
(1)
ηv may be modified. It is these modified parameters

whose values are determined empirically.
The operator F must be taken to be Hermitian (to ensure that the transformation

(7.246) is unitary), totally symmetric and of odd degree in the angular momenta. The
last requirement follows from the fact that the non-vanishing commutation relationships
between angular momentum components, say Jα , reduce the power of the operators by
one. The result of the transformation is therefore of even power in J which is required
if the term in H̃ηv is to be symmetric with respect to time reversal. To illustrate the
procedure, let us consider the operator chosen by Brown and Watson [17]:

F1 = s1(J ∧ S)z Lz = s1(Jx Sy − Jy Sx )Lz . (7.248)
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When this operator is substituted into equation (7.246), it corresponds to a small
rotation in rotational–spin–orbital space. The parameter s1 governs the magnitude of
this rotation. It is a variable parameter which can be chosen to eliminate terms from
the transformed Hamiltonian. Using this form for F1 and the well known commutation
relations between the molecule-fixed components of J, S and L, it is easy to show that

i
[
F1, H (0)

ηv

] = s1{−AηvΛ
2S 2 + (AηvΛ

2 − 4ληvS 2)Lz Sz + (Aηv + 4ληv)Λ
2S2

z

+ 4ληvLz S3
z − (Aηv − 2Bηv)Λ

2(N · S )− Bηv(N 2Lz Sz + Lz Sz N 2)

− 2ληv[(N · S )Lz Sz + Lz Sz(N · S )]}. (7.249)

The fifth term on the right-hand side has the operator form Λ2(N · S ). Hence if s1 is
chosen as

s1 = γηv/(A − 2Bηv)Λ
2, (7.250)

we can eliminate the term in (N · S ) from H̃ηv . This choice of the transformation also
modifies the coefficients of the surviving terms in H̃ηv as follows:

Ãηv = Aηv + γηv(AηvΛ
2 − 4ληvS 2)/(Aηv − 2Bηv)Λ

2, (7.251)

ÃηDv = AηDv − 2Bηvγηv/(Aηv − 2Bηv)Λ
2. (7.252)

Equation (7.252) is a generalisation of (7.242). Alternatively we can choose

s1 = AηDv/2Bηv (7.253)

to eliminate the AηDv term in H̃ηv . In this case, the parameters Ãηv and γ̃ηv are modified
to:

Ãηv = Aηv + AηDv(AηvΛ
2 − 4ληvS 2)/2Bηv, (7.254)

γ̃ηv = γηv − AηDv(Aηv − 2Bηv)Λ
2/2Bηv. (7.255)

As well as modifying the coefficients of existing terms in Hηv , the transformation also
introduces new terms in Lz S3

z and {(N · S )Lz Sz + Lz Sz(N · S )}. For a doublet state,
these terms do not arise because ληv must equal zero; the elimination therefore modifies
the coefficients in the Hamiltonian without altering its form. This neat property does not
hold for states of higher multiplicity. However, we note that the additional contribution
in Lz S3

z has essentially the same form as the higher-order spin–orbit interaction ηηv
in section 7.4.7 and so will modify that parameter if it is included. Alternatively, we
could choose the form of F1 so as to eliminate it from the transformed Hamiltonian.

Before we leave this topic, it is well to remember that we have confined our at-
tention to the leading contribution in the transformed Hamiltonian in (7.247). If the
transformation operator is not small, we may have to include higher-order effects
from the second and subsequent pairs of braces in this equation. This corresponds to
retention of the terms in γ 2 in equation (7.241). Furthermore, the commutator [F,H

(1)
ηv ]

in the second brace has the potential to modify the parameters and forms of all the terms
in H

(1)
ηv . If a particular choice is made for s1, as say in equations (7.250) or (7.253),

parameters determined in the empirical fit will also be modified. This modification
must be taken into account if the parameters so obtained are to be used to provide
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structural information on the molecule. For example, some of the parameters in the
Zeeman Hamiltonian, equation (7.232), are affected by the transformation given in
equation (7.248). The details are presented elsewhere [34, 35].

7.8. Estimates and interpretation of parameters
in the effective Hamiltonian

7.8.1. Introduction

As we explained earlier in this chapter, one of the great merits of the effective
Hamiltonian is that it allows the two tasks of fitting experimental data and interpreting
the resultant parameters to be separated. In this section we discuss the latter aspect and
explain how the quantities obtained from a fit of experimental data can be interpreted
in terms of the geometric and electronic structure of the molecule concerned. We have
seen how the process of averaging the parameters over the vibrational motion of the
molecule leads to additional terms which describe the vibrational dependence of the
parameters. We shall assume in what follows that all such vibrational averaging effects
have been properly taken into account and that we are left to deal with the equilibrium
value of the parameter, Pe, in equation (7.180).

7.8.2. Rotational constant

It is well known, and shown earlier in this book, that the rotational constant of a diatomic
molecule is very simply related to its bond length (R) and reduced mass (µ),

Be(cm−1) = h2/(2µR2
e hc). (7.256)

The dominant contribution to the rotational constant is from the nuclear masses. There
is also a small contribution from the electrons in the molecule which is of the order
(me/m N )Be = κ4 Be ≈ 10−4 Be, where me and m N are the masses of an electron and a
typical nucleus respectively and κ = (me/m N )1/4 is the Born–Oppenheimer expansion
parameter discussed in chapter 6. Since the electrons interact strongly with the nuclei,
they tend to follow their motion closely. The bulk of the electronic contribution to the
moment of inertia can therefore be taken into account by the use of atomic rather than
nuclear masses in the reduced massµ in equation (7.256). However, as we have seen in
section 7.4.2, equation (7.256) gives only the first-order contribution to the rotational
constant. There is also a small but not insignificant second-order contribution which
describes the slippage of the electronic contribution to the moment of inertia, that
is, the extent to which the electrons do not follow the nuclear motion. Although this
second-order contribution is large compared with the measurement errors of high
resolution spectroscopy, it only reveals itself as small inconsistencies which arise when
the equilibrium rotational constants of different isotopomers are compared with each
other according to elementary theory (because it is proportional to µ−2 rather than
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µ−1). In effect, the equilibrium bond lengths of different isotopomers are found to be
slightly different. As we have discussed elsewhere, Watson [25] has shown that the
equilibrium bond length Re obtained by the use of equation (7.256) can be related to
the Born–Oppenheimer equilibrium bond length RBO

e (the bond length at the minimum
of the potential energy curve) by the equation

Re = RBO
e

[
1 + me

{
d1

M1
+ d2

M2

}]
, (7.257)

where M1, M2 are the masses of the atoms 1 and 2 and d1, d2 are dimensionless,
isotopically invariant parameters. These parameters can be determined either by fitting
the experimentally determined values of Re to equation (7.257) or from theoretical
estimates described by Watson. They give information on the non-adiabatic mixing
effects, that is, the breakdown of the Born–Oppenheimer approximation.

7.8.3. Spin–orbit coupling constant, A

The spin–orbit coupling constant A is the coefficient of the operator term Lz Sz in the
effective Hamiltonian. It arises from the operator H

(e)
so in equation (7.71); we have seen

in section 7.4.4 how the matrix elements of this operator lead to first-, second- and
higher-order contributions in the effective Hamiltonian,

A = A(1) + A(2) + · · · . (7.258)

If accurate electronic wave functions are available, A(1) and A(2) can be estimated
from equations (7.109) and (7.120) respectively. All nearby electronic states which
contribute by spin–orbit mixing to A(2) must be included if the result is to be reliable.

A simpler but less accurate approach to the estimation of A is often worthwhile
because it provides greater physical insight. Often this estimate is just the expectation
value of the microscopic operator

H
(e)
so =

∑
i

ai T
1(l i ) · T1(si ), (7.259)

as described in equation (7.113), using a molecular orbital approximation to the
wavefunction. The summation in equation (7.259) is restricted to open shell electrons.
To see why this is so, consider the spin–orbit coupling for a molecule in a 1�+ state
arising from the closed shell configuration π4. As we described in section 6.5.4, the
four-electron wave function for this state can be expressed as a Slater determinant

|ψ〉 = (1/2
√

6)
∣∣πα+1π

β

+1π
α
−1π

β

−1

∣∣. (7.260)

The expression on the right-hand side is a convenient shorthand for a 4 × 4 determinant,
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listing the diagonal elements of the full determinant, which is

∣∣πα+1π
β

+1π
α
−1π

β

−1

∣∣ ≡

∣∣∣∣∣∣∣∣∣∣∣∣

πα+1(1) π
β

+1(1) πα−1(1) π
β

−1(1)

πα+1(2) π
β

+1(2) πα−1(2) π
β

−1(2)

πα+1(3) π
β

+1(3) πα−1(3) π
β

−1(3)

πα+1(4) π
β

+1(4) πα−1(4) π
β

−1(4)

∣∣∣∣∣∣∣∣∣∣∣∣
(7.261)

The contribution to the spin–orbit energy is therefore given by

Eso = 〈ψ |H(e)
so |ψ〉 = (1/2)a1 − (1/2)a2 − (1/2)a3 + (1/2)a4

= a[(1/2) − (1/2) − (1/2) + (1/2)] = 0, (7.262)

since the spin–orbit coupling constant for each electron in the same molecular orbital
is the same.

Let us now consider a molecule which does show a spin–orbit splitting, namely,
OH in its 2� ground state. The orbital configuration for this state is σ 2π3 and confining
our attention to the open shell orbital, the spin–orbital wave functions and energies for
the two spin components are as follows:

2�3/2 (1/
√

6)
∣∣πα+1π

β

+1π
α
−1

∣∣ Eso = a[(1/2) − (1/2) − (1/2)] = −a/2,

2�1/2 (1/
√

6)
∣∣πα+1π

β

+1π
β

−1

∣∣ Eso = a[(1/2) − (1/2) + (1/2)] = a/2.
(7.263)

Thus the spin–orbit splitting is

�Eso = E( = 3/2) − E( = 1/2) = −a. (7.264)

When compared with the diagonal element of the spin–orbit operator in the effective
Hamiltonian, AΛΣ in a Hund’s case (a) representation, we see that

A = −a (7.265)

(strictly this is the value for A(1) in equation (7.125)). A common approximation for the
molecular orbital is to represent it by a linear combination of suitable atomic orbitals.
In the case of a π orbital, these atomic orbitals are p orbitals, one on each atom of the
diatomic molecule:

|π〉 = c1|pπ1〉 + c2|pπ2〉. (7.266)

With this approximation, the microscopic spin–orbit coupling parameter is

aπ = 〈π |Hso|π〉 = c2
1ζ1(p) + c2

2ζ2( p), (7.267)

where ζi (p) is the atomic spin–orbit coupling parameter for an electron in the appropri-
ate p orbital. In other words, it is possible to relate the molecular parameter to the cor-
responding atomic ones. This result was first exploited by Dixon and Kroto [36]. In the
case of OH, the LCAO approximation suggests that the π molecular orbital is satisfac-
torily described by a 2p orbital on the O atom. Using the value for the atomic spin–orbit
coupling parameter for O of 151 cm−1, we obtain a first-order estimate of the spin–orbit
coupling constant of OH in its X 2� state of −151 cm−1, which compares reasonably
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well with the experimental value of −139 cm−1. The second-order contribution to the
effective spin–orbit coupling parameter comes from the admixture of the first excited
electronic state of OH, the A 2�+ state, which arises from the σ 1π4 configuration.
Using the LCAO approximation, the matrix element of Hso between these two states is〈

2�1/2

∣∣Hso|2�1/2
〉 = (a/2)〈λ = 0|l−|λ = 1〉 � (a/2)[l(l + 1)]1/2 = (a/

√
2).
(7.268)

In writing this equation, we have made use of Van Vleck’s pure precession hypothesis
[12], in which the molecular orbital |λ〉 is approximated by an atomic orbital with
well-defined values for the quantum numbers n, l and λ. Such an orbital implies a
spherically symmetric potential and its use is most appropriate when the electronic
distribution is nearly spherical. Examples of this situation occur quite often in the
description of Rydberg states. It is also appropriate for hydrides like OH where the
molecule is essentially an oxygen atom with a small pimple, the hydrogen atom, on
its side. Accepting the pure precession hypothesis allows the matrix elements of the
orbital operators to be evaluated since

l±|n, l, λ〉 = [l(l + 1) − λ(λ± 1)]1/2|n, l, λ± 1〉. (7.269)

The second-order effect of the mixing between the 2� and 2�+ states is

�E (2)
so = a2/2�E(2�) − E(2�)� = 0.35 cm−1 (7.270)

for an energy separation of 32 600 cm−1. This interaction pushes the 2�1/2 component
down and so reduces the spin–orbit splitting, that is, A(2) = 0.35 cm−1. This is a move
in the right direction but not nearly large enough to improve significantly the agreement
with the experimental value.

For a non-hydride molecule such as NO, we must use equation (7.267) to estimate
the spin–orbit coupling parameter. NO also has a 2� ground state but it arises from
a π1 configuration. Estimates from the magnetic hyperfine interactions suggest that
c2

N = 0.734 and c2
O = 0.470 [37]. From this we calculate a value for A(1) of 124.8 cm−1

using ζO = 151 cm−1 and ζN = 73.3 cm−1. The agreement with the experimentally
determined value of 123.3 cm−1 is probably fortuitously good.

Finally let us consider one more example, the more complicated case of FeH in
its low-lying a6� state. The lowest spin component is 6�9/2 which is reasonably well
approximated by the wave function∣∣6�9/2

〉 = 1/(7!)1/2
∣∣δα+2δ

β

+2δ
α
−2π

α
+1π

α
−1σ

ασ̄ α
∣∣, (7.271)

where the first six molecular orbitals are essentially non-bonding 3d orbitals on the Fe
atom and the σ̄ orbital is an antibonding combination of the 1s orbital on the H atom
and an sp hybrid (n = 4) on the Fe atom. (There is also a σ 2 contribution to the electron
configuration which has been omitted from equation (7.271) for the sake of simplicity.
It is the bonding combination of the two atomic orbitals and is primarily responsible
for holding the atoms together.) The spin–orbit energy for this wave function using the
microscopic Hamiltonian is

Eso = a(1 − 1 − 1 + 1/2 − 1/2 + 0 + 0) = −a. (7.272)
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The wave function for the next spin component of the 6� state can be easily generated
from (7.271) by application of the total spin lowering operator S−, given by

S− =
7∑

i=1

si−. (7.273)

We obtain∣∣6�7/2
〉 = (1/

√
7!)(1/

√
5) × {∣∣δα+2δ

β

+2δ
β

−2π
α
+1π

α
−1σ

ασ̄ α
∣∣ + ∣∣δα+2δ

β

+2δ
α
−2π

β

+1π
α
−1σ

ασ̄ α
∣∣

+ ∣∣δα+2δ
β

+2δ
α
−2π

α
+1π

β

−1σ
ασ̄ α

∣∣ + ∣∣δα+2δ
β

+2δ
α
−2π

α
+1π

α
−1σ

βσ̄ α
∣∣

+ ∣∣δα+2δ
β

+2δ
α
−2π

α
+1π

α
−1σ

ασ̄ β
∣∣}. (7.274)

For this wave function

Eso = (a/5)(1 − 2 + 0 − 1 − 1) = −(3a/5). (7.275)

The separation between adjacent spin components is therefore –2a/5 which equates with
2A(1) from the effective Hamiltonian. Hence A(1) = −a/5 or −83.4 cm−1, using ζFe =
417 cm−1. The value obtained from experiment is –77.3 cm−1 although in practice
it is difficult to model the spin–rotation levels of FeH with an effective Hamiltonian
because of large spin–orbit perturbations [38]. For molecules like FeH, one would
expect second- and higher-order contributions to A to be significant.

7.8.4. Spin–spin and spin–rotation parameters, λ and γ

A theoretical estimate of the spin–spin parameter in the effective Hamiltonian can be
made by the use of equations (7.111) and (7.121) using either ab initio or simpler,
less accurate wave functions. This was done for the case of O2 in its 3�−

g ground
state in an influential paper by Kayama and Baird [39]. They demonstrated that, in
the case of a π2 configuration (which occurs quite commonly in practice), there is
significant spin–orbit mixing between the lowest 3�− state and the metastable 1�+

state which arises from the same electron configuration. This has the effect of lowering
theΩ = 0 component of the 3�− state and so makes a positive contribution to the spin–
spin parameter. For molecules with heavy atoms and large spin–orbit interactions, this
becomes the dominant contribution to λ. In their paper Kayama and Baird calculate a
value of 0.822 cm−1 for λ(1) and 0.86 cm−1 for λ(2) for O2, giving a total value for λ
of 1.682 cm−1 (to be compared with the experimental value of 1.985 cm−1). A later
calculation by Wayne and Colbourne [40] gave λ (1) = 0.750 cm−1.

The way in which the second-order contribution arises can be appreciated from
the following. The spin–orbital wave functions for the 3�−

0 and 1�+
0 states are approx-

imated by ∣∣3�−
0

〉 = (1/
√

2)
{∣∣πα+1π

β

−1

∣∣ + ∣∣πβ+1π
α
−1

∣∣},
(7.276)∣∣1�+

0

〉 = (1/
√

2)
{∣∣πα+1π

β

−1

∣∣ − ∣∣πβ+1π
α
−1

∣∣}.
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Hence the spin–orbit matrix element is given by〈
3�−

0

∣∣Hso

∣∣1�+
0

〉 = (a/2){(1/2 + 1/2) − (−1/2 − 1/2)} = a. (7.277)

In addition equation (7.267) tells us that for a homonuclear diatomic molecule, a = ζ .
Consequently

λ(2) = −(1/2)
〈
3�−

0

∣∣Hso

∣∣1�+
0

〉2/{
E
(

3�0
) − E

(
1�0

)}
. (7.278)

Using ζO = 151 cm−1 and a value of −13 120 cm−1 for the energy denominator, we
obtain a value of 0.864 cm−1 for λ(2).

A very similar treatment can be applied to the spin–rotation parameter γ . Once
again there is a first- and second-order contribution with the second-order contribution
dominating in all but the lightest molecules. Full expressions for γ (1) and γ (2) are given
in equations (7.110) and (7.122).

Semi-empirical estimates of the second-order contribution to γ provide a useful
means to interpret experimental data. Reverting to the case of OH in its X 2� state, we
need the matrix elements〈

2�1/2

∣∣Hso

∣∣2�+
1/2

〉 = a/
√

2, (7.279)〈
2�1/2

∣∣ − BL−
∣∣2�3/2

〉 = (1/5!)
〈∣∣σαπα+1π

β

+1π
α
−1π

β

−1

∣∣∣∣ − BL−
∣∣∣∣σασβπα+1π

β

+1π
α
−1

∣∣〉
= 〈λ = −1|Bl−|λ = 0〉 ∼=

√
2B. (7.280)

The first result has been obtained earlier; in obtaining the second result, we have to
take account of the sign change which results from the permutation of the order of
the orbitals (required to set up the one-electron result). We have also used the pure
precession hypothesis to evaluate the orbital matrix element. Using a = 151 cm−1,
B = 18.535 cm−1 and {E(2�) − E(2�+)} = −32 600 cm−1, we obtain a value of
−0.172 cm−1 for γ (2) for OH in the X 2� state, somewhat larger in magnitude than the
experimental value of −0.119 cm−1. More accurate calculations using ab initio wave
functions suggest that it is mainly the estimate of the off-diagonal element of Hso in
equation (7.279) which is too large [41]. The ab initio value for this matrix element
corresponds to a value for a of 111.7 cm−1 which gives much better agreement with
the experimental value.

Before we leave OH, it is instructive to use the same semi-empirical model to esti-
mate the value of γ (2) for the A 2�+ state. In this case, we find that the combined effect
of spin–orbit and rotational coupling with the X 2� state gives a value for γ (2) which has
the opposite sign (because of the change in sign of the energy denominator) and which
is twice as big, that is, 0.344 cm−1. The latter difference occurs because the |Λ = 0〉
orbital of the 2�+ state interacts with both |Λ = +1〉 and |Λ = −1〉 components of
the 2� state. The experimental value of γ for OH in the A2�+ state is 0.201 cm−1.

By this stage, it will be apparent that even the sign of the spin–rotation parameter
contains valuable information on the electronic structure of the molecule. To appreciate
this point fully, let us consider a 3� state which arises from aπ 2 electron configuration.
The effective spin–rotation interaction arises from second-order mixing with 3� states.
Let us assume that there is only one such state which lies higher in energy so that the
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energy denominator {E(3�) − E(3�)} in equation (7.122) is negative. If the 3� state
is obtained by promotion of an electron from an inner σ orbital (σ 2π2 → σ 1π3), the
matrix elements involved in the calculation of γ (2) are of the form〈

3�1

∣∣ − BL+
∣∣3�0

〉 = 〈∣∣σβπα+1π
β

+1π
α
−1

∣∣∣∣ − BL+
∣∣∣∣σασβπβ+1π

α
−1

∣∣〉,〈
3�1

∣∣Hso

∣∣3�1
〉 = 〈∣∣σβπα+1π

β

+1π
α
−1

∣∣∣∣Hso

∣∣∣∣σασβπα+1π
α
−1

∣∣〉. (7.281)

Permutation of the order of the molecular orbitals in the Slater determinant to reduce
them to one-electron integrals shows that both these matrix elements are positive and so
their product is also positive. Consequently, γ (2) is negative for this particular electronic
excitation. By contrast, when we investigate mixing by a 3� state obtained by promotion
of a π electron to an outer σ orbital (π2 → πσ ), the corresponding matrix elements
are: 〈

3�1

∣∣ − BL+
∣∣3�0

〉 = 〈∣∣πα+1σ
β
∣∣∣∣ − BL+

∣∣∣∣πα+1π
β

−1

∣∣〉,
〈3�1|Hso|3�1〉 = 〈∣∣πα+1σ

β
∣∣∣∣Hso

∣∣∣∣πα+1π
α
−1

∣∣〉. (7.282)

The rotational kinetic energy matrix element is now negative while that of the spin–orbit
coupling remains positive. In this case, therefore, γ (2) is positive.

7.8.5. Λ-doubling parameters

As we have seen in section 7.4.5, the Λ-doubling parameters in the effective
Hamiltonian, like the spin–spin and spin–rotation parameters, arise from the mix-
ing of electronic states by the spin–orbit interaction and rotational coupling. However,
Λ-doubling effects must involve a non-degenerate � electronic state at some stage
whereas the spin–spin and spin–rotation couplings do not have to do so. For a molecule
in a� state,Λ-doubling arises through second order mixing with a remote� state. For
a molecule in a� state, on the other hand,Λ-doubling arises from fourth-order mixing
with a remote � state through an intermediate � state. For this reason, Λ-doubling
effects are smaller for molecules in � states than for those in � states. The other
important feature of the Λ-doubling parameters is that, with the exception of the pa-
rameter o, they do not have a first-order contribution in the effective Hamiltonian. The
leading contribution is the second-order one described in section 7.4.5 for molecules
in � electronic states.

For OH in its X 2� state, there are two Λ-doubling parameters, p and q . Using
the explicit expressions given in equations (7.142) and (7.143), these parameters can
be calculated very accurately using good quality ab initio wave functions. A simple
estimate can be made using the pure precession values for the relevant matrix elements
which we have derived earlier. This approximation assumes that theΛ-doubling effects
arise wholly from the perturbations with the A 2�+ state. For this approximation,

p = −4Bζ/{E(�) − E(�+)} = 0.3434 cm−1, c f.expt,0.2503 cm−1, (7.283)

q = 4B2/{E(�) − E(�+)} = −0.0422 cm−1, c f.expt,− 0.0387 cm−1. (7.284)



Estimates and interpretation of parameters in the effective Hamiltonian 363

Once again, we see that the values of these two parameters are reasonably well repro-
duced by this very simple calculation.

Later on in this book, we discuss the properties of the CH radical in its X2�

state in some detail. The electronic structure of this radical is rather more complicated
than that of OH. Despite this, a simple pure precession calculation of the Λ-doubling
parameters reproduces the experimental values (particularly q) reasonably well (see
section 10.6.3).

7.8.6. Magnetic hyperfine interactions

Nuclear hyperfine interactions may be small in magnitude but it would be wrong to
dismiss them as insignificant. Indeed, they provide highly specific and accurate infor-
mation on the electronic wave function. This is because the interactions fall off very
rapidly with distance from the nucleus (typically as the inverse cube of the separation
of the electron from the nucleus although the Fermi contact interaction provides infor-
mation of the electron density only at the nucleus). In addition, the magnetic hyperfine
interactions depend on the open shell electrons only. As with the other interactions,
the effective Hamiltonian provides explicit formulae for the calculation of the hyperfine
parameters (see, for example, equations (7.154), (7.156) and (7.162)). Because of the
small size of these interactions, it is usually only the first-order contribution which is
significant. It is therefore relatively easy to calculate their values using ab initio wave
functions.

If we confine attention to molecules in a 2S+1� electronic state, there are four
magnetic hyperfine parameters, a, bF, c and d . The first of these describes the strength
of the nuclear-spin/electron–orbital interaction and gives information on the spatial
distribution of the unpaired electrons. The other three parameters give information
on the electron spin distribution within the molecule. Though often similar, these two
distribution functions are not identical.

A complete characterisation of the magnetic hyperfine parameters has been
achieved for several free radicals in 2� electronic states. One such example is the
CF radical which is isoelectronic with NO. The values of the four hyperfine parameters
for the 19 F nucleus (I = 1/2) are given in table 7.3 together with the expectation values
of the corresponding distribution functions over the electronic wave function. It can be
seen that the hyperfine parameter a is related to the orbital distribution 〈r−3〉l where
r is the distance between the unpaired electron and the F nucleus, the Fermi contact
parameter bF is a measure of the spin density at the nucleus |Ψ(0)|2, whilst c and d
are associated with the angular spin distributions 〈(3 cos2 θ − 1)/r3〉s and 〈sin2 θ/r3〉s

respectively, where θ is the polar angle between the vector r and the internuclear
axis. The value for 〈r−3〉l can be compared with the corresponding value for the flu-
orine atom in its ground 2P state (4.96 × 1031 m−3 [42]), suggesting that the square
of the atomic orbital coefficient c1 in equation (7.266) is 0.192. The corresponding
spin average can be calculated from the sum (d + c /3); the value obtained is 9.075 ×
1030 m−3, close to but different from that for 〈r−3〉l . The angular distribution of the
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Table 7.3. 19F hyperfine structure parameters [43] and expectation values of
distribution functions over the electronic wave function of CF in its X 2� state

hyperfine parameter experimental value function value /m−3

a 705.94 (14) 〈r−3〉l 9.502 × 1030

bF 151.19 (49) |Ψ(0)|2 2.429 × 1030

c −351.6 (14) 〈(3 cos2 θ − 1)/r 3〉s −3.151 × 1030

d 792.195 (98) 〈sin2 θ/r 3〉s 7.100 × 1030

spin density is well modelled by a pπ orbital. For such an orbital,

〈π | sin2 θ |π〉 = 4/5, (7.285)

〈π |(3 cos2 θ − 1)|π〉 = −2/5. (7.286)

In this approximation, the ratios 〈r−3〉s : 〈(3 cos2 θ − 1)/r3〉s : 〈sin2 θ/r3〉s are 1 : −0.4 :
0.8, to be compared with the actual values for CF from table 7.3 of 1 : − 0.35 : 0.78.

A striking example of the specific information carried in the hyperfine parameters
is provided by a study of the molecule CuO in its so-called A′2�− state [44]. This
molecule shows a large magnetic hyperfine splitting from the 63Cu nucleus (I = 3/2),
so large in fact that it can be resolved in the Doppler-limited optical spectrum associated
with the A′2�−–X2� transition. The hyperfine structure can be interpreted in terms
of a large Fermi contact interaction and a fit of the data to the effective Hamiltonian
for a 2�s state gives a value of –0.052 (22) cm−1 for the parameter bF. We note that
this value is both large and negative. The sign, in particular, cannot be explained by
the simplistic definition of the Fermi contact parameter,

bF = (2gSµB gNµNµ0/3)|Ψ(0)|2, (7.287)

where all the terms on the right-hand side are positive. The proper explanation provides
insight into the nature of the electronic wave function. The likely configuration for the
A′ state is . . . 1δ49σ 24π210σ where the 1δ orbital is essentially localised on the Cu
atom, the 9σ and 4π orbitals are predominantly O 2p atomic orbitals and the 10σ
orbital is a 4s orbital localised on the metal atom. The states which arise from this
configuration are 2�+, 2�−, 2�r and 4�−. The spin–orbital wave functions for the
2�+ and 2�− states are [45]

|2�+〉 = (2)−1/2(6)−1/2
{∣∣4πβ+14πα−110σα

∣∣− ∣∣4πα+14πβ−110σα
∣∣}, (7.288)

|2�−〉 = (6)−1
{
2
∣∣4πα+14πα−110σβ

∣∣− ∣∣4πβ+14πα−110σα
∣∣− ∣∣4πα+14πβ−110σα

∣∣}. (7.289)

Using the full form of the Fermi contact hyperfine interaction given in equation (7.144),
which differs from equation (7.287) in that it contains an explicit summation over the
open shell electrons, we have that

〈2�+|δ(r )sz|2�+〉 = (1/2)|Ψ10σ (0)|2, (7.290)

〈2�−|δ(r )sz|2�−〉 = −(1/6)|Ψ10σ (0)|2. (7.291)



Estimates and interpretation of parameters in the effective Hamiltonian 365

where δ(r ) and sz act on the 10σ electron only. A value for |Ψ10σ (0)|2 can be obtained
from the optical spectrum of the Cu atom which, in its ground state, has one unpaired
electron in a 4s orbital which produces a Fermi contact parameter of 0.0967 cm−1.
Using this value, we can make the following estimates,

bF(2�+) = 0.0967 cm−1, (7.292)

bF(2�−) = −0.0322 cm−1. (7.293)

The experimental value for bF clearly supports the assignment of the A′ state as 2�−.
The value for the 2�− state is negative because the contribution of the β spin in the
σ (4s) orbital in equation (7.289) outweighs that for the α spins.

We see that the analysis of the hyperfine structure in this case provides a simple and
direct way of distinguishing between�+ and�− states. It depends on the precise form
of the electron spin part of the total molecular wave function which is permitted by the
Pauli exclusion principle. It has the advantage that it does not require a knowledge of
the parities of the individual states. This contrasts with the traditional way of making
the �+/�− assignment which is based on a consideration of the orbital part of the
wave function.

7.8.7. Electric quadrupole hyperfine interaction

The form of the nuclear electric quadrupole interaction in the effective Hamiltonian for
a diatomic molecule is given in equations (7.158) and (7.161), with the latter applying
only to molecules in� electronic states. The two parameters which can be determined
from a fit of the experimental data are eq0 Q and eq2 Q respectively. Since the electric
quadrupole moment eQ is known for most nuclei, an experimental observation gives
information on q0 (and perhaps q2), the electric field gradient at the nucleus. This
quantity depends on the electronic structure of the molecule according to the expression

q0 = −2〈η,Λ|T2
q=0(∇E)|η,Λ〉

= 〈η,Λ|∂2V /∂z2|η,Λ〉, (7.294)

and is strictly the negative of the electric field gradient.
Let us consider a nucleus with I ≥ 1 in atom 1 of a diatomic molecule. We shall

use a local coordinate system (x , y, z) with its origin at the nucleus and z lying along
the molecular bond. An unscreened electric charge q at a distance r from the nucleus
gives rise to an electrostatic potential

V = q/4πε0r (7.295)

at the nucleus. The negative of the electric field gradient at the nucleus is therefore

q0 ≡ ∂2V

∂z2
= q

4πε0

∂2

∂z2
[x2 + y2 + z2]−1/2 = q

(3 cos2 θ − 1)

4πε0r3
, (7.296)

where θ is the polar angle between r and the z axis. If, as is most likely, the charged
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particle is an electron, its contribution to the electric field gradient at the nucleus may
be obtained by averaging the quantity in equation (7.296) over the molecular orbital φi

of the electron,

q0,i = − e

4πε0
〈φi |(3 cos2 θi − 1)/r3

i |φi 〉. (7.297)

The total electric field gradient at the nucleus due to all the electrons in the molecule
is therefore

q0 = − e

4πε0

∑
i

ni 〈φi |(3 cos2 θi − 1)/r3
i |φi 〉 (7.298)

where ni (=0, 1 or 2) is the number of electrons in the i th orbital.
This discussion shows that the most accurate interpretation of the electric

quadrupole coupling constant is obtained by evaluating

q0 = − e

4πε0
〈η,Λ|

∑
i

(3 cos2 θi − 1)

r3
|η,Λ〉 + Zα′e

4πε0
〈η,Λ| 2

R3
|η,Λ〉, (7.299)

where |η,Λ〉 is the ab initio electronic wave function and i is the sum over all electrons.
The second term on the right-hand side is the contribution to the electric field gradient
from the charge on the other nucleus (α′ = 2) in the diatomic molecule. Because of
the R−3 dependence, this contribution is small. It is not, however, negligible in the
most accurate calculations; for example, it makes a large (81%) contribution to the
quadrupole coupling constant for 17OH in its ground 2� state because the electronic
contribution is accidentally very small in this case [46]. In addition, equation (7.299)
shows that, unlike the magnetic hyperfine interactions, the electric quadrupole inter-
action depends on all the electrons in the molecule, which makes its calculation more
arduous.

Short of the ab initio calculations, there are several semi-empirical approaches
to the calculation and interpretation of electric quadrupole coupling constants. These
were developed originally by Townes and Dailey [47, 48] and are well documented in
the book by Gordy and Cook [49]. They are based on the linear combination of atomic
orbitals approximation for molecular orbitals, mentioned earlier in equation (7.266)
and described in more detail in chapter 6:

|η,Λ〉 � c1|n1, l1, λ1〉 + c2|n2, l2, λ2〉. (7.300)

This allows the local electron distribution to be modelled by atomic orbitals. The sym-
metry of these orbitals leads to a number of useful simplifications. First, the spherically
symmetric charge distribution of s orbitals produce zero average field at the central
nucleus and so do not contribute to q0. The same remark applies to electrons in the inner
closed shells of an atom, if we ignore the polarisation effects of electrons in valence
shells. Furthermore, electrons in orbitals with l = 2 (d orbitals) or greater produce a
much smaller electric field gradient at the nucleus than those in l = 1 (p orbitals).
Finally, the contributions to q0 of the electrons and nuclear charge of the other atom
approximately cancel and so can be neglected. The conclusion of these simplifications
is that the electric field gradient at the nucleus can be calculated by restricting attention
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to the p electrons in the valence shells of the atom in question, since these electrons
make the predominant contribution to q0. The resultant expression for the electric field
gradient at nucleus 1 is thus

q0 =
∑

i

ni c
2
i qi (7.301)

where qi is defined by equation (7.297) and the summation is over valence electrons
in p orbitals only. This model produces reasonably reliable values for q0 but, more
importantly, it allows trends in a series of molecules to be rationalised.

In addition to the main axial component eq0 Q of the electric quadrupole interaction,
there is also a perpendicular component eq2 Q for molecules in � electronic states.
Recalling that

T2
±2(∇E) = − 1

2
√

6

[
∂2V

∂x2
− ∂2V

∂y2

]
, (7.302)

we see that this component measures the asymmetry of the electric field gradient
perpendicular to the z axis. The particular component of the electric field gradient is
given by

q2 = −2
√

6〈η,Λ = ±1|T2
±2(∇E)|η,Λ = ∓1〉

= 3e

4πε0
〈η,Λ = ±1|

∑
i

(sin2 θi/r
3
i )|η,Λ = ±1〉. (7.303)

Because this term is a measure of the deviation from cylindrical symmetry, there is no
contribution from the charge on the other nucleus nor, to a good approximation, from
the electrons in closed shell orbitals. The magnetic hyperfine parameter d also depends
on the deviation of the electronic distribution from cylindrical symmetry, in this case
on the non-cylindrical distribution of electron spin for a molecule in a � electronic
state. The two parameters are therefore related since they give independent estimates
of the expectation values of 〈sin2 θ/r3〉. For example, the following values for the two
parameters have been measured for 35ClO in its 2� state [50]:

d = 173.030(20) MHz, eq2 Q = −116.0(56) MHz.

These correspond to expectation values

〈sin2 θ/r3〉S = 14.88 × 1030 m−3, 〈sin2 θ/r3〉l = −14.06 × 1030 m−3,

which are similar in magnitude. The negative sign for the quadrupole coupling constant
arises because the ground state of ClO is derived from a π3 configuration. The electric
field gradient at the nucleus is therefore caused by a hole in the π orbital, that is, by an
effective distribution of positive charge rather than negative.
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Appendix 7.1. Molecular parameters or constants

We present below a summary of the molecular parameters which appear in effective
Hamiltonians. Often the appropriate vibrational level is indicated by the subscript v and,
more rarely, other vibronic quantum numbers, particularly electronic, are indicated by
the subscript η. These molecular parameters are combined with operator expressions,
given in the equations referenced below.

A or Av – fine structure or molecular spin–orbit coupling constant for vibration level
v. Equation (7.187).

AD or ADv – centrifugal distortion correction to the spin–orbit coupling constant.
Equation (7.187).

B or Bv – rotational constant for vibrational level v. The subscript v is often omitted
when only the ground vibrational level is involved. Equation (7.185).

D or Dv – first centrifugal distortion constant. Equation (7.186).
H or Hv – second centrifugal distortion constant. Equation (7.186).
λv− electron spin–spin constant in vibrational level v. Equation (7.188).
λDv – centrifugal distortion correction to the spin–spin constant. Equation (7.188).
γ v – electron spin–rotation constant in vibrational level v. Equation (7.189).
γDv – centrifugal distortion correction to the electron spin–rotation constant.

Equation (7.189).
C (3)
v , ηv,Θv – higher-order fine structure constants. Equation (7.193).

ov , pv , qv– Λ-doubling parameters for � electronic states. Equation (7.190).
oDv, pDv, qDv– centrifugal distortion corrections to the Λ-doubling constants.

Equation (7.190).
a or av or aαv – electron orbital magnetic hyperfine constant. Equation (7.191).
bF or bFv or bαFv – Fermi contact hyperfine constant. Equation (7.191).
t0, t0v, or cv – axial component of the electron–nuclear dipolar interaction.
cI – nuclear spin–rotation constant.
d or t2 – nuclear spin–electron spin dipolar interaction constant for molecules in �

electronic states.
q0 – axial component of (the negative of ) the electric field gradient. Equation (7.192).
eq0 Q – axial nuclear quadrupole coupling constant. Equation (7.192).
q2 – perpendicular component of the electric field gradient. Equation (7.303).
gS – electron spin g-factor with value 2 in the Dirac theory, and 2.002 319 with quantum

electrodynamical correction. Equation (7.232). See also reference [32].
gL – electron orbital g-factor with value 1. In some instances admixture of other elec-

tronic states is indicated by the alternative symbol g′
L with a value slightly different

from 1. Equation (7.232). See also reference [32].
gr – rotational g-factor. Equation (7.232).
gl – anisotropic correction to the electron spin Zeeman interaction. Equation (7.232).
gN or gαN – nuclear g -factor for nucleus α. Equation (7.232).
L–anisotropic magnetic susceptibility constant. Equation (7.232).
σ (J) – nuclear screening constant.
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8 Molecular beam magnetic
and electric resonance

8.1. Introduction

We have seen that the fine and hyperfine structure of vibration–rotation levels arises
almost entirely from interactions involving electron spin, nuclear spin, and the rotational
motion of the nuclei, with or without the additional presence of applied magnetic or
electric fields. In this chapter we concentrate on the study of direct transitions between
rotational, fine or hyperfine energy levels. Such transitions occur mainly in those regions
of the spectrum which extend from the radiofrequency, through the microwave and
millimetre wave, to the far infrared region. They are therefore transitions that involve
very low energy photons, with the absorption or emission of very small amounts of
energy. Specialised techniques have been developed to carry out spectroscopic studies
in this frequency range. In particular one often does not attempt to detect the low
energy photons directly, but to make use of indirect detection methods which rely on
the energy level population transfer resulting from spectroscopic transitions. We shall
describe a number of the indirect methods which have been employed.

Radiofrequency spectroscopy, in particular, is frequently combined with molec-
ular beam techniques, or other methods using gas pressures which are low enough
to remove the effects of molecular collisions. There are two main reasons for this.
First, experiments which depend upon population transfer can only be successful if
collisional relaxation or equilibration is absent. Second, radiofrequency spectroscopy
usually provides a spectroscopic resolution which is intrinsically very high because
Doppler broadening is negligible; in such a desirable situation, collisional broaden-
ing is obviously to be avoided. The very high resolution afforded by radiofrequency
methods means that intramolecular interactions which are very small can be studied in
great detail and with great accuracy. Some of these interactions, such as those between
nuclear spin magnetic moments, or between a nuclear spin and an applied magnetic
field, are of profound importance and application, as we shall see.

Many of the classic studies we will describe were carried out more than sixty years
ago, when the available radiofrequency and high-vacuum technology was primitive
compared with that enjoyed now, at the beginning of the new millennium. We will
describe the original experiments faithfully, whilst also giving an outline of how such
studies might be performed today. At the same time we will also attempt to achieve
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consistency by sometimes redeveloping the theory used to analyse the spectra, employ-
ing the modern methods and notation of angular momentum theory used elsewhere in
this book. The experimental results and spectral analyses of fundamental molecular
species such as H2 have never needed repetition, such was the quality of the original
work. These studies are part of the structural foundations of our subject; they were well
built indeed.

Molecular beam techniques are now very well established, for the study of both
spectroscopy and fundamental reactive and non-reactive scattering dynamics. They
have been described in numerous review articles and books, so in this chapter we
content ourselves with details sufficient to understand the beautiful experiments which
have been performed, but insufficient for those readers with ambitions to enter the
field experimentally. For those requiring more details, the 1988 and 1992 two-volume
collection of specialist articles edited by Scoles [1] constitutes an excellent summary,
with many references to the original literature.

8.2. Molecular beam magnetic resonance of closed shell molecules

8.2.1. H2, D2 and HD in their X 1�+ ground states

(a) Principles of molecular beam magnetic resonance

(i)   

Molecules injected into a collision-free environment travel indefinitely in straight lines.
Consequently transfer from a high-pressure region in which molecular trajectories are
constantly changing because of collisions, through a small orifice into a very low-
pressure region, results in a molecular spray. By means of a secondary orifice, suitably
placed, we may select a small proportion of the molecules whose trajectories are
essentially in the same direction, forming a beam. The collimation efficiency depends
upon the size and nature of the orifices, the gas pressure before the first orifice, and the
distances between the orifices. Very high pumping speeds in both the low- and high-
pressure regions are also important because scattering with background gas molecules
obviously destroys the beam collimation. In many cases two or more differentially-
pumped vacuum chambers are employed, each separated by a small orifice which
increases the definition of the molecular beam at the price of reduced beam flux.

A wide variety of beam orifices and background pressures have been used, but
in essence there are just two types of molecular beam which can be produced. If the
primary gas pressure (called the stagnation pressure) before the first orifice is substan-
tially less than one bar, and the orifice, be it a circular hole or a slit, is relatively large,
the resulting beam is called an ‘effusive’ beam. The studies on hydrogen which we
are to describe shortly employed an effusive beam, and we give details of the pres-
sures and orifice dimensions used in due course. A more recent development, which
is used in almost all contemporary molecular beam studies, is that of the ‘nozzle’
or ‘supersonic’ beam. Generation of such a beam requires a much higher stagnation
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pressure (up to 100 bar or more, although a few bars is more normal), and a much
smaller orifice. The price for this is a much higher gas throughput, so that extremely
fast pumping is required. In many cases the molecules of interest are seeded in an
inert gas carrier (often helium) which is in large excess. The primary advantage of
nozzle sources is the beam flux, which is increased by several orders-of-magnitude
over that characteristic of effusive sources. Other advantages include preferential di-
rectionality in the beam propagation, and cooling processes for the beam molecules
which result in much higher populations of the lowest rotational and vibrational levels.
Atoms and molecules can also stick together in nozzle beams, so that unusual molecular
species can be formed and studied. In some experiments involving refractory materi-
als the nozzle is operated at high temperatures; in other cases nozzles incorporating
electrical discharges lead to the production of beams containing free radicals, or elec-
tronically excited molecules. Nozzles can be operated with continuous flows, or used
in a pulsed mode which drastically reduces the gas load on the pumping system. We
will encounter and study more of the special properties of nozzle beams elsewhere
in this chapter, but for the moment we confine ourselves to the less remarkable at-
tributes of effusive beams. The rather general remarks made in this subsection will
acquire more substance when we examine the details of the particular experiments
described.

(ii)   

Almost all spectroscopic studies of molecules in molecular beams require efficient
detection and measurement of the beam flux; spectroscopic transitions are invariably
detected through consequent changes in the beam flux. In certain special cases very
high detection efficiencies can be obtained using surface ionisation detectors. A hot
surface of a material with a high work function will ionise species having low ionisa-
tion potentials. The resulting ion current can then be amplified by means of an electron
multiplier, and monitored, with or without ion mass selection. This method was used to
detect beams of alkali metal atoms, and more recently diatomic alkali metal molecules,
with almost unit efficiency. Closely related are the surface ionisation detectors which
are used to detect beams of species excited to metastable electronic states by moni-
toring the Auger electrons produced. In many cases spectroscopic detection involving
laser-induced fluorescence or photoionisation has been successful, and bolometer de-
tectors have been used to detect vibrationally-hot molecules. By far the most common
detection method, however, is that of electron bombardment to produce molecular ions
which can be detected with essentially unit efficiency. The overall sensitivity of this
detection method depends primarily upon the ionisation efficiency which is achieved.
Consequently much attention has been paid to the design of suitable electron guns.
These usually involve electron emission from a hot filament, combined with ion optics
and mass selection schemes to discriminate against ions produced from background
gas; some detectors are operated in special ultrahigh vacuum chambers to reduce back-
ground interference. The highest ionisation efficiencies which have been achieved are
close to 10−3, but efficiencies in the range 10−4 to 10−5 are more common.



374 Molecular beam magnetic and electric resonance

The studies of hydrogen described later in this section all involved a Pirani gauge
detector. The detector works by directing the beam into a cavity where pressure changes
resulting from beam intensity changes are measured by monitoring the thermal con-
duction of the gas. Pirani detectors are slow and relatively insensitive and seldom, if
ever, used now. Nevertheless at the time they were instrumental in enabling the very
fine fundamental studies of hydrogen to be performed successfully.

(iii)     

Molecular beam resonance studies depend upon the preparation of a spatially-aligned
or partially-aligned beam; the flux of the aligned beam is measured, the alignment is re-
duced or even destroyed by population transfer resulting from spectroscopic transitions,
and the resulting change in the beam flux is recorded. The alignment, or state selection,
can be achieved by passage of the beam through suitable magnetic or electric fields.
Electric fields are effective only when the molecule under investigation possesses a per-
manent electric dipole moment; this is obviously not the case for molecular hydrogen,
so that in this section we deal only with magnetic alignment. The necessary magnetic
moment of the molecule arises primarily from the presence of non-zero nuclear spins.
We will describe examples of electric field alignment later in this chapter.

The first experiments using magnetic alignment, or state selection, were described
by Rabi, Millman, Kusch and Zacharias [2]. Their studies were of beams of LiCl, LiF,
NaF and Li2, with the purpose of determining the magnetic moments of the 6Li, 7Li
and 19F nuclei. Figure 8.1 is essentially that shown in their paper and serves to explain
both the principles and the techniques used. The beam source (O), the collimating slit
(S) and the detector (D) are all on the same central axis, and only molecules which
have passed through S can reach the detector. The solid line shows the trajectory of a
molecule which has a magnetic moment µz , but which, in the absence of any applied
magnetic field, would fail to pass through the slit S and therefore not reach the detector.
However, a magnetic field gradient (dB/dz)A is produced by magnet A, which bends
the trajectory of the molecule; provided µz has the correct sign, the molecule will
pass through the slit S. This molecule is clearly not heading towards the detector, but

Figure 8.1. Principles of magnetic state selection and molecular beam magnetic resonance.
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if it passes through a second magnetic field gradient (dB/dz)B, which is of the same
magnitude as that produced in A but points in the opposite direction, the trajectory of
the molecule will again be changed, bringing it to the detector. The combination of
the A and B fields thus acts as a state selector for a molecule with a given magnetic
moment and velocity vector. Both the magnitude and the sign of µz are important;
a molecule with the same velocity vector but µz of opposite sign will not reach the
detector. In terms of the projection quantum numbers MI , a non-thermal population
distribution of states with MI opposite in sign is produced. States with MI = 0 are, of
course, unaffected by the A or B fields.

Now consider the addition of a homogeneous C field, of magnitude B, situated
symmetrically between the A and B fields. This does not affect the trajectories of any
molecules, but does remove the degeneracy of levels with different MI values. The
further addition of an oscillating magnetic field of frequency ν, applied perpendicular
to the static field C, will induce transitions between states differing in MI by ±1 if the
resonance condition,

hν= gNµN B, (8.1)

is satisfied. The molecule which reached the detector in figure 8.1 now suffers a change
in magnetic moment after passing through the slit S; its trajectory in the B field therefore
changes, as shown by the dashed line in figure 8.1, and it fails to reach the detector.
Consequently the occurrence of a resonant transition in the C field is detected as a
decrease in the beam flux reaching the detector; this is known as the ‘flop-out’ mode
of detection. In practice, of course, one is dealing with a molecular ensemble with a
range of molecular velocity vectors, and MI values ranging from +I to −I . Moreover
the simple resonance condition (8.1) involves only the nuclear spin and its resulting
magnetic moment, whereas in general the coupling of the nuclear spin to the rotational
angular momentum must be considered in detail. In the experiments on 7LiCl described
above, the resonant frequency was found to be 5.610 MHz in a C field of 3400 G; the
spectral resolution was too low to reveal the effects of molecular rotation, but good
enough to yield a value for the 7Li nuclear magnetic moment. Values of the 6Li and
19F nuclear magnetic moments were also obtained.

Many variants of the experiment described in figure 8.1 have been performed,
and we shall encounter some of them later in this chapter. Perhaps the most important
variant is that it is often possible to arrange the state selection so that resonant transitions
result in an increase in the detected beam flux, ideally against a very low off-resonance
background. This is known as the ‘flop-in’ mode of detection, and it can be very
sensitive. Again we shall meet examples of this later.

(b) Details of the apparatus used

The pioneering experiments on H2, HD and D2 were performed by Kellogg, Rabi,
Ramsey and Zacharias in 1939 [3]. Their principal objectives were to determine the
magnetic moments of the proton and deuteron, and the electric quadrupole moment
of the deuteron. The sorry events of 1939 to 1945 brought the work to an untimely



376 Molecular beam magnetic and electric resonance

halt, but the experiments were resumed in 1950 with substantially improved apparatus,
which we now describe.

Figure 8.2 shows a simplified block diagram of the apparatus used by Kolsky,
Phipps, Ramsey and Silsbee [4]. As described in the earlier work and in section 8.2.1.
a(iii), a beam of molecules was spread by the inhomogeneous magnetic field A and
refocused onto the detector by the second inhomogeneous magnetic field B; the A and
B fields were each 39.2 cm in length. The homogeneous C field of length 150 cm was
symmetrically located between the A and B fields, with a centrally placed collimating
slit of height 0.8 cm and width 0.0015 cm. The overall beam length from source to
detector was 269 cm. Radiofrequency transitions were induced in the homogeneous C
field by copper strip lines, the orientation providing a radio frequency magnetic field
perpendicular to the static C field. Under correct operating conditions the beam flux
reaching the detector was the same whether or not the A and B fields were switched
on. Resonant transitions induced in the C field region, however, resulted in partial
reorientation of the magnetic moment, so that the number of molecules reaching the
detector was decreased; the mode of detection was therefore the ‘flop-out’ mode. It is
possible to scan either the magnetic C field, or the radiation frequency; both modes
of operation have indeed been employed. Off-resonance beam fluxes were about 1013

molecules per cm2 per second, the main chamber pressure with the H2 beam on being
about 10−6 torr. Differential pumping was provided by separating the source and main
chambers with a separating chamber. Resonance line half-widths of about 13 kHz were
obtained using a single rf field inside the static C field, but later work used two separated
oscillating fields [5, 6], with linewidths reduced to 0.7 kHz. We will illustrate some of
the resonance lines observed after discussing the theory of the energy levels and the
transitions between them.

(c) Effective Hamiltonian, energy levels and spectroscopic transitions

The effective Hamiltonian for H2 in its 1�+
g ground state may be written as the sum of

five terms:

H = HIZ + HJZ + HIJ + Hdip + Hdiam. (8.2)

These represent the nuclear spin Zeeman interaction, the rotational Zeeman interaction,
the nuclear spin–rotation interaction, the nuclear spin–nuclear spin dipolar interaction,
and the diamagnetic interactions. Using irreducible tensor methods we examine the
matrix elements of each of these five terms in turn, working first in the decoupled basis
set |η; J,MJ ; I,MI 〉, where η specifies all other electronic and vibrational quantum
numbers; this is the basis which is most appropriate for high magnetic field stud-
ies. In due course we will also calculate the matrix elements and energy levels in a
|η; J, I, F,MF 〉 coupled basis which is appropriate for low field investigations. Most
of the experimental studies involved ortho-H2 in its lowest rotational level, J = 1. If
the proton nuclear spins are denoted I1 and I2, each with value 1/2, ortho-H2 has total
nuclear spin I equal to 1. Para-H2 has a total nuclear spin I equal to 0.
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From the treatment described in chapter 4 the nuclear spin Zeeman interaction may
be written as the sum of two terms, one for each nucleus,

HIZ = −gN1µN {1 − σ1(J )}T1(I1) · T1(B) − gN2µN {1 − σ2(J )}T1(I2) · T1(B). (8.3)

This expression is not quite the same as that shown previously in that the magnetic
field intensity B is modified by a screening factor, σi(J ), for each nucleus, the nature
and origin of which will be discussed in due course. Since we are dealing with two
equivalent protons, (8.3) may be simplified to a single term with I = 1,

HIZ = −gHµN T1(I ) · T1(B){1 − σH(J )}, (8.4)

Here we have made the replacements gN1 = gN2 = gH; σ1 = σ2 = σH. Notice that the
screening factor is dependent on the J value. Equation (8.4) may be further simplified
by taking the space-fixed p = 0 component of the scalar product to be defined by the
direction of the magnetic field, so that

HIZ = −gHµN T1
0(I )T1

0(B){1 − σH(J )}. (8.5)

The matrix elements of (8.5) are diagonal in MI and would be independent of MJ were
it not for the σH(J ) term.

The rotational Zeeman term is equally simple,

HJZ = −{1 − σH(J)}grµN T1(J ) · T1(B), (8.6)

and for a magnetic field in the Z (p = 0) direction, the matrix elements (shown in
table 8.1), are diagonal in MJ and independent of MI ; gr is the rotational g factor.

The third term in equation (8.2), the nuclear spin–rotation term, may be written

HJI = cI T1(J ) · T1(I ), (8.7)

and application of the Wigner–Eckart theorem yields the matrix elements,

〈η; J,MJ ; I,MI |cI T1(J ) · T1(I )|η; J,M ′
J ; I,M ′

I 〉
= 〈J,MJ ; I,MI |cI

∑
p

(−1)pT1
p(J )T1

−p(I)|J,M ′
J ; I,M ′

I 〉

= cI

∑
p

(−1)p(−1)J−MJ (−1)I−MI

(
J 1 J

−MJ p M ′
J

)(
I 1 I

−MI −p M ′
I

)

× {J (J + 1)(2J + 1)I (I + 1)(2I + 1)}1/2. (8.8)

Again the explicit evaluation of these matrix elements is given with table 8.1.
The fourth term in (8.2) describes the dipole–dipole interaction between the nuclear

spin magnetic moments. For two equivalent protons this term takes the form,

Hdip = g2
Hµ

2
N (µ0/4π)

{
I1 · I2

R3
− 3(I1 · R)(I2 · R)

R5

}
, (8.9)

where gH is the proton g factor. This term may be written as the scalar product of two
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irreducible second-rank tensors,

Hdip = −g2
Hµ

2
N (µ0/4π)

√
6T2(C) · T2(I1, I2), (8.10)

where

T2
p(I1, I2) = (−1)p

√
5

∑
p1,p2

(
1 1 2
p1 p2 −p

)
T1

p1
(I1)T1

p2
(I2), (8.11)

and

T2
q (C) = 〈η|C2

q (θ, φ)R−3|η〉. (8.12)

The equivalence of (8.9) and (8.10) is shown in appendix 8.1. Application of the
Wigner–Eckart theorem using (8.10) yields the result

〈η; J,MJ ; I,MI |Hdip|η; J,M ′
J ; I ′,M ′

I 〉

= −
√

6g2
Hµ

2
N (µ0/4π)

∑
p

(−1)p(−1)J−MJ

(
J 2 J

−MJ p M ′
J

)
〈η; J‖T2(C)‖η; J 〉

× (−1)I−MI

(
I 2 I ′

−MI −p M ′
I

)
〈I‖T2(I1, I2)‖I ′〉. (8.13)

The reduced matrix element involving the nuclear spin is given by

〈I‖T2(I1, I2)‖I ′〉 =
√

5




I1 I1 1
I2 I2 1
I I ′ 2


{(2I + 1)(2I ′ + 1)I1(I1 + 1)(2I1 + 1)

× I2(I2 + 1)(2I2 + 1)}1/2. (8.14)

For I ′ = I = 1, I1 = I2 = 1/2, the reduced matrix element in (8.14) has the value
√

5/2
and for J = I = 1 the explicit values of the matrix elements are again given with
table 8.1.

The fifth term in (8.2) describes the diamagnetic interaction of the molecule with the
external magnetic field. Ramsey [7] showed that this interaction could be represented
by the term,

Hdiam = − 5 f

(2J − 1)(2J + 3)
{3(T1(J ) · T1(B))2 − J2 B2} − g, (8.15)

and, again selecting the p = 0 component of the scalar product, we obtain matrix
elements which are diagonal in MJ :

〈η; J,MJ ; I,MI |Hdiam|η; J,MJ ; I,MI 〉
=− 5 f B2

Z

(2J − 1)(2J + 3)

{
3M2

J −J (J + 1)
}− g. (8.16)

The constants f and g are functions of the magnetic susceptibility of the molecule
when the magnetic field is aligned perpendicular or parallel to the internuclear axis.
They are very small in magnitude and were only included in the analysis of the high
field spectra. We will discuss these quantities at length in section 8.2.2. They are closely
related to the shielding parameter σH(J ), as we shall see.
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We can now summarise the results of our calculations of the matrix elements of H

in table 8.1. The matrix elements are as follows:

m11 = −a{1 − σH(J )} − b{1 − σH(J )} + cI + d/2 − f/3 − g

m22 = −b{1 − σH(J )} − d − f/3 − g

m33 = a{1 − σH(J )} − b{1 − σH(J )} − cI + d/2 − f/3 − g

m44 = −a{1 − σH(J )} − d + 2 f/3 − g

m55 = 2d + 2 f/3 − g

m66 = a{1 − σH(J )} − d + 2 f/3 − g

m77 = −a{1 − σH(J )} + b{1 − σH(J )} − cI + d/2 − f/3 − g

m88 = b{1 − σH(J )} − d − f/3 − g

m99 = a{1 − σH(J )} + b{1 − σH(J )} + cI + d/2 − f/3 − g

m24 = m42 = m68 = m86 = cI + 3d/2

m35 = m53 = m57 = m75 = cI − 3d/2

m37 = m73 = 3d

Note that in the above expressions we conform with Ramsey [7] by making the re-
placements,

gHµN BZ ≡ a, grµN BZ ≡ b,

and our dipolar constant is defined by

d = 1√
30

g2
Hµ

2
N (µ0/4π )〈J‖T2(C )‖J 〉. (8.17)

We note that this matrix factorises into two 1 × 1 matrices, two 2 × 2 and one 3 × 3;
we will calculate the eigenvalues in due course.

As stated earlier, the decoupled representation used above is most appropriate for
the high field measurements of the magnetic resonance spectrum. Before examining
the field dependence of the energy levels and transition probabilities, we recalculate the
matrix elements of H using the coupled basis, |η; J, I, F,MF 〉. We note that for J = 1
and I = 1, we can have F = 2 (with MF = ±2,±1, 0), F = 1 (with MF = ±1, 0), and
F = 0 (MF = 0).

First, the nuclear Zeeman term, using equation (8.5):

〈η; J, I, F,MF | − gHµN T1
0(I )T1

0(B){1 − σH(J )}|η; J, I, F ′,MF 〉

= −gHµN BZ {1 − σH(J)}(−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F+J+1+I

× {(2F + 1)(2F ′ + 1)}1/2

{
I F ′ J
F I 1

}
{I (I + 1)(2I + 1)}1/2. (8.18)
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Second, the rotational Zeeman term (8.6):

〈η; J, I, F,MF | − gJµN T1
0(J )T1

0(B){1 − σJ (J )}|η; J, I, F ′,MF 〉

= −gJµN BZ {1 − σH(J )}(−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+J+1+I

× {(2F + 1)(2F ′ + 1)}1/2

{
J F ′ I
F J 1

}
{J (J + 1)(2J + 1)}1/2. (8.19)

Third, the nuclear spin–rotation term (8.7):

〈η; J, I, F,MF |cI T1(J ) · T1(I )|η; J, I, F ′,MF 〉
= cI (−1)J+F+I δF F ′

{
I J F
J I 1

}
{J (J + 1)(2J + 1)I (I + 1)(2I + 1)}1/2. (8.20)

Fourth, the nuclear spin dipolar interaction for terms diagonal in J and I (8.10):

〈η; J, I, F,MF |−
√

6g2
Hµ

2
N (µ0/4π)T2(C ) · T2(I1, I2)|η; J, I, F ′,M ′

F 〉

= −δF F ′δMF M ′
F

√
6g2

Hµ
2
N (µ0/4π)(−1)J+F+I

{
I J F
J I 2

}
×〈η; J‖T2(C )‖η; J 〉〈I‖T2(I1, I2)‖I 〉

= −δF F ′δMF M ′
F

√
30g2

Hµ
2
N (µ0/4π)(−1)J+F+I

{
I J F
J I 2

}


I1 I1 1

I2 I2 1

I I 2




× (2I + 1){I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1)}1/2〈η; J‖T2(C )‖η; J 〉. (8.21)

The diamagnetic terms were not calculated by Ramsey [7] for the coupled representa-
tion, which was used only for analysis of the low field spectra.

The structure of the 9 × 9 energy matrix in the coupled representation is shown in
table 8.2, with the explicit matrix elements given below.

m11 = −a{1 − σH(J )} − b{1 − σH(J )} + cI − d/2
m22 = −(a/2){1 − σH(J )} − (b/2){1 − σH(J )} + cI − d/2
m33 = cI − d/2
m44 = (a/2){1 − σH(J )} + (b/2){1 − σH(J )} + cI − d/2
m55 = a{1 − σH(J )} + b{1 − σH(J )} + cI − d/2
m66 = −(a/2){1 − σH(J )} − (b/2){1 − σH(J )} − cI + 5d/2
m77 = −cI + 5d/2
m88 = (a/2){1 − σH(J )} + (b/2){1 − σH(J )} − cI + 5d/2
m99 = −2cI − 5d
m26 = m48 = m62 = m84 = (1/2)(a − b)
m37 = m73 = (1/

√
3)(a − b)

m79 = m97 = (
√

2/
√

3)(a − b)

The energy matrix in the coupled representation again factorises into two 1 × 1
matrices (for MF = ±2), two 2 × 2 matrices (for MF = ±1) and one 3 × 3 (for MF = 0).
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We are now in a position to calculate the energies of the nine levels as a function of
magnetic field strength, given values of the molecular constants involved. In the original
analysis of the spectra, perturbation theory was employed to derive energy expressions
for the mixed states. We will adopt the easier contemporary method of employing
the values of the constants derived from the original analyses, and using a computer
to diagonalise the energy matrices. Our purpose is to show how the experimentally
observed spectra are related to the calculated energy levels.

The following values of the constants (in kHz) were determined:

a = 4.258, b = 0.6717, cI = −113.904, d = 57.671.

Using these values we diagonalise the 9 × 9 matrix in the coupled representation,
and plot the energies as functions of magnetic field strength. The results are shown
in figure 8.3, which is essentially identical with Figure 1 in Ramsey’s paper [7]. Each
level is labelled with quantum numbers in the decoupled and coupled representations,
but as the field strength is increased the decoupled quantum numbers MI and MJ

become increasingly appropriate. In separate papers two different types of transition
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Figure 8.3. Energy levels of H2 in its J = 1 level as a function of magnetic field strength. The
levels are labelled with both their decoupled (MI , MJ ) and coupled (F , MF ) quantum numbers.
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Figure 8.4. Six-line radiofrequency spectrum of ortho-H2 (J = 1) observed in a magnetic field
of 1611 G, obeying the selection rules �MI = ±1,�MJ = 0, observed by Kolsky, Phipps,
Ramsey and Silsbee [4]. The original spectrum was recorded manually point by point as shown.

were described. Kolsky, Phipps, Ramsey and Silsbee [4] made careful measurements
of the six �MI = ±1,�MJ = 0 transitions in a magnetic field of 1611 G. Their
spectrum was recorded manually point by point; their envelopes of the six lines are
shown in figure 8.4. Note that the strongest resonance corresponds to a 10% reduction
in the detected beam intensity, leading to an excellent signal-to-noise ratio. The original
paper also shows the resolution enhancement obtained using two separated rf fields.
The six-line pattern spans the frequency range 6.6 to 7.1 MHz. Harrick and Ramsey [8]
subsequently studied the six complementary transitions which obey the selection rules
�MJ = ±1,�MI = 0 at higher magnetic fields ranging from 3 to 7 kG. From these
measurements they were able to obtain an accurate value for the rotational magnetic
moment of H2 in its J = 1 level; they were also able to determine the dependence of the
diamagnetic susceptibility on molecular orientation. Additional studies [4] at very low
magnetic fields in the range 1 to 5 G confirmed the intermediate and high field analyses.
We examine the appropriate theory of the molecular parameters in section 8.2.2.

We turn now to the corresponding studies of the isotopic species D2 and HD. The
deuterium nucleus has spin ID equal to 1, so that the two equivalent deuterium nuclei
in D2 have their spins coupled to give total nuclear spin I equal to 2, 1 or 0. The states
with I equal to 2 or 0 correspond to ortho-D2, whilst that with I equal to 1 is known
as para-D2. The molecular beam magnetic resonance studies have been performed on
para-D2, in the J = 1 rotational level. Formally, therefore, the effective Hamiltonian
is the same as that described above for experimental studies of ortho-H2, also in the
J = 1 rotational level. There is one extremely important difference, however, in that the
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deuterium nucleus possesses an electric quadrupole moment, so that the quadrupole
interaction must be included in the analysis. There should therefore be an additional
term in the effective Hamiltonian describing this interaction; however, even though the
quadrupole interaction does not involve nuclear spin directly, it may be represented
by a term in the effective Hamiltonian which has exactly the same dependence on the
angular momentum quantum numbers as the dipole–dipole interaction. We now prove
this perhaps surprising result.

The quadrupole interaction between the electric field gradient and the nuclear
quadrupole moment is represented by a sum of terms, one for each nucleus k, as
follows:

HQ = −e
∑

k

T2(∇Ek) · T2(Qk). (8.22)

The nuclear spins I1 and I2 may be coupled to form the total nuclear spin I, which in
turn is coupled to J to form F. In this coupled basis set the matrix elements of HQ are
given by

〈η,Λ; J, I1, I2, I, F |HQ|η,Λ′; J ′, I1, I2, I ′, F ′〉

= −eδF F ′
∑

k

(−1)J ′+I+F

{
I J F
J ′ I ′ 2

}
〈η, J,Λ‖T2(∇Ek)‖η, J ′,Λ′〉

×〈I1, I2, I‖T2(Qk)‖I1, I2, I ′〉. (8.23)

The first reduced matrix element in (8.23) may be evaluated by noting that, in the
molecule-fixed axis system q, the following relationship holds:

〈η, J,Λ, ‖
∑

q

D
(2)
.q (ω)∗T2

q (∇Ek)‖η, J ′,Λ′〉

=
∑

q

(−1)J−Λ{(2J + 1)(2J ′ + 1)}1/2

(
J 2 J ′

−Λ q Λ′

)

× 〈η,Λ|T2
q (∇Ek)|η,Λ′〉, (8.24)

where D
(2)
.q (ω)∗ is the second-rank rotation matrix. The second reduced matrix element

in equation (8.23) is obtained from the results

〈I1, I2, I‖T2(Q1)‖I1, I2, I ′〉 = (−1)I1+I2+I ′+2{(2I + 1)(2I ′ + 1)}1/2

×
{

I1 I I2

I ′ I1 2

}
〈I1‖T2(Q1)‖I1〉 (8.25)

for k = 1, and

〈I1, I2, I‖T2(Q2)‖I1, I2, I ′〉 = (−1)I1+I2+I+2{(2I + 1)(2I ′ + 1)}1/2

×
{

I2 I I1

I ′ I2 2

}
〈I2‖T2(Q2)‖I2〉 (8.26)

for k = 2. We now make use of two important definitions. First, the nuclear quadrupole
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moment for a nucleus with spin I1, Q1, is defined by the equation

〈I1‖T2(Q1)‖I1〉 =
(

Q1

2

)(
I1 2 I1

−I1 0 I1

)−1

(8.27)

with an identical result for Q2. Second, the negative of the electric field gradient at the
nucleus, q0, is defined by

〈η,Λ|T2
0(∇E)|η,Λ〉 = −(q0/2). (8.28)

Consequently for matrix elements diagonal in Λ, equation (8.23) gives the result:

〈η,Λ; J, I1, I2, I, F |HQ|η,Λ; J ′, I1, I2, I ′, F〉

= eQq0

4
(−1)J ′+I+F

{
I J F
J ′ I ′ 2

}
(−1)J−Λ

(
J 2 J ′

−Λ 0 Λ

)
{(2J + 1)(2J ′ + 1)}1/2

× [(−1)I + (−1)I ′
](−1)I1+I2{(2I + 1)(2I ′ + 1)}1/2

×
{

I2 I I1

I ′ I2 2

}(
I1 2 I1

−I1 0 I1

)−1

. (8.29)

We now show that the nuclear spin dipolar interaction has matrix elements of ex-
actly the same form. We take the dipolar Hamiltonian to have the form given previously
in equation (8.10) and find that its matrix elements are given by

〈η,Λ; J, I1, I2, I, F |Hdip|η,Λ′; J ′, I1, I2, I ′, F〉

= −gI1 gI2µ
2
N (µ0/4π)

√
6(−1)J ′+I+F

{
I J F
J ′ I ′ 2

}
〈η, J,Λ‖T2(C )‖η, J ′,Λ′〉

× 〈I1, I2, I‖T2(I1, I2)‖I1, I2, I ′〉. (8.30)

The first reduced matrix element in (8.30) is readily evaluated:

〈η, J,Λ‖T2(C )‖η, J ′,Λ′〉 = 〈η, J,Λ‖
∑

q

D
(2)
.q (ω)∗T2

q (C )‖η, J ′,Λ′〉

=
∑

q

(−1)J−Λ{(2J + 1)(2J ′ + 1)}1/2
(

J 2 J ′

−Λ q Λ′

)
〈η,Λ|C2

q (θ, φ)R−3|η,Λ′〉.

(8.31)

We have made use of equation (8.12) in deriving (8.31). The second reduced matrix
element in (8.30) has also been evaluated previously in (8.14):

〈I1, I2, I‖T2(I1, I2)‖I1, I2, I ′〉 =
√

5




I1 I1 1

I2 I2 1

I ′ I 2


{(2I + 1)(2I ′ + 1)I1(I1 + 1)

× (2I1 + 1)I2(I2 + 1)(2I2 + 1)}1/2. (8.32)
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By combining (8.31) and (8.32), equation (8.30) becomes, for q = 0,

〈η,Λ; J, I1, I2, I, F |Hdip|η,Λ; J ′, I1, I2, I ′, F〉

= −gI1 gI2µ
2
N (µ0/4π)

√
6(−1)J ′+I+F

{
I J F
J ′ I ′ 2

}
(−1)J−Λ

× {(2J + 1)(2J ′ + 1)}1/2

(
J 2 J ′

−Λ 0 Λ

)
〈η, |C2

0 (θ, φ)R−3|η〉
√

5




I1 I1 1

I2 I2 1

I ′ I 2




× {(2I + 1)(2I ′ + 1)I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1)}1/2. (8.33)

We are now in a position to compare the results for the quadrupole and dipolar interac-
tions, as given by (8.29) and (8.33). For the matrix elements diagonal in I (which can
take the values 0, 1 or 2), the dependence on the quantum numbers J andΛ is clearly the
same. The dependence on the value of I is best determined by evaluating the appropriate
3- j , 6- j and 9- j symbols using computer programs. One finds that for I = 1 and I = 2
the ratios of the dipolar and quadrupole energies are the same; for I = 0 the contribu-
tions are zero for both interactions because the triangle rule �(I, I, 2) is not satisfied.
For the off-diagonal matrix elements connecting the I = 0 and 2 states, the ratio of the
two contributions is different from that found for the diagonal elements; it would there-
fore be possible to separate the contributions for ortho-D2, provided the off-diagonal
elements were sufficiently large. The above conclusions hold for any homonuclear
diatomic molecule in which the relevant nucleus has a quadrupole moment.

The effective Hamiltonian matrix for D2 with J = 1 and I = 1 is exactly the same as
that previously described for H2, but the values of the four main constants are (in kHz)

a = 0.6536, b = 0.3368, cI = −8.773, d = 25.237.

These are all considerably smaller than the corresponding constants in H2. The cal-
culated energy levels in magnetic fields ranging from 0 to 1000 G are shown in
figure 8.5, whilst a section of the predicted Zeeman pattern from 1800 to 2200 G
is shown in figure 8.6. The six transitions indicated are those obeying the selec-
tion rules �MI = ±1,�MJ = 0, and the spectrum obtained in the early work [9] of
Kellogg, Rabi, Ramsey and Zacharias is shown in figure 8.7. Apart from the six tran-
sitions mentioned above, this spectrum also shows a very strong central line arising
from ortho-D2 (I = 2 and 0) in the J = 0 level. The six short dotted lines shown in
figure 8.7 indicate the predicted positions of the six lines if the quadrupole interaction
was zero; the experimentally observed pattern is therefore dominated by the quadrupole
interaction. In later work this spectrum was recorded at much higher resolution [10],
with consequent refinements in the values of the molecular constants.

Finally in this section we turn to the heteronuclear species HD, which was studied
in both the 1940 phase [9] and the post-war higher-resolution phase [11]. The three
coupled angular momenta J, ID and IH have space-fixed projections, which are appro-
priate for strong field studies, of MJ , MD and MH. The experimental studies involved
HD again in its J = 1 level, so that in the decoupled representation there are 18 pos-
sible levels (MJ = 0,±1; MD = 0,±1; MH = ±1/2). Consequently there are three
types of transition involving these energy levels which occur in clusters at different
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Figure 8.5. Calculated Zeeman levels for D2 (J = 1, I = 1) in the range 0 to 1000 G.

radiofrequency regions. There are twelve transitions for which MD changes by ±1
(with the other projection quantum numbers unchanged), nine transitions for which
MH changes by ±1, and twelve transitions for which MJ changes by ±1. Figure 8.8
shows the proton magnetic resonance spectrum, recorded at a frequency of 15.75 MHz.
Eight of the expected nine lines are clearly resolved, but the remaining line in this group
is predicted to occur at the same position as the deep central minimum, which is itself
due to molecules in the J = 0 level. We will not repeat the theoretical analysis of the
HD spectrum, which follows closely the routes taken for the homonuclear species de-
scribed above. The most important new feature which arises in the analysis of the HD
spectrum is that the proton–deuteron dipolar interaction can now be separated from the
deuterium quadrupole interaction. Indeed the primary purpose of the work on HD and
D2, indicated in the title of the paper, was the determination of the deuteron nuclear
quadrupole moment.

The rotational magnetic resonance spectrum (�MJ = ±1,�MH = �MD = 0)
was the subject of a separate paper by Ramsey [12].

The magnitudes of the various molecular constants determined from these exper-
iments were examined in depth, particularly in a series of papers by Ramsey. We now
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Figure 8.6. Calculated Zeeman levels for D2 (J = 1, I = 1) in the magnetic field range 1800
to 2200 G. The six predicted �MI = ±1,�MJ = 0 transitions are shown for a frequency of
1.3 MHz; these predictions are to be compared with the experimental observations presented in
figure 8.7.

proceed to discuss these quantitative interpretations, which form part of the foundations
of nuclear magnetic resonance.

8.2.2. Theory of Zeeman interactions in 1�+ states

(a) Introduction

We have described the principles and experimental techniques involved in the molecular
beam magnetic resonance studies of H2 and its deuterium isotopes. We have shown
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Figure 8.7. Radiofrequency magnetic resonance spectrum of D2 (J = 1, I = 1) observed [9] at
a frequency of 1.3 MHz. This spectrum is to be compared with the predictions presented in
figure 8.6.
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Figure 8.8. The proton magnetic resonance spectrum of HD observed at a frequency of
15.75 MHz [9]. This spectrum satisfies the selection rules �MH = ±1,�MD = �MJ = 0.

how the spectra have been analysed in terms of appropriate effective Hamiltonians, and
the values of various molecular parameters determined. It is now time to describe the
theory underlying these parameters, and the information they provide about electronic
structure. Whilst much of the theory was originally developed in order to understand
the experimental studies of H2, it is, of course, generally applicable to other, more
complex molecules. As we shall see, there is a series of subtle relationships between
magnetic susceptibility, magnetic shielding of nuclei, rotational magnetic moments, and
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molecular electric quadrupole moments. A thorough description of these relationships
could, in itself, constitute the contents of a large book. We must therefore content
ourselves here with an outline discussion, which might prove a useful introduction to
the original literature.

First we remind ourselves of some elementary definitions. An external magnetic
field H is associated with a magnetic flux density B through the simple equation

B = µ0 H, (8.34)

where µ0 is the permittivity of free space, with the value 4π × 10−7 H m−1. We are
usually more interested in the flux density through molecular matter, and in this case
there is an important modification to (8.34) which we write

B = µ0(1 + χ )H. (8.35)

The quantity χ is described as the magnetic susceptibility of the molecular material; if
χ is negative the material is described as diamagnetic, and if χ is positive, the material
is paramagnetic. Paramagnetism is a characteristic of atoms or molecules with open
shell electronic structures, and we encounter many examples of such systems elsewhere
in this book. In this section, however, our attention is confined to closed shell systems.
Even so, we will see that an overall diamagnetic susceptibility consists of diamagnetic
and paramagnetic parts, although in this case the paramagnetic part is not directly
associated with an open shell electronic structure. We should be careful to distinguish
between the bulk magnetic susceptibility and that for a single molecule. In this book we
will invariably be dealing with single molecules. We will use the symbol χ to represent
the single molecule susceptibility, and its components, rather than the symbol ξ which
appears in Ramsey’s papers and book [12]. The symbol χ has been used by most later
authors.

We commence our discussion by considering the diamagnetic susceptibility of an
atom, following the classical theory presented by Pople, Schneider and Bernstein [13]
and by Lamb [14].

(b) Semi-classical theory of diamagnetism for a spherically symmetric atom

An electron in an atom will circulate about the direction of an applied magnetic field
of strength B, and thereby give rise to a magnetic moment. Referring to figure 8.9, we
consider an electron at a distance r from the origin (which we could take as the position

θ

Figure 8.9. Electron rotation about an applied magnetic field of strength B.
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of the nucleus), the vector r making an angle θ with the direction of the applied flux
density B, as shown. The axis of the electron rotation is parallel to B, and the result of
this rotation is to create a current of magnitude −e2 B/4πm. The electron traces out a
circular area (the dotted area in figure 8.9) of π r2 sin2 θ , and gives rise to a magnetic
dipole moment of magnitude equal to the product of the current and the area, that is,

−e2 Br2 sin2 θ

4m
. (8.36)

The direction of the induced magnetic moment opposes the direction of the applied
field, giving rise to diamagnetism. Evidently also, the effective magnetic field at the
nucleus will be reduced; the nucleus is ‘screened’. In practice we must now calculate
the probability distribution of all electrons (i), giving a total moment,

−e2 B

6m

∑
i

r2
i = χdiam B. (8.37)

This simple treatment applies to an atom in a spherically symmetric state, but does
not usually apply to molecules, where the induced magnetic moment will, in general,
depend upon the direction of the applied field with respect to the molecular orientation.
In other words, the magnetic susceptibility for a molecule is usually a tensor quantity
which is anisotropic. The simple treatment does apply to a diatomic molecule (or other
linear molecule in a � state) when the external magnetic field is applied along the
internuclear axis, which we define as the molecular z axis. The electron cloud is then
free to rotate about the axis and the magnetic susceptibility component along the axis
is given by

χdiam = − e2

4m

∑
i

(
x2

i + y2
i

)
. (8.38)

If the secondary induced magnetic field at a nucleus is denoted B′, its relationship
with the applied field B is given by the expression

B′ = −σB (8.39)

where σ is a second-rank tensor, called the screening tensor. We now describe ex-
pressions for the components of this tensor, developing the theory first presented by
Ramsey [15].

(c) Diamagnetism in a closed shell diatomic molecule

(i) - 

The fundamental expressions which describe the interaction of an external magnetic
field with the electrons and nuclei within a molecule were developed from the Dirac and
Breit equations in chapters 3 and 4. In this section we develop the theory again, making
use of the approach described by Flygare [107]. We start with the classical description
of the interaction of a free particle of mass m and charge q with an electromagnetic



394 Molecular beam magnetic and electric resonance

field, the Hamiltonian for which is

H = 1

2m
[(px − q Ax )2 + (py − q Ay)2 + (pz − q Az)

2] + qφ; (8.40)

px , py and pz are the components of the linear momentum of the particle, in a cartesian
coordinate system which we need not define further at this stage. The electromagnetic
field is described by the vector potential A and scalar potential φ. Using the operator
form for the linear momentum gives us the semi-classical expression,

H = 1

2m

[(
−i h

∂

∂x
− q Ax

)2

+
(

−i h
∂

∂y
− q Ay

)2

+
(

−i h
∂

∂z
− q Az

)2]
+ qφ (8.41)

= 1

2m

[
−h 2

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
+ q2

(
A2

x + A2
y + A2

z

)]

+ i h q

2m

(
∂

∂x
Ax + Ax

∂

∂x
+ ∂

∂y
Ay + Ay

∂

∂y
+ ∂

∂z
Az + Az

∂

∂z

)
+ qφ

= 1

2m
(−h 2∇2 + i h q∇ · A + i h q A · ∇ + q2 A2) + qφ. (8.42)

Choosing the Coulomb gauge and setting φ to zero, (8.42) reduces to

H = 1

2m
(−h 2∇2 + 2i h q A · ∇ + q2 A2). (8.43)

If we now take the particle to be an electron with charge −e and potential energy V ,
the semi-classical Hamiltonian becomes

H = − h 2

2m
∇2 + V − i h e

m
A · ∇ + e2

2m
A2. (8.44)

We now consider, following Flygare, the model system of a particle in a ring,
with a magnetic field defining the z axis perpendicular to the plane of the ring (see
figure 8.10). This model system has obvious similarities to real molecular systems

φ

Figure 8.10. Coordinate system for the particle in a ring.
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possessing axial symmetry. The magnetic vector potential is given, in the general case,
by the expression

A = −1

2
r ∧ B (8.45)

so that the vector components in our case are

Ax = − y

2
Bz, Ay = x

2
Bz, Az = 0. (8.46)

Since we know that

A · ∇ = Ax
∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z
= − y

2
Bz

∂

∂x
+ x

2
Bz

∂

∂y
, (8.47)

we see that the third term in equation (8.44) becomes

− i h e

m
A · ∇ = − i h eBz

2m

(
x

∂

∂y
− y

∂

∂x

)
. (8.48)

The last term in equation (8.44) contains A2 which, using (8.46), is readily expanded:

A2 = A2
x + A2

y + A2
z = 1

4
B2

z (x2 + y2). (8.49)

Consequently equation (8.44) becomes

H = − h 2

2m
∇2 + V − i h eBz

2m

(
x

∂

∂y
− y

∂

∂x

)
+ e2 B2

z

8m
(x2 + y2). (8.50)

The last step is to substitute the electron Bohr magneton for eh /2m, and to make the
replacement

Lz = −i

(
x

∂

∂y
− y

∂

∂x

)
. (8.51)

We then obtain the Hamiltonian for an electron in a magnetic field applied in the z
direction, which is:

H = − h 2

2m
∇2 + V + µB Bz Lz + e2 B2

z

8m
(x2 + y2). (8.52)

The more general form of the magnetic field part of this Hamiltonian, when the direction
of the magnetic field is not specified is

H = µB B · L + e2

8m
B · (r21 − rr ) · B, (8.53)

where 1 is the unit matrix.
The one-electron Hamiltonian (8.53) may be generalised for a many-electron sys-

tem, to become

H = µB B · L + e2

8m
B ·

∑
i

(
r2

i 1 − r ir i

) · B, (8.54)
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where the sum i is over all the electrons in the molecule, and L is the total electronic
orbital angular momentum, given by

hL =
∑

i

r i ∧ pi . (8.55)

We wish to add the effects of molecular rotation before proceeding further, in order to
establish important results concerning the dependence of the magnetic susceptibility
on the rotational state, and its relationship to the rotational magnetic moment of a
molecule.

(ii)  

Much of the following exposition was already presented in chapter 2, but it is funda-
mental and can bear repetition. The coordinate system employed to describe the motion
of the particles in a molecule, both electrons and nuclei, is illustrated in figure 8.11. O is
an arbitrary laboratory-fixed origin and c.m. is the centre-of-mass of the many-particle
system; RO is the vector from O to the centre-of-mass. The position of each particle
i (electron or nucleus) is defined by the vectors Ri and r i from the origin O and the
centre-of-mass respectively.

2

2

4

3

1

1

Figure 8.11. Cartesian coordinate system for describing the position vectors of the particles
(electrons and nuclei) in a molecule. O(X, Y, Z ) is the laboratory-fixed frame of arbitrary origin,
and c.m. is the centre-of-mass in the molecule-fixed frame. For the purposes of illustration four
particles are indicated, but for most molecular systems there will be many more than four.
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First we need to define several quantities which enter into our discussion of the
classical mechanics of the system. The symbols mk,V k, Pk, Ṗk denote the mass, ve-
locity, linear momentum and time rate of change of the linear momentum of the kth
particle in the laboratory-fixed frame. We remember that the momentum is defined by

Pk = mk V k . (8.56)

We remember also a number of other basic results. The angular momentum in the
laboratory frame for particle k is given by

hJk = Rk ∧ Pk, (8.57)

the total mass M of the system of n particles is

M =
n∑

k=1

mk, (8.58)

the vector RO from the laboratory origin O to the centre-of-mass origin (c.m.) is given
by

RO = 1

M

∑
k

mkRk, (8.59)

and, finally, the linear momentum of the centre-of-mass is given by

PO = M
d

dt
RO =

∑
k

mk
dRk

dt
=

∑
k

mk V k . (8.60)

We now proceed to develop equation (8.57) for the total angular momentum in the
laboratory frame:

hJO =
∑

k

Rk ∧ Pk =
∑

k

mk Rk ∧ V k . (8.61)

From figure 8.11 we see that

Rk = RO + r k, (8.62)

from which it follows that

d

dt
(Rk) = V k = VO + vk, (8.63)

where VO is the velocity of the centre-of-mass, ṘO, and vk is the velocity of particle
k measured relative to the centre-of-mass coordinate system.

We can now substitute (8.62) and (8.63) into (8.61) to obtain a new expression for
the total angular momentum in the laboratory frame:

hJO =
∑

k

mk Rk ∧ V k =
∑

k

mk(RO + r k) ∧ (VO + vk)

= RO ∧ VO

∑
k

mk + RO ∧
∑

k

mkvk − VO ∧
∑

k

mk r k +
∑

k

mkr k ∧ vk .

(8.64)
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The second and third terms vanish (because they both contain
∑

k mk r k), so that (8.64)
becomes

hJO = MRO ∧ VO +
∑

k

mkr k ∧ vk = MRO ∧ VO +
∑

k

h Jk = MRO ∧ VO +hJ.

(8.65)

This is an important result. It tells us that the total angular momentum determined in
the laboratory frame is the sum of a centre-of-mass contribution and the total angular
momentum hJ measured in the centre-of-mass frame. In a rigid rotor the velocity
vector of the kth particle in the centre-of-mass frame is related to the angular velocity,
ω, of the rotating particle by

vk = ω ∧ r k, (8.66)

where ω has its origin at the centre-of-mass and the same value for all particles. If we
now substitute (8.66) for J in (8.65) we obtain the result

hJ =
∑

k

mk(r k ∧ vk) =
∑

k

mk[r k ∧ (ω ∧ r k)]. (8.67)

Using the standard result for a triple vector product, equation (8.67) becomes

hJ =
∑

k

mk [ω(r k · r k) − r k(r k ·ω)] =
∑

k

mk

(
r2

k 1 − r kr k

) ·ω = I ·ω. (8.68)

This result requires some additional explanation. The expression (r21 − rr ) will occur
frequently in the following analysis, summed for both electrons and nuclei. The symbol
1 is the unit dyadic and is represented by a unit matrix. The product rr , which is not to
be confused with either a scalar product or a vector product, is also a dyadic. Explicitly
the above expression is evaluated in the following manner:

r21 − rr = (x2 + y2 + z2)


1 0 0

0 1 0
0 0 1


 −


 x

y
z


(x y z)

=




x2 + y2 + z2 0 0

0 x2 + y2 + z2 0

0 0 x2 + y2 + z2


 −


 xx xy xz

yx yy yz
zx zy zz




=

 y2 + z2 −xy −xz

−xy x2 + z2 −yz
−xz −yz x2 + y2


. (8.69)

As is indicated by the result, the matrix representation is usually symmetric, and if the
x, y, z axes are the symmetry axes of the molecule, the off-diagonal elements are also
zero. In all of the examples given in the following pages, the result is

r21 − rr =




y2 + z2 0 0

0 x2 + z2 0

0 0 x2 + y2


, (8.70)
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when x, y, z are the molecular symmetry axes. For symmetric top or linear molecules
the result is even simpler, as we shall see.

The total kinetic energy, T , of the system is given by

T = 1

2

∑
k

mk V k · V k, (8.71)

and by using (8.63), this may be expanded as follows:

T = 1

2

∑
k

mk V k · V k = 1

2

∑
k

mk (VO + vk) · (VO + vk)

= 1

2
V2

O

∑
k

mk + 1

2

∑
k

mk v
2
k + VO ·

∑
k

mk vk . (8.72)

The last term in (8.72) is zero because

∑
k

mkvk = d

dt

∑
k

mk r k = 0. (8.73)

Consequently the total kinetic energy is the sum of the kinetic energy of the total mass
at the centre-of-mass, and the internal kinetic energy in the centre-of-mass frame, i.e.

T = 1

2
MV2

O + 1

2

∑
k

mkv
2
k . (8.74)

For the rigid system of particles we may use (8.66) and (8.65) to reformulate the
expression for the centre-of-mass kinetic energy as

Tcm = 1

2

∑
k

mkvk ·vk = 1

2

∑
k

mkvk · (ω ∧ r k) = 1

2
ω ·

∑
k

mk (r k ∧ vk)= h

2
ω · J.

(8.75)

This may be rewritten in the form

Tcm = h

2
ω · J = 1

2
ω · I ·ω = 1

2
(ωx , ωy, ωz)




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz





ωx

ωy

ωz


. (8.76)

I is the moment of inertia tensor; if the x, y, z axes are chosen to be the principal
inertial axes of the molecule (a, b, c), I is then diagonal with principal components
Iaa, Ibb, Icc . For a linear molecule (including diatomics), Iaa = 0 and Ibb = Icc. In the
inertial axis system equation (8.76) becomes simply

Tcm = 1

2

(
ω2

a Iaa + ω2
b Ibb + ω2

c Icc

) = 1

2
ω2 Ibb (diatomic). (8.77)

As a result of the preceding analyses, we can express the velocity of the kth particle
in a molecule with respect to a laboratory-fixed framework in the following terms:

V k = ṘO + ω ∧ r k + vk . (8.78)
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The kinetic energy of the system of particles, still with respect to the laboratory-
fixed system, is

T = 1

2

∑
k

mk V k · V k

= M

2
Ṙ2

O + 1

2

∑
k

mk(ω ∧ r k) · (ω ∧ r k) + 1

2

∑
k

mkv
2
k

+ ṘO ·
(
ω ∧

(∑
k

mk r k

))
+ ṘO ·

(∑
k

mk vk

)
+ ω ·

(∑
k

mkr k ∧ vk

)

= M

2
Ṙ2

O + 1

2

∑
k

mk(ω ∧ r k) · (ω ∧ r k) + 1

2

∑
k

mkv
2
k +ω ·

(∑
k

mkr k ∧ vk

)
.

(8.79)

The simplification from the second to the third lines is a consequence of the result
given in (8.73). It is now time to separate the third and fourth terms in (8.79) into sums
relating to electrons (i) and nuclei (α) respectively,

1

2

∑
k

mkv
2
k = 1

2

∑
i

miv
2
i + 1

2

∑
α

mαv
2
α , (8.80)

ω ·
(∑

k

mkr k ∧ vk

)
= ω · m

(∑
i

r i ∧ vi

)
+ ω ·

(∑
α

mαrα ∧ vα

)
. (8.81)

Here, m and mα are the electron and nuclear masses. We now define the displace-
ment vector of the α th nucleus, sα , relative to its equilibrium position in the rotating
coordinate system, aα , by sα = rα − aα . Then for small displacements,

ω ·
(∑

α

mα rα ∧ vα

)
� ω ·

(∑
α

mα sα ∧ vα

)
. (8.82)

We can now bring together the results presented in equations (8.82), (8.81), (8.80),
(8.79), and drop the translational term, to obtain an expression for the kinetic energy
of the whole system, divided into separate contributions. The result is

T = Trot + Tel + Tnucl + Trot−el + Trot−nucl (8.83)
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where

Trot = 1

2

∑
k

mk(ω ∧ r k) · (ω ∧ r k) :classical rotational kinetic energy (8.84)

Tel = m

2

∑
i

v2
i :electronic kinetic energy (8.85)

Tnucl = 1

2

∑
α

mαv
2
α :nuclear kinetic energy (8.86)

Trot−el = ω · m

(∑
i

r i ∧ vi

)
:rotational electronic coupling (8.87)

Trot−nucl = ω ·
(∑

α

mαsα ∧ vα

)
:rotational vibrational coupling. (8.88)

The final term, (8.88), is zero for a rigid molecule.
The potential energy of an isolated molecule can be represented as the sum of three

terms,

V = Vel−el + Vnucl−nucl + Vel−nucl, (8.89)

where

Vel−el =
∑
i> j

e2

4πε0ri j
:electron–electron potential energy (8.90)

Vnucl−nucl =
∑
α>β

ZαZβe2

4πε0 Rαβ
:nuclear–nuclear potential energy (8.91)

Vel−nucl = −
∑
i,α

Zαe2

4πε0riα
:electron–nuclear potential energy. (8.92)

Before considering the effects of an external magnetic field, it is desirable to
reformulate the expression for the total kinetic energy (8.83) in terms of the total angular
momentum J and the total electronic orbital angular momentum L. Equation (8.83)
can be rewritten for a rigid molecule (vα = 0) in the form

T = m

2

∑
i

vi ·vi + 1

2
ω · Inucl ·ω + 1

2
ω · Iel ·ω + mω ·

∑
i

r i ∧ vi (8.93)

where the rotational term (8.84) has been separated into pure nuclear and electronic
terms defined by

Inucl =
∑
α

Mα

(
r2
α 1 − rαrα

)
, (8.94)

Iel = m
∑

i

(
r2

i 1 − r ir i

)
. (8.95)

We can now introduce the total angular momentum J by noting that it is obtained by
taking the first derivative of the kinetic energy with respect to the angular velocity,
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i.e.

h J = ∂T

∂ω
= ω · Inucl + ω · Iel + m

∑
i

r i ∧ vi . (8.96)

The linear momentum of the i th electron is also obtained by taking the first derivative
of T with respect to the velocity,

pi = ∂T

∂vi
= mvi + mω ∧ r i , (8.97)

from which we also obtain

vi = pi

m
− (ω ∧ r i ). (8.98)

Substituting (8.96), (8.97) and (8.98) into (8.93) gives

T = h

2
ω · J + 1

2

∑
i

pi ·vi

= h

2
ω · J + 1

2m

∑
i

p2
i − 1

2

∑
i

pi · (ω ∧ r i )

= h

2
ω · J + 1

2m

∑
i

p2
i − 1

2
ω ·

∑
i

r i ∧ pi

= h

2
ω · J + 1

2m

∑
i

p2
i − 1

2
ω · h L

= h

2
ω · (J − L) + 1

2m

∑
i

p2
i . (8.99)

If we now substitute (8.97) into (8.99) and compare the resulting expression for T with
that given in (8.93) we obtain the important results

h (J − L) = ω · Inucl, ω = h (J − L) · I−1
nucl. (8.100)

I−1
nucl is the inverse principal inertial tensor.

Finally we substitute for ω in equation (8.99) and obtain the result

T = h 2

2
(J − L) · I−1

nucl · (J − L)

= h 2

2
J · I−1

nucl · J − h 2 J · I−1
nucl · L + h 2

2
L · I−1

nucl · L. (8.101)

This is an important result. The first term leads to the rotational eigenvalues, whilst
the second term describes the rotational–electronic coupling and, as we shall see,
contributes to the rotational magnetic moment and the spin–rotation interaction. The
third term is small and can be neglected for 1� states where Λ = 0. We have omitted
the electron kinetic energy term from (8.101) because it is part of the zeroth-order
Hamiltonian which determines the electronic eigenvalues and eigenfunctions.
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We will now proceed to combine our knowledge of the rigid body rotation with
the Zeeman interactions discussed in part (i).

(iii)      

The effects of an applied magnetic field on the electrons in a non-vibrating molecule
were described in equation (8.54), which we repeat here:

H = µB B · L + e2

8m
B ·

∑
i

(
r2

i 1 − r ir i

) · B. (8.102)

This expression was derived rigorously for a diatomic molecule in section 3.7. The two
analogous contributions for the field interaction with the nuclei are

− e

2
B ·

∑
α

Zαrα ∧ vα = − e

2
B ·

∑
α

Zαrα ∧ ωα ∧ rα

= −B ·
[

e

2

∑
α

Zα
(
r2
α 1 − rαrα

) ] ·ω, (8.103)

and

e2

8
B ·

∑
α

Z2
α

Mα

(
r2
α 1 − rαrα

) · B, (8.104)

respectively. They were derived rigorously in section 3.12. If these nuclear terms are
added to the electronic Zeeman terms (8.102) and the rotational kinetic energy term
(8.101) we obtain the total perturbation Hamiltonian, as follows:

H
′ = h 2

2
J · I−1

nucl · J + e2

8m
B ·

[∑
i

(
r2

i 1 − r ir i

) + m
∑
α

Z2
α

Mα

(
r2
α 1 − rαrα

)] · B

− eh

2

∑
α

ZαB · (r2
α 1 − rαrα

) · I−1
nucl · J + h 2

2
L · I−1

nucl · L − h L · ω̄, (8.105)

where

ω̄ = h I−1
nucl · J − e

2m
B − e

2
I−1

nucl ·
∑
α

Zα
(
r2
α 1 − rαrα

) · B. (8.106)

The magnetic field induced frequency ν= ω̄/2π is called the Larmor frequency; it is
one-half the cyclotron frequency for an electron.

The next stage in the analysis is to examine the effects of (8.105) on the zeroth-order
electronic eigenvalues and eigenfunctions.

(iv)        

The zeroth-order electronic states are eigenfunctions of the Hamiltonian

Hel = Tel + Vel−el + Vel−nucl (8.107)



404 Molecular beam magnetic and electric resonance

which we derived previously in (8.85), (8.90) and (8.92); for a fixed nuclear con-
figuration we obtained the result

Hel = m

2

∑
i

v2
i +

∑
i> j

e2

4πε0ri j
−

∑
i,α

Zαe2

4πε0riα
. (8.108)

The electronic eigenfunctions of this Hamiltonian are ψ0, . . . , ψk where ψ0 is the
ground state, which we presume does not possess any electronic angular momentum,
and ψk are the excited states, which may possess electronic angular momentum.

We calculate the effects of the Hamiltonian (8.105) on these zeroth-order states
using perturbation theory. This is exactly the same procedure as that which we used
to construct the effective Hamiltonian in chapter 7. Our objective here is to formu-
late the terms in the effective Hamiltonian which describe the nuclear spin–rotation
interaction and the susceptibility and chemical shift terms in the Zeeman Hamiltonian.
We deal with them in much more detail at this point so that we can interpret the
measurements on closed shell molecules by molecular beam magnetic resonance.
The first-order corrections of the perturbation Hamiltonian are readily calculated
to be

E (1) = h 2

2
J · I−1

nucl · J + 1

2
B ·

[
〈 0 | e2

4m

∑
i

(
r2

i 1 − r ir i

) | 0 〉 +

e2

4

∑
α

Z2
α

Mα

(
r2
α 1 − rαrα

)] · B − h B ·
[

e

2

∑
α

Zα
(
r2
α 1 − rαrα

) · I−1
nucl · J

]
. (8.109)

The second-order terms are more complicated. They all involve the matrix elements
of L · ω̄, which itself consists of three terms, as we see from (8.106). If we label these
three terms t1, t2 and t3, the second order corrections have the form

E (2) = h 2
∑
n>0

〈0|L · ω̄ |n〉〈n|L · ω̄ |0〉
E0 − En

=
∑
n>0

〈0| t1 + t2 + t3|n〉〈n| t1 + t2 + t3|0〉
E0 − En

. (8.110)

The nine terms arising from (8.110), are reduced by commutation properties to six,
given below; each contains the product of matrix elements of L which we denote by
the symbol A:

A = h 2
∑
n>0

〈0|L|n〉〈n|L|0〉
E0 − En

. (8.111)
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t1t1 = h 2 J · I−1
nucl · A · I−1

nucl · J,

t2t2 = e2

4m2
B · A · B,

t3t3 = e2

4
B · I−1

nucl ·
∑
α

Zα
(
r2
α 1 − rαrα

) · A ·
∑
α

Zα
(
r2
α 1 − rαrα

) · I−1
nucl · B,

t1t2 + t2t1 = −eh

m
J · A · I−1

nucl · B, (8.112)

t1t3 + t3t1 = −eh J · I−1
nucl · A · I−1

nucl · B ·
∑
α

Zα
(

r2
α 1 − rαrα

)
,

t2t3 + t3t2 = e2

2m
B · I−1

nucl · A ·
∑
α

Zα
(
r2
α 1 − rαrα

) · B.

The first terms of (8.109) and (8.112) together constitute the rigid rotor
Hamiltonian, as follows:

Hrigid−rot = h 2

2
J · I−1

nucl · J + h 2 J · I−1
nucl · A · I−1

nucl · J

= h 2

2
J · [I−1

nucl ·
(
1 + 2A · I−1

nucl

)] · J

= h 2

2
J · I−1

eff · J. (8.113)

I−1
eff is the effective inverse moment of inertia tensor that would be measured experimen-

tally. The remaining first- and second-order terms coming from (8.109) and (8.112),
combined with (8.113) give the rotational plus Zeeman Hamiltonian correct to the
second order; it may be written

H
′ = h 2

2
J · I−1

eff · J − B ·
[

eh

2

∑
α

Zα
(
r2
α 1−rαrα

) · I−1
eff

]
· J − B ·

(
eh

m
A · I−1

nucl

)
· J

− 1

2
B ·χd · B − 1

2
B ·χp · B + 1

2
B ·γ · B. (8.114)

This is the important result towards which we have been working throughout this
section, particularly the terms involving χd and χp. These terms expanded are:

χd = − e2

4m
〈0|

∑
i

(
r2

i 1 − r ir i

)|0〉 (8.115)

χp = − e2

2m2
A = −e2h 2

2m2

∑
n>0

〈0|L|n〉〈n|L|0〉
E0 − En

, (8.116)

where χd is the diamagnetic susceptibility. As equation (8.115) shows, it involves the
electron distribution in the ground electronic state only. Similarly, χp is the paramag-
netic susceptibility. Equation (8.116) shows that it arises from mixing of excited states
with the ground state through the electronic orbital angular momentum; it is often re-
ferred to as the ‘high-frequency paramagnetism’ or ‘high-temperature paramagnetism’.
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The total magnetic susceptibility χ is the sum of the diamagnetic and paramagnetic
parts, i.e.

χ = χd + χp. (8.117)

We shall return to the magnetic susceptibility later, to examine the simplifications
which occur for a diatomic molecule, and to consider the form of this interaction
used by Ramsey [52] in effective Hamiltonians for the analysis of magnetic resonance
spectra.

Returning to equation (8.114) we find that the tensor γ is given by

γ = e2

2
I−1

nucl ·
∑
α

Zα
(
r2
α1 − rαrα

) · A ·
∑
α

Zα
(
r2
α1 − rαrα

) · I−1
nucl

+ e2

m
I−1

nucl · A ·
∑
α

Zα
(
r2
α 1 − rαrα

) + e2

4

∑
α

Z2
α

Mα

(
r2
α1 − rαrα

)
. (8.118)

Each of the terms in this expression is smaller than the magnetic susceptibility terms
by the electron to proton mass ratio, and may therefore be neglected. With this simpli-
fication equation (8.114) can be written in the more compact form

H = h 2

2
J · I−1

eff · J − µN B · gr · J − 1

2
B ·χ · B. (8.119)

Here, µN is the nuclear magneton, equal to eh /2Mp, where Mp is the proton mass.
The first and third terms have already been discussed. The second term contains the
molecular rotational magnetic moment gr tensor, and equation (8.114) shows that it
consists of the sum of a nuclear and electronic contribution, i.e.

gr = gnucl + gel. (8.120)

From equation (8.114) we see that the nuclear contribution is given by

gnucl = Mp

∑
α

Zα
(
r2
α 1 − rαrα

) · I−1
eff , (8.121)

whilst the electronic contribution is

gel = 2Mp h 2

m
I−1

eff ·
∑
n>0

〈0|L|n〉〈n|L|0〉
E0 − En

. (8.122)

The nuclear contribution to the gr tensor is positive, but the electronic contribution is
negative because E0< En when the molecule is in its ground electronic state.

Up to this stage our discussion applies to any polyatomic molecule. We now look
at the simplifications which occur for a diatomic system. Dealing first with the diamag-
netic part of the susceptibility, given in (8.115), we note from (8.70) that if z lies along
the internuclear axis, the x and y components of the susceptibility are equivalent, but
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different from the parallel component. To be specific,

χd
xx = χd

yy = − e2

4m
〈0|

∑
i

(
x2

i + z2
i

)|0〉 ≡ χσ ≡χperp, (8.123)

χd
zz = − e2

4m
〈0|

∑
i

(
x2

i + y2
i

)|0〉 ≡ χπ ≡χpar. (8.124)

The subscripts σ and π are used by Ramsey [52] and others, but we use the more
explicit subscripts parallel and perpendicular.

The paramagnetic part of the susceptibility tensor, given in equation (8.116), has
a zero component in the z direction because it depends upon the mixing brought about
by the x and y components of the orbital angular momentum L. Hence

χ p
xx = χ p

yy = −e2h 2

2m2

∑
n>0

〈 0| Lx |n〉〈n| Lx |0〉
E0 − En

= 3

2
χHF, (8.125)

χ p
zz = 0 = χ p

par. (8.126)

The net result for the total magnetic susceptibility is

χperp = χd
perp + 3

2
χHF, (8.127)

χpar = χd
par. (8.128)

Somewhat similar conclusions apply to the rotational magnetic moment g tensor
for a diatomic molecule. The component of the moment of inertia tensor along the
internuclear axis is zero, and the two perpendicular components are, of course, equal.
Consequently the rotational magnetic moment Zeeman interaction can be represented
by the simple term

H = −gJµN B · J. (8.129)

The rotational magnetic moment of a diatomic molecule is defined by

µJ = gJµN J, (8.130)

and Wick [16] and Ramsey [17] showed that there is a relationship between the
high-frequency paramagnetism and the rotational magnetic moment, expressed as
follows:

χHF = e2 R2

12m

{
2Z1 Z2

(Z1 + Z2)
+ 2(Z1 + Z2)

(D2 − d2)

R2
− 2µJµ

′

Mp JµN

}
. (8.131)

The various quantities in this expression are:

Z1, Z2: nuclear charges,
R: internuclear distance,
D: distance between the centre-of-mass and the centroid of the nuclear charge

distribution,
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d: distance between the centre-of-mass and the centroid of the electronic charge
distribution,

µ′: reduced mass of the molecule,
Mp: proton mass.

For a homonuclear molecule, D = d, so that the second term in (8.131) vanishes. Cor-
rections to (8.131) for molecular vibration and centrifugal stretching have been given
by Ramsey [18]. The above result means that if the rotational magnetic moment µJ is
measured, the high-frequency part of the diamagnetic susceptibility can be determined.

(v)       

 

Before leaving this aspect of the subject we must see how the term used by Ramsey
[52] to describe the magnetic susceptibility in the effective Hamiltonian (8.15) arises.
In what follows, the direction of the magnetic field defines the p = 0 space-fixed di-
rection, but the components of the magnetic susceptibility tensor are defined in the
molecule-fixed axis system (q). Note that B and µ0 H are equivalent in a vacuum.

We can write the diamagnetic Zeeman term as the scalar product of two second-
rank tensors:

Hdiam = −1

2
T2(χ) · T2(B, B) (8.132)

where the space-fixed components of the new second-rank tensor T2(B, B) are defined
by

T2
p(B, B) = (−1)p

√
5

∑
p1,p2

(
1 1 2
p1 p2 −p

)
T1

p1
(B)T1

p2
(B). (8.133)

Since the direction of the magnetic field defines the p = p1 = p2 = 0 direction, (8.133)
reduces to

T2
0(B, B) = (2/3)1/2 B2

Z . (8.134)

Consequently (8.132) may be rewritten in the space-fixed axis system

Hdiam = −1

2
T2

0(χ)T2
0(B, B) = − 1√

6
B2

Z T2
0(χ). (8.135)

The components of the magnetic susceptibility tensor are defined in the molecule-fixed
axes system so that we use the transformation

T2
p=0(χ) =

∑
q

D
(2)
0q (ω)∗T2

q (χ). (8.136)
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The matrix elements of (8.132) are now readily calculated:

〈 η,Λ; J,MJ |Hdiam|η,Λ′; J ′,MJ 〉
= − 1√

6
B2

Z (−1)J−MJ

(
J 2 J ′

−MJ 0 MJ

)∑
q

(−1)J−Λ
(

J 2 J ′

−Λ q Λ′

)

× {(2J ′ + 1)(2J + 1)}1/2
〈
T2

q (χ)
〉
. (8.137)

Since we are concerned only with the 1� ground state we take the q = 0 component of
(8.137) and obtain the result

〈η,Λ; J,MJ |Hdiam|η,Λ; J,MJ 〉 = − 1√
6

B2
Z

{
3M2

J − J (J + 1)
}

(2J + 3)(2J − 1)

〈
T2

0(χ)
〉
η
. (8.138)

Now the spherical component T2
0(χ) is related to the cartesian components by

T2
0(χ) = 1√

6
{2χzz − χxx − χyy} =

√
2

3
(χpar − χperp). (8.139)

Substituting in (8.138)

〈η,Λ; J,MJ |Hdiam|η,Λ; J,MJ 〉 = −B2
Z

{
3M2

J − J (J + 1)
}

3(2J − 1)(2J + 3)
(χpar − χperp). (8.140)

This is the result used by Ramsey [52] for the Zeeman interaction involving the dia-
magnetic part of the susceptibility.

(vi)   

From equations (8.123), (8.124) (8.127) and (8.128), together with the knowledge
that, because of symmetry, 〈x2

i 〉 and 〈y2
i 〉 are equivalent, we can derive the following

important result:

χperp − χpar = − e2

8m

∑
i

(
3z2

i − r2
i

) + 3

2
χHF. (8.141)

Now the quadrupole moment of the electron distribution in a molecule, Qel, is defined
by

Qel = −e

〈∑
i

(
3z2

i − r2
i

)〉 = 8m

e

{
χperp − χpar − 3

2
χHF

}
. (8.142)

Since χHF can be determined from the rotational magnetic moment, and the anisotropy
of the susceptibility from the Zeeman effect, we are able to determine the molecular
electronic quadrupole moment, as was first shown by Ramsey [19]. The total electric
quadrupole moment of a molecule is the sum of the electronic contribution Qel and a
nuclear contribution Qnucl; the latter contribution is given by

Qnucl = e
∑
α

Zαr2
α, (8.143)
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where, for a diatomic molecule, the summation is over the two nuclei. The application
of these results to H2 and its deuterium isotopes will be described later.

(d) Nuclear spin effects: magnetic shielding and nuclear
spin–rotation interaction

The rotational and Zeeman perturbation Hamiltonian (H
′) to the electronic eigenstates

was given in equation (8.105). It did not, however, contain terms which describe the
interaction effects arising from nuclear spin. These are of primary importance in molec-
ular beam magnetic resonance studies, so we must now extend our treatment and, in
particular, demonstrate the origin of the terms in the effective Hamiltonian already
employed to analyse the spectra. Again the treatment will apply to any molecule, but
we shall subsequently restrict attention to diatomic systems.

The coordinates used to describe the position vectors of the electrons and nuclei
are shown in figure 8.12. The internal magnetic field intensity at the kth nucleus, Bk ,
arises from the sum of electronic, Bk

el, and nuclear, Bk
nucl, terms given by the following

expression:

B k = Bk
el + Bk

nucl = −e
∑

i

r ik ∧ vik

r3
ik

+ e
∑
α

Zα
Rαk ∧ vαk

R3
αk

. (8.144)

The vectors r ik and Rαk give the position of electron i or nucleus α relative to the kth
nucleus (figure 8.12), and the sums are over all electrons i in the molecule, and all
other nuclei α.

Figure 8.12. Coordinate system defining the vector positions of the electrons (i) and nuclei
(k or α), relative to the centre-of-mass.
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The nuclear term in (8.144) involves only nuclear coordinates in a rigid molecule,
so that we may substitute for vαk as follows:

Bk
nucl = e

∑
α

Zα
Rαk ∧ (ω ∧ Rαk)

R3
αk

= e
∑
α

Zα
R3
αk

(
R2
αk 1 − Rαk Rαk

) · ω

= eh
∑
α

Zα
R3
αk

(
R2
αk1 − Rαk Rαk

) · I−1
nucl · (J − L). (8.145)

We have here substituted for ω using the result given in equation (8.100).
The next stage is to add the effects of an applied magnetic field. The velocity of

an electron is modified according to the equation

vik = pik

m
+ e

m
Aik, (8.146)

where the vector potential arising from the uniform magnetic field is given by

Aik = 1

2
B ∧ r ik . (8.147)

The origin is thus chosen to be at the kth nucleus. Using equation (8.146) and defining
the orbital angular momentum of the i th electron with respect to the kth nucleus as
origin by

h l ik = r ik ∧ pik, (8.148)

we can rewrite the first term in (8.144) in the following manner:

B k
el = −e

∑
i

r ik ∧ vik

r3
ik

= −e
∑

i

r ik ∧ [pik/m]

r3
ik

− e 2

2m

∑
i

(rik ∧ B ∧ r ik)

= −e h

m

∑
i

l ik

r3
ik

− e2

2m

∑
i

(
r2

ik 1 − r ik r ik

) · B

r3
ik

. (8.149)

If we now combine (8.145), (8.149) with the applied magnetic field B, we obtain an
expression for the total field intensity at the nucleus k, which is

B k = B −eh

m

∑
i

l ik

r3
ik

− e2

2m

∑
i

(
r2

ik 1 − r ik r ik

) · B

r3
ik

+ eh
∑
α

Zα
R3
αk

(
R2
αk 1 − Rαk Rαk

) · I−1
nucl · (J − L). (8.150)

We are now able to write an expression describing the interaction between the
magnetic dipole moment of nucleus k and the total field at the nucleus. It is as follows:

Hnucl = −µk · B k = −γk Ik · B k = −µN gk Ik · B k

= −γk Ik · B + e h

m
γk Ik ·

∑
i

l ik

r3
ik

+ e2

2m
γk Ik ·

∑
i

(
r2

ik1 − r ik r ik

) · B

r3
ik

− eh γk Ik ·
∑
α

Zα
R3
αk

(
R2
αk 1 − Rαk Rαk

) · I−1
nucl · (J − L). (8.151)
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γk is the magnetogyric ratio of the kth nucleus, and is equal to gk µN . We may now add
(8.151) to (8.105) to obtain the complete perturbation Hamiltonian:

H = H
′ + Hnucl = h 2

2
J · I−1

nucl · J + e2

8m
B ·

[∑
i

(
r2

i 1 − r i r i

)

+ m
∑
α

Z2
α

Mα

(
r2
α 1 − rα rα

)] · B − eh

2

∑
α

ZαB · (r2
α 1 − rα rα

) · I−1
nucl · J

+ h 2

2
L · I−1

nucl · L − h Lk · ω̄ − γk Ik · B + eh

m
γk Ik ·

∑
i

l ik

r3
ik

+ e2

2m
γk Ik ·

∑
i

(
r2

ik 1 − r ik r ik

) · B

r3
ik

− eh γk Ik ·
∑
α

Zα
R3
αk

(
R2
αk 1 − Rαk Rαk

) · I−1
nucl · (J − L), (8.152)

where ω̄ is defined in equation (8.106) and hLk is the total electronic angular momentum
with the origin at the kth nucleus.

We now follow exactly the same procedure as was used previously to calculate
the first- and second-order perturbations to the zeroth-order electronic states, given in
(8.114). We calculate the additional terms which arise from interactions involving the
kth nuclear spin; the first-order corrections are

E (1) = −γk Ik · B + e2

2m
γk Ik · 〈0|

∑
i

(
r2

ik 1 − r ik r ik

)
r3

ik

|0〉 · B

− eh γk Ik ·
∑
α

Zα
R3
αk

(
R2
αk 1 − Rαk Rαk

)
I −1
nucl · J. (8.153)

The second-order corrections are

E (2) = e2h 2

2m2
γk Ik ·

{∑
n>0

〈0|∑i l ik

/
r3

ik |n〉〈n|Lk |0〉 + c.c.

E0 − En

}
· B

− 2eh γk Ik ·
∑
α

Zα
R3
αk

(
R2
αk 1 − Rαk Rαk

) · I−1
nuclA · I−1

nucl · J

− eh 3γk Ik

{∑
n>0

〈0|∑i l ik

/
r3

ik |n〉〈n|Lk |0〉 + c.c.

E0 − En

}
· I−1

nucl · J . . . , (8.154)

where c.c. means the complex conjugate of the preceding term. We now combine the
first- and second-order terms, change I−1

nucl to I−1
eff as described in equation (8.113), and

obtain the important result:

H = −γk Ik · (1 − σ) · B + Ik · cI · J. (8.155)

We have finally reached our goal. The first term in (8.155) describes the nuclear Zeeman
interaction, and was introduced in equation (8.4). σ is called the ‘shielding’,
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‘screening’, or ‘chemical shift’ tensor at the kth nucleus; we shall examine it in detail
shortly. cI is the nuclear spin–rotation tensor for the kth nucleus, first introduced in
equation (8.7).

The magnetic shielding tensor σ is the sum of a diamagnetic part σd and a para-
magnetic part σ p,

σ = σd + σ p. (8.156)

As we can readily see, the diamagnetic part comes from the above first-order correction
(8.153), so that σd for the kth nucleus is given by

σd = e2

2m
〈0|

∑
i

(
r2

ik 1 − r ik r ik

)
r3

ik

|0〉. (8.157)

It is, of course, very closely related to the diamagnetic part of the magnetic suceptibility
tensor, given previously in (8.115), and depends only upon the ground state electron
distribution. The paramagnetic part of the shielding tensor for the kth nucleus, σ p,
arises from the first term of the second-order correction, given in equation (8.154):

σ p = e2h 2

2m2

∑
n>0

〈0|∑i l ik

/
r3

ik |n〉〈n|Lk |0〉 + c.c.

E0 − En
. (8.158)

Again this is closely related to the paramagnetic part of the susceptibility, given in
equation (8.116), involving mixing of the ground electronic state with excited states,
through the orbital angular momentum operator. The diamagnetic term is positive,
thereby decreasing the effective field at the nucleus, whereas the paramagnetic term is
negative and increases the effective field. The observed screening is, of course, a net
balance of these two opposing effects.

We now turn to the nuclear spin–rotation tensor cI for the kth nucleus in equation
(8.155). This contains a purely nuclear contribution, arising from the third term of the
first-order expression (8.153), and a purely electronic contribution coming from the
third term of the second-order expression (8.154). To be specific:

cI = cnucl + cel, (8.159)

where

cnucl = −eγkh
∑
α

Zα
R3
αk

(
R2
αk 1 − Rαk Rαk

) · I −1
eff , (8.160)

cel = −2e

m
γk h 3

{∑
n>0

〈0|∑i l ik

/
r3

ik |n〉〈n|Lk |0〉
E0 − En

}
· I −1

eff . (8.161)

The nuclear term is negative, and the electronic term is positive.
If x, y and z are the principal axes of the molecule, the shielding and nuclear spin–

rotation tensors for the kth nucleus are diagonal. The xx components, for example, are
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readily obtained from the general expressions and are found to be

σxx = σ d
xx + σ p

xx = e2

2m
〈0|

∑
i

(
y2

ik + z2
ik

)
r3

ik

|0〉 + e2h 2

2m2

×
∑
n>0

[
〈0|∑i (l ik)x

/
r3

ik |n〉〈n|(Lk)x |0〉+〈0|(Lk)x |n〉〈n|∑i (l ik)x

/
r3

ik |0〉
E0 − En

]
,

(8.162)

(cI )xx = (cI )xx(nucl) + (cI )xx(el) = −hegkµN

Ixx

∑
α

Zα
R3
αk

(
R2
αk − x2

αk

)− h 3egkµN

m Ixx

×
∑
n>0

[
〈0|∑i (l ik)x

/
r3

ik |n〉〈n|(Lk)x |0〉+〈0|(Lk)x |n〉〈n|∑i (lik)x

/
r3

ik |0〉
E0 − En

]
,

(8.163)

The yy and zz components are obtained by cyclic permutations.
Earlier in this chapter when dealing with the nuclear Zeeman interaction we cal-

culated the behaviour of the nuclear spin levels of H2 ignoring the effects of nuclear
shielding. We now return to this question in more detail. We have shown that the
Zeeman interaction for a nucleus of spin I should be written in the form

H = −µN gN I · (1 − σ) · B = −µN gN I · B + µN gN I · σ · B, (8.164)

where σ is the second-rank shielding tensor. The matrix elements of the first term
are straightforward, but those of the shielding term are not. There are several ways
of handling the problem, but we use the same method as that described above for the
susceptibility tensor, choosing to define a new second-rank tensor, called the spin-field
tensor [20], so that we make the following replacement:

µN gN I · σ · B = µN gN T2(σ) · T2(I, B). (8.165)

We now have the scalar product of two second-rank spherical tensors. The space-fixed
components of the new tensor are defined by

T2
p(I, B) = (−1)p

√
5

∑
p1,p2

(
1 1 2
p1 p2 −p

)
T1

p1
(I)T1

p2
(B). (8.166)

The direction of the external magnetic field defines the p2 = 0 direction, and since we are
interested in the strong field behaviour, where MI is a good quantum number, we also
take p1 = 0. Consequently p = 0 and the matrix elements we seek (in the space-fixed
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axis system) are of the form

〈η,Λ; J,MJ ; I,MI |µN gN T2
0(σ) T2

0(I, B)|η,Λ′; J ′,M ′
J ; I,MI 〉

=
√

2

3
µN gN BZ MI 〈η,Λ; J,MJ |

∑
q

D
(2)
0q (ω)∗ T2

q (σ)|η,Λ′; J ′,M ′
J 〉

=
√

2

3
µN gN BZ MI (−1)J−MJ

(
J 2 J ′

−MJ 0 MJ

)∑
q

(−1)J−Λ
(

J 2 J ′

−Λ q Λ′

)

× {(2J + 1) (2J ′ + 1)}1/2
〈
T2

q (σ)
〉
. (8.167)

We are concerned with the 1� ground state only, so thatΛ′ =Λ= 0, q = 0, and the im-
portant matrix elements are those diagonal in J . Equation (8.167) therefore reduces to

〈η,Λ; J,MJ ; I,MI |µN gN T2
0(σ)T2

0(I, B)|η,Λ; J,MJ ; I,MI 〉

=
√

2

3
µN gN BZ MI

{
3M2

J − J (J + 1)
}

(2J + 3)(2J − 1)
T2

0(σ)

=
√

2

3
µN gN BZ MI

{
3M2

J − J (J + 1)
}

(2J + 3)(2J − 1)

1√
6
{2σzz − σxx − σyy}

= BZ MIµN gN
2
{
3M2

J − J (J + 1)
}

3(2J + 3)(2J − 1)
(σpar − σperp). (8.168)

This is the result first obtained by Ramsay [21]. We note finally that an important
quantity, measured in isotropic liquid phase n.m.r. studies, is the average shielding
factor σav. This is given by the trace of the shielding tensor σ, i.e.

σav = 1

3
(σxx + σyy + σzz) = 1

3
σpar + 2

3
σperp. (8.169)

The nuclear spin–rotation interaction becomes very simple for a diatomic molecule.
The principal components of the tensor cI for a polyatomic molecule were described in
equation (8.163); this expression reveals that for a diatomic system the axial component
(cI )zz is zero and, of course, the two perpendicular components are equal. The nuclear
spin–rotation interaction for a diatomic molecule is therefore described by a single
parameter cI . The appropriate term in the effective Hamiltonian, first presented in
equation (8.7), is

HJ I = cI T1(J) · T1(I). (8.170)

The major interaction between the nuclear spin magnetic moments in H2 and D2

is the dipolar interaction, equation (8.10). We should at least mention the existence
of an electron-coupled scalar interaction; this is very small compared with the dipolar
interaction, and plays a very minor role in the gas phase measurements. In liquids,
however, the dipolar interaction averages to zero, and the scalar coupling becomes
the important observable interaction between nuclear spins. The power and range of
applications of high-resolution n.m.r. in liquids depends ultimately upon the scalar
shielding and spin–spin interactions.
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Table 8.3. Measured values of selected molecular parameters for H2 and D2. All of
the symbols are defined in the text except for B ′, which is the rotational magnetic flux
density at the nucleus

Parameter Units H2 D2

cI kHz −113.904 −8.788

d kHz 57.671 25.237

σav — 2.62 × 10−5 2.63 × 10−5

σHF — −0.59 × 10−5 —

χperp −χpar J G−2 mol−1 −9.15 × 10−38 −8.75 × 10−38

χHF J G−2 mol−1 1.719 × 10−38 1.622 × 10−38

f/B2 Hz G−2 −27.6 × 10−6 −26.2 × 10−6

−〈Qel〉/e m2 0.333 × 10−20 0.318 × 10−20

〈r 2〉 m2 0.7258 × 10−20 —

〈x2〉 = 〈y2〉 m2 0.2144 × 10−20 —

〈z2〉 m2 0.2969 × 10−20 —

eq0 Q(D) kHz — 224.992

B ′ G 26.73 13.44

(e) Values of the molecular constants

From the numerous studies of the magnetic resonance spectra of H2 and D2, described
in the preceding pages, values of the molecular parameters have been obtained. We
summarise the results for the main parameters in table 8.3. Many ab initio calculations
of these parameters have been described.

8.2.3. Na2 in the X 1�+
g ground state: optical state selection and detection

The magnetic resonance experiments described thus far depend upon magnetic field
gradients (A and B fields) to produce quantum state selection before spectroscopic
transitions are induced, and to reselect afterwards. In an important and far-reaching
experiment, Rosner, Holt and Gaily [22] showed that in favourable cases the A and
B magnetic fields can be replaced by laser optical pumping. Their studies were car-
ried out on a supersonic beam of Na2 molecules produced from an oven operated
at 620 ◦C. The optical spectrum of Na2 arising from the B 1�u ← X 1�+

g transition
was well known and understood, and Rosner, Holt and Gaily noted that the B,
v′ = 6, J = 27 ← X, v′′ = 0, J ′′ = 28 rovibronic component is coincident with the
476.5 nm line from an Ar+ laser. They therefore crossed the molecular beam with
the laser beam in the region normally occupied by the A field, exciting the optical tran-
sition. The absorption probability is M-dependent so that the component sub-states
of the v′′ = 0, J ′′ = 28 rotational level are unequally populated after the molecule has
traversed the A crossing; so far as this particular rotational level is concerned, the
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molecules in the beam are spatially aligned. In the B region, the molecular beam is
again crossed by the same laser beam, which excites the same vibration–rotation level,
producing fluorescence from the upper rovibronic state which is detected. A radiofre-
quency field in the C region redistributes the molecules among the various sublevels
of the lower level; those sublevels with high absorption probabilities are repopulated
and hence the fluorescence at the B region increases. Amplitude modulation of the
radiofrequency power results in modulation of the fluorescence intensity, which could
be detected with high sensitivity.

This experiment is, in some ways, a double resonance experiment and should
perhaps be described in chapter 11. We include it here because optical detection with
molecular beams has become a general and powerful technique, which we shall meet
again in this chapter. Optical pumping and state selection is also a general approach. In
the particular case of the Na2 study it depended initially upon a fortuitous coincidence
but, as Rosner, Holt and Gaily realised in advance, the subsequent development and
ready availability of tunable lasers would transform this approach. Ten years later Van
Esbroeck, McLean, Gaily, Holt and Rosner [23] used a visible dye laser to provide
greater versatility, sensitivity and resolution. We will come to their experiments after
first describing the initial studies.

The radiofrequency resonances observed arise from transitions between the nu-
clear hyperfine components of the J ′′ = 28 rotational level. The 23Na nuclei have spin
I1 = I2 = 3/2, so that the total nuclear spin I can take the values 3, 2, 1 and 0. A
rotational level with J even combines with I = 2 and 0, so that for I = 2, the total
angular momentum F takes all integral values from 26 to 30; when I = 0 we have F =
J = 28.

The most important terms in the effective hyperfine Hamiltonian are those which
describe the nuclear quadrupole and nuclear spin–rotation interactions:

Heff = −e
∑

k=1,2

T2(∇Ek) · T2(Qk) + cI T1(J) · T1(I). (8.171)

Additional terms involving the scalar and tensor interactions between the two nuclear
spins were found to be too small to be significant in the first study, but we will meet
them later. We encountered the quadrupole term in (8.171) in our earlier discussion
of the D2 molecule, and obtained the following results for the matrix elements in the
coupled representation:

〈η,Λ; J, I1, I2, I, F |−e
∑

k=1,2

T2(∇Ek) · T2(Qk)|η,Λ; J ′, I1, I2, I ′, F〉

= eQq0

4
(−1)J ′+I+F

{
I J F
J ′ I ′ 2

}
(−1)J−Λ

(
J 2 J ′

−Λ 0 Λ

)
{(2J + 1)(2J ′ + 1)}1/2

× [(−1)I + (−1)I ′
](−1)I1+I2{(2I +1)(2I ′ + 1)}1/2

{
I2 I I1

I ′ I2 2

}(
I1 2 I1

−I1 0 I1

)−1

.

(8.172)
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The nuclear spin–rotation term has relatively simple matrix elements, as follows:

〈η,Λ; J, I, F,MF |cI T1(J) · T1(I)|η,Λ; J, I, F,MF 〉
= cI (−1)J+F+I

{
I J F
J I 1

}
{J (J + 1)(2J + 1)I (I + 1)(2I + 1)}1/2. (8.173)

Upon evaluation for J = 28, I = 2 and 0 one obtains very simple results. The diago-
nal matrix elements of the quadrupole interaction in the |η,Λ; J, I, F〉 basis set are
either zero (for I = 0) or very nearly constant (for I = 2). The only really significant
matrix element of the quadrupole interaction is that which mixes the I = 2 and 0 states
with F = 28; the resulting symmetric and antisymmetric combinations have quadrupole
energies ± 0.25 eq0Q. The nuclear spin–rotation interaction has non-zero diagonal ele-
ments, but zero off-diagonal elements. Consequently the hyperfine level structure can be
summarised in a simple diagram, as shown in figure 8.13, with the observed transitions

Figure 8.13. Hyperfine level structure of the J = 28 rotational level in the v= 0, X 1�+
g state

of Na2. The quadrupole coupling constant, eq0 Q, is found to have a negative value [22]. The
levels are labelled with their F values.
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also indicated. The values of the constants were determined as eq0 Q = −463.7 kHz,
cI = −0.201 kHz. The negative sign of the quadrupole coupling constant is, of course,
the reason for the relative energies of the F = 28 symmetric and antisymmetric states.

We come now to the second study, described ten years later [23]. The main de-
velopment was the employment of a tunable dye laser to pump the A 1�+

u ← X 1�+
g

transition. Rotational levels in the ground state with J = 1 to 29, in the v= 0 vibrational
level, were pumped by the laser and radiofrequency hyperfine transitions studied. The
range of J levels studied meant that the effective Hamiltonian required the addition
of terms describing the dipolar and scalar interactions between the 23Na nuclear spins.
These terms were given earlier in our discussion of the D2 molecule, and the complete
effective Hamiltonian is:

Heff = −e
∑

k=1,2

T2(

∆

Ek) · T2(Qk) + cI T1(J ) · T1(I)

−
√

6 g2
Nµ

2
N (µ0/4π)T2(C) · T2(I1, I2) + δT1(I1) · T1(I2). (8.174)

The matrix elements of the first two terms have already been derived, and from equation
(8.21) we obtain the matrix elements of the dipolar term, which are

〈η; J,%, I, F | −
√

6g2
Naµ

2
N (µ0/4π)T2(C ) · T2(I1, I2)|η; J ′,Λ, I ′, F ′〉

= −δF F ′
√

30g2
Naµ

2
N (µ0/4π)(−1)J ′+F+I

{
I ′ J ′ F
J I 2

}


I1 I1 1

I2 I2 1

I I ′ 2




× {(2I + 1)(2I ′ + 1)I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1)}1/2

× 〈η, J,Λ = 0‖T 2(C )‖η, J ′,Λ = 0〉

= −δF F ′
√

30g2
Naµ

2
N (µ0/4π)(−1)J ′+F+I

{
I ′ J ′ F
J I 2

}


I1 I1 1

I2 I2 1

I I ′ 2




× {(2I + 1)(2I ′ + 1)}1/2{I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1)}1/2(−1)J

×
(

J 2 J ′

0 0 0

)
{(2J + 1)(2J ′ + 1)}1/2

〈
C2

0 (θ, φ)
〉
η
. (8.175)

The constant d listed by Van Esbroeck, McLean, Gaily, Holt and Rosner [23] is defined
by

d = g2
Naµ

2
N (µ0/4π)

〈
C2

0 (θ, φ)R−3
〉
η

= g2
Naµ

2
N (µ0/4π)(1/R3)η, (8.176)

where R is the internuclear distance in the vibronic state η. We shall confine attention
to matrix elements which are diagonal in J .

The matrix elements of the scalar interaction between the nuclear spins in a
homonuclear molecule were not given in our earlier discussion, but they are obtained
very simply by noting that

I1 · I2 = 1

2

{
I2 − I2

1 − I2
2

} = 1

2
{I (I + 1) − I1(I1 + 1) − I2(I2 + 1)}. (8.177)
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5

7

Figure 8.14. Hyperfine levels for the J = 1 rotational level of Na2 in its ground electronic state,
and the observed transitions [23]. Each level is labelled by its F value.

The lowest level studied experimentally was J = 1, for which seven hyperfine
transitions were observed and the molecular constants determined [23]. For an odd J
value the allowed values of I are 1 and 3, so that the following hyperfine levels exist:

J = 1, I = 3, F = 4, 3, 2: J = 1, I = 1, F = 2, 1, 0.

Four of the states are not mixed and their energies are listed below. As we have seen
earlier, the quadrupole interaction mixes the I states differing in value by 2 so that
for F = 2 (which remains a good quantum number), we diagonalise a 2 × 2 matrix
to obtain the final energies, also listed below. The resulting states are very close to
being symmetric and antisymmetric combinations, denoted 2+ and 2−. We may then
calculate the energies of the six hyperfine levels, using the values of the molecular
constants determined from the experiments.

We now list the results, which are summarised in the hyperfine level diagram
shown in figure 8.14, where the observed transitions are also indicated. The constants
determined from the experiments [23] were (in kHz):

eq0 Q = −458.98 − 0.007 28 J (J + 1), cI = 0.2429, d = 0.3026, δ = 1.0667.

The diagonal and off-diagonal matrix elements are (in kHz), for J = 1:

〈I = 3, F = 4|Heff|I = 3, F = 4〉
= −eq0 Q(1/10) + d(9/10) + 3cI + δ(9/4) = 49.2991

〈I = 3, F = 3|Heff|I = 3, F = 3〉
= +eq0 Q(3/10) − d(27/10) − cI + δ(9/4) = −136.3583

〈I = 3, F = 2|Heff|I = 3, F = 2〉
= −eq0 Q(6/25) + d(54/25) − 4cI + δ(9/4) = 112.2409
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〈I = 1, F = 2|Heff|I = 1, F = 2〉
= +eq0 Q(1/25) + d(17/50) + cI − δ(11/4) = −20.9474

〈I = 1, F = 1|Heff|I = 1, F = 1〉
= −eq0 Q(1/5) − d(17/10) − cI − δ(11/4) = 88.1083

〈I = 1, F = 0|Heff|I = 1, F = 0〉
= +eq0 Q(2/5) + d(17/5) − 2cI − δ(11/4) = −185.9884

〈I = 3, F = 2|Heff|I = 1, F = 2〉
= −eq0 Q(3

√
14/50) − d(9

√
14/25) = 102.6365. (8.178)

The energies in kHz of the mixed states (with F = 2) are calculated to be:

2+ : 167.995 2− : −76.701.

The calculated frequencies of the seven transitions shown in figure 8.14 agree exactly
with those listed by Van Esbroeck, McLean, Gaily, Holt and Rosner [23] which are, in
turn, in very good agreement with the experimentally measured frequencies (in kHz):

experiment : f1 = 244.752, f2 = 274.214, f3 = 164.896, f4 = 79.904,

f5 = 59.684, f6 = 304.340, f7 = 185.684.

calculated : f1 = 244.697, f2 = 274.097, f3 = 164.810, f4 = 79.887,

f5 = 59.657, f6 = 304.354, f7 = 185.659.

It should be noted that there are only five independent frequencies. Transitions in twelve
other rotational levels were also measured, and again the calculated frequencies using
the above constants were in excellent agreement with experiment.

Quantitative interpretation of the magnetic hyperfine parameters is a far from
trivial task because, as we discussed in chapter 7, they involve the calculation of
reduced matrix elements requiring electronic wavefunctions for both the ground and
excited electronic states. The nuclear spin–rotation constant, cI , for example, contains
both first- and second-order parts which are opposite in sign. Even the dipolar tensor
constant d, contains higher order contributions, although its value is dominated by the
classical through-space contribution. The scalar spin–spin constant δ, usually known
as the electron-coupled spin–spin interaction constant, arises entirely from admixture
of higher electronic states with the ground state. There is, therefore, no simple semi-
empirical interpretation of the constants which is worth presenting.

There have been many other spectroscopic studies of the Na2 molecule, particularly
of its visible and ultraviolet electronic spectra.

8.2.4. Other 1�+ molecules

Many other diatomic molecules with 1�+ ground states have been studied by molecu-
lar beam magnetic resonance. Where magnetic nuclei are present, magnetic focusing
is based upon the nuclear Zeeman effects. This is the case with 15N2 for which the
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Table 8.4. Molecular beam magnetic resonance studies of alkali halide molecules

LiF [26, 27] NaF [27, 28] KF [29] CsF [29] RbF [30]

LiCl [26, 27] NaCl [27] KCl [27] CsCl [29] RbCl [30]

LiBr [26, 27] NaBr [27] KBr [31]

LiI [26, 27] NaI [27]

rotational magnetic moment and the nuclear spin–rotation constant have been deter-
mined [24]. For a molecule like CO, where magnetic nuclei are not normally present,
observation of the molecular beam magnetic resonance spectrum makes use of the
rotational magnetic moment [25]. The alkali halide molecules have also been stud-
ied extensively by molecular beam magnetic and electric resonance. In many cases
both the alkali metal and halogen nuclei have magnetic dipole and electric quadrupole
moments. We shall describe in detail some of the electric resonance studies later in
this chapter, but here summarise the magnetic resonance studies, with references, in
table 8.4.

8.3. Molecular beam magnetic resonance of electronically
excited molecules

8.3.1. H2 in the c 3�u state

(a) Introduction

In chapter 6 we described the theory of molecular electronic states, particularly as
it applies to diatomic molecules. We introduced the united atom nomenclature for
describing the orbitals, and pointed out that this was particularly useful for tightly
bound molecules with small internuclear distances, like H2. We also discussed the
more conventional nomenclature for describing electronic states, which is based upon
the assumption that the component of electronic orbital angular momentum along the
direction of the internuclear axis is conserved, i.e. is a good quantum number. The latter
description is therefore appropriate for molecules in electronic states which conform
to Hund’s case (a) or case (b) coupling.

In H2 the ground state electron configuration is described, in the united atom
nomenclature, as (1sσ )2 with the electron spins paired; alternatively the ground elec-
tronic state is described as X 1�+

g . In the molecular orbital description the ground
state electron configuration is (σg1s)2. The first excited electronic state in the united
atom description is (1sσ )1(2pσ )1, whilst in the molecular orbital description it is
(σg1s)1(σu1s)1. In either case the electron spins may be paired, giving a 1�+

u state,
or they may be unpaired to give a 3�+

u state. The excited singlet state is bound, but
the triplet state, which correlates at the limit of infinite nuclear separation with two
H (1s) atoms, is repulsive. Singly excited electronic states, arising from promotion
of one electron only, constitute two large families of either singlet or triplet spin states.
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σ σσ π π δ
1∆g

1Σ
+
g

1Πu
1Πg

1Σ
+
u

1Σ
+
g

Figure 8.15. The excited singlet states of H2 arising from promotion of a single electron. The
zero of the energy scale relates to the ground electronic state, which is not shown in the figure.
The orbital description at the top of each column is in the united atom designation. The number
beside each level is the value of the principal quantum number n.

The relative energies of the excited singlet states are shown in figure 8.15, whilst the
corresponding triplet states are shown in figure 8.16. These diagrams were originally
constructed by Richardson [32], are shown by Herzberg [33] in his classic book, and
have simply been updated by us from the data given by Herzberg and Huber [34]. It
should be noted that many other excited states, which arise from promotion of both
electrons, also exist. These are not shown in figures 8.15 and 8.16.

In this chapter we are concerned with the excited triplet states. The c 3�u state
is the subject of this section, whilst the d and k 3�u states will appear later when we
discuss microwave/optical double resonance studies. These triplet states are metastable,
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Figure 8.16. The excited triplet states of H2 which arise from promotion of a single electron. The
energy scale relates to the ground singlet state; the first excited triplet state 2pσu

3�+
u is wholly

repulsive and is not shown in the figure. The orbital description at the top of each column is in
the united atom designation. The number beside each level is the value of the principal quantum
number n.

at least in some of their vibrational levels, whereas most of the other excited states,
singlets and triplets, decay rapidly through radiative transitions to lower states.

(b) Experimental studies

Molecular beam magnetic resonance studies of H2 in its c 3�u state were first described
in two classic papers by Lichten [35]. In earlier work [36] Lichten had obtained strong
but not conclusive evidence that the c state is metastable in its v= 0 level (higher vi-
brational levels are almost certainly not metastable), with a lifetime of approximately
10−3 s. He therefore designed and built an unusually small magnetic resonance beam
machine in which the overall distance from source to detector was about 20 cm (com-
pared with the 269 cm beam length employed in the earlier studies of ground state H2).
The H2 beam emerging from the source was subjected to electron beam bombardment,
and the electronically excited H2 molecules were detected, with high sensitivity, by
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means of a nickel secondary electron emission detector; the apparatus was operated in
the conventional ‘flop-out’ mode. In his first paper Lichten reported the observation
of radiofrequency low field Zeeman transitions for the N = 2 levels of para-H2 but
in his second paper he described the measurement of Zeeman components of fine-
structure transitions in the N = 2 level which occur at much higher frequencies in the
microwave region.

We first describe the theory of the Zeeman effect and determination of the effective
g-factors for both para- and ortho-H2, and then proceed to discuss the hyperfine splitting
in ortho-H2.

(c) Effective Zeeman Hamiltonian in a case (b) basis

For H2 the rotational constant is very large while the spin–orbit coupling effects are
very small; the c 3�u state of H2 therefore conforms very closely to Hund’s case (b).
The nuclear rotational angular momentum R is coupled to the electronic orbital angular
momentum L, to form the total orbital angular momentum N. N is now coupled to the
electron spin S to form J, the total angular momentum for para-H2. In ortho-H2 the
total nuclear spin vector I is further coupled to J to form F, the grand total angular
momentum. This scheme is summarised as follows:

R + L = N : N = 1, 2, 3, . . .

N + S = J : J = N − 1, N , N + 1

J + I = F : F = J − 1, J, J + 1 (for ortho levels).

The first level to be studied in detail by Lichten [35] was the N = 2 level of both
para-H2 and ortho-H2. He measured a series of fixed-frequency magnetic resonance
transitions, determining effective g-values and proving the identification of the c 3�u

state in the process. An effective Zeeman Hamiltonian may be written, in the space-fixed
axis system,

Heff = gSµB BZ T1
p=0(S ) + gLµB BZ T1

p=0(L) − gIµN BZ T1
p=0(I ), (8.179)

where p = 0 is the direction of the applied magnetic field. This equation does not
contain a term describing the rotational Zeeman interaction, and the third term in
(8.179) applies only to ortho-H2.

The matrix elements of the three terms in (8.179) in a case (b) basis are as follows:

〈η,Λ; N , S, J,MJ |gSµB BZ T1
0(S )|η,Λ; N , S, J ′,MJ 〉

= gSµB BZ (−1)J−MJ

(
J 1 J ′

−MJ 0 MJ

)
(−1)J+N+1+S

{
J S N
S J ′ 1

}
× {(2J ′ + 1)(2J + 1)S(S + 1)(2S + 1)}1/2. (8.180)
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Table 8.5. Calculated and observed g-factors for H2 in the c 3�u state

gJ (para) gF (ortho) gJ (para) gF (ortho) g

N J first-order F first-order exact exact observed

1 0 — 1 −0.003 04 — −0.168 −0.170

1 1.251 15

0 —

1 0.624 05 0.8298 0.830

2 0.624 05 0.648 0.651

2 1.251 15

1 1.878 24 1.837 1.85

2 1.042 11 1.019 1.026

3 0.833 09 0.833 0.833

2 2 0.4726 0.4734

3 0.778 54 0.7794

〈η,Λ; N , S, J,MJ |gSµB BZ T1
0(L )|η,Λ; N ′, S, J ′,MJ 〉

= gLµB BZ (−1)J−MJ

(
J 1 J ′

−MJ 0 MJ

)
〈η,Λ; N , S, J‖T1(L )‖η,Λ; N ′, S, J ′〉

= gLµB BZ

(
J 1 J ′

−MJ 0 MJ

)
(−1)J−MJ +J ′+N+1+S{(2J ′ + 1)(2J + 1)}1/2

×
{

J N S
N ′ J ′ 1

}
〈N ,Λ‖D

(1)
.0 (ω)∗‖N ′,Λ〉〈η,Λ|T1

0(L)|η,Λ〉

= gLµB BZ

(
J 1 J ′

−MJ 0 MJ

)
(−1)J−MJ +J ′+N+1+S{(2J ′ + 1)(2J + 1)}1/2

×
{

J N S
N ′ J ′ 1

}
(−1)N−Λ

(
N 1 N ′

−Λ 0 Λ

)
{(2N + 1)(2N ′ + 1)}1/2Λ. (8.181)

We have used the first-rank rotation matrix D
(1)
.0 (ω)∗ to transform into the molecule-

fixed (q = 0) axis system. Before considering the third term in (8.179), which arises
for ortho-H2, we calculate the diagonal elements from (8.180) and (8.181) in order to
obtain the first-order effective g-factors for para-H2. One obtains

g(N , J ) = gS
{J (J + 1) + S(S + 1) − N (N + 1)}

2J (J + 1)

+ gLΛ
2 {J (J + 1) + N (N + 1) − S(S + 1)}

2J (J + 1)N (N + 1)
, (8.182)

which is the result obtained by Lichten [35] by a somewhat different route. If one
now substitutes the values gL =Λ = S = 1, and gS = 2.0023, the calculated values of
g(N , J ) for para-H2 are as shown in table 8.5.
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We shall return to the results for para-H2 in due course, but first repeat the Zeeman
calculations for ortho-H2, including the nuclear spin Zeeman term in equation (8.179).
The required matrix elements are as follows:

〈η,Λ; N , S, J, I, F,MF |gSµB BZ T 1
p=0(S)|η, Λ; N , S, J ′, I, F ′, MF 〉

= gSµB BZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
〈N , S, J, I, F‖T 1(S)‖N , S, J ′, I, F ′〉

= gSµB BZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+J+1+I {(2F ′ + 1)(2F + 1)}1/2

×
{

F J I
J ′ F ′ 1

}
〈N , S, J‖T1(S)‖N , S, J ′〉

= gSµB BZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+J+1+I {(2F ′ + 1)(2F + 1)}1/2

×
{

F J I
J ′ F ′ 1

}
(−1)J+N+1+S{(2J ′ + 1)(2J + 1)}1/2

{
J S N
S J ′ 1

}
×{S(S + 1)(2S + 1)}1/2. (8.183)

〈η, Λ; N , S, J, I, F,MF |gLµB BZ T1
p=0(L)|η, Λ; N ′, S, J ′, I, F ′,MF 〉

= gLµB BZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
〈N , S, J, I, F‖T1(L)‖N ′, S, J ′, I, F ′〉

= gLµB BZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+J+1+I {(2F ′ + 1)(2F + 1)}1/2

×
{

F J I
J ′ F ′ 1

}
〈N , S, J‖T1(L)‖N ′, S, J ′〉

= gLµB BZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+J+1+I {(2F ′ + 1)(2F + 1)}1/2

×
{

F J I
J ′ F ′ 1

}
(−1)J ′+N+1+S{(2J ′ + 1)(2J + 1)}1/2

{
J N S
N ′ J ′ 1

}

× (−1)N−Λ
(

N 1 N ′

−Λ 0 Λ

)
{(2N + 1)(2N ′ + 1)}1/2Λ. (8.184)

We have made use of the results given in equation (8.181) in order to complete the last
line of (8.184). Finally for the nuclear Zeeman term we have

〈η,Λ; N , S, J, I, F,MF | − gIµN BZ T1
p=0(I)|η,Λ; N , S, J, I, F ′,MF 〉

= −gIµN BZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
〈J, I, F‖T 1(I)‖J, I, F ′〉

= −gIµN BZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F+J+1+I {(2F ′ + 1)(2F + 1)}1/2

×
{

F I J
I F ′ 1

}
{I (I + 1)(2I + 1)}1/2. (8.185)
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We are now in a position to calculate the first-order g-factors for the hyperfine
levels in ortho-H2, making the same numerical substitutions as before, but additionally
with I = 1. The result is

g(N , J, F) = gS{J (J + 1) + F(F + 1) − I (I + 1)} {J (J + 1) + S(S + 1)

− N (N + 1)}/{4F(F + 1)J (J + 1)} + gL Λ
2{J (J + 1) + F(F + 1)

− I (I + 1)} {J (J + 1) + N (N + 1)− S(S + 1)}/{4F(F + 1)

×J (J + 1)N (N + 1)} − gI (µN/µB) {F(F + 1) + I (I + 1)

− J (J + 1)}/2F(F + 1) . (8.186)

This result agrees with that given by Lichten in a later paper [37], and also by Jette and
Cahill [38]. In his first paper [35] Lichten included an experimental recording of his
early g-factor determinations; his spectrum is shown in figure 8.17. The experimental
results for both para- and ortho-H2 are listed in table 8.5, where they are compared with
the first-order values calculated from equations (8.182) and (8.186) respectively. The
‘exact’ theoretical values listed in the Table are obtained after a detailed consideration
of the complete zero-field effective Hamiltonian, which is presented in the next sub-
section.

