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Preface

The aim of a molecular theory of solutions is to explain and to predict the
behavior of solutions, based on the input information of the molecular
properties of the individual molecules constituting the solution. Since Prigo-
gine’s book (published in 1957) with the same title, aiming towards that target,
there has been considerable success in achieving that goal for mixtures of gases
and solids, but not much progress has been made in the case of liquid mixtures.
This is unfortunate since liquid mixtures are everywhere. In almost all indus-
tries and all biological sciences, we encounter liquid mixtures. There exists an
urgent need to understand these systems and to be able to predict their
behavior from the molecular point of view.

The main difficulty in developing a molecular theory of liquid mixtures, as
compared to gas or solid mixtures, is the same as the difficulty which exists in
the theory of pure liquids, compared with theories of pure gases and solids.
Curiously enough, though various lattice theories of the liquid state have failed
to provide a fair description of the liquid state, they did succeed in char-
acterizing liquid mixtures. The reason is that in studying mixtures, we are
interested in the excess or the mixing properties — whence the problematic
characteristics of the liquid state of the pure components partially cancel out. In
other words, the characteristics of the mixing functions, i.e., the difference
between the thermodynamics of the mixture, and the pure components are
nearly the same for solids and liquid mixtures. Much of what has been done on
the lattice theories of mixture was pioneered by Guggenheim (1932, 1952). This
work was well documented by both Guggenheim (1952) and by Prigogine
(1957), as well as by many others.

Another difficulty in developing a molecular theory of liquid mixtures is the
relatively poor knowledge of the intermolecular interactions between molecules
of different species. While the intermolecular forces between simple spherical
particles are well-understood, the intermolecular forces between molecules of
different kinds are usually constructed by the so-called combination rules, the
most well-known being the Lorentz and the Berthelot rules.

In view of the aforementioned urgency, it was necessary to settle on an
intermediate level of a theory'. Instead of the classical aim of a molecular theory

! By intermediate level of theory, I do not mean empirical theories which are used mainly by
chemical engineers.
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of solutions, which we can write symbolically as

I: Molecular Information — Thermodynamic Information

An indirect route has been developed mainly by Kirkwood, which involves
molecular distribution functions (MDF) as an intermediate step. The mole-
cular distribution function approach to liquids and liquid mixtures, founded in
the early 1930s, gradually replaced the various lattice theories of liquids. Today,
lattice theories have almost disappeared from the scene of the study of liquids
and liquid mixtures’. This new route can be symbolically written as

II: Molecular Information + MDF — Thermodynamic Information

Clearly, route II does not remove the difficulty. Calculation of the molecular
distribution functions from molecular properties is not less demanding than
calculation of the thermodynamic quantities themselves.

Nevertheless, assuming that the molecular distribution functions are given,
then we have a well-established theory that provides thermodynamic infor-
mation from a combination of molecular information and MDFs. The latter are
presumed to be derived either from experiments, from simulations, or from
some approximate theories. The main protagonists in this route are the pair
correlation functions; once these are known, a host of thermodynamic quan-
tities can be calculated. Thus, the less ambitious goal of a molecular theory of
solutions has been for a long time route II, rather route 1.

Between the times of Prigogine’s book up to the present, several books have
been published, most notably Rowlinson’s, which have summarized both the
experimental and the theoretical developments.

During the 1950s and the 1960s, two important theories of the liquid state
were developed, initially for simple liquids and later applied to mixtures. These
are the scaled-particle theory, and integral equation methods for the pair
correlation function. These theories were described in many reviews and books.
In this book, we shall only briefly discuss these theories in a few appendices.
Except for these two theoretical approaches there has been no new molecular
theory that was specifically designed and developed for mixtures and solutions.
This leads to the natural question “why a need for a new book with the same
title as Prigogine’s?”

To understand the reason for writing a new book with the same title, I will
first modify route II. The modification is admittedly, semantic. Nevertheless,
it provides a better view of the arguments I am planning to present below.

T Perhaps liquid water is an exception. The reason is that water, in the liquid state, retains much
of the structure of the ice. Therefore, many theories of water and aqueous solution have used some
kind of lattice models to describe the properties of these liquids.
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We first rewrite route II as

III:  Microscopic Properties — Thermodynamic Properties

Routes IT and III are identical in the sense that they use the same theoretical
tools to achieve our goals. There is however one important conceptual dif-
ference. Clearly, molecular properties are microscopic properties. Additionally,
all that has been learned about MDF has shown that in the liquid phase, and
not too close to the critical point, molecular distribution functions have a local
character in the sense that they depend upon and provide information on local
behavior around a given molecule in the mixture. By local, we mean a few
molecular diameters, many orders of magnitude smaller than the macroscopic,
or global, dimensions of the thermodynamic system under consideration. We
therefore rewrite, once again, route II in different words, but meaning the same
as III, namely

IV: Local Properties — Global Properties

Even with this modification, the question we posed above is still left unan-
swered: Why a new book on molecular theory of solutions? After all, even along
route IV, there has been no theoretical progress.

Here is my answer to this question.

Two important and profound developments have occurred since Prigogine’s
book, not along route I, neither along II or III, but on the reverse of route IV.
The one-sided arrows as indicated in I, II, and III use the tools of statistical
thermodynamics to bridge between the molecular or local properties and
thermodynamic properties. This bridge has been erected and has been perfected
for many decades. It has almost always been used to cross in a one-way
direction from the local to the global.

The new development uses the same tool — the same bridge — but in reversed
direction; to go backwards from the global to the local properties. Due to its
fundamental importance, we rewrite IV again, but with the reversed directed
arrow:

—IV: Global Properties — Local Properties

It is along this route that important developments have been achieved
specifically for solutions, providing the proper justification for a new book
with the same title. Perhaps a more precise title would be the Local Theory of
Solutions. However, since the tools used in this theory are identical to the tools
used in Prigogine’s book, we find it fitting to use the same title for the present
book. Thus, the tools are basically unchanged; only the manner in which they
are applied were changed.
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There are basically two main developments in the molecular theory of
solutions in the sense of route —IV: one based on the inversion of the
Kirkwood-Buff (KB) theory; the second is the introduction of a new measure
to study solvation properties. Both of these use measurable macroscopic, or
global quantities to probe into the microscopic, or the local properties of the
system. The types of properties probed by these tools are local densities, local
composition, local change of order, or structure (of water and aqueous solu-
tions) and many more. These form the core of properties discussed in this
book. Both use exact and rigorous tools of statistical mechanics to define and to
calculate local properties that are not directly accessible to measurements,
from measurable macroscopic quantities.

The first development consists of the inversion of the Kirkwood—Buff theory.
The Kirkwood-Buff theory has been with us since 1951. It was dormant for
more than 20 years. Though it is exact, elegant and very general, it could only
be applied when all the pair correlation functions are available. Since, for
mixtures, the latter are not easily available, the theory stayed idle for a long
time. It is interesting to note that both Prigogine (1957) and Hill (1956)
mentioned the KB theory but not any of its applications. In fact, Hill (1956), in
discussing the Kirkwood-Buff theory, writes that it is “necessarily equivalent to
the McMillan—-Mayer (1945) theory, since both are formally exact.” I disagree
with the implication of that statement. Of course, any two exact theories must
be, in principle, formally equivalent. But they are not necessarily equivalent in
their range and scope of applicability and in their interpretative power. I believe
that in all aspects, the Kirkwood—Buff theory is immensely superior to the
McMillan—Mayer theory, as I hope to convince the reader of this book. It is
somewhat puzzling to note that many authors, including Rowlinson, com-
pletely ignored the Kirkwood—Buff theory.

One of the first applications of the Kirkwood-Buff theory, even before
its inversion, was to provide a convincing explanation of one of the most
mysterious and intellectually challenging phenomenon of aqueous solutions of
inert gases — the molecular origin of the large and negative entropy and
enthalpy of solvation of inert gases in water. This was discussed by Ben-Naim
(1974, 1992). But the most important and useful application of the KB theory
began only after the publication of its inversion. A search in the literature shows
that the “KB theory” was used as part of the title of articles on the average, only
once a year until 1980. This has escalated to about 20-25 a year since 1980, and
it is still increasing.

Ever since the publication of the inversion of the KB theory, there had
been an upsurge of papers using this new tool. It was widely accepted and
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appreciated and used by many researchers as an efficient tool to study local
properties of mixtures and solutions.