(d) Effective zero-field Hamiltonian for para-H2(3�u) in a case (b) basis

There are four important types of interaction that must be represented in the zero-
field effective Hamiltonian for H2 in its c 3�u state. They can be summarised as follows:

Heff = Hsr + Hdip + Hso + Hhfs. (8.187)

The first three terms are present for both para- and ortho-H2; they represent the electron
spin-rotation, electron spin–spin dipolar and spin–orbit interactions respectively. The
fourth term in (8.187) represents the magnetic hyperfine interactions, which we will
come to a little later. We deal first, however, with the terms that do not involve nuclear
spin interactions.

(i) -- 

The electron spin–rotation interaction is similar to the nuclear spin–rotation interaction
we met earlier, and may be written as a simple scalar interaction,

Hsr = γT1(N) · T1(S). (8.188)

The matrix elements of (8.188) are diagonal in a case (b) basis, and are given by

〈η,Λ; N , S, J,MJ |γT1(N ) · T1(S)|η,Λ; N , S, J,MJ 〉
= γ (−1)N+J+S

{
S N J
N S 1

}
〈N‖T1(N)‖N 〉〈S‖T1(S)‖S〉

= γ (−1)N+J+S

{
S N J
N S 1

}
{N (N + 1)(2N + 1)S(S + 1)(2S + 1)}1/2. (8.189)
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g-factor

Figure 8.17. Low-frequency Zeeman transitions for the c 3�u state of H2, showing the g-factors
[35]. The top spectrum was obtained from natural H2 (75% ortho, 25% para), and the bottom
spectrum was obtained from para-H2. The spectra were obtained by scanning the frequency.

Evaluation of the 6- j symbol gives the results for the three spin components of the
rotational level N :

J = N + 1: E = γ N

J = N : E = −γ (8.190)

J = N − 1: E = −γ (N + 1).
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(ii)  --  

The dipolar interaction between the electron spin magnetic moments is also similar to
the interaction between two nuclear spins. It may therefore be represented by a classical
dipolar interaction term, but with the electron spin magnetic moments represented by
their quantum mechanical operators:

Hdip = g2
S µ

2
Bµ0

4π

{
S1 · S2

r3
12

− 3(S1 · r12)(S2 · r12)

r5
12

}
. (8.191)

Here r12 is the distance between the unpaired electrons, which must be obtained from a
suitable electronic wave function describing the electron distribution in the molecule.
In terms of irreducible tensor operators (8.191) may be written

Hdip = −g2
Sµ

2
Bµ0

4π

√
6T2(C) · T2(S1, S2), (8.192)

where

T2
p(S1, S2) = (−1)p

√
5

∑
p1,p2

(
1 1 2
p1 p2 −p

)
T1

p1
(S1)T1

p2
(S2), (8.193)

and

T2
q (C) = 〈η,Λ|C2

q (θ12, φ12)r−3
12 |η,Λ′〉. (8.194)

This form of the electron spin–spin dipolar Hamiltonian is discussed in appendix 8.3.
The diagonal (q = 0) component of (8.192) may be written

−g2
Sµ

2
B

µ0

4π
〈η,Λ|C2

0 (θ12, φ12)r−3
12 |η,Λ〉

√
6T2

0(S1, S2) ≡ 2

3
λ
√

6T2
0(S, S), (8.195)

and by making use of the relationship (8.193) one finds that

√
6T2

0(S, S) = 3S2
z − S2. (8.196)

The combination of (8.195) and (8.196) gives the cartesian form of the spin–spin
interaction which is often encountered in the literature. However, we shall in due
course discuss the q 
= 0 components of (8.194) which, in the case of H2 in its c 3�u

state, are not negligible.
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The matrix elements of the spin–spin Hamiltonian are as follows:

〈η,Λ; N , S, J,MJ | − (µ0/4π)g2
Sµ

2
B

√
6T2(S1, S2) · T2(C)|η′,Λ′; N ′, S, J,MJ 〉

=
√

6(−1)J+N ′+S

{
S N ′ J
N S 2

}
〈η, N ,Λ|(µ0/4π)g2

Sµ
2
BT2(C)| η′, N ′,Λ′〉

× 〈S‖T2(S1, S2)‖S〉
=

√
6(−1)J+N ′+S

{
S N ′ J
N S 2

}∑
q

〈η,Λ|(µ0/4π)g2
Sµ

2
BC2

q (θ12, φ12)
(
r−3

12

)|η′,Λ′〉

× 〈N ,Λ‖D
(2)
·q (ω12)∗‖N ′,Λ′〉

√
5




S1 S1 1
S2 S2 1
S S 2


 (2S + 1){S1(S1 + 1)

× (2S1 + 1)S2(S2 + 1)(2S2 + 1)}1/2. (8.197)

The reduced matrix element of T2(S1, S2) was previously evaluated (for proton nuclear
spins) in (8.14). Confining attention, for the moment, to matrix elements diagonal in
the electronic state, we take the q = 0 component of (8.197). Hence we have the result

〈η,Λ; N , S, J,MJ | − (µ0/4π)g2
Sµ

2
B

√
6T2(S1, S2) · T2(C)|η′,Λ′; N ′, S, J,MJ 〉

= −
√

6(−1)J+N ′+S

{
S N ′ J
N S 2

}
〈η,Λ|(µ0/4π)g2

Sµ
2
BC2

0 (θ12, φ12)
(
r−3

12

)|η,Λ〉

× 〈N ,Λ‖D
(2)
·0 (ω12)∗‖N ′,Λ〉(

√
5/2)

= −
√

30

2
(−1)J+N ′+S

{
S N ′ J
N S 2

}
〈η,Λ|(µ0/4π)g2

Sµ
2
BC2

0 (θ12, φ12)
(
r−3

12

)|η,Λ〉

× (−1)N−Λ
(

N 2 N ′

−Λ 0 Λ

)
{(2N + 1)(2N ′ + 1)}1/2

= 2

3
λ0

√
30(−1)J+N ′+S

{
S N ′ J
N S 2

}
(−1)N−Λ

(
N 2 N ′

−Λ 0 Λ

)
× {(2N + 1)(2N ′ + 1)}1/2. (8.198)

In the last line of equation (8.198) we have introduced the parameter λ0, which is
defined by the identity

λ0 ≡ −(3/4)
〈
(µ0/4π )g2

Sµ
2
BC2

0 (θ12, φ12)r−3
12

〉
η
. (8.199)

Since the rotational levels of different N values are very widely spaced in H2, we need
consider only the matrix elements diagonal in N so that substituting Λ = S = 1 we
derive the following expression for the spin–spin energies:

E(N , J )

= λ0
{3[N (N + 1) − J (J + 1) + 2][N (N + 1) − J (J + 1) + 1] − 8N (N + 1)}

(2N − 1)(2N )(2N + 1)(2N + 2)(2N + 3)
.

(8.200)
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For the three spin components of a given N level we now obtain the results:

J = N + 1: E(N , J ) = 4

3
λ0

{3 − N (N + 1)}
(2N + 2)(2N + 3)

.

J = N : E(N , J ) = −4

3
λ0

{3 − N (N + 1)}
2N (N + 1)

. (8.201)

J = N − 1: E(N , J ) = 4

3
λ0

{3 − N (N + 1)}
2N (2N − 1)

.

Up to this point we have taken Λ to have the value +1, ignoring the fact that the
true wave functions areΛ-doublets. The two components can be described in terms of
basis functions which have either + or − parity:

|N ,Λ, S, J ; ±〉 = 1√
2
{|+1; N ,+1, S, J,MJ 〉 ± (−1)N |−1; N ,−1, S, J,MJ 〉}.

(8.202)

There are, therefore additional matrix elements of the spin-spin interaction (8.197)
involved with �Λ = ±2, as was first pointed out by Fontana [39]; these are as
follows:

〈η,Λ; N , S, J,MJ |(µ0/4π)g2
Sµ

2
B

√
6T2(S1, S2) · T2(C)|η,Λ′; N ′, S, J,MJ 〉

=
√

6(−1)J+N ′+S

{
S N ′ J
N S 2

}
〈η, N ,Λ‖(µ0/4π)g2

Sµ
2
BT2(C)‖η, N ′,Λ′〉

× 〈S‖T2(S1, S2)‖S〉
=

√
6(−1)J+N ′+S

{
S N ′ J
N S 2

} ∑
q=±2

〈η,Λ|(µ0/4π)g2
Sµ

2
BC2

q (θ12, φ12)
(
r−3

12

)|η,Λ′〉

× 〈N ,Λ‖D
(2)
.q (ω12)∗‖N ′,Λ′〉

√
5




S1 S1 1
S2 S2 1
S S 2


 (2S + 1)

×{S1(S1 + 1)(2S1 + 1)S2(S2 + 1)(2S2 + 1)}1/2

=
√

30

2
(−1)J+N ′+S

{
S N ′ J
N S 2

} ∑
q=±2

〈η,Λ|(µ0/4π)g2
Sµ

2
BC2

q (θ12, φ12)
(
r−3

12

)|η,Λ′〉

× 〈N ,Λ‖D
(2)
.q (ω12)∗‖N ′,Λ′〉

=
√

30

2
λ2(−1)J+N ′+S

{
S N ′ J
N S 2

} ∑
q=±2

(−1)N−Λ
(

N 2 N ′

−Λ q Λ′

)

× {(2N + 1)(2N ′ + 1)}1/2. (8.203)

Non-vanishing matrix elements also arise from the q = ±1 terms, but they involve
the mixing of other electronic states with the 3�u state. These matrix elements, and
others that are off-diagonal in N , are listed by Chiu [40]. In an obvious notation,
specified below, we have introduced the parameter λ2. We are now in a position to
examine the matrix elements (diagonal in N ) of (8.203) for the states |N ,Λ, S, J ; + 〉
and |N ,Λ, S, J ; −〉 given in (8.202). The main contributions to the diagonal elements
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involve λ0 and come from (8.198) but there are additional contributions which involve
λ2, namely,

〈N ,Λ, S, J ; +|Hdip|N ,Λ, S, J ; +〉
= 1

2
(−1)N {〈Λ = +1|Hdip|Λ = −1〉 + 〈Λ = −1|Hdip|Λ = +1〉}

= (−1)N

√
30

4
λ2(−1)J+N+S

{
S N J
N S 2

}
(2N + 1)

[
(−1)N−1

(
N 2 N
−1 2 −1

)

+ (−1)N+1

(
N 2 N
1 −2 1

)]

= (−1)N

√
30

4
λ2(−1)J+N+S

{
S N J
N S 2

}[
6N (N + 1)(2N + 1)

(2N + 3)(2N − 1)

]1/2

. (8.204)

The other matrix element between states of negative parity is

〈N ,Λ, S, J ; −|Hdip|N ,Λ, S, J ; −〉 = −〈N ,Λ, S, J ; +|Hdip|N ,Λ, S, J ; +〉.
(8.205)

Because parity is a good quantum label in the absence of electric fields, all matrix
elements between states of + and − parity are zero.

Consequently we see that the λ2 term makes equal and opposite contributions to
the spin-spin energies of the Λ-doublet components. These contributions to the levels
of + and − parity are:

J = N + 1: E(+) = (−1)N

√
6

4
λ2

N

(2N + 3)
, E(−) = −(−1)N

√
6

4
λ2

N

(2N + 3)
,

J = N : E(+) = −(−1)N

√
6

4
λ2, E(−) = (−1)N

√
6

4
λ2, (8.206)

J = N − 1: E(+) = (−1)N

√
6

4
λ2

(N + 1)

(2N − 1)
, E(−) = −(−1)N

√
6

4
λ2

(N + 1)

(2N − 1)
.

These results agree with those derived by Chiu [40] with the following identity:

λ2 ≡ 〈Λ = ±1|(µ0/4π)g2
Sµ

2
BC2

±2(θ12, φ12) r−3
12 |Λ = ∓1〉η (8.207)

We are now almost in a position to calculate the zero-field spin–rotation and spin–spin
dipolar energies of the N , J levels, but we have first to discuss the parity restrictions
on the levels for para- and ortho-H2(see also chapter 6).

The overall symmetry of a given level must be antisymmetric with respect to
the permutation P12 of the two H nuclei to satisfy the Pauli principle. The + and −
parity combinations defined by equation (8.202) are antisymmetric and symmetric
respectively with respect to P12 (because the electronic wavefunction has u character,
see equation (8.251)). Since the ortho and para nuclear spin states are symmetric and
antisymmetric respectively, we see that the + parity states combine with the ortho
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Table 8.6. Zero-field spin–spin, spin–rotation and spin–orbit energies of the lower
rotational levels of c 3�u H2

para-H2 ortho-H2

N J energy N J energy

1 0 2λ0/3 + √
6λ2/2 − 2γ − A 1 0 2λ0/3 − √

6λ2/2 − 2γ − A

1 −λ0/3 − √
6λ2/4 − γ − A/2 1 −λ0/3 + √

6λ2/4 − γ − A/2

2 λ0/15 + √
6λ2/20 + γ + A/2 2 λ0/15 − √

6λ2/20 + γ + A/2

2 1 −λ0/3 − √
6λ2/4 − 3γ − A/2 2 1 −λ0/3 + √

6λ2/4 − 3γ − A/2

2 λ0/3 + √
6λ2/4 − γ − A/6 2 λ0/3 − √

6λ2/4 − γ − A/6

3 −2λ0/21 − √
6λ2/14 + 2γ + A/3 3 −2λ0/21 + √

6λ2/14 + 2γ + A/3

3 2 −2λ0/5 + √
6λ2/5 − 4γ − A/3 3 2 −2λ0/5 − √

6λ2/5 − 4γ − A/3

3 λ0/2 − √
6λ2/4 − γ − A/12 3 λ0/2 + √

6λ2/4 − γ − A/12

4 −λ0/6 + √
6λ2/12 + 3γ + A/4 4 −λ0/6 − √

6λ2/12 + 3γ + A/4

4 3 −17λ0/42 − 5
√

6λ2/28 − 5γ − A/4 4 3 −17λ0/42 + 5
√

6λ2/28 − 5γ − A/4

4 17λ0/30 + √
6λ2/4 − γ − A/20 4 17λ0/30 − √

6λ2/4 − γ − A/20

5 −34λ0/165 − √
6λ2/11 + 4γ + A/5 5 −34λ0/165 + √

6λ2/11 + 4γ + A/5

5 4 −2λ0/5 + √
6λ2/6 − 6γ − A/5 5 4 −2λ0/5 − √

6λ2/6 − 6γ − A/5

5 9λ0/10 − √
6λ2/4 − γ − A/30 5 9λ0/10 + √

6λ2/4 − γ − A/30

6 −3λ0/13 + 5
√

6λ2/52 + 5γ + A/6 6 −3λ0/13 − 5
√

6λ2/52 + 5γ + A/6

6 5 −13λ0/33 − 7
√

6λ2/44 − 7γ − A/6 6 5 13λ0/33 + 7
√

6λ2/44 − 7γ − A/6

6 13λ0/21 + √
6λ2/4 − γ − A/42 6 13λ0/21 − √

6λ2/4 − γ − A/42

7 −26λ0/105 − √
6λ2/10 + 6γ + A/7 7 −26λ0/105 + √

6λ2/10 + 6γ + A/7

nuclear spin states and the − parity states with para:

para-H2 : combines with|N ,Λ, S, J ; −〉
ortho-H2: combines with|N ,Λ, S, J ; +〉.

Note, for completeness, that the vibrational and electronic spin parts of the total wave
function are both unaffected by P12, that is, they are symmetric. We now have all
the information required to derive expressions for the zero-field spin–spin and spin–
rotation energies of the N , J levels for both para- and ortho-H2, excluding nuclear
magnetic hyperfine interaction for ortho-H2 which we will come to in due course.
These are given in table 8.6.

(iii) -- 

The effects of spin–orbit coupling in the H2 case (b) 3� state have been discussed in
detail by Fontana [39] and Chiu [40, 41]. Chiu [41] starts by writing the full spin–orbit
Hamiltonian for the two-electron, two-nucleus system as a sum of one-electron terms,

Hso = aT1(l1) ·T1(s1) + bT1(l2) · T1(s2) + cT1(l1) · T1(s2) + dT1(l2) · T1(s1). (8.208)
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The first two terms represent spin–orbit coupling, whilst the second two are normally
described as spin–other-orbit terms. Following Fontana [39], Chiu pointed out that
for matrix elements diagonal in the total electron spin S (S = S1 + S2), (8.208) is
contracted to the sum of two terms,

H
′
so = a′T1(l1) · T1(S) + b′ T1(l2) · T1(S). (8.209)

Both terms now contain spin–orbit and spin–other-orbit contributions. The constants
a′ and b′ are defined (in atomic units) as follows:

a′ = 1

4

[
Za

r3
1a

+ Zb

r3
1b

− 3

r3
12

]
, b′ = 1

4

[
Zb

r3
2b

+ Za

r3
2a

− 3

r3
12

]
. (8.210)

Za and Zb are the nuclear charges of nuclei a and b, and 1 and 2 refer to the two
electrons.

Equation (8.209) may be rewritten in the form

H
′
so = 1

2
(a′ + b′)(T1(l1) + T1(l2)) · T1(S) + 1

2
(a′ − b′)(T1(l1) − T1(l2)) · T1(S)

= A T1(L) · T1(S) + 1

2
(a′ − b′)(T1(l1) − T1(l2)) · T1(S). (8.211)

The first term in (8.211) has the familiar form of the spin–orbit coupling operator, and
we are interested in its matrix elements which are diagonal in the case (b) basis set. We
first deal with the coupling of N and S to form J:

〈η,Λ; N , S, J |AT1(L) · T1(S)|η,Λ; N , S, J 〉
= (−1)N+J+S

{
S N J
N S 1

}
〈η,Λ; N‖T1(L)‖η,Λ; N 〉〈S‖T1(S )‖S〉. (8.212)

The first reduced matrix element in (8.212) is now expanded by using a first-rank
rotation matrix to transform from the space- to the molecule-fixed axis system, and
retaining only the wholly diagonal matrix elements:

〈η,Λ; N ,Λ‖T1
· (L)‖η,Λ; N ,Λ〉 = 〈N ,Λ‖D

(1)
·0 (ω)∗‖N ,Λ〉〈η,Λ|T1

0(L)|η,Λ〉

= (−1)N−Λ
(

N 1 N
−Λ 0 Λ

)
(2N + 1)Λ. (8.213)

Combining the results in (8.212) and (8.213) we obtain

〈η,Λ; N ,Λ, S, J |H′
so|η,Λ; N ,Λ, S, J 〉

= A(−1)N+S+J

{
S N J
N S 1

}
(−1)N−Λ

(
N 1 N

−Λ 0 Λ

)

× (2N + 1)Λ{S(S + 1)(2S + 1)}1/2

= A
{J (J + 1) − N (N + 1) − S(S + 1)}

2N (N + 1)
. (8.214)

The final result in (8.214) is obtained by putting Λ2 = 1. The constant A is half the
sum of a spin–orbit coupling constant A1 and a spin–other-orbit coupling constant A2,
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Table 8.7. Energy matrix for MJ = 0 or ±1 for the N = 2 level of para-H2 in the
c 3�u state

J = 1 J = 2 J = 3

J = 1 −λ∗/3 − A/2 µB Bz{4 − M2
J }1/2

+µB BZ MJ {−gs/2 + gL/4} × {−gs(
√

3/2
√

5) + gL/4
√

3} 0

J = 2 µB BZ

{
4 − M2

J

}1/2
λ∗/3 − A/6 µB BZ

{
9 − M2

J

}1/2

× {−gS(
√

3/2
√

5) + gL/4
√

3} +µB BZ MJ {gS/6 + 5gL/36} × {−gS(
√

2/3
√

5)

+√
2gL/18}

J = 3 0 µB BZ

{
9 − M2

J

}1/2 − 2λ∗/21 + A/3

×{−gS(
√

2/3
√

5) + √
2gL/18} +µB BZ MJ {gS/3

+ gL/9}

defined by

A1 = 1

4

〈(
Za

r3
1a

+ Zb

r3
1b

)
T1

0(l1) +
(

Za

r3
2a

+ Zb

r3
2b

)
T1

0(l2)

〉
η

, (8.215)

A2 = 3

4

〈[
(r1 − r2) ∧ (p2 − p1)

r3
12

]
0

〉
η

. (8.216)

Both of these expressions are defined in the molecule-fixed (q = 0) coordinate system,
and are expectation values over the electronic wave function for the vibronic state η.
The contributions of (8.214) are included in the expressions for the first-order energies
of the rotational levels given in table 8.6. There are, of course, many non-zero matrix
elements in the case (b) basis, all of which are listed by Chiu [40].

Lichten [35] studied the magnetic resonance spectrum of the para-H2, N = 2 level,
and was able to determine the zero-field spin–spin and spin–orbit parameters; we will
describe how this was done below. Before we come to that we note, from table 8.6, that
in N = 2 it is not possible to separateλ0 andλ2. Measurements of the relative energies of
the J spin components in N = 2 give values of λ0 + √

6λ2, and the spin–orbit constant
A; the spin–rotation constant γ is too small to be determined. In figure 8.18 we show
a diagram of the lower rotational levels for both para- and ortho-H2 in its c 3�u state,
which illustrates the difference between the two forms of H2. This diagram does not
show any details of the nuclear hyperfine splitting, which we will come to in due course.

We are now in a position to examine the details of the Zeeman effect in the para-H2,
N = 2 level, and thereby to understand Lichten’s magnetic resonance studies. For each
MJ component we may set up an energy matrix, using equations (8.180) and (8.181)
which describe the Zeeman interactions, and equations (8.201), (8.206) and (8.214)
which give the zero-field energies. Since MJ = ±3 components exist only for J = 3,
diagonalisation in this case is not required. For MJ = ±2 the J = 2 and 3 states are in-
volved. For MJ = 0 and ±1, however, the matrices involve all three fine-structure states
and take the form shown below in table 8.7. Note that λ∗ is equal to λ0 + 3

√
6λ2/4 and

the spin–rotation terms have been omitted. The diagonal Zeeman matrix elements are
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Figure 8.18. The lower rotational levels of the c 3�u state of H2, illustrating the difference
between para- and ortho-H2. The spin–spin splittings are drawn to scale, but the separations
between N levels are actually very much larger than shown [39].

calculated from equation (8.182) and the off-diagonal Zeeman elements from equa-
tions (8.180) and (8.181). Matrix elements off-diagonal in N are ignored because these
levels are widely separated. Each matrix is diagonalised for a given value of MJ , and
values of the zero-field parameters. The experiments were performed at a fixed mag-
netic field sufficiently small that the Zeeman effect was essentially first order, as shown
in figure 8.19. The �MJ = −1 components of the J = 2 ← 3 transition occur at a
lower frequency than the �MJ = +1, and the off-diagonal Zeeman matrix elements
result in separation of the five Zeeman components for each set. This is shown in the
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Figure 8.19. First-order Zeeman splitting of the N = 2, J = 1, 2, 3 fine-structure states for the
c 3�u state of H2.

experimental spectrum obtained by Lichten, illustrated in figure 8.20 (top). Similarly
the J = 2 ← 1 transition is split into two sets of three Zeeman components (figure 8.20
(bottom)). From these spectra the zero-field constants that determine the separation of
the J levels are obtained (in MHz):

λ∗ = 9303.08, A = −3822.14.

As we shall see in due course, later studies of the ortho species enabled the two
contributions to λ∗ to be separated. We will then also compare the experimental val-
ues of the constants with those obtained from ab initio calculations. Two final points
concerning these studies of para-H2 are worth making. First, the spectra shown in
figure 8.20 include �MJ = 0 transitions, particularly at the centre where their line
shape is anomalous, the reasons for which are discussed by Lichten [35]. Second, it
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Figure 8.20. Magnetic resonance spectrum of H2 in its c 3�u, v = 0, N = 2 state. The top
spectrum arises from the J = 3 ← 2 transition, and the bottom from J = 2 ← 1. Lines marked ∗

arise from �MJ = ± 0 transitions, the remainder obeying the �MJ = ±1 selection rule [35].

is instructive to calculate the Zeeman energies in high magnetic fields, up to 10 kG.
The effect of a strong magnetic field is to decouple the electron spin S from the
molecular framework, so that ultimately the Zeeman levels separate into three groups
characterised by the three allowed values of MS = 0,+1 and −1. This decoupling
corresponds to the well-known Paschen–Back effect in atomic spectroscopy; we will
meet further examples later in this chapter.
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(e) Effective zero-field Hamiltonian for ortho-H2 ( 3�u) in a case (b) basis

Experimental studies of ortho-H2 in the N = 1 level of the c 3�u state were described
by Brooks, Lichten and Reno [42]. All of the interactions already described for para-
H2 are present, but in addition there is extensive magnetic hyperfine interaction. The
theory of this has been developed by Jette and Cahill [38], whose analysis forms the
basis of our treatment.

There are three separate contributions to the total magnetic hyperfine interaction,
namely, the Fermi contact term, the orbital hyperfine term, and the electron spin–nuclear
spin dipolar term:

Hhfs = HF + HIL + Hdip. (8.217)

We will deal with each of these in turn, calculating the matrix elements in a coupled
hyperfine basis, F = J + I.

(i)   

The Fermi contact hyperfine interaction is written in the form

HF = bFT1(S) · T1(I), (8.218)

where the Fermi contact constant bF is defined by

bF = 2µ0

3
gSgNµBµN

∫
ψ∗

elδ(r )ψel dr, (8.219)

where δ (r) is the Dirac delta function, and the integral represents the density of the
electronic wave function at the nucleus. The matrix elements of (8.218) in the hyperfine-
coupled case (b) basis set are derived as follows:

〈η,Λ; N , S, J, I, F,MF |bFT1(S ) · T1(I )|η,Λ; N ′, S, J ′, I, F ′,M ′
F 〉

= bFδMF M ′
F
δF F ′ (−1)J ′+F+I

{
I J ′ F
J I 1

}
〈N , S, J‖T 1(S )‖N ′, S, J 〉〈I‖T1(I)‖I 〉

= bFδMF M ′
F
δF F ′δN N ′ (−1)J ′+F+I

{
I J ′ F
J I 1

}{
J S N
S J ′ 1

}
(−1)J+N+1+S

× {(2J ′ + 1)(2J + 1)}1/2{S(S + 1)(2S + 1)I (I + 1)(2I + 1)}1/2. (8.220)

The matrix elements off-diagonal in J by 1 are important, because the hyperfine inter-
action is comparable with the electron spin splitting.

(ii)   

The orbital hyperfine interaction is written in the form

HIL = a T1(L) · T1(I ), (8.221)
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where the constant a is defined by

a = 2gNµBµN (µ0/4π)
∑

j

〈η,Λ|1/r3
j N |η,Λ〉; (8.222)

r j N measures the position of electron j with respect to nucleus N ; its expectation value
can be calculated from the electronic wave function.

The matrix elements of (8.221) in the coupled–hyperfine case (b) basis are calcu-
lated in a similar manner to that described for the Fermi contact interaction. First we
deal with the coupling of the N, S, J, I, F angular momenta:

〈η,Λ; N , S, J, I, F,MF |aT1(L) · T1(I)|η,Λ′; N ′, S, J ′, I, F ′,M ′
F 〉

= aδMF M ′
F
δFF ′ (−1)J ′+F+I

{
I J ′ F
J I 1

}
〈η,Λ; N , S, J‖T1(L)‖η,Λ′; N ′, S, J ′〉

×〈I‖T1(I )‖I 〉
= aδMF M ′

F
δFF ′ (−1)J ′+F+I

{
I J ′ F
J I 1

}
(−1)J ′+N+1+S{(2J ′ + 1)(2J + 1)}1/2

×
{

J N S
N ′ J ′ 1

}
〈η,Λ; N ,Λ‖T1(L)‖η,Λ′; N ′,Λ′〉{I (I + 1)(2I + 1)}1/2.

(8.223)

We have already met the matrix element of T1(L) in equation (8.213) and, if we again
restrict ourselves to the important matrix elements diagonal in N andΛ, we can make
use of our earlier results to obtain the required matrix elements of the orbital hyperfine
interaction:

〈η,Λ; N , S, J, I, F,MF |aT 1(L) · T 1(I )|η,Λ; N , S, J ′, I, F,MF 〉
= a(−1)J ′+F+I

{
I J ′ F
J I 1

}
(−1)J ′+N+1+S{(2J ′ + 1)(2J + 1)}1/2

{
J N S
N J ′ 1

}
×〈η,Λ; N ,Λ||T 1(L)||η,Λ; N ,Λ〉{I (I + 1)(2I + 1)}1/2

= a(−1)J ′+F+I

{
I J ′ F
J I 1

}
(−1)J ′+N+1+S{(2J ′ + 1)(2J + 1)}1/2

{
J N S
N J ′ 1

}

× (−1)N−Λ
(

N 1 N
−Λ 0 Λ

)
(2N + 1)Λ{I (I + 1)(2I + 1)}1/2. (8.224)

As we mentioned above for the Fermi contact interaction, it is important to retain the
matrix elements off-diagonal in J because their effects are significant.

(iii)  --   

The dipolar hyperfine interaction is a through-space interaction of the electron and
nuclear spin magnetic moments. As such, it is similar to the nuclear spin–nuclear spin
dipolar interaction discussed earlier in connection with the H2 molecule in its ground
electronic state. We shall meet the dipolar hyperfine interaction in many examples
described later, so at the risk of seeming somewhat pedantic and repetitive, we here
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describe the details of the derivation of the electron–nuclear dipolar Hamiltonian in
irreducible tensor form.

The classical expression for the interaction energy of two magnetic moments µS

and µN is given by

E = µ0

4π

{
µS · µN

r3
− 3(µS · r )(µN · r )

r5

}
(8.225)

where r is the radius vector from µS to µN and r is the distance between the two mo-
ments. The quantum mechanical version of (8.225) is obtained simply by substituting

µS = −gSµB S, µN = gNµN I (8.226)

yielding the dipolar interaction Hamiltonian

Hdip = −gSµB gNµN
µ0

4π

{
I · S

r3
− 3(I · r )(S · r )

r5

}
. (8.227)

Note that this is similar to the Hamiltonian describing the dipolar interaction of two
nuclear magnetic moments, presented in equation (8.9), but is opposite in sign. Using
the results derived in the first part of appendix 8.1, we see that the dipolar Hamiltonian
(8.227) may be written as a cartesian tensorial operator:

Hdip = [Sx , Sy, Sz]


Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz





Ix

Iy

Iz


 . (8.228)

We will discuss the details of the cartesian components of the second-rank tensor T in
due course.

We now wish to reformulate the problem using spherical rather than cartesian
tensors. It is by no means obvious that an equivalent form of the operator (8.227) is

Hdip = −
√

10gSµB gNµN (µ0/4π)T1(I ) · T1(S,C2), (8.229)

where the spherical components of the new tensor T1(S,C2) are defined by

T1
q (S,C2) = −

√
3
∑
q1q2

(−1)qT1
q1

(S) T2
q2

(C )

(
1 2 1
q1 q2 −q

)
(8.230)

where

T2
q2

(C ) = 〈η,Λ|C2
q2

(θ, φ)(r−3)|η,Λ〉. (8.231)

The components C2
q2

(θ, φ) are spherical harmonics, with the angles θ and φ defined in
figure 8.52, shown in appendix 8.1. Equation (8.229) is similar to (8.10), except that
we have chosen to couple the vectors differently because of the basis set used in the
present problem. Clearly the components of the cartesian tensor T are related to those
of the spherical tensor T2(C ); these relationships are derived in appendix 8.2.
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We now examine the matrix elements of (8.229) in our case (b) basis. The nuclear
spin dependence is readily evaluated:

〈η,Λ; N , S, J, I, F,MF |Hdip|η,Λ′; N ′, S, J ′, I, F ′,M ′
F 〉

=
√

30gSµB gNµN (µ0/4π)δMF M ′
F
δFF ′ (−1)J ′+F+I+1

{
I J ′ F
J I 1

}
×〈η,Λ; N , S, J‖T1(S,C2)‖η,Λ′; N ′, S, J ′〉〈I‖T1(I )‖I 〉

=
√

30gSµB gNµN (µ0/4π)δMF M ′
F
δFF ′ (−1)J ′+F+I+1

{
I J ′ F
J I 1

}
× {I (I + 1)(2I + 1)}1/2〈η,Λ; N , S, J‖T1(S,C2)‖η,Λ′; N ′, S, J ′〉. (8.232)

The complications lie in the remaining matrix elements of T1(S,C2). First we note a
result which we have used previously which deals with the coupling of N and S:

〈η,Λ; N ,%, S, J‖T1(S,C2)‖η′,Λ′; N ′,Λ′, S, J ′〉

= {(3)(2J + 1)(2J ′ + 1)}1/2




J J ′ 1
N N ′ 2
S S 1


 〈η,Λ; N ,Λ‖T2(C )‖η′,Λ′; N ′,Λ′〉

× {S(S + 1)(2S + 1)}1/2. (8.233)

In order to proceed further, and to evaluate the remaining matrix element in (8.233),
we must now take note of the fact that Λ is a signed quantity and therefore use the
parity-conserving combinations introduced earlier:

|η; N ,Λ,+〉 = 1√
2
{|+1〉 + (−1)N |−1〉},

(8.234)

|η; N ,Λ,−〉 = 1√
2
{|+1〉 − (−1)N |−1〉}.

With these functions as bases, and with the neglect of matrix elements off-diagonal in
N , we have the following results:

〈η; N ,Λ,+‖T 2(C )‖η; N ,Λ,+〉 = (−1)N−Λ (2N + 1)

{(
N 2 N
−1 0 1

)〈
T 2

0 (C )
〉
η

+ (−1)N

(
N 2 N
−1 2 −1

)〈
T 2

2 (C )
〉
η

}
, (8.235)

〈η; N ,Λ,−‖T 2(C )‖η; N ,Λ,−〉 = (−1)N−Λ (2N + 1)

{(
N 2 N
−1 0 1

)〈
T 2

0 (C )
〉
η

− (−1)N

(
N 2 N
−1 2 −1

)〈
T 2

2 (C )
〉
η

}
. (8.236)

We can relate the components of T2(C ) in the above equations to the constants c and



444 Molecular beam magnetic and electric resonance

d given by Jette and Cahill [38] by noting the following identities:

〈
T 2

0 (C )
〉 = gSµB gNµN (µ0/4π)

(
4π

5

)1/.2

〈r−3Y20(θ, φ)〉

= 1

2
gSµB gNµN (µ0/4π)

〈
(3 cos2 θ − 1)

r3

〉
= 1

3
c,

(8.237)〈
T 2

2 (C)
〉 = gSµB gNµN (µ0/4π)

(
4π

5

)1/2

〈r−3Y22(θ, φ)〉

= 3

2
√

6
gSµB gNµN (µ0/4π)

〈
sin2 θ

r3

〉
= − d√

6
.

Our results agree with those of Jette and Cahill if gS = 2.
We are now in a position to apply our results to the fine and hyperfine structure

of the N = 1 level of ortho-H2, which was studied experimentally by Brooks, Lichten
and Reno [42]. There are seven basis states to consider:

N = 1: J = 2, F = 3, 2, 1; J = 1, F = 2, 1, 0; J = 0, F = 1.

For the zero-field problem F remains a good quantum number, but J is not because
of the hyperfine mixing. The spin–spin, spin–orbit and spin–rotation energies have
already been listed in table 8.6. The complete zero-field energy matrix, including the
hyperfine terms, is as follows.

J = 2 J = 1 J = 0

F = 3 F = 2 F = 1 F = 2 F = 1 F = 0 F = 1

J = 2 F = 3 m11 0 0 0 0 0 0
F = 2 0 m22 0 m24 0 0 0
F = 1 0 0 m33 0 m35 0 0

J = 1 F = 2 0 m42 0 m44 0 0 0
F = 1 0 0 m53 0 m55 0 m57

F = 0 0 0 0 0 0 m66 0

J = 0 F = 1 0 0 0 0 m75 0 m77

m11 = λ0/15 −√
6λ2/20 + γ + A/2 + bF + a/2 + x/5

m22 = λ0/15 −√
6λ2/20 + γ + A/2 − bF/2 − a/4 − x/10

m33 = λ0/15 −√
6λ2/20 + γ + A/2 − 3bF/2 − 3a/4 − 3x/10

m44 = −λ0/3 +√
6λ2/4 − γ − A/2 + bF/2 + a/4 − x/2

m55 = −λ0/3 +√
6λ2/4 − γ − A/2 − bF/2 − a/4 + x/2

m66 = −λ0/3 +√
6λ2/4 − γ − A/2 − bF − a/2 + x
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m77 = 2λ0/3 −√
6λ2/2 − 2γ − A

m24 = m42 = (
√

3)bF/2 − a(
√

3)/4 − 3x/(
√

75)
(8.238)

m35 = m53 = (
√

15)bF/6 − a(
√

15)/12 − x/(
√

15)

m57 = m75 = 2bF/(
√

3) − a/(
√

3) + x/(
√

3)

In these matrix elements x = (c/3) − d .
Given values of the constants appearing in the expressions for the matrix elements

listed in (8.238), we can calculate the energies of the hyperfine levels for N = 1 and
hence calculate the transition frequencies. This we shall now do, but note that this is
the easy direction in which to proceed; Brooks, Lichten and Reno [42] had the more
difficult problem of determining the constants from the experimental data. Their values
[42] are as follows (MHz):

A = −3717.120, λ0 − 3
√

6λ2/4 = −7171.866, bF = 450.479,

a = 26.6, c − 3d = 104.177.

The calculated energy levels and the observed transitions are illustrated in figure 8.21;
the agreement between experiment and theory was found to be excellent for N = 1.
It was also clear that transitions involving two different vibrational levels (probably
v = 0 and 1) were being observed, and that it was possible to separate them.

Comparing results for the N = 2 levels of para-H2 and the N = 1 levels of ortho-H2

it is clear that, in principle,λ0 andλ2 can be separated; the values (in MHz) thus obtained

−

−

−

−

Figure 8.21. Fine and hyperfine structure of the N = 1 level of ortho-H2, and the observed
transitions.
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are λ0 = 1420.806, λ2 = 4483.911. There is, however, a problem with this procedure
in that one would hope to obtain the same value of the spin–orbit coupling constant,
A, from both rotational levels, but the actual values differed by about 2.5%. Brooks,
Lichten and Reno [42] pointed out that there is nothing in the experimental data to
identify the vibrational level involved in the spectra, and it may not be the same level in
the N = 1 and N = 2 studies, which were made several years apart. Relevant questions
concerning the relative predissociation rates of different vibrational levels of the excited
electronic state are complicated. There will, however, be a vibrational dependence of
the parameters determined from the magnetic resonance spectra. An equally plausible
explanation, since H2 is such a light molecule, is that the difference between the two
A values is caused by centrifugal distortion effects.

Many theoretical calculations of the molecular constants have been described,
using a variety of models for the electronic structure. We do not intend to go into the
details here, except to note that one of the simplest models of the excited electronic
states of H2 describes them as an H+

2 core coupled with a Rydberg electron. In this
connection it is significant to note that the Fermi contact interaction constant bF for
the c 3�u state of H2 is very close to the value determined for H+

2 itself, described in
chapter 11.

Figure 8.16 shows that the next excited 3�u state of H2 is the d state. This has
been studied by means of some elegant double resonance studies, which are described
in detail in chapter 11.

8.3.2. N2 in the A 3�+
u state

(a) Introduction

Molecular nitrogen, N2, is one of the most extensively studied diatomic molecules and
optical spectroscopy has provided a wealth of information about its ground and excited
electronic states. Molecular beam magnetic resonance studies of N2 in its ground state
have yielded information about 14N nuclear spin dipolar and quadrupole interactions.
Similar studies of N2 in its electronically excited A 3�+

u state were described in two
very extensive papers by Freund, Miller, De Santis and Lurio [43] (paper I) and De
Santis, Lurio, Miller and Freund [44] (paper II). We will describe their results and
analysis in detail, but first note in passing that, strictly speaking, the lowest excited
triplet state should be labelled the a state; the label A has been used by all concerned
in the past, so we will continue to do so.

The electron configurations of the ground (X 1�+
g ) and lowest excited (A 3�+

u )
states may be written in terms of molecular orbital theory as

X 1�+
g : (1s σg)2(1s σ ∗

u )2(2s σg)2(2s σ ∗
u )2(2p πu)4(2pσg)2

A 3�+
u : (1s σg)2(1s σ ∗

u )2(2s σg)2(2s σ ∗
u )2(2p πu)3(2pσg)2(2p π∗

g)1.

The A state lies 50 203.6 cm−1 above the ground state. The next excited state is a
B 3�g state and the B − A electronic band system, which is known as the first positive
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system, was studied by a number of workers [45, 46]. Benesch, Vanderslice, Tilford
and Wilkinson [47] re-analysed the available data to produce the best set of vibrational
constants for the A state, which are (in cm−1)

ωe = 1460.518, ωexe =13.8313, ωe ye =5.999 × 10−3, ωeze = −1.853 × 10−3.

Information about the rotational and fine-structure constants was also obtained.
The A 3�+

u state has a radiative lifetime of 2 s, and is therefore long-lived on the
time scale of the molecular beam experiments, where it was produced by electron impact
on a beam of N2 diluted with Ar, cooled to liquid nitrogen temperature. Calculations
of the Franck–Condon factors show that direct excitation of the A state is expected
to populate many vibrational levels, and a major feature of the magnetic resonance
studies was that spectra involving the first thirteen vibrational levels (v= 0 to 12) were
obtained. The accurate and extensive determination of the vibrational constants, given
above, was therefore of considerable importance.

(b) Experimental studies and results

The experimental studies were performed using a conventional molecular beam mag-
netic resonance machine with dipole A and B fields separated by a homogeneous C
field containing a radiofrequency ‘hairpin’ device to induce transitions in the frequency
range 0 to 150 MHz. The electronically excited N2 molecules were detected by means
of an Auger detector coupled to an electron multiplier; the distance from the electron
impact region to the final beam detector was 50 cm. In paper I [43] pure magnetic
resonance transitions (�F = 0) were reported, but in paper II [44] direct transitions
between nuclear hyperfine levels (�F = ±1) were described.

In order to understand the observed spectra it is first necessary to consider the
importance of nuclear spin in determining the nature of the allowed rotational levels.
Each 14N nucleus has spin I = 1, and in the homonuclear N2 system the individual
spins are coupled to form a total nuclear spin IT of 2, 1 or 0. The most appropriate
basis system for 3�+

u N2 is Hund’s case (b) coupling:

N + S = J, J + IT = F.

Consideration of symmetry with respect to nuclear interchange shows, however, that
there are restrictions on the allowed combinations of N and IT . Even values of IT (0 or
2) correspond to ortho-N2, and can only combine with odd values of N . The odd value
of IT (1), which corresponds to para-N2, can only combine with even values of N . This
association is the reverse of that which occurs in the ground state of N2 because of the
u character of the excited state. The situation for the first four rotational levels (N = 0
to 3) is summarised schematically in figure 8.22; this pattern, of course, applies for all
vibrational levels.

In an applied magnetic field each F level shown in figure 8.22 splits into 2F + 1
components, each characterised by a different value of MF . The first magnetic
resonance paper I [43] described transitions obeying the selection rules �F = 0,
�MF = ±1, whilst paper II [44] dealt with �F = ±1, �MF = 0, ±1 transitions.
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IT

Figure 8.22. Schematic energy level diagram for the first four rotational levels of N2 in its
A 3�+

u state, showing the nuclear hyperfine states which are allowed to combine with each N
level. Relative vertical spacings are not drawn to scale [43].
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It is clearly time to consider the effects of an applied magnetic field in more
detail.

(c) Zeeman effect

The simplest possible description of the Zeeman interaction is a single-term effective
Hamiltonian describing the magnetic interaction between the applied field and the
electron spin magnetic moment,

HZ = gS µB T1
0(B) T1

0(S ). (8.239)

The direction of the magnetic field defines the space-fixed p = 0 (or Z ) direction.
Equation (8.239) represents a very simplified version, in that it neglects the nuclear and
rotational Zeeman effects, as well as the second-order effects of spin–orbit coupling,
none of which are negligible. Nevertheless (8.239) will allow us to derive theoretical
values for the first-order effective g-factors, for comparison with the experimental
spectra [43]. The required matrix elements of (8.239) in a case (b) hyperfine-coupled
basis are as follows:

〈η, N , S, J, IT , F,MF |gS µB T1
0(B)T1

0(S)|η, N , S, J ′, IT , F ′,MF 〉

= gS µB BZ (−1)F−M

(
F 1 F ′

−M 0 M

)
〈η, N , S, J, IT , F‖T1(S )‖η, N , S, J ′, IT , F ′〉

= gS µB BZ (−1)F−M

(
F 1 F ′

−M 0 M

)
(−1)F ′+J+1+I {(2F ′ + 1)(2F + 1)}1/2

×
{

F J IT

J ′ F ′ 1

}
〈η, N , S, J‖T1(S)‖η, N , S, J ′〉

= gS µB BZ (−1)F−M

(
F 1 F ′

−M 0 M

)
(−1)F ′+J+1+I {(2F ′ + 1)(2F + 1)}1/2

×
{

F J IT

J ′ F ′ 1

}
(−1)J+N+1+S{(2J ′ + 1)(2J + 1)}1/2

{
J S N
S J ′ 1

}
× {S(S + 1)(2S + 1)}1/2. (8.240)

Equation (8.240) shows that neither J nor F remains a good quantum number in the
presence of a magnetic field, and the Zeeman effect will become highly nonlinear as
the Zeeman energy becomes comparable with the hyperfine and spin coupling energy.
However, we are interested in the first-order effective g-factors that will be appropriate
at low magnetic fields and we therefore confine our attention at present to the diagonal
elements of (8.240). Expanding the 3- j and 6- j symbols, and putting S = 1 and gS = 2,
we obtain the following result:

gF (N , J, IT , F)= {F(F + 1) + J (J + 1) − IT (IT + 1)}{J (J + 1) − N (N + 1) + 2}
2F(F + 1)J (J + 1)

.

(8.241)

The theoretical first-order g-factors calculated from this equation for the lowest
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g-factor
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Figure 8.23. Low magnetic field spectrum of N2 A 3�+
u , showing effective g-factors. The upper

trace was obtained at 3.55 G and the lower trace at 1.90 G [43].

rotational levels are listed in table 8.8. These predictions can be compared with the
experimental spectra described in paper I and shown in figure 8.23. It is clear that
resonances for a large number of N , J , F levels can be unambiguously identified. The
observed sequence of resonances with g-factors less than 0.2 arises from levels with
increasing values of N . The results constituted the first definitive identification of the
�F = 0 magnetic resonance spectrum. The authors were able to go much further by
examining magnetic resonance spectra at intermediate field strengths, and thereby to
make approximate determinations of the hyperfine constants. However, in paper II they
described new measurements in which the line width was reduced to approximately
10 kHz. They were able to study direct hyperfine transitions (�F = ±1) which pro-
vide much more accurate information for an analysis of the hyperfine interactions. We
now consider the appropriate theory needed to understand the additional experimental
results and their analysis.
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Table 8.8. Calculated first-order g-factors for the lowest N ,
J , F levels of N2 A 3�+

u

N J IT gJ F gF

0 1 1 — 2 1.000
— 1 1.000
— 0 —

1 1 0 1.000 1 —
1 2 0 1.000 2 —
1 0 0 — 0 —
1 1 2 — 3 0.333

— 2 0.167
— 1 −0.500

1 2 2 — 4 0.500
— 3 0.500
— 2 0.500
— 1 0.500
— 0 —

1 0 2 — 2 —

2 2 1 — 3 0.222
— 2 0.278
— 1 0.500

2 3 1 — 4 0.500
— 3 0.611
— 2 0.889

2 1 1 — 2 −0.500
— 1 −0.500
— 0 —

3 3 0 0.167 3 —
3 4 0 0.500 4 —
3 2 0 −0.667 2 —
3 3 2 — 5 0.100

— 4 0.108
— 3 0.125
— 2 0.167
— 1 0.333

3 4 2 — 6 0.333
— 5 0.367
— 4 0.425
— 3 0.541
— 2 0.833

3 2 2 — 4 −0.333
— 3 −0.333
— 2 −0.333
— 1 −0.333
— 0 —
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(d) Electron and nuclear spin interactions

(i)  

In a detailed consideration of the full Hamiltonian, De Santis, Lurio, Miller and
Freund [44] in paper II show that the required effective Hamiltonian for a given vibra-
tional level v can be written as the sum of a part describing the rotational motion with
electron spin interactions, and a part describing the magnetic and electric hyperfine
interactions. The first part may be written:

Heff = Hrot + Hss + Hsr. (8.242)

The rotational Hamiltonian, including the effects of centrifugal distortion, is given by

Hrot = BvN2 − DvN4. (8.243)

The electron spin-spin interaction term was written in paper II as

Hss = 2 λv T2(S, S ) · T2(n,n) + λD [T2(S,S) · T2(n, n), N2]+ (8.244)

where n is the unit vector along the molecule-fixed z axis.
The second term in (8.244) describes the centrifugal correction to the spin–spin

interaction, where the subscript + denotes the anticommutator; we shall, however,
omit this term from further consideration since its effects were very small. It is more
convenient to take the spin–spin dipolar interaction term to have the form

Hss = −g2
Sµ

2
B (µ0/4π)

√
6T2(C) · T2(S1, S2) (8.245)

in order to remain consistent with our earlier treatment of H2 in its excited triplet state
(see also appendix 8.3.)

Finally in this part of the effective Hamiltonian, the spin–rotation interaction takes
the simple form

Hsr = γv T1(N) · T1(S). (8.246)

The magnetic hyperfine interaction is represented by the sum of two terms, HF

representing the Fermi contact interaction, and Hdip representing the electron spin-
nuclear spin dipolar interaction. They are written as follows:

HF = bF(v) T1(S) · T1(IT ). (8.247)

Hdip = −
√

10 gSµB gNµN (µ0/4π)T1(IT ) · T1(S,C2). (8.248)

Note that in both equations we take the total spin IT ; one would obtain the same
results for the matrix elements using individual nuclear spins. The form of the dipolar
interaction is the same as that used in our treatment of 3�u H2, given previously in
equation (8.229).

Three more terms involving nuclear spin remain to be considered. The most im-
portant of these is the nuclear electric quadrupole interaction, which we take to have
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the same form as in our earlier treatment of the D2 molecule, equation (8.22),

HQ = −e
∑

k=1,2

T2(∇Ek) · T2(Qk). (8.249)

As we shall see, each of these two terms, one for each nucleus, describes a second-rank
scalar interaction between the electric field gradient at each nucleus and the nuclear
quadrupole moment. De Santis, Lurio, Miller and Freund [44] included two other terms
which involve the nuclear spins. One is the direct dipolar coupling of the 14N nuclear
magnetic moments, an interaction which we discussed earlier in connection with the
magnetic resonance spectrum of D2; its matrix elements were given in equation (8.33).
The other is the nuclear spin–rotation interaction, also discussed in connection with
H2 and its deuterium isotopes. It is represented by the term

Hnsr = cI (v) T1(N) · T1(IT ). (8.250)

Both of these interactions are small in relation to the resolution obtained in the studies
of N2 in its 3�+

u state. The effect of the nuclear dipolar interaction was included as an
estimated correction, but was not actually determined in the spectroscopic analysis.

In summary, the effective Hamiltonian is the sum of seven terms,

Heff = Hrot + Hss + Hsr + HF + Hdip + HQ + Hnsr, (8.251)

given explicitly by equations (8.243), (8.245), (8.246), (8.247), (8.248), (8.249) and
(8.250). The spectral analysis would be fairly complex even if it was confined to a
single vibrational level. In fact De Santis, Lurio, Miller and Freund [44] were able to
disentangle the spectra of no fewer that thirteen different vibrational levels (v= 0 to
12), and to determine the values of the molecular constants for each of them. It was a
spectroscopic tour-de-force. In order to give a flavour of the spectral complexity, we
show a small section of the radiofrequency spectrum in figure 8.24, where resonances
from eight vibrational levels (v= 0 to 7) are assigned; they involve two different hy-
perfine transitions. It is, however, easier to discuss the observed spectra after we have
dealt with the spectroscopic theory which underpins the analysis. We therefore pro-
ceed to calculate the matrix elements and energy levels resulting from the effective
Hamiltonian (8.251).

(ii)      

We continue to use the case (b) hyperfine-coupled basis set used earlier. The matrix
elements of the first three terms in the effective Hamiltonian (8.251) do not involve the
nuclear spins and are therefore independent of, and diagonal in, the quantum number
F . The required matrix elements are now tabulated.

For the rotational Hamiltonian we have the simple result:

〈η, N , S, J |Hrot|η, N , S, J 〉 = BvN (N + 1) − DvN 2(N + 1)2 (8.252)

The matrix elements of the electron spin-spin interaction were discussed earlier in
connection with H2 in its 3�u state and we can make use of equation (8.197) to obtain
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32.8 33.0 33.2 33.4
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N = 2, IT = J = 2

F = 4−3

N = 1, IT = J = 2

Frequency / MHz

Figure 8.24. Section of the radiofrequency spectrum of N2 in its A 3�+
u state. The observed

resonances involve two different hyperfine transitions in two different rotational levels, and arise
from eight different vibrational levels, v= 0 to 7, as shown. The transitions are all�MF = 0 and
were recorded at a magnetic field of 150 mG [44].

the result

〈η,Λ; N , S, J,MJ |−g2
Sµ

2
B(µ0/4π)

√
6T2(S1, S2) · T2(C)| η′,Λ′; N ′, S, J,MJ 〉

= −
√

6(−1)J+N ′+S

{
S N ′ J
N S 2

}
〈η,Λ; N ,Λ‖(µ0/4π)g2

Sµ
2
B T2(C )‖η′,Λ′; N ′,Λ′〉

× 〈S ‖T2(S1, S2)‖S〉
= −

√
6(−1)J+N ′+S

{
S N ′ J
N S 2

}∑
q

〈η,Λ|(µ0/4π)g2
Sµ

2
BC2

q (θ12, φ12)
(
r−3

12

)|η′,Λ′〉

× 〈N , Λ‖D
(2)
.q (ω12)∗‖N ′,Λ′〉

√
5




S1 S1 1
S2 S2 1
S S 2


 (2S + 1)

× {S1(S1 + 1)(2S1 + 1)S2(S2 + 1)(2S2 + 1)}1/2. (8.253)

For a 3� state,Λ has the value 0, and we can choose to neglect the admixture of other
electronic states by putting q = 0 in equation (8.253). If we also insert the appropriate
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values of the electron spin quantum numbers in (8.253) we obtain the result:

〈η,Λ; N , S, J,MJ | − g2
Sµ

2
B(µ0/4π)

√
6T2(S1, S2) · T2(C)|η′,Λ; N ′, S, J,MJ 〉

= 2

3

√
30λv(−1)J+N ′+S

{
S N ′ J
N S 2

}
(−1)N

(
N 2 N ′

0 0 0

)
{(2N + 1)(2N ′ +1)}1/2.

(8.254)

As before, the parameter λv is defined by the identity

λv ≡ −(3/4)
〈
g2

Sµ
2
B(µ0/4π)C2

0 (θ12, φ12)r−3
12

〉
η
. (8.255)

If matrix elements off-diagonal in N are neglected, equation (8.254) yields the follow-
ing simple results for the energies of the three spin components of a given N level in
a case (b) 3� state:

J = N + 1: E = −2

3
λv

N

(2N + 3)

J = N : E = 2

3
λv (8.256)

J = N − 1: E = −2

3
λv

(N + 1)

(2N − 1)
.

However, equation (8.254) shows that there are matrix elements off-diagonal in N (i.e.
N mixes with N ± 2), so that (8.256) is of limited value. We discuss this aspect further
in due course.

The matrix elements of the spin–rotation interaction in a case (b) basis were also
presented in our discussion of para-H2 in its c 3�u state. They are diagonal in N , and
given by equation (8.189) as:

〈η,Λ; N , S, J,MJ |γvT1(N ) · T1(S)|η,Λ; N , S, J,MJ 〉
= γv(−1)N+J+S

{
S N J
N S 1

}
〈N‖T1(N)‖N 〉〈S‖T1(S)‖S〉

= γv(−1)N+J+S

{
S N J
N S 1

}
{N (N + 1)(2N + 1)S(S + 1)(2S + 1)}1/2. (8.257)

We come now to the magnetic hyperfine interaction terms. Again we make use
of the results derived earlier for ortho-H2 in the c 3�u state. For the Fermi contact
interaction, from equation (8.220):

〈η,Λ; N , S, J, IT , F,MF |bFT1(S) · T1(IT )|η,Λ; N , S, J ′, IT , F ′,M ′
F 〉

= bFδMF M ′
F
δF F ′ (−1)J ′+F+IT

{
IT J ′ F
J IT 1

}
〈N , S, J‖T1(S)‖N , S, J ′〉〈IT ‖T1(IT )‖IT 〉

= bFδMF M ′
F
δF F ′ (−1)J ′+F+IT

{
IT J ′ F
J IT 1

}{
J S N
S J ′ 1

}
(−1)J+N+1+S

× {(2J ′ + 1)(2J + 1)}1/2{S(S + 1)(2S + 1)IT (IT + 1)(2IT + 1)}1/2. (8.258)

For the electron spin–nuclear spin dipolar interaction we use equations (8.232), (8.233)
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and (8.248) so that we obtain:

〈η,Λ; N , S, J, IT , F,MF |Hdip|η,Λ′; N ′, S, J ′, IT , F ′,M ′
F 〉

=
√

10gSµB gN µN (µ0/4π)δMF M ′
F
δF F ′ (−1)J ′+F+IT +1

{
IT J ′ F
J IT 1

}
× 〈η,Λ; N , S, J‖T1(S,C2)‖η,Λ′; N ′, S, J ′〉〈IT ‖T1(IT )‖IT 〉

=
√

10gSµB gNµN (µ0/4π)δMF M ′
F
δF F ′ (−1)J ′+F+IT +1

{
IT J ′ F
J IT 1

}
× {IT (IT + 1)(2IT + 1)}1/2〈η,Λ; N , S, J‖T1(S,C2)‖η,Λ′; N ′, S, J ′〉

=
√

30gSµB gNµN (µ0/4π)δMF M ′
F
δF F ′ (−1)J ′+F+IT +1

{
IT J ′ F
J IT 1

}
× {IT (IT + 1)(2IT + 1)}1/2{(2J + 1)(2J ′ + 1)}1/2{S(S + 1)(2S + 1)}1/2

×



J J ′ 1
N N ′ 2
S S 1


 〈η,Λ; N ,Λ‖T 2(C)‖η′,Λ′; N ′,Λ′〉. (8.259)

Further development is simpler than it was before because we do not have the problem
of Λ-doubling in a � state. The remaining reduced matrix element in (8.259) may
be simplified by confining attention to the 3�+

u state (i.e. putting Λ= 0 and ignoring
matrix elements off-diagonal in Λ). With this simplification we use the result:

〈η, N ,Λ = 0‖T 2(C)‖η, N ′,Λ = 0〉
= (−1)N {(2N + 1)(2N ′ + 1)}1/2

(
N 2 N ′

0 0 0

) 〈
T 2

0 (C)
〉
η
. (8.260)

In this equation we note that

〈
T2

0(C)
〉
η

= 〈
C2

0 (θ, φ)r−3
〉
η
, (8.261)

and for the axial component of the dipolar hyperfine interaction we use the notation

tv = gSµB gNµN (µ0/4π)〈η,Λ; v|C2
0 (θ, φ)r−3|η,Λ; v〉; (8.262)

v denotes any specific vibrational level in the present problem.
We now come to the nuclear electric quadrupole interaction, and draw upon the

results derived earlier for D2 in its ground state. The present problem is marginally more
complicated because of presence of electron spin. We note first that if the quadrupole
interaction is given by (8.249), i.e.

HQ = −e
∑

k=1,2

T2(∇Ek) · T2(Qk), (8.263)
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the following steps take note of the couplings of IT with J, and N with S to form J:

〈η,Λ; N , S, J, I1, I2, IT , F |HQ|η,Λ′; N ′, S, J ′, I1, I2, I ′
T , F〉

= −e
∑

k

(−1)J ′+IT +F

{
J IT F
I ′

T J ′ 2

}
〈η,Λ; N , S, J‖T 2(∇Ek)‖η′,Λ′; N ′, S, J ′〉

×〈I1, I2, IT ‖T 2(Qk)‖I1, I2, I ′
T 〉

= −e
∑

k

(−1)J ′+IT +F

{
J IT F
I ′

T J ′ 2

}
(−1)J ′+N+2+S

× {(2J ′ + 1)(2J + 1)}1/2

{
J N S
N ′ J ′ 2

}
〈η,Λ; N ,Λ‖T 2(∇Ek)‖η′,Λ′; N ′,Λ′〉

× 〈I1, I2, IT ‖T 2(Qk)‖I1, I2, I ′
T 〉. (8.264)

The nuclear spin reduced matrix element, summed over k, was given earlier in (8.25)
to (8.27). The result is

〈I1, I2, IT ‖
∑

k=1,2

T 2(Qk)‖I1, I2, I ′
T 〉

= (−1)I1+I2+2{(2IT + 1)(2I ′
T + 1)}1/2

[
(−1)I ′

T

{
IT I1 I2

I1 I ′
T 2

}
〈I1‖T 2(Q1)‖I1〉

+ (−1)IT

{
IT I2 I1

I2 I ′
T 2

}
〈I2‖T 2(Q2)‖I2〉

]
. (8.265)

This equation may be simplified by making use of the equivalence of the nuclei
(I1 = I2 = IN ), by neglecting matrix elements off-diagonal in IT , and by noting the
definition of the nuclear quadrupole moment QN , which is given by,

〈IN ‖T 2(QN )‖IN 〉 =
(

QN

2

)(
IN 2 IN

−IN 0 IN

)−1

. (8.266)

Equation (8.265) then becomes

〈I1, I2, IT ‖
∑

k=1,2

T2(Qk)‖I1, I2, IT 〉

= (−1)2IN +IT QN (2IT + 1)

{
IN IT IN

IT IN 2

}(
IN 2 IN

−IN 0 IN

)−1

. (8.267)

The other reduced matrix element in equation (8.264) is evaluated in the following
manner; first we note that

〈η,Λ; N ,Λ‖T 2(∇E)‖η,Λ′; N ′,Λ′〉
= 〈η,Λ; N ,Λ‖

∑
q

D
(2)
.q (ω)∗T 2

q (∇E)‖η′,Λ′; N ′,Λ′〉

=
∑

q

(−1)N−Λ{(2N + 1)(2N ′ + 1)}1/2

(
N 2 N ′

−Λ q Λ′

)
〈η,Λ|T 2

q (∇E)|η′,Λ′〉.

(8.268)
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Now we note that Λ= 0 for a � state, and neglect the mixing of excited electronic
states by putting q = 0. We also note the definition of the electric field gradient at the
nucleus, q0, given in equation (8.28). With these simplifications the result is

〈η,Λ; N ,Λ‖T2(∇E )‖η,Λ; N ′,Λ〉
= −(−1)N {(2N + 1)(2N ′ + 1)}1/2

(
N 2 N ′

0 0 0

)
(q0/2). (8.269)

Gathering together the above results, retaining only matrix elements off-diagonal
in J , and putting I1 = I2 = 1, we obtain the final result for the quadrupole intera-
ction:

〈η,Λ = 0; N , J, IT , F |HQ|η,Λ = 0; N ′, J ′, IT , F〉
=

(
eq0 Q

2

)
(−1)F+J ′+N {30(2J ′ + 1)(2J + 1)}1/2(2IT + 1){(2N + 1)(2N ′ + 1)}1/2

×
{

J IT F
IT J ′ 2

}{
J N 1
N ′ J ′ 2

}{
IT 1 1
1 IT 2

}(
N 2 N ′

0 0 0

)
. (8.270)

The final term in the effective Hamiltonian describes the nuclear spin–rotation
interaction and its matrix elements are relatively straightforward:

〈η,Λ; N , S, J, IT , F |cI (v)T 1(N ) · T 1(IT )|η,Λ; N , S, J ′, IT , F〉
= cI (v)(−1)J ′+F+IT

{
IT J ′ F
J IT 1

}
〈η,Λ; N , S, J‖T 1(N)‖η,Λ; N , S, J ′〉

× 〈IT ‖T 1(IT )‖IT 〉
= cI (v)(−1)J ′+F+IT

{
IT J ′ F
J IT 1

}
(−1)J ′+N+1+S{(2J ′ + 1)(2J + 1)}1/2

×
{

J N S
N J ′ 1

}
{N (N + 1)(2N + 1)IT (IT + 1)(2IT + 1)}1/2. (8.271)

(iii)       

We now come to the problem of relating the fairly complex theoretical expressions
given in the previous subsection to the experimental transition frequencies. A selection
of the experimental data is presented in table 8.9. Measurements were made in four
different rotational levels as shown in the table, which should be read in conjunction
with figure 8.22. In every case the measurements were made for levels in which J = IT ,
and in most cases involved vibrational levels from v= 0 to 12. They were performed
in a very small magnetic field (150 mG), so that the �MF = 0 components observed
were essentially superimposed.

In essence there are five molecular constants to be determined for each vibrational
level; they are summarised as follows, where we present our notation as well as that



Molecular beam magnetic resonance of electronically excited molecules 459

Table 8.9. Selection of hyperfine transition frequencies involving the lower
rotational levels of N2 in its A 3�+

u state [43, 44]. Transition frequencies for v= 0
and 10 are shown

IT N J F �F = ± 1 f0(MHz) f10(MHz)

2 3 4 6, 5, 4, 3, 2

3 5, 4, 3, 2, 1

2 4, 3, 2, 1, 0 4 ↔ 3 40.851 39.118

3 ↔ 2 31.720 —

2 ↔ 1 — 21.097

2 1 2 4, 3, 2, 1, 0 4 ↔ 3 34.449 31.855

3 ↔ 2 25.022 23.350

1 3,2,1

0 2

1 2 3 4, 3, 2

2 3, 2, 1

1 2, 1, 0 2 ↔ 1 33.358 31.390

1 0 1 2, 1, 0 2 ↔ 1 20.846 18.532

originally used by De Santis, Lurio, Miller and Freund [44].

electron spin–spin: λv (4/3)λv
Fermi contact: bF,v αv

dipolar hyperfine: tv βv

quadrupole constant: eq0 Qv Qv

electron spin–rotation: γv γv

nuclear spin–rotation: cI,v pv

The electron spin–spin constant λv is not determined directly through the radiofre-
quency spectrum, but nevertheless plays a very important role, as does also the ro-
tational constant Bv . In both cases the required values were taken from the optical
electronic spectrum.

It is instructive to consider in quantitative detail the analysis of a particular hy-
perfine transition; a simple example would seem to be the F = 2 ↔ 1 transition in the
level IT = 1, N = 0, J = 1, which is observed at a frequency of 20.846 MHz for the
v= 0 level. The expressions for the matrix elements of the magnetic and electric hy-
perfine terms, (8.258), (8.259) and (8.270), show that for N =0 only the Fermi contact
interaction is non-zero and the energies of the hyperfine levels are

F = 2: E = bF, F = 1: E = −bF.

The transition frequency would be equal to 2bF; De Santis, Lurio, Miller and Freund
[44] give bF = 13.145 MHz for the v= 0 level, so that the predicted transition frequency
would be 26.290 MHz.



460 Molecular beam magnetic and electric resonance

The observed frequency is 20.846 MHz, so what is the origin of the large discrep-
ancy? The answer is that the electron spin–spin interaction mixes levels N with N ± 2,
and the dipolar and quadrupole interactions then come into play. The spin-spin mixing
may be represented by the following 2 × 2 matrix.

|IT = 1, N = 0, J = 1〉 |IT = 1, N = 2, J = 1〉
〈IT = 1, N = 0, J = 1| 0 4λ0/3

√
2

〈IT = 1, N = 2, J = 1| 4λ0/3
√

2 6B0−2λ0/3

The values of the constants used were λ0 = − 1.768, B0 = 1.4366 cm−1 and if these
are substituted into the above matrix we obtain the following results for the eigenvalues
(in cm−1) and eigenvectors:

E1 = −0.1617: #1 = 0.9917|N = 0, J = 1〉 + 0.1282|N = 2, J = 1〉
(8.272)

E2 = 9.6653: #2 = 0.1282|N = 0, J = 1〉 − 0.9917|N = 2, J = 1〉.

The admixture is, in this example, relatively small but it has important consequences
for the hyperfine splitting in the state #1; we are now interested in the expectation
value,

〈#1|HF + Hdip + HQ|#1〉 = 0.9835〈N = 0, J = 1|HF + Hdip + HQ|N = 0, J = 1〉
+ 0.2543〈N = 0, J = 1|HF + Hdip + HQ|N = 2, J = 1〉
+ 0.0164〈N = 2, J = 1|HF + Hdip + HQ|N = 2, J = 1〉.

(8.273)

Although only the Fermi contact interaction contributes to the first of these three matrix
elements, all three hyperfine interactions contribute to the other two, and they are
dependent on the value of the quantum number F . Expansion of the relevant equations
gives the following results, all for IT = 1,
For F = 2:

〈N = 0, J = 1|HF + Hdip + HQ|N = 0, J = 1〉 = bF,

〈N = 0, J = 1|HF + Hdip + HQ|N = 2, J = 1〉 = t/
√

2, (8.274)

〈N = 2, J = 1|HF + Hdip + HQ|N = 2, J = 1〉 = − bF/2 + t + eq0 Q(
√

3/8
√

35).

For F = 1:

〈N = 0, J = 1|HF + Hdip + HQ|N = 0, J = 1〉 = −bF,

〈N = 0, J = 1|HF + Hdip + HQ|N = 2, J = 1〉 = −t/
√

2, (8.275)

〈N = 2, J = 1|HF + Hdip + HQ|N = 2, J = 1〉 = bF/2 − t − eq0 Q(
√

15/8
√

7).

We now combine these results with (8.273) to obtain the total hyperfine energies of the
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two states, as follows:

F = 2: E = (0.9835)(bF) + (0.2543)(0.7071t) + (0.0164)

× (−0.5bF + t + 0.0366eq0 Q)

= 0.9753bF + 0.1962t + 0.0006eq0 Q
(8.276)

F = 1: E = (0.9835)(−bF) − (0.2543)(0.7071t) + (0.0164)

× (0.5bF − t − 0.1830eq0 Q)

= −0.9753bF − 0.1962t − 0.0030eq0 Q.

De Santis, Lurio, Miller and Freund [44] give the following values of the constants for
N2 in the v= 0 level:

bF = 13.145 MHz, t = −12.660 MHz, eq0 Q = −2.518 MHz.

Substituting these values in (8.276) we obtain the following values for the hyperfine
energies, and the frequency of the hyperfine transition (all in MHz):

F = 2: E = 10.335; F = 1: E = −10.329; freq(F = 2 ↔ F = 1) = 20.664;

freq (exp) = 20.846.

The agreement between experiment and theory is now much better than before, the
discrepancy having been reduced from 5.444 to 0.182 MHz, but it is still poor com-
pared with the experimental accuracy which is quoted as ±0.01 MHz. However, our
theory is still approximate because the electron spin–spin interaction mixes N = 2 with
N = 4, which introduces more hyperfine matrix elements off-diagonal in both N and
J . The nuclear spin–rotation term, equation (8.271), does not contribute to the first-
order energy of the N = 0 level, and makes a negligible second-order contribution. We
will not pursue this analysis any further, our aim having been to illustrate the com-
plexity of the fitting process; moreover this was achieved for 13 different vibrational
levels.

One of the most interesting and important results of the study was to show how
the molecular constants change as the vibrational quantum number v increases. This
behaviour is presented in table 8.10. The electron spin–spin and rotational constant
values came, initially, from the analysis of the optical electronic spectrum [47], although
the values of the spin–spin constants for different vibrational levels were refined by the
analysis of the radiofrequency spectrum. The nuclear hyperfine parameters are obtained
solely from the magnetic resonance experiments. We will discuss the significance of
these constants in the following subsection.

(iv)     

The data presented in table 8.10 show that the vibrational dependence of the magnetic
hyperfine constants (from v= 0 to 12) is quite small, whereas the quadrupole coupling
constant exhibits a strong percentage variation. Direct calculation of the Fermi contact
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Table 8.10. Vibrational dependence of the molecular parameters
of N2 in the A 3�+

u state

v Bv (cm−1) λv (cm−1) bF (MHz) t (MHz) eq0 Q (MHz)

0 1.4366 −1.326 13.145 −12.660 −2.518

1 1.4274 −1.320 13.094 −12.644 −2.446

2 1.4091 −1.314 13.024 −12.626 −2.358

3 1.3905 −1.307 12.949 −12.606 −2.290

4 1.3718 −1.300 12.854 −12.589 −2.190

5 1.3529 −1.293 12.763 −12.564 −2.107

6 1.3339 −1.285 12.657 −12.540 −2.023

7 1.3147 −1.276 12.542 −12.513 −1.945

8 1.2952 −1.268 12.425 −12.476 −1.864

9 1.2757 −1.259 12.295 −12.441 −1.771

10 1.2559 −1.249 12.162 −12.405 −1.672

11 1.2360 −1.239 12.028 −12.358 −1.610

12 1.2159 −1.229 11.886 −12.308 −1.545

interaction is difficult because the (2pπu)3(2pπ∗
g )1 electron configuration for the A

state would predict a zero value; the non-zero value of bF must arise from configuration
interaction with other excited states having unfilled sσg orbitals. The same problem
arises for the N atom in its 4S ground state, where the unpaired electrons occupy 2p
atomic orbitals. Indeed, it is pointed out [44] that the magnitudes of the Fermi contact
and dipolar interactions are similar in both the A state of the N2 molecule and in the
ground state of the N atom. It is concluded [44] that the best simple picture of N2 in
its A 3�+

u state is of two weakly-interacting N atoms.
The strong vibrational dependence of the quadrupole coupling constant eq0 Q is

consistent with this very simple picture. The electric field gradient q0 must be zero
at the nucleus for the isolated N atom. The approach of the N2 molecule towards
the dissociation limit, with its increasing internuclear distance as v increases, must
therefore result in decreasing values of the electric field gradient.

The calculation of the electron spin-spin parameter λ, including its vibrational
dependence, is even more complicated. We have derived the irreducible tensor form
of this interaction (in appendix 8.3) by starting with the classical form of the dipolar
interaction. This is the origin of the first-order contribution toλ. However, we know from
the detailed discussion of the effective Hamiltonian in chapter 7 that the effects of spin–
orbit mixing of other electronic states lead to a contribution to λ (the so-called second-
order contribution). This second-order contribution is often the dominant contribution
to λ, as we shall see later in our discussion of heavier molecules. Only in H2 and a few
other very light molecules is the value of the λ constant determined essentially by the
direct dipolar coupling. Consequently an accurate theoretical calculation of λ requires
very good wave functions, both for the vibronic state under examination, and for other
states coupled to it by the spin–orbit interaction. This is a demanding requirement, and
a challenge for ab initio theory.
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8.4. Molecular beam electric resonance of closed shell molecules

8.4.1. Principles of electric resonance methods

Molecular beam electric resonance has much in common with the magnetic resonance
method described earlier; it uses the same molecular beam production methods, and
often the same detection methods. Above all, it depends upon molecular state selection
but through the use of electric rather than magnetic fields. Electric resonance methods
are therefore restricted to molecules which possess a permanent electric dipole moment.
On the other hand, electric resonance techniques could be regarded as more general
than magnetic resonance; the latter is usually concerned with transitions between nu-
clear spin states in a weak magnetic field, which occur in the low radiofrequency region
of the spectrum. In contrast electric resonance methods have been used to study dif-
ferent kinds of transitions, including rotational transitions occurring in the microwave
and millimetre wave regions. They have been applied to a large range of molecules,
including molecular complexes which are weakly bound by van der Waals or hydrogen-
bonding forces. In this section we confine our attention to diatomic molecules in closed
shell electronic states, usually the ground states. In the following section we deal with
open shell systems, which raise new problems of spectroscopic analysis.

As the name suggests, electric resonance experiments make use of electric fields to
achieve molecular state selection. Figure 8.25 shows a schematic diagram of a molecular
beam electric resonance instrument, which we will discuss in more detail when we
describe experiments on the CsF molecule. In contrast to the magnetic resonance
apparatus discussed earlier, the A, B and C fields in figure 8.25 are all electric fields. In

1,−1

Figure 8.25. Schematic diagram of a molecular beam electric resonance spectrometer, employing
dipole A and B fields [48]. The trajectories of levels characterised by J, M quantum numbers are
shown. Transitions occurring in the C field region which obey the selection rule�M = ±1 result
in a reduction in the number of molecules reaching the detector; this is therefore an example of
flop-out detection.
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Figure 8.26. Geometry of the electrodes for (a) a dipole electric field, (b) a quadrupole electric
field.

the early work the A field was a dipole field but in most subsequent work a quadrupole
field was used; we will meet examples later. The analysing B field may be either a
quadrupole or a dipole field. Strictly speaking, the electrodes are arranged to produce
dipole or quadrupole electrostatic potentials. It is, however, common practice to refer
to such arrangements as fields. Figure 8.26 shows typical examples of the geometry
of electrostatic lenses for producing such fields; the quadrupole lens arrangement
produces maximum field at the electrodes, with zero field at the centre, and is essentially
a focussing device. The dipole field simply produces a deflection of the molecular
trajectory perpendicular to the transmission axis. The molecular trajectories shown in
figure 8.25 refer to molecules in one or other of two energy levels which are mixed
by an electric field to show a second-order Stark effect. The dipole fields are arranged
so that molecules in one Stark level, indicated by the continuous line, are focussed
on to the detector; molecules in other quantum states are removed from the beam. If,
however, radiofrequency or microwave transitions are induced in the homogeneous C
field region, the number of focussed molecules decreases, so that the detector current
decreases; this mode of operation is naturally known as ‘flop-out’ detection. In reality
the Stark behaviour is usually quite complicated and successful spectroscopic detection
requires full appreciation of the subtleties, as we shall see.
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8.4.2. CsF in the X 1�+ ground state

(a) Stark effect

The first successful electric resonance experiment was reported by Hughes [48] who
studied the CsF molecule, an appropriate beam being produced from a hot oven. He
used both A and B electric dipole fields, separated by a homogeneous electric C field
combined with a radiofrequency electric field at right angles to the static field. In order
to understand both the deflection and state selection in the dipole fields, as well as the
electric resonance spectrum, we first consider the details of the Stark effect.

An applied electric field (E) interacts with the electric dipole moment (µe) of a
polar diatomic molecule, which lies along the direction of the internuclear axis. The
applied field defines the space-fixed p = 0 direction, or Z direction, whilst the molecule-
fixed q = 0 direction corresponds to the internuclear axis. Transformation from one
axis system to the other is accomplished by means of a first-rank rotation matrix, so
that the interaction may be represented by the effective Hamiltonian as follows:

H
′ = −T1(µe) · T1(E) = −T1

p=0(µe)T1
p=0(E)

= −EZ

∑
q

D
(1)
0q (ω)∗ T1

q (µe)

= −µ0D
(1)
00 (ω)∗EZ . (8.277)

µ0 here is the permanent electric dipole moment lying along the molecular z axis. Note
the potential confusion with the permeability of free space which has the same symbol.
For this reason we replace µ0 by (ε0c2)−1 in this section.

We choose to work in the simple basis set |η,Λ; J,MJ 〉 whereΛ is the component
of electronic angular momentum along the internuclear axis; η represents all relevant
unspecified quantum numbers, including the vibrational quantum number. We use J ,
which is appropriate for 1� molecules, rather than N ; there is no distinction between
J and N for molecules in singlet states. The matrix elements of (8.277) in this basis
are given by

〈η,Λ; J,MJ |H′|η,Λ; J ′,MJ 〉 = −µ0 EZ {(2J + 1)(2J ′ + 1)}1/2(−1)M−Λ

×
(

J 1 J ′

−MJ 0 MJ

)(
J 1 J ′

−Λ 0 Λ

)
. (8.278)

Now for CsF in its 1�+ground state the value of Λ is zero; the second 3- j symbol in
(8.278) is then non-zero only if 1 + J + J ′ is even, so that J ′ = J ± 1 is a requirement.
In other words, there can be no first-order Stark effect in this case. Equation (8.278)
tells us that each rotational level J is mixed by the electric field with the adjacent
rotational levels J ± 1, and the Stark behaviour may therefore be represented by the
following 3 × 3 truncated matrix.
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|J − 1〉 |J 〉 |J + 1〉

〈J − 1| BJ(J − 1) −µ0 EZ

{
J 2 − M2

(2J − 1)(2J + 1)

}1/2

0

〈J | −µ0 EZ

{
J 2 − M2

(2J − 1)(2J + 1)

}1/2

BJ(J + 1) −µ0 EZ

{
(J + 1)2 − M2

(2J + 1)(2J + 3)

}1/2

〈J + 1| 0 −µ0 EZ

{
(J + 1)2 − M2

(2J + 1)(2J + 3)

}1/2

B(J + 1)(J + 2)

B is the rotational constant, and M remains a good quantum number. The above 3 × 3
matrix is, of course, something of an approximation since, in reality, the Stark matrix
is infinite and the accuracy with which the electric field mixing is calculated depends
upon the number of rotational states included in the calculation.

The energies of the levels in an electric field can be calculated by numerical
diagonalisation of the above matrix for different values of the electric field and the
J , M quantum numbers. However, perturbation theory has also often been used and
we may readily derive an expression for the second-order Stark energy using the above
matrix elements. The result is as follows:

�E (2) = −µ
2
0 E2

Z

2B

{
(J + 1)2 − M2

(J + 1)(2J + 1)(2J + 3)

}
+ µ2

0 E2
Z

2B

{
J 2 − M2

(2J − 1)(2J + 1) J

}

= µ2
0 E2

Z

2B

{
J (J + 1) − 3M2

J (J + 1) (2J − 1)(2J + 3)

}
. (8.279)

This is a very well-known and often quoted result, first presented by Kronig [49]. For
J = 0, M = 0, we have the special case

�E (2) = −µ
2
0 E2

Z

6B
. (8.280)

Diagonalisation of the Stark matrices enables us to plot the Stark energies, given values
of B and µ0, and the results are shown in figure 8.27 for the first three rotational levels,
J = 0, 1 and 2. The parameter λ is defined by λ2 =µ2

0 E2
Z/B. In figure 8.28 we show

plots of the effective electric moment of the molecule in the different J , M states listed
in figure 8.27. With the aid of both diagrams, we are able to understand the principles
of electric state selection, and the electric resonance transitions.

Figure 8.28 shows that the J = 1 components exhibit strong dependence of the
effective electric moment, −dW/dEz , on λ; in particular, the J = 1, M = 0 component
has a negative electric moment at λ= 2 which becomes strongly positive at λ= 6. It
is therefore a particularly good candidate for state selection. The apparatus designed
by Hughes is shown schematically in figure 8.25, and the trajectory of molecules in
J = 1, M = 0 is also indicated. The A and B fields are both electric dipole fields, with
the electric field and field gradient pointing in the same direction. However the A field
corresponds to λ≈ 6.6, whereas for the B field λ≈ 2. Consequently the sign of the
deflection changes between the A and B fields, which are designed to focus molecules
in J = 1, M = 0 on to the detector, as shown. Molecules in higher rotational levels
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Figure 8.27. Second-order Stark energies for the first three rotational levels of a heteronuclear
diatomic molecule in a 1� state [48]. The parameter λ is defined by λ2 =µ2
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states with M = ±1 or ±2 remain rigorously degenerate, irrespective of field strength.
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Figure 8.28. Effective electric moments (µeff) for different J , M states. These are calculated
from the result µeff/µ0 = −∂W/∂E where W is the energy and E is the electric field strength.
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have smaller Stark effects, as indicated by equation (8.279), and are blocked by the
stop wire. In the homogeneous C field region electric resonance transitions of the type
J = 1, M = 0 ↔ J = 1, M = ±1 are induced by radiofrequency radiation in the range
5 to 300 MHz. Population transfer from J = 1, M = 0 to the M = ±1 components
results in a decrease in the detected beam current (‘flop-out’). It will be clear from this
description that optimum sensitivity in the experiment requires very careful adjustment
of the deflection fields.

Hughes [48] was able to detect transitions involving J = 2, as well as the J = 1
described above, and from his results could determine both the electric dipole mo-
ment of CsF (7.3 ± 0.5 D) and an effective rotational constant (B = 0.147 cm−1). The
apparatus was subsequently improved by Trischka [50], particularly with respect to
the quality of the homogeneous C field, and much higher resolution was obtained.
Figure 8.29 shows resonance lines arising from molecules in v= 0 to 4, for which
nuclear hyperfine interactions are not resolved. A higher-resolution spectrum is shown
in figure 8.30 where nine components arising from molecules in v= 0 are observed,
with additional lines from v= 1 and 2 also being recorded. Almost twenty years later
the spectrum was recorded again, with even higher accuracy, by English and Zorn [51].
Their apparatus was similar to the earlier instrument used by Hughes and by Trischka,
except that the A dipole field was replaced by a quadrupole field (see figure 8.26). Most
recent instruments are of this type, and we shall describe the details later in this chapter.

Electric field / V cm−1

450 455 460 465 470

0

1

2

3

4

frequency � 94.506 MHz

Figure 8.29. Electric resonance spectrum of CsF in ‘strong’ fields, showing resonance from
molecules in five different vibrational levels (v= 0 to 4). The hyperfine structure resulting from
nuclear–molecular interactions is not resolved [50].
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Figure 8.30. ‘Strong’ field electric resonance spectrum of CsF showing the hyperfine structure
produced by nuclear–molecular interactions. Nine of the components arise from molecules in
v= 0, as indicated, six from v= 1, and further components from v= 2. The analysis of this
spectrum [50] is described in the text.

Our theoretical analysis of the zero field spectrum is directed towards a quantitative
understanding of the most recent results.

The predominant isotope of cesium is 133Cs which has a nuclear spin I1 of 7/2; its
quadrupole moment and g-factor will be denoted by Q1 and g1. The 19F nucleus has
spin I2 of 1/2 (and therefore no quadrupole moment) and a nuclear g-factor denoted g2.
The nuclear hyperfine Hamiltonian used by English and Zorn [51] was the sum of five
terms representing the 133Cs quadrupole interaction, the 133Cs nuclear spin–rotation
interaction, the 19F nuclear spin–rotation interaction, the dipolar (tensorial) interaction
between the 133Cs and 19F nuclear spins, and the scalar interaction between the two
nuclear spins. Consistent with the conventions in use at the time, this Hamiltonian was
written in the following form:

Hhf = − eq1 Q1

2I1(2I1 − 1)(2J − 1)(2J + 3)

[
3(I1 · J)2 + 3

2
(I1 · J) − I1(I1 + 1)J (J + 1)

]

+ c1 I1 · J + c2 I2 · J + g1g2µ
2
N

R3(2J + 3)(2J − 1)

(
1

4πε0c2

)
[3(I1 · J )(I2 · J )

+ 3(I2 · J )(I1 · J ) − 2I1 · I2 J (J + 1)] + c4 I1 · I2. (8.281)

The nuclear spin subscripts 1 and 2 refer to the 133Cs and 19F nuclei respectively. In
the spirit of this book, we rewrite the Hamiltonian in terms of irreducible tensors as
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follows:

Hhf = −eT2(∇E1) · T2(Q1) + c1T1(I1) · T1(J) + c2T1(I2) · T1(J)

+
√

10g1g2µ
2
N (1/4πε0c2)T1(C, I1) · T1(I2) + c4T1(I1) · T1(I2). (8.282)

The values of the constants appearing in (8.282) are, in principle, vibrationally-
dependent. Although we shall evaluate the matrix elements of (8.282) without initially
specifying the value of J , the experimental studies were for the J = 1 level.

It is possible to work in a basis set in which the nuclear spins are coupled, both to
each other and also to J ; the analysis of the spectrum by Trischka [50] was accomplished
using a coupled basis set for weak field experiments, and a fully decoupled basis for
the strong field experiments. We will evaluate the matrix elements in both bases.

(b) ‘Weak’ field coupled basis

The coupled basis functions are taken in the form |η,Λ; J, I1, F1, I2, F,MF 〉. For
completeness, we have included Λ, although for a 1� state Λ has the value 0. η
represents all other relevant quantum numbers, but particularly v in the current problem,
and we use the coupling scheme

F1 = J + I1, F = F1 + I2. (8.283)

The matrix elements of the four terms in equation (8.282) are now evaluated.
First, the quadrupole interaction follows along lines similar to those outlined for D2 in
equations (8.22) to (8.29):

〈η,Λ; J, I1, F1, I2, F, MF | − eT2(∇E1) · T2(Q1)|η,Λ; J ′, I1, F ′
1, I2, F ′,M ′

F 〉

= −eδF F ′δMF M ′
F
δF1 F ′

1
(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 2

}
〈η,Λ, J‖T2(∇E1)‖η,Λ′, J ′〉

× 〈I1‖T2(Q1)‖I1〉

= −eδF F ′δMF M ′
F
δF1 F ′

1
(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 2

}

× 〈η,Λ, J |
∑

q

D
(2)
.q (ω)∗ T2

q (∇E1) |η,Λ′, J ′〉
(

Q1

2

)(
I1 2 I1

−I1 0 I1

)−1

. (8.284)

Confining attention to the molecule-fixed q = 0 component, and making use of the
definition (8.28) of the electric field gradient q1 at nucleus 1, we obtain the final result

〈η,Λ; J, I1, F1, I2, F, MF | − eT2(∇E1) · T2(Q1)|η,Λ; J ′, I1, F1, I2, F, MF 〉

= eq1 Q1

4
(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 2

} (
I1 2 I1

−I1 0 I1

)−1

× (−1)J−Λ{(2J + 1)(2J ′ + 1)}1/2

(
J 2 J ′

−Λ 0 Λ

)
. (8.285)
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For the 1�+ ground state of CsF, Λ= 0 in this equation. This result should now be
compared with the term used by English and Zorn [51] and Ramsey [52] to represent
the quadrupole interaction, which is

HQ = − eq Q

2I1(2I1 − 1)(2J − 1)(2J + 3)

{
3(I1 · J)2 + 3

2
(I1 · J ) − I1(I1 + 1)J (J + 1)

}
.

(8.286)

It is convenient to expand this equation, making use of the fact that F1 = J + I1, and
it is easy to show that (8.286) becomes

HQ = − eq Q

2I1(2I1 − 1)(2J − 1)(2J + 3)

{
3

4

{
I2

1 + J2 − F2
}[{

I2
1 + J2 − F2

}− 1
]

− I1(I1 + 1)J (J + 1)

}
. (8.287)

We now compare this with the analytic expansion of (8.285), confining attention to the
diagonal elements. We have

〈η,Λ; J, I1, F1, I2, F, MF | − eT2(∇E1) · T2(Q1)|η,Λ; J, I1, F1, I2, F,MF 〉

= eq1 Q1

4
(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 2

}(
I1 2 I1

−I1 0 I1

)−1

(−1)J−Λ{(2J+1)(2J ′+1)}1/2

(
J 2 J

−Λ 0 Λ

)

= eq1 Q1

4

2{3X (X − 1) − 4I1(I1 + 1)J (J + 1)}
{(2I1 − 1)(2I1)(2I1 + 1)(2I1 + 2)(2I1 + 3)(2J − 1)2J (2J + 1)(2J + 2)(2J + 3)}1/2

×
{

(2I1 + 3)(2I1 + 2)(2I1 + 1)

2I1(2I1 − 1)

}1/2

(−1)J (2J + 1)(−1)J+1

× 2

{
1

(2J + 3)(2J + 2)(2J + 1)2J (2J − 1)

}1/2

,
(8.288)

where X = I1(I1 + 1) + J (J + 1) − F1(F1 + 1) = I2
1 + J2 − F2

1. After some alge-
braic manipulation, (8.288) becomes

〈η,Λ; J, I1, F1, I2, F, MF | − eT2(∇E1) · T2(Q1)|η,Λ; J, I1, F1, I2, F,MF 〉
= − eq1 Q1

2I1(2I1 − 1)(2J − 1)(2J + 3)

{
3

4

{
I2

1 + J2 − F2
1

}[{
I2

1 + J2 − F2
1

}− 1
]

− I1(I1 + 1)J (J + 1)

}
. (8.289)

Comparing our (8.289) with (8.287) we see that they are in agreement. Full details of
the definitions used here, and throughout this book, are given in appendix 8.4.
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Second, the nuclear spin–rotation terms are as follows:

〈η,Λ; J, I1, F1, I2, F,MF |c1(η)T1(J ) · T1(I1)|η,Λ; J ′, I1, F ′
1, I2, F ′,MF 〉

= c1(η)δF F ′δF1 F ′
1
(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 1

}
〈J‖T1(J)‖J ′ 〉〈I1‖T1(I1)‖I1〉

= c1(η)δF F ′δF1 F ′
1
δJ J ′ (−1)J+F1+I1

{
I1 J F1

J I1 1

}

× {J (J + 1)(2J + 1)I1(I1 + 1)(2I1 + 1)}1/2. (8.290)

〈η,Λ; J, I1, F1, I2, F,MF |c2(η)T1(J ) · T1(I2)|η,Λ; J ′, I1, F ′
1, I2, F ′,MF 〉

= c2(η)δF F ′ (−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 1

}
〈J, I1, F1‖T1(J )‖J ′, I1, F ′

1〉〈I2‖T1(I2)‖I2〉

= c2(η)δF F ′δJ J ′ (−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 1

}
(−1)F ′

1+J+I1+1{(2F ′
1 + 1)(2F1 + 1)}1/2

×
{

F1 J I1

J F ′
1 1

}
{J (J + 1)(2J + 1)I2(I2 + 1)(2I2 + 1)}1/2. (8.291)

These results are the same as those presented in Trischka’s analysis.
Third, we deal with the dipolar coupling of the nuclear spins, which is evaluated

below; note the form of the dipolar Hamiltonian (equation (8.282)), which is the one
appropriate for the particular angular momentum coupling scheme used.

〈η,Λ; J, I1, F1, I2, F,MF |Hdip|η,Λ′; J ′, I1, F ′
1, I2, F,MF 〉

=
√

10g1g2µ
2
N (1/4πε0c2)(−1)F ′

1+F+I2

{
I2 F ′

1 F

F1 I2 1

}

× 〈η,Λ; J, I1, F1‖T1(C2, I1)‖η,Λ′; J ′, I1, F ′
1〉〈I2‖T1(I2)‖I2〉

=
√

10g1g2µ
2
N (1/4πε0c2)(−1)F ′

1+F+I2

{
I2 F ′

1 F

F1 I2 1

}
{(3)(2F1 + 1)(2F ′

1 + 1)}1/2

×




J J ′ 2

I1 I1 1

F1 F ′
1 1


 〈η,Λ; J‖T2(C)‖η,Λ′; J ′〉 {I2(I2 + 1)(2I2 + 1)I1(I1 + 1)

× (2I1 + 1)}1/2 . (8.292)

We restrict attention to matrix elements diagonal inΛ (with value 0 for the 1�+ ground
state of CsF), so that the final result is

〈η,Λ; J, I1, F1, I2, F,MF |Hdip|η,Λ; J ′, I1, F ′
1, I2, F,MF 〉

=
√

10g1g2µ
2
N (1/4πε0c2)〈η|C2

0 (θ, φ)R−3|η〉(−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 1

}
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× {(3)(2F1 + 1)(2F ′
1 + 1)}1/2




J J ′ 2

I1 I1 1

F1 F ′
1 1


 (−1)J

(
J 2 J ′

0 0 0

)

× {(2J + 1)(2J ′ + 1)I2(I2 + 1)(2I2 + 1)I1(I1 + 1)(2I1 + 1)}1/2. (8.293)

We have used equation (8.31) in deriving the above in equation (8.293). The distribution
operator in the vibronic matrix element is simply R−3, since θ = 0 in this problem.
Hence our final result is

〈η,Λ; J, I1, F1, I2, F,MF |Hdip|η,Λ; J ′, I1, F ′
1, I2, F,MF 〉

=
√

30g1g2µ
2
N (1/4πε0c2)〈R−3〉η(−1)F ′

1+F+I2

{
I2 F ′

1 F

F1 I2 1

}
{(2F1 + 1)(2F ′

1 + 1)}1/2

×




J J ′ 2

I1 I1 1

F1 F ′
1 1


 (−1)J

(
J 2 J ′

0 0 0

)
{(2J + 1)(2J ′ + 1)I2(I2 + 1)

× (2I2 + 1)I1(I1 + 1)(2I1 + 1)}1/2. (8.294)

On reduction to analytical form, our result agrees with that of English and Zorn [51].
The final term in equation (8.282) represents the scalar interaction between the

two nuclear spins; its matrix elements are as follows:

〈η,Λ; J, I1, F1, I2, F,MF |c4T1(I1) · T1(I2)|η,Λ′; J ′, I1, F ′
1, I2, F,MF 〉

= c4(−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 1

}
〈η,Λ; J, I1, F1‖T1(I1)‖η,Λ′; J ′, I1, F ′

1〉

× {I2(I2 + 1)(2I2 + 1)}1/2

= c4(−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 1

}
(−1)F1+J+1+I1

{
F1 I1 J

I1 F ′
1 1

}

× {(2F ′
1 + 1)(2F1 + 1)I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1)}1/2. (8.295)

One final result is required to analyse the ‘weak’ field spectrum of CsF. We derived
an expression for the matrix elements of the electric field perturbation earlier, without
the inclusion of nuclear spin effects, in equation (8.278). We now repeat this derivation
using the basis set employed above. Taking the direction of the electric field to define
the p = 0 (Z ) direction, the results are as follows:

〈η,Λ; J, I1, F1, I2, F,MF | − T1
p=0(µe)T1

p=0(E)|η,Λ; J ′, I1, F ′
1, I2, F ′,MF 〉

= −EZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)

× 〈η,Λ; J, I1, F1, I2, F‖T 1(µe)‖η,Λ; J ′, I1, F ′
1, I2, F ′〉
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= −EZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+F1+1+I2{(2F ′ + 1)(2F + 1)}1/2

×
{

F F1 I2

F ′
1 F ′ 1

}
〈η,Λ; J, I1, F1‖T1(µe)‖η,Λ; J ′, I1, F ′

1〉

= −EZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+F1+1+I2{(2F ′ + 1)(2F + 1)}1/2

×
{

F F1 I2

F ′
1 F ′ 1

}
(−1)F ′

1+J+1+I1{(2F ′
1 + 1)(2F1 + 1)}1/2

{
F1 J I1

J ′ F ′
1 1

}

× 〈η,Λ; J‖D
(1)
00 (ω)∗T1

q=0(µe)‖η,Λ; J ′〉

= −µ0 EZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+F1+1+I2{(2F ′ + 1)(2F + 1)}1/2

×
{

F F1 I2

F ′
1 F ′ 1

}
(−1)F ′

1+J+1+I1{(2F ′
1 + 1)(2F1 + 1)}1/2

{
F1 J 1

J ′ F ′
1 I1

}

× {(2J ′ + 1)(2J + 1)}1/2(−1)J

(
J 1 J ′

0 0 0

)
. (8.296)

Equation (8.296) shows that as the magnitude of the applied electric field increases,
our coupled basis set will become less and less meaningful because of the mixing of
states with different values for F , F1 and J .

It is now instructive to make use of the ‘weak’ field results to obtain an energy level
pattern for the J = 1 rotational level. The complete zero-field matrix is as follows.

F1 = 9/2 F1 = 7/2 F1 = 5/2

F = 5 F = 4 F = 4 F = 3 F = 3 F = 2

F1 = 9/2 F = 5 m11 0 0 0 0 0
F = 4 0 m22 m23 0 0 0

F1 = 7/2 F = 4 0 m32 m33 0 0 0
F = 3 0 0 0 m44 m45 0

F1 = 5/2 F = 3 0 0 0 m54 m55 0
F = 2 0 0 0 0 0 m66

The matrix elements are:

m11 = −eq1 Q1(1/20) + c1(7/2) + c2(1/2) + c3(7/10) + c4(7/4)

m22 = −eq1 Q1(1/20) + c1(7/2) − c2(11/18) − c3(77/90) − c4(77/36)

m33 = +eq1 Q1(1/7) − c1 + c2(1/9) − c3(13/9) + c4(59/36)
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m44 = +eq1 Q1(1/7) − c1 − c2(1/7) + c3(13/7) − c4(59/28)
(8.297)

m55 = −eq1 Q1(3/28) − c1(9/2) − c2(5/14) + c3(9/14) + c4(15/28)

m66 = −eq1 Q1(3/28) − c1(9/2) + c2(1/2) − c3(9/10) − c4(9/4)

m23 = m32 = −c2(
√

35/9) − c3(23
√

7/18
√

5) + c4(
√

35/9)

m45 = m54 = −c2(3
√

3/7) + c3(15
√

3/14) + c4(3
√

3/7).

The dipolar constant c3 is defined by

c3 = g1g2µ
2
N (1/4πε0c2)〈R−3〉η. (8.298)

The off-diagonal elements have been included for the sake of completeness but their
effects are very small. The values of the constants for v= 0 obtained from the analysis
of the spectrum [51] were (in kHz):

eq1 Q1 = 1237.0, c1 = 0.70, c2 = 15.1, c3 = 0.92, c4 = 0.61.

Insertion of these values of the constants into the diagonal elements listed in (8.297)
enables us to construct a hyperfine energy level diagram for the J = 1 rotational level,
as shown in figure 8.31. We also show the eight transitions observed by English and
Zorn [51]; the diagram is constructed for zero electric field in the C field region, but was
actually recorded in a very weak field. The presence of an electric field, which mixes

f1 f2 f3 f4 f5 f6 f7 f8

1

1

Cs quadrupole F nuclear spin–rotation

1

Figure 8.31. Nuclear hyperfine splitting of the J = 1 rotational level of CsF in its X 1�+ state.
The major splitting is due to the 133Cs quadrupole interaction, and the smaller doublet splitting
arises from the 19F nuclear spin–rotation coupling. The diagram is drawn for zero applied electric
field, and the strongest electric dipole transitions are indicated.
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Table 8.11. Hyperfine transition frequencies in the J = 1,
v = 0 state of 133Cs19F (in kHz)

F1 ,F F ′
1 , F ′ Observed Calculated

f1 (7/2, 3) (9/2, 5) 224.60 224.30

f2 (7/2, 4) (9/2, 5) 228.05 227.98

f3 (7/2, 3) (9/2, 4) 245.80 245.36

f4 (7/2, 4) (9/2, 4) 249.05 249.04

f5 (7/2, 3) (5/2, 2) 304.90 304.50

f6 (7/2, 4) (5/2, 2) 308.10 308.18

f7 (7/2, 3) (5/2, 3) 314.40 314.58

f8 (7/2, 4) (5/2, 3) 317.60 318.26

different J levels, is necessary in order to transfer electric dipole intensity into the tran-
sitions shown; in zero electric field the �F = 0,±1 transitions would have magnetic
dipole intensity only, and the�F = 2 transitions would be totally forbidden. The mea-
sured transition frequencies are presented in table 8.11, and the frequencies calculated
from the above analysis are also shown. The agreement between the two is excellent.

We shall discuss the information about the electronic structure of CsF obtained from
the measured constants later, but first consider the earlier measurements of Trischka
made in ‘strong’ electric fields, and the assignment of the spectrum shown in figure 8.30.

(c) ‘Strong’ field decoupled basis

We now re-examine the problem when a moderately strong electric field is applied in
the C field region; spectra were recorded by Trischka under these conditions, as shown
in figure 8.30. The matrix elements of the electric field perturbation in the coupled basis
set were given in equation (8.296), but it would make little sense to use this basis set for
the calculation. Only MF remains a good quantum number, and the Stark effect operates
through the mixing of J = 1 with J = 0 and 2, as was shown in equation (8.278). A
suitable nuclear spin decoupled basis set would be |η,Λ; J,MJ , I1,MI1 , I2,MI2〉 and
even for J = 1, the number of levels given by (2J + 1)(2I1 + 1)(2I2 + 1) is equal to
48. Trischka [50] did not give details of the analysis, but since our aim is to understand
the details of the ‘strong’ field spectrum shown in figure 8.30, we will present a full
account of the theory.

The required matrix elements in the decoupled representation are now calculated;
all of the scalar products which occur are expanded in the space-fixed coordinate system.

(i)  

〈
η,Λ;J,MJ ,I1,MI1 ,I2,MI2

∣∣∑
p

(−1)p(−e)T2
p(∇E)T2

−p(Q1)
∣∣η,Λ′;J ′,M ′

J ,I
′

1 ,M
′
I1
,I ′

2 ,M
′
I2

〉
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= −eδI2 I ′
2
δMI2 M ′

I2

∑
p

(−1)p〈η,Λ;J,MJ |T2
p(∇E)|η,Λ′;J ′,M ′

J 〉〈I1,MI1 |T2
−p(Q1)|I ′

1,M
′
I1
〉

= −eδI1 I ′
1

∑
p

(−1)p(−1)J−MJ

(
J 2 J ′

−MJ p M ′
J

)
〈η,Λ; J‖ T2(∇E)‖η,Λ′; J ′〉

× (−1)I1−MI1

(
I1 2 I1

−MI1 −p M ′
I1

)
〈I1‖T2(Q1)‖I1〉

= eq0 Q1

4

∑
p

(−1)p(−1)J−MJ

(
J 2 J ′

−MJ p M ′
J

)
(−1)J−Λ{(2J + 1)(2J ′ + 1)}1/2

×
(

J 2 J ′

−Λ 0 Λ

)
(−1)I1−MI1

(
I1 2 I1

−MI1 −p M ′
I1

)(
I1 2 I1

−I1 0 I1

)−1

. (8.299)

(ii) 133s  -- 

〈η,Λ;J,MJ ,I1,MI1 ,I2,MI2 |
∑

p

( − 1)pc1T1
p(J)T1

−p(I1) | η,Λ′;J ′,M ′
J ,I1,M

′
I1
,I ′

2,M
′
I2
〉

= c1δΛ,Λ′δI2 I ′
2
δMI2 M ′

I2

∑
p

(−1)p〈η,Λ; J,MJ |T1
p(J )|η,Λ; J ′,M ′

J 〉

× 〈I1,MI1

∣∣T1
−p(I1)

∣∣I1,M ′
I1
〉

= c1

∑
p

(−1)p(−1)J−MJ

(
J 1 J

−MJ p M ′
J

)
〈J‖T1(J )‖J 〉 (−1)I1−MI1

×
(

I1 1 I1

−MI1 −p M ′
I1

)
〈I1‖T1(I1)‖I1〉

= c1

∑
p

(−1)p(−1)J−MJ (−1)I1−MI1 {J (J + 1)(2J + 1)I1(I1 + 1)(2I1 + 1)}1/2

×
(

J 1 J
−MJ p M ′

J

) (
I1 1 I1

−MI1 −p M ′
I1

)
. (8.300)

(iii) 19  -- 

〈η,Λ; J,MJ , I1,MI1 , I2,MI2 |
∑

p

(−1)pc2T1
p(J)T 1

−p(I2)|η,Λ′; J ′,M ′
J , I

′
1,M

′
I1
, I ′

2,M
′
I2
〉

= c2δΛ,Λ′ δI1 I ′
I
δMI1 M ′

I1

∑
p

(−1)p 〈η,Λ; J,MJ |T1
p(J)|η,Λ; J ′,M ′

J 〉

× 〈I2,MI2 |T1
−p(I2)|I ′

2,M ′
I2
〉



478 Molecular beam magnetic and electric resonance

= c2δJ J ′
∑

p

(−1)p(−1)J−MJ

(
J 1 J

−MJ p M ′
J

)
〈J‖T1(J )‖J 〉 (−1)I2−MI2

×
(

I2 1 I2

−MI2 −p M ′
I2

)
〈I2‖T1(I2)‖I2〉

= c2

∑
p

(−1)p(−1)J−MJ (−1)I2−MI2 {J (J + 1)(2J + 1)I2(I2 + 1)(2I2 + 1)}1/2

×
(

J 1 J
−MJ p M ′

J

)(
I2 1 I2

−MI2 −p M ′
I2

)
. (8.301)

(iv)    

〈
η,Λ; J,MJ , I1,MI1 , I2,MI2

∣∣Hdip

∣∣η,Λ′; J ′,M ′
J , I ′

1,M ′
I1
, I2,M ′

I2

〉
=

√
10g1g2µ

2
N (1/4πε0c2)

∑
p

(−1)p+I2−MI2

(
I2 1 I2

−MI2 −p M ′
I2

)

× {I2(I2+1)(2I2+1)}1/2
〈
η,Λ;J,MJ ,I1,MI1

∣∣T1
p(C2,I1)

∣∣η,Λ′;J ′,M ′
J ,I

′
1,M

′
I1

〉
= −

√
30g1g2µ

2
N (1/4πε0c2)

∑
p

(−1)p+I2−MI2

(
I2 1 I2

−MI2 −p M ′
I2

)

×{I2(I2 + 1)(2I2 + 1)}1/2

× 〈
η,Λ; J,MJ , I1,MI1

∣∣ ∑
p1,p2

(−1)pT2
p1

(C) T1
p2

(I1)
∣∣η,Λ′; J ′,M ′

J , I ′
1,M ′

I1

〉

×
(

1 2 1
p1 p2 −p

)

= −
√

30g1g2µ
2
N (1/4πε0c2)

∑
p

(−1)p+I2−MI2

(
I2 1 I2

−MI2 −p M ′
I2

)

×{I2(I2 + 1)(2I2 + 1)}1/2{I1(I1 + 1)(2I1 + 1)}1/2

×
∑
p1 p2

(−1)p〈η,Λ; J,MJ |T2
p1

(C)|η,Λ′; J ′,M ′
J 〉

×(−1)I1−MI1

(
I1 1 I1

−MI1 p2 M ′
I1

)(
1 2 1
p1 p2 −p

)

= −
√

30g1g2µ
2
N (1/4πε0c2)

∑
p

(−1)I2−MI2 +I1−MI1

(
I2 1 I2

−MI2 −p M ′
I2

)

×{I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1)}1/2

×
∑
p1 p2

〈η,Λ; J‖T2(C )‖η,Λ′; J ′〉(−1)J−MJ

×
(

J 1 J ′

−MJ p1 M ′
J

)(
I1 1 I1

−MI1 p2 M ′
I1

)(
1 2 1
p1 p2 −p

)
. (8.302)
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The reduced matrix element of T2(C ) can be treated in the usual manner but we shall
not pursue this rather messy analysis any further, particularly since the dipolar inter-
action in CsF is very small!

(v)   

The applied electric field interacts with the electric dipole moment of the molecule;
nuclear spin is not involved in the decoupled basis set, so that we need only the results
of our earlier analysis, given in equation (8.278), i.e.

〈
η,Λ; J,MJ , I1,MI1 , I2,MI2

∣∣− T1
p=0(µe)T1

p=0(E )
∣∣η,Λ; J ′,MJ , I ′

1,M ′
I1
, I ′

2,M ′
I2

〉
= −δI1 I ′

1
δMI1 M ′

I1
δI2 I ′

2
δMI2 M ′

I2
µ0 EZ {(2J + 1)(2J ′ + 1)}1/2

× (−1)M−Λ
(

J 1 J ′

−MJ 0 MJ

)(
J 1 J ′

−Λ 0 Λ

)
. (8.303)

As we have already seen, the applied electric field operates by mixing different
rotational levels, and within the J = 1 level the result is a splitting between the MJ =
0 component, and the MJ = ±1 components, the latter remaining degenerate (see
figure 8.27). For a dipole momentµ0 of 7.882 98 D and an electric field of 93.45 V cm−1

(the value used by Trischka) we calculate the Stark separation to be 3742 kHz, the
MJ = ±1 components being the lower in energy.

We now consider the electric quadrupole interaction, using equation (8.299), with
the index p being equal to 0, ±1 and ±2 in turn. Neglecting for the moment the effects
of the 19F nuclear spin, we have 24 states to consider, i.e. (2J + 1)(2I1 + 1), each
characterised by values of MJ and MI1 . The p = 0 matrix elements are diagonal in
the decoupled basis set, but the p = ±2 elements connect the MJ = ±1 components
and remove their degeneracy; the results are shown in figure 8.32, which is essentially
drawn to scale. The p = ±1 terms in equation (8.299) are off-diagonal elements which
mix MJ = 0 with MJ = ±1 components, producing much smaller shifts or splittings.
We should not forget that each of the 24 states listed in figure 8.32 has a further two-fold
degeneracy because of the 19F nuclear spin (i.e. I2 = 1/2,MI2 = ±1/2) .

The radiofrequency electric field is applied perpendicular to the static C field so
that the selection rules for the transitions are �MJ = ±1,�MI1 = 0. As we show in
figure 8.32, there are eight such transitions, which essentially accounts for the experi-
mental spectrum shown in figure 8.30, except that the latter exhibits nine components
for the v = 0 level. The additional complexity arises because of other terms in the
hyperfine Hamiltonian, but we will not pursue the details of the analysis. Measure-
ments were made by Graff and Runolfsson [53] using higher electric fields, and with
improvements in resolution they were able to measure further splittings of the reso-
nance lines. They also carried out measurements using an applied magnetic field and
were able to measure components of both the screening and susceptibility tensors, and
also the rotational magnetic moment. The molecular constants determined from the
‘strong’ field and ‘zero’ field measurements were in very good agreement. The most
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Figure 8.32. ‘Strong’ field levels for the J = 1 level in CsF. An electric field produces the Stark
splitting between the MJ = 0 and ±1 components, and 133Cs quadrupole interaction splits each
Stark component into four levels. Each level is two-fold degenerate; the two components are
labelled by their values of MJ and MI1 . The eight electric dipole transitions which become
allowed in the electrostatic C field are shown.
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Table 8.12. Vibrational dependence of the molecular parameters for CsF in its X1�+

state

Bv µv eqQ c1 c2 c3 c4

(cm−1) (Debye) (kHz) (kHz) (kHz) (kHz) (kHz)

v= 0 0.183 782 7.8783 1237.0 0.70 15.1 0.92 0.61

v= 1 0.182 610 7.9506 1223.0 0.68 15.0 0.90 0.62

v= 2 0.181 442 8.0247 1209.0 0.66 14.7 0.89 —

complete sets of data relate to the v= 0 level, but information for higher vibrational
levels was also obtained. Finally, some sophisticated triple resonance experiments were
performed by Zorn, Stephenson, Dickinson and English [54] who were able to measure
the low frequency�F1 = 0,�F = ±1 hyperfine transitions in essentially zero electric
field.

In a particularly novel extension of the studies of CsF, Freund, Fisk, Herschbach
and Klemperer [55] have used electric resonance to probe the internal state distribution
of CsF formed by the crossed beam reaction of Cs and SF6. Transitions involving J = 1
to 4 and v= 0 to 4 were observed, and details of the kinematics thereby unravelled. A
block diagram of the electric resonance spectrometer is shown in figure 8.33.

(d) Interpretation of the molecular constants

The vibrational dependence of the molecular constants is summarised by English and
Zorn [51] for v = 0, 1, 2 and the results are listed in table 8.12. The electric dipole
moment of the CsF molecule is large (over 7 D) but, according to Hughes [48], is
not as large as one would expect for a purely ionic molecule. The decrease in the
electric quadrupole constant as v increases is attributed by English and Zorn [51] to
an increasing asymmetry of the internuclear potential. The measured c3 constant is
actually the sum of two separate contributions

c3 = (c3)dir + (c3)ec. (8.304)

The direct contribution (c3)dir arises from the through-space dipolar coupling of the
nuclear magnetic moments and, as expected, it decreases as the internuclear distance
increases with increasing v, because of its R−3 dependence. The second contribution
(c3)ec is the axial component of the tensorial electron-coupled spin–spin interaction;
the scalar part of this interaction is given by the value of c4. In the v= 0 level the
direct contribution is estimated by English and Zorn [51] to be 1.15 kHz, and the
electron-coupled part is −0.23 kHz.

Several other alkali fluorides have been studied by molecular beam elec-
tric resonance. The analyses are similar to that described above and similar
sets of molecular constants have been determined; the molecules studied include
85Rb19F and 87Rb19F [56], 39K19F [57], 23Na19F [58, 59] and 7Li19F [60, 61].
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8.4.3. LiBr in the X 1�+ ground state

(a) Introduction

We have chosen to describe the electric resonance studies of CsF in some detail because,
apart from being the pioneering experiments in this field, they are also typical of many
others on closed shell molecules. Our second chosen example is LiBr, studied first by
Hilborn, Gallagher and Ramsey [62] and subsequently by Cecchi and Ramsey [63].
The first of these papers describes a conventional electric resonance study, complicated
by the occurrence of two natural isotopic forms, namely, 7Li79Br and 7Li81Br, whose
relative abundances are essentially equal. Both the Li and Br nuclei possess magnetic
dipole and electric quadrupole moments. In the later work Cecchi and Ramsey [63]
chose to replace the electric C field with a strong dc magnetic field, so that the analysis
of their spectra required consideration of the details of the Zeeman effect. Having
noted in our discussion of the CsF studies that a weak electric C field is necessary in
order to transfer electric dipole intensity from the �J = ±1 rotational transitions into
the �J = 0 transitions studied in the electric resonance measurements, one might ask
how Cecchi and Ramsey could dispense with the electric C field. The answer is that
the molecules in the rapidly moving beam pass through a static magnetic field and so
experience an effective electric field which is sufficient to provide the required electric
dipole transition moment. We will say more about this aspect in due course, noting
here that the magnetic fields used were close to 5 kG. Armed with the knowledge of
the zero-field constants obtained by Hilborn, Gallagher and Ramsey [62], Cecchi and
Ramsey [63] were able to investigate the magnetic field effects. These studies of LiBr
were, in fact preceded by investigations of LiCl [64] where full details of the apparatus
are to be found.

The spectra of LiBr were again for molecules in the J = 1 rotational level, and
quadrupole lenses were operated to focus molecules in the MJ = 0 state. �MJ = ±1
resonances were therefore detected using the ‘flop-out’ mode. We shall consider the
details of the ‘weak’ field investigation first, subsequently describing the ‘strong’ mag-
netic field studies.

(b) Effective Hamiltonian, matrix elements and energy levels
in the ‘weak’ field case

The effective Hamiltonian used is an extension of that previously described in
equations (8.284) to (8.296) for CsF, but for the case of two quadrupolar nuclei. It
therefore takes the following form:

H = B J2 − eT2(∇E1) · T2(Q1) − eT2(∇E2) · T2(Q2) + c1T1(I1) · T1(J )

+ c2T1(I2) · T1(J ) +
√

10g1g2µ
2
N (1/4πε0c2)T1(C2, I1) · T1(I2)

+ c4T1(I1) · T1(I2) − T1(µe) · T1(E). (8.305)
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The subscripts 1 and 2 refer to the Br and Li nuclei respectively. This Hamiltonian
differs from that used previously for CsF, equation (8.282), only through the addi-
tional quadrupole term and the explicit addition of a Stark effect term. Although
the weak electric fields (a few V cm−1) used in this work were employed mainly
to transfer electric dipole intensity into the resonance transitions, the resulting Stark
shifts were measurable because of the extremely small linewidths obtained (about
300 Hz).

Following Hilborn, Gallagher and Ramsey [62] we use the same nuclear spin
coupled basis set as we used for the ‘weak’ field CsF analysis, i.e. |η,Λ; J, I1,

F1, I2, F,MF 〉. All of the required matrix elements were calculated earlier except
for those of the quadrupole interaction involving nucleus 2 (Li), which are,

〈η,Λ; J, I1, F1, I2, F,MF | − eT2(∇E2) · T2(Q2)|η,Λ′; J ′, I1, F ′
1, I2, F ′,M ′

F 〉

= −eδMF M ′
F
δF F ′ (−1)F ′

1+F+I2

{
I2 F ′

1 F

F1 I2 2

}

×〈η,Λ; J, I1, F1‖T2(∇E2)‖η,Λ′; J ′, I1, F ′
1〉〈I2‖T2(Q2)‖I2〉

= δMF M ′
F
δF F ′ (−1)F ′

1+F+I2

{
I2 F ′

1 F

F1 I2 2

}
(−1)F ′

1+J+2+I1{(2F ′
1 + 1)(2F1 + 1)}1/2

×
{

F1 J I1

J ′ F ′
1 2

}
(−1)J {(2J + 1)(2J ′ + 1)}1/2

(
J 2 J ′

0 0 0

)

×
(

q2

2

)(
eQ2

2

)(
I2 2 I2

−I2 0 I2

)−1

. (8.306)

Note a possible source of confusion here. We have put Λ= 0 and taken only the axial
component of the field gradient; the subscript 2 on q2 and Q2 refers to nucleus 2, and
not to non-axial components of the second-rank tensors.

Both nuclei have spin I = 3/2 so that the possible values of the quantum numbers
for J = 1 are

F1 = 5/2, F = 4, 3, 2, 1 : F1 = 3/2, F = 3, 2, 1, 0 : F1 = 1/2, F = 2, 1.

The energies of the hyperfine components of the J = 1 rotational level may now be
calculated in terms of the constants appearing in the above equations. The quadrupole
coupling constant for 79Br is large enough that matrix elements of the quadrupole
interaction coupling J = 1 and 3 must be included in the analysis (there is no cou-
pling with J = 0 and 2 for small electric fields because of the parity selection rule).
Using the constants given by Hilborn, Gallagher and Ramsey we can construct the
hyperfine energy level diagram for the J = 1 rotational level as shown in figure 8.34.
A portion of the electric resonance spectrum is shown in figure 8.35, and we have
related the observed resonance lines to the transitions indicated in figure 8.34. A total
of 16 lines was measured for each of the two main isotopic species, involving transitions
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Figure 8.34. Nuclear quadrupole hyperfine structure of the J = 1 level of 7Li79Br (v= 0) in zero
field. The largest splitting is due to the quadrupole interaction involving the 79Br nucleus, and
the smaller splitting arises from the 6Li nucleus. The transitions indicated are resonsible for the
resonances shown in the experimental spectrum presented in figure 8.35.

between the F1 = 3/2 and 5/2 components, and obeying the additional selection rules
�F = 0, ±1. Subsequent studies involving the 6Li isotope enabled the comprehensive
data set presented in table 8.13 to be compiled.

(c) ‘Strong’ magnetic field spectrum

The effective Hamiltonian used by Cecchi and Ramsey [63] to analyse the strong
magnetic field spectrum was the sum of four terms, describing the molecular rotation,
nuclear spin interactions, Stark interactions and Zeeman interactions. Specifically the
Hamiltonian is the following,

H = Hrot + Hhyp + HE + HZ. (8.307)
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Table 8.13. Molecular parameters for the four isotopic forms of LiBr, determined
from the zero- and strong-magnetic field measurements

Parameter 6Li79Br 6Li81Br 7Li79Br 7Li81Br

(eq0 Q)Br (kHz) 38 463.48 32128.23 38 368.104 32 050.860

(eq0 Q)Li (kHz) 4.42 3.11 211.04 211.03

cBr (c1) (kHz) 9.069 9.993 7.8816 8.4740

cLi (c2) (kHz) 0.052 −0.015 0.859 0.815
g1g2µ

2
N

4πε0c2
〈R−3〉 (kHz) 0.370 0.294 1.0710 1.1789

c4 (kHz) 0.039 0.079 0.0604 0.0711

µe (D) 7.268 7.268 7.265 7.265

B (MHz) 19 194.592 19 161.026 16 650.179 16 616.622

954095459550955595609565

1f1

f3
f4

f2

f5

Frequency / kHz

Figure 8.35. Section of the electric resonance hyperfine spectrum for 7Li79Br in the v= 0, J = 1
rotational level [62]. The effective ‘motional’ electric field was 2.33 V cm−1. The resonances
are labelled to permit comparison with the transitions indicated in figure 8.34. Resonances f2

and f3 are Stark components of the same transition.

The first three terms were discussed in the previous section; the new term is, of course,
the Zeeman interaction:

HZ = −g1µN {T1(I1) · T1(B)−T 2(σ1) · T2(I1, B)}−g2µN {T1(I2) · T1(B)

− T2(σ2) · T2(I2, B)}−gJµN T1(J ) · T1(B) − (1/2)T2(χ) · T2(B, B). (8.308)

We met these Zeeman terms earlier in this chapter, notably when describing the
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Table 8.14. Alkali halides studied by electric resonance methods

LiF [60, 61] NaF [58, 59] KF [57] CsF [48, 50, 51, 54] RbF [56, 65, 66]

LiCl [67, 68, 64] NaCl [69, 70, 71] KCl [72, 69] CsCl [73, 74, 69] RbCl [69]

LiBr [75, 76, 62, 63] NaBr [69] KBr [77, 78]

LiI [79, 80] NaI [69, 81]

magnetic resonance spectrum of H2. The last term in (8.308) describing the diamagnetic
susceptibility was, however, expressed differently in equation (8.15).

We shall not go through all the details of the analysis of the spectrum, but will
give some idea of the complexity of the problem. The largest terms in the effec-
tive Hamiltonian are the nuclear spin Zeeman terms. Cecchi and Ramsey [63] made
measurements at three different magnetic fields; at their highest field (5.262 kG) it is a
simple matter to calculate the nuclear spin Zeeman energies and the results are shown
in figure 8.36. At this level of theory there are 16 Zeeman components, as shown, but
addition of the rotational Zeeman term splits each of the levels shown in figure 8.36
into a further triplet corresponding to MJ = 0,±1. The final energies of the result-
ing 48 levels depend upon the quadrupole and nuclear spin–rotation interactions for
both nuclei, as well as screening and diamagnetic effects; the quantum mechanics is
straightforward but the numerical analysis must have been tricky. And all of this was
accomplished for all four isotopic species!

The origin of the electric dipole intensity for the �MJ = ±1 transitions studied
merits further consideration. If the static magnetic field is 5 kG, the motional electric
field has a magnitude of approximately 3 V cm−1 and is perpendicular to the applied
magnetic field. This electric field mixes a state |J,MJ 〉 with the states |J ± 1,MJ ± 1〉
and in order to obtain non-zero electric dipole transition moments for the transitions
|J,MJ 〉 ↔ |J,MJ ± 1〉, the oscillating electric field must be applied parallel to the
static magnetic field.

The results for the four isotopic LiBr species are shown in table 8.13, assembled
from both the zero-field and strong field studies.

(d) Summary of electric resonance studies of alkali halides

The alkali halide molecules have been studied comprehensively by molecular beam
electric resonance methods. Table 8.14 presents a summary with references. In most
cases the electric quadrupole coupling constants have been determined, and usually
also the nuclear spin-rotation constants.

8.4.4. Alkaline earth and group IV oxides

The diatomic oxides of the alkaline earth and group IV elements are refractory mate-
rials for which electric resonance, preceded by a high-temperature source, is an ideal
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Figure 8.36. Energy level diagram showing the nuclear spin Zeeman energies for the 7Li and
79Br nuclei in LiBr. The nuclear g-factor for 7Li (3.256) is larger than that for 79Br (2.106). Each
level shown is split into a further triplet by the rotational Zeeman interaction which removes the
MJ threefold-degeneracy for J = 1.

technique. The molecules which have been investigated all have 1�+ ground states and
the experiments have mainly been directed towards determining their electric dipole
moments. These molecules are somewhat simpler than the alkali halides discussed in the
previous section, in that the predominant isotope of oxygen, 16O, has zero nuclear spin.
We will therefore not go into details; the reader who has mastered our descriptions
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of the analyses of the electric resonance spectra of CsF and LiBr will have no dif-
ficulty in understanding these oxide spectra. We confine ourselves to an abbreviated
summary of the literature, noting that the molecules studied include BaO [82], SrO [83],
SiO [84, 85] and GeO [84, 85].

8.4.5. HF in the X 1�+ ground state

(a) Introduction

The hydrogen halides have been studied extensively by both magnetic and electric
resonance methods. To be specific, electric resonance measurements have been de-
scribed for HF [86, 87, 88, 89], HCl [90, 89] and HBr [91], whilst magnetic resonance
studies were described for HCl [92] and HF [93]. All of these molecules have 1�+

ground states, and rotational transitions will occur at very high frequencies. Hyperfine
transitions occur in the radiofrequency region, and we first describe the conventional
electric resonance studies of HCl and HF by Weiss [86], Kaiser [90] and Muenter
and Klemperer [87]. Later in this section we will describe the extensive studies of
de Leeuw and Dymanus [89] on the HF and HCl molecules who concentrated on the
magnetic and electric properties by making measurements in relatively large magnetic
and electric fields.

The experiments described by Weiss [86] and by Muenter and Klemperer [87]
on HF and DF were performed on molecules in the J = 1 rotational level and used
quadrupole A and B fields, focusing M = 0 molecules onto the detector. The homoge-
neous electric C field was large enough (up to approximately 3000 V cm−1) to separate
the |M | = ±1 and M = 0 levels by about 2 MHz and electric dipole transitions between
them were detected. Each M level is split by nuclear spin interactions, such that the
�M = ±1 transitions in J = 1 showed nine transitions, as illustrated in figure 8.37. We
now see how this spectrum arises, developing the general theory first, and then using
the methods of Weiss [86] to apply the theory to the HF molecule.

(b) Effective Hamiltonian and matrix elements

HF is similar to CsF, discussed earlier, except that both nuclei have spins I of 1/2
and therefore no quadrupole moments. The effective Hamiltonian for HF employed by
Weiss [86] and by Muenter and Klemperer [87] was the same as that used for CsF in
equation (8.281), without the quadrupole term, but with the addition of an electric field
term. In the case of DF, described later, the quadrupole term is present. In irreducible
tensor form, therefore, our Hamiltonian follows equation (8.282), and is written:

Heff = −T1(µe) · T1(E) + cHT1(IH) · T1(J ) + cFT1(IF) · T1(J )

+
√

10gHgFµ
2
N (1/4πε0c2) T1(C, IH) · T1(IF) + c4T1(IH) · T1(IF), (8.309)

where the subscripts H and F refer to the proton and fluorine nuclei respectively. Since
the Stark energy is much greater than the intramolecular interactions, we use the nuclear
spin decoupled representation; we can ignore the very small effects of matrix elements
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Figure 8.37. The J = 1, �M = ±1 electric resonance spectrum of HF shown by Muenter and
Klemperer [87], recorded in an electric field of 1500 V cm−1.

off-diagonal in J . We summarise the results previously obtained for CsF (the ‘strong
field’ case):

(i)  

〈η,Λ=0;J,MJ , IH,MH,IF,MF|− T1
p=0(µe)T1

p=0(E)|η,Λ=0;J ′,MJ ,IH,MH, IF,MF〉

= −µ0 EZ {(2J + 1)(2J ′ + 1)}1/2(−1)MJ

(
J 1 J ′

−MJ 0 MJ

)(
J 1 J ′

0 0 0

)
.

(8.310)

In our discussion of the Stark effect for CsF, we pointed out that (8.310) vanishes unless
1 + J ′ + J is even in the 3- j symbol with zero arguments in the lower row; therefore
J ′ = J ± 1 of necessity, and the Stark effect is second order. We showed that the second-
order Stark energy could be obtained from second-order perturbation theory, to give
the well-known expression (8.279) which we repeat again:

�E (2) = µ2
0 E2

Z

2B

{
J (J + 1) − 3M2

J (J + 1)(2J − 1)(2J + 3)

}
. (8.311)

We shall, in fact, diagonalise the matrix involving the J = 0, 1, 2 and 3 rotational
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levels to obtain results for J = 1. The Stark effect matrix is readily found to be the
following.

J = 0 J = 1 J = 2 J = 3

J = 0 0 −µ0 EZ 0 0

×
{

1 − M2

3

}1/2

J = 1 −µ0 EZ 2B −µ0 EZ 0

×
{

1 − M2

3

}1/2

×
{

4 − M2

15

}1/2

J = 2 0 −µ0 EZ 6B −µ0 EZ

{
9 − M2

70

}1/2

×
{

4 − M2

15

}1/2

J = 3 0 0 −µ0 EZ 12B

×
{

9 − M2

70

}1/2

For a dipole moment of 1.826 526 D and an electric field of 1500 V cm−1 the Stark
energies of the M = 0 and |M| = 1 levels are calculated to be 308.31 and −154.16 kHz
respectively. These shifts are very small because of the large separation between the
rotational levels.

(ii)  -- 

For the proton we have:

〈η,Λ; J,MJ ; IH,MH; IF,MF|
∑

p

(−1)pcHT1
p(J)T1

−p(IH)|η,Λ; J,M ′
J ; IH,M ′

H; IF,MF〉

= cH

∑
p

(−1)p(−1)J−MJ (−1)IH−MH{J (J + 1)(2J + 1)IH(IH + 1)(2IH + 1)}1/2

×
(

J 1 J

−MJ p M ′
J

)(
IH 1 IH

−MH −p M ′
H

)
. (8.312)

For the fluorine we have the similar result:

〈η,Λ; J,MJ ; IH,MH; IF,MF|
∑

p

(−1)pcFT1
p(J )T1

−p(IF)|η,Λ; J,M ′
J ; IH,MH; IF,M

′
F〉

= cF

∑
p

(−1)p(−1)J−MJ (−1)IF−MF{J (J + 1)(2J + 1)IF(IF + 1)(2IF + 1)}1/2

×
(

J 1 J

−MJ p M ′
J

)(
IF 1 IF

−MF −p M ′
F

)
. (8.313)
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(iii)    

From equations (8.302) and (8.309),

〈η,Λ; J,MJ ; IH,MH; IF,MF|Hdip|η,Λ′; J ′,M ′
J ; IH,M ′

H; IF,M ′
F〉

=
√

10gHgFµ
2
N (1/4πε0c2)

∑
p

(−1)p(−1)IF−MF

(
IF 1 IF

−MF −p M ′
F

)

× {IF(IF + 1)(2IF + 1)}1/2

× 〈η,Λ; J,MJ ; IH,MH|T1
p(C2, IH)

∣∣η,Λ′; J ′,M ′
J ; IH,M ′

H

〉
. (8.314)

The remaining matrix element in (8.314) is now expanded:

〈η,Λ; J,MJ ; IH,MH|T1
p(C2, IH)|η,Λ′; J ′,M ′

J ; IH,M ′
H〉

= −〈η,Λ; J,MJ ; IH,MH|
√

3
∑
p1 p2

(−1)pT2
p1

(C)T1
p2

(IH)|η,Λ′; J ′,M ′
J ; IH,M ′

H〉

×
(

1 2 1
p1 p2 −p

)

= −(−1)p
√

3
∑
p1 p2

(
1 2 1
p1 p2 −p

)
(−1)IH−MH

(
IH 1 IH

−MH p2 M ′
H

)

×{IH(IH + 1)(2IH + 1)}1/2〈η,Λ; J,MJ |T2
p1

(C)|η,Λ′; J ′,M ′
J 〉

= −(−1)p
√

3
∑
p1 p2

(−1)IH−MH+J−MJ

(
1 2 1
p1 p2 −p

)(
IH 1 IH

−MH p2 M ′
H

)

×
(

J 1 J ′

−MJ p1 M ′
J

)
{IH(IH + 1)(2IH + 1)}1/2〈η,Λ; J‖T2(C)‖η,Λ′, J ′〉.

(8.315)

The final matrix element in (8.315) is evaluated in the following manner:

〈η,Λ; J‖T2(C)‖η,Λ′; J 〉 =
∑

q

〈η,Λ; J‖D
(2)
.q (ω)∗T2

q (C)‖η,Λ′; J ′〉

=
∑

q

(−1)J−Λ
(

J 2 J ′

−Λ q Λ′

)
{(2J + 1)(2J ′ + 1)}1/2

× 〈η,Λ|T2
q (C)|η,Λ′〉. (8.316)

We have used the second-rank rotation matrix to transform into the molecule-fixed
axis system, q, and have now almost reached our conclusion because we are only
concerned with the q = 0 component, and are dealing with point magnetic dipoles for
the two nuclei. Consequently

〈η,Λ|T2
0(C)|η,Λ〉 = 〈

C2
0 (θ, φ)(R−3)

〉
η
= 〈R−3〉η. (8.317)
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The final result is therefore obtained by combining the results in equations (8.317),
(8.316), (8.315) and (8.314). In the most general case it is complicated but for the
present problem we can make a number of simplifications, as we shall see. We define
the dipolar constant t0 to be

t0 = gFgHµ
2
N (1/4πε0c2)〈R−3〉η. (8.318)

(iv)   -- 

The last term in the effective Hamiltonian, equation (8.309), is the isotropic or scalar
nuclear spin-spin interaction, which was included by Muenter and Klemperer [87]
but not by Weiss [86]. Its matrix elements are readily calculated in our basis set, as
follows:

〈η,Λ; J,MJ ; IH,MH; IF,MF|c4T1(IH) · T1(IF)|η,Λ; J,MJ ; IH,M ′
H; IF,M ′

F〉
= c4

∑
p

(−1)p〈IH,MH|T1
p(IH)|IH,M ′

H〉〈IF,MF|T1
−p(IF)|IF,M ′

F〉

= c4

∑
p

(−1)p(−1)IH−MH

(
IH 1 IH

−MH p M ′
H

)
(−1)IF−MF

(
IF 1 IF

−MF −p M ′
F

)

×{IH(IH + 1)(2IH + 1)IF(IF + 1)(2IF + 1)}1/2. (8.319)

(c) Calculation of the energy levels and electric resonance spectrum

We now apply these general results to the specific problem of HF. Apart from the Stark
effect, we shall otherwise ignore the very small matrix elements which are off-diagonal
in J , and evaluate the terms for J = 1, MJ = 0,±1, IH = IF = 1/2. As Weiss pointed
out, the total magnetic component MZ = MJ + MF + MH is a good quantum number
and may be used to set up a decoupled representation in which states of different MZ

value are diagonalised separately. For J = 1 there are twelve primitive basis states,
which we write below in the form |MF,MH,MJ 〉.

The appropriate basis states chosen to block diagonalise the matrix of the effective
Hamiltonian are as follows:

|MZ | = 2: |1/2, 1/2, 1〉, |−1/2,−1/2,−1〉
|MZ | = 1: |1/2, 1/2, 0〉, |1/2,−1/2, 1〉, |−1/2, 1/2, 1〉

|−1/2,−1/2, 0〉, |1/2,−1/2,−1〉, |−1/2, 1/2,−1〉
MZ = 0: ψ±(0) = (1/

√
2){|1/2,−1/2, 0〉 ± |−1/2, 1/2, 0〉}

ψ±(1) = (1/
√

2){|1/2, 1/2,−1〉 ± |−1/2,−1/2, 1〉}. (8.320)

For |MZ | = 2 and 1 there is a two-fold degeneracy in each case which is not
removed.
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Calculation of the matrix elements using our earlier general results is straightfor-
ward. For |MZ | = 2, where there is only one state, the energy is given by

E1 = W (1, 1) + (1/2){cF + cH + t0/5}, (8.321)

where W (J, |MJ |) is the Stark energy. For |MZ | = 1 the 3 × 3 matrix to be diagonalised
is the following.

|1/2, 1/2, 0〉 |1/2,−1/2, 1〉 |−1/2, 1/2, 1〉
|1/2, 1/2, 0〉 W (1, 0) − t0/5 (1/

√
2){cH + 3t0/10} (1/

√
2){cF + 3t0/10}

|1/2,−1/2, 1〉 (1/
√

2) W (1, 1) + (1/2) −t0/10
× {cH + 3t0/10} × {cF − cH − t0/5}

|−1/2, 1/2, 1〉 (1/
√

2) −t0/10 W (1, 1) + (1/2)
× {cF + 3t0/10} × {−cF + cH − t0/5}

For MZ = 0 we have the following 4 × 4 matrix.

ψ+(0) ψ−(0) ψ+(1) ψ−(1)

ψ+(0) W (1, 0) + 2t0/5 0 (1/
√

2) 0
× {cF + cH− 3t0/5}

ψ−(0) 0 W (1, 0) 0 (1/
√

2){cH − cF}
ψ+(1) (1/

√
2) 0 W (1, 1) + (1/2) 0

× {cF + cH − 3t0/5} × {−cF − cH+ 7t0/5}
ψ−(1) 0 (1/

√
2) 0 W (1, 1) + (1/2)

× {cH − cF} × {−cF − cH − t0}

These matrices do not include the scalar spin–spin terms, which may be calculated if
required from equation (8.319).

The energy levels and transition frequencies can be obtained by diagonalising the
above matrices, given suitable values of the molecular constants. The most accurate
values were obtained by Muenter and Klemperer [87], and are as follows:

µe(v= 0)=1.826 526 D, cF = 307.637 kHz, cH = −71.128 kHz,

t0=143.375 kHz, c4 = 0.529 kHz.

In an electric field of 1475 V cm−1 the Stark energies are +298.119 kHz for
MJ = 0, and are −149.064 kHz for MJ = ±1. Using these values and the molec-
ular constants given above, we may construct the hyperfine energy level diagram
shown in figure 8.38. We label the levels with the basis state labels used in the above
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Figure 8.38. Hyperfine energy levels and calculated structure for the �MZ = ±1 transitions in
the J = 1 level of HF, assuming an electric field of 1475 V cm−1 and the values of the constants
given in the text. The predicted structure may be compared with that observed, as shown in
figure 8.37. The quantum numbers on the right hand side are the values for MF, MH and MJ

(and are only approximate). The total quantum number MZ = MJ + MH + MF is a good one,
however.

matrices, although most of these are now only approximate labels because of the state
mixing.

MZ remains a rigorous quantum number and the allowed electric dipole transitions
in the electric resonance experiment should satisfy the selection rule �MZ = ±1. In
fact only seven of the nine observed transitions satisfy this rule, the remaining two
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apparently involving �MZ = 0. In addition the observed transitions should obey the
rule �MJ = ±1, which they all do, but it is important to note that MJ is no longer
a good quantum number. With these rules in mind, the observed transitions can be
identified, as shown in figures 8.37 and 8.38. As in many other cases described in this
book, we have taken the easy route of using the values of the molecular constants to
calculate the energy levels and transition frequencies; the reverse route is not quite so
easy.

Although we will not go into the details of the spectroscopic analysis, we should
note that Muenter and Klemperer [87] also examined the electric resonance spectrum
of DF and obtained the following values of the molecular constants:

µe(v = 0)=1.818 805 D, cF =158.356 kHz, cD =−5.755 kHz,

t0 = 4.434 kHz, eq0 Q = 354.238 kHz.

The difference in electric dipole moment (0.007 72 D) between the proton and
deuteron species is discussed by Muenter and Klemperer [87] and attributed to the
difference in zero-point amplitude averaged over the same dipole moment function. If
the difference is purely vibrational in origin, the dipole moment of the vibrationless
molecule is calculated to be 1.7965 D, which compares with a theoretical value of
1.942 D obtained from Hartree–Fock calculations by Huo [94]. The nuclear spin–
rotation constants of non-rigid diatomic molecules have been discussed theoretically
by Hindermann and Cornwell [95].

The simplest molecular constant to understand is the nuclear spin dipolar interac-
tion constant, t0, which is found to be, within experimental error, that calculated from the
classical interaction of two magnetic moments, i.e. gFgHµ

2
N (1/4πε0c2)〈R−3〉v=0. On

the other hand, calculation of scalar electron-coupled spin–spin interaction constants
is notoriously difficult, requiring a molecular electronic wave function of the highest
quality. The best available calculation for HF quoted by Muenter and Klemperer is one
due to O’Reilly [96].

(d) Electric resonance spectrum in the presence of a strong magnetic field

The magnetic resonance spectrum of HF was studied some nine years earlier than
the electric resonance spectrum by Baker, Nelson, Leavitt and Ramsey [93]; in this
case the transitions studied were magnetic dipole, corresponding to reorientation of
the proton and fluorine nuclear spins. Values of the nuclear spin–rotation and dipolar
constants were essentially confirmed by the later electric resonance measurements.
We now describe measurements of the electric resonance spectrum in the additional
presence of a strong magnetic field, carried out by de Leeuw and Dymanus [89].

The effective Hamiltonian for HF in a strong electric field was given in equa-
tion (8.309). The simplest extension to include the effects of an additional strong
magnetic field would involve the inclusion of the terms

HZ = −gJµN T1(B) · T1(J ) − gHµN T1(B) · T1(IH) − gFµN T1(B) · T1(IF). (8.322)
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We have used this type of Zeeman Hamiltonian in our earlier discussions of mag-
netic resonance spectra, but it is an oversimplification because all three interactions
should more correctly be represented by second-rank tensors with components de-
scribed in the molecular axis system. Similarly, there should be an additional term
describing the magnetic susceptibility tensor. We will come to these important mat-
ters in due course, because their elucidation was the objective of de Leeuw and
Dymanus [89]. It is, however, instructive to examine the behaviour of the energy lev-
els, and the transitions between them, when the Zeeman interaction is represented
by the simple expression (8.322), with the magnetic field applied in the same direc-
tion (p = 0) as the electric field. The Stark matrix was described earlier and we will
denote the eigenvalues for the Stark interaction in J = 1 by W (J, |MJ |), observing
that the Stark degeneracy of the MJ = ±1 states is not removed by the Stark inte-
raction.

For MZ = ±2 we have the following simple results:

MZ = +2: |1/2, 1/2, 1〉 E2 = W (1, 1) + (1/2){cF + cH + t0/5}
− (gF + gH + 2gJ )µN (BZ/2),

MZ = −2: |−1/2,−1/2,−1〉 E−2 = W (1, 1) + (1/2){cF + cH + t0/5}
+ (gF + gH + 2gJ )µN (BZ/2).

Again we express the basis states in the form |MF,MH,MJ 〉.
For the MZ = ±1 states we now have two separate 3 × 3 matrices. For MZ = +1

we have the following.

|1/2, 1/2, 0〉 |1/2,−1/2, 1〉 |−1/2, 1/2, 1〉

|1/2, 1/2, 0〉 W (1, 0) − t0/5
{cH + 3t0/10}√

2

{cF + 3t0/10}√
2

−(gF + gH)µN BZ

2

|1/2,−1/2, 1〉 {cH + 3t0/10}√
2

W (1, 1) −t0/10

+ {cF − cH − t0/5}
2

−(gF − gH + 2gJ )µN BZ

2

|−1/2, 1/2, 1〉 {cF + 3t0/10}√
2

−t0/10 W (1, 1)

+ {−cF + cH − t0/5}
2

+(gF − gH − 2gJ )µN BZ

2
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For MZ = −1 the matrix is as follows.

|−1/2,−1/2, 0〉 |1/2,−1/2,−1〉 |−1/2, 1/2,−1〉

|−1/2,−1/2, 0〉 W (1, 0) − t0/5
{cH + 3t0/10}√

2

{cF + 3t0/10}√
2

+(gF + gH)µN BZ

2

|1/2,−1/2,−1〉 {cH + 3t0/10}√
2

W (1, 1) −t0/10

+ {cF − cH − t0/5}
2

−(gF − gH − 2gJ )µN BZ

2

|−1/2, 1/2,−1〉 {cF + 3t0/10}√
2

−t0/10 W (1, 1)

+ {−cF + cH − t0/5}
2

+(gF − gH − 2gJ )µN BZ

2

Finally, for MZ = 0, the 4 × 4 matrix to be diagonalised is as follows.

ψ+(0) ψ−(0) ψ+(1) ψ−(1)

ψ+(0) W (1, 0) + 2t0/5 − (gF − gH)µN BZ

2

{cF + cH − 3t0/5}√
2

0

ψ−(0) − (gF − gH)µN BZ

2
W (1, 0) 0

{cH − cF}√
2

ψ+(1)
{cF + cH − 3t0/5}√

2
0 W (1, 1) − (gF + gH − 2gJ )µN BZ

2

+ {−cF − cH + 7t0/5}
2

ψ−(1) 0
{cH − cF}√

2
− (gF + gH − 2gJ )µN BZ

2
W (1, 1)

+ {−cF − cH − t0}
2

De Leeuw and Dymanus [89] show the behaviour of the energy levels in an electric
field of 2952 V cm−1 and a range of magnetic field values. Inserting the values of the
constants into the above matrices and performing diagonalisation for different values of
the magnetic field we can reproduce this behaviour. Figure 8.39 shows the energy levels
at magnetic fields from 0 to 8 kG. At the higher fields the fully decoupled representation
is appropriate and the levels can be labelled according to their magnetic projection
quantum numbers, as shown in figure 8.39. Five electric resonance transitions with
�MJ = ±1 were measured by de Leeuw and Dymanus [89], and these are indicated in
figure 8.39. De Leeuw and Dymanus did not illustrate the spectra obtained, and they did
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Figure 8.39. Behaviour of the energy levels of HF in the J = 1 level in magnetic fields from 0
to 8 kG. The electric field was 2952 V cm−1. The vertical arrows indicate the five transitions
measured by de Leeuw and Dymanus [89]. For the zero field energy level pattern, see figure 8.38.

not provide any quantitative details of the experimental results. It would also be possible
to use our theoretical results to calculate the proton and fluorine nuclear magnetic
resonance spectra (putting the electric field equal to zero) but unfortunately the original
paper, although containing examples of the spectra, gives insufficient experimental data
to make this exercise worthwhile.

The Zeeman Hamiltonian given in equation (8.322) is sufficient to provide a semi-
quantitative description of the magnetic effects but, as was described in our discussion
of the magnetic resonance spectrum of H2, it is an approximate form. The local mag-
netic field experienced by the H and F nuclei is not quite the same as the applied
laboratory field because of shielding effects due to the surrounding electrons. In addi-
tion the rotational Zeeman interaction should be described not by the single constant
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gJ , but by a rotational magnetic moment tensor. Consequently in sufficiently accurate
and detailed work, equation (8.322) should be replaced by the more precise Zeeman
Hamiltonian,

HZ = −µN T2(G) · T2(J, B) −µN gH{T1(IH) · T1(B) − T2(σH) · T2(IH, B)}
−µN gF{T1(IF) · T1(B) − T2(σF) · T2(IF, B)}. (8.323)

Here we have introduced three second-rank tensors, the rotational magnetic moment
tensor T2(G) and the proton and fluorine screening tensors, T2(σH) and T2(σF). In
addition to the rotational magnetic moment and chemical shift (shielding) tensors,
a further term which should be included in the Zeeman Hamiltonian describes the
diamagnetic susceptibility. This term takes the form

Hdiam = −(1/2) T2(χ) · T2(B, B), (8.324)

the diamagnetic susceptibility being described by the second-rank tensor T2(χ).
The principal components (defined in the molecular axis system) of the shield-

ing and susceptibility tensors can be determined from solid state studies which have
sufficient accuracy and resolution. In the case of HF in the gas phase, with J = 1, the
spin–rotation and dipolar constants were determined accurately from the earlier electric
resonance studies, so that de Leeuw and Dymanus [89] were able to use their Zeeman
studies to measure the anisotropy of the screening and susceptibility tensors, with the
following results:

χ ( parallel ) −χ ( perpendicular) = 0.132 kHz kG−2,

σF( parallel ) − σF( perpendicular) = 108 p.p.m., (8.325)

σH( parallel ) − σH( perpendicular) = 24 p.p.m.

‘parallel’ and ‘perpendicular’ are, of course, defined with respect to the direction of the
internuclear axis, and ‘p.p.m.’ stands for ‘parts per million’. The shielding anisotropy
for the 19F nucleus is particularly large; the resulting reduction in the effective magnetic
field at the nucleus results in significant shifts in the resonance frequencies.

It now remains to see how ab initio calculations of the molecular parameters agree
with experiment. De Leeuw and Dymanus [89] presented a detailed comparison of
experiment and theory, which is summarised in table 8.15. Details of the calculations
may be obtained by consulting the references listed; as may be seen, the agreement is
generally very good.

8.4.6. HCl in the X 1�+ ground state

An important property of molecules is the behaviour of the electric dipole moment
function near the equilibrium configuration, and the changes which occur on vibrational
excitation. Electric resonance studies of the HCl molecule in its electronic ground state,
carried out by Kaiser [90] are important in this respect, and also in showing, through
the 35Cl quadrupole interaction, how the electric field gradient changes on vibrational
excitation.
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Table 8.15. Comparison of experimental and theoretical parameters for the HF
molecule at its equilibrium internuclear separation (Re = 1.7328 a.u.). Superscripts
d or p stand for diamagnetic or paramagnetic respectively

Parameter Units Obs. [87] [97] [98] [99] [100]

(σave)d
F p.p.m. — 481.6 482.2 482.2 482.1

(σave)d
H p.p.m. 108.9 108.4 108.5 108.5 108.5

(σpar − σperp)d
F p.p.m. −1 — — — —

(σpar − σperp)d
H p.p.m. −96 — — — —

χ p
ave 10−5 J T−2 mol−1 0.5579 0.64 — — —

(χpar −χperp)d 10−5 J T−2 mol−1 1.342 — 1.222 1.224 —

µe D 1.7965 — 1.941 1.934 1.941

Qmol 10−40 C m2 7.37 — 7.84 7.77 7.34

µJ/J µN 0.74104 0.738 — — —

Kaiser’s studies employed a conventional spectrometer with A and B electric
quadrupole fields, and by passing the HCl gas through a microwave discharge sit-
uated prior to the molecular beam source, populations in the ratios 21 : 3 : 1 for the
v= 0, 1 and 2 vibrational levels were obtained. An effusion source was operated at
170 K and line widths close to 1 kHz were obtained; similar studies of DCl were de-
scribed, except that in this case the gas was preheated to 1440 K to produce increased
vibrational excitation. Kaiser was able to observe spectra of H35Cl in J = 1, v= 0, 1,
2 and J = 2, v= 0. He also studied D35Cl in v= 0, J = 1, 2, 3 and v= 1, J = 1.

Kaiser did not show examples of the spectra obtained, and did not list experimental
frequencies. We cannot, therefore, reconstruct his spectra, but note that the spectro-
scopic analysis follows that outlined earlier for CsF closely. 35Cl has a nuclear spin of
3/2 and a large electric quadrupole moment whilst the proton is, of course, like 19F in
having a spin of 1/2. D35Cl is rather more complicated in that the 2D nucleus also has
a quadrupole moment. Table 8.16 summarises the results obtained for H35Cl, whilst
Table 8.17 presents the data for D35Cl. The data for H35Cl illustrate the vibrational de-
pendence of the molecular parameters, whilst the data for D35Cl involve their rotational
dependence. We now describe Kaiser’s analysis of these dependences.

The ultimate objective of the analysis is to express the vibrational and rotational
dependence of the various molecular parameters as power series in their derivatives
with respect to the internuclear distance. In chapter 6 we discussed various analytic
representations of the potential energy in terms of the internuclear distance. Perhaps
the most general representation is that due to Dunham [101] who assumed a power
series for the potential of the form

V (R) = hca0ξ
2{1 + a1ξ + a2ξ

2 + a3ξ
3 + · · ·}, (8.326)

where

ξ = (R − Re)/Re. (8.327)



502 Molecular beam magnetic and electric resonance

Table 8.16. Molecular parameters for H35Cl determined from the electric resonance
spectra. All parameters are in kHz except for the electric dipole moment, µ(v), which
is in Debye units (D). The rotational and centrifugal distortion constants were
obtained by Rank, Rao and Wiggins [102]. S12 is the spin–spin interaction constant,
equal to [g1g2µ

2
N (µ0/4π)/(2J + 3)(2J − 1)]〈R−3〉v J

v= 0, J = 1 v= 1, J = 1 v= 2, J = 1 v= 0, J = 2

eq0 QH 0 0 0 0

eq0 QCl −67 618.93 −69 272.89 −70 908.1 −67 638.53

cH −41.80 −41.09 −39.94 −41.68

cCl 53.851 58.597 63.68 53.887

S12 1.117 1.081 1.047 0.266

µ(v) 1.1085 1.1390 1.1685 1.1085

Bv 3.129 909 8 × 108 3.038 765 1 × 108 2.948 358 8 × 108 3.129 909 8 × 108

Dv 15 837.47 15 636.28 15 459.16 15 837.47

Table 8.17. Molecular parameters for D35Cl determined from the electric resonance
spectra. All parameters are in kHz except for the electric dipole moment, µ(v), which
is in Debye units (D). The rotational and centrifugal distortion constants were
obtained by Rank, Eastman, Rao and Wiggins [103]

v= 0, J = 1 v= 0, J = 2 v= 0, J = 3 v= 1, J = 1

eq0 QD 187.36 187.02 187.36 184.8

eq0 QCl −67 393.38 −67 403.32 −67 418.01 −68 583.1

cD −3.295 −3.308 −3.295 −3.25

cCl 27.426 27.430 27.426 29.121

S12 0.172 0.041 0.019 0.168

µ(v) 1.1033 1.1033 1.1033 1.1256

Bv 1.616 559 4 × 108 1.616 559 4 × 108 1.616 559 4 × 108 1.582 849 2 × 108

Dv 4198.5 4198.5 4198.5 4155.5

Dunham then showed that for this potential the vibration–rotation energies could be
expressed by

Ev,J =
∑

kl

Yk,l(v + 1/2)k J l(J + 1)l (8.328)

where the k and l are positive integral summation indices. The Ykls of equation (8.328)
can be related directly to the an coefficients of equation (8.326). Kaiser [90] and de
Leeuw and Dymanus [89] used these results to show that the expectation value of any
operator O can be expressed as a power series in Be/ωe and, up to quadratic terms in
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Table 8.18. Derivatives (with respect to R) of the 35Cl electric
field gradient in H35Cl

Coefficient Experiment Theory

qe (C m−3) 39.291 × 1011 38.59 × 1011

(dq/dR)e (C m−3 Å−1) 45.10 × 1011 45.0 × 1011

(d2q/dR2)e (C m−3 Å−2) −79.7 × 1011 −73.1 × 1011

this function, obtained the result

〈O〉v,J = Oe + (Be/ωe)2

{
O ′

e Re

[
−15

4
a3+23

4
a1a2−21

8
a3

1

]
+O ′′

e R2
e

[
−3

4
a2 + 7

8
a2

1

]

− 7

24
a1 O ′′′

e R3
e + 1

16
O ′′′′ R4

e

}
+ (Be/ωe)(v+ 1/2)

{
O ′

e Re( − 3a1) + O ′′
e R2

e

}
+ (Be/ωe)2(v + 1/2)2

{
O ′

e Re

[
−15a3 + 39a1a2 − 45

2
a3

1

]

+ O ′′
e R2

e

[
−3a2 + 15

2
a2

1

]
− 15

6
a1 O ′′′

e R3
e + 1

4
O ′′′′

e R4
e

}
+ 4(Be/ωe)2 J (J + 1)O ′

e Re. (8.329)

The primes denote successive derivatives of the operator Oe with respect to R at the
equilibrium internuclear separation Re. The values of the coefficients an, as well as Be

and ωe are known from analysis of the vibration–rotation spectrum [102].
Kaiser [90] pointed out that using only equation (8.329) to determine the derivatives

of any chosen operator is not possible, an observation proved by Trischka and Salwen
[104]. It is necessary to observe both centrifugal distortion and vibrational variation
of an expectation value in order to separate first and second derivatives. We will not
go through the details of this problem here, but present some of the results achieved.
Kaiser found that the chlorine quadrupole constants for v= 0, 1 and 2 could be fitted
to a second-order power series in (v+ 1/2) adjusted to J = 0:

eq0 QCl = a + b(v+ 1/2) + c(v+ 1/2)2, (8.330)

with a = −66775.1 kHz, b = −1672.8 kHz, c = 9.4 kHz. By combining this vibrational
information with the observed centrifugal distortion, the first and second derivatives
of the quadrupole coupling constant with respect to R evaluated at Re were obtained.
The quadrupole moment for the 35Cl nucleus is known, so that the derivatives of the
electric field gradient q can be obtained. These are listed in table 8.18, and compared
with Hartree–Fock calculations of Huo [105]; the agreement is remarkably good.

We now turn to the spin–rotation constants, noting first that the proton constant was
determined in earlier molecular beam magnetic resonance studies by Code, Khosla,
Ozier, Ramsey and Yi [106]. First there is a relativistic acceleration correction cH (acc)
to the spin–rotation constant,

cH(obs) = c′
H + cH(acc), (8.331)
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which is given by [95],

cH(acc) = [hmCl/2mH(mH + mCl)]
[
2(v + 1/2)Beωe − 4J (J + 1)B2

e

]
. (8.332)

The corrected value of the spin–rotation constant was then fitted to the expression

c′
H = gH Bv,J [a + b(v + 1/2)]. (8.333)

Using the values of c′
H observed in the v= 0 and 1 states of HCl, the values of a and b

were determined to be –0.712 and –0.0114 kHz · cm respectively. Kaiser tested these
results by calculating the expected values of the spin–rotation constants for DCl. He
defined a quantity (v+ 1/2)eff for DCl by the relationship

(v + 1/2)eff = (µHCl/µDCl)
1/2(v + 1/2), (8.334)

where µ is the reduced molecular mass and using equations (8.332) and (8.333) above
obtained the reasonably satisfactory results,

v = 0: cD (observed) = −3.295 kHz, cD(calculated) = −3.299

v = 1: cD (observed) = −3.015 kHz, cD (calculated) = −3.246.

A similar analysis was carried out for the 35Cl spin–rotation constants, except that an
additional vibrational term was added:

cCl = Bv,J [a + b(v + 1/2) + c(v + 1/2)2]. (8.335)

The constants were determined to be

a = 4.874 kHz · cm, b = 0.552, c = 0.036.

As before, these constants were used to calculate the values of cCl expected for DCl,
with the results,

v = 0: cCl (observed) = 27.426kHz, cCl (calculated) = 27.37

v = 1: cCl (observed) = 29.12 kHz, cCl (calculated) = 29.08.

The agreement is again satisfactory.
The molecular physics underlying the nuclear spin–rotation interaction has been

discussed by Flygare [107]. In the general case of a polyatomic molecule the spin–
rotation interaction is represented by a second-rank tensor; in a molecule fixed coordi-
nate system x , y, z, the diagonal component in the x direction may be written as the
sum of a nuclear part (k labelling the nucleus under consideration) and an electronic
part:

Hnsr =
∑

k

T2(Mk) · T2(Ik, J ) (8.336)
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where

Mk
xx = eh gkµN

Ixx

µ0

4π

∑
α

Zα
R3
αk

(
R2
αk −x2

αk

)+ eh 3gkµN

2m Ixx

µ0

4π

×
∑
n>0

[〈0|∑i (l ik)x/r3
ik |n〉〈n|(Lk)x |0〉 + 〈0|(Lk)x |n〉〈n|∑i (l ik)x/r3

ik |0〉
E0 − En

]
(8.337)

and cyclic permutations for the yy and zz components. Ixx in this expression is a
component of the molecular inertial tensor. The tensor components are expressed in
energy units (J). There is a positive nuclear contribution, and a negative electronic term
involving excited electronic states which are coupled in by orbital angular momentum.
The ground state electronic distribution of electrons does not contribute to the nuclear
spin–rotation interaction. In a linear molecule, where the internuclear axis is labelled
(a),only the perpendicular component Mbb = Mcc is non-zero; this is the quantity we
have labelled ck .

Perhaps the most interesting aspect of Kaiser’s work on the HCl molecule is the
vibrational dependence of the molecular electric dipole moment. In particular the aim
was to obtain a complete description of the dipole moment operator M(R) as a function
of the internuclear distance R. It has been shown by Trischka and Salwen [104] that
the dipole moment function can be obtained unambiguously if all of the elements in a
row or a column of the dipole moment matrix in the vibrational wave function basis
are known. The diagonal elements of this matrix correspond to the dipole moment in
specific vibrational states, and can be determined from the Stark effect measurements of
the molecular beam electric resonance spectrum. More specifically, the difference in the
dipole moment of two different vibrational states is obtained from the high-resolution
studies. The off-diagonal matrix elements can be obtained from absolute intensity
measurements of vibrational bands, except that, as we shall see below, there remains an
ambiguity in the sign of these off-diagonal elements. Absolute intensity measurements
have been made [108] for the 1-0, 2-0, 3-0 bands of HCl and DCl, and for the 2-1 and
3-2 bands of HCl. There is more than one way of defining the dipole moment matrix,
but since the measurements are usually restricted to the lower vibrational levels, the
necessary truncation procedure is best handled by means of what is known as the ‘wave
function’ approximation. If the complete set of vibrational wavefunctions is denoted
#v(R), we may write the expansion

M(R)#v(R) =
∑
v′
#v′ (R)〈#v′ |M(R)|#v〉. (8.338)

Making the arbitrary choice of v= 0, and dividing both sides of (8.338) by #0(R), we
obtain

M(R) =
∑
v′

[#v′ (R)/#0(R)]〈#v′ (R)|M(R)|#0(R)〉. (8.339)

Clearly, if the matrix elements in this equation, and the vibrational wave functions, are
known, the dipole moment function M(R) can be obtained. The square of the matrix
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Table 8.19. Measured relative dipole moments of H35Cl and D35Cl. The zero error
values were used as reference values for those that follow in the table

Molecule Vibrational level (v) Rotational level (J ) µe(v)(Debye)

HCl 0 1 1.108 47 ± 0.0

HCl 0 2 1.108 48 ± 0.000 25

HCl 1 1 1.138 88 ± 0.000 26

HCl 2 1 1.168 35 ± 0.0006

DCl 0 1 1.103 12 ± 0.000 08

DCl 0 1 1.103 12 ± 0.0

DCl 0 2 1.103 18 ± 0.000 35

DCl 1 1 1.125 15 ± 0.000 25

Table 8.20. Absolute intensity measurements [108] of Mv,0 in HCl and DCl

Matrix element (Debye) HCl DCl

|M1,0| (6.7 ± 0.14) × 10−2 (5.6 ± 0.25) × 10−2

|M2,0| (7.02 ± 0.14) × 10−3 (5.0 ± 0.2) × 10−3

|M3,0| (5.15 ± 0.2) × 10−4 (3.08 ± 0.12) × 10−4

element for v′ 
= 0 can be obtained from the absolute intensity of the v′ − 0 band,

Iv,v′ = (8π3νv,v′/3hc)(Nv − Nv′ )|〈#v′ |M(R)|#v〉|2, (8.340)

where Nv is the population of level v and νv,v′ is the frequency of the v′ − v transition.
Clearly the sign of the dipole matrix element is not determined from these intensity
measurements.

The vibrational wave functions can be calculated from an RKR representation of
the potential well, which is based on the rotational constants and vibrational levels of
the molecule concerned. This leaves the problem of determining the signs of the matrix
elements. From equation (8.339) we may write

Ma,a − M0,0 =
∑
v′ 
=0

Cv′aa Mv′,0, (8.341)

where

Mv,v′ =
∫
#v(R)M(R)#v′ (R) dτ ,

(8.342)

Cvi j =
∫

(#v#i# j/#0) dτ .

The C coefficients are obtained from the vibrational wave functions calculated as
described above; the measured relative dipole moments are listed in table 8.19 and the
absolute infrared intensity measurements [108] are given in table 8.20.
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Table 8.21. Distance derivatives of the dipole moment operator for
HCl and DCl

Derivative HCl DCl

Me (D) +1.0933 ± 0.0005 +1.0922 ± 0.0005

(dM/dR)e(D Å−1) +0.925 ± 0.02 +0.935 ± 0.025

(d2 M/dR2)e(D Å−2) +0.16 ± 0.11 +0.14 ± 0.13

(d3 M/dR3)e(D Å−3) −3.83 ± 0.90 −3.81 ± 1.1

(d4 M/dR4)e(D Å−4) −9.3 ± 4.5 −7.6 ± 4.8

Because of the limited data set it is necessary to truncate the series (8.341); consequently
the difference (M1,1 − M0,0) is taken as

M1,1 − M0,0 = C111 M1,0 + C211 M2,0. (8.343)

If the values of the M matrix elements from table 8.20 are combined with the calcu-
lated C coefficients, the result obtained is

M1,1 − M0,0 = ±0.0394 ± 0.0106D. (8.344)

Kaiser [90] showed how the sign ambiguity above can be resolved, and the absolute
signs of the M matrix elements determined; the interested reader is referred to his
paper. By combining the M values with the theoretical vibrational wave functions, he
was able to use equation (8.339) to derive values of the dipole moment function at a
range of values of R–Re. He then fitted the dipole moment function to a sixth-order
polynomial in R–Re, from which he was able to calculate the distance derivatives given
in table 8.21.
The relative dipole moments of the three observed vibrational levels of HCl can be
fitted to a second-order equation in (v + 1/2), with the results

µe = µ0
e + µI

e (v + 1/2) + µII
e (v + 1/2)2, (8.345)

with

µ0
e = +1.092 90 ± 0.000 55D,

µI
e = +0.0314 ± 0.0014D, (8.346)

µII
e = −0.0047 ± 0.000 55D.

A plot of the dipole moment of HCl versus (v+ 1/2) is thus close to linear; so also
is a similar plot for DCl, but the plots are not coincident, as they should be if the
Born–Oppenheimer approximation holds. It therefore appears that there is a noticeable
violation of the Born–Oppenheimer approximation in these molecules, which is due
to vibrational–electronic interaction [109]. A similar effect has been observed for
the HD molecule [110, 111]. One concludes that the customary practice of inferring
the vibrational behaviour from isotopically related molecules must be treated with
caution when dealing with light molecules, like hydrides.
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Table 8.22. Comparison of experimental and theoretical parameters for the H35Cl
molecule at its equilibrium internuclear separation (Re = 2.4085 a.u.). Superscripts
d or p stand for diamagnetic or paramagnetic respectively

Parameter Units Observed [98] [99]

(σave)d
Cl p.p.m. 942 1150.3 1150.3

(σave)d
H p.p.m. — 141.8 141.9

(σpar − σperp)d
Cl p.p.m. −4 — —

(σpar − σperp)d
H p.p.m. −148 — —

χ p
ave 10−5 J T−2 mol−1 2.46 — —

(χpar − χperp)d 10−5 J T−2 mol−1 3.49 — —

µe D 1.0933 1.196 1.215

Qmol 10−40 C m2 11.77 12.67 12.47

µJ/J µN 0.459 35 — —

eq0 QCl MHz −66.80 −66.4 −66.5

Finally we note that the electric resonance spectrum of H35Cl was also studied in
the presence of a strong magnetic field by de Leeuw and Dymanus [89]; the results are
summarised in table 8.22, which may be compared with the earlier results tabulated
for HF.

8.5. Molecular beam electric resonance of open shell molecules

8.5.1. Introduction

The years from 1960 to 1975 represented a golden era in the radiofrequency and
microwave spectroscopy of open shell diatomic molecules. Molecular beam electric
resonance was one of the most important experimental approaches, but microwave,
far-infrared and magnetic resonance studies of bulk gaseous samples were equally
important and our understanding of these open shell species is derived from a combi-
nation of different experimental approaches. In this book we have chosen to organise
our descriptions according to the experimental techniques employed, but as with any
such scheme, we run the risk, which we wish to avoid, of not connecting the results
from different types of experiment in a coherent manner. As we shall see, the OH rad-
ical is the example par excellence which illustrates the pitfalls of an approach which
is technique-oriented, rather than molecule-oriented.

Many of the open shell species which have been studied have 2� ground states and
therefore share certain common features in their spectroscopic study. In this section
we choose to describe, in some detail, the LiO, NO and OH molecules, all of which
have 2� ground states. The complexity increases, however, partly for reasons intrinsic
to the species, and partly because of the increased range of techniques which have
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been employed. Later in this section we come to the 3� excited electronic state of CO,
which introduces new complexities in its spectroscopy, some of which we shall meet
again in our descriptions of the magnetic resonance spectroscopy of open shell species
(chapter 9).

8.5.2. LiO in the X 2� ground state

(a) Introduction

One of the first applications of molecular beam electric resonance to an open-shell
molecule was described in a classic paper by Freund, Herbst, Mariella and Klemperer
[112]. The molecule concerned was LiO, and at the time of their work there was no
other gas phase study of this species; unpublished calculations by Wahl [113] were of
considerable help. Other theoretical calculations were being performed concurrently by
Yoshimine [114], although Yoshimine and the experimentalists appeared to be unaware
of their mutual interest in the LiO molecule. The experimental work was therefore
performed against the background of essentially no previous information, which makes
it the more remarkable. Beams of LiO were produced by heating Li2O to 1800 K, and the
resonance experiments were carried out using a spectrometer similar to that described in
figure 8.33, operated in the ‘flop-in’ mode with a surface ionisation detector. Attention
was focused on the naturally occurring isotopic form 7Li16O, because of interest in the
7Li hyperfine structure (I = 3/2).

In terms of single electron configurations, the ground and first excited electronic
states of LiO may be written

X 2�: (1σ )2(2σ )2(3σ )2(4σ )2(1π )3

A 2�+: (1σ )2(2σ )2(3σ )2(4σ )(1π )4. (8.347)

The electric resonance experiments were carried out on LiO in its ground 2� state,
but we shall see that the nearby 2�+ state, lying only 2330 cm−1 above the ground
state, has very important effects on the ground state spectrum. Figure 8.40 gives an
approximate idea of the relevant energy levels, which are not drawn to scale. The
lowest fine-structure component of the X 2� state is the 2�3/2, with the 2�1/2 com-
ponent lying 112 cm−1 higher in energy. Each rotational level is split primarily into
Λ-doublet components, as shown. Mixing of the ground state with the A 2�+ excited
state is very important, so we include the first few rotational levels of the A state in
figure 8.40, using case (a) nomenclature (for both states). Figure 8.41 shows the nu-
clear hyperfine splitting in the J = 5/2 rotational level, and the types of transitions
studied in the electric resonance experiments. Resonances were observed involving
the first three vibrational levels of the ground electronic state, but we shall concen-
trate on the v= 0 spectrum, which exhibited the best resolution. The nuclear spin I of
7Li is 3/2, and both magnetic and electric quadrupole interactions were observed and
analysed.
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Figure 8.40. Lower rotational levels of the X 2� and A 2�+ states of LiO, showing theΛ-doublet
splitting. The diagram is not drawn to scale, but does demonstrate the increasing Λ-doublet
splitting as J increases, and the much larger splitting in the 2�1/2 state. TheΛ-doublet splitting
in the 2�3/2 state increases from about 10 MHz in J = 3/2 to 223 MHz in J = 9/2. In the 2�1/2

state, which lies 112 cm−1 above 2�3/2, it is about 12 300 MHz in J = 3/2. The 2�+ state lies
2330 cm−1 above the ground state.
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Figure 8.41. 7Li nuclear hyperfine splitting of the J = 5/2 Λ-doublet levels of LiO, and the
types of transitions detected in the electric resonance experiments [112]. The electric dipole
transitions obey the selection rules �J = 0,�F = 0, ±1 and all ten transitions shown were
observed experimentally.

(b) Effective Hamiltonian and basis set

The effective Hamiltonian may be regarded as the sum of four terms,

Heff = Hso + Hrot + Hhfs + HQ, (8.348)

representing the spin–orbit coupling, rigid body rotation, magnetic hyperfine and elec-
tric quadrupole interactions respectively. These four terms are written explicitly as:

Hso = A T1(L) · T1(S), (8.349)

Hrot = B T1(R) · T1(R) = B T1(J − L − S) · T1(J − L − S), (8.350)
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Hhfs = a T1(L) · T1(I) + bFT1(S) · T1(I)

−
√

10gSµB gNµN (µ0/4π) T1(S,C2) · T1(I), (8.351)

HQ = −e T2(∇E) · T2(Q). (8.352)

We have met most of these terms earlier in this chapter, except for that describing the
rigid body rotation R2; the expansion in equation (8.350) anticipates the basis set to be
employed. Note that we have chosen to express the rotational kinetic energy in terms of
the bare nuclear angular momentum R here rather than N as recommended in chapter 7.
This is because we wish to include the mixture of the 2�+ state of LiO explicitly in our
description. The effective Hamiltonian does not contain terms describing centrifugal
distortion and later in this book we will describe studies of other 2� radicals, notably
NO, OH and CH, where the spectroscopic analysis is considerably more detailed than
that described here for LiO. What follows for LiO may be regarded as a fairly gentle
introduction to the theory of 2� states, with much more to come later.

The eigenvalue problem is set up using a case (a) basis set for both the 2� and
2�+ states of LiO. The quantum numbers specified are thereforeΛ, the component of
electronic orbital angular momentum along the internuclear axis,Σ, the component of
electron spin S along the internuclear axis, andΩ, the sum ofΛ andΣ. In addition we
specify the total angular momentum J , exclusive of nuclear spin I , and ultimately F ,
the total angular momentum including nuclear spin. We start by noting that there are
six ‘primitive’ basis states to be considered, which are as follows:

2� =+3/2: |η,Λ = +1; S,Σ = +1/2; J,MJ ,Ω = +3/2〉,
2� =−3/2: |η,Λ = −1; S,Σ = −1/2; J,MJ ,Ω = −3/2〉,
2� =+1/2: |η,Λ = +1; S,Σ = −1/2; J,MJ ,Ω = +1/2〉,
2� =−1/2: |η,Λ = −1; S,Σ = +1/2; J,MJ ,Ω = −1/2〉,
2� =+1/2: |η,Λ = 0; S,Σ = +1/2; J,MJ ,Ω = +1/2〉,
2� =−1/2: |η,Λ = 0; S,Σ = −1/2; J,MJ ,Ω = −1/2〉.

(8.353)

We shall calculate the matrix elements of the effective Hamiltonian within the basis
of these six primitive states in due course. These states do not, however, have defi-
nite parities. Since parity is conserved (except in the presence of an applied electric
field), we construct a basis set of six functions, three of each parity type, so that for a
given J level we are left with the diagonalisation of 3 × 3 matrices, rather than 6 × 6.
More importantly, we are aiming to understand the electric dipole radiofrequency and
microwave spectra, and know that transitions must occur between states of opposite
parity.

We follow the conventions described by Brown, Kaise, Kerr and Milton [115] in
order to form parity-conserved functions, as discussed in detail in, section 6.9. Parity is
related to the behaviour of a state or function under the space-fixed inversion operator
E∗:

E∗ f (X, Y, Z ) = f (−X,−Y,−Z ), (8.354)

where X , Y , Z are space-fixed coordinates. So far as the transformation of the
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molecule-fixed coordinates x , y, z is concerned, the convention adopted is that the
molecule-fixed y axis is unchanged in direction by the application of E∗ to the molec-
ular system. This implies that the Euler angles ( φ, θ , χ ) relating the molecule- and
space-fixed axes transform under E∗ in the following way:

E∗ f (φ, θ, χ) = f (π + φ,π − θ,π − χ ), (8.355)

which is equivalent to the transformation

E∗ f (x, y, z) = f (x,−y, z). (8.356)

Noting from (8.353) that each primitive basis function in case (a) is of the form

|η,Λ; S,Σ; J,MJ ,Ω〉 = |η,Λ〉|S,Σ〉|J,MJ ,Ω〉, (8.357)

we may apply E∗ to each of the three factors on the right-hand side of (8.357) in turn.
The results are

E∗|η,Λ〉 = (−1)Λ+s |η,−Λ〉,
E∗|S,Σ〉 = (−1)S−Σ|S,−Σ〉, (8.358)

E∗|J,MJ ,Ω〉 = (−1)J−Ω|J,MJ ,−Ω〉.

The exponent s in the first of these results refers to � states only, and is even for a
�+ state or odd for a �− state; the current problem involves an excited �+ state, so
we will omit the exponent s in what follows. The net result of the above operations is
therefore

E∗|η,Λ; S,Σ; J,MJ ,Ω〉 = (−1)J−S|η,−Λ; S,−Σ; J,MJ ,−Ω〉. (8.359)

Using (8.359) we are now able to construct linear combinations of the primitive
functions (8.353) which have definite parity. These linear combinations are as
follows:

+ parity :
1√
2
{|η,Λ; S,Σ; J,MJ ,Ω〉 + (−1)J−S|η,−Λ; S,−Σ; J,MJ ,−Ω〉},

(8.360)

− parity :
1√
2
{|η,Λ; S,Σ; J,MJ ,Ω〉 − (−1)J−S|η,−Λ; S,−Σ; J,MJ ,−Ω〉}.

Our procedure now is to calculate the matrix elements of the effective Hamiltonian in
the primitive basis set, and then to reformulate these elements in the parity-conserved
set (8.360).

(c) Matrix elements without nuclear spin in the primitive basis set

Ultimately we will use a basis set in which the nuclear spin I is coupled to J to form
F, but first we tackle the nuclear spin-free problem, dealing with the first two terms in
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(8.348). Note that in the expressions which follow, Λ, Σ, andΩ are signed quantities.
All of the matrix elements are strictly diagonal in F and MF (or in J and MJ for the
nuclear spin-free problem), and we ignore any matrix elements off-diagonal in S and
I . The symbol η denotes vibronic state quantum numbers not otherwise specified in
the basis states.

It is customary to take the spin–orbit and rigid body rotation terms together, for
reasons which will become immediately apparent. On expansion of the rigid body term
(8.350) we obtain

Hso + Hrot = Hrso = AT1(L) · T1(S) + B {T1(J) · T1(J) + T1(S) · T1(S)

+ T1(L) · T1(L) − 2T1(J) · T1(S) − 2T1(J) · T1(L) + 2T1(L) · T1(S)}
= (A + 2B) T1(L) · T1(S) + B {T1(J) · T1(J) + T1(S) · T1(S)

+ T1(L) · T1(L) − 2T1(J) · T1(S) − 2T1(J) · T1(L)}. (8.361)

The first two terms in the purely rotational part of (8.361) are wholly diagonal in our
basis set and may be replaced by their respective eigenvalues. The remaining scalar
products are expanded in the molecule-fixed coordinate system, q, and in the sum
over q we separate the q = 0 terms from those with q = ±1 (denoted by a superscript
prime). We also take note of the anomalous commutation rules for the components of
J. Equation (8.361) becomes

Hrso = H
(0) + H

′ where

H
(0) = (A + 2B)T1

0(L)T1
0(S) + B {J (J + 1) + S(S + 1)

+ T1
0(L)T1

0(L) − 2T1
0(J)T1

0(S) − 2T1
0(J)T1

0(L)}
H

′ =
∑

q=±1

′{(−1)q (A + 2B)T1
q (L)T1

−q (S) + (−1)q BT1
q (L)T1

−q (L)

− 2BT1
q (J)T1

q (S) − 2BT1
q (J)T1

q (L)}. (8.362)

We are now ready to examine the matrix elements. For H
(0), which contains terms with

q = 0, the matrix elements are wholly diagonal:

〈η,Λ; S,Σ; J,Ω|H(0)|η′,Λ′; S,Σ′; J ′,Ω′ 〉
= δηη′δΛΛ′δΣΣ′δΩΩ′ {(A + 2B)ΛΣ+ B[J (J + 1) + S(S + 1) +Λ2 − 2Ω2]}.

(8.363)

The four terms in H
′, however, require closer attention. The second term, which in

molecule-fixed cartesian coordinates may be expressed as L2
x + L2

y , affects all levels
equally and is therefore usually omitted. The third term, which does not involve the
orbital angular momentum, is known as the spin uncoupling term. Its matrix elements
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are readily obtained:

〈η,Λ; S,Σ; J,Ω| − 2B
∑

q=±1

′
T1

q (J)T1
q (S)|η′,Λ′; S,Σ′; J ′,Ω′ 〉

= −δηη′δΛΛ′δJ J ′2B
∑

q=±1

′〈J,Ω|T1
q (J)|J,Ω′ 〉〈S,Σ|T1

q (S)|S,Σ′ 〉

= −2B
∑

q=±1

′
(−1)J+S−Ω−Σ

(
J 1 J

−Ω q Ω′

)(
S 1 S

−Σ q Σ′

)

×{J (J + 1)(2J + 1)S(S + 1)(2S + 1) }1/2. (8.364)

The two remaining terms contained within H
′ in equation (8.362) require special atten-

tion because they mix the� and� electronic states and thereby give rise toΛ-doubling.
We extract these two terms from H

′ to define a Hamiltonian which causesΛ-doubling:

H
′′ =

∑
q=±1

′{
(−1)q (A + 2B)T1

q (L)T1
−q (S) − 2BT1

q (J)T1
q (L)

}
. (8.365)

The matrix elements of the two terms in (8.365) can be partially evaluated as follows:

〈η,Λ; S,Σ; J,Ω|
∑

q=±1

(−1)q (A + 2B)T1
q (L)T1

−q (S)|η′,Λ′; S,Σ′; J,Ω′ 〉

= −2δΩΩ′
∑

q=±1

〈η,Λ| (A/2 + B) T1
q (L)|η′,Λ′〉〈S,Σ|T1

−q (S)|S,Σ′〉

= −2δΩΩ′
∑

q=±1

〈η,Λ| (A/2 + B) T1
q (L)|η′,Λ′〉(−1)S−Σ

×
(

S 1 S
−Σ −q Σ′

)
{S(S + 1)(2S + 1)}1/2. (8.366)

〈η,Λ; S,Σ; J,Ω| −
∑

q=±1

2BT1
q (J)T1

q (L)|η′,Λ′; S,Σ′; J,Ω′〉

= −2δΣΣ′
∑

q=±1

〈η,Λ|BT1
q (L)|η′,Λ′〉(−1)J−Ω

×
(

J 1 J
−Ω q Ω′

)
{J (J + 1)(2J + 1)}1/2. (8.367)

In both of these equations there remain matrix elements of the off-diagonal compo-
nents of L; these elements couple the � and � electronic states and they cannot be
expanded further at this stage. As we shall see, they constitute molecular parameters
to be determined from the experiments.

(d) Matrix elements without nuclear spin in the parity-conserved basis set

We now make use of the results derived above, using the parity-conserved basis func-
tions defined in equations (8.360). For states of positive parity we have the following
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three functions:

∣∣2�
(+)
3/2

〉 = 1√
2

{|η,Λ = 1; S,Σ = 1/2; J,Ω = 3/2〉

+ (−1)J−1/2|η,Λ = −1; S,Σ = −1/2; J,Ω = −3/2〉},∣∣2�
(+)
1/2

〉 = 1√
2

{|η,Λ = 1; S,Σ = −1/2; J,Ω = 1/2〉

+ (−1)J−1/2|η,Λ = −1; S,Σ = 1/2; J,Ω = −1/2〉},∣∣2Σ
(+)
1/2

〉 = 1√
2

{|η,Λ = 0; S,Σ = 1/2; J,Ω = 1/2〉

+ (−1)J−1/2|η,Λ = 0; S,Σ = −1/2; J,Ω = −1/2〉}. (8.368)

It is now a straightforward matter to construct the 3 × 3 matrix for the positive parity
states; the results are summarised below.

2�(+)
3/2

2�
(+)
1/2

2�
(+)
1/2

2�
(+)
3/2 A/2 + B�{J (J + 1) − 7/4} −B�{(J + 3/2) −M1{(J − 1/2)

× (J − 1/2)}1/2 × (J + 3/2)}1/2

2�
(+)
1/2 −B�{(J + 3/2)(J − 1/2)}1/2 −A/2 + B�{J (J + 1)+1/4} M2 − M1(−1)J−1/2

× (J + 1/2)
2�

(+)
1/2 −M1{(J − 1/2)(J + 3/2)}1/2 M2 − M1(−1)J−1/2 �E + B�{J (J + 1)

× (J + 1/2) +1/4} − B�(−1)J−1/2

× (J + 1/2)

In these matrix elements �E is the separation between the� and � electronic states,
and the electronic matrix elements M1 and M2 are defined by

M1 = 〈�|BL+|�〉, M2 = 〈�|(A/2 + B)L+|�〉.

The basis states of negative parity are

∣∣2�
(−)
3/2

〉 = 1√
2

{|η,Λ = 1; S,Σ = 1/2; J,Ω = 3/2〉

− (−1)J−1/2|η,Λ = −1; S,Σ = −1/2; J,Ω = −3/2〉},∣∣2�
(−)
1/2

〉 = 1√
2

{|η,Λ = 1; S,Σ = −1/2; J,Ω = 1/2〉

− (−1)J−1/2|η,Λ = −1; S,Σ = 1/2; J,Ω = −1/2〉},∣∣2Σ
(−)
1/2

〉 = 1√
2

{|η,Λ = 0; S,Σ = 1/2; J,Ω = 1/2〉

− (−1)J−1/2|η,Λ = 0; S,Σ = −1/2; J,Ω = −1/2〉}. (8.369)
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The 3 × 3 matrix for the negative parity states differs from that for the positive parity
states only in the signs of certain terms.

2�
(−)
3/2

2�
(−)
1/2

2�
(−)
1/2

2�
(−)
3/2 A/2 + B�{J (J + 1) − 7/4} −B�{(J + 3/2)(J − 1/2)}1/2 −M1{(J − 1/2)

× (J + 3/2)}1/2

2�
(−)
1/2 −B�{(J + 3/2)(J − 1/2)}1/2 −A/2 + B�{J (J + 1) + 1/4} M2 + M1(−1)J−1/2

× (J + 1/2)
2�

(−)
1/2 −M1{(J − 1/2)(J + 3/2)}1/2 M2 + M1(−1)J−1/2(J + 1/2) �E + B�{J (J + 1)

+1/4}+ B�(−1)J−1/2

× (J + 1/2)

These results are the same as those obtained by Freund, Herbst, Mariella and Klemperer
[112] except for the J -dependent phase factors in our matrices. These arise because of
our specific definitions of the parity-conserved basis function and are necessary if the
energies of theΛ-doublet components are to alternate with J . If we know the values of
the five molecular constants appearing in these matrices, we can calculate the energies
of the levels, of both parity types, for each value of J . In practice, of course, it was the
task of the experimental spectroscopists to solve the reverse problem of determining
the molecular parameters from the observed transition frequencies.

The Λ-doubling arises from mixing of the 2� components with the 2�+ state.
Freund, Herbst, Mariella and Klemperer [112] do not give quite enough information
for us to reproduce their theoretical data. They give the following values of the molecular
constants (in cm−1):

A = −112.0, B�= 1.222, B� = 1.35, M1 M2 = −139.3, �E = 2800.

Using these numbers we find that the value M1 = 1.485 cm−1 reproduces their observed
Λ-doubling frequencies up to J = 25/2 extremely well. They point out, however, that
the molecular parameters are strongly correlated; we shall return to discuss their values
later in this section. We will also discuss the relationship of this relatively simple exam-
ple ofΛ-doubling (because mixing with only one excited electronic state is considered)
to the more complicated cases encountered for other molecules.

(e) Matrix elements of the nuclear hyperfine terms in the primitive basis set

The magnetic hyperfine interaction terms were given in equation (8.351) and the electric
quadrupole interaction in equation (8.352). We extend the basis functions by inclusion
of the 7Li nuclear spin I, coupled to J to form F; the value of I is 3/2. We deal with
each term in turn, first deriving expressions for the matrix elements in the primitive
basis set (8.353), and then extending these results to the parity-conserved basis. All
matrix elements are diagonal in F , and any elements off-diagonal in S and I can of
course be ignored.
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For the orbital hyperfine term the calculation proceeds as follows:

〈η,Λ; S,Σ; J,Ω; I, F |aT1(L) · T1(I)|η′,Λ′; S,Σ′; J ′,Ω′; I, F〉
= (−1)J ′+F+I

{
I J ′ F
J I 1

}
〈η,Λ; S,Σ; J,Ω‖aT1(L)‖η′,Λ′; S,Σ′; J ′,Ω′〉

× 〈I‖T1(I)‖I 〉
= (−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1)(2I + 1)}1/2

× 〈η,Λ; S,Σ; J,Ω‖aT1(L)‖η′,Λ′; S,Σ′; J ′,Ω′〉. (8.370)

In order to evaluate the reduced matrix element of T1(L), we first rotate into the
molecule-fixed axis system, q , using a first rank rotational matrix, so that

〈η,Λ; S,Σ; J,Ω‖aT1(L)‖η′,Λ′; S,Σ′; J ′,Ω′〉
= 〈η,Λ; S,Σ; J,Ω‖a

∑
q

D
(1)
.q (ω)∗T1

q (L)‖η′,Λ′; S,Σ′; J ′,Ω′〉

= δΣΣ′
∑

q

(−1)J−Ω
(

J 1 J ′

−Ω q Ω′

)
{(2J + 1)(2J ′ + 1)}1/2

× 〈η,Λ| aT1
q (L)|η′,Λ′〉. (8.371)

We may therefore combine equations (8.371) and (8.370), and separate the diagonal
(q = 0) from the off-diagonal elements, with the following results.
For q = 0 we have

〈η,Λ; S,Σ; J,Ω; I, F | aT1(L) · T1(I)|η′,Λ′; S,Σ′; J ′,Ω′; I, F〉
= (−1)J ′+F+I

{
I J ′ F
J I 1

}
〈η,Λ; S,Σ; J,Ω‖aT1(L)‖η′,Λ′; S,Σ′; J ′,Ω′〉

× 〈I‖T1(I)‖I 〉
= (−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1)(2I + 1)}1/2

× 〈η,Λ; S,Σ; J,Ω‖aD
(1)
.0 (ω)∗T1

0(L)‖η,Λ; S,Σ; J ′,Ω〉

= aη Λ (−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1)(2I + 1)}1/2(−1)J−Ω

×
(

J 1 J ′

−Ω 0 −Ω
)

{(2J + 1)(2J ′ + 1)}1/2. (8.372)

For q = ±1 we have

〈η,Λ; S,Σ; J,Ω; I, F | aT1(L) · T1(I)η′,Λ′; S,Σ′; J ′,Ω′; I, F〉
= (−1)J ′+F+I

{
I J ′ F
J I 1

}
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× 〈η,Λ; S,Σ; J,Ω‖aT1(L)‖η′,Λ′; S,Σ′; J ′,Ω′〉〈I‖T1(I)‖I 〉
= (−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1)(2I + 1)}1/2

× 〈η,Λ; S,Σ; J,Ω‖a
∑

q=±1

D
(1)
.q (ω)∗ T1

q (L)‖η′,Λ′; S,Σ; J ′,Ω′〉

= (−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1)(2I + 1)}1/2

∑
q=±1

(−1)J−Ω

×
(

J 1 J ′

−Ω q Ω′

)
{(2J + 1)(2J ′ + 1)}1/2〈η,Λ|aT1

q (L)|η′,Λ′ 〉. (8.373)

Note that the constant a can be separated out in (8.372) and has a well defined value,
aη, whereas in (8.373) it is part of a matrix element which cannot be further reduced.

The next term in the magnetic hyperfine Hamiltonian (8.351) describes the Fermi
contact interaction and the calculation of its matrix elements proceeds in a manner
similar to that just described for the orbital hyperfine term, as follows:

〈η,Λ; S,Σ; J,Ω; I, F |bFT1(S) · T1(I)|η′,Λ′; S,Σ′; J ′,Ω′; I, F〉
= (−1)J ′+F+I

{
I J ′ F
J I 1

}
× 〈η,Λ; S,Σ; J,Ω‖bFT1(S)‖η′,Λ′; S,Σ′; J ′,Ω′〉〈I‖T1(I)‖I 〉

= (−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1)(2I + 1)}1/2

× 〈η,Λ; S,Σ; J,Ω‖bF

∑
q

D(1)
.q (ω)∗T1

q (S)‖η,Λ; S,Σ′; J ′,Ω′〉

= bF(η) (−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1)(2I + 1)}1/2

×
∑

q

(−1)J−Ω
(

J 1 J ′

−Ω q Ω′

)
{(2J + 1)(2J ′ + 1)}1/2(−1)S−Σ

×
(

S 1 S
−Σ q Σ′

)
{S(S + 1)(2S + 1)}1/2. (8.374)

We have neglected admixture with excited electronic states, so that the Fermi contact
constant, bF, is defined by

bF = (2µ0/3) gSµB gNµN δ(r )η. (8.375)

The matrix elements of the third term in equation (8.351) are somewhat more
complicated. Dealing first with the nuclear spin coupling, we have, as usual,

〈η,Λ;S,Σ;J ,Ω;I ,F |−
√

10gSµB gNµN (µ0/4π)T1(S,C2) ·T1(I)|η′,Λ′;S,Σ′;J ′,Ω′;I ,F〉
= (−1)J ′+F+I

{
I J ′ F
J I 1

}



520 Molecular beam magnetic and electric resonance

×〈η,Λ; S,Σ; J,Ω‖−
√

10gSµB gNµN (µ0/4π)T1(S,C2)‖η′,Λ′; S,Σ′; J ′,Ω′〉
×〈I‖T1(I)‖I 〉

= −
√

10gSµB gNµN (µ0/4π)(−1)J ′+F+I

{
I J ′ F
J I 1

}

×{I (I + 1)(2I + 1)}1/2〈η,Λ; S,Σ; J,Ω‖T1(S,C2)‖η′,Λ′; S,Σ′; J ′,Ω′〉

= −
√

10gSµB gNµN (µ0/4π)(−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1)(2I + 1)}1/2

×
∑

q

〈η,Λ; S,Σ; J,Ω‖D
(1)
.q (ω)∗T1

q (S,C2)‖η′,Λ′; S,Σ′; J ′,Ω′〉. (8.376)

The remaining reduced matrix element in the last line is developed further by noting
the construction of the first-rank tensor,

T1
q (S,C2) = −

∑
q1,q2

(−1)qT1
q1

(S)C2
q2

(θ,φ)(
√

3)

(
1 2 1
q1 q2 −q

)
(r−3), (8.377)

in which the spherical harmonic is defined by

Ck
q (θ, φ) =

(
4π

2k + 1

)1/2

Ykq (θ, φ). (8.378)

With these definitions the matrix element in (8.376) can be expanded:

∑
q

〈η,Λ; S,Σ; J,Ω|∣∣D
(1)
q (ω)∗ T1

q (S,C2)
∣∣|η′,Λ′; S,Σ′; J ′,Ω′〉

= −
∑

q

(−1)J−Ω
(

J 1 J ′

−Ω q Ω′

)
{(3)(2J + 1)(2J ′ + 1)}1/2

×
∑
q1,q2

(−1)q

(
1 2 1
q1 q2 −q

)
(−1)S−Σ

(
S 1 S

−Σ q1 Σ′

)

×{S(S + 1)(2S + 1)}1/2〈η,Λ|C2
q2

(θ,φ) (r−3)|η′,Λ′〉. (8.379)

This is an important result because, as we shall see when we deal with the parity-
conserved basis functions, matrix elements with�Λ= 0, ±1, ±2 are significant. The
complete expression for the matrix elements of the dipolar interaction is obtained by
combining (8.376) with (8.379) to yield:

〈η,Λ;S,Σ;J ,Ω;I ,F |−
√

10gSµB gNµN (µ0/4π)T1(S,C2) ·T1(I)|η′,Λ′;S,Σ′;J ′,Ω′;I ,F〉
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=
√

30gSµB gNµN (µ0/4π)(−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1)(2I + 1)}1/2

×
∑

q

(−1)J−Ω+q

(
J 1 J ′

−Ω q Ω′

)
{(2J + 1)(2J ′ + 1)}1/2

×
∑
q1,q2

(
1 2 1
q1 q2 −q

)
(−1)S−Σ

(
S 1 S

−Σ q1 Σ′

)

× {S(S + 1)(2S + 1)}1/2〈η,Λ| C2
q2

(θ, φ) (r−3)|η′,Λ′ 〉. (8.380)

Finally in this subsection we come to the electric quadrupole interaction, which is
discussed at some length in appendix 8.4. From equation (8.23) we have

〈η,Λ; S,Σ; J,Ω; I, F | − eT2(∇E) · T2(Q) |η′,Λ′; S,Σ′; J ′,Ω′; I, F 〉
= (−1)J ′+I+F

{
I J F
J ′ I 2

}
〈η,Λ; S,Σ; J,Ω‖T2(∇E)‖η′,Λ′; S,Σ′; J ′,Ω′〉

× 〈I‖−eT2(Q)‖I 〉. (8.381)

The nuclear spin part of this result is evaluated in (8.27) and the electronic part is
developed by rotation into the molecule-fixed axis system through the use of a second-
rank rotation matrix, so that (8.381) becomes

〈η,Λ; S,Σ; J,Ω; I, F | − eT2(∇E) · T2(Q) |η′,Λ′; S,Σ′; J ′,Ω′; I, F 〉

= (−1)J ′+I+F

{
I J F
J ′ I 2

}(−eQ

2

)(
I 2 I

−I 0 I

)−1

× 〈η,Λ; S,Σ; J,Ω‖
∑

q

D
(2)
.q (ω)

∗
T2

q (∇E)‖η′,Λ′; S,Σ′; J ′,Ω′ 〉

= δΣΣ′ (−1)J ′+I+F

{
I J F
J ′ I 2

}(−eQ

2

)(
I 2 I

−I 0 I

)−1 ∑
q

(−1)J−Ω

×
(

J 2 J ′

−Ω q Ω′

)
{(2J + 1)(2J ′ + 1)}1/2〈η,Λ|T2

q (∇E)|η′,Λ′〉. (8.382)

The remaining matrix element in (8.382) leads to definitions of the q = 0, ±2 compo-
nents of the electric field gradient tensor (actually, its negative), which are

1

2
q0 = −〈Λ|T2

0(∇E)|Λ〉 = 1

2
〈Λ|

∑
i

ei

4πε0
(3 cos2 θi )

/
r3

i |Λ〉,
(8.383)

1

2
√

6
q2 = −〈Λ = ±1|T2

±2(∇E)|Λ′ = ∓1〉 = 1

2
√

6
〈Λ|

∑
i

ei

4πε0
sin2 θi

/
r3

i |Λ〉
.

These definitions are consistent with those of Gallagher and Johnson [116]. This com-
pletes our calculation of the nuclear hyperfine terms in the primitive basis set.
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(f ) Matrix elements of the nuclear hyperfine terms in the parity-conserved
basis set

The simplest approach to the ‘book-keeping’ problem of calculating all the nuclear
spin-dependent matrix elements is first to evaluate all the terms in the primitive basis
set, leaving only J , I and F as variables. We therefore construct the following 6 × 6
matrix, using the functions listed in (8.353). The rotational levels are widely spaced
compared with the hyperfine terms, so that we also confine attention to matrix elements
diagonal in J . The required 6 × 6 matrix is as follows.

2� =+3/2
2� =−3/2

2� =+1/2
2� =−1/2

2� =+1/2
2� =−1/2

2� =+3/2 m11 0 m13 m14 m15 0
2� =−3/2 0 m22 m23 m24 0 m26
2� =+1/2 m31 m32 m33 m34 m35 m36
2� =−1/2 m41 m42 m43 m44 m45 m46
2� =+1/2 m51 0 m53 m54 m55 m56
2� =−1/2 0 m62 m63 m64 m65 m66

With the definitions X = J (J + 1) + I (I + 1) − F(F + 1),

Y = {3X (X − 1) − 4I (I + 1)J (J + 1)}/I (2I − 1),

the matrix elements are as follows:

m11 = −a�{3X/4J (J + 1)} − bF{X/2J (J + 1)}{3/4} + t0{3X/8J (J + 1)}
+ (eq0 Q/2){Y/(2J − 1)2J (2J + 2)(2J + 3)}{27/4 − J (J + 1)},

m22 = −a�{3X/4J (J + 1)} − bF{X/2J (J + 1)}{3/4} + t0{3X/8J (J + 1)}
+ (eq0 Q/2){Y/(2J − 1)2J (2J + 2)(2J + 3)}{27/4 − J (J + 1)},

m33 = −a�{3X/4J (J + 1)} + bF{X/2J (J + 1)}{1/4} − t0{X/8J (J + 1)}
+ (eq0 Q/2){Y/(2J − 1)2J (2J + 2)(2J + 3)}{3/4 − J (J + 1)},

(8.384)
m44 = −a�{3X/4J (J + 1)} + bF{X/2J (J + 1)}{1/4} − t0{X/8J (J + 1)}

+ (eq0 Q/2){Y/(2J − 1)2J (2J + 2)(2J + 3)}{3/4 − J (J + 1)},
m55 = −bF(�){X/2J (J + 1)}{1/4} + t0(�){X/8J (J + 1)}

+ (eq0�Q/2){Y/(2J − 1)2J (2J + 2)(2J + 3)}{3/4 − J (J + 1)},
m66 = −bF(�){X/2J (J + 1)}{1/4} + t0(�){X/8J (J + 1)}

+ (eq0�Q/2){Y/(2J − 1)2J (2J + 2)(2J + 3)}{3/4 − J (J + 1)}.

m13 = m31 = −bF{X/4J (J + 1)}{(J + 3/2)(J − 1/2)}1/2

− t0{X/8J (J + 1)}{(J + 3/2)(J − 1/2)}1/2

m14 = m41 = eq2 Q{Y/16(2J −1)J (J +1)(2J +3)}{J +1/2}{(J +3/2)(J −1/2)}1/2

m15 = m51 = −〈�|aL+|�〉{X/4J (J + 1)}{(J − 1/2)(J + 3/2)}1/2

+ [t+1 + t−1]{3X/8J (J + 1)}{(J + 3/2)(J − 1/2)}1/2
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m23 = m32 = eq2 Q{Y/16(2J−1)J (J+1)(2J+3)}{J+1/2}{(J + 3/2)(J − 1/2)}1/2

m24 = m42 = −bF{X/4J (J + 1)}{(J + 3/2)(J − 1/2)}1/2

− t0{X/8J (J + 1)}{(J + 3/2)(J − 1/2)}1/2

m26 = m62 = −〈�|aL+|�〉{X/4J (J + 1)}{(J − 1/2)(J + 3/2)}1/2

(8.385)+ [t+1 + t−1]{3X/8J (J + 1)}{(J + 3/2)(J − 1/2)}1/2

m34 = m43 = [t+2 − t−2]{3X/8J (J + 1)}{J + 1/2}
m35 = m53 = t+1{3X/8J (J + 1)}
m36 = m63 = −〈�|aL+|�〉{X/4J (J + 1)}{J + 1/2}

+ [t+1 + t−1]{3X/8J (J + 1)}{J + 1/2}
m45 = m54 = −〈�|aL+|�〉{X/4J (J + 1)}{J + 1/2}

+ [t+1 + t−1]{3X/8J (J + 1)}{J + 1/2}
m46 = m64 = −t−1{3X/8J (J + 1)}
m56 = m65 = −bF{X/4J (J + 1)}{J + 1/2} − t0�{X/8J (J + 1)}{J + 1/2}.

The dipolar hyperfine constants are defined by

t0 = gSµB gNµN (µ0/4π)
1

2

〈
(3 cos2 θ − 1)

r3

〉
�

,

t+1 = t−1 = gSµB gNµN (µ0/4π)

〈
cos θ sin θ

r3

〉
�−�

, (8.386)

t+2 = t−2 = gSµB gNµN (µ0/4π)

〈
sin2 θ

r3

〉
�

.

There are also non-vanishing matrix elements of the quadrupole interaction (q = ±1)
connecting the � and � states, but these were found to be insignificant by Freund,
Herbst, Mariella and Klemperer [112].

It is now a simple matter to use the above results for the primitive basis functions to
generate matrix elements for the parity-conserved basis. For the positive-parity states
the hyperfine matrix is as follows.

2�
(+)
3/2

2�
(+)
1/2

2�
(+)
1/2

2�
(+)
3/2

1

2
(m11 + m22)

1

2
(−1)J−1/2(m14 + m23)

1

2
(m15 + m26)

2�
(+)
1/2

1

2
(−1)J−1/2 1

2
(m33 + m44)

1

2
{m35 + (−1)J−1/2

× (m41 + m32) × (m36 + m45) + m46}
2�

(+)
1/2

1

2
(m51 + m62)

1

2
{m53 + (−1)J−1/2 1

2
(m55 + m66)

× (m63 + m54) + m64}
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For the negative-parity states it is as follows.

2�
(−)
3/2

2�
(−)
1/2

2�
(−)
1/2

2�
(−)
3/2

1

2
(m11 + m22) −1

2
(−1)J−1/2(m14 + m23)

1

2
(m15 + m26)

2�
(−)
1/2 −1

2
(−1)J−1/2 1

2
(m33 + m44)

1

2
{m35 − (−1)J−1/2

× (m41 + m32) × (m36 + m45) + m46}
2�

(−)
1/2

1

2
(m51 + m62)

1

2
{m53 − (−1)J−1/2 1

2
(m55 + m66)

× (m63 + m54) + m64}

These results agree with those given by Freund, Herbst, Mariella and Klemperer [112]
in their equations (10), (11) and (12).

One final piece of information obtained from the electric resonance spectrum of
LiO was the electric dipole moment, which was determined to be 6.84 D.

(g) Values of the molecular hyperfine constants

Freund, Herbst, Mariella and Klemperer [112] expressed their magnetic hyperfine con-
stants in the form originally given by Frosch and Foley [117]. As discussed elsewhere
in this book, particularly in chapters 9, 10 and 11, we prefer to separate the different
physical interactions, particularly the Fermi contact and dipolar interactions, in our
effective Hamiltonian. This separation is usually made by other authors even when
the effective Hamiltonian is expressed in terms of Frosch and Foley constants, be-
cause it is the natural route if the molecular physics of a problem is to be understood.
Nevertheless since so many authors, particularly of the earlier papers, use the mag-
netic hyperfine theory presented by Frosch and Foley, we present in appendix 8.5 a
detailed comparison of their effective Hamiltonian with that adopted in this book.
The merit of the Frosch and Foley parameters is that they form the linear com-
bination of parameters which is best determined (i.e. with least correlation) for a
molecule which conforms to Hund’s case (a) coupling. The values of the constants
determined experimentally from the 7LiO spectrum were therefore, in our notation
(in MHz):

a�= 6.12, bF = −14.54, t0 = 15.4, t2 = 1.94.

The simplest description of the LiO molecule would be in terms of an ionic complex,
Li+O−, so that the orbital and dipolar hyperfine constants would be those of the O−

atomic ion. Given a suitable wave function for an atomic 2p orbital located on the
oxygen atom, it is then a straightforward matter to calculate the dipolar constants
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above, with the following results (in MHz):

a� = 2µB gNµN (µ0/4π)

〈
1

r3

〉
= 5.4,

t0 = gSµB gNµN (µ0/4π)
1

2

〈
(3 cos2 θ − 1)

r3

〉
= 13.2, (8.387)

t2 = gSµB gNµN (µ0/4π)

〈
sin2 θ

r3

〉
= 1.0.

These agree rather well with the experimental values listed above, suggesting that the
ionic model is a good one. On the other hand, the negative Fermi contact constant can
only arise through polarisation of the electron spins in a covalent bond between the two
atoms. The electric dipole moment also seems to be inconsistent with a purely ionic
model, yet the quadrupole coupling constant eq0 Q is very close to that of the ionic
molecule LiF.

The pure microwave rotational spectrum of LiO was measured seventeen years
later by Yamada, Fujitake and Hirota [118], and will be discussed in chapter 10. Their
conclusions were generally in agreement with those based on the earlier electric reso-
nance spectrum, except for a reassignment of some of the transitions.

(h) The Λ-doubling constants and frequencies

Λ-doubling is a characteristic feature of electronic states possessing orbital degener-
acy, which has been discussed extensively by many authors, particularly van Vleck
[119], Mulliken and Christy [120], and Dousmanis, Sanders and Townes [121]. We
shall discuss the details at some length in our descriptions of the spectra of NO and,
particularly, OH. In the case of LiO described above, the important matrix elements
are those defined earlier as M1 and M2, i.e.

M1 = 〈�|BL+|�〉, M2 = 〈�|(A/2 + B)|�〉. (8.388)

For LiO it is sufficient to include mixing of the 2�ground state with a single 2�+ excited
state which happens to be particularly low-lying in energy. Ab initio calculations of the
matrix elements by Cooper and Richards [122] gave results in satisfactory agreement
with experiment. More generally the calculation of Λ-doubling frequencies involves
the use of perturbation theory, and summations over more than one excited electronic
state, as we described in chapter 7. Further details of this are presented later in this
chapter, and also in chapter 9, where we describe the magnetic resonance studies of
the OH radical.

A particularly simple approach to handling the matrix elements in (8.388) involves
what is known as van Vleck’s model of pure precession [119], see section 7.8. Applied
to LiO the model assumes L to be a good quantum number, with L = 1 since the ground
state of O− is 2P. As a result of this assumption,

〈�|L+|�〉 = 〈L = 1,Λ= 1|L+|L = 1,Λ = 0 〉 =
√

2. (8.389)
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Furthermore, consistent with the pure precession model, one can factorise the M1 and
M2 matrix elements, with the results,

〈�|(A/2)L+|�〉 = (A/2)〈�|L+|�〉 = A/
√

2,

〈�|BL+|�〉 = (1/2)(B�+ B�)〈�|L+|�〉 = (1/
√

2)(B�+ B�). (8.390)

Using their experimental results and the relationships above, Freund, Herbst, Mariella
and Klemperer [112] obtained the value 1.407 for the matrix element of L+, which is
very close to

√
2.

8.5.3. NO in the X 2� ground state

(a) Introduction

Nitric oxide, NO, is a chemically stable molecule and not surprisingly has been studied
extensively by a range of techniques. Its microwave and far-infrared laser magnetic
resonance spectra are discussed in chapter 9. These involve an understanding of both
the zero-field levels and also the interactions with an external magnetic field. The
pure microwave and millimetre wave spectra are described in chapter 10, but they pro-
vide information, which we will use, relevant to the radiofrequency electric resonance
spectrum described in this section.

The first description of the radiofrequency electric resonance spectrum of 14N16O
was provided by Neumann [123], and his work was followed by an extremely compre-
hensive study, which included the isotopic species 15N16O, described by Meerts and
Dymanus [124]. Later refinements of the theory were provided by Meerts [125] and
Kristiansen [126]. The analysis of the Λ-doubling and hyperfine electric resonance
spectrum depended on measurements of rotational level spacings obtained from mi-
crowave and millimetre wave spectra recorded by Burrus and Gordy [127], Gallagher
and Johnson [116], and Favero, Mirri and Gordy [128]. Far-infrared transitions which
probed some of the higher energy rotational levels were studied by Hall and Dowling
[129], and direct transitions between the fine structure states were observed by Brown,
Cole and Honey [130]. In this section we concentrate on the results obtained by Meerts
and Dymanus [124].

The ground state molecular orbital configuration of NO is

X 2�: (1σ )2(2σ )2(3σ )2(4σ )2(5σ )2(1π )4(2π )1. (8.391)

Apart from a lower-lying quartet state, the first excited electronic state is the A 2�+

state, formed by promotion of an electron into the 6σ orbital, and lying 43 966 cm−1

above the ground state. Lying within the next 25 000 cm−1 there are many other ex-
cited doublet states; there is no excited state lying very close to the ground state, as
was the case described for LiO, so we can expect the theory of the Λ-doubling to
be somewhat more complicated. The ground state spin-orbit coupling constant A is
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+123.1394 cm−1, so that in this case the lowest fine-structure component is the 2�1/2,
unlike that of LiO. In figure 8.42 we indicate schematically the lower rotational levels
for both fine-structure components; this diagram is not to scale, the Λ-doublet split-
tings being exaggerated for the sake of clarity. The rotational levels observed by Meerts
and Dymanus [124] are specified in the figure caption, the transitions measured being
Λ-doublet transitions within a rotational level, further split by hyperfine interaction
involving the 14N nucleus (I = 1) or the 15N nucleus (I = 1/2) in the case of artificially
enriched 15N16O. Figure 8.43 shows theΛ-doublet and 14N hyperfine splittings, as well
as the observed transitions, for the J = 13/2 level of the 2�3/2 state. Similar sets of
transitions were observed for other rotational levels. The molecular beam apparatus,
described by de Leeuw and Dymanus [113], contained quadrupole A and B fields; a
homogeneous electric C field is not required because the Λ-doublet transitions have
intrinsic electric dipole intensity. Beam detection was accomplished by electron impact
ionisation, and electron multiplier detection which was preceded by a quadrupole mass
filter. Broadening effects due to the earth’s magnetic field were minimised by suit-
able screening, and line widths of less than 10 kHz were obtained for most transitions.
Meerts and Dymanus [124] provided a comprehensive list of transition frequencies for
J values up to 7/2 in the Ω= 1/2 state and 17/2 in the Ω= 3/2 state.

(b) Theory of the Λ-doubling

The analysis of the spectrum was accomplished using a case (a) basis although the
increasing tendency towards case (b) coupling as J increases must be taken into account.
We can, therefore, make use of most of the matrix elements derived in our earlier
discussion of the LiO spectrum. The first-order rotational energies were shown to be
given by equation (8.363):

〈η,Λ; S,Σ; J,Ω|H(0)|η′,Λ′; S,Σ′; J ′,Ω′〉
= δηη′δΛΛ′δΣΣ′δΩΩ′ {(A + 2B)ΛΣ+ B

× [J (J + 1) + S(S + 1) +Λ2 − 2Ω2]}, (8.392)

and the rotational mixing of the fine structure states (rotational distortion) was given
by

〈η,Λ; S,Σ; J,Ω| − 2B
∑

q=±1

T1
q (J)T1

q (S)|η′,Λ′; S,Σ′; J ′,Ω′〉

= −2Bδηη′δΛΛ′δJ J ′
∑

q=±1

(−1)J−Ω+S−Σ
(

J 1 J
−Ω q Ω′

)(
S 1 S

−Σ q Σ′

)

×{J (J + 1)(2J + 1)S(S + 1)(2S + 1)}1/2. (8.393)

This is the term which causes the transition from case (a) to case (b). The terms of
interest in the present subsection are those which remain, given in equation (8.365),

H
′′ =

∑
q=±1

{
(−1)q (A + 2B)T1

q (L)T1
−q (S) − 2BT1

q (J)T1
q (L)

}
. (8.394)
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Figure 8.42. Schematic diagram of the lower rotational levels of NO, showing the Λ-doublet
splittings exaggerated for the sake of clarity, but not drawn correctly to scale. The levels of
14N16O studied by Meerts and Dymanus [124] were 2�1/2, J = 1/2 to 7/2, and 2�3/2, J = 3/2
to 17/2.



Molecular beam electric resonance of open shell molecules 529

Figure 8.43. Λ-doubling and 14N hyperfine splitting for the 2�3/2, J = 13/2 rotational level of
NO, and the transitions studied by Meerts and Dymanus [124].

The matrix elements of the two terms in (8.394) were obtained as follows:

〈η,Λ; S,Σ; J,Ω|
∑

q=±1

(−1)q (A + 2B)T1
q (L)T1

−q (S)|η′,Λ′; S,Σ′; J,Ω′〉

= −2δΩΩ′
∑

q=±1

〈η,Λ| (A/2 + B) T1
q (L)|η′,Λ′〉(−1)S−Σ

×
(

S 1 S
−Σ −q Σ′

)
{S(S + 1)(2S + 1)}1/2, (8.395)

〈η,Λ; S,Σ; J,Ω| −
∑

q=±1

2BT1
q (J)T1

q (L)|η′,Λ′; S,Σ′; J,Ω′〉

= −2δΣΣ′
∑

q=±1

〈η,Λ|BT1
q (L)|η′,Λ′〉(−1)J−Ω

(
J 1 J

−Ω q Ω′

)

× {J (J + 1)(2J + 1)}1/2. (8.396)

In the case of LiO we considered mixing with only a single excited vibronic state η′,
namely, the low-lying 2�+ state. We also ignored the fact that there should be a sum over
all of the vibrational levels of the excited state. In general there should be a sum over all
vibrational levels of all relevant excited electronic states, which leads to the definition
ofΛ-doubling constants for 2� states, given by Mulliken and Christy [120] following
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earlier work by Van Vleck [119]. These constants (q and p) were defined as follows:

q = C1 − C2 where

C1 = 8
∑
η′

|〈 η,Λ|BLx |η′,Λ′〉|2/(Eη − Eη′ )

where η′ represents all v levels of all 2�+states, (8.397)

C2 = 8
∑
η′

|〈 η,Λ|BLx |η′,Λ′ 〉|2/(Eη − Eη′ )

where η′ represents all v levels of all 2�−states.

p = a1 − a2 where

a1 = 8
∑
η′

|〈η,Λ| ALx |η′,Λ′〉〈η′,Λ′|BLx |η,Λ〉|/(Eη − Eη′ )

for all v levels of all 2�+states, (8.398)

a2 = 8
∑
η′

| 〈 η,Λ| ALx |η′,Λ′ 〉〈 η′,Λ′|BLx |η,Λ〉|/(Eη − Eη′ )

for all v levels of all 2�−states.

The Λ-doubling constants may then be written in spherical tensor form as

q = 4
∑
η′

(−1)s |〈η,Λ = 1 |BT1
1(L)|η′,Λ′ = 0s〉|2/(Eη − Eη′ ),

p = −4
∑
η′

(−1)s〈 η,Λ = 1| AT1
1(L)|η′,Λ′ = 0s〉 (8.399)

× 〈 η′,Λ′ = 0s |BT1
−1(L)|η,Λ = 1 〉/(Eη − Eη′ ).

In some other papers they are expressed in terms of the shift operators. The superscript
s on the zero distinguishes between �+ and �− states; the phase factor (−1)s is +1
for the former and −1 for the latter.

Our objective is to replace the Hamiltonian terms in (8.394) by an effective
Hamiltonian which operates only within the 2� state, but which contains the molecular
parameters p and q describing the admixture of excited 2� states. As we discussed
in chapter 7, a suitable effective Hamiltonian for case (a), given by Brown and Merer
[132] is

HLD = 1

2
qv(J 2

+ + J 2
−) − 1

2
(pv + 2qv)(J+S+ + J−S−) + 1

2
(ov + pv + qv)(S2

+ + S2
−).

(8.400)

This Hamiltonian has been generalised so that it applies to� states of any multiplicity.
It may be readily rewritten in terms of spherical tensor operators as follows:

HLD =
∑

q=±1

{
qvT

2
2q (J, J ) − (pv + 2qv)T

2
2q (J, S ) + (ov + pv + qv)T

2
2q (S, S )

}
.

(8.401)

The third term in (8.401) has only zero diagonal matrix elements for doublet spin
states and will therefore be disregarded. The matrix elements of (8.401) may now be



Molecular beam electric resonance of open shell molecules 531

calculated for the parity-conserved basis functions of the 2� fine-structure components
(8.368). It is important to note that all matrix elements must satisfy the requirement
�Λ= ±2. The matrix elements of the first term in (8.401) are calculated by making use
of the Wigner–Eckart theorem, and noting the evaluation of the reduced matrix element,

〈J‖T2(J, J)‖J 〉 = 1

2
√

6
{(2J + 3)(2J + 2)(2J + 1)(2J )(2J − 1)}1/2, (8.402)

as described in appendix 8.3. The matrix elements of the second term in (8.401) are
obtained by using the result

T2
q (J, S ) = (−1)q

∑
q1,q2

√
5 T1

q1
(J ) T1

q2
(S )

(
1 1 2
q1 q2 −q

)
. (8.403)

We also take account of the anomalous commutation rules for the components of J in
the molecule-fixed coordinate system by making the replacement

T1
q (J ) → (−1)q T1

−q (J ), (8.404)

which should be regarded as no more than a successful recipe (see chapter 5)!
There is a further term which should be included in the effective Hamiltonian,

derived in chapter 7, describing the electron spin–nuclear rotation interaction. This
may be written in the form

Hsr = γ {T1(J ) − T1(S )} · T1(S ) = γT1(J ) · T1(S ) − γ S(S + 1). (8.405)

The q = ±1 components of the first term on the right-hand side of this equation rep-
resents a correction to the so-called rotational distortion term, whose matrix elements
were given in equations (8.363) and (8.364). In the light of this term we should replace
−2B by (−2B + γ ) in the off-diagonal elements (8.364), add nothing to the energy of
the 2�3/2 component, and subtract γ from the energy of the 2�1/2 component.

The 2 × 2 Λ-doubling matrix for positive-parity components is as follows.

2�
(+)
3/2

2�
(+)
1/2

2�
(+)
3/2 0 (−1)J−1/2

[
qv
2

][
J + 1

2

][(
J + 1

2

)2

− 1

]1/2

2�
(+)
1/2 (−1)J−1/2

[
qv
2

][
J + 1

2

][(
J + 1

2

)2

− 1

]1/2

−(−1)J−1/2 1

2
[pv + 2qv]

[
J + 1

2

]

For the negative-parity states it is as follows.

2�
(−)
3/2

2�
(−)
1/2

2�
(−)
3/2 0 −(−1)J−1/2

[
qv
2

][
J + 1

2

][(
J + 1

2

)2

− 1

]1/2

2�
(−)
1/2 −(−1)J−1/2

[
qv
2

][
J + 1

2

][(
J + 1

2

)2

− 1

]1/2

(−1)J−1/2 1

2
[pv + 2qv]

[
J + 1

2

]

Comparison of these matrices shows at once that the Λ-doublet splitting in the
2�1/2 fine-structure state is determined primarily by the diagonal elements, and will
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therefore be much larger than in the 2�3/2 component which is only affected in second
order. It will also increase linearly with J in the 2�1/2 component.

Complete matrices for the parity-conserved 2� fine-structure states (exclusive of
nuclear spin terms) may now be constructed by combining the Λ-doubling matrices
given above with the spin–orbit and rigid body rotation matrices given in our discus-
sion of the LiO spectrum. The matrix representation is block diagonal for each value
of J and each parity. The results for the positive and negative parity states are as
follows.

2�
(+)
3/2

2�
(+)
1/2

2�
(−)
3/2

2�
(−)
1/2

2�
(+)
3/2 m11 m12 0 0

2�
(+)
1/2 m21 m22 0 0

2�
(−)
3/2 0 0 m33 m34

2�
(−)
1/2 0 0 m43 m44

The matrix elements are given by

m11 = Av
2 + Bv

{
J (J + 1) − 7

4

}
m22 = − Av

2 + Bv
{

J (J + 1) + 1
4

} − γv − (−1)J−1/2 1
2 [pv + 2qv]

[
J + 1

2

]
m12 = −{(

J + 3
2

)(
J − 1

2

)}1/2{(
Bv − γv

2

) − (−1)J−1/2
[ qv

2

][
J + 1

2

]}
m21 = m12

m33 = Av
2 + Bv

{
J (J + 1)− 7

4

}
(8.406)

m44 = − Av
2 + Bv

{
J (J + 1) + 1

4

} − γv + (−1)J−1/2 1
2 [pv + 2qv]

[
J + 1

2

]
m34 = −{(

J + 3
2

)(
J − 1

2

)}1/2{(
Bv − γv

2

) + (−1)J−1/2
[ qv

2

][
J + 1

2

]}
m43 = m34.

At this stage of the theoretical analysis there are no matrix elements off-diagonal J ;
this relatively simple situation will change when we consider nuclear spin magnetic
and electric interactions.

(c) Nuclear hyperfine interactions

If there were no nuclear hyperfine interactions to be considered, we could now insert the
values of the molecular constants which have been determined into the above matrices,
and compare the calculated Λ-doublet splittings with those measured by Meerts and
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Dymanus [124]. However the Λ-doubling transitions show extensive 14N hyperfine
splittings, which we must also take into account.

All of the magnetic and electric hyperfine matrix elements were derived in our
discussion of the LiO spectrum. We now use the symbol m to denote nuclear spin-free
terms, as listed above in equations (8.406), and denote the hyperfine terms, previously
given in equations (8.384) and (8.385), by the symbol hf. Since the 14N nucleus has
spin I = 1, each J level is split into three hyperfine levels, characterised by F = J ,
J ± 1, except for the J = 1/2 level which has only two hyperfine components, with
F = 1/2 and 3/2. Consequently if we neglect matrix elements off-diagonal in J for the
moment, each characteristic set of J , F levels is described by a 4 × 4 matrix, or two
2 × 2 matrices, as follows.

2�
(+)
3/2

2�
(+)
1/2

2�
(−)
3/2

2�
(−)
1/2

2�
(+)
3/2 m11 + hf11 m12 + hf12 0 0

2�
(+)
1/2 m21 + hf21 m22 + hf22 0 0

2�
(−)
3/2 0 0 m33 + hf33 m34 + hf34

2�
(−)
1/2 0 0 m43 + hf43 m44 + hf44

Note that the total parity is still conserved. Using equations (8.384) and (8.385) to
obtain explicit expressions for the hfij terms, we could derive analytic expressions for
the total matrix elements, and ultimately for the energies of the hyperfine components.
In the past this has usually been achieved using perturbation theory, which has led to the
definition of a large number of molecular constants. Meerts and Dymanus [124] listed
no fewer than 22 adjustable parameters, but Kristiansen [126] showed subsequently that
a better fit to the observed spectrum could be obtained with 16 parameters, provided
matrix elements of the hyperfine and quadrupole terms off-diagonal in J were taken into
account. In principle this leads to a matrix of dimension 6 × 6 for each parity-conserved
set of basis functions, but in practice it is sufficient to include only the mixing of each J
with the J ± 1 functions. Even so, the problem becomes quite complex. Consider, for
example, the energy levels illustrated in figure 8.43, for which J = 13/2. For F = 15/2
and 11/2 we have 4 × 4 matrices for each parity-conserved state, whilst for F = 13/2
we have 6 × 6 matrices.

Most recently in theoretical approaches to the analysis of NO spectra, Varberg,
Stroh and Evenson [133] have used their tunable far-infrared measurements, described
in chapter 10, to refine, yet again, the values of the constants. Using results from
the Λ-doublet, rotational and fine-structure spectra of 14NO (v= 0) which have been
recorded, the following values of the constants (in MHz) are listed [133]:

B = 50848.130 72, A = 3 691 813.855, γ = −193.9879, p = 350.405,

q = 2.822 100, a = 84.203 78, bF = 22.3792, t0 = −19.6273,

t2 = 75.064 79, eq0 Q = −1.856 71, eq2 Q = 23.3115.
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In addition several centrifugal distortion constants were listed; these become significant
as J values increase and, as we shall see, are very important in the case of the OH
radical. We will defer our discussion of centrifugal distortion until we deal with OH.

Let us first consider the simplest approach to the quantitative assignment of the
radiofrequency spectrum for J = 13/2, the seven observed transitions being illustrated
in figure 8.43. We neglect all matrix elements which are off-diagonal in J , which
should be quite a good approximation since the different rotational (J ) levels are
widely separated in energy compared with the size of the nuclear hyperfine interaction
terms. For each F level, with values 11/2, 13/2 and 15/2, we have a pair of 2 × 2
matrices, one for each parity component as shown previously. The specific expressions
for the hyperfine matrix elements are obtained from equations (8.372), (8.374), (8.380)
and (8.382), using the parity-conserved basis functions. The nuclear spin-free terms mij

are, of course, independent of the F value. The results are given below, the composite
hyperfine constants being given by:

h f1 = 2a + bF + 2t0 = 2h3/2

h f2 = 2a − bF − 2t0 = 2h1/2 (8.407)

bt = bF − t0.

For + parity levels (J = 13/2)

m11 = A/2 + 47B

m22 = −A/2 + 49B − γ − 3.5(p + 2q)

m23 = −(B − γ /2)(4
√

3) + q(14
√

3) = m32

F = 11/2

hf11 = −h f1(3/26) − eq0 Q(7/52)

hf22 = −h f2(1/26) − eq0 Q(2/13) + t2(21/26)

hf12 = +eq2 Q(7
√

3/156) − bt(4
√

3/13) = hf21

F = 13/2 (8.408)

hf11 = −h f1(1/65) + eq0 Q(14/65)

hf22 = −h f2(1/195) + eq0 Q(16/65) + t2(7/65)

hf12 = −eq2 Q(14
√

3/195) − bt(8
√

3/195) = hf21

F = 15/2

hf11 = +h f1(1/10) − eq0 Q(7/80)

hf22 = +h f2(1/30) − eq0 Q(1/10) − t2(7/10)

hf12 = +eq2 Q(7
√

3/240) + bt(4
√

3/15) = hf21.

For − parity levels (J = 13/2)

m33 = A/2 + 47B

m44 = −A/2 + 49B − γ + 3.5(p + 2q)

m34 = −(B − γ /2)(4
√

3) − q(14
√

3) = m43
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F = 11/2

hf33 = −h f1(3/26) − eq0 Q(7/52)

hf44 = −h f2(1/26) − eq0 Q(2/13) − t2(21/26)

hf34 = −eq2 Q(7
√

3/156) − bt(4
√

3/13) = hf43

F = 13/2 (8.409)

hf33 = −h f1(1/65) + eq0 Q(14/65)

hf44 = −h f2(1/195) + eq0 Q(16/65) − t2(7/65)

hf34 = +eq2 Q(14
√

3/195) − bt(8
√

3/195) = hf43

F = 15/2

hf33 = +h f1(1/10) − eq0 Q(7/80)

hf44 = +h f2(1/30) − eq0 Q(1/10) + t2(7/10)

hf34 = −eq2 Q(7
√

3/240) + bt(4
√

3/15) = hf43.

We are now in a position to compare experiment and theory. From the large
data set provided by Meerts and Dymanus [124] we have selected the two sets of
hyperfine components which involve the lowest rotational levels of the two fine struc-
ture states, and one involving the relatively high J = 13/2 level of the Ω= 3/2 state.
The experimental accuracy was quoted as 1 kHz. The simplest theoretical interpreta-
tion involves the 11 molecular parameters given earlier and the neglect of �J = ±1
matrix elements; the agreement between experiment and theory is remarkably good,
with a mean least squares difference (δ) of 0.025 MHz for J = 13/2. For the J = 3/2
transitions with Ω= 1/2 and 3/2 it is 0.028 and 0.008 MHz respectively. Columns 8
and 9 in table 8.23 show that inclusion of the�J = ±1 matrix elements has very little
effect on the results for J = 13/2 (δ= 0.026 MHz), or for those with J = 3/2,Ω= 3/2
(δ= 0.009 MHz), but produces a marked improvement for the J = 3/2,Ω= 1/2 results
(δ= 0.007 MHz).

An obvious improvement to the theory, which should be most significant for the
J = 13/2 levels, would be the inclusion of centrifugal distortion terms. There is, how-
ever, another interaction which might be significant, namely, the nuclear spin–rotation
term. This is represented by an additional term in the effective Hamiltonian,

Hnsr = cI T1(I ) · T1(J − S ) = cI {T1(I ) · T1(J ) − T1(I ) · T1(S )}. (8.410)

The second part of this term may be regarded as a small correction to the Fermi contact
interaction; the matrix elements of the first part are diagonal inΩ, J and F , with matrix
elements given by

〈η,Λ; S,Σ; J,Ω; I, F |cI T1(J ) · T1(I )|η,Λ; S,Σ; J ′,Ω; I, F 〉

= δJ J ′cI (−1)J+F+I

{
I J F
J I 1

}
{J (J + 1)(2J + 1)I (I + 1)(2I + 1)}1/2.

(8.411)
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Table 8.23. Comparison of experimental and calculated frequencies (in MHz)
for the hyperfine components of three Λ-doublet transitions in NO. The final two
columns (∗) denote the 12 parameter results obtained with the inclusion of the
nuclear spin–rotation term

νcalc νcalc (MHz)

Ω J F(−) F(+) νexp (�J = 0) νdiff (�J = 0, ±1) νdiff νcalc(∗) νdiff (∗)

3/2 13/2 11/2 11/2 49.405 49.387 0.018 49.387 0.018 49.387 0.018

13/2 13/2 48.578 48.553 0.025 48.553 0.025 48.553 0.025

15/2 15/2 51.260 51.260 0.000 51.261 −0.001 51.261 −0.001

15/2 13/2 63.640 63.539 0.101 63.534 0.106 63.622 0.018

13/2 15/2 36.196 36.275 −0.079 36.280 −0.084 36.187 0.009

13/2 11/2 59.742 59.645 0.097 59.642 0.100 59.722 0.020

11/2 13/2 38.243 38.296 −0.053 38.299 −0.056 38.218 0.025

δ 0.025 0.026 0.007

1/2 3/2 1/2 1/2 560.854 560.820 0.034 560.851 0.003 560.851 0.003

3/2 3/2 651.543 651.438 0.105 651.544 −0.001 651.544 −0.001

5/2 5/2 801.196 801.147 0.049 801.193 0.003 801.193 0.003

3/2 5/2 758.911 758.855 0.056 758.879 0.032 758.910 0.001

5/2 3/2 693.828 693.731 0.097 693.858 −0.030 693.827 0.001

1/2 3/2 624.649 624.554 0.095 624.630 0.019 624.649 0.000

3/2 1/2 587.747 587.704 0.043 587.765 −0.018 587.746 0.001

δ 0.028 0.007 0.001

3/2 3/2 3/2 3/2 0.612 0.609 0.003 0.609 0.003 0.609 0.003

5/2 5/2 1.029 1.030 −0.001 1.030 −0.001 1.030 −0.001

3/2 5/2 74.931 74.904 0.027 74.901 0.030 74.932 −0.001

5/2 3/2 73.286 73.265 0.021 73.262 0.024 73.293 −0.007

1/2 3/2 46.464 46.443 0.021 46.438 0.026 46.456 0.008

δ 0.008 0.009 0.002

From this equation the diagonal corrections to the energies for J = 13/2, F = 11/2,
13/2 and 15/2 are found to be −cI (15/2), −cI , and cI (13/2), respectively. The value
of cI given by Varberg, Stroh and Evenson [133] is 0.012 347 MHz, and inclusion of
this term yields the results given in the last two columns of table 8.23. The agreement
between experiment and theory for the low J levels, with a total of 12 molecular
parameters, now approaches the experimental accuracy.

Further improvement in the agreement between experiment and theory, particularly
for the higher J levels, would be obtained by the inclusion of centrifugal distortion
terms. We will, however, defer discussion of these terms until we come to describe the
results for the OH radical, where centrifugal distortion is much more important. Our
reduction in the number of parameters required for a satisfactory quantitative interpre-
tation of the radiofrequency electric resonance spectrum arises because of a number
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of factors. At the time of the measurements reported by Meerts and Dymanus [124],
with the subsequent refinements by Meerts [125] and Kristiansen [126], the numerical
analysis of such a spectrum depended heavily on the use of perturbation theory. Whilst
perturbation theory still has a role to play, the development of computer programs which
enable exact diagonalisation of large matrices, as well as least-squares refinement of
molecular parameters, has greatly simplified the analytical process. Moreover in the
case of the NO molecule, we now have accurate data from other spectroscopic studies
which greatly assists the quantitative analysis. For example, the spin–orbit (A) and
rotational (B) constants are not well determined from the Λ-doubling hyperfine spec-
trum described in this section. The spin–orbit interaction has been measured directly
through observation of the 2�3/2 ← 2�1/2 magnetic dipole spectrum in the far-infrared
[130, 134] whilst the best determinations of the rotational and centrifugal distortion
constants come from pure microwave [127, 128], millimetre wave [135] and far-infrared
[136, 129] measurements. Infrared/microwave double resonance studies [137, 138]
will be described in chapter 11. Magnetic resonance studies in both the microwave
[139] and far-infrared [133] regions have provided a wealth of detail concerning the
magnetic interactions in NO; these aspects are discussed at length in chapter 10. We
should add that in many of the papers cited above, the spectra of the isotopic form
15NO are also discussed.

(d) Interpretation of the molecular constants

As we have discussed many times elsewhere, the magnetic and electric nuclear hyperfine
constants provide information about the electronic structure of the molecule. The latter
was outlined and summarised briefly in (8.391), where the unpaired electron is placed
in a π -type molecular orbital, which may be regarded as a linear combination of the N
and O atomic 2p orbitals. Dousmanis [140] was among to first to show the relationships
between the dipolar hyperfine constants and the electronic wave function. The orbital
hyperfine constant, a, which in NO is found to have the value 84.20378 MHz, is given
by the expression

a = 2µB gNµN (µ0/4π)

〈
1

r3

〉
av

(8.412)

where r is the electron–nuclear distance. Substitution of the values of the constants in
the above definition leads to the value 〈r−3〉av = 15.0 × 1030 m−3. Dousmanis calculates
that for a Hartree–Fock 2p atomic orbital on the N atom, the theoretical value would
be 22.5 × 1030 m−3. There will also be a contribution from electron density in the
O 2p atomic orbital but this will be much smaller because of the larger value of r ;
Dousmanis estimates a value of 0.49 × 1030 m−3. The result of this simple analysis is
that the molecular orbital containing the unpaired electron has a density of 0.65 on the
N atom and 0.35 on the O atom. A check on this conclusion can be made by looking
at the electron spin–nuclear spin dipolar constants, t0 and t2, which are given by the
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expressions

t0 = gSµB gNµN (µ0/4π)
1

2

〈
(3 cos2 θ − 1)

r3

〉
,

(8.413)

t2 = gSµB gNµN (µ0/4π)

〈
sin2 θ

r3

〉
.

For a 2pπ electron (ml = ±1) we can use the results

(3 cos2 θ − 1)av = −2

5
, (sin2 θ)av = 4

5
. (8.414)

Comparison with the value of the orbital hyperfine constant a therefore suggests that t0
and t2 should have the values −16.8 and 67.4 MHz, which are in quite good agreement
with the experimental values −19.6273 and 75.064 79 MHz, considering the simplicity
of the model.

The Fermi contact constant bF, which has the value 22.3792 MHz, gives a value
for the wave function at the nucleus, ψ2(0), of 0.85 × 1030 m−3. Although small, this
value indicates that there is approximately 2.5% s character in the electronic wave func-
tion, which must arise from configuration interaction with appropriate higher energy
electronic states.

Finally we come to the quadrupole coupling constant, eq0 Q, which Dousmanis
interprets in terms of valence bond theory; the electric field gradient arises from all
charged particles in the molecule and so its evaluation involves consideration of the
total electronic wave function, not simply the molecular orbital containing the unpaired
electron. Dousmanis advances plausible auguments to show that the observed value is
consistent with the magnetic hyperfine results, but a semi-empirical treatment of this
kind is always open to debate. As we have stated elsewhere for other molecules, the
determined magnetic and electric hyperfine constants should probably best be regarded
as benchmarks for testing the accuracy of ab initio calculations. This also applies to
the Λ-doubling constants, the quantitative interpretation of which requires good wave
functions for excited electronic states, as well as the ground state.

8.5.4. OH in the X 2� ground state

(a) Introduction

The hydroxyl radical, OH, occupies an extremely important position in spectroscopy, in
free radical laboratory chemistry, and in atmospheric, cometary and interstellar chem-
istry. Its ultraviolet electronic spectrum has been described in many papers published
over the past seventy years. It was the first short lived gaseous free radical to be studied
by microwave spectroscopy, described in a classic paper by Dousmanis, Sanders and
Townes [121] in 1955. The details of this work are presented in chapter 10. It was the
first free radical to be studied by microwave magnetic resonance, in pioneering work
by Radford [141]; the microwave and far-infrared laser magnetic resonance studies are
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described in detail in chapter 9. It was also the first free radical to be studied by molecular
beam spectroscopy, using both electric resonance and maser detection methods; this
work is the subject of the present section. OH will also appear again in chapter 11, as
a very early example of the use of microwave/optical double resonance methods.

The ground state of OH is 2�, arising from the molecular orbital configuration

X 2�: (1s)2(2sσ )2(2pσ )2(2pπ )3. (8.415)

The lowest fine structure component is the 2�3/2 state, and the lower rotational levels
for both OH and OD are shown schematically in figure 8.44. Each rotational level is
split into aΛ-doublet, indicated in figure 8.44, but not at all to scale. Moreover, eachΛ-
doublet level in OH is further split into a doublet by magnetic hyperfine interaction with
the proton. This is illustrated in figure 8.45 for the lowest rotational level, J = 3/2, and
the observed electric dipole transitions are also shown; each rotational level possesses
a similar Λ-doublet and hyperfine structure.

The high-resolution spectroscopy of OH has been perhaps the most important test
bed for the development of the theory of the molecular energy levels, both in zero
field and in the presence of applied magnetic fields. In this section, we concentrate on
the Λ-doubling and hyperfine structure, as probed by the molecular beam studies. In
chapter 9 we discuss the complex theory of the Zeeman effect, and in chapter 10 deal
with rotational transitions. Our discussion therefore follows a pattern similar to that
adopted for the NO molecule.

(b) Molecular beam electric resonance and beam maser studies

The first successful application of molecular beam electric resonance to the study of a
short-lived free radical was achieved by Meerts and Dymanus [142] in their study of
OH. They were also able to report spectra of OD, SH and SD. Their electric resonance
instrument was conventional except for a specially designed free radical source, in
which OH radicals were produced by mixing H atoms, formed from a microwave
discharge in H2, with NO2 (or H2S in the case of SH radicals). In table 8.24 we present
a complete Λ-doublet data set for OH, including the sets determined by Meerts and
Dymanus, with J = 3/2 to 11/2 for the 2�3/2 state, and 1/2 to 9/2 for the 2�1/2 state.
Notice that, for the lowest rotational level (J = 3/2 in 2�3/2), the accuracy of the data
is higher. These transitions were observed by ter Meulen and Dymanus [143], not by
electric resonance methods, but by beam maser spectroscopy, with the intention of
providing particularly accurate data for astronomical purposes. This is the moment
for a small diversion into the world of beam maser spectroscopy. It has been applied
to a large number of polyatomic molecules, but apparently OH is the only diatomic
molecule to be studied by this method.

The principles of a beam maser spectrometer are illustrated in figure 8.46. Beam
maser spectroscopy depends upon the ability to create artificially a large population
difference (and inversion) between two energy levels. As we know from our discussion
of electric resonance, a quadrupole electric field achieves just this for levels which are
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−1

Figure 8.44. Lower rotational levels of OH and OD, labelled with their respective J values. The
Λ-doubling is suggested only and the splittings are not at all drawn to scale.
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Figure 8.45. Λ-doublet and proton hyperfine splitting for the lowest rotational level in OH
(J = 3/2, 2�3/2), and the allowed electric dipole transitions.

coupled through the Stark effect. In a beam maser spectrometer, therefore, the C and
B fields which normally follow the A quadrupole field are replaced by a microwave
cavity, tuned to the transition frequency between the two levels. Microwave power of the
correct frequency is fed to the cavity; because of the population inversion, the induced
transitions result in enhanced emission, which is detected. An advantage of the beam
maser technique is that the molecular beam does not need to be as well collimated as in
a beam deflection experiment, so that larger beam fluxes may be used. The disadvantage
of the maser technique is that the range of frequency scanning is very small for a high Q
resonance cavity; the transition frequency therefore needs to be known fairly accurately
in advance. Ter Meulen and Dymanus took care to reduce residual earth magnetic field
effects, and obtained line widths of 2.5 kHz, determined by the residence time of the
beam molecules inside the microwave cavity. Their transition frequencies, given in
table 8.24, are accurate to 0.1 kHz.
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Table 8.24. Λ-doublet hyperfine transition frequencies recorded for the OH radical

Ω J F(e)a F( f )a νobs (MHz) Reference

3/2 3/2 1 1 1665.401 84 [143]
2 2 1667.359 03 [143]
2 1 1612.231 01 [143]
1 2 1720.529 98 [143]

5/2 2 2 6030.747 [142]
3 3 6035.092 [142]
2 3 6016.746 [142]
3 2 6049.084 [144]

7/2 3 3 13 434.62 [145]
4 4 13 441.36 [145]

9/2 4 4 23 817.6153 [146]
5 5 23 826.6211 [146]
4 5 23 838.46 [145]
5 4 23 805.13 [145]

11/2 5 5 36 983.47 [145]
6 6 36 994.43 [145]

1/2 1/2 1 1 4750.656 [144]
0 1 4660.242 [144]
1 0 4765.562 [144]

3/2 1 1 7761.747 [147]
2 2 7820.125 [147]
2 1 7749.909 [147]
1 2 7831.962 [147]

5/2 2 2 8135.870 [142]
3 3 8189.587 [142]
2 3 8118.051 [142]
3 2 8207.402 [142]

7/2 3 3 5473.045 [142]
4 4 5523.438 [142]
4 3 5449.436 [142]
3 4 5547.042 [142]

9/2 4 4 164.7960 [142]
5 5 117.1495 [142]
4 5 192.9957 [142]
5 4 88.9504 [142]

a : the e and f levels have parities of (−1)J−1/2 and −(−1)J−1/2 respectively.

(c) Theory and analysis of the Λ-doubling hyperfine transitions

A comprehensive fit of all of the high resolution data for OH has been performed first
by Brown, Kaise, Kerr and Milton [115], and subsequently by Brown, Kerr, Wayne,
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Evenson and Radford [148]. We may start our discussion by using their values for the
same set of 10 parameters which were introduced earlier for analysing the spectrum
of NO. (Note that there is no quadrupole interaction in this case, which reduces the
number of parameters from 12 to 10). For OH these molecular parameters (in MHz)
are as follows:

B = 555 660.97, A = −4 168 639.13, γ = −3574.88, p = 7053.098 46,

q = −1159.991 65, a = 86.1116, bF = −73.2537, t0 = 43.547,

t2 = 37.7892, cI = −0.099 71.

These values differ slightly from those given by Meerts [149]. Since the J = 3/2 level
of the 2�3/2 state is particularly important, we commence our analysis with this level.
We may anticipate that the mixing of different J levels should be even less important
than it was in NO, since the rotational levels are much more widely spaced. Centrifugal
distortion effects should also be small for the low J levels.

We therefore return to the pair of 2 × 2 matrices described immediately before
(8.406), and evaluate first the terms which do not involve the proton nuclear spin. For
the (+) parity states with J = 3/2, the matrix elements are

m11 = A/2 + 2B,

m22 = −A/2 + 4B − γ + (p + 2q), (8.416)

m12 = −(
√

3)(B − γ /2) − q(
√

3) = m21,

and for the (−) parity states they are

m33 = A/2 + 2B,

m44 = −A/2 + 4B − γ − (p + 2q), (8.417)

m34 = −(
√

3)(B − γ /2) + q(
√

3) = m43.

Since I = 1/2 for the proton, the allowed values of F (for J = 3/2) are 2 and 1. The
magnetic hyperfine terms are as follows:

F = 2 F = 1

hf11 = +h f1(3/20) hf11 = −h f1(1/4)

hf22 = +h f2(1/20) + t2(3/10) hf22 = −h f2(1/12) − t2(1/2)

hf12 = (bF − t0)(
√

3/10) = hf21 hf12 = −(bF − t0)(1/
√

12) = hf21 (8.418)

hf33 = +h f1(3/20) hf33 = −h f1(1/4)

hf44 = +h f2(1/20) − t2(3/10) hf44 = −h f2(1/12) + t2(1/2)

hf34 = (bF − t0)(
√

3/10) = hf43 hf34 = −(bF − t0)(1/
√

12) = hf43.

In these expressions the composite constants are as defined previously for NO, i.e.

h f1 = 2a + bF + 2t0, h f2 = 2a − bF − 2t0. (8.419)

Substitution of the molecular constants listed above and diagonalisation of the 2 ×
2 matrices gives the energies and transition frequencies for J = 3/2 in both the 2�3/2
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Table 8.25. Comparison of measured and calculated transition frequencies (in MHz)
for the hyperfine components of Λ-doublet transitions in OH. The origins of the
experimental results are given in table 8.24

Ω J F ′(e) − F ′′( f ) νexp νcalc(1) �ν(1) νcalc(2) �ν(2)

3/2 3/2 1-1 1665.402 1664.666 0.736 1665.414 −0.01

2-2 1667.359 1666.616 0.743 1667.364 −0.00

1-2 1612.231 1611.546 0.685 1612.195 0.036

2-1 1720.530 1719.736 0.794 1720.583 −0.05

δ 0.740 0.027

1/2 3/2 1-1 7761.747 7763.776 −2.029 7761.713 0.034

2-2 7820.125 7822.289 −2.164 7820.195 −0.07

1-2 7749.909 7751.983 −2.074 7749.950 −0.04

2-1 7831.962 7834.081 −2.119 7831.958 0.004

δ −2.097 0.037

3/2 9/2 4-4 23 817.615 23 965.577 −147.9 23 817.165 0.450

5-5 23 826.621 23 976.614 −150.0 23 826.199 0.422

5-4 23 838.46 23 986.963 −148.5 23 838.549 −0.08

4-5 23 805.13 23 953.228 −148.1 23 804.815 0.315

δ −148.6 0.319

1/2 9/2 4-4 164.796 331.492 −166.7 163.689 1.107

5-5 117.150 283.273 −166.1 115.467 1.683

5-4 192.996 359.443 −166.4 191.639 1.357

4-5 88.950 255.322 −166.4 87.517 1.433

δ −166.4 1.395

and 2�1/2 states. The labelling of the four transitions for each J = 3/2 level is given
in figure 8.45, which is correct for the 2�3/2 component. In the 2�1/2 component the
energies of the F = 2 and 1 hyperfine levels are reversed.

The results of these, the simplest possible calculations (νcalc(1)), are presented in
table 8.25 and compared with experiment. The agreement is remarkably good, and the
discrepancy is systematic, as we see from the table. If the radiofrequency measurements
involving J = 3/2 were the only experimental results available, it would be possible
to adjust the values of the parameters, particularly the Λ-doubling constants p and
q, to improve the agreement between experiment and theory. However, we have also
included in table 8.25 the results for a higher J level, J = 9/2 in both fine structure
states, and note that the difference between experiment and theory is very much larger.
It is clear, therefore, that the effects of centrifugal distortion must be taken into account,
the theory of which is described in the following subsection. Brown, Kaise, Kerr and
Milton [115] derived values for the centrifugal distortion parameters, and we include
three of their parameters, namely, the centrifugal corrections pD , qD and D. The values
of these additional constants (in MHz) are

pD = −1.350 962, qD = 0.442 032, D = 57.1785,
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and the new calculated transition frequencies, νcalc(2), are also given in table 8.25.
The agreement with experiment is now good for both J = 3/2 and 9/2. Centrifugal
distortion corrections for other parameters, in particular the hyperfine constants, have
also been derived and further improve the agreement between experiment and theory.
Increasing the number of molecular parameters, however, increases also the correlation
between parameters so that the process is sometimes of uncertain value.

Finally we note that, as anticipated, the matrix elements off-diagonal in J have
very little effect on the calculated transition frequencies.

(d) Centrifugal distortion of the Λ-doubling

As a molecule rotates faster, the bond between the two atoms stretches; this centrifugal
effect increases the moment of inertia so that there is a reduction in the rotational
constant which increases with increasing J . This effect can be described by the addition
of an extra term to the effective Hamiltonian for the rotational kinetic energy:

Heff = B N2 − DN2 N2 (8.420)

where N = J − S. All molecular properties which depend on the bond length R will
show similar centrifugal effects as the molecule rotates. This includes the Λ-doubling
contributions in the OH radical which occur because excited 2� electronic states are
mixed into the 2� ground state by the rotational motion of the molecule. There is also
a somewhat weaker dependence of the electronic wave function on the internuclear
separation.

These effects can be described by an additional pair of terms in the effective
Hamiltonian:

HLDcd = (1/2)qD(J 2
+ + J 2

−)(J − S)2 − (1/2)(pD + 2qD)(J+S+ + J−S−)(J − S)2.

(8.421)

The form of this correction can be appreciated by comparison with the expression
for the Λ-doubling terms themselves, equation (8.400). There is, however, a problem
with this form for the Hamiltonian operator because the two operator factors, such as
(J 2

+ + J 2
−) and (J − S )2 do not commute with each other. The Hamiltonian (8.421) is

therefore not Hermitian and so has complex eigenvalues. The operator can be made to
have Hermitian form by taking the so-called Hermitian average,

HLDcd = (1/4)qD[(J 2
+ + J 2

−), (J − S)2]+
− (1/4)(pD + 2qD)[(J+S+ + J−S−), (J − S)2]+, (8.422)

where the symbol [A, B]+ is the anti-commutator bracket,

[A, B]+ = AB + B A. (8.423)

The evaluation of the matrix elements of these centrifugal distortion corrections
appears rather daunting. However, they can be derived quite simply by matrix multi-
plication. We have already constructed the matrix representations of the two operators
involved for a molecule in a 2� state. Since the operator in equation (8.422) consists of
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products of these two operators, its matrix elements are given simply by the products
of the matrices concerned:

[AB]i j =
∑

k

[A]ik[B]k j . (8.424)

In this way we can obtain the matrix representation for the centrifugal distortion of the
rotational kinetic energy, in equation (8.421), as

hcd11 = −D(z2 + z),

hcd22 = −D[(z + 2)2 + z], (8.425)

hcd12 = 2Dz1/2(z + 1) = hcd21,

where z is an abbreviation for [(J + 1/2)2 − 1]. For the J = 3/2 levels of OH described
in the previous section, z = 3. The corresponding corrections to theΛ-doubling terms
can first be written for a general set of levels J , analogous to those given in section 8.5.3.
For the positive parity levels, the 2 × 2 Λ-doubling matrix is as follows.

2�
(+)
3/2

2�
(+)
1/2

2�
(+)
3/2 −(−1)p(1/2)qDz(J + 1/2) +(−1)p(1/2)qDz1/2(J + 1/2)3

+(−1)p(1/4)(pD + 2qD)(J + 1/2)z1/2

2�
(+)
1/2 +(−1)p(1/2)qDz1/2(J + 1/2)3 −(−1)p(1/2)qDz(J + 1/2)

+(−1)p(1/4)(pD + 2qD)(J + 1/2)z1/2 −(−1)p(1/2)(pD + 2qD)(J + 1/2)(z + 2)

For negative parity levels the matrix is as follows.

2�
(−)
3/2

2�
(−)
1/2

2�
(−)
3/2 +(−1)p(1/2)qDz(J + 1/2) −(−1)p(1/2)qDz1/2(J + 1/2)3

−(−1)p(1/4)(pD + 2qD)(J + 1/2)z1/2

2�
(−)
1/2 −(−1)p(1/2)qDz1/2(J + 1/2)3 +(−1)p(1/2)qDz(J + 1/2)

−(−1)p(1/4)(pD + 2qD)(J + 1/2)z1/2 +(−1)p(1/2)(pD + 2qD)(J + 1/2)(z + 2)

In these matrices the exponent p stands for J − S or J − 1/2 in this case. For the
levels with J = 3/2, the correction terms which have to be added to the 2 × 2 matrix
representations are

mcd11 = −12D ± 3qD,

mcd22 = −28D ± 3qD ± 5(pD + 2qD), (8.426)

mcd12 = 8
√

3D ∓ 4
√

3qD ∓ (1/2)
√

3(pD + 2qD) = mcd21,

for positive and negative parity levels respectively. These matrix elements were used
to calculate the transition frequencies for OH listed in the penultimate column of
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Table 8.26. Λ-doubling and magnetic hyperfine parameters (in MHz) determined by
Meerts and Dymanus [142] for the OH, OD, SH and SD radicals in the v= 0 level of
the X 2� state

Parameter OH OD SH SD

p 7068.068 3765.112 8999.6 4667.2

q −1165.22 −329.38 −283.8 −76.0

a 86.014 13.296 32.579 5.02

bF −74.040 −11.285 −52.627 −7.99

t0 44.040 6.783 10.813 1.66

t2 37.763 5.847 — —

table 8.25. The theory can be further refined by the inclusion of centrifugal distortion
corrections to the magnetic hyperfine constants.

(e) Comparison of OH, OD, SH and SD

In addition to the extensive data on theΛ-doublet transitions of OH already described,
Meerts and Dymanus [142] also measured similar spectra of the species OD, SH and
SD. The SH and SD radicals were produced by reacting H atoms with either H2S or
D2S in the molecular beam source. In all cases hyperfine components of theΛ-doublet
transitions were measured for a number of rotational levels in both fine structure states.
The theoretical analysis of the spectra was similar to that already described for OH, with
the addition of deuterium quadrupole interactions in OD and SD. In table 8.26 we list
the Λ-doubling and nuclear hyperfine constants determined for the four species. Note
that the parameters listed above for OH differ slightly from those given subsequently
by Brown, Kaise, Kerr and Milton [115].

Meerts and Dymanus [142] compared their measured hyperfine constants with
those calculated from ab initio wave functions for both OH and SH. There are a series
of direct relations between the four hyperfine constants and the following average
quantities calculated from an electronic wave function:

a = 2µB gNµN (µ0/4π)〈1/r3〉,
bF = (2/3)gSµB gNµNµ0〈ψ2(0)〉,

(8.427)
t0 = (1/2)gSµB gNµN (µ0/4π)〈(3 cos2 θ − 1)/r3〉,
t2 = gSµB gNµN (µ0/4π)〈sin2 θ/r3〉,

where θ and r , whose average values must be calculated from the electronic wave
function, have been defined in a number of places elsewhere in this book. Meerts and
Dymanus [142] listed a number of calculations of the electronic averages listed in
(8.427) and their results are summarised for OH and SH in table 8.27.

The calculated values listed in table 8.27 were obtained by a variety of methods,
the details of which are given by Meerts and Dymanus [142]. Notice in particular that
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Table 8.27. Experimental and calculated molecular constants of OH and SH (in units
of 1030 m−3)

〈1/r 3〉 〈(3 cos2 θ − 1)/r 3〉 〈sin2 θ/r 3〉 〈ψ2(0)〉
OH observed 1.093 1.117 0.480 −0.1115

calc [150] 1.015 1.037 0.331 −0.103

calc [151] a 1.064 1.165 −0.111

calc [151] b 1.014 1.018 −0.094

calc [152] a −0.128

calc [152] b −0.115

SH observed 0.413 0.274 0.231 −0.0795

calc [151] a 0.379 0.276 −0.035

calc [151] b 0.306 0.098 −0.009

calc [152] a −0.047

calc [152] b −0.054

the Fermi contact interaction has a negative sign, which arises in the theory because
of interaction between different electronic configurations. The agreement between ex-
periment and theory is generally good.

A further interesting feature arises in the comparison of proton and deuteron hy-
perfine constants for the same radical. One normally expects these constants to be in
the ratio of the nuclear gyromagnetic ratios, so that deuteron constants are expected to
be a factor 6.514 39 smaller than those for the corresponding proton. We may calculate
this ratio for the four constants of OH (OD) and SH (SD) with the following results:

OH(OD): a: 6.469, bF: 6.561, t0: 6.493, t2: 6.459.

SH(SD): a: 6.490, bF: 6.587, t0: 6.514.

In most cases these differ significantly from the theoretical value of 6.514; an explana-
tion is not given in the original papers, but the differences may reflect subtle vibrational
averaging effects or breakdown of the Born–Oppenheimer approximation.

(f ) Electric dipole moment of OH

Meerts and Dymanus [142, 153] extended their studies of the OH and SH radicals by
examining the Stark effect and determining the electric dipole moments, but an even
more extensive study of the Stark effect for OH and OD in several different vibrational
levels was described by Peterson, Fraser and Klemperer [154]. The effect of an applied
electric field on the hyperfine components of the Λ-doublets for the J = 3/2 level of
the 2�3/2 state is illustrated in figure 8.47. Measurements were made of the MF = 2,
�MF = 0 transition in a calibrated electric field of approximately 700 V cm−1 and the
Stark shift from the zero-field line position measured. The observations were made on
resonances from v= 0, 1 and 2 for OH, and v= 0 and 1 for OD.
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Figure 8.47. Stark effect for the hyperfine and Λ-doublet components of the J = 3/2 level of
the 2�3/2 state of the OH radical [154].

The interaction between the molecular electric dipole moment and an applied
magnetic field is represented by the simple operator

HE = −T1(µe) · T1(E), (8.428)

and, as usual, we may take the direction of the electric field to define the p = 0
space-fixed axis. Since the electric dipole-moment lies along the molecule-fixed q = 0
axis, the matrix elements may be calculated for primitive basis functions, using a
first-rank rotational matrix, as follows:

〈J,Ω, I, F,MF |−T1
p=0(µe)T1

p=0(E)|J ′,Ω′, I, F ′,MF 〉

= −µ0 E0(−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+J+1+I

× {(2F ′ + 1)(2F + 1)}1/2

{
J ′ F ′ I
F J 1

}
〈J,Ω‖D

(1)
.0 (ω)∗‖J ′,Ω′〉

= −µ0 E0(−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+J+1+I {(2F ′ + 1)(2F + 1)}1/2

×
{

J ′ F ′ I
F J 1

}
(−1)J−Ω

(
J 1 J ′

−Ω 0 Ω

)
{(2J + 1)(2J ′ + 1)}1/2. (8.429)
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Table 8.28. Electric dipole moment of OH and OD in several different vibrational,
rotational and fine-structure states (from Peterson, Fraser and Klemperer [154])

Ω J |Ω|eff v µe (D)

OH 1/2 1/2 0.5 0 1.6549

1/2 9/2 0.6516 0 1.665 72

3/2 3/2 1.4697 0 1.655 20

3/2 3/2 1.4714 1 1.662 57

3/2 3/2 1.4732 2 1.6648

OD 1/2 1/2 0.5 0 1.653 12

3/2 3/2 1.4887 0 1.652 83

3/2 3/2 1.4893 1 1.6550

Peterson, Fraser and Klemperer [154] chose to neglect matrix elements off-diagonal
in F and J , since the experiments were performed in relatively weak electric fields.
Under these circumstances equation (8.429) reduces to

〈J,Ω, I, F,MF | − T1
p=0(µe)T1

p=0(E)|J,Ω, I, F,MF 〉

= −µ0 E0 MFΩ[J (J + 1) + F(F + 1) − I (I + 1)]

2F(F + 1)J (J + 1)
. (8.430)

This is, in essence, the result needed to construct figure 8.47. There is more to be
done, however, because it is necessary to use (8.430) to derive matrix elements for
the parity-conserved functions, and then to take note of the rotational distortion which
mixes the fine-structure states. This mixing can be represented by an effectiveΩ value,
which is designated |Ω|eff in table 8.28, where the results of the Stark experiments are
listed.

The data presented in table 8.28 show a number of interesting features. There is
a significant isotopic dependence of the dipole moment for the same quantum state.
Peterson, Fraser and Klemperer [154] draw attention to two possible reasons for the
difference between OH and OD. A difference of 0.001 D for OH and OD in the v= 0
state was calculated by Werner, Rosmus and Reinsch [155] as a result of vibrational
averaging of their dipole moment function. The remaining difference is probably due to
breakdown of the Born–Oppenheimer approximation, and is similar in both magnitude
and sign to a difference between HCl and DCl observed by Kaiser [156]. The vibrational
dependence of the dipole moment of OH is also determined accurately, providing further
important information concerning vibrational averaging of the dipole moment function.
Peterson, Fraser and Klemperer [154] point out that such information is needed if
spectroscopic measurements are to be accurate in determining OH concentrations in
the earth’s atmosphere [157] and in interstellar space [158, 159].
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(g) Concluding remarks

In this section we have described in considerable detail just one aspect of the spec-
troscopy of OH, namely, the measurement ofΛ-doubling frequencies and their nuclear
hyperfine structure. This has led us to develop the theory of the fine and hyperfine levels
in zero field as well as a brief discussion of the Stark effect. We should note at this
point, however, that OH was the first transient gas phase free radical to be studied by
pure microwave spectroscopy [121]. We will describe these experiments in chapter 10.
We note also that magnetic resonance investigations using microwave or far-infrared
laser frequencies have also provided much of the most important and accurate infor-
mation; these studies are described in chapter 9, where we are also able to compare OH
with the equally important radical, CH, a species which, until very recently, had not
been detected and studied by either electric resonance techniques or pure microwave
spectroscopy.

8.5.5. CO in the a 3� state

(a) Introduction and experimental results

The electronically excited a 3� state of CO might well be the most thoroughly stud-
ied excited electronic state of all. Before reviewing briefly the many spectroscopic
studies that have been described, we summarise the molecular orbital description of
the CO molecule, and describe the ground and excited state electron configurations.
The molecular orbitals for both homonuclear and heteronuclear diatomic molecules
were described, as a function of internuclear distance, in chapter 6, and in figure 6.9 we
indicated the position of the CO molecule on a molecular orbital energy level diagram.
The ground state and two of the excited electronic state configurations may be written
as follows:

X 1�+ : (1σ )2(2σ )2(3σ )2(4σ )2(5σ )2(1π )4

a 3� : (1σ )2(2σ )2(3σ )2(4σ )2(5σ )1(1π )4(2π )1 (8.431)

a′ 3�+ : (1σ )2(2σ )2(3σ )2(4σ )2(5σ )2(1π )3(2π )1.

We have included the 3�+ state because, as we shall see, it plays an important
role in certain aspects of the spectroscopy of the a 3� state. The a 3� state lies about
49 000 cm−1 above the ground state, and is relatively metastable with respect to radiative
decay, having a lifetime of about 60 ms.

The a 3� state of CO was first identified through its ultraviolet emission spec-
trum to the ground state, producing what are now known as the Cameron bands [160,
161, 162]. Its radiofrequency spectrum was then described by Klemperer and his col-
leagues in a classic series of molecular beam electric resonance experiments. Its mi-
crowave rotational spectrum was measured by Saykally, Dixon, Anderson, Szanto and
Woods [163], and the far-infrared laser magnetic resonance spectrum was recorded by
Saykally, Evenson, Comben and Brown [164]. In the infrared region both electronic
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and vibrational spectra involving the a 3� state have been studied. In this section we
shall describe in some detail the molecular beam radiofrequency studies, but will leave
an in-depth discussion of the theoretical analysis until we come to describe the laser
magnetic resonance spectrum. Saykally, Evenson, Comben and Brown [164] were in
the advantageous position of having all of the different experimental measurements
available and were therefore able to produce a unified theory which made maximum
use of all the information. We have already described the principles of the molecular
beam electric resonance method and confine ourselves here to those aspects which
were particular to the initial discovery of the radiofrequency spectrum by Freund and
Klemperer [165]. Their molecular beam electric resonance apparatus was similar to
that shown in figure 8.33. They formed an effusive beam of CO from a liquid nitrogen
cooled source, which was then bombarded with an electron beam of 18 eV energy,
exciting a small proportion to the a 3� state. The beam was detected with an Auger
detector, formed by depositing sodium on a metal surface. The A field was an electric
quadrupole of length 8 cm, whilst the B field was an electric dipole of length 10 cm.
The homogeneous electric C field, with radiofrequency components both parallel and
perpendicular to the static field, had an effective central length of 9 cm. Resonance
absorption lines were modulated either by on-off modulation of the radiofrequency
power, or by modulation of the static electric field.

The lowest rotational levels of the a 3� state of CO are fairly well described by
case (a) wave functions |η, J,Ω,MJ 〉, where Ω=Λ+Σ is the component of to-
tal electronic angular momentum along the internuclear axis, taking the values 0, 1
and 2. The lower fine-structure states and the associated rotational levels of a 3�

CO are illustrated in figure 8.48; the Λ-doubling in the Ω= 0 state is large and
relatively independent of the rotational quantum number J . The Λ-doubling in the
Ω= 1 state is much smaller, and in the Ω= 2 state even smaller still; these dou-
blet splittings are exaggerated in the figure. The transitions detected by Freund and
Klemperer [165] were between the Λ-doublets of a particular J level in both the
Ω= 1 and 2 fine-structure states. They obtained line widths of 150 kHz or more,
but in later work Stern, Gammon, Lesk, Freund and Klemperer [166] were able
to reduce this to 7 kHz, revealing additional structure in the resonances (see also
figure 8.49). In order to understand both the electric state focusing (and defocusing)
and the observed transitions it is necessary to consider the Stark effect in some detail.

(b) Stark effect

The correct zero-field basis functions for the Λ-doublet components of particular J
and Ω states were given by Freed [167] as

− combination, parity − (−1)J:
1√
2
{|+Ω,±MJ 〉 − |−Ω,±MJ 〉}.

(8.432)

+ combination, parity (−1)J :
1√
2
{|+Ω,±MJ 〉 + |−Ω,±MJ 〉}.
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Figure 8.48. Lower rotational levels and fine structure states of CO in its a 3� state.

The matrix elements of an applied electric field, diagonal in MJ and Ω, are

〈J,Ω,MJ |−T1(µe) ·T1(E )|J ′,Ω,MJ 〉

= −µ0 E0(−1)J−MJ

(
J 1 J ′

−MJ 0 MJ

)
(−1)J−Ω

(
J 1 J ′

−Ω 0 Ω

)
{(2J +1)(2J ′ +1)}1/2.

(8.433)

Using (8.432) and (8.433) the Stark energies for J = 2,Ω= 2 can be readily calculated
and the results are presented in figure 8.50; the initial splitting of the Λ-doublets was
determined from the electric resonance study to be 7.351 MHz for the v= 0 level. In
small electric fields the parities of the states are essentially preserved, and transitions
between the Λ-doublets have their full electric dipole intensities. At higher electric
fields, however, the opposite parity states are mixed and the electric dipole intensity
decreases. It follows that so far as the intensities of the electric resonance transitions
are concerned, low electric fields are desirable. On the other hand, Stern, Gammon,
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Figure 8.49. Molecular beam electric resonance spectrum of the MJ = J,�MJ =�J = 0 transi-
tion across theΛ-doublets in the states |v,Ω, J 〉 = |0 to 4, 2, 2〉 of a 3�CO. The radiofrequency
was 16.515 MHz and the spectrum was recorded [166] by sweeping the electric C field. The
unexpected position of the v= 4 resonance is due to a perturbation (see text).

Lesk, Freund and Klemperer point out that efficient state selection requires electric
fields sufficiently high that the levels studied in their experiments have linear Stark
effects in the A and B deflecting fields; this corresponds to the right hand side of
figure 8.50. The quadrupole A field focusses molecules with MΩ< 0 onto the beam
axis, whilst the dipole B field horizontally deflects resonant molecules with MΩ> 0
onto a geometrically shielded off-axis detector; the experiments were therefore set up
for the ‘flop-in’ detection mode. In terms of the high-field levels shown in figure 8.50,
the top-half of the diagram survive passage through the A field; radiofrequency tran-
sitions in the C field region result in re-population of levels lying in the bottom half of
the diagram, which are then deflected onto the detector by the B field.

Studies were made ofΛ-doublet transitions in levels with |Ω| = 1 and 2, J values
from 1 to 7, and v from 0 to 4. Figure 8.49 shows an example of a high-resolution
spectrum, in which the vibrational dependence of the Λ-doubling is clearly resolved;
the reasons for the anomalous position of the v= 4 resonance will be explained in due
course. The Λ-doublet splitting ranges from 6.529 MHz in the v= 3, |Ω| = 2, J = 2
level, to 1150.934 MHz in the v= 0, |Ω| = 1, J = 2 level. The electric dipole moments
in a number of different v, |Ω|, J levels were also determined; they range from 1.375 to
1.378 D. We return later to a more quantitative discussion of the analysis of the results,
particularly the Λ-doublet splittings.

A particularly fascinating aspect of the radiofrequency spectrum shown in
figure 8.49 is the anomalous position of the v= 4 resonance, to which we referred
above. Gammon, Stern and Klemperer [168] made a careful study of this effect, which
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Figure 8.50. Stark energies of theΛ-doublet levels for |Ω| = 2, J = 2. On the left-hand side, in
zero field, the wave functions are the parity-conserved combinations given in equation (8.432).
On the right-hand side, in strong field, the wave functions are the simple combinations shown,
with parity not conserved.

is attributed to a perturbation between the v= 4 level of the a 3� state and the v= 0
level of the a′ 3�+ state; the electron configurations of both states were given in (8.431).
The relevant sections of the potential energy curves for the two electronic states are
shown in figure 8.51, where the near-coincidence of the interacting vibrational levels
is also shown.

(c) Theoretical analysis

The theory of theΛ-doubling in the 3� state, and the perturbations with the 3�+state,
is quite involved. We give here an outline of the problem, to which we will return in
chapter 10. The problem can be represented in the form of a 5 × 5 matrix, constructed
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Figure 8.51. Potential energy curves for the a 3� and a′ 3�+ excited electronic states of CO,
showing the near-coincidence of the v= 4 and v= 0 vibrational levels of the two respective
electronic states [168].

in a case (a) basis, involving the three fine-structure components of the 3� state, and
the two fine-structure components of the 3�+ state. The matrix elements have been
presented [166, 167, 168] and the results may be summarised in the following matrix.
The structure of this matrix is readily understood; the top left 3 × 3 block applies to
the 3� state with its three fine-structure components, whilst the bottom right 2 × 2
block represents the 3�+ state. The remaining off-diagonal elements describe the
perturbations between the two electronic states.

|3�2〉± |3�1〉± |3�0〉± |3�s
1〉± |3�s

0〉±
±〈3�2| m11 m12 m13 m14 m15
±〈3�1| m21 m22 m23 m24 m25
±〈3�0| m31 m32 m33 m34 m35
±〈3�s

1| m41 m42 m43 m44 m45
±〈3�s

0| m51 m52 m53 m54 m55
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Since parity is conserved in the absence of external electric fields, one such matrix
exists for each of the two opposite parity states. The matrix elements involving the 3�

state only involve the following interactions:

m11,m22,m33: vibronic energy + spin-orbit coupling + rotation

+ diagonal rotation–electronic coupling + spin–rotation

+ spin–spin dipolar coupling

m12,m13,m23: rotation + off-diagonal rotation–electronic coupling

+ spin–orbit mixing.

The matrix elements involving the 3�+ state only describe the following interactions:

m44,m55: vibronic energy + rotation + spin–spin dipolar coupling + spin–rotation

m45: rotation + spin–rotation.

Finally we come to the matrix elements which mix the two electronic states and thus
give rise to the observed perturbations:

m14 : rotation + off-diagonal rotation–electronic coupling

m24,m35 : off-diagonal spin–orbit and rotation–electronic coupling

m25,m34 : rotation + off-diagonal rotation–electronic coupling.

Full details of the matrix elements are given by Gammon, Stern and Klemperer [168]
who obtained a satisfactory quantitative interpretation of their experimental results;
the electronic state interaction affects both the Λ-doubling intervals and the electric
dipole moment.

This is not the end of the CO a 3� radiofrequency story because Gammon, Stern,
Lesk, Wicke and Klemperer [169] studied the spectrum of 13CO and observed the
hyperfine structure arising from 13C which has a nuclear spin I = 1/2. They were
able to obtain values of the parameters describing the Fermi contact interaction, the
electron–nuclear spin dipolar and orbital hyperfine interactions.

Appendix 8.1. Nuclear spin dipolar interaction

We show here the equivalence of the two forms of the nuclear spin dipolar interac-
tion, equations (8.9) and (8.10). The most familiar representation of this interaction is
equation (8.9),

Hdip = g1g2µ
2
N (µ0/4π)

{
I1 · I2

R3
− 3(I1 · R)(I2 · R)

R5

}
. (8.434)

We now expand the scalar products in this expression using the cartesian coordinate
system shown in figure 8.52. We obtain
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Figure 8.52. Axis system and polar coordinates for the dipolar coupling between two nuclei.

I1 · I2 = I1x I2x + I1y I2y + I1z I2z,

I1 · R = I1x x + I1y y + I1z z, (8.435)

I2 · R = I2x x + I2y y + I2z z,

where R = xi + y j + zk. Substitution of these results in the above expression for the
dipolar interaction yields the result:

Hdip/g1g2µ
2
N (µ0/4π)

= [I1x , I1y, I1z]


(R2 − 3x2)/R5 −3xy/R5 −3xz/R5

−3xy/R5 (R2 − 3y2)/R5 −3yz/R5

−3xz/R5 −3yz/R5 (R2 − 3z2)/R5





 I2x

I2y

I2z


,

= I1 · D · I2. (8.436)

D is the dipolar coupling (cartesian) tensor, which although not necessarily diagonal
in the axis system shown in figure 8.52, can be made so by choosing the z axis to lie
along the internuclear vector R.

Now we examine the irreducible spherical tensorial form (8.10) and expand the
scalar product in the molecule-fixed coordinate system:

T2(C) · T2(I1, I2) =
∑

q

(−1)q T2
q (C) T2

−q (I1, I2),

= T2
0(C)T2

0(I1, I2) − T2
1(C)T2

−1(I1, I2) − T2
−1(C)T2

1(I1, I2)

+ T2
2(C)T2

−2(I1, I2) + T2
−2(C)T2

2(I1, I2). (8.437)

Using the expansion (8.11) we treat each nuclear spin term in (8.437) in turn; for
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example,

T2
0(I1, I2) =

√
5

(
1 1 2
1 −1 0

)
T1

1(I1) T1
−1(I2) +

√
5

(
1 1 2
0 0 0

)
T1

0(I1) T1
0(I2)

+
√

5

(
1 1 2

−1 1 0

)
T1

−1(I1) T1
1(I2). (8.438)

Noting the relationships between the spherical tensor and cartesian components,

T1
0(I) = Iz, T1

±1(I) = ∓ 1√
2
{Ix ± iIy}, (8.439)

we find that

T2
0(I1, I2) = − 1√

6
(I1x I2x + I1y I2y) +

√
2√
3

I1z I2z . (8.440)

The other four components of T2(I1, I2) may be similarly written in cartesian form:

T2
−1(I1, I2) = 1

2
{I1x I2z − iI1y I2z + I1z I2x − iI1z I2y},

T2
1(I1, I2) = −1

2
{I1x I2z + iI1y I2z + I1z I2x + iI1z I2y},

(8.441)
T2

−2(I1, I2) = 1

2
{I1x I2x − iI1x I2y − iI1y I2x − I1y I2y},

T2
2(I1, I2) = 1

2
{I1x I2x + iI1x I2y + iI1y I2x − I1y I2y}.

Noting now the cartesian forms of the spherical tensor components of T2(C), we may
write,

T2
0(C) = C2

0 (θ, φ)(R−3) = 1

2
(R−5) (3z2 − R2),

T2
±1(C) = C2

±1(θ, φ) (R−3) = ∓
√

3√
2

z(x ± iy) (R−5), (8.442)

T2
±2(C) = C2

±2(θ, φ)(R−3) =
√

3

2
√

2
(x ± iy)2(R−5).

If we now combine (8.442) and (8.441) with equation (8.437) we obtain the desired
result:

−
√

6T2(C) · T2(I1, I2)

= [I1x , I1y, I1z]




(R2 − 3x2)/R5 −3xy/R5 −3xz/R5

−3xy/R5 (R2 − 3y2)/R5 −3yz/R5

−3xz/R5 −3yz/R5 (R2 − 3z2)/R5







I2x

I2y

I2z


 ,

(8.443)

which is clearly equivalent to (8.436).

In order to represent the dipolar coupling of two electron spins, it is merely nec-
essary to change I to S, replace g1 and g2 by gS , and µN by µB . Corresponding
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replacements can be made to represent the dipolar coupling of an electron spin with a
nuclear spin, but in this case the overall sign of the effective operator must be reversed.
We now summarise the three cases so that, hopefully, there should be no confusion:

(i) nuclear–nuclear dipolar interaction

Hdip = −
√

6g1g2µ
2
N (µ0/4π)T2(C) · T2(I1, I2) (8.444)

(ii) electron–electron dipolar interaction

Hdip = −
√

6g2
Sµ

2
B(µ0/4π)T2(C) · T2(S1, S2) (8.445)

(iii) electron–nuclear dipolar interaction

Hdip = +
√

6gSgNµBµN (µ0/4π)T2(C) · T2(S, I). (8.446)

In appendix 8.2 we shall describe an alternative way of expressing the dipolar
interaction between two spin magnetic moments.

Appendix 8.2. Relationship between the cartesian and spherical tensor
forms of the electron spin–nuclear spin dipolar interaction

We first make use of the results derived for the dipolar coupling of two proton spins in
appendix 8.1. If we replace I1 by I, I2 by S and note the overall change in sign, we
see that the conventional dipolar Hamiltonian,

Hdip = −gSµB gNµN (µ0/4π)

{
I · S

r3
− 3(I · r )(S · r )

r5

}
, (8.447)

may be written in cartesian tensor form

Hdip/gSgNµBµN (µ0/4π)

= [Ix , Iy, Iz]




(3x2 − r2)/r5 3xy/r5 3xz/r5

3xy/r5 (3y2 − r2)/r5 3yz/r5

3xz/r5 3yz/r5 (3z2 − r2)/r5







Sx

Sy

Sz


 , (8.448)

where r is the position of the electron relative to the nucleus. We now expand the
spherical tensor form and show that it is equivalent to (8.448). We remind ourselves
of the results presented in equations (8.229) to (8.231). We stated that the dipolar
Hamiltonian in irreducible tensor form can be written as the scalar product

Hdip = −
√

10gSµB gNµN (µ0/4π)T1(I) · T1(S,C2), (8.449)

where the spherical components of the new tensor T1(S,C2) are defined by

T1
q (S,C2) = −

√
3
∑
q1q2

(−1)qT1
q1

(S)T2
q2

(C)

(
1 2 1
q1 q2 −q

)
(8.450)
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with

T2
q2

(C) = C2
q2

(θ, φ)(r−3). (8.451)

We now expand the scalar product in (8.449):

T1(I) · T1(S,C2) =
∑

q

(−1)qT1
q (I)T1

−q (S,C2)

= T1
0(I) T1

0(S,C2) − T1
1(I)T1

−1(S,C2) − T1
−1(I)T1

1(S,C2).

(8.452)

We note the relationships between the spherical and cartesian components of the spin
vector I in the molecule-fixed coordinate system:

T1
0(I) = Iz, T1

1(I) = − 1√
2
{Ix + iIy}, T1

−1(I) = 1√
2
{Ix − iIy}, (8.453)

with similar relationships for the components of S. We are now in a position to evaluate
the components of T1(S,C2) using equation (8.450). We obtain the following results:

T1
0(S,C2) = −

√
3

{
T1

0(S)T2
0(C)

(
1 2 1
0 0 0

)
+ T1

1(S)T2
−1(C)

(
1 2 1
1 −1 0

)

+ T1
−1(S)T2

1(C)

(
1 2 1

−1 1 0

)}
, (8.454)

T1
−1(S,C2) =

√
3

{
T1

−1(S)T2
0(C)

(
1 2 1

−1 0 1

)
+ T0

1(S)T2
−1(C)

(
1 2 1
0 −1 1

)

+ T1
1(S)T2

−2(C)

(
1 2 1
1 −2 1

)}
, (8.455)

T1
1(S,C2) =

√
3

{
T1

1(S)T2
0(C)

(
1 2 1
1 0 −1

)
+ T1

0(S)T2
1(C)

(
1 2 1
0 1 −1

)

+ T1
−1(S)T2

2(C)

(
1 2 1

−1 2 −1

)}
. (8.456)

We can rewrite all of the terms in the above three equations in terms of cartesian com-
ponents using the relationships for the components of S, and the following additional
relationships for the components of T2(C), given earlier in appendix 8.1:

T2
0(C) = C2

0 (θ, φ)(r−3) = 1

2
(r−5)(3z2 − r2),

T2
±1(C) = C2

±1(θ, φ)(r−3) = ∓
√

3√
2

z(x ± iy)(r−5), (8.457)

T2
±2(C) = C2

±2(θ, φ)(r−3) =
√

3

2
√

2
(x ± iy)2(r−5).
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It is now a matter of straightforward but tedious algebra to obtain the required result:

Hdip/gSgNµBµN (µ0/4π)

= [Ix , Iy, Iz]




(3x2 − r2)/r5 3xy/r5 3xz/r5

3xy/r5 (3y2 − r2)/r5 3yz/r5

3xz/r5 3yz/r5 (3z2 − r2)/r5







Sx

Sy

Sz


 . (8.458)

Comparison of (8.458), (8.448) and (8.449) shows that we have achieved our aim.
The same result can be established more succinctly by the following piece of

spherical tensor algebra:

−
√

10T1(I) · T1(S,C2)

= −
√

10
∑

q

(−1)qT1
q (I)T1

−q (S,C2)

=
∑

q

(−1)qT1
q (I)

√
30

∑
q1q2

(−1)qT1
q1

(S)T2
q2

(C2)

(
1 2 1
q1 q2 q

)

=
√

6
∑

q2

(−1)q2 T2
q2

(C2)
√

5
∑
qq1

(−1)−q2

(
1 1 2
q q1 q2

)
T1

q (I)T1
q1

(S)

=
√

6
∑

q2

(−1)q2 T2
q2

(C2)T2
−q2

(I, S)

=
√

6T2(C2) · T2(I, S). (8.459)

This equivalence corresponds to a re-coupling of the various angular momenta involved.
It follows that the nuclear–nuclear and electron–electron dipolar interactions may

also be represented in irreducible tensor form by operator expressions equivalent to
(8.449), with the appropriate replacements, and with an overall positive sign. Again to
avoid confusion we list the appropriate operators.

(i) Nuclear–nuclear dipolar interaction

Hdip =
√

10g1g2µ
2
N (µ0/4π)T1(I1) · T1(I2,C

2). (8.460)

(ii) Electron–electron dipolar interaction

Hdip =
√

10g2
Sµ

2
B(µ0/4π)T1(S1) · T1(S2,C

2). (8.461)

(iii) Electron–nuclear dipolar interaction

Hdip = −
√

10gSµB gNµN (µ0/4π)T1(I) · T1(S,C2). (8.462)

Appendix 8.3. Electron spin–electron spin dipolar interaction

In this book and in the scientific literature, one frequently encounters the dipolar interac-
tion between two electron spin magnetic moments; it always occurs in the description
of electronic states of triplet or higher spin multiplicity. Several different operator
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representations for this interaction have been used and the purpose of this appendix is
to summarise these, and to show the relationships between them.

At least four different forms of the spin–spin operator are encountered, as follows.

(i) Classical form converted into quantum mechanical operators

H
(i)
dip = g2

Sµ
2
B(µ0/4π)

{
S1 · S2

r3
− 3(S1 · r )(S2 · r )

r5

}
; (8.463)

r is the vector from electron 1 to electron 2, r being the magnitude of the vector.
In practice an appropriate average of r must be calculated from the electronic
wave function.

(ii) First irreducible tensor form

H
(ii )
dip = −g2

Sµ
2
B(µ0/4π)

√
6T2(S1, S2) · T2(C), (8.464)

where C stands for C2(θ, φ)r−3. S1 and S2 refer to the individual electron spins.
The second-rank tensors occurring in (8.464) are defined below. This is the form
we use most often in this book. Note that the relative signs of (8.463) and (8.464)
are important, as we shall show. Equation (8.464) is the most general form of the
dipolar interaction, since it allows for matrix elements off-diagonal in S as well
as Σ. An alternative but completely equivalent way of writing equation (8.464)
is

H
(ii )
dip = −g2

Sµ
2
B(µ0/4π)(3/r5)T2(S1, S2) · T2(r , r ). (8.465)

(iii) Second irreducible tensor form

H
(iii )
dip = 2λT2(S, S) · T2(n, n). (8.466)

S is the total electron spin; n is a unit vector along the internuclear axis. The
matrix elements of (8.466) are diagonal in S. The advantage of this particular
formulation is that it is explicitly scalar in form.

(iv) Cartesian form

H
(iv)
dip = 2

3
λ′{3S2

z − S2
}
, (8.467)

where z lies along the internuclear axis. We have chosen to distinguish between
λ in equation (8.466) and λ′ in equation (8.467) but we derive the relationship
between them below. Equation (8.467) is the oldest form of the electron spin
dipolar interaction, and is the one most frequently used. It is a restrictive form in
that its matrix elements are diagonal in both S and Σ.

Equivalence of forms (i) and (ii)

Equation (8.463) is the standard form of the dipolar interaction and we have already
expanded this form in terms of its cartesian components in appendix 8.1 for two nuclear



Appendix 8.3 565

spins. In the present case, therefore, the equivalent expression for two electron spins is

H
(i)
dip/g

2
S µ

2
B(µ0/4π)

= [S1x , S1y, S1z]




(r2 −3x2)/r5 −3xy/r5 −3xz/r5

−3xy/r5 (r2 −3y2)/r5 −3yz/r5

−3xz/r5 −3yz/r5 (r2 −3z2)/r5






S2x

S2y

S2z


. (8.468)

We now expand the second form,

H
(ii )
dip = −g2

Sµ
2
B(µ0/4π)

√
6T2(S1, S2) · T2(C), (8.469)

as follows:

−
√

6T2(S1, S2) · T2(C)

= −
√

6
∑

q

(−1)qT2
q (S1, S2)T2

−q (C)

= −
√

6
{
T2

2(S1, S2)T2
−2(C) + T2

−2(S1, S2)T2
2(C) − T2

1(S1, S2)T2
−1(C)

−T2
−1(S1, S2)T2

1(C) + T2
0(S1, S2)T2

0(C)
}
. (8.470)

We wish to express each of these terms in terms of cartesian components. First we note
that the components of the second-rank spin tensor are defined by

T2
q (S1, S2) = (−1)q

√
5
∑
q1,q2

(
1 1 2
q1 q2 −q

)
T1

q1
(S1)T1

q2
(S2), (8.471)

so that, for example,

T2
0(S1, S2) =

√
5

{(
1 1 2
1 −1 0

)
T1

1(S1)T1
−1(S2) +

(
1 1 2

−1 1 0

)
T1

−1(S1)T1
1(S2)

+
(

1 1 2
0 0 0

)
T1

0(S1)T1
0(S2)

}

= 1√
6

{
T1

1(S1)T1
−1(S2) + T1

−1(S1)T1
1(S2) + 2T1

0(S1)T1
0(S2)

}
. (8.472)

The first-rank spherical spin tensor components in (8.472) may now be rewritten in
cartesian form using the definitions

T1
0(S1) = S1z, T1

1(S1) = − 1√
2
{S1x + iS1y}, T1

−1(S1) = 1√
2
{S1x − iS1y}, (8.473)

with similar relationships for the components of T1(S2).
Returning to equation (8.470) we now seek to rewrite the components of the

second-rank spherical tensor T2(C) in cartesian form. We make use of the following
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results:

T2
0(C) = C2

0 (θ, φ)(r−3) =
(

4π

5

)1/2

Y2,0(θ, φ)(r−3) = 1

2
{2z2 − x2 − y2}(r−5),

T2
±1(C) = C2

±1(θ, φ)(r−3) =
(

4π

5

)1/2

Y2,±1(θ, φ)(r−3) = ∓
√

3

2
z{x ± iy}(r−5),

(8.474)

T2
±2(C) = C2

±2(θ, φ)(r−3) =
(

4π

5

)1/2

Y2,±2(θ, φ)(r−3) =
√

3

2
√

2
{x ± iy}2(r−5).

The Y�,m(θ, φ) are spherical harmonics which are rewritten in terms of harmonic
polynomials. We now substitute (8.472), (8.473) and (8.474) into (8.470) and after
some tedious but straightforward algebra succeed in regenerating equation (8.468).

Relationship between forms (ii) and (iii)

We can determine the relationship between T2(S1, S2) and T2(S, S ) by comparing their
reduced matrix elements. The first of these is straightforward (see equation 5.139):

〈S1, S2, S‖T2(S1, S2)‖S1, S2, S〉

=
√

5




S1 S1 1

S2 S2 1

S S 2


{(2S + 1)(2S + 1)S1(S1 + 1)(2S1 + 1)S2(S2 + 1)(2S2 + 1)}1/2

=
√

5

2
for S1 = S2 = 1/2, S = 1. (8.475)

Evaluation of the reduced matrix element 〈S‖T2(S, S )‖S 〉 is slightly more compli-
cated. First we use the Wigner–Eckart theorem to obtain

〈S,Σ|T2
0(S, S)|S,Σ〉 = (−1)S−Σ

(
S 2 S
Σ 0 −Σ

)
〈S‖T2(S, S )‖S 〉, (8.476)

whereΣ is the axial component (q = 0) of S. The problem reduces to that of determining
the left-hand side of (8.476) and to do this we make use of equation (8.472), replacing
the individual electron spins by the total spin S. Using also the definitions (8.473) we
obtain the result

T2
0(S, S) = 1√

6

{
3S2

z − S2
}
. (8.477)

We may now evaluate the left-hand side of (8.476) taking, without loss of generality,
Σ to have its maximum value S. Consequently

〈S,Σ= S|T2
0(S, S)|S,Σ= S〉 = 1√

6
{3Σ2 − S(S + 1)}

= 1√
6
{3S2 − S(S + 1)} = 1√

6
S(2S − 1). (8.478)
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Substituting for the left-hand side of (8.476) we obtain

〈S‖T2(S, S)‖S〉 = 1√
6

S(2S − 1)

(
S 2 S
S 0 −S

)−1

= 1

2
√

6
{(2S + 3)(2S + 2)(2S + 1)(2S)(2S − 1)}1/2

=
√

5 for S = 1. (8.479)

Comparison of (8.479) with (8.475) gives the result, for S = 1,

T2(S1, S2) = 1

2
T2(S, S). (8.480)

We can now compare the q = 0 components of (8.464) and (8.466). For (8.464) we find
that

g2
Sµ

2
B(µ0/4π)

√
6T2

0(S1, S2)T2
0(C) = g2

Sµ
2
B(µ0/4π)

√
6

2
T2

0(S, S)T2
0(C)

= (µ0/4π)

√
3

2
g2

Sµ
2
BT2

0(S, S)
〈
C2

0 (θ, φ)(r−3)
〉
.