The traditional characterization and study of the properties of liquid
mixtures by means of the global excess thermodynamic functions has been
gradually and steadily replaced by the study of the local properties. The latter
provides richer and more detailed information on the immediate environment
of each molecule in the mixture.

The second development, not less important and dramatic, was in the theory
of solvation. Solvation has been defined and studied for many years. In fact,
there was not only one but at least three different quantities that were used to
study solvation. The problem with the traditional quantities of solvation was
that it was not clear what these quantities really measure. All of the three
involve a process of transferring a solute from one hypothetical state in one
phase, to another hypothetical state in a second phase. Since these hypothetical
states have no clear-cut interpretation on a molecular level, it was not clear
what the free energy change associated with such transfer processes really
means. Thus, within the framework of thermodynamics, there was a state of
stagnation, where three quantities were used as tools for the study of solvation.
No one was able to decide which the preferred one is, or which is really the right
tool to measure solvation thermodynamics.

As it turned out, there was no right one. In fact, thermodynamics could not
provide the means to decide on this question. Astonishingly, in spite of their
vagueness, and in spite of the inability to determine their relative merits, some
authors vigorously and aggressively promoted the usage of one or the other
tools without having any solid theoretical support. Some of these authors have
also vehemently resisted the introduction of the new tool.

The traditional quantities of solvation were applicable only in the realm of
very dilute solutions, where Henry’s law is obeyed. It had been found later that
some of these are actually inadequate measures of solvation'. The new measure
that was introduced in the early 1970s replaced vague and hazy measures by
a new tool, sharply focusing into the local realm of molecular dimensions.
The new quantity, defined in statistical mechanical terms, is a sharp, powerful,
and very general tool to probe local properties of not only solutes in dilute
solutions, but of any molecule in any environment.

The new measure has not only sharpened the tools for probing the
surroundings around a single molecule, but it could also be applied to a vastly
larger range of systems: not only a single A in pure B, or a single B in pure A,

T In fact using different measures led to very different values of the solvation Gibbs energy. In one
famous example the difference in the Gibbs energy of solvation of a small solute in H,O and D,0 even
had different signs, in the different measures.
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but the “double infinite” range of all compositions of A and B, including the
solvation of A in pure A, and B in pure B, which traditional tools never touched
and could not be applied to.

Specifically for liquid water, the solvation of water in pure water paved the
way to answer questions such as “What is the structure of water” and “How
much is this structure changed when a solute is added?” The details and the
scope of application of the new measure were described in the monograph by
Ben-Naim (1987).

While the inversion of the KB theory was welcomed, accepted, and applied
enthusiastically by many researchers in the field of solution chemistry, and
almost universally recognized as a powerful tool for studying and under-
standing liquid mixtures on a molecular level, unfortunately the same was far
from true for the new measure of solvation. There are several reasons for that.

First, solvation was a well-established field of research for many years. Just as
there were not one, but at least three different measures, or mutants, there were
also different physical chemists claiming preference for one or another of its
varieties. These people staunchly supported one or the other of the traditional
measures and adamantly resisted the introduction of the new measure. In the
early 1970s, I sent a short note where I suggested the use of a new measure of
solvation. It was violently rejected, ridiculing my chutzpa in usurping old and
well-established concepts. Only in 1978 did I have the courage, the conviction —
and yes, the chutzpa — to publish a full paper entitled “Standard Thermo-
dynamics of Transfer; Uses and Misuses.” This was also met with hostility and
some virulent criticism both by personal letters as well as published letters
to the editor and comments. The struggle ensued for several years. It was clear
that I was “going against the stream” of the traditional concepts. It elicited the
rage of some authors who were patronizing one of the traditional tools. One
scientist scornfully wrote: “You tend to wreck the structure of solution che-
mistry . .. you usurp the symbol which has always been used for other pur-
poses...why don’t you limit yourself to showing that one thermodynamic
coefficient has a simple molecular interpretation?” These statements reveal
utter misunderstanding of the merits of the new measure (referred to as the
“thermodynamic coefficient”, probably because it is related to the Ostwald
absorption coefficient). Indeed, as will be clear in chapter 7, there are some
subtle points that have evaded even the trained eyes of practitioners in the field
of solvation chemistry.

Not all resisted the introduction of the new tool. I wish to acknowledge the
very firm support and encouragement I got from Walter Kauzmann and John
Edsal. They were the first to appreciate and grasp the advantage of a new tool
and encouraged me to continue with its development. Today, I am proud,
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satisfied, and gratified to see so many researchers using and understanding the
new tool. It now looks as if this controversial issue has “signed off.”

The struggle for survival of the different mutants was lengthy, but as in
biology, eventually, the fittest survives, whereas all the others fade out.

The second reason is more subtle and perhaps stems from misunderstanding.
Since the new measure for the solvation Gibbs energy looks similar to one of the
existing measures, people initially viewed it merely as one more traditional
measure, even referring to it as Ben-Naim’s standard state. As will be discussed
in chapter 7, one of the advantages (not the major one) of the new measure is
that it does not involve any standard state in the sense used in the traditional
approach to the study of solvation.

There is one more development which I feel is appropriate to mention here.
It deals with the concepts of “entropy of mixing” and “free energy of mixing.” It
was shown in 1987 that what is referred to as “entropy of mixing” has nothing
to do with the mixing process. In fact, mixing of ideal gases, in itself, has no
effect on any thermodynamic quantity. What is referred to as “entropy of
mixing” is nothing more than the familiar entropy of expansion. Therefore,
mixing of ideal gases is not, in general, an irreversible process. Also, a new
concept of assimilation was introduced and it was shown that the deassimilation
process is inherently an irreversible process, contrary to the universal claims
that the mixing process is inherently an irreversible process. Since this topic
does not fall into the claimed scope of this book, it is relegated to two
appendices.

Thus, the main scope of this book is to cover the two topics: the Kirkwood—
Buft theory and its inversion; and solvation theory. These theories were
designed and developed for mixtures and solutions. I shall also describe briefly
the two important theories: the integral equation approach; and the scaled
particle theory. These were primarily developed for studying pure simple
liquids, and later were also generalized and applied for mixtures.

Of course, many topics are deliberately omitted (such as solutions of
electrolytes, polymers, etc.). After all, one must make some choice of which
topics to include, and the choices made in this book were made according to
my familiarity and my assessment of the relative range of applicability and
their interpretive power. Also omitted from the book are lattice theories. These
have been fully covered by Guggenheim (1952, 1967), Prigogine (1957), and
Barker (1963).

The book is organized into eight chapters and some appendices. The
first three include more or less standard material on molecular distribution
functions and their relation to thermodynamic quantities. Chapter 4 is devoted
to the Kirkwood-Buff theory of solutions and its inversion which I consider as
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the main pillar of the theories of mixtures and solutions. Chapters 5 and 6
discuss various ideal solutions and various deviations from ideal solutions; all
of these are derived and examined using the Kirkwood—Bulff theory. I hope that
this simple and elegant way of characterizing various ideal solutions will
remove much of the confusion that exists in this field. Chapter 7 is devoted to
solvation. We briefly introduce the new concept of solvation and compare it
with the traditional concepts. We also review some applications of the concept
of solvation. Chapter 8 combines the concept of solvation with the inversion of
the Kirkwood—Buff theory. Local composition and preferential solvation are
defined and it is shown how these can be obtained from the inversion of the KB
theory. In this culminating chapter, I have also presented some specific
examples to illustrate the new way of analysis of the properties of mixtures on a
local level. Instead of the global properties conveyed by the excess function, a
host of new information may be obtained from local properties such as sol-
vation, local composition, and preferential solvation. Examples are given
throughout the book only as illustrations — no attempt has been made to review
the extensive data available in the literature. Some of these have been recently
summarized by Marcus (2002).

The book was written while I was a visiting professor at the University of
Burgos, Spain. I would like to express my indebtedness to Dr. Jose Maria Leal
Villalba for his hospitality during my stay in Burgos.

I would also like to acknowledge the help extended to me by Andres Santos
in the numerical solution of the Percus—Yevick equations and to Gideon
Czapski for his help in the literature research. I acknowledge with thanks
receiving a lot of data from Enrico Matteoli, Ramon Rubio, Eli Ruckenstein,
and others. I am also grateful to Enrico Matteoli, Robert Mazo, Joaquim
Mendes, Mihaly Mezei, Nico van der Vegt and Juan White for reading all or
parts of the book and offering important comments. And finally, I want to
express my thanks and appreciation to my life-partner Ruby. This book could
never have been written without the peaceful and relaxing atmosphere she had
created by her mere presence. She also did an excellent job in typing and
correcting the many versions of the manuscript.

Arieh Ben-Naim
January 2006
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ONE
Introduction

In this chapter, we first present some of the notation that we shall use
throughout the book. Then we summarize the most important relationship
between the various partition functions and thermodynamic functions. We
shall also present some fundamental results for an ideal-gas system and small
deviations from ideal gases. These are classical results which can be found in
any textbook on statistical thermodynamics. Therefore, we shall be very brief.
Some suggested references on thermodynamics and statistical mechanics are
given at the end of the chapter.

1.1 Notation regarding the microscopic
description of the system

To describe the configuration of a rigid molecule we need, in the most general
case, six coordinates, three for the location of some “center,” chosen in the
molecule, e.g., the center of mass, and three orientational angles. For spherical
particles, the configuration is completely specified by the vector R;= (x; y;, z;)
where x;, y;, and z; are the Cartesian coordinates of the center of the ith par-
ticles. On the other hand, for a non-spherical molecule such as water, it is
convenient to choose the center of the oxygen atom as the center of the
molecule. In addition, we need three angles to describe the orientation of
the molecule in space. For more complicated cases we shall also need to specify
the angles of internal rotation of the molecule (assuming that bond lengths
and bond angles are fixed at room temperatures). An infinitesimal element of
volume is denoted by

dR = dxdy dz. (1.1)

This represents the volume of a small cube defined by the edges dx, dy, and dz.
See Figure 1.1. Some texts use the notation d°R for the element of volume to
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dz

dx
dy

X

Figure 1.1 An infinitesimal element of volume dR= dxdydz at the point R.

distinguish it from the vector, denoted by dR. In this book, dR will always
signify an element of volume.

The element of volume dR is understood to be located at the point R. In
some cases, it will be convenient to choose an element of volume other than a
cubic one. For instance, an infinitesimal spherical shell of radius R and width
dR has the volume'

dR = 4nR*dR. (1.2)

For a rigid nonspherical molecule, we use R; to designate the location of the
center of the ith molecule and £2; the orientation of the whole molecule. As an
example, consider a water molecule as being a rigid body. Let u be the vector
originating from the center of the oxygen atom and bisecting the H-O-H
angle. Two angles, say ¢ and 0, are required to fix the orientation of this
vector. In addition, a third angle  is needed to describe the angle of
rotation of the entire molecule about the axis .

In general, integration over the variable R; means integration over the whole
volume of the system, i.e.,

L L L
/ dRi = / dx,- / dyl / dZi = L3 =V (13)
\%4 0 0 0

where for simplicity we have assumed that the region of integration is a cube of
length L. The integration over $2; will be understood to be over all possible
orientations of the molecule. Using for instance, the set of Euler angles, we have

T Note that R is a scalar; R is a vector, and dR is an element of volume.
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2n T 2n
/dﬂ, = / dgbl/ sin 91' d@,/ dlﬂl = 87‘[2. (1.4)
0 0 0

Note that for a linear molecule, we have one degree of freedom less, therefore

2n T
/dﬂl = / dqbl/ sin 01' d@l = 47. (1.5)
0 0

The configuration of a rigid nonlinear molecule is thus specified by a six-
dimensional vector, including both the location and the orientation of the
molecule, namely,

X; = (Ri, ;) = (xi, yi» 2i> 1> 00, ;). (1.6)

The configuration of a system of N rigid molecules is denoted by
XN =X,X,, ..., XN (1.7)
The infinitesimal element of the configuration of a single molecule is denoted by
dX; = dR; d$2;, (1.8)

and, for N molecules,
dXN = dXx,dX,, ...,dXy. (1.9)

1.2 The fundamental relations between statistical
thermodynamics and thermodynamics

The fundamental equations of statistical thermodynamics are presented in the
following subsections according to the set of independent variables employed
in the characterization of a macroscopic system.

E, V, N ensemble

We consider first an isolated system having a fixed internal energy E, volume V,
and number of particles N. Let W(E, V, N) be the number of quantum
mechanical states of the system characterized by the variables E, V, N. That is
the number of eigenstates of the Hamiltonian of the system having the
eigenvalue E. We assume for simplicity that we have a finite number of such
eigenstates. The first relationship is between the entropy S of the system and the
number of states, W (E, V, N). This is the famous Boltzmann formula’

S(E,V,N) = kIn W(E, V,N) (1.10)

T This formula in the form S=k log W is engraved on Boltzmann’s tombstone.
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where k=1.38 x 1072> JK ! is the Boltzmann constant.
The fundamental thermodynamic relationship for the variation of the
entropy in a system described by the independent variables E, V, N is

TdS = dE + PdV — udN (1.11)

from which one can obtain the temperature T, the pressure P, and the chemical
potential u as partial derivatives of S. Other thermodynamic quantities can be
obtained from the standard thermodynamic relationships. For a summary of
some thermodynamic relationships see Appendix A.

In practice, there are very few systems for which W is known. Therefore
equation (1.10), though the cornerstone of the theory, is seldom used in
applications. Besides, an isolated system is not an interesting system to study.
No experiments can be done on an isolated system.

Next we introduce the fundamental distribution function of this system.
Suppose that we have a very large collection of systems, all of which are
identical, in the sense that their thermodynamic characterization is the same,
i.e., all have the same values of E, V, N. This is sometimes referred to as a
microcanonical ensemble. In such a system, one of the fundamental postulates
of statistical thermodynamics is the assertion that the probability of a specific
state i is given by

Pi=—. (1.12)

This is equivalent to the assertion that all states of an E, V, N system have equal
probabilities. Since > P; = 1, it follows that each of the P; is equal to W™

T, V, N ensemble

The most useful connection between thermodynamics and statistical thermo-
dynamics is that established for a system at a given temperature T, volume V,
and the number of particles N. The corresponding ensemble is referred to as the
isothermal ensemble or the canonical ensemble. To obtain the T, V, N ensemble
from the E, V, N ensemble, we replace the boundaries between the isolated
systems by diathermal (i.e., heat-conducing) boundaries. The latter permits the
flow of heat between the systems in the ensemble. The volume and the number
of particles are still maintained constant.

We know from thermodynamics that any two systems at thermal equilibrium
(i.e., when heat can be exchanged through their boundaries) have the same
temperature. Thus, the fixed value of the internal energy E is replaced by a fixed
value of the temperature T. The internal energies of the system can now fluctuate.
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The probability of finding a system in the ensemble having internal energy E is
given
W(E,V,N —pE
pr(E) = Y ()2""1’( BE) (1.13)

where = (kT) "' and Q is a normalization constant. Note that the probability

of finding a specific state having energy E is exp(—fE)/Q. Since there are W such
states, the probability of finding a state having energy E is given by (1.13). The
normalization condition is

> Pr(E) =1, (1.14)

the summation being over all the possible energies E. From (1.13) and (1.14),
we have

Q(T,V,N) =Y _ W(E V,N) exp(—BE) (1.15)

which is the partition function for the canonical ensemble.
The fundamental connection between Q(T, V, N), as defined in (1.15), and
thermodynamics is given by

A(T,V,N) = —kT In Q(T, V, N) (1.16)

where A is the Helmholtz energy of the system at T, V, N. Once the partition
function Q (7, V, N) is known, then relation (1.16) may be used to obtain the
Helmholtz energy.” This relation is fundamental in the sense that all
the thermodynamic information on the system can be extracted from it by the
application of standard thermodynamic relations, i.e., from

dA = —SdT — PdV + pudN. (1.17)
For a multicomponent system, the last term on the right-hand side (rhs) of

(1.17) should be interpreted as a scalar product u - dN = >";_; u; dN;. From
(1.17) we can get the following thermodynamic quantities:

0A 0lnQ
(%) g T 1.1
s==(er),,, ~rmere(5),, o
P= —(a—A> - kT(aln Q) (1.19)
ov TN ov TN
§= (a—A> = —kT(mn Q) . (1.20)
ON/r,v ON /o,y

T We use the terms Helmholtz and Gibbs energies for what has previously been referred to as
Helmholtz and Gibbs free energies, respectively.
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Other quantities can be readily obtained by standard thermodynamic
relationships.