(8.481)

On the other hand, the q = 0 component of (8.466) gives the result

2λT2
0(S, S)T2

0(n,n) = 2
√

6

3
λT2

0(S, S), (8.482)

where T2
0(n,n) has been replaced by its average value of 2/

√
6. The result of this

analysis is that H
(ii )
dip and H

(iii )
dip are equivalent to each other provided that

−g2
Sµ

2
B(µ0/4π)

〈
C2

0 (θ, φ)(r−3)
〉= 4

3
λ. (8.483)

We recall that (r, θ, φ) are the spherical polar coordinates of electron 2 relative to
electron 1.

Relationship between forms (iii) and (iv)

Combining equation (8.477) with the right-hand side of (8.482) gives the result

2

√
2

3
λT2

0(S, S) = 2

√
2

3
λ

1√
6

{
3S2

z − S2
}= 2

3
λ
{
3S2

z − S2
}
, (8.484)

so that, in form (iv), λ′ = λ. All of the required relationships have now been established.
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Appendix 8.4. Matrix elements of the quadrupole Hamiltonian

The nuclear electric quadrupole interaction was described in detail in chapter 4, where
we showed that it could be represented by the scalar product of two second-rank
tensors:

HQ = −eT2(∇E) · T2(Q). (8.485)

The first second-rank tensor in this expression is given by

T2(∇E) = −
∑

i

ei

4πε0 R3
i

C2(θi , φi ), (8.486)

and involves electron and proton coordinates outside the quadrupolar nucleus. The
second tensor in (8.485) is defined by

eT2(Q) = e
∑

p

R2
pC2(θp, φp), (8.487)

and involves proton coordinates inside the quadrupolar nucleus.
The matrix elements of the quadrupole interaction are calculated in various places,

for different coupling cases, in the main text. Here we shall carry out the calculation in
a case (a) coupled representation, which will enable us to define the nuclear quadrupole
moment, the electric field gradient, and the quadrupole coupling constant.

We work in the basis set |η, J,Ω, I, F,MF 〉 where F = J + I andΩ is the compo-
nent of electronic angular momentum along the internuclear axis. We shall ignore any
possibility ofΩ-degeneracy; η refers to any other unspecified quantum numbers. Using
the standard results for the matrix elements of the scalar product of two irreducible
tensor operators, we obtain

〈η, J,Ω, I, F,MF | − eT2(∇E) · T2(Q)|η′, J ′,Ω′, I ′, F ′,M ′
F 〉

= δF F ′δM M ′ (−1)J ′+I+F

{
J I F
I J ′ 2

}
× 〈η, J,Ω‖T2(∇E)‖η′, J ′,Ω′〉〈I‖−eT2(Q)‖I 〉, (8.488)

where we have neglected matrix elements involving excited nuclear states. The problem
therefore reduces to that of evaluating the reduced matrix elements in equation (8.488).

For the purely nuclear term we have to evaluate the reduced matrix element of
T2(Q) in (8.491), and to achieve this we make use of the Wigner–Eckart theorem:

〈I,MI |T2
p=0(Q)|I,MI 〉 = (−1)I−MI

(
I 2 I

−MI 0 MI

)
〈I‖T2(Q)‖I 〉. (8.489)

We note also that the nuclear quadrupole moment is defined by the following
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relationship:

eQ = 〈I,MI = I |
∑

p

ep

(
3Z2 − R2

p

)|I,MI = I 〉

= 〈I,MI = I |2
∑

p

ep R2
pC2

0 (θp, φp)|I,MI = I 〉. (8.490)

Combining (8.489) and (8.490) gives the results

〈I‖T2(Q)‖I 〉 = 〈I,MI = I |
∑

p

ep R2
pC2

0 (θp, φp)|I,MI = I 〉

× (−1)MI −I

(
I 2 I

−MI 0 MI

)−1

= 1

2
eQ

(
I 2 I

−MI 0 MI

)−1

= 1

2
eQ

(
I 2 I

−I 0 I

)−1

. (8.491)

We now return to equation (8.488) and consider the reduced matrix element of
T2(∇E). Without loss of generality we may compute the Z component of T2(∇E),
i.e.

T2
0(∇E) = −

∑
i

ei

4πε0 R3
i

C2
0 (θi , φi ). (8.492)

Since we shall be interested in the electric field gradient with respect to a molecule-fixed
coordinate system, we need to transform (8.492) from space-fixed to molecule-fixed
axes; the relationships between the two are illustrated in figure 8.53. Denoting molecule-
fixed axes with primes, and space-fixed axes without primes, the spherical harmonic
addition theorem gives the result:

C2
0 (θi , φi ) = P2(cos θi ) = 4π

5

∑
q ′

Y2q ′ (!i ,�i )
∗Y2q ′ (!,�)

=
∑

q ′
Cq ′ (!i ,�i )

∗Cq ′ (!,�)

=
∑

q ′
(−1)q ′

Cq ′(!,�)C−q ′ (!i ,�i ). (8.493)

Hence we obtain the result

T2
0(∇E) = −

∑
q ′

(−1)q ′
C2

q ′ (!,�)
∑

i

ei

4πε0r3
i

C2
−q ′ (!i ,�i ). (8.494)

Note that the C2
q ′ (!,�) term simply relates the two coordinate systems, whilst the

C2
−q ′ (!i ,�i ) term describes the positions of the electrons relative to the molecule-

fixed axes.
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x
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Figure 8.53. Relationship between space-fixed (unprimed) and molecule-fixed (primed) axes for
the description of the electric quadrupole interaction.

By making use of (8.494), we can now factorise the general matrix element of
T2

0(∇E) as follows:

〈η, J,Ω,M |T2
0(∇E)|η′, J ′,Ω′,M ′〉

=
∑

q ′
(−1)q ′〈J,Ω,M |C2

q ′ (!,�)|J ′,Ω′,M ′〉〈η|
∑

i

ei

4πε0r3
i

C2
−q ′ (!i ,�i )|η′〉. (8.495)

The value of the right-hand matrix element in (8.495) gives the electric field gradient
and we will calculate the q ′ = 0 component. Then η′ = η and we obtain

〈η|
∑

i

ei

4πε0r3
i

C2
0 (!i ,�i )|η〉 = 〈η|(4π/5)1/2

∑
i

ei

4πε0r3
i

Y20(!i ,�i )|η〉

= 〈η|(4π/5)1/2
∑

i

ei

4πε0r3
i

1

2
(5/4π)1/2

(
3z2 − r2

i

r2
i

)
|η〉
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= 〈η|1

2

∑
i

ei

(
3z2 − r2

i

)
4πε0r5

i

|η〉

= 〈η|1

2

∑
i

ei
1

4πε0

∂2

∂z2

(
1

ri

)
|η〉

= 1

2

〈
∂2V

∂z2

〉
η

= qzz/2, (8.496)

where qzz , or q0, is called the electric field gradient (as we have mentioned before, it is
actually the negative of the electric field gradient).

The analysis is not yet complete because we have to consider the left-hand term in
equation (8.495) which relates the space-fixed and molecule-fixed coordinate systems.
Although we have already selected the q ′ = 0 component, we will retain q ′ as a variable
in order to facilitate later discussion. First we note that ! and � can be expressed in
terms of the Euler angles θ and χ as follows:

!= θ, �= π −χ. (8.497)

The bra and ket functions in equation (8.495) may also be expressed in terms of
rotational matrices:

|J ′,Ω′,M ′〉 =
(

2J ′ + 1

8π2

)1/2

D
J ′
M ′Ω′ (φ, θ, χ)∗,

(8.498)

〈J,Ω,M | =
(

2J + 1

8π2

)1/2

D
J
MΩ(φ, θ, χ).

Consequently the required matrix element in (8.495) may be expressed as the triple
integral

〈J,Ω,M |C2
q ′ (!,�)|J ′,Ω′,M ′〉

= {(2J ′ + 1)(2J + 1)}1/2 1

8π2

×
∫ ∫ ∫

D
J
MΩ(φ, θ, χ)C2

q ′ (θ,π −χ )D
J ′
M ′Ω′ (φ, θ, χ)∗ dφ sin θ dθ dχ. (8.499)

Now we note the relationships

C2
q ′ (θ,π −χ ) = (4π/5)1/2Y2q ′ (θ,π −χ )

= (4π/5)1/2(5/4π)1/2
D

(2)
0 q ′ (φ, θ,π −χ )

= D
(2)
0−q ′ (φ, θ, χ)(−1)q ′

. (8.500)
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We incorporate these results into equation (8.499) in the following manner:

〈J,Ω,M |C2
q ′ (!,�)|J ′,Ω′,M ′〉

= (−1)q ′ {(2J ′ + 1)(2J + 1)}1/2 1

8π2

×
∫ ∫ ∫

D
J
MΩ(φ, θ, χ)D

(2)
0−q ′ (φ, θ, χ)D

J ′
M ′Ω′ (φ, θ, χ)∗ dφ sin θ dθ dχ

= (−1)q ′ {(2J ′ + 1)(2J + 1)}1/2 1

8π2
(−1)M ′−Ω′

×
∫ ∫ ∫

D
J
MΩ(φ, θ, χ)D

(2)
0−q ′ (φ, θ, χ)D

J ′
−M ′,−Ω′ (φ, θ, χ ) dφ sin θ dθ dχ.

(8.501)

We now make use of a standard result for integrating over the product of three rotational
matrices (see chapter 5, equation (5.100)),

1

8π2

∫ ∫ ∫
D

j1
m ′

1 m1
(φ, θ, χ)D

j2
m ′

2 m2
(φ, θ, χ)D

j3
m ′

3 m3
(φ, θ, χ) dφ sin θ dθ dχ

=
(

j1 j2 j3

m ′
1 m ′

2 m ′
3

)(
j1 j2 j3

m1 m2 m3

)
, (8.502)

so that equation (8.501) becomes

〈J,Ω,M | C2
q ′ (!,�)|J ′,Ω′,M ′〉 = (−1)q ′ {(2J ′ + 1)(2J + 1)}1/2(−1)M ′−Ω′

×
(

J 2 J ′

M 0 −M ′

)(
J 2 J ′

Ω −q ′ −Ω′

)
. (8.503)

We can remove the M dependence by making use of the Wigner–Eckart theorem, so
that

〈η, J,Ω‖T2(∇E)‖η′, J ′,Ω′〉 = (−1)M−J 〈η, J,Ω,M |T2
q ′ (∇E)|η, J ′,Ω′,M ′〉

×
(

J 2 J ′

−M q ′ M ′

)−1

. (8.504)

We now substitute equations (8.496) and (8.503) into (8.504). Putting q ′ = 0, and noting
that the matrix elements must then be diagonal in Ω, we obtain

〈η, J,Ω‖T2(∇E)‖η′, J ′,Ω′〉 = (−1)J−Ω{(2J + 1)(2J ′ + 1)}1/2

(
J 2 J ′

−Ω 0 Ω

)
q0

2
.

(8.505)

The final result is obtained by combining (8.488), (8.491) and (8.505):

〈η, J,Ω, I, F,MF | − eT2(∇E) · T2(Q)|η, J ′,Ω, I, F,MF 〉
= eq0 Q

4
(−1)J ′+I+F (−1)J−Ω{(2J + 1)(2J ′ + 1)}1/2

×
{

I J F
J ′ I 2

}(
J 2 J ′

−Ω 0 Ω

)(
I 2 I

−I 0 I

)−1

. (8.506)
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Appendix 8.5. Magnetic hyperfine Hamiltonian and hyperfine constants

In a classic paper, Frosch and Foley [117] derived an effective Hamiltonian to describe
the magnetic nuclear hyperfine interactions of a diatomic molecule in an open shell
electronic state. Their Hamiltonian was expressed in the following form:

Hhfs(F F) = a I · L + bI · S + cIz Sz + (1/2)d{e2iϕ I −S− + e−2iϕ I +S+}, (8.507)

where z is the molecule-fixed internuclear axis. The term involving the parameter d
only produces first-order effects for molecules in � electronic states. The first three
terms can, of course, be written in terms of spherical tensors, as follows:

Hhfs(F F) = aT1(I) · T1(L) + bT1(I) · T1(S) + cT1
q=0(I) T1

q=0(S), (8.508)

where the direction of the internuclear axis is denoted by q = 0. The constants in these
equations were defined by Frosch and Foley [117] as follows:

a = 2µB gNµN (µ0/4π)〈η,Λ|1/r3|η,Λ〉,
b = gSµB gNµN (µ0/4π)

{
8π

3
〈η,Λ|δ(r )|η,Λ〉 − 1

2
〈η,Λ|(3 cos2 θ − 1)/r3|η,Λ〉

}
,

c = gSµB gNµN (µ0/4π)
3

2
〈η,Λ|(3 cos2 θ − 1)/r3|η,Λ〉. (8.509)

The constant b therefore contains contributions from two quite different magnetic inter-
actions, the Fermi contact and the electron-nuclear dipolar interactions. Interpretation
of the magnitudes of these constants in terms of electronic structure theory always
involves the separate assessment of these different effects, so that we prefer to use an
effective Hamiltonian which separates them at the outset. Consequently the effective
magnetic hyperfine Hamiltonian used throughout this book is

Hhfs = aT1(I) · T1(L) + bFT1(I) · T1(S)

−
√

10gSµB gNµN (µ0/4π )T1(I) · T1(S,C2). (8.510)

The orbital hyperfine constant a is the same in both (8.509) and (8.510), but the second
term in (8.510) describes only the Fermi contact interaction, the constant bF being equal
to the first part of b in (8.509). It is clear from a comparison of the two equations that

bF = b + (1/3)c. (8.511)

The third term in equation (8.510) describes only the electron–nuclear spin dipolar
interaction, with the first-rank tensor T1(S,C2) being constructed so that

T1
q (S,C2) = −

∑
q1,q2

(−1)qT1
q1

(S)T2
q2

(C)

(
1 2 1
q1 q2 −q

)
. (8.512)

As we discussed in appendix 8.2, all of the spatial and angular dependence of the
dipolar interaction is contained within the components of the second-rank tensor in
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(8.512), defined by

T2
q (C) = C2

q (θ, φ)(r−3) =
(

4π

5

)1/2

Y2q (θ, φ)

(
1

r3

)
, (8.513)

where Y2q (θ, φ) is a spherical harmonic. The relationship with the Frosch and Foley
constants b and c becomes clear when the q = 0 component of the dipolar interaction is
considered, since its matrix elements must be diagonal inΛ and the expectation value
of (8.513) is given by

〈
T2

0(C)
〉= 1

2

〈
(3 cos2 θ − 1)

r3

〉
. (8.514)

We use the symbol t0, defined by

t0 = 1

2
gSµB gNµN (µ0/4π)〈η,Λ|(3 cos2 θ − 1)/r3|η,Λ〉, (8.515)

which is now clearly related to the Frosch and Foley c constant by

t0 = c

3
. (8.516)

In many cases in this book, particularly whenΛ-doubling is involved, we also consider
the q 
= 0 components of the dipolar interaction, which follow naturally from the irre-
ducible tensor formalism. The matrix elements of such components are off-diagonal in
Λ, and their angular dependence is described by the spherical harmonics Y2,±1(θ, φ)
or Y2,±2(θ, φ). In such cases, we shall use the constants t±1 and t±2, defined by analogy
with t0 in equation (8.515). To be specific, the parameter d of Frosch and Foley is
related to our t2 by the expression

t2 = gSµB gNµN (µ0/4π)〈η,Λ| sin2 θ/r3|η,Λ〉 = (2/3)d. (8.517)
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9 Microwave and far-infrared magnetic
resonance

9.1. Introduction

Microwave magnetic resonance, which has often been called ‘gas phase electron res-
onance’, and far-infrared laser magnetic resonance have been extremely important
techniques in the study of free radicals. These techniques depend upon the presence
of a large magnetic moment for the species under investigation, because both rely on
the ability to tune the energy levels with a magnetic field into resonance with fixed fre-
quency radiation. Although historically the first study of the rotational levels and their
fine structure involved fairly conventional swept-frequency microwave spectroscopy,
applied to the OH radical [1], subsequent development of the subject depended ini-
tially on the success of magnetic resonance methods. Pure microwave spectroscopy
of gaseous free radicals has now become almost routine, and many examples will be
described in chapter 10. We have, after some deliberation, decided to present the ex-
citing subject of magnetic resonance with due regard to its historical development.
Nevertheless, this and the two following chapters should be taken together for a bal-
anced view. Laser magnetic resonance techniques are still widely used, but microwave
magnetic resonance has now been largely superseded by swept-frequency methods,
without the presence of an external magnetic field. Zeeman effects can, of course, still
be investigated, but they are not an essential part of the detection method.

9.2. Experimental methods

9.2.1. Microwave magnetic resonance

Electron spin resonance (e.s.r.) spectroscopy, applied to free radicals in condensed
phases, is a long established technique with several commercially available spectrome-
ters. The gas phase applications we will describe have little in common with condensed
phase studies, and are much more a part of rotational spectroscopy. However, the ex-
perimental methods used for condensed phase studies can be applied to the study of
gases with rather little change, so it is appropriate first to describe a typical microwave
magnetic resonance spectrometer, as illustrated schematically in figure 9.1.
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Most e.s.r. spectrometers operate in the so-called X-band microwave frequency
range; 9.5 GHz is a typical operating frequency, and it is convenient because the
magnetic fields required for resonance are in the range accessible to conventional
electromagnets. Spectrometers operating up to 40 GHz have been used but they are
less suitable for gas phase studies, mainly because of the smaller size of the resonant
cavity.

The operating frequency of the spectrometer depicted in figure 9.1 is determined
by the natural resonance frequency of the cavity, which in turn depends upon its shape,
dimensions and fundamental microwave mode. These important matters are discussed
in some detail below. The microwave radiation is generated by a suitable source, usu-
ally a klystron or backward-wave oscillator, and its frequency is locked to the resonant
frequency of the cavity by means of a feed-back control system. The radiation is
propagated through waveguide to a three-port circulator via an isolator, to prevent
back-reflection, a directional coupler to provide a fraction for accurate frequency mea-
surement, and a variable attenuator to allow for control of the power level. Microwaves
enter the first port of the circulator and are coupled to the resonant cavity through a
slide-screw tuner and a variable iris. In the initial setting up of the instrument, all of
the incident power is stored in the cavity; any reflected power emerges through the
third port where it is converted to an electrical current by means of a crystal detector.
Spectroscopic resonance lines are sought by scanning the magnetic field, and when
the resonance condition is satisfied, power in the cavity is absorbed by the sample, the
impedance of the cavity arm is changed, and the reflected power level to the detector
changes. It is usual to modulate the resonant absorption frequency by superimposing
a small oscillating magnetic or electric field on the static magnetic field; this con-
verts the detector current into an a.c. signal, so that a.c. detection circuitry may be
used.

Everything described thus far would be common to most e.s.r. spectrometers em-
ployed for condensed phase studies; the part which is different and somewhat specific
for gas phase investigations is the resonant cavity. In designing a cavity one must de-
cide whether the cavity is to be an integral part of a vacuum system, or will simply
hold within it a quartz cell containing, usually, a flowing gas sample. One must also
decide whether the spectroscopic objective is to detect electric or magnetic dipole
transitions, and therefore whether the relevant microwave field should be perpendicu-
lar to or parallel with the static magnetic field. We must therefore investigate certain
key aspects of the theory of microwave cavities, and show how these determine crit-
ical aspects of their design and operation. Further details may be found in specialist
books on microwave theory and design; that written by Seeger [2] is an excellent
introduction.

Conventional condensed phase e.s.r. studies usually employ a rectangular cavity,
but most gas phase studies have been made using cylindrical cavities operating in
the so-called TE011 mode. In a TEmnp mode, TE stand for ‘transverse electric’, the
integer m represents the number of E field maxima in a 180◦ angle measured in a plane
perpendicular to the axis of the cylinder, n represents the number of E field maxima
between the centre and the wall, and p is the number of E field maxima along the axis
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Figure 9.2. Microwave electric and magnetic fields in a cylindrical TE011 cavity.

of the cylinder. The resonant wavelength of a cylindrical cavity, λ0 , is given by

λ0 = 2

{(2χmn/D)2 + (p/L)2}1/2
(9.1)

where D is the diameter of the cavity, L is its length and χmn is a constant related to
a Bessel function. The distributions of the microwave electric and magnetic fields in a
TE011 mode cavity are illustrated in figure 9.2. The oscillating electric field is parallel
to the cylinder walls, with zero amplitude at the centre of the cylinder, and maximum
amplitude halfway between the centre and the walls. The oscillating magnetic field is
parallel to the axis of the cylinder, except at the ends; it has maximum amplitude at
the centre and at the cavity walls. Hence for magnetic dipole transitions the gas sample
should ideally be at the centre of the cavity, which should itself be oriented with
the external static magnetic field perpendicular to the cylinder axis to drive�M = ±1
transitions. Conversely, for electric dipole transitions the external magnetic field should
be parallel to the cylinder axis, and hence perpendicular to the microwave electric field.
The microwave fields cause induced wall currents, and since in the TE011 mode these
do not flow across the junctions between the cylinder and the end walls, the latter can be
electrically insulated from the cylinder body. Microwave radiation is coupled through a
small coupling iris located at the midpoint of the cylinder walls. The final general point
to make is that although any resonant cavity has an optimum resonant frequency, it
also has a bandwidth�ν which is typically about 1 MHz. The performance of a cavity
is usually described by the value of its Q factor, defined by Q = ν0/�ν. At a resonant
frequency of 10 GHz and a bandwidth of 1 MHz, the Q factor is 10 000, which is a
satisfactory figure of merit and provides high sensitivity.

In order to see how these principles are put into practice we now describe a cavity
designed by Carrington, Levy and Miller [3] specifically for gas phase studies of free
radicals; it is illustrated in figure 9.3. It operates in the cylindrical TE011 mode and
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Figure 9.3. Schematic diagram of a dual purpose cylindrical TE011 cavity used for gaseous free
radical studies [3].

is an integral part of a gas flow system, in that the two inlet ports may be used to
allow the mixing of two different gas flows inside the cavity. The cavity is oriented so
that the static magnetic field is parallel to the cylinder axis, and it may be used with
either electric or magnetic field modulation. For electric field modulation the end plates
are of solid gold-plated brass and are electrically insulated from the cylindrical body;
they may therefore be used directly as Stark electrodes, with the modulating field also
parallel to the cylinder axis. Alternatively for magnetic field modulation the two end
walls consist of ceramic plates with modulation coils mounted outside. The insides
of the ceramic plates are gold plated, the gold thickness being small enough to allow
penetration of the 100 kHz modulating field, but large enough to preserve the high Q
of the cavity. Coupling to the microwave radiation occurs through an iris located at the
top of the cavity, with a metal-tipped Teflon screw provided to optimise the coupling.
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Several different methods have been used successfully to generate a detectable con-
centration of short-lived free radicals inside the resonant cavity. The simplest method
is a microwave discharge in the flowing gas, located upstream of the resonant cavity;
discharges in water vapour, for example, yield readily detectable concentrations of OH
radicals. Shorter lived species have been produced by atom abstraction reactions inside
the cavity, for example, by mixing fluorine atoms, produced by a microwave discharge
in CF4, with a suitable secondary gas. Reaction of F atoms with OCS, for example,
produces detectable concentrations of the SF radical [4].

9.2.2. Far-infrared laser magnetic resonance

The extension to higher frequencies of magnetic resonance methods for studying open
shell molecules was clearly desirable for several reasons. Firstly, light molecules, par-
ticularly hydrides like OH and CH, have even their lowest rotational transitions in the
far-infrared region. Secondly, increased frequency would be accompanied by increased
sensitivity, so that free radicals which could not be detected in the microwave region
(CH being a notable example) might then become accessible in the far-infrared. There
is, however, a tricky spectral region lying between the microwave/millimetre region,
and the far-infrared. Resonant cavities become so small, even in the millimetre wave
region, as to be impractical for gas phase studies, and the transition to optical methods
has to be made as one approaches the far-infrared region. Far-infrared spectroscopy
was, in any case, the Cinderella region of the electromagnetic spectrum. However, all
of the apparent difficulties were overcome in the brilliant development of far-infrared
laser magnetic resonance, using optically-pumped far-infrared lasers as the radiation
sources. Microwave magnetic resonance, the precursor technique, has now become
largely redundant, but far-infrared (FIR) laser magnetic resonance continues to com-
pete successfully with other methods. Laser magnetic resonance methods have also
been extended into the mid-infrared, but since one is then involved in the study of
vibrational transitions, this aspect is not discussed in this book.

Figure 9.4 shows a diagram of a far-infrared laser magnetic resonance spectrom-
eter designed by Evenson [5] and constructed at the National Bureau of Standards
Laboratory (now called NIST) in Boulder, Colorado. The FIR radiation is generated
by pumping a transition in an appropriate gas with high-powered radiation from a mid-
infrared carbon dioxide laser. Well over 1000 FIR laser lines have been tabulated and
many of these have sufficient power for spectroscopic use. The FIR laser cavity extends
through the pole gap of a large electromagnet, with the lasing medium and the sam-
ple region separated from each other by a polypropylene window, set at the Brewster
angle. Apart from acting as the vacuum seal between the two gaseous regions, the
Brewster window also serves to restrict the polarisation of the FIR radiation, which can
be oriented either parallel or perpendicular to the magnetic field. The laser cavity end
mirrors are located 91 cm apart; the pump laser power enters the FIR cavity through
a zinc selenide window, and a small amount of FIR radiation is coupled out of the
cavity for detection. The detector employed is a liquid helium-cooled photoconductor
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Figure 9.4. Schematic diagram of a far-infrared laser magnetic resonance spectrometer, designed
by Evenson [5] and constructed at N.B.S. Boulder.

whose response is sufficiently rapid for magnetic field modulation at 40 kHz to be used.
This is generated by modulation coils located inside the static magnetic field and also
serves to define the detected sample volume. The laser cavity is further defined by a
cylindrical copper tube of 10 cm internal diameter, which reflects and refocuses the
CO2 laser beam. Quartz spacers are used to provide high thermal stability to the length
of the laser cavity, and the beam splitter is rotatable about the laser axis so that the
polarisation can easily be altered.

Since the laser magnetic resonance experiment relies on a chance near-coincidence
between a laser line and a molecular transition frequency, and the range over which
spectroscopic transitions can be magnetically tuned is often quite small, it is desirable
to have a large number of FIR laser lines available. This is now seldom a major problem,
and table 9.1 lists a restricted sample of FIR laser lines that have been used for magnetic
resonance studies. It is, of course, necessary to be able to measure the FIR frequency
accurately and this is accomplished in Evenson’s laboratory by measuring the beat
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Table 9.1. A selection of discharge and CO2-pumped far-infrared laser lines
available for magnetic resonance studies

laser gas CO2 laser line wavelength (µm) wavenumber (cm−1) frequency(GHz)

HCOOH 9R(40) 742.57 13.466 810 403.7215

CH2CHCl 10P(38) 601.90 16.614 267 498.0791

CH3OH 9P(16) 570.6 17.526 375 525.4275

CH3OH 9P(36) 392.1 25.505 732 764.6426

DCOOD 10R(12) 380.6 26.276 695 787.7555
13CD3OD 10P(16) 333.3 30.006 721 899.5717

CH3OD 9R(4) 332.1 30.108 749 902.6302

N2H4 9P(12) 331.7 30.150 752 903.8894

N2H4 9P(12) 331.3 30.184 446 904.8995

CH3NH2 9R(4) 314.8 31.761 473 952.1850

N2H4 9P(20) 311.1 32.146 619 963.7314

HCOOH 9R(4) 302.3 33.082 116 991.7769

N2H4 10R(12) 301.3 33.192 223 995.0778

CH3OD 9R(8) 294.8 33.920 039 1016.8972

CD3OH 10P(18) 287.3 34.805 896 1043.4545

CH3OH 9R(10) 232.9 42.929 682 1286.9995

N2H4 10P(24) 192.9 51.838 395 1554.0760

CH3OH 10R(10) 191.6 52.186 726 1564.5187

CH2F2 9R(22) 166.7 59.996 898 1798.6470

CH2F2 9R(20) 166.6 60.013 319 1799.1393

CH3OH 9P(16) 164.6 60.753 203 1821.3352

CH3OH 10R(38) 163.0 61.337 076 1838.8393

CH3NH2 9P(24) 147.84 67.639 101 2027.7526

CH3OH 10R(34) 129.55 77.191 077 2314.1113

CH3OH 9P(36) 118.8 84.150 936 2522.7816

H2Oa — 118.6 84.323 402 2527.9313

CH3OH 9P(36) 110.7 90.321 535 2707.7493

CH3OD 9P(30) 103.125 96.970 843 2907.0889

CH3OH 9R(10) 96.52 103.603 749 3105.9368
13CH3OH 9P(22) 85.3 117.209 553 3513.854

CH3OH 9R(8) 77.41 129.190 603 3873.0051

CH3OH 9P(34) 70.51 141.821 742 4251.6740

a The far-infrared lasing transition is excited by an electrical discharge.

frequency between the laser line and a FIR frequency generated as the difference of
two known CO2 frequencies on a metal–insulator–metal (MIM) diode.

The initial FIR laser magnetic resonance studies [6] were performed using a sample
cell which was external to the laser cavity. All experiments now use an intracavity
arrangement as shown in figure 9.4 which is estimated to be 103 times more sensitive
than the extracavity arrangement. It is the very high sensitivity which continues to make
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FIR laser magnetic resonance such an important technique for the study of short-lived
transient molecular species. The flow methods used to generate free radicals are very
much the same for both microwave and FIR laser magnetic resonance, although one
notable difference is that FIR methods have been used to study molecular ions, as we
shall discuss later. We now describe in detail a number of microwave and FIR studies
of free radicals in differing electronic states, to see the nature of the observed spectra,
the modes of analysis and the determination of molecular constants. We present these
in order of increasing complexity, rather than historical precedent. The first microwave
magnetic resonance studies were, in fact, described by Radford [7] for the OH radical;
we will come to these important investigations in due course.

9.3. 1� states

A number of species which have 3� ground states also have low lying 1� states which
arise from the same electron configuration (see chapter 6); these include O2, SO, SeO
and NF. The 1� states are, in general, long-lived and readily studied by magnetic
resonance methods. Since the Zeeman effect for a molecule in a 1� state is particularly
simple, this seems a good system with which to introduce the principles of the magnetic
resonance experiments, and we first describe the experiments of Carrington, Levy and
Miller [8] on SO in its 1� state.

9.3.1. SO in the a 1� state

(a) Introduction

1�SO was produced by reacting the products of a microwave discharge in O2 with OCS,
using the resonant cavity described in figure 9.3. A microwave discharge in O2 produces
1� O2, and reaction of O atoms with OCS produces SO in its 3� ground state, so it
seems probable that 1� SO is produced by an energy transfer process. Using electric
field modulation, a strong spectrum was obtained as shown in figure 9.5 (bottom).
This spectrum, which arises from 1� SO in its lowest rotational level (J = 2) consists
of four separated lines; note that with this mode of modulation, a second-derivative
absorption line shape is obtained. The resonant microwave frequency was close to
10 GHz, and the lines span the magnetic field region from 9.6 to 10.1 kG. We must
explain the appearance of the four-line pattern, and describe the information which is
obtained from its analysis. In subsequent work Uehara [9] observed a six-line pattern
from the J = 3 level, and Brown and Uehara [10] measured an eight-line pattern
from J = 4.

There are no nuclear spin magnetic moments in the predominant isotopic form of
SO (i.e. 32S16O), so that hyperfine interactions are absent. The orbital angular momen-
tum vector L is coupled to the rotational angular momentum vector R to form the total
angular momentum J. For a� state the projection of the value of L on the internuclear
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Figure 9.5. Observed microwave magnetic resonance spectra of 1�O2 (top) and 1� SO (bottom).
The microwave frequency was close to 10 GHz in both cases. The top spectrum is obtained by
magnetic field modulation, the bottom by electric field modulation.

axis isΛ= ±2. The two components of theΛ-doublet have opposite parities, and in a
1� state they are essentially degenerate; this is certainly true at the level of the spectro-
scopic resolution common to conventional microwave experiments. Nevertheless the
existence of theΛ-doublets is extremely important in determining the character of the
magnetic resonance transitions, as we shall see. For the lowest rotational level (R = 0),
the value of J is 2.
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(b) Effective Hamiltonian, matrix elements and assignment

In a theoretical analysis of the Zeeman effect for a diatomic molecule in a singlet state,
Brown and Uehara [10] show that the effective Hamiltonian may be written,

H
eff
Z = g′

LµBT1
0(B)T1

0(L) − grµBT1
0(B)T1

0(J − L), (9.2)

where, as usual, we have taken the space-fixed p = 0 direction to be defined by the
direction of the magnetic field. The g-factors in (9.2) are defined as follows:

g′
L = gL +�gL ,

(9.3)
gr = gN

r − ge
r .

In these equations gL is the orbital g-factor corrected for quantum electrodynamic,
relativistic and diamagnetic effects [11]. �gL is a small correction to the orbital g
factor arising from non-adiabatic mixing of excited electronic states, whilst gN

r and ge
r

are the nuclear and electronic contributions to the rotational g-factor, gr .
The matrix elements of the first term in (9.2) are given by:

〈η, L ,Λ; J,Λ,MJ |g′
LµBT1

0(B )T1
0(L)|η′, L ′,Λ′; J ′,Λ′,M ′

J 〉
= 〈η, L ,Λ; J,Λ,MJ |g′

LµB BZ

∑
q

D
(1)
0q (ω)∗T1

q (L)|η′, L ′,Λ′; J ′,Λ′,M ′〉

= g′
LµB BZδMJ M ′

J

∑
q

〈η,Λ|T1
q (L)|η′,Λ′〉{(2J + 1)(2J ′ + 1)}1/2(−1)MJ −Λ

×
(

J 1 J ′

−MJ 0 MJ

)(
J 1 J ′

−Λ q Λ′

)
. (9.4)

In the second line of (9.4) we have transformed from space to molecule-fixed axes (q).
If we now retain only terms diagonal in the 1� state by putting q = 0, we obtain the
diagonal and off-diagonal Zeeman matrix elements, as follows:

〈J,MJ |Heff
Z |J,MJ 〉 = g′

LµB BZ
MJΛ

2

J (J + 1)
= 4g′

LµB BZ
MJ

J (J + 1)
, (9.5)

〈J,MJ |Heff
Z |J + 1,MJ 〉

= g′
LµB BZ

Λ{(J + MJ + 1)(J − MJ + 1)}1/2{(J +Λ+ 1)(J −Λ+ 1)}1/2

(J + 1){(2J + 1)(2J + 3)}1/2
. (9.6)

Equation (9.5) shows that the first-order effective g-factors for the J = 2, 3, 4 rotational
levels are 2/3, 1/3 and 1/5 respectively. Equation (9.6) shows that the second-order
effect of the magnetic field is to mix adjacent rotational levels, so that J is no longer
a perfectly good quantum number. This is because the isotropy of field-free space is
replaced by the cylindrical symmetry of the applied magnetic field. In consequence,
the four transitions observed at a fixed frequency for the J = 2 level occur at different
magnetic fields. This second-order Zeeman splitting is exhibited in the experimental
spectra shown in figure 9.5, and illustrated in the Zeeman energy levels shown on
the right-hand side of figure 9.6. The Zeeman mixing depends upon the square of
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Figure 9.6. Zeeman splitting of the J = 2 rotational level of a 1� state, and the observed
�MJ = ±1 transitions.

the magnetic field strength, and is inversely proportional to the spacing between the
rotational levels being mixed.

The second term in equation (9.2) may be rewritten as the sum of two terms,

−grµBT1
0(B)T1

0(J) + grµBT1
0(B)T1

0(L), (9.7)

and we note that the second of these has the same operator form as the first term in
(9.2), so that it merely provides a small correction to our earlier results; g′

L is replaced
by g′

L + gr . The matrix elements of the first term in (9.7) are obtained directly by using
the Wigner–Eckart theorem in the space-fixed axis system; they are diagonal in both
J and MJ:

〈J,Λ,MJ | − grµBT1
0(B)T1

0(J)|J,Λ,MJ 〉 = −grµB BZ MJ . (9.8)

In order to assign the Zeeman patterns for the three lowest rotational levels quanti-
tatively, one must determine the spacings between the rotational levels, and the values
of g′

Land gr .In the simplest model which neglects centrifugal distortion, the rotation
spacings are simply B0 J (J + 1); this approximation was used by Brown and Uehara
[10], who used the rotational constant B0 = 21295 MHz obtained by Saito [12] from
pure microwave rotational spectroscopy (see later in the next chapter). The values of
the g-factors were found to be g′

L = 0.999 82, gr = −(1.35) × 10−4. Note that because
of the off-diagonal matrix elements (9.6), the Zeeman matrices (one for each value of
MJ ) are actually infinite in size and must be truncated at some point to achieve the
desired level of accuracy. In subsequent work Miller [14] observed the spectrum of
1� 33SO in natural abundance; 33S has a nuclear spin of 3/2 and from the hyperfine
structure Miller was able to determine the magnetic hyperfine constant a (see below
for the definition of this constant).

Similar analyses have been carried out for O2 in its J = 2 and 3 rotational levels of
the 1� state [13, 14]. In a particularly careful and accurate study Miller [14] showed that
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apart from determining the rotational constant and the rotational and orbital g-factors,
it was also possible to determine the anisotropy of the diamagnetic susceptibility, and
from that the electric quadrupole moment of O2 in its 1� state. FIR laser magnetic
resonance studies of 1� 16O18O have also been described [15]; the transitions studied
were magnetic dipole rotational transitions up to J = 9 ← 8.

9.3.2. NF in the a 1� state

(a) Nuclear magnetic and electric hyperfine interactions

Perhaps the most interesting spectrum of a molecule in a 1� state, illustrated in
figure 9.7, is that of the NF radical, obtained by Curran, MacDonald, Stone and Thrush
[16] by reacting NF2 with hydrogen atoms inside a cavity similar to that shown in
figure 9.3. Because of the presence of 14N and 19F nuclei, with spins of 1 and 1/2 re-
spectively, a beautiful resolved hyperfine pattern was obtained. In order to understand
this spectrum additional terms describing the nuclear Zeeman, magnetic hyperfine and
nitrogen quadrupole interactions must be added to the effective Hamiltonian (9.2). The
total Hamiltonian therefore becomes

Htotal = H
eff
Z − gNµN T1(B) · T1(IN) − gFµN T1(B ) · T1(IF)

+ aNT1(L) · T1(IN) + aFT1(L) · T1(IF) + HQN . (9.9)

The basis set will be that used earlier with the addition of nuclear spin-decoupled

9.4 9.6 9.8 10.0 10.2 10.4

Magnetic field / kG

Figure 9.7. Microwave magnetic resonance spectrum of 1�NF (J = 2) recorded at a frequency
of 9320 MHz [16].



592 Microwave and far-infrared magnetic resonance

functions, i.e. |η,%; J,MJ ; IN,MN; IF,MF〉; the N and F subscripts refer, of course,
to the two nuclei involved, not as elsewhere to the projections of N and F .

The nuclear electric quadrupole interaction in equation (9.9) was introduced in
chapter 4; it describes the sum of all the electric interactions between the protons
in the nucleus and the electrons in the molecule, averaged over the positions of the
latter:

HQN = −
∑

p

∑
i

(e2/4πε0)r2
pC2(θp, φp) · C2(θi , φi ) r−3

i = −eT2(Q ) · T2(∇E ).

(9.10)

The scalar product of the two second rank tensors in equation (9.10) is expanded in the
space-fixed axis system, so that

〈η,Λ;J,MJ ;IN,MN;IF,MF| − e
∑

p

(−1)pT2
p(QN)T2

−p(∇E)|η′,Λ′;J ′,M ′
J ;IN,M

′
N;IF,M

′
F〉

= −δMF,M ′
F
e
∑

p

(−1)p〈IN,MN|T2
p(QN)|IN,M ′

N〉

×〈η,Λ; J,MJ |T2
−p(∇E)|η′,Λ′; J ′,M ′

J 〉. (9.11)

The matrix elements are diagonal in, and independent of MF, which we will therefore
omit from the subsequent development of (9.11); we have also omitted terms involving
excited nuclear states (with I ′

N 
= IN)!
We deal first with the nuclear part of equation (9.11), using the Wigner–Eckart

theorem to obtain

〈IN,MN|T2
p(QN)|IN,M ′

N〉 = (−1)IN−MN

(
IN 2 IN

−MN p M ′
N

)
〈IN‖T2(QN)‖IN〉. (9.12)

The reduced matrix element in (9.12) is evaluated by noting the definition of the nuclear
quadrupole moment QN, and using the Wigner–Eckart theorem as follows:

QN/2 = 〈IN,MN = IN|T2
0(QN)|IN,MN = IN〉 =

(
IN 2 IN

−IN 0 IN

)
〈IN‖T2(QN)‖IN〉.

(9.13)

Expanding the 3- j symbol in (9.13) we obtain the required result,

〈IN‖T2(QN)‖IN〉 = QN

2

{
(IN + 1)(2IN + 1)(2IN + 3)

IN(2IN − 1)

}1/2

. (9.14)

We will only be concerned with matrix elements diagonal in MN, so that (9.12) gives
the result

〈IN,MN|T2
0(QN)|IN,MN〉 = QN

{
3M2

N − IN(IN + 1)
}

2IN(2IN − 1)
. (9.15)

We now turn to the electronic part of the quadrupole interaction in equation (9.11).
Since this part of the interaction is most sensibly described in a molecule-fixed frame,



1� states 593

we make the necessary transformation

〈η,Λ; J,MJ |T2
−p(∇E)|η′,Λ′; J ′,M ′

J 〉
= 〈η,Λ; J,MJ |

∑
q

D
(2)
−pq (ω)∗T2

q (∇E)|η′,Λ′; J ′,M ′
J 〉

=
∑

q

〈η,Λ|T2
q (∇E)|η′,Λ′〉〈J,Λ,MJ |D(2)

−pq (ω)∗|J ′,Λ′,M ′
J 〉. (9.16)

We have already restricted our attention to the p = 0 components, and we now fur-
ther limit ourselves to the q = 0 components of (9.16) since the q = ±1,±2 terms
involve mixing of excited electronic states. The q = 0 term leads to the definition of
the (negative of the) electric field gradient qN at the 14N nucleus, i.e.

〈η,Λ|T2
0(∇E)|η,Λ〉 = −qN/2. (9.17)

Consequently we obtain the required diagonal matrix element,

〈η,Λ; J,MJ |T2
−p(∇E)|η,Λ; J,MJ 〉

= −qN

2
(2J + 1)(−1)MJ −Λ

(
J 2 J

−MJ 0 MJ

)(
J 2 J

−Λ 0 Λ

)
. (9.18)

Setting J = Λ = 2 in (9.18) and IN = 1 in (9.15) we obtain the diagonal quadrupole
coupling contributions to the energies,

EQN (MJ ,MN,MF) = eqN QN
{
3M2

J − 6
}{

3M2
N − 2

}/
84, (9.19)

which is the result obtained by Curran, MacDonald, Stone and Thrush [16].
We deal next with the 14N magnetic hyperfine interaction, and again restrict atten-

tion to the diagonal (first-order) contribution:

〈η,Λ; J,MJ ; IN,MN|aNT1(L) · T1(IN)|η,Λ; J,MJ ; IN,MN〉
= aN〈η,Λ; J,MJ |T1

0(L)|η,Λ; J,MJ 〉〈IN,MN|T1
0(IN)|IN,MN〉

= aN〈η,Λ; J,MJ |D(1)
00 (ω)∗T1

q=0(L)|η,Λ; J,MJ 〉MN

= aN〈η,Λ|T1
q=0(L)|η,Λ〉(2J + 1)(−1)MJ −Λ

(
J 1 J

−MJ 0 MJ

)(
J 1 J

−Λ 0 Λ

)
MN

= 2

3
aN MJ MN. (9.20)

The fourth line above follows from equation (9.4) and the last line from putting J =
Λ = 2. A similar analysis shows the diagonal contribution from the fluorine magnetic
hyperfine interaction to be (2/3)aF MJ MF. Finally the nuclear Zeeman energies are
simply MNgNµN BZ and MFgFµN BZ . In summary, the total first-order Zeeman energies
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for J = 2 are:

Efirst-order(MJ ,MN,MF)

=
(

2

3
g′

L − 1

3
gr

)
µB BZ MJ − gFµN BZ MF − gNµN BZ MN

+ 2

3
aF MJ MF + 2

3
aN MJ MN + (eqN QN/84)

(
3M2

N − 2
)(

3M2
J − 6

)
. (9.21)

The rotational mixing of the J = 2 and 3 levels by the electronic Zeeman effect,
(9.6), may be calculated by second-order perturbation theory, noting that the separation
between the two levels is 6B0, where B0 is the rotational constant in the v = 0 level;
the result is

Esecond-order(MJ ,MN,MF) = −⌊
2(gL + gr )2µ2

B B2
Z

⌋(
9 − M2

J

)
[1/189B0]. (9.22)

Analysis of the microwave magnetic resonance spectrum recorded at a frequency
of 9320 MHz gave the following values of the constants:

gL = 1.0000, gr = −1 × 10−4, aF = 758.06 MHz,

aN = 109.92 MHz, eqN QN = 4.1 MHz.

The authors do not mention the values of the nuclear g-factors, but we may take them
to be gF = +2.628 87 and gN = +0.403 76 nuclear Bohr magnetons. Consequently it
is now a simple matter to calculate the energies of the 30 levels for a range of magnetic
fields between 9400 and 10 600 G; the magnetic resonance transitions are those which
obey the selection rules �MJ = ±1,�MN = �MF = 0 and their frequencies may
also be calculated.

Our purpose in this analysis is to show how the observed spectrum arises, but we
again point out that this is a simple matter if one knows the values of the molecular
constants involved. In practice one has the much more difficult but interesting task of
determining the constants from the observed Zeeman pattern. We have described this
particular system in some detail because it illustrates a number of the features which
we shall encounter later. It is not often that one observes a fully resolved hyperfine
pattern from two different nuclei, with both magnetic and electric interactions present.

(b) Parity doubling and Stark effect in 1� states

We must now say more about the nature of the resonance transitions, and also describe
additional measurements of the Stark effect which enable the electric dipole moment
of the molecule to be determined. In both SO and NF the transitions detected are
actually electric-dipole allowed, so perhaps the spectrum ought not to be described as
a magnetic resonance spectrum.

O2 and NF are isoelectronic with 3�− ground states which arise from the two
highest energy electrons occupying two degenerate π -molecular orbitals; the excited
1� states have both electrons in the same orbital. If theπ -molecular orbitals are denoted
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π+1 and π−1 the wave functions for the 1� state may be written as

ψ+2 = 1√
2
π+1(1)π+1(2){α(1)β(2) − β(1)α(2)}, Λ = +2,

(9.23)

ψ−2 = 1√
2
π−1(1)π−1(2){α(1)β(2) − β(1)α(2)}, Λ = −2.

These two functions do not have definite parities but the symmetric and antisymmetric
combinations of them do; we use these combinations to calculate both the Stark effect
and the electric dipole transition probabilities.

The two parity combinations represent the components of a Λ-doublet, and they
are degenerate in the non-rotating molecule. Rotational-electronic coupling removes
the degeneracy, giving rise to Λ-doubling. This doubling can be very large for a light
molecule in a 2� state, like OH, but it is very small for a 1� state; in the three cases
described in this section it is negligible compared with the spectroscopic linewidth.
However, theΛ-doublets have opposite parities, and the total parity alternates with the
rotational quantum number J . If the molecule possesses an electric dipole moment, the
magnetic resonance transitions within a single rotational level, of the type described
above, occur between the Λ-doublet components of opposite parity. The O2 molecule
is different because, being a homonuclear molecule with zero-spin nuclei, only one of
the Λ-doublet components exists for each rotational level, namely that with positive
parity. Furthermore the homonuclear molecule has no electric dipole moment, so the
magnetic resonance transitions are necessarily magnetic dipole allowed only, and occur
between states of the same overall parity.

Since theΛ-doublet components of a given rotational level are of opposite parity, a
static electric field will split them apart, producing a splitting in the magnetic resonance
spectrum which is known as a Stark splitting. The Stark effect occurs through interaction
of the applied electric field (E0) with the molecular electric dipole moment (µe); if
the static electric field is applied parallel to the static magnetic field (i.e. in the p = 0
direction), the coupling may be represented by the perturbation

HE = −µe E0D
(1)
00 (ω)∗ (9.24)

since the dipole moment is oriented in the q = 0 direction. The matrix elements of HE

are calculated as follows:

〈η, J,Λ,MJ |HE|η, J,Λ,MJ 〉
= −µe E0(2J + 1)(−1)MJ −Λ

(
J 1 J

−MJ 0 MJ

)(
J 1 J

−Λ 0 Λ

)
. (9.25)

The value of this matrix element for J = 2 is −µe E0 MJ%/6 where Λ = +2 or −2.
We actually require the matrix of HE for the states φs and φa, the symmetric and
antisymmetric combinations of ψ+2 and ψ−2 in equation (9.23). One readily finds that

〈φs |HE|φs〉 = 〈φa|HE|φa〉 = 0, 〈φs |HE|φa〉 = 〈φa|HE|φs〉 = −1

3
µe E0 MJ (9.26)

so that the Stark energies of the two states mixed by the electric field are
±(1/3)µe E0 MJ . The electric field splits each line into a doublet, from which the



596 Microwave and far-infrared magnetic resonance

electric dipole moment µe can be determined. This method of determining electric
dipole moments from microwave magnetic resonance spectra was first developed by
Carrington, Levy and Miller [17], using the resonance cavity illustrated in figure 9.3.
They determined the dipole moments of a number of diatomic free radicals, including
that of 1� SO which was found to be 1.47D. The dipole moment of 1� SeO was sub-
sequently determined by Byfleet, Carrington and Russell [18] to be 2.01 D, whilst 1�

NF was found [16] to have a dipole moment of 0.37 ± 0.06 D.
A simple extension of the Stark analysis given above enables one to derive an

expression for the intensities of the electric dipole transitions. The oscillating mi-
crowave electric field is applied perpendicular to the static magnetic field, so that
the Zeeman levels experience a time-dependent perturbation, represented by the
operator

HE(t) = µe E p=±1(t)D
(1)
−p0(ω)∗. (9.27)

For p = +1 the matrix elements for the unsymmetrised states (9.23) are given by

〈J,Λ,MJ |HE(t)|J,Λ,M ′
J 〉

=µe E(t)(2J + 1)(−1)MJ −Λ
(

J 1 J
−MJ −1 M ′

J

)(
J 1 J

−Λ 0 Λ

)
(9.28)

in which the first 3- j symbol shows that p = +1 component leads to �MJ = +1
Zeeman components, whilst the p = −1 component gives �MJ = −1. The relative
intensities of the Zeeman components for J = 2 are given by the squares of the first
3- j symbol in (9.28) and if we put J = 2 we obtain the result

|〈J,Λ,MJ |HE(t)|J,Λ,MJ + 1〉|2 ≈ µ2
e E2(t)(2 − MJ )(3 + MJ ). (9.29)

The relative intensities of the four Zeeman components in the spectrum of 1� SO in
the J = 2 level, shown in figure 9.5, are therefore predicted to be 2 : 3 : 3 : 2, matching
the observations very well.

Curran et al. [16] conclude their analysis of the 1�NF spectrum by comparing the
magnitudes of the magnetic hyperfine, quadrupole and dipole moment parameters with
predictions from self-consistent field calculations due to O’Hare and Wahl [19]. The
agreement is satisfactory, and one supposes that contemporary calculations would be in
even better agreement with experiment. One of the main purposes of the measurements
and spectral analysis described in this section is to provide accurate benchmarks for
theoretical calculations, and also physical insight into the nature of the molecular
bonding.

9.4. 2� states

9.4.1. Introduction

It is probably true that the majority of free radicals which have been studied by mi-
crowave magnetic resonance have 2� ground states. In part this might be because
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2� states that conform closely to case (a) coupling have readily predictable magnetic
properties, which eases the spectroscopic search problem. In this section we distin-
guish studies of good Hund’s case (a) systems from those where the coupling is case
(b) or, more usually, intermediate between cases (a) and (b). Case (a) coupling arises
when the spin–orbit coupling is large compared with the separation of rotational levels;
when this is not the case, the tendency is towards case (b) but in many cases it is a
matter of personal choice as to which basis to use, as we shall see. We begin, there-
fore, by looking more closely at the correlation of rotational levels in the two coupling
cases. This is an abbreviated summary of the much more detailed analysis presented in
chapter 6.

The essential aspects are presented in figure 9.8. On the left-hand side we present
a typical pattern of rotational levels for case (a); the axial component of total electronic
angular momentum |Ω| is a good quantum number, and takes values 3/2 or 1/2,
corresponding to the ‘fine-structure’ states. These states are split by spin–orbit coupling,
their energy ordering being determined by the sign of the spin–orbit coupling constant;
figure 9.8 would be appropriate for the NO molecule, whereas in ClO the order of the
2�3/2 and 2�1/2 states is inverted. Note that N is not a good quantum number. On
the right hand side we see the corresponding pattern of levels for case (b); Ω is no
longer a conserved quantity, but the rotational quantum number N is now meaningful,
and each N level exhibits a spin-doubling. The quantum number J remains good in
both situations. It is important to note that, throughout figure 9.8, each level retains an
extra two-fold degeneracy, or near-degeneracy, irrespective of whether the coupling is
close to case (a) or case (b). In case (b) this is Λ-doubling. In case (a) this should be
described as Ω-doubling, since Λ and Σ (the axial components of L and S) are not
separately conserved. This doubling is not shown in figure 9.8.

9.4.2. ClO in the X 2� ground state

(a) Introduction

The simplest spectra to understand and analyse are those obtained from molecules
which exhibit good case (a) coupling, and for which the Λ-doublets are degenerate to
within the spectroscopic resolution. Typical examples are ClO [20] and BrO [21], the
spectra of which are shown in figure 9.9. In both cases the Stark modulation cavity
described in figure 9.3 was used; ClO was obtained by flowing a mixture of chlorine and
oxygen through a microwave discharge located upstream of the cavity, whilst BrO was
generated inside the cavity by the reaction of oxygen atoms with bromine. Both radicals
have 2�3/2 ground states and the spectra shown in figure 9.9 arise from molecules in
the lowest rotational level, with J = 3/2. Our discussion of these spectra is similar to
that of the 1� states, but with additional features arising from the presence of electron
spin. In both cases there are two isotopes present in natural abundance: 35Cl and 37Cl
for ClO, and 79Br and 81Br for BrO. All of these isotopes have nuclear spin I = 3/2,
and large nuclear quadrupole moments.
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Figure 9.8. Correlation between the Hund’s case (a) and case (b) rotational levels of a 2� state.
The diagram is not drawn to scale; for a good case (a) molecule the spin–orbit splitting is very
much larger than the rotational level spacing.
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Figure 9.9. Microwave magnetic resonance spectra of (top) ClO [20] and (bottom) BrO [21],
both in their J = 3/2, 2�3/2 states.

(b) Effective Hamiltonian

The effective Hamiltonian which was used to analyse these spectra is of the same form
for all four isotopic species and may be written as the sum of four parts,

Heff = Hrso + Hhf + HQ + HZ (9.30)

representing the rigid body rotation and spin–orbit coupling, the magnetic hyperfine
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interactions, the electric quadrupole interaction and the Zeeman interactions. This type
of effective Hamiltonian has already been discussed in chapter 8.

The first term in (9.30) may be written in the form

Hrso = B0{T1(J) − T1(L) − T1(S )}2 + AT1(L) · T1(S ) (9.31)

where B0 is the rotational constant in the lowest vibrational level and A is the spin–
orbit coupling constant. Expanded in the molecule-fixed coordinate system this may
be written

Hrso = A
∑

q

(−1)qT1
q (L )T1

−q (S ) + B0

{
J (J + 1) + S(S + 1)

+ 2
∑

q

(−1)q
{
T1

q (L)T1
−q (S ) + (1/2)T1

q (L)T1
−q (L)

}}

− 2B0

∑
q

{
T1

q (J)T1
q (S ) + T1

q (J)T1
q (L)

}
. (9.32)

Note the separation of the terms into those involving J, with anomalous commution
rules in the molecule-fixed system, and those which do not involve J. Because both
ClO and BrO are good case (a) molecules we choose to work in the case (a) basis set
|η,Λ; S,Σ; J,Ω,MJ 〉; we will subsequently add nuclear spin to the basis set. If we
separate the q = 0 components of (9.32) from the q = ±1 it is readily apparent that the
matrix elements within the case (a) basis have three different types of contribution,

〈η,Λ; S,Σ; J,Ω|Hrso|η′,Λ′; S,Σ′; J,Ω′〉
= δηη′δΛΛ′δΩΩ′δΣΣ′ [B0{J (J + 1) + S(S + 1) − 2ΩΣ−Λ2} + AΛΣ]

− δηη′δΛΛ′2B0〈J,Ω,Σ|
∑

q=±1

T1
q (J )T1

q (S )|J,Ω′,Σ′〉

−〈η,Λ; J,Ω,Σ|H′
rso|η′,Λ′; J,Ω′,Σ′〉, (9.33)

where

H
′
rso = (A + 2B0)

∑
q=±1

(−1)qT1
q (L)T1

−q (S)

− 2B0

∑
q=±1

T1
q (J)T1

q (L) + B0

∑
q=±1

(−1)qT1
q (L)T1

−q (L). (9.34)

Equation (9.34) contains three separate contributions; the third of these involving com-
ponents of L only contributes a constant amount to each level and may be omitted. The
first two terms have non-vanishing matrix elements only between levels differing inΛ
by ±1 and so mix different electronic states, leading to the effect ofΛ-doubling. Since
we do not observe Λ-doubling in the ClO and BrO spectra, we neglect these terms in
this analysis. They will, however, become important in other species discussed later.
Consequently we retain only the first two terms of equation (9.33).

We turn now to the magnetic hyperfine Hamiltonian in (9.30) which may be written
as the sum of three terms representing the orbital, Fermi contact and dipolar hyperfine
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interactions:

Hhf = HIL + HF + Hdip

= aT1(I ) · T1(L)+bFT1(I) · T1(S)−
√

10gSµB gNµN (µ0/4π )T1(I ) · T1(S,C2).

(9.35)

The inclusion of nuclear spin in the basis set may now be accomplished using either the
coupled representation |η,Λ; S,Σ; J,Ω, I, F,MF 〉, or the decoupled representation
|η,Λ; S,Σ; J,Ω,MJ ; I,MI 〉; we choose to use the former because MF is the only
rigorously good quantum number in the presence of a magnetic field. Note that, at
this stage, we includeΛ in our basis functions but since the effective Hamiltonian will
operate exclusively within the ground vibronic state, all terms which would mix excited
states with the ground state can be excluded. This approximation is valid for ClO and
BrO, but later in this chapter the theory will be developed to take account of excited
state mixing.

The third term in (9.30), the electric quadrupole interaction, is again represented
by the scalar product,

HQ = −eT2(Q) · T2(∇E). (9.36)

Finally the interactions with the external magnetic field B are summarised with
the Zeeman term:

HZ = gLµBT1(B) · T1(L) + gSµBT1(B) · T1(S)

− gNµN T1(B) · T1(I) − grµBT1(B) · {T1(J) − T1(L) − T1(S )}. (9.37)

Consequently the total effective Hamiltonian, operating within the subspace of the
ground vibronic state is the sum of equations (9.33), (9.35), (9.36) and (9.37).

(c) Matrix elements in a case (a) basis

We now calculate the matrix elements of each of the four main terms in Heff in turn;
for simplicity we will omit the primes when the matrix elements are diagonal in those
quantum numbers.

(i)   + -- 

〈η,Λ; S,Σ; J,Ω,MJ |Hrso|η,Λ; S,Σ′; J,Ω′,MJ 〉
= δΩΩ′δΣΣ′ [B0{J (J + 1) + S(S + 1) − 2ΩΣ−Λ2} + AΛΣ]

− 2B0

∑
q=±1

〈J,Ω|T1
q (J )|J,Ω′〉〈S,Σ|T1

q (S )|S,Σ′〉

= δΩΩ′δΣΣ′ [B0{J (J + 1) + S(S + 1) − 2ΩΣ−Λ2} + AΛΣ]

− 2B0

∑
q=±1

(−1)J+S−Ω−Σ
(

J 1 J
−Ω q Ω′

)(
S 1 S

−Σ q Σ′

)

× {J (J + 1)(2J + 1)S(S + 1)(2S + 1)}1/2. (9.38)
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(ii)   

For the magnetic hyperfine interaction we deal with the three terms separately, expand-
ing each in the space-fixed axis system, as follows:

HIL = (2/r3)µB gNµN (µ0/4π)
∑
q,p

(−1)pT1
p(I )D

(1)
−pq (ω)∗ T1

q (L ), (9.39)

HF = (2/3)gSµB gNµNµ0δ(r )
∑
q,p

(−1)pT1
p(I )D

(1)
−pq (ω)∗ T1

q (S ), (9.40)

Hdip = −
√

10gSµB gNµN (µ0/4π)
∑
q,p

(−1)pT1
p(I)D

(1)
−pq (ω)∗ T1

q (S,C2). (9.41)

In equation (9.41) the tensor T1(S,C2) is constructed according to the equation

T1
q (S,C2) = −

∑
q1,q2

(−1)q (3)1/2T1
q1

(S )C2
q2

(θ, φ)

(
1 2 1
q1 q2 −q

)
(r−3) (9.42)

with the spherical harmonic defined by

Ck
q (θ, φ) =

(
4π

2k + 1

)1/2

Ykq (θ, φ). (9.43)

Note that there is more than one way of representing the dipolar interaction in irre-
ducible tensors, as discussed in appendix 8.2. Equation (9.41) can be compared with
the coupling choice used in our analysis of the H+

2 spectrum described in chapter 11.
It is partly a matter of choice, but more especially a matter of the basis set used in the
analysis.

We now examine the matrix elements of each of these three terms in turn.

〈η,Λ; S,Σ; J,Ω, I, F,MF |HIL|η,Λ′; S,Σ; J ′,Ω′, I, F,MF 〉
= a

∑
q

(−1)J ′+I+F+J−Ω{I (I + 1)(2I + 1)(2J + 1)(2J ′ + 1)}1/2

×
{

J ′ I F
I J 1

}(
J 1 J ′

−Ω q Ω′

)
〈η,Λ|T1

q (L)|η,Λ′〉 (9.44)

where a = 2µB gNµN (µ0/4π)〈r−3〉. We note that this interaction could mix excited
states |η′,Λ′〉 with the ground state, but we neglect these effects by including only the
q = 0 terms. Consequently the simplified version of (9.44) which we use is:

〈η,Λ; S,Σ; J,Ω, I, F,MF |HIL|η,Λ; S,Σ; J ′,Ω, I, F,MF 〉
= aΛ(−1)J ′+I+F+J− {I (I + 1)(2I + 1)(2J + 1)(2J ′ + 1)}1/2

×
{

J ′ I F
I J 1

}(
J 1 J ′

−Ω 0 Ω′

)
, (9.45)

where J ′ = J, J ± 1.
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The next term in the magnetic hyperfine Hamiltonian (9.35) is the Fermi contact
interaction (9.40), whose matrix elements are:

〈η,Λ; S,Σ; J,Ω, I, F,MF |HF|η′,Λ′; S,Σ′; J ′,Ω′, I, F,MF 〉
=

(
2

3

)
gSµB gNµNµ0

∑
q

(−1)I+J ′+F+S−Σ+J−Ω

× {I (I + 1)(2I + 1)(2J + 1)(2J ′ + 1)S(S + 1)(2S + 1)}1/2

×
{

J ′ I F
I J 1

}(
J 1 J ′

−Ω q Ω′

)(
S 1 S

−Σ q Σ′

)
〈η,Λ‖δ(r )‖η′,Λ′〉. (9.46)

If the Fermi contact interaction constant bF is defined to be gSµB gNµN (2µ0/3)δ(r )η,
and we again neglect the admixture of excited states, equation (9.46) becomes

〈η,Λ; S,Σ; J,Ω, I, F,MF |HF |η,Λ; S,Σ′; J ′,Ω′, I, F,MF 〉
= bF

∑
q

(−1)I+J ′+F+S−Σ+J−Ω

× {I (I + 1)(2I + 1)(2J + 1)(2J ′ + 1)S(S + 1)(2S + 1)}1/2

×
{

J ′ I F
I J 1

}(
J 1 J ′

−Ω q Ω′

)(
S 1 S

−Σ q Σ′

)
. (9.47)

Finally we deal with the magnetic dipolar interaction (9.41) whose general matrix
elements are given by

〈η,Λ; S,Σ; J,Ω, I, F,MF |Hdip|η′,Λ′; S,Σ′; J ′,Ω′, I, F,MF 〉
= gSµB gNµN (µ0/4π)

∑
q

(−1)J ′+I+F+q+J−Ω

× {I (I + 1)(2I + 1)(2J + 1)(2J ′ + 1)S(S + 1)(2S + 1)}1/2

×
√

30

{
J ′ I F
I J 1

}(
J 1 J ′

−Ω q Ω′

)∑
q1q2

(
1 2 1
q1 q2 −q

)
(−1)S−Σ

×
(

S 1 S
−Σ q1 Σ′

)
〈η,Λ|C2

q2
(θ, φ)(r−3)|η′,Λ′〉. (9.48)

Again we confine attention to the ground vibronic state by putting q2 = 0 (so that
q1 = q):

〈η,Λ; S,Σ; J,Ω, I, F,MF |Hdip|η,Λ; S,Σ′; J ′,Ω′, I, F,MF 〉
= (

√
30/2)gSµB gNµN (µ0/4π)

∑
q

(−1)I+J ′+F+S+q−Σ+J−Ω

× {I (I + 1)(2I + 1)(2J + 1)(2J ′ + 1)S(S + 1)(2S + 1)}1/2

{
J ′ I F
I J 1

}

×
(

J 1 J ′

−Ω q Ω′

)(
1 2 1
q 0 −q

)(
S 1 S

−Σ q Σ′

) 〈
3 cos2 θ − 1

r3

〉
η

. (9.49)

If we combine equations (9.45), (9.47) and (9.49) and expand the 3 j- and 6- j symbols
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we obtain the following simple results for those matrix elements of the magnetic
hyperfine interaction which are diagonal in all of the case (a) quantum numbers except
for J :

〈η, J |Hhf|η, J 〉 = {aΛ+ (bF + (2/3)c)Σ}Ω {F(F + 1) − J (J + 1) − I (I + 1)}
2J (J + 1)

,

(9.50)

〈η, J |Hhf|η, J − 1〉
= −{aΛ+ (bF + (2/3)c)Σ}

× (J 2 −Ω2)1/2{(F − I + J )(F + I + J + 1)(J + I − F)(F − J + I + 1)}1/2

2J (4J 2 − 1)1/2
.

(9.51)

In addition there are matrix elements off-diagonal in Ω and Σ. The constant c arises
from the dipolar term, which is discussed in more detail later.

The main conclusion from these results is that the observed hyperfine splitting is
determined primarily by a linear combination of the hyperfine constants corresponding
to the three separate interactions. The spectrum depends upon the axial component
of the total magnetic hyperfine interaction, which we designate h3/2(= a + (1/2)(bF +
2c/3)), and in a good case (a) system it is not usually possible to separate the individual
contributions from the microwave magnetic resonance spectrum alone. The solution to
the problem lies in the combination of these studies with pure rotational spectroscopy,
as we shall see later in this chapter.

(iii)    

The electric quadrupole interaction is handled in exactly the same way as the mag-
netic hyperfine interactions, by expanding the scalar product (9.36) first in the space-
fixed axis system, and then transforming the electronic part of the interaction into the
molecule-fixed system. One obtains the result:

〈η,Λ; S,Σ; J,Ω, I, F,MF |HQ |η′,Λ′; S,Σ; J ′,Ω′, I, F,MF 〉
= −1

2
eQ

∑
q

(−1)J ′+I+F+J−Ω{(2J + 1)(2J ′ + 1)}1/2

×
{

J ′ I F
I J 2

}(
J 2 J ′

−Ω q Ω′

)(
I 2 I

−I 0 I

)−1

〈η,Λ|T 2
q (∇E )|η′,Λ′〉. (9.52)

Confining attention to the q = 0 component, we obtain the results

〈η,Λ; S,Σ; J,Ω, I, F,MF |HQ |η,Λ; S,Σ; J ′,Ω′, I, F,MF 〉
= −eQ

2
(−1)J ′+I+F+J−Ω{(2J + 1)(2J ′ + 1)}1/2

×
{

J ′ I F
I J 2

}(
J 2 J ′

−Ω 0 Ω′

)(
I 2 I

−I 0 I

)−1

〈η,Λ|T 2
0 (∇E)|η,Λ〉
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= eq0 Q

4
(−1)J ′+I+F+J−Ω{(2J + 1)(2J ′ + 1)}1/2

×
{

J ′ I F
I J 2

}(
J 2 J ′

−Ω 0 Ω

)(
I 2 I

−I 0 I

)−1

, (9.53)

where q0 is the negative of the electric field gradient, and eq0 Q is the quadrupole
coupling constant. The 3- j symbol indicates that matrix elements with J ′ = J, J ± 1
and J ± 2 are non-zero, but the diagonal elements are, of course, the most significant.

(iv)    

The Zeeman Hamiltonian (9.37) may be rewritten in the form

HZ = [gLµB + grµB]T1(B) · T1(L) + [gSµB + grµB]T1(B) · T1(S )

− gNµN T1(B) · T1(I) − grµBT1(B) · T1(J), (9.54)

and if the space-fixed Z (p = 0) direction is defined by the direction of the magnetic
field, the Zeeman Hamiltonian may be expressed in space-fixed coordinates as

HZ = BZ {[gLµB +grµB]T1
0(L)+ [gSµB +grµB]T1

0(S )−gNµN T1
0(I)−grµBT1

0(J)}.
(9.55)

The first two terms may now be treated by rotation from the space- to the molecule-fixed
axis system, as follows.

(a) Orbital Zeeman interaction
The first term in equation (9.55) has matrix elements

〈η,Λ;S,Σ;J,Ω,I,F,MF |BZ [gLµB +grµB]
∑

q

D
(1)
0q(ω)∗ T1

q (L)|η,Λ′;S,Σ;J ′,Ω′,I,F ′,MF 〉

= BZµB[gL + gr ]
∑

q

(−1)F−MF +F ′+J+I+1+J−Ω
{

J F I
F ′ J ′ 1

}

×
(

F 1 F ′

−MF 0 MF

)
{(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)}1/2

×
(

J 1 J ′

−Ω q Ω′

)
〈η,Λ|T1

q (L )|η′,Λ′〉. (9.56)

The q = ±1 components of T 1
q (L) will be neglected because they involve the mixing

of excited states with the ground vibronic state, giving rise to temperature-independent
paramagnetism. With this simplification the matrix elements of the orbital Zeeman
interaction operating within the ground vibronic state are

〈η,Λ;S,Σ;J,Ω,I,F,MF |BZ [gLµB +grµB]
∑

q

D
(1)
0q (ω)∗ T1

q (L)|η,Λ;S,Σ;J ′,Ω,I,F ′,MF 〉
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= BZµBΛ[gL + gr ](−1)F−MF +F ′+J+I+1+J−Ω
{

J F I
F ′ J ′ 1

}(
F 1 F ′

−MF 0 MF

)

× {(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)}1/2

(
J 1 J ′

−Ω 0 Ω

)
. (9.57)

(b) Electron spin Zeeman interaction
The second term in equation (9.55) has matrix elements

〈η,Λ;S,Σ;J,Ω,I,F,MF |BZ [gSµB + grµB]
∑

q

D
(1)
0q (ω)∗T1

q (S)|η,Λ;S,Σ;J ′,Ω′,I,F ′,MF 〉

= BZµB[gS + gr ]
∑

q

(−1)F−MF +J+I+F ′+1+J−Ω+S−Σ
{

J F I

F ′ J ′ 1

}

×
(

F 1 F ′

−MF 0 MF

)
{(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)S(S + 1)(2S + 1)}1/2

×
(

J 1 J ′

−Ω q Ω′

)(
S 1 S

−Σ q Σ′

)
. (9.58)

It operates solely within the ground vibronic state.

(c) Nuclear spin Zeeman interaction
We treat the nuclear Zeeman interaction by remaining in the space-fixed axis system,
and obtain

〈η,Λ; S,Σ; J,Ω, I, F,MF | − gNµN BZ T1
p=0(I )|η,Λ; S,Σ; J ′,Ω, I, F ′,MF 〉

= −gNµN BZ (−1)F−MF +J+I+F+1{I (I + 1)(2I + 1)(2F + 1)(2F ′ + 1)}1/2

×
{

I F J
F ′ I 1

}(
F 1 F ′

−MF 0 MF

)
. (9.59)

(d) Rotational Zeeman interaction
The final term in equation (9.55) is the rotational Zeeman interaction whose matrix
elements are again obtained by remaining in the space-fixed axis system:

〈η,Λ; S,Σ; J,Ω, I, F,MF | − grµB BZ T1
p=0(J)|η,Λ; S,Σ; J ′,Ω, I, F ′,MF 〉

= −δJ J ′ grµB BZ (−1)F−MF +J+I+F ′+1{J (J + 1)(2J + 1)(2F + 1)(2F ′ + 1)}1/2

×
{

J F I
F ′ J ′ 1

}(
F 1 F ′

−MF 0 MF

)
. (9.60)

(d) Analysis of the ClO spectrum

Confining our attention to the more abundant 35ClO spectrum shown in figure 9.9, we
note the main features which can be understood immediately, at least qualitatively. The
spectrum consists of three quartets, centred at an effective g-value close to 0.8, which is
the value expected for a case (a) 2�3/2 state in its lowest rotational level, J = 3/2. (The
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2�1/2 fine-structure state has a g value very close to zero and is therefore unobservable
by magnetic resonance.) The separation of the three groups, each of which arises
from different �MJ = ±1 components, is due to the second-order Zeeman effect,
which comes from the mixing of the J = 3/2 and 5/2 levels. This is analogous to the
2 : 3 : 3 : 2 quartet splitting observed in the 1� spectra discussed earlier. The quartet
splitting within each Zeeman component in the ClO spectrum is due primarily to the
magnetic hyperfine interaction; the asymmetry in the quartet hyperfine spacings arises
from the electric quadrupole interaction. Each of these aspects will now be discussed
in more detail.

Even though matrix elements which mix excited vibronic states with the ground
state have been neglected above, the analysis is still complicated because of matrix
elements off-diagonal in J , Ω and F . Carrington, Dyer and Levy [20] carried out the
analysis of their spectrum for the J = 3/2 level with a basis set including both the
|Ω| = 3/2 and 1/2 states, with J values up to 7/2. This involved the diagonalisation
of 26 × 26 matrices for each M value, but ultimately it was possible to determine the
values of four molecular constants for 35ClO, as follows:

A = −282 ± 9 cm−1, B0 = 0.622 ± 0.001 cm−1,

h3/2 = 111 ± 2 MHz, eq0 Q = −88 ± 6 MHz.

The constant h3/2 was defined earlier and is defined again below. The corresponding
constants for the less-abundant 37ClO species were also determined. The only previous
spectroscopic studies of ClO were described in one of the earliest flash-photolysis
investigations by Porter [22], and a more detailed study of its near-ultraviolet spectrum
was made by Durie and Ramsay [23]. They were unable to prove that the ground
state is 2�3/2 but the determination of the sign of A through the magnetic resonance
studies proved that it is so. The value of the rotational constant B0 from the magnetic
resonance spectrum also pointed to an error in the earlier analysis of the electronic
spectrum, which was subsequently corrected [24] through a recording of the electronic
spectrum at higher resolution.

The axial component of the magnetic hyperfine interaction for the 2�3/2 component
is designated h3/2; in terms of the original Frosch and Foley constants [25] h3/2 is
equal to a + (1/2)(b + c), and in terms of our preferred hyperfine constants it is a +
(1/2)(bF + 2t), the latter constants describing the orbital, Fermi contact and dipolar
hyperfine interactions separately. Specifically, our constants are given by,

a = 2µB gNµN (µ0/4π)

〈
1

r3

〉
η

,

bF = 2

3
gSµB gNµNµ0Ψ

2
η(0), (9.61)

t = gSµB gNµN (µ0/4π)

〈
3 cos2 θ − 1

r3

〉
η

.

The analysis of the J = 3/2 magnetic resonance spectrum gave only the value of h3/2; as
we shall see later, the microwave rotational spectrum enables the separate contributions
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to h3/2 to be determined. It is possible to rationalise the values of the hyperfine constants
in terms of a simple model of the electronic structure [20]; ultimately, however, it is best
to regard these constants as benchmarks against which to test ab initio calculations of
the electronic wave function. Similar conclusions may be applied to the determination
of the quadrupole coupling constant. In subsequent work it proved possible to study the
Stark splittings in the ClO spectrum [26] and to determine the electric dipole moment
to be 1.26 D.

(e) Other 2� case (a) molecules

(i)   

The microwave magnetic resonance spectrum of BrO has been observed [21] and its
analysis is similar to that of ClO, although it is not so immediately apparent because
the two bromine isotopes are present in essentially equal natural abundance, and the
separation of the second-order Zeeman splitting and the nuclear hyperfine effects is
not so clear. Nevertheless the analysis is straightforward, but there is one important
new feature which was clarified by Brown, Byfleet, Howard and Russell [27] through
additional studies of the J = 5/2 rotational level, and a more accurate theoretical
treatment. If the matrix elements of the spin–orbit coupling operator are examined
more closely, they are found to mix excited states with the ground vibronic state
through �Λ= ±1 and �Σ= ∓1 terms, so that although Ω is preserved as a good
quantum number, Λ and Σ are not. This behaviour marks the departure from case (a)
coupling towards case (c), so that the distinction between orbital and spin contributions
to the magnetic moment is partially lost. The Zeeman Hamiltonian (9.54) is modified
by the inclusion of extra terms to become

HZ = {gL + gr +�gL +�gΩ}µBT1(B) · T1(L) + {gS + gr +�gΩ}µBT1(B) · T1(S)

− gNµN T1(B) · T1(I) − grµBT1(B) · T1(J ). (9.62)

The effects of�gL are negligible, but�gΩ and gr are significant and their inclusion in
the Zeeman analysis gives values for A which are more consistent with determinations
from other spectroscopic investigations, and with theoretical expectations.

A further refinement in the analysis of the case (a) spectra was described by
Carrington and Howard [28] in their study of the CF radical. We have already pointed
out that in ClO, for example, it is only possible to determine the total axial magnetic
hyperfine constant h3/2 from studies of the J = 3/2 level alone. In CF, however, the ro-
tational constant B0 is relatively large and the spin–orbit constant A is relatively small.
This means that the ratio B0/A is considerably larger for CF (0.0183) than for ClO
(0.0022), so that the rotational mixing of the 2�3/2 and 2�1/2 states (equation (9.38))
is more important. This fact, taken with additional measurements of the J = 5/2 level
in the 2�3/2 state, enables both h3/2 and b to be determined uniquely, though with less
accuracy than one would wish.

In subsequent work the corresponding spectrum of IO was observed and analysed
[21]; the dipole moments of BrO and IO [29] were also determined from Stark splittings
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Table 9.2. Experimental parameters for diatomic molecules in good case (a)
2� states

Molecule J B0/cm−1 A/cm−1 h3/2/MHz eq0 Q/MHz µe/D

35ClO 3/2 0.622 −282 111 −88 1.26
37ClO 3/2 0.611 −282 93 −69
79BrO 3/2, 5/2 0.4281 −980 504.5 649.8 1.61
81BrO 3/2, 5/2 0.4263 −980 543.9 542.7
127IO 3/2, 5/2 0.3385 −2330 582.1 −1907.0 2.45

S19F 3/2 0.5527 −387 428.4 — 0.87

Se19F 3/2, 5/2 0.3624 −1790 325.6 — 1.52
14NS 3/2 0.7722 (223.03) 57.0 −2.86 1.86

C19F 3/2, 5/2 1.4083 (77.11) 662.9 — 0.65

in the magnetic resonance spectra. Table 9.2 summarises the magnetic resonance results
that have been obtained for a number of essentially good case (a) diatomic radicals in
their 2� ground vibronic states. Some of these molecules will be discussed again in
chapter 10, and more complete determinations of the hyperfine parameters presented.

(ii) -     + ,  l +  r +

Another milestone in the history of magnetic resonance spectroscopy was passed with
the detection of the rotational spectra of molecular ions. This was first achieved by
Saykally and Evenson [30] in their observation of rotational transitions in the cation
HBr+. This molecule is isoelectronic with SeH and has an inverted 2� ground state. The
ion was generated in a d.c. electric discharge through a low pressure gas which consisted
mostly of helium with about 1% of HBr. The FIR laser was of the familiar carbon
dioxide pumped design. The section of the laser cavity filled by the sample volume
was surrounded by a liquid nitrogen-cooled solenoid, capable of generating magnetic
field strengths of up to 0.5 T. In this configuration only perpendicular �M = ±1
transitions can be detected. In this way Saykally and Evenson were able to detect LMR
spectra arising from the two lowest rotational transitions in the 2�3/2 component,
J = 5/2 ← 3/2 and J = 7/2 ← 5/2. Part of the spectrum arising from the second
transition is shown in figure 9.10. The figure shows the structure associated with a single
Zeeman (MJ ) component. Transitions for H79Br+ and H81Br+, which are present in
almost equal natural abundance, were observed. For each isotopomer, there is a widely
spaced quartet structure due to the I = 3/2 spin of the Br nucleus, and a small splitting
due toΛ-doubling. The proton hyperfine structure was not resolved in this experiment.

Similar experiments were later carried out in Berkeley by Ray, Lubic and Saykally
[31] who detected the FIR LMR spectrum of HCl+, and by Hovde, Schaefer, Strahan,
Ferrari, Ray, Lubic and Saykally [32] who studied HF+. These experiments differed
from those of Saykally and Evenson [30] in that a large conventional electromagnet
was used to provide the variable magnetic field, and the electric discharge was struck
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Table 9.3. Spin–orbit and rotational constants
(in cm−1) for the hydrogen halide cations
in their X 2� ground states

HF+ HCl+ HBr+

A −291.4 −643.4 −2651.6

B 17.1143 9.7880 7.9538

B/A −0.0587 −0.0152 −0.0030

2.45 3.45 4.45

Magnetic field / kG 

Figure 9.10. Laser magnetic resonance spectrum of HBr+, associated with the J = 7/2 − 5/2
transition and recorded using the 180.7 µm line of CD3OH, with σ polarisation (�MJ = ±1)
[30].

over a much shorter path length, within the pole gap of the electromagnet and parallel
to the field. This enabled magnetic fields up to 2 T to be used and so provided a
much larger tuning range. The three molecules are obviously related and have similar
characteristics. They all have inverted 2� ground states with large spin–orbit coupling
constants and large rotational constants (see table 9.3). It can be seen from the B/A
ratios that they conform reasonably well to Hund’s case (a) coupling, although HF+ is
beginning to drift towards case (b).

The transitions which have been detected are all pure rotational transitions in the
lower fine-structure component, 2�3/2. The detection of the corresponding transitions
in the upper 2�1/2 component is difficult to achieve by LMR experiments. The energy
levels lie a long way above the J = 3/2 level of the 2�3/2 component, so that their
population is fairly small. In addition, the transitions are barely tunable by a magnetic
field because the molecules have very small magnetic moments in the 2�1/2 state. A
nice example of the LMR spectra obtained is shown in figure 9.11, involving part of
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+1/2 −1/2 +1/2 −1/2

Magnetic field / kG

MI(F) �

−doublets

Figure 9.11. A portion of the FIR LMR spectrum of HF+, recorded with a CH2F2 laser line at
122.5 µm [32]. This spectrum arises from the MJ = −1/2 ← −3/2 Zeeman component of the
J = 5/2 ← 3/2 rotational transition in the 2�3/2 state. The small doubling of each resonance
arises from the proton hyperfine interaction.

the J = 5/2 ← 3/2 transition in HF+. The pattern shows doublings fromΛ-doubling,
and hyperfine interaction with 19F and 1H. Full analyses of the spectra of HCl+ and
HBr+ were published later [33, 34].

The LMR spectra of this class of molecules provide accurate measurements of
some rotational intervals and some hyperfine splittings. Independent measurements of
the molecules in the 2�1/2 component are needed to provide a complete determina-
tion of the parameters in the effective Hamiltonian, such as the magnetic hyperfine
parameters.

The experiments described demonstrate that it is possible to detect the spectra of
molecular cations in the presence of a large magnetic field, despite the expected spatial
displacement. Several other cations have since been detected by FIR LMR, both atoms
and molecules.

(iii)      

Historically the first open shell molecule to be studied by magnetic resonance meth-
ods was nitric oxide, NO. The 2�1/2 fine-structure component is lower in energy than
the 2�3/2 component by 123 cm−1 and is only weakly magnetic. However, the 2�3/2

component is substantially populated at room temperature and its microwave mag-
netic resonance spectrum is readily recorded. Spectra of the lowest rotational level,
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2610 2650 2690

(b)

(a)

Magnetic field / G

Figure 9.12. Microwave magnetic resonance spectra of NO in the J = 3/2 level of the 2�3/2

component, recorded by Brown and Radford [37]. Part (a) shows the 15N16O spectrum, with a
very smallΛ-doublet splitting, a larger second-order Zeeman splitting of the three �MJ = ±1
components, and a doublet splitting from the 15N nucleus, which has I = 1/2. Part (b) shows the
14N16O spectrum, which is similar to that shown in (a), except that there is now a triplet splitting
from the 14N nucleus, which has I = 1. The microwave frequency was 2879.9 MHz.

J = 3/2, in the 2�3/2 state were first obtained by Beringer, Rawson and Henry [35],
and a theoretical analysis was provided by Lin and Mizushima [36]. The nicest spectra,
however, were obtained later by Brown and Radford [37], and examples are shown
in figure 9.12. These spectra are for the J = 3/2 rotational level, and exhibit nu-
clear hyperfine structure (doublet splitting for 15N16O, triplet splitting for 14N16O),
second-order Zeeman splitting of the three�MJ = ±1 components, and a very small
doublet splitting arising from Λ-doubling. We will not go into the details of the quan-
titative analysis here because we described a very thorough electric resonance study
of the Λ-doubling spectrum in chapter 8, and will return to NO in chapter 10 to
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discuss the far-infrared field-free rotational spectrum. Both types of study related to
both fine-structure states, so that a more accurate separation of the individual mag-
netic hyperfine constants was obtained. Brown and Radford [37] were able to de-
termine the rotational g-factors, and to use earlier field-free microwave studies to
interpret the hyperfine spectrum, including the nitrogen electric quadrupole interaction
for 14N16O.

9.4.3. OH in the X 2� ground state

We now turn to radicals with 2�3/2 ground states which do not conform to the simple
case (a) model described above. Foremost among these are OH and CH, both of which
occupy extremely important places in chemistry, molecular physics, and astrophysics.
OH, in particular, is probably the free radical that has been most extensively studied by
high-resolution spectroscopy; the story is complex, but ultimately very well understood.
OH was the first gas-phase free radical to be detected by conventional microwave
rotational spectroscopy, and we described its electric resonance Λ-doubling spectrum
in detail in chapter 8. It has also been investigated by both microwave and far-infrared
laser magnetic resonance, as we shall describe in due course. Following that we will
describe pioneering laser magnetic resonance experiments on the CH radical.

(a) Microwave magnetic resonance

(i) 

The ratio B0/A0 for the OH radical in its ground 2� state is −0.1333, large compared
with, for example, the ratio for ClO which is −0.0022. Consequently its coupling
scheme shows a considerable departure from the Hund’s case (a) limit towards case
(b), particularly as J increases. Its rotational energy levels are more complicated than
those of ClO and are best described as showing intermediate coupling behaviour. It is
still possible to think of the pattern as two sets of rotational levels, one associated with
the lower spin component and the other with the upper. However, for OH these two sets
of levels are not well separated from each other but are extensively intermingled, as
shown in figure 9.13. We shall see that terms in the rotational kinetic energy operator
mix levels with the same J in the two spin components quite heavily. As a result, the
quantum number Ω which we have used so far to label the spin components ceases to
be a good one. In this situation, the lower level for a given J is referred to as the F1

spin component and the upper one as F2. For OH, with a negative spin–orbit coupling
constant (A0 = −139 cm−1), the F1 component correlates with 2�3/2 in the case (a)
limit and the F2 component with 2�1/2. This correlation is quite reliable at low J but
becomes increasingly less so as J increases. We note a curiosity that, although there are
always two spin components for levels with J greater than or equal to 3/2, for J = 1/2
there is only one spin component which always has pure Ω = 1/2 character. Nearer
the case (b) limit, there can be some uncertainty whether to associate the J = 1/2



614 Microwave and far-infrared magnetic resonance

−1

Figure 9.13. Lowest rotational levels of the OH radical and the far-infrared transitions observed.
TheΛ-doublet splittings are exaggerated for the sake of clarity.

level with the F1 set or the F2 set. Fortunately, in the case of OH, the situation is quite
clear. The J = 1/2 level is associated with the upper set of levels and it is appropriate
to label it as F2. In addition to showing intermediate coupling behaviour, OH has a
very small moment of inertia and hence a large rotational constant. As a result, its
energy levels show two additional effects compared with ClO, centrifugal distortion
andΛ-type doubling; we discussed the latter extensively in chapter 8 when describing
the molecular beam electric resonance spectrum.

(ii)  

The OH radical has been studied extensively by both microwave and far-infrared laser
magnetic resonance. In the microwave region, the pioneering work of Radford [7]
effectively launched the field of gas phase electron resonance, which in this book we are
calling microwave magnetic resonance. Radford first studied OH in the J = 3/2, 5/2
and 7/2 levels of the 2�3/2 component, and also OD in the J = 3/2 level. Figure 9.14
shows the behaviour of the J = 3/2Λ-doublet and hyperfine levels in a magnetic field,
together with the magnetic resonance electric dipole transitions. We also show a stick
diagram of the observed spectrum. Radford did not show an experimental recording
of any of his OH F1 (2�3/2) spectra, but to compensate we show, in figure 9.15, the
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Figure 9.14. Upper: Zeeman behaviour of the Λ-doublet and proton hyperfine levels of OH in
the J = 3/2 F1(2�3/2) rotational level, and the electric dipole transitions. Lower: stick diagram
of the magnetic resonance spectrum obtained by Radford at a frequency of 9263 MHz [7].



616 Microwave and far-infrared magnetic resonance

6.7 6.9 7.1 7.3 7.5

Magnetic field / kG

Figure 9.15. Microwave Λ-doublet magnetic resonance spectrum of OH in the J = 9/2 F1

(2�3/2) rotational level [66]. The resonant microwave frequency was 26254 MHz. Eighteen
transitions are expected but only 13 lines are resolved.

spectrum obtained by Brown, Kaise, Kerr and Milton [66] arising from the J = 9/2
F1 (2�3/2) level. Radford realised that, because of the intermediate coupling behaviour
in OH, the levels of the 2�1/2 component also show strong magnetic effects. He then
went on to detect the microwave magnetic resonance spectrum of OH in the J = 3/2
and 5/3 levels of this upper component (F2); his experimental spectrum for J = 3/2
is shown in figure 9.16. The six lines labelled in figure 9.16 arise from the following
transitions.

f1 : MJ = −3/2, MI = −1/2 (+parity) ↔ MJ = −1/2, MI = −1/2 (−parity)
f2 : MJ = −1/2, MI = −1/2 (+parity) ↔ MJ = +1/2, MI = −1/2 (−parity)
f3 : MJ = +1/2, MI = +1/2 (+parity) ↔ MJ = +3/2, MI = +1/2 (−parity)
f4 : MJ = −1/2, MI = +1/2 (+parity) ↔ MJ = +1/2, MI = +1/2 (−parity)
f5 : MJ = +1/2, MI = −1/2 (+parity) ↔ MJ = +3/2, MI = −1/2 (−parity)
f6 : MJ = −3/2, MI = +1/2 (+parity) ↔ MJ = −1/2, MI = +1/2 (−parity)

Radford’s analysis of the magnetic resonance spectrum was ground-breaking by his
extension of the theory of the Zeeman effect to the general intermediate coupling case.
In addition to Radford’s observations, Brown, Kaise, Kerr and Milton [66] recorded
microwave magnetic resonance spectra at higher resonant frequencies and were able to
observe, as we have seen, the J = 9/2 and also the J = 11/2 levels in the F1 (2�3/2)
spin component. The frequencies of the zero magnetic field transitions involved in
the microwave magnetic resonance studies had all been measured previously and
much more accurately in molecular beam work by Meerts [38], as we described in
chapter 8. Brown, Kaise, Kerr and Milton [66] therefore used the magnetic resonance
measurements to provide a full determination of the magnetic properties of the OH
radical. In their paper they gave the complete Zeeman Hamiltonian for a molecule
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Figure 9.16. Recording of the Λ-doublet microwave magnetic resonance spectrum of OH in
the J = 3/2 F2(2�1/2) rotational level [7]. The assignment of the lines is given in the text. The
resonant microwave frequency was 9200 MHz.

in a 2S+1� electronic state and showed that it involves six determinable parameters (g-
factors) in addition to the nuclear spin g-factor for the proton. Carrington and Lucas
[39], in earlier work, extended our knowledge of the OH radical by studying 17OH and
determing the 17O magnetic and electric hyperfine constants.

(iii)    Λ -

As we discussed earlier in chapter 8, the Λ-doubling in a molecule such as OH arises
from the�Λ = ±1 terms in the spin–orbit and rotational Hamiltonians which mix the
2� ground state with excited 2� states. These terms also mix the 2� state, Λ = ±1,
with 2� states, for which Λ = ±2, but such mixing does not contribute to the Λ-
doubling. In the case of OH, like LiO, the situation is particularly simple because the
mixing is predominantly with a single excited state, the A 2�+ state, which lies some
32 680 cm−1 above the ground state. It is therefore possible to analyse the observed
Λ-doublet splittings explicitly in terms of the X 2� and A 2�+ states. However, in
general there will be varying contributions to theΛ-doubling from a host of 2� states,
both 2�+ and 2�− in character. In order to cope with such a situation, the effects of
the terms in the full Hamiltonian which are off-diagonal in the quantum numberΛ are
described by perturbation theory to produce an effective Hamiltonain. This effective
Hamiltonian operates only within the manifold of levels of a particular electronic state,
in this case the ground 2� state, but still reproduces the molecular eigenstates to the
required accuracy. In principle, this procedure can be carried on indefinitely to any
order of perturbation theory, as we showed in chapter 7. In practice, it becomes very
hard work beyond third order.
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The effects of the off-diagonal terms when folded-in by perturbation theory are of
two types. They can either produce operators of the same form as those which already
exist in the Hamiltonian constructed from the �Λ = 0 matrix elements (the zeroth-
order Hamiltonian), or they can have a completely novel form. A good example of the
former type is the second-order contribution to the rotational constant which arises
from admixture of excited � and � states,

B = B(1) + B(2). (9.63)

The first-order part describes the nuclear and the second-order the electronic contri-
bution to the molecular moment of inertia. The Λ-doubling terms, on the other hand,
have no counterpart in the zeroth-order Hamiltonian. For a 2� state, the operator form
is

HLD = −(1/2)q(J 2
+e−2iφ+ J 2

−e2iφ)+ (1/2)(p + 2q)(J+S+e−2iφ + J−S−e2iφ), (9.64)

where p and q are theΛ-doubling parameters. (For a� state of triplet or higher multi-
plicity, there is a third parameter, o. However, the terms which involve this parameter
have no effect on 2� or 1� states.) The operators J±are shift operators which act on
the rotational basis functions with the selection rules �Ω = ∓1, and S± are the cor-
responding operators which act on the spin basis functions with �Σ = ±1 selection
rules. In addition, the coordinateφ in equation (9.64) represents an electronic azimuthal
angle, associated with the orbital angular momentum about the z axis. The exponential
terms which involve φ ensure that HLD only has matrix elements which connect states
whose Λ values differ by ±2. Since a � electronic state can be represented by a pair
of basis functions |Λ = +1〉 and |Λ = −1〉, which are linked directly by HLD, we see
that the operator has a first-order effect for a 2S+1� electronic state. The full form of
the effective Hamiltonian for Λ-doubling was first given by Brown, Kopp, Malmberg
and Rydh [63] although the seeds of the idea were sown in just about the very first
treatment of this topic, by Mulliken and Christy [40] in 1931.

The Λ-doubling operator can be written in spherical tensor notation:

HLD =
∑

q=±1

exp(−2iqφ)
{−qT2

2q (J, J ) + (p + 2q)T2
2q (J, S )

}
. (9.65)

In a Hund’s case (a) basis set the matrix elements of (9.65) are as follows:

〈η,Λ; S,Σ; J,Ω,MJ |HLD|η,Λ′; S,Σ′; J,Ω′,MJ 〉
=

∑
q=±1

δΛ′,Λ∓2

{
δΣ,Σ′ (1/2

√
6)q(−1)J−Ω

(
J 2 J

−Ω −2q Ω′

)
[(2J − 1)(2J )

× (2J + 1)(2J + 2)(2J + 3)]1/2 + (p + 2q)(−1)J−Ω+S−Σ
(

J 1 J
−Ω −q Ω′

)

×
(

S 1 S
−Σ q Σ′

)
[J (J + 1)(2J + 1)S(S + 1)(2S + 1)]1/2

}
. (9.66)
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We have used the result

〈Λ = ±1| exp(±2iφ)|Λ = ∓1〉 = −1, (9.67)

which implies a particular phase choice for the orbital function [66]. The role which
these terms play in the matrix and their ultimate contribution to the energy levels can
best be appreciated by re-casting the matrix elements in parity-conserving combinations
of case (a) functions,

|Λ; J, |Ω|; ±〉
= 1√

2
{|Λ= 1; S,Σ; J,Ω,MJ 〉 ± (−1)J−S|Λ= −1; S,−Σ; J,−Ω,MJ 〉}. (9.68)

With appropriately chosen basis functions [66], the upper sign choice is a function with
positive parity and the lower sign choice has negative parity. In this basis, the matrix
elements of HLD are:

〈Λ; J, |Ω|; ±|HLD|Λ; J, |Ω′|; ±〉
= ±(−1)J−S

{
δΣ,Σ′ (1/2

√
6)q(−1)J+Ω

(
J 2 J
Ω −2 Ω′

)
[(2J − 1)(2J )(2J + 1)

× (2J + 2)(2J + 3)]1/2 + (p + 2q)(−1)J+Ω+S+Σ
(

J 1 J
Ω −1 Ω′

)(
S 1 S
Σ 1 Σ′

)

× [J (J + 1)(2J + 1)S(S + 1)(2S + 1)]1/2

}
. (9.69)

These matrix elements contribute with one sign for the positive parity matrix and with
the opposite sign for the negative parity matrix. Note that, because HLD commutes
with the laboratory-fixed inversion operator E∗, which defines parity, matrix elements
between states of opposite parity are rigorously zero.

The matrix representation of the Λ-doubling terms for a molecule in a 2� state
has been given in chapter 8. For completeness and continuity, we repeat it here. There
is a 2 × 2 matrix for the states with a given J value, as follows.

2�3/2
2�1/2

2�3/2 0 ±(−1)J−1/2(q/2)(J +1/2)[(J +1/2)2 −1]1/2

2�1/2 ±(−1)J−1/2(q/2)(J + 1/2) ∓(−1)J−1/2(1/2)(p + 2q)(J + 1/2)

× [(J + 1/2)2 − 1]1/2

The upper and lower signs refer to states of positive and negative parity respectively.
As mentioned above, the small mass of OH leads to a pronounced centrifugal

distortion of its rotational and spin energy levels. The description of these effects has
already been given earlier in section 8.5.4(d), where the explicit matrix elements for a
molecule in a 2� state were given.
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(iv)  

Perhaps the most important interaction in the microwave magnetic resonance experi-
ment is that between the molecular magnetic dipole moment and the applied magnetic
field, represented by the Zeeman Hamiltonian. We have already introduced this oper-
ator in our discussion of the spectra of ClO and BrO, equation (9.37). However, this
form is tailored to the description of the energy levels of a molecule in a 2�3/2 spin
component which shows good case (a) behaviour and a negligible Λ-doubling. For a
more complicated situation, such as that for OH, other terms have to be added to this
operator. We now give the complete form for the Zeeman Hamiltonian, foreshadowed
by the work of Radford [7] and put into effective operator form by Brown and Uehara
[10] and by Brown, Kaise, Kerr and Milton [66], as follows:

HZ = g′
LµB BZ T1

p=0(L) (i)

+ gSµB BZ T1
p=0(S ) (ii)

− grµB BZ T1
p=0(J − L − S ) (iii)

+ glµB BZ

∑
q=±1

D
(1)
0q (ω)∗ T1

q (S ) (iv)

− gNµN BZ T1
p=0(I) (v)

+ g′
lµB BZ

∑
q=±1

exp(−2iqφ)D
(1)
0,−q (ω)∗T1

q (S ) (vi)

− ge′
r µB BZ

∑
q=±1

∑
p

exp(−2iqφ)(−1)p
D

(1)
−p,−q (ω)∗T1

p(J − S)D
(1)
0,−q (ω)∗. (vii)

(9.70)

The seven terms in this expression represent the following interactions:

(i) the orbital Zeeman effect. The orbital g-factor, g′
L ,is so called (rather than simply

gL ) because it contains relativistic, diamagnetic and non-adiabatic contributions;
(ii) the electron spin isotropic contribution;

(iii) the rotational magnetic moment contribution to the Zeeman effect;
(iv) the anisotropic contribution to the electron spin Zeeman effect, which takes

account of the cylindrical symmetry shown by a diatomic molecule;
(v) the nuclear spin Zeeman effect;

(vi) and (vii) are two terms which are parity-dependent and effectively mark the
reduction of the electronic distribution from cylindrical to a lower symmetry.

There are seven g-factors in equation (9.70). The two major ones are g′
L and gS

which are expected to have values very near to 1.0 and 2.002. In a real molecule,
however, the values will differ slightly but significantly from these values. In practice,
their values are determined along with those of all the others from measurements
of the molecule in a known magnetic field. Only the nuclear spin g factor, gN , is
effectively a known quantity. Its apparent value will be subject to chemical shifts in
any given molecular environment, of course, but such effects are much too small to be
observable in a gas phase magnetic resonance experiment. Ignoring the nuclear spin
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g-factor, therefore, we see that there are six determinable parameters, or g-factors, in
equation (9.70) which are required to describe the Zeeman interaction for a molecule
in a 2S+1� state fully.

The matrix elements of the Zeeman Hamiltonian given in equation (9.70) are
evaluated most appropriately in an I -decoupled basis set because the nuclear spin is
decoupled in almost all situations in quite modest magnetic fields. The matrix elements
of the simpler Zeeman Hamiltonian have been given earlier in equations (9.56) to
(9.60). For the sake of completeness, we give the matrix elements of the full Zeeman
Hamiltonian here:

〈Λ; S,Σ; J,Ω,MJ ; I,MI |HZ|Λ′; S,Σ′; J ′,Ω′,MJ ; I,MI 〉
= µB BZδΛ,Λ′

∑
q

(−1)J−MJ +J−Ω[(2J + 1)(2J ′ + 1)]1/2

(
J 1 J ′

−MJ 0 MJ

)

×
(

J 1 J ′

−ΩJ q Ω′

){
(g′

L + gr )ΛδΣ,Σ′ + (gS + gr + gl)(−1)S−Σ

× [S(S + 1)(2S + 1)]1/2

(
S 1 S

−Σ q Σ′

)
− glΣδΣ,Σ′

}
− (grµB BZ MJ + gNµN BZ MI )δJ,J ′δΣ,Σ′δΛ,Λ′

−µB BZ

∑
q=±1

δΛ,Λ∓2(−1)J−MJ [(2J + 1)(2J ′ + 1)]1/2

(
J 1 J ′

−MJ 0 MJ

)

×
[(

g′
l − ge′

r

)
(−1)S−Σ

(
S 1 S

−Σ q Σ′

)
[S(S + 1)(2S + 1)]1/2(−1)J−Ω

×
(

J 1 J ′

−Ω −q Ω′

)
−ge′

r δΣ,Σ′ (−1)J−Ω∑
Ω′′

(1/2)

{
(−1)J−Ω′′

(
J 1 J

−Ω −q Ω′′

)

×
(

J 1 J ′

−Ω′′ −q Ω′

)
[J (J + 1)(2J + 1)]1/2 + (−1)J ′−Ω′′

(
J 1 J ′

−Ω −q Ω′′

)

×
(

J ′ 1 J ′

−Ω′′ −q Ω′

)
[J ′(J ′ + 1)(2J ′ + 1)]1/2

}]
. (9.71)

A complete determination of the Zeeman parameters for OH has been made by
Brown, Kaise, Kerr and Milton [66]. They first re-fitted Meerts’ data on theΛ-doubling
frequencies [38] to provide accurate zero-field frequencies. They then combined their
measurements with those made earlier by Radford [7] to determine the g-factors.
The results of their fits are given in table 9.4. The values given in table 9.4 form a
representative set and demonstrate some general points. First, the broad features of
the Zeeman interaction are described by two major parameters, g′

L and gS , which
are typically three orders-of-magnitude larger than the other four g-factors. Second,
these two parameters have values close to those expected for a free electron (1.0 and
2.002 respectively) so the Zeeman effect can be predicted quite reliably before any
experimental observations are attempted. Finally, it can be seen that the two major
g-factors differ significantly from the expected free electron values, and the other four
parameters have significant non-zero values.
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Table 9.4. g-Factors for OH in the X 2� state [66].
The calculations are made by assuming that the X
2� and A 2�+ states are in pure precession

Parameter Experimental value Calculated value

g′
L 1.001 07 (15) 1.000 93

gS 2.001 52 (36) 2.002 06

103 gl 4.00 (56) 4.29

103 gr −0.633 (19) −0.55

103 g′
l 6.386 (30) 8.58

103 ge′
r 2.0446 (23) 2.19

All of the experimentally determined quantities carry information on the electronic
structure of the OH radical. A very simple picture of this structure which actually works
very well is to describe the properties in terms of the wave functions for two electronic
states only, the X 2� and A 2�+ states, with electronic configurations

· · · (2pσ )2(2pπ )3 X 2�

· · · (2pσ )1(2pπ )4 A 2�+.

We can then make an even more drastic approximation and represent the molecular
orbitals in these configurations by pure 2p atomic orbitals on the O atom. This ap-
proximation was called pure precession by Van Vleck [41]; in this approximation the
electrons in these outermost orbitals are in a spherically symmetric environment and
they have a well defined value of the orbital angular momentum quantum number l
(unity for a p orbital). In the pure precession approximation, we can derive very simple
expressions for the g-factors [66]. The values for OH predicted on the basis of this
very simple model are given in table 9.4. The fact that they agree reasonably well with
the experimental numbers suggests that the theoretical model is essentially correct.

(b) Far-infrared laser magnetic resonance spectrum of OH

The OH molecule was one of the first molecules to be studied by the fledgling technique
of far-infrared laser magnetic resonance (FIR LMR) in the early 1970s [42]. At that
stage there were very few FIR laser lines available; for all of them, the population
inversion was created in the gain medium by electric discharge, through H2O, D2O
or HCN vapour. It is a remarkable coincidence that many of the water discharge lines
are very close in frequency to OH transitions in the v= 0 level, particularly when one
considers that OH is a light molecule with a very open rotational spectrum. It was for
this reason that the water discharge laser was familiarly referred to as the ‘OH laser’
by workers in the field. The various FIR LMR studies of OH in the v= 0 level of its
X 2� state were collected together in a paper by Brown, Kerr, Wayne, Evenson and
Radford [43]. The energy level diagram for OH in this state, showing the transitions
studied, has already been illustrated in figure 9.13. Of the seven laser lines used in this
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study, five are lines from the water discharge laser. The transitions are of two types:
pure rotational transitions within a given spin component, and fine-structure transitions
between the two spin components. The latter are usually weaker than the former; they
are actually electric dipole forbidden in the case (a) limit.

The dominant source of line broadening in a spectral transition in the far-infrared
is the Doppler effect. For a light molecule such as OH at room temperature, the Doppler
linewidth at 100 cm−1 (corresponding to a wavelength of 100 µm) is 0.000 30 cm−1

or 9.0 MHz. This is comparable with, and sometimes larger than, the proton hyperfine
splittings in OH. For this reason, the proton hyperfine splittings cannot always be
observed on resonances in the LMR spectrum. In such a situation, the intra-cavity
aspect of the FIR LMR apparatus comes into its own because it provides a natural
environment to produce saturation or Lamb dips on the absorption signals. Lamb
dips arise when radiation of a given frequency passes through the same region of the
molecular sample simultaneously from opposite directions. The linewidth of a Lamb
dip is usually dictated by lifetime limiting effects of the levels involved; in the case
of OH this is pressure broadening. The increase in resolution obtainable with Lamb
dips is demonstrated in figure 9.17, which shows part of the LMR spectrum of OH
recorded with the 84.3 µm line of the water discharge laser. The broader background is
the residual Doppler profile (or rather, its first derivative) on which are superimposed
the two Lamb dips; these correspond to the proton hyperfine doublet, also as first
derivatives, but with opposite phases.

Measurements of the FIR LMR spectrum of OH are less accurate than those of
the field-free Λ-doubling spectrum in the microwave region, partly because they are
made at much higher frequencies (with correspondingly larger linewidths), and partly

7.52 7.54 7.56 7.58

MI = +1/2

MI = −1/2

Magnetic field / kG

Figure 9.17. A line in the 84 µm LMR spectrum of OH; this line is one Zeeman component
of the J = 7/2 ↔ 5/2 F1(2�3/2) rotational transition. The Lamb dips correspond to the proton
hyperfine splitting which is otherwise hidden in the overall Doppler profile [43].
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because they involve magnetic field rather than frequency measurements. Brown, Kerr,
Wayne, Evenson and Radford [43] therefore used the data from the FIR LMR spectrum
to determine the values of the major parameters A0, γ0, B0 and D0, constraining
the Λ-doubling, hyperfine and Zeeman parameters to the values obtained by earlier
workers. The values obtained were a considerable improvement on the best available
at the time which had been determined from the A 2�+–X 2� electronic transition in
the ultraviolet region. Since then they have been superseded by observations of the
rotational and fine structure spectrum of OH by field-free tunable FIR techniques [44],
which are described in detail in chapter 10.

The dominant isotopic form of the radical is, of course, 16O1H. Following its
study by FIR LMR, observations were also made of the spectra of other less-abundant
isotopomers, including 16O2D [45] and 18O1H [46] in natural abundance, and artificially
enriched 17O1H [47]. Much of the motivation for these studies was the detection of
OH in remote regions such as the interstellar gas clouds, or the middle regions of the
earth’s atmosphere.

9.4.4. Far-infrared laser magnetic resonance of CH
in the X 2� ground state

(a) Introduction

The CH radical is an important molecule in both chemistry and physics. It has long
been familiar to optical astronomers through its interstellar absorption spectrum. The
fact that the spectrum is so simple, consisting of a single line, the R2(1) line in the
A 2�–X 2� transition, was the first indication that not only do the interstellar gas
clouds contain molecular species but also that their temperature is very low. Apart
from its astronomical significance, the CH radical is an enthusiastic participant in most
combustion processes. A proper knowledge of the way in which it is involved requires
a full determination of its physical properties and the development of experimental
methods for its detection at low concentrations. These objectives have fuelled a large
amount of research on the spectroscopy of CH, not all of it successful. It was one of the
early triumphs of FIR LMR to provide a laboratory detection of a rotational transition
in CH [48]; this followed several unsuccessful attempts to detect its microwave Λ-
doubling spectrum by either magnetic resonance or field-free techniques. Equally, it
was a major coup for the radioastronomers to be able to detect and measure the 3.3 GHz
Λ-doubling transition in the interstellar medium [49, 50], long before detection in the
laboratory. Such has been the progress made in subsequent years that laboratory studies
of CH are now almost routine.

(b) Hund’s case (b) behaviour in 2� states

From a spectroscopic point of view, CH is quite similar to OH. It has a 2� ground state
and a large rotational constant. In consequence,Λ-doubling and centrifugal distortion



2� states 625

effects are important in the description of its energy levels. However, because carbon has
a lower nuclear charge than oxygen, the spin–orbit coupling effects are much smaller;
A = 28.1 cm−1 for CH compared with −139.1 cm−1 for OH. Note also the opposite
sign, which means that the 2�1/2 fine-structure component is now the lower in energy.
The coupling scheme for the electron spin in CH is therefore no longer intermediate
between case (a) and case (b), as for OH, but right over at the case (b) limit. Its pattern
of energy levels differs considerably from that of OH, as we shall see.

The behaviour of the spin and rotational levels of a molecule in a 2� state near
the case (b) limit can be appreciated by restricting our attention to the two major
contributions to the energy, the rotational kinetic energy

Hrot = B(J − S)2, (9.72)

and the spin–orbit coupling,

Hso = ALz Sz . (9.73)

Despite our objective of describing case (b) behaviour, it is easier and more familiar
to formulate the problem in a case (a) basis set, |Λ; S,Σ; J,Ω,M〉. We have already
calculated the required matrix in chapter 8 in connection with our discussion of LiO,
with the following result.

(9.74)

|2�3/2〉 |2�1/2〉

|2�3/2〉 A

2
+ B

[(
J + 1

2

)2

− 1

]
−B

[(
J + 1

2

)2

− 1

]1/2

|2�1/2〉 −B

[(
J + 1

2

)2

− 1

]1/2

− A

2
+ B

[(
J + 1

2

)2

+ 1

]

The eigenvalues of the matrix are

E± = B

(
J + 1

2

)2

± 1

2

[
(A − 2B)2 + 4B2

{(
J + 1

2

)2

− 1

}]1/2

. (9.75)

This result is completely general, applying for all relative magnitudes of A and B.
In the case (a) limit, the separation of the two spin components, |A − 2B|, is very

large compared with the off-diagonal mixing term, −B[(J + 1/2)2 − 1]1/2, and we get
two separate sets of energy levels, as we have seen, for example, in the case of ClO. In
this limit, we can expand the square root as a power series in (J + 1/2)2 to obtain

E± ≈ ±1

2
(A − 2B) + Beff

(
J + 1

2

)2

, (9.76)

where

Beff =
[

1 ± B

(A − 2B)

]
. (9.77)
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We have assumed that (A − 2B) is a positive quantity in these equations; if it is negative,
the role of the ± signs on the right-hand side is reversed, that is, the upper sign gives the
lower level and vice versa. Equation (9.77) tells us that the effective B value is slightly
larger than the true value in the upper spin component and slightly smaller in the lower
spin component. Physically, the Hund’s case (a) coupling scheme corresponds to the
situation where L and S are decoupled from each other and projected instead onto the
internuclear axis of the diatomic molecule. This scheme is therefore really a decoupled
scheme, which explains why it is easier to evaluate matrix elements using such a
basis set.

The off-diagonal term in the matrix (9.74), arising from the rotational Hamiltonian,
mixes the levels of the two spin components. It is sometimes called the spin-uncoupling
term because it has the effect of decoupling the electron spin angular momentum from
the internuclear axis. However, this is something of a misnomer because, as the effect of
the off-diagonal term increases, the electron spin becomes progressively more strongly
coupled to the angular momentum N, the resultant of the rotational and electron orbital
angular momenta,

J = N + S, (9.78)

until, in the case (b) limit, it is completely coupled with no quantisation along the
internuclear axis. The consequence of this is that, as we move away from the case
(a) limit, the projection quantum numbers Σ and Ω which we have used to label
our basis functions, become progressively less meaningful. The two spin components
can no longer be labelled as Ω= 1/2 and 3/2 and some other scheme is needed. By
convention [51], the lower level for a given J value in equation (9.76) is labelled as F1

and the upper as F2. Since this labelling scheme is based simply on energy ordering,
it can be used for any degree of coupling. It can also be extended to states of higher
multiplicity quite easily: the three levels of a given J in a triplet state are labelled F1,
F2 and F3 in order of increasing energy, and so on. It can be seen that, near the case
(a) limit whereΩ is well-defined, the F1 component is 2�1/2 and the F2 component is
2�3/2 for positive A values, and vice versa for negative A.

In the case (b) limit the spin–orbit coupling constant A is zero and the eigenvalues
in equation (9.75) become

E± = B(J + 1/2)2 ± B(J + 1/2). (9.79)

If we make the substitution J = N + 1/2 for the lower (F1) component and J = N −
1/2 for the upper (F2) spin component, we obtain in each case

E± = B N (N + 1), (9.80)

which is the case (b) expression for the rotational energy levels with N = 1, 2, 3, . . . ,
etc. To this order of approximation, there is no fine structure splitting.

We have, elsewhere, shown a correlation diagram for typical case (a) and case
(b) rotational levels. A rather more general correlation can be better appreciated with
the help of the diagram in figure 9.18, where the eigenvalues of equation (9.75) are
plotted against A. In the usual way for a 2× 2 matrix, the pair of eigenvalues F1 and



2� states 627

F1(J )

F2(J−1)

F2(J )

F1(J+1)
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spin--orbit constant (A)
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(J )

(J)
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Figure 9.18. Plot of some eigenvalues for a molecule in a 2� state against the spin–orbit coupling
constant A.

F2 for a given J value are closest when A = 2B, and repel each other further apart
as the difference of the two diagonal elements increases. The diagram is therefore
symmetrical about A = 2B. We see that at the points A = 0 and A = 4B, the pair of
levels F1(J ) and F2(J − 1) are degenerate for any particular value of J . The first of
these coincidences is just the case (b) limit which we have discussed above. The diagram
shows that, for A = 4B also, the rotational levels show exact case (b) behaviour with
zero fine structure splitting as in equation (9.80). Between these two case (b) crossing
points, the F1 component for a given N level lies above the F2 component. For the
special case of A = 2B, the splitting is

F1(N ) − F2(N ) = B
{
(2N + 1) − [(N + 1)2 − 1]1/2 − [N 2 − 1]1/2

}
→ 0 for larger N values. (9.81)

Outside these crossing points, that is for A< 0 or A> 4B, the order of the two spin
components for a given N level is reversed, with F2 now lying above F1. Of course,
the further the value of A is from these case (b) crossing points, the less meaningful is
the quantum number N .

It may seem slightly strange that the Hund’s case (b) pattern of rotational energy
levels seen for A = 0 recurs when A = 4B. It is certainly true that these two situa-
tions cannot be distinguished from a consideration of the eigenvalues alone. However,
they are easily distinguished in practice because the corresponding eigenfunctions are
different:

|+〉 = cosβ|3/2〉 + sinβ|1/2〉,
(9.82)

|−〉 = −sinβ|3/2〉 + cosβ|1/2〉,
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where

sin 2β = − 2Bz1/2

[(A − 2B)2 + 4B2z]1/2
, cos 2β = (A − 2B)

[(A − 2B)2 + 4B2z]1/2
. (9.83)

In these equations z is shorthand for [(J+1/2)2 − 1]. Thus, for A = 0,

sin 2β = −z1/2/(J + 1/2), cos 2β = −1/(J + 1/2). (9.84)

For A = 4B, on the other hand, the result is the same for sin2β but has the opposite
sign for cos2β. Thus molecular observables which depend on the phase of the eigen-
functions, such as transition intensities or magnetic dipole moments, will differ in the
two cases.

Before leaving this general discussion of 2� states, we must consider the special
case of the J = 1/2 level. Since this level does not exist for the 2�3/2 spin component,
the 2 × 2 matrix description (9.74) is not appropriate. The J = 1/2 level remains a
pure 2�1/2 state for all possible values of A and B and its eigenvalue is given by

E(J = 1/2) = −A/2 + B[(J + 1/2)2 + 1] = −A/2 + 2B. (9.85)

Because of the relationship (9.78) we know that the J = 1/2 level is always associated
with the level N = 1 in the case (b) regime and it is tempting to say that it must always
be F2 also (because J = N − 1/2). However, this is not the case because there are not
two spin components for J = 1/2 and the distinction between F1 and F2 on the basis
of energy ordering is not applicable. However, the eigenvalue in equation (9.85) tells
us that it is appropriate to associate the J = 1/2 level with the lower spin component
when A is positive (regular 2� state) and with the upper spin component when A is
negative (inverted 2� state). More explicitly,

J = 1/2 is F1 for A > 2B, or F2 for A < 2B. (9.86)

(c) Experimental studies

As we mentioned in the introduction to this section, it was known forty years ago
from optical spectroscopy that CH is a component of interstellar gas clouds and the
search was on for a spectroscopic detection of the radical at higher resolution so that
theΛ-doubling in the lowest rotational level (J = 1/2) could be measured or predicted
accurately. This would enable the detection of CH by radio-astronomers and so allow
the distribution of CH in these remote sources to be mapped out. The race was won
by Evenson, Radford and Moran [48] using the then new technique of far-infrared
LMR in the Boulder laboratories of the NBS (now known as NIST). They realised that
there was a good near-coincidence between the water discharge laser line at 118.6 µm
(84.249 cm−1) and the N = 3 ← 2, J = 7/2 ← 5/2 transition of CH in the F1 spin
component. They formed the CH radical in an oxyacetylene flame and were rewarded
with the novel spectrum shown in figure 9.19. The strong lines in this spectrum are all
attributable to OH which, we recall, was detected on several different water discharge
lines by LMR, including the 118.6 µm line. The new, additional, lines conformed to
the pattern expected for CH.
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Figure 9.19. The 118.6 µm magnetic resonance spectrum of a low-pressure oxyacetylene flame
[48]. The lines marked * are due to OH, with the remaining lines due to CH. The spectra are
recorded for two different polarisations (see text).

We remember that there were very few far-infrared laser lines available at the time,
all of them discharge laser lines. Unfortunately, although there is a spectacular series
of coincidences between the lines of the water discharge laser and the spectrum of the
OH radical, the same is not true for CH. The only good coincidence is the 118.6 µm
line used by Evenson, Radford and Moran [48]. Progress on the far-infrared spectrum
of CH had therefore to await the development of new far-infrared laser lines, optically
pumped by an infrared carbon dioxide laser. With these laser lines, two further stud-
ies of CH in the ground 2� state were made in the Boulder laboratories, by Hougen,
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21

Figure 9.20. Lower rotational levels of CH in the v= 0 level of the X 2� ground state. The size of
theΛ-doublet splitting is exaggerated for the sake of clarity. The observed FIR LMR transitions
are shown [53]. Other transitions were later observed using tunable far-infrared radiation, and
are described in chapter 10.

Mucha, Jennings and Evenson [52] and by Brown and Evenson [53]. An important
contribution [52] was the discovery of a better method for the generation of CH, the
reaction between F atoms and CH4. The reaction was easier to control than the oxyacety-
lene flame, produced the radical at lower temperatures, and was less damaging to the
apparatus!

In figure 9.20 we give the energy level diagram for CH in the zero-point vibrational
level of it ground 2� state, including the transitions reported by Brown and Evenson
[53]. For CH, by a happy accident of nature, A is very close to 2B, and the energy level
scheme shows the expected case (b) behaviour. The quantum number N provides a
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Figure 9.21. FIR LMR spectrum of CH [53]. The spectra were recorded using a laser wavelength
of 124.4 µm. The lasing medium was CH2DOH, pumped by the 10P(34) infrared line of carbon
dioxide. The rotational transition involved is N = 3 ← 2, J = 5/2 ← 5/2,− ← +.

better label than J ; levels with the same N value are very close together whereas those
with the same J values are some way apart. We see also, as expected from figure 9.18,
that for the two components with the same N value, F1 lies above F2. In addition, it
is far from clear whether the level J = 1/2 should be associated with the F1 or the F2

state. Because A is very slightly smaller than 2B, we have placed it in the F2 stack
but really it could equally well be associated with either. We have shown the very first
LMR spectrum of CH in figure 9.19, but in figure 9.21, taken from Brown and Evenson
[53], we show a later spectrum obtained through clean production of CH, with a superb
signal-to-noise ratio, and Lamb dips on the highest field resonance in the perpendicular
spectrum, revealing the proton hyperfine structure. All of the resonances shown in this
spectrum arise from the Zeeman M-components and proton hyperfine structure for one
Λ-doubling transition; the otherΛ-doubling transitions occur at much higher magnetic
fields because the splitting is quite large.
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Figure 9.22. Proton hyperfine pattern observed for the LMR transition F1, N ′ = 1, J ′ = 3/2 ←
F2, N ′′ = 1, J ′′ = 1/2, recorded using a laser line at 554.4 µm from CH2F2. The numbers refer to
the value of the quantum number MF in the lower state (MJ = −1/2 combined with MI = +1/2
or −1/2). The spectrum is recorded in perpendicular polarisation (�MF = ±1).

The LMR transitions which involve the J = 1/2 level all show a peculiar pro-
ton hyperfine structure; a typical example from the 554.4 µm spectrum is shown in
figure 9.22. The normal hyperfine pattern consists of two lines of equal intensity, one
associated with the nuclear spin state MI = +1/2 and the other with MI = −1/2. In
other words, the pattern reflects the fact that the nuclear spin is decoupled from the
other angular momenta in the magnetic fields used to produce the resonance. For the
transitions which involve the J = 1/2 level, three hyperfine components are seen, usu-
ally two stronger but unequal and one weaker. The explanation for these observations
lies in the peculiar nature of the J = 1/2 level as discussed in the previous section.
This level has pure 2�1/2 character even in the Hund’s case (b) limit to which CH
conforms. In the 2�1/2 component, the electron orbital and spin contributions to the
magnetic moment cancel almost exactly and the magnetic moment of CH in this level
is very small (7 × 10−4 µB). In consequence, the two nuclear spin states, labelled by
the total angular momentum quantum F = 0 and 1, are not mixed strongly even by
a large applied magnetic field and the nuclear spin remains coupled to the rotational
angular momentum. For all other levels of CH, the nuclear spin is decoupled by mod-
est magnetic fields. The LMR transition giving the spectrum shown in figure 9.22 is
therefore between two states with very different coupling character. Nuclear spin ‘for-
bidden’ transitions (forbidden, that is, on the basis of the I -decoupled selection rule
�MI = 0) are therefore seen, consistent with the overall selection rule �MF = 0 or
±1, depending on the polarisation.

The outcome of the analysis of the FIR LMR spectrum of CH in its X 2� state
was an accurate determination of several parameters in the effective Hamiltonian.
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The two primary parameters for a 2� state were determined to be A0 = 28.147 cm−1

and B0 = 14.192 cm−1 so that A/B = 1.983. The two Λ-doubling parameters
p = 0.0335 cm−1 and q = 0.0387 cm−1 have very similar magnitudes, again reflecting
case (b) behaviour (for case (a), p is much larger than q in magnitude). The full set
of four hyperfine parameters was determined for the first time, carrying valuable in-
formation on the electronic wave function for CH. We will return to the CH radical in
chapter 10, describing the recent field-free tunable far-infrared studies, which provide
even more accurate values of the molecular parameters. We shall also describe the
interpretation of these parameters in some detail in terms of ab initio calculations of
the electronic wave function.

Following their work on the LMR spectrum of CH, Brown and Evenson also studied
the far-infrared LMR spectrum of CD [54]. The energy level diagram for CD in the
v= 0 level of the X 2� state is shown in figure 9.23. Like that of CH, it conforms very
closely to Hund’s case (b) coupling. Indeed it is an almost perfect example of exact case
(b) behaviour because in this case A is almost exactly 4B (A for CD is very similar to
A for CH, being an electronic property of the molecule, whereas B for CD is half that
for CH). The F1, F2 spin–rotation splittings for a given N level are therefore extremely
small. Analysis of the LMR spectrum once again yielded a rich crop of molecular
parameters which made interesting comparison with the corresponding parameters for
CH. These are discussed in chapter 10.

9.5. 2� states

9.5.1. Introduction

Free radicals in 2� ground or excited states have been studied extensively by a range
of spectroscopic methods, but not in general by magnetic resonance techniques. We
shall discuss the microwave spectroscopy of 2� free radicals and ions in detail in
chapter 10. It is, however, important to understand why magnetic resonance methods
are usually unsuitable. In many ways 2� diatomic molecules may be regarded as
prototypes for nonlinear polyatomic molecules. In addition, some of the interactions
which are important in 2� states also occur in 3� states, for which magnetic resonance
methods have been important, as we shall see in due course. We therefore develop the
theory of the rotational, fine and hyperfine levels of 2� states, including magnetic field
effects, with the promise that the results will become important when we discuss the
pure microwave spectra of species like CN, SiN and CO+ in chapter 10. The theory
will also become relevant in understanding microwave/optical double resonance results,
described in chapter 11.

9.5.2. CN in the X 2�+ ground state

We choose to describe the CN radical in its X 2�+ ground state since it illustrates most
of the interactions which are likely to be encountered. It conforms to Hund’s case (b)
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1 2

Figure 9.23. Lower rotational levels of the CD radical in the v= 0 level of the X 2� ground
state, and the observed FIR LMR transitions [54]. Note the unexpected inversion of the parity-
doublet in the J = 3/2, F1 level; this is another symptom of the transition from case (a) to case
(b) coupling.

coupling (see chapter 6), where the rotational angular momentum N is coupled to the
electron spin S to form the total angular momentum J. Nuclear spin interactions can then
be treated in either the hyperfine-coupled representation, J + I = F, or the hyperfine
decoupled representation. We shall examine both, the coupled representation being
convenient for zero-field spectroscopy, whilst the decoupled representation is more
useful for analysing Zeeman effects.



2� states 635

The effective Hamiltonian for CN 2�+ in zero field may therefore be expressed as
the sum of five terms:

Heff = {Bv − DvN2}N2 + γvT1(N) · T1(S) + bFT1(I) · T1(S)

−
√

10gSµB gNµN (µ0/4π)T1(S,C2) · T1(I) − eT2(Q) · T2(∇E). (9.87)

This effective Hamiltonian is very similar to that used in the analysis of the radiofre-
quency spectrum of H+

2 , described in chapter 11, but with the addition of the quadrupole
term. We have also added the term representing the rotational kinetic energy because
we will wish to derive expressions for the frequencies of rotational transitions in due
course. A further very important comment should be added concerning the electron
spin–rotation term in the effective Hamiltonian. As we discussed in chapter 7, the
first-order contribution to γv originates directly from the magnetic interaction between
the electron spin magnetic moment and the magnetic moment arising from rotation of
the nuclei plus electrons. In H+

2 this is indeed the physical origin of the interaction.
In almost all other molecules, however, the first-order contribution is outweighed by a
second-order contribution arising from spin–orbit mixing of excited electronic states
with the ground state 2� state, which generates some orbital angular momentum. We
showed in chapter 7 that this effect can be accurately represented by the term shown in
equation (9.87).

The case (b) basis functions are of the form |η,Λ; N , S, J, I, F,MF 〉 in the
hyperfine-coupled basis set and the matrix elements of the effective Hamiltonian are
given below. We includeΛ in the basis set because althoughΛ= 0 for a � state, there
are terms in the effective Hamiltonian which can mix the ground state with excited
states having Λ 
= 0. As before, the absence of primes on the right-hand side denotes
that the matrix elements are diagonal in the relevant quantum numbers.

(i) 

〈η,Λ, N , S, J, I, F,MF |{Bv − DvN2}N2|η,Λ, N , S, J, I, F,MF 〉
= {Bv − DvN (N + 1)}N (N + 1). (9.88)

Note that a centrifugal distortion term has been included; the resolution and accuracy
of pure microwave spectroscopy warrants this inclusion, even for the lowest rotational
levels.

(ii) -- 

The spin–rotation interaction is diagonal in our basis set, and independent of quantum
numbers involving nuclear spin:

〈η,Λ, N , S, J, I, F,MF |γvT1(N) · T1(S)|η,Λ, N , S, J, I, F,MF 〉
= γv(−1)N+J+S

{
S N J
N S 1

}
{S(S + 1)(2S + 1)N (N + 1)(2N + 1)}1/2. (9.89)
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(iii)   

There are matrix elements off-diagonal in J which will become significant if the spin–
rotation interaction is sufficiently small; the interaction is, however, largely diagonal.

〈η,Λ, N , S, J, I, F,MF |bF T1(S) · T1(I)|η,Λ, N , S, J ′, I, F,MF 〉
= bF(−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1)(2I + 1)}1/2〈N , S, J‖T1(S)‖N , S, J 〉

= bF(−1)J ′+F+I

{
I J ′ F
J I 1

}
(−1)J ′+N+1+S{(2J + 1)(2J ′ + 1)}1/2

{
S J ′ N
J S 1

}
× {I (I + 1)(2I + 1)S(S + 1)(2S + 1)}1/2. (9.90)

(iv)   

The analysis is similar to that presented for ClO, but is more complicated; from equation
(9.87):

〈η,Λ, N , S, J, I, F,MF |H dip|η′,Λ′, N ′, S, J ′, I, F,MF 〉
=−

√
10gSµB gNµN (µ0/4π)(−1)J ′+F+I

×
{

I J ′ F
J I 1

}
{I (I + 1)(2I + 1)}1/2〈η,Λ, N , S, J‖T1(S,C2)‖η′,Λ′, N ′, S, J ′〉

= −
√

10gSµB gNµN (µ0/4π)(−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1)(2I + 1)3(2J +1)

× (2J ′ +1)S(S +1)(2S +1)}1/2




J J ′ 1
N N ′ 2
S S 1


〈η,Λ, N‖C2(θ, φ)(r−3)‖η′,Λ′, N 〉

= −
√

30gSµB gNµN (µ0/4π)(−1)J ′+F+I

{
I J ′ F
J I 1

}


J J ′ 1
N N ′ 2
S S 1




×
∑

q

(−1)N−Λ
(

N 2 N ′

−Λ q Λ′

)
{I (I +1)(2I +1)(2J +1)(2J ′+1)S(S + 1)(2S + 1)

× (2N + 1)(2N ′ + 1)}1/2〈η,Λ|C2
q (θ, φ)(r−3)|η′,Λ′〉. (9.91)

Fortunately the terms arising from q 
= 0 which involve excited electronic states are
probably always going to be negligible, and in the molecular species which have been
studied so far, matrix elements off-diagonal in N are also negligible. Consequently it
will usually be sufficiently accurate to consider only matrix elements off-diagonal in
J , so we will use the result:

〈η,Λ, N , S, J, I, F,MF |H dip|η,Λ, N , S, J ′, I, F,MF 〉

=−
√

30t(−1)J ′+F+I+N

{
I J ′ F
J I 1

}


J J ′ 1
N N 2
S S 1




(
N 2 N
0 0 0

)

× {I (I +1)(2I +1)(2J +1)(2J ′ +1)S(S +1)(2S +1)}1/2(2N +1), (9.92)
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where t , the axial component of the dipolar interaction, is defined in equation (9.61).
9- j symbols present something of a headache if one seeks a neat algebraic expression
of the result; with the availability of computer programs for their evaluation, we leave
(9.92) as it is until we need to evaluate it further in the next section.

(v)    

Our treatment of the quadrupole interaction is similar to that described previously:

〈η,Λ; N , S, J, I, F,MF | − eT2(Q) · T2(∇E)|η′,Λ′; N ′, S, J ′, I, F,MF 〉
= −e(−1)J ′+F+I

{
I J ′ F
J I 2

}
〈I‖T2(Q)‖I 〉〈η,Λ; N , S, J‖T2(∇E)‖η′,Λ′; N ′,S, J ′〉

= −e(−1)J ′+F+I

{
I J ′ F
J I 2

}
〈I‖T2(Q)‖I 〉(−1)J ′+N+S{(2J ′ + 1)(2J + 1)}1/2

×
{

N ′ J ′ S
J N 2

}
〈η,Λ; N‖T2(∇E)‖η′,Λ′; N ′〉

= −e(−1)J ′+F+I

{
I J ′ F
J I 2

}
〈I‖T2(Q)‖I 〉(−1)J ′+N+S{(2J ′ + 1)(2J + 1)}1/2

×
{

N ′ J ′ S
J N 2

}∑
q

(−1)N−Λ
(

N 2 N ′

−Λ q Λ′

)
{(2N + 1)(2N ′ + 1)}1/2

× 〈η,Λ|T2
q (∇E)|η′,Λ′〉. (9.93)

As was the case with the dipolar interaction, the quadrupole interaction has matrix
elements which connect the ground state with excited states; we neglect these by
putting q = 0. The reduced matrix element of T2(Q) was evaluated in (9.14), so with
these replacements, including the neglect of matrix elements off-diagonal in N , we
obtain the simplified result:

〈η,Λ; N , S, J, I, F,MF | − eT2(Q) · T2(∇E)|η,Λ; N , S, J ′, I, F,MF 〉
= (−1)J ′+F+I

{
I J ′ F
J I 2

}(
eQ

2

)
{(I +1)(2I +1)(2I +3)/I (2I − 1)}1/2

× (−1)J ′ + N + S{(2J ′ + 1)(2J + 1)}1/2

{
N J ′ S
J N 2

}

× (−1)N

(
N 2 N
0 0 0

)
(2N + 1)

(
q0

2

)
. (9.94)

We shall make use of this result when we discuss pure microwave rotational transitions
in chapter 10.

(vi)  

One of the purposes of this section is to show the limitations of magnetic resonance
methods in studying 2� states. We do not need to include nuclear spin interactions, and
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we consider only the interaction of the electron spin S with the magnetic field applied
in the Z (p = 0) direction. The required matrix elements are therefore

〈η,Λ, N , S, J,MJ |gSµB BZ T1
0(S)|η,Λ, N , S, J ′,MJ 〉

= gSµB BZ (−1)J−MJ

(
J 1 J ′

−MJ 0 MJ

)
(−1)J+N+1+S

{
S J ′ N
J S 1

}
×{S(S + 1)(2S + 1)(2J ′ + 1)(2J + 1)}1/2. (9.95)

Let us now consider the N = 1 and 2 rotational levels; the spin–rotation interaction
produces a doublet splitting of each level according to equation (9.89), the energies
being given by

E(J ) = γv

2
{J (J + 1) − N (N + 1) − S(S + 1)}. (9.96)

Substituting the values for N , S and J , the spin–rotation energies of the levels are

N = 1: E(J = 3/2) = γv

2
; E(J = 1/2) = −γv

(9.97)

N = 2: E(J = 5/2) = γv; E(J = 3/2) = −3γv
2
.

The rotational transition N = 2 ← 1 is electric dipole allowed, and if the oscillating
electric field is applied in the p direction, the relative intensities of the spin components
are obtained by evaluating the expression

|〈N , S, J,MJ | − µeT1
p(E)|N ′, S, J ′,M ′

J 〉|2

= δN ′,N±1µ
2
e E2

p

(
J 1 J ′

−MJ p M ′
J

)2

(2J + 1)(2J ′ + 1)

×
{

N ′ J ′ S
J N 1

}2

(1/2)(2N + 1 ± 1). (9.98)

This expression tells us that for a rotational transition �N = ±1, the selection rule
for J is �J = 0,±1, with the �J =�N components being the strongest. The zero-
field swept-frequency rotational transitions are shown in figure 9.24; if there is no
hyperfine structure, the spectrum will consist of a main doublet, with a weaker�J = 0
component.

In a magnetic resonance experiment designed to record the rotational spectrum,
the fixed radiation frequency would be close to the resonant zero-field frequency, with
the mismatch being tuned with a swept magnetic field. Equation (9.95) enables us to
calculate the behaviour of the levels as a function of magnetic field strength; we show
the results for both the N = 1 and 2 rotational levels in figure 9.25, appropriate for the
CN radical where γv=0 has the value 217.5 MHz [55].
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Figure 9.24. Lower rotational levels of a 2�+ molecule, like the CN radical, showing the spin-
doubling and the allowed electric dipole transitions between N = 2 and 1.

The Zeeman diagram can be divided into three different regions. At low field the
splitting of the MJ levels is linear in the magnetic field (region 1). As the field in-
creases the energies become nonlinear (region 2) until eventually at sufficiently high
field (region 3) they become linear again. Region 1 corresponds to the situation when
the Zeeman energies are small compared with the spin–rotation energies; region 3
corresponds to the opposite situation, in which the electron spin is decoupled from
the molecular frame, and quantised by the external magnetic field. This decoupling
is known as the Paschen–Back effect. Region 2 is, of course, the intermediate region.
Magnetic resonance experiments would usually be performed with the oscillating elec-
tric vector perpendicular to the static field, so that�MJ = ±1 transitions are tuned into
resonance with the fixed frequency radiation in region 1. In this region they retain their
electric dipole intensity. Conversely, in region 3 the�MJ = ±1 electric dipole transition
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Figure 9.25. Zeeman splitting of the N = 1 and 2 rotational levels in the CN radical. In region 1
the rotational transition is electric dipole allowed and magnetically tunable. In region 3 the
magnetically-tunable transitions are magnetic dipole electron spin transitions; the electric dipole
transitions are not magnetically tunable. Region 2 is intermediate between these limiting cases.

energies become independent of the magnetic field strength; they obey �MS = 0 and
have lost their magnetic tunability. There are other transitions whose frequencies are
strongly field-dependent, but they are very weak. In the high-field region 3, the Zeeman
levels are better described in terms of their decoupled projection quantum numbers, MN
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and MS , and the magnetically tunable transitions have the selection rules �MS = ±1,
�MN = 0. These conclusions, which come from electric dipole intensity calculations
based upon equations (9.95) and (9.98) have a straightforward physical interpretation.
Electric dipole transitions involve a reorientation of the molecular electric dipole mo-
ment, which lies along the internuclear axis. Their magnetic tunability comes from
the electron spin magnetic moment; if this is also coupled to the molecular axis, all is
well. But in region 2 we see the onset of the process through which the spin is decou-
pled from the molecular axis by the increasing magnetic field strength (as the matrix
elements off-diagonal in J become larger). In region 3 the electron spin is wholly
spaced-quantised with respect to the magnetic field direction. Electron spin transitions
with �N = 0 are not associated with reorientation of the molecular electric dipole
moment, so they can only possess magnetic dipole intensity. Magnetic tunability of
electric dipole transitions therefore depends upon the strength of the spin coupling to
the molecular frame, and in 2� molecules only the spin–rotation interaction provides
the necessary coupling; it is generally rather weak. In 2�molecules, like ClO, the first
order spin–orbit coupling is immensely strong compared with the Zeeman interaction,
at all feasible magnetic field strengths. As we shall see, 3� molecules are intermedi-
ate, in that the electron spin–spin interaction is often strong enough to withstand the
decoupling by an applied magnetic field until much higher field strengths.

These, then, are the reasons why magnetic resonance methods, microwave or far-
infrared laser, have had limited success with 2� diatomic radicals. Similar considera-
tions apply to nonlinear polyatomic radicals in doublet states; success in far-infrared
laser magnetic resonance depends upon the magnitude of the spin–rotation coupling,
and the size of the energy mismatch between the transition frequency and the laser
frequency, since the mismatch has to be magnetically tuned. This becomes less of
a limitation as more laser frequencies become available, except that one then needs
to know in advance which laser frequency to choose. It becomes part of the search
problem!

9.6. 3� states

9.6.1. SO in the X 3�− ground state

Several molecules with 3� ground states have been studied by both microwave and
far-infrared laser magnetic resonance; they include O2, SO and SeO. In O2 the observed
transitions are necessarily magnetic dipole, and they are frequently used to calibrate
the sensitivity of a FIR laser magnetic resonance spectrometer. The other species have
electric dipole transitions, and we shall illustrate the situation by describing the studies
of SO carried out by Carrington, Levy and Miller [56]. SO was also one of the first
free radicals to be studied by pure microwave methods, which we will describe in
chapter 10. The analysis of the magnetic resonance spectrum actually made use of
the parameters determined earlier by pure microwave studies. SO is an easy radical
to study experimentally since it is relatively unreactive and has a lifetime of several
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seconds under most conditions. We commence by considering the dominant isotopic
species 32S16O where hyperfine interactions are not involved. We then discuss the
spectrum of 33S16O which exhibits 33S hyperfine structure, and finally NH which, as in
the case of NF in its 1� state described earlier, has hyperfine structure arising from both
nuclei.

The microwave magnetic resonance spectrum of SO was recorded at a resonance
frequency of 8762 MHz and involved Zeeman components of rotational transitions
between the N = 1 and 2 rotational levels. We first describe the effective Hamiltonian
and its matrix elements, and then the observed spectrum and its analysis.

The effective Hamiltonian used to analyse the spectrum was written in the form

Heff = B0 N2 + 2

3
λ
(
3S2

z − S2
) + γ N · S, (9.99)

where z is the internuclear axis. Each of the three molecular parameters in (9.99) is the
sum of first-order and second-order terms,

B0 = B(1)
0 + B(2)

0 , λ = λ(1) + λ(2), γ = γ (1) + γ (2), (9.100)

where, as we discussed in chapter 7, the second-order terms arise from spin–orbit
coupling which mixes the 3� ground state with excited states for which Λ= 0, ±1
and �S = 0, ±1. The extra term in equation (9.99) is the second one, the first-order
part of which represents the dipole–dipole interaction between the spins of the two
unpaired electrons. This form may seem strange, although it is in conventional use,
but we can readily understand its expression in irreducible tensor form as follows. By
analogy with the dipole-dipole coupling of two nuclear spins (see appendix 8.1), we
would expect the dipolar coupling of two electron spins to be represented by the term

Hdip = −g2
Sµ

2
B(µ0/4π)

√
6T2(C) · T2(S1, S2), (9.101)

where

T2
p(S1, S2) = (−1)p

√
5

∑
p1,p2

(
1 1 2
p1 p2 −p

)
T1

p1
(S1)T1

p2
(S2), (9.102)

and

T2
q (C) = 〈η|C2

q (θ12, φ12)r−3
12 |η〉. (9.103)

The diagonal (q = 0) component of (9.101) may be written

−g2
Sµ

2
B(µ0/4π)C2

0 (θ12, φ12)r−3
12

√
6T2

0(S1, S2) = 2

3
λ
√

6T2
0(S, S), (9.104)

where S is the total spin. By making use of the relationship (9.102) one finds that one
can make the replacement

√
6T2

0(S, S) = 3S2
z − S2. (9.105)

We shall, however, represent the electron spin dipolar interaction by (9.101) and then
relate our results to (9.99). Consequently the effective Hamiltonian can now be written
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in irreducible tensor form as

Heff = B0 N2 − g2
Sµ

2
B(µ0/4π)

√
6T2(C) · T2(S1, S2) + γT1(N) · T1(S). (9.106)

It is defined to operate within the ground vibronic state by (9.104), but the second-order
part of the parameter λ, (9.100), arises from spin–orbit mixing of excited states with
Λ equal to 0, ±1 and �S = 0, ±1. In molecules containing an atom beyond the first
row of the periodic table, the second-order contribution to λ (i.e. λ(2)) is far larger than
the first-order part, λ(1).

Equation (9.106) is a field-free Hamiltonian, to which must be added the Zeeman
terms; the complete effective Hamiltonian for the problem is therefore

Heff = B0 N2 − g2
Sµ

2
B(µ0/4π)

√
6T2(C) · T2(S1, S2) + γT1(N) · T1(S)

+µBT1(B) · gST1(S) + ge
l µB

∑
p

(−1)pT1
p(B)

∑
q=±1

D
(1)
−pq (ω)∗T1

q (S )

− gr T1(B) · T1(N). (9.107)

The anisotropic corrections to the electron spin g-factor appear in (9.107) because of
the admixture of excited electronic states with the 3� ground state.

The matrix elements of the effective Hamiltonian (9.107) may now be calculated
in a case (b) basis set.

(i)  

〈η,Λ; N , S, J,MJ |B0 N2|η,Λ; N , S, J,MJ 〉 = B0 N (N + 1). (9.108)

(ii) -- 

Using the form (9.101) for the electron spin–spin interaction we have

〈η,Λ; N , S, J,MJ | − g2
Sµ

2
B(µ0/4π)

√
6T2(S1, S2) · T2(C)|η′,Λ; N ′, S, J,MJ 〉

= −
√

6(−1)J+N ′+S

{
S N ′ J
N S 2

}

× 〈η, N ,Λ‖g2
Sµ

2
B(µ0/4π)T2(C)‖η′, N ′,%′〉〈S‖T2(S1, S2)‖S〉

= −
√

6(−1)J+N ′+S

{
S N ′ J
N S 2

}∑
q

〈η,Λ|g2
Sµ

2
B(µ0/4π)C2

q (θ12, φ12)
(
r−3

12

)|η′,Λ′〉

× 〈N ,Λ‖D
(2)
.q (ω)∗‖N ′,Λ′〉

√
5




S1 S1 1
S2 S2 1
S S 2




× (2S + 1){S1(S1 + 1)(2S1 + 1)S2(S2 + 1)(2S2 + 1)}1/2. (9.109)

The reduced matrix element of T2(S1, S2) was previously evaluated in appendix 8.3,
and to be consistent with the form (9.99) of the spin–spin interaction we take the q = 0
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component of (9.109). Hence we have the result

〈η,Λ; N , S, J,MJ | − g2
Sµ

2
B(µ0/4π)

√
6T2(S1, S2) · T2(C )|η′,Λ′; N ′, S, J,MJ 〉

= −
√

6(−1)J+N ′+S

{
S N ′ J
N S 2

}
〈η,%|g2

Sµ
2
B(µ0/4π)C2

0 (θ12, φ12)
(
r−3

12

)|η,Λ〉

× 〈N ,Λ|D(2)
.0 (ω)∗|N ′,Λ〉(

√
5/2)

= −
√

30

2
(−1)J+N ′+S

{
S N ′ J
N S 2

}
〈η,Λ|g2

Sµ
2
B(µ0/4π)C2

0 (θ12, φ12)
(
r−3

12

)|η,Λ〉

× (−1)N

(
N 2 N ′

0 0 0

)
{(2N + 1)(2N ′ + 1)}1/2

= λ
2
√

30

3
(−1)J+N ′+S

{
S N ′ J
N S 2

}
(−1)N

(
N 2 N ′

0 0 0

)
{(2N + 1)(2N ′ + 1)}1/2.