T, P, N ensemble

In the passage from the E, V, N to the T, V, N ensemble, we have removed the
constraint of a constant energy by allowing the exchange of thermal energy
between the systems. As a result, the constant energy has been replaced by a
constant temperature. In a similar fashion, we can remove the constraint of a
constant volume by replacing the rigid boundaries between the systems by
flexible boundaries. In the new ensemble, referred to as the isothermal—isobaric
ensemble, the volume of each system may fluctuate. We know from thermo-
dynamics that when two systems are allowed to reach mechanical equilibrium,
they will have the same pressure. The volume of each system can attain any
value. The probability distribution of the volume in such a system is

Q(T,V,N) exp(—pPV)

Pr(V) = A(T, P,N)

(1.21)

where P is the pressure of the system at equilibrium. The normalization con-
stant A(T, P, N) is defined by

A(T,P,N) =Y Q(T, V,N)exp(—BPV)

=> Y W(EV,N) exp(—BE — BPV). (1.22)

A(T, P, N) is called the isothermal-isobaric partition function or simply the T,
P, N partition function. Note that in (1.22) we have summed over all possible
volumes, treating the volume as a discrete variable. In actual applications to
classical systems, this sum should be interpreted as an integral over all possible
volumes, namely

A(T,P,N) =¢ /00 dV Q(T,V,N) exp(—pPV) (1.23)

where ¢ has the dimension of V!, to render the rhs of (1.23) dimensionless.
The partition function A(T, P, N), though less convenient in theoretical work
than Q (T, V, N), is sometimes very useful, especially when connection with
experimental quantities measured at constant T and P is required.

The fundamental connection between A(T, P, N) and thermodynamics is

G(T,P,N) = —kT InA(T, P, N) (1.24)

where G is the Gibbs energy of the system.
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The relation (1.24) is the fundamental equation for the T, P, N ensemble.
Once we have the function A(T, P, N), all thermodynamic quantities may be
obtained by standard relations, i.e.,

dG = —SdT + VdP + pdN. (1.25)
Hence

oG OlnA
s==(e7),,~rmare(SF), 0
v= (99) _ (%A (1.27)

opP T,N oP N
§= <6—G> — kT (a hlA) (1.28)

ON T, P ON T, P

Other thermodynamic quantities may be obtained by standard thermodynamic
relationships.

T, V, u ensemble

An important partition function can be derived by starting from Q (T, V, N)
and replacing the constant variable N by p. To do that, we start with the
canonical ensemble and replace the impermeable boundaries by permeable
boundaries. The new ensemble is referred to as the grand ensemble or the T, V,
u ensemble. Note that the volume of each system is still constant. However, by
removing the constraint on constant N, we permit fluctuations in the number
of particles. We know from thermodynamics that a pair of systems between
which there exists a free exchange of particles at equilibrium with respect to
material flow is characterized by a constant chemical potential u. The variable
N can now attain any value with the probability distribution

Q(T, V, N) exp(fuN)

Pr(N) = — (1.29)
E(T, V,u)
where Z(T, V, p), the normalization constant, is defined by
E(T, Vou) =Y Q(T, V,N)exp(BuN) (1.30)
N=0

where the summation in (1.30) is over all possible values of N. The new par-
tition function E(T, V, p) is referred to as the grand partition function, the
open-system partition function, or simply the T, V, u partition function.
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In equation (1.30), we have defined the T, V, u partition function for a
one-component system. In a straightforward manner we may generalize the
definition for a multicomponent system. Let N=Nj,..., N, be the vector
representing the composition of the system, where N; is the number of
molecules of species i. The corresponding vector g =y, ..., it includes the
chemical potential of each of the species. For an open system with respect to all
components we have the generalization of (1.30)

E(T, V,p) = Z ZQTVN exp[fp - N] (1.31)

where p - N = ), i;N; is the scalar product of the two vectors g and N.

An important case is a system open with respect to some of the species but
closed to the others. For instance, in a two-component system of A and B we
can define two partial grand partition functions as follows:

E(T,V,Na, i) = »_ Q(T, V, Ny, Ng) exp(BupNs) (1.32)
Np

E(T, V,Ng, ) = »_ Q(T, V, Ny, Ni) exp(BitsNa). (1.33)
Ny

Equation (1.32) corresponds to a system closed with respect to A, but open
with respect to B. Equation (1.33) corresponds to a system closed to B, but
open to A.

The fundamental connection between the partition function defined in
(1.30) and thermodynamics is

P(T,V,u)V =kT InE(T, V, u) (1.34)

where P(T, V, u) is the pressure of a system characterized by the independent
variables T, V, p.

The fundamental relation (1.34) may be used to obtain all relevant thermo-
dynamic quantities. Thus, using the general differential of PV we obtain

d(PV) = SdT + PdV + N dy (1.35)
a(Pv _ olnE
5= (5 )V’ﬂ—k =+ k1“5 )w (1.36)
p_ o(PV) 4T OlnZE\ len.: (1.37)
ov Ty oV T |4
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() (e), e

Other quantities, such as the Gibbs energy or the internal energy of the system,
may be obtained from the standard relations

G =uN (1.39)

E=G+TS—PV. (1.40)

1.3 Fluctuations and stability

One of the characteristic features of statistical mechanics is the treatment of
fluctuations, whereas in thermodynamics we treat variables such as E, V, or N
as having sharp values. Statistical mechanics acknowledge the fact that these
quantities can fluctuate. The theory also prescribes a way of calculating the
average fluctuation about the equilibrium values.

In the T, V, N ensemble, the average energy of the system is defined by

(E) = XE: EPr(E) = 2= EW(QE(’;"JZ);TP(_M). (1.41)

Using the definition of Q(T, V, N) in (1.15), we find that

(1.42)

(E) = kT? (M)V .

oT

Note that the average energy of the system, denoted here by (E), is the same as
the internal energy denoted, in thermodynamics, by U. In this book, we shall
reserve the letter U for potential energy and use (E) for the total (potential and
kinetic) energy. Sometimes when the meaning of E as an average is clear, we can
use E instead of (E).

An important average quantity in the T, V, N ensemble is the average
fluctuation in the internal energy, defined by

op = ((E—(E))*). (1.43)
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Using the probability distribution (1.13), we can express 6% in terms of the
constant-volume heat capacity, i.e.,

(E—(E)*) =Y (E— (E))*Pr(E)
=" [E*Pr(E) — 2E(E) Pr(E) + (E)’ Pr(E)]
_ <E2> _ <E>2 (1.44)

On the other hand, by differentiation of (E) in (1.41) with respect to T, we
obtain the heat capacity at constant volume,

o(E) (E*) — ()’
Cy = (a—T> B (1.45)

Thus the heat capacity Cy is also a measure of the fluctuation in the energy of
the T, V, N system.

Similar relationships hold for the enthalpy in the T, P, N ensemble. Thus,
using (1.22), we obtain

(H) = kT2< T )PN: (E) + P(V). (1.46)

Here ( ) denotes averages in the T, P, N ensemble, using the probability dis-

tribution function

W(E, V,N)exp(—pE — BPV)
A(T,P,N) '

Pr(E, V) = (1.47)

The constant-pressure heat capacity is obtained from (1.46) and from the
definition of A. The result is

o(H) (H?) — (H)’
o (A0 e a0

where the average quantities in (1.48) are taken with the probability dis-
tribution (1.47).

In the T, P, N ensemble there exists fluctuations in the volume of the system,
defined by

(V= (V))*) = (V?) = (V)" = kKT(V)xr (1.49)

where the isothermal compressibility is defined by

op = —<—‘1/> (%) . (1.50)
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Another quantity of interest in the T, P, N ensemble is the cross-fluctuations
of volume and enthalpy. This is related to the thermal expansivity, ap, by

(V= (V)(H = (H))) = (VH) — (V){H) = kT*(V)ap (1.51)

Of foremost importance in the T, V, u ensemble is the fluctuation in the

where

number of particles, which, for a one-component system, is given by
(N = (N))*) = (N?) — (N)* = kT<M> = kTV(a—p> . (1.53)
o )y o) ¢

It It

In (1.53), all average quantities are taken with the probability distribution
Pr(N) given in (1.29). The fluctuations in the number of particles in the T, V,
u ensemble can be expressed in terms of the isothermal compressibility, as
follows.

From the Gibbs—Duhem relation

—SdT + VdP = N du (1.54)

Using the chain rule of differentiation, we have

D&

Combining (1.53) and (1.56), we obtain the final result

we obtain

(N?) — (N)* = kTVp*kr. (1.57)

Further relations involving cross-fluctuations in the number of particles in a
multicomponent system are discussed in chapter 4. Note that in (1.54)—(1.56)
we used the thermodynamic notation for V, N, etc. In applying these relations
in the T, V, u ensemble, the density p in (1.57) should be understood as

(N)

=137 (1.58)

where the average is taken in the T, V, u ensemble.
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Note that (1.57) can be written as
(N?) — (N)*  kTxr
(N v
This should be compared with equation (1.49). Thus, the relative fluctuations
in the volume in the T, P, N ensemble have the same values as the relative

fluctuations in the number of particles in the T, V, u ensemble, provided that
(V) in the former is equal to V in the latter.

We have seen that Cy, C,, k7, and (Op/0p) - can be expressed as fluctuations in
E, H, V, and N, respectively. As such, they must always be positive. The posi-
tiveness of these quantities is translated in thermodynamic language as the con-
dition of stability of the system. Thus, Cy,> 0 and C,> 0 are the conditions for
thermal stability of a closed system at constant volume and pressure, respectively.
k1> 0 expresses the mechanical stability of a closed system at constant tem-
perature. Of particular importance, in the context of this book, is the material
stability. A positive value of (Opt/0p) r means that the chemical potential is always a
monotonically increasing function of the density. At equilibrium, any fluctuation
which causes an increase in the local density will necessarily increase the local
chemical potential. This local fluctuation will be reversed by the flow of material
from the higher to the lower chemical potential, hence restoring the system to its
equilibrium state. In chapter 4, we shall also encounter fluctuations and cross-
fluctuations in multicomponent systems.

1.4 The classical limit of statistical
thermodynamics

In section 1.2, we introduced the quantum mechanical partition function in the
T, V, N ensemble. In most applications of statistical thermodynamics to pro-
blems in chemistry and biochemistry, the classical limit of the quantum
mechanical partition function is used. In this section, we present the so-called
classical canonical partition function.

The canonical partition function introduced in section 1.2 is defined as

Q(T, V,N) Zexp —BE)=>_ W(E V,N)exp(—BE)  (1.59)

where the first sum is over all possible states of the T, V, N system. In the second
sum all states having the same energy E are grouped first, and then we sum over
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all the different energy levels. W(E, V, N) is simply the degeneracy of the energy
level E (given V and N), i.e., the number of states having the same energy E.

The classical analog of Q(T, V, N) for a system of N simple particles (i.e.,
spherical particles having no internal structure) is

Q(T,V,N) = (1/h3NN!)/~~~/dedRNexp(—ﬁH). (1.60)

Here, h is the Planck constant (h=6.625 x 10~ *” erg s) and H is the classical

Hamiltonian of the system, given by
N

H(p",RY) = " (pi/2m) + Un(RY). (1.61)
i=1
Here p; is the momentum vector of the ith particle (presumed to possess only
translational degrees of freedom) and m is the mass of each particle. The total
potential energy of the system at the specified configuration R is denoted by
Un(RY).

Note that the expression (1.60) is not purely classical since it contains two
corrections of quantum mechanical origin: the Planck constant h and the NI.
Therefore, Q defined in (1.60) is actually the classical limit of the quantum
mechanical partition function in (1.59). The purely classical partition function
consists of the integral expression on the rhs of (1.60) without the factor
(K*NN1). This partition function fails to produce the correct form of the che-
mical potential or of the entropy of the system.

The integration over the momenta in (1.60) can be performed straightfor-
wardly to obtain

o0 N - o0 3N
h_3N/ deeXp[ [32 /2m] = h_l/ dpexp(—[)’pz/Zm)]

— |wemp [

3N
exp(—xz) dx]
- N
- (277:ka)3/2/113} AN, (1.62)
In (1.62) we have introduced the momentum partition function, defined by
B h
(27rka)1/2 '

This is also referred to as the thermal de Broglie wavelength of the particles at
temperature T. Another important quantity is the configurational partition
function, defined by

ZN:/---/dRNexp[—ﬁUN(RN)]. (1.64)

(1.63)
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The canonical partition function in (1.60) can be rewritten as
Zn
NIAPN

The condition required for the applicability of the classical partition func-

Q(T,V,N) = (1.65)

tion, as given in (1.60), is

pA < 1 (1.66)
i.e., when either the density is low, or the mass of the particles is large, or the
temperature is high. Indeed, for most systems of interest in this book, we shall
assume the validity of the condition (1.66), hence the validity of (1.60).

For a system of N nonspherical particles, the partition function (1.60) is
modified as follows

N
__ 7 .. N oxpl— N
QT VN) = [ [ ax¥esl-pusx)). (o7
The integration on the rhs of (1.67) extends over all possible locations and
orientations of the N particles. We shall refer to the vector xXN= X, ..., Xyas

the configuration of the system of the N particles. The factor g, referred to as the
internal partition function, includes the rotational, vibrational, electronic, and
nuclear partition functions of a single molecule. We shall always assume in this
book that the internal partition functions are separable from the configura-
tional partition function. Such an assumption cannot always be granted,
especially when strong interactions between the particles can perturb the
internal degrees of freedom of the particles involved.
In the classical T, V, N ensemble, the basic distribution function is the
probability density for observing the configuration X,
P(XN) — exp[—ﬁUN(XN)] ) (1.68)
J-+- ] ax™ exp[—BUNn(XY)]
In the classical T, P, N ensemble, the basic distribution function is the prob-
ability density of finding a system with a volume V and a configuration X", i.e.,

exp[—fPV — fUN(XV)]

P<XN’ V)= def' ..deN exp[—pPV — ﬁUN(XN)]'

(1.69)

The integration over V extends from zero to infinity. The probability density of
observing a system with volume V, independently of the configuration, is
obtained from (1.69) by integrating over all configurations, i.e.,

P(V) :/~~~/dXNP(XN, V). (1.70)
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The conditional distribution function defined by’
P(xN,V)
P(V)
exp[—fpPV — fUN(XY)]
[+ [ axN exp[—pPV — BUN(XY)]
exp[—Un(X")]

= T dX™ exp|—fUn(XV)] (7

P(XY/V) =

is the probability density of finding a system in the configuration X", given that
the system has the volume V.
In the classical T, V, u ensemble, the basic distribution function defined by

N oA (qV/N1) exp[BuN — BUxn(XM)]
PN = S @ TN lexp (B [~ ] dX™ expl—fUx (X
(1.72)

is the probability density of observing a system with precisely N particles and
the configuration X". The probability of finding a system in the T, V, u
ensemble with exactly N particles is obtained from (1.72) by integrating over all
possible configurations namely,

P(N) = / e / dxVp(x™,N) (1.73)
which can be written as
P(N) = Q(T, Z, N) exp(ﬂuN). (1.74)
E(T, V. )
The conditional distribution function, defined by
P(x", — xN
p(x¥ /Ny = PELN) exp| -pUn(X") (1.75)

P(N) [ [dXNexp[-pUn(X™)]’

is the probability density of observing a system in the configuration X, given
that the system contains precisely N particles.

 We use the slash sign for the conditional probability. In some texts, the vertical bar is used instead.
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1.5 The ideal gas and small deviation
from ideality

Theoretically, an ideal gas is a hypothetical system of noninteracting molecules, i.e.,
Un(XM)y =0 (1.76)

for any configuration X". Of course, there is no real system that obeys
equation (1.76).

In practice, the ideal-gas behavior is obtained in the limit of very low den-
sities or pressure, where interactions between the (real) molecules are on the
average negligible. One should be careful, however, to distinguish between
these two conditions for ideality. The two systems are not identical, as we shall
see later in the book.

Using (1.76) in the classical partition function (1.67), we immediately obtain

qN N
QAT V.N) = (8n2)NA3NN!/ - / X

qN 2n T 2n N
= dR d in 0d0 d
(872) AN NI [/v /0 v /0 o /o ‘p]

_ quN
AN

(1.77)

For simple spherical particles, sometimes referred to as “structureless” particles,
equation (1.77) reduces to
VN

QAT VoN) =S5y

(1.78)
Note that g and A depend on the temperature and not on the volume V or on
N. An important consequence of this is that the equation of state of an ideal gas
is independent of the particular molecules constituting the system. To see this,
we derive the expression for the pressure. Differentiating (1.77) with respect to

P=kT (a In Q> _KIN _ it (1.79)
T,N

volume, we obtain

ov \%

This equation of state is universal, in the sense that it does not depend on
the properties of the specific molecules. This behavior is not shared by all
thermodynamic quantities of the ideal gas. For instance, the chemical
potential obtained by differentiation of (1.77) and using the Stirling
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approximation’ is

1
u= —kT(aar]l\]Q) = kTIn(A’q") + kTlnp
T,V
= u®(T) + kTlnp (1.80)

where p=N/V is the number density and u°%(T) is the standard chemical
potential. The latter depends on the properties of the individual molecules in
the system. Note that the value of 1°(T) depends on the choice of units of p.
The quantity pA’, however, is dimensionless. Hence, u is independent of the
choice of the concentration units.