(9.110)

In the last line of equation (9.110) we have introduced the parameter λ, which we first
met in equation (9.99). If we now consider only the matrix elements diagonal in N we
can calculate the spin–spin energies for the three spin components to be

J = N + 1: E = − 2λN

3(2N + 3)
,

J = N : E = 2

3
λ,

J = N − 1: E = −2λ(N + 1)

3(2N − 1)
.

(9.111)

These are the first-order spin–spin energies but we see from (9.110) that there are also
matrix elements off-diagonal in N , which cannot, in general, be neglected. The 3- j
symbol in (9.110) tells us that N ′ = N±1 matrix elements are zero, but that N ′ = N ± 2
elements are non-zero. Specifically we find that

〈η,Λ; N , S, J,MJ | − g2
Sµ

2
B(µ0/4π)

√
6T2(S1, S2) · T2(C)|η,Λ; N ± 2, S, J,MJ 〉

= λ2
√

30

3
(−1)J+N+S

{
S N ± 2 J
N S 2

}
(−1)N

(
N 2 N ± 2
0 0 0

)

× {(2N + 1)(2[N ± 2] + 1)}1/2. (9.112)

Evaluation of this expression for different members of the spin triplet shows that there
are just two non-zero elements which must, of course, be diagonal in J :

〈η,Λ; N , S, J,MJ | − g2
Sµ

2
B(µ0/4π)

√
6T2(S1, S2) · T2(C)|η,Λ; N + 2, S, J,MJ 〉

= 2λ

{
(N + 1)(N + 2)

(2N + 3)2

}1/2

for J = N + 1, (9.113)
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〈η,Λ; N , S, J,MJ | − g2
Sµ

2
B(µ0/4π)

√
6T2(S1, S2) · T2(C)|η,Λ; N − 2, S, J,MJ 〉

= 2λ

{
N (N − 1)

(2N − 1)2

}1/2

for J = N − 1, (9.114)

(iii) -- 

The matrix elements of the spin–rotation interaction are diagonal in a case (b) basis:

〈η,Λ; N , S, J,MJ |γT1(N) · T1(S)|η,Λ; N , S, J,MJ 〉

= γ (−1)N+J+S

{
S N J
N S 1

}
〈N‖T1(N)‖N 〉〈S‖T1(S)‖S〉

= γ (−1)N+J+S

{
S N J
N S 1

}
{N (N + 1)(2N + 1)S(S + 1)(2S + 1)}1/2. (9.115)

Evaluation of the 6- j symbol gives the results for the three spin components of rotational
level N :

J = N + 1: E = γ N
J = N : E = −γ
J = N − 1: E = −γ (N + 1).

(9.116)

(iv)    

As usual, the direction of the applied magnetic field is taken to define the Z (p = 0)
direction:

〈η,Λ; N , S, J,MJ |gSµB T1
0(B)T1

0(S)|η,Λ; N , S, J ′,MJ 〉

= gSµB BZ (−1)J−M

(
J 1 J ′

−MJ 0 MJ

)
(−1)J+N+1+S

{
S J ′ N
J S 1

}
× {(2J ′ + 1)(2J + 1)S(S + 1)(2S + 1)}1/2. (9.117)

Expansion of the Wigner symbols in (9.117) gives the results:

〈η,Λ; N , S, J,MJ |gSµBT1
0(B)T1

0(S )|η,Λ; N , S, J,MJ 〉
= gSµB BZ MJ/(N + 1) for J = N + 1,

gSµB BZ MJ/N (N + 1) for J = N ,

−gSµB BZ MJ/N for J = N − 1.

〈η,Λ; N , S, J,MJ |gSµBT1
0(B)T1

0(S )|η,Λ; N , S, J − 1,MJ 〉
= gSµB BZ

{
N
[
(N + 1)2 − M2

J

]/
(N + 1)2(2N + 1)

}1/2
for J = N + 1,

gSµB BZ

{(
N 2 − M2

J

)
(N + 1)

/
N 2(2N + 1)

}1/2
for J = N . (9.118)
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(v)    

The matrix elements of the anisotropic spin Zeeman interaction are:

〈η,Λ; N , S, J,MJ |ge
l µBT1

0(B)
∑

q=±1

D
(1)
0q (ω)∗T1

q (S )|η,Λ; N , S, J,MJ 〉

= 2ge
l µB BZ MJ

/
(2N + 3) for J = N + 1,

0 for J = N ,

− 2ge
l µB BZ MJ

/
(2N − 1) for J = N − 1.

〈η,Λ; N , S, J,MJ |ge
l µBT1

0(B )
∑

q=±1

D
(1)
0q (ω)∗T 1

q (S )|η,Λ; N , S, J − 1,MJ 〉

= ge
l µB BZ

{
N
[
(N + 1)2 − M2

J

]/
[4(N + 1)2 − 1](2N + 3)

}1/2
for J = N + 1,

ge
l µB BZ

{
(N + 1)

(
N 2 − M2

J

)/
(4N 2 − 1)(2N − 1)

}1/2
for J = N ,

0 for J = N − 1.

(9.119)

(vi)   

By replacing N by (J − S), we see that the rotational Zeeman interaction has straight-
forward diagonal matrix elements only:

〈η,Λ; N , S, J,MJ | − grµBT1
0(B)T1

0(J)|η,Λ; N , S, J,MJ 〉

= −grµB BZ (−1)J−M

(
J 1 J

−MJ 0 MJ

)
{J (J + 1)(2J + 1)}1/2

= −grµB BZ MJ (9.120)

together with a correction +gr to the electron spin g factor in equation (9.117).
We now use the results we have obtained to calculate the energy levels in a magnetic

field, determine the field values for the allowed electric dipole transitions, and compare
the results with the experimental spectrum [56]. It is already clear that in the case (b)
basis set we shall have to take note of the extensive mixing of different rotational levels
by the �N = ±2 off-diagonal matrix elements of the spin-spin interaction. In SO the
spin–spin parameter λ is comparable with the rotational constant B0, and, as we shall
see, in heavier molecules like SeO, λ is so much larger than B0, because of spin–orbit
coupling, that a case (a) basis is more appropriate.

In their analysis of the SO microwave magnetic resonance spectrum, Carrington,
Levy and Miller [56] set up and diagonalised a series of matrices of size up to 22 × 22,
one for each MJ value, which alone remains a good quantum number. They included
rotational levels from N = 0 to 7, but to illustrate the nature of the problem we will set
up the 9 × 9 matrix for N = 0 to 3, for MJ = 1; in practice one includes levels of N
value high enough to avoid truncation errors. The individual matrix elements for our
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Table 9.5. Energy matrix for SO 3� in a magnetic field, including N = 0 to 3, for
MJ = 1; note that N = 1, J = 0 is not included because MJ = 1 does not exist
for J = 0

N = 0 N = 1 N = 2 N = 3

J = 1 J = 2 J = 1 J = 3 J = 2 J = 1 J = 4 J = 3 J = 2

N = 0 J = 1 m11 0 0 0 0 m16 0 0 0

N = 1 J = 2 0 m22 m23 0 0 0 0 0 m29

J = 1 0 m32 m33 0 0 0 0 0 0

N = 2 J = 3 0 0 0 m44 m45 0 0 0 0

J = 2 0 0 0 m54 m55 m56 0 0 0

J = 1 m61 0 0 0 m65 m66 0 0 0

N = 3 J = 4 0 0 0 0 0 0 m77 m78 0

J = 3 0 0 0 0 0 0 m87 m88 m89

J = 2 0 m92 0 0 0 0 0 m98 m99

example are as follows:

m11 = +g′
SµB BZ + ge

l µB BZ (2/3) − grµB BZ

m22 = 2B0 − 2λ/15 + γ + g′
SµB BZ (1/2) + ge

l µB BZ (2/5) − grµB BZ

m33 = 2B0 + 2λ/3 − γ + g′
SµB BZ (1/2) − grµB BZ

m44 = 6B0 − 4λ/21 + 2γ + g′
SµB BZ (1/3) + ge

l µB BZ (2/7) − grµB BZ

m55 = 6B0 + 2λ/3 − γ + g′
SµB BZ (1/6) − grµB BZ

m66 = 6B0 − 2λ/3 − 3γ − g′
SµB BZ (1/2) − ge

l µB BZ (2/3) − grµB BZ

m77 = 12B0 − 2λ/9 + 3γ + g′
SµB BZ (1/4) + ge

l µB BZ (2/9) − grµB BZ

m88 = 12B0 + 2λ/3 − γ + g′
SµB BZ (1/12) − grµB BZ

m99 = 12B0 − 8λ/15 − 4γ − g′
SµB BZ (1/3) − ge

l µB BZ (2/5) − grµB BZ

m16 = m61 = 2λ(2/9)1/2

m23 = m32 = g′
SµB BZ

{(
4 − M2

J

)/
12

}1/2 + ge
l µB BZ

{(
4 − M2

J

)/
75

}1/2

m29 = m92 = 2λ(6/25)1/2

m45 = m54 = g′
SµB BZ

{(
18 − 2M2

J

)/
45

}1/2 + ge
l µB BZ

{(
18 − 2M2

J

)/
245

}1/2

m56 = m65 = g′
SµB BZ

{(
12 − 3M2

J

)/
20

}1/2 + ge
l µB BZ

{(
12 − 3M2

J

)/
45

}1/2

m78 = m87 = g′
SµB BZ

{(
48 − 3M2

J

)/
112

}1/2 + ge
l µB BZ

{(
48 − 3M2

J

)/
567

}1/2

m89 = m98 = g′
SµB BZ

{(
36 − 4M2

J

)/
63

}1/2 + ge
l µB BZ

{(
36 − 4M2

J

)/
175

}1/2

with g′
S = gS + gr . The matrix shown in table 9.5 factorises into a 4 × 4 and a 5 × 5

because there are no matrix elements connecting odd and even N states but, especially
in the presence of a magnetic field, many of the states are heavily mixed. Figure 9.26
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shows the relative energies of some of the lowest field-free rotational levels and indi-
cates the transitions which have been detected by pure microwave spectroscopy; we
shall describe these studies in the next chapter. Figure 9.26 also shows the Zeeman
behaviour of two of the rotational levels of SO and the microwave magnetic resonance
transitions which were observed. It would be possible to determine most of the im-
portant parameters in the effective Hamiltonian (9.107) from the magnetic resonance
spectrum alone. However the values of B0, λ and γ had already been determined accu-
rately from the field-free microwave spectrum; these values were used in the analysis
of the magnetic resonance spectrum, so that the Zeeman parameters could then be
determined.

The case (b) representation is satisfactory for 3� SO and also for O2, but its
usefulness depends upon the ratio λ/B0. In 3� SO this ratio is 7.350 but in 3� SeO it
is 185.408 and a case (a) description is much more appropriate [57]; figure 9.27 shows
a correlation diagram for the correspondence of rotational levels in case (b) and case
(a) for a 3� state.

9.6.2. SeO in the X 3�− ground state

The spectrum of SeO was obtained [57] by reacting oxygen atoms with carbonyl
selenide inside the Stark cavity described earlier. Figure 9.27 shows how case (a) levels
for a 3� state can be arranged in two separate stacks. One consists of widely spaced
single levels, whilst the other consists of pairs of levels which are nearly degenerate
for low J values; the latter are reminiscent of Λ-doublets in a case (a) 2� state. We
will now see how this diagram arises by examining the matrix elements of the effective
Hamiltonian in a case (a) basis.

The essential feature of a case (a) basis set for a 3� molecule is that the electron
spin S is strongly coupled to the rotational angular momentum N to form the total
angular momentum J. The component of S along the internuclear axis,Σ, is therefore
a conserved quantum number, but N is not and the basis functions are of the form
|η,Λ; J, S,Σ,MJ 〉. In this basis the effective Hamiltonian can be conveniently written
in the form

Heff = B0T1(J) · T1(J) + (γ − 2B0)T1(J) · T1(S) + (2
√

6/3)λT2
0(S) + (B0 − γ0)S2.

(9.121)

The rotational kinetic energy, which in case (b) was B0 N2, now becomes B0(J − S)2,
giving rise to the first term in (9.121), and also the B0 part of the second term. The
spin–spin interaction term in (9.121) is used in the form described earlier in equation
(9.105), involving the molecule-fixed q = 0 component of the second rank tensor
T2(S).

The matrix elements of the first three terms in (9.121) are as follows:

〈η,Λ; S,Σ; J,MJ |B0T1(J) · T1(J)|η,Λ; S,Σ; J,MJ 〉 = B0 J (J + 1). (9.122)
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Figure 9.27. Correlation of case (b) and case (a) rotational levels for a 3�+ state [51]. For a 3�−

state the parities are reversed.

〈η,Λ; S,Σ; J,MJ |(γ − 2B0)T1(J) · T1(S)|η,Λ; S,Σ′; J,MJ 〉
= (γ − 2B0)

∑
q

(−1)J+S−2Σ{J (J + 1)(2J + 1)S (S + 1)(2S + 1)}1/2

×
(

J 1 J
−Σ q Σ′

)(
S 1 S

−Σ q Σ′

)
. (9.123)

〈η,Λ; S,Σ; J,MJ |(2
√

6/3)λT2
0(S)|η,Λ; S,Σ; J,MJ 〉

= (2
√

6/3)λ(−1)S−Σ
(

S 2 S
−Σ 0 Σ

)
〈S‖T2(S )‖S〉. (9.124)
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The reduced matrix element in (9.124) is evaluated by decomposing the second-rank
tensor into its constituent first-rank tensors; one finds that

〈S ‖T2(S )‖S〉 = (1/
√

6)S(2S − 1)

(
S 2 S

−S 0 S

)−1

. (9.125)

Evaluating the 3- j symbol in (9.125) and substituting in (9.124) we obtain the result:

〈η,Λ; S,Σ; J,MJ |(2
√

6/3)λT2
0(S)|η,Λ; S,Σ; J,MJ 〉

= 2

3
λ(−1)S−Σ

(
S 2 S

−Σ 0 Σ

)
S(2S − 1)

(
S 2 S

−S 0 S

)−1

= 2

3
λ{3Σ2 − S(S + 1)}. (9.126)

This equation largely explains the pattern of levels shown in the case (a) limit in
figure 9.27. ForΣ= 0 we have one series of non-degenerate rotational levels, as shown.
ForΣ= ±1 we have a second rotational series of doublets, with origin some 2λ higher
in energy than theΣ= 0 series. The splitting of the doublet levels in theΣ= ±1 series
is due to the q = ±1 terms in equation (9.123), but in order to understand the situation
more clearly, it is necessary to consider the parity symmetry of the levels. The case (a)
basis functions do not have definite parity, but the following combinations are more
appropriate:

ψ±
J (MJ ) = 1√

2
{|η,Λ; S,Σ; J,MJ 〉 ± (−1)J−S+s |η,Λ; S,−Σ; J,MJ 〉}|Σ|=1,

(9.127)

ψ0
J (MJ ) = |η,Λ; S,Σ; J,MJ 〉Σ=0. (9.128)

Applying the inversion operator E∗ we find:

E∗ψ±
J (MJ ) = ±ψ±

J (MJ ),
(9.129)

E∗ψ0
J (MJ ) = (−1)J−S+sψ0

J (MJ ).

The new basis functions (9.127) and (9.128) are now of definite parity; equation (9.123)
is again used to calculate the matrix elements, this time with the basis functions of def-
inite parity. The off-diagonal matrix elements of (9.123) produce the doublet splittings
shown in the Σ= ±1 stack in figure 9.27, and the levels may be labelled with their
parities, as shown.

Two further aspects need to be considered in order to understand the magnetic
resonance spectrum, namely, the effects of an applied magnetic field, and the electric
dipole transition probabilities. The effective Hamiltonian describing the interactions
with an applied magnetic field, expressed in the molecule-fixed axis system q, is:

HZ = g′
SµBT1

0(B)T1
0(S) +

∑
q=±1

(−1)q ge
l µBT1

q (B)T1
−q (S) − grµBT1(B) · T1(J).

(9.130)

In this expression g′
S = gS + gr as shown in equation (9.107). The matrix elements of
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(9.130) within the case (a) basis are as follows:
for q = 0,

〈η,Λ; S,Σ; J,MJ |HZ|η,Λ; S,Σ; J ′,MJ 〉

= µB BZ (−1)J−MJ [(2J ′ + 1)(2J + 1)]1/2

(
J 1 J ′

−MJ 0 MJ

)

×
{

g′
S(−1)S−Σ[S(S + 1)(2S + 1)]1/2(−1)J−Σ

(
J 1 J ′

−Σ 0 Σ

)(
S 1 S

−Σ 0 Σ

)

− grδJ J ′ [J (J + 1)(2J + 1)]1/2

}
, (9.131)

for q = ± 1,

〈η,Λ; S,Σ; J,MJ |HZ|η,Λ; S,Σ′; J ′,MJ 〉
= g′

SµB BZ (−1)J−MJ +J−Σ[(2J ′ + 1)(2J + 1)]1/2

(
J 1 J ′

−MJ 0 MJ

)

×
∑

q

(−1)S−Σ[S(S + 1)(2S + 1)]1/2

(
J 1 J ′

−� q �′

)(
S 1 S

−Σ q Σ′

)
.

(9.132)

The magnetic resonance spectrum recorded by Carrington, Currie, Levy and Miller [57]
involved the J = 1 level, the lowest level of the Σ= ±1 stack shown in figure 9.27.
The net results of (9.131) and (9.132) are Zeeman splittings of the MJ = +1, 0 and
−1 levels, each MJ component possessing a further doublet splitting of the opposite
parity components caused by the off-diagonal matrix elements of (9.123). The observed
spectrum consisted of electric dipole transitions between opposite parity states, each
obeying the normal selection rule�MJ = ±1. Additional transitions were observed in
the presence of an electric field because of the consequent mixing of opposite parity
states.

9.6.3. NH in the X 3�− ground state

Nuclear hyperfine structure was observed and analysed in both the naturally abundant
33SO and 77SeO, but to illustrate the principles we turn to another 3� system, the imine
radical (NH) studied by Wayne and Radford [58] using far-infrared laser magnetic
resonance. The spectra of 14NH, 15NH and 14ND show hyperfine structure from all the
nuclei involved. The related radicals PH and PD, both of which show rich hyperfine
structure arising from 31P and 1H or 2D, have been studied by Ohashi, Kawaguchi
and Hirota [59] and by Davies and his coworkers [60], again using far-infrared laser
magnetic resonance.

The NH radical was produced by the reaction of fluorine atoms with ammonia. In
its 3�− ground state NH is well described by a case (b) basis set, and the transitions
observed by Wayne and Radford were rotational transitions involving, in different
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Figure 9.28. Zeeman levels for N = 0 and 1 of NH 3�− (v= 0) and the observed far-infrared
laser magnetic resonance transitions [58]. These were recorded using four different FIR lines at
31.7615, 32.1466, 33.0822 and 33.1922 cm−1.

isotopic species, the N = 0, 1, 2 and 3 rotational levels in both v= 0 and 1. Figure 9.28
shows a Zeeman diagram for the N = 0 and 1 rotational levels of NH in its v= 0
level; the nuclear hyperfine splitting is not shown. The four far-infrared laser lines used
are listed in the figure caption, and the transitions detected are shown in the figure.
All but one of the transitions recorded showed fully resolved hyperfine structure from
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Figure 9.29. The laser magnetic resonance transition N = 1, J = 1,M = 0 → N = 2, J = 1,
M = 1 for ND 3�−, showing fully resolved hyperfine splitting from both nuclei, each with spin 1
[58]. The laser frequency was 991.7778 GHz.

both 14N and 1H. Figure 9.29 shows a recording of the N = 1, J = 1, M = 0 → N = 2,
J = 1, M = 1 Zeeman component of ND; this beautiful pattern is an example of a fully
resolved nine-line hyperfine structure arising from 14N and 2D, both with nuclear spin
I = 1.

The effective Hamiltonian used by Wayne and Radford was essentially that de-
scribed earlier for 3� SO, with the addition of a centrifugal distortion term:

Heff = B N2 + 2
√

6

3
λT2

0(S, S) + γT1(N) · T1(S) − DN4. (9.133)

The nuclear hyperfine and magnetic field interaction terms must be added to this
effective Hamiltonian; they are similar to those introduced earlier in this section. For
the hyperfine interactions:

Hhfs =
∑

k

{
bFk T1(Ik) · T1(S ) − tk

√
10 T1(Ik) · T1(S,C2(ω))

}

+ eq0 Q

√
3

2

1

2I (2I − 1)
T2

q=0(I, I). (9.134)

The sum over k represents the terms for both nuclei, whereas the quadrupole term
exists only for the 14N nucleus. Equation (9.134) also recognises implicitly that only
terms diagonal in the ground vibronic state will be included. For the magnetic field
interactions the effective Hamiltonian used by Wayne and Radford was

HZ = µB(gS + gr )T1(B) · T1(S ) − µB gr T1(B) · T1(N)

+µB ge
l T1

0(B)
∑

q=±1

D
(1)
0q (ω)∗T1

q (S ) +
∑

k

gNkµN T1(B) · T1(Ik). (9.135)
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The presence of two nuclear spins means that there is considerable choice in
the selection of basis functions; the reader who wishes to practice virtuosity in ir-
reducible tensor algebra is invited to calculate the matrix elements in the different
coupled representations that are possible! In fact the sensible choice, particularly
when a strong magnetic field is to be applied, is the nuclear spin-decoupled basis
set |η,Λ; N , S, J,MJ ; IN,MN; IH,MH〉. Again note the possible source of confusion
here; MN is the space-fixed component of the nitrogen nuclear spin IN, not the space-
fixed component of N . This nuclear spin-decoupled basis set was the one chosen by
Wayne and Radford in their analysis of the NH spectrum.

Wayne and Radford analysed the spectra of NH for v= 0 and 1, with 14N, 15N, 1H
and 2D nuclei, and they obtained valuable new information, particularly concerning the
nuclear hyperfine constants. Ab initio calculations of the dipolar constants were found
to agree well with experiment, but for the Fermi contact constants the agreement was
poor. This is not surprising because, in the restricted SCF approximation, the unpaired
electrons in the molecule occupy a π orbital which is located almost entirely on the
nitrogen atom. Calculation of the dipolar hyperfine constants is therefore straightfor-
ward, but the Fermi contact interaction arises from configuration interaction involving
excited electronic states, which is more difficult to calculate accurately.

Before leaving 3� molecules we should mention studies by Gruebele, Müller and
Saykally [61] in which they used FIR LMR to measure rotational transitions in the
OH+ and OD+ ions, which are isoelectronic with NH and also conform to Hund’s case
(b) coupling.

9.7. 3� states

9.7.1. CO in the a 3� state

The most important and comprehensive laser magnetic resonance study of a 3� state
is that of the CO excited a state which, as we described in chapter 8, has also been
studied by radiofrequency spectroscopy (using molecular beam electric resonance),
pure microwave rotational spectroscopy and mid-infrared laser magnetic resonance. In
this section we present a detailed description, both of the FIR laser magnetic resonance
studies, and also the theoretical analysis which applies to all of the experimental studies.
It is always important, but not always possible, to bring together measurements made in
different regions of the electromagnetic spectrum under a unified theoretical umbrella.

The apparatus used by Saykally, Evenson, Comben and Brown [62] was similar
to that shown in figure 9.4, but with one important difference. Attempts to detect
radicals or ions in a gas discharge were thwarted by the transverse magnetic field used
in figure 9.4. The transverse field was therefore replaced by an axial field, produced
by a solenoid magnet of 7.6 cm diameter and 33 cm length, cooled by liquid nitrogen.
This enabled a d.c. glow discharge to be maintained inside the sample region between
a cylindrical copper anode and a water-cooled copper cathode located in a sidearm
outside the laser cavity. A gas mixture of helium containing 10% CO at a total pressure
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Figure 9.30. Lower rotational levels and fine-structure splitting for the a 3� state of CO. This
diagram is a repeat of figure 8.49.

of 1 torr was used, and the discharge resulted in sufficient excitation of the a 3� state
for strong FIR laser magnetic resonance transitions to be observed. The fine-structure
components of the a 3� state with the lower rotational levels are shown in figure 9.30.
The transitions studied by Saykally, Evenson, Comben and Brown [62] were rotational
transitions within the 3�2 and 3�0 states and examples of the spectra obtained are
shown in figures 9.31 and 9.32.

The effective Hamiltonian used by Saykally, Evenson, Comben and Brown [62]
contains terms which we have already met in this chapter, and which we will therefore
deal with fairly briefly, with appropriate references to the details given elsewhere,
particularly in this section. The theory has been developed in a number of papers,
particularly by Brown, Kopp, Malmberg and Rydh [63], Brown and Merer [64], who
dealt with � states of triplet and higher spin multiplicity, and Steimle and Brown
[65] who specifically addressed the theory of the Λ-doubling of CO in the 3� state.
The theory of the Zeeman interactions follows closely that developed to analyse the
magnetic resonance spectra of OH by Brown, Kaise, Kerr and Milton [66]. All of these
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Figure 9.31. FIR laser magnetic resonance spectrum of CO in the a 3� state, observed using
the 393.6 µm line from formic acid [62]. This spectrum arises from the J = 7 ← 6 rotational
transition in theΩ = 2 fine-structure state, and the transitions obey the selection rule �MJ =
+1. The lower MJ states are indicated in the diagram.

treatments are related to a more general exposition concerning the effective Hamiltonian
for diatomic molecules given by Brown, Colbourn, Watson and Wayne [67].

The effective Hamiltonian may be summarised as follows:

Heff = Hso + Hrot + Hss + Hsr + HLD + HZ. (9.136)

The matrix elements are calculated in a case (a) basis, and for the spin–orbit coupling
we have the simple result

〈η,Λ; S,Σ; J,Ω|A T1
0(L)T1

0(S )|η,Λ; S,Σ; J,Ω〉 = AΛΣ, (9.137)

where only the axial (q = 0) component was included. For the rotational Hamiltonian,
B N2, we note that, in case (a), N = J − S . We use the result previously derived,
equation (9.33), in our treatment of the ClO spectrum:

〈η,Λ; S,Σ; J,Ω|Hrot|η,Λ; S,Σ′; J,Ω′〉
= B{δΣΣ′ δΩΩ′ [J (J + 1) + S(S + 1) − 2ΩΣ]}

− 2B
∑

q=±1

(−1)J−Ω+S−Σ
(

J 1 J
−Ω q Ω′

)(
S 1 S

−Σ q Σ′

)

× [J (J + 1)(2J + 1)S(S + 1)(2S + 1)]1/2. (9.138)
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Figure 9.32. FIR laser magnetic resonance spectrum of CO in its a 3� state, recorded with the
458.5 µm laser line [62].

The electron spin–spin interaction Hamiltonian and its case (a) matrix elements were
previously derived, equation (9.124), for the analysis of the magnetic resonance spec-
trum of 3� SeO:

〈η,Λ; S,Σ; J,Ω|(2/3)λ
{
3S2

z − S2
}|η,Λ; S,Σ; J,Ω〉 = (2/3)λ{3Σ2 − S(S + 1)}.

(9.139)

The spin–rotation interaction is given by

Hsr = γT1(N ) · T1(S ) = γ {T1(J ) − T1(S )} · T1(S ), (9.140)

and its matrix elements are similar to those given in (9.138):

〈η,Λ; S,Σ; J,Ω|γ T 1(N) · T 1(S)|η,Λ; S,Σ′; J,Ω′〉
= γ δΣΣ′δΩΩ′ [ΩΣ− S(S + 1)]+ γ

∑
q=±1

(−1)J−Ω+S−Σ
(

J 1 J
−Ω q Ω′

)

×
(

S 1 S
−Σ q Σ′

)
[J (J + 1)(2J + 1)S(S + 1)(2S + 1)]1/2. (9.141)
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The remaining terms in (9.136) are rather more complicated in that they include
the effects of mixing other excited electronic states with the 3� state. Both terms have
already been discussed extensively in connection with the OH magnetic resonance
spectra. It was shown there that theΛ-doubling Hamiltonian could be written in the form

HLD =
∑

q=±1

exp(−2iqφ)
[−qT2

2q (J, J )+ (p +2q)T2
2q (J, S )− (o+ p + q)T2

2q (S, S )
]
,

(9.142)

or alternatively,

HLD = (1/2)(o + p + q)(S2
+ + S2

−)

− (1/2)(p + 2q)(J+S+ + J−S−) + (1/2)q(J 2
+ + J 2

−), (9.143)

with the assumption that this operator connects states with Λ = +1 and −1 only.
The matrix elements have been evaluated by Brown and Merer [64], using (9.143), as
follows:

〈Λ = ∓1,Σ± 2, J,Ω|HLD|Λ = ±1,Σ, J,Ω〉
= (1/2)(o + p + q){[S(S + 1) −Σ(Σ± 1)][S(S + 1) − (Σ± 1)(Σ± 2)]}1/2.

(9.144)

〈Λ = ∓1,Σ± 1, J,Ω∓ 1|HLD|Λ = ±1,Σ, J,Ω〉
= −(1/2)(p + 2q){[S(S + 1) −Σ(Σ± 1)][J (J + 1) −Ω(Ω∓ 1)]}1/2. (9.145)

〈Λ = ∓1,Σ, J,Ω∓ 2|HLD|Λ = ±1,Σ, J,Ω〉
= (1/2)q{[J (J + 1) −Ω(Ω∓ 1)][J (J + 1) − (Ω∓ 1)(Ω∓ 2)]}1/2. (9.146)

In these equationsΛ,Σ andΩ are to be taken as signed quantities, and we see that the
effect of the Λ-doubling operator is to mix Λ = +1 and Λ = −1 components of the
� state.

Before examining the effect of an applied magnetic field it is instructive and
hopefully helpful to look at the matrix of the above five terms. For each of the three
fine-structure components with a given J value there are two parity states, labelled e
and f . According to the now accepted convention [68] for integral J values, levels with
parity +(−1)J are called e levels and levels with parity −(−1)J are called f levels.
The matrix is as follows.

|3�2〉e |3�1〉e |3�0〉e |3�2〉 f |3�1〉 f |3�0〉 f

〈3�2|e m11 m12 m13 0 0 0
〈3�1|e m21 m22 m23 0 0 0
〈3�0|e m31 m32 m33 0 0 0

〈3�2| f 0 0 0 m44 m45 m46

〈3�1| f 0 0 0 m54 m55 m56

〈3�0| f 0 0 0 m64 m65 m66



660 Microwave and far-infrared magnetic resonance

We now look at the matrix elements, in e and f pairs for each fine-structure
component.

e states f states
m11 = A + (B/3)[J (J + 1) − 2] + 2λ/3, m44 = m11,
m22 = (B/3)[J (J + 1) + 2] − 2γ m55 = (B/3)[J (J+1) + 2]

− (1/2)qJ(J+1), − 2γ + (1/2)qJ(J +1),
m33 = −A + (B/3)[J (J + 1) + 2] m66 = −A+ (B/3)[J (J + 1) + 2]

+ 2λ/3 − 2γ − (o + p + q), + 2λ/3 − 2γ + (o + p + q),
m12 = −{2[J (J + 1) − 2]}1/2(B − γ /2), m45 = m12,
m21 = m12, m54 = m45,
m23 = −[2J (J + 1)]1/2[B − (γ /2) m56 = −[2J (J + 1)]1/2[B − (γ /2)

− (1/2)(p + 2q)], + (1/2)(p + 2q)],
m32 = m23, m65 = m56,
m13 = −{J (J + 1)[J (J + 1) − 2]}1/2(q/2), m46 = {J (J+1)[J (J+1) − 2]}1/2(q/2).

The effects of centrifugal distortion are omitted from these matrix elements, but their
inclusion is necessary for a final fit to experiment. The structure of the matrix accounts
for some of the observations described previously. The Λ-doubling in the 3�0 state
is determined primarily by the first-order contribution (see m33 and m66) so that it is
both relatively large, and essentially independent of J . For all of the fine-structure
components it is a matter of diagonalising the matrix and determining the values of the
Λ-doubling parameters by fitting the calculated frequencies to experiment. In the most
recent analysis [65], which included constants determined in the earlier molecular beam
work (see chapter 8), agreement between experiment and theory for nine Λ-doubling
frequencies was good to a few kHz.

Quantitative assignment of the FIR laser magnetic resonance spectrum requires
detailed attention to the form of the Zeeman Hamiltonian, HZ, in equation (9.136).
This was taken from work described earlier in this section [66] aimed at providing a
comprehensive description of the Zeeman interactions in the OH radical. In the case
of 3� CO a slightly simpler Hamiltonian was adopted:

HZ = gSµB BZ T1
p=0(S ) + gLµB BZ T1

p=0(L)−grµB BZ T1
p=0(J − S )

+ ge
l µB BZ

∑
q=±1

D
(1)
0q (ω)∗T1

q (S ). (9.147)

The Zeeman Hamiltonian for OH contained two further parameters, as well as modifi-
cations to the electron spin and orbital g-factors. The principal parameter determined
from the laser magnetic resonance data was gr , the rotational g-factor. Agreement be-
tween experimentally measured resonant magnetic fields (from figures 9.30 and 9.31)
and the calculated values was excellent.

We discuss the pure microwave measurements for 3� CO in the next chap-
ter. As in the case of OH, it is the combination of results from different types of
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spectroscopic study that provides the complete picture. It would, for example, have
been much more difficult to analyse the magnetic resonance spectra without the de-
tailed zero-field radiofrequency measurements of the Λ-doubling frequencies.

9.8. 4� states

9.8.1. CH in the a 4�− state

We described the laser magnetic resonance spectrum of CH in its ground 2� state in
section 9.4.4. The lowest quartet excited state of CH lies only 0.7 eV above the ground
state and the reaction between fluorine atoms and methane was found by Nelis, Brown
and Evenson [69] to produce the CH radical in both electronic states. An example of
the FIR laser magnetic resonance spectrum of the excited state is shown in figure 9.34,
and the appropriate energy level diagram with the observed transitions is presented in
figure 9.33. The observed spectrum arises from rotational transitions in the v = 0 level,
split by both fine and hyperfine interactions which we now consider in more detail.

The effective Hamiltonian will be evaluated in a case (b) basis and, as one would
expect, it is similar to that previously developed for 3� states, but with some important
additions. The effective Hamiltonian used [69] was as follows:

Heff = Hrot + Hss + Hsr + Hhfs + HZ. (9.148)

We now compare the various terms in (9.148) with those used previously for the analysis
of 3� spectra. The rotational term is given by

Hrot = B0 N2 − D0 N4 + H0 N6, (9.149)

which is the same as the first term of (9.99) but with the addition of two centrifugal
distortion terms. These are required because CH is a much lighter molecule than SO.
The spin-spin interaction is given by

Hss = 2

3
λ
√

6T2
q=0(S, S ) + 1

3
λD

√
6
[
T2

q=0(S, S ), N2
]
+. (9.150)

We have made explicit the fact that this term is evaluated in the molecule-fixed axis
system (with q = 0). The first term was introduced previously in equation (9.104) but
the second term is less familiar; it represents a centrifugal distortion correction to the
spin–spin interaction but was not, in fact, included in the analysis of the CH spectrum
so we shall not discuss it further here.

The spin-rotation interaction term given by Nelis, Brown and Evenson [69] was
written in the form

Hsr = γT1(N ) · T1(S ) + γD(T1(N ) · T1(S ))N2 + CT3(L2, N) · T3(S, S, S).

(9.151)

Again the first term is familiar (see (9.99)), whilst the second term represents a
centrifugal distortion correction to the spin–rotation interaction and was neglected
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Figure 9.33. Energy level diagram showing the transitions involving the four lowest rotational
levels of CH in the v = 0 level of the 4�− state [69]. The laser wavelengths used were (a) 333 µm,
(b) 167 µm, (c) 111 µm, full details of which are given in table 9.1.

in the quantitative analysis of the CH spectrum. The third term is new (the first time
in this chapter we have encountered third-rank tensors), and represents a third-order
spin–orbit coupling effect. We will return to its origin and matrix elements below.

The magnetic hyperfine terms are now familiar, representing the Fermi contact
interaction and axial dipolar interaction:

Hhfs = bFT1(I) · T1(S) + 1

3
c
√

6T2
q=0(I, S). (9.152)
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Figure 9.34. Laser magnetic resonance spectrum of CH in its a 4�− state recorded in parallel
polarisation (�MJ = 0) with the 166.6 µm laser line of CH2F2. The rotational transition is
N = 2 ← 1, and the quintet fine structure may be understood by reference to the energy level
diagram in figure 9.33. The lines marked with an asterisk arise from an impurity species; the
doublet splittings of the CH lines are due to proton hyperfine interaction [69].

The magnetic field interaction terms are also familiar:

HZ = gSµB BZ T1
p=0(S ) − grµB BZ T1

p=0(N). (9.153)

They appeared as the first two terms in the analysis of the Zeeman interaction for 3�

NH (see equation (9.135)).
The only new term to be considered, therefore, is the third-order spin–

orbit coupling term, whose matrix elements in a case (b) basis are evaluated as
follows:

〈η,Λ; N , S, J,MJ |CT3(L2, N) · T3(S, S, S)|η′,Λ′; N ′, S′, J ′,M ′
J 〉

= δJ J ′δMJ M ′
J
C(−1)N ′+S+J ′

{
S N J
N ′ S 3

}
× 〈η, N ,Λ‖T3(L2, N)‖η′, N ′,Λ′〉〈S‖T3(S, S, S)‖S′〉. (9.154)

The reduced matrix element of T3(S, S, S), which is diagonal in S, is calculated in
appendix 9.1 and is found to be given by

〈S‖T3(S, S, S)‖S〉
= (1/4

√
10){(2S − 2)(2S − 1)(2S)(2S + 1)(2S + 2)(2S + 3)(2S + 4)}1/2. (9.155)

The reduced matrix element of T3(L2, N) is calculated by noting the following
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results:

T3
p(L2, N) = (−1)1−p

√
7

∑
p1,p2

(
2 1 3
p1 p2 −p

)
T2

p1
(L2)T1

p2
(N )

= (−1)1−p
√

7
∑
p1,p2

(
2 1 3
p1 p2 −p

)∑
q

D
(2)
p1,q (ω)∗T2

q (L2)T1
p2

(N)

= T3
p

(
D

(2)
·0 (ω)∗, N

)
T2

0(L2). (9.156)

We have confined attention to the q = 0 component in the third line of (9.156). We
therefore require the following reduced matrix element:

〈N ,Λ‖T3
.

(
D

(2)
.0 (ω)∗, N

)‖N ′,%′〉

=
√

7(−1)3+N+N ′ ∑
N ′′,Λ′′

{
2 1 3
N ′ N N ′′

}

× 〈N ,Λ‖D
(2)
.0 (ω)∗‖N ′′,Λ′′〉〈N ′′,Λ′′‖T1(N )‖N ′,Λ′〉

=
√

7(−1)3+N+N ′
{

2 1 3
N ′ N N

}
(−1)N−Λ

(
N 2 N ′

−Λ 0 %

)
× {(2N + 1)(2N ′ + 1)N ′(N ′ + 1)(2N ′ + 1)}1/2. (9.157)

Combining (9.154), (9.155), (9.156) and (9.157) gives the required final result, which is:

〈η,Λ; N , S, J,MJ |CT3(L2, N) · T3(S, S, S )|η,Λ; N ′, S, J,MJ 〉
= γS(

√
70/4

√
6)(−1)N ′+S+J+1

{
S N J
N ′ S 3

}
(−1)N+N ′

{
2 1 3
N ′ N N ′

}
(−1)N−Λ

×
(

N 2 N ′

−Λ 0 Λ

)
{(2N + 1)(2N ′ + 1)}1/2{N ′(N ′ + 1)(2N ′ + 1)

× (2S − 2)(2S − 1)(2S)(2S + 1)(2S + 2)(2S + 3)(2S + 4)}1/2. (9.158)

In this equation we have made use of the result

C〈η,Λ|T2
q=0(L2)|η,Λ〉 = (10/

√
6)γS. (9.159)

Calculation of the energy levels as a function of the molecular parameters, and
subsequent assignment of the laser magnetic resonance spectra, was a complicated
exercise accomplished by an extensive process of trial and error. Moreover there were
no other spectroscopic data available to assist in the analysis. Nevertheless Nelis, Brown
and Evenson [69] were able to determine the following molecular constants for CH in
the v = 0 level in its 4�−state:

B0 = 451 138.434 MHz, D0 = 44.427 MHz, λ = 2785.83 MHz, γ = −1.74 MHz,

γS = 0.154 MHz, bF = 106.56 MHz, c = 56.6 MHz, gr = −0.000 164.

Notice that not all of the constants appearing in the effective Hamiltonian were
actually determined in the fit; this is often the case in high-resolution spectroscopy,
and it can cause some confusion for the reader! It is interesting to compare the above
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values of the constants with those obtained, either from ab initio calculations, or ex-
perimentally for CH in its 2� ground state, as described earlier in this section. The
rotational constants determined for the two electronic states are very similar, but show
that the vibrationally averaged bond length r0 is actually slightly smaller for the excited
quartet state. The Fermi contact constant bF is much larger for the excited quartet state
because it contains a direct contribution from spin density in a σ -type orbital possess-
ing appreciable H 1s character. In the 2� ground state, where the unpaired electron
occupies a π -type molecular orbital, the contact interaction arises only indirectly from
spin-polarisation effects due to configuration interaction with excited electronic states.
The so-called spin–spin constant λ arises partly from spin–orbit mixing of other elec-
tronic states possessing orbital angular momentum. The contribution from the ground
state is, however, estimated to be 313 MHz and the observed λ value of 2786 MHz is
therefore thought to arise predominantly from the first-order dipolar coupling of the
electron spins. The spin–rotation constant γ has a very small value (−1.74 MHz) for
the quartet state, compared with −771 MHz for the ground state; this suggests that
spin–orbit mixing with excited 4� states is very weak.

9.9. 4�, 3�, 2� and 6�+states

9.9.1. Introduction

In recent years a number of diatomic first-row transition metal hydrides have been
studied by FIR laser magnetic resonance. We will review the results, which include
some of the most beautiful laser magnetic resonance spectra yet observed, without
going into the details as deeply as we have earlier in this chapter.

It is helpful to remind ourselves of the ground state electron configurations (outside
the KLM shells) of the first row transition metal elements, which are as follows.

Sc Ti V Cr Mn Fe Co Ni Cu Zn

3d14s2 3d24s2 3d34s2 3d54s1 3d54s2 3d64s2 3d74s2 3d84s2 3d104s1 3d104s2

2D1/2
3F2

4F3/2
7S3

6S5/2
5D4

4F9/2
3F4

2S1/2
1S0

Cr and Cu are anomalous in this series in not possessing filled 4s shells in the ground
state; in both cases the state with a 4s2configuration is a low-lying excited state. In the
axial field produced by bonding to a hydrogen atom, the five 3d orbitals of the first row
transition elements split into one 3dσ , two 3dπ and two 3dδ orbitals. Four diatomic
hydrides have been studied so far by FIR laser magnetic resonance. Their ground state
symmetries and multiplicities have been established, and we may choose to write their
ground state electron configurations as follows.

CrH: (3dσ )2(3dπ )2(3dδ)1(4s)2 X 6�+

FeH: (3dσ )2(3dπ )2(3dδ)3(4s)2 X 4�7/2

CoH: (3dσ )2(3dπ )3(3dδ)3(4s)2 X 3�4

NiH: (3dσ )2(3dπ )4(3dδ)3(4s)2 X 2�5/2
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It should be noted, however, that the above single electron configurations are, in some
cases, likely to be poor descriptions. This is because different electron configurations
and spin states for a particular molecule are often very close in energy, so that extensive
configurational mixing occurs. We have also not committed ourselves to the role of the
H 1s orbital, which must be involved in a σ -bond, perhaps primarily with the metal 4s
orbital.

We now describe briefly the FIR laser magnetic resonance studies of the four
molecules listed above. FeH has also been studied by mid-infrared laser magnetic
resonance, and NiH by microwave/optical double resonance; these investigations are
discussed elsewhere.

9.9.2. CrH in the X 6�+ ground state

The FIR laser magnetic resonance spectrum of CrH was obtained by Corkery, Brown,
Beaton and Evenson [70] by flowing helium over crystals of Cr(CO)6 and reacting
the carbonyl with atomic hydrogen produced in a suitable discharge. A beautiful but
nevertheless low-resolution scan is shown in figure 9.35; under higher resolution many
of the lines shown are split into doublets due to proton hyperfine interaction. The lower
rotational levels of CrH are illustrated in figure 9.36, and the spectrum shown in figure
9.35 arises from the N = 3 ← 2 rotation transition. Each rotational level is split by the
spin–rotation interaction into a number of components (six for N ≥ 3), characterised
by different J quantum numbers.

Since each J level is split into 2J + 1 components by the applied magnetic field,
the rotational transition is split into many Zeeman components and the assignment

0 2 4 6 8 10
Magnetic field / kG

Figure 9.35. Laser magnetic resonance spectrum of CrH (X 6�+) arising from the N = 3 ← 2
rotational transition. The laser frequency was 1100.8067 GHz and the spectrum was recorded in
π polarisation [70].
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Figure 9.36. Lower rotational levels of CrH in the X 6�+ state. The spin–rotation splittings are
exaggerated for the sake of clarity.

of the spectrum shown in figure 9.35 is by no means readily apparent. It has been
achieved, however, without ambiguities. The main isotope of chromium, 52Cr, has a
natural abundance of 83.8% and no nuclear spin. Additional weak lines appearing in
the spectrum are due to 53Cr, with a natural abundance of 9.6% and a spin of 3/2.

The effective Hamiltonian used to analyse the spectrum was that previously de-
scribed for the 4� state of CH, equation (9.148), but with the addition of two extra
terms. The first is a fourth-order spin–orbit coupling term, described by Brown and
Milton [71]:

H
(4)
so = (1/12)θ

{
35S4

z − 30S2S2
z + 25S2

z − 6S2 + 3S4
} = (

√
70/6)θT4

q=0(S).

(9.160)

This term does not arise for states of quartet or lower multiplicity, but makes a significant
contribution in the present case. It arises from fourth-order perturbation effects of
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spin–orbit coupling in the effective Hamiltonian (see chapter 7). Its matrix elements in
a case (b) basis are given by

〈η,Λ; N , S, J,MJ |H(4)
so |η,Λ′; N ′, S, J ′,M ′

J 〉

= δJ J ′δMJ M ′
J
(θ/24)(−1)N ′+S+J

{
S N J
N ′ S 4

}
(−1)N−Λ

(
N 4 N ′

−Λ 0 Λ′

)
× {(2N + 1)(2N ′ + 1)}1/2{(2S + 5)!/(2S − 4)!}1/2. (9.161)

The second additional term is an anisotropic correction to the electron spin Zeeman
interaction, which in a molecule-fixed axis system is given by

HZ = ge
l µB(Bx Sx + By Sy). (9.162)

Corkery, Brown, Beaton and Evenson [70] measured almost 500 resonances in
CrH. The analysis proved complicated because the Zeeman effect was found to be
highly nonlinear, a consequence of the decoupling of the electron spin from the molec-
ular framework. This decoupling also means that magnetically tunable transitions
become weaker in higher magnetic fields, or that strong transitions become less tun-
able. Nevertheless rotational transitions involving N up to 5 in the v = 0 level were
measured and analysed, providing the following values of the molecular parameters
(in cm−1):

B0 = 6.131 7456, D0 = 3.4951 × 10−4, H0 = 1.59 × 10−8,

γ = 5.033 23 × 10−2, γD = 3.451 × 10−6, λ= 0.232 8341,

λD = 9.831 × 10−6, θ = − 2.317 × 10−3.

In addition, three g-factors (unitless) and two proton hyperfine constants (MHz) were
determined:

gS = 2.001 663, gr = −1.280 × 10−3, ge
l = −4.201 × 10−3,

bF = −34.80, c = 41.81.

The net effect of the five unpaired electrons in the 3d orbitals is to produce a spheri-
cally symmetric charge distribution centred on the chromium atom. Using the internu-
clear distance R0 calculated from B0 above, the dipolar constant c is calculated to be
51.2 MHz which compares quite well with the measured value of 41.81 MHz. The Fermi
contact constant bF is found to be negative and small, consistent with a spin polarisa-
tion mechanism. The determined value of ge

l is in remarkably good agreement with the
value calculated from a relationship due to Curl [72], ge

l = −γ /2B = −0.414 × 10−2.
Finally we note that it was possible to determine the value of the fourth-order

spin–spin splitting constant θ ; the value of this parameter depends upon the spin–orbit
mixing of excited electronic states with the ground state.
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9.9.3. FeH in the X 4� ground state

A rotational transition, J = 11/2 ← 9/2, in the ground 4�7/2 state of FeH has been
reported by Beaton, Evenson, Nelis and Brown [73] using FIR laser magnetic reso-
nance. Their spectrum shows three �MJ = 0 (π polarisation) Zeeman components,
two more which involve MJ = 3/2 and 1/2 occurring outside the range of the elec-
tromagnet. The predominant isotope of iron is 56Fe, with a natural abundance of 92%,
but weak lines from 54Fe (6%) and 57Fe are also observed. A marked doublet splitting
in the spectrum is due to Λ-doubling, which is unusually large for a molecule in a �
electronic state. A detailed analysis of the spectrum is still awaited, but the observed
g-value confirms the electronic state to be 4�7/2.

9.9.4. CoH in the X 3� ground state

The FIR laser magnetic resonance spectrum of CoH was obtained by Beaton, Evenson
and Brown [74] using the reaction between hydrogen atoms and cobalt carbonyl vapour.
A very small part of the spectrum is presented in figure 9.37, showing the exquisite
octet hyperfine structure of the 59Co nucleus, which has a nuclear spin of 7/2 and
is in 100% natural abundance. The octets illustrated are two Zeeman components
of the J = 6 ← 5 rotational transition in the 3�4 fine structure state, with v = 0.
High-resolution recordings are presented in figure 9.38, showing two cobalt hyperfine

7 10 13 16 19
Magnetic field / kG

Figure 9.37. Section of the FIR laser magnetic resonance spectrum of CoH (3�4) arising from
the J = 6 ← 5 rotation transition, at low resolution, showing the 59Co hyperfine structure [74].



670 Microwave and far-infrared magnetic resonance
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cobalt hfs
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Figure 9.38. Top: section of the FIR LMR spectrum of CoH recorded with the 138.3 µm laser
line, arising from the J = 5 ← 4 transition in theΩ = 3 spin component. The very small split-
ting is due to proton hyperfine coupling [74]. Bottom: J = 5 ← 4 transition in the Ω = 4 spin
component (138.3 µm laser line).
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−

Figure 9.39. Fine-structure components, rotational levels, and observed rotational transitions
for CoH in its v = 0 X 3�4 and 3�3 fine-structure components. The remaining Ω = 2 spin
component lies at about 1500 cm−1 above the lowest one.

lines, split into doublets from Λ-doubling, with a further very small doublet splitting
arising from proton hyperfine interaction. Figure 9.39 shows an energy level diagram
including the two lowest fine-structure components, and the rotational transitions ob-
served.

This spectrum is a spectroscopist’s dream because apart from its beauty, its as-
signment is straightforward. The Zeeman effect is essentially linear, and the g-factor
identifies both the fine-structure state (3�4 or 3�3 in different cases) and the J values of
the levels involved, the latter being confirmed by the number of second-order Zeeman
components. The hyperfine and Λ-doublet splittings are readily apparent. Many reso-
nances arising from transitions within the two lowest fine-structure states were observed
and assigned.

The effective Hamiltonian used to analyse the CoH spectrum was similar to that
described elsewhere. It may be summarised in the form

Heff = Hrot + Hso + Hsr + Hss + H�d + Hhfs + HZ. (9.163)
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The rotational term, including centrifugal distortion, is

Hrot = BvN2 − DvN4. (9.164)

For the spin–orbit coupling we again confine attention to the molecule-fixed axial
component:

Hso = AvLz Sz . (9.165)

The spin–rotation interaction, including the correction for centrifugal distortion is

Hsr = γvN · S + γvD(N · S)N2, (9.166)

and the spin–spin interaction is, as before,

Hss = (2/3)λv
(
3S2

z − S2
)
. (9.167)

Finally we come to the Λ-doubling which was modelled by adding the term

H�d = (1/2)q�v(N 6
+ + N 6

−). (9.168)

The addition of this term is more than intuition; the Λ-doubling in a � state arises
from second-order mixing with a � state, Λ-doubling in a � state involves fourth-
order mixing with, successively, a� and a� state, so that in a� state theΛ-doubling
must involve sixth-order spin–orbit coupling to a �, � and � state in turn.

The Zeeman interaction and nuclear hyperfine terms have to be added to this
effective Hamiltonian. The Zeeman terms are, as in previous examples,

HZ = (gL + gr )µB BZ L Z + gSµB BZ SZ − grµB BZ NZ − gNµN BZ IZ

+ glµB(BX SX + BY SY ). (9.169)

All of these terms are written in the space-fixed axis system, with Z being the direction
of the applied magnetic field, except for the last (the Zeeman anisotropy term), which
is expressed in the molecule-fixed system. It is, of course, necessary to transform from
space- to molecule-fixed axes in order to evaluate the matrix elements in a case (a) basis.

The magnetic hyperfine interaction was expressed in the molecule-fixed axis sys-
tem by Beaton, Evenson and Brown [74] in the Frosch and Foley [25] form:

Hhfs = aIz Lz + bI · S + cIz Sz . (9.170)

Finally, the 59Co nucleus has an electric quadrupole moment so that the quadrupole
interaction may be written in the normal way for calculation in a case (a) basis as

HQ = −eT2(Q) · T2(∇E). (9.171)

Even if we omit the nuclear hyperfine and Zeeman terms, the zero-field problem
which must be solved is fairly complicated, in that the three fine-structure components
are mixed by one or more of the terms shown in (9.163). The matrix of the effective
Hamiltonian for a given value of J has the following form.
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3�4
3�3

3�2

3�4 m11 m12 m13
3�3 m21 m22 m23
3�2 m31 m32 m33

The full details of the matrix elements are as follows.

m11 = 3A + 2γ + (2/3)λ+ B[J (J + 1) − 6] − D{[J (J + 1) − 6]2

+ 2[J (J + 1) − 12]} + γD J (J + 1)

m22 = −2γ − (4/3)λ+ B[J (J + 1) + 2] − D{[J (J + 1) + 2]2 + 4[J (J + 1) − 9]}
− γD[4J (J + 1) − 14] ± (1/2)q�[J (J + 1)][J (J + 1) − 2][J (J + 1) − 6]

m33 = −3A − 4γ + (2/3)λ+ B[J (J + 1) + 6] − D{[J (J + 1) + 6]2

+ 2[J (J + 1) − 6]} − γD[5J (J + 1) + 18]

m12 = −[2J (J + 1) − 24]1/2{[B − (1/2)γ ] − D[2J (J + 1) − 4]

− (1/2)γD[J (J + 1) − 2]}
m13 = −{[J (J + 1) − 12][J (J + 1) − 6]}1/2{2D + γD

∓ (1/2)q� J (J + 1)[J (J + 1) − 2]}
m23 = −{2[J (J + 1) − 6]}1/2{[B − (1/2)γ ] − D[2J (J + 1) + 8]

− (1/2)γD[J (J + 1) + 10]}.
The upper and lower signs refer to e and f levels respectively. In the presence of a
magnetic field, J is no longer a good quantum number so that a series of 3 × 3 matrices
similar to that above are mixed by the Zeeman terms to form an infinite matrix. This
is truncated at some suitable point, and diagonalised as a function of the magnetic
field strength. The result is a complex system of Zeeman components and transitions;
not surprisingly, 511 FIR laser magnetic resonance lines were observed. Quantitative
assignment is not difficult with appropriate computer routines and Beaton, Evenson
and Brown [74] were able to determine the values of the parameters appearing in the
effective Hamiltonian. Their results (in cm−1) were as follows:

B0 = 7.313 713, D0 = 5.4545 × 10−4, A0 = −221.5, γ0 = −1.2134,

γD = 0.004 339, q� = 5.560 × 10−7.

In addition, the g-factors (unitless) and hyperfine constants (in MHz) were determined:

gS = 1.942 42, gL = 1.025 775, gr = −0.020 689, a = 621.01,

(b + c) = −320.08, b = 136.2, eq0 Q = −92.5.

The spin–spin constant λ does not appear in the above list; it was not determinable in
the analysis, primarily because resonances from the third spin component (3�2) were
not observed.
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The parameter values listed above may be regarded as benchmarks for ab initio
calculations, although some qualitative remarks may be made. The Fermi constant bF

has the value (b + c/3) = −15.9 MHz; as in the case of CrH discussed previously,
this small negative value indicates that the unpaired electrons occupy orbitals which
are essentially 3d orbitals. Spin density at the proton nucleus can arise only through
configuration interaction with other excited electronic states. The orbital hyperfine
parameter a can be used to determine the expectation value of the operator

∑
i r−3

i ,
where the summation is over the electrons which are responsible for the orbital angular
momentum. From the observed value of a this expectation value is 3.322 × 1031 m−3,
compared with the theoretical value of 4.528 × 1031 for an electron in a pure 3d orbital
on cobalt [75]. One concludes that the 3dπ and 3dδmolecular orbitals in CoH are similar
to 3d atomic orbitals, but slightly more diffuse. The interpretation of other parameters,
for example, theΛ-doubling and spin-rotation constants, requires knowledge of nearby
excited electronic states.

9.9.5. NiH in the X 2� ground state

The NiH radical has been studied quite thoroughly, by FIR laser magnetic resonance
as described here [76], but also by microwave/optical double resonance and by mid-
infrared laser magnetic resonance, discussed elsewhere.

In the far-infrared experiments the NiH radicals were again generated by reaction
of the hydrogen atoms with the metal carbonyl vapour. Four rotational transitions of
NiH in its X 2� state, two in each of the two fine-structure states, were observed.
These transitions are identified in figure 9.40; a total of 327 magnetic resonances
was observed, complexity arising from the presence of Λ-doubling as well as the
removal of the 2J + 1 degeneracy of each J level by the applied magnetic field. A
further complication is that nickel contains the following isotopes, with their natural
abundances:

58Ni(67.9%), 60Ni(26.2%), 61Ni(1.2%), 62Ni(3.7%), 64Ni(1.1%)

The sensitivity of the FIR laser magnetic resonance experiments was high enough to
permit observations of all of these isotopes, including quartet hyperfine structure from
61Ni.

The zero-field effective Hamiltonian used to analyse the spectrum was similar to
those described earlier for other transition metal hydrides, except for a much more
complex set of terms to describe the Λ-doubling. It was expressed in a form suitable
for calculations in a case (a) basis as follows:

Heff = B N2 − DN4 + ALz Sz + (γ + γD N2)N · S + (1/2)q�(J 4
+ + J 4

−)

− (1/2)(p� + 4q�)(J 3
+S+ + J 3

−S−) + (1/2)(o� + 3p� + 6q�)(J 2
+S2

+ + J 2
−S2

−)

− (1/2)(n� + 2o� + 3p� + 4q�)(J+S3
+ + J−S3

−)

+ (1/2)(m� + n� + o� + p� + q�)(S4
+ + S4

−). (9.172)
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−1

Figure 9.40. Lower rotational levels in the two fine-structure components of the X 2� ground
state of NiH, and the observed transitions [76]. The Λ-doubling in both states has been exag-
gerated for the sake of clarity, and is not to scale. In particular, theΛ-doubling in the 2�5/2 state
is actually very small.

In the analysis of the CoH spectrum only one sixth-order term was included in the
effective Hamiltonian to describe the Λ-doubling, although a complete representation
would be similar to that shown in equation (9.172), with even more terms. The reasons
for the differences between (9.172) and (9.168) are twofold; the Λ-doubling in NiH
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is much larger than in CoH, and much more experimental data were obtained for
NiH. The matrix elements of (9.172) have been calculated by Brown, Cheung and
Merer [77] and the results may be summarised in the following matrix for a given
J value.

2�5/2
2�3/2

2�5/2 m11 m12
2�3/2 m21 m22

The matrix elements for a given value of J are as follows

m11 = A + γ /2 + γD + B[J (J + 1) − 7/4] − D[J (J + 1) + 1/4][J (J + 1) − 11/4]

m22 = −A − 3γ /2−γ D[2J (J + 1) + 3/2] + B[J (J + 1) + 9/4] − D[J (J + 1)

+ 1/4][J (J + 1) + 21/4] ∓ (1/2)(p� + 4q�)(J + 1/2)[J (J + 1) − 3/4]

m12 = −[J (J + 1) − 15/4]1/2{B − γ /2 − (γD/2)[J (J + 1) + 5/4] − 2D[J (J + 1)

+ 1/4] ∓ (q�/2)(J + 1/2)[J (J + 1) − 3/4]}
m21 = m12

In these expressions, the upper and lower sign choices refer to e and f levels respec-
tively, of opposite parity.

Terms describing the Zeeman and magnetic hyperfine interactions must be added
to (9.172). The complete Zeeman Hamiltonian for a molecule in a 2S+1� state is given
by Nelis, Beaton, Evenson and Brown [76] as

HZ = (gL + gr )µB BZ L Z + gSµB BZ SZ − grµB BZ NZ + (1/2)ge
l µB(B+S− + B−S+)

− (1/2)gr DµB(B+ J− J+ J− + B− J+ J− J+) + (1/2)gl DµB(B+S− J+ J−
+ B−S+ J− J+) − (1/2)gr SµB(B+ J−S+S− + B− J+S−S+)

+ (1/2)glSµB(B+S−S+S− + B−S+S−S+) + (1/2)g′
r DµB(B+ J 3

+ + B− J 3
−)

+ (1/2)g′
l DµB(B+ J 2

+S+ + B− J 2
−S−) + (1/2)g′

r SµB(B+ J+S2
+ + B− J−S2

−)

+ (1/2)g′
l SµB(B+S3

+ + B−S3
−). (9.173)

This expression is written in the space-fixed axis system, but transformations to the
molecule-fixed system are necessary to evaluate the matrix elements in a case (a) basis.
We have met the first four terms previously, but the remaining eight terms are new. The
first four are parity-independent while the remainder are parity-dependent and implic-
itly couple basis states with�Λ = +4 or −4, so that they give diagonal contributions
in a � state. The last two terms in (9.173) have zero diagonal terms for a doublet spin
state, and the matrix elements of the terms involving glS are indistinguishable from
those involving ge

l . Similarly matrix elements involving gr S are indistinguishable from
those involving gr . Consequently there are 8 independent g factors for a molecule in a
2� state, rather than 12 as equation (9.173) implies. Nelis, Beaton, Evenson and Brown
[76] were able to determine six of the possible eight g-factors.
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Finally we add the magnetic hyperfine Hamiltonian which is required to analyse
the proton hyperfine structure. It is given, in the molecule-fixed axis system, as [76]

Hhfs = aIz Lz + bI · S + cIz Sz − (1/2)d�(J 2
+ I+S+ + J 2

− I−S−), (9.174)

where the first three terms are the familiar Frosch and Foley [25] terms whilst the fourth
term represents a parity-dependent hyperfine interaction for a molecule in a � state
[78]. We will discuss this term further in chapter 11 on double resonance spectroscopy.

In analysing the FIR laser magnetic resonance spectrum, Nelis, Beaton, Evenson
and Brown [76] fitted data for the different isotopic forms of NiH simultaneously,
using appropriate scaling factors for the different parameters [67]. They encountered
one interesting problem in this procedure, in that it proved necessary to take account of
non-adiabatic effects as described by Watson [79] when scaling the rotational constant
Be, the spin–rotation constant γ and the spin–orbit coupling constant Ae. The scaling
parameter used for Be and γ was

µ−1

[
1 + me

mNi
�01(Ni) + me

mH
�01(H)

]
, (9.175)

where µ is the reduced mass of the diatomic molecule, me is the mass of the electron
and mNi and mH are the masses of the Ni and H atoms, respectively. For Ae a mass-
dependence of similar form was used except that the factor outside the bracket was µ0,
in which case the Born–Oppenheimer correction factor was referred to as �0A(Ni).

A remarkably large proportion of the constants in the effective Hamiltonian were
determined from the analysis of the FIR laser magnetic resonance spectrum, supple-
mented by data from other spectroscopic regions which allowed equilibrium values
of some of the constants to be determined. The following rotational and vibrational
constants are listed by Nelis, Beaton, Evenson and Brown [76] (in cm−1):

B0 = 7.753 016, αe = 0.256 403, D0 = 5.5439 × 10−4, βe = −2.73 × 10−5,

A0 = −491.4849, γ0 = 1.3370, γD = 6.781 × 10−3.

The Λ-doubling and hyperfine constants are listed in MHz:

p� + 4q� = 188.614, (p� + 4q�)D = 0.108 11, q� = −0.4647,

b(H) = −81.23, d�(H) = 0.757, h5/2(H) = 40.0, h3/2(H) = 51.1,

h5/2(61Ni) = 441.2, eq0 Q(61Ni) = 42.3.

In the values listed above, the h constants are the axial components of the total hyperfine
interaction, given by

h3/2 = 2a − (1/2)(b + c), h5/2 = 2a + (1/2)(b + c). (9.176)

Finally, the six determined g factors have the values:

gL = 1.039 759, gS = 1.837 08, gr = −4.019 × 10−2, ge
l = 0.8351,

gl D = 1.58 × 10−3, g′
l D = 1.425 × 10−3.
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One now asks how these parameters can be related to the energy levels and elec-
tronic structure of the radical. Knowledge of the excited electronic states is at present too
sparse for a full quantitative assessment, but the values of the Λ-doubling parameters
can be sensibly rationalised. So far as the magnetic hyperfine constants are concerned,
the a parameter gives an expectation value 〈1/r3〉 = 2.89 × 1029 m−3, where r is the
separation of the open shell electron from the proton in NiH. The determined value of
Be gives r−3

e = 3.145 × 1029 m−3, which is satisfactorily close to the value determined
from a above, and confirms that the distribution of the open shell electron is very well
described by an orbital centred on the nickel atom.

The g-factors also point to the problem of excited state mixing, the values of gL and
gS in particular being too far from the free electron values for comfort. The single state
effective Hamiltonian, derived by perturbation theory, may be inadequate in molecules
where there are several close-lying electronic states which are appreciably mixed.

Appendix 9.1. Evaluation of the reduced matrix element of T3 (S, S, S)

In our discussion of the FIR laser magnetic resonance spectrum of CH in its a 4�− state
we encountered the reduced matrix element of T3(S, S, S). The result was presented
in equation (9.155), which we now derive. First we note that, by the Wigner–Eckart
theorem, the following result applies in the molecule-fixed coordinate system with
q = 0:

〈S,Σ|T3
0(S, S, S)|S,Σ〉 = (−1)S−Σ

(
S 3 S

−Σ 0 Σ

)
〈S‖T3(S, S, S)‖S〉. (9.177)

The 3- j symbol in (9.177) may be evaluated using a recursion relation, such as that
given by Edmonds [80] in his equation (3.7.13). One then finds that

〈S,Σ|T3
0(S, S, S)|S,Σ〉

= (−1)S−Σ(−1)S−Σ−1

× 4Σ{3S(S + 1) − 5Σ2 − 1}
{(2S + 4)(2S + 3)(2S + 2)(2S + 1)(2S)(2S − 1)(2S − 2)}1/2

× 〈S‖T3(S, S, S)‖S〉. (9.178)

The problem therefore reduces to that of evaluating the left-hand side of equation
(9.178). We first decompose the third-rank tensor by making use of the result

T3
p(S, S, S) = (−1)p−1

√
7

∑
p1,p2

(
1 2 3
p1 p2 −p

)
T1

p1
(S)T2

p2
(S, S) (9.179)

where, since p = 0 in our case, p2 = 0 or ±1. We now make use of the further decom-
position result,

T2
q (S, S) = (−1)q

√
5
∑
q1,q2

(
1 1 2
q1 q2 −q

)
T1

q1
(S)T1

q2
(S), (9.180)
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and we are back on the more familiar ground of first-rank tensors. We remind ourselves
of the relationships between the spherical tensor and cartesian components,

T1
0(S) = Sz, T1

1(S) = − 1√
2

(Sx + iSy), T1
−1(S) = 1√

2
(Sx − iSy), (9.181)

which we will need in evaluating (9.180). It will also be necessary to take account of
the commutation relations between the components of S, which are:

Sx Sy − Sy Sx = iSz, Sy Sz − Sz Sy = iSx , Sz Sx − Sx Sz = iSy . (9.182)

The three required components of T2
q (S, S) are now evaluated using (9.180) with q = 0

and ±1. The results are as follows:

T2
0(S, S) =

√
5

{(
1 1 2
1 −1 0

)
T1

1(S)T1
−1(S)

+
(

1 1 2
−1 1 0

)
T1

−1(S)T1
1(S) +

(
1 1 2
0 0 0

)
T1

0(S)T1
0(S)

}

= 1√
6

{
3S2

z − S2
}
. (9.183)

T2
1(S, S) = −

√
5

{(
1 1 2
1 0 −1

)
T1

−1(S)T1
0(S) +

(
1 1 2
0 1 −1

)
T1

0(S)T1
−1(S)

}

= −1

2
{Sx Sz + iSy Sz + Sz Sx + iSz Sy}. (9.184)

T2
−1(S, S) = −

√
5

{(
1 1 2
1 0 −1

)
T1

1(S)T1
0(S) +

(
1 1 2
0 1 −1

)
T1

0(S)T1
1(S)

}

= 1

2
{Sx Sz − iSy Sz + Sz Sx − iSz Sy}. (9.185)

These results are now to be inserted into equation (9.179), which takes the explicit
form

T3
0(S, S, S) = −

√
7

{(
1 2 3
1 −1 0

)
T1

1(S)T2
−1(S, S) +

(
1 2 3

−1 1 0

)
T1

−1(S)T2
1(S, S)

+
(

1 2 3
0 0 0

)
T1

0(S)T2
0(S, S)

}
. (9.186)

The required result is now obtained by substituting the first- and second-rank tensor
components from (9.181) which yields

T3
0(S, S, S) = − 1√

10
Sz

{
3S2 − 5S2

z − 1
}
. (9.187)

The left-hand side of (9.178) is therefore

〈S,Σ|T3
0(S, S, S)|S,Σ〉 = − 1√

10
Σ{3S(S + 1) − 5Σ2 − 1} (9.188)
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and we obtain the final result:

〈S‖T3(S, S, S)‖S〉
= (1/4

√
10){(2S + 4)(2S + 3)(2S + 2)(2S + 1)(2S)(2S − 1)(2S − 2)}1/2. (9.189)

The derivation above is not the only way to obtain the required result, but it is
straightforward, if somewhat tedious. The reduced matrix element of the fourth-rank
spin tensor, T4(S, S, S, S), which can arise in the analysis of higher spin states, is
obtained by further use of the recursion relationship given by Edmonds [80]. See also
the general expression given in equation (5.134) of chapter 5.
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10 Pure rotational spectroscopy

10.1. Introduction and experimental methods

10.1.1. Simple absorption spectrograph

The first direct observations of pure rotational transitions induced by microwave or
millimetre-wave radiation date from about 1945. Research during the Second World
War, particularly on radiation sources in these wavelength regions, led to rapid develop-
ments in this branch of molecular spectroscopy. However, the observation of rotational
structure in electronic and vibrational spectra, which had been routine for at least twenty
years previously, meant that much was already understood about molecular rotations.
Indeed most of the theory was developed in the years immediately following the birth
of modern quantum mechanics. We have already described much of this theory in
earlier chapters, and we will draw upon the results obtained in this chapter. We have
also described molecular beam resonance and maser techniques for studying rotational
spectra, but in this chapter we describe somewhat more conventional experiments in
which the absorption of microwave radiation by molecules in the bulk gas phase is de-
tected directly. As we will see, some ingenious techniques have been developed in more
recent years to enable the study of short-lived transient species, neutral or charged free
radicals. Molecular radio astronomy is also, in part, a branch of microwave absorption
or emission spectroscopy, and we shall deal with that in subsection 10.1.6. We will
also describe, in the next chapter, double resonance experiments in which microwave
radiation is combined simultaneously with a second source of radiation of either similar
or quite different wavelength.

The experimental studies described in this chapter cover a very wide frequency or
wavelength range. We have already used the ‘term’ microwave in the previous paragraph
but we should perhaps define our terms more precisely. There is no generally accepted
convention, so we present ours in figure 10.1, where we define the boundaries between
the radiofrequency, microwave, millimetre wave, sub-millimetre wave and far-infrared
regions of the electromagnetic spectrum. Many experiments will cross these articially
defined boundaries, embracing different regions.

In order to focus our attention we now outline the basic essential features of a
microwave absorption spectrometer, and then examine the constituent parts in more
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Figure 10.2. The three main elements of a simple microwave absorption spectrometer.

detail in subsequent subsections. Figure 10.2 shows a simple block diagram of such a
spectrometer. There are three main elements. The first is a tunable source of radiation
which might be anywhere in the (nominal) range 1 to 1000 GHz. 1 GHz corresponds
to a wavelength of about 30 cm, whilst 1000 GHz (or 1 Terahertz, THz) represents
a wavelength of about 0.3 mm. The range actually extends from the radiofrequency,
through the microwave and millimetre wave, to the sub-millimetre region. The second
main element is an absorption cell containing the gas under investigation, typically in
the pressure range 0.01 to 0.1 Torr. As we shall see, many different types of absorption
cell have been employed, particularly to optimise the study of short-lived transient
species like free radicals or molecular ions. The third and final main element is a
detector whose purpose is to convert incident microwave power to an output voltage,
which can be measured. Absorption of microwave power in the absorption cell results
in a decrease in the detector voltage, which is measured as a function of the source
frequency. Such a simple spectrometer system, employing d.c. detection, has been
successful for studying stable molecules with large electric dipole moments, but it is
extremely insensitive.

During the past fifty years extensive effort in many laboratories has led to en-
hancements of the simple system, turning microwave spectroscopy into an extremely
sensitive and versatile tool. We now review some of these developments. We shall
also describe the essential features of a radio telescope because almost thirty diatomic
molecular species, many of which would be transient species in the laboratory, have
been detected in interstellar gas clouds. Molecular radio astronomy is closely linked
with and complementary to laboratory microwave spectroscopy. Or, if you wish, you
can reverse the emphasis of that last statement!

10.1.2. Microwave radiation sources

The workhorse of microwave spectroscopy until recent times has been the reflex
klystron, which is now being replaced by synthesisers at the lower frequency end
of the region, and backward-wave oscillators (BWO) at the high-frequency end. Both
the klystron and the BWO make use of the fact that accelerating electrons emit radia-
tion, and the principles of their design are illustrated in figures 10.3 and 10.4. In both
cases a cathode is heated electrically to produce a continuous beam of electrons through
thermionic emission. In the klystron the electrons are accelerated towards the positively
charged cavity, passing through holes in the cavity wall, and are then repelled by the
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Figure 10.3. Principles of the reflex klystron.

negatively charged reflector which turns them back towards the cathode. The cavity is a
metallic box which stores microwave energy of a particular wavelength, depending on
the cavity dimensions. Resonant microwave cavities were discussed at some length in
chapter 9. As the electrons pass through the cavity they are subjected to the oscillating
microwave electric field supported by the cavity, which either increases or decreases
their velocities. This velocity modulation leads to bunching of the electrons, and if the
microwave phase is such as to reduce the velocity of an electron bunch, microwave en-
ergy is received by the cavity. A small portion of this microwave radiation is tapped off
through an appropriate window. The microwave radiation frequency depends primarily
on the cavity dimensions which can be changed manually. Further limited tuning of
the microwave frequency is achieved by changing the reflector voltage. Consequently
narrow band frequency tuning can be obtained electronically, but broad band tuning
can be achieved only by stepwise mechanical adjustment of the cavity dimensions.
Power outputs of up to 100 mW are readily obtained, and klystrons which operate at
frequencies up to several hundred GHz are commercially available.
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Figure 10.4. Principles of the backward-wave oscillator.

The backward-wave oscillator also uses an electron beam which is collimated by
the grid and anode, accelerated by the positively charged accelerator, focussed by a
permanent magnetic field and collected at the positively charged collector plate. The
focussed beam passes through a wire helix, which is a microwave transmission line
equal in length to several wavelengths of the longest required output wavelength. Under
operating conditions random noise in the electron beam induces voltages in the helix
which velocity modulate the beam and produce bunches of electrons which move to-
wards the collector. The electric fields produced by the electron bunches appear outside
the helix, and at the correct accelerating potential the electric fields are synchronous
with the electron bunches, generating a backward moving wave in the helix. This wave
further bunches the electron beam, which amplifies the backward wave, thereby max-
imising the bunching. The microwave signal generated on the helix is coupled out of
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the tube via a d.c. blocking capacitor. The oscillation frequency is determined by the
potentials of the accelerating electrode, the helix, and the collector.

The great advantage of the backward-wave oscillator is that it is electronically
tunable over its entire range of oscillation, unlike the klystron which has only limited
electronic tuning. In both cases the frequency of the microwave source is usually
locked to a harmonic of a stable reference oscillator. Recent advances in the design of
backward-wave oscillators have enabled them to be used at ever higher frequencies,
thereby opening up the millimetre to sub-millimetre region of the spectrum more
effectively than before. We shall return to a discussion of very high frequency backward-
wave oscillators later in this chapter.

Within the frequency range up to 200 GHz the klystron can be replaced (at a price)
by synthesisers, coupled with solid state microwave amplifiers and passive or active
frequency multipliers. These devices have very high frequency stability, are easily
modulated either in frequency or power, and are readily compatible with computer
control of all their main functions. The klystron is gradually becoming redundant, but
has an honoured place in the development of microwave spectroscopy.

10.1.3. Modulation spectrometers

(a) Stark modulation

The simple spectrometer system illustrated in block diagrammatic form in figure 10.2
would be rather insensitive, but there are many refinements which greatly improve the
situation. Perhaps the most important of these is signal modulation and in this section
we consider a number of different modulation schemes which have been used to great
effect. Modulation has several objectives, but one of them is to convert the output
detector signal from d.c. to a.c.; a.c. amplification and detection techniques, including
phase-sensitive detection, can then be used.

The detector used to convert incident microwave power into an output voltage
is often a crystal detector consisting of a fine metal whisker in point contact with a
semiconductor. The contact resistance is greater in one direction than in the other, and
the small contact capacitance means that the crystal acts as a fast rectifier which is
sensitive to microwave radiation. Incident microwave power on the crystal causes a
voltage drop so that a current flows. At very low incident microwave power levels the
rectified current is proportional to the power and, since this is proportional to the square
of the voltage drop across the crystal, the detector is known as a square-law detector.
At higher incident powers the rectified current is proportional to the first power of the
voltage and the detector is then a linear detector.

The sensitivity of a detector depends primarily on its noise power output. Modu-
lation of the microwave power incident on the crystal results in an alternating output
current. The efficiency with which a small input signal is converted to a change in
the output current increases with increasing current in the square-law region up to a
maximum constant value in the linear region. It is therefore common practice to bias
the crystal to ensure that it is operating in the linear region.
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The noise output power (P) depends on the thermal noise (which depends upon the
temperature, T) and the crystal conversion noise which is proportional to the square of
the crystal current (I):

P =
(

kT + C I 2

ν

)
�ν. (10.1)

Here C is a constant for a particular crystal (typically 10−7 ohms s−1), ν is the output
(modulation) frequency, and �ν is the bandwidth of the detector system. The noise
will be minimised by working at a high enough modulation frequency ν to render
the second term in (10.1) negligible, and by reducing the detector bandwidth. It is
also common practice to cool the detector to reduce the thermal noise. The usual
method of modulating the incident power is to modulate the microwave absorption by
perturbing the energy levels with a suitable oscillating electric or magnetic field. In
this section we describe the use of an oscillating electric field, which is called Stark
modulation. Later on we will describe magnetic field modulation, which has proved to
be particularly important in the study of transient molecular species with open shell
electronic structures.

Let us consider the simple two-level system illustrated in figure 10.5 where, in the
absence of any external field, transitions will be induced between levels E1 and E2 by
radiation at the correct frequency ν0, which we take to be a microwave frequency. A
single line spectrum would be obtained by slowly scanning the microwave frequency,

Stark shift

ν0

ν0

ν0

ν1

ν1

ν

ν0

ν

0

0

Figure 10.5. Stark effect and line shift for a two-level system.
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and absorption would be detected as a decrease in the microwave power incident at
the crystal detector. This simple method, which is illustrated in figure 10.2, is called
crystal video detection. If now a static electric field is applied, and the molecule under
investigation possesses an electric dipole moment, the resulting Stark effect will shift
the resonant frequency to a new value ν1. If we use a square-wave oscillating electric
field, which is zero based, we will observe the original unshifted absorption line, plus
the Stark-shifted line.

Now consider the microwave power level at the crystal detector as the microwave
frequency ν is swept through the same range as in figure 10.5. When the square-wave
voltage is in the first half of its cycle, at 0 volts, the absorption centred at ν0 is obtained.
However, in the second half of its cycle, at V volts, the Stark component at ν1 is
recorded. The detector output will be an alternating current and amplification with an
amplifier tuned to the modulation frequency will yield a signal output as shown in
figure 10.6. For the unshifted line ν0 the peaks of the output correspond to the bottom
of the square wave, i.e. at 0 volts. The signal is therefore 180◦ out-of-phase with the
square-wave modulation. Conversely, the ν1 component, produced at the top of the
square-wave (V volts), is in-phase with the modulation. In practice the outputs are fed
to a phase-sensitive detector which produces a d.c. output proportional to the cosine of
the phase difference between the square-wave voltage and the output signal. Since the
phase difference is either 180◦ or 0◦, the d.c. output is proportional to −1 or +1; we
obtain the recording shown in figure 10.6. The Stark component, often referred to as a
Stark lobe, is inverted with respect to the unshifted line.

We have achieved the aim of providing the detector with a modulated power level,
and if the modulation frequency is high enough, say 100 kHz, the crystal conversion
noise is reduced to a level well below the thermal noise. In the example shown the Stark
voltage is large enough to separate the unshifted and shifted lines, but at a smaller
voltage the two lines will overlap, and the resultant will look like a first-derivative
absorption line, with positive and negative lobes. In the more complicated examples
often encountered, the mix of shifted and unshifted lines can be quite difficult to
disentangle. Note that it is important that the Stark voltage be zero-based; if it is not,
but ranges from −V to +V volts, only the Stark component will be observed and the
microwave power at the detector is then not modulated. Sine-wave Stark modulation
can be used but the amplitude must be chosen carefully because absorption will occur
at all frequencies between ν0 and ν1; this can result in severe line broadening. It is again
important that the modulation be zero-based.

We now consider how Stark modulation has been achieved in practice. Perhaps
the earliest application was that of Hughes and Wilson [1]. A single flat metal plate
is located in the centre of a rectangular waveguide cell, but insulated from it (see
figure 10.7(a)). Since the Stark field is almost entirely parallel to the microwave electric
field in this arrangement, observed transitions will obey the selection rule�M = 0. An
alternative arrangement is to cut the waveguide into two halves, which are held in place
by insulators, and to apply the Stark voltage between the two halves (figure 10.7(b)).
A third type of Stark cell contains two parallel plates, located inside a cell through
which the microwave radiation is transmitted. Such a cell is illustrated in figure 10.8;
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−

ν0 ν1

Figure 10.6. The effects of Stark modulation and phase-sensitive detection.

the microwave radiation is propagated and collected by a pair of horns, and transmitted
by means of a pair of parallel metal plates, which also function as Stark electrodes.
The cell illustrated is a design due to Johnson [2] but many others have used this type
of cell successfully up to frequencies of at least 130 GHz [3].

Whichever method is used for modulation, it also possible to measure the electric
dipole moment of the molecule under investigation. This can be achieved either by
measuring the separation between the unshifted and Stark-shifted lines as a function
of the modulation amplitude, or by direct measurement of the Stark splitting produced
by a static electric field.
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Figure 10.7. Methods for introducing Stark modulation into a rectangular waveguide cell:
(a) Stark septum, (b) split waveguide.

(b) Zeeman modulation

If the molecule under investigation is a free radical with an open shell electronic
structure, the energy levels are sensitive to an applied magnetic field, as we have seen
elsewhere. Under these circumstance an oscillating magnetic field can be used for
modulation, in much the same way as it is used in microwave magnetic resonance (see
chapter 9). The first and most important example of this approach was the detection of
theΛ-doublet spectrum of the OH radical by Dousmanis, Sanders and Townes [4]. They
used a fairly simple arrangement which is illustrated in figure 10.9. The cylindrical
absorption cell was made of brass, 150 cm in length and 3 cm diameter, coupled at the
ends to rectangular waveguide through tapered sections. Inside the brass tube was a
cylindrical quartz tube forming part of the gas system, whilst outside was a wire-wound
solenoid to produce an axial modulating magnetic field. Rectangular slots were cut into
the brass tube to allow for penetration of the modulating field, and a small d.c. bias
magnetic field was also applied. Water vapour was pumped continuously through a
radiofrequency discharge, situated immediately upstream of the microwave cell, and
the OH radicals produced were estimated to have an average lifetime of 300 ms (being
regenerated downstream in the gas flow). Absorption lines were observed over the
range 7.7 to 37 GHz. We shall discuss the nature and assignment of the spectrum later
in this chapter.

(c) Source modulation

There are often reasons why the gas sample cell needs to be free of Stark plates, and
in such cases the free-space cell has been used, sometimes with Zeeman modulation
coils situated outside the cell. However, when Zeeman modulation is not appropriate
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(e.g. for a closed shell molecule), direct frequency modulation of the microwave source
frequency has often been employed. This achieves some of the advantages of molecular
modulation, including the removal of the 1/ν crystal noise, but not all. One particular
problem is that when scanning the microwave frequency there are bound to be fluc-
tuations in the power level incident on the detector crystal. These arise either from
changes in the power level of the source itself, or unavoidable changes in the transmis-
sion efficiency of the microwave line and sample cell. If source modulation is used,
these power fluctuations result in a.c. voltage fluctuations from the crystal detector.
These are detected by the phase-sensitive detector and a sloping or erratic baseline is
the consequence.

Sometimes one has to live with this problem, and some of the finest work, par-
ticularly on transient molecular species, has been achieved using source modulation.
This includes some of the earliest work on neutral free radicals, by Kewley, Sastry,
Winnewisser and Gordy [5], who studied the SO and CS species. With the benefit of
hindsight, we know these radicals to be very long-lived. We shall illustrate the details
of source modulation by describing two other experiments. The first is the classic work
of Woods [6] and Dixon and Woods [7] who obtained the first microwave spectrum of
a molecular ion, namely CO+. The second is an example of a high-temperature mi-
crowave cell for the study of refractory materials.

The objective of Woods [6] was to design and operate a microwave absorption
cell which also supported a d.c. electrical discharge in the sample gas, with the aim
of producing a detectable concentration of molecular ions. The principal features of
the cell are illustrated in figure 10.10. The main part of the apparatus was a cylindrical
Pyrex tube, of length 305 cm and diameter 15 cm, which served as the discharge tube
and vacuum envelope. This glass tube was extended by stainless steel sections, 30 cm
long at one end and 7.5 cm long at the other, which contained all the vacuum gauges,
pumping ports, gas inlets and electrical feedthroughs. The complete tube was sealed,
vacuum tight, at each end by Teflon lenses designed to collimate the microwave radia-
tion. Just inside the glass tube, at the ends, were hollow cylinders of copper, 10 cm long
and small enough to slide inside the glass. These copper cylinders were the electrodes
for the d.c. discharge, but Woods actually found that the discharge at the cathode end
always tended to jump over and use the stainless steel section as a larger cathode.
In normal operation this was accepted as a feature of the tube which had some ad-
vantages. At the anode end the stainless steel section was floated electrically and the
copper cylinder carried all the current, corresponding to a maximum power of 0.5 kW
dissipated under operating conditions. The discharge voltage used was in the range
500 to 800 V. It was found to be advantageous to cool the discharge tube with a con-
tinuous flow of liquid nitrogen through coils wrapped around the tube.

The frequency source used for the study of CO+ was a klystron operating close to
120 GHz. The microwave radiation was launched through a microwave horn onto the
Teflon lens at the source end of the discharge tube. The radiation emerging from the
cell was focused by the second Teflon lens into a complementary horn for transmission
to a diode detector. The mounting and precision adjustment of the horns was extremely
important, and the whole assembly was mounted on an optical bench. The klystron
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5 MHz scan width

Figure 10.11. Rotational transition of the CO+ion at a frequency of 118 101.99 MHz, observed
by Dixon and Woods [7]. The overall scan width is 5 MHz, the line was obtained by averaging
200 scans, and the centre of the resonance is the central dip. Note the confusing baseline drift.

frequency was stabilised by phase-locking it to a harmonic of a stable lower frequency
source. Source frequency modulation was accomplished with a 30 kHz square-wave
voltage, centred at zero voltage.

In his inital experiments, Woods [6] observed very strong lines from the OH radical
when water vapour was the discharge medium. Dixon and Woods [7] subsequently
observed lines from the CO+ ion using a helium/carbon monoxide mixture; previous
work on the electronic spectrum [8] had provided approximate values for the requisite
microwave frequencies, and two resonances were observed, corresponding to the lowest
rotational transition in the ground vibrational level, split by spin–rotation interaction.
The assignment of the spectrum is described later in this chapter. One of the observed
resonances in shown in figure 10.11, the central dip being the resonance. This spectrum
required one hour of signal averaging, and it demonstrates the problem of the sloping
baseline characteristic of source modulation experiments. Perhaps the most surprising
observation, however, was that observation conditions could be found under which
noise from the gas discharge was negligible. This was contrary to both expectation and
the conventional wisdom at the time.

The second type of free space cell we describe is one of a number designed to
operate at a high temperature so that species of low volatility can be studied. We
outline briefly a cell designed by Yamada, Fujitake and Hirota [9] to study the rotational
spectrum of NaO, formed by the reaction of sodium vapour with N2O at a pressure of
100 m Torr. This cell was operated at a temperature of 350 ◦C; other workers have built
cells which operate at much higher temperatures.

The main body of the cell, shown in figure 10.12, was a cylindrical Pyrex tube
of diameter 10 cm and length 2 m, sealed at the ends with Teflon lenses designed to
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88 279

Frequency / MHz

88 291

Figure 10.13. Microwave spectrum of NaO, arising from a J = 7/2 ← 5/2 rotational transition
in the v= 0 level of the 2�3/2 ground state [9].

collimate the microwave beam. Inside the cell was a stainless steel plate supporting
sodium metal. The cell was heated by means of heating tape wound around the outside;
outside this tape was a solenoid which was used either for cancelling the earth’s magnetic
field or for studying Zeeman effects. The frequency region was covered up to 400 GHz
using klystrons and Schottky barrier multipliers, and source frequency modulation was
employed for a.c. detection. An observed spectrum is shown in figure 10.13. The NaO
molecule was determined to have a 2�3/2 ground state, and the spectrum shown in
the figure arises from the J = 5/2 to 7/2 rotational transition in the v= 0 level, split
by Λ-doubling and hyperfine interaction from the 23Na nucleus. Again the details are
described later in this chapter. Baseline drift is not so apparent in this spectrum, mainly
because the signal-to-noise ratio is very high.

(d) Velocity modulation

We conclude this section on modulation spectrometers by describing a particularly
novel and important method, known as velocity modulation, which was originally
developed by Gudeman, Begemann, Pfaff and Saykally [10]. It applies specifically
to ionic species, and has been used primarily to study the infrared vibration–rotation
spectra of molecular ions. If we need an excuse to include it in this book, however, it
is provided by Matsushima, Oka and Takagi [11] who used the method to study the
far-infrared rotational spectrum of the HeH+ ion.

A block diagram of the spectrometer system designed by Gudeman, Begemann,
Pfaff and Saykally [10] is shown in figure 10.14. As shown, this system employed a
mid-infrared laser as the radiation source, and was designed to measure the vibration–
rotation spectrum of the HCO+ion. The essential principle is very simple. The ions
are produced by a square-wave a.c. discharge; during the first half of the square-wave
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cycle the positive ions migrate towards the negative electrode and any resonance with
the laser beam passing through the cell will be Doppler-shifted in one direction. In the
second half of the square-wave cycle the electrode polarities are reversed, the migration
direction of the ions is reversed, and the Doppler shift is also reversed. Consequently the
a.c. discharge modulates the direction of the ion velocity vector, and hence the Doppler
shift; there is a resulting frequency modulation of the resonance, and conventional a.c.
detection techniques can be used.

There are at least two huge advantages with the technique. The first is that only
molecular ions are affected, so that there is total detection discrimination in favour of
ions. The second is that positive and negative ions present in the discharge will move in
opposite directions, with resulting Doppler shifts of opposite sign. There is therefore a
180◦ phase change in the detected signals from cations and anions, leading to a relative
inversion of the resonances from these species. If both positive and negative ion spectra
are detected, they are clearly separated [12]. A beautiful example was the detection of
OH+ and OH− ions in the same discharge.

The simplified block diagram of the apparatus used by Gudeman, Begemann, Pfaff
and Saykally, shown in figure 10.14, indicates an infrared laser beam as the radiation
source. The authors point out, however, that there is no reason why the method should
not be applied in lower frequency regions of the spectrum, including the microwave.
The far-infrared studies of the HeH+ ion by Matsushima, Oka and Takagi [11] were per-
formed using a laser system in which two carbon dioxide lasers at different frequencies
are mixed together and also with a microwave frequency from a tunable synthesiser.
Coarse tuning is achieved by choosing different pairs of carbon dioxide laser frequen-
cies, and fine tuning by scanning the microwave synthesiser. They used a sinusoidal
a.c. discharge at a frequency of 1.2 kHz, with a peak-to-peak voltage of 5 kV. We shall
describe the analysis and interpretation of the rotational spectrum of HeH+, including
its isotopic variants, later in this chapter.

10.1.4. Superheterodyne detection

As we have seen, modulation of the energy levels involved in a transition results in a
signal at the detector oscillating at the modulation frequency, with all the advantages
of discrimination and removal of the 1/ν noise. It is, however, not always possible to
arrange the apparatus to modulate the energy levels, and this is where superheterodyne
detection becomes important. The essential principle is to mix the primary microwave
frequency ν1 at the crystal detector with a secondary frequency ν2 from what is called a
‘local oscillator’. One then detects at the difference frequency, ν1 − ν2. Typical values
of the difference frequency are 30 or 60 MHz, and at this frequency the crystal noise
term is negligible. It is necessary to stabilise both the primary and the local oscillator
frequency, and the difference between them. Signal detection and amplification is, of
course, at the beat frequency. When the requirements of the experiment permit, it is
possible to combine superheterodyne detection with molecular modulation, in which
case the bandwidth of the detection system can be made very small.
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Figure 10.15. Block diagram of the tunable-cavity spectrometer built by Radford [13], and used
by him to study the microwave spectra of OH and OD.

An unusual example of a microwave spectrometer which uses superheterodyne
detection and molecular modulation is a tunable-cavity spectrometer designed and
built by Radford [13]. Microwave cavities were described in chapter 9, where they
form the heart of a microwave magnetic resonance spectrometer. Compared with
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non-resonant microwave cells, such as we have described earlier, a resonant cavity has
a small volume which should offer filling factor advantages for the study of short-lived
free radicals. On the other hand a resonant cavity operates at a specific frequency, and
molecular energy levels are usually tuned by some other method, such as an external
magnetic field. Radford [13] designed a cylindrical cavity whose resonant frequency
could be tuned by changing its length. It was then necessary to design a system so
that the microwave source frequency tracked the resonant frequency of the cavity as
the latter was changed. The details of Radford’s spectrometer system are illustrated in
figure 10.15. The cavity is designed to be mechanically tunable over the range 3.5 to
7 GHz. The output of the microwave source is frequency modulated at 30 MHz, and
the cavity tuned to one of the 30 MHz sidebands; as a transmission cavity it passes only
the sideband frequency chosen. This sideband is mixed with the original microwave
source and the resulting 30 MHz intermediate frequency signal is amplified and fed
to a lock-in detector where it is compared with a reference signal from the 30 MHz
oscillator. The d.c. output of the lock-in detector is then passed to a servo amplifier
which mechanically adjusts the resonant frequency of the cavity. Frequency scanning is
thus accomplished by sweeping the microwave source, and relying on the servo system
to keep the cavity in tune. In addition a 30 kHz modulating Stark voltage is applied
across the cavity, as shown. The final molecular resonance signal is a 30 kHz signal,
detected with a lock-in amplifier, with the noise advantages of 30 MHz superhetero-
dyne detection. Radford succeeded in observing the microwave Λ-doublet spectra of
OH and OD, but attempts to observe the spectrum of CH were unsuccessful. CH is
a very short-lived species; it was observed eventually by far-infrared laser magnetic
resonance, as we described in chapter 9, and microwave transitions have been observed
by microwave/optical double resonance, as we shall describe in chapter 11. The pure
rotational spectrum of CH, however, has only been observed very recently.

Superherodyne spectrometers are now not common in laboratory microwave ex-
periments, but superheterodyne detection plays a major role in radio astronomy, as we
shall see later. The reasons are obvious; one cannot modulate the energy levels of extra-
terrestrial molecules, and a radio telescope collects radiant energy at all frequencies
simultaneously. One does not have a primary monochromatic source of radiation, as in
laboratory experiments.

10.1.5. Fourier transform spectrometer

(a) Introduction

A quite different approach to radiofrequency, microwave and infrared spectroscopy is
that known as Fourier transform (FT) spectroscopy. As we shall see, this method of
recording the spectra of transient molecular species is particularly appropriate in com-
bination with the use of pulsed gas nozzles. For this reason it has proved to be a powerful
technique for the study of weakly bound dimer complexes formed in supersonic gas
expansions. It has, however, also been used for the study of diatomic molecules, both
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stable and transient, and is likely to have increasing value in this field. It is also closely
related to techniques used in radio astronomy. Similar Fourier transform methods are of
primary importance in nuclear magnetic resonance spectroscopy of condensed phases.

In the field of microwave rotational spectroscopy pioneering developments were
described by Flygare and his colleagues; an important paper which discusses in con-
siderable detail the major instrumental factors and the underlying theory is that due to
Balle and Flygare [14]. We will outline the essential features of the Flygare spectrom-
eter, using the description given by Legon [15] as our guide, and then explore different
aspects of the instrument and their underlying principles in more depth.

(b) Pulsed-nozzle Fourier transform spectrometer

A schematic diagram of the spectrometer is shown in figure 10.16; its successful
operation depends critically upon the ability to achieve accurate timing for a sequence
of several events. First, a short pulse of gas is produced from a pulsed-nozzle source,
the gas travelling in a direction perpendicular to the axis of an evacuated Fabry–Perot
cavity, described later. This gas pulse lasts for about 1 ms, and the expansion in the
cavity is in an essentially collision-free environment.

Second, after an appropriate time interval to allow the gas pulse to reach an opti-
mum position between the cavity mirrors, a 1 µs pulse of monochromatic microwave
radiation is introduced into the cavity, which is itself tuned to the correct matching res-
onant frequency. The pulse carries with it a band of frequencies�ν ≈ 1 MHz, centred
at the resonant frequency ν of the cavity. The cavity has a bandwidth of approximately
1 MHz, so that the microwave radiation density is high. If the molecular species under
investigation has one or more resonant frequencies within this bandwidth, an apprecia-
ble macroscopic polarisation is induced, corresponding classically to a phase-coherent
oscillation of the molecular electric dipole moments. The microwave pulse must arrive
at the correct time interval after the gas pulse.

An essential requirement is that the characteristic time, T2, for the decay of the
macroscopic polarisation must be much longer than the time taken for the polarising
radiation pulse to dissipate. This requirement is readily satisfied; the pin-diode S2 is
held closed until the pulsed radiation has dissipated, and is then opened to capture
the coherent radiation emitted by the polarised gas, due to one or more rotational
transitions producing spontaneous emission. If all is well, the emission is detected
against a near-zero radiation background.

Microwave emission at a frequency νm is detected by means of a double super-
heterodyne system. The radiation at frequency νm is mixed with a phase-coherent signal
at ν − 30 MHz to give an intermediate frequency |ν− νm| ± 30 MHz. After amplifi-
cation this signal is mixed in a second stage with further phase-coherent radiation at
30 MHz, to yield the final signal. This consists essentially of an exponentially damped
oscillating electric field E(t) of frequency � = |ν− νm|; after suitable averaging of a
chosen number of pulses, a corresponding intensity versus frequency spectrum is ob-
tained. Conversion of data obtained in the time domain to data in the frequency domain
is achieved by fast Fourier transformation, using a computer. The principles behind
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this transformation are described in the next subsection; we deal with this fundamental
aspect, and then return to the details of the spectrometer.

(c) Fourier transformation from the time domain to the frequency domain

The conversion of an oscillating electric field E(t), the so-called time domain spectrum,
into a frequency domain spectrum is known as a Fourier transformation. A simple but
neat description of this transformation is given by Hollas [16]. The oscillating electric
field arising from a molecular emission line following the radiation pulse is converted
into an oscillating voltage f (t) with a frequency ν, which we may write

f (t) = A cos 2πνt, (10.2)

where A is the amplitude of f (t). Figure 10.17 shows a very simple radiofrequency case
where ν= 100 MHz; the time domain spectrum shown in figure 10.17(a) is transformed
into a frequency domain spectrum, shown in figure 10.17(b) with a single line at a
frequency of 100 MHz. This transformation is a specific example of a more general
result: if a square integrable function F(x) exists, then its Fourier transform, f (k), is

(a)

t

F(v)

v

(b)

Figure 10.17. (a) Time domain spectrum, (b) frequency domain spectrum for radiation of a
single frequency.
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defined by

f (k) = 1

2π

+∞∫
−∞

F(x) exp(ikx) dx . (10.3)

The reverse transformation is

F(x) =
+∞∫

−∞
f (k) exp(−ikx) dk, (10.4)

and F(x) and f (k) are called Fourier transform pairs. In the radiofrequency example
given above the time domain spectrum can be expressed as

f (t) =
+∞∫

−∞
F(ν) exp(i2πνt) dν, (10.5)

where F(ν) is the frequency domain spectrum we seek. Since the exponential function
in (10.5) can be written in the form

exp(i2πνt) = cos 2πνt + i sin 2πνt, (10.6)

equation (10.5) can be rewritten:

f (t) =
+∞∫

−∞
F(ν)(cos 2πνt + i sin 2πνt) dν. (10.7)

Neglecting the imaginary part of (10.7) we see that f (t) is a sum of cosine waves, as
shown in figure 10.17(a). In like manner, the Fourier transform can be re-expressed as

F(ν) =
+∞∫

−∞
f (t)(cos 2πνt − i sin 2πνt) dt, (10.8)

and again the imaginary part of (10.8) can be neglected.
This is the simplest possible case. In real examples there could be two or more

molecular resonances within the bandwidth of the cavity. Suppose, in fact, that there
are three resonances at frequencies ν, 0.7 ν and 0.5ν, with relative intensities 10, 15
and 7. In this case f (t) would be given by

f (t) = A(cos 2πνt + (15/10) cos 2π(0.7)νt + (7/10) cos 2π(0.5)νt), (10.9)

and the time domain spectrum would be as shown in figure 10.18(a). The corresponding
frequency domain spectrum is shown in figure 10.18(b). The complex time domain
spectrum can be broken down into its component waves of characteristic frequency
and amplitude, and the corresponding frequency domain spectrum reconstructed, as
shown in figure 10.18(b).

In the microwave region, where a typical cavity bandwidth is 1 MHz, it is unlikely
that more than one rotational resonance will occur within the bandwidth, and it is then
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(a)

(b)

v

F(v)

F(t)

t

Figure 10.18. (a) Time domain spectrum for radiation of three different frequencies, ν, 0.7 ν and
0.5 ν, with relative intensities 10, 15 and 7. (b) Frequency domain spectrum.

necessary to tune the resonant frequency of the Fabry–Perot cell. It should be clear that
the technique needs detectors with extremely fast response times. A further requirement
is a computer which can accomplish the necessary mathematical processing quickly
enough in real time. We shall return to these matters later. We also note that a resonance
line will have a finite width, often determined by the radiative lifetime of the upper
state involved in the transition.

(d) Fabry–Perot cavities

The most important and unique part of a Fourier transform microwave spectrometer is
the Fabry–Perot cavity. A fairly complete description of the principles has been given
by Balle and Flygare [14] and we here summarise the main aspects, with the aid of
figure 10.19. We use the cavity built by Balle and Flygare as a typical example. It is
formed by two parallel, spherical concave mirrors made from solid aluminium. The
mirrors are 36 cm in diameter, have a radius of curvature (R) of 84 cm, and are situated
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Figure 10.19. Geometry of a microwave Fabry–Perot cavity.

typically 50 to 70 cm apart (D). The fundamental resonance frequency depends upon the
mirror separation, and the mirrors are mounted so that the separation can be accurately
adjusted. The cavity is designed to operate in the frequency range 8 to 18 GHz. The
microwave radiation is coupled into the cavity through an iris hole situated in the centre
of one of the mirrors. For the designed frequency range the hole is 1 cm in diameter,
and at the iris position the wall thickness of the mirror is ground down to about 0.5 mm.

The cavity supports an infinite number of standing wave patterns, called modes,
which are designated TEMnpq, where n, p and q are integers. The microwave electric
field distribution can be calculated for any mode, from a formula given by Balle and
Flygare [14]. However, the dominant modes are those of the type TEM00q and for these
the resonant frequencies are

νc =
(

c

2D

)[
q + π−1 cos−1

(
1 − D

R

)]
. (10.10)

The term c/2D gives the frequency separation between consecutive modes and is
approximately 300 MHz for a mirror separation D of 50 cm. The shape of the cavity
resonance is Lorentzian, and its full width at half height (�νc) is typically 1 MHz
at a frequency νc of 10 GHz. The quality factor, Q, which is equal to νc/�νc, is
approximately 104, which is high.

The electric dipole interaction of the standing wave electric field in a Fabry–Perot
cavity with a two-level system has been treated theoretically by Campbell, Buxton,



710 Pure rotational spectroscopy

Balle, Keenan and Flygare [17], and by Campbell, Buxton, Balle and Flygare [18].
They found that the maximum polarisation of the gas in the cavity can, in a typical
example, be achieved within a radiation pulse length of 1 µs. This means that a transi-
tion whose resonant frequency lies anywhere within the 1 MHz cavity bandwidth will
be polarised. The macroscopic polarisation of the gas decays relatively slowly, with a
typical relaxation time of 100 µs. The resulting electric field which is coupled out of
the cavity is a decaying function of time, and is subjected to very fast Fourier transfor-
mation. The resulting frequency domain spectrum usually exhibits a doublet splitting,
arising from the Doppler effect [17]. In addition to the original papers referenced, a
clear summary of the most important aspects has been given by Legon [19].

(e) Signal detection

It is customary to use signal averaging to obtain a sufficient signal-to-noise ratio and
this requires precise timing of the sequence of events. In order to eliminate any coherent
content in repeated signals that are not molecular in origin, the pin-diode switches S1

and S2 can be pulsed at twice the rate of the solenoid valve which controls the gas
pulses. Each cycle consists of a gas pulse, a microwave pulse synchronised to interact
with the gas inside the cavity, and a second microwave pulse timed to enter the cavity
after the gas has been evacuated. The digitised signal from the first radiation pulse is
stored in a computer, whilst that arising from the second radiation pulse is subtracted
from the first. With the fast pumping achieved with a large diffusion pump, the gas
pulse can be repeated at a rate up to 10 Hz. It is convenient to display the accumulated
time domain signal arising from successive cycles, and then to carry out the Fourier
transformation needed to display the frequency domain spectrum.

Campbell, Read and Shea [20] were able to measure Stark effects by placing a pair
of stainless steel parallel plates between the Fabry–Perot mirrors. Zeeman effects were
observed by Campbell and Read [21] by placing both the gas nozzle and the Fabry–
Perot cavity inside a superconducting solenoid. We may conclude that the pulsed FT
microwave technique has high sensitivity and considerable versatility. The high sensi-
tivity arises in part from the fact that by recording in the time domain, all frequencies
in the spectrum are recorded at the same time. This is known as the multiplex or Fell-
gett advantage. Other pulsed Fourier transform microwave spectrometers have been
built [22, 23] and this now seems to be a well established technique. Perhaps the only
disadvantages are that the upper limit to the microwave frequency is about 40 GHz,
partly because of the decreasing size of the Fabry–Perot cavity at higher frequencies,
and partly because of the need for very fast detectors.

(f ) Fourier transform far-infrared interferometry

Fourier transform techniques are used throughout the whole spectroscopic region,
particularly in the infrared and visible. As we pass from the microwave region to
the far-infrared, Fourier transform methods are still used, but based now on inter-
ferometry rather than pulsed methods. Perhaps this region of the spectrum will, in
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Figure 10.20. Principles of a Michelson interferometer [16].

the future, be dominated by the terahertz backward-wave oscillators, but interfero-
metric methods are still important and we now describe some of the principles and
methods.

We start by considering the original experiment of Michelson which is appro-
priate for the visible region of the spectrum. The essential idea is to split a beam of
light into two equal parts which travel different path lengths before being recombined
and detected; interference between the two parts can then be arranged to be either
constructive or destructive, depending upon their respective transit times. Various
ways of arranging this have been described but one of the simplest in illustrated in
figure 10.20. We consider first a beam of monochromatic radiation from a source S
entering the apparatus and striking a beam splitter B; half of the light beam (ray 2)
passes through the beam splitter, but the other half (ray 1) is reflected through ninety
degrees. Ray 1 is reflected by mirror M1 back through B to a detector D. The position
of the mirror M1 is adjustable so that the total path length of ray 1 can be changed,
the effects of which we will see in a moment. Meanwhile ray 2 proceeds to a second
mirror, M2, where it is reflected back to the backside of the beam splitter B; this side
of B is also reflective so that ray 2 is reflected through ninety degrees to the detector D.
The only other addition to the instrument is a compensating plate C, made of the same
material as B, which is there to ensure that both rays have passed through this material
twice before reaching the detector.
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Although the path length for both rays from source to detector could be made
identical, in general ray 2 will have travelled a distance δ further than ray 1. This distance
is called a retardation, and it can be adjusted by moving the position of mirror M1. If
the wavelength of the radiation is λ, then if δ = 0, λ, 2λ, . . . , etc., the two rays interfere
constructively, that is to say they add. On the other hand if δ = λ/2, 3λ/2, 5λ/2, . . . ,
etc., the two rays interfere destructively and cancel each other out; no signal is received
from the detector. So this simple arrangement provides a method of determining the
wavelength of the radiation; mirror M1 is the wavelength- (or frequency-) determining
element which any spectrometer system needs.

The detector output when the rays are constructively combining is a cosine wave
which can be recorded and digitised. As we have seen, this time domain spectrum can
then be subjected to Fourier transformation to provide a frequency domain spectrum
(strictly speaking, a wavelength is transformed to its inverse or wavenumber). If instead
of a source of monochromatic radiation we have the emission or absorption spectrum
of a molecule against a continuous background radiation source, the length domain
spectrum is more complex than a simple cosine function, but it can still be Fourier-
transformed to yield the wavenumber domain spectrum we require. It will be clear that a
practical and sensitive instrument requires very accurate and uniform movement of the
mirror M1; moreover the resolution depends upon making the displacement δ of M1 as
large as possible, perhaps as large as 1 m in a high-resolution instrument. The sensitivity
of an interferometer is high because it is not necessary to reduce the source and detector
apertures of the radiation to achieve high resolution as it is in a conventional grating
spectrometer; this is known as the Jacqinot advantage. The simultaneous detection of
a broad band of radiation is a further advantage for sensitivity, known as the multiplex
or Fellgett advantage.

Careful and thorough analyses of the significant factors have been given by Strong
and Vanasse [24, 25], particularly in relation to the application of interferometric meth-
ods in the far-infrared region of the spectrum. These considerations led them to design a
lamellar grating far-infrared interferometer, covering a wavelength range from greater
than 4 mm to less than 15 µm. This, in wavenumber units, is 2.5 to 67 cm−1, or
in frequency units from 75 to over 2000 GHz. Beam splitters, which are radiation
amplitude-dividers are not efficient devices for producing coherent radiation in this
wavelength range; Strong and Vanesse therefore turned to a special type of grating,
which is a wavefront divider. Their grating is illustrated schematically in figure 10.21.
It is constructed of two interleaved sets of glass plates which can be moved with respect
to each other, either to produce a groove depth (h) of almost one inch, or at the other
extreme, to form an almost uninterrupted plane mirror. One surface is moved with
respect to the other at a rate v to achieve the desired modulation. The grating has a
spacing (a) of 0.5 in, with a total of 24 grooves, and is combined with Czerny–Turner
optics, described in detail in the original paper [25]. The instrument is effective over
a wavelength range from 4 mm to 15 µm, and was used to obtain the first extensive
rotational spectrum of CO, as we will describe later in this chapter.

Other authors have described Fourier transform spectrometers for operation in
the millimeter and far-infrared regions. Plummer, Winnewisser, Winnewisser, Hahn



Introduction and experimental methods 713

a

a

h

Figure 10.21. Profile of the lamellar grating designed by Strong and Vanesse [25] for a far-
infrared Fourier transform spectrometer.

and Reinartz [26] have modified a Bruker IFS 120 HR infrared instrument, replacing
the normal sample compartment with a custom-built cell and using a liquid helium
cooled silicon bolometer as the detector. Schwarz, Guarnieri, Grabow and Doose [27]
have built a novel Fourier transform instrument which operates in the millimeter-wave
region, up to 100 GHz.

10.1.6. Radio telescopes and radio astronomy

(a) Introduction

The existence of molecular species in interstellar space has been known for almost
seventy years. The first observations involved the electronic spectra, seen in absorption
in the near-ultraviolet, of the CN, CH [28] and CH+ [29] species. Radiofrequency lines
due to hydrogen atoms in emission [30] and absorption [31], and from the recombination
of H+ ions with electrons were also known. However, molecular radio astronomy started
with the observation of the OH radical by Weinreb, Barrett, Meeks and Henry [32] in
1963; in due course, this was followed by the discovery of CO [33]. In the subsequent
years over 110 molecules have been observed in a variety of astronomical sources,
including some in galaxies other than our own. Nearly a third of these are diatomic
molecules, with both closed and open shell electronic ground states, and some were
observed by astronomers prior to being detected in the laboratory.

In this section, we shall restrict ourselves to those aspects of radio astronomy
which are relevant to the study of the rotational spectra of diatomic molecules. We will
not deal with the study of continuum sources, with cosmology, or with the detailed
structure, dynamics and chemistry of interstellar clouds. These are important parts of
astrophysics, covered in many research articles, reviews and books [34, 35, 36]. We
will describe the main features of the dishes which collect radiation (i.e. the telescope),
the detectors and signal processing equipment, and the analysis of the spectra. Many
of the microwave spectra of diatomic molecules are now used as important probes to



714 Pure rotational spectroscopy

study the physics of interstellar clouds, but again we leave descriptions of these matters
to the experts in these fields.

(b) Telescope dishes

The first element of a radio telescope is the receiving dish, always the most visually
impressive part of the instrument. For the study of spectral lines the ideal dish must
satisfy a number of requirements.

(a) The dish must collect incoming radiation and focus it on to the detector with
maximum efficiency.

(b) The angular resolution of the dish should be as high as possible. The resolution
depends on the physical size of the dish and the wavelength; it is not an adjustable
parameter. Some molecular line sources are highly localised, and good angular
resolution is necessary to locate and study them.

(c) The dish should be mounted such that its detection direction can be aligned in
two independent orthogonal directions.

(d) The surface accuracy of the dish must be sufficiently high that desired signals are
not degraded. Line measurements at frequencies of 300 GHz are now common;
the corresponding wavelength is 1 mm, which imposes very severe requirements
on the consistency of the dish surface.

(e) The dish and its mounting must be mechanically stable, so that distortions are
not produced by weather fluctuations or gravitational forces. Telescope dishes are
frequently contained within a protective housing, called a radome, to minimise
problems arising from temperature, pressure and wind fluctuations.

(f) The earth’s atmosphere results in absorption and diffraction of incoming radia-
tion in the microwave region. In particular water vapour and ozone are strong
absorbers in certain specific ranges of the microwave spectrum. Consequently
radio telescopes are usually located at positions of high altitude in dry regions of
the world. Mauna Kea in Hawaii, Pico Veleta in Spain, Mount Graham in Arizona
and Effelsberg in the Alps are among the most important sites. Even in these
optimum locations there are frequency regions of the microwave spectrum which
are almost opaque. Another important consideration regarding the geographical
location of a telescope is that different regions of the sky come into view from
different locations. For example, it is not possible to see the galactic centre from
the Northern hemisphere whereas it is from the Southern hemisphere.

Figure 10.22 illustrates the principles of the so-called altitude–azimuth drive which
allows for adjustment of the parabolic reflector dish in two orthogonal directions. The
azimuthal axis is vertical, whilst the elevation axis is horizontal. This figure describes
the simplest arrangement, with only single focussing of the incoming radiation, the
detector being placed at the focus of the dish. The orientation and alignment of the
dish is computer controlled, and must be related to equatorial coordinates, which in
turn are related to celestial coordinates. Because the earth is constantly changing its
orientation, the transformation from equatorial to celestial cordinates is also changing.
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Figure 10.22. Principles of the altitude–azimuth drive for orientation of the telescope dish.

Consequently if a particular interstellar source is being studied for any length of time,
the dish orientation must be continuously and precisely adjusted. In practice an overall
pointing accuracy of 10 arcsec is commonly achieved.

In practice more sophisticated double focussing arrangements are usually used,
several of which are shown in figure 10.23. The Cassegrain, Gregory and Nasmyth
systems are in common use, and the offset Cassegrain system has the advantage that
the secondary reflector does not block the field of view of the primary dish.

(c) Receiver/detector systems

The receiving antenna, placed at the focus of the dish, is a device for transforming an
electromagnetic wave in free space into a guided wave; we have already encountered
examples of such devices in some of the laboratory spectrometers described earlier
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in this chapter. In early telescopes simple dipole antennae were used but these have
now been replaced by microwave horns. Most parabolic dishes use circular horns, with
rings forming a periodic structure, of depth λ/4, so that the microwave electric field
in the aperture is oriented in the direction of propagation. Although microwave horns
are relatively broad-banded devices, it is desirable to choose a horn feed which is most
appropriate to the wavelength of the incoming radiation to be studied.

Following the receiver system we find a detector system whose ultimate purpose is
to convert the incident microwave radiation into a measured voltage. The main elements
of a typical radio telescope for studying frequency-discrete absorption or emission
lines are illustrated in figure 10.24. The incoming radiation, which is generally broad
band, is first amplified before being mixed with a local oscillator frequency; this is the
element which makes the telescope frequency sensitive, and results in superheterodyne
detection at an intermediate frequency νIF, which might be anywhere from a few MHz to
more than 1 GHz. The intermediate frequency νIF is, of course, the difference between
the source frequency νS and the local oscillator frequency νLO. In most cases the
mixer itself is either a cooled field effect transistor amplifier, or a superconducting
mixer. The first stage of the front end amplifier is often cooled to 3 to 5 K, both to

ν

ν

Figure 10.24. The principal elements of a radio telescope employing superheterodyne detection
for recording frequency-discrete line emissions or absorptions [34].
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reduce noise, and to allow the mixer to operate. In some instruments even sections of
the microwave horn are cooled. In earlier work masers or parametric amplifiers were
included, but these have been almost entirely superseded by HEMT (High Electron
Mobility Transistors) transistor amplifiers, up to 100 GHz. At higher frequencies SIS
(superconductor–isolator–superconductor) devices are used.

Following the frequency mixer, the intermediate frequency is amplified and filtered
before being detected with a square-law detector. Signal-to-noise enhancement is then
often achieved through the use of some kind of signal integrator before final display
and recording. A frequency-resolved spectrum of the incoming radiation is obtained
by scanning the local oscillator frequency, νLO. Alternatively, and probably preferably,
the local oscillator frequency is fixed and the spectrum obtained by using a chain of
IF preamplifiers and narrow band amplifiers, as shown in figure 10.25. This system is
known as a multichannel superheterodyne receiver, and its intrinsic frequency resolu-
tion is determined by the IF step size, and hence the number of following amplifiers
and detectors; up to 512 contiguous filters have been used!

Not all radio telescopes are earth bound, and we should mention a far-infrared
telescope designed by Storey, Watson and Townes [37] which is designed to be flown
aboard an aircraft at altitudes over 40 000 feet. A block diagram of the instrument is
shown in figure 10.26. It comprises two separate chambers, the second of which houses
the important optics and detector and is evacuated. The infrared radiation from an
astronomical source is collected with a 91 cm telescope which has an angular resolution
of one arc minute. The radiation is processed with two Fabry–Perot filters arranged in
tandem. The first is a scanning instrument, whilst the second is a fixed wavelength filter
with a bandwidth of about 5 µm. The detector is a liquid helium cooled gallium-doped
germanium photoconductor. The first chamber contains a gas cell which can be filled
with water vapour or ammonia to provide wavelength calibration.

This spectrometer has been used to study both CO and OH in extra-terrestial
environments, and the results are discussed later in this chapter.

(d) Nature of discrete line spectra

Molecular line spectra may be observed either in absorption or emission. We now
remind ourselves of the fundamental rules governing these processes which were de-
scribed in chapter 6. Consider a pair of levels with energies E2 and E1, with N2

and N1 being the density of molecules in each state in a defined sample volume (see
figure 10.27). There are three types of transition which can occur between the two
levels. In the presence of a radiation field of energy density U, which may be the ubiq-
uitous isotropic black body radiation at 2.7 K, or continuum radiation from another
emitting source, stimulated absorption and emission will occur with equal probability
(i.e. B21U = B12U). In addition, however, spontaneous emission from the upper to the
lower state will also occur (A21 in figure 10.27), provided the upper level is populated.
Einstein showed that the A and B coefficients are related in the following way. If our
defined system is at thermal equilibrium, the number of absorbed and emitted photons
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Figure 10.26. Block diagram of a far-infrared spectrometer designed for use aboard an aircraft
flying at 41 000 feet [37].

Figure 10.27. Spontaneous and stimulated transitions in a simple two-level system.
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must be equal, so that

N2A21 + N2B21U = N1B12U. (10.11)

If we assume a Boltzmann distribution of molecules between the two levels we may
write

N2

N1
= g2

g1
exp

(
− hν

kT

)
, (10.12)

where T is the temperature of the system in K, g1 and g2 are the statistical weights of
the two states, and ν = (E2 − E1)/h. From equations (10.11) and (10.12) we obtain
the result

U = A21

(N1/N2)B12 − B21
= A21

(g1/g2) exp(hν/kT )B12 − B21
. (10.13)

Now for a system at thermal equilibrium, Planck’s law for black body radiation tells us
that the brightness distribution is given by

Bν(T ) = 2hν3

c2

1

exp(hν/kT ) − 1
, (10.14)

so that the radiation density is given by

U = 4π

c
Bν(T ) = 8πhν3

c3

1

exp(hν/kT ) − 1
. (10.15)

Comparing equations (10.13) and (10.15) we obtain the important results

g1B12 = g2B21, (10.16)

A21 = 8πhν3

c3
B21. (10.17)

If the effective temperature of our defined system is less than the universal radiation
background temperature of 2.7 K, transitions between the two levels can be observed
in absorption. This is the case with interstellar formaldehyde. Alternatively absorption
can be observed against the continuum radiation from a nearby bright source. Spon-
taneous emission will always occur provided the upper of the two levels is populated,
and can be observed if the populations are different. There are, in addition, examples
of the exceptional situation in which N2> N1; the result of this population inversion is
that stimulated emission dominates, and maser emission is observed. Interstellar OH
and SiO provide diatomic examples of this unusual situation, as also does interstellar
H2O; we shall describe the results for OH later in this chapter. Departures from local
thermodynamic equilibrium are very common, and the concept of temperature in inter-
stellar gas clouds is not simple; this is a major part of astrophysics which is, however,
beyond the scope of this book.

Molecular line spectra in the astrophysical literature are often exhibited as a func-
tion of radial velocity of the source (in km s−1), rather than as a function of frequency.
If the rest frequency for a spectroscopic line is known accurately from laboratory mea-
surements, the astronomical frequency can be used to determine the radial velocity of
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Table 10.1. Diatomic molecules observed in interstellar and circumstellar sources up
to January 2000

Molecule State Transition type Location Reference

CH A 2�–X 2� electronic many [28]

CN B 2�+–X 2�+ electronic many [28]

X 2�+ rotational IRC+10216 [39]

CH+ A 1�–X 1�+ electronic many [29]

OH X 2� Λ-doublet many [32, 38]

CO X 1�+ rotational IRC+10216, many [33, 39]

SiO X 1�+ rotational Sgr B2 [40]

CS X 1�+ rotational IRC+10216 [39]

SO X 3�− rotational Orion A, Sgr B2 [41]

SiS X 1�+ rotational IRC+10216 [42]

NS X 2�1/2 rotational Sgr B2 [43]

H2 X 1�+ vibrational Orion Nebula [44]

C2 A 1�u–X 1�+
g electronic Cygnus OB2 [45]

NO X 2�1/2 rotational Sgr B2 [46]

HCl X 1�+ rotational OMC-1 [47]

PN X 1�+ rotational Ori(KL), Sgr B2 [48]

NaCl X 1�+ rotational IRC+10216 [49]

AlCl X 1�+ rotational IRC+10216 [49]

KCl X 1�+ rotational IRC+10216 [49]

SiC X 3� rotational IRC+10216 [50]

CP X 2�+ rotational IRC+10216 [51]

NH A 3�–X 3�− electronic zPER, HD 2778 [52]

CO+ X 2�+ rotational M17SW,NGC7027 [53]

SiN X 2�+ rotational IRC+10216 [54]

HF X 1�+ rotational Sgr B2 [55]

SO+ X 2� rotational DR21-OH,Sgr B2 [56]

the source, through calculation of the Doppler shift. The conversion requires a calcu-
lation of the velocity of the receiving system, which contains contributions from the
earth’s rotation and also the motion of the centre of the earth relative to the barycen-
tre of the solar system. Knowledge of the source velocity is obviously important in
astronomy. In some cases multiple splitting of a spectroscopic line is observed in astro-
nomical sources. Turbulence causes consequent differing radial velocities within the
source, which leads to groups of molecules with differing Doppler shifts.

The number of molecules, diatomic and polyatomic, detected in interstellar space,
continues to increase, and now totals well over one hundred. At the beginning of
the third millenium 26 diatomic species have been observed; these are listed in
table 10.1. Details of some of the spectroscopic transitions observed and their analyses
are described later in this chapter.
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10.1.7. Terahertz (far-infrared) spectrometers

A major development during the past few years has been the development in Russia
of backward-wave oscillators which operate in the terahertz (THz) frequency range,
and hence bridge the gap between the millimetre-wave and far-infrared regions of
the spectrum. In consequence rotational transitions of very light molecules like the
hydrides become accessible. Several groups are currently involved in terahertz or
near-terahertz spectroscopy and we summarise the main aspects. As we will see, suc-
cessful experiments using tunable far-infrared radiation generated without the use of
high-frequency backward-wave oscillators have also been described; we come to those
in due course.

Winnewisser and his colleagues have described several versions of what they
call the Cologne terahertz spectrometer, and we shall consider two of these versions.
The first, described by Winnewisser and his colleagues in 1994 [57, 58], is illus-
trated schematically in figure 10.28. The most important element is a high-frequency
backward-wave oscillator (BWO) which produces radiation up to a frequency of 2 THz,
and, depending on the frequency, can produce output powers up to 50 mW or more. A
unique feature of the high-frequency BWO is the presence of a three-dimensional pe-
riodic array of square posts; many thousands of such posts form a slow wave structure,
in which the electrons are alternately accelerated and decelerated, producing high-
frequency radiation. A small portion of this radiation is mixed with a high harmonic
of a synthesiser, and a phase-lock loop (PLL) system stabilises the BWO frequency;
scanning and modulating the synthesiser frequency results in scanning and modulation
(at typically 20 kHz) of the primary BWO frequency. The mixer-multiplier consists of
a planar Schottky diode, mounted at the end of a grooved millimeter waveguide; the
diode is placed at the focal point of a semiparabolic mirror illuminated with the sub-
millimeter radiation. The major portion of the radiation from the BWO passes through
a free space absorption cell and is detected with a helium-cooled InSb hot electron
bolometer. The final 20 kHz signal is fed to a lock-in amplifier. This spectrometer has
been combined with a pulsed supersonic jet to study van der Waals complexes [59].

The second Cologne spectrometer [60] we describe is illustrated schematically
in figure 10.29. The tunable far-infrared radiation is generated by mixing the far-
infrared radiation from a fixed-frequency laser (typically a carbon dioxide laser-pumped
methylene fluoride laser oscillating at 1626.6 GHz), with a tunable BWO oscillating
typically over the range 280 to 380 GHz. The BWO is locked to a harmonic of a
microwave synthesiser, which controls the scanning and the modulation.

Other groups have built tunable far-infrared spectrometers which do not involve
high-frequency backward-wave oscillators. Verhoeve, Zwart, Versluis, Drabbels, ter
Meulen, Meerts, Dymanus and McLay [61] have described a system in which fixed
frequency far-infrared radiation is mixed with tunable microwave radiation in Schottky
barrier diodes. This instrument has been operated up to 2.7 THz, and used to study
OD and N2H+. A similar system, combined with a continuous supersonic jet, has been
described by Cohen, Busarow, Laughlin, Blake, Havenith, Lee and Saykally [62]. This
instrument was used to study rare gas/water clusters.
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One of the most important examples of terahertz spectroscopy is the recent de-
tection of the lowest rotational transition of the CH radical by Amano [63] and we
shall also describe his spectrometer in some detail. Strictly speaking Amano’s work,
which is in the 500 to 600 GHz region, does not reach 1 THz. However, CH is a very
important species and we make no apology for describing Amano’s work in some de-
tail. As we have described earlier, backward-wave oscillators have the advantage of
being frequency-tunable over a wide range, but their intrinsic frequency and output
power stabilities are not high. The BWO is therefore locked to the harmonic of a Gunn
oscillator whose fundamental range is 80 to 110 GHz; the Gunn oscillator is itself
phase-locked to the harmonic of a frequency synthesiser (I) operating over the range
12 to 18 GHz. Efficient mixing of the frequency pairs is achieved with GeAs harmonic
mixers designed by Winnewisser and his colleagues. The beat frequency (IF frequency)
between the BWO and the Gunn oscillator was chosen to be 345 MHz, generated from a
second frequency synthesiser (II). Synthesiser (II) was frequency modulated at 10 kHz,
so that this modulation was carried through to the BWO (i.e. source modulation). Any
absorption resonance line was therefore frequency-modulated at 10 kHz; secondary
modulation at 11 Hz was applied to the discharge used to produce free radicals in a
free-space absorption cell. The power transmitted through the cell was detected with an
indium-antimonide detector, and the resonance signal first demodulated with a lock-in
amplifier at 10 kHz, and subsequently demodulated with a second lock-in amplifier
referenced at 11 Hz. The complete system is summarised in figure 10.30; it should
be added that the double modulation system employed by Amano [63], which largely
overcomes baseline drift problems, was introduced earlier by Amano and Hirota [64].

Amano succeeded in observing the lowest rotational transition of the CH radical,
generated by means of a glow discharge in mixture of CH4 and helium. The observation
of this spectrum is a major achievement in microwave spectroscopy; we show a part of
the spectrum in figure 10.31, exhibiting two proton hyperfine lines, but defer a detailed
discussion of the energy levels and spectrum until later in this chapter.

Although there seems little doubt that the development of the high-frequency BWO
will have a major impact on the development of spectroscopy in this region, it is not
the only route into this hitherto unexplored area. As we have already described, other
methods of generating tunable far-infrared radiation have been developed. Evenson,
Jennings and Petersen [65] and Evenson, Jennings and Vanek [66] have described two
different far-infrared sources, both of which depend primarily on mixing the radiation
from two mid-infrared carbon dioxide lasers. One of these instruments is illustrated
schematically in figure 10.32. Infrared radiation from two carbon dioxide lasers is first
passed through 90 MHz opto-acoustic modulators and then focussed onto a tungsten or
cobalt MIM diode along with microwave radiation (νm) from a 2 to 20 GHz synthesiser.
The latter adds tunable sidebands to the carbon dioxide difference frequency. The opto-
acoustic modulators (AOM) serve to isolate the lasers from the diode, and to provide
an additional 180 MHz of frequency range. The far-infrared radiation of a few tenths
of a microwatt has a frequency

νFIR = (νI − νII) ± νm. (10.18)
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532.70

Frequency / GHz

532.74 532.78 532.82

Figure 10.31. Part of the J = 3/2 ← 1/2 transition in CH recorded by Amano [63], with proton
hyperfine splitting. The assignment of the spectrum is discussed later in this chapter.

It passes through the sample absorption cell made of Pyrex with polyethylene windows
and is detected with a liquid helium cooled bolometer. One of the lasers is frequency-
modulated at 1 kHz and the detector output is processed with a lock-in amplifier, as
shown. Far-infrared rotational spectra of CO, HCl and HF have been recorded [67], and
as an example of the excellent sensitivity achieved, we refer the reader to the spectrum
of the OH radical [68] shown later in this chapter. Evenson’s spectrometer operates over
a wide range of the far-infrared region up to 9 THz, with excellent frequency stability.

It will be clear from this subsection that much skillful and imaginative instrument
design, by a number of different groups, has been directed towards the development
of far-infrared spectroscopy. Quite apart from the developments in laboratory spec-
troscopy, the impact on astronomy in this region of the spectrum is of major impor-
tance. A high power tunable far-infrared source can serve as the local oscillator for the
detection of far-infrared interstellar radiation. We can anticipate exciting developments
in this field.

10.1.8. Ion beam techniques

In recent years Carrington and his colleagues have developed ion beam techniques for
studying the spectra of molecular ions, particularly in vibration–rotation levels lying
close to the dissociation limit. Some of the spectra observed were vibrational spectra,
obtained using mid-infrared laser sources; we will not deal with these results. In other
cases, however, the spectra have been obtained in the microwave region, and they in-
clude the observation of rotational transitions. In reality, the conventional classification
of spectra as being rotational, vibrational or electronic becomes increasingly unsatis-
factory for levels close to dissociation, and microwave spectroscopy can involve all
three types of spectroscopic transition. In some ways, chapters 8 or 11 might have been
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considered as more appropriate homes for descriptions of this work, and indeed, the
ion beam double resonance studies which have been performed will be described in
chapter 11. On the other hand, the single resonance experiments do not depend upon
the specific state selection characteristic of conventional molecular beam magnetic or
electric resonance, although some state selection does enhance the sensitivity, as we
shall see. Pure microwave rotational transitions are involved, at least in part, so these
studies do belong in this chapter!

There is another classification difficulty. In this chapter we have arranged
our discussion of open shell molecules on the basis of Hund’s case (a) or case
(b) coupling. However the near-dissociation spectra of the molecular ions studied are
much better understood in terms of Hund’s case (c) coupling, even tending towards
Hund’s case (e). Consequently we group the results together in section 10.7, for case
(c) molecules.

A number of different ion beam instruments have been developed, and an excellent
review has been provided by Cox, Critchley, McNab and Smith [69] but figure 10.33
illustrates the instrument used by Carrington, Shaw and Taylor [70] for the study of
microwave spectra involving near-dissociation vibration–rotation levels in rare gas
diatomic ions. The instrument is essentially a commercially available tandem mass
spectrometer, designed and manufactured by Vacuum Generators Ltd. The molecular
ions are produced by electron bombardment of either a slowly flowing gas or gas
mixture, or a supersonic neutral molecular beam. The ions are accelerated out of the
source to potentials up to 10 kV, forming a tightly focussed ion beam. This beam
is directed through a magnetic sector, which acts as a mass analyser, and ions of
the desired charge-to-mass ratio can be selected by fixing the magnetic field at an
appropriate value. The ion beam passes through an intermediate region, to which we

Figure 10.33. Tandem mass spectrometer system employing electric field dissociation, designed
to enable the study of microwave spectra of molecular ions involving vibration–rotation levels
lying close to the dissociation limit.
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return shortly, and fragment ions produced in this region are separated from the parent
ions by means of an electrostatic analyser (ESA), which is a kinetic energy analyser.
After deflection through the ESA the fragment ions are detected by means of a high-
gain electron multiplier. As we will see, spectra are detected by monitoring changes in
the fragment ion intensity; no attempt is made to detect the absorption or emission of
radiation directly. In this respect, the ion beam experiments are similar to the magnetic
and electric resonance experiments described in chapter 8.

Two important elements of the overall experiment are to be found in the interme-
diate region between the magnetic and electric sectors. First, the molecular ion beam
passes through a section of waveguide where it is exposed to radiation in the frequency
range 6 to 170 GHz. Vibration–rotation levels lying close to the dissocation limit are
populated by the ion bombardment and formation processes occurring naturally in the
ion source. No other means of populating these high-lying levels is employed. Spectro-
scopic transitions induced in the microwave field result in population transfer between
vibration–rotation levels, and this population transfer results, as we shall see, in frag-
ment ion intensity changes. These changes are detected by the electron multiplier, as a
function of the radiation frequency.

The second important element in the intermediate region is an electric field lens,
which follows the waveguide cell. Figure 10.33 shows the form of this lens; a strong
electric field is established between the centre plate which is held at a high positive
or negative potential and a closely spaced earth plate. The first earth plate is situated
further upstream, so that the electric field between it and the central plate is relatively
small. Ions in weakly bound levels are dissociated in the lens to form fragments having
characteristic kinetic energies which depend upon the potential within the lens at which
fragmentation occurs. The lens therefore acts as a partial state selector; only weakly
bound levels are affected at all, and there is some discrimination between these levels,
all of which lie less than 10 cm−1 below the dissociation limit.

As already stated, spectra are detected by monitoring changes in the electric field-
induced fragment ion intensity as a function of the microwave frequency. These changes
are, in practice, measured by amplitude modulation of the microwave power, and de-
tection of the resonant fragment ion current by means of a lock-in amplifier. The
experiments are extremely sensitive because of the high gain of the electron multiplier
(typically 106) and the extremely efficient collection and detection of fragment ions
(close to 100%). Resonant spectra involving the detection of 10 to 100 ions s−1 are
routinely recorded; the parent ion beams have total flux intensities of about 109 to 1010

ions s−1 in most cases, of which only a very small proportion occupy the high-lying
energy levels of interest.

There are several other important aspects of the experiment which should be men-
tioned. The waveguide cell is surrounded by a solenoid coil which can produce a
magnetic field parallel to the ion beam direction; the magnitude of this field (up to
50 G) is often sufficient to produce observable Zeeman splittings which greatly assist
spectroscopic assignment, as we will see. It is also possible to expose the molecu-
lar ion beam to two different microwave frequencies; this so-called double resonance
technique enables two different microwave transitions to be connected, if they share a
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common energy level. We will see the power of these techniques later in this chapter.
A further aspect is that the microwave radiation propagates in directions both parallel
and antiparallel to the direction of the ion beam. The ions are moving rapidly at the
high beam potentials used, so that there are always Doppler shifts of the resonances,
which can be accurately calculated.

The techniques described have been used to study the fundamental H+
2 ion, and its

important isotopomers D+
2 and HD+. Our description of these particular experiments is

postponed to chapter 11. Later in this chapter we will describe microwave experiments
on the rare gas ions HeAr+, HeKr+ and Ne+

2 , for which rotational transitions, among
others, have been studied.

10.2. 1�+ states

The most extensively studied group of diatomic molecules are those with 1�+ ground
states. These do not exhibit the interesting and informative complications characteristic
of open shell systems, but, as we have seen earlier, the presence of nuclei with non-
zero spins or electric quadrupole moments can give rise to hyperfine structure. Electric
resonance experiments have been an important source of information, but this technique
depends upon efficient electrostatic focussing, and is therefore confined to the study of
the lowest rotational levels. An important aspect of conventional microwave absorption
spectroscopy is the information it can provide about an extended sequence of rotational
levels and, in some cases, the additional effects arising from vibrational excitation. In
this section, we describe examples of increasing complexity. We start with the simplest
cases of molecules with two nuclei of zero spin, and work towards the most complicated
cases where both nuclei have spin magnetic moments and electric quadrupole moments.
In particular we will deal with cases where a sequence of rotational levels has been
studied; the recent development of very high frequency sources has made possible
the study of higher rotational transitions in heavy molecules, and lower rotational
transitions in light molecules like hydrides. We also note that electric dipole rotational
transitions require the presence of a permanent electric dipole moment, and therefore
occur only for heteronuclear molecules.

10.2.1. CO in the X 1�+ ground state

Carbon monoxide may be bad for your health, but it has helped to provide a living for
generations of spectroscopists, working in all regions of the electromagnetic spectrum.
The reasons are clear. It is a stable, readily available gas, with a ground state dissociation
energy of more than 11 eV. Consequently the ground state potential supports a large
number of vibrational levels, which are accessible through vibrational or electronic
spectroscopy. It has been a test bed over many years for the development of new exper-
imental and theoretical techniques. It exists in six different naturally occurring isotopic
variants, namely 12C16O, 13C16O, 12C17O, 13C17O, 12C18O and 13C18O. When required,
isotopic enrichment is relatively straightforward, and the existence of these different
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species has provided the opportunity to examine isotopic and mass dependencies in
molecular spectroscopy. The absence of nuclear spin effects in the dominant isotopic
form, 12C16O, means that spectroscopic features exhibiting important variations with
vibrational or rotational excitation are more readily amenable to accurate study. In this
section we concentrate on the rotational spectroscopy of CO, but with some reference
to the associated vibration–rotation spectroscopy. Following the initial discovery in
1970 of CO in interstellar space by Wilson, Jefferts and Penzias [33], its widespread
distribution in space has made it almost as important to astronomers as it is to ground
based spectroscopists. In our following discussion references to CO will apply to the
dominant isotopic species, unless otherwise indicated.

The first direct measurement of the J = 1 ← 0 rotational transition in the v = 0
level of the electronic ground state was due to Gilliam, Johnson and Gordy [71]. This
was followed by more accurate measurements, due first to Gordy and Cowan [72],
and then to Rosenblum, Nethercot and Townes [73]. The most recent measurements
of the lowest rotational transition, and many higher transitions, are those by Varberg
and Evenson [74] using the tunable far-infrared spectrometer described in the previ-
ous section, and by Winnewisser, Belov, Klaus and Schieder [75] and Belov, Lewen,
Klaus and Winnewisser [76] using the terahertz spectrometer, also described earlier.
Almost fifty years separate the first and the most recent studies, and during this period
other measurements in the far-infrared using interferometric methods were described
by Loewenstein [77]. Figure 10.34 illustrates the progress over a forty year period;
figure 10.34(a) shows a sequence of rotational transitions for CO observed with a grat-
ing interferometer [75]; the line width is 0.4 cm−1. Figure 11.34(b) shows the line
arising from the J = 4 ← 3 transition, with a Lamb dip, obtained using the Cologne
terahertz spectrometer [75]. The line width is 40 kHz. The most recent results are
summarised in table 11.2, which is taken from reference [75].

The calculated values in the table were obtained by fitting the results to the con-
ventional formula for the rotational energies

E0(J ) = B0 J (J + 1) − D0 J 2(J + 1)2 + H0 J 3(J + 1)3, (10.19)

and the values of the constants obtained were (in MHz),

B0 = 57 635.968 019 (28), D0 = 0.183 504 89 (16), H0 = 1.716 8 (10) · 10−7,

where the values in parenthesis are 1σ standard errors.
It should be noted that the rotational spectroscopy of CO confined to a single

vibrational level, usually the ground v = 0 level, provides only a limited amount of
information about molecular structure. In the field of vibration–rotation spectroscopy,
however, CO has been studied extensively and particular attention paid to the vari-
ation of the rotational and centrifugal distortion constants with vibrational quantum
number. Vibrational transitions involving v up to 37 have been studied with high ac-
curacy [78, 79, 80], and the measurements extended to other isotopic species [81] to
test the conventional isotopic relationships. CO is, however, an extremely important
and widespread molecule in the interstellar medium. CO distribution maps are now
commonplace and with the advent of far-infrared telescopes, it is also an important
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Figure 10.34. (a) Sequence of CO rotational transitions recorded in 1960 by means of a grating
interferometer [77]. The lower J values are indicated for three of the lines. (b) Lamb dip spectrum
of the J = 4 ← 3 rotational transition, recorded in 1997 [75].

temperature and density probe. Rotational transitions involving J up to 34 have been
detected in the shocked gas associated with Orion [170] and it has been estimated that
20% of the cosmic abundance of carbon exists in the form of CO. The very simplicity
of the rotational spectrum of CO, which makes it one of the less interesting molecules
in the laboratory, makes it a valuable probe of both chemical and physical conditions
in interstellar environments.
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Table 10.2. Observed and calculated rotational transition frequencies of 12C 16O

J ′ J ′′ νexp (MHz) �νexp (kHz) νcalc (MHz) σcalc (kHz) O–C (kHz)

1 0 115 271.2018 0.5 115 271.202 02 0.06 −0.22

2 1 230 538.0000 0.5 230 537.999 96 0.11 0.04

3 2 345 795.9899 0.5 345 795.989 85 0.16 0.05

4 3 461 040.7682 0.5 461 040.767 98 0.21 0.22

5 4 576 267.9305 0.5 576 267.931 01 0.25 −0.51

6 5 691 473.0763 0.5 691 473.076 09 0.29 0.21

7 6 806 651.806 5 806 651.8010 0.3 5

8 7 921 799.700 5 921 799.7042 0.4 −4

9 8 1 036 912.393 5 1 036 912.3852 0.5 8

10 9 1 151 985.452 11 1 151 985.4442 0.6 8

11 10 1 267 014.486 5 1 267 014.4828 0.8 3

12 11 1 381 995.105 13 1 381 995.1036 1.0 1

13 12 1 496 922.909 12 1 496 922.9108 1.2 −2

14 13 1 611 793.518 11 1 611 793.5099 1.5 8

15 14 1 726 602.508 2

16 15 1 841 345.506 11 1 841 345.514 2 −8

17 16 1 956 018.139 11 1 956 018.139 3 0

18 17 2 070 615.993 14 2 070 615.995 3 −2

19 18 2 185 134.680 13 2 185 134.698 4 −18

20 19 2 299 569.842 10 2 299 569.863 5 −21

21 20 2 413 917.113 11 2 413 917.112 6 1

22 21 2 528 172.060 11 2 528 172.065 6 −5

23 22 2 642 330.347 7

24 23 2 756 387.584 17 2 756 387.586 8 −2

25 24 2 870 339.407 13 2 870 339.411 10 −4

26 25 2 984 181.455 14 2 984 181.455 11 0

27 26 3 097 909.361 17 3 097 909.354 12 7

28 27 3 211 518.748 14

29 28 3 325 005.279 15

30 29 3 438 364.611 10 3 438 364.594 17 17

31 30 3 551 592.361 10 3 551 592.342 19 19

32 31 3 664 684.177 20

33 32 3 777 635.728 16 3 777 635.755 22 −26

34 33 3 890 442.717 13 3 890 442.738 25 −21

35 34 4 003 100.791 27

36 35 4 115 605.585 22 4 115 605.584 29 1

37 36 4 227 952.790 32

38 37 4 340 138.112 43 4 340 138.088 35 24
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10.2.2. HeH+ in the X 1�+ ground state

The HeH+ molecule is the simplest cationic molecule and, possessing only two elec-
trons, it is one of the most fundamental species for molecular structure studies. It
might also be important in astronomy since hydrogen and helium are the most abun-
dant elements in the universe. It has been studied extensively in the laboratory, the
first observation of its fundamental vibration–rotation band being made by Tolliver,
Kyrala and Wing [82] using a novel ion beam method. Vibration–rotation transitions
involving the levels lying near to or above the dissociation limit, for several different
isotopomers, were observed by Carrington, Kennedy, Softley, Fournier and Richard
[83]. Bernath and Amano [84] and Crofton, Altman, Haese and Oka [85] used sim-
ilar tunable infrared sources to observe vibration–rotation transitions in the funda-
mental and hot bands of all possible isotopic species, i.e. 4HeH+, 3HeH+, 4HeD+

and 3HeD+. The first observations of rotational transitions involving the low J lev-
els were made by Matsushima, Oka and Takagi [11]. We now describe their results,
and also their theoretical analysis which combined the mid-infrared and far-infrared
measurements.