Another useful expression is that for the entropy of an ideal gas, which can be
obtained from (1.77):

S=klnQ+ kT<aln Q)
V,N

oT

Olng
oT

Clearly, the entropy in (1.81) depends on the properties of the specific gas. For

simple particles, this reduces to the well-known Sackur—Tetrode equation for the
entropy:

=3kN — NkIn(pA’q ") + kTN

(1.81)

S = 2kN — Nkln pA°. (1.82)

The dependence of both 1 and S on the density p through In p is confirmed by
experiment. We note here that had we used the purely classical partition
function [i.e., the integral excluding the factors NN in (1.60)], we would not
have obtained such a dependence on the density. This demonstrates the
necessity of using the correction factors #*YN! even in the classical limit of the
quantum mechanical partition function.

Similarly, the energy of an ideal-gas system of simple particles is obtained
from (1.78) and (1.82), i.e.,

E=A+TS=kTInpA’ — kTN + T(ZkN — NklnpA’) = 3kTN  (1.83)

which in this case is entirely due to the kinetic energy of particles.
The heat capacity for a system of simple particles is obtained directly
from (1.83) as

Cy = (0E/0T), = 3kN (1.84)

T In this book, we always use the Stirling approximation in the form In N!=NIn N— N. A better
approximation for small values of N is In N'=NIn N— N+1In (2zN).
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which may be viewed as originating from the accumulation of k/2 per trans-
lational degree of freedom of a particle. For molecules having also rotational
degrees of freedom, we have

Cy = 3kN (1.85)

which is built up of %kN from the translational, and %kN from the rotational
degrees of freedom. If other internal degrees of freedom are present, there are
additional contributions to Cy.

In all of the aforementioned discussions, we left unspecified the internal
partition function of a single molecule. This, in general, includes contributions
from the rotational, vibrational, and electronic states of the molecule.
Assuming that these degrees of freedom are independent, the corresponding
internal partition function may be factored into a product of the partition
functions for each degree of freedom, namely,

a(T) = q:(T)qy(T)qe(T). (1.86)

We shall never need to use the explicit form of the internal partition function in
this book. Such knowledge is needed for the actual calculation, for instance, of
the equilibrium constant of a chemical reaction.

The equation of state (1.79) has been derived theoretically for an ideal gas for
which (1.76) was assumed. In reality, equation (1.79) is obtained when the
density is very low, p~0, such that intermolecular interactions, though
existing, may be neglected.

We now present some corrections to the ideal-gas equation of state (1.79).
Formally, we write P as a power series in the density, presuming that such an
expansion exists,

_ @(ﬁP)> . z<62(ﬁP)>
PP p( Op T,p=0+2p Op? T,p=0+

= p+ By(T)p* + Bs(T)p* + - -- (1.87)

where the coefficients Bi(T) are evaluated at p =0, and hence are functions of
the temperature only.'

One of the most remarkable results of statistical mechanics is that it provides
explicit expressions for the coefficients in (1.87). The first-order coefficient is

1
By(T) = _W/{exp[_ﬁu(xl,xz)] — 1} dX,dX,

1
- —z(gnz)/{exp[—ﬁU(X)] ~ 1} dX. (1.88)

T The coefficients By(T), Bs(T), etc., are sometimes denoted by B, C, D, etc.
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This is known as the second virial coefficient. In the second step on the rhs of
(1.88), we exploit the fact that U(X, X;) is actually a function of six coordinates,
not twelve as implied in X;, X;; i.e., we can hold X fixed, say at the origin, and
view the potential function U(X;, X;) as depending on the relative locations and
orientations of the second particle, which we denote by X. Thus integrating over
X, produces a factor V87n? and the final form of B,(T) is obtained.

Note also that since the potential function U(X) has a short range, say of a
few molecular diameters, the integral over the entire volume is actually over
only a very short distance from the particle that we held fixed at the origin. This
is the reason why B,(T) is not a function of the volume.

Expression (1.88) can be further simplified when the pair potential is a
function of the scalar distance R= | R, — R, | . In this case, the integration over
the orientations produce the factor 87 and the integration over the volume can
be performed after transforming to polar coordinates to obtain

By(T) = —%/Ow{exp[(—ﬂU(R))] — 1}4nR*dR. (1.89)

Note that we chose infinity as the upper limit of the integral. In practice, the
integration extends to a finite distance of the order of a few molecular dia-
meters, i.e., the effective range of the interaction potential. Beyond this limit,
U(R) is zero and therefore the integrand becomes zero as well. Hence, the
extension of the range of integration does not affect the value of B,(T).

Of the virial coefficients, B,(T) is the most useful. The theory also provides
expressions for the higher order corrections to the equation of state. We cite
here the expression for the third virial coefficient,

1
By(T) = —W/{exp[—ﬁUs(Xsz,Xs)]
— exp[—BU(X1, X2) — BU(X5, X5)]
—exp[-pU(X,, Xz) — BU(X), X3)]
- ﬁU(XZ)X??)]

U(X1, X3)] + exp[—BU (X1, X3)]

[=BU( )
[=BU( )
— exp[—BU(X1, X3)
+ exp[—BU( )

[=BU( )

+ exp U X2,X3 ] — 1}dX2dX3 (190)

We see that this expression is fairly complicated. If the total potential energy is
pairwise additive, in the sense that

U3(X1)X21X3) = U(XDXZ) + U(XlaXS) + U(X27X3) (191)
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the integrand in (1.90) simplifies to'
1
B3(T) == —W/f(Xl,Xz, )f(Xl,X3)f(X2,X3)dX2dX3 (192)

where f, the so-called Mayer f-function, is defined by
f(Xi, X;) = exp[—pU(X;, X;)] — 1. (1.93)

Extending the same procedure for mixtures, say of two components, A and B
will give us the second virial coefficient for a mixture. The first-order correction
to the ideal-gas behavior of the mixture is

BP = pa+ pg + Baaps + Bespy + 2Bapapp + - (1.94)

In terms of the total density pr=pa+ pp, and the mole fraction x4 =pa/pr
(1.94) can be written as

ﬁP =PT + [BAAxi + BBBx123 + 2BABxAxB]p2T + .- (195)

where the term in the square brackets may be interpreted as the average second
virial coefficient of the mixture. B, is related to U,z by the same relation as B,
to Uin (1.88) or (1.89).

1.6 Suggested references on general
thermodynamics and statistical mechanics

There are many good textbooks on thermodynamics: Denbigh (1966, 1981),
Prigogine and Defay (1954) and Callen (1960).

Books on the elements of statistical thermodynamics: Hill (1960),
McQuarrie (1976) and Ben-Naim (1992).

Advanced books on statistical thermodynamics: Hill (1956), Miinster
(1969,1974) and Hansen and McDonald (1976).

 Note that in both (1.90) and (1.92), integration over X; has been performed so that the integrands
are not functions of X;.
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Molecular distribution
functions

In this chapter, we introduce the concepts of molecular distribution function
(MDEF), in one- and multicomponent systems. The MDFs are the fundamental
ingredients in the modern molecular theories of liquids and liquid mixtures.
As we shall see, these quantities convey local information on the densities,
correlation between densities at two points (or more) in the system, etc.

We start with detailed definitions of the singlet and the pair distribution
functions. We then introduce the pair correlation function, a function which is
the cornerstone in any molecular theory of liquids. Some of the salient features
of these functions are illustrated both for one- and for multicomponent sys-
tems. Also, we introduce the concepts of the generalized molecular distribution
functions. These were found useful in the application of the mixture model
approach to liquid water and aqueous solutions.

In this chapter, we shall not discuss the methods of obtaining information
on molecular distribution functions. There are essentially three sources of
information: analyzing and interpreting x-ray and neutron diffraction patterns;
solving integral equations; and simulation of the behavior of liquids on a
computer. Most of the illustrations for this chapter were done by solving the
Percus—Yevick equation. This method, along with some comments on the
numerical solution, are described in Appendices B-F.

2.1 The singlet distribution function

We start with the simplest MDF, the singlet distribution function. The pre-
sentation here is done at great length, far more than is necessary, but, as we
shall soon see, fully understanding the meaning of this quantity will be essential
for the understanding the higher MDF as well as the generalized MDF.

In this and the following chapter, we shall always start with a one-component
system, then generalize for multicomponent mixtures. This is done mainly for
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notational convenience. We also discuss rigid molecules, i.e., molecules without
internal rotational degrees of freedom. The state of each molecule is fully
described by the six-dimensional vector X consisting of three locational
coordinates R= (x, y, z) and three orientational coordinates 2 = (¢, 0, ).
We start with a system consisting of N rigid particles at a given temperature
T, contained in volume V. The basic probability density for such a system is

essentially the Boltzmann distribution
exp[—fUn(XV)]
P(XN) = . 2.1
X = T ax T exp U] 1)
In general, an average of any function of the configuration, F(XM),inthe T, V,
N ensemble, is defined by

F= / : / dXNP(XN)F(x™). (2.2)

In some cases, we shall also use either the symbol (F) or F for an average

quantity. However, we shall refrain from using this notation whenever the
meaning of that quantity as an average is evident.

As a first and very simple example, let us calculate the average number of
particles in a region S within the system. (A particle is said to be in the region S
whenever its center falls within that region.) Let N(XY, S) be the number of
particles in S, given that the system is at a particular configuration X". One may
imagine taking a snapshot of the system at some instant and counting the
number of particles that happen to fall within S at that configuration. Hence,
N(X", S) is also referred to as a counting function. A two-dimensional illus-
tration is given in figure 2.1.

The average number of particles in S is, according to (2.2)

N(S) = // dXVP(XN)N(XN, ). (2.3)

This relation can be written in an alternative form which will turn out to be
useful for later applications.
Let us define the characteristic function
1 if R,’ €S
Ai(R;, S) = {o if R; ¢85. (2:4)
The symbol € means “belongs to.” Hence, A{R;, S) is unity whenever R; is
within S and zero elsewhere. The quantity N(X™, S) can be expressed as

N(xN,8) = ZN:Ai(Ri, S). (2.5)

Clearly, in order to count the number of particles within S, we have to check the
location of each particle separately. Each particle whose center falls within S will
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Figure 2.1. An arbitrary region S within the system of volume V. In the particular configuration shown
here, the number of particles in Sis 12.

contribute unity to the sum on the rhs of (2.5); hence, the sum counts the exact
number of particles in S, given a specific configuration X. Introducing (2.5)
into (2.3), we obtain the average number of particles in S:

N(S) = / : / dXNP(XN)iAi(R,-, S)
= EN: / / dXVP(X™)Ai(R;, S)
=N / e / dXNP(XM)A|(Ry, S). (2.6)

Since all the particles are equivalent, the sum over the index i produces N
integrals having the same magnitude. We may therefore select one of these
integrals, say i=1, and replace the sum by N times that specific integral. The
mole fraction of particles within S is defined as

x(8) = % = / : / dXN P(XN) Ai(Ry, S). (2.7)

x(S) is the average fraction of particles found in S. This quantity may also be
assigned a probabilistic meaning that is often useful. To see this, we recall that
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the function A;(R;,S) used in (2.7) has the effect of reducing the range of
integration from V to a restricted range which fulfills the condition: “R; being
located in S.” Symbolically, this can be written as

/ /dXNP (XM A (Ry, S) /R S/dXNP (xM)y =Pi(S).  (2.8)
1€

Thus, the integration over the entire volume V is reduced to the region for
which R, €8S.

We recall that P(X") is the probability density of the occurrence of the event
XV, i.e., that the N particles are found at the specific configuration Xj, ..., Xy
Therefore, integration over all the events X" for which the condition R, €S is
fulfilled gives the probability of the occurrence of the condition, i.e., P;(S) is the
probability that a specific particle, say number 1, will be found in S. From (2.7)
and (2.8) we arrive at an important relation:

x(S) = Pi(9), (2.9)

which states that the mole fraction of particles in S equals the probability that a
specific particle, say 1, will be found in S. [Of course, we could have chosen in
(2.9) any other specific particle other than particle 1.]

We now introduce the singlet molecular distribution function, which is
obtained from N(S) in the limit of a very small region S. First we note that
Ai(R;, S) can also be written as

Ai(R;, S) :/Sé(R,»—R’) drR, (2.10)

where J(R;— R’) is the Dirac delta function. The integral over 6(R;— R’) is
unity if R;€ S, and zero otherwise.
When S is an infinitesimally small region dR’, we have

Ai(R;,dR') = 6(R; — R') dR'. (2.11)
Hence, from (2.6) we obtain the average quantity
N
N(dR') = dR' / /dXNP (XN)> " S(R; (2.12)
i=1

The average local (number) density of particles in the element of volume at dR’
at R’ is now defined by

PRy =N ;”;’f') _ / .. / IXPXNY SR -R). (213)
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Table 2.1

Event Probability of the event
Particle 1 in dR’ PR dR'

Particle 2 in dR' PUR') dR

Particle N in dR F“’(R'ﬁ ar'

Note that dR’ is an element of volume dx'dy’dZ at R'. The quantity p"(R’) is
referred to as the singlet molecular distribution function.

The meaning of p'"(R’) as a local density will prevail in all our applications.
However, in some cases one may also assign to p"’(R’) the meaning of
probability density. This must be done with some caution, as will be shown
below. First, we rewrite (2.13) in the form

p(R) = N/- - / dXVP(XN)d(R, — R') = NPY(R)). (2.14)

The interpretation of PY(R") AR’ follows from the same argument as in the case
of Py(S) in (2.8). This is the probability of finding a specific particle, say 1, in dR’
at R'. Hence, P'V(R’) is often referred to as the specific singlet distribution
function.

The next question is: “What is the probability of finding any particle in dR'?”
To answer this question, we consider the events listed in Table 2.1.

Since all particles are equivalent, we have exactly the same probability for
each of the events listed on the left-hand side (lhs).

The event “any particle in dR’” means either “particle 1 in dR"” or “particle 2
in dR"”, ..., or “particle Nin dR’.” In probability language, this event is called
the union of all the events as listed above, and is written symbolically as

N
{any particle in dR'} = U{particle iin dR'}. (2.15)

i=1

It is at this point that care must be exercised in writing the probability of
the event on the lhs of (2.15). In general, there exists no simple relation
between the probability of a union of events and the probabilities of the
individual events. However, if we choose dR’ to be small enough so that no
more than a single particle may be found in dR’ at any given time, then all
the events listed above become disjoint (i.e., occurrence of one event pre-
cludes the possibility of simultaneous occurrence of any other event). In this
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case, we have the additivity relation for the probability of the union of the
events, namely:

Pr{any particle in dR'} = Z Pr{particle i in dR'}
=1
=> PU(R)dR
-1

= NPY(R) dR
= pW(R) dR. (2.16)

Relation (2.16) provides the probabilistic meaning of the quantity pM(R)dR',
which is contingent upon the choice of a sufficiently small element of volume
dR’'. The quantity p'"(R’) is referred to as the generic singlet distribution
function’. Clearly, the generic singlet distribution function is the physically
meaningful quantity. We can measure the average number of particles in a
given element of volume. We cannot measure the probability of finding a
specific particle in a given element of volume.

Caution must also be exercised when using the probabilistic meaning of
p" (R")dR'. For instance, the probability of finding a specific particle, say 1, in
a region S is obtained from the specific singlet distribution function simply by
integration:

P(S) = /S PY(R) dR. (2.17)

1»

This interpretation follows from the fact that the events “particle 1 in dR" and
“particle 1 in dR"” are disjoint events (i.e., a specific particle cannot be in two
different elements dR’ and dR” simultaneously). Hence, the probability of the
union is obtained as the sum (or integral) of the probabilities of the individual
events.