Matsushima, Oka and Takagi [11] generated the HeH+ ions using an a.c. discharge
in a 100 : 1 mixture of helium and hydrogen, employing the velocity modulation method
of detection [10]. Their tunable far-infrared source was similar to that of Evenson,
Jennings and Petersen [65], in which the fixed difference-frequency of two carbon
dioxide lasers was mixed with tunable microwave radiation. Their recording of the
J = 1 ← 0 rotation transition in the v= 0 level of 4HeH+ is shown in figure 10.35;
they were able to observe similar low J transitions in all four isotopomers, covering a
frequency range from 2.0 to 4.8 THz. For each vibrational level the vibration-rotation

2 010 130
frequency / MHz

2 010 230

Figure 10.35. Observed J = 1 ← 0 rotational transition of 4HeH+ in the v= 0 level [65]. This
line was obtained using six scans, each lasting 1 min, with a PSD time constant of 0.3 s.
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Table 10.3. Molecular parameters (in cm−1) of HeH+ for all four isotopomers

4HeH+ 4HeD+ 3HeH+ 3HeD+

T1 − T0 2910.957 42(55) 2310.485 8(18) 2995.048 49(70) 2423.424 4(33)

B0 33.558 670 00(98) 20.349 486 2(11) 35.720 188 3(16) 22.540 741 8(34)

D0 × 102 1.621 774(14) 0.586 906 4(41) 1.841 163(31) 0.722 276(27)

H0 × 106 5.931 1(33) 1.266 7.202(24) 1.807

L0 × 109 −2.832 −0.345 −3.67 —

B1 30.839 982(47) 19.083 895(84) 32.728 20(12) 21.061 35(57)

D1 × 102 1.586 062(88) 0.575 680(67) 1.798 33(43) 0.706 9(18)

H1 × 106 5.528 9(68) 1.187 6.538(44) 1.677

L1 × 109 −3.206 −0.355 −4.17 —

term values were fitted to the usual formula

Ev(J ) = Tv + Bv J (J + 1) − Dv[J (J + 1)]2 + Hv[J (J + 1)]3 + Lv[J (J + 1)]4.

(10.20)

The final results for v= 0 and 1 are summarised in table 10.3, using data from rotational
and vibration–rotation transitions for all four isotopomers.

The results given in table 10.3 constitute a good data set with which to test
theoretical relationships [86, 87] relating to breakdown of the Born–Oppenheimer
approximation. As we have described elsewhere, the vibration–rotation term values
may be expressed as power series using the Dunham parameters Ykl :

Ekl =
∑

kl

Ykl(v + 1/2)k[J (J + 1)]l . (10.21)

The subscript k gives the vibrational dependence and l gives the rotational dependence.
The parameters Ykl are isotopically variant, but Watson [87] has shown that they may
be written in terms of isotopically invariant parameters according to the expression

Ykl = µ−(k/2+l)
c Ukl

[
1 + me�

A
kl

MA
+ me�

B
kl

MB

]
. (10.22)

Ukl ,�
A
kl and �B

kl are the invariant parameters, and µc is given by

µc = MA MB

(MA + MB − Cme)
, (10.23)

where MA,MB and me are the masses of the atoms A and B and the electron e, and
C is the charge number of the ion, which is 1 for HeH+. The terms involving the
� parameters in (10.22) are very small compared with unity, but they represent the
breakdown of the Born–Oppenheimer approximation. The results of a least-squares
analysis yielding the isotopically invariant parameters are presented in table 10.4. A
more detailed discussion of the treatment of Born–Oppenheimer breakdown is given
in the subsection dealing with the rotational spectrum of LiH.
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Table 10.4. Isotopically invariant parameters for HeH+. The unit of
Ukl is cm−1(amu)(k/2+l), but the � parameters are dimensionless

U10 2888.95(14) U03 3.2070(91) × 10−6

U20 −124.233(93) U13 −1.70(12) × 10−7

U30 0.142(19) U23 −3.52(59) × 10−8

U01 28.115 425(95) U04 −1.237(39) × 10−9

U11 −1.967 71(23) �He
10 1.048(18)

U21 6.26(16) × 10−3 �H
10 −0.613(20)

U31 −2.658(32) × 10−3 �He
01 0.7736(18)

U02 −1.065 58(13) × 10−2 �H
01 −0.1459(19)

U12 2.999(26) × 10−4 �H
02 2.346(91)

U22 −3.84(11) × 10−5 �He
02 0.0(fixed)

The calculation of these molecular parameters would provide a significant chal-
lenge to ab initio calculations which, so far as we know, have not yet been performed
at the highest level.

The lowest rotational transition of HeH+ observed at a frequency of 2010.1839 GHz
should be a powerful probe for the detection in astronomical objects; the detection of
HeH+ has not yet been reported, but the progress in far-infrared astronomy might well
lead to its observation in the future.

10.2.3. CuCl and CuBr in their X 1�+ ground states

Earlier in this chapter we described experiments on species formed by high-temperature
vapourisation, and we also described the pulsed Fourier transform microwave methods
pioneered by Flygare and his colleagues. In more recent years the study of refractory
materials has been accomplished by a combination of laser ablation and Fourier trans-
form spectroscopy. Perhaps the first workers to develop this powerful combination of
techniques were Suenram, Lovas, Fraser and Matsumura [88] who used it to study the
rotational spectra of YO, LaO, ZrO and HfO; the first two molecules in this set have
2�+ ground states, whilst the last two have 1�+ ground states. A simple schematic
diagram of the apparatus used is shown in figure 10.36, and a similar instrument was
subsequently used by Low, Varberg, Connelly, Auty, Howard and Brown [89] to study
the CuCl and CuBr molecules. We will use this work to illustrate the method, the
spectra being more complex (and therefore more interesting) because of the presence
of two nuclei with spins and quadrupole moments.

The gaseous sample was produced by using argon as a carrier gas, passing over
CuCl or CuBr powder exposed to pulses from an ArF excimer laser, and injected
through a pulsed nozzle into the Fabry–Perot cavity. In contrast to the earlier work on
the rare earth oxides mentioned above, the nozzle expansion was injected along the
axis of the microwave cavity, rather than with the perpendicular orientation illustrated
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Figure 10.36. Schematic diagram of the laser vapourisation source and pulsed Fourier transform
microwave spectrometer developed to study rare earth oxides [88].

in figure 10.36. Synchronous pulses of microwave energy led to line widths of 6 to
7 kHz, and Doppler-shifted components (parallel and antiparallel); these are shown in
figure 10.37 for both CuCl and CuBr. The bandwidth of the Fabry-Perot cavity at a
microwave frequency of 10 GHz was 1 MHz, and spectra were obtained by averaging
the results of typically 1000 pulses. Earlier microwave work using a conventional high
temperature absorption cell by Tiemann and Hoeft [90] and Hoeft and Nair [91] had
provided good values for the rotational transition frequencies, which acted as a guide
for the much higher resolution Fourier transform studies.

The principal isotope of copper is 63Cu which has a nuclear spin I of 3/2; both
chlorine and bromine have naturally occurring isotopes (35Cl, 37Cl, 79Br, 81Br) with
spins of 3/2, so that extensive quadrupole hyperfine splitting is to be expected. The
spectrum of CuCl shown in figure 10.37 arises from the J = 1 ← 0 rotational transition;
the J = 0 level does not have a quadrupole splitting but if the 35Cl and 63Cu nuclear
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centre frequency = 18 289.85 MHz

CuBr

centre frequency = 10 658.0 MHz

CuCl

4–3

4–3

3–2

3–2

5–4

5–4

6–5

1–0

2–1

4–3

2−1

Figure 10.37. Top: J = 1 ← 0 rotational transition of 63Cu35Cl showing quadrupole hyperfine
splitting; the transitions are labelled with their appropriate F values. Each transition shows
a Doppler splitting arising from parallel and antiparallel orientations within the Fabry–Perot
cavity [89]. Bottom: J = 3 ← 2 rotational transition of 63Cu79Br showing similar quadrupole and
Doppler splittings [89]. In both spectra the scan range was ±1 MHz about the centre frequency.
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spins are denoted I1 and I2, we may anticipate a coupling scheme,

J + I1 = F1, F1 + I2 = F. (10.24)

There is a weak coupling between I1 and I2 for J = 0. For J = 1, F1 takes the values
5/2, 3/2 and 1/2; the possible values of F are then 4, 3, 2, 1 and 0. The strongest
transitions are those for which�F = �J = ±1, as shown in figure 10.37. The pattern
observed for CuBr is more complicated because the rotational transition is J = 3 ← 2,
so that both rotational levels involved have a more extensive quadrupole splitting.

The spectrum follows rules similar to those described in chapter 8 for the mole-
cular beam magnetic resonance study of 7Li79Br, which also has a 1�+ ground state
and two nuclear spins of 3/2. In that case the transitions studied were nuclear spin
transitions within the J = 1 level, but the effective Hamiltonian is similar in the two
cases. The Hamiltonian used by Low, Varberg, Connelly, Auty, Howard and Brown
[89] contained rotational, quadrupolar and nuclear spin–rotation terms,

H = Hrot + HQ + Hnsr, (10.25)

where

Hrot = Bv J 2 − Dv J 4 + Hv J 6, (10.26)

HQ = −eT2(∇E1) · T2(Q1) − eT2(∇E2) · T2(Q2), (10.27)

Hnsr = c1T1(I1) · T1(J) + c2T1(I2) · T1(J). (10.28)

The matrix elements of the effective Hamiltonian in the basis |η,Λ; J, I1, F1,

I2, F,MF 〉 were given in chapter 8 and the calculation of the energies and transi-
tion frequencies is relatively straightforward. The analysis was carried out for all four
isotopomers of each molecule, and the constants determined.

The experimental techniques described in this section, combining laser ablation
with a Fourier transform pulsed microwave spectrometer, have proved to be of great
value in studying refractory materials which would otherwise pose considerable prob-
lems. The techniques have been discussed by Walker and Gerry [92] and illustrated in
their study of the lowest rotational transition in the MgS molecule. Figure 10.38 shows
their arrangement for injection of the pulsed gas into the Fabry–Perot cavity, making
use of the ‘parallel’ arrangement described earlier for CuCl and CuBr.

10.2.4. SO, NF and NCl in their b 1�+ states

In chapter 6 we described the low-lying electronic states of the O2 molecule. In terms
of molecular orbital theory the lowest energy electron configuration may be written

(σg1s)2(σ ∗
u 1s)2(σg2s)2(σ ∗

u 2s)2(πu2p)4(σg2p)2(π∗
g 2p)2,

and three electronic states are possible; these are as follows:

X 3�−
g : Te = 0,

a 1�g: Te = 7918.1 cm−1, (10.29)

b 1�+
g : Te = 13 195.1 cm−1.
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Figure 10.38. Laser ablation pulsed nozzle source, for gas injection parallel to the axis of the
Fabry–Perot cavity, described by Walker and Gerry [92].

The NF radical is isoelectronic with O2 and the three low-lying electronic states in this
case have relative energies of 0, 12 003.6 and 18 877.05 cm−1. The rotational spectra
of all three states have been studied, and we will describe the 3� and 1� state spectra
later in this chapter. Similarly, the SO and NCl radicals are isoelectronic, with the
outermost pair of electrons occupying a (π3p) molecular orbital, which again gives
rise to the three electronic states described above. All three states for both SO and NCl
have been studied by pure rotational spectroscopy, and the open shell states have also
been investigated by magnetic resonance methods. In this section we concentrate on
the rotational spectra of the b 1�+ states.

We deal first with SO, which is the most extensively studied and which, in its
predominant naturally occurring isotopomer, does not exhibit nuclear spin effects. The
b 1�+ state of SO lies 10 509.97 cm−1 above the ground state and its pure rotational
spectrum seems to have been detected and measured first by Yamamoto [93] who used
a d.c.-glow discharge in a mixture of H2S, O2 and He to produce electronically excited
SO in vibrational levels up to v= 8. His studies covered a frequency range from 83
to 462 GHz. Subsequent work up to 900 GHz by Bogey, Civis, Delcroix, Demuynck,
Krupnov, Quiguer, Tretyakov and Walters [94] extended the measurements to v= 11,
and further studies by Klaus, Belov and Winnewisser [95], up to 1070 GHz using the
Cologne terahertz spectrometer, provided data for high rotational levels, up to J = 25.
These authors also included all of the previously published data to perform an accurate
quantitative analysis, using the Dunham expansion for the vibration–rotation energies,

Ev J =
∑

kl

µ−k/2−lUkl(v + 1/2)k[J (J + 1)]l , (10.30)

where µ is the appropriate reduced mass. To a certain level of approximation, the Ukl
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coefficients are isotopically invariant. The analysis actually included data for three
different isotopomers, 32S16O, 34S16O and 32S18O, and, as we discussed earlier in
chapter 7, Watson [96] and Tiemann [97] have shown that deviations from the Born–
Oppenheimer approximation can be taken into account by replacing the Ukl parameters
by the expression

Ukl

{
1 + me

M1
�

(1)
kl + me

M2
�

(2)
kl

}
. (10.31)

Here M1 and M2 are the masses of atoms 1 and 2, me is the electron mass, and �(1)
kl

and�(2)
kl are dimensionless, isotopically invariant corrections to the Born–Oppenheimer

approximation. Accurate values of fourteen Ukl coefficients were listed by Klaus, Belov
and Winnewisser [95] . Later in this chapter we will list the equilibrium bond lengths
determined for SO in the three lowest-lying electronic states.

Kobayashi and Saito have studied the sub-millimetre rotational spectra of NF [98]
and NCl [99] in their b 1�+ states. The measurements for NF were confined to the v= 0
and 1 vibrational levels, and for the lowest rotational transitions, electric quadrupole
interaction for the 14N nucleus was observed. Similarly the 35Cl quadrupole interaction
was observed for the lowest rotational transitions of NCl. We will compare the data for
the three low-lying electronic states in NF and NCl when we discuss their 1� spectra
later in this chapter.

10.2.5. Hydrides (LiH, NaH, KH, CuH, AlH, AgH) in their X 1�+

ground states

In the last subsection we encountered an example of Born–Oppenheimer breakdown
in the SO molecule; one might expect such breakdown to be most noticeable in the
lightest molecules, and indeed it is an important aspect in the quantitative analysis of
the rotational spectrum of LiH. The J = 1 ← 0 rotational transition of 6LiH, 7LiH,
6LiD and 7LiD, and the J = 2 ← 1 transition in the deuterium isotopomers have been
measured by Plummer, Herbst and De Lucia [100], following much earlier work by
Pearson and Gordy [101]. The original Dunham expansion for the vibration–rotation
energies was given in the form

E(v, J ) = h
∑

kl

Ykl(v + 1/2)k J l(J + 1)l . (10.32)

From this expression one can calculate that, within the vibrational state v, the J + 1 ←
J rotational transition frequencies are given by

ν(v; J + 1 ← J ) = 2Y01(J + 1) + 2Y11(v + 1/2)(J + 1) + 2Y21(v + 1/2)2(J + 1)

+ 4Y02(J + 1)3 + 4Y12(v + 1/2)(J + 1)3 + · · · . (10.33)

In order to determine uniquely the first five Y coefficients in (10.33) one would need
at least five rotational transition frequencies for a given isotopomer, but for a light
molecule like LiH these occur at extremely high frequencies. Instead, measurements
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Table 10.5. Dunham coefficients determined for four isotopomers of LiH [100]. The
parameters are given in MHz, except for the � parameters which are dimensionless

6LiH 7LiH 6LiD 7LiD

BBO
e 230 161.654 225 449.805 131 671.220 126 959.371

Y11 −6695.380 −6490.835 −2897.090 −2742.982

Y21 63.733 61.151 20.859 19.392

Y02 −26.832 −25.745 −8.782 −8.164

Y12 0.476 0.452 0.118 0.108

Y01 229 965.070 225 257.584 131 614.252 126 904.633

�H
01 −1.549 76 −1.549 76 −1.549 76 −1.549 76

�Li
01 −0.115 60 −0.115 60 −0.115 60 −0.115 60

were made for four different isotopomers; within the Born–Oppenheimer approxima-
tion, the relationship

Y ′
kl = Ykl[µ/µ

′](k/2+l) (10.34)

can be used, in which µ is the reduced isotopic mass. This expression is not exact
within the Dunham expansion, but it is satisfactory except for the coefficient Y01. The
other four coefficients determined by Plummer, Herbst and De Lucia [100] are listed
for the four isotopomers in table 10.5.

The remaining coefficients listed in table 10.5 arise from an analysis originally
given by Herman and Asgharian [102] and Watson [103]. Dunham showed that Y01

may be expressed in terms of the Born–Oppenheimer equilibrium constant BBO
e and

an additive correction term ∆Y01,

Y01 = BBO
e +∆Y01. (10.35)

The equilibrium bond lengths, Re, which are given by

Re = (h/8π2µY01)1/2, (10.36)

differ from one isotopomer to another. Watson showed, however, that they are related
to the isotopically-invariant bond lengths RBO

e through the expression

Re = RBO
e

[
1 + meda

Ma
+ medb

Mb

]
, (10.37)

where me is the electron mass and Ma and Mb are the masses of the atoms a and b.
The quantities da and db are isotopically invariant and are given by

da = dad
a − µ∆Y01

2me BBO
e

− (µgJ )b

2m p
,

(10.38)

db = dad
b − µ∆Y01

2me BBO
e

− (µgJ )a

2m p
.

The quantities (µgJ )a and (µgJ )b are the values ofµgJ calculated in coordinate systems
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fixed at the nuclei, and the centre-of-mass rotational gJ factor is given by

gJ = (µgJ )b

Ma
+ (µgJ )a

Mb
. (10.39)

The remaining terms in equations (10.38) are the adiabatic corrections to the bond
length, and are given by Watson [103] in terms of the Born–Oppenheimer force constant
f as

dad
i = −

[
d/dR〈η|P2

i |η〉]
RBO

e

2me f RBO
e

, (10.40)

where i equals a or b and Pi is the nuclear momentum. From a combination of the
above expressions we obtain the following result for Y01:

Y01 = BBO
e

[
1 + me�

a
01

Ma
+ me�

b
01

Mb

]
. (10.41)

In this expression,

�a
01 = −2da, (10.42)

�b
01 = −2db, (10.43)

and we can use equations (10.38) to substitute for da and db.
In table 10.5 we include the values of Y01, �H

01 and �Li
01; Y01 is the equilibrium

rotational constant. The � parameters are a measure of the departure from Born–
Oppenheimer behaviour, and the values for LiH are the largest known for a closed shell
diatomic molecule. We should note here that in molecular beam electric resonance
studies described by Freeman, Jacobson, Johnson and Ramsey [104], accurate values
of the rotational g-factor and nuclear spin-rotation coupling constants for 7LiH and
7LiD were determined. The lowest rotational transitions in NaH and KH have been
studied by Okabayashi and Tanimoto [105] and the electric quadrupole constants for
23Na and 39K determined. Okabayashi and Tanimoto have also measured the lowest
rotational transition in CuH [106] and in AgH and AgD [107]. Goto and Saito [108]
have made similar studies of AlH at frequencies near 387 GHz; in all of these investiga-
tions of hydrides, attention has been focussed on departures from Born–Oppenheimer
behaviour. Finally, Goto, Namiki and Saito [109] have measured the lowest rotational
transition in ZnH and ZnD; in this case, however, the ground electronic state is 2�+.
Nuclear hyperfine splittings and spin–rotation splittings were determined, but since
our next section is devoted to the details of rotational transitions in 2� states, we will
not elaborate further at this point.

10.3. 2� states

10.3.1. CO+ in the X 2�+ ground state

One of the most important microwave rotational studies of a molecule in a 2� state
was that of Dixon and Woods [7] on the CO+ ion, the first pure rotational study of a
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molecular ion. We described the details of their experiment earlier in this chapter, and
showed their recording of the lowest rotational transition, occurring at 118 101.99 MHz.
The data recorded for the predominant isotopomer, 12C16O+, enabled Erickson, Snell,
Loren, Mundy and Plambeck [110] to establish the presence of the ion in interstellar
clouds. The lowest rotational transitions in the isotopomers 12C18O+ and 13C16O+

were studied subsequently by Piltch, Szanto, Anderson, Gudeman, Dixon and Woods
[111]. Of these the most interesting is 13C16O+ because it exhibits a large hyperfine
splitting from the 13C nucleus, which has a spin of 1/2. Indeed, to anticipate the theory
and analysis presented shortly, the most suitable angular momentum coupling scheme
turned out to be unusual:

I + S = G: G = 1, 0

G + N = F: N = 0,G = F = 1, 0

N = 1,G = 1, F = 2, 1, 0

N = 1,G = 0, F = 1. (10.44)

This is because the hyperfine (Fermi contact) interaction is larger than the spin–rotation
coupling. The lowest rotational transition, N = 1 ← 0, was found to be split by a combi-
nation of hyperfine interaction and electron spin-rotation interaction into four observed
lines. The frequencies of these lines were as follows:

f1 = 112 902.610 MHz, f2 = 112 753.426, f3 = 112 694.956, f4 = 112 468.609.

The energy level diagram and assignment of these transitions is shown in figure 10.39;
we now show how this analysis was accomplished.

One form of the effective Hamiltonian for the CN radical in its 2�+ ground
state was given in chapter 9. Omitting the quadrupole term, which is not required for
13CO+, our starting point might be

Heff = {B − DN2}N2 + γT1(N) · T1(S) + bFT1(I) · T1(S)

−
√

10gSµB gNµN (µ0/4π)T1(S,C2) · T1(I). (10.45)

However the fourth term, representing the dipolar hyperfine interaction, is unsuitable
for the basis set chosen. Instead we use a different form for this interaction, discussed
in chapter 8, and particularly appendix 8.1, which recognises the strong coupling of S
and I. This form is

Hdip =
√

6gSµB gNµN (µ0/4π)T2(C) · T2(S, I). (10.46)

We now calculate the matrix elements of the effective Hamiltonian in the basis set
appropriate for CO+. For the first term, the rotational energy, we have the following
result:

〈η,Λ; I, S,G, N , F |{B − DN2}N2|η,Λ; I, S,G, N , F〉
= {B − DN (N + 1)}N (N + 1), (10.47)

The remaining terms are more complicated. For the electron spin–rotation
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Figure 10.39. 13C hyperfine and electron spin–rotation splitting of the N = 0 and 1 rotational
levels of 13CO+, and the observed transitions [111]. The large splitting is mainly due to the
13C Fermi contact interaction. The smaller splittings are due to the spin–rotation interaction and
the dipolar hyperfine coupling.

interaction

〈η,Λ; I, S,G, N , F |γ T1(S) · T1(N)|η,Λ; I, S,G ′, N ′, F〉
= γ (−1)G ′+F+N

{
N ′ G ′ F
G N 1

}
〈I, S,G‖T1(S)‖I, S,G ′ 〉〈N‖T1(N)‖N ′〉

= γ δN N ′ (−1)G ′+F+N

{
N ′ G ′ F
G N 1

}
(−1)G+I+1+S{(2G ′ + 1)(2G + 1)}1/2

×
{

G S I
S G ′ 1

}
{S(S + 1)(2S + 1)N (N + 1)(2N + 1)}1/2. (10.48)

The Fermi contact interaction is independent of N so that the matrix elements are
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simply

〈η,Λ; I, S,G; G, N , F |bFT1(I) · T1(S)|η,Λ; I, S,G; G, N , F〉
= bF(−1)I+G+S

{
S I G
I S 1

}
{I (I + 1)(2I + 1)S(S + 1)(2S + 1)}1/2. (10.49)

The dipolar hyperfine matrix elements are the most complicated:

〈η,Λ;I,S,G;G,N ,F |
√

6gSµB gNµN (µ0/4π) T2 (S,I) · T2(C) |η,Λ;I,S,G;G ′,N ′,F〉
=

√
6gSµB gNµN (µ0/4π) (−1)G ′+F+N

{
N ′ G ′ F
G N 1

}
× 〈I, S,G‖T2 (S, I)‖I, S,G ′〉〈η,Λ; N ,Λ‖T2(C)‖η,Λ; N ′,Λ〉

=
√

6gSµB gNµN (µ0/4π)(−1)G ′+F+N

{
N ′ G ′ F
G N 1

}

×
√

5{(2G ′ + 1)(2G + 1)I (I + 1)(2I + 1)S(S + 1)(2S + 1)}1/2

×



G G ′ 2
I I 1
S S 1


 (−1)N {(2N + 1)(2N ′ + 1)}1/2

(
N 2 N ′

0 0 0

)

×〈η,Λ|C2
0 (θ, φ)r−3|η,Λ〉. (10.50)

The evaluation of the reduced matrix elements in the second line of this equation is
described in chapter 11 in connection with the H+

2 ion. In the last line of (10.50) we have
substitutedΛ= 0 for the 2�+ ground state of CO+. The final matrix element in (10.50)
involves the molecular parameter t , or c/3 where c is the Frosch and Foley parameter.

The matrix elements off-diagonal in N are negligible, and with this approximation
the matrix of the effective Hamiltonian for each value of N factors in the following
manner.

G ′ = 1, G ′ = 1, G ′ = 0, G ′ = 1,
F ′ = N + 1 F ′ = N F ′ = N F ′ = N − 1

G = 1,
γ N

2
+ bF

4
− t

N

4N + 6
0 0 0

F = N + 1

G = 1, 0 − γ

2
+ bF

4
+ t

2

γ

2

√
N (N + 1) 0

F = N

G = 0, 0
γ

2

√
N (N + 1) − 3bF

4
0

F = N

G = 1, 0 0 0 −γ (N + 1)

2
+ bF

4
− t(N + 1)

(4N − 2)
F = N − 1

(10.51)

From their analyses of the rotational spectra of the three isotopomers, Piltch,
Szanto, Anderson, Gudeman, Dixon and Woods [111] determined the values of the
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Table 10.6. Molecular constants (in MHz) determined for three isotopomers of CO+

in the X 2�+ ground state

Species B0 γ bF t b c

12C16O+ 58 983.06 273.1 — — — —
13C16O+ 56 388.96 260.4 1506 48.2 1458 144.6
12C18O+ 56 174.61 259.8 — — — —

−1

0

1

2

3

4

113 488.1

Frequency / MHz

113 490.9

TA, K

Figure 10.40. N = 1 → 0 rotational emission lines of CN observed from the Orion nebula [114].
The two lines correspond to the two transitions marked with asterisks in figure 10.41.

molecular constants presented in table 10.6. The Fermi contact constant is not well
determined in this experiment, but the value obtained nevertheless agreed well with an
earlier value obtained from an ion beam study of the electronic spectrum by Carrington,
Milverton and Sarre [112]. Comparison of the isotopic variation of the spin–rotation
constant for the three isotopomers suggests a degree of Born–Oppenheimer breakdown
in the CO+ molecular ion.

10.3.2. CN in the X 2�+ ground state

The microwave rotational spectrum of the CN radical has been elusive in the labora-
tory, and the first observations were made by astronomers in 1970 [113], with more
extensive studies four years later [114, 115]. Figure 10.40 shows two emission lines
observed from the Orion nebula, the initial assignment being based upon constants
obtained from the electronic spectrum. Three years later the first observations of the
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Figure 10.41. Spin–rotation and hyperfine splitting of the N = 0 and 1 rotational levels of CN
in its X 2�+ ground state, and the observed transitions. The asterisks denote the transitions
responsible for the interstellar lines shown in figure 10.40.

laboratory microwave rotational spectrum were described by Dixon and Woods [116]
using the apparatus described earlier for studies of the CO+ ion, but with a discharge
in nitrogen/cyanogen mixtures. The N = 1 ← 0 rotational transitions were observed in
absorption; they exhibited extensive hyperfine structure from 14N, and lines from both
the v= 0 and 1 levels were recorded. In figure 10.41 we show an energy level diagram
giving the assignment of these transitions, and now briefly examine the theory which
lies behind the assignment.

The CN radical in its 2�+ ground state shows fine and hyperfine structure of the
rotational levels which is more conventional than that of CO+, in that the largest inter-
action is the electron spin–rotation coupling. J is once more a good quantum number,
and the effective Hamiltonian is that given in equation (10.45), with the addition of
the nuclear electric quadrupole term given in chapter 9. The matrix elements in the
conventional hyperfine-coupled case (b) basis set were derived in detail in chapter 9,



2� states 751

Table 10.7. Molecular constants (in MHz) determined [116] for X 2�+ CN in the
v= 0 and 1 levels; nuclear hyperfine and nuclear spin–rotation constants refer to 14N

v= 0 v= 1 equilibrium values

Bv 56 693.096 56 170.738 Be = 56 954.106

γ v 217.488 215.072 αe = 520.880

bF −13.860 −12.996 γe(vib) = 0.740

t 20.107 20.168 Re(A
�

) = 1.171 807

eq0 Q −1.287 −1.271

cI 0.009 0.009

so we simply summarise the results here, as follows.

〈η,Λ; N , S, J ; I, F |{Bv − DvN2}N2|η,Λ; N , S, J ; I, F〉
= {Bv − DvN (N + 1)}N (N + 1). (10.52)

〈η,Λ; N , S, J ; I, F |γvT1(N) · T1(S)|η,Λ; N , S, J ; I, F〉
= γv(−1)N+J+S

{
S N J
N S 1

}
{S(S + 1)(2S + 1)N (N + 1)(2N + 1)}1/2. (10.53)

〈η,Λ; N , S, J ; I, F |bFT1(S) · T1(I)|η,Λ; N , S, J ′; I, F〉
= bF(−1)J ′+F+I

{
I J ′ F
J I 1

}
(−1)N+J+S+1

{
S J ′ N
J S 1

}
× {(2J + 1)(2J ′ + 1)I (I + 1)(2I + 1)S(S + 1)(2S + 1)}1/2. (10.54)

〈η,Λ; N , S, J ; I, F | −
√

10gSµB gNµN (µ0/4π)T1(S,C2) ·T1(I)|η,Λ; N , S, J ′; I, F〉

= −
√

30 t(−1)J ′+F+I+N

{
I J ′ F
J I 1

}


J J ′ 1
N N 2
S S 1




(
N 2 N
0 0 0

)

× {I (I + 1)(2I + 1)(2J + 1)(2J ′ + 1)S(S + 1)(2S + 1)}1/2(2N + 1). (10.55)

〈η,Λ; N , S, J ; I, F | − eT2(Q) · T2(∇E)|η,Λ; N , S, J ′; I, F〉
= (−1)J ′+F+I

{
I J ′ F
J I 2

}(
eQ

2

)
{(I + 1)(2I + 1)(2I + 3)/I (2I − 1)}1/2

× (−1)J ′+N+S{(2J ′ + 1)(2J + 1)}1/2

×
{

N J ′ S
J N 2

}
(−1)N

(
N 2 N
0 0 0

)
(2N + 1)

(
q0

2

)
. (10.56)

In the matrix elements of the dipolar and quadrupolar interactions, equations (10.55)
and (10.56), we have, as usual, neglected terms off-diagonal in N and Λ.

The spin–rotation and nuclear hyperfine structure of the N = 0 and 1 rotational
levels is shown in figure 10.41, together with the observed transitions. The spectra of CN
radicals in both v= 0 and v= 1 were observed, and the molecular constants determined
are listed in table 10.7. The final column of table 10.7 shows the equilibrium values of
certain parameters and also the internuclear distance. The final row gives a value for the
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nuclear spin–rotation constant which was necessary to achieve an accurate fit between
experiment and theory. The laboratory frequencies, of course, provide accurate rest
frequencies which are important in astrophysical studies of the velocity distribution of
CN radicals in interstellar clouds.

Among other 2� molecules which have been investigated we should mention
SiN, investigated in the laboratory by Saito, Endo and Hirota [117], and in space by
Turner [54].

10.4. 3� states

10.4.1. Introduction

We have already described some of the important aspects of the high-resolution spec-
troscopy of molecules in 3� states. In chapter 8 we described the molecular beam
magnetic resonance spectrum of N2 in its excited A 3�+

u state, concentrating on the
nuclear hyperfine levels arising from the presence of two identical 14N nuclei (each
with spin 1) and the magnetic dipole transitions between them. All of the transitions
described occurred within a single rotational level. We also described the theory of the
Zeeman effect. In chapter 9 we turned our attention to the microwave and far-infrared
magnetic resonance, where transitions both within and between different rotational
levels are observed. We discussed the difference between case (b) and case (a) descrip-
tions of 3� states, and again explored the theory of the Zeeman effect, which is, of
course, central to an understanding of magnetic resonance spectra. We now deal with
the field-free rotational spectra, which are in general simpler. First we review briefly
the important aspects of the theory of the rotational levels, drawing from our earlier
discussions, before reviewing a selection of typical studies.

If, for the moment, we ignore magnetic field and nuclear hyperfine effects, the
important terms in the effective Hamiltonian for a 3� state are the following:

Heff = Hrot + Hss + Hsr. (10.57)

The rotational term is given by

Hrot = BvN2 − DvN4, (10.58)

the so-called spin–spin interaction term is given by

Hss = −g2
Sµ

2
B(µ0/4π)

√
6T2(C) · T2(S1, S2), (10.59)

and the spin–rotation term is given by

Hsr = γvT1(N) · T1(S). (10.60)

In a case (b) basis with Λ= 0 the matrix elements of these three terms are as follows:

〈η,Λ; N ,Λ; N , S, J,MJ | Hrot |η,Λ; N ,Λ; N , S, J,MJ 〉
= BvN (N + 1) − DvN 2(N + 1)2. (10.61)
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〈η,Λ; N ,Λ; N , S, J,MJ |Hss|η,Λ; N ,Λ; N , S, J,MJ 〉

= λ
2
√

30

3
(−1)J+N+S

{
S N J
N S 2

}
(−1)N

(
N 2 N
0 0 0

)
{2N + 1}. (10.62)

〈η,Λ; N ,Λ; N , S, J,MJ | Hss |η,Λ; N ± 2,Λ; N , S, J,MJ 〉

= λ
2
√

30

3
(−1)J+N+S

{
S N ± 2 J
N S 2

}
(−1)N

(
N 2 N ± 2
0 0 0

)
× {(2N + 1) (2[N ± 2] + 1)}1/2. (10.63)

In these expressions, S is taken as 1 and the parameter λ is defined by

λ = −3

4

〈
g2

Sµ
2
B (µ0/4π)C2

0 (θ12, φ12) r−3
12

〉
η
, (10.64)

when the dipole–dipole coupling of the electron spin magnetic moments is indeed the
major contribution. However, we pointed out earlier, and showed in chapter 7, that
the parameter λ is actually the sum of a first-order part, λ(1), representing the dipolar
coupling, and a second-order part, λ(2), arising from spin–orbit mixing. In heavier
molecules, the second-order part usually dominates; we return to this point later. We
note from (10.64) that only the axial (q = 0) term has been retained.

Finally the spin–rotation term has simple matrix elements, which are diagonal in
the case (b) basis, and which are given by

〈η,Λ; N ,Λ; N , S, J,MJ |Hsr|η,Λ; N ,Λ; N , S, J,MJ 〉
= γv (−1)N+J+S

{
S N J
N S 1

}
{N (N + 1)(2N + 1)S(S + 1)(2S + 1)}1/2. (10.65)

Since J = N + S, each rotational level N is split into a spin triplet by the spin–spin
term in the effective Hamiltonian and from equation (10.62) we see that the spin triplet
energies are

J = N + 1: E = −2λ
N

3(2N + 3)
, J = N : E = 2

3
λ,

(10.66)

J = N − 1: E = −2λ
(N + 1)

3(2N − 1)
.

These results hold only if the off-diagonal elements (10.63) are small. If, however,
the spin-orbit coupling is strong, and the rotational constant is small, the off-diagonal
elements (10.63) become very important. N is then no longer a good quantum number,
and a case (a) basis becomes more appropriate.

In a case (a) basis the component of the electron spin along the internuclear axis,
Σ, is a specified quantum number. The matrix elements of the spin–spin and spin–
rotation terms in the effective Hamiltonian were given in chapter 9 in our discussion
of the spectrum of SeO. The rotational and spin–rotation Hamiltonians in the case (a)
basis are

Hrot + Hsr = B{T1(J ) − T1(S )}2 + γ {T1(J ) − T1(S )} · T1(S )

= B J2 + (γ − 2B)T1(J ) · T1(S ) + (B − γ )S2, (10.67)
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and the matrix elements (neglecting the term in S2) are given by

〈η; S,Σ; J,MJ |Hrot + Hsr|η; S,Σ′; J,MJ 〉
= δΣΣ′ B J (J + 1) + (γ − 2B)

∑
q

(−1)J+S−2Σ

× {J (J + 1)(2J + 1)S(S + 1)(2S + 1)}1/2

×
(

J 1 J
−Σ q Σ′

) (
S 1 S

−Σ q Σ′

)
+ (B − γ )S(S + 1). (10.68)

The spin–spin interaction term was written in the form

Hss = (2
√

6/3)λT2
0(S, S), (10.69)

and the equivalence of this form to that used earlier in equation (10.59) was demon-
strated in Appendix 8.3. The matrix elements in a case (a) basis are given by

〈η; S,Σ; J,MJ |(2
√

6/3)λT2
0(S, S )|η; S,Σ; J,MJ 〉

= 2

3
λ(−1)S−Σ

(
S 2 S

−Σ 0 Σ

)
S(2S − 1)

(
S 2 S

−S 0 S

)−1

= 2

3
λ{3Σ2 − S(S + 1)}. (10.70)

The matrix elements in case (b) and case (a) bases enable us to construct the
correlation diagram shown in figure 10.42, which is a repeat of that presented in
chapter 9. With the matrix elements given above, and the correlation diagram, we are
in a position to describe the experimental studies which have been made on molecules
in 3� states.

10.4.2. O2 in its X 3�−
g ground state

There can be no question that the most important species with a 3� ground state is
molecular oxygen and, not surprisingly, it was one of the first molecules to be studied
in detail when microwave and millimetre-wave techniques were first developed. It
was also one of the first molecules to be studied by microwave magnetic resonance,
notably by Beringer and Castle [118]. In this section we concentrate on the field-free
rotational spectrum, but note at the outset that this is an atypical system; O2 is a
homonuclear diatomic molecule in its predominant isotopomer, 16O16O, and as such
does not possess an electric dipole moment. Spectroscopic transitions must necessarily
be magnetic dipole only.

Because of the symmetry of the homonuclear diatomic molecule, every alternate
rotational level is missing; those that exist have N odd and positive parity, as shown
for the first three rotational levels in figure 10.43. The magnetic dipole transitions arise
from coupling of the electron spin magnetic moment with the oscillating magnetic
field, represented by the interaction term

H
′(t) = gSµBT1(B(t)) · T1(S ). (10.71)



3� states 755

Figure 10.42. Correlation diagram for case (b) and case (a) rotational levels of a 3�− state.

If, for convenience, we take the direction of the oscillating field to define the space-fixed
p = 0 direction, the relative transition probabilities in the case (b) basis will be given
by

T.P. ≈ ∣∣〈N , S, J,MJ |gSµBT1
0(B(t))T1

0(S)|N ′, S, J ′,MJ 〉
∣∣2

= δN N ′ g2
Sµ

2
B B2

Z

(
J 1 J ′

−MJ 0 MJ

)2

{(2J ′ + 1)(2J + 1)}

×
{

J S N
S J ′ 1

}2

S(S + 1)(2S + 1). (10.72)

This equation gives the selection rules�J = ±1,�N = 0. Six of the transitions shown
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Figure 10.43. Three lowest rotational levels of O2 X 3�−
g and the observed transitions.

in figure 10.43 obey these selection rules. However, it is important to note that the spin–
spin interaction term has off-diagonal matrix elements, with �N = ±2 (see equation
(10.63)). Consequently transitions which obey the apparent selection rule �N = ±2,
such as f7 in figure 10.43, acquire magnetic dipole intensity and are readily observable.

Many authors have contributed to our knowledge of the fine-structure and rota-
tional spectrum of O2 and the results were summarised by Amano and Hirota [119].
Table 10.8 lists the transitions which have been measured, and also gives the calcu-
lated frequencies [119] which we discuss shortly; calculated frequencies by Welch
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Table 10.8. Fine-structure and rotational transitions for 16O2 X 3�−
g

in the v= 0 level

lower state upper state observed obs. − calc.

N J N ′ J ′ (MHz) (MHz) reference

1 0 1 1 118 750.343 0.012 [123]

1 2 1 1 56 264.778 −0.004 [123, 124]

1 2 3 2 424 763.12 −0.013 [125]

3 2 3 3 62 486.255 0.000 [123, 126]

3 4 3 3 58 446.600 −0.006 [123]

5 4 5 5 60 306.044 −0.015 [126]

5 6 5 5 59 590.978 −0.004 [126]

7 6 7 7 59 164.215 0.007 [126]

7 8 7 7 60 434.776 −0.003 [126]

9 8 9 9 58 323.885 0.004 [126]

9 10 9 9 61 150.570 0.004 [126]

11 12 11 11 61 800.169 0.005 [124]

13 12 13 13 56 968.180 −0.034 [124]

13 14 13 13 62 411.223 −0.006 [126]

13 13 15 15 2 496 283 3.7 [121]

15 14 15 15 56 363.393 −0.005 [124]

17 16 17 17 55 783.819 0.012 [124]

17 18 17 17 63 568.520 −0.013 [126]

19 18 19 19 55 221.372 0.008 [124]

19 20 19 19 64 127.777 −0.001 [124]

21 20 21 21 54 671.145 0.001 [124]

21 21 23 23 3 865 810 −1.0 [121]

25 26 25 25 65 764.744 0.007 [124]

and Mizushima [120] gave closely similar results. Table 10.8 includes two far-infrared
transitions involving higher N levels, measured by Evenson and Mizushima [121] us-
ing FIR LMR methods, which were discussed in more detail in chapter 9 with other
magnetic resonance measurements.

Other isotopomers of oxygen have been studied, notably 16O17O by Miller and
Townes [122], 18O2 by Steinbach and Gordy [125] and 16O18O by Amano and Hirota
[119]. Measurements of the predominant isotopomer in its v= 1 level have also been
described by Amano and Hirota [119]. Values of the molecular constants obtained from
these studies are listed in table 10.9. In the case of 16O17O magnetic hyperfine constants
for 17O, which has a spin of 5/2, have been determined by Miller and Townes [122]; we
will come to these studies shortly, but first examine how the transition frequencies listed
in table 10.8 depend upon the values of the molecular parameters listed in table 10.9.

The result of the spin-spin interaction is that whilst J remains a good quantum
number, N does not. Hence for each value of J we may formulate a 3 × 3 matrix
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Table 10.9. Molecular parameters (in MHz) determined for different
isotopomers of oxygen

parameter 16O16O (v= 0) 16O16O (v= 1) 16O17O 16O18O 18O18O

B 43 099.795 42 626.9 43 102 40 708.0 38 313.721

D 0.145 0.149 — 0.1294 —

λ 59 501.471 59 646.3 59 501.6 59 499.17 59 496.708

γ −252.5872 −253.23 −252.72 −238.518 −224.438

which incorporates the �N = 0 and �N = ±2 matrix elements. The general form of
this matrix, expressed as a function of J , is given below. Our results agree with those
presented by Miller and Townes [122].

N = J + 1 N = J N = J − 1

N = J + 1 B(J + 1)(J + 2) 0 2λ

{
J (J + 1)

(2J + 1)2

}1/2

−2

3
λ

(J + 2)

(2J + 1)
− γ (J + 2)

N = J 0 B J (J + 1)

+2

3
λ− γ

0

N = J − 1 2λ

{
J (J + 1)

(2J + 1)2

}1/2

0 B J (J − 1)

−2

3
λ

(J − 1)

(2J + 1)
+ γ (J − 1)

In the case of O2, however, the situation is particularly simple. For odd values of J ,
there are only the N = J states to be considered; they are pure states. For even values
of J , only the N = J + 1 and N = J − 1 states exist. The fine-structure separations
for a given value of N are therefore given by the following simple equations:

ν+(N ) = E(J = N ) − E(J = N + 1)

= λ− γ (N + 1) − (B − γ /2)(2N + 3) + {λ2 − 2λ(B − γ /2)

+ (B − γ /2)2(2N + 3)2}1/2

(10.73)
ν−(N ) = E(J = N ) − E(J = N − 1)

= λ+ γ N + (B − γ /2)(2N − 1) − {λ2 − 2λ(B − γ /2)

+ (B − γ /2)2(2N − 1)2}1/2.

It is a relatively straightforward exercise to use these equations in order to determine
the values of the molecular parameters.

Miller and Townes [122] studied the magnetic hyperfine structure arising from the
17O nucleus in the 16O17O isotopomer and were able to obtain information about the
magnetic hyperfine parameters. We do not go into the details here, but will discuss
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nuclear hyperfine structure when we describe the rotational spectra of NCl and PF.
We have already, in chapter 9, described the nitrogen and proton hyperfine structure
observed in the FIR LMR spectrum of NH. We should also mention here the studies of
the Zeeman effect in O2 described by Beringer and Castle [127] and by Henry [128];
again, we discussed at length the Zeeman effect in 3� states in connection with SO
and NH.

10.4.3. SO, S2 and NiO in their X 3�− ground states

The energies of the three spin states for a given N value are as follows:

E(J = N + 1) = B N (N + 1) + B(2N + 3) − λ− γ /2
−{λ2 − 2λ(B − γ /2) + (2N + 3)2(B − γ /2)2}1/2

E(J = N ) = B N (N + 1) (10.74)

E(J = N − 1) = B N (N + 1) − B(2N − 1) − λ− γ /2
+ {λ2 − 2λ(B − γ /2) + (2N − 1)2(B − γ /2)2}1/2.

These expressions are essentially the same as those originally derived by Schlapp [129];
they also agree with the formulae of Winnewisser, Sastry, Cook and Gordy [130], ex-
cept that there is a typographical error in the latter’s expression for E(J = N − 1). The
sharp-eyed reader will note that the above energies can be derived from the interaction
matrix given in the previous section provided (2λ/3 − γ ) is subtracted from the diag-
onal elements. It should also be noted that for the N = 1, J = 0 level, the sign of the
square root factor in the third expression in equation (10.74) should be reversed. This
particular eigenvalue is given by the diagonal element in the top left-hand corner of the
matrix.

Before describing the experimental studies of SO and S2 it is instructive to use the
results and the experimental parameters determined to construct rotational level dia-
grams, as shown in figure 10.44. In the case of SO, experimental data have been obtained
by Winnewisser, Sastry, Cook and Gordy [130], by Powell and Lide [131], by Amano,
Hirota and Morino [132], by Clark and De Lucia [133], and at sub-millimetre wave-
lengths by Klaus, Saleck, Belov, Winnewisser, Hirahara, Hayashi, Kagi and Kawaguchi
[134]. As figure 10.44 shows, a large number of transitions had been measured for
32S16O in the v= 0 level, even before the very high frequency measurements were de-
scribed [134] and the main molecular parameters determined to high accuracy. These
are listed in table 10.10, together with values determined for the first excited vibra-
tional level, v= 1. The very high sensitivity of the sub-millimetre wave measurements
enabled transitions in 32S17O (in natural abundance, 0.038 %) to be measured [134]
and these exhibit hyperfine splitting from the 17O nucleus, which has a spin of 5/2; an
example is shown in figure 10.45. The pattern is fairly complicated for this J = 4 ← 3
transition because with I = 5/2, F takes six possible values from 13/2 to 3/2 in the
upper level and 11/2 to 1/2 in the lower level. Analysis is, however, straightforward
and the magnetic hyperfine and electric quadrupole parameters were determined.
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Figure 10.44. Lower rotational levels and observed transitions for SO and S2 in the v= 0 level
of their respective X 3�− and X 3�−

g ground states.
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Table 10.10. Molecular parameters (in MHz) determined for 32S16O (v= 0 and 1)
and 32S2 in their electronic 3�− ground states

parameter SO (X 3�−, v= 0) SO (X 3�−, v= 1) S2 (X 3�−
g , v= 0)

B 21 523.561 21 351.58 8831.8676

D 0.03399 0.034 0.0059

λ 158 254.387 159 204.7 35 3040

γ −168.342 −171.5 −200.9

165.405

Frequency / GHz

165.410 165.415 165.420

Figure 10.45. 17O hyperfine structure of the N = 4 ← 3, J = 4 ← 3 rotational transition in 32S17O
in its X 3�− state [134].

Rather less information about S2 (in its predominant isotopomer 32S2) is available
but Pickett and Boyd [135], studying the thermal decomposition of sulphur vapour, were
able to measure the six transitions shown in figure 10.44. In the predominant isotopomer,
S2 is a homonuclear system, so that only odd N levels exist. The molecular constants
obtained by Pickett and Boyd [135] for the v= 0 level are also listed in table 10.10.

The spin–orbit coupling constant for S2 is, of course, larger than that for SO, so
that the lower rotational levels of S2 show a tendency towards case (a) coupling, as was
described for SeO in chapter 9. A further example of case (a) coupling in a 3�−state
has been provided by NiO, studied by Namiki and Saito [136]. NiO was produced in the
gas phase by d.c.-sputtering of NiO powder, placed inside a nickel cathode with helium
as a carrier gas. The predominant isotopes of nickel are 58Ni (68.3%) and 60Ni (26.1%),
neither of which possesses a nuclear spin, and rotational progressions were observed
for both isotopomers. The appropriate case (a) rotational level diagram and observed
transitions are shown in figure 10.46. As we discussed for the SeO radical in chapter 9,
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Figure 10.46. Case (a) rotational energy level diagram for NiO in its X 3�−state, and the tran-
sitions observed by Namiki and Saito [136].
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the essential features of a case (a) 3� state are that the electron spin S is strongly
coupled to the rotational angular momentum N to form the total angular momentum
J. The component of S along the internuclear axis, Σ, is a good quantum number, but
N is not and the appropriate basis functions are of the form |η,Λ; J, S, �,MJ 〉. The
effective rotational Hamiltonian for v= 0 is

Heff = B0T1(J ) · T1(J ) + (γ0 − 2B0)T1(J ) · T1(J )

+ (2
√

6/3)λ0T2
0(S ) + (B0 − γ0)S 2, (10.75)

and Namiki and Saito [136] were able to determine the values of the constants B0, γ0

and λ0.

10.4.4. PF, NCl, NBr and NI in their X 3�− ground states

The PF radical is isoelectronic with SO and also has a 3�− ground state. Its rotational
spectrum has been studied by Saito, Endo and Hirota [137] using a free-space mi-
crowave cell containing a glow discharge in mixtures of PH3 and CF4. The spectrum
extends over a frequency range from 44 to 171 GHz. The lower rotational levels for the
v= 0 level are shown in the left-hand side of figure 10.47, with the observed transitions
indicated. The hyperfine splitting and structure for two of the rotational levels is shown
on the right-hand side of the figure. Both 31P and 19F have nuclear spins of 1/2; the
phosphorus nucleus has the larger hyperfine splitting so that if I1 and I2 denote the phos-
phorus and fluorine nuclear spins, an appropriate Hund’s case (b) coupling scheme is

J = N + S, F1 = J + I1, F = F1 + I2,

with the corresponding basis functions being expressed in the form |N , S, J ;
I1, F1; I2, F〉. The effective Hamiltonian without nuclear spin interactions is the same
as that given earlier for SO. The magnetic hyperfine Hamiltonian involves the Fermi
contact and dipolar terms for both nuclei and, following earlier analyses, may be
written in the form

Hhfs = bF(1)T
1(S ) · T1(I1) + bF(2) T1(S ) · T1(I2) −

√
10gSµBµN (µ0/4π)

× {
gN (1)T

1(I1) · T1
(
S,C2

(1)

)+ gN (2)T
1(I2) · T1

(
S,C2

(2)

)}
. (10.76)

As before, the subscripts (1) and (2) refer to the 31P and 19F nuclei respectively.
The matrix elements of these four terms in the case (b) hyperfine-coupled basis set

are as follows.
For the phosphorus Fermi contact interaction we have

〈η,Λ; N , S, J, I1, F1, I2, F |bF(1)T
1(S ) · T1(I1)|η,Λ; N , S, J ′, I1, F ′

1, I2, F〉
= bF(1)δF1 F ′

1
〈η,Λ; N , S, J, I1, F1|bF(1)T

1(S ) · T1(I1)|η,Λ; N , S, J ′, I1, F ′
1〉

= bF(1)δF1 F ′
1
(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 1

}
〈N , S, J‖T1(S )‖N , S, J ′〉〈I1‖T1(I1)‖I1〉
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−1

−

Figure 10.47. Left: lower rotation levels of the PF radical in its X 3�−, v= 0 state (to scale), and
the transitions observed [137]. Right: 31P and 19F hyperfine splitting and observed transitions for
the N , J = 5,5 ← 4,4 rotational transition (not to scale).
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= bF(1)δF1 F ′
1
(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 1

}
(−1)J+N+1+S{(2J ′ + 1)(2J + 1)}1/2

×
{

J S N

S J ′ 1

}
{S(S + 1)(2S + 1)I1(I1 + 1)(2I1 + 1)}1/2. (10.77)

For the fluorine Fermi contact interaction:

〈η,Λ; N , S, J, I1, F1, I2, F |bF(2)T
1(S ) · T1(I2)|η,Λ; N , S, J ′, I1, F ′

1, I2, F〉

= bF(2)(−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 1

}
〈J, I1, F1‖T1(S)‖J ′, I1, F ′

1〉〈I2‖T1(I2)‖I2 〉

= bF(2)(−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 1

}
(−1)F ′

1+J+1+I1{(2F ′
1 + 1)(2F1 + 1)}1/2

×
{

F1 J I1

J ′ F ′
1 1

}
〈N , S, J‖T1(S)‖N ′, S, J ′〉〈I2‖T1(I2)‖I2〉

= bF(2)(−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 1

}
(−1)F ′

1+J+1+I1{(2F ′
1 + 1)(2F1 + 1)}1/2

×
{

F1 J I1

J ′ F ′
1 1

}
(−1)J+N+1+S{(2J ′ + 1)(2J + 1)}1/2

{
J S N

S J ′ 1

}

× {S(S + 1)(2S + 1)I2(I2 + 1)(2I2 + 1)}1/2. (10.78)

The electron–nuclear dipolar interaction (see equation (10.76)) for the phosphorus
nucleus is as follows:

〈η,Λ; N ,Λ; S, J, I1, F1, I2, F |Hdip(1)|η,Λ′; N ′,Λ′; S, J ′, I1, F ′
1, I2, F〉

= −
√

10gSµB gN (1)µN (µ0/4π) δF1 F ′
1

× 〈η,Λ; N , S, J, I1, F1|T1
(
S,C2

(1)

) · T1(I1)|η,Λ′; N ′, S, J ′, I1, F ′
1 〉

= −
√

10gSµB gN (1)µN (µ0/4π)(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 1

}
× 〈η,Λ; N , S, J‖T1(S,C2

(1))‖η,Λ′; N ′, S, J ′
1 〉 〈I1‖T1(I1)‖I1 〉

= −
√

10gSµB gN (1)µN (µ0/4π)(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 1

}

× {(3)(2J + 1)(2J ′ + 1)}1/2




J J ′ 1
N N ′ 2
S S 1


〈η,Λ; N ,Λ‖T2(C (1))‖η′,Λ′; N ′,Λ′ 〉

× {S(S + 1)(2S + 1)I1(I1 + 1)(2I1 + 1)}1/2. (10.79)

In the last line of (10.79) we have made use of a result derived earlier in chapter 8.
As with our discussion of N2 in its 3�+

u state, we put Λ=Λ′ = 0, so that the final
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result is

〈η,Λ; N , S, J, I1, F1, I2, F |Hdip(1)|η,Λ; N ′, S, J ′, I1, F ′
1, I2, F〉

= −
√

10gSµB gN (1)µN (µ0/4π)(−1)J ′+F1+I1

×
{

I1 J ′ F1

J I1 1

}
{(3)(2J + 1)(2J ′ + 1)}1/2




J J ′ 1
N N ′ 2
S S 1


 (−1)N

(
N 2 N ′

0 0 0

)

× {(2N+1)(2N ′+1)S(S+1)(2S+1)I1(I1+1)(2I1+1)}1/2
〈
T2

0

(
C (1)

)〉
η
. (10.80)

We shall simplify this result further in due course.
Finally, the matrix elements of the fluorine dipolar hyperfine interaction

(equation (10.76)) are given by

〈η,Λ; N , S, J, I1, F1, I2, F |Hdip(2)|η,Λ′; N ′, S, J ′, I1, F ′
1, I2, F〉

= −
√

10gSµB gN (2)µN (µ0/4π)(−1)F ′
1+F+I2

{
I2 F ′

1 F
F1 I2 1

}
(−1)F ′

1+J+1+I1

× {(2F ′
1 + 1)(2F1 + 1)}1/2

{
F1 J I1

J ′ F ′
1 1

}
× 〈η,Λ; N , S, J‖T1

(
S,C2

(2)

)‖η,Λ′; N ′, S, J ′ 〉 〈I2‖T1(I2)‖I2〉

= −
√

10gSµB gN (2)µN (µ0/4π)(−1)F ′
1+F+I2

{
I2 F ′

1 F
F1 I2 1

}
(−1)F ′

1+J+1+I1

× {(2F ′
1 + 1)(2F1 + 1)}1/2

{
F1 J I1

J ′ F ′
1 1

}
(
√

3){(2J + 1)(2J ′ + 1)}1/2

×



J J ′ 1
N N ′ 2
S S 1


 〈η,Λ; N ,Λ‖T2

(
C (2)

)‖η′,Λ′; N ′,Λ′ 〉

× {S(S + 1)(2S + 1)I2(I2 + 1)(2I2 + 1)}1/2. (10.81)

Again by setting Λ=Λ′ = 0, we obtain the result

〈η,Λ; N , S, J, I1, F1, I2, F |Hdip(2)|η,Λ; N ′, S, J ′, I1, F ′
1, I2, F〉

= −
√

10gSµB gN (2)µN (µ0/4π)(−1)F ′
1+F+I2

{
I2 F ′

1 F
F1 I2 1

}
(−1)F ′

1+J+1+I1

× {(2F ′
1 + 1)(2F1 + 1)}1/2

{
F1 J I1

J ′ F ′
1 1

}

× {(3)(2J + 1)(2J ′ + 1)}1/2




J J ′ 1
N N ′ 2
S S 1


 (−1)N

(
N 2 N ′

0 0 0

)
{(2N+1)

× (2N ′+1)S(S + 1)(2S + 1)I2(I2 + 1)(2I2 + 1)}1/2
〈
T2

0

(
C (2)

)〉
η
. (10.82)
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Finally for the dipolar matrix elements we recall that

gSµB gNµN (µ0/4π)
〈
T2

0(C)
〉
η
= t0 ≡ (c/3). (10.83)

The above expressions look complicated, especially for the dipolar interaction, but
this is largely because they include all possible diagonal and off-diagonal elements.
If we put S =1, I1 = I2 = 1/2, we obtain the following simpler results for the four
required matrix elements:

〈η,Λ; N , S, J, I1, F1, I2, F |bF(1)T
1(S ) · T1(I1)|η,Λ; N , S, J ′, I1, F1, I2, F〉

= bF(1)(−1)J ′+F1+I1+J+N 3{(2J + 1)(2J ′ + 1)}1/2

×
{

1/2 J ′ F1

J 1/2 1

}{
J ′ 1 N

1 J 1

}
. (10.84)

〈η,Λ; N , S, J, I1, F1, I2, F |bF(2)T
1(S ) · T1(I2)|η,Λ; N , S, J ′, I1, F ′

1, I2, F〉
= bF(2)(−1)F+N+13{(2F1 + 1)(2F ′

1 + 1)(2J + 1)(2J ′ + 1)}1/2

×
{

1/2 F ′
1 F

F1 1/2 1

}{
F ′

1 J ′ 1/2

J F1 1

}{
J ′ 1 N

1 J 1

}
. (10.85)

〈η,Λ; N , S, J, I1, F1, I2, F |Hdip(1)|η,Λ; N ′, S, J ′, I1, F1, I2, F〉
= −t0(1)3

√
30(−1)J ′+F1+I1+N {(2J + 1)(2J ′ + 1)(2N + 1)(2N ′ + 1)}1/2

×
{

1/2 J ′ F1

J 1/2 1

}


J J ′ 1
N N ′ 2
1 1 1




(
N 2 N ′

0 0 0

)
. (10.86)

〈η,Λ; N , S, J, I1, F1, I2, F |Hdip(2)|η,Λ; N ′, S, J ′, I1, F ′
1, I2, F〉

= −t0(2)3
√

30(−1)F−J+1+N {(2F1 + 1)(2F ′
1 + 1)(2J + 1)(2J ′ + 1)

× (2N + 1)(2N ′ + 1)}1/2

×
{

1/2 F ′
1 F

F1 1/2 1

}{
F ′

1 J ′ 1/2

J F1 1

}


J J ′ 1
N N ′ 2
1 1 1




(
N 2 N ′

0 0 0

)
. (10.87)

Using these results we are in a position to derive expressions for the diagonal hyperfine
energies of the eight levels shown on the right-hand side of figure 10.47, from which the
values of the constants can be obtained. However, the diagonal energies are probably not
sufficiently accurate, particularly for the pairs of hyperfine levels in a given rotational
level which have the same F value. Equations (10.82), (10.81), (10.80) and (10.79)
show that such levels are mixed by the hyperfine interaction. In order to obtain the
values of the parameters, as well as the nuclear spin-free parameters, it is necessary
to carry out the analysis for all twelve observed rotational transitions, including the
hyperfine levels. Saito, Endo and Hirota [137] achieved this, with a final standard
deviation in the fit of only 20 kHz. The values of the hyperfine constants are presented
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Table 10.11. Nuclear hyperfine coupling constants (in MHz) for PF and related free
radicals [37]

radical c t0 bF spin density s character reference

31P

PF(3�−) −502.645 −167.548 116.809 91.3% 0.88% [137]

PD(3�−) −476.6 −158.9 129.8 86.6 0.98 [139]

PO(2�) −415.3 −138.4 89.1 66.8 0.67 [140]
19F

CF(2�) −352.7 −117.6 151.6 15.3 0.29 [141]

SiF(2�) −175 −58 69 6.8 0.13 [142]

PF
(

3�−) −240.29 −80.10 89.433 9.1 0.17 [137]

SF
(

2�
) −317 −106 104.3 11 0.20 [143]

f3 f4 f2 f1

Frequency

Figure 10.48. Observed 31P and 19F hyperfine lines [137] for the transitions shown on the right-
hand side of figure 10.47 (PF in its X 3�−, v= 0 state; rotational transition N , J = 5, 5 ← 4,4).
The observed frequencies are as follows:

f1 = 169 200.5MHz, f2 = 169 196.5, f3 = 169 187.3, f4 = 169 191.3.

The F quantum number assignments are given in figure 10.47.

in table 10.11, where they are compared with other phosporus and fluorine-containing
free radicals. Also given in this Table are the calculated spin densities [137] for the two
atoms in PF; the unpaired electrons are largely localised on the phosphorus atom, in
an orbital which is predominantly 3pπ in character. Part of the observed spectrum is
shown in figure 10.48.
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We have discussed the origin of the so-called ‘spin–spin’ interaction constant λ in
chapter 7.

We now turn to studies of the NCl radical, which also has a 3�− ground state,
described by Yamada, Endo and Hirota [138]. In many ways NCl is similar to the
other radicals described in this section, particularly PF, but is more complicated be-
cause the 14N nucleus has a spin of 1, and 35Cl has a spin of 3/2. Apart from the
more extensive magnetic hyperfine structure, both nuclei also have electric quadrupole
moments, thereby adding to the complexity.

The NCl radical conforms well to Hund’s case (b), as may be seen from figure 10.49
which shows the rotational levels up to N = 4, with their associated triplet spin splitting.
The figure also shows the eleven rotational transitions studied [138]. Each of these
transitions exhibited a complex nuclear hyperfine splitting, and an example is shown in

Figure 10.49. The observed rotation and fine-structure transitions observed [138] for NCl in its
X 3�− ground state.
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153 875 153 885 153 895

Frequency / MHz

Figure 10.50. The N = 4, J = 3 ← N = 3, J = 2 transition in NCl, with 14N and 35Cl hyperfine
structure [138].

figure 10.50. For the predominant isotopomer, 14N35Cl, almost 140 lines were measured
over the frequency range 41 to 155 GHz; all were assigned with a standard error in the
fit of only 29 kHz. We will discuss the molecular parameters determined in due course,
but first consider the complexities arising from the presence of two nuclei with each
having an electric quadrupole moment.

The theory of the magnetic hyperfine interactions in NCl is essentially the same as
that already described for the PF radical in the previous section, except that the nuclear
spins I are 1 for 14N and 3/2 for 35Cl. The form of the effective Hamiltonian for the
quadrupole interaction and its matrix elements for two different quadrupolar nuclei
was described in some detail in chapter 8 when we discussed the electric resonance
spectra of CsF and LiBr. We now use the same case (b) hyperfine-coupled basis set as
was used for PF. The quadrupole Hamiltonian for the two nuclei can be written as the
sum of two independent terms as follows:

HQ = −eT2(∇E1) · T2(Q1) − eT2(∇E2) · T2(Q2), (10.88)

where the subscripts 1 and 2 refer to the 14N and 35Cl nuclei respectively.
We deal first with the 14N quadrupole interaction, using the first term in (10.88),

and making use of the results described in chapter 8 for the ‘weak’ field coupled basis
in CsF. The nuclear spin coupling scheme is

F1 = J + I1, F = F1 + I2, (10.89)

and the required matrix elements are obtained through the following sequence:

〈η,Λ; N ,Λ,S, J, I1,F1, I2,F |−eT2(∇E1) · T2(Q1)|η,Λ′; N ′,Λ′,S, J ′, I1,F
′
1, I2,F

′〉
= δF F ′δF1 F ′

1
〈η,Λ; N ,Λ,S, J, I1,F1|−eT2(∇E1) ·T2(Q1)|η,Λ′; N ′,Λ′,S, J ′, I1,F1〉



3� states 771

= δF F ′δF1 F ′
1
(−e) (−1)J ′+F1+I1

{
I1 J ′ F1

J I1 2

}
× 〈η,Λ; N ,Λ, S, J‖T2(∇E1)‖η,Λ′; N ′,Λ′, S, J ′〉 〈I1‖T2(Q1)‖I1〉

= δF F ′δF1 F ′
1

(−e)(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 2

}
(−1)J ′+N+S{(2J ′ + 1)(2J + 1)}1/2

×
{

J N S
N ′ J ′ 2

}
〈η,Λ; N ,Λ‖T2(∇E1)‖η,Λ′; N ′,Λ′〉

(
Q1

2

)(
I1 2 I1

−I1 0 I1

)−1

= δF F ′δF1 F ′
1

(−e)(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 2

}
(−1)J ′+N+S{(2J ′ + 1)(2J + 1)}1/2

×
{

J N S
N ′ J ′ 2

}
〈η,Λ; N ,Λ|

∑
q

D
(2)
.q (ω)∗T2

q (∇E1)|η,Λ′; N ′,Λ′〉

×
(

Q1

2

)(
I1 2 I1

−I1 0 I1

)−1

= δF F ′δF1 F ′
1

(−e)(−1)J ′+F1+I1

{
I1 J ′ F1

J I1 2

}
(−1)J ′+N+S{(2J ′ + 1)(2J + 1)}1/2

×
{

J N S
N ′ J ′ 2

}∑
q

(−1)N−Λ{(2N ′ + 1)(2N + 1)}1/2

×
(

N 2 N ′

−Λ q Λ′

)
〈η,Λ|T2

q (∇E1)|η,Λ′〉
(

Q1

2

)(
I1 2 I1

−I1 0 I1

)−1

. (10.90)

Everything is general so far but, as in previous cases, we confine attention to the q = 0
component (the molecule-fixed axial component) and make use of the definition of the
electric field gradient at nucleus 1,

〈η,Λ|T2
0(∇E1)|η,Λ 〉 = −q1/2. (10.91)

We also put Λ= 0 since we are dealing with a � state and thereby obtain the final
result:

〈η,Λ; N ,Λ, S, J, I1, F1, I2, F |−eT2(∇E1) · T2(Q1)|η,Λ′; N ′,Λ′, S, J ′, I1, F1, I2, F〉
= (−1)2J ′+F1+I1+S

(
eq1 Q1

4

)
{(2J ′ + 1)(2J + 1)(2N ′ + 1)(2N + 1)}1/2

×
{

J N S
N ′ J ′ 2

}{
I1 J ′ F1

J I1 2

}(
N 2 N ′

0 0 0

)(
I1 2 I1

−I1 0 I1

)−1

. (10.92)

Note that for the 14N nucleus in NCl, both I1 and S are equal to 1, so that (10.92)
becomes rather simpler.
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We turn now to the quadrupole interaction for nucleus 2, the 35Cl nucleus. Again,
the reduction is as follows:

〈η,Λ; N ,Λ, S, J, I1, F1, I2, F |−eT2(∇E2) · T2(Q2)|η,Λ′; N ′,Λ′, S, J ′, I1, F ′
1, I2, F ′〉

= δF F ′ (−e)(−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 2

}

× 〈η,Λ; N ,Λ, S, J, I1, F1|T2(∇E2) |η,Λ′; N ′,Λ′, S, J ′, I1, F ′
1〉〈I2‖T2(Q2)‖I2 〉

= δF F ′ (−e)(−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 2

}
(−1)F ′

1+J+I1{(2F ′
1 + 1)(2F1 + 1)}1/2

×
{

F1 J I1

J ′ F ′
1 2

}
〈η,Λ; N ,Λ, S, J‖T2(∇E2)‖η,Λ′; N ′,Λ′, S, J ′〉

×
(

Q2

2

)(
I2 2 I2

−I2 0 I2

)−1

= δF F ′ (−e)(−1)F ′
1+F+I2

{
I2 F ′

1 F
F1 I2 2

}
(−1)F ′

1+J+I1{(2F ′
1 + 1)(2F1 + 1)}1/2

×
{

F1 J I1

J ′ F ′
1 2

}
(−1)J ′+N+S{(2J ′ + 1)(2J + 1)}1/2

{
N ′ J ′ S

J ′ N 2

}

× 〈η,Λ; N ,Λ‖T2(∇E2)‖η,Λ′; N ′,Λ′〉
(

Q2

2

)(
I2 2 I2

−I2 0 I2

)−1

= δF F ′ (−e)(−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 2

}
(−1)F ′

1+J+I1{(2F ′
1 + 1)(2F1 + 1)}1/2

×
{

F1 J I1

J ′ F ′
1 2

}
(−1)J ′+N+S{(2J ′ + 1)(2J + 1)}1/2

×
{

N ′ J ′ S

J N 2

}
〈η,Λ; N ,Λ|

∑
q

D
(2)
.q (ω)

∗
T2

q (∇E2) |η,Λ′; N ′,Λ′〉

×
(

Q2

2

)(
I2 2 I2

−I2 0 I2

)−1

= δF F ′ (−1)F ′
1+F+I2

{
I2 F ′

1 F

F1 I2 2

}
(−1)F ′

1+J+I1{(2F ′
1 + 1)(2F1 + 1)}1/2

×
{

F1 J I1

J ′ F ′
1 2

}
(−1)J ′+N+S{(2J ′ + 1)(2J + 1)}1/2

×
{

N ′ J ′ S

J N 2

}
(−1)N {(2N + 1)(2N ′ + 1)}1/2

×
(

N 2 N ′

0 0 0

)(
eq2 Q2

4

)(
I2 2 I2

−I2 0 I2

)−1

. (10.93)
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Again we have substitutedΛ= 0 and q = 0 to obtain this result. Rearranging the terms
in (10.93) and noting that since N is an integer, (−1)2N = +1 we obtain the final
result

〈η,Λ; N ,Λ, S, J, I1, F1, I2, F | − eT2(∇E2) · T2(Q2)|η,Λ′; N ′,Λ′, S, J ′, I1, F ′
1, I2, F〉

= (−1)2F ′
1+F+J+I2+I1+J ′+S

(
eq2 Q2

4

)
× {(2F ′

1 + 1)(2F1 + 1)(2J ′ + 1)(2J + 1)(2N + 1)(2N ′ + 1)}1/2

×
{

F1 J I1

J ′ F ′
1 2

}{
N ′ J ′ S

J N 2

}(
N 2 N ′

0 0 0

){
I2 F ′

1 F

F1 I2 2

}(
I2 2 I2

−I2 0 I2

)−1

.

(10.94)

This is the result given by Yamada, Endo and Hirota [138] in their equation (8), except
that they have a typographical error in which F and F ′ are written instead of F1 and
F ′

1in the square root expression.
We now have all of the required matrix elements but in order to understand fully

the numerical complexity of the problem, consider the manifold of states which arise
for N = 4. The parentage of the final hyperfine states is shown in figure 10.51. F is
always a good quantum number in the absence of external fields, so that a matrix of
the total effective Hamiltonian may be set up for each F value. The parity of each N
level is also a good quantum number, but alternates with the N value; a complete F
matrix will therefore exist for each parity, and will contain basis states representing
alternate N levels. Note that the electric quadrupole interaction can mix each rotational
level characterised by a value of N with those characterised by N ± 2. The analytical
problem is therefore to calculate the energies of the hyperfine levels for a given set
of molecular parameters, and to converge towards the observed spectrum, usually by
means of a least-squares routine.

It is, of course, also necessary to calculate the relative intensities of the hyperfine
components of each rotational transition in order to assign the spectrum. As we have
seen elsewhere, the perturbation due to the interaction of the microwave electric field
E(t) with the molecular electric dipole moment may be represented by the effective
Hamiltonian

H
′(t) = −T1

0(µe)T1
0(E(t)), (10.95)

where we have chosen the direction of the oscillating electric field to define the space-
fixed p = 0 direction. The relative intensity of each transition is calculated from the
squared transition dipole matrix element summed over all directions in space and also
all MF values. In the basis set used that matrix element is as follows:

〈η,Λ;N ,Λ,S, J, I1,F1, I2,F,MF |−T1
0(µe)T1

0(E)|η,Λ′;N ′,Λ′,S, J ′, I1,F
′
1, I2,F

′,MF 〉

= E0(−1)F−MF

(
F 1 F ′

−MF 0 MF

)
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Figure 10.51. Hyperfine levels in the N = 4 rotational level of 14N35Cl, with hyperfine splitting
from both nuclei. This figure shows the parentage of the hyperfine levels only, and is not meant
to represent either the relative or absolute energies of the hyperfine levels.

× 〈η,Λ; N ,Λ, S, J, I1, F1, I2, F | − T1
0(µe)|η,Λ′; N ′,Λ′, S, J ′, I1, F ′

1, I2, F ′〉

= E0(−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+F1+1+I2{(2F ′ + 1)(2F + 1)}1/2

×
{

F F1 I2

F ′
1 F ′ 1

}
〈η,Λ; N ,Λ, S, J, I1, F1‖−T1

0(µe)‖η,Λ′; N ′,Λ′, S, J ′, I1, F ′
1〉

= E0(−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+F1+1+I2{(2F ′ + 1)(2F + 1)}1/2
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×
{

F F1 I2

F ′
1 F ′ 1

}
(−1)F ′

1+J+1+I1{(2F ′
1 + 1)(2F1 + 1)}1/2

×
{

F1 J I1

J ′ F ′
1 1

}
〈η,Λ; N ,Λ, S, J‖ − T1

0(µe)‖η,Λ′; N ′,Λ′, S, J ′〉

= E0(−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+F1+1+I2{(2F ′ + 1)(2F + 1)}1/2

×
{

F F1 I2

F ′
1 F ′ 1

}
(−1)F ′

1+J+1+I1{(2F ′
1 + 1)(2F1 + 1)}1/2

×
{

F1 J I1

J ′ F ′
1 1

}
(−1)J ′+N+1+S{(2J ′ + 1)(2J + 1)}1/2

{
J N S
N ′ J ′ 1

}

× 〈η,Λ; N ,Λ‖ − T1
0(µe)‖η,Λ′; N ′,Λ′〉. (10.96)

Our final step is to transform the space-fixed molecular dipole moment p = 0 compo-
nent into the molecule-fixed component with q = 0 by means of a rotation matrix. The
final line of (10.96) therefore becomes

〈η,Λ;N ,Λ,S, J, I1,F1, I2,F,MF |−T1
0(µe)T1

0(E)|η,Λ′;N ′,Λ′,S, J ′, I1,F
′
1, I2,F

′,MF 〉
= E0 (−1)F−MF +F ′+F1+F ′

1+J+I1+I2+J ′+N+S

× {(2F ′ + 1)(2F + 1)(2F ′
1 + 1)(2F1 + 1)(2J ′ + 1)(2J + 1)}1/2

×
(

F 1 F ′

−MF 0 MF

){
F F1 I2

F ′
1 F ′ 1

}{
F1 J I1

J ′ F ′
1 1

}{
J N S
N ′ J ′ 1

}

×〈η,Λ; N ,Λ|D(1)
.0 (ω)∗T1

q=0(µe)|η,Λ′; N ′,Λ′〉
= EZµ0 (−1)F−MF +F ′+F1+F ′

1+J+I1+I2+J ′+S+N {(2F ′ + 1)(2F + 1)

× (2F ′
1 + 1)(2F1 + 1)(2J ′ + 1)(2J + 1)(2N ′ + 1)(2N + 1)}1/2

×
(

F 1 F ′

−MF 0 MF

){
F F1 I2

F ′
1 F ′ 1

}{
F1 J I1

J ′ F ′
1 1

}

×
{

J N S
N ′ J ′ 1

}(
N 1 N ′

0 0 0

)
. (10.97)

Again this result agrees with that given by Yamada, Endo and Hirota [138]; final
results for the relative transition intensities require prior diagonalisation of the effective
Hamiltonian matrix.

We will not pursue the analysis in detail any further. It does illustrate the power of
spherical tensor methods, and one can only shudder at the possibility of developing the
theory in a cartesian coordinate system, with direction cosines. We list the final values
of the molecular parameters for 14N35Cl in table 10.12. The values of the hyperfine
constants may be interpreted semi-empirically in the following way. The outmost pair
of electrons occupy a 3pπ molecular orbital and the Fermi contact constants, given in
table 10.12, may be compared with the atomic values [144] of 1811 and 5723 MHz for
the nitrogen and chlorine atoms respectively; one concludes that the s electron character
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Table 10.12. Molecular constants determined for
14N 35Cl (in MHz)

Parameter Value (MHz)

B 19 383.4655

D 0.047 95

λ 56 390.850

λD −0.2568

γ −208.6306
35Cl coupling constants 14N coupling constants

bF 3.519 bF 22.958

c = 3t0 −57.764 c = 3t0 −63.159

eq0 Q −63.13 eq0 Q 1.842

cI 0.0152

in the 3pπ molecular orbital is only 1.27% and 0.06% for the two atoms in the NCl
molecule. In the case of the dipolar interaction one may assume that the angular part,
3cos2θ − 1, can be evaluated with a hydrogenic pπwave function, so that

gSµB gNµN (µ0/4π)〈1/r3〉 = −(5/3)c. (10.98)

The measured c constants give the left-hand side of (10.98) to be 105.265 and
96.273 MHz for the nitrogen and chlorine atoms respectively. The atomic values are
138.8 and 439.0 MHz, so that the spin densities on the nitrogen and chlorine atoms in
NCl are calculated to be 75.8% and 21.9% respectively. It is reassuring that these two
values add up very nearly to 100 %.

Sakamaki, Okabayashi and Tanimoto have studied the spectra of NBr [145] and NI
[146] in their X 3�− states. NBr is similar to NCl in having two bromine isotopes, 79Br
and 81Br, with spins of 3/2; they are present is almost equal natural abundance. In the
case of NI, the 127I nucleus, in 100% natural abundance, has a spin of 5/2. Figure 10.52
shows the hyperfine patterns obtained for a sub-millimetre rotational transition in each
molecule; in both cases there is resolved magnetic hyperfine splitting from the 14N
and halogen nuclei, with additional quadrupole splitting from the halogens. Analysis
of the hyperfine structure leads to the conclusion that, in both molecules, the unpaired
electron spin density on the nitrogen is close to 75%, with approximately 25% on the
halogen.

10.5. 1� states

10.5.1. O2 in its a 1�g state

We discussed the Zeeman effect for 1� states in chapter 9, particularly with reference
to SO where it provides a particularly simple example with which to illustrate the
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Figure 10.52. Top: the N = 14 ← 13, J = 15 ← 14 rotational transition in N81Br, showing hyper-
fine splitting from both nuclei [145]. Bottom: the N = 10 ← 9, J = 11 ← 10 rotational transition
in NI, showing hyperfine splitting from both nuclei [146].

principles of microwave magnetic resonance [147]. The most important example of a
1� state, however, is that of O2. The ground state electronic configuration of O2 may
be written

(1sσg)2(1sσu)2(2sσu)2(2sσg)2(2pσg)2(2pπu)4(2pπg)2

but we have, in addition, to specify the spatial and spin coordinates of the two electrons
in the half filled 2pπg orbital. If we denote the degenerate π orbitals as π+ and π−, we
may distinguish three different electronic configurations, which are as follows.

π+(1)π−(2) : α(1)α(2), (1/
√

2){α(1)β(2)+β(1)α(2)}, β(1)β(2) X 3�−
g

π+(1)π−(2) : (1/
√

2){α(1)β(2) −β(1)α(2)} b 1�+
g

π+(1)π+(2), π−(1)π−(2) : (1/
√

2){α(1)β(2) −β(1)α(2)} a 1�g
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The a 1�g state lies 7918.1 cm−1 above the ground state and is highly metastable,
with a radiative lifetime of about 45 min. It is formed in the laboratory when O2 is
passed through a microwave discharge, or in the stratosphere and mesosphere by the
photodecomposition of O3.

The microwave magnetic resonance spectrum of 1� O2 was first studied by
Arrington, Falick and Myers [148], and the first observations of rotational transitions
were made by Scalabrin, Saykally, Evenson, Radford and Mizushima [149] using far-
infrared laser magnetic resonance. Pure microwave rotational transitions were first
observed by Cazzoli, Degli Esposti and Favero [150], and the complete sequence of
�J = +1 transitions, from the lowest level with J = 2 up to J (lower) = 9 was measured
by Hillig, Chiu, Read and Cohen [151]. The rotational spectrum of the homonuclear
species 16O16O is necessarily a magnetic dipole spectrum, and it is particularly simple.
AlthoughΛ= ±2 degeneracy might be expected, symmetry requirements dictate that
each rotational level can be associated with only oneΛ component; all of the rotational
levels in 1�g O2 have positive parity. Consequently the excited state mixing which, in a
heteronuclear molecule, would lead to Λ-doublet splitting here produces only a small
alternating shift in the energies of the rotational levels. Moreover there are no nuclear
hyperfine effects in the predominant isotopomer.

The rotational Hamiltonian, and its expansion in the molecule-fixed axis system
may be written

Hrot = BT1(R) · T1(R) = BT1(J − L) · T1(J − L)

= B{T1(J) · T1(J) − 2T1(J) · T1(L) + T1(L) · T1(L) }
= B

{
J (J + 1) − 2T1

0(J)T1
0(L) − 2

∑
q=±1

T1
q (J)T1

q (L)

+ T1
0(L)T1

0(L) −
∑

q=±1

T1
q (L)T 1

−q (L)

}
. (10.99)

Using the basis representation |η,Λ; J,Λ〉 we see that the first, second and fourth
terms in (10.99) are diagonal, whereas the third and fifth terms have matrix elements
off-diagonal in Λ, and therefore mix other electronic states with the 1�g state. If we
include the first rotational distortion term it is easy to show that, from (10.99), the
rotational energies are given by

E(J ) = B{J (J + 1) − 4} − D{J (J + 1) − 4}2

+ (−1)J (1/2)q�(J − 1)J (J + 1)(J + 2) (10.100)

where we have used the value Λ= 2 and consider states of positive parity only. The
constant q� produces the small shift in the energies, referred to above, and in a het-
eronuclear system would produce a very small Λ-doublet splitting of each rotational
level. The values of the constants obtained [151] from the pure microwave far-infrared
studies were

B0 = 42 504.5203 MHz, D0 = 152.957 kHz, q�= −5.4 Hz.

These values are very close to, but not identical with, the values obtained from the
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Table 10.13. Comparison of equilibrium bond lengths (in A
�

) of SO isotopomers in
the electronic states X 3�−, a 1� and b 1�+

Bond length X 3�− a 1� b 1�+

Re(B–O) 1.480 987 69 1.488 707 89 1.500 001 15

Re (32S16O) 1.481 082 02 1.488 805 95 1.500 109 47

Re (34S16O) 1.481 080 54 1.488 804 41 1.500 107 71

Re (32S18O) 1.481 074 31 1.488 797 93 1.500 100 75

laser magnetic resonance spectrum. In particular the value of q� must be regarded as
uncertain, even as regards its sign. If it is negative, it implies that rotational mixing
with 1�+ states outweighs that with 1�− states.

As we pointed out in chapter 9, the magnetic resonance methods enabled Miller
[152] to determine the magnetic parameters, including the anisotropy of the magnetic
susceptibility, from which he was able to calculate the electric quadrupole moment of
the oxygen molecule in its 1�g state. Magnetic resonance studies by Arrington, Falick
and Myers [148] on the isotopomer 16O17O have provided information about the 17O
magnetic hyperfine constants.

10.5.2. SO and NCl in their a 1� states

The microwave magnetic resonance spectrum [147] of SO in its excited 1� state was
described in chapter 9; subsequently the lowest rotational transition was observed
through pure microwave spectroscopy by Saito [153] at a frequency of 127 770.47 MHz.
Although in this heteronuclear case each rotational level possesses a two-fold Λ-
degeneracy, the splitting is far too small to be resolved. The Λ-degeneracy does,
however, lead to a first-order Stark effect, enabling Saito to determine the electric
dipole moment to be 1.336 D, in good agreement with an earlier magnetic resonance
value. More recently sub-millimetre studies by Klaus, Belov and Winnewisser [95]
using frequencies up to 1063 GHz have provided measurements of rotational transi-
tions up to J = 25 ← 24 for the predominant isotopomer, with additional transitions
for the 34S16O and 32S18O species. The abundant data for SO provided particularly by
the high-frequency studies have enabled Klaus, Belov and Winnewisser to determine
accurate values of the equilibrium bond lengths for different isotopomers of all three
low-lying electronic states. The results are given in table 10.13.

The pure microwave rotational spectrum of NCl in its a 1� state has been studied by
Kobayashi, Goto, Yamamoto and Saito [154] at frequencies up to 400 GHz. Extensive
hyperfine structure from both 14N and 35Cl was observed and the following unusual
coupling scheme was found to be the most appropriate:

G = ICl + IN = I1 + I2
(10.101)

F = J + G.
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The effective Hamiltonian contained terms for both nuclei describing the orbital hy-
perfine interaction, the electric quadrupole interaction and the nuclear spin–rotation
interaction:

Heff =aClT
1(I1) ·T1(L)+aNT1(I2) ·T1(L)−eT2(Q1) ·T2(∇E1)−eT2(Q2) ·T2(∇E2)

+ cClT
1(I1) · T1(J − L) + cNT1(I2) · T1(J − L). (10.102)

The matrix elements of each term have been calculated in various different parts of
this book. First, for the orbital hyperfine terms:

〈η,Λ; I1, I2,G, J,Λ, F,MF |aClT
1(I1) · T1(L)|η,Λ; I1, I2,G ′, J ′,Λ, F,MF 〉

= aCl(−1)G ′+F+J

{
J ′ G ′ F
G J 1

}
〈I1, I2,G‖T1(I1)‖I1, I2,G ′〉 〈J,Λ‖T1(L)‖J ′,Λ〉

= aCl(−1)G ′+F+J

{
J ′ G ′ F
G J 1

}
(−1)G ′+I1+I2+1{(2G ′ + 1)(2G + 1)}1/2

×
{

G I1 I2

I1 G ′ 1

}
{I1(I1 + 1)(2I1 + 1)}1/2〈J,Λ‖T1(L)‖J ′,Λ〉

= aCl(−1)G ′+F+J

{
J ′ G ′ F
G J 1

}
(−1)G ′+I1+I2+1{(2G ′ + 1)(2G + 1)}1/2

×
{

G I1 I2

I1 G ′ 1

}
{I1(I1 + 1)(2I1 + 1)}1/2

×(−1)J−Λ
(

J 1 J ′

−Λ 0 Λ

)
{(2J + 1)(2J ′ + 1)}1/2Λ, (10.103)

〈η,Λ; I1, I2,G; G, J,Λ, F,MF |aNT1(I2) · T1(L)|η,Λ; I1, I2,G ′; G ′, J ′,Λ, F,MF 〉
= aN(−1)G ′+F+J

{
J ′ G ′ F
G J 1

}
(−1)G+I1+I2+1{(2G ′ + 1)(2G + 1)}1/2

×
{

G I2 I1

I2 G ′ 1

}
{I2(I2 + 1)(2I2 + 1)}1/2

×(−1)J−Λ
(

J 1 J ′

−Λ 0 Λ

)
{(2J + 1)(2J ′ + 1)}1/2Λ. (10.104)

Next, the electric quadrupole matrix elements for two equivalent nuclei were given in
chapter 8 when we discussed the magnetic resonance spectrum of D2. When the nuclei
are not identical the results, for Λ diagonal, are

〈η,Λ; J, I1, I2,G, F | − e
∑

k=1,2

T2(∇Ek) · T2(Qk)|η,Λ; J ′, I1, I2,G ′, F〉

= −e
∑

k=1,2

(−1)J ′+I+F

{
G J F
J ′ G ′ 2

}
〈η, J,Λ‖T2(∇Ek)‖η, J ′,Λ〉

×〈I1, I2,G‖T2(Qk)‖I1, I2,G ′ 〉
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=
∑

k=1,2

(−1)J ′+I+F

{
G J F
J ′ G ′ 2

}
(−1)J−Λ{(2J + 1)(2J ′ + 1)}1/2

×
(

J 2 J ′

−Λ 0 Λ

)
(eq0(k)/2)〈I1, I2,G‖T2(Qk)‖I1, I2,G ′ 〉. (10.105)

For the remaining reduced matrix elements involving the nuclear spins in (10.105) we
have

〈I1, I2,G‖T2(Q1)‖I1, I2,G ′〉 = (−1)I1+I2+G ′ {(2G + 1)(2G ′ + 1)}1/2

{
I1 G I2

G ′ I1 2

}

× 〈I1‖T2(Q1)‖I1〉, (10.106)

〈I1, I2,G‖T2(Q2)‖I1, I2,G ′〉 = (−1)I1+I2+G ′ {(2G + 1)(2G ′ + 1)}1/2

{
I2 G I1

G ′ I2 2

}

× 〈I2‖T2(Q2)‖I2〉. (10.107)

We complete the calculation by making use of the definition of the nuclear quadrupole
moment of nucleus k:

〈Ik‖T2(Qk)‖Ik〉 =
(

Qk

2

)(
Ik 2 Ik

−Ik 0 Ik

)−1

. (10.108)

Finally we have the nuclear spin–rotation terms:

〈η,Λ; J, I1, I2,G, F |c1T1(J) · T1(I1)|η,Λ; J, I1, I2,G ′, F〉
= c1(−1)J ′+F+G

{
G ′ J ′ F
J G 1

}
〈J‖T1(J )‖J 〉〈I1, I2,G‖T1(I1)‖I1, I2,G ′〉

= c1(−1)J ′+F+G

{
G ′ J ′ F
J G 1

}
{J (J + 1)(2J + 1)}1/2(−1)G ′+I1+I2+1

× {(2G ′ + 1)(2G + 1)}1/2

{
G I1 I2

I1 G ′ 1

}
{I1(I1 + 1)(2I1 + 1)}1/2, (10.109)

〈η,Λ; J, I1, I2,G, F |c2T1(J) · T1(I2)|η,Λ; J, I1, I2,G ′, F〉
= c2(−1)J ′+F+G

{
G ′ J ′ F
J G 1

}
〈J‖T1(J )‖J 〉〈I1, I2,G‖T1(I2)‖I1, I2,G ′〉

= c2(−1)J ′+F+G

{
G ′ J ′ F
J G 1

}
{J (J + 1)(2J + 1)}1/2(−1)G ′+I1+I2+1

× {(2G ′ + 1)(2G + 1)}1/2

{
G I2 I1

I2 G ′ 1

}
{I2(I2 + 1)(2I2 + 1)}1/2. (10.110)

Kobayashi, Goto, Yamamoto and Saito [154] were able to determine five of the six
molecular parameters listed above, only the nuclear spin–rotation constant for the 14N
nucleus being too small to be significant. The molecular parameters and conclusions
about the spin density distribution for both the a 1� and X 3�− states are listed in
table 10.14.
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Table 10.14. Molecular parameters (in MHz) and derived spin
distributions for NCl in the a 1� and X 3�− states

Molecular parameter NCl a 1� (v= 0) NCl X 3�−

B 20 196.298 19 383.4655

D 0.045 238 1 0.047 95

a(Cl) 102.515 —

a(N) 91.43 —

eq0 Q(Cl) −52.54 −63.13

eq0 Q(N) 1.72 1.842

cCl 0.0196 0.0152

N atom spin density 0.659 0.758

Cl atom spin density 0.234 0.219

Ionic character 0.29 0.21

10.6. 2� states

10.6.1. NO in the X 2� ground state

The most extensively studied studied open shell molecule is undoubtedly nitric oxide,
NO. It is a stable gas which comes in cylinders, and in possessing electronic orbital
and spin angular momentum, together with the nuclear spin (I = 1) of 14N, it ex-
hibits most of the features we expect to encounter in high-resolution spectroscopy.
NO has already been discussed extensively in chapter 8 in connection with its Λ-
doubling electric resonance spectrum, and its Zeeman properties were reviewed at
length in chapter 9. The microwave spectroscopy of NO in its excited electronic states
will feature in chapter 11, but in this section we describe studies of its rotational
spectrum in the 2� ground electronic state, and bring together all of the detailed in-
formation derived from different spectroscopic studies. We remind ourselves that NO
has two fine-structure states, 2�1/2 being the ground state with 2�3/2 lying 123 cm−1

higher in energy. Rotational levels in both states are appreciably populated at room
temperature.

Figure 10.53, which is a repeat of figure 8.42, shows the lowest rotational levels
of NO. For the predominant isotopic species almost all possible �J = ±1 rotational
transitions up to J = 53/2 in both fine structure states have been observed (see [155]
for a summary), all showing Λ-doublet splitting and many exhibiting resolved hyper-
fine structure. In many rotational levels the �J = 0,Λ-doublet transitions have been
observed, particularly by Meerts and Dymanus [156], as we described in chapter 8.
Figure 10.53 is only approximately drawn to scale, the Λ-doublet splittings being
exaggerated. Although most studies have been concerned with the predominant natu-
rally occurring isotopic species, 14N16O, other isotopic variants have also been exten-
sively investigated and figure 10.54 shows a state-of-the-art (for 2000) recording of the
J = 17/2 ← 15/2, 2�3/2 rotational transition of 14N18O, published by Klisch, Belov,
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Figure 10.53. Lowest rotational levels in the fine-structure states of NO.

Schieder, Winnewisser and Herbst [157]. Hyperfine structure from the 14N nucleus,
with I = 1, is a characteristic feature of most high resolution spectra of NO; the de-
tailed structure of the levels involved in the spectrum is shown in figure 10.55, and
the observed spectrum is illustrated in figure 10.54. The quantitative aspects will be
discussed in due course.

In the lower rotational levels NO exhibits good Hund’s case (a) coupling, but as
we progress to higher rotational levels, the coupling tends increasingly to Hund’s case
(b). Therein lie some of the complications in understanding the quantitative aspects of
the spectra.
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Figure 10.54. Recording of the J = 17/2 ← 15/2, 2�3/2 transition of 14N18O [157].

Figure 10.55. Rotational level structure and components observed for the J = 17/2 ←
15/2, 2�3/2 transition of N18O, shown in figure 10.54. The diagram is not to scale: approx-
imate values for the rotational andΛ-doublet splittings are shown.

We discussed the transition from Hund’s case (a) to case (b) in chapter 9 and we
present again figure 9.8, this time as figure 10.56. Although it is not shown in the
diagram each rotational level in the case (a) set has a two-fold degeneracy which is
usually calledΛ-degeneracy but which might be calledΩ-degeneracy because, in case
(a),Ω is a good quantum number. On the other hand, each spin-doublet component J
in the case (b) set also has a two-fold degeneracy which can now be correctly called
Λ-degeneracy, because Λ is a good quantum number but Ω is not. We presented a
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Figure 10.56. The transition from Hund’s case (a) to case (b) in a 2� state.

thorough discussion of these important matters when discussing the electric resonance
spectra of LiO and NO in chapter 8, so a brief summary will suffice here. Leaving aside
nuclear spin interactions, which do not directly affect the situation, we may formulate
what we called primitive case (a) basis functions as follows:

2� =+3/2 : |η,Λ = +1; S,Σ = +1/2; J,MJ ,Ω = +3/2〉,
2� =−3/2 : |η,Λ = −1; S,Σ = −1/2; J,MJ ,Ω = −3/2〉,

(10.111)
2� =+1/2 : |η,Λ = +1; S,Σ = −1/2; J,MJ ,Ω = +1/2〉,
2� =−1/2 : |η,Λ = −1; S,Σ = +1/2; J,MJ ,Ω = −1/2〉.
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In our earlier discussion of LiO in chapter 8 we also included an excited 2�+ state but
that was to facilitate our treatment of the Λ-doubling; in LiO there is one very low-
lying 2�+ excited state whose effects dominate theΛ-doubling, but that is an unusual
situation. In NO the Λ-doubling arises from mixing with more than one excited state.
However, our present concern is the transition from case (a) to case (b), so the four
basis states in (10.111) will suffice for our purposes.

We now recall that the spin–orbit coupling and rigid body rotation terms in the
effective Hamiltonian are

Hso + Hrot = Hrso = AT1(L) · T1(S ) + B{T1(J ) · T1(J ) + T1(S ) · T1(S )

+ T1(L) · T1(L) − 2T1(J ) · T1(S ) − 2T1(J ) · T1(L) − 2T1(L) · T1(S )}
= (A + 2B) T1(L) · T1(S ) + B{T1(J ) · T1(J ) + T1(S ) · T1(S )

+ T1(L) · T1(L) − 2T1(J ) · T1(S ) − 2T1(J ) · T1(L)}. (10.112)

The first two terms in the purely rotational part of (10.112) are wholly diagonal in our
basis set and may be replaced by their respective eigenvalues. The remaining scalar
products are expanded in the molecule-fixed coordinate system, q , and we separate the
q = 0 terms from q = ±1 so that (10.112) becomes

Hrso = H
(0) + H

′ where

H
(0) = (A + 2B)T1

0(L)T1
0(S ) + B

{
J (J + 1) + S(S + 1) + T1

0(L)T1
0(L)

− 2T1
0(J )T1

0(S ) − 2T1
0(J )T1

0(L)
}

H
′ =

∑
q=±1

{
(−1)q (A + 2B)T1

q (L)T1
−q (S ) + (−1)q BT1

q (L)T1
−q (L)

(10.113)− 2BT1
q (J )T1

q (S ) − 2BT1
q (J )T1

q (L)
}
.

We are now ready to examine the matrix elements. For H
(0), obtained with q = 0, the

matrix elements are wholly diagonal:

〈η,Λ; S,Σ; J,Ω| H
(0)|η′,Λ′; S,Σ′; J ′,Ω′ 〉

= δηη′δΛΛ′δΣΣ′δΩΩ′ {(A + 2B)ΛΣ+ B [J (J + 1) + S(S + 1) +Λ2 − 2Ω2 ] }.
(10.114)

The four terms in H
′, however, require closer attention. The second term, which in

molecule-fixed cartesian coordinates may be expressed as L2
x + L2

y , affects all levels
equally and is therefore usually omitted. The third term, which does not involve the or-
bital angular momentum, is known as the rotational distortion term. Its matrix elements
are readily obtained:

〈η,Λ; S,Σ; J,Ω| − 2B
∑

q=±1

T1
q (J )T1

q (S )|η′,Λ′; S,Σ′; J ′,Ω′ 〉

= −δηη′δΛΛ′δJ J ′2B
∑

q=±1

〈J,Ω|T1
q (J ) |J,Ω′〉 〈S,Σ|T1

q (S ) |S,Σ′ 〉

= −2B
∑

q=±1

(−1)J+S−Ω−Σ
(

J 1 J
−Ω q Ω′

)(
S 1 S

−Σ q Σ′

)
{J (J + 1)(2J + 1)

× S(S + 1)(2S + 1)}1/2. (10.115)
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These are the matrix elements which concern us here. The two remaining terms con-
tained within H′ in equation (10.113) give rise toΛ-doubling, which we are not dealing
with here.

Now, we recall, we must construct parity-conserved basis functions from the prim-
itive functions, and these are

+parity :
1√
2

{|η,Λ; S,Σ; J,MJ ,Ω 〉 + (−1)J−S|η,−Λ; S,−Σ; J,MJ ,−Ω 〉} ,
(10.116)

−parity :
1√
2

{|η,Λ; S,Σ; J,MJ ,Ω 〉 − (−1)J−S|η,−Λ; S,−�; J,MJ ,−Ω 〉} .

We therefore have the following 2 × 2 matrices, which are identical for both parity
states because we are ignoring Λ-doubling for the moment.

2�
(±)
3/2

2�
(±)
1/2

2�
(±)
3/2 A/2 + B{J (J + 1) − 7/4} −B{(J + 3/2) (J − 1/2)}1/2

2�
(±)
1/2 −B{(J + 3/2) (J − 1/2)}1/2 −A/2 + B{J (J + 1) + 1/4}

The off-diagonal elements mix the two fine-structure states; clearly the mixing increases
with increasing B and J , and is also greater the smaller the spin–orbit coupling constant
A. This mixing, called rotational distortion, is what gives rise to Hund’s case (b)
coupling, and in particular the increasing tendency towards case (b) in the higher
rotational levels. We see also that, at this level, the two-foldΛ-degeneracy is preserved
despite the rotational distortion.

The Λ-doubling and 14N magnetic and electric hyperfine parameters were dis-
cussed at length in chapter 8. We have nothing significant to add here, except to note
that the centrifugal distortion corrections are much more accurately defined by the
studies of higher rotational levels.

Klisch, Belov, Schieder, Winnewisser and Herbst [157] have combined all of
the data for NO to produce a current best set of molecular constants for three
isotopomers, presented in table 10.15. The data used, apart from their own tera-
hertz studies, included the Λ-doubling of Meerts and Dymanus [156, 158], the
sub-millimetre transitions of 15N16O and 14N18O, and Fourier transform data from
Salek, Winnewisser and Yamada [159]. These last authors were able to study the
magnetic dipole transitions between the two fine-structure states. The values of the
spin–orbit constant A for the less common isotopomers come from Amiot, Bacis and
Guelachvili [160].

The information concerning the electronic structure of NO which can be deduced
from the values of the molecular parameters was discussed in chapter 8, and we refer
the interested reader back to that discussion. Finally we note a number of recent studies
of NO in interstellar clouds, observed through emission involving the lowest rotational
transition in the 2�1/2 state [161, 162, 163, 164].
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Table 10.15. Molecular parameters for NO and its isotopomers in the X 2�

ground state

Parameter 14N16O 15N16O 14N18O Unit

A 3.692 064 2(28) 3.691 683 3.691 713 THz

AD 7.133 6(29) 5.113(11) 4.9451(28) MHz

B 50 847.801 6(15) 49 050.534 3(82) 48 211.777 2(22) MHz

D 164.099 0(82) 152.715(56) 147.608(53) kHz

H 682(41) — 594(37) mHz

p 350.440 80(16) 337.959 91(41) 332.207(33) MHz

dD 305(64) 170(32) — Hz

q 2.804 324(84) 2.641 46(16) 2.518(20) MHz

qD 43.71(49) 38.3(23) 76(14) Hz

a 84.215 3(11) −118.143 0(30) 84.225(31) MHz

b 41.904 9(75) −59.025(15) 42.05(34) MHz

c −58.795 0(75) 82.726(13) −58.92(34) MHz

d 112.597 38(29) −157.947 84(70) 112.576(21) MHz

dD −457(46) −452(37) — Hz

cI 12.45(10) −16.24(20) −9.3(22) kHz

c′
I 1.24(55) −1.34(70) — kHz

eq0 Q −1.857 49(74) — −1.839(37) MHz

eq2 Q 23.049(18) — 23.30(67) MHz

10.6.2. OH in the X 2� ground state

We have already discussed the high-resolution spectroscopy of the OH radical at some
length. It occupies a special place in the history of the subject, being the first short-lived
free radical to be detected and studied in the laboratory by microwave spectroscopy.
The details of the experiment by Dousmanis, Sanders and Townes [4] were described
in section 10.1. It was also the first interstellar molecule to be detected by radio-
astronomy. In chapter 8 we described the molecular beam electric resonance studies of
Λ-doubling transitions in the lowest rotational levels, and in chapter 9 we gave a com-
prehensive discussion of the microwave and far-infrared magnetic resonance spectra
of OH. Our quantitative analysis of the magnetic resonance spectra made use of the
results of pure field-free microwave studies of the rotational transitions, which we now
describe.

The initial studies of Dousmanis, Sanders and Townes [4] were focussed on the
hyperfine components of the Λ-doubling transitions in the J = 7/2, 9/2 and 11/2
rotational levels of the ground 2�3/2 state, and the J = 3/2 and 5/2 levels of the excited
2�1/2 state. Figure 10.57 illustrates theΛ-doublet and proton hyperfine splitting of the
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Figure 10.57. Λ-doublet and proton hyperfine splittings of the lower rotational levels of the OH
radical, and the observed �J = 0, Λ-doublet transitions. The diagram is drawn for the sake of
clarity, and is not to scale.

J = 3/2, 5/2 and 7/2 levels of both fine-structure states. Also shown are theΛ-doublet
transitions observed, first by Dousmanis, Sanders and Townes [4], and subsequently by
ter Meulen and Dymanus [165] and Meerts and Dymanus [166]. The later studies [166]
used molecular beam electric resonance methods which were described in chapter 8, and
the most accurate laboratory measurements of transitions within the lowest rotational
level were those of ter Meulen and Dymanus [165] using a beam maser spectrometer,
also described in chapter 8. In the years following these field-free experiments, attention
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2 514 370

Frequency / MHz

2 514 270

Figure 10.58. Observed spectrum for J = 5/2 ← 3/2 in the 2�3/2 ground state of the OH radical
[68]. The three components are due to proton hyperfine interaction, as discussed in the text. See
also figure 10.59 for an energy level diagram, with transitions, but without hyperfine splitting.

was concentrated on magnetic resonance studies, described at length in chapter 9. In
recent years, however, the development of tunable far-infrared sources has enabled
field-free rotational transitions to be studied. Figure 10.58 shows part of the spectrum
obtained by Brown, Zink, Jennings, Evenson, Hinz and Nolt [68] whose experiments
were described in the first section of this chapter. Similar results were also obtained
independently by Farhoomand, Blake and Pickett [167] using a somewhat similar far-
infrared spectrometer [168]. Figure 10.59 shows, again, the energy level diagram for
the lowest rotational levels, this time without nuclear hyperfine splitting but indicating
the �J = ±1 rotational transitions observed.

As we have already described, the OH radical has played an important role in radio
and far-infrared astronomy. It was the first molecule to be observed by radioastronomy,
the hyperfine components of the Λ-doublet transition in the lowest rotational level
being observed by Weinreb, Barrett, Meeks and Henry [32] in 1963 in a cloud near
to the supernova remnant Cassiopeia A. Initially the two strongest hyperfine lines
were observed in absorption, but later observations showed that for an interstellar
cloud within a few parsecs of the sun, in the direction of Cassiopeia A, the highest
frequency component appears in emission, whilst the other three components are seen
in absorption. This observation shows a large departure from thermal equilibrium, the
upper level being overpopulated and amplifying the continuum background. Further
measurements showed the emission to be polarised, time-variable, and to come from
very compact sources. This was the first observation of an interstellar maser. Many
subsequent investigations have been described and the population inversion is probably
due to infrared pumping involving a nearby star. Other interstellar masers have also
been observed.
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Figure 10.59. Lowest rotational levels of the OH radical and the far-infrared transitions observed
[68]. TheΛ-doublet splittings are exaggerated for the sake of clarity.

It should not be thought that OH always exhibits the unusual behaviour described
above; the recent developments in tunable far-infrared sources have had an important
impact in astronomy, so that interstellar rotational transitions can now be observed.
We described an airborne far-infrared telescope in the first part of this chapter, and
figure 10.60 shows two examples of interstellar OH rotational transitions, observed by
Watson, Genzel, Townes and Storey [170].

All of the high quality data for the OH radical has been combined by Brown, Zink,
Jennings, Evenson, Hinz and Nolt [68], building on an earlier analysis of the laser
magnetic resonance spectrum [171] and more recent work by Varberg and Evenson
[172], to produce a current best set of field-free molecular constants for the 16OH
radical. These are presented in table 10.16. The constants are defined by the fol-
lowing effective Hamiltonian which has been described extensively elsewhere in this
book:

H = AT1
q=0(L) T1

q=0(S )+ B N2 − D(N2)2 + H (N2)3 + γT1(J − S) · T1(S )

+ γD{T1(J − S) · T1(S )}N2 +
∑

q=±1

exp(−2iqφ)
[−qT2

2q (J, J)

+ (p+2q)T2
2q (J,S)

]+ ∑
q=±1

exp(−2iqφ)
{−qD(1/2)

[
T2

2q (J, J)N2+N2T2
2q (J, J)

]
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119.4

Wavelength / µm

Wavelength / µm

119.2 119.0

120.0 118.4119.2

Figure 10.60. Far-infrared transitions of interstellar OH observed using the airborne telsecope
described earlier [37]. The transitions are J = 5/2 → 3/2 in the 2�3/2 state [169, 170]. The
upper spectrum is observed in emission in Orion, the lower spectrum in absorption in Sagitarius
B2. In both cases the shorter wavelength line close to 119.4 µm corresponds to the laboratory
spectrum shown in figure 10.58, but without resolved hyperfine structure.

+ (pD + 2qD) (1/2)
[
T2

2q (J, S)N2 + N2T2
2q (J, S)

]}
+

∑
q=±1

exp(−2iqφ)
{−qH (1/2)

[
T2

2q (J, J) (N2)2 + (N2)2T2
2q (J, J)

]
+ (pH + 2qH ) (1/2)

[
T2

2q (J, S)(N2)2 + (N2)2T2
2q (J, S)

]}
+ a T1

q=0(I)T1
q=0(L) + bFT1(I) · T1(S ) +

√
(2/3) cT2

q=0(I, S)
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Table 10.16. Molecular parameters for OH in the v= 0 level of the X 2� ground
state (in MHz)

A = −4 168 639.13(78)

B = 555 660.97(11) D = 57.178 5(86) H = 0.4236 × 10−2

γ = −3574.88(49) γD = 0.7315

q = −1159.991 650 p = 7053.098 46

qD = 0.442 032 0 pD = −1.550 962

qH = −0.8237 × 10−4 pH = 0.1647 × 10−3

a = 86.1116 bF = −73.2537 c = 130.641 d = 56.6838

dD = −0.022 76 cI = −0.099 71 c′
I = 0.643 × 10−2

+ d
∑

q=±1

exp(−2iqφ) T2
2q (I, S) + dD

∑
q=±1

exp(−2iqφ)(1/2)

× [
T2

2q (I, S)N2 + N2T2
2q (I, S)

] + cI T1(I) · T1(J − S) + c′
I

×
∑

q=±1

exp(−2iqφ)(1/2)
[
T2

2q (I, J − S) + T2
2q (J − S, I)

]
. (10.117)

This effective Hamiltonian is written for calculation of the matrix elements in a Hund’s
case (a) basis, in the molecule-fixed coordinate system. We have described the evalua-
tion of the matrix elements elsewhere. The first line describes the spin–orbit coupling,
nuclear rotation and spin–rotation interactions. The next three lines are theΛ-doubling
terms and their centrifugal distortion corrections. The fifth line represents the magnetic
hyperfine interactions, and the sixth line describes the centrifugal distortion correction
to the hyperfine d constant. The final line describes higher-order corrections to the
hyperfine parameters. Equation (10.117) is a complicated effective Hamiltonian, and
arises because OH is a light molecule, showing considerable centrifugal distortion
and non-adiabatic effects arising from the admixture of other vibrational and elec-
tronic states. The additional terms which arise from Zeeman interactions in an applied
magnetic field are described in detail in chapter 9.

Studies of the OH radical have featured prominently in the progress of high-
resolution microwave and far-infrared spectroscopy. Although we have concentrated
on the predominant naturally occurring isotopic species, its isotopic relations have
also been studied extensively. With the benefit of hindsight, OH is not a difficult free
radical to form and study; since it is usually formed in the presence of water vapour, it
seems likely that it regenerates itself. We might add that, in our own experiences over
thirty years ago with microwave magnetic resonance, we found it almost impossible
to not observe OH, even in systems where both hydrogen and oxygen were supposed
to be absent! On many occasions we were excited at the discovery of a new free
radical spectrum, only to discover that we had been fooled by OH once again. The
CH radical is an altogether more elusive species, as we describe in the following
sub-section.
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10.6.3. CH in the X 2� ground state

(a) Observation and assignment of Λ-doubling and rotational transitions

The CH radical is the simplest hydrocarbon and its rotational or Λ-doublet spectrum
has been sought by many. The first detection of rotational transitions was a triumph for
far-infrared laser magnetic resonance; the experiments carried out by Evenson, Radford
and Moran [173] were described in detail in chapter 9. TheΛ-doublet transition in the
lowest rotational level was first observed through radioastronomy by Rydbeck, Elldér,
Irvine, Sume and Hjalmarson [174]. It was almost a further ten years before laboratory
observations of the field-free spectrum were reported.

First we will find it helpful to have an overall view of the rotational levels. Although
we could insist on calling the fine structure states 2�1/2 and 2�3/2, with 2�1/2 being
the lower in the CH radical (a so-called ‘regular’ state), this is misleading becauseΩ is
not a good quantum number and a case (b) description is much more appropriate. The
spin–orbit coupling constant A is 27.95 cm−1 for CH, and the rotational constant B0

is 14.190 cm−1. Expressions for the rotational energies were given originally by Hill
and Van Vleck [175] as follows:

F1(J ) = Bv
[
(J + 1/2)2 −Λ2 − (1/2){4(J + 1/2)2 + Y (Y − 4)Λ2}1/2

]
,

(10.118)
F2(J ) = Bv

[
(J + 1/2)2 −Λ2 + (1/2){4(J + 1/2)2 + Y (Y − 4)Λ2}1/2

]
.

Here Y = A/Bv; F1(J ) is the term series that forms levels with J = N + 1/2, whilst
F2(J ) forms levels with J = N − 1/2. A correction BvΛ2 needs to be added to
convert to the form of the N2 Hamiltonian. Centrifugal distortion terms can be added
to (10.118) if necessary. The correlation with case (a) levels is shown in figure 10.56.
The lower rotational levels of CH, without Λ-doublet or nuclear hyperfine splittings,
are shown, approximately to scale, in figure 10.61. Each level shown actually exhibits
Λ-doublet splitting and, apart from the far-infrared laser magnetic resonance studies
described in chapter 9, the first successful experiments involved the detection of
transitions between Λ-doublet components of a particular rotational level. In fact
the first observations of such transitions for the lowest rotational level with J = 1/2
were made by astronomers [176, 177], and another nine years passed before the first
laboratory observations. These were made by Brazier and Brown [178] using a novel
microwave/optical double resonance method, which employed the reaction of F atoms
with CH4. Their initial experiments involved the N = 2, 3 and 4 rotational levels; the
detailedΛ-doublet and proton hyperfine splitting for the N = 3, J = 5/2 (F2) rotational
level is shown in figure 10.62, as well as the observed transitions. The experimental
spectrum corresponding to this energy level diagram is shown in figure 10.63. TheΛ-
doubling transition in the lowest rotational level (J = 1/2) was observed subsequently
by Steimle, Woodward and Brown [179] for both 12CH and 13CH, the latter showing
hyperfine splitting from both the proton and the 13C nucleus. Figure 10.64 shows
the energy level diagram for the lowest rotational level of 13CH, with the Λ-doublet
and nuclear hyperfine splittings. The transitions shown in the figure are correlated
with the experimental spectra in figure 10.65.Λ-doubling transitions involving higher
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Figure 10.61. Lower rotational levels of the CH radical, with Hund’s case (b) labels. Each level
actually possessesΛ-doublet and nuclear hyperfine splitting, which is not shown in this diagram.
Note that the spin–rotation splitting decreases with N , in accordance with equation (9.81).

Figure 10.62. Details of the Λ-doubling and proton hyperfine splitting for the N = 3, J = 5/2
(F2) level of CH, and the observed transitions.
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14.85 14.80

Frequency / GHz
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f1

f2
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Figure 10.63. Microwave spectrum of CH in the N = 3, J = 5/2 (F2) level observed by Brazier
and Brown [178]. The corresponding energy level diagram is shown in figure 10.62.

Figure 10.64. TheΛ-doubling, proton and 13C hyperfine splitting for the lowest rotational level
of 13CH, and the observed transitions [179].
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Table 10.17. Experimental and calculated values (in MHz) for the Λ-doubling
frequencies in 12CH

Fi J F ′ ← F ′′ frequency (MHz) obs. − calc. (kHz) Ref.

F1 3/2 1− ← 1+ 724.789(7) −2.5 [182]

2− ← 2+ 701.677(7) 0.9 [112]

F1 5/2 2+ ← 2− 4847.84(10) 76.8 [108]

3+ ← 3− 4870.12(10) 59.1 [108]

F1 7/2 3− ← 4+ 11 301.22(20) 29.3 [108]

3− ← 3+ 11 287.05(15) 74.6 [108]

4− ← 4+ 11 265.21(15) 231.0 [108]

4− ← 3+ 11 250.79(50) 25.9 [108]

F1 13/2 6+ ← 6− 43 872.591(30) −9.6 [110]

7+ ← 7− 43 851.026(30) −10.0 [110]

F1 15/2 7− ← 7+ 59 008.076(20) 6.6 [110]

8− ← 8+ 59 986.633(20) 1.4 [110]

F1 17/2 8+ ← 8− 76 168.632(50) −0.8 [110]

9+ ← 9− 76 147.336(30) 1.6 [110]

F2 1/2 0− ← 0+ 3263.794(3) −0.1 [104]

1− ← 1+ 3335.481(3) 0.2 [104]

1− ← 0+ 3349.193(3) −0.1 [104]

F2 3/2 1+ ← 2− 7274.78(15) −280.0 [111]

1+ ← 1− 7325.15(15) −60.1 [111]

2+ ← 2− 7348.28(15) −141.9 [111]

2+ ← 1− 7398.38(15) −193.1 [111]

F2 5/2 2− ← 3+ 14 713.78(15) 91.6 [108]

2− ← 2+ 14 756.81(15) 129.0 [108]

3− ← 3+ 14 778.97(20) −3.5 [108]

3− ← 2+ 14 821.88(15) −85.6 [108]

F2 7/2 3+ ← 4− 24 381.57(40) 246.1 [108]

3+ ← 3− 24 420.65(10) 3.8 [108]

4+ ← 4− 24 442.56(10) −16.5 [108]

4+ ← 3− 24 482.10(20) 202.0 [108]

F2 11/2 5+ ← 5− 50 299.750(20) 1.8 [110]

6+ ← 6− 50 321.276(20) −2.9 [110]

F2 13/2 6− ← 6+ 66 400.098(30) −0.8 [110]

7− ← 7+ 66 421.466(30) 1.6 [110]

rotational levels have also been observed by Bogey, Demuynck and Destombes [180]
using a conventional microwave absorption technique, which has the required sensi-
tivity at higher frequencies. A complete data set [181] of the Λ-doubling frequencies
in the predominant isotopomer, 12CH, with proton hyperfine structure, is presented in
table 10.17. We deal with the theoretical analysis, which yields the calculated values in
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table 10.17 in due course. First, however, we describe the measurements of rotational
transitions.

We have already described the experiments on CH of Amano [63], and showed part
of his recording of the lowest rotational transition in figure 10.31. Figure 10.66 now
presents his complete spectrum, whilst figure 10.67 gives the corresponding energy
level diagram and the respective transitions. This diagram is, however, a magnified
portion of a more comprehensive diagram which was first presented in chapter 9 as
part of our discussion of the far-infrared laser magnetic resonance studies [183, 184]
by Brown and Evenson, and is now shown again as figure 10.68. Their measurements
provided the first accurate values of the important molecular parameters; zero-field
measurements are the ultimate aim, because of the obvious reason that they do not
require an accurate theory of the Zeeman effect. Subsequent observations were indeed
made in the absence of magnetic fields. Very recently Davidson, Evenson and Brown
[185] have greatly extended the measurement of far-infrared field-free rotational tran-
sitions and have provided the best set of molecular parameters for CH in the v= 0 level.
In this connection it should also be noted that rotational transitions involving higher
rotational levels have been observed by astronomers [186].

(b) Theoretical analysis and determination of molecular parameters

The CH radical conforms well to Hund’s case (b) coupling, which we discussed at some
length in connection with the c 3�u state of H2 in chapter 8. The emphasis there was
on the Zeeman effect, which was examined again in chapter 9. We therefore repeat here
only enough of the essential theory to define the molecular parameters whose values
have been obtained from a combination of all of the experimental studies.

First we recall the details of the angular momentum coupling scheme for a 2�

molecule described as Hund’s case (b). It is as follows:

R + L = N: N = 1, 2, 3, . . . ,

N + S = J: J = N − 1/2, N + 1/2, (10.119)

J + I = F.

We have chosen to use the hyperfine-coupled representation, where for 12CH, F is
equal to J ± 1/2. An appropriate basis set is therefore |η,Λ; N ,Λ; S, J, I, F 〉, with
MF also important when discussing Zeeman effects. As usual the effective zero-field
Hamiltonian will be, at the least, a sum of terms representing the spin–orbit coupling,
rigid body rotation, electron spin–rotation coupling and nuclear hyperfine interactions,
i.e.

Heff = Hso + Hrot + Hsr + Hhfs. (10.120)

The magnetic hyperfine interactions were discussed in chapter 8, where we followed
rather closely the analysis of Jette and Cahill [187]; we will come to these a little later,
but first consider briefly the nuclear spin-free terms.
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Figure 10.67. Energy level diagram and observed transitions for the lowest rotational transition
of CH. This diagram should be compared with the experimental spectrum [63] shown in figure
10.66.

The spin–orbit coupling term is straightforward, with case (b) matrix elements:

〈η,Λ; N ,Λ; S, J | AT1(L) · T1(S ) |η,Λ; N ′,Λ; S, J 〉
= A(−1)N ′+S+J

{
S N ′ J
N S 1

}
(−1)N−Λ

{
N 1 N ′

−Λ 0 Λ

}
{(2N + 1)(2N ′ + 1)}1/2

×Λ{S(S + 1)(2S + 1)}1/2

= A
J (J + 1) − N (N + 1) − S(S + 1)

2N (N + 1)
. (10.121)

We have inserted the value Λ= 1 and N ′ = N to obtain the last line of (10.121), and
off-diagonal elements have been neglected in this equation; they are, however, involved
in the Λ-doubling.

The rigid body rotation term in the effective Hamiltonian is

Hrot = B N2 − DN4 + · · · ,
= B(J − S)2 − D(J − S)4 + · · · . (10.122)
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Figure 10.68. The low-energy rotational levels of CH, with the size of the Λ-doubling exag-
gerated for clarity. Transitions marked with an asterisk have been observed by far-infrared laser
magnetic resonance. In addition many �J = 0, Λ-doublet transitions have been observed field-
free, as listed in table 10.17.

Again there are off-diagonal terms which, combined with the off-diagonal spin–orbit
coupling terms, mix excited electronic states with the ground state and thereby give
rise to Λ-doubling. These effects were described in our discussion of the NO spec-
trum in chapter 8, and the Λ-doubling constants, p and q, were defined in equation
(8.399).
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The spin–rotation interaction is, happily, very straightforward, with only diagonal
matrix elements in a case (b) basis:

〈η,Λ; N ,Λ; S, J | γ T1 (N) · T1 (S) |η,Λ; N ,Λ; S, J 〉
= γ (−1)N+J+S

{
S N J
N S 1

}
{N (N + 1)(2N + 1)S(S + 1)(2S + 1)}1/2

= γ {J (J + 1) − S(S + 1) − N (N + 1)}. (10.123)

We come now to the magnetic hyperfine interaction, which involves the sum of
three terms representing the Fermi contact, orbital and dipolar interactions:

Hhfs = HF + HIL + Hdip. (10.124)

The matrix elements were derived in a case (b) basis for each of these terms. For the
Fermi contact interaction (8.220) we retain matrix elements off-diagonal in J which
can be significant:

〈η,Λ; N ,Λ; S, J, I, F |bFT1(S ) · T1(I)|η,Λ; N ,Λ; S, J ′, I, F 〉
= bF (−1)J ′+F+I

{
I J ′ F
J I 1

} {
J S N
S J ′ 1

}
(−1)J+N+S+1

× {(2J ′ + 1)(2J + 1)S(S + 1)(2S + 1)I (I + 1)(2I + 1)}1/2. (10.125)

The Fermi contact interaction constant is defined, as usual, by

bF = 2µ0

3
gSgNµBµN

∫
ψ∗

elδ(r )ψel dr . (10.126)

The case (b) matrix elements of the orbital hyperfine interaction were shown to be:

〈η,Λ; N ,Λ, S, J, I, F |aT1(L) · T1(I)|η,Λ; N ′,Λ, S, J ′, I, F〉

= a(−1)J ′+F+I

{
I J ′ F
J I 1

}
(−1)J ′+N+S+1{(2J ′ + 1)(2J + 1)}1/2

{
J N S
N ′ J ′ 1

}

× (−1)N−Λ
(

N 1 N ′

−Λ 0 Λ

)
{(2N + 1) (2N ′ + 1)}1/2Λ{I (I + 1)(2I + 1)}1/2.

(10.127)

For a � state we put Λ= 1, and the orbital hyperfine constant, a, is defined, as usual,
by

a = 2gNµBµN (µ0/4π)
∑

j

〈
1
/

r3
j N

〉
, (10.128)

where r j N measures the position of electron j with respect to nucleus N .
Finally the electron spin-nuclear spin dipolar interaction, which is more compli-

cated, was given, initially, by equations (8.232) and (8.233):

〈η,Λ;N ,Λ,S,J,I,F |−
√

10gSµB gNµN (µ0/4π)T1(S,C2)·T1(I)|η,Λ′;N ′,Λ′,S,J ′,I,F〉
= −

√
30gSµB gNµN (µ0/4π)(−1)J ′+F+I

{
I J ′ F
J I 1

}
{I (I + 1) (2I + 1)}1/2
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× {(2J + 1)(2J ′ + 1)S(S + 1)(2S + 1)}1/2




J J ′ 1
N N ′ 2
S S 1




×〈η,Λ; N ,Λ‖T2(C)‖η′,Λ′; N ′,Λ′〉. (10.129)

The complications arise in evaluating the reduced matrix element in (10.129) for which
it is necessary to take account of the fact that Λ is a signed quantity. Consequently we
must use the symmetrised combinations

ψ+ = (1/
√

2){|+1 〉 + |−1〉},
ψ− = (1/

√
2){|+1 〉 − |−1 〉}.

(10.130)

With these functions as bases, and neglecting the very small matrix elements off-
diagonal in N , we have

〈η,ψ+‖T2(C)‖η,ψ+〉 = (−1)N−1(2N + 1)

{(
N 2 N
−1 0 1

) 〈
T2

0(C)
〉
η

+
(

N 2 N
−1 2 −1

) 〈
T2

2(C)
〉
η

}
, (10.131)

〈η,ψ−‖T2(C)‖η,ψ−〉 = (−1)N−1(2N + 1)

{(
N 2 N
−1 0 1

) 〈
T2

0(C)
〉
η

−
(

N 2 N
−1 2 −1

) 〈
T2

2(C)
〉
η

}
. (10.132)

The components of T2(C) in the above equations can be related to the constants c and
d given by Jette and Cahill [187] by noting the following identities:

〈
T2

0(C)
〉 = gSµB gNµN (µ0/4π)

〈
r−3

(
4π

5

)1/2

Y20(θ, φ)

〉

= 1

2
gSµB gNµN (µ0/4π)

〈
(3 cos2 θ − 1)

r3

〉
= 1

6
gSc,

(10.133)

〈
T2

2(C)
〉 = gSµB gNµN (µ0/4π)

〈
r−3

(
4π

5

)1/2

Y22(θ, φ)

〉

= − 3

2
√

6
gSµB gNµN (µ0/4π)

〈
sin2 θ

r3

〉
= − 1

2
√

6
gSd.

Our results agree with those of Jette and Cahill if gS is set equal to 2.
We may now list the values of the molecular parameters defined above for the

v= 0 level of CH in its X2� ground state. They are given in table 10.18. The magnetic
parameters for 12CH were listed in chapter 9. The corresponding set of field-free
molecular parameters for 13CH were determined by Steimle, Woodward and Brown
[179]; the rotational, spin–rotation andΛ-doubling constants differ slightly from those
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Table 10.18. Molecular parameters (in MHz) for CH in the v= 0 level of the X 2�

ground state, determined from a combination of the far-infrared laser magnetic
resonance, field-free microwave measurements [181], and field-free far-infrared
measurements [185]

A = 843 818.508 (55) B = 425 476.222 (45) D = 43.785 7(28) 102 H = 0.3173

γ = −772.106(25) γD = 0.258 4(27)

p = 1003.995 8(57) pD = −0.273 66(66) 104 pH = 0.34(12)

q = 1159.683 2(28) qD = −0.457 49(11) 104qH = 0.964 (12)

a = 54.006 (80) bF = −57.777 (68) c = 56.52(25) d = 43.513 (11)

dD = −0.015 7(12)

of 12CH, but the most significant new information concerns the 13C magnetic hyperfine
constants. The values determined were

h1/2 = 240.2 MHz, d = 274.9 MHz where h1/2 = a − (1/2)(b + c).

(c) Interpretation of the molecular parameters (a case study)

(i)   

The interpretation of the molecular parameters of CH has been discussed by Brazier
and Brown [178], and ab initio calculations have been carried out by Lie, Hinze and
Liu [188]. We will describe the theory in rather more detail than usual, partly because
the theorists provided considerably more detail about their calculations than is often
the case, and partly because high-resolution spectroscopic studies have been carried
out for two excited electronic states, as well as for the ground state.

In terms of molecular orbital theory, the electronic ground state of CH has the
following electron configuration:

X 2� : 1σ 2 2σ 2 3σ 2 1π1.

The 3σ and 1π molecular orbitals are composed primarily of carbon 2pσ and 2pπ
atomic orbitals respectively, but the 3σ molecular orbital will have a small but sig-
nificant admixture of the hydrogen 1s atomic orbital. The lowest excited electronic
states arise from a 3σ → 1π electronic excitation, and four different electronic states
are possible:

1σ 2 2σ 2 3σ 1 1π2: a 4�−, Te = 5844 cm−1,

A 2� , 23189.8,
B 2�−, 26044,
C 2�+, 31801.5.

(10.134)

The electronic excitation energies are known from electronic spectroscopy, or photo-
electron spectroscopy in the case of the a 4�− state. For the purposes of our subsequent
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Table 10.19. Spin-orbital single configuration representations for the ground and
lowest excited electronic states of CH. Only the spatial and spin coordinates of the
three highest-energy electrons are specified

2pσ 2 2pπ1 2�+3/2

∣∣σασβ πα+1

∣∣
X 2� 2�−3/2

∣∣σα σβ πβ−1

∣∣
2�+1/2

∣∣σα σβ πβ+1

∣∣
2�−1/2

∣∣σα σβ πα−1

∣∣
2pσ 1 2pπ2 4�−

+3/2

∣∣σαπα+1 π
α
−1

∣∣
a 4�− 4�−

−3/2

∣∣σβπβ+1 π
β

−1

∣∣
4�−

+1/2 (1/
√

3)
{∣∣σαπα+1 π

β

−1

∣∣ + ∣∣ σαπβ+1 π
α
−1

∣∣ + ∣∣ σβπα+1 π
α
−1

∣∣}
4�−

−1/2 (1/
√

3)
{∣∣σβπβ+1 π

α
−1

∣∣ + ∣∣σβπα+1 π
β

−1

∣∣ + ∣∣ σαπβ+1 π
β

−1

∣∣}
2pσ 1 2pπ2 2�+5/2

∣∣σα πα+1 π
β

+1

∣∣
A 2� 2�−5/2

∣∣σβ πα−1 π
β

−1

∣∣
2�+3/2

∣∣σβ πα+1 π
β

+1

∣∣
2�−3/2

∣∣ σα πα−1 π
β

−1

∣∣
B 2�− 2pσ 1 2pπ2 2�−

+1/2 (1/
√

6)
{
2
∣∣σβ πα+1 π

α
−1

∣∣ − ∣∣σα πβ+1 π
α
−1

∣∣ − ∣∣ σα πα+1 π
β

−1

∣∣}
2�−

−1/2 (1
√

6)
{
2
∣∣σα πβ+1 π

β

−1

∣∣ − ∣∣σβ πβ+1 π
α
−1

∣∣ − ∣∣σβ πα+1 π
β

−1

∣∣}
C 2�+ 2pσ 1 2pπ2 2�+

+1/2 (1/
√

2)
{∣∣σα πα+1 π

β

−1

∣∣ − ∣∣ σα πβ+1 π
α
−1

∣∣}
2�+

−1/2 (1/
√

2)
{∣∣ σβ πα+1 π

β

−1

∣∣ − ∣∣ σβ πβ+1 π
α
−1

∣∣}

discussion it might be helpful to write down the spin-orbital single configurations for
the ground and lowest excited states, expressed as determinantal wave functions. These
are given in table 10.19, where π+1 and π−1 are the orbitals withΛ = +1 and −1. The
spin state, α or β , with Σ = +1/2 or −1/2, is denoted by the superscript. Note that
the configurations are written in a case (a) representation, withΩ also specified for the
fine-structure components, although we know that case (a) is, in fact, a poor representa-
tion for the CH molecule. Lie, Hinze and Liu [188] carried out a series of configuration
interaction calculations and their final results for the potential curves of the five lowest
electronic states are summarised, both in table 10.20 and in figure 10.69. The method
used involved the prior calculation of self-consistent field basis functions for the sin-
gle configurations given in table 10.19, followed by configuration interaction calcula-
tions involving an extended number of excited configurations, not just those given in
table 10.19.

Lie, Hinze and Liu [189] have used their calculated wave functions to compute
expectation values of the magnetic hyperfine parameters, and we will come to their
calculations shortly.
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Table 10.20. Potential curves (in Hartrees) for the five lowest electronic states of CH,
calculated by Lie, Hinze and Liu [188] using an extended configuration interaction
method

R(a0) X 2� a 4�− A 2� B 2�− C 2�+

1.00 −37.641 03 −37.634 99 −37.542 32 −37.507 26 −37.496 20

1.30 −38.150 61 −38.142 12 −38.052 55 −38.021 21 −38.007 96

1.60 −38.341 21 −38.326 61 −38.239 33 −38.213 46 −38.196 64

1.90 −38.401 94 −38.381 64 −38.296 75 −38.277 74 −38.255 43

2.00 −38.408 29 −38.385 93 −38.301 93 −38.285 52 −38.261 07

2.05 −38.409 81 −38.386 45 −38.302 92 −38.287 89 −38.262 30

2.10 −38.410 41 −38.386 08 −38.303 04 −38.289 46 −38.262 68

2.15 −38.410 25 −38.384 97 −38.302 44 −38.290 37 −38.262 35

2.20 −38.409 43 −38.383 23 −38.301 24 −38.290 75 −38.261 42

2.30 −38.290 27

2.40 −38.401 56 −38.371 83 −38.292 28 −38.288 75 −38.253 54

2.70 −38.383 38 −38.348 39 −38.273 74 −38.281 92 −38.236 37

3.00 −38.362 52 −38.325 30 −38.257 07 −38.277 28 −38.223 42

3.25 −38.276 38 −38.219 42

3.50 −38.331 24 −38.299 11 −38.241 75 −38.276 59 −38.220 07

4.00 −38.308 70 −38.288 28 −38.236 32 −38.278 58 −38.225 96

5.00 −38.287 86 −38.283 47 −38.233 93 −38.281 44 −38.231 81

6.00 −38.282 87 −38.282 59 −38.233 49 −38.282 16 −38.233 42

8.00 −38.281 60 −38.282 26 −38.233 24 −38.282 23 −38.233 80

11.00 −38.281 59 −38.282 24 −38.233 27 −38.282 22 −38.233 93

15.00 −38.281 59 −38.282 23 −38.233 27 −38.282 22 −38.233 92

20.00 −38.281 59 −38.282 23 −38.233 27 −38.282 22 −38.233 92

(ii) Λ - 

We first look at the form of the calculations for the Λ-doubling parameters, p and q ,
which are a measure of the mixing of the 2� state with the 2�+ and 2�− states brought
about by the combined effects of spin–orbit coupling and Coriolis effects. Specifically
we showed in chapter 8 the results [190] first obtained by Mulliken and Christy:

p =

−2
∑

n

{〈
2�1/2

∣∣∣Hso

∣∣∣n 2�s
1/2

〉 〈
n 2�s

1/2

∣∣∣−BL+
∣∣∣2�−1/2

〉
+

〈
2�1/2

∣∣∣−BL+
∣∣∣n 2�s

−1/2

〉〈
n 2�s

−1/2

∣∣∣Hso

∣∣∣2�−1/2

〉}
E� − E�

,

(10.135)

q = 2
∑

n

〈
2�3/2

∣∣ − BL+
∣∣n 2�s

1/2

〉〈
n 2�s

1/2

∣∣ − BL+
∣∣2�−1/2

〉
E� − E�

. (10.136)

Although these expressions involve sums over all excited 2�s states, Brazier and Brown
[181] chose to investigate the results of the simplest possible calculation, which involves
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Figure 10.69. Potential energy curves for the five lowest energy electronic states of CH, calculated
by Lie, Hinze and Liu [188] using an extended configuration interaction method.

only the B and C2� states described above. In order to evaluate the matrix elements in
the above equations it is also necessary to make some further simplifying assumptions.
The spin–orbit coupling is written as the sum of one-electron operators. One may
also assume that the 3σ and 1π molecular orbitals can be replaced by the carbon
2pz and 2px , 2py atomic orbitals respectively [190]; this is called the pure precession
approximation. If this is done, the required matrix elements of the spin–orbit coupling
and rotational Coriolis mixing are as follows, where ζ is the 2p atomic spin–orbit
coupling parameter for C.

Spin–orbit coupling:〈
X 2�1/2

∣∣Hso

∣∣2�+
−1/2

〉 = 〈
2�+

−1/2

∣∣Hso

∣∣X 2�−1/2
〉 = (1/2

√
2)ζ 〈σ |l+|π〉 ∼= (1/2)ζ.〈

X 2�1/2

∣∣Hso

∣∣2�−
−1/2

〉 = 〈
2�−

−1/2

∣∣Hso

∣∣X 2�−1/2
〉= (1/2

√
6)ζ 〈σ | l+ |π〉 ∼= (1/2

√
3)ζ.〈

2�3/2
∣∣ Hso

∣∣X 2�3/2
〉 = 〈

2�−3/2
∣∣ Hso

∣∣X 2�−3/2
〉 = (1/2)ζ 〈π+| l+ |σ 〉 ∼= (1/

√
2)ζ.

(10.137)

Rotational Coriolis mixing:

〈
X 2�3/2

∣∣BL+
∣∣2�+

1/2

〉 = 〈
2�+

−1/2

∣∣BL+
∣∣X 2�−3/2

〉 = −(1/
√

2)〈σ |Bl+|π−〉 ∼= −B.〈
2�+

1/2

∣∣BL+
∣∣X 2�−1/2

〉 = 〈
X 2�1/2

∣∣ BL+
∣∣2�+

−1/2

〉 = −(1/
√

2) 〈π+| Bl+ |σ 〉 ∼= −B.
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〈
X 2�3/2

∣∣ BL+
∣∣2�−

−1/2

〉 = 〈
2�−

−1/2

∣∣BL+
∣∣X 2�−3/2

〉 = (
√

3/
√

2) 〈σ | Bl+ |π−〉 ∼=
√

3 B.〈
2�−

1/2

∣∣BL+
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〉= −(
√

3/
√

2) 〈π+| Bl+ |σ 〉 ∼=−
√

3 B.〈
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∣∣ BL+
∣∣X 2�1/2

〉 = 〈
X 2�−1/2

∣∣ BL+
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√

2B.〈
2�5/2

∣∣ BL+
∣∣X 2�3/2
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X 2�−3/2

∣∣ BL+
∣∣2�−5/2

〉 = 〈σ | Bl+ |π−〉 ∼=
√
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(10.138)

We may now ignore the sums over excited states n in (10.135) and (10.136) and consider
only the effects of the B and C2� states, and the A 2� state. If we take B = B0 = 14.19
cm−1 for the X 2� state, use the value ζ = 27.5 cm−1 for a carbon 2p orbital, and
substitute the appropriate electronic excitation energies, we obtain the following results
for p and q:

p = 4{−(1/2)ζ B/(E(�) − E(�+)) − (1/2)ζ B/(E(�) − E(�−))}
= 1654 MHz (exp = 1004 MHz),

(10.139)
q = 2{B2/(E(�) − E(�+)) − 3B2/(E(�) − E(�−))}

= 1030 MHz (exp = 1160 MHz).

Note of course that the mixing with the 2� state does not contribute to theΛ-doubling
parameters. Considering the approximations made, the agreement between experiment
and theory is very reasonable.

(iii) -- 

The contribution of excited electronic state mixing to the electron spin–rotation constant
γ is given by a second-order expression similar to those for p and q. It involves the
mixing of both 2� and 2� states with the ground state and is as follows:

γ = 2
∑

n

〈
2�3/2

∣∣ − BL+
∣∣n 2�1/2

〉 〈
n 2�1/2

∣∣ Hso

∣∣2�1/2
〉

E� − E�

+ 2
∑

n

〈
2�3/2

∣∣ Hso

∣∣n 2�3/2
〉 〈

n 2�3/2

∣∣ − BL+
∣∣2�1/2

〉
E� − E�

. (10.140)

Once again using the pure precession approximation and the parameter values given
above we obtain

γ ∼= −Bζ

{
− 1

E (�) − E (�+)
+ 1

E (�) − E (�−)
− 2

E (�) − E (�)

}
∼= −920 MHz (exp = −771 MHz). (10.141)

It is interesting to note that the contributions to γ from the 2�+ and 2�− states almost
cancel, so that it is the 2� state mixing which is primarily responsible for the value of
γ . Again the agreement between experiment and theory is reasonable.
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(iv)   

The magnetic hyperfine parameters have been defined in a number of different places
in this book. Levy and Hinze [191] have used the single configuration Hartree–Fock
ab initio wave function calculated by Lie, Hinze and Liu [188] to calculate the Frosch
and Foley [192] magnetic hyperfine constants. The results, compared with experiment,
are as follows:

a(calc) = 58.5 ± 4.5 MHz, a(exp) = 54.3
b(calc) = −72 ± 10, b(exp) = −76.7
c(calc) = 57 ± 4, c(exp) = 57.2.

The agreement is excellent.
Other molecular properties for CH have been calculated by Lie, Hinze and Liu

[189], not all of which have been measured experimentally. An important exception is
the electric dipole moment in the ground state which has been determined experimen-
tally to be 1.46 ± 0.06 D, and is calculated to be 1.450 D, in the sense C−H+.

As we mentioned at the beginning of this section, two of the low-lying excited
electronic states of CH have also been studied experimentally by high-resolution spec-
troscopy. The energy of the a 4�− state was found to be 0.742 eV, measured by Kasdan,
Herbst and Lineberger [193] using laser photoelectron spectrometry of CH−. As we
have described in chapter 9, the far-infrared laser magnetic resonance spectrum of CH
in this state was detected and studied by Nelis, Brown and Evenson [194]. A full de-
scription of the analysis was presented in chapter 9. In addition the microwave/optical
double resonance technique which enabled Brazier and Brown [178] to detect the rota-
tional spectrum of CH in its ground state also yielded a rotational spectrum for the A 2�

state. We defer a discussion of the experimental details and analysis of the spectrum
until chapter 11, but will understand the natural curiosity of the reader who wishes to
advance to that description now!

The pursuit of the CH radical in spectroscopic laboratories has led to important
advances in experimental techniques, a fairly complete description of its electronic
structure in the ground state, and the establishment of firm foundations for astrophysical
and astrochemical studies.

10.6.4. CF, SiF, GeF in their X 2� ground states

The CF, SiF and GeF radicals have 2� ground states and are similar to NO in that
the 2�1/2 fine-structure component is the lower in energy. The rotational energy level
diagram shown for NO is therefore appropriate for these three species except that
as the spin–orbit coupling increases, the 2�1/2–2�3/2 separation also increases. The
fine-structure splitting is 77.12 cm−1 for CF, compared with 119.82 cm−1 for NO. It
increases to 161.88 cm−1 in SiF, and 934.33 cm−1 in GeF. CF in its lowest rotational
levels approximates reasonably well to Hund’s case (a) coupling, and case (a) becomes
an increasingly good description as the fine-structure splitting increases for SiF and GeF.
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Table 10.21. Molecular constants (in MHz except for dipole moment) for the CF,
SiF and GeF radicals in their X 2� states (hyperfine constants are for 19F)

Parameter CF SiF 74GeF

B0 42 196.663 17 350.2752 10 924.499

D0 0.1993 0.03188 0.013 225

p0 255.95 −87.67 −656.792

q0 0.69 −1.26 —

a + (b + c)/2 664.07 288.26 —

a − (b + c)/2 747.58 336.4 309.6

b 269.2 127 —

d 792.17 359.0 296.5

a 705.82 312.35 —

c −352.7 −175 —

µe (D) 0.645 — —

The first microwave spectrum of CF was observed by Carrington and Howard
[195] using magnetic resonance methods. The J = 11/2 ← 9/2 rotational transition
in the 2�3/2 state was observed by Saykally, Lubic, Scarabrin and Evenson [196] using
far-infrared laser magnetic resonance, and high-frequency high-J rotational transi-
tions were observed by Van den Heuvel, Meerts and Dymanus [197]. Pure rotational
transitions involving the low rotational levels in both fine-structure components were
studied by Saito, Endo, Takami and Hirota [198], using a glow discharge in CF4, and
these measurements provided the most complete and accurate data for the 19F hyperfine
constants. The frequency range involved was 124 to 300 GHz.

The pure rotational spectrum of SiF, produced by a dc glow discharge in SiF4/SiH4

mixtures, was studied by Tanimoto, Saito, Endo and Hirota [199] over the frequency
range 86 to 192 GHz. Rotational transitions involving low rotational levels in both
fine-structure components were measured. Similar studies by the same authors [200]
of the GeF radical were described three years later; in this case, however, only rotational
transitions in the lower fine-structure component, 2�1/2, were observed, the population
of the higher component being too small for detection.

In all three radicals the main information obtained concerned the 19F hyperfine
interaction. The data are summarised in table 10.21. The electron spin density on the
fluorine atom in CF is estimated to be 17.8%, and in SiF it is found to be close to
8%. It is probably even smaller in GeF but the data are limited because only the 2�1/2

component could be observed.

10.6.5. Other free radicals with 2� ground states

As we have indicated elsewhere, free radicals with 2� ground states are numerous
and represent the largest class of molecules studied by microwave and far-infrared
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techniques, particularly magnetic resonance methods. We described the microwave
magnetic resonance spectrum [201] of the ClO radical at length in chapter 9, and now
complete this story by discussing the pure rotational spectrum observed and analysed
by Amano, Saito, Hirota, Morino, Johnson and Powell [202]. ClO is a good case (a)
molecule, with the 2�3/2 component being the ground state, and the 2�1/2 component
being almost 300 cm−1 higher in energy. The magnetic resonance studies were confined
to the 2�3/2 component because, in case (a) coupling, the 2�1/2 component is almost
non-magnetic. A consequence of this restriction was that the magnetic resonance studies
could provide only a composite chlorine magnetic hyperfine constant, h3/2, the total
axial component in the 2�3/2 state. It is also the case that, although the rotational
levels in the 2�3/2 component possess two-foldΛ-degeneracy, theΛ-doublet splitting
is very small and was not resolved in the magnetic resonance experiments. This is not
true of the 2�1/2 component, where theΛ-doubling is much larger. A summary of the
lowest rotational levels for both fine-structure components is shown in figure 10.70.

Figure 10.70. Lowest rotational levels and pure microwave transitions observed [202] for the
ClO molecule in its 2� ground state. The diagram is not drawn to scale, the fine-structure splitting
being very much larger than the hyperfine or Λ-doublet splittings.
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In this diagram we have included the chlorine hyperfine splitting, which arises from
both magnetic and electric quadrupole interactions. Chlorine possesses two important
naturally occurring isotopes, 35Cl and 37Cl, which have similar magnetic and electric
moments; both isotopomers are observed in the experiments.

The axial component of the total magnetic hyperfine interaction, h3/2, in the
2�3/2 component is equal to a + (b + c)/2, where a, b and c are the Frosch and Foley
[192] constants. In the 2�1/2 component the axial hyperfine constant, h1/2, is equal to
a − (b + c)/2. Since both fine-structure components can usually be studied by pure
microwave experiments, a partial separation of the magnetic hyperfine constants can
be achieved. The electric quadrupole coupling constant, eq0 Q, is obtained for both
isotopes.

In table 10.22 we have summarised the data obtained for a number of different 2�

molecules, from a combination of magnetic resonance studies involving the Zeeman
components of a single rotational level, and pure microwave to far-infrared studies
of transitions between rotational levels. We remind ourselves of the definitions of the
Frosch and Foley parameters:

a = 2µB gNµN (µ0/4π)〈1/r3〉,
b = gSµB gNµN (µ0/4π){(8π/3)ψ2(0) − 〈(3 cos2 θ − 1)/2r3〉},

(10.142)
c = gSµB gNµN (µ0/4π) (3/2)〈(3 cos2 θ − 1)/r3〉,
d = (3/2)gSµB gNµN (µ0/4π)〈sin2 θ/r3〉.

Note also that bF = b + (c/3).

10.7. Case (c) doublet state molecules

10.7.1. Studies of the HeAr+ ion

(a) Experimental observations

We now come to studies which are different from anything described earlier. Carring-
ton, Leach, Marr, Shaw, Viant, Hutson and Law [211] have carried out microwave
experiments on the HeAr+ ion, with the objective of investigating the energy levels
lying very close to the dissociation limit, approximately within 0 to 8 cm−1. Almost
all of the spectroscopic studies described so far in this book have involved the ground
vibrational level of the ground electronic state, and it is natural to ask if levels close
to dissociation follow the same rules and classification. Supplementary but important
questions concern the details of the long-range part of the potential, and the relationship
between these high-lying yet bound levels to those parts of the overall potential which
are important in considerations of chemical reactivity. The experimental techniques
developed are applicable to molecular cations; they make use of mass spectrometry,
and the very high sensitivity associated with detection of the ions themselves. Whilst
it is possible to conceive of similar experiments on neutral molecules, none have yet
been reported.
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HeAr+ ions were made by electron impact on He/Ar gas mixtures; it is likely that
the primary process occurring is electronic excitation of He atoms to a metastable
electronic state and a subsequent chemi-ionisation reaction with Ar atoms. This is an
exothermic process and the HeAr+ ions are formed with extensive internal excitation.
Once formed, the ions are accelerated out of the ion source to form a focussed beam;
there is little or no opportunity for collisional relaxation. As we described earlier in
this chapter (see figure 10.33), the levels close to dissociation are monitored by electric
field dissociation, and the fragment ions (Ar+) are detected. Prior to the electric field
dissociation lens, the molecular ion beam passes through a microwave radiation field.
The transitions induced in this field result in population transfer, and the Ar+ ions
are analysed according to their kinetic energies by means of an electrostatic analyser,
and detected with an electron multiplier. Population transfer results in changes in the
fragment Ar+ current; these changes are detected by amplitude modulation of the
microwave power, the modulated Ar+ current being detected with a lock-in amplifier.
Electric field dissociation operates effectively on levels which are bound by only a few
cm−1 at most, and these levels are populated by the molecular ion formation process.
Most of the ions in the beam (which typically had a total flux of 3 × 109 ions s−1) are
not affected by the electric field lens, and play no part in the experiment. Microwave
frequencies ranging from 6 to 170 GHz were used.

Potential curves for the three lowest electronic states of HeAr+ are shown in
figure 10.71. These curves are labelled with case (a) labels although, as we shall see,
Hund’s case (c) proved to be a better basis for both qualitative and quantitative descrip-
tions of the results. Although almost all of the levels studied were within 8 cm−1 of the

1600

800

0

2 3 4 5
−400

R (Å)

cm−1

A2 
2Π1/2

A1 
2Π3/2

X 2Σ+

He + Ar+(2P1/2)

He + Ar+(2P3/2)

Figure 10.71. Potential curves for the three lowest electronic states of the HeAr+ ion, labelled
in a Hund’s case (a) notation [211].
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112 602

Frequency /MHz

112 626 112 650

TE10

TE 22/TM22

Figure 10.72. Multimode and associated parallel Doppler-shifted pattern observed for a HeAr+

resonance with a rest frequency of 112 586.7 MHz, recorded in WR-28 waveguide [211]. Two
of the modes are indicated in the figure, but all were identified unambiguously.

lowest dissociation limit shown in figure 10.71, the higher electronic state correlating
with the first excited dissociation limit plays a role in the interpretation, as we will see.
Previous work by Dabrowski, Herzberg and Yoshino [212] on the electronic emission
spectrum from the higher energy B 2�+ state to the X and A1 (2�3/2) states showed
that the latter states have dissociation energies of about 262 and 154 cm−1 respectively.
An ab initio potential function due to Siska [213] indicated that the X state has 7 bound
vibrational levels, and the A1 state has 6.

Sixty-eight absorption lines were detected, and a typical example is shown in
figure 10.72. The resonance corresponds to parallel alignment of the ion beam and
propagation direction of the microwave radiation, and is Doppler-shifted to higher
source frequencies. Antiparallel resonances are also observed, but are not shown in
the figure. The structure apparent in figure 10.72, which is fairly typical of most of the
observed resonances, arises because the microwave frequency is much higher than the
optimum transmission frequency of the waveguide used. A consequence of this is that
the microwave radiation is propagated in several different modes; each has its own
characteristic phase velocity and hence Doppler shift. Fortunately these shifts can be
easily and accurately calculated so there is no problem in calculating the rest frequency
of the resonance.

The overall spectrum showed no recognisable pattern and without further experi-
mental evidence, assignment would have been difficult, if not impossible. Fortunately
two other diagnostic studies of each resonance line could be made. It was possible to
carry out double resonance experiments, using two different microwave frequencies
simultaneously. Suppose that two resonance lines with frequencies f1 and f2 have been
observed. If they share a common energy level, a modulation signal on f2 may be
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35 098 35 11835 058

3/2

1/2

1/2

−1/2

−1/2

−3/2

−3/2

3/2

J � 3/2

J � 3/2

Frequency / MHz MJ

Figure 10.73. Observed Zeeman pattern and theoretical reconstruction for a J = 3/2 → 3/2
transition in HeAr+, with a rest frequency of 35 092.7 MHz [211]. The magnetic field was 4.85
G, using the TE10 mode with parallel ion beam and microwave propagation, but perpendicular
microwave electric field and static magnetic field (�MJ = ±1).

detected by modulating f1 on resonance, but scanning through the range around f2.
Double resonance was also used to make possible the detection of transitions involv-
ing levels very close to dissociation, by transferring population from a lower, more
populated level.

The second diagnostic study made use of the Zeeman effect, observed when a
small magnetic field was applied parallel to the ion beam direction. For almost every
line in the spectrum a Zeeman splitting could be observed; figure 10.73 illustrates a
particularly simple example, where the six-line Zeeman pattern shows conclusively
that the resonance must arise from a J = 3/2 → 3/2 transition. Effective g factors
are obtained for both levels, providing valuable additional information which we shall
discuss in detail later. It is important to know the microwave mode involved in a
particular resonance because this determines the nature of the Zeeman components.
The transitions are electric-dipole allowed, and if the Zeeman field is parallel to the
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−1

Figure 10.74. Experimentally determined energy level diagram for HeAr+, arranged according
to their J values and parities. The transitions observed are also shown. The diagram covers a
range from the dissociation limit to about 7 cm−1 below.

microwave electric field, as was the case with most transitions studied (but not that
shown in figure 10.73), the selection rule for the Zeeman components is �MJ = 0.

Finally, there are numerical relationships between groups of transitions which
share common levels; these relationships correspond to combination differences in
other branches of spectroscopy. Through a combination of these relationships, double
resonance studies and Zeeman effect measurements, it was possible to establish the
energy level diagram shown in figure 10.74. Each level is characterised by its parity
and J value; the observed transitions are also shown in figure 10.74. The important task



Case (c) doublet state molecules 819

remaining was to assign other quantum numbers to the levels, describing their electronic
and vibrational states. We will come to this aspect shortly, but first we examine the
angular momentum theory for case (c) in order to understand both the progressions of
rotational levels, and also their Zeeman characteristics.

(b) Angular momentum theory for Hund’s case (c) and the Zeeman behaviour

(i)     

The three electronic states correlating with the dissociation limits involving Ar+ in its
2P3/2 and 2P1/2 spin–orbit states are described in figure 10.71 by the case (a) labels
X 2�+, A1

2�3/2 and A2
2�1/2. However, even at the bottom of the potential wellΛ is

not a good quantum number, and it becomes worse as we approach dissociation. It is
therefore much more satisfactory to use case (c) labels; the X and A1 states arise from
the Ja = 3/2 state of Ar+, with the projection |Ω| = 1/2 and 3/2, respectively, and the
A2 state arises from the Ja = 1/2 state of Ar+, with |Ω| = 1/2. The case (c) coupling
scheme was described in chapter 6, and the appropriate vector coupling diagram is
repeated in figure 10.75. Ja and the rotational angular momentum vector R are coupled
to form the total angular momentum J; Ω is therefore the projection of both J and
Ja along the internuclear axis. In fact, as we shall see, even the case (c) labels are
approximate near the dissociation limit, and we will make use of case (e), which is also
illustrated in figure 10.75. We return to this aspect later.

�

a

a

Figure 10.75. Vector coupling diagrams for Hund’s case (c) and case (e).
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The vibration–rotation levels will be described in terms of the total angular momentum
J , the total parity ε, the vibrational quantum number v(Ω), and |Ω| . In order to
describe the total parity of a level we need to work with symmetric and antisymmetic
combinations of the ±Ω states, so that our basis functions take the form

|v(Ω), J, |Ω|, ε〉 = 1√
2

{|v (Ω) , J,+Ω〉 ± |v (Ω) , J,−Ω〉} . (10.143)

The symmetric combination corresponds to e levels and the antisymmetric to f levels
[214], the e/ f parity differing from the total parity by a factor (−1)J−1/2.

(ii)        ₍ c ₎

The rotational levels in case (c) coupling have been discussed in detail by Veseth [215];
we will follow the usual methods described in this book. The rigid-body rotational
Hamiltonian may be written

Hrot = (h2/2µR2)R2 = (h2/2µR2)(J − Ja)2

= hcB(R)
(
J2 + J2

a − 2 T1(Ja) · T1 (J)
)
. (10.144)

If we expand the scalar product in the molecule-fixed coordinate system, the diagonal
elements (q = 0) are readily seen to be

〈v (Ω) , Ja ; J,Ω| Hrot |v(Ω), Ja ; J,Ω 〉 = Bv{J (J + 1) + Ja (Ja + 1) − 2Ω2}.
(10.145)

The constant term Bv Ja(Ja + 1) is absorbed into the term value Tv(Ω) and is not con-
sidered to be part of the rotational Hamiltonian. There are matrix elements off-diagonal
in v but these are small and are taken into account as centrifugal distortion terms. The
result of (10.145) is that the first-order rotational energies of the two electronic states
(for Ja = 3/2) are given by

|Ω| = 1/2 : E (v, J ) = Bv [J (J + 1) − 1/2] ,

|Ω| = 3/2 : E (v, J ) = Bv [J (J + 1) − 9/2] .
(10.146)

The off-diagonal matrix elements are as follows:

〈v(Ω), Ja ; J,Ω| − 2B(R)
∑

q=±1

T1
q (Ja)T1

q (J)|v(Ω), Ja ; J,Ω′〉

= −2Bv
∑

q=±1

〈Ja,Ω|T1
q (Ja)|Ja,Ω〉〈J,Ω|T1

q (J)|J,Ω′ 〉

= −2Bv
∑

q=±1

(−1)Ja−Ω
(

Ja 1 Ja

−Ω q Ω′

)
〈Ja||T1 (Ja)||Ja〉 (−1)J−Ω

×
(

J 1 J
−Ω q Ω′

)
〈J ||T1 (J )||J 〉

= −2Bv
∑

q=±1

(−1)Ja−Ω
(

Ja 1 Ja

−Ω q Ω′

)
(−1)J−Ω

(
J 1 J

−Ω q Ω′

)

× {Ja(Ja + 1)(2Ja + 1)J (J + 1)(2J + 1)}1/2 . (10.147)
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We have made use of the recipe, introduced in chapters 5 and 8, to handle the matrix
elements of the total angular momentum in the molecule-fixed axis system. It is im-
portant to remember that Ω is a signed quantity. It is now worthwhile expanding the
3- j symbols in (10.147); for q = +1 we have

〈v(Ω), Ja ; J,Ω| − 2BvT
1

1 (Ja) T 1
1 (J)|v(Ω), Ja ; J,Ω− 1〉

= −2Bv {(Ja +Ω)(Ja −Ω+ 1)(J +Ω)(J −Ω+ 1)}1/2 , (10.148)

and for q = −1 we have

〈v(Ω) , Ja ; J,Ω| − 2BvT
1
−1(Ja) T1

−1(J)|v(Ω), Ja ; J,Ω+ 1〉
= −2Bv{(Ja −Ω)(Ja +Ω+ 1)(J −Ω)(J +Ω+ 1)}1/2 . (10.149)

These matrix elements are of two different types. The matrix elements between Ω =
+1/2 and –1/2 connect states which are otherwise degenerate, making first-order
contributions of opposite sign to the energy for the even (e) and odd ( f ) combinations
of Ω = ±1/2. These contributions to e and f states are represented in the effective
Hamiltonian by diagonal terms which are ∓Pv(J + 1/2) for |Ω| = 1/2 states, and
if Ja is a good quantum number, Pv has the value 2Bv . This is known as the pure
precession limit.

The matrix elements connecting |Ω| = 1/2 and 3/2 states are more complicated,
because these states have different sets of vibrational wave functions, and there is no
simple expression for the vibrational matrix elements for these highly anharmonic
potential functions. These matrix elements are therefore treated as phenomenological
spectroscopic parameters, Qv,v′ , where v and v′ refer to the |Ω| = 1/2 and 3/2 states
respectively. The addition of centrifugal distortion constants further complicates the
analysis [211].

(iii)    ’  ₍ c ₎

We have already shown the importance of the Zeeman effect, both in identifying the
J quantum numbers involved in each line, and in providing effective g-factors for the
levels. These g-factors serve as additional labels for each level, and provide information
concerning the best angular momentum coupling scheme. We now develop the theory
of the Zeeman effect in Hund’s case (c).

The effective Hamiltonian describing the interaction between an applied magnetic
field and the magnetic moments due to electron spin and orbital motion is, as we have
seen elsewhere,

HZ = gSµB T1(B) · T1(S ) + gLµB T1(B) · T1(L) . (10.150)

In a space-fixed coordinate system we define the direction of the magnetic field to be the
p = 0 direction. However the spin S and orbital L angular momenta are quantised in the
molecule-fixed axis system. Consequently equation (10.150) is expanded as follows:

HZ = gSµB T1
0(B)

∑
q

D
(1)
0q (ω)∗ T1

q (S ) + gLµB T1
0(B)

∑
q

D
(1)
0q (ω)∗T1

q (L) . (10.151)
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For the electron spin term the matrix elements in a case (c) basis are

〈v(Ω), Ja ; J,Ω,MJ |gSµB T1
0(B)

∑
q

D
(1)
0q (ω)∗ T1

q (S ) |v′(Ω′), Ja ; J ′,Ω′,MJ 〉

= gSµB BZ

∑
q

〈J,Ω,MJ |D(1)
0q (ω)∗|J ′,Ω′,MJ 〉〈Ja,Ω |T1

q (S )|Ja,Ω
′ 〉

= gSµB BZ

∑
q

(−1)J−MJ (−1)J−Ω
(

J 1 J ′

−MJ 0 MJ

) (
J 1 J ′

−Ω q Ω′

)

× [(2J + 1)(2J ′ + 1)]1/2 〈Ja,Ω |T1
q (S )|Ja,Ω

′ 〉. (10.152)

The remaining matrix element in (10.152) is evaluated in the following manner:

〈Ja,Ω|T1
q (S)|Ja,Ω

′〉 = 〈L , S, Ja,Ω|T1
q (S )|L , S, Ja,Ω

′〉

= (−1)Ja−Ω
(

Ja 1 Ja

−Ω q Ω′

)
〈L , S, Ja‖T(S )‖L , S, Ja〉

= (−1)Ja−Ω
(

Ja 1 Ja

−Ω q Ω′

)
(−1)Ja+L+S+1

{
Ja S L
S Ja 1

}
× {(2Ja + 1)(2J ′

a + 1) S (S + 1)(2S + 1)}1/2. (10.153)

If we combine equations (10.152) and (10.153), substitute the values L = 1, S = 1/2
and neglect the small matrix elements off-diagonal in J we obtain the results

〈v(Ω), Ja ; J,Ω,MJ |HZ (spin)|v(Ω), Ja ; J ,Ω,MJ 〉

= gSµB BZ MJΩ
2[Ja(Ja + 1) − 5/4]δ′vv′

2J (J + 1)Ja(Ja + 1)
. (10.154)

〈v(Ω), Ja ; J,Ω,MJ |HZ (spin)|v(Ω± 1), Ja ; J ,Ω± 1,MJ 〉
= 5gSµB BZ MJ [(J ∓Ω)(J ±Ω+ 1)(Ja ∓Ω)(Ja ±Ω+ 1)]1/2 〈v(Ω)|v′(Ω± 1)〉

8J (J + 1)Ja(Ja + 1)
.

(10.155)

If the above analysis is repeated for the orbital term in (10.151) we find an almost
identical result, except that gS is replaced by 2gL (because S = 1/2 and L = 1). Con-
sequently for pure case (c) states we obtain the following simple results for the energies
EZ ,

EZ = geff µB BZ MJ , (10.156)

where the effective g-factors are given by:

|Ω| = 1

2
, e states : geff = +(gS + 2gL ) (4J + 3)

12J (J + 1)
,

|Ω| = 1

2
, f states : geff = −(gS + 2gL ) (4J + 1)

12J (J + 1)
, (10.157)

|Ω| = 3

2
, e, f states : geff = +3(gS + 2gL )

4J (J + 1)
.
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Many of the observed levels have measured g-factors which are closer to the pure
case (c) values than to any alternative pure coupling case. However there is extensive
rotational–electronic coupling which, in many instances, mixes the case (c) states; case
(e) is then a better limiting basis, as we shall see in due course. First we investigate
the electric dipole transition probabilities for the Zeeman components, so that we can
understand the pattern of lines illustrated in figure 10.73.

(iv)    

The perturbation due to the microwave electric field E(t) is given by the operator

HE(t) = −T1(µe) · T1[E(t)], (10.158)

where µe is the electric dipole moment. The components of µe are most naturally
expressed in the molecule-fixed coordinate system, whilst those of E(t) are described
in the space-fixed system. Consequently we expand (10.158) in the form

HE = −
∑

p

(−1)p
∑

q

D
(1)
pq (ω)∗ T1

q (µe) T1
−p[E(t)], (10.159)

For a molecular ion the electric dipole moment, measured relative to the molecular
centre of mass, is determined primarily by the separation of charge and mass [216],
and since it lies along the internuclear axis, we are interested in the q = 0 component
of (10.159); consequently

HE = −
∑

p

(−1)p
D

(1)
p0 (ω)∗ T1

0(µe) T1
−p [E(t)]. (10.160)

The matrix elements are therefore given by

〈J,Ω,MJ |HE|J ′,Ω′,M ′
J 〉

= −µ0

∑
p

(−1)p E−p(t)
〈
J,Ω,MJ |D(1)

p0(ω)∗|J ′,Ω,M ′
J 〉

= −µ0

∑
p

(−1)p E−p(t)(−1)J−MJ (−1)J−Ω

×
(

J 1 J ′

−MJ p M ′
J

)(
J 1 J ′

−Ω 0 Ω

)
{(2J + 1)(2J ′ + 1)}1/2 , (10.161)

and the transition intensities are proportional to the square of this matrix element.
In the microwave ion beam experiments described in this section, it is important to

identify the microwave mode corresponding to the resonance line studied in a magnetic
field. For a TM mode the microwave electric field along the central axis of the waveguide
is parallel to the static magnetic field. We then put p = 0 in equation (10.161) so that the
Zeeman components obey the selection rule�MJ = 0. Alternatively in a TE mode the
microwave electric field is perpendicular to the static magnetic field and the selection
rule is�MJ = ±1. This is the case for the Zeeman pattern shown in figure 10.73; each
J = 3/2 level splits into four MJ components and the six allowed transitions should,
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according to (10.161), have relative intensities 3:4:3:3:4:3, in good agreement with
experiment.

We have, we hope, provided enough detail about the Zeeman effect to show how
almost every microwave resonance could be assigned, so far as the J values were
concerned. A final remark should be made concerning the parity labels. These depend
upon the identification of a J = 1/2 ← 1/2 transition, and the measured g-factors
for the two J = 1/2 levels which identify their e/ f , and hence total parities. The
parities of all other levels then follow because all transitions are electric-dipole allowed,
between states of opposite parity. As we have mentioned earlier, the combination of
numerical relationships between the resonance frequencies, double resonance studies,
and Zeeman effect measurements enabled the pattern of levels lying within 8 cm−1

of the dissociation limit to be established. The highest level, J = 7/2 (−parity), in
figure 10.74, was thought to lie within 20 MHz (<0.001 cm−1) of the dissociation
limit.

The next stage was to convert the level pattern shown in figure 10.74 to a more con-
ventional pattern, including electronic and vibrational quantum numbers. This required
an accurate theory, the details of which we now outline.

(c) Theoretical interpretation of the spectrum

(i) 

As we have seen many times throughout this book, the conventional route to the as-
signment and quantitative analysis of a molecular spectrum is the correct definition
of an effective Hamiltonian, the calculation of its eigenvalues and eigenvectors, and
the determination of the values of the molecular parameters appearing in the effective
Hamiltonian. For HeAr+ in its near dissociation levels, this process is of limited value
because of very strong rotational–electronic coupling. In other words, it is not pos-
sible to find an effective Hamiltonian which is convergent. Consequently we bypass
the effective Hamiltonian and proceed directly to a quantitative quantum mechanical
theory.

(ii) - 

Carrington, Leach, Marr, Shaw, Viant, Hutson and Law [211] used a coupled-channel
theory, described by Hutson [217], in order to solve the Schrödinger equation, written
in the form[

− h2

2µ
R−1 d2

dR2
R + h2 R2

2µR2
+ V (R, ra) + Hso(R) − E

]
ΨεJ MJ
α = 0. (10.162)

R is the internuclear distance andµ is the reduced mass, so that the first term represents
the vibrational motion of the nuclei. R is the angular momentum operator for rotation
of the nuclear framework. The interaction potential for the He. . .Ar+ system, V (R, r a),
is a function of the internuclear distance R and the electron coordinates ra ; we will
discuss the details in due course. The problem was set up in a Hund’s case (e) basis
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(see figure 10.75) and the only rigorously good quantum numbers are the parity (ε), the
total angular momentum J, and its space-fixed projection MJ . We shall use the index
α to denote all other quantum numbers.

Case (e) basis functions are formed by combining atomic wave functions, denoted
ψatom

L S Ja Ma
,with spherical harmonics YRMR (ω) for the rotation of the nuclear framework.

Ma and MR are the projections of Ja and R onto the space-fixed Z axis. Consequently
we may write for the case (e) basis functions

ψ
J MJ
L S Ja R =

∑
Ma MR

(−1)Ja−R+MJ (2J + 1)1/2

(
Ja R J
Ma MR −MJ

)
ψatom

L S Ja Ma
YRMR (ω).

(10.163)

The basis functions have parity ε = (−1)R+1, which remains a good quantum number;
the +1 in the exponent arises because the atom wave function is primarily 3p in
character. For J ≥ 3/2 there are three case (e) basis functions of each parity, as follows.

R = 0, (ε = −1), Ja = 3/2, J = 3/2
Ja = 1/2, J = 1/2

R = 1, (ε = +1), Ja = 3/2, J = 5/2, 3/2, 1/2
Ja = 1/2, J = 3/2, 1/2

R = 2, (ε = −1), Ja = 3/2, J = 7/2, 5/2, 3/2, 1/2
Ja = 1/2, J = 5/2, 3/2

R = 3, (ε = +1), Ja = 3/2, J = 9/2, 7/2, 5/2, 3/2
Ja = 1/2, J = 7/2, 5/2

The total wave function for the HeAr+ molecular ion is now expanded as a product
of the case (e) functions given by (10.163) and radial channel functions χεJ

α;L S Ja R(R),

ΨεJ MJ
α = R−1

∑
L S Ja R

ψ
J MJ
L S Ja R χ

εJ
α;L S Ja R(R). (10.164)

The expansion (10.164) is truncated to include only the three electronic states that
correlate with the 2P3/2 and 2P1/2 states of the Ar+ ion shown in figure 10.71.

If we substitute the right-hand side of (10.164) into the total Schrödinger equation
(10.162) and project onto a single case (e) basis function ψ J MJ

L S J ′
a R′ , we obtain a set of

coupled differential equations for the channel wave functions χεJ
α;L S Ja R (R). As we have

seen above, for each J and ε there are three coupled equations corresponding to the
allowed values of Ja and R. These equations may be written in matrix notation,

h2

2µ

d2χ

dR2
= [W(R) − EI]χ(R). (10.165)

χ(R) is a column vector with three elements χεJ
α;L S Ja R (R) for the different allowed

values of Ja and R. I is the 3 × 3 unit matrix, and W(R) is a 3 × 3 coupling matrix
whose elements we shall now investigate.
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(iii)  

We see from the starting Schrödinger equation (10.162) that the coupling matrix ele-
ments have the form

〈L , S, Ja, R, J |W(R)|L , S, J ′
a, R′, J 〉

= 〈L , S, Ja, R, J |h2 R2

2µ
+ V (R, θa) + Hso|L , S, J ′

a, R′, J 〉. (10.166)

The only change is that V (R,r a) has been replaced by V (R, θa), where θa is the angle
describing the p-electron hole of the Ar+ ion, relative to the internuclear vector. Let
us suppose we are seeking the coupling matrix for J = 3/2, with positive parity. We
see from the results presented earlier that the three relevant states are

R = 1, Ja = 3/2, R = 1, Ja = 1/2, R = 3, Ja = 3/2.

First, the operator R2 is diagonal in the case (e) basis set:

〈L , S, Ja, R, J |R2|L , S, J ′
a, R′, J 〉 = R(R + 1)δJa J ′

a
δR R′ . (10.167)

Second, it is a good approximation for an ion like HeAr+ to assume that the spin–orbit
coupling operator is the same as that for the free Ar+ ion, ζ L · S, where ζ is the atomic
spin–orbit coupling constant. If the basis functions are confined to those arising from
the 2P3/2 and 2P1/2 states, the spin–orbit operator is also diagonal in a case (e) basis
set:

〈L , S, Ja, R, J |Hso|L , S, J ′
a, R′, J 〉

= 〈L , S, Ja, R, J |ζ L · S |L , S, J ′
a, R′, J 〉

= ζ

2
[Ja(Ja + 1) − L(L + 1) − S(S + 1)]δJa J ′

a
δR R′ . (10.168)

The matrix elements of the interaction potential are more complicated. It is common
practice to express the potential as a Legendre polynomial:

V (R, θa) = V0 + V2 P2 (cos θa) . (10.169)

The matrix elements of the interaction potential in a case (e) basis are then given by

〈L , S, Ja, R, J |V (R, θa)|L , S, J ′
a, R′, J 〉

=
∑
λ=0,2

Vλ(R)(−1)J−S+λ(2L + 1)[(2R + 1)(2R′ + 1)(2Ja + 1)(2J ′
a + 1)]1/2

×
(

L λ L
0 0 0

)(
R λ R′

0 0 0

){
Ja L S
L J ′

a λ

}{
Ja R J
R′ J ′

a λ

}
. (10.170)

It is now a straightforward process to calculate the diagonal and off-diagonal
matrix elements. The interaction matrix for the three J = 3/2 positive parity states
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described above is as follows.

|R = 1, Ja = 3/2〉 |R = 1, Ja = 1/2〉 |R = 3, Ja = 3/2〉

〈R = 1, Ja = 3/2| h 2

µ
+ ζ

2
+ V0 − 4V2

25
− V2

5
√

5
−3V2

25

〈R = 1, Ja = 1/2| − V2

5
√

5

h 2

µ
− ζ + V0

3V2

5
√

5

〈R = 3, Ja = 3/2| −3V2

25

3V2

5
√

5

6 h 2

µ
+ ζ

2
+ V0 + 4V2

25

We will come to the form of the interaction potential employed in the next section;
given the appropriate form, the coupled equations (10.165) were solved by a numerical
method due to Johnson [218] and described by Hutson [217]. For most states the
coupled equations were solved for internuclear distances up to 25 Å, and the energies
of the levels converged to ±2 MHz. A computer program for interactive nonlinear
least squares fitting of the parameters to the observed transition frequencies has been
described by Law and Hutson [219].

(iv)  

The functional form used for the interaction potential was as follows:

V0 (R) = A0(1 − a) exp[−β0(R − Re)] + A0a exp [−(β0/2) (R − Re)]

−
∑

n=4,6,8,10

[Cn]0 Dn(R)/Rn, (10.171)

V2(R) = A2 exp[−β2 (R − Re)] − [C6]2 D6(R)/R6.

The functions Dn(R) in these expressions are Tang–Toennies damping functions [220],
that prevent the inverse power terms from dominating at short range; they are given by

Dn(R) = 1 − exp(−βR)
n∑

m=0

(βR)m

m!
, (10.172)

with β set to β0 or β2 for V0(R) or V2(R) respectively. Equation (10.171) contains
eleven constants whose values are required. The expression for V0(R) contains Morse-
type terms for the short and intermediate ranges, with four long-range terms. At long
range the most important interaction is the charge-induced dipole term, [C4]0, which
arises from the interaction between the charge on Ar+ and the dipole moment that it
induces on the He atom. It is determined by the dipole polarisability of the He atom,
and is already known very accurately. The coefficient [C6]0 has contributions from both
dispersion and the quadrupole polarisability of the He atom and has been calculated
by Siska [213]. A0 in the expression for V0(R) was replaced by the well depth. We note
also that the anisotropy of the C6 term, [C6]2, was included in the fit. The final aim
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was both to assign the microwave spectrum, and to match the values of the constants
determined from the ultraviolet emission spectrum. The most novel aspect of the work
was undoubtedly the accuracy with which the long-range part of the interaction potential
could be determined. In due course we present the final near-dissociation energy level
diagram, and a sample of the quantitative agreement between experiment and theory.
Before that, however, we examine the theory of the Zeeman effect in case (e).

(v)     ₍ e ₎

We recall from equation (10.150) that if the direction of the external magnetic field is
defined to be p = 0, the primary Zeeman Hamiltonian is

HZ = µB B0
[
gST1

0(S ) + gLT1
0(L)

]
. (10.173)

In contrast to Hund’s case (c), there are no molecule-fixed projection quantum numbers
in case (e), so rotational matrices are not involved this time. The matrix elements of
the electron spin term are:

〈L , S, Ja, R, J,MJ |T1
0(S )|L , S, J ′

a, R, J,MJ 〉

= (−1)J−MJ

(
J 1 J

−MJ 0 MJ

)
〈Ja, R, J‖T1(S )‖J ′

a, R, J 〉

= (−1)J−MJ

(
J 1 J

−MJ 0 MJ

)
(−1)J+Ja+R+1 (2J + 1)

{
J Ja R

J ′
a J 1

}

× 〈L , S, Ja‖T1(S )‖L , S, J ′
a 〉

= (−1)J−MJ

(
J 1 J

−MJ 0 MJ

)
(−1)J+Ja+R+1 (2J + 1)

{
J Ja R

J ′
a J 1

}

× (−1)Ja+L+1+S {(2Ja + 1) (2J ′
a + 1)}1/2

{
Ja S L

S J ′
a 1

}

× {S (S + 1) (2S + 1)}1/2 . (10.174)

We have neglected the very small terms off-diagonal in J (because BZ is so small). In
a similar manner, the matrix elements of the orbital term are

〈L , S, Ja, R, J,MJ | T1
0(L)

∣∣L , S, J ′
a, R, J,MJ

〉
= (−1)J−MJ

(
J 1 J

−MJ 0 MJ

)
(−1)J+Ja+R+1 (2J + 1)

{
J Ja R
J ′

a J 1

}

× (−1)J ′
a+L+1+S {(2Ja + 1)(2J ′

a + 1)}1/2

{
Ja L S
L J ′

a 1

}
× {L(L + 1) (2L + 1)}1/2 . (10.175)

Pure case (e) effective g-factors are readily calculated from these expressions, and
effective g-factors for the final wave functions, expressed as linear combinations of
case (e) functions, are also easy to calculate.
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(vi) 

Apart from a quantitative assignment of the microwave transitions, the theoretical
analysis outlined enables vibrational and electronic quantum numbers to be assigned
to the energy levels, as well as the J and parity labels previously known. As a result
the energy level diagram shown earlier in figure 10.74 can be rearranged as a more
conventional rovibronic diagram, shown in figure 10.76. The columns are labelled
with case (c) electronic quantum numbers, and we have shown a selection of the
observed rotational transitions (�J = ±1) as continuous vertical lines. Also shown as
continuous vertical lines are Ω-doubling transitions. In addition, many of the energy
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−

−

−

−

−

−

−

−

−

� � � � � � �

Figure 10.76. Energy level diagram for HeAr+ rearranged according to vibronic quantum num-
bers in a case (c) basis. A few vibration–rotation levels predicted by theory but not observed
experimentally are also included for the sake of completeness [211].
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Table 10.23. Comparison of observed and calculated transition frequencies (in MHz)
for 36 transitions involving 37 identified energy levels

Upper state Lower state Observed Calculated Difference

v Ω J ε v Ω J ε MHz MHz MHz

6 1/2 1/2 + 5 1/2 1/2 − 36 599.3 36 601.6 −2.3

6 1/2 3/2 − 5 1/2 5/2 + 38 312.6 38 311.6 1.0

5 1/2 1/2 − 5 1/2 1/2 + 11 795.7 11 797.1 −1.4

5 1/2 3/2 + 5 1/2 1/2 − 11 795.2 11 798.9 −3.7

4 3/2 5/2 − 4 3/2 3/2 + 11 919.9 11 918.3 1.6

4 3/2 3/2 + 3 3/2 5/2 − 86 573.9 86 551.5 22.4

4 3/2 3/2 + 5 1/2 3/2 − 35 092.7 35 094.9 −2.2

4 3/2 3/2 − 5 1/2 3/2 + 12 548.6 12 548.8 −0.2

4 3/2 3/2 − 3 3/2 3/2 + 110 075.9 110 054.3 21.6

5 1/2 5/2 − 5 1/2 3/2 + 12 682.4 12 686.3 −3.9

5 1/2 3/2 + 5 1/2 3/2 − 21 200.4 21 202.7 −2.3

5 1/2 3/2 + 4 1/2 5/2 − 14 2637.8 142 666.0 −28.2

3 3/2 5/2 + 3 3/2 3/2 − 22 520.3 22 519.0 1.3

4 3/2 7/2 − 4 3/2 5/2 + 6 636.0 6 637.0 −1.0

4 3/2 5/2 + 3 3/2 7/2 − 66 961.2 66 943.4 17.8

4 3/2 5/2 + 5 1/2 5/2 − 8 122.6 8 115.9 6.7

5 1/2 5/2 − 5 1/2 5/2 + 25 693.3 25 696.3 −3.0

5 1/2 7/2 − 5 1/2 5/2 + 13 542.0 13 547.7 −5.7

5 1/2 5/2 + 4 1/2 7/2 − 167 524.7 167 570.8 −46.1

3 3/2 7/2 − 3 3/2 5/2 + 29 568.3 29 563.6 4.7

5 1/2 7/2 + 4 1/2 9/2 − 78 251.9 78 244.8 7.1

5 1/2 9/2 + 5 1/2 7/2 − 18 019.6 18 029.2 −9.6

3 3/2 9/2 − 4 1/2 7/2 + 104 397.4 104 427.9 −30.5

3 3/2 9/2 − 3 3/2 7/2 + 42 663.1 42 662.6 0.5

5 1/2 9/2 + 4 1/2 9/2 − 71 891.7 71 896.1 −4.4

3 3/2 9/2 − 3 3/2 9/2 + 16 712.4 16 728.9 −16.5

3 3/2 9/2 + 4 1/2 9/2 − 41 221.5 41 215.0 6.5

5 1/2 7/2 − 4 1/2 9/2 + 142 454.5 142 487.8 −33.3

4 1/2 11/2 + 4 1/2 9/2 − 47 583.2 47 599.2 −16.0

3 3/2 11/2 − 4 1/2 11/2 + 26 241.4 26 205.6 35.8

3 3/2 9/2 + 4 1/2 11/2 − 81 915.8 81 921.5 −5.7

3 3/2 11/2 − 4 1/2 13/2 + 58 934.2 58 890.3 43.9

4 1/2 15/2 − 4 1/2 13/2 + 61 500.6 61 546.5 −45.9

4 1/2 15/2 − 2 3/2 15/2 + 9 807.0 98 08.9 −1.9

4 1/2 11/2 + 2 3/2 13/2 − 94 102.5 94 096.8 5.7

2 3/2 15/2 + 3 1/2 17/2 − 38 463.7 38 621.5 −157.8
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Table 10.24. Comparison of observed and calculated g-factors for the
near-dissociation energy levels in HeAr+

v Ω J ε observed g calculated g difference

5 1/2 1/2 − −1.357 −1.333 −0.024

5 1/2 3/2 + −0.150 −0.150 0.000

5 1/2 3/2 − 0.915 0.892 0.023

5 1/2 5/2 − 0.216 0.210 0.006

5 1/2 5/2 + 0.576 0.566 0.010

5 1/2 7/2 + 0.252 0.251 0.001

5 1/2 7/2 − 0.405 0.399 0.006

5 1/2 9/2 + 0.276 0.275 0.001

4 3/2 3/2 + 0.388 0.378 0.010

4 3/2 3/2 − 0.812 0.787 0.025

4 3/2 5/2 + 0.465 0.455 0.010

4 3/2 7/2 − 0.539 0.530 0.009

4 1/2 5/2 − −0.207 −0.211 0.004

4 1/2 11/2 + 0.094 0.097 −0.003

4 1/2 13/2 + 0.216 0.216 0.000

4 1/2 15/2 − 0.152 0.154 −0.002

3 3/2 5/2 − 0.156 0.158 −0.002

3 3/2 5/2 + 0.323 0.320 0.003

3 3/2 7/2 + −0.046 −0.046 0.000

3 3/2 7/2 − 0.198 0.196 0.002

3 3/2 9/2 − −0.132 −0.131 −0.001

3 3/2 9/2 + 0.188 0.186 0.002

3 3/2 11/2 − 0.262 0.262 0.000

2 3/2 15/2 + −0.126 −0.129 0.003

levels were located by vibronic transitions, and a selection of these are indicated by
the sloping dashed lines in figure 10.76. It is tempting to categorise these transitions
as being either vibrational or electronic, but one should remember that the case (c)
electronic quantum numbers are only approximate.

Demonstrations of the quality of the fit of the theoretical model to experiment
are presented in tables 10.23 and 10.24. Table 10.23 presents observed and calculated
transition frequencies for 36 different transitions, which specify the relative energies
of the 37 observed levels; the agreement is generally excellent. Table 10.24 gives a
similar comparison of the observed and calculated g-factors; in a few cases only the
difference between the g-factors for the pair of levels involved in a transition could be
determined experimentally. We have omitted these cases from the table, but the results
may be found in the original paper. The results presented show excellent agreement
between experiment and theory.

There are several features of the study of HeAr+ described here which are un-
usual. Microwave spectroscopy is normally associated with rotational transitions,
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which are, indeed, observed. It is not usually associated with vibrational and elec-
tronic transitions, which are also observed because the near-dissociation levels are so
closely spaced. Another important feature is that the conventional approach of spec-
tral analysis using an effective Hamiltonian is of limited value, and the comparison
of experiment and theory described above bypasses the effective Hamiltonian. The
scattering-type theory employed does not involve the Born–Oppenheimer separation.
Another novelty is the observation of case (e) coupling, but we have not elaborated
on this aspect here because our next example illustrates case (e) coupling even more
clearly.

10.7.2. Studies of the HeKr+ ion

Studies of the near-dissociation microwave spectrum of HeKr+ similar to those just
described for HeAr+ have been carried out by Carrington, Pyne, Shaw, Taylor, Hutson
and Law [221]. There were, however, some important differences. Twenty-five tran-
sitions were observed for He84Kr+ and eleven for He86Kr+; all of the energy levels
involved lie within 2.5 cm−1 of the dissociation limit. Electric field dissociation for
this relatively heavy ion does not affect levels with dissociation energies greater than
1.5 cm−1. The pattern of energy levels and the selection rules governing the transitions
were very well understood in terms of case (e) coupling as originally described, not by
Hund, but by Mulliken [222]. In this coupling case there are no projection quantum
numbers, and we are concerned only with the rotational quantum number R, the total
angular momentum J , and the parity ε. The observed transitions all satisfied the se-
lection rules�J = 0, ±1,�R = ±1. Figure 10.77 shows the pattern of energy levels
involving the v = 4 level of the X state. Since the vector coupling scheme in case (e)
is

J = Ja + R, (10.176)

the lowest rotational levels, with their parities in brackets, are as follows:

R = 0 (−): J = 3/2,
R = 1 (+): J = 5/2, 3/2, 1/2,
R = 2 (−): J = 7/2, 5/2, 3/2, 1/2,
R = 3 (+): J = 9/2, 7/2, 5/2, 3/2,

etc. The observed and final calculated transition frequencies are listed in table 10.25,
and a selection of g-factors is shown in table 10.26, where we give both the pure
case (e), and final calculated values for comparison. The existence of this very simple
coupling scheme was unambiguously established, seemingly for the first time. As
with HeAr+, the long-range part of the interaction potential was defined accurately
and in considerable detail. It should be added that a few transitions involving levels
lying very close to the second dissociation limit were also identified and accurately
assigned.
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Table 10.25. Comparison of observed and calculated transition frequencies (in MHz)
for He 84Kr+ in the v= 4 level of the X state

upper lower
observed calculated difference

J R ε J R ε MHz MHz MHz

7/2 4 − 7/2 3 + 20 263.7 20 244.8 18.9

7/2 5 + 9/2 4 − 20 756.8 20 726.4 30.4

5/2 4 − 5/2 3 + 21 133.3 21 173.6 −40.3

9/2 5 + 9/2 4 − 23 108.4 23 088.5 19.9

9/2 4 − 7/2 3 + 24 404.6 24 430.3 −25.7

7/2 4 − 5/2 3 + 24 503.6 24 522.5 −18.9

7/2 5 + 7/2 4 − 24 896.7 24 911.8 −15.1

11/2 4 − 9/2 3 + 25 119.3 25 111.4 7.9

5/2 4 − 3/2 3 + 25 350.5 25 330.5 20.0

9/2 5 + 11/2 4 − 26 379.1 26 367.0 12.1

11/2 5 + 9/2 4 − 26 634.7 26 655.3 −20.6

9/2 5 + 7/2 4 − 27 248.6 27 273.9 −25.3

13/2 5 + 11/2 4 − 27 583.5 27 583.7 −0.24

7/2 5 + 5/2 4 − 28 267.9 28 260.8 7.1

9/2 4 − 9/2 3 + 28 389.4 28 389.9 −0.5

11/2 5 + 11/2 4 − 29 905.1 29 933.8 −28.7

Table 10.26. Observed and calculated g-factors for a selection of
near-dissociation levels of He84Kr+ in the v= 4 level of the X state.
The calculated values are obtained from the detailed theory described
above, but pure case (e) values are also listed

J R ε Obs. g Calc. g Diff. case(e) g

7/2 4 − −0.012 −0.010 −0.002 −0.021

5/2 4 − −0.584 −0.564 −0.020 −0.572

9/2 5 + −0.027 −0.027 0.000 −0.040

9/2 4 − 0.228 0.225 0.003 0.229

11/2 4 − 0.370 0.360 0.010 0.364

11/2 5 + 0.178 0.175 0.003 0.177

13/2 5 + 0.316 0.306 0.010 0.308

10.8. Higher spin/orbital states

10.8.1. CO in the a 3� state

Compared with laser magnetic resonance techniques, pure rotational spectroscopy has
advanced to more complex spin and orbital systems more slowly, probably because it
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Figure 10.78. Lower rotational levels of the three fine-structure components of the a 3� state
of CO, and the observed rotational and Λ-doublet transitions. The Λ-doublet splittings are
exaggerated for the sake of clarity.

does not have the same intrinsic sensitivity. However there are a number of important
studies to be described, particularly those of the CO molecule in its a 3� state. As we
have already mentioned elsewhere, this is probably the most thoroughly studied ex-
cited molecular electronic state. We described the radiofrequencyΛ-doublet spectrum,
investigated by molecular beam electric resonance, in chapter 8. In chapter 9 we dis-
cussed the far-infrared laser magnetic resonance studies of rotational transitions. In this
section we turn our attention to pure microwave and millimeter wave measurements.
Figure 10.78 shows the lowest rotational levels of the three fine structure components,
3�0, 3�1 and 3�2. This diagram also shows the Λ-doublet and some of the rotational
transitions which have been studied. J = 1 ← 0 rotational transitions within the 3�0

component were measured by Saykally, Dixon, Anderson, Szanto and Woods [223] in
the microwave range 86 to 93 GHz. Subsequent studies by Carballo, Warner, Gudeman
and Woods [224] involved radiofrequency Λ-doublet transitions within the 3�1 and
3�2 components, and millimeter wave �J = ±1 rotational transitions, with frequen-
cies almost up to 500 GHz, in all three fine-structure states. Both papers described
measurements for the first five vibrational levels (v = 0 to 4) of the a 3� state, in the
three isotopomers 12C16O, 13C16O and 12C18O. With the further development of sub-
millimetre frequency sources the measurements have been extended by Yamamoto and
Saito [225] and by Wada and Kanamori [226] up to J = 9 and v = 5.
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Table 10.27. Radiofrequency Λ-doublet transition frequencies (in MHz)
for v= 0 to 4 in the a 3� state of CO. The transitions are labelled with
the appropriate JΩ values

transition v = 0 v = 1 v = 2 v = 3 v = 4

22–22 7.351 7.078 6.808 6.529 7.108

32–32 34.064 32.847 31.632 30.390 33.427

42–42 92.907 89.723 86.548 83.322 92.891

52–52 194.080 187.743 181.427 175.043 198.360

62–62 343.486 332.843 322.245 311.630 359.910

72–72 542.591 526.678 510.847 495.180 584.408

82–82 789.256 767.360 745.630 724.448 876.111

11–11 394.065 385.141 374.911 360.830 321.148

21–21 1150.934 1125.295 1095.790 1054.964 —

We have already described the theory of theΛ-doubling in chapters 8 and 9 and will
not repeat the analysis here, except to say that it arises predominantly through rotational
mixing of the 3� state with a 3�+ state. As we discussed in chapter 8, however, a
particularly strong interaction occurs in the v = 4 level of the 3� state because of
its near-degeneracy with the v = 0 level of the a′ 3�+ state. Table 10.27 shows the
consequences of this perturbation on the Λ-doubling frequencies; the measurements
were made by Carballo, Warner, Gudeman and Woods [224]. For the vibrational levels
v = 0 to 3 there is a relatively smooth variation, but a discontinuity occurs for v =
4. This discontinuity was illustrated in the electric resonance studies described in
chapter 8. A detailed theory of the perturbation, using matrix elements calculated by
Freed [227], was presented by Field, Tilford, Howard and Simmons [228], and later
refined by Saykally, Dixon, Anderson, Szanto and Woods [223]. The latter authors also
presented details of the 13C hyperfine interactions in 13CO.

10.8.2. SiC in the X 3� ground state

Attempts to identify the SiC radical through a spectrum, in either the laboratory or
in space, have been made for many years. Only as recently as 1988 was an electronic
spectrum involving two excited states identified [229], but in the following year a re-
markable paper by Cernicharo, Gottlieb, Guélin, Thaddeus and Vrtilek [50] described
the identification of SiC through its millimetre wave rotational spectrum, in both the
laboratory and in space. Millimetre wave lines associated with the circumstellar shell of
the object IRC + 10216 were thought to be possible candidates, and laboratory studies
using a glow discharge in mixture of SiH4, CO and C2H2 confirmed these conclusions.
Subsequently Mollaaghababa, Gottlieb, Vrtilek and Thaddeus [230] described labora-
tory studies of both 13C-enriched and vibrationally excited SiC, and Mollaaghababa,
Gottlieb and Thaddeus [231] described the hyperfine structure in the rotational spectrum
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Figure 10.79. Fine-structure components and lower rotational levels in the electronic and vibra-
tional ground state of the SiC radical. Transitions detected in the laboratory are indicated by
up-arrows, whilst those detected in space are shown as down-arrows [50].

of 29SiC. Bogey, Demuynck and Destombes [232] have also observed high frequency
transitions involving higher rotational levels.

The ground electronic state of SiC is 3�; the three fine-structure states and lower
rotational levels are illustrated in figure 10.79. Also shown are the transitions detected
in the laboratory and in space. The laboratory frequencies range from 149 to 474 GHz;
figure 10.80 shows examples of laboratory spectra, whilst figure 10.81 illustrates lines
observed from IRC-10216. We will not discuss the astrophysical aspects of these
observations, but confine ourselves to the spectroscopic and structural implications.
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Figure 10.80. Rotational transitions observed for Si13C in the laboratory, exhibiting 13C hyperfine
structure [231].
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Figure 10.81. Emission lines of SiC observed from IRC-10216; the doublet structure arises
from dynamical properties of the emitting source, not from intrinsic energy level structure. The
transitions occur within the lowest-lying 3�2 fine-structure state, and each line consists of an
unresolved Λ-doublet [50].

The effective Hamiltonian for case (a) 3� states was described by Brown and
Merer [233]. The effective rotational Hamiltonian (excluding the Λ-doubling terms)
was given, in a molecule-fixed axis system, as

H rot = AT1
0(L)T1

0(S ) + B{T1(J − S )}2 − D{T1(J − S )}4

+ (2/3)λ
{
3T1

0(S )T1
0(S ) − S 2

} + γT1(J − S ) · T1(S ), (10.177)
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and the Λ-doubling Hamiltonian as

H �d = (1/2)(ov + pv + qv)(S 2
+ + S 2

−) − (1/2)(pv + 2qv)(J+S+ + J−S−)

+ (1/2)qv(J 2
+ + J 2

− ). (10.178)

The matrix elements are calculated using symmetrised case (a) basis functions,

|J,Ω,± 〉 = (1/
√

2){|Λ = +1, S,Σ, J,Ω 〉 ± |Λ = −1, S,−Σ, J,−Ω 〉},
(10.179)

which have parities ±(−1)J−S respectively. The matrix elements of (10.177) and
(10.178) using the symmetrised basis functions (10.179) are, for a 3� state, given
below. The matrix is diagonal in J , and x = J (J + 1). The parameter B∗ is equal to
B − γ /2, and the upper and lower signs refer to e and f parity levels respectively.

3�0
3�1

3�2

3�0 − A + B(x + 2) + (2λ/3) − √
2x[B∗ ∓ (p/2 + q) −√

[x(x − 2)](2D ± q/2)
− 2γ − D(x2 + 6x + 4) − 2D(x + 2)]
∓ (o + p + q)

3�1 − (4λ/3) + B(x + 2) −√
[2(x − 2)](B∗ − 2Dx)

− 2γ − D(x2 + 8x)
∓ (qx/2)

3�2 A + B(x − 2) + (2λ/3)
− D(x2 − 2x)

The matrix contains eight parameters; their values (in MHz) for SiC were deter-
mined [50] as follows:

A = −1 248 200, B = 20 297.582, D = 0.040 51, λ = −1159,

γ = 186, o = 26 705, p = 132, q = −1.185.

The 13C and 29Si nuclei both have spin I equal to 1/2 (but with magnetic moments
of opposite sign), and for each nucleus the hyperfine Hamiltonian may be written in
the (improved) Frosch and Foley [192] form:

Hhf = aIz Sz + bF I · S + (c/3)(3Iz Sz − I · S ) − (d/2)(S+ I+ + S− I−). (10.180)

The parameters for the two nuclei (in MHz) were determined as follows [231]:

13C : a = 84.1, bF = 138.3, c = 54.4, d = 63.6.
29Si : a = −137.3, bF = 28.8, c = −63.2, d = −68.5.

The ground state electron configuration of SiC is (5σ )2 (6σ )2 (7σ )1 (2π )3 so that the
hyperfine constants will reflect the electron distribution in both σ and π molecular
orbitals. The hyperfine constants a and d are determined mainly by the unpaired π

electron, the Fermi contact constant bF depends mainly on the σ electron, whilst c is
sensitive to both σ and π electrons. In fact the Fermi contact constant also depends,
as usual, upon configurational mixing with excited electronic states, which makes
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a simple interpretation difficult. Not surprisingly, perhaps, the electron densities on
the two atoms are actually rather similar; this is the main conclusion from a semi-
quantitative consideration of the hyperfine constants, and it is supported by ab initio
calculations.

Silicon carbide is thought to be an important component of the dust shells sur-
rounding carbon-rich stars; it is likely, therefore, that astrophysical studies of the SiC
radical will be significant in the future.

10.8.3. FeC in the X 3� ground state

There is a clear interest in the possibility of detecting the FeC molecule in interstellar
clouds or in circumstellar shells, although such detection has not yet been achieved.
A laboratory millimetre wave spectrum has, however, been observed by Allen, Pesch
and Ziurys [234] and it confirms the ground electronic state as X 3�. A 3� state has
three fine-structure components, corresponding to Ω values of 3, 2 and 1, with spin–
orbit energies of 2A, 0 and −2A, where A is the spin–orbit coupling constant. An
electronic spectrum observed by Balfour, Cao, Prasad and Qian [235] leads to a value
for A of –124.2 cm−1, so that the lowest energy fine-structure component is 3�3. The
fine-structure components, their lower rotational levels, and the rotational transitions
observed [234] are illustrated in figure 10.82. Figure 10.83 shows recordings of two
rotational transitions in 56Fe12C; both nuclear spins are zero so that hyperfine splitting
does not arise. The signal-to-noise ratio is excellent but, even so, transitions involving
the higher fine-structure component, 3�1 were not observed, the reasons for which are
not clear.

Although the rotational levels are doubly-degenerate throughΩ-doubling, the split-
ting is expected to be extremely small in a 3� state, and was not observed. The effective
Hamiltonian used to analyse the spectrum was very simple [236]:

Heff = ALz Sz + B{J (J + 1) −Ω2 + S(S + 1) −Σ2} + (2/3)λ
(
3S2

z − S2
)
.

(10.181)

The rotational constants in equation (10.181) were determined [234] and the values (in
MHz) found to be as follows:

B(Ω = 3) = 20 075.3976, B(Ω = 2) = 20 171.9625.

The spin–spin constant λ appears not to have been determined, however, and even the
value of A is rather uncertain; more work is required. It remains to be seen whether
FeC will be observed in interstellar or circumstellar atmospheres.

10.8.4. VO and NbO in their X 4�− ground states

Microwave spectra of VO and NbO arising from the lowest rotational transition in
the ground state have been observed and analysed by Suenram, Fraser, Lovas and
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Figure 10.82. Fine-structure components, lower rotational levels, and rotational transitions ob-
served [234] for FeC.

Gillies [237]. They used the technique of laser ablation to form nozzle beams of the
molecules, injected into a Fourier transform microwave spectrometer. In both cases
the ground electronic state is 4�−, an example of which we met in chapter 9, the
excited a state of the CH radical. However in that example the coupling was close
to case (b), whereas VO and NbO provide examples of a case (a) 4�− state. The
Σ= ±1/2 and ±3/2 states are split by second-order spin–orbit coupling; the splitting is
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Figure 10.83. Recordings of the J = 12 ←11 rotational transition in the 3�3 and 3�2 fine-
structure states of FeC [234].

≈62 cm−1 in NbO with the 4�−
1/2 state being the lower in energy. The lowest rotational

transition is therefore J = 3/2 ← 1/2 and this is split by hyperfine interaction from the
93Nb nucleus which has a spin of 9/2 and is present in 100% natural abundance. The
J = 1/2 level has hyperfine components with F values of 5 and 4, whilst the J = 3/2
level has components with F values 6, 5, 4 and 3. An energy level diagram showing the
splitting and the observed transitions for NbO is shown in figure 10.84; the situation
for VO is similar, with the spin of 51V being 7/2.

The case (a) effective rotational Hamiltonian for NbO in its ground state may be
written

Heff = B(J − S)2 + (2/3)λ
(
3S2

z − S2
)

+ γ (J − S) · S + CT3(L2, N) · T3(S, S, S). (10.182)

Values of B, λ and γ were determined from an analysis of the X 4�−–C 4�− electronic
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band system by Cheval, Féménias, Merer and Sassenberg [238], and the centrifugal
distortion corrections were also determined. The matrix of the rotational Hamiltonian
for a 4�− case (a) state, using properly symmetrised basis functions, was given [238]
as follows.

||Σ| = 3/2〉 ||Σ| = 1/2〉
||Σ| = 3/2〉 2λ+ B X − 3γ /2 + 2λD −√

3X{(B − γ /2) − 2D[X + 2 ∓ (J + 1/2)]}
− DX (X + 3) − 3γD X + (

√
3X/2)γD[X + 7 ∓ (2J + 1)] + √

3XγS

||Σ| = 1/2〉 symmetric − 2λ+ B(X + 4) − 7γ /2 − 2λD(X + 4)
− D[(X + 4)2 + 7X + 4] − γD(7X + 16)
∓ 2[(B − γ /2)−2λD − 2D(X + 4)
− (γD/2)(X + 11) + 3γS/2](J + 1/2)

In this matrix X = (J − 1/2)(J + 3/2) and the upper and lower signs correspond to
the e and f levels.

In addition, the 93Nb magnetic hyperfine coupling was large enough to be readily
observed, even in the electronic spectrum. It was fitted to the normal Frosch and Foley
Hamiltonian for a � state,

Hhfs = (b + c)Iz Sz + (b/2)(I+S− + I−S+), (10.183)

and the constants b and c determined to be 0.0549 and –0.0020 cm−1 respectively. As
we described above, the Σ= ±1/2 and ±3/2 states are split by 4λ, arising essentially
entirely from the second-order effects of spin–orbit coupling. As figure 10.84 shows,
the fine, hyperfine and rotational splittings are similar in magnitude. Solid state esr
studies of NbO [239] and the later gas phase studies are consistent with each other.
Additional information was provided by measurements of the Stark effect [237] which
gave the electric dipole moment of NbO as 3.498 D.

The electronic structure of NbO was discussed by Brom, Durham and Weltner [239]
in terms of the molecular orbital diagram shown in figure 10.85. Niobium belongs to
the 4d transition metal group and, as shown in the diagram, the three unpaired electrons
in the electronic ground state occupy 4dδ and 5sσ orbitals which are essentially non-
bonding. The large isotropic hyperfine interaction in NbO is consistent with a 5s spin
density of about 40%. At the same time the quadrupole interaction is expected to be
too small to be observed because the electric field gradient at the nucleus is zero or
very small for s or d electrons respectively.

Similar aspects arise for VO, except that vanadium belongs to the 3d transi-
tion element group. The electronic structure of VO is, however, similar to that of
NbO and a large isotropic 53V hyperfine interaction arises from a 4s spin density of
around 30%.
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Figure 10.84. Hyperfine energy level diagram and observed transitions (solid lines) for the
J = 3/2 ← 1/2 rotational transition of 93NbO in the 4�−

1/2component [237].

10.8.5. FeF and FeCl in their X 6� ground states

A millimeter wave spectrum of FeCl was obtained by Tanimoto, Saito and
Okabayashi [240] using a glow discharge in helium/aluminium trichloride mixtures
in a free-space millimeter wave cell; the iron atoms originated from the stainless steel
electrodes. Analysis of the electronic emission spectrum of FeCl by Delaval, Dufour
and Schamps [241] had already established the ground electronic state to be 6�. Sub-
sequently a more extensive rotational spectrum of FeCl was described by Allen, Li and
Ziurys [242]. A similar millimetre wave rotational spectrum of FeF, also with a 6�

ground state, was studied by Allen and Ziurys [243, 244]. In a Hund’s case (a) coupling
scheme there are six fine structure components with different spin–orbit energies, with
Ω values 9/2, 7/2, 5/2, 3/2, 1/2 and −1/2, and since the sign of the spin–orbit constant
had been determined to be negative, the 6�9/2 component must be the lowest in energy.
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Figure 10.85. Schematic molecular orbital diagram for the valence electrons of NbO, forming
the X 4�− ground state [239].

Figure 10.86 shows an energy level diagram illustrating the fine-structure components
and the lower rotational levels; this diagram is actually drawn for FeF, but the diagram
for FeCl is similar.

Tanimoto, Saito and Okabayashi [240] observed a number of transitions in the range
241 to 380 GHz, which they assigned as rotational transitions involving high J values in
both the 6�9/2 and 6�7/2 fine structure states. The rotational constants in these two spin
components were determined to be 4926.1478 and 4938.5177 MHz; although chlorine
hyperfine and quadrupole structure might be expected, the splitting becomes very small
for the high J values observed (47/2 to 77/2) and was not resolved. Subsequently,
however, Allen, Li and Ziurys [242] observed rotational transitions over a very much
larger range of J values and were able to observe 35Cl hyperfine splitting in theΩ = 9/2
and 7/2 components, andΛ-doublet splitting in smallerΩ levels. Similarly, rotational
transitions in FeF were observed for all six fine-structure components [244], many
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Figure 10.86. Fine-structure components and lower rotational levels for FeF in the X 6� ground
state.

with 19F hyperfine structure. Figure 10.87 shows recordings of rotational transitions
in FeCl; in the high J transition the hyperfine splitting is too small to be resolved, but
in the lower J transition the 35Cl structure is readily observed. Figure 10.88 shows a
recording of a rotational transition in FeF with the 19F doublet splitting well resolved.

For FeF and FeCl the effective Hamiltonian used was similar, and was written in
the form:

Heff = Hrot + Hcd + Hso + Hsocd + Hss + Hsscd + H�d + Hhfs. (10.184)
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Figure 10.87. Rotational transitions in FeCl in its X 6�9/2 state. The lower J transition shows a
quartet hyperfine splitting from 35Cl, whereas the hyperfine splitting is too small to be resolved
in the higher J transition [242].
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Figure 10.88. Observed J = 31/2–29/2 rotational transition for FeF in its X 6�9/2 state, showing
19F doublet hyperfine structure [243].
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We follow the original work in using the cartesian forms of the operators. The rotational
Hamiltonian with its centrifugal distortion is given by

Hrot + Hcd = B(J − S )2 − D(J − S )4. (10.185)

The spin–orbit terms, including centrifugal distortion, are written in the form

Hso + Hsocd = ALz Sz + (1/2)AD[(J − S )2Lz Sz + Lz Sz(J − S )2]

+ η′Lz Sz

[
S 2

z − (3S 2 − 1)/5
]
, (10.186)

where the third term, containing η′, describes a coupling between the spin–orbit and
spin–spin interactions. The spin–spin terms, again including centrifugal distortion, are
taken to be

Hss + Hsscd = (2/3)λ
(
3S 2

z − S 2
) + (1/3)λD

[
(J − S )2

(
3S 2

z − S 2
)+ (

3S 2
z − S 2

)
× (J − S )2

] + (1/12)θ
(
35S 4

z − 30S2S2
z + 25S 2

z − 6S 2 + 3S 4
)
.

(10.187)

The Λ-doubling terms are,

H�d = (1/2)m̃�(S 4
+ + S 4

−) − (1/2)ñ�(S 3
+ J+ + S 3

− J−) + (1/2)õ�(S 2
+ J 2

+ + S 2
− J 2

−)

− (1/2) p̃�(S+ J 3
+ + S− J 3

−) + (1/2)q̃�(J 4
+ + J 4

−), (10.188)

where the five constants are defined by Brown, Cheung and Merer [236]. Finally, the
hyperfine terms, including the quadrupole interaction for 35Cl in FeCl, take the form

Hhf = aLz Iz + bI · S + cIz Sz − (1/2)d∆(J 2
+ I+S+ + J 2

−S− I−)

+ eq0 Q
(
3I 2

z − I2
) /

4I (2I − 1). (10.189)

The values of the molecular parameters (in MHz) determined for FeCl in its X 6�

state were as follows [242]:

A = −2 274 691.0, AD = −0.494 30, B = 4955.904 45, D = 0.003 283 38,

η′ = 1147.7, λ = 16 376.7, λD = 0.024 168, θD = −0.001 414,

m̃� = −455.57, ñ� = 4.2196, õ� = −0.0122, p̃� = 0.000 168, q̃� ∼= 0,

a = 1.65, b = 7.3, c = 4.8, eq0 Q = −12.3.

The corresponding constants for the predominant isotopomer, 56FeF (v = 0), are [244]

A = −2 342 900, AD = −1.759, B = 11 197.5884, D = 0.014 380 1, η′ = 331.1,

λ = 2000, λD = 0.134 83, θD = −0.002 893,

m̃� = −175.60, ñ� = 2.5307, õ� = −0.0194, p̃� = 0.000 186, q̃� ∼= 0,

a = −0.45, b = 74.5, c = 51.7.

Constants for the v= 1 and 2 levels were also obtained.
A qualitative molecular orbital diagram involving the valence electrons in FeF was

presented by Allen and Ziurys [244] and is shown in figure 10.89. The main covalent
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Figure 10.89. Qualitative molecular orbital diagram for FeF, involving the fluorine 2p and iron
4s, 3d atomic orbitals [244]. The energies of the iron non-bonding orbitals (1δ, 9σ , 4π ) are very
close to that of the 10σ ∗ antibonding orbital.

interaction involves the 4s orbital on the Fe atom and the 2pσ orbital on the F atom;
the Fe 3d orbitals are essentially non-bonding, as shown. The electron configuration of
FeCl is similar, and in both molecules the five unpaired electrons are largely localised
on the iron atom; the larger magnetic hyperfine constants b and c for FeF are due,
in part, to the much larger nuclear magnetic moment of 19F as compared with 35Cl.
Although FeF is more covalent than FeCl, both molecules seem to be largely ionic in
their structure.

10.8.6. CrF, CrCl and MnO in their X 6�+ ground states

A millimetre wave rotational spectrum of the CrF radical in the region 270 to 460 GHz
has been described by Okabayashi and Tanimoto [245], and the related spectrum of CrCl
has been reported by Oike, Okabayashi and Tanimoto [246, 247]. These molecules have
6�+ ground states, and in both cases the spectra were assigned as rotational transitions
involving high N values. The molecule MnO also has a 6�+ ground state and its
millimetre wave rotational spectrum has been described by Namiki and Saito [248].

In these molecules the spin-spin interaction and rotational constants are similar in
magnitude and an analysis of the spectrum may be carried out using either a case (a)
or a case (b) basis. Many of the observed spectra involved relatively high rotational
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Figure 10.90. N = 14 and 15 rotational levels of CrF in its X 6Σ+ state, with the spin splitting
and spin component transitions observed. This diagram is approximately to scale.

levels, where case (b) becomes somewhat more appropriate, and figure 10.90 shows
a typical pair of adjacent rotational levels in CrF, with their spin splittings and the
observed transitions. This diagram is drawn approximately to scale; its purpose is
mainly to explain the pattern of six spin components observed for each rotational
transition. However the grouping of the spin components into three pairs shows the
incipient case (a) behaviour, withΣ= ±1/2,±3/2,±5/2 in increasing order of energy.
In CrF rotational levels with N values from 11 to 20 were observed, whilst in CrCl N
ranged from 19 to 27; nuclear hyperfine structure was not observed in either case. The
N values involved in the MnO spectrum were somewhat smaller (N = 6 to 14) and
hyperfine structure from the 55Mn nucleus, which has a spin I of 5/2, was observed.
Figure 10.91 shows a recording of one electron spin component of the N = 12 ← 11
rotational transition, with six 55Mn hyperfine lines cleanly resolved. They are labelled
according to the F value of the lower hyperfine component. We will discuss the analysis
of this hyperfine pattern in due course.

The effective Hamiltonian for all three molecules, excluding nuclear hyperfine
interactions for the moment, may be written in a case (b) basis as

Heff = Hrot + Hss + Hsr, (10.190)
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Table 10.28. Molecular parameters (in MHz) for 6�+ molecules

Parameter 52Cr35Cl 52Cr19F 55MnO

B 5009.346 95 11 369.614 33 15 025.814 87

D 3.528 92 15.054 44 0.0215 548 5

λ 7992.5 16162.4 17 198.00

λD −0.013 214 −0.015 486 −0.069 646

γ 65.534 408.502 −70.7886

γD −0.0839 −0.000 754 −0.001 058 0

θ −2.11 −5.15 −14.67

360 120

Frequency / MHz

360 160

F � 16

11

15

12
14 13

Figure 10.91. The N = 12 ← 11, J = 29/2 ← 27/2 rotational/spin transition of MnO in its
X 6�+ state, showing the 55Mn hyperfine structure [248].

where, as usual,

Hrot = B N 2 − DN 4, (10.191)

Hss = (2/3)λ
(
3S 2

z − S 2
) + (1/3)λD

[(
3S 2

z − S 2
)
, N 2

]
+, (10.192)

Hsr = γ N · S + γD(N · S )N 2 + γH (N · S )N 4. (10.193)

The energy level diagram shown in figure 10.90 was drawn using the first-order con-
tributions of these three terms. In addition, the higher-order spin–orbit term given in
equation (10.187) was included in the original analysis:

H
(4)
so = (1/12)θ

(
35S 4

z − 30S 2S 2
z + 25S 2

z − 6S 2 + 3S 4
)

= (
√

70/6)θT 4
q=0(S, S, S, S ). (10.194)

The required matrix elements are given elsewhere in this book, and were listed by Ram,
Jarman and Bernath [249] for a case (a) basis. In table 10.28 we list the values of the
constants, excluding hyperfine parameters, given for all three molecules.
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The most interesting hyperfine interaction in the three molecules is that of 55Mn in
the MnO molecule, illustrated in figure 10.91. The Frosch and Foley [192] hyperfine
constants and the electric quadrupole coupling constant are found to have the following
values (in MHz):

bF = 479.861, c = −48.199, eq0 Q = −25.65.

In terms of the molecular orbital scheme presented (for FeF) in figure 10.89, the ground
electronic state of MnO may be approximated by the single configuration,

X 6�+ : (core)(9σ )1(4π )2(1δ)2,

where the five electrons specified have parallel spins. Calculations [250] suggest that
the MnO bond is best described by a mainly ionic structure Mn+(3d54s1)O−(2p5);
since the Fermi contact coupling constant bF reflects the s orbital character of the
orbitals occupied by the unpaired electrons, only the 9σ orbital need be considered. It
is given by a combination of the 3dσ and 4s orbitals of the Mn atom,

|9σ 〉 = c1|4s(Mn+)〉 − c2|3dσ (Mn+)〉. (10.195)

Comparison of the observed value of bF with the known contact interaction constant of
the Mn+ ion gives a value for c2

1 of 0.573. In other words the 3dσ and 4s hybridisation
is a nearly perfect one-to-one mixture. The dipolar hyperfine constant c depends upon
a sum of contributions from the 3d unpaired electrons in the 9σ , 4π and 1δ orbitals; c
is calculated to be −54.0 MHz, assuming the 4π and 1δ orbitals to be pure 3d atomic
orbitals, a value which agrees well with the measured value of −48.199 MHz. As
we have commented elsewhere, the quadrupole coupling constant involves all of the
electrons, and is not readily amenable to a simple semi-empirical treatment.

CrF and CrCl also appear to be essentially ionic, with little delocalisation of
the unpaired electrons on to the halogen nuclei, so that their hyperfine interaction
is not observed. Similar studies have been described by Tanimoto, Sakamaki and
Okabayashi [251] for NiF and by Yamazaki, Okabayashi and Tanimoto [252] for NiCl,
both of which have 2�3/2 ground states. In both cases rotational transitions falling in
the frequency range 200 to 400 GHz were observed; small hyperfine splittings from
19F were observed for NiF, but no hyperfine splitting was seen for NiCl. The electronic
structures were taken to be essentially ionic in both molecules. In the case of NiF,
rotational transitions in the A 2�+ state were also observed, this state lying sufficiently
low in energy to be populated thermally.

10.8.7. FeO in the X 5� ground state

A rotational spectrum of FeO in its X 5� ground state was described by Endo, Saito
and Hirota [253]. Transitions involving relatively low J values were observed for three
fine-structure states, with Ω = 4, 3 and 2. Subsequently a much more comprehensive
rotational spectrum was measured by Kröckertskothen, Knöckel and Tiemann [254]
using double resonance methods; we will discuss these results in the next chapter. More
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recently Allen, Ziurys and Brown [255] returned to the pure rotational spectrum and
observed rotational transitions in all five fine-structure states. We will describe their
studies in this section, but defer the detailed discussion of the theory and analysis until
the next chapter; this is because they combined their results with the more accurate
double resonance studies which used a molecular beam source. Allen, Ziurys and
Brown [255] produced the FeO molecule by reacting iron vapour at 1400 ◦C with N2O,
and measured the rotational spectrum over the frequency range 93 to 376 GHz. The
rotational levels of the X 5� state are best described in a case (a) basis; there are five
fine-structure components, with Ω = 0 to 4, which are summarised in figure 10.92,
together with their lower rotational levels and observed rotational transitions. Each
rotational level is actually doubly degenerate because of the Λ-doubling; the splitting
was too small to be resolved in the Ω= 4 spectrum, but was readily observed for
lower Ω values. Typical spectra are shown in figure 10.93; the J = 11 ← 10 (Ω = 4)
transition for the 56FeO and 54FeO isotopomers, with natural abundances of 91.7 and
5.9% respectively, does not exhibit resolvedΛ-doublet splitting, but in the lowerΩ = 0
and 1 states the splitting is observed.

The effective Hamiltonian and analysis of the spectra is described in chapter 11
when we discuss the microwave/optical double resonance spectrum.

10.8.8. TiCl in the X 4� ground state

The sub-millimetre wave spectrum of TiCl has been observed recently by Maeda,
Hirao, Bernath and Amano [256], the frequency range being 407 to 604 GHz; the TiCl
molecules were produced by means of a dc glow discharge in a flowing mixture of
TiCl4 and argon. The sub-millimetre wave radiation was produced by backward-wave
oscillators, and a double modulation scheme, involving modulation of both the sub-
millimetre frequency and the dc discharge power, was employed. Figure 10.94 shows
the four fine-structure components of the 4� state and their lower rotational levels;
the observed spectrum, however, involved transitions between high rotational levels
(J = 85/2 to 127/2) in all four fine-structure states. Spectra of both Ti35Cl and Ti37Cl
in the v = 0 and 1 levels of the 4� ground state were observed, but nuclear hyperfine
structure was not resolved.

The effective Hamiltonian used was

Heff = Hrot + Hso + Hsr + Hss + H
(3)
so , (10.196)

where Hrot = B N 2 − DN 4 + H N 6, (10.197)

Hso = (1/2)[A + AD N 2 + AH N 4, Lz Sz]+, (10.198)

Hsr = (γ + γD N 2 + γH N 4)(N · S ), (10.199)

Hss = (1/3)
[
λ+ λD N 2 + λH N4, 3S 2

z − S 2
]
+ , (10.200)

H
(3)
so = (1/2)

[
η′ + η′

D N 2 + η′
H N 4, Lz Sz

(
S 2

z − {3S 2 − 1}/5)]+ . (10.201)

For calculation of the matrix elements in case (a) basis, N = J − S; note also that
[x, y]+ stands for the anticommutator xy + yx .
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Figure 10.92. Fine-structure components, lower rotational levels, and observed rotational tran-
sitions for FeO in its X 5� state. Λ-doublet splitting is not resolved.

The spin–rotation constants in equation (10.199) could not be determined, but most
of the other constants were listed. The results indicate that the electron configuration
3d24s from Ti+(4F) dominates in the ground state of TiCl. At this stage it is difficult
to estimate reliably the degree of electron delocalisation, but the structure seems to be
mainly ionic.
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56FeO (� � 4) 54FeO (� � 4)

Figure 10.93. Top: spectra showing the J = 11 ← 10 rotational transition in the Ω = 4 fine-
structure state for 56FeO and 54FeO. Bottom: spectra showing the J = 12 ← 11 rotational transi-
tion in theΩ = 0 and 1 fine-structure states of 56FeO. TheΛ-doublet splitting is clearly resolved
[255].

It will be clear that pure rotational spectra of more complex orbital and spin states,
most of which arise in molecules containing transition metal atoms, are still relatively
sparse. This will almost certainly change as experimental techniques develop further;
a further stimulus is the growing recognition of the importance of these molecules in
interstellar and circumstellar space.

10.9. Observation of a pure rotational transition in the H+
2 molecular ion

Our final discussion in this chapter concerns a very recent and remarkable observation
of an electric dipole rotational transition in the H+

2 molecular ion [257]. Since this
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�

−1

Figure 10.94. Fine-structure components and lower rotational levels for the X 4� state of TiCl.

homonuclear ion would not be expected to possess an electric dipole moment, and
since adjacent rotational levels belong to ortho and para proton spin forms, a�J = ±1
rotational transition should be very strongly electric dipole forbidden. How, then, can
such a transition occur? In order to answer this question we first review earlier work
on the electric dipole allowed electronic spectrum.
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Figure 10.95. Potential energy curves for the 2pσu and 1sσg electronic states of the H+
2 molecular

ion in the near-dissociation region.

In the united atom nomenclature the electronic ground state of H+
2 may be described

as 1sσg and the first excited state as 2pσu; these two states become degenerate at the
dissociation limit. The ground state is strongly bound with a dissociation energy D0

of 2.6507 eV and supports twenty vibrational levels. The excited state is repulsive
at most internuclear distances, but possesses a long-range minimum because of the
attractive charge-induced dipole interaction [258]. The dissociation energy De of this
state is 13.346 cm−1 and it is calculated to support just one vibrational level, with three
rotational components [259]. The potential curves in the near-dissociation region are
shown in figure 10.95; the highest vibration–rotation levels in the 1sσg state are v, N =
18,3, 19,0 and 19,1. Microwave and millimetre wave electronic transitions between
these levels and those of the 2pσu excited state have been observed by Carrington,
McNab and Montgomerie [260] and by Carrington, Leach and Viant [261]. Similar
near-dissociation electronic transitions in D+

2 have been observed [262].
The most unexpected feature of the observed spectra for H+

2 was the proton
hyperfine structure. An energy level diagram showing the nuclear hyperfine and spin–
rotation energy level splittings expected to be observed for the 2pσu(v = 0, N = 2) ←
1sσg(v = 18, N = 3) transition is illustrated in figure 10.96. For ortho-H+

2 with total
nuclear spin I = 1, an appropriate coupling scheme is

S + I = G,

G + N = F. (10.202)

The quantum number G takes values 3/2 and 1/2 and the splitting of the levels arises
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almost entirely from the large Fermi contact hyperfine interaction, which is 1067 MHz.
The spin–rotation and dipolar hyperfine splittings are expected to be very small in
comparison, and because the electron spin is only very weakly coupled to the nuclear
framework in these high-lying energy levels, the hyperfine splitting was expected to
be very similar in the two electronic states. Consequently the experimental hyperfine
splitting was expected to be very small, probably unresolvable, and it was therefore
a considerable surprise when splittings of 6 to 8 MHz were observed experimentally
[261]. These splittings correspond to the separation of the G = 1/2 and 3/2 levels,
other transitions shown in figure 10.96 being too close to be resolved.

Clearly the proton hyperfine splittings are unexpectedly different in the two elec-
tronic states and the reason for this was described by Moss [263]; a detailed discussion
of the group theoretical aspects is provided by Bunker and Jensen [264]. In brief, the
Fermi contact interaction mixes the g and u electronic state levels which have the same
values of N and G. Returning to the energy level diagram shown in figure 10.96, the
2pσu (0,2) level is mixed with both bound and continuum N = 2 levels of the 1sσg

ground state; the quantum numbers in parenthesis are v and N respectively. However,
only the G = 1/2 level is affected because G = 3/2 is not allowed for N = 2 levels of
the ground state, since I = 0 for para-H+

2 . Similarly, (18,3) of the ground state couples
with N = 3 continuum levels of the excited state, but again only G = 1/2 levels are
involved; furthermore, there are no bound excited state N = 3 levels. The net result of
the mixing, which is called symmetry-breaking, is that the G = 1/2 levels are pushed
to lower energy compared with the G = 3/2, as shown in figure 10.96, the effect being
greatest for (0,2). The result is to produce a readily observable hyperfine splitting in
the electronic spectrum, an example for the (0,2)–(19,1) vibronic component being
shown in figure 10.97. Moss [263] was able to calculate the magnitude of the hyperfine
symmetry-breaking effect, obtaining results in excellent agreement with experiment.

The inversion operation i which leads to the g/u classification of the electronic
states is not a true symmetry operation because it does not commute with the Fermi
contact hyperfine Hamiltonian. The operator i acts within the molecule-fixed axis
system on electron orbital and vibrational coordinates only. It does not affect electron
or nuclear spin coordinates and therefore cannot be used to classify the total wave
function of the molecule. Since g and u are not exact labels, it was realised by Bunker
and Moss [265] that electric dipole pure rotational transitions were possible in H+

2 , the
g/u symmetry breaking (and simultaneous ortho–para mixing) being relatively large for
levels very close to the dissociation asymptote. The electric dipole transition moment
for the 19,1 ← 19,0 rotational transition in the ground electronic state was calculated
to be −0.166 10 ea0 or −0.4222 D; this transition has been observed [257] using the
ion beam techniques combined with electric field dissociation described earlier in this
chapter, and the spectrum is shown in figure 10.97. The transition frequency agrees
very well with that obtained from ab initio calculations [266].

Symmetry-breaking arising from the presence of nuclear spin interactions, even
in closed shell molecules, was discussed by Herzberg [267] and observed for the I2

molecule by Pique, Hartmann, Churassy and Bacis [268]. As Bunker and Moss [265]
point out, it will be most important for homonuclear open shell molecules with large
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Figure 10.96. H+
2 (0,2)–(18,3) hyperfine, spin–rotation and symmetry-breaking energy level

diagram, showing the six �F = �N transitions. (a) denotes the Fermi contact splitting, (b) is
the spin–rotation splitting and (c) shows the effect of symmetry breaking.
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Figure 10.97. Top: 2pσu (0,2) ← 1sσg (19,1) electronic transition in H+
2 showing the proton

hyperfine splitting, the parallel and antiparallel Doppler-shifted components, and the position
of the rest frequency. This spectrum was obtained after one scan. Bottom: 1sσg (19,1) ← 1sσg

(19,0) rotational transition in H+
2 , with Doppler shifted components and the position of the rest

frequency. This spectrum was obtained after 999 scans [257].
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nuclear hyperfine interactions in levels close to a dissociation asymptote where g and
u electronic states become degenerate.
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11 Double resonance spectroscopy

11.1. Introduction

Double resonance spectroscopy involves the simultaneous use of two spectroscopic
radiation sources, often of quite different wavelengths. Figure 11.1(a) illustrates the
simplest example of many possible variations. High-frequency electronic excitation (f1)
is combined with microwave or radiofrequency radiation (f2); the objective is usually
to observe and measure the lower frequency spectrum by making use of the sensitivity
advantages provided by the higher frequency radiation. Detection of the fluorescence
intensity from the intermediate state E2 provides a monitor of the population of the state.
The lower frequency transition f2 changes the population of E2, and hence changes the
fluorescence intensity. Many of the experiments to be described in this chapter depend
upon this simple scheme. Such experiments have been extremely valuable, particularly
in the study of short-lived species such as neutral free radicals, molecular ions, or
metastable excited electronic states. Their success usually depends on prior knowledge
and study of the high-frequency spectrum, as we shall see. In other cases, however,
the two radiation sources may be of similar wavelengths; microwave/microwave double
resonance, for example, has proved to be a powerful method for confirming otherwise
uncertain spectroscopic assignments.

As is often the case, the initial experiments were developed by atomic spectro-
scopists. Figure 11.1(b) illustrates an example from atomic physics, described by
Brossel and Bitter [1]. Mercury atoms are excited by a mercury lamp from the 1S
ground state to the 3P1 excited state, in the presence of a small applied magnetic field.
The 3P1 state exhibits a Zeeman splitting, as shown in the figure, each Zeeman sublevel
being characterised by its M quantum number, which can take the values +1, 0 and −1.
The incident light is polarised, and induces a �M = 0 (π polarisation) electronic ex-
citation. An oscillating magnetic field applied perpendicular to the static field induces
�M = ±1 transitions, which for a static field of 10 G are radiofrequency transitions.
The result of these transitions is a change in the polarisation of the fluorescence, which
can be easily detected. The experiment was also applied to more complex atomic sys-
tems, such as potassium atoms where nuclear hyperfine splittings were resolved [2].
This type of double resonance experiment has also been applied to molecular systems,
as we shall see.
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Figure 11.1. (a) Principles of the microwave/optical double resonance method. (b) Change of
polarisation of fluorescent light resulting from �M = ± 1 radiofrequency transitions.

Before commencing our description of true double resonance studies of molecular
systems, we describe an extremely important precursor study of the CN radical, which
pointed the way to many later experiments.

11.2. Radiofrequency and microwave studies of CN
in its excited electronic states

The CN radical can be produced by the reaction of nitrogen atoms with almost any
organic compound, a process which has been extensively studied by electronic emission
spectroscopy. The electronic structure of CN in its ground state and two relevant excited
states may be written in the following simple molecular orbital form.

(1σ )2(2σ )2(3σ )2(4σ )2(1π )4(5σ )1: X 2�+(Te = 0)

(1σ )2(2σ )2(3σ )2(4σ )2(1π )3(5σ )2: A 2� (Te = 9241.7 cm−1)

(1σ )2(2σ )2(3σ )2(4σ )1(1π )4(5σ )2: B 2�+(Te = 25751.8 cm−1)

The chemical reaction produces CN in excited vibrational levels of the A state, and
energy transfer from the v =10 level of the A state to the v = 0 level of the B state leads
to strong fluorescent emission from the B state. The possibility of detecting microwave
transitions in these excited states was investigated by Radford and Broida [3] and first
realised experimentally by Evenson, Dunn and Broida [4]. We will discuss the nature
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Figure 11.3. Microwave spectrum of electronically excited CN radicals [4].

of the transitions in due course, but first we describe the details of their experiment with
the aid of figure 11.2. The heart of the apparatus was a frequency-tunable TE011 cavity,
operating over the microwave range 8750 to 10 375 MHz. Active nitrogen produced
in a 2450 MHz discharge cavity was mixed with methylene chloride vapour inside the
resonant cavity, and the B 2�+ → X 2�+ fluorescence detected with a photomultiplier,
preceded by an appropriate filter. The microwave power, obtained from a reflex klystron,
was amplitude modulated at 1 kHz, and the modulated fluorescence signal detected
with a lock-in amplifier. The microwave spectrum obtained is shown in figure 11.3.

The transitions detected are indicated in the energy level diagram presented in
figure 11.4. As we have already mentioned, the v = 10 level of the A 2� state lies
close in energy to the v = 0 level of the B 2�+ state, and the transitions detected
by Evenson, Dunn and Broida [4] are the type (i) transitions shown in figure 11.4.
They are, in fact, electronic transitions. In the absence of any interaction between
the two electronic states we would expect each rotational level of the 2�+ state to
show a spin–rotation doublet splitting, and each rotational level of the 2� state to
show a Λ-doublet splitting. In this instance, however, one spin component of the 2�+

state interacts strongly with oneΛ-doublet component of the 2�3/2 state, yielding two
perturbed states which are labelled�(p) and�(p) in figure 11.4. The other two states
do not interact and therefore remain unperturbed; they are labelled�(u) and�(u). The
diagram refers to the N = 4 rotational level of the 2�+ state (v = 0) and the J = 7/2
rotational level of the 2�3/2 state (v = 10). Hyperfine interaction with the I = 1 nuclear
spin of 14N produces the set of levels labelled by their F and J quantum numbers. The
selection rule �F = ±1 or 0 gives the possibility of 13 hyperfine components, all of
which were observed and measured. For both types of electronic state we have already
developed the rotational and hyperfine theory, including the effective Hamiltonian
matrix elements. We will discuss the values of the molecular parameters obtained from
the analysis in due course.
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Transitions of type (ii) were detected subsequently by Evenson [5]. He used a
rectangular cavity operating in the TE108 mode, with a large optical window which
enabled him to observe the optical emission at various locations along the axis of the
cavity. In this way he was able to distinguish between electric and magnetic dipole
microwave transitions. The type (i) transitions shown in figure 11.4 are conventional
electronic, electric-dipole transitions, whereas the type (ii) transitions, whilst still elec-
tronic, occur between states of the same parity and are magnetic-dipole allowed only.
This experiment demonstrates an important aspect of double resonance experiments,
namely, that microwave magnetic-dipole transitions can be detected with essentially
the same sensitivity as electric-dipole transitions, provided sufficient microwave power
is available.

Finally, transitions of type (iii) in figure 11.4 were studied by Evenson [6] and
by Pratt and Broida [7]. These are hyperfine components of an electric-dipole, Λ-
doublet transition within the 2�3/2 state. They are therefore conventional, except for
the enhanced splitting between theΛ-doublet states caused by the perturbation from the
close-lying 2�+ state. They are still detected through changes in fluorescent emission
from the B 2�+ state.

The theory of the 14N hyperfine interaction in the B 2�+ state of CN has been
considered by Radford [8]; the effective Hamiltonian is the same as that used in
chapter 10 for the ground state of CN. Using Frosch and Foley constants [9] it is
written, in cartesian form,

Hhfs = B N 2 + γ S · N + bI · S + cIz Sz + eq0 Q

{
3I 2

z − I2
}

4I (2I − 1)
. (11.1)

In the alternative spherical tensor form, it is written

Hhfs = B N 2 + γT1(S) · T1(N) + bFT1(I) · T1(S)

−
√

10 gSµB gNµN (µ0/4π)T1(S,C2) · T1(I) − eT2(Q) · T2(∇E). (11.2)

The matrix elements of (11.2) in a case (b) representation for CN in its ground state
were derived in chapter 10; Radford [8] obtained the following values of the constants
(in MHz):

b = 467, c = 60, bF = b + (c/3) = 487, t0 = c/3 = 20, eq0 Q = −5.

As we have shown in Appendix 8.5, and elsewhere, t0 is the axial component of the
dipolar interaction obtained from the fourth term in equation (11.2). The large value
of the Fermi contact constant is consistent with a model in which the unpaired electron
occupies a σ -type molecular orbital which has 45% N atom s character. Radford
produced convincing arguments to show that the model is also consistent with the
small dipolar hyperfine constant, and also the electric quadrupole coupling constant.

This pioneering study of the CN radical was not a true double resonance experiment
because it did not need a separate radiation source to produce the initial electronic
excitation. Nevertheless it has many of the other elements common to double resonance,
as we shall see, and was a landmark study in the field.
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11.3. Early radiofrequency or microwave/optical double resonance studies

11.3.1. Radiofrequency/optical double resonance of CS
in its excited A 1� state

The first radiofrequency/optical double resonance studies of molecules were published
almost simultaneously. Observations of OH and OD were described by German and
Zare [10] late in 1969, and will be discussed in detail in the next subsection. A few
months later studies of the CS molecule in its excited A 1� were reported by Silvers,
Bergeman and Klemperer [11], with more detailed results described later by Field and
Bergeman [12]. We now describe these investigations, which are in some ways simpler
than those of OH because of the absence of electron and nuclear spin effects in the CS
1� state.

The electronic ground state of CS is the same as that of CO, that is, an X 1�+

state. The four lowest excited electronic states are all triplet states, but close by in
energy there is an A 1� state, lying 38 794 cm−1 above the ground state. This state can
be populated by allowed electronic excitation from the ground state, and is therefore

1

1

Figure 11.5. Ground and excited state levels involved in the radiofrequency/optical double res-
onance study of CS in its A 1� state [12].
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a potential candidate for radiofrequency or microwave double resonance studies. The
energy levels involved are illustrated in figure 11.5. The J = 7 level of the X 1�+ state,
which has (−) parity, is excited to the upper (+) parity Λ-doublet component of the
J = 8 level of the A1� state; an intense atomic manganese emission line at 2576

◦
A

was used for the excitation. Fluorescence was observed in a direction perpendicular
to the exciting light, and was not dispersed. Radiofrequency transitions between the
Λ-doublet parity components resulted in changes in the fluorescence intensity, which
were detected. The radiofrequency field was amplitude- modulated, and the modulated
component of the fluorescence detected with a lock-in amplifier. The heart of the
apparatus used is illustrated in figure 11.6, and an example of the resonances obtained
is shown in figure 11.7(a); the signal-to-noise ratio is not large, but it is sufficient.

An important extension of the measurements was the application of a static elec-
tric field, applied between the Stark plates, and the consequent observation of Stark
components in the double resonance lines, from which the electric dipole moment
could be determined. An example of the spectra obtained is shown in figure 11.7(b).
In their later work Field and Bergeman [12] replaced the manganese atomic emission
line with white light from a CS molecular discharge lamp and they were then able to
study theΛ-doublet transitions in rotational levels J = 1 to 9 of the A 1� state. Their

2

Figure 11.6. Schematic diagram of the apparatus used for the radiofrequency/optical double
resonance study of CS in its A 1� state [11].
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1096 1098 1100 1102 1140

2500 3000 3500 4000

(a)

(b)

Frequency / MHz

Electric field / V cm−1

M = 7

M = 8

Figure 11.7. (a) Radiofrequency/optical double resonance line observed for theΛ-doublet transi-
tion in the J = 8 level of the A 1� state of CS. The Stark field was zero [11]. (b) Radiofrequency/
optical double resonance with a Stark field, showing the |M | = 8 and 7 resonances for J = 8.
The frequency was fixed at 1124.4 MHz while the electric field was swept.

experimental (and theoretical) results, for both the Λ-doubling and dipole moments,
are presented in table 11.1.

To understand the Λ-doubling in the A 1� v = 0 state of CS it is necessary to
consider the spin–orbit interaction with other excited electronic states; a very thor-
ough analysis was presented by Field and Bergeman [12]. The CS molecule possesses
22 electrons, of which the first 16 form an inner core which need not concern us fur-
ther. Of the remaining six electrons, two occupy a σ orbital (which we call 7σ ) and
the remaining four occupy a π orbital, which we call 2π . The lowest vacant orbital to
be considered is a 3π orbital. Consequently the electron configurations for the ground
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Table 11.1. Λ-doubling (MHz) and electric dipole moments (D) determined for CS in
the A 1� (v =0) state. The calculated values are discussed in the text

Λ-doubling Electric dipole moment

J exp. (MHz) calc. (MHz) exp. (D) calc. (D)

1 13.6 13.5

2 42.1 42.08

3 89.5 89.45 0.6703 0.6701

4 161.8 162.14 0.6699 0.6705

5 271.33 271.35 0.6713 0.6710

6 436.38 436.33 0.6718 0.6718

7 691.29 691.18 0.6733 0.6732

8 1099.37 1099.39 0.6752 0.6753

9 1787.19 1787.14 0.6786 0.6785

and lowest excited electronic states may be written as follows.

(inner core)16(7σ )2(2π )4(3π )0: X 1�+

(inner core)16(7σ )2(2π )3(3π )1: a′ 3�+, e 3�−, d 3�, plus singlet states

(inner core)16(7σ )1(2π )4(3π )1: A 1�, a 3�

The triplet states have energies similar to that of the A 1� state, and there is thought
to be an additional k 3� state lying nearby. More significantly, the v = 0 level of the
A 1� state is particularly close in energy to the v = 10 level of the a′ 3�+ state, and
the interaction between these two levels is thought to dominate the Λ-doubling. In a
case (a) basis we may specify the value of Ω = |Λ+Σ| which is 1 for the 1� state,
and 0 or 1 for the a′ 3�+ state. The spin–orbit mixing is diagonal in Ω so that the
direct interaction does not involve the a′ 3�+

0 component; the interaction matrix given
by Field and Bergeman is presented below. In this matrix the superscripts (±) denote
parity, and B̄ = B − D J (J + 1); γ is the spin–rotation constant and λ is the spin–spin
constant for the 3�+ state. The other constants are self-explanatory; their values for
the two electronic states, determined from the experimental results, are given below
the energy matrix. Note that the matrix has dimension 3 × 3 for even J , positive parity
states or odd J , negative parity states. Otherwise it is a 2 × 2 matrix because the
appropriate level for the 3�

+(−)
0 component does not exist.

1�(±) 3�
+(±)
1

3�
+(±)
0

1�(±) T� + (B̄� ± (−1)J q/2) A�� (1/2)(1 ± (−1)J )γ��
× J (J + 1) × [J (J + 1)]1/2

3�
+(±)
1 A��

T� − B̄� + 2λ/3
− γ + B̄� J (J + 1)

(1 ± (−1)J )(−B̄� + γ /2)
× [J (J + 1)]1/2

3�
+(±)
0

(1/2)(1 ± (−1)J )γ��
× [J (J + 1)]1/2

(1 ± (−1)J )(−B̄� + γ /2)
× [J (J + 1)]1/2

T� + B̄� − 4λ/3 − 2γ
+ (B̄� −�B�)J (J + 1)
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T�(v = 0) =38 797.656 cm−1 T�(v = 10) = 38 853.20 cm−1

B�(v = 0) = 0.773 65 cm−1 B�(v = 10) = 0.5868 cm−1

D�(v = 0) = −1.3 × 10−6 cm−1 D�(v = 10) = 2.1 × 10−6 cm−1

q(v = 0) = 0.68 MHz �B�(v = 10) = −80 MHz

λ(v = 10) = −1.28 cm−1

γ (v = 10) = 151 MHz

A�� = 5.509 cm−1 γ�� = 298 MHz

Field and Bergeman [12] chose to diagonalise the above matrix, thereby generat-
ing a modified 1� wave function with 3�+ admixture. Using the modified function
as a basis, they then calculated the admixture of the other nearby triplet states (in
appropriate vibrational levels) using perturbation theory. The calculated values of the
Λ-doubling parameters and effective electric dipole moments obtained are listed in
table 11.1.

We may anticipate that perturbations between electronic states are likely to be im-
portant for excited electronic states, simply because of the close proximity of different
excited states. In contrast, the lower vibrational levels of ground electronic states are
usually well separated from other electronic states.

11.3.2. Radiofrequency/optical double resonance of OH in its excited
A 2�+ state

As we have already mentioned, the first published observations of radiofrequency/
optical double resonance in a molecular system were those of German and Zare [10]
and German, Bergeman, Weinstock and Zare [13] on electronically excited OH and
OD radicals. The radicals were generated by reaction of H or D atoms with NO2

in a flow system. The relevant energy levels for OH are illustrated in figure 11.8.
For OH the v = 0, N = 2, J = 3/2 level of the A 2�+ state was excited from the
2�3/2 ground state by means of light from an electrodeless microwave discharge in
Zn vapour at 3072.06

◦
A. The v = 0, N = 1, J = 3/2 level of OD in the A 2�+

state was excited by the 3071.60
◦

A emission line from a discharge in Ba vapour. The
sample volume was contained within a small, variable magnetic field, which removed
the spatial degeneracy of the hyperfine levels, and the incident light was polarised
perpendicular to the magnetic field. Detected fluorescence from the excited electronic
state was polarised parallel (�M = 0) or perpendicular (�M = ±1) to the applied
magnetic field, and a radiofrequency field applied perpendicular to the static field
induced�M = ±1 transitions, thereby changing the relative intensities of the parallel
and perpendicular polarised fluorescence. Radiofrequency resonances in the range 1
to 8 MHz were observed by sweeping the static magnetic field, an example of the
spectra obtained being shown in figure 11.9. The two resonances resolved at the higher
frequency (8 MHz) have effective g-factors of 0.492 and 0.301. Note that the spectrum
observed is actually a magnetic resonance spectrum.
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5/2

3/2

1/2

1/2

3/2

Figure 11.8. Hyperfine levels in OH and OD in the excited A 2�+ state studied by radiofrequency/
optical double resonance. The splittings are not to scale.

In a Hund’s case (b) coupling scheme, the Zeeman interaction is described by the
following matrix element:

〈η,Λ; N , S, J, I, F,MF |gSµB BZ T1
0(S)|η,Λ; N , S, J ′, I, F ′,MF 〉

= gSµB BZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
× 〈η,Λ; N , S, J, I, F‖T1(S)‖η,Λ; N , S, J ′, I, F ′〉

= gSµB BZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+J+1+I {(2F ′ + 1)(2F + 1)}1/2

×
{

F J I
J ′ F ′ 1

}
〈η,Λ; N , S, J‖T1(S)‖η,Λ; N , S, J ′〉
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0 4 8 12

8 12 16 20

frequency = 3 MHz

Magnetic field / G

Megnetic field / G

frequency = 8 MHz

F = 1 F = 2

Figure 11.9. Radiofrequency magnetic resonance transitions observed by double resonance at
two different frequencies for OH in the A 2�+ state [10].

= gSµB BZ (−1)F−MF

(
F 1 F ′

−MF 0 MF

)
(−1)F ′+J+1+I {(2F ′ + 1)(2F + 1)}1/2

×
{

F J I
J ′ F ′ 1

}
(−1)J+N+1+S{(2J ′ + 1)(2J + 1)}1/2

×
{

J S N
S J ′ 1

}
{S(S + 1)(2S + 1)}1/2. (11.3)

Although there are off-diagonal elements, at the very weak magnetic fields used in the
OH studies, only the diagonal elements in (11.3) are important. The Zeeman interaction
may therefore be described by means of an effective g-factor, gF , for each F level,
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where, from (11.3), the effective g-factors are given by

gF = gS(−1)F+2J+I+N+S(2F + 1)(2J + 1){S(S + 1)(2S + 1)}1/2

× {F(F + 1)(2F + 1)}−1/2

{
F J I
J F 1

}{
J S N
S J 1

}
.

(11.4)

For OH, with S = I = 1/2, and gS = 2, this becomes

gF =
√

6(−1)F+2J+N+1(2F + 1)(2J + 1){F(F + 1)(2F + 1)}−1/2

×
{

F J I
J F 1

}{
J S N
S J 1

}
. (11.5)

For the N = 2, J = 3/2, F = 2 and 1 levels, (11.5) yields effective g-factors of 0.3 and
0.5, which are very close to the experimental values given above. This result confirms
the correctness of the assignments and that case (b) coupling is observed, but it does
not provide much further information. Experiments at higher magnetic fields would
result in second-order Zeeman splittings, from which information about the proton
hyperfine coupling could be obtained. In the case of OD some hyperfine data were
obtained from measurements at the highest magnetic fields available [13], but this was
not true for OH.

11.3.3. Microwave/optical double resonance of BaO in its ground X 1�+

and excited A 1�+ states

The first observation of a rotational transition in a diatomic molecule in a short-lived,
excited electronic state, namely BaO, was reported by Field, Bradford, Broida and
Harris [14]. This work followed earlier double resonance studies by Field, Bradford,
Harris and Broida [15] in which rotational transitions in the ground state of BaO
were detected. A more comprehensive investigation of both ground and excited state
rotational transitions in BaO was described by Field, English, Tanaka, Harris and
Jennings [16]; we now review this work.

The elementary principles of double resonance experiments were described at the
beginning of this chapter, and summarised in figure 11.1. We now explore these prin-
ciples in more detail [16], emphasising that double resonance experiments involving
electronic excitation can and have been used to study rotational transitions in either the
ground state or the excited state. The two possibilities are summarised in figure 11.10.
Field, English, Tanaka, Harris and Jennings [16] make a distinction between weak
(linear) optical absorption, and strong (nonlinear) absorption. In the linear case, pho-
toluminescence is linearly proportional to the optical pump power, and a ground state
microwave transition between levels 1 and 2 is detectable if microwave transitions alter
the small Boltzmann population difference between the levels. An excited state rota-
tional transition, as shown in figure 11.10, is detectable if the light emitted from one
of the two excited state rotational levels is preferentially detected, either through suffi-
cient optical resolution or through a polarisation change. Strong nonlinear pumping is
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Figure 11.10. Principles of microwave/optical double resonance, permitting the observation of
rotational transitions in either the ground or excited electronic state [16]. The ground state levels
are in thermal equilibrium with the heat bath, and it is assumed that when the molecule in the
excited state spontaneously emits a photon, it enters the heat bath rather than returning to the
optically-depleted ground state level.

readily achieved through optical pumping with a tunable laser; it causes significant de-
partures from equilibrium, and is then more sensitive. The BaO studies were performed
with a dye laser tuned to a specific rovibronic transition; this is the best experiment,
but depends upon prior knowledge and assignment of the electronic spectrum. Field,
English, Tanaka, Harris and Jennings [16] gave a careful kinetic analysis of the rele-
vant level population dynamics, which govern the sensitivity of a microwave/optical
double resonance experiment. An even more thorough development of the theory
of double resonance, using density matrix methods, was presented subsequently by
Takami [17].

BaO was produced by allowing barium vapour in an argon carrier to interact with
traces of oxygen. Microwave power was introduced by means of a simple horn situated
close to the optical interaction zone. By tuning the dye laser frequency to coincide
exclusively with a succession of rovibronic transitions, it was possible to observe and
measure four rotational transitions in the X 1�+ ground state, involving both v = 0
and v = 1, and thirteen rotational transitions in the A 1�+ excited electronic state.
From these measurements accurate values of the rotational constants were obtained,
particularly for the excited state.

The studies of BaO were important pioneering experiments showing the power of
microwave/optical double resonance methods. We shall describe a number of significant
applications of these methods later in this chapter.
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11.4. Microwave/optical magnetic resonance studies of electronically
excited H2

11.4.1. Introduction

In chapter 8 we described the elegant studies of Lichten [18] on the electronically
excited c 3�u state of H2. Lichten’s experiments involved electronic excitation of a
beam of H2 molecules by collision with an electron beam, but they were not double
resonance experiments. Rather, they were classic molecular beam magnetic resonance
studies of the type described extensively in chapter 8. In this section we discuss later ex-
periments on H2, again electronically excited by collision with electrons, but involving
microwave/optical double resonance studies. Before we describe these experiments,
however, we summarise the relevant excited states of H2, repeating to some extent our
discussion in chapter 8.

The ground state electron configuration of H2 is described in the united atom
nomenclature as (1sσ )2 with the electron spins paired, or in the molecular orbital
description as (σg1s)2. In either description we have the X 1�+

g state. In the first
excited electronic state the united atom description, corresponding to excitation of
one electron, is (1sσ )1(2pσ )1. In the molecular orbital description it is (σg1s)1(σu1s)1;
in either case the electron spins may be paired to give a 1�+

u state, or unpaired to
give a 3�+

u state. In this case the excited singlet state is bound, but the triplet state is
unbound. Singly excited states corresponding to the promotion of one electron give rise
to a family of excited singlet states, and a corresponding family of excited triplet states.
The relative energies of these states are illustrated in figure 11.11, which is based on
work by Richardson [19], summarised by Herzberg [20]. This figure is a combination
of two such figures, given earlier in chapter 8.

11.4.2. H2 in the G 1�+
g state

Four of the electronic states shown in figure 11.11 have been studied by high-resolution
methods, namely, the G 1�+

g , the d 3�u, the k 3�u, and the c 3�u states [18] which
was discussed in considerable detail in chapter 8. In the cases of the triplet states, both
ortho and para-H2 have been investigated. We now describe the experiments on the
first three states listed above, starting with the G state. Freund and Miller [21] have
described a technique which they call MOMRIE, standing for Microwave-Optical
Magnetic Resonance Induced by Electrons. The technique is beautiful and elegant,
even if the acronym is not, and is based on earlier experiments conducted on atoms.
A sample of ground state H2 molecules is located in a static magnetic field and
subjected to bombardment by a beam of electrons moving parallel to the field. The
electron bombardment results in excitation to excited electronic states, with unequal
population of the Zeeman sublevels. This results in polarised visible fluorescence
when the molecules in the excited states decay to lower energy excited states. Simul-
taneous driving of magnetic resonance transitions with a microwave field inside an
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X-band cavity changes the fluorescence polarisation, which can be detected. The
main features of the apparatus are illustrated in figure 11.12. One of the advantages
of excitation with an electron beam, rather than with conventional monochromatic
or white light sources, is that transitions between electronic states of different spin
multiplicity are allowed; consequently both singlet and triplet excited states can be
populated.

Figure 11.13 shows the energy levels involved and the transitions studied for H2 in
the N = 1 rotational level of the G 1�+

g state. The experiments were performed using
a fixed microwave frequency, typically 9204 MHz, and the resonances detected by
scanning the magnetic field; amplitude modulation of the microwave power at 100 kHz
and lock-in amplifier detection were employed. Polarising filters were used to detect
the fluorescence, so that changes in polarisation could be observed.

Figure 11.13 shows that, for the N = 1 level, two �MN = ±1 transitions are
expected and the resonance line observed by Freund and Miller [21] exhibits a partially
resolved doublet splitting, arising because the Zeeman effect is slightly nonlinear. At
first sight it is surprising that a Zeeman splitting is observed at all because a pure singlet
sigma state would be essentially non-magnetic. In fact Freund and Miller observed an
effective g factor of 0.89077 for the N = 1 rotational level of the G 1�+

g state. The
energy level diagram shown in figure 11.11 shows that the I 1�g and J 1�g states lie
close in energy to the G state, and can be mixed with it by the rotational operator, as
we outline below. It is this mixing which creates the magnetic moment in the G state
measured by Freund and Miller.

The case (b) eigenkets for the three electronic states listed above and their parities
may be written as follows.

1�+
g : |η,Λ = 0; N ,Λ = 0〉 (−1)N

1�g :
∣∣1�+

g

〉= (1/
√

2){|η,Λ= 1; N ,Λ= 1〉 + |η,Λ= − 1; N ,Λ= − 1〉} (−1)N

∣∣1�−
g

〉= (1/
√

2){|η,Λ= 1; N ,Λ= 1〉 − |η,Λ= − 1; N ,Λ= − 1〉} (−1)N+1

1�g:
∣∣1�+

g

〉= (1/
√

2){|η,Λ= 2; N ,Λ= 2〉 + |η,Λ= − 2; N ,Λ= − 2〉} (−1)N

∣∣1�−
g

〉= (1/
√

2){|η,Λ= 2; N ,Λ= 2〉 − |η,Λ= − 2; N ,Λ= − 2〉} (−1)N+1

(11.6)

We have met theseΛ-doublet functions several times already; the e and f combinations
have definite parities, which are preserved in the absence of electric fields. For a given
value of N , the three states of (+) symmetry can be mixed together, as can also the
two states of negative symmetry (−). This restriction, however, applies only in zero
field. An applied magnetic field mixes states of adjacent N value with opposite e/ f
character; however, the total parity, determined by inversion of all particles in the
centre of mass must remain a good quantum number. The eigenvalue of the inversion
operator, E∗, is listed for each of the five functions given above, and even in a magnetic
field all coupled states must have the same eigenvalue of E∗. The overall situation
with respect to symmetry and the mixing of the states is summarised in figure 11.14; the
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Figure 11.13. Energy levels of H2 in the N = 1 level of the G 1�+
g state in an applied

magnetic field, and the observed magnetic resonance transitions [21].

experiments relate to the N = 1 level, which is antisymmetric with respect to inversion
(see chapter 6 for more details).

In a case (b) basis the field-free rotational Hamiltonian may be written, in the
molecule-fixed axis system, in the form

Hrot = AηΛ + B(N − L)2

= AηΛ + B N 2 + BL2 − 2B
∑

q

T1
q (N)T1

q (L). (11.7)

AηΛ is the energy of a given rotationless electronic state characterised by particular
values of η andΛ, and the expansion of the scalar product takes note of the anomalous



890 Double resonance spectroscopy

−

−

−

−

−

+
g

+
g

+
g

−
g

−
g

Figure 11.14. The e/ f character and parities of the N = 1 and 2 rotational levels of the three
electronic states, G 1�+

g , I 1�g and J 1�g.

commutation rules for the molecule-fixed components of N. We now calculate the
matrix elements of (11.7) for the primitive basis functions |η, L ,Λ; N ,Λ〉. For the
diagonal elements we obtain the result

〈η, L ,Λ; N ,Λ|Hrot|η, L ,Λ; N ,Λ〉 = AηΛ + BηΛ{N (N + 1) + L(L + 1) − 2Λ2},
(11.8)

and for the off-diagonal elements we obtain

〈η, L ,Λ; N ,Λ| − 2B
∑

q = ±1

T1
q (N)T1

q (L)|η′, L ,Λ′; N ,Λ′〉

= −2BηΛ,η′Λ′
∑

q

(−1)N−Λ
(

N 1 N
−Λ q Λ′

)
{N (N + 1)(2N + 1)}1/2(−1)L−Λ

×
(

L 1 L
−Λ q Λ′

)
{L(L + 1)(2L + 1)}1/2.

(11.9)
Expansion of the 3- j symbols in (11.9) gives the results

〈η, L ,Λ; N ,Λ| − 2B
∑

q = ±1

T1
q (N)T1

q (L)|η′, L ,Λ± 1; N ,Λ± 1〉

= −BηΛ,η′Λ′ {(N ∓Λ)(N ±Λ+ 1)}1/2{(L ∓Λ)(L ±Λ+ 1)}1/2. (11.10)

An important point to note is that B in the field-free Hamiltonian (11.7) is the rotational
moment operator, and can have different values in (11.8) and (11.9). From these general
expressions we can calculate the matrix elements involving the five primitive functions
as shown below. In order to evaluate these matrix elements it is necessary to specify a
value of L; Freund and Miller pointed out that L = 2 for a d electron. This is the pure
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precession value, but in order to take account of any deviation from this limit, Freund
and Miller multiplied the off-diagonal elements by a factor (1 −∆).

|η�,Λ= 0, N 〉 |η�,Λ= 1, N 〉 |η�,Λ= − 1, N 〉 |η�,Λ= 2, N 〉 |η�,Λ= − 2, N 〉
〈η�,Λ= 0, N | m11 m12 m13 0 0
〈η�,Λ= 1, N | m21 m22 0 m24 0
〈η�,Λ= − 1, N | m31 0 m33 0 m35

〈η�,Λ= 2, N | 0 m42 0 m44 0
〈η�,Λ= − 2, N | 0 0 m53 0 m55

The individual matrix elements are

m11 = A� + B�{N (N + 1) + 6},
m22 = m33 = A� + B�{N (N + 1) + 4},
m44 = m55 = A� + B�{N (N + 1) + 2},
m12 = m21 = m13 = m31 = −B��{6N (N + 1)}1/2,

m24 = m42 = m35 = m53 = −2B��{N (N + 1) − 2}1/2,

m14 = m41 = m15 = m51 = m23 = m32 = m25 = m52 = m34 = m43 = m45 = m54 = 0.

(11.11)

From the matrix elements derived with the primitive functions, we use the linear
combinations given above and obtain the elements of a 3 × 3 matrix for the (+) parity
states, and a 2 × 2 matrix for the (−) parity states. These matrices (using the elements
defined above) are as follows.

1�+
g

1�+
g

1�+
g

1�−
g

1�−
g

1�+
g m11

√
2m12 0 0 0

1�+
g

√
2m12 m22 m24 0 0

1�+
g 0 m24 m44 0 0

1�−
g 0 0 0 m22 m24

1�−
g 0 0 0 m24 m44

A further symmetry aspect of the problem concerns the nuclear spin state. The
individual proton spins may be combined to form a total nuclear spin IT of 1 (ortho)
or 0 ( para); since the N = 1 states are, from figure 11.14, antisymmetric with respect
to inversion in the centre-of-mass, they must be combined with the symmetric nuclear
spin functions, which are those corresponding to IT = 1. This suggests that proton
hyperfine structure might be observable but, as Freund and Miller [21] point out, only
the mixing of some electronic orbital angular momentum into the singlet sigma state
can produce significant hyperfine coupling. This is expected to produce splittings which
are very much smaller than the experimental linewidth, and are therefore unobservable.
The experimental linewidths are, in fact, quite large, being determined by the relatively
short radiative lifetime of the G 1�+

g state (about 21 ns).
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Freund and Miller included centrifugal distortion corrections in their theory. The
numerical solution of the above matrices requires values for the various A and B
parameters involved and these were derived from earlier studies of the electronic spec-
trum [22]. Once the zero-field energy and wave function of the G 1�+

g N = 1 odd-parity
level has been determined, there remains only the Zeeman effect to be evaluated. The
magnetic field interacts with the orbital angular momentum generated by the rotational
mixing, and defining the p = 0 direction to be the magnetic field direction, as usual,
the perturbation due to the applied field is represented by the effective Hamiltonian

HZ = gLµB BZ T1
0(L) = gLµB BZ

∑
q

D
(1)
0q (ω)∗T1

q (L). (11.12)

In the case (b) basis used above the matrix elements of this perturbation are given by

〈η, L ,Λ; N ,Λ,MN |HZ|η, L ,Λ′; N ′,Λ′,M ′
N 〉

= gLµB BZδMN ,M ′
N

∑
q

〈η, L ,Λ|T1
q (L)|η, L ,Λ′〉〈N ,Λ,MN |D(1)

0q (ω)∗|N ′,Λ′,M ′
N 〉

= gLµB BZδMN ,M ′
N

∑
q

〈η, L ,Λ|T1
q (L)|η, L ,Λ′〉{(2N + 1)(2N ′ + 1)}1/2

× (−1)MN −Λ
(

N 1 N ′

−MN 0 MN

)(
N 1 N ′

−Λ q Λ′

)
. (11.13)

Again, Freund and Miller [21] included a multiplying term (1 −∆) to include
deviations of L from its free precession value in the off-diagonal elements (q = ±1).
Now note that (11.13) is applied to a wave function which represents a mixture of the
three electronic states, and note also that there are matrix elements both diagonal and
off-diagonal in N . The off-diagonal elements result in a slightly nonlinear Zeeman
behaviour, which is why the two transitions indicated in figure 11.13 occur at slightly
different magnetic fields for a fixed microwave frequency. Freund and Miller calculated
an effective g factor of 1.074, compared with the experimental value given earlier of
0.890 77.

The main results obtained from this study were the g-factor and the radiative
lifetime for the G state. However, the experimental techniques developed proved to be
very powerful in the study of other electronic states of H2, as we will see shortly.

11.4.3. H2 in the d 3�u state

Studies of H2 in its d 3�u state were described by Miller and Freund [23] and Freund and
Miller [24] for para-H2, and by Miller and Freund [25] for ortho-H2. Similar but less
extensive studies were made by Jost, Marechal and Lombardi [26]. The experimental
method used [23] was essentially that described earlier, except that a specific light filter
was used to isolate the fluorescence arising from radiative decay of the d 3�u to the
a 3�+

g state. Resonances involving the N = 1 level with v= 0 to 3 were observed for
both ortho and para species, but the para spectrum was the simpler because of the
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12.0 12.2 13.1 13.3 14.2 14.4

Magnetic field / kG

Figure 11.15. MOMRIE spectrum observed for para-H2 in the d 3�u, v = 1, N = 1 state. The
total recording time for each section was 32 minutes [24].

absence of nuclear hyperfine splitting. An example of the observed spectra for para-H2

in the N = 1, v = 1 level is shown in figure 11.15, and the origin of the six resonances
is given in the energy level diagram shown in figure 11.16. The energy levels on the
left-hand side of the diagram are labelled in a coupled representation

N + S = J (11.14)

and since N = S = 1, we see that J = 2, 1 or 0. In a magnetic field the (2J + 1)
spatial degeneracy of each J level is removed, and a total of nine Zeeman sublevels,
characterised by their MJ values, is observed. On the right-hand side the levels are
labelled in a spin-decoupled representation, N , S, MN .The measurements were made
as a function of magnetic field strength at a microwave frequency of 9202.8 MHz; all
of the transitions obey a �MN = ±1 selection rule.

The molecular beam magnetic resonance spectrum of H2 in its c3�u state was
discussed in great detail in chapter 8, and much of the theory described there ap-
plies directly to the d 3�u state discussed in this section. We summarise briefly the
most important results here; a major difference between the two studies is that the
MOMRIE experiments used strong magnetic fields, in the range 12 to 15 kG, whereas
the molecular beam experiments used comparatively weak fields.

The zero-field effective Hamiltonian for para-H2 in a 3�u state is written as the
sum of four terms,

Heff = Hrot + Hsr + Hss + Hso, (11.15)

representing the rotational energy, spin–rotation, spin–spin and spin–orbit interactions.
In a case (b) notation these interaction terms take the following forms:

Hrot = B(N − L)2, (11.16)

Hsr = γT1(N) · T1(S), (11.17)

Hss = −g2
Sµ

2
B(µ0/4π)

√
6 T2(C) · T2(S1, S2), (11.18)

Hso = a′T1(l1) · T (S) + b′T1(l2) · T1(S)

= AT1(L) · T1(S) + 1

2
(a′ − b′)(T1(l1) − T1(l2)) · T1(S). (11.19)
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Figure 11.16. Zeeman energy level diagram for the N = 1 level of para-H2 in the 3�u, v = 1
state, and the transitions responsible for the spectrum shown in figure 11.15.

This particular form of the spin–orbit interaction, due to Fontana [27] and Chiu [28],
was discussed in chapter 8. It is also important to remember that the wave functions
are Λ-doublets, so that parity-conserved combinations should be employed:

|η,Λ; N , S, J ; ±〉= 1√
2
{|η,Λ=1; N , S, J 〉± (−1)N |η,Λ=−1; N , S, J 〉}. (11.20)

This is particularly important in the calculation of the spin–spin matrix elements, as
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we showed in chapter 8. There we introduced two spin–spin constants, defined as
follows:

4λ0/3 = −〈
g2

Sµ
2
B(µ0/4π)C2

0 (θ12, φ12)r−3
12

〉
η
,

(11.21)
λ2 = 〈

g2
Sµ

2
B(µ0/4π)C2

±2(θ12, φ12)r−3
12

〉
η
.

These constants are labelled B0 and B2 by Freund and Miller but, with respect, we will
use the more common labels given in equation (11.21).

The Zeeman Hamiltonian for the d 3�u state of para-H2 takes the now familiar
form

HZ = gSµBT1(B) · T1(S ) + gLµBT1(B) · T1(L) − grµB(T1(N ) − T1(L)) · T1(B).

(11.22)

In addition Freund and Miller [24] included the diamagnetic interaction between the
magnetic susceptibility and the applied magnetic field; we will not describe the details
here.

Freund and Miller [24] determined the values of a number of parameters, some
composite, for the N = 1 level of para-H2,3�u, in its v = 0 to 3 levels. In particu-
lar they determined the value of a parameter A′ containing contributions from both
the spin–orbit and spin–rotation terms, and components of the spin–spin interac-
tion tensor. They were also able to identify the effects of breakdown in the Born–
Oppenheimer approximation, a subject explored theoretically in more depth by
Miller [29].

The MOMRIE spectrum of ortho-H2
3�u, also in the N = 1, v = 0 to 3 levels,

was also investigated by Miller and Freund [25]. This spectrum is considerably more
complicated than that of para-H2 because of the presence of proton hyperfine struc-
ture arising from the total nuclear spin, IT = 1. An experimental spectrum is shown
in figure 11.17. There are, in fact, eighteen hyperfine components but they are not all
resolved in the spectrum shown; some of the components were located by line shape
simulations, individual lines being assumed to have the same Lorentzian shapes and
widths. The energy level diagram shown in figure 11.18 gives the origin of the com-
ponents. At the high magnetic fields used (12 to 14 kG) the decoupled representation
in which MN , MS and MI are specified is the most appropriate, and the observed
transitions all satisfy the selection rules�MN = ±1,�MS =�MI = 0. The labels for
the coupled representation would be appropriate at low magnetic fields, and they are
included in figure 11.18 for purposes of comparison.

The main additions to the theory for ortho-H2 are, of course, the magnetic hyperfine
terms. These were discussed with particular reference to the c 3�u state of ortho-H2 in
chapter 8, the work of Jette and Cahill [30] being particularly important. The magnetic
hyperfine Hamiltonian is usually written as the sum of three terms,

Hhfs = bFT1(S ) · T1(I) + aT1(L) · T1(I)

−
√

10 gSµB gNµN (µ0/4π)T1(S,C2) · T1(I), (11.23)
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Figure 11.18. Energy levels for the N = 1 level of ortho-H2 in its d 3�u v = 0 state at a magnetic
field of about 13 kG, and the eighteen transitions which give rise to the spectrum shown in figure
11.17. This diagram is not drawn to scale.

representing the Fermi contact, electron orbital, and spin–dipolar interactions. The
matrix elements in a case (b) basis were presented in chapter 8; the Fermi contact
constant bF and orbital hyperfine constant, a, are straightforward and defined by

bF = 2µ0

3
gSµB gNµN

∫
ψ∗

elδ(r )ψel dr , a =2gNµBµN (µ0/4π)
∑

j

〈
1
/

r3
j N

〉
. (11.24)
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Here, we recall, that the integral determining bF represents the density of the electronic
wave function at the nucleus, whilst a depends on the position of electron j with respect
to the nucleus N . The dipolar hyperfine constants are more complicated; the matrix
elements of the dipolar term are given by

〈η,Λ;N ,S,J,I,F,MF |−
√

10gSµB gNµN (µ0/4π)T1(S,C2)·T1(I)|η,Λ′;N ′,S,J ′,I,F ′,M ′
F〉

= −
√

10 gSµB gNµN (µ0/4π)δF F ′δMF M ′
F
(−1)J ′+F+I

{
I J ′ F
J I 1

}

× {I (I + 1)(2I + 1)}1/2〈η,Λ; N , S, J‖T1(S,C2)‖η,Λ′; N ′, S, J ′〉

=
√

30gSµB gNµN (µ0/4π)δF F ′δMF M ′
F
(−1)J ′+F+I

{
I J ′ F
J I 1

}

× {I (I + 1)(2I + 1)}1/2{(2J + 1)(2J ′ + 1)}1/2




J J ′ 1
N N ′ 2
S S 1




× {S(S + 1)(2S + 1)}1/2〈η,Λ; N ,Λ‖T2(C)‖η,Λ′; N ′,Λ′〉. (11.25)

In order to evaluate the remaining reduced matrix element in (11.25) it is necessary to
use properly symmetrised combinations of the Λ = ±1 states, as we described in our
discussion of the c 3�u state of H2 in chapter 8. When this is done we arrive at the
definition [30] of two dipolar constants, c and d in Frosch and Foley’s notation [9],
given by

c = 3

2
gSµB gNµN (µ0/4π)

〈
(3 cos2 θ − 1)

r3

〉
,

d = 3

2
gSµB gNµN (µ0/4π)

〈
sin2 θ

r3

〉
. (11.26)

In their first full paper Miller and Freund [25] gave values of the hyperfine param-
eters bF, a and the dipolar parameter c − 3d , but found that the high field MOMRIE
studies are not satisfactory in providing an accurate value of the Fermi contact constant,
bF. In later studies Freund and Miller [31] were able to observe MOMRIE transitions
at much lower magnetic fields (1600 to 2000 G); they measured four transitions in
ortho-H2 and also two in para-H2. In figure 11.19 we show the Zeeman behaviour in
the range 1500 to 2000 G of the hyperfine levels and the transitions involved, noting
that the coupled representation |J, I, F,MF 〉 is now the more appropriate. The tran-
sitions observed, which have a �MS = ±1 selection rule, lose their intensity at high
magnetic fields and become unobservable; their measurement is, however, important
in obtaining a more accurate derivation of the hyperfine parameters. In figure 11.19 we
have included only the MF Zeeman components observed experimentally, but have also
shown their correlation with the |J, I, F,MF 〉 zero-field levels. The most important
result of these studies is that Freund and Miller [31] were able to determine accurate
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Figure 11.19. Zeeman behaviour of the hyperfine levels for H2 in the N = 1 level of the d 3�u

state in the range 1500 to 2100 G, and the transitions observed by Freund and Miller [31].

values of bF for the four vibrational levels v = 0 to 3:

v = 0: bF = 459.4 MHz, v = 1: 448.0, v = 2: 437.9, v = 3: 428.3.
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Table 11.2. Values of the hyperfine and fine structure constants (MHz) in the npπ 3�u

states at Re

np bF (c − 3d) a A (λ0/3 − √
6λ2/4)

2p (c) 456.3 104 26.6 −3717 975.9

3p (d) 465.3 74.4 6.9 −839 233.6

4p (k) — 67.1 2.5 −314 91.9

∞p (H+
2 ) 446.1 66.2 0 0 0

They can be fitted to a quadratic equation in (v+ 1/2), with the result

bF(v) = 465.3 − 12.5(v + 1/2) + 0.45(v + 1/2)2.

Comparisons can then be made with the values of bF obtained for the c 3�u state [32] of
H2, the value obtained by Jefferts [33] for the H+

2 core itself, and theoretical calculations
by Lombardi [34]. Finally, measurements of D2 were made by Miller and Freund [35]
and the resulting isotope effects interpreted in terms of perturbations between the d 3�u

state and 3�+
u states.

11.4.4. H2 in the k 3�u state

Figure 11.11 shows that the next highest energy state in the npπ 3�u Rydberg series is
the k state, for which n = 4. Para-H2 in this state has been studied by Freund, Miller and
Zegarski [36], and ortho-H2 by Miller, Freund and Zegarski [37]. The measurements
were again concerned with the N = 1 rotational level, with v = 0 for the para species,
and v = 0 to 3 for the ortho species. A recording of the v = 1, N = 1 ortho spectrum
is shown in figure 11.20; again the spectrum contains eighteen hyperfine components
and although they are not all resolved, line shape simulations were used to obtain all
of the resonant field values.

The analysis of the k state spectrum followed along the same lines as outlined al-
ready for the d state, and the most interesting result of the study, taken with the earlier
studies of the d and c states was a comparison of the molecular parameters for the
Rydberg states and with that of H+

2 itself. This comparison is presented in table 11.2.
The values given were obtained by extrapolation to the equilibrium internuclear
distance Re.

The Fermi contact constant for the k state was not determined because the low
field transitions could not be observed. The overall behaviour of the parameters can
be understood in terms of the 1sσg and npπ orbitals. The Fermi contact constant,
which is proportional to the unpaired electron density at the nucleus, is determined
almost entirely by the 1sσg electron. The nearly constant value of bF is consistent
with the 1sσg electron being essentially unaffected by the npπu electron. The orbital
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interaction constant, however, depends on the npπu electron, and its inverse third-power
dependence on the electron–nucleus distance r . Note that r increases as n increases
and, of course, its inverse goes to zero when the electron is ionised to leave the H+

2 core.
The interpretation of the dipolar constants c and d is somewhat more compli-

cated, as we showed earlier. They are defined by equations (11.26) and the analysis
of the spectrum yields the value of c − 3d; c and d are not separable experimentally.
The observed behaviour of c − 3d, summarised in table 11.2, is consistent with a rapid
decrease in the contribution of the npπu orbital to both c and d as n increases. The
1sσg contribution to c is relatively constant as n increases, and the limiting value of
c−3d, reached at H+

2 , represents this contribution.
Finally, the spin–orbit and spin–spin constants are expected to approach zero as

we approach the limiting case of H+
2 itself.

There are, of course, many other Rydberg states of H2 which could be studied, at
least in principle. Perhaps enough has already been done, however, to show the trends
to be expected as the ionisation limit of H2 is approached.

11.5. Radiofrequency or microwave/optical double resonance
of alkaline earth molecules

11.5.1. Introduction

The alkaline earth elements are, in order of increasing atomic weight,

Be, Mg, Ca, Sr, Ba, Ra,

forming group IIA of the Periodic Table. Their basic electron configurations are as
follows.

Be : (1s)2(2s)2

Mg: (1s)2(2s)2(2p)6(3s)2

Ca : (1s)2(2s)2(2p)6(3s)2(3p)6(4s)2

Sr : (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(5s)2

Ba : (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)10(5s)2(5p)6(6s)2

Ra : (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)10(4 f )14(5s)2(5p)6

(5d)10(6s)2(6p)6(7s)2

As can be seen, in each case the outermost pair of electrons occupies an s orbital, so that
the molecules are normally divalent. A number of alkaline earth diatomic molecules
have been studied by optical spectroscopy and double resonance methods. We have
already described the very early microwave investigations of BaO in both its ground
X 1�+ and excited A 1�+ states, and now proceed to discuss other molecules in this
series. We describe these in their chronological order.

11.5.2. SrF, CaF and CaCl in their X 2�+ ground states

Microwave/optical double resonance studies have been described for SrF by Domaille,
Steimle and Harris [38], for CaCl by Domaille, Steimle and Harris [39], and for CaF by
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Figure 11.21. Energy level diagram and microwave/optical double resonance transitions for the
X 2�+ state in SrF and similar systems [38].

Nakagawa, Domaille, Steimle and Harris [40]. In all three cases rotational transitions
within the X 2�+ ground state were studied, through optical excitation and fluore-
sescence involving the excited B 2�+ state for CaCl and SrF, and the A 2� state for
CaF. An energy level diagram for SrF is shown in figure 11.21, which does not include
19F hyperfine splittings. The SrF radicals were produced by mixing strontium vapour
and SF6 in a flow cell, and optical excitation was accomplished with a single mode
dye laser. The fluorescence was monitored in the direction perpendicular to the laser
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beam. As shown in figure 11.21, the laser preferentially excited the P2(2) spin-doublet
component, and the detected microwave double resonance then involved the F2 com-
ponents of a rotational transition. Alternatively the laser could be adjusted to excite
the P1(2) spin component, in which case the double resonance transitions shown by
the dashed arrows could be detected. It will be appreciated that an experiment of this
type is only really feasible if the electronic band system involved has been previously
measured and analysed, which was the case here [41].

Six rotational transitions in the v′′ = 0 level and three in the v′′ = 1 level were
observed, the microwave frequency spanning the range 29 to 60 GHz. Although 19F
hyperfine splittings were expected, the particular transitions necessary to determine
the interaction constants were not observable. The experimental results were therefore
fitted to the usual effective Hamiltonian,

Heff = [Bv − DvN2]N2 + γv N · S (11.27)

and accurate rotational and spin–rotation constants obtained for the electronic ground
state. These were combined with the optical data obtained from the tunable laser study
[41] to provide the following constants ( in cm−1) for both electronic states.

B0: X 2�+: 0.249 760 B 2�+: 0.248 617

B1: 0.248 214 0.247 060

Be: 0.250 533 0.249 396

αe: 1.546 × 10−3 1.557 × 10−3

De: 2.49 × 10−7 2.52 × 10−7

γ0: 0.002 49 −0.135 37

γ1: 0.002 48 −0.135 28

The most interesting aspect of these constants is the much larger spin–rotation constant
observed for the upper state, which undoubtedly arises because of second-order mixing
with other nearby electronic states.

Somewhat similar results were obtained for CaF [40], the main difference being
that the excited electronic state involved in the optical pumping was the A 2� state.
Four rotational transitions of CaF in the v′′ = 0 level of the X 2�+ state were observed,
and three in the v′′ = 1 level, spanning the frequency range from 41 to 61 GHz. Again,
19F hyperfine splitting was too small, compared with the line width, to be observed.
We note that these interactions are expected to be small given the predominantly ionic
structure of the molecule, Ca+F−. In the case of CaCl [38] improved ground state
rotational constants were obtained, but chlorine hyperfine structure was not observed.

An important development in microwave/optical double resonance, called
microwave/optical polarisation spectroscopy, was described by Ernst and Törring
[42]. The principles of this technique are illustrated in figure 11.22. A linearly
polarised probe beam from a tunable laser is sent through the gas sample and a nearly
crossed linear polariser, before its final detection. Polarised microwave radiation
resonant with a rotational transition in the gas sample is introduced via a microwave
horn as shown, and resonant absorption results in a partial change in polarisation of
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the laser radiation; there is a consequent change in the laser beam intensity at the
detector. The technique was tested using BaO as the resonant molecule, and the re-
sults compared with those obtained by Field, Bradford, Harris and Broida [15] de-
scribed earlier in this chapter. Two important differences were noted, arising from
the fact that both the laser and microwave powers necessary were very much lower
in the polarisation experiment. The sensitivity of the polarisation method was much
higher, and the double resonance line width was much smaller. Subsequent experi-
ments by Ernst [43] on the X 2�+ state of SrF demonstrated the resolution enhance-
ment obtainable with the new technique. The fluorine hyperfine splitting of the lowest
rotational transition, N = 1 ← 0, illustrated in the energy level diagram shown in
figure 11.23, was readily resolved, with line widths down to 600 kHz obtained. An im-
portant aspect of the polarisation technique is that it does not depend upon fluorescence
monitoring.

Remarkable enhancement of the spectroscopic resolution was obtained by Ernst
and Kindt [44] in studies of a rotational transition of CaCl in its ground state, where
line widths as small as 15 to 20 kHz enabled the chlorine hyperfine structure to be
resolved. Their experimental arrangement is illustrated in figure 11.24; they used
a pump/probe technique (PPMODR) similar to that described in chapter 8 which
was used by Rosner, Holt and Gaily [45] to study radiofrequency hyperfine tran-
sitions in the Na2 molecule. The molecular beam is exposed to a perpendicular
laser beam in two regions of the apparatus, as shown, with exposure to microwave
radiation in the intermediate (C) region. Ernst and Kindt were the first to use this
method to study rotational transitions, a method which has since been employed by
many others, as we describe later in this chapter. The high resolution is, in part, a con-
sequence of the fact that low laser powers can be used to monitor the fluorescence. The
use of molecular beams also removes problems associated with collisional broadening.

11.6. Radiofrequency or microwave/optical double resonance
of transition metal molecules

11.6.1. Introduction

The first row of transition elements, with their lowest energy electron configurations,
are as follows.

Sc: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)1(4s)2

Ti: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)2(4s)2

V: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)3(4s)2

Cr: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)5(4s)1

Mn: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)5(4s)2

Fe: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)6(4s)2

Co: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)7(4s)2

Ni: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)8(4s)2

Cu: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)1

Zn: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2
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1/2

Figure 11.23. Energy level diagram and observed transitions for SrF in its X 2�+ state,
showing the 19F hyperfine splitting [43], observed because of the higher resolution obtained
with the microwave/optical polarisation method. This diagram may be compared with figure
11.21, appropriate for the earlier lower resolution studies employing conventional fluorescence
detection.

As we have seen elsewhere in this book, the techniques of high-resolution rotational
spectroscopy are beginning to be applied to transition metal molecules, and this is
particularly true of double resonance methods. We now review some of the work which
has been described, again in a mainly chronological order.
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11.6.2. FeO in the X 5� ground state

The inherent sensitivity of double resonance methods has led to studies of transition
metal and rare earth compounds which would be difficult with more conventional
methods. In chapter 10 we described the study of rotational transitions of the FeO
molecule by Endo, Saito and Hirota [46] using a conventional free-space absorption
cell, and by Allen, Ziurys and Brown [47] who used a high-temperature oven to study
the reaction between iron vapour and nitrous oxide. We also mentioned, however, that a
comprehensive study had been made by Kröckertskothen, Knöckel and Tiemann [48]
using a double resonance technique which we now describe in detail. Allen, Ziurys
and Brown [47] combined the data from different experiments to produce the best
analysis.

The principles of the double resonance experiment are illustrated in figure 11.25.
A beam of FeO is produced by an oven/discharge combination [49]. A cw, single-
frequency dye laser beam is split into two beams of equal intensity; one serves as a
pump beam and intersects the FeO molecular beam at right angles just after a skim-
mer. The second laser beam intersects the molecular beam, again at right angles,
some 30 cm downstream, and acts as the probe beam. The laser frequency is
chosen to pump a specific rovibronic transition, and the fluorescence from the excited
state is monitored. Between the two laser beams the molecular beam is subjected to
microwave radiation, again propagated perpendicular to the molecular beam; when the
resonance condition for a rotational transition is satisfied, the population of the upper
rotational level is enhanced, leading to an increase in fluorescence intensity, which is
detected. The microwave power is amplitude modulated, and the synchronous mod-
ulated component of the fluorescence is processed with a lock-in amplifier. As with
most double resonance experiments, a detailed knowledge of the electronic spectrum
is a prerequisite for success. This had been provided earlier by Taylor, Cheung and
Merer [50].

A 5� state has five fine-structure components, corresponding toΩ= 4, 3, 2, 1, 0.
The spin-orbit constant A has the value –94.948 cm−1, so that theΩ= 4 component has
the lowest energy, as shown in figure 11.26, which is a repeat of the energy level diagram
given in chapter 10. Each of these fine-structure states has a two-foldΛ-degeneracy, and
the Λ-doublet splitting was observed in the Ω= 0 and 1 states in the pure rotational
studies. The spin–orbit, spin–spin and spin–rotation effective Hamiltonian for a 5�

state, expanded in the molecule-fixed axis system and assuming case (a) coupling, is
as follows [50]:

Hso + Hss + Hsr = AT1
0(L)T1

0(S ) + (2
√

6/3)λT2
q = 0(S, S)

+ (
√

10/5)ηT1
q = 0(L)T3

q = 0(S, S, S) + (
√

70/6)θT4
q = 0(S, S, S, S)

+ γT1(J − S) · T1(S ). (11.28)

The most important terms are the first two, the two constants having the values A =
−94.948 cm−1, λ= 0.9326 cm−1; figure 11.26 is based upon these two terms.
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−1 W

−

−

−

−

Figure 11.26. Fine structure splitting in the X 5� state of FeO, with the rotational levels and
transitions studied [48]. This diagram is drawn to scale.

There is, then, a sequence of rotational levels for each fine-structure component,
as illustrated in figure 11.26. The rotational Hamiltonian takes the conventional form

Hrot = B[T1(J) − T1(S)]2 − D[T1(J − S) · T1(J − S)]2. (11.29)

Within the Ω= 4 fine-structure component, ten rotational transitions were ob-
served in the double resonance studies, with J values ranging from 4 to 14, as shown
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ν = 214 376.336 MHz

ν = 215 669.777 MHz

ν = 216 913.277 MHz
W = 2

W = 3

W = 4

Figure 11.27. Microwave/optical double resonance lines observed [48] for the J = 7 ← 6 tran-
sition in the three lowest fine structure components of X 5� FeO.

in the figure. Three examples of the observed microwave resonances, all for J= 7 ← 6
transitions are shown in figure 11.27; the intensities decrease asΩ decreases, presum-
ably because of decreasing thermal populations of the higher levels. Nevertheless eight
rotational transitions within the Ω= 3 fine-structure state were observed, and seven
within the Ω= 2 component. The observed transitions all occur in the range 123 to
429 GHz. From these data, combined with the earlier pure microwave data [46, 47] a set
of the best constants for FeO in its ground state was derived. The electronic ground state
of FeO is probably (3dδ)3(4sσ )1(3dπ )2, but unfortunately there is no nuclear hyperfine



Radiofrequency or microwave/optical double resonance of transition metal molecules 913

structure to provide more detailed information about the nature of the highest occupied
molecular orbitals because I is zero for both 56Fe and 16O, the dominant isotopes for
each element.

The values of the molecular parameters (in MHz) obtained from a combination of
the pure microwave and double resonance studies were as follows:

A = −2 846 420, AD = −2.403 407, B = 15 493.632 55, D = 0.021 628 4,

η= 1079.08, λ= 27 928, λD = −0.176 394, θ � 0, m̃�= −397.55,

ñ�= 2.406, õ�= −0.021 35.

The last three constants above are Λ-doubling parameters for a molecular � state.

11.6.3. CuF in the b 3� excited state

The low-lying electronic states of CuF are predominantly ionic in character; they have
been studied both experimentally through their electronic spectra [51], and theoretically
through ab initio calculations [52]. The ground 1�+ state wave function arises mainly
from the electron configuration Cu+(3d10)F−(2p6) and the low-lying excited electronic
states result from promotion of an electron on the Cu+ atom from the 3d to the 4s
orbital. A manifold of singlet and triplet�,� and� states arises, lying relatively close
in energy. The b 3�–X 1�+ system has been studied by laser-induced fluorescence
[53, 54], leading to the possibility of microwave double resonance studies of the excited
b 3� state. These have been performed by Steimle, Brazier and Brown [55], and
figure 11.28 shows the energy level diagram relevant to the study of the lowest rotational
transition, J = 1 – 0, in the 3�0+ fine-structure component. The triplet splitting of
the J = 1 level arises from hyperfine interaction with the 63Cu nucleus, which has
spin I = 3/2, and the observed microwave spectrum exhibiting the splitting is shown
in figure 11.29. Hyperfine splitting from the 19F nucleus was too small to be resolved
in this case, but was observed in other transitions. Apart from the transition described
in figure 11.28 which was observed at 23 GHz, the J = 2 – 1 rotational transition in
the 3�0 state was observed at 46 GHz, and anΩ-doubling transition in the J = 7 level
of the 3�1 component was also measured at 16 GHz.

The analysis of the spectrum was accomplished using a case (a) basis, with the
addition of two nuclear spins, I1 and I2, for 63Cu and 19F respectively. The basis
functions therefore take the form |η,Λ; S,Σ; J,Ω, I1, F1, I2, F,MF 〉, and leaving
aside nuclear spin interactions, the theory follows closely the same path as that already
described for 3� CO in chapters 9 and 10. The effective Hamiltonian is the sum of
terms representing the spin–orbit, rotational, spin–rotation, spin–spin and centrifugal
distortion contributions and is written [56]:

Heff = AT1
0(L)T1

0(S ) + B(J − S)2 + γ (T1(J) − T1(S )) · T1(S )

+ (2
√

6/3)λT2
0 (S, S) + (1/2)(o + p + q)(S2

+ + S2
−)

− (1/2)(p + 2q)(J+S+ + J−S−) + (1/2)q(J 2
+ + J 2

−). (11.30)
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3
0
+

+1

0

J = 0

J = 1

Figure 11.28. Energy level diagram and observed transitions for the microwave/optical double
resonance spectrum of CuF. Optical excitation was accomplished using a rhodamine cw dye
laser, pumped by an argon ion laser [53].

The matrix elements of these terms in the chosen case (a) basis were given originally
in irreducible tensor form by Brown, Kopp, Malmberg and Rydh [57] and Brown and
Merer [58], and are summarised in chapter 9. All of the molecular constants appearing
in (11.30) were determined from the double resonance measurements; we discuss them
in due course.

The magnetic hyperfine terms for the 63Cu and 19F nuclei may be expressed in
molecule-fixed cartesian form as follows:

Hhfs = Hhfs,1 + Hhfs,2, (11.31)
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22 921.5 MHz

23 012.7

23 076.0

Frequency / MHz

Figure 11.29. Experimental recording of the J = 1 − 0 rotation transition in CuF, showing hy-
perfine splitting from the 63Cu nucleus [53].

where

Hhfs,1 = a1 I1z Lz + bF,1 I1 · S + (1/3)c1(3I1z Sz − I1 · S) − (1/2)d1(S+ I1+ + S− I1−),

(11.32)

Hhfs,2 = a2 I2z Lz + bF,2 I2 · S + (1/3)c2(3I2z Sz − I2 · S) − (1/2)d2(S+ I2+ + S− I2−).

(11.33)

Alternatively, in irreducible tensor form, we may write

Hhfs,1 = a1T1
0(L)T1

0(I1) + bF,1T1(I1) · T1(S )

−
√

10 gSµB gN ,1µN (µ0/4π)T1(S,C2) · T1(I1), (11.34)

Hhfs,2 = a2T1
0(L)T1

0(I2) + bF,2T1(I2) · T1(S )

−
√

10 gSµB gN ,2µN (µ0/4π)T1(S,C2) · T1(I2). (11.35)

In either case there are eight magnetic hyperfine constants, four for each nucleus, whose
values will be discussed in due course.

Finally there is the electric quadrupole interaction for the 63Cu nucleus, with matrix
elements given by:

〈η,Λ; S,Σ; J,Ω, I1, F,MF | − eT2(∇E) · T2(Q)|η,Λ′; S,Σ; J ′,Ω′, I1, F,MF 〉

= −(−1)J ′ + I + F eQ

2
{(2J + 1)(2J ′ + 1)}1/2

{
J ′ I F
I J 2

}(
I 2 I

−I 0 I

)−1

×
∑

q

(−1)J−Ω
(

J 2 J ′

−Ω q Ω′

)
〈η,Λ|T 2

q (∇E)|η,Λ′〉. (11.36)
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For a � state, two quadrupole parameters arise from (11.36), which are

eQq0 = −eQ〈η,Λ= ±1|2T2
0(∇E)|η,Λ= ±1〉,

(11.37)
eQq2 = −eQ〈η,Λ= ±1|2

√
6T2

±2(∇E)|η,Λ= ∓1〉.
The analysis described by Steimle, Brazier and Brown [55] used double resonance

and fluorescence data obtained for the b 3� state and also, from microwave studies [59],
the X 1�+ ground state. The following values (in cm−1) of the molecular constants
for the b 3� state (v = 0) were determined:

A = −412.846, λ= −18.799, B = 0.374 763, D = 0.5102 × 10−6, γ = 0.320,

o = 320, p = −0.600, q = 0.317 × 10−3, a(Cu) = 0.0255, bF(Cu) = 0.1304,

c(Cu) = 0.0064, d(Cu) = −0.0555, eq0 Q(Cu) = −0.29 × 10−3,

eq2 Q(Cu) = 0.0161, d(F) = 0.00927.

At the beginning of this section we noted the fact that the b 3� state is one of
a manifold of close-lying excited states. The spin–orbit interaction mixes singlet and
triplet states and ab initio calculations result in the following wave functions for the
fine structure components of the b 3� state:∣∣#(

b3�2
)〉= 1.0|3�〉∣∣#(

b3�1
)〉= −0.18|3�+〉 + 0.95|3�〉 + 0.09|3�〉 − 0.25|1�〉∣∣#(

b3�0+
)〉= −0.45|1�+〉 + 0.89|3�〉∣∣#(

b3�0−
)〉= −0.24|3�+〉 + 0.97|3�〉. (11.38)

We see that the 3�0+ component is heavily mixed with the 1�+ state, and calculations
of theΛ-doubling constants p and q arising solely from this mixing give values which
are in good agreement with experiment. Similarly the mixing of the 3� state with the
3�+ state is calculated to produce a spin-rotation constant γ of 0.286 cm−1, which is
quite close to the measured value of 0.320.

The nuclear hyperfine constants provide the best information about the electronic
wave function. As we have seen elsewhere, the four magnetic hyperfine constants (in
cm−1) are related to the electron distribution by the expressions:

a = (µ0/4πhc)
∑

i

2µB gNµN

〈
1
/

r3
i

〉
,

b = (µ0/hc)
∑

i

(2/3)gSµB gNµN 〈δ(r i )〉,

c = (µ0/4πhc)
∑

i

(3/2)gSµB gNµN

〈
(3 cos2 θi − 1)

/
r3

i

〉
,

d = (µ0/4πhc)
∑

i

(3/2)gSµB gNµN

〈
(sin2 θi )

/
r3

i

〉
. (11.39)

The summation is over the unpaired electrons which have spherical polar coordinates
ri and θi , and µ0 is the permeability of free space. The angular averages over a 3d
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orbital needed for the evaluation of the above expressions are

〈3dπ |(3 cos2 θ − 1)|3dπ〉 = 2/7, 〈3dπ | sin2 θ |3dπ〉 = 4/7. (11.40)

Combined with a value of r−3 for a 3d electron [60], these angular averages give the
following theoretical values for the 63Cu magnetic hyperfine constants (in cm−1):

a = 0.035 bF = 0.098, c = 0.0075, d = 0.015.

Considering the extreme simplicity of the model, these constants agree tolerably well
with those measured, except for the d constant which is the wrong sign. As we have
said many times elsewhere, the measured constants should be treated as benchmarks
for the accuracy of ab initio calculations. At least the starting point of this discussion,
that CuF in the excited b 3� state is essentially ionic, seems to be correct.

11.6.4. CuO in the X 2� ground state

A microwave/optical double resonance spectrum of CuO was first observed by Gerry,
Merer, Sassenberg and Steimle [61] who studied the two lowest rotational transitions in
the X 2�1/2 ground state. An energy level diagram for the lowest rotational transition,
J = 3/2 ← 1/2, is shown in figure 11.30.Λ-doubling separates the e and f parity states,
which are then further split by 63Cu hyperfine interaction. In subsequent work, Steimle,
Chang and Nachman [62] were able to observe the direct radiofrequency Λ-doubling
transitions within the J = 3/2 level. The experiments relied upon dye laser pumping of
appropriate rovibronic components of the A 2�−–X 2� band system, and monitoring
the visible fluorescence from the excited state. The CuO vapour was produced by
heating powdered copper metal to 1500 ◦C, and reacting the gaseous Cu with N2O in
an argon carrier gas stream.

The observed transitions ranged in frequency from 778 to 66 550 MHz. The
molecule conforms very well to Hund’s case (a) coupling in the low rotational levels
studied, and the effective Hamiltonian is therefore of the same form as that previously
used in chapter 9 for the ClO radical, including the presence of one nucleus of spin 3/2
involved in both magnetic and electric quadrupole interactions. Unlike ClO, however,
the Λ-doubling is resolved in CuO. The nuclear spin-free effective Hamiltonian for
v = 0, representing the rigid body rotation and spin–orbit coupling is

Heff = B0{T1(J) − T1(S )}2 + AT1(L) · T1(S ) (11.41)

whilst the nuclear hyperfine terms are, as usual,

Heff = Hhfs + HQ

= aT1(I) · T1(L) + bFT1(I) · T1(S )

−
√

10 gSµB gNµN (µ0/4π)T1(I) · T1(S,C2) − eT2(Q) · T2(∇E). (11.42)

The values of the molecular constants obtained from the analysis of both types of
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Figure 11.30. Energy level diagram and observed microwave transitions for CuO in the X 2�1/2

state [61]. The four �J = 0 Λ-doublet transitions in the J = 3/2 level are shown on the right-
hand side.

microwave spectra were as follows (in MHz):

A = −8 278 319.5(= −276.137 cm−1), B = 132 53.2, p = 413.2,

a = 218.2, bF = −429.5, d = 139.8, eq0 Q = −3.8.

Note that, as in other cases, complete separation of the Fermi contact and dipolar
hyperfine terms cannot be achieved because only one of the fine-structure states, the
2�1/2, could be studied thoroughly.

High level ab initio calculations have been described for CuO [63, 64]. The ground
state electronic wave function is fairly complicated, but the contributing configuration
which gives rise to the 63Cu hyperfine interaction may be written.

Cu(3d94s4p) O(2p4): (8σ )1 (1δ)4 (3π )4(9σ )2 (4π )3 (10σ )1.

The 8σ , 3π and 1δ orbitals are essentially the copper 3d atomic orbitals, and the
10σ is the copper 4s orbital. The 9σ molecular orbital is a 2pσ (O) +4pσ (Cu) bonding
molecular orbital, whilst the 4π orbital is a mixture of pπ atomic orbitals on oxygen and
copper. The electronic wavefunction for the 2� state resulting from this configuration
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is given by a linear combination of three-electron Slater determinants:

#(2�) = (1/
√

6)




2|8σ (1)α(1)4π (2)α(2)10σ (3)β(3)|
−|8σ (1)α(1)4π (2)β(2)10σ (3)α(3)|
−|8σ (1)β(1)4π (2)α(2)10σ (3)α(3)|


 . (11.43)

In principle one can use this wave function to calculate the magnetic and electric
hyperfine parameters. In practice, it is interesting to follow the arguments of Gerry,
Merer, Sassenberg and Steimle [61] as they attempt to find a semi-empirical description
of the bonding in CuO which also gives a reasonable quantitative interpretation of the
molecular constants. It is, evidently, not easy to find a satisfactory compromise between
the physically visual semi-empirical model, and the full blown ab initio calculations.

11.6.5. ScO in the X 2�+ ground state

Scandium is the first member of the 3d transition metal elements and the ScO molecule
has been studied through its electronic spectrum and microwave/optical double reso-
nance spectrum. The ground state of ScO is X 2�+ and the A 2�–X 2�+ emission band
system has been recorded and analysed [65, 66], paving the way for more recent double
resonance studies by Childs and Steimle [67]. Their investigations involved transitions
within the electronic ground state, and employed the molecular beam pump/probe sys-
tem, the principles of which were described in figure 11.25. The nature of the double
resonance transitions studied is described in figure 11.31. There is a very large Fermi
contact interaction between the electron spin and the I = 7/2 nuclear spin of 45Sc
which is present in 100% natural abundance. In the resulting coupling scheme G = I
+ S, the quantum number G takes values of 4 or 3, and for each rotational level N ,
the total angular momentum F takes values from |N − G| to N + G, as shown in
figure 11.31 which is for N = 40. The observed double resonance transitions were
either of the type �G = ±1, occurring at around 8 GHz, or of the type �G = 0,
occurring in the radiofrequency region below 100 MHz. An example of an observed
radiofrequency resonance, involving v = 2, N = 30, G = 4 is shown in figure 11.32.
All of the observed resonances, microwave or radiofrequency, were magnetic-dipole
allowed transitions. They involved the v = 0, 1 and 2 vibrational levels, with N values
ranging from 10 to 75.

The resonance spectra were analysed in terms of the conventional effective
Hamiltonian, written in terms of the Frosch and Foley hyperfine constants [9]:

Heff = γ N · S + bS · I + cIz Sz + cI N · I + eq0 Q

4I (2I − 1)

(
3I 2

z − I2
) + Hcdsr + Hcdhfs.

(11.44)

The centrifugal distortion terms in (11.44) were incorporated rather simply by making
the replacements

b → b + bD N (N + 1), c → c + cD N (N + 1),

γ → γ + γD N (N + 1) + γH N 2(N + 1)2. (11.45)
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Figure 11.31. Energy level diagram for the N = 40 level of ScO in its X 2�+ ground state, and
the observed radiofrequency transitions [67].
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Table 11.3. Spectroscopic parameters (in MHz) for the v =0, 1 and 2 levels of the
X 2�+ state of ScO, determined by radiofrequency/optical double resonance

Parameter v = 0 v = 1 v = 2

γ 3.217 5 4.434 4 5.702 9

b 1922.534 1923.848 1925.124

c 74.416 74.656 74.884

eq0 Q 72.240 71.663 71.177

cI 0.021 81 0.022 08 0.022 38

γD 2.323 × 10−4 2.432 × 10−4 2.538 × 10−4

γH 1.0 × 10−9 0.79 × 10−9 0.62 × 10−9

bD 4.615 × 10−4 4.542 × 10−4 4.49 × 10−4

cD 1.47 × 10−4 1.49 × 10−4 1.54 × 10−4

57.75 57.85

Frequency / MHz

Figure 11.32. Observed radiofrequency/optical double resonance line for ScO [67]. This line
arises from the F = 26–27 transition in the v = 2, N = 30, G = 4 level of the X 2�+ ground
state.

The final results of the analysis, which gave an excellent fit of observed and calculated
transition frequencies, are presented in table 11.3.

Two features of the results presented in the table are of particular interest. The
first is the very large Fermi contact interaction constant, given by bF = b + (c/3) ,
of 1.947 GHz. The calculated value for an unpaired electron in a 4s atomic orbital
of Sc is 2.823 GHz, suggesting that the orbital of the unpaired electron in ScO has
69% 4s character, or an atomic orbital coefficient of 0.83. Ab initio calculations by
Bauschlicher and Langhoff [68] indicate that the primary electron configuration for
the ground state of ScO is

(core)(3π )4(7σ )2(8σ )1
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where the molecular orbitals can be represented approximately as

3π ≈ 3dπ (Sc) + 2pπ (O), 7σ ≈ 3dσ (Sc) + 2pσ (O), 8σ ≈ 4sp(Sc).

The unpaired electron occupies the 8σ molecular orbital which is essentially an sp
hybridised orbital, leading to the large Fermi contact interaction observed.

The other particularly interesting feature of the data in table 11.3 is the very large
vibrational dependence of the spin–rotation constant γ . There is no doubt that this
dependence arises because the spin–rotation interaction is dominated by the second-
order mixing of excited electronic states with the ground state; specifically we may
write

γ (2) = 2
∑
η′,v′

〈
X 2�+

1/2

∣∣B(r )L∓|η′,Λ′〉〈η′,Λ′|ςi l
±
i

∣∣X 2�+
1/2

〉
E(η′,Λ′) − E(X 2�+)

. (11.46)

The sum in (11.46) is taken over all vibronic 2�1/2 states, and the strong vibrational
dependence of γ is thought to be due to the competing effects of at least two different
excited 2�1/2 states. It is a problem to test the accuracy of ab initio calculations; there
is certainly no simple semi-empirical explanation.

The interpretation of the ScO spectrum raises again the problem that even in this
relatively simple three-valence electron problem there is a manifold of closely-spaced
excited electronic states. Interactions between these states, and with the ground state,
determine the values of some of the molecular constants, so that a theory which is
satisfactory for understanding ground state properties must also be good for the excited
states.

11.6.6. TiO in the X 3� ground state and TiN in the X 2�+ ground state

Pure rotational transitions in the ground states of TiO and TiN have been described
by Namiki, Saito, Scott Robinson and Steimle [69], following earlier experiments
by Steimle, Shirley, Jung, Russon and Scurlock [70], which used microwave/optical
double resonance molecular beam methods. The ground state of TiO is X 3�, with
three fine-structure components 3�1, 3�2 and 3�3. These have spin–orbit energies
equal to AΛΣ, and since A = 50.651 cm−1, the lowest state is the 3�1. The three
fine structure states are shown schematically in figure 11.33, with the lower rotational
levels and observed rotational transitions indicated. As can be seen, transitions within
all three fine-structure states were observed, covering a frequency range from 63 to
448 GHz. Each rotational level actually has a two-fold Λ-doubling (not shown in the
figure) which could not be resolved in the conventional rotational spectrum. It could,
however, be observed in the double resonance studies of the lowest rotational levels
because of the optical selection rules; individual parity components could be selectively
laser-pumped in the B 3�0 ← X 3� band system.

The effective Hamiltonian used to analyse the spectrum was, in cartesian form,

Heff = ALz Sz + (AD/2)[Lz Sz, N2]+ + B N2−DN4 + H N6 + (2λ/3)
(
3S2

z − S2
)

+ (λD/3)
[(

3S2
z − S2

)
, N2

]
+ + (1/2)o�(S2

+ J 2
+ + S2

− J 2
−). (11.47)
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Figure 11.33. Energy level diagram and observed microwave transitions for TiO in its 3� state.

The last term in this effective Hamiltonian represents the Λ-doubling. The following
values of the constants (in MHz) were determined for the v = 0 level:

A = 1 518 477.2, AD = −0.794 22, B = 16 003.408 14, D = 0.018 060 6,

H = −1.53 × 10−7, λ= 52 380.0, λD = 0.014 94, o� = 0.000 73.

The dominant electronic configuration for TiO in its X 3� ground state may be
written (core) (9σ )1 (1δ)1 where the 9σ orbital is essentially the 4s orbital of the
Ti2+ ion and the 1δ orbital is essentially a 3d orbital of Ti2+. It is also necessary
to provide wave functions for the low-lying excited electronic states of TiO because
both the spin–spin constant λ and the Λ-doubling constant o� for the ground state
depend upon mixing of excited states produced by a combination of the rotational and
spin–orbit interactions. Namiki, Saito, Robinson and Steimle [69] give an acceptable



924 Double resonance spectroscopy

rationalisation, but the ab initio calculations one might wish to see have not yet been
performed.

TiN has an X 2�+ ground state and rotational transitions in the v = 0 level have
been measured and analysed [69, 70]; pure millimetre wave and microwave/optical
double resonance methods were used, over a frequency range from 37 to 446 GHz.
14N hyperfine structure was observed for the two lowest rotational transitions, and the
spectrum analysed using the conventional effective Hamiltonian, again expressed in
cartesian form:

Heff = B N2 − DN4 + H N6 + γ N · S + bF I · S + (c/3)(3Iz Sz − I · S)

+ cI I · N + eq0 Q
3I 2

z − I2

4I (2I − 1)
. (11.48)

TiN is different from ScO discussed earlier because the 14N Fermi contact interaction
is quite small; in fact the rotational levels and observed transitions for TiN are similar
to those of the CN radical, described in chapter 10. The following molecular constants
(in MHz) were determined for X 2�+ TiN in the v = 0 level:

B = 18 589.350 81, D = 0.026 252, H = −1.72 × 10−7, γ = −52.2050,

γD = −0.000 44, bF = 18.4936, c = 0.1661, cI = 0.013 70,

eq0 Q = −1.5148.

The implications of these constants for the electronic structure of TiN were not seriously
discussed.

11.6.7. CrN and MoN in their X 4�− ground states

Both CrN and MoN have 4�− ground states, and rotational transitions have been
observed by Namiki and Steimle [71] using the molecular beam pump/probe
microwave/optical double resonance method. Energy level diagrams for both molecules
are shown in figure 11.34, together with the observed rotational transitions. We de-
scribed the far-infrared laser magnetic resonance spectrum of CH in its 4�− ex-
cited state in chapter 9. In that case the most appropriate coupling scheme was
Hund’s case (b), whereas for CrN and MoN the lower rotational levels conform to
Hund’s case (a); there are two fine-structure components with |Ω| = 3/2 or 1/2 as
shown in figure 11.34. Each rotational level possesses an additional doublet split-
ting due to Ω-doubling, particularly large for the Ω= 1/2 state, as shown in the fig-
ure. Also resolved in both molecules was 14N hyperfine structure; examples of the
observed double resonance spectra are shown in figure 11.35. The microwave fre-
quency ranged from 43 to 79 GHz for CrN, and from 14 to 76 GHz for MoN, and in
both cases the optical pumping transition was A 4� ← X4�−. We should add that
figure 11.34 applies to the 52CrN and 98MoN isotopomers, where the metal nucleus
has I = 0.



W

W

W

−1
−1

W

Fi
gu

re
11

.3
4.

E
ne

rg
y

le
ve

ld
ia

gr
am

fo
r

th
e

X
4
�

−
st

at
es

of
C

rN
an

d
M

oN
,a

nd
th

e
ob

se
rv

ed
m

ic
ro

w
av

e
tr

an
si

ti
on

s
[7

1]
.



926 Double resonance spectroscopy

50 946.7 50 948.3

14 942.2 14 944.6

MoN  4Σ−
1/2 J �3/2--1/2, e--e

CrN   4Σ−
3/2 J � 7/2--7/2,  f--e

F � 5/2--3/2

F � 3/2--1/2 F �3/2--3/2

F = 1/2--3/2
F �1/2--1/2

F � 7/2--7/2

F � 5/2--5/2

Frequency / MHz

Frequency / MHz

Figure 11.35. Top: microwave/optical double resonance transitions [71] in MoN (X 4�−
1/2).

Bottom: microwave/optical double resonance transitions [71] in CrN (X 4�−
3/2).

The effective Hamiltonian used by Namiki and Steimle [71], written in spherical
tensor form, was as follows:

Heff = B[T1(J ) − T1(S)]2 + λ(2
√

6/3)T 2
0 (S, S) + γ [T1(J) − T1(S )] · T1(S )

+ 10γS
T3(L2, J ) · T3(S, S, S)√

6〈Λ|T 2
0 (L2)|Λ〉 + bFT1(I) · T1(S )
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−
√

10 gSµB gNµN (µ0/4π)T1(I) · T1(S,C2) − eT2(Q) · T2(∇E)

+ 5
√

14 bS
T1(I) · T1{T2(L2),T3(S, S, S)}

3〈Λ|T 2
0 (L2)|Λ〉 . (11.49)

The fourth and last terms in (11.49) are spin–orbit distortion corrections to the spin–
rotation and Fermi contact interactions. The hyperfine and quadrupole terms in this
Hamiltonian refer to the 14N nucleus.

The matrix elements of the effective Hamiltonian are calculated for case (a) basis
functions of definite parity (−1)J+S+s :

# = (1/
√

2){|η,Λ; S,Σ; J,+Ω, I, F,MF 〉 ± |η,−Λ; S,−Σ; J,−Ω, I, F,MF 〉}.
(11.50)

Case (a) is the most appropriate basis because the spin–spin parameter λ for both
molecules is large, as a result of strong spin–orbit coupling. The values of the molecular
parameters (in MHz) for CrN are:

B = 18 702.954, D = 0.015, λ= 78 281.32, γ = 209.521, γS = −0.224,

bF = −0.285, bS = −0.014, c = 4.34, eq0 Q = −2.079.

For the MoN the corresponding parameters are:

B = 15 419.568, D = 0.0148, λ= 643 474, γ = 334.987,

bF = 0.377, c = 4.182, eq0 Q = −2.310.

In addition to the above parameters, determined from the microwave data, the metal
Fermi contact interaction constants in 97MoN and 53CrN were determined from the
optical spectra [72] to be –508 and –179.8 MHz respectively. The element molybdenum
belongs to the 4d transition metal row, which we will discuss further in due course. For
the CrN molecule in its ground state, ab initio calculations [73] and molecular orbital
considerations [74] suggest that the dominant electron configuration may be written

(core)(8σ )2(3π )4(9σ )1(1δ)2.

The 8σ and 3π molecular orbitals result from coupling the N 2p0 and 2p±1 orbitals
with the Cr 3d0 and 3d±1 orbitals respectively. The 9σ molecular orbital is a 4p0 + 4s
hybrid pointing away from the N atom, whilst the 1δ is essentially a 3d±2 atomic-like
orbital. The 53Cr Fermi contact interaction is, of course, dependent on the s-orbital spin
density. The spin–spin and spin–rotation constants are determined by the second-order
mixing of low-lying electronic states with the ground state; there are, however, a large
number of possible excited states, so that an unambiguous quantitative interpretation
is difficult without recourse to ab initio calculations.

11.6.8. NiH in the X 2� ground state

The far-infrared laser magnetic resonance spectrum of NiH has been studied by Nelis,
Beaton, Evenson and Brown [75] and was discussed in detail in chapter 9. The electronic
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ground state is X 2�, with the 2�5/2 fine-structure component lying about 1000 cm−1

below the 2�3/2 state. Rotational transitions in both fine-structure states were studied
in the magnetic resonance spectrum, and some information about the Λ-doubling and
magnetic hyperfine parameters was obtained. However, more accurate information for
the upper spin component was obtained by Steimle, Nachman, Shirley, Fletcher and
Brown [76] using microwave/optical double resonance. Specifically they were able to
make direct measurements ofΛ-doubling transitions, split by proton hyperfine interac-
tion. An energy level diagram for the lowest rotational levels of the 2�3/2 component,
and the transitions measured, is shown in figure 11.36. These transitions fall in the
range 1.137 to 22.953 GHz.

The laser-induced fluorescence spectrum arising from the B 2�3/2 (v′ = 0) −
X 2�3/2 (v′′ = 0) band system was used, individual rovibronic transitions being
pumped with a cw dye laser system operating over the range 658 to 659 nm. The
lowest frequency Λ-doubling microwave transition, with hyperfine splitting, is shown
in figure 11.37. Transitions from the naturally occurring isotopomers 58NiH and 60NiH
were used in the final analysis.

In our discussion of the far-infrared laser magnetic resonance spectrum of NiH
in chapter 9, a fairly general effective Hamiltonian was presented. This Hamiltonian
included terms which would produceΛ-doubling in a� state, an unusual situation be-
cause one requires electronic orbital angular momentum operators to connectΛ= + 2
and Λ= − 2 components [77]. The effective Hamiltonian used to analyse the mi-
crowave/optical double resonance spectrum of NiH was as follows:

Heff = ALz Sz + B N2 − DN2 N2 + γ N · S + (1/2)q�(J 4
− + J 4

+)

− (1/2)(p� + 4q�)(S+ J 3
+ + S− J 3

−) + aIz Lz + bF I · S

+ (1/3)c(3Iz Sz − I · S) − (1/2)d�(J 2
+ I+S+ + J 2

− I−S−). (11.51)

The last four terms in this expression describe the magnetic hyperfine interaction;
three of them are familiar, but the final term is new to us and is aΛ-doubling magnetic
hyperfine term [77]. Its matrix elements are found to be the following:

〈Λ, S,Σ, J,Ω, I, F |−(1/2)d�(J 2
+ I+S+ + J 2

− I−S−)|Λ′, S,Σ′, J ′,Ω′, I, F〉

= d�(−1)J ′+I+F

{
J I F
I J ′ 1

}
[I (I + 1)(2I + 1)(2J + 1)(2J ′ + 1)]1/2

× (1/2
√

6)
∑

q = ±1

δΛΛ′∓4(−1)S−Σ
(

S 1 S
−Σ q Σ′

)
[S(S + 1)(2S + 1)]1/2

×
{

(−1)J−Ω
(

J 1 J ′

−Ω −q Ω′′

)
(−1)J ′−Ω′′

(
J ′ 2 J ′

−Ω′′ −2q Ω′

)
× [(2J ′ − 1)(2J ′)(2J ′ + 1)(2J ′ + 2)(2J ′ + 3)]1/2

+ (−1)J−Ω
(

J 2 J
−Ω −2q Ω′′′

)
(−1)J−Ω′′′

(
J 1 J ′

−Ω′′′ −q Ω′

)

× [(2J − 1)(2J )(2J + 1)(2J + 2)(2J + 3)]1/2

}
. (11.52)
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−1

Figure 11.36. The four lowest rotational levels of the X 2�3/2 spin component of NiH, and the
observed microwave transitions [76]. The energies are given relative to the lowest rotational level
of the X 2�5/2 component (with J = 5/2). The Λ-doublet and proton hyperfine splittings are
exaggerated for the sake of clarity.

This result shows that the operator connects states with �Λ= ±4, �Σ= ±1 and

�Ω= ±3. The diagonal matrix element from (11.52) is

〈2�; S=1/2,Σ=1/2; J ,Ω=3/2,I ,F,MF ,±|Heff (d�)|2�; S=1/2,Σ = 1/2; J,Ω=3/2, I, F,MF ,±〉
= ∓(−1)J−1/2

(
1

2

)
d� × [F(F + 1) − J (J + 1) − I (I + 1)]

2J (J + 1)
× [J (J + 1) − 3/4](J + 1/2). (11.53)
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1090 1170

Frequency / MHz

F � 2--2

F � 2--1

J � 3/2

Figure 11.37. The Λ-doublet spectrum arising from the J = 3/2 level of the X 2�3/2 state of
58NiH. The recording time was 20 min [76].

The upper and lower signs refer to states of positive and negative parity respectively,
and the very small matrix elements off-diagonal in J have been neglected.

All of the other required matrix elements have been given elsewhere [77]; some
of the constants in equation (11.51) were determined in the laser magnetic resonance
study, and the remaining constants were obtained from the double resonance study. The
final parameters for the v = 0 level were (in MHz) as follows:

A = −14 768 100, B = 232 109.3, D = 15.156, γ = 89 110, q� = −0.570,

(p� + 4q�) = 188.638, h3/2 = 2a − (1/2)(bF + 2c/3) = 50.8, d� = 0.767.

Note that only the total diagonal hyperfine constant, h3/2, could be determined, as is
usually the case for good case (a) systems when only one fine-structure state is studied.
The final fit to the experimentalΛ-doublet frequencies, including hyperfine interaction,
had a standard deviation of 1 MHz. The values of the constants were interpreted in
terms of the interaction of Ni(3d94s) with H(1s), the electronic wave function being
represented in terms of atomic Ni 3d orbitals.

11.6.9. 4d transition metal molecules: YF in the X 1�+ ground state, YO
and YS in their X 2�+ ground states

The second row of transition metal elements, the 4d series, consists of the following
members, with their lowest energy electron configurations.

Y: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)1(5s)2

Zr: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)2(5s)2
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Nb: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)4(5s)1

Mo: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)5(5s)1

Tc: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)5(5s)2

Ru: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)7(5s)1

Rh: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)8(5s)1

Pd: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)10

We have already discussed the microwave/optical double resonance spectrum of the
MoN molecule in its X 4�− ground state. We now deal with studies of YF, YO and YS,
yttrium being the first member of the 4d transition elements analogous to scandium in
the 3d series.

We have described a number of molecular beam pump/probe microwave/optical
double resonance studies carried out by Steimle and his collaborators, and we now
discuss earlier experiments on YF and YO carried out by Fletcher, Jung, Scurlock
and Steimle [78]. This paper described the details of their molecular beam method.
A schematic block diagram of their apparatus is shown in figure 11.38. It is similar
in some ways to those described earlier by Kröckertskothen, Knöckel and Tiemann
[48], which was used to study the FeO molecule, Rosner, Holt and Gaily [79], and
Childs and Goodman [80]. The heart of the apparatus is the molecular beam system,
which made use of laser ablation of a rotating rod of the metal of interest (e.g. yttrium)
produced by a pulsed Nd:YAG laser timed to occur as a pulse of gas was released from
the valve. The gas pulse was mainly argon, containing a small amount of a suitable
reactant, namely N2O for the production of YO, or SF6 for YF. The molecular beam
was skimmed before entering the main chamber where it was interrogated with suitable
electromagnetic radiation. Following the conventions of molecular beam magnetic and
electric resonance, described in chapter 8, three regions may be designated. In region A,
the molecular beam intersects a cw dye laser beam at right angles; the frequency of the
laser is chosen to drive a known selected rovibronic transition in the molecule of interest.
A portion of the same laser beam again intersects the molecular beam at right angles in
region B; typically 96% of the total laser power is used in region A and 4% in region B.
The purpose of the ‘probe’ laser beam in region B is to stimulate fluorescence, which
is collected and focussed into a cooled photomultiplier tube. Between the two laser
regions is the C region, where microwave or millimetre wave radiation is propagated
through a suitable horn to intersect the molecular beam, again in a perpendicular
direction. The result of the optical pumping in region A is to deplete the population of
the ground state rotational level involved. The microwave radiation, when in resonance
with a rotational transition, repopulates the ground state rotational level; this leads to
an increase in the fluorescence intensity, which is detected. The microwave frequency
is scanned stepwise, and the rotational spectrum recorded; a typical resonance line
for YO is shown in figure 11.39. The line width is 45 kHz, determined by the transit
time of the molecular beam through the microwave region. The apparatus provides a
particularly powerful way of studying refractory materials, and a number of examples
have been described in the preceding sections.
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23 263.616 MHz

Figure 11.39. A hyperfine component of the N = 1 ← 0 rotational transition of YO in its X 2�+

ground state [78].

The rotational spectrum of YF is particularly simple because although the 89Y
isotope, present in 100% natural abundance, has spin 1/2, the YF ground state
is 1�+ and any interactions involving the nuclear spins are extremely small. The
J = 1 ← 0, 2 ← 1 and 3 ← 2 rotational transitions were measured at 17 367.202,
34 734.210 and 52 100.882 MHz, from which the rotational constants B0 = 8683.6156,
D0 = 0.007 521 MHz were determined.

The YO molecule in its X 2�+ ground state was the subject of earlier
radiofrequency/optical double resonance studies by Childs, Poulsen and Steimle [81],
who made observations for v = 0 to 4 and N values up to 91. The spin–rotation and
nuclear hyperfine splitting for each rotational level takes a simple form; the largest
interaction is the 89Y Fermi contact interaction, so that the case (b) coupling scheme
most appropriate is

S + I = G, G + N = F.

This leads to the simple spin structure of each rotational level shown in figure 11.40 and
the three magnetic dipole transitions indicated (all at frequencies less than 800 MHz).
This triplet pattern was measured for many rotational levels, and analysed using the
customary effective Hamiltonian,

Heff = γ S · N + bI · S + cIz Sz + cI I · N. (11.54)

Here b and c are the Frosch and Foley magnetic hyperfine constants for 89Y; for the
v= 0 level the values of the constants (in MHz) were determined to be

γ = −9.2254, b = −762.976, c = −28.236, bF = 772.388, cI = −0.002 57.

The primary molecular orbital electron configuration for the X 2�+ state of YO is
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Figure 11.40. Hyperfine and spin–rotation splitting of a typical rotational level in the X 2�+ state
of YO, and the magnetic dipole transitions observed by radiofrequency/optical double resonance.

thought to be

(core)(11σ )2(5π )4(12σ )1

where the 12σ orbital is a non-bonding combination of the 5s and 5p atomic orbitals of
yttrium. The large Fermi contact interaction observed is consistent with the unpaired
electron occupying this orbital.

The YS molecule has been studied by Azuma and Childs [82], again using
the molecular beam laser/radiofrequency double resonance technique. The electronic
spectrum arising from the B 2�+ → X 2�+ transition was studied through fluorescence
arising from visible dye laser excitation and hyperfine structure from 89Y with a spin of
1/2 was observed. Direct hyperfine transitions were then detected by radiofrequency
double resonance and, as with YO, low rotational levels in the ground state were best
described in terms of the hyperfine coupled representation |η,Λ; S, I,G; G, N , F〉.
Rotational levels of the excited state, and higher rotational levels of the ground state
were described in terms of the more common representation |η,Λ; N , S, J ; J, I, F〉.

Examples of the electronic and radiofrequency transitions are shown in the energy
level diagram presented in figure 11.41. The electronic transitions are shown as broken
lines, whilst the radiofrequency double resonance transitions are denoted by continuous
lines. Three double resonance transitions are possible for each ground state rotational
level, and transitions involving N values from 2 to 48 were observed, over the frequency
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�

�

�

Figure 11.41. Energy level diagrams and transitions for two different R-branch transitions in
the YS molecule. The broken lines denote laser-induced fluorescence transitions, whilst the
continuous lines indicate radiofrequency double resonance transitions observed in rotational
levels of the ground electronic state [82].

range 700 to 2200 MHz. Using the standard Frosch and Foley hyperfine Hamiltonian,

Hhfs = γ S · N + bI · S + cIz Sz + cI I · N, (11.55)

Azuma and Childs [82] determined the following values of the constants (in MHz) for
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the v = 0 level of the X 2�+ ground state:

γ = 42.2382, b = −653.251, c = −42.684, cI = −0.0046.

The Fermi contact constant bF is therefore found to be –667 MHz, a large value which
reflects participation of the Y 5s atomic orbital in the unpaired electron wave function
(note that the g-factor for 89Y is negative).

It is possible from the optical measurements to use the ground state constants in
order to determine values of the spin-rotation constant γ and hyperfine constant b
for the excited B state of the YS molecule; the values obtained are γ = −4620 MHz
and b = −78 MHz. These are quite different from the ground state values, but are not
discussed by the original authors.

11.7. Microwave/optical double resonance of rare earth molecules

11.7.1. Radiofrequency/optical double resonance of YbF in its X 2�+

ground state

The first radiofrequency/optical double resonance study of a simple lanthanide
molecule, YbF, was described by Sauer, Wang and Hinds [83]. The Yb atom in its
ground state electron configuration is [Xe] (4 f )14(6s)2 and although it is normally
trivalent in its stable compounds, the YbF radical has been studied through its elec-
tronic spectrum for many years and the ground electronic state is known to be X 2�+.
The A 2�1/2 – X 2�+ laser induced fluorescence spectrum was studied by Sauer, Wang
and Hinds [84] and this enabled the same authors to set up a radiofrequency/optical
double resonance experiment, very similar to that described earlier for FeO. An effu-
sive beam of YbF was produced by the reaction of YbF3 with Al in an oven main-
tained at 1200 ◦C, and crossed twice with a cw dye laser beam at 552 nm. Yb has six
isotopes with significant natural abundance, but the most preominant is 174Yb
with 31.8% abundance (spin zero) and the studies described concern this
isotope.

It is perhaps a pleasant surprise that the X 2�+ state of YbF conforms to a simple
case (b) coupling scheme, so that each rotational level N is split by the spin–rotation
interaction into states characterised by J = N ± 1/2; each of these states is further split
into a doublet by the fluorine hyperfine interaction, giving final states |N , S, J, I, F〉
as shown in figure 11.42. The effective Hamiltonian is therefore written in the familiar
form (see, for example, our discussion of the CN radical in chapter 9)

Heff = {B − DN2}N2 + γT1(N) · T1(S) + γD[T1(N) · T1(S)]N 2 + bFT1(I) · T1(S )

−
√

10gSµB gNµN (µ0/4π)T1(S,C2) · T1(I) + cI T1(N) · T1(I). (11.56)

The matrix elements of this effective Hamiltonian were given in chapter 9, and will
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F � 1

F � 2
F � 0

Figure 11.42. Lower rotational levels of YbF X 2�+, and the radiofrequency transitions
studied [83].

not be repeated here, except for the Fermi contact term, which is:

〈η,Λ; N , S, J, I, F |bFT1(S ) · T1(I)|η,Λ; N , S, J ′, I, F〉

= bF(−1)J ′+F+I

{
I J ′ F
J I 1

}
(−1)N+J+S+1

{
S J ′ N
J S 1

}

× {(2J ′ + 1)(2J + 1)I (I + 1)(2I + 1)S(S + 1)(2S + 1)}1/2. (11.57)
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For the N = 1 rotational level, the spin-rotation interaction produces a splitting into
levels which would normally be characterised as J = 1/2 and 3/2. However the spin–
rotation constant γ is found to have an abnormally small value, about −20 MHz,
compared with the Fermi contact constant bF which is close to 143 MHz. Consequently,
as equation (11.57) shows, the J = 3/2 and 1/2 levels are heavily mixed, so that J is
a very poor quantum number.

Except for N = 0, which has no spin–rotation interaction, Sauer, Wang and
Hinds [83] measured the four radiofrequency transitions indicated in figure 11.42
for N = 1 to 10 in the v = 0 level, and also obtained more limited data for v = 1.
They also measured the lowest rotational transition at around 14.5 GHz, with hy-
perfine splitting, as indicated in figure 11.42. An unusual feature observed by Sauer,
Wang and Hinds [83] was a very strong dependence of the spin–rotation constant on
the rotational quantum number N , which led them to express γ by the power series
expansion

γ = γ + γD N (N + 1) + γH [N (N + 1)]2 + · · · . (11.58)

From their laser-induced fluorescence study they were able to identify transitions
with N values up to 75, and to determine the following values of the constants in
(11.58):

γ = −13.424 MHz, γD = 0.003 982 MHz, γH = −0.025 kHz.

The centrifugal distortion term involving γD is remarkably large, so much so that at
N = 60, the order of the spin components actually changes sign. This is probably a
unique observation.

An additional observation made by Sauer, Wang and Hinds [83] was the Stark
effect which enabled them to determine the electric dipole moment to be 3.91 D. This
value taken with the relatively small fluorine hyperfine interaction suggests that YbF
has a largely ionic structure.

11.7.2. Radiofrequency/optical double resonance of LaO in its
X 2�+ and B 2�+ states

The ground electronic state of 139La16O is X 2�+ and its electronic spectrum involving
the excited B 2�+ has been studied by Doppler-free laser-induced fluorescence by
Bacis, Collomb and Bessis [85] and by Bernard and Sibai [86]. Both states have
therefore been well characterised and the system is ideal for radiofrequency/optical
double resonance, as described by Childs, Goodman, Goodman and Young [87]. They
used a collimated molecular beam, with the laser pump/probe technique described
elsewhere in this chapter.

The 139La nucleus has a spin of 7/2; the Fermi contact hyperfine interaction is
large in the B state and very large in the X state. Consequently the B → X flu-
orescence spectrum exhibits a distinctive hyperfine structure, an example of which
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6.0 4.5 3.0 1.5 0

R24(30)

Incremental laser frequency / GHz

Figure 11.43. Section of the Doppler-free laser-induced fluorescence spectrum of LaO, arising
from the B 2�+(v = 0) → X 2�+ (v = 1) electronic transition [87]. Four different rotational
components are present, one of which is marked, with the lower state N value (30) being given
in the brackets. The region of the electronic spectrum scanned is 5866.75 to 5866.80

◦
A.

is shown in figure 11.43. Figure 11.44 shows the energy level diagram appropri-
ate for the spectrum exhibited in figure 11.43. The labelling of the hyperfine levels
requires further discussion, however. Because the hyperfine interaction is so large
in the ground state, the best coupling scheme is one in which the electron (S) and
nuclear (I) spin angular momenta are coupled to form a resultant G, which is then
coupled with the rotational angular momentum N to form the grand total angular
momentum F:

S + I = G,

G + N = F.

Since I = 7/2 and S = 1/2, G can take the values 4 and 3, as shown, and F takes
values from |N − G| to N + G. In the excited electronic state, B, we adopt the more
conventional coupling scheme:

N + S = J,

J + I = F.

The hyperfine components of the R23 and R24 rotational branches are shown in
figure 11.44.

Radiofrequency transitions between hyperfine components in the ground elec-
tronic state were induced in the beam and detected through strong increases in the
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Figure 11.44. Energy level diagram [87], including 139La nuclear hyperfine splitting, and tran-
sitions corresponding to the spectrum shown in figure 11.43.

fluorescence intensity. Many such transitions were measured over the frequency
range 25 to 13 800 MHz, enabling very accurate values of the ground state molec-
ular constants to be obtained. Double resonance transitions involving excited elec-
tronic state levels were not observed, but the much improved accuracy in the ground
state spacings was used to provide more accurate values for the excited state con-
stants. The measurements involved ground state vibrational levels up to v = 4 and
excited levels v = 0 and 1. The effective Hamiltonian used for both states was, as
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Table 11.4. Molecular constants (in MHz) for the X 2�+

and B 2�+ electronic states of LaO, determined [87] from
the laser/radiofrequency studies

parameter X 2�+ state B 2�+ state

γ 66.0065 −7574.2

b 3630.63 586.7

c 94.416 199.2

bF 3662.10 653.1

eq0 Q −84.419 −193.4

cI 0.0144 44 —

usual,

Heff = γ S · N + bS · I + cSz Iz + cI I · N + eq0 Q

{
3I 2

z − I (I + 1)
}

4I (2I − 1)
. (11.59)

This form of the Hamiltonian, using the Frosch and Foley constants, is less useful
than the alternative form, written in terms of spherical tensor operators. This is par-
ticularly true when the basis functions for the two electronic states are different. For
the ground state we use the functions |η,Λ; S, I,G; N ,G, F〉 and for the excited state
|η,Λ; N , S, J ; J, I, F〉.As we have seen in chapters 9 and 10, the appropriate effective
Hamiltonian when the excited state basis functions are used is

Heff = {
Bv − DvN2

}
N2 + γvT1(N ) · T1(S ) + bFT1(S ) · T1(I)

−
√

10gSµB gNµN (µ0/4π)T1(S,C2) · T1(I) − eT2(Q) · T2(∇E). (11.60)

For the ground state, however, the dipolar hyperfine term is written in the alternative
form

Hdip =
√

6gSµB gNµN (µ0/4π)T2(C) · T2(I, S), (11.61)

which takes account of the fact that I and S are coupled to form G in the basis functions.
The required matrix elements for both forms of the dipolar interaction are given in
several places in this book.

The molecular constants determined for both electronic states are given in
table 11.4. There are some very large differences in the values of some of the param-
eters for the two electronic states, but the authors [87] do not provide simple reasons
for these differences, noting that there are a large number of low-lying states which
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can interact with each other. There is much scope for ab initio calculations in due
course.

11.8. Double resonance spectroscopy of molecular ion beams

11.8.1. Radiofrequency and microwave/infrared double resonance
of HD+ in the X 2�+ ground state

Double resonance spectra observed in a molecular ion beam were described by
Carrington, McNab and Montgomerie [88] for the HD+ ion. The ion is now known to
possess 22 bound vibrational levels, and the double resonance studies were preceded
by single photon infrared studies in which vibration–rotation transitions of the ion were
tuned into resonance with a carbon dioxide infrared laser line using Doppler tuning
of the ion beam. These resonances were detected by electric field dissociation of the
near-dissociation upper state, producing H+ or D+ fragment ions which were prefer-
entially detected. The principles of the experiment are illustrated in figure 11.45. A
mass-selected HD+ ion beam is accelerated to a potential which brings it into reso-
nance with the infrared laser beam, propagated antiparallel to the direction of the ion
beam. The ion beam then passes through a radiofrequency cell of length 36 cm, and
subsequently through an electric field lens.

Electron impact ionisation of HD leads to population of all of the bound vibrational
levels of the ground state, with a maximum population at v = 3. The populations grad-
ually fall off with increasing v value, but the initial populations are preserved in the
collision-free ion beam environment. The infrared beam excites transitions from the
v = 17 to the v = 21 vibrational level, the penultimate bound level, which undergoes
dissociation in the electric field lens; fragment protons are separated from the molecular
beam with a magnetic sector and detected with an electron multiplier. An example of
the single photon infrared spectrum is shown in figure 11.46 for the transition v = 17,
N = 1 → v = 21, N = 2. It shows extensive nuclear hyperfine structure from both
the proton and the deuteron in the molecule. The radiofrequency field drives nuclear
hyperfine transitions within the 17,1 level, and produces changes in the fragment H+

current which are detected. The radiofrequency cell was based upon a design due to
Rosner, Gaily and Holt [89] and consisted of a central copper rod supported inside a
copper cylinder; it could be operated satisfactorily up to 1000 MHz, and the radiofre-
quency spectrum was observed over the region 600 to 800 MHz. Different double
resonance hyperfine transitions are studied by driving different hyperfine components
of the 21,2 ← 17,1 vibration–rotation transition, as shown in the figure.

An energy level diagram showing the nuclear hyperfine splitting of the 17,1 level
is shown in figure 11.47. The most suitable coupling scheme is

S + IH = G1, G1 + ID = G2, G2 + N = F,

where IH and ID are the proton and deuteron nuclear spins (with values 1/2 and
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2825 2665

v6 v4 v2

760 780

Frequency / MHz

Ion beam potential / V

(a)

(b)

v5 v3 v1

Figure 11.46. (a) Recording of the 21,2 ← 17,1 vibration–rotation transition of the HD+ ion,
obtained by Doppler tuning the ion beam into resonance with a carbon dioxide infrared laser
beam [88]. (b) A radiofrequency/infrared double resonance spectrum obtained by pumping the
ν3 line shown in the infrared spectrum (see text for the assignment).

1 respectively). The possible values of the quantum numbers are as follows.

S + IH = G1: G1 = 1 0

G1 + I D = G2: G2 = 2 1 0 1

G2 + N = F: F = N + 2 N + 1 N N + 1
N + 1 N N

N |N − 1| |N − 1|
|N − 1|
|N − 2|

For N ≥ 2 there are 12 possible states; for N = 1 there are 11. As figure 11.47 shows,
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the main splitting is due to the proton hyperfine interaction; each G1 level is then split
by the deuteron hyperfine interaction, and finally the spin–rotation splitting is added to
give levels characterised by their F values. The lines in the infrared spectrum shown
in figure 11.46 arise from the transitions (to 21, 2) indicated in figure 11.47.

Figure 11.47 is based upon the final analysis, to which we will return. The effective
Hamiltonian for the magnetic hyperfine and spin–rotation interactions may be written
as usual, except that we adopt the alternative formulation of the dipolar interactions
which is more appropriate for our coupling scheme:

Heff = bF(H)T1(S ) · T1(IH) + bF(D)T1(S ) · T1(ID)

+
√

6gSµB gN (H)µN (µ0/4π)T2(S, IH) · T2(CH)

+
√

6gSµB gN (D)µN (µ0/4π)T2(S, ID) · T2(CD) + γT1(N ) · T1(S). (11.62)

The matrix elements in the case (b) nuclear spin coupled representation given above,
|η,Λ; S, IH,G1, ID,G2, N , F〉, are now presented [90].

For the Fermi contact terms,

〈η,Λ; S, IH,G1, ID,G2, N , F |bF(H)T1(S) · T1(IH)|η,Λ; S, IH,G1, ID,G2, N , F〉
= bF(H)(−1)S+G1+IH

{
IH S G1

S IH 1

}
[S(S + 1)(2S + 1)IH(IH + 1)(2IH + 1)]1/2.

(11.63)

〈η,Λ; S, IH,G1, ID,G2, N , F |bF(D)T1(S ) · T1(ID)|η,Λ; S, IH,G ′
1, ID,G2, N , F〉

= bF(D)(−1)G ′
1+G2+ID

{
ID G ′

1 G2

G1 ID 1

}
〈G1‖T1(S )‖G ′

1〉[ID(ID + 1)(2ID + 1)]1/2

= bF(D)(−1)G ′
1+G2+ID

{
ID G ′

1 G2

G1 ID 1

}
(−1)G ′

1 + S + 1 + IH [(2G ′
1 + 1)(2G1 + 1)]1/2

×
{

G1 S IH

S G ′
1 1

}
[S(S + 1)(2S + 1)ID(ID + 1)(2ID + 1)]1/2. (11.64)

We calculate the dipolar terms giving more of the detail; for the proton
(equation (11.62)) we have

〈η,Λ; S, IH,G1, ID,G2, N , F |Hdip(H)|η′,Λ′; S, IH,G ′
1, ID,G ′

2, N ′, F〉

=
√

6 gSµB gN (H)µN (µ0/4π)(−1)G ′
2+F+N

{
N ′ G ′

2 F
G2 N 2

}
× 〈G1, ID,G2‖T2(S, IH)‖G ′

1, ID,G ′
2〉〈η, N ,Λ‖T2(CH)‖η′, N ′,Λ′〉

=
√

6 gSµB gN (H)µN (µ0/4π)(−1)G ′
2+F+N

{
N ′ G ′

2 F
G2 N 2

}

× (−1)G ′
2+G1+ID{(2G ′

2 + 1)(2G2 + 1)}1/2

{
G ′

1 G ′
2 ID

G2 G1 2

}
× 〈G1‖T2(S, IH)‖G ′

1〉〈η, N ,Λ‖T2(CH)‖η′, N ′,Λ′〉
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=
√

30(−1)G ′
2+F+N

{
N ′ G ′

2 F
G2 N 2

}
(−1)G ′

2+G1+ID{(2G ′
2 + 1)(2G2 + 1)}1/2

×
{

G ′
1 G ′

2 ID

G2 G1 2

}
{(2G ′

1 + 1)(2G1 + 1)}1/2{IH(IH + 1)(2IH + 1)

× S(S + 1)(2S + 1)}1/2




G1 G ′
1 2

IH IH 1
S S 1


 (−1)N {(2N ′ + 1)(2N + 1)}1/2

×
(

N 2 N ′

0 0 0

)
〈η|gSµB gN (H)µN (µ0/4π )C2

0 (θH, φH)r−3
H |η〉. (11.65)

Here we have restricted attention to matrix elements diagonal in η andΛ, and also put
Λ= 0.

Likewise for the deuteron dipolar interaction (see equation (11.62)):

〈η,Λ; S, IH,G1, ID,G2, N , F |Hdip(D)|η′,Λ′; S, IH,G ′
1, ID,G ′

2, N ′, F〉

=
√

6gSµB gN (D)µN (µ0/4π)(−1)G ′
2+F+N

{
N ′ G ′

2 F
G2 N 2

}
× 〈G1, ID,G2‖T2(S, ID)‖G ′

1, ID,G ′
2〉〈η, N ,Λ‖T2(CD)‖η′, N ′,Λ′〉

=
√

30(−1)G ′
2+F+N

{
N ′ G ′

2 F
G2 N 2

}
{(2G ′

2 + 1)(2G2 + 1)(2G ′
1 + 1)(2G1 + 1)}1/2

×



G2 G ′
2 2

G1 G ′
1 1

ID ID 1


(−1)G ′

1+S+1+IH{S(S + 1)(2S + 1)ID(ID + 1)(2ID + 1)}1/2

×
{

S G ′
1 IH

G1 S 1

}
(−1)N {(2N ′ + 1)(2N + 1)}1/2

(
N 2 N ′

0 0 0

)
× 〈η|gSµB gN (D)µN (µ0/4π)C2

0 (θD, φD)r−3
D |η〉. (11.66)

Although matrix elements off-diagonal in N do exist, they are negligible in this case.
Finally we have the spin–rotation interaction:

〈η,Λ; S, IH,G1, ID,G2, N , F |γT1(S ) · T1(N )|η′,Λ′; S, IH,G ′
1, ID,G ′

2, N , F〉
= γ (−1)2G ′

2+G1+G ′
1+F+N+ID+IH+S{N (N + 1)(2N + 1)(2G ′

2 + 1)(2G2 + 1)

× (2G ′
1 + 1)(2G1 + 1)S(S + 1)(2S + 1)}1/2

{
N G ′

2 F
G2 N 1

}

×
{

G2 G1 ID

G ′
1 G ′

2 1

}{
G1 S IH

S G ′
1 1

}
. (11.67)

The only rigorous quantum number is F , although N may also be taken as good
since the separation of different N levels is very large compared with the dipolar
hyperfine interaction. Hence the problem of deriving expressions for the energies of
the hyperfine levels in 17,1 is tackled by setting up the five matrices for F = N + 2
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to F = N – 2. These matrices are given explicitly by Carrington and Kennedy [90]
and will not be repeated here. Ultimately the energies, and hence double resonance
transition frequencies, depend upon the values of five constants for the v= 17 levels.
These constants, and their values (in MHz), are as follows:

bF(H) = 713.07, bF(D) = 111.36, γ = 8.10, t0(H) = 9.75, t0(D) = 1.50.

Note, as a reminder, the definition of the axial dipolar constants:

t0(H) = 〈
gSµB gN (H)µN (µ0/4π)C2

0 (θH, φH)r−3
H

〉
η
,

t0(D) = 〈
gSµB gN (D)µN (µ0/4π)C2

0 (θD, φD)r−3
D

〉
η
. (11.68)

Five radiofrequency lines were observed by Carrington, McNab and Montgomerie
[88], each being the superposition of several very closely components; the hyper-
fine constants listed above were obtained from a combination of the infrared and
radiofrequency data. It can be seen that the Fermi contact constants are by far the
largest, and within the Born–Oppenheimer approximation one would expect the ratio
of the proton to deuteron constant (6.4033) to be equal to the ratio of the nuclear g
factors (6.5144). In fact these ratios are not in particularly good agreement and im-
mediately suggest a breakdown of the Born–Oppenheimer approximation. We defer
discussion of this until later because, as we shall see, the effect becomes progres-
sively larger as the vibration–rotation levels studied approach the lowest dissociation
limit.

We turn now to a microwave/infrared study of the HD+ ion described by Carrington,
McNab, Montgomerie and Brown [91], a block diagram of their apparatus being shown
in figure 11.48. Again a carbon dioxide infrared laser line was tuned into resonance with
a vibration–rotation transition by means of the Doppler effect, the transition this time
being v = 22, N = 1 ← v = 17, N = 2. The observed infrared spectrum is shown
in figure 11.49(a), the lines being identified in the energy level diagram shown in
figure 11.50. In this case it turned out that the deuterium hyperfine splitting was much
larger than the proton, so that the coupling scheme used was

S + ID = G1, G1 + IH = G2.

G1 can therefore take the values 3/2 or 1/2; G2 is 2 or 1 for G1 = 3/2, and 1 or 0 for
G1 = 1/2. The vibration-rotation level 22,1 is actually the highest bound level in the
HD+ ground state, and Carrington, McNab, Montgomerie and Brown [91] were able to
detect the rotational transition 22,1 ← 22,0 by microwave/infrared double resonance.
A particularly interesting feature of this experiment is that the electric field dissociation
process can discriminate between the 22,0 and 22,1 vibration–rotation levels. The
infrared pumping enhances the population of 22,1 and, with a suitable choice of po-
tential applied to the field lens, together with adjustment of the magnetic field to select
protons originating from this level, the double resonance is observed as a decrease in
the proton fragment current (figure 11.49(b)). Alternatively one can choose to monitor
the protons originating from field dissociation of 22,0, in which case the double res-
onance is observed as an increase in the proton fragment current (figure 11.49(c)). This
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Figure 11.49. (a) Recording of the 22,1 ← 17,2 vibration–rotation transition in HD+ obtained
by Doppler tuning the ion beam into resonance with a carbon dioxide infrared laser line.
(b) Microwave-infrared double resonance line arising from the 22,1 ← 22,0 rotational transition
in HD+, recording by monitoring H+ fragments from the electric field dissociation of 22,1 [91].
(c) Microwave-infrared double resonance line arising from the 22,1 ← 22,0 rotational transition
in HD+, recording by monitoring H+ fragments from the electric field dissociation of 22,0.
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1 2

Figure 11.50. Energy level diagram (not to scale) showing the nuclear hyperfine structure of
the HD+ 22,1 and 22,0 vibration–rotation levels (labelled with the G1 and G2 quantum num-
bers described in the text). The infrared transitions which give rise to the six lines shown in
figure 11.49 (a) are shown on the left-hand side of the figure, and the four observed microwave
transitions are shown on the right-hand side.
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Table 11.5. Microwave transition frequencies (in MHz) for the hyperfine
components of the 22,1 ← 22,0 rotational transition in HD+, measured
through double resonance studies

22,1 22,0

G1 G2 G1 G2 IR pump frequency

1/2 0 1/2 0 2 9440.3

3/2 2 3/2 2 3 9442.2

1/2 1 1/2 1 1, 5 9442.8

3/2 1 3/2 1 4 9447.0

is the reason for the change of phase in the double resonance signals; note also that
the signal-to-noise ratio is much larger when protons from 22,0 are detected, simply
because the off-resonance proton fragment current is much smaller.

The four microwave transitions detected in this double resonance study are listed
in table 11.5; the infrared pump transitions are also listed. The rotational transitions
are all diagonal in G1 and G2, which meant that the experiment yielded only the
differences in the proton and deuteron Fermi contact constants, and not their absolute
values. However, a combination of the microwave and infrared studies [92] has given
the absolute values, which are as follows:

22,0: bF(H) = 19.0 MHz, bF(D) = 217.7 MHz

22,1: bF(H) = 8.4 MHz, bF(D) = 218.2 MHz.

The dissociation energies of these levels have been calculated [93] to be 0.323 cm−1

for 22,0 and 0.057 cm−1 for 22,1.
The hyperfine constants listed above are remarkable. The free atom values are

1420.41 and 218.05 MHz for the proton and deuteron respectively, and in the simplest
possible interpretation one might expect the values in HD+ to be very close to one half of
these values, namely, 710.2 and 109.0 MHz. In a more strongly bound vibration–rotation
level, for example 17,1 with a dissociation energy of 994.551 cm−1, the measured Fermi
contact constants [94] are 711.9 and 111.1 MHz, very close to the simple expectations.
As the lowest dissociation limit is approached, the proton constant decreases to almost
zero, and the deuterium constant approaches its free atom value. This behaviour is, of
course, completely at variance with the Born–Oppenheimer approximation, and in its
last bound vibration–rotation level the HD+ molecule is best regarded as a long-range
complex, H+. . . D. A quantitative treatment of the problem requires a non-adiabatic
calculation [95, 93]; when this is performed the agreement between experiment and
theory is excellent.

Microwave-microwave double resonance experiments similar to those described
in this section have been carried out on H+

2 [96], D+
2 [97] and He+

2 [98]. In these
cases, however, the transitions studied are actually electronic transitions, despite being
observed at microwave and millimetre-wave frequencies. We conclude, with regret,
that they are beyond the scope of this book.
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11.8.2. Radiofrequency/optical double resonance of N+
2 in the X 2�+

g

ground state

The N+
2 ion is an important molecule, in the laboratory and in the atmosphere, and its

electronic spectrum has been studied extensively. The ground state electron configura-
tion may be written as

(1sσg)2(1sσu)2(2sσg)2(2sσu)2(2pπu)4(2pσg)1: X 2�+
g ,

and the two lowest excited electronic states are

(1sσg)2(1sσu)2(2sσg)2(2sσu)2(2pπu)3(2pσg)2: A 2�u(Te = 9166.9 cm−1)

(1sσg)2(1sσu)2(2sσg)2(2sσu)1(2pπu)4(2pσg)2: B 2�+
u (Te = 25461.4 cm−1).

The electronic band systems arising from the A → X and B → X transitions have
been extensively studied, and the second of these, occuring in the near-ultraviolet, was
used by Berrah Mansour, Kurtz, Steimle, Goodman, Young, Scholl, Rosner and Holt
[99] in an elegant radiofrequency double resonance investigation. They used a cw ring
dye laser to pump transitions in the v′ = 0 ← v′′ = 1 vibrational band at 428 nm, and a
small section of their electronic spectrum is shown in figure 11.51. The origin of the
observed structure is explained in figure 11.52; since each 14N nucleus has spin I = 1,
the total nuclear spin IT can be 2, 1 or 0. I = 1 (para) is associated with odd N rotational
levels, whilst I = 0 and 2 (ortho) are associated with even N . Each P-branch rotational
component (�J = −1) is split into a doublet by the spin-rotation interaction, and there

0 2 4 6 8 10

Relative frequency / GHz

P2(13)

P2(10)

P1(10)

P1(13)

Figure 11.51. N+
2 ion beam laser fluorescence spectrum near the bandhead of the B 2�+

u ←
X 2�+

g ( 0,1 ) band, obtained by scanning the frequency of a cw dye laser [99].
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Figure 11.53. Radiofrequency resonance arising from the J = 13/2, F = 9/2 ← J = 11/2,
F = 7/2 transition in the ground state of N+

2 [99].

is then a further nuclear hyperfine splitting, giving a triplet structure for I = 1, or a
quintet structure for I = 2, as illustrated in figure 11.51.

The apparatus used for this investigation was similar to that described in chapter 8
for studies of Na2 [100]. N+

2 ions were produced by a radiofrequency discharge in N2,
accelerated to form a beam, and mass analysed with a 90◦ magnetic sector. The ion
beam was then exposed to a collinear laser beam; molecules excited at the ‘pump’
region A, were monitored through their 391 nm fluorescence at the ‘probe’ region B by
means of a photon counting photomultiplier. In fact the experiments were performed by
two different groups working at two different locations, using machines which differed
somewhat in their details.

Between the A and B regions, a radiofrequency field was applied to induce fine-
structure transitions within the v′′ = 1 level of the ground electronic state, split by the
nuclear hyperfine interaction. The selection rules for these transitions, which ranged in
frequency from 360 to 7700 MHz, were �J = ±1, �F = 0,±1. They were detected
through resonant changes in the fluorescence intensity; an example of a radiofrequency
double resonance line is shown in figure 11.53. The observed spectrum involved N
values from 1 to 27.

The magnetic and electric hyperfine interactions for a molecule containing two
equivalent 14N nuclei were discussed in detail in chapter 8 for the A 3�+

u state of N2.
We summarise the results here, referring the reader to chapter 8 for a more thorough
description.

For the Fermi contact interaction:

〈η,Λ; N , S, J, IT , F |bFT1(S ) · T1(IT )|η,Λ′; N ′, S, J ′, IT , F〉
= bF(−1)J ′+F+IT

{
IT J ′ F
J IT 1

}
〈N , S, J‖T1(S )‖N ′, S, J ′〉[IT (IT +1)(2IT +1)]1/2
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= bF(−1)J ′+F+IT

{
IT J ′ F
J IT 1

}
(−1)J+N+1+S[(2J+1)(2J ′+1)]1/2

{
J S N
S J ′ 1

}
× [S(S + 1)(2S + 1)IT (IT + 1)(2IT + 1)]1/2. (11.69)

The magnetic dipolar hyperfine coupling also has familiar matrix elements:

〈η,Λ; N , S,J,IT ,F |−
√

10gSµB gNµN (µ0/4π)T1(S,C2)·T1(IT )|η,Λ′; N ′,S,J ′,IT ,F 〉
=

√
30t(−1)J ′+F+N+IT +1

{
IT J ′ F
J IT 1

}

×



J J ′ 1
N N ′ 2
S S 1




(
N 2 N ′

0 0 0

)
[(2N + 1)(2N ′ + 1)IT (IT + 1)

× (2IT + 1)(2J + 1)(2J ′ + 1)S(S + 1)(2S + 1)]1/2. (11.70)

For the electric quadrupole interaction, generalising our earlier results to include matrix
elements off-diagonal in the total nuclear spin, we have:

〈η,Λ; N , S, J, I1, I2, IT , F | − e
∑

k=1,2

T2(∇Ek) · T2(Qk)|η,Λ′; N ′, S, J ′, I1, I2, I ′
T , F〉

=
∑

k

(−1)J ′+IT +F

{
J IT F

I ′
T J ′ 2

}
(−1)J ′+N+S[(2J ′ + 1)(2J + 1)]1/2

×
{

J N S
N ′ J ′ 2

}
〈η,Λ; N ,Λ‖T2(∇Ek)‖η′,Λ′; N ′,Λ′〉

× 〈I1, I2, IT ‖−eT2(Qk)‖I1, I2, I ′
T 〉. (11.71)

The nuclear spin reduced matrix element is expanded as follows:

〈I1, I2, IT ‖
∑

k = 1,2

T2(Qk)‖I1, I2, I ′
T 〉

= (−1)I1+I2 [(2IT + 1)(2I ′
T + 1)]1/2

[
(−1)I ′

T

{
IT I1 I2

I1 I ′
T 2

}
〈I1‖T2(Q1)‖I1〉

+ (−1)IT

{
IT I2 I1

I2 I ′
T 2

}
〈I2‖T2(Q2)‖I2〉

]

= (−1)2IN [(2IT + 1)(2I ′
T + 1)]1/2

{
IT IN IN

IN I ′
T 2

}

× 〈IN ‖T2(QN )‖IN 〉[(−1)I ′
T + (−1)IT ]

= (−1)2IN [(2IT + 1)(2I ′
T + 1)]1/2

{
IT IN IN

IN I ′
T 2

}(
QN

2

)

×
(

IN 2 IN

−IN 0 IN

)−1

[(−1)I ′
T + (−1)IT ]. (11.72)

In the second line of (11.72) we have put I1 = I2 = IN, and in the third line substituted
the definition of the nuclear quadrupole moment.
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The remaining matrix element in equation (11.71) is evaluated by putting Λ = 0
for the � state, and neglecting the mixing of excited electronic states by putting
q = 0:

〈η,Λ; N ,Λ‖−T2(∇E)‖η,Λ; N ′,Λ〉
= (−1)N [(2N + 1)(2N ′ + 1)]1/2

(
N 2 N ′

0 0 0

)
(q0/2). (11.73)

Consequently we combine equations (11.71), (11.72) and (11.73) to obtain the full
result for the quadrupole matrix elements, which is

〈η,Λ; N , S, J, I1, I2, IT , F | − e
∑

k = 1,2

T2(∇Ek) · T2(Qk)|η,Λ; N ′, S, J ′, I1, I2, I ′
T , F〉

= (eq0 QN/4)(−1)2J ′+2N+S+IT +F

{
J IT F

I ′
T J ′ 2

}
[(2J ′ + 1)(2J + 1)]1/2

×
{

J N S
N ′ J ′ 2

}
[(2N + 1)(2N ′ + 1)]1/2

(
N 2 N ′

0 0 0

)
(−1)2IN [(2IT + 1)

× (2I ′
T + 1)]1/2

{
IT IN IN

IN I ′
T 2

}(
IN 2 IN

−IN 0 IN

)−1

[(−1)I ′
T + (−1)IT ]. (11.74)

Finally the electron spin–rotation interaction has matrix elements given by

〈η,Λ; N , S, J, IT , F |γT1(N ) · T1(S )|η,Λ; N , S, J, IT , F〉

= γ (−1)N+J+S

{
S N J
N S 1

}
[N (N + 1)(2N + 1)S(S + 1)(2S + 1)]1/2, (11.75)

and the nuclear spin–rotation interaction is given by

〈η,Λ; N , S, J, IT , F |cI T1(N ) · T1(IT )|η,Λ; N , S, J ′, IT , F〉
= cI (−1)2J ′+F+IT +N+S+1[(2J ′ + 1)(2J + 1)N (N + 1)

× (2N + 1)IT (IT + 1)(2IT + 1)]1/2

{
IT J ′ F

J IT 1

}{
J N S
N J ′ 1

}
. (11.76)

In the analysis of the spectrum, which involved high values of N , it was found necessary
to include centrifugal distortion corrections to both the electron spin–rotation and
nuclear dipolar constants, i.e.

t → t + tD N (N + 1), γ → γ + γD N (N + 1). (11.77)

A matrix for each F value was set up and diagonalised with the aid of a least squares
minimisation programme, and the spectra were fitted with seven constants, whose
values (in MHz) were found to be:

γ = 276.922 53, γD = −3.9790, bF = 100.6040, t = 28.1946,

tD = −7.35, eq0 Q = 0.7079, cI = 0.011 32.
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It should be remembered that these constants are for the v′′ = 1 level. A Hartree-
Fock wave function for N+

2 has been calculated by Cade, Sales and Wahl [101], from
which the spin–rotation and magnetic hyperfine constants were calculated by Rosner,
Gaily and Holt [102]; they were in excellent agreement with experiment. The dominant
molecular orbital configuration, given at the beginning of this section, is

(1sσg)2(1sσu)2(2sσg)2(2sσu)2(2pπu)4(2pσg)1: X 2�+
g .

Comparison can be made with the predictions of this simple molecular orbital
model. The Fermi contact constant, for example, is expected to be small because
the molecular orbital containing the unpaired electron has predominantly 2p atomic
character. The observed contact interaction corresponds to only 6% s character. The
dipolar interaction is also in good agreement with this simple description. The electric
quadrupole coupling is much more difficult to describe in simple terms because it
involves all electrons.

One might suppose that this pioneering application of radiofrequency/optical dou-
ble resonance techniques to the study of an ion beam would soon be followed by
others but, so far, this has not happened. This study involves a combination of different
sophisticated techniques, not commonly found in the same laboratory.

11.8.3. Microwave/optical double resonance of CO+ in the X 2�+

ground state

Two different groups have described experiments aimed at obtaining microwave spectra
of molecular ions in beams through double resonance experiments. Both groups have
investigated the CO+ ion, the first being Brown, Godfrey, McGilvery and Crofts [103]
who used a rovibronic component of the A 2�3/2 ← X 2�+ band system to detect the
two spin components of the lowest rotational transition, N = 1 ← 0, in the v= 0 level of
the ground electronic state. Subsequently Johnson, Alexander, Hertel and Lineberger
[104] described a somewhat different experiment applied to the same ion, which seemed
likely to have more general applicability even though the subsequent sixteen years
have been disappointingly quiet. We now describe these experiments [104] in more
detail.

The first stage was the production of a pulsed free-jet molecular beam of helium
containing 20% CO, which was then crossed with an electron beam to produce ioni-
sation. The ions were produced close enough to the beam nozzle for cooling to occur
downstream. Some 4 cm from the nozzle the beam entered a confocal Fabry–Perot
cavity where it was exposed to millimetre wave radiation close to 120 GHz in fre-
quency. Following microwave excitation, when on resonance, the beam was probed
with a Nd:YAG pumped dye laser beam with the frequency chosen to drive rovi-
bronic components of the A 2�–X 2�+ band system. Figure 11.54 shows two record-
ings of a spin component of the lowest rotational transition; the line shown in (a) is
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Figure 11.54. Microwave/optical double resonance line for CO+, arising from one spin com-
ponent of the lowest rotational transition in the v = 0 level of the X 2�+ state [104]. Spectra
(a) and (b) correspond to different laser pump transitions (see text).

obtained when the lowest level of the microwave transition is driven with the laser, so
that resonance results in a decrease in the fluorescence intensity. Conversely, the line
shown in (b) corresponds to an increase in fluorescence intensity observed when the
upper level involved in the microwave transition is monitored by the laser probe. The
sensitivity in the experiment is high.

Both spin components of the lowest rotational transition were observed, and an
improved value of the rotational constant obtained. The technique was also applied to
study the rotational spectrum of the CN radical, produced when methyl cyanide was
added to the helium beam. In this case the rotational transition exhibited splitting due
to the spin–rotation and nuclear hyperfine interactions. The results were essentially
the same as those described in chapter 10, obtained from a conventional microwave
absorption experiment.
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11.9. Quadrupole trap radiofrequency spectroscopy of the H+
2 ion

11.9.1. Introduction

It might be anticipated that since H+
2 is the simplest of all molecules, and the subject of

a huge number of theoretical investigations, its spectra would have been studied in great
detail. This is, however, not the case because of certain particular characteristics of the
molecule, which make it relatively inaccessible. Whilst H+

2 is a respectably energetically
stable molecule, it is highly reactive, particularly towards the parent molecule H2.
Consequently although electrical discharges or electron impact in H2 readily produce
H+

2 ions, rapid reaction with H2 leads to the production of H+
3 . H+

2 ions are only
preserved if they are either accelerated rapidly into a high-vacuum environment to form
a beam, or produced in a very low-pressure environment such as that used in an ion trap.
Even if a high concentration of H+

2 can be produced, spectroscopic problems remain.
The obvious problem of its homonuclear structure precludes vibrational or rotational
spectroscopy, a problem that can only be removed by working with the heteronuclear
species HD+. We have described studies of the spectra of HD+ in the previous section.
Electronic spectroscopy also has its problems, which have been overcome in the rather
special case involving transitions from the highest vibrational levels of the ground
state. All of these spectroscopic investigations, electronic and vibrational, employed
ion beam techniques. They were, however, preceded by the beautiful radiofrequency
investigations, now to be described, which used an ingenious quadrupole trap method.
This method has not been applied to any other molecular ion, although it would seem,
at least in principle, to be more generally applicable, particularly with the advances in
the underlying technology which have occurred during the past thirty years. It is not
really a double resonance experiment, even though it does involve the simultaneous
use of two different radiation sources. However it fits into this chapter perhaps better
than any other.

11.9.2. Principles of photo-alignment

We first remind ourselves of some of the important features regarding the coupling of
the angular momenta in the H+

2 ion. In the electronic ground state (2�+
g or 1sσg in the

united atom nomenclature) the electronic spin angular momentum S may be coupled to
the total nuclear spin angular momentum I to form a resultant G. For para-H+

2 the total
nuclear spin I is zero, so that the value of G can only be 1/2. For ortho-H+

2 , however,
the total nuclear spin has the value I = 1, so that G may take the values 3/2 or 1/2. The
total spin vector G is now coupled to the rotational angular momentum vector N, to
form the total angular momentum F; this coupling scheme is summarised in the vector
model diagram shown in figure 11.55. So far as the rotational levels are concerned,
para-H+

2 has even N values only, whilst ortho-H+
2 has odd values of N only.

Next we recall that the strongly allowed electronic transition between the 2�+
g

ground state and the essentially repulsive 2�+
u first excited state, induced by the
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Figure 11.55. Vector model for the coupling of angular momentum vectors in the ortho-H+
2 ion.

oscillating electric vector E(t) of appropriate electromagnetic radiation, leads to pho-
todissociation (except for special transitions involving the few bound long-range ex-
cited states). These electronic transitions are polarised along the direction of the in-
ternuclear axis; if an applied magnetic field B defines the direction of a space-fixed
axis of quantisation, the relative orientation of B and E(t) may be chosen. Dehmelt
and Jefferts [105] showed that the individual photodissociation rates (RF M ) of differ-
ent |N ,G, F,MF 〉 levels of the ground state can be readily calculated. These rates
depend only upon the ground state quantum numbers, and are listed for the first three
rotational levels (N = 0, 1, 2) of H+

2 in table 11.6. The population of each level decays
exponentially in time as the photodissociation proceeds, according to the simple equa-
tion NF M (t) = NF M (0) exp(−RF M t/τ ), where τ is the dissociation time, depending
on the light intensity. The relative residual population factors after four dissociation
time constants are also listed in table 11.6.

Table 11.6 reveals the interesting fact that as the photodissociation proceeds, a
highly non-thermal population distribution of the levels is expected to develop; alterna-
tively one may say that progressive preferential photo-alignment of the H+

2 ions should
occur. Before examining the consequences of this, and its experimental verification,
we must give further thought to the wavelength requirements of the electromagnetic
radiation producing photodissociation. It is known from studies of the electronic and
vibrational spectra of the hydrogen molecular ion that electron impact ionisation of
H2 leads to the production of H+

2 ions in which all of the vibrational levels of the
electronic ground state (v = 0 to 19) are populated. The vibrational population factors
are determined essentially by Franck–Condon overlap factors between the vibrational
levels of the ground states of H2 and H+

2 ; these have been calculated by a number of
authors. The maximum population occurs for v = 2, and slowly decreases for higher
vibrational levels. Now H+

2 ions in any vibrational level of the ground electronic state
can be photodissociated, but the relative cross-sections for different vibrational levels
depend upon the wavelength of the photodissociating radiation. The threshold wave-
length for photodissociation out of v = 3 is 247 nm, for v = 4 it is 286 nm, for v = 5
it is 326 nm, and so on. Experimental verification of the predicted photo-alignment
requires that the H+

2 ions be contained in as nearly a collision-free environment as pos-
sible. Richardson, Jefferts and Dehmelt [106] employed a radiofrequency quadrupole
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Table 11.6. Calculated photodissociation rates R of the hyperfine sublevels of the
three lowest rotational levels of the H+

2 molecular ion, for the electric light vector
aligned parallel to the static magnetic field. Relative residual population factors are
listed after irradiation for four dissociation time constants τ

N G F |M | R Population

2 1/2 3/2 3/2 0.65 7.43

1/2 1.35 0.45

5/2 5/2 0.50 13.50

3/2 1.10 1.23

1/2 1.40 0.37

1 3/2 3/2 3/2 1.20 0.82

1/2 0.80 4.08

1/2 1/2 1.00 1.83

5/2 5/2 0.75 4.98

3/2 1.05 1.50

1/2 1.20 0.82

1/2 3/2 3/2 0.75 4.98

1/2 1.25 0.67

1/2 1/2 1.00 1.83

0 1/2 1/2 1/2 1.00 1.83

trap (see [107]), operated at an ambient hydrogen pressure of 3 × 10−10 Torr; effective
trapping times of several seconds for 106 ions could be obtained with this system.
For photodissociation they used a 500W high-pressure mercury arc lamp, coupled
with Brewster-angle reflection from an assembly of quartz plates to produce linearly
polarised light.

An important theoretical result derived by Dehmelt and Jefferts [105] was that the
photodissociation rate is strongly dependent on the relative orientations of E(t) and B. In
particular, τ is four times larger for parallel alignment than for perpendicular alignment.
Consequently all that is necessary to prove the presence of photo-alignment is to
demonstrate the presence of this predicted anisotropy. Dehmelt and Jefferts achieved
this by using a periodic sequence; the H+

2 ions were irradiated, first in parallel alignment,
and the numbers of H+

2 and H+ ions then counted. The sequence was repeated in
perpendicular alignment, the results for parallel and perpendicular alignment being
compared after a sufficient number of sequences had been recorded. The predicted
difference was indeed recorded.

11.9.3. Experimental methods and results

The significance of the photo-alignment observations was that they pointed the way
towards a possible scheme for detecting spectroscopic transitions between the F,M
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levels, just as the prior preparation of aligned molecules was the key to detecting
the molecular beam magnetic resonance spectrum of H2. Transitions of the type
|G, F,M〉 → |G ′, F ′,M ′〉 (with �N = 0) will occur in the radiofrequency region
and will lead to equalisation of the populations of the two levels involved. An equiva-
lent way of describing this situation is to say that saturation of the transition leads to
effective photodissociation rate factors R = 1.00 for both levels. Consequently the oc-
currence of a spectroscopic transition can be detected by measuring a resonant change
in the photodissociation rate.

The apparatus used by Jefferts [108] is shown in block diagrammatic form in
figure 11.56. The ion trap was designed to allow simultaneous trapping of both H+

2

and photoproduct H+ ions, as well as individual extraction of both types of ion at the
end of a measurement cycle. The latter consisted of a 50 ms electron impact burst
to form the H+

2 ions, a 120 ms irradiation period to produce photodissociation, and a

0

Figure 11.56. Block diagram of the ion quadrupole trap apparatus used to detect magnetic
resonance and hyperfine spectra of the H+

2 ion [108].
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Frequency / MHz

Figure 11.57. Radiofrequency hyperfine spectrum of the H+
2 ion. The resonances arise from

�F = ±1 transitions within the v = 5 level [108].

30 ms period during which the ions were extracted and the H+/ H+
2 ratio measured and

stored in a multichannel memory. At the same time the frequency of a radiofrequency
magnetic field, B(t), was slowly swept. Different types of spectra were detected and
recorded. In the earlier work [106] magnetic resonance spectra were recorded, but in
later work [108, 109] transitions between hyperfine levels were observed in very small
static magnetic fields; an example is shown in figure 11.57. The long residence time
of the ions in the radiofrequency field enabled very high spectroscopic resolution to
be achieved; line widths of 0.2 to 0.5 kHz were determined by inhomogeneities in the
static magnetic field. Jefferts actually used a frequency sideband generator to ensure
that all the Zeeman components of a hyperfine transition contributed simultaneously
to its intensity. We now proceed to discuss the theory and analysis of these spectra in
more detail.

11.9.4. Analysis of the spectra

The effective Hamiltonian used by Jefferts [108, 109] to analyse his spectra in zero
magnetic field was expressed in the Frosch and Foley form,

Heff = bI · S + cIz Sz + γ S · N + cI I · N. (11.78)

Note that Jefferts used d for γ and f for cI . The first two terms contain contributions
from both the Fermi contact interaction and the axial component of the electron spin–
nuclear spin dipolar interaction, z being along the direction of the internuclear axis.
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The third and fourth terms describe the spin–rotation interactions for the electron
and nuclear spins respectively. Equation (11.78) represents the Hamiltonian in zero
magnetic field; additional terms would be needed to describe the Zeeman interactions
in an applied static magnetic field.

We reformulate the effective Hamiltonian using irreducible tensors and obtain

Heff = bFT1(I) · T1(S ) +
√

6gSµB gNµN (µ0/4π)
∑

p

(−1) pT2
−p(C)T2

p(I, S)

+ γT1(S ) · T1(N ) + cI T1(I) · T1(N ). (11.79)

The four terms now represent uniquely the Fermi contact, dipolar, electron spin–rotation
and nuclear spin–rotation interactions. We will examine the relationships between the
parameters in (11.78) and (11.79) in due course.

We use a basis set |η,Λ; I, S,G, N , F,M〉 where η is taken to represent different
vibrational levels of the ground electronic state; Jefferts’ measurements involved the
v= 4 to 8 levels, these being the ones with the optimum populations and photodisso-
ciation cross-sections. The matrix elements of each term in (11.79) are now readily
calculated. The Fermi contact interaction is found to be diagonal in the chosen basis:

〈η,Λ; I, S,G, N , F,M|bFT1(I) · T1(S )|η,Λ; I, S,G, N , F,M〉
= bF(−1)S+I+G

{
S I G
I S 1

}
{I (I + 1)(2I + 1)S(S + 1)(2S + 1)}1/2

= (bF/2){G(G + 1) − S(S + 1) − I (I + 1)}. (11.80)

The matrix elements of the dipolar interaction are more complicated:

〈η,Λ; I,S,G,N ,F,M |
√

6gSµB gNµN (µ0/4π)T2(C)·T2(I,S)|η,Λ′; I,S,G ′,N ′,F,M〉
=

√
6 gSµB gNµN (µ0/4π)(−1)G ′+F+N

{
N ′ G ′ F
G N 2

}
× 〈η,Λ, N‖T2(C)‖η,Λ′, N ′〉〈I, S,G‖T2(I, S)‖I, S,G ′〉. (11.81)

The spin part of this expression is readily evaluated:

〈I, S,G‖T2(I, S)‖I, S,G ′〉 =
√

5{(2G ′ + 1)(2G + 1)I (I + 1)

× (2I + 1)S(S + 1)(2S + 1)}1/2




G G ′ 2
I I 1
S S 1


 . (11.82)

For the remaining part we restrict attention to matrix elements diagonal in η and Λ,
noting that, since Λ= 0 for the 2�+

g ground state of H+
2 ,

〈η, N ,Λ‖T2(C)‖η, N ′,Λ〉
= (−1)N {(2N + 1)(2N ′ + 1)}1/2

(
N 2 N ′

0 0 0

)
〈η|C2

0 (θ, φ)r−3|η〉. (11.83)

Replacing the matrix element and its associated factors in (11.83) by the parameter t
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and putting S = 1/2 and I = 1, we obtain the required general result,

〈η,Λ, I, S,G, N , F,M |Hdip|η,Λ, I, S,G ′, N ′, F,M〉
= 3

√
30t(−1)G ′+F {(2N + 1)(2N ′ + 1)(2G + 1)(2G ′ + 1)}1/2

×
{

N ′ G ′ F
G N 2

}(
N 2 N ′

0 0 0

)


G G ′ 2
1 1 1
1/2 1/2 1


 . (11.84)

The electron spin–rotation interaction is straightforward,

〈η,Λ, I, S,G, N , F,M |γT1(S ) · T1(N )|η,Λ, I, S,G ′, N , F,M〉
= γ (−1)G ′+F+N+G+I+S+1{(2G ′ + 1)(2G + 1)S(S + 1)(2S + 1)N (N + 1)

×(2N + 1)}1/2

{
N G ′ F
G N 1

}{
G S I
S G ′ 1

}
, (11.85)

and the nuclear spin–rotation interaction is given by a similar expression,

〈η,Λ, I, S,G, N , F,M |cI T1(I) · T1(N )|η,Λ, I, S,G ′, N , F,M〉
= cI (−1)2G ′+F+N+I+S+1{(2G ′ + 1)(2G + 1)I (I + 1)(2I + 1)N (N + 1)

× (2N + 1)}1/2

{
N G ′ F
G N 1

}{
G I S
I G ′ 1

}
. (11.86)

The molecular parameters given in equation (11.78) can be readily related to those
given in equations (11.80), (11.84), (11.85) and (11.86). The relationships are:

bF = b + (1/3)c, t = (1/3)c. (11.87)

The hyperfine constants b and c used by Jefferts were those originally introduced
by Frosch and Foley [9]; as we have discussed elsewhere, they have, to our minds, the
disadvantage that they represent mixtures of the Fermi contact and dipolar interactions,
whereas our bF and t describe the magnitudes of these interactions separately.

We are now in a position to apply these results to the experimental studies of Jefferts
[108, 109]. In the case of para-H+

2 in the N = 2 level the situation is particularly
simple because, since I = 0, only the electron spin-rotation interaction is involved.
Consequently we have G = 1/2, so that F = 5/2 or 3/2. Substitution in (11.85) gives
the following energies:

N = 2, G = 1/2, F = 3/2: Energy = − 3γ /2,
(11.88)

N = 2, G = 1/2, F = 5/2: Energy = γ.
The F = 3/2 → 5/2 transition frequency is therefore given by 5γ /2, enabling Jefferts
to determine the value of γ for five vibrational levels from v = 4 to 8. In table 11.8
the experimental and calculated transition frequencies are compared, and for these
transitions the agreement between the two is good to 1 kHz. Note that equation (11.84)
suggests that there are non-zero off-diagonal matrix elements of the dipolar interaction,
but these have to involve the mixing of rotational levels differing in N by 2, which are
widely separated in energy. The first-order analysis is obviously very accurate.
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Table 11.7. Matrix representation of the fine and hyperfine effective Hamiltonian
(11.79) operating within the |S, I,G, N , F,M〉 basis set

G = 3/2, G = 3/2, G = 3/2, G = 1/2, G = 1/2,

F = 5/2 F = 3/2 F = 1/2 F = 3/2 F = 1/2

G = 3/2, F = 5/2 m11 0 0 0 0

G = 3/2, F = 3/2 0 m22 0 m24 0

G = 3/2, F = 1/2 0 0 m33 0 m35

G = 1/2, F = 3/2 0 m42 0 m44 0

G = 1/2, F = 1/2 0 0 m53 0 m55

Turning now to ortho-H+
2 in N = 1, the situation is considerably more complicated

because all four interaction terms contribute, and more states are involved; specifically
the appropriate five allowed hyperfine states are:

N = 1, G = 3/2, F = 5/2, 3/2, 1/2
(11.89)

N = 1, G = 1/2, F = 3/2, 1/2.

The matrix representation of the operator in equation (11.79) in this basis set is presented
in table 11.7; the explicit forms of the matrix elements are as follows.

m11 = (1/2)bF − (1/5)t + (1/2)γ + cI

m22 = (1/2)bF + (4/5)t − (1/3)γ − (2/3)cI

m33 = (1/2)bF − t − (5/6)γ − (5/3)cI

m44 = −bF − (1/6)γ + (2/3)cI

m55 = −bF + (1/3)γ − (4/3)cI

m24 = m42 = −(1/2
√

5)t + (
√

5/3)γ − (
√

5/3)cI

m35 = m53 = (1/
√

2)t + (
√

2/3)γ − (
√

2/3)cI

Given values of the four constants for any particular vibrational level, it is a simple
matter to calculate the energies of the five hyperfine levels, and hence the predicted
transition frequencies. In practice, of course, the spectral analysis involves the inverse
of this procedure.

Figure 11.58 shows an energy level diagram and the observed transitions. The
transitions are, of course, magnetic dipole arising principally from coupling of the
oscillating magnetic field with the electron spin magnetic moment,

H
′(t) = gSµBT1(B(t)) · T1(S ). (11.90)

We now calculate the relative transition dipole moments for the transitions. The matrix
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1 2 3 4 5

G � 1/2

G � 3/2

N � 1

Figure 11.58. Hyperfine energy levels and magnetic dipole transitions for H+
2 in the N = 1

rotational level (not to scale). The dashed lines indicate magnetic-dipole allowed transitions
which were not observed experimentally (see text).

elements of (11.90) within our chosen basis set are given by

〈N ,G, F,M |H′(t)|N ,G ′, F ′,M ′〉
= gSµB

∑
p

(−1)pT1
p(B(t))〈N ,G, F,M |T1

−p(S)|N ,G ′, F ′,M ′〉

= gSµB

∑
p

(−1)pT1
p(B(t))(−1)F−M

(
F 1 F ′

−M −p M ′

)

× 〈N ,G, F‖T1(S )‖N ,G ′, F ′〉. (11.91)

The reduced matrix element in (11.91) is given by

〈N ,G, F‖T1(S )‖N ,G ′, F ′〉
= (−1)F+N+1+G ′ {(2F + 1)(2F ′ + 1)}1/2

{
F G N
G ′ F ′ 1

}
〈I, S,G‖T1(S )‖I, S,G ′〉

= (−1)F+N+G ′+G+I+S

{
F G N
G ′ F ′ 1

}
{(2F + 1)(2F ′ + 1)(2G + 1)

× (2G ′ + 1)S(S + 1)(2S + 1)}1/2

{
G S I
S G ′ 1

}
. (11.92)

Now the transition probabilities (T P) are given by the squares of the matrix elements
(11.91). Noting that

∑
p,M ′

(
F 1 F ′

−M p M ′

)2

= 1/3, (11.93)
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we obtain the required result:

T P = g2
Sµ

2
B B2(2F + 1)(2F ′ + 1)(2G + 1)(2G ′ + 1)S(S + 1)(2S + 1)

×
{

F G N
G ′ F ′ 1

}2 {
G S I
S G ′ 1

}2

. (11.94)

Jefferts [109] observed five transitions for each vibrational level from v = 4 to 8, and
gave values of the four constants for each vibrational level. One finds that the calcu-
lated transition frequencies, which are listed together with the experimental values in
table 11.8 agree with experiment to an average deviation of about 80 kHz. Since the
experimental values were accurate to ±1.5 kHz, the analysis was not entirely satis-
factory. This fact has been appreciated by Varshalovich and Sannikov [110] who have
re-analysed the experimental data, derived a new set of constants, and recalculated the
transition frequencies. We find that the average discrepancy in the calculated transi-
tion frequencies is now reduced to about 2.5 kHz (see table 11.8), which is a great
improvement over the original analysis.

The transitions listed in the table are, in the notation |G, F〉 → |G ′, F ′〉, as follows.

f1: 3/2, 5/2 → 3/2, 3/2 f2: 3/2, 1/2 → 3/2, 3/2 f3: 1/2, 3/2 → 1/2, 1/2

f4: 1/2, 3/2 → 3/2, 5/2 f5: 1/2, 3/2 → 3/2, 3/2 f6: 1/2, 5/2 → 1/2, 3/2

Their relative intensities, calculated from (11.94) are as follows.

f1: 0.4000, f2: 0.3704, f3: 0.1481,

f4: 2.0000, f5: 0.5926, f6: 2.4000

There are three other possible transitions, indicated by dashed lines in figure 11.58,
which have comparable magnetic dipole intensities but were not observed experimen-
tally. Table 11.6, however, shows that for the levels involved in these transitions, little or
no photo-alignment is to be expected. The experimental and calculated transition fre-
quencies are given in table 11.8, together with the determined values of the molecular
constants.

This might appear to be a satisfactory conclusion, so far as the analysis of the
observed spectrum is concerned. However, Carrington and Gammie [111] have re-
examined the analysis and concluded that there does not appear to be any obvious
reason why the nuclear spin–nuclear spin dipolar interaction should be neglected,
since it is likely to be similar in magnitude to the nuclear spin–rotation interaction. This
interaction was discussed for H2 in chapter 8, where it was represented, in spherical
tensor form, by the term

Hdip = − g2
Hµ

2
N (µ0/4π)

√
6T2(C) · T2(I1, I2). (11.95)

The second-rank tensors in this expression are defined, as shown elsewhere, by

T2
p(I1, I2) = (−1) p

√
5

∑
p1,p2

(
1 1 2
p1 p2 −p

)
T1

p1
(I1)T1

p2
(I2), (11.96)

T2
q (C) = 〈η|C2

q (θ, φ)r−3|η〉. (11.97)
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The matrix elements of (11.95) in our basis set may be developed as follows:

〈η,Λ; I, S,G, N , F | − g2
Hµ

2
N (µ0/4π)

√
6 T2(I1, I2) · T2(C)|η,Λ; I ′, S,G ′, N ′, F〉

= −g2
Hµ

2
N (µ0/4π)

√
6(−1)G ′+F+N

{
N ′ G ′ F
G N 2

}
〈I, S,G‖T2(I1, I2)‖I ′, S,G ′〉

× 〈η,Λ, N‖T2(C)‖η,Λ, N ′〉. (11.98)

The reduced matrix element involving the nuclear spins is evaluated as follows:

〈I, S,G‖T2(I1, I2)‖I ′, S,G ′〉
= (−1)G ′+I+1+S{(2G + 1)(2G ′ + 1)}1/2

{
G I S
I ′ G ′ 1

}
〈I‖T2(I1, I2)‖I ′〉

= (−1)G ′+I+1+S{(2G + 1)(2G ′ + 1)}1/2

{
G I S
I G ′ 1

}√
5{(2I + 1)(2I ′ + 1)}1/2

× {I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1)}1/2




I1 I1 1

I2 I2 1

I I ′ 2


 . (11.99)

The second reduced matrix element in (11.98) is evaluated by noting that Λ = 0 for a
� state, so that

〈η,Λ, N |T2(C)|η,Λ, N ′〉 = (−1)N {(2N + 1)(2N ′ + 1)}1/2

×
(

N 2 N ′

0 0 0

)
〈η|C2

0 (θ, φ)r−3|η〉. (11.100)

For the case of two point nuclear magnetic dipole moments, the remaining matrix
element in (11.100) is calculated for θ = 0, enabling us to define the dipolar parameter
dN as

dN = g2
Hµ

2
N (µ0/4π)〈η|R−3|η〉. (11.101)

Here η contains the vibrational quantum number, so that dN will have a different value
for each vibrational level as the internuclear distance R changes.

We now have a problem in that we have five constants and five sets of data for
each vibrational level. Perhaps the best approach to this problem is to determine the
values of dN from ab initio calculations, and use the experimental data to determine
the values of the remaining four constants. Adiabatic calculations give the following
values (in kHz) of dN for the vibrational levels involved:

v = 4: dN = 82.1, v = 5: dN = 77.7, v = 6: dN = 73.2,

v = 7: dN = 68.6, v = 8: dN = 63.9.

Incorporation of these values in the analysis of the experimental data enables us to
obtain the final sets of constants given in table 11.9.
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Table 11.9. Refitted values of the H+
2 molecular constants (in MHz) using calculated

values of the nuclear spin dipolar parameter dN (in kHz)

v bF t γ cI

4 dN = 82.1 836.729 32.687 32.655 −0.036

dN = 0 836.731 32.643 32.649 −0.034

5 dN = 77.7 819.227 30.402 30.437 −0.034

dN = 0 819.229 30.361 30.432 −0.032

6 dN = 63.2 803.175 28.188 28.281 −0.032

dN = 0 803.176 28.149 28.276 −0.031

7 dN = 68.6 788.508 26.032 26.171 −0.031

dN = 0 788.509 25.995 26.167 −0.029

8 dN = 63.9 775.172 23.917 24.094 −0.028

dN = 0 775.173 23.883 24.090 −0.027

11.9.5. Quantitative interpretation of the molecular parameters

It will come as no surprise to the reader to learn that whilst the H+
2 molecular ion is

elusive to the experimental spectroscopist, it is a favourite molecule for the theorist, with
hundreds of papers published. As the simplest one-electron molecule it does not have
the complications arising from electron correlation. The difficulties that remain arise
primarily from departures from the Born–Oppenheimer approximation which, although
small for the homonuclear species, are nevertheless important in a fundamental sense.
Within the Born–Oppenheimer approximation the Schrödinger equation for H+

2 can
be solved to very high accuracy by using series expansion methods; the very large
literature existing prior to 1970 has been expertly summarised by Teller and Sahlin
[112]. In general the theoretical treatments can be put into one of three main categories.
In the Born–Oppenheimer approximation all terms coupling electronic and nuclear
motions are neglected; in the adiabatic approximation terms coupling electronic and
nuclear motions which are diagonal in the electronic state are included. In non-adiabatic
calculations, coupling terms which are off-diagonal in the electronic state are treated
by approximate methods.

For the reader who is interested in the quantitative aspects of these distinctions,
the following analysis, due to Leach and Moss [113], may be helpful. The Hamiltonian
for a one-electron molecule with nuclear masses m1 and m2 may be written

H = HBO + (1/µ)Had + (1/µa)Hgu, (11.102)

where the reduced mass constants are

(1/µ) = (1/m1) + (1/m2), (1/µa) = (1/m1) − (1/m2). (11.103)

The term involving µa is relevant only for the heteronuclear molecule, HD+. If R is
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the internuclear distance and rg is the position of the electron relative to the geometric
centre of the nuclei, the different contributions to the Hamiltonian (11.102) may be
written, in atomic units, as follows:

Born–Oppenheimer: HBO = − (1/2)∇2
g − (1/r1) − (1/r2) + (1/R) (11.104)

adiabatic: Had = − (1/2)∇2
R − (1/8)∇2

g (11.105)

non-adiabatic: Hgu = − (1/2)∇g · ∇R . (11.106)

The Born–Oppenheimer potentials and wave functions, depending on R, are obtained
by solving the problem

HBOφt (rg; R) = Et (R)φt (rg; R). (11.107)

If the eigenfunctions of the full Hamiltonian (11.102) are expressed as an expansion
of the Born–Oppenheimer solutions,

#(rg; R) =
∑

t

φt (rg; R)Ft (R), (11.108)

the following set of coupled equations is obtained:{
Es(R) − (1/2µ)∇2

R−
∫
φ∗

s (rg; R)
[
(1/8µ)∇2

g + (1/2µ)∇2
R

]
φs(rg; R) drg−E

}
Fs(R)

=
∑
t 
=s

{∫
φ∗

s (rg; R)
[−(1/8µ)∇2

g − (1/2µ)∇2
R − (1/2µa)∇g · ∇R

]
φt (rg; R) drg

+
∫
φ∗

s (rg; R)[−(1/µ)∇R − (1/2µa)∇g]φt (rg; R) drg · ∇R

}
Ft (R). (11.109)

The right-hand side of (11.109) contains terms off-diagonal in the electronic state (i.e.
the non-adiabatic terms). If the right-hand side is set equal to zero, we obtain the
adiabatic eigenvalue problem,[−(1/2µ)∇2

R + Us(R)
]
Fs(R) = E Fs(R), (11.110)

with the effective adiabatic potential

Us(R) = Es(R) +
∫
φ∗

s (rg; R)(1/µ)Hadφs(rg; R) drg. (11.111)

Exact solution of the non-adiabatic problem is not possible, and valuable con-
cepts like the potential energy curve are lost. Nevertheless remarkable accuracy has
been achieved in recent years, and some of the results obtained where experimental
measurements are available for comparison are listed in table 11.10. The first set of
calculated constants (1) are due to Ray and Certain [114] using an adiabatic potential
of Bishop and Wetmore [115]. The second set (2) are given by McEachran, Veenstra
and Cohen [116], also using an adiabatic potential. The final set are from calculations
which include non-adiabatic terms; the Fermi contact parameter bF is from Babb and
Dalgarno [117], whilst the remaining constants are given by Babb and Dalgarno [118]
and Babb [119]. Note that Babb [119] successfully calculates a negative value for cI .
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Table 11.10. Comparison of experimental and calculated fine and hyperfine
constants for the v= 4 vibrational level of H+

2 (in MHz)

bF t γ (N = 1) cI γ (N = 2)

Experiment 836.730 32.643 32.649 −0.034 32.448

Calc. (adiab)(1) 837.113 32.653 32.65 0 32.44

Calc. (adiab)(2) 837.179 32.669 32.639 0.039 32.433

Calc. (non-ad) 836.747 32.643 32.658 −0.036 32.451

The experimental values are those derived by Varshalovich and Sannikov [110] from
their re-analysis of Jefferts’ original data.

In this section we have concentrated on calculations for H+
2 only, which have partic-

ular relevance to the fine and hyperfine constants determined from Jefferts’ experiments.
Many other papers deal with calculations of the vibration–rotation level energies, for
which there is much less experimental data. There are also many papers dealing with
the heteronuclear molecule, HD+, which is really a special case because the Born–
Oppenheimer approximation collapses, particularly for the highest vibrational levels
of the ground electronic state. Even the homonuclear species H+

2 and D+
2 exhibit some

fascinating and unusual effects in their near-dissociation vibration–rotation levels. Fi-
nally we note that in order to match the accuracy of the experimental measurements
for all the hydrogen molecular ion isotopomers, it is necessary to include radiative and
relativistic effects.

One of the reasons why so much effort has been expended on highly accurate
calculations of the constants given in table 11.10 is the desire to extrapolate the the-
oretical results to the ground vibrational level, v= 0, for which direct experimental
data are not available, although studies of the Rydberg spectrum of H2 [120] provide
valuable but less accurate data. The efforts to improve the theory are motivated, at
least in part, by radioastronomical searches for interstellar H+

2 , through observation of
the magnetic dipole transitions discussed in this section. Several unsuccessful searches
have been reported, the first being in 1968 [121], and since H+

2 plays a fundamental
role in extra-terrestrial chemistry, efforts to detect it directly are certain to continue.
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Appendix A
Values of the fundamental constants

A new best set of the fundamental constants has been compiled by NIST at Gaithersburg
in 1999. A selected set is given in the following table.

quantity symbol value unit

Planck constant h 6.626 068 76(52) 10−34 Js

elementary charge e 1.602 176 462(63) 10−19 C

electron rest mass me 9.109 381 88(72) 10−31 kg

proton rest mass m p 1.672 621 58(13) 10−27 kg

atomic mass constant u = mu 1.660 538 73(13) 10−27 kg

Avogadro constant L , NA 6.022 141 99(47) 1023 mol−1

Boltzmann constant k 1.380 650 3(24) 10−23 J K−1

Bohr radius a0 0.529 177 208 3(19) 10−10 m

Hartree energy Eh 4.359 743 81(34) 10−18 J

Rydberg constant R∞ 1.097 373 156 854 9(83) 107 m−1

Bohr magneton µB 9.274 008 99(37) 10−24 J T−1

nuclear magneton µN 5.050 783 17(20) 10−27 J T−1

free electron g factor gS 2.002 319 304 373 7(82)

speed of light (vacuum) c 2.997 924 58 108 m s−1

magnetic constant µ0 4π × 10−7 = 12.566 370 61... 10−7 N A−2

vacuum permittivity ε0 8.854 187 817... 10−12 J−1 C2 m−1

4πε0 1.112 650 056... 10−10 J−1 C2 m−1

proton-electron mass ratio m p/me 1836.152 667 5(39)

electron volt eV 1.602 176 462(63) 10−19 J

See http://physics.nist.gov/constants
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Appendix B
Selected set of nuclear properties for naturally
occurring isotopes

electric

natural magnetic quadrupole

abundance spin moment moment

nucleus isotope atomic mass (%) (h/2π ) (µN ) (10−24 cm2)

H 1 1.007 825 99.985 1/2 +2.792 85 —

2 2.014 10 0.015 1 +0.857 44 +0.0028

3 3.016 05 0 1/2 +2.978 96 —

He 3 3.016 03 0.000137 1/2 −2.127 62 —

4 4.002 60 ≈100 0 — —

Li 6 6.015 121 7.5 1 +0.822 05 −0.0008

7 7.016 003 92.5 3/2 +3.256 44 −0.041

Be 9 9.012 182 100.0 3/2 −1.1776 +0.05

B 10 10.012 937 19.9 3 +1.8006 +0.085

11 11.009 305 80.1 3/2 +2.6886 +0.041

C 12 12 98.90 0 — —

13 13.003 355 1.10 1/2 +0.702 41 —

N 14 14.003 074 99.63 1 +0.403 76 +0.020

15 15.000 108 0.37 1/2 −0.283 19 —

O 16 15.994 915 99.76 0 — —

17 16.999 131 0.04 5/2 −1.8938 −0.026

18 17.999 160 0.20 0 — —

F 19 18.998 403 100.0 1/2 +2.628 87 —

Ne 20 19.992 435 90.48 0 — —

21 20.993 843 0.27 3/2 −0.661 80 +0.103

22 21.991 383 9.25 0 — —

Na 23 22.989 767 100.0 3/2 +2.217 52 +0.101

Mg 24 23.985 042 78.99 0 — —

25 24.985 837 10.00 5/2 −0.855 45 +0.20

26 25.982 593 11.01 0 — —

Al 27 26.981 539 100.0 5/2 +3.641 51 +0.15

Si 28 27.976 927 92.23 0 — —

29 28.976 495 4.67 1/2 −0.5553 —

30 29.973 770 3.10 0 — —

P 31 30.973 762 100.0 1/2 +1.131 60 —
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Appendix B (cont.)

electric

natural magnetic quadrupole

abundance spin moment moment

nucleus isotope atomic mass (%) (h/2π ) (µN ) (10−24 cm2)

S 32 31.972 070 95.02 0 — —

33 32.971 456 0.75 3/2 +0.643 82 −0.07

34 33.967 866 4.21 0 — —

Cl 35 34.968 852 75.77 3/2 +0.821 87 −0.08

37 36.965 903 24.23 3/2 +0.684 12 −0.065

Ar 36 35.967 545 0.337 0 — —

38 37.962 732 0.063 0 — —

40 39.962 384 99.600 0 — —

K 39 38.963 707 93.2581 3/2 +0.391 46 +0.049

40 39.963 999 0.0117 4 −1.298 −0.061

41 40.961 825 6.7302 3/2 +0.214 87 +0.060

Ca 40 39.962 591 96.941 0 — —

42 41.958 618 0.647 0 — —

43 42.958 766 0.135 7/2 −1.3173 −0.05

44 43.955 480 2.086 0 — —

46 45.953 689 0.004 0 — —

48 47.952 533 0.187 0 — —

Sc 45 44.955 910 100.0 7/2 4.756 49 −0.22

Ti 46 45.952 629 8.0 0 — —

47 46.951 764 7.3 5/2 −0.788 48 +0.29

48 47.947 947 73.8 0 — —

49 48.947 871 5.5 7/2 −1.104 17 +0.24

50 49.944 792 5.4 0 — —

V 50 49.947 161 0.250 6 +3.345 69 +0.21

51 50.943 962 99.750 7/2 +5.148 706 −0.04

Cr 50 49.946 046 4.345 0 — —

52 51.940 509 83.79 0 — —

53 52.940 651 9.50 3/2 −0.474 54 −0.15

54 53.938 882 2.365 0 — —

Mn 55 54.938 047 100.0 5/2 +3.4687 +0.32

Fe 54 53.939 612 5.9 0 — —

56 55.934 939 91.72 0 — —

57 56.935 396 2.1 1/2 +0.0906 —

58 57.933 277 0.28 0 — —

Co 59 58.933 198 100.0 7/2 +4.63 +0.41
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Appendix B (cont.)

electric

natural magnetic quadrupole

abundance spin moment moment

nucleus isotope atomic mass (%) (h/2π ) (µN ) (10−24 cm2)

Ni 58 57.935 346 68.077 0 — —

60 59.930 788 26.223 0 — —

61 60.931 058 1.140 3/2 −0.750 02 +0.16

62 61.928 346 3.634 0 — —

64 63.927 968 0.926 0 — —

Cu 63 62.929 598 69.17 3/2 +2.2273 −0.211

65 64.927 793 30.83 3/2 +2.3817 −0.195

Zn 64 63.929 145 48.6 0 — —

66 65.926 034 27.9 0 — —

67 66.927 129 4.1 5/2 +0.8755 +0.15

68 67.924 846 18.8 0 — —

70 69.925 325 0.6 0 — —

Ga 69 68.925 580 60.108 3/2 +2.016 59 +0.17

71 70.924 700 39.892 3/2 +2.562 27 +0.11

Ge 70 69.924 250 21.24 0 — —

72 71.922 079 27.66 0 — —

73 72.923 463 7.72 9/2 −0.879 467 −0.17

74 73.921 177 35.94 0 — —

76 75.921 401 7.44 0 — —

As 75 74.921 594 100.0 3/2 +1.439 47 +0.31

Se 74 73.922 475 0.89 0 — —

76 75.919 212 9.36 0 — —

77 76.919 912 7.63 1/2 +0.535 06 —

78 77.917 308 23.77 0 — —

80 79.916 520 49.61 0 — —

82 81.916 698 8.74 0 — —

Br 79 78.918 336 50.69 3/2 +2.106 400 +0.331

81 80.916 289 49.31 3/2 +2.270 562 +0.276

Kr 78 77.920 496 0.35 0 — —

80 79.916 380 2.25 0 — —

82 81.913 482 11.6 0 — —

83 82.914 135 11.5 9/2 −0.970 669 +0.253

84 83.911 507 57.0 0 — —

86 85.910 616 17.3 0 — —

Rb 85 84.911 794 72.17 5/2 +1.353 +0.23

87 86.909 187 27.83 3/2 +2.7512 +0.13
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Appendix B (cont.)

electric

natural magnetic quadrupole

abundance spin moment moment

nucleus isotope atomic mass (%) (h/2π ) (µN ) (10−24 cm2)

Sr 84 83.913 430 0.56 0 — —

86 85.909 267 9.86 0 — —

87 86.908 884 7.00 9/2 −1.093 60 +0.34

88 87.905 619 82.58 0 — —

Y 89 88.905 849 100.0 1/2 −0.137 42 —

Zr 90 89.904 703 51.45 0 — —

91 90.905 644 11.22 5/2 −1.303 62 −0.21

92 91.905 039 17.15 0 — —

94 93.906 314 17.38 0 — —

96 95.908 275 2.80 0 — —

Nb 93 92.906 377 100.0 9/2 +6.1705 −0.32

Mo 92 91.906 808 14.84 0 — —

94 93.905 085 9.25 0 — —

95 94.905 840 15.92 5/2 −0.9142 −0.02

96 95.904 678 16.68 0 — —

97 96.906 020 9.55 5/2 −0.9335 +0.26

98 97.905 406 24.13 0 — —

100 99.907 477 9.63 0 — —

Ru 96 95.907 599 5.54 0 — —

98 97.905 287 1.86 0 — —

99 98.905 939 12.7 5/2 −0.6413 +0.079

100 99.904 219 12.6 0 — —

101 100.905 582 17.1 5/2 −0.7188 +0.46

102 101.904 348 31.6 0 — —

104 103.905 424 18.6 0 — —

Rh 103 102.905 500 100.0 1/2 −0.0884 —

Pd 102 101.905 634 1.02 0 — —

104 103.904 029 11.14 0 — —

105 104.905 079 22.33 5/2 −0.642 +0.66

106 105.903 478 27.33 0 — —

108 107.903 895 26.46 0 — —

110 109.905 167 11.72 0 — —

Ag 107 106.905 092 51.839 1/2 −0.113 57 —

109 108.904 757 48.161 1/2 −0.130 56 —

Cd 106 105.904 176 1.25 0 — —

108 107.904 18 0.89 0 — —

110 109.903 005 12.49 0 — —
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Appendix B (cont.)

electric

natural magnetic quadrupole

abundance spin moment moment

nucleus isotope atomic mass (%) (h/2π ) (µN ) (10−24 cm2)

Cd 111 110.904 182 12.80 1/2 −0.594 886 —

112 111.902 758 24.13 0 — —

113 112.904 400 12.22 1/2 −0.622 301 —

114 113.903 357 28.73 0 — —

116 115.904 754 7.49 0 — —

In 113 112.904 061 4.3 9/2 +5.529 +0.80

115 114.903 880 95.7 9/2 +5.541 +0.81

Sn 112 111.904 826 0.97 0 — —

114 113.902 784 0.65 0 — —

115 114.903 348 0.36 1/2 −0.9188 —

116 115.901 747 14.53 0 — —

117 116.902 956 7.68 1/2 −1.0010 —

118 117.901 609 24.22 0 — —

119 118.903 310 8.58 1/2 −1.0473 —

120 119.902 200 32.59 0 — —

122 121.903 440 4.63 0 — —

124 123.905 274 5.79 0 — —

Sb 121 120.903 821 57.36 5/2 +3.363 −0.4

123 122.904 216 42.64 7/2 +2.550 −0.5

Te 120 119.904 048 0.095 0 — —

122 121.903 054 2.59 0 — —

123 122.904 271 0.905 1/2 −0.736 95 —

124 123.902 823 4.79 0 — —

125 124.904 433 7.12 1/2 −0.8885 —

126 125.903 314 18.93 0 — —

128 127.904 463 31.70 0 — —

130 129.906 229 33.87 0 — —

I 127 126.904 473 100.0 5/2 +2.8133 −0.79

Xe 124 123.905 894 0.10 0 — —

126 125.904 281 0.09 0 — —

128 127.903 531 1.91 0 — —

129 128.904 780 26.4 1/2 −0.7780 —

130 129.903 509 4.1 0 — —

131 130.905 072 21.2 3/2 +0.691 86 −0.12

132 131.904 144 26.9 0 — —

134 133.905 395 10.4 0 — —

136 135.907 214 8.9 0 — —
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Appendix B (cont.)

electric

natural magnetic quadrupole

abundance spin moment moment

nucleus isotope atomic mass (%) (h/2π ) (µN ) (10−24 cm2)

Cs 133 132.905 429 100.0 7/2 +2.582 −0.0037

Ba 130 129.906 282 0.106 0 — —

132 131.905 042 0.101 0 — —

134 133.904 486 2.42 0 — —

135 134.905 665 6.593 3/2 +0.838 +0.16

136 135.904 553 7.85 0 — —

137 136.905 812 11.23 3/2 +0.9374 +0.245

138 137.905 232 71.70 0 — —

La 138 137.907 11 0.0902 5 +3.7136 +0.45

139 138.906 347 99.9098 7/2 +2.7830 +0.20

Ce 136 135.907 140 0.19 0 — —

138 137.905 985 0.25 0 — —

140 139.905 433 88.43 0 — —

142 141.909 241 11.13 0 — —

Pr 141 140.907 647 100.0 5/2 +4.275 −0.059

Nd 142 141.907 719 27.13 0 — —

143 142.909 810 12.18 7/2 −1.07 −0.6

144 143.910 083 23.80 0 — —

145 144.912 570 8.30 7/2 −0.66 −0.33

146 145.913 113 17.19 0 — —

148 147.916 889 5.76 0 — —

150 149.920 887 5.64 0 — —

Sm 144 143.911 998 3.1 0 — —

147 146.914 895 15.0 7/2 −0.815 −0.26

148 147.914 820 11.3 0 — —

149 148.917 181 13.8 7/2 −0.672 +0.075

150 149.917 273 7.4 0 — —

152 151.919 729 26.6 0 — —

154 153.922 206 22.7 0 — —

Eu 151 150.919 847 47.8 5/2 +3.472 +0.90

153 152.921 225 52.2 5/2 +1.533 +2.41

Gd 152 151.919 786 0.20 0 — —

154 153.920 861 2.18 0 — —

155 154.922 618 14.80 3/2 −0.257 +1.30

156 155.922 118 20.47 0 — —

157 156.923 956 15.65 3/2 −0.337 +1.36
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Appendix B (cont.)

electric

natural magnetic quadrupole

abundance spin moment moment

nucleus isotope atomic mass (%) (h/2π ) (µN ) (10−24 cm2)

Gd 158 157.924 019 24.84 0 — —

160 159.927 049 21.86 0 — —

Tb 159 158.925 342 100.0 3/2 +2.014 +1.43

Dy 156 155.925 277 0.06 0 — —

158 157.924 403 0.10 0 — —

160 159.925 193 2.34 0 — —

161 160.926 930 18.9 5/2 −0.480 +2.51

162 161.926 795 25.5 0 — —

163 162.928 728 24.9 5/2 +0.673 +2.65

164 163.929 171 28.2 0 — —

Ho 165 164.930 319 100.0 7/2 +4.17 +3.49

Er 162 161.928 775 0.14 0 — —

164 163.929 198 1.61 0 — —

166 165.930 290 33.6 0 — —

167 166.932 046 22.95 7/2 −0.5639 +3.57

168 167.932 368 26.8 0 — —

170 169.935 461 14.9 0 — —

Tm 169 168.934 212 100.0 1/2 −0.2316 —

Yb 168 167.933 894 0.13 0 — —

170 169.934 759 3.05 0 — —

171 170.936 323 14.3 1/2 +0.493 67 —

172 171.936 378 21.9 0 — —

173 172.938 208 16.12 5/2 −0.679 89 +2.80

174 173.938 859 31.8 0 — —

176 175.942 564 12.7 0 — —

Lu 175 174.940 770 97.41 7/2 +2.2327 +3.49

176 175.942 679 2.59 7 +3.169 +4.92

Hf 174 173.940 044 0.162 0 — —

176 175.941 406 5.206 0 — —

177 176.943 217 18.606 7/2 +0.7935 +3.37

178 177.943 696 27.297 0 — —

179 178.945 812 13.629 9/2 −0.6409 +3.79

180 179.946 545 35.100 0 — —

Ta 180 179.947 462 0.012 8 +4.77 —

181 180.947 992 99.998 7/2 +2.370 +3.3

W 180 179.946 701 0.12 0 — —

182 181.948 202 26.3 0 — —
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Appendix B (cont.)

electric

natural magnetic quadrupole

abundance spin moment moment

nucleus isotope atomic mass (%) (h/2π ) (µN ) (10−24 cm2)

W 183 182.950 220 14.28 1/2 +0.117 784 8 —

184 183.950 928 30.7 0 — —

186 185.954 357 28.6 0 — —

Re 185 184.952 951 37.40 5/2 +3.1871 +2.18

187 186.955 744 62.60 5/2 +3.2197 +2.07

Os 184 183.952 488 0.02 0 — —

186 185.953 830 1.58 0 — —

187 186.955 741 1.6 1/2 +0.064 651 9 —

188 187.955 860 13.3 0 — —

189 188.958 137 16.1 3/2 +0.659 93 +0.86

190 189.958 436 26.4 0 — —

192 191.961 467 41.0 0 — —

Ir 191 190.960 584 37.3 3/2 +0.151 +0.82

193 192.962 917 62.7 3/2 +0.164 +0.75

Pt 190 189.959 917 0.01 0 — —

192 191.961 019 0.79 0 — —

194 193.962 655 32.9 0 — —

195 194.964 766 33.8 1/2 +0.6095 —

196 195.964 926 25.3 0 — —

198 197.967 869 7.2 0 — —

Au 197 196.966 543 100.0 3/2 +0.145 75 +0.55

Hg 196 195.965 807 0.15 0 — —

198 197.966 743 9.97 0 — —

199 198.968 254 16.87 1/2 +0.505 885 —

200 199.968 300 23.10 0 — —

201 200.970 277 13.18 3/2 −0.560 226 +0.39

202 201.970 617 29.86 0 — —

204 203.973 467 6.87 0 — —

Tl 203 202.972 320 29.524 1/2 +1.622 258 —

205 204.974 401 70.476 1/2 +1.638 215 —

Pb 204 203.973 020 1.4 0 — —

206 205.974 440 24.1 0 — —

207 206.975 872 22.1 1/2 +0.582 58 —

208 207.976 627 52.4 0 — —

Bi 209 208.980 374 100.0 9/2 +4.111 −0.37
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Appendix E
Relationships between cgs and SI units

The vacuum permeability µ0 and vacuum permittivity ε0 are related through the equa-
tion

µ0 = 1/ε0c2.

We then have the results listed below.

quantity cgs SI

elementary charge q q/(4πε0)1/2

electric field strength E E(4πε0)1/2

electric potential φ φ(4πε0)1/2

magnetic flux density B B/(µ0/4π)1/2

magnetic vector potential A A/(µ0/4π)1/2

Bohr magneton µB µB(µ0/4π)1/2
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microwave/optical double resonance rotational
spectrum, 902

CaFX 2�+, see SrFX 2�+
carbon dioxide laser, 584
cartesian

tensor, 14, 398, 561
vector, 14

case (a), case (b), etc., see Hund’s case (a), (b), etc.
CCl X 2�

molecular parameters, 814
CD X 2�, see CH X 2�

centre of mass
molecular, 40, 41, 234, 396
nuclear, 40, 43

centrifugal distortion, 242, 338, 546
CF X 2�

microwave magnetic resonance spectrum, 608
molecular parameters, 768, 811
rotational spectrum, 811

CFe, see FeC
cgs units, relationships to SI units, 4, 33, 993
CH X 2�

CD, far-infrared laser magnetic resonance
spectrum, 633

electronic structure, ab initio calculations, 805
energy levels, 630
far-infrared laser magnetic resonance spectrum,

628, 802
Λ-doubling spectrum, 794, 802
microwave/optical double resonance spectrum,

794
millimetre wave rotational spectrum, 794
molecular parameters, 805
theory of Hund’s case (a) to case (b) correlation,

627
CH a 4�−

far-infrared laser magnetic resonance spectrum,
661

molecular parameters, 664
rotational levels, 805

chemical shift, 378
Chraplyvy transformation, 105
circulator, 581
classification of electronic states, 26, 200
Clebsch–Gordan coefficients, 153, 157
Clebsch–Gordan series, 157
ClO X 2�

35Cl quadrupole interaction, 604
microwave magnetic resonance spectrum, 597

molecular parameters, 607, 813
rotational spectrum, 811
theory of the hyperfine interaction, 602

CN X 2�+
energy levels, 639
interstellar spectrum, 749
molecular parameters, 751
rotational spectrum, 749
Zeeman effect, 637, 639

CN A 2�3/2

radiofrequency Λ-doubling transitions, 871
CN B 2�+

electronic transitions, 871
14N hyperfine parameters, 875

CO X 1�+
far-infrared rotational spectrum, 732
millimetre wave rotational spectrum, 732
rotational constants of isotopomers, 733

CO a 3�

energy levels, 554, 656, 835
far-infrared laser magnetic resonance spectrum,

655
Λ-doubling theory, 556, 659
microwave and millimetre wave rotational

spectrum, 834
molecular beam electric resonance spectrum, 555
perturbation of a 3� state by a′ 3�+ state, 557
Stark effect, 553
Zeeman effect, 660

CO+ X 2�+
interstellar spectrum, 722, 746
microwave/optical double resonance spectrum,

958
molecular parameters, 749
rotational spectrum, 697, 745

CoH X 3�

far-infrared laser magnetic resonance spectrum,
669

molecular parameters, 673
rotational levels, 671

commutation relations
anomalous, 148, 168
normal, 142, 160, 322

composite systems, 165
Condon and Shortley convention, 144
configuration interaction, 196, 216
conservation of angular momentum, 79
contact transformation, 312, 352
core integrals, 191
Coriolis coupling, 329
correlation energy, 189, 196
correlation diagrams, 202, 231, 527, 598, 650, 755,

785
correlation rules, 203
Coulomb

gauge, 102, 114
integrals, 191
potential, 178

coupled-cluster method, 218
coupled representation, 152, 173
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coupling cases, see Hund’s coupling cases, nuclear
spin coupling cases

coupling
of Ii to form IT , 253, 417, 447
of J and I to form F, 233, 743
of Ja and R to form J, 229
of L to the molecular axis, 225
of L and R, 228, 425
of Λ and R to form N, 226
of L and S to form Ja, 228
of λi to form L, 197
of N and S to form J, 226, 425
of si to form S, 199
of S and I to form G, 233

CrCl, see CrF
CrF X 6�+

millimetre wave rotational spectrum, 851
molecular parameters, 852

CrH X 6�+
far-infrared laser magnetic resonance, 666
molecular parameters, 668

CrN X 4�−
microwave/optical double resonance rotational

spectrum, 924
molecular parameters, 927

CS A 1�

molecular parameters, 879
radiofrequency/optical double resonance

spectrum, 876
Stark effect, 878

CsF X 1�+
molecular parameters, 481
Stark effect, 465, 476
strong field molecular beam electric resonance

spectrum, 476
weak field molecular beam electric resonance

spectrum, 470
CSi, see SiC
CuBr X 1�+, see CuCl X 1�+
CuCl, CuBr X 1�+

rotational spectrum, 738
CuF b 3�

microwave/optical double resonance rotational
spectrum, 913

molecular parameters, 916
CuH X 1�+, see LiH X 1�+
CuO X 2�1/2

microwave/optical double resonance rotational
spectrum, 917

molecular orbital theory, 918
molecular parameters, 918

Curl’s relationship, 668

d, Frosch and Foley hyperfine constant, 573
d orbitals, 182
De , rotational constant at equilibrium, 244
De , dissociation energy at equilibrium, 239
Dv , rotational constant in vibrational level v, 244
1� states, 26, 587, 588, 591, 594, 778
2� states, 665, 674, 927

3� states, 841, 922
4� states, 669
5� states, 856, 909
6� states, 846
D2, see H2

D+
2 , see H+

2
Darwin term, 85, 94
DCl X 1�+electric resonance spectrum, see HCl

X 1�+
decoupled representation, 152, 226
density functional theory, 218
density matrix, 215
determinantal wave function, 183, 357
diamagnetism

Hamiltonian, 116, 380, 403, 408, 500
semiclassical theory for an atom, 392
semiclassical theory for a diatomic molecule,

393
dipolar interaction

electron–electron, 25, 430, 452, 563, 643, 661,
753

electron–nuclear, 332, 441, 452, 561, 748, 765,
803

nuclear–nuclear, 378, 492, 558
dipole electric field, 464
dipole–quadrupole interaction, 283
Dirac delta function, 24, 91
Dirac equation, 73
Dirac representation, 85
Dirac spin matrices, 78
dish, see radio telescope
dissociation energy, De , 66, 239
Doppler modulation, 699
Doppler shift, interstellar, 721
Doppler splitting, 721
Doppler width of spectral lines, 275
double zeta basis set, 195
dumbbell model, 233
Dunham variable, 63
Dunham expansion, 244, 282, 345, 501, 742

e, elementary electric charge, 978
e/ f convention, 251
effective Hamiltonian, 29, 129, 302, 316
eigenfunctions

of the anharmonic oscillator, 238
of the harmonic oscillator, 64, 235
of the rigid rotator, 233
of the vibrating rotator, 243

Einstein coefficients of absorption and emission,
258, 718

electric dipole moment, 20, 116
electric dipole transitions, 261
electric field dissociation, 731
electric field gradient, 365
electric potential, 89, 99
electric resonance, see Molecular beam electric

resonance
electromagnetic radiation, 1, 3, 35
electromagnetic spectrum, 2, 684
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electronic states classification, 197, 200
electronic structure, 200, 213, 665
electron rest mass, 978
electron spin

g-factor, 21, 80, 110
magnetic moment, 21, 77, 80

electronvolt, eV, 978
electrostatic interaction potential, 365
elementary charge, 978
elliptical coordinates, 209, 289
emission spectra, 260
Euler angles, 46, 147, 245
exchange integrals, 191
exclusion principle, see Pauli exclusion

principle

f orbitals, 182
3� states, 669
4� states, 854
F(J ), rotational term, 244
Fabry–Perot cavity, see Fourier transform
far-infrared

laser frequencies, 586
laser magnetic resonance, 584
spectrometers, 585, 723
telescope, 720

FeC X 3�

millimetre wave rotational spectrum, 841
FeCl X 6�

molecular parameters, 849
rotational levels, 846, 848

FeF X 6�

electronic structure, 850
millimetre wave rotational spectrum, 845, 847
molecular parameters, 849

FeH X 4�

far-infrared laser magnetic resonance, 669
FeH a 6�, 359
Felgett advantage, 712
FeO X 5�

microwave/optical double resonance spectrum,
909

millimetre wave rotational spectrum, 856
molecular parameters, 913

Fermi contact interaction, 24, 127, 332, 364, 440,
452, 748, 751, 763, 803

fermions, 126, 255
fine structure: higher order contributions, 327, 335,

661, 667, 852, 909
flop-out, flop-in detection of molecular beams, 375,

463, 482, 555
Fock matrix, 215
Foldy–Wouthysen transformation, 80, 85
force constant k, 236
Fourier transform

Fabry–Perot cavity, 708
microwave spectrometer, 703, 708, 739

four-vector, 99
Franck–Condon integral, 269
free space cell, 698

fundamental constants, 978
fundamental transition, 238

g-factor
electron orbital, gL , 28, 351
electron spin, gS , 21, 351, 978
nuclear spin, gN , 20, 270, 351
rotational, gr or gJ , 20, 350, 406

g, gerade, 200, 245
γ , electron spin–rotation parameter, 21, 360
γ e , vibration–rotation parameter, 244
gauge

invariance, 101
transformation, 102

Gaussian lineshape, 276
Gaussian orbitals, 195, 216
Gaussian quadrature, 279
GeF X 2�

microwave rotational spectrum, 810
molecular parameters, 811

Grotrian diagram, 185

h, the Planck constant, 978
H , He , Hv , rotational constant, 243
H atom

atomic orbitals, 178
Schrödinger equation, 178

H2 molecule, electronic states, 212, 224, 423, 424,
886

H2 X 1�+
g

molecular beam magnetic resonance spectrum,
272, 372

molecular orbital theory, 208
molecular parameters, 416
molecular quadrupole moment, 409, 416
ortho and para forms, 254, 385, 425
Zeeman effect, 384, 390, 391

H2 G 1�+
g

microwave/optical double resonance (MOMRIE)
spectrum, 885

rotational levels and Zeeman effect, 889
H2 c 3�u

molecular beam magnetic resonance spectrum,
422, 439

rotational levels, 437
H2 d 3�u

hyperfine interactions and parameters, 900
microwave/optical double resonance (MOMRIE)

spectrum, 892
rotational levels and Zeeman effect, 894

H2 k 3�u

hyperfine interactions and parameters, 900
microwave/optical double resonance (MOMRIE)

spectrum, 900
rotational levels and Zeeman effect, 901

H+
2 X 2�+
adiabatic and non-adiabatic calculations, 207,

223, 972
Born–Oppenheimer potential, 207, 221, 289, 858
electronic wave function, 207
hyperfine symmetry-breaking, 859, 860
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H+
2 X 2�+ (Cont.)
microwave electronic spectrum, 859
microwave rotational spectrum, 856
molecular parameters, 970
quadrupole trap radiofrequency spectrum,

960
HD X 1�+

molecular beam magnetic resonance spectrum,
388

Zeeman effect, 391
HD+ X 2�+

hyperfine interaction parameters, 948
microwave/infrared double resonance rotational

spectrum, 948
radiofrequency/infrared double resonance

spectrum, 943
Hamiltonian

electron kinetic energy, 7, 84
nuclear kinetic energy, 7

harmonic oscillator
potential curve, 241
vibrational eigenfunctions, 237
vibrational energy levels, 240

Hartree–Fock equation, 190, 192
Hartree unit of energy, 189, 978
HBr+ X 2�3/2

far-infrared laser magnetic resonance spectrum,
609

HCl X 1�+
molecular beam electric resonance spectrum,

500
molecular parameters, 502, 508
vibrational dependence of electric dipole

moment, 506
HCl+ X 2�3/2

far-infrared laser magnetic resonance spectrum,
609

helium atom, 187
HeAr+

coupled-channel theory, 824
electric field dissociation, 815
Hund’s case (c) rotational levels, 819
long-range interaction potential, 827
microwave spectrum in an ion beam, 816
multimode Doppler pattern, 816
near-dissociation energy levels, 818, 829
potential energy curves, 815
Zeeman effect (Hund’s case (c) and case (e)),

817, 821, 828, 831
HeH+ X 1�+

molecular parameters, 737
rotational spectrum, 736

Heisenberg uncertainty principle, 273
HeKr+

electric field dissociation, 832
Hund’s case (e) rotational levels, 832
microwave spectrum in an ion beam, 832
near-dissociation energy levels, 833

Hermite polynomials, 65, 238
heteronuclear diatomic molecules, molecular

orbitals, 204

HF X 1�+
magnetic shielding tensor, 500
molecular beam electric resonance spectrum, 489
Zeeman effect, 496

HF+ X 2�3/2
far-infrared laser magnetic resonance spectrum,

609
high frequency paramagnetism, 405
Hohenberg–Kohn theorem, 218
homonuclear diatomic molecules, molecular

orbitals, 202
Hougen’s isomorphic Hamiltonian, 320
Hund’s case (a), 225, 649
Hund’s case (b), 226, 627, 652
Hund’s case (c), 228, 819
Hund’s case (d), 228
Hund’s case (e), 229, 819

i , molecule-fixed inversion operator, 245
I, nuclear spin angular momentum, 123
I , nuclear spin quantum number, 124
I , moment of inertia, 234, 399
indeterminacies, 352
interferometer

far-infrared spectrometer, 713
Michelson experiment, 711

intermediate coupling, 230
interstellar spectra, 722
inversion operator, 244, 250, 328
inversion symmetry of rotational levels, 244
ion beam spectrometer, 730, 942
ion trap, 963
irreducible spherical tensors, see Spherical tensor

operators
isotopes, table of, 979
isotopic dependence of molecular parameters, 327,

344, 677, 737, 761, 788

J, total angular momentum, 152, 234
jj coupling in atoms, 186
Ja , resultant of coupling of L and S in Hund’s

case (c), 228, 819
Jacqinot advantage, 712
Jaffé expansion, 295
JWKB method, 277

κ , Born–Oppenheimer parameter, 38, 356
k, Boltzmann constant, 978
KH X 1�+, see LiH X 1�+
kinetic energy

electrons in a molecule, 6, 40
nuclei in a molecule, 6, 40

Klein–Gordon equation, 74
klystron, 686

l, orbital angular momentum of an electron, 183
l, azimuthal quantum number, 180, 201
L, orbital angular momentum, 144
λ, electron spin–spin coupling constant, 24, 360
Λ, resultant orbital angular momentum of the

electrons about the internuclear axis, 26
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Λ, quantum number of the resultant orbital angular
momentum of the electrons about the
internuclear axis, 26

Λ-doubling
in � states, 659, 674
in � states, 26, 328, 362, 617, 807, 840
parameters, 362

ladder operators, 143
Lagrangian, 68, 74, 103
Laguerre functions, 180
Lamb dips, 623
lamellar grating, see far-infrared spectrometers
LaO X 2�+

molecular parameters, 941
radiofrequency/optical double resonance

spectrum, 938
LaO B 2�+

molecular parameters, 941
radiofrequency/optical double resonance

spectrum, 938
Laplace operators, 6
Laplacian, 6, 178, 290
laser, 261
Legendre function, see associated Legendre

functions
Legendre polynomials, 131, 264
Levi–Civita symbol, 143
LiBrX 1�+

molecular beam electric resonance spectrum, 483
molecular parameters, 486
Zeeman effect, 485

LiCl X 1�+
molecular beam electric resonance spectrum,

487
LiF X 1�+

molecular beam electric resonance spectrum, 487
LiH X 1�+state

millimetre wave rotational spectrum, 743
linear combination of atomic orbitals (l.c.a.o.), 197,

206
line width

collision, 275
Doppler, 12, 274
natural, 273
predissociation, 286
transit time, 273

LiO X 2�

construction of parity-conserved wave functions,
512

molecular beam electric resonance spectrum,
509

molecular parameters, 524
nuclear hyperfine interactions, 517, 523
theory of the Λ-doubling, 512

local oscillator, 701
long-range interactions, 282
Lorentz

gauge, 102, 394
invariance, 89, 99
transformation, 98

Lorentzian line shape, 275

m, electron mass, 978
ml , space-fixed component of l, 183
ms , space-fixed component of s, 181
MJ , quantum number of the space-fixed

component of J, 226
MI , quantum number of the space-fixed component

of I, 124
µe , electric dipole moment of the molecule, 116
µ, reduced mass, 178, 234
µB , electron Bohr magneton, 978
µI , magnetic dipole moment from nuclear spin

angular momentum, 18, 270, 411
µL , magnetic dipole moment from electron orbital

angular momentum, 269
µR , magnetic dipole moment from rotational

angular momentum, 18, 270
µS , magnetic dipole moment from electron spin

angular momentum, 21, 269
magnetic dipole transitions, 269, 754, 875
µN , nuclear magneton, 978
magnetic hyperfine Hamiltonian, 573
magnetic susceptibility

tensor form, 405, 408
magnetic vector potential, 89, 94, 99, 125
maser, 261, 790
mass polarisation term, 6, 43, 317
Maxwell’s equations, 33, 394
mercury atoms, 870
microwave

absorption cells, 692
magnetic resonance, 579
radiation sources, 685
resonant cavity, 582
resonant cavity modes, 582
resonant cavity Q factor, 582
spectroscopy, 683

microwave/optical double resonance principles,
871, 884, 910, 931

microwave/optical double resonance polarisation
spectroscopy, 870, 905

minimal basis set, 195
MnO X 6�+

millimetre wave rotational spectrum, 850
molecular parameters, 852

modulation
electric field (Stark), 583, 688
magnetic field (Zeeman), 581, 692, 694
source amplitude, 692
source frequency, 692
velocity (Doppler), 699

Moeller–Plesset perturbation theory, 218
molecular beams

alignment, 373
detectors, 373
effusive, 372
electric resonance, 463, 508
magnetic resonance, 372
supersonic (nozzle), 372

molecular orbital theory, 197
molecular parameters, definitions, 368
molecule-fixed coordinates, 51, 167
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moment of inertia, 234
momenta

electrons, 40
nuclei, 40

momentum operator, 71
MoN X 4�−

microwave/optical double resonance rotational
spectrum, 924

molecular parameters, 927
Morse potential, 66, 238, 287
motional electric field, 487
motional Stark effect, 118

n, principal quantum number, 180, 201
N2 form of the Hamiltonian, 343
Na atom, 185
N2 A 3�+

u
magnetic resonance spectrum, 446
molecular parameters, 462
nuclear statistical weights, 255
rotational levels, 448

N+
2 X 2�+

g
nuclear hyperfine parameters, 957
radiofrequency/optical double resonance, 953

Na2
1�+

g
molecular beam magnetic resonance spectrum,

416
molecular parameters, 420

NaH, X1�+, see LiH X 1�+
NaO X 2�3/2

microwave rotational spectrum, 811, 699
NbO X 4�−

electronic structure, 842, 846
microwave rotational spectrum, 841

NBr X 3�−
microwave rotational spectrum, 763

NCl X 3�−
microwave rotational spectrum, 763, 769
molecular parameters, 782

NCl a 1�

molecular parameters, 782
rotational spectrum, 779

NCl b 1�+
microwave rotational spectrum, 741

negative energy solutions, 76
NF X 3�−

rotational spectrum, 763
NF b 1�+

rotational spectrum, 741
NF a 1�

electric quadrupole interaction for 14N, 592
magnetic hyperfine interaction for 14N and 19F,

593
microwave magnetic resonance spectrum, 591
molecular parameters, 594
Stark effect, 594
theory of the Zeeman effect, 594

NH X 3�−
far-infrared laser magnetic resonance spectrum,

652

nuclear hyperfine interactions, 654
NI X 3�−

microwave rotational spectrum, 763
NiH X 2�

far-infrared laser magnetic resonance, 674
microwave/optical double resonance rotational

spectrum, 927
molecular parameters, 677, 930

NiO X 3�−
microwave rotational spectrum, 759, 762

NO X 2�

microwave magnetic resonance spectrum, 611
molecular beam electric resonance spectrum, 526
molecular parameters, 537, 788
nuclear hyperfine interactions, 532, 537, 784, 946
rotational spectrum, 782
theory of the Λ-doubling, 527

node, 238
non-adiabatic effects, 67, 223
non-rigid rotor, 242
NS X 2�

molecular parameters, 609
nuclear

dipole magnetic moment, 124, 979
electric quadrupole interactions, 131, 604
electric quadrupole moment, 124, 131, 162, 979
gyromagnetic ratio, 124
hyperfine parameters, 768, 844
kinetic energy operator, 45, 70, 109
magneton, 124, 978
permutation operator, see permutation operator
screening factor, 413
shell theory, 124
spin, 18, 123, 979
spin coupling cases, 232
spin–orbit coupling, 780, 803
spin–rotation interaction, 129, 378, 413, 458,

491, 504, 535, 781
spin–vibration interaction, 129
Zeeman interaction, 128, 378

Ω, total angular momentum of the electrons about
the internuclear axis, 26

Ω-doubling, 27
ω, vibrational frequency, 237
ωexe, ωe ye, ωeze,vibrational constants, 241
o, Λ-doubling constant, 330, 618
O2 molecule

electron configurations, 200, 777
O2 X 3�−

g
microwave rotational spectrum, 272, 756
molecular parameters, 758

O2 a 1�g

far-infrared rotational spectrum, 778
microwave magnetic resonance spectrum, 271,

587
molecular parameters, 778

oblate symmetric top, 151
OD, see OH
OD+, see OH+
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OH X 2�

electronic structure, 539, 622
energy levels, 540, 614, 789, 791
far-infrared laser magnetic resonance spectrum,

622
far-infrared rotational spectrum, 790
interstellar spectrum, 713, 792
Λ-doubling and hyperfine parameters, 27, 542,

617
Λ-doubling and centrifugal distortion, 27, 546
microwave magnetic resonance spectrum, 613
molecular beam electric resonance spectrum, 539
molecular beam maser spectrum, 539
molecular parameters, 544, 548, 622, 793
Stark effect and electric dipole moment, 549
theory of the Zeeman effect, 620

OH A2�+
radiofrequency/optical double resonance

spectrum, 880
Zeeman effect, 881

OH+ X 3�−
far-infrared laser magnetic resonance spectrum,

655
optical alignment, 416
optical detection, 416
optical state selection, 416
orbital hyperfine constant, 440, 28
orbit–orbit interaction, 91
origin transformations

arbitrary to centre of mass of molecule, 41
molecular to geometrical centre of mass, 44
molecular to nuclear centre of mass, 43

ortho nuclear spin state, 253
overlap integral, 215
overtone transitions, 238

p orbitals, 182
p, Λ-doubling constant, 330
π -type molecular orbital, 197
P, total electronic angular momentum, 57
1� states, 876
2� states, 26, 328, 362, 509, 512, 527, 539, 597,

608, 609, 620, 627, 699, 782, 794, 810, 814,
871, 917

3� states, 422, 437, 553, 555, 655, 659, 834, 836,
900, 913

para nuclear spin state, 253
parallel plate cell, 693
parity

combinations of basis functions, 251, 512, 553,
651, 787, 820, 840, 887

definition, 244
selection rule, 266, 270

Pauli exclusion principle, 182, 317
Pauli spin matrices, 56, 75, 150
permittivity, 35
permutation operator

case (a) and case (b) functions, 252
definition, 200, 251
ortho and para nuclear spin states, 253, 754

statistical weights, 254
perturbation theory, degenerate, 303
PF X 3�−

microwave rotational spectrum, 763
molecular parameters, 768

phase convention, 144, 619
phase sensitive detection, 691
photo-alignment of H+

2 , 960
Planck constant, 978
Planck’s radiation law, 259
PO X 2�

molecular parameters, 768
rotational spectrum, 811

polarisation, 4, 5, 870
population inversion, 260
positron states, 77
potential curve, 276, 297, 807, 808
potential energy

electron–electron, 44, 90
electron–nuclear, 44, 90
nuclear–nuclear, 44
of the anharmonic oscillator, 65
of the harmonic oscillator, 65

precession
of L about the internuclear axis, 225
of N and S about J, 227
of S about the internuclear axis, 225

predissociation
electronic, 288
rotational, 286

projection operators, 305
prolate symmetric top, 151
proton rest mass, 978
pseudo contact interaction, 31
pulsed nozzle, 372, 704, 739, 742
pure precession hypothesis, 359, 622

q, electric field gradient, 464
q, Λ-doubling constant, 331
Q, molecular quadrupole moment, 409, 501
Q, nuclear quadrupole moment, 135, 568, 592
quadrupole

asymmetry parameter, 137
coupling constant, 18
electric field, 464
interaction, 17, 131, 138

quadrupole ion trap, 963
quadrupole–quadrupole interaction, 283
quantum electrodynamics correction to electron

spin g-factor, 110
quantum mechanical tunnelling, 238
quasibound level, 287

Racah coefficients, 155
radial wave function, 180
radiation

circularly polarised, 5
density, 258, 261
plane-polarised, 3

radiative transition probability, 258
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radio astronomy, 713
radio telescope, 713, 714, 715
reduced mass, 61, 178, 234
reduced matrix element, 163, 174, 531, 663, 678
relativistic wave equation, 73
relativistic correction, 94
replacement theorem, 164
resonant cavity, 579
rest energy, 74
retarded interaction, 97
reversed angular momentum, 169
rigid rotor, 233
RKR inversion, 280
Roothaan–Hall equations, 215
rotational wave equation, 61, 146, 233
Rotation–vibration wave equation, 61, 243
rotation group

irreducible representations, 143
rotational matrix, 55, 148, 174
rotation operators, 140
rotational

angular momentum of the nuclei, 234
constant, 243, 356
Hamiltonian, 67, 319
inversion symmetry, 250
transition probabilities, 263

rotational Zeeman interaction, 20
Russell–Saunders coupling, 184
Rydberg constant, 214, 978
Rydberg states, 229

s orbitals, 182
s, spin vector of the electron, 80, 150
S, resultant electron spin angular momentum, 80
Σ, vector component of S along the internuclear

axis, 225
�+, �−states, definition of, 200
1�+ states

magnetic susceptibility, 408
magnetic shielding tensor, 410, 414
molecular quadrupole moments, 409
nuclear spin–rotation tensor, 410, 415
rotational magnetic moment tensor, 406
other 1� states, 16, 372, 388, 416, 465, 470, 483,

487, 489, 500, 732, 736, 738, 741, 743, 883,
885, 930

2� states, 697, 749, 859, 871, 880, 902, 919, 922,
930, 936, 938, 943, 953

3� states, 641, 649, 652, 655, 756, 759, 763
4� states, 661, 841, 924
6� states, 665, 851
S2 X 3�−

g
microwave rotational spectrum, 759

saturation, 260
scalar coupling

electron spin–nuclear spin, 24, 127
nuclear spin–nuclear spin, 19

scalar product, 161, 172
Schrödinger equation

diatomic molecule, 8
H atom, 178
harmonic oscillator, 237
time-dependent, 256
total wave function, 59

ScO X 2�+
microwave/optical double resonance rotational

spectrum, 919
molecular parameters, 921
spin–rotation constant, 922

screening factor, 20, 378, 410
self-consistent field method, 192, 215
SeO, X 3�−

microwave magnetic resonance, 649
SeO a 1�

microwave magnetic resonance, 587
SF X 2�, see CF X 2�

SH, see OH
shift operators, 67, 143, 360
SI units, 33, 993
SiC X 3�

hyperfine interaction, 840
interstellar spectrum, 839
microwave and millimetre wave rotational

spectrum, 836
molecular parameters, 840

SiCl X 2�

molecular parameters, 814
SiF X 2�

microwave rotational spectrum, 810
molecular parameters, 811

SiN X 2�+, 752
Slater determinant, 183, 190, 214
Slater orbitals, 194
SO X 3�−

microwave magnetic resonance spectrum, 641
microwave rotational spectrum, 760
molecular parameters, 761

SO a 1�

microwave magnetic resonance spectrum, 587
rotational spectrum, 779

SO b 1�+
millimetre wave rotational spectrum, 741

source modulation, 692
space-fixed axes, 7, 40
space-fixed inversion, 185, 244
spatial transformations, 53
special relativity, 73, 98
spherical harmonics, 23, 144, 179, 234
spherical polar coordinates, 7, 179
spherical tensor operators, 14, 159
spin Hamiltonian, 29, 44, 303
Spin-orbital, 183, 806
spin–orbit interaction, 30, 94, 186, 324, 357, 434,

667, 801
spin–other-orbit interaction, 92, 324
spinor, 52, 55, 76
spin–rotation interaction, 21, 323, 360, 747, 753,

803, 809
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spin–spin interaction
electron–electron, 23, 92, 360, 563
electron–nuclear, 561
nuclear–nuclear, 18, 378, 558

spin transformations, 52, 55
spin vector, 55
spontaneous emission, 259, 718
SrF X 2�+

microwave/optical double resonance rotational
spectrum, 902

molecular parameters, 904
Stark interaction, 20, 92
Stark Hamiltonian, 97, 114, 415
Stark modulation, 688
state selection, 374
statistical weights, 254
stimulated emission and absorption, 259, 720
superheterodyne detection, 701, 719
susceptibility tensor, 348, 351, 405
symmetric top wave functions, 150

t0, axial dipolar hyperfine constant, 574
t2, dipolar hyperfine constant, 574
tensor product, 171, 172
terahertz spectrometer, see far-infrared

spectrometers
term symbols, 184
term values, 244
third-rank spin tensor, 336, 661, 678
TiCl X 4�

millimetre wave rotational spectrum, 854
TiN X 2�+

microwave/optical double resonance rotational
spectrum, 922

molecular parameters, 924
TiO X 3�

microwave/optical double resonance rotational
spectrum, 922

molecular parameters, 923
time-dependent perturbation theory, 256
transformations

origin of coordinates, 40
space-fixed to molecule-fixed, 7, 51, 52, 167
cartesian to elliptical coordinates, 290

transition metal molecules, 906
transition moment, 256
transition between case (a) and case (b), 231
transition probabilities

electronic, 268
magnetic dipole, 269
rotational, 263, 823
vibrational, 267

translational
motion, 40, 220
Stark effect, 487

triangle rule, 154
tunable cavity microwave spectrometer, 702
tunable far-infrared spectrometer, 723
tunnelling, 238

u, ungerade, 200, 245
Ukl , vibration–rotation parameters, 347
united atom model, 201
unrestricted Hartree–Fock, 215

v, vibrational quantum number, 237
vacuum permeability, 35, 978, 993
vacuum permittivity, 35, 978, 993
valence bond function, 210
van Vleck pure precession hypothesis, 359
van Vleck transformation, 312
van Vleck–Weisskopf line shape, 275
variation method, 188, 207
vector diagrams, see Hund’s case (a)–(e)
vector potential, 69, 75
velocity modulation, 699
vibrational

averaging, 338
constants, 66, 237, 241
transition probabilities, 266
wave equation, 63

vibrating-rotator
eigenfunctions, 243
energy levels, 66, 243

VO, see NbO
Voigt profile, 276

wave number unit, 1
Wigner–Eckart theorem, 163, 173, 335
Wigner symbols

3- j symbols, 154, 987
6- j symbols, 155, 991
9- j symbols, 155

Wigner rotation matrix, 55, 148
Wigner–Witmer correlation rules, 203

X , symbol for the ground electronic state, 200

YbF X 2�+
radiofrequency/optical double resonance

rotational spectrum, 936
YF X 1�+

microwave/optical double resonance spectrum,
930

YO X 2�+
microwave/optical double resonance rotational

spectrum, 930
molecular parameters, 933

YS X 2�+
microwave/optical double resonance rotational

spectrum, 930
molecular parameters, 936

Zeeman Hamiltonian, 19, 25, 96, 114, 347, 589,
605, 676

Zeeman modulation, 692
Zero point energy, 237
Zitterbewegung, 88, 92
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