This property is not shared by the generic singlet distribution function, and

the integral

/ pV(R) dR (2.18)
S

does not have the meaning of the probability of the event “any particle in S.”
The reason is that the events “a particle in dR’” and “a particle in dR"”
disjoint events; hence, one cannot obtain the probability of their union in a

are not

' The adjectives “specific” and “generic” were introduced by Gibbs. Since the particles of a given
species are indistinguishable, only the generic MDF has physical meaning. However, the specific MDF
is an important step in the definition of MDFs. One first “labels” the particles to obtain the specific
MDF, then “un-labels” them to obtain the generic MDF.
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simple fashion. It is for this reason that the meaning of p'"’(R’) as a local density
at R’ should be preferred. If p"’(R’) dR’ is viewed as the average number of
particles in dR’, then clearly (2.18) is the average number of particles in S. The
meaning of pV(R") AR’ as an average number of particles is preserved upon
integration; the probabilistic meaning is not. A particular example of (2.18)
occurs when S is chosen as the total volume of the system, i.e.,

/ J(R)dR = N/ J(R)dR = (2.19)

The last equality follows from the normalization of p(l)(R’ ); i.e., the probability
of finding particle 1 in any place in V is unity. The normalization condition
(2.19) can also be obtained directly from (2.13).

In a homogeneous fluid, we expect that p(l)(R’ ) will have the same value at
any point R’ within the system. (This is true apart from a very small region near
the surface of the system, which we always neglect in considering macroscopic
systems.) Therefore, we write

pW(R') = const. (2.20)

and, from (2.19) and (2.20), we obtain

const. x / dR = N. (2.21)
%
Hence
N
pR) =T =p. (2.22)

The last relation is almost a self-evident result for homogenous systems. It
states that the local density at any point R’ is equal to the bulk density p. That
is, of course, not true in an inhomogeneous system.

In a similar fashion, we can define the singlet distribution function for
location and orientation, which by analogy to (2.14) is defined as

— // dXNP(XN)i o(X; — X')

—N/ /XNPXN (X, - X)

— npW (2.23)

Here P'(X’) is the probability density of finding a specific particle at a given
configuration X'.
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Again, in a homogeneous and isotropic fluid, we expect that

pW(X') = const. (2.24)
Using the normalization condition
/p<1>(x’)dx’ = N/P(l)(X’)dX’ =N (2.25)
we get
N p
W(x) = = 2.26
PIX) = e =g (2.26)

The connection between p'"(R’) and p'"(X’) is obtained simply by integration
over all the orientations:

pUR) = [ (x)def = p. (2.27)

2.2 The pair distribution function

In this section, we introduce the pair distribution function. We first present its
meaning as a probability density and then show how it can be reinterpreted as
an average quantity. Again, the starting point is the basic probability density
P(XM), (2.1), in the T, V, N ensemble. The specific pair distribution function is
defined as the probability density of finding particle 1 at X’ and particle 2 at X”.
This can be obtained from P(X") by integrating over all the configurations of
the remaining N — 2 molecules':

P (X, X") :// dXs...dXyP(X, X", X5, ..., XN).  (2.28)

Clearly, P (X', X") dX' dX” is the probability of finding a specific particle, say
1, in dX’ at X' and another specific particle, say 2, in dX” at X”. The same
probability applies for any specific pair of two different particles.

As in the case of the singlet MDF, here we also start with the specific pair
distribution function defined in (2.28). To get the generic pair distribution
function, consider the list of events and their corresponding probabilities in
table 2.2. Note that the probabilities of all the events on the left-hand column of
table 2.2 are equal.

T We use primed vectors like X’ and X”,... to distinguish them from the vectors X3, Xy, ...
whenever each of the two sets of vectors has a different “status.” For instance, in (2.28) the primed

vectors are fixed in the integrand. Such a distinction is not essential, although it may help to avoid
confusion.
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Table 2.2

Event Probability

Particle 1 in dX’ and particle 2 in dX” P2 (X', X")dX'dX"

Particle 1 in dX’ and particle 3 in dX” P2 (X', X")dX'dX"

Particle 1 in dX’ and particle N in dX” P2 (X!, X")dX'dX"

Particle 2 in dX’ and particle 1 in dX” P2 (X', X") dX' dX"

Particle N in @X’ and particle N— 1 in dX” P2 (X!, X"y dX' dX"
The event:

{any particle in dX’ and any other particle in dX"} (2.29)

is clearly the union of all the N(N — 1) events listed in table 2.2. However, the
probability of the event (2.29) is the sum of all probabilities of the events on the
left-hand column of table 2.2 only if the latter are disjoint. This condition can
be realized when the elements of volume dR’ and dR” (contained in dX’ and
dX", respectively) are small enough so that no more than one of the events in
table 2.2 may occur at any given time.

We now define the generic pair distribution function as

p (X', X")dX'dX" = Pr{a particle in dX’ and a different particle in dX"}

= ZPr{particle iin dX’ and another particle j in dX"}

7
= Z PA(X, X" dX' dX"
i#
=N(N-1)PY(X,X")dX'dX". (2.30)

The last equality in (2.30) follows from the equivalence of all the N(N—1)
pairs of specific and different particles. Using the definition of P (X, X) in
(2.28), we can transform the definition of p® (X', X”) into an expression
which may be interpreted as an average quantity:

p(z)(X/,X”)dX/dX”

:N(N—l)dX’dX”/-~-/dX3...dXNP(X’,X”,X3,...,XN)

—N(N—l)dX’dX”/---/Xm...dXNP(Xl,...,XN)5(X1—X’)é(XZ—X”.)



30 MOLECULAR DISTRIBUTION FUNCTIONS

N N

= dXx'dx" / : / dxNP(x™M) > "> " s(x; - X)s(X; - X"). (2.31)

=1 j=]
i#j /

In the second form of the rhs of (2.31), we employ the basic property of the
Dirac delta function, so that integration is now extended over all the vectors
X, ..., XN In the third form we have used the equivalence of the N particles, as
we have done in (2.30), to get an average of the quantity

N N
dx'dx"y " " 8(X; - X') 6(X; - X"). (2.32)
ERE
This can be viewed as a counting function, i.e., for any specific configuration X,
this quantity counts the number of pairs of particles occupying the elements
dX' and dX”. Hence, the integral (2.31) is the average number of
pairs occupying dX’ and dX”. The normalization of p®(X’, X") follows
directly from (2.31):

/ / dx'dx"p®(x',X") = N(N — 1) (2.33)

which is the exact number of pairs in V. As in the previous section, we note that
the meaning of p®(X’, X”) as an average quantity is preserved upon integra-
tion over any region S. This is not the case, however, when its probabilistic
meaning is adopted.

For instance, the quantity

/ / dx'dx"p®(x', X" (2.34)
S JS

is the average number of pairs occupying the region S. This quantity is, in
general, not a probability.

It is also useful to introduce the locational (or spatial) pair distribution
function, defined by

p?P(R,R") = / / e de"p?(x', x"), (2.35)

where integration is carried out over the orientations of the two particles.
Here, p*(R', R") dR’ dR" is the average number of pairs occupying dR’ and
dR" or, alternatively, for infinitesimal elements dR’ and dR”, the probability
of finding one particle in dR" at R’ and a second particle in dR” at R”. It is
sometimes convenient to denote the quantity defined in (2.35) by 5*(R’, R"),
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to distinguish it from the different function p(z)(X’ , X"). However, since we
specify the arguments of the functions there should be no reason for confusion
as to this notation.

2.3 The pair correlation function

We now introduce the most important and most useful function in the theory
of liquids: the pair correlation function. Consider the two elements of volume
dX' and dX” and the intersection of the two events:

{a particle in dX'} and {a particle in dX"}. (2.36)

The combined event written in (2.36) means that the first and the second events
occur i.e., this is the intersection of the two events.

Two events are called independent whenever the probability of their inter-
section is equal to the product of the probabilities of the two events. In general,
the two separate events given in (2.36) are not independent; the occurrence of
one of them may influence the likelihood, or the probability, of the occurrence
of the other. For instance, if the separation R= |R” — R’| between the two
elements is very small (compared to the molecular diameter of the particles),
then the occurrence of one event strongly affects the chances of the occurrence
of the second.

In a fluid, we expect that if the separation R between two particles is very
large, then the two events in (2.36) become independent. Therefore, we can
write for the probability of their intersection

p (X', X")dX'dX" = Pr{a particle in dX'} and {a particle in dX"}
= Pr{a particle in dX'} x Pr {a particle in dX"}
= pW(x"dx' pW(X")dX", for R— o0,  (2.37)

or in short,
pP (X, X") = pW(X)pM(X") = (p/87)*, R — o0 (2.38)

The last equality is valid for a homogeneous and isotropic fluid. If (2.38) holds,
it is often said that the local densities at X’ and X" are uncorrelated. (The limit
R — 00 should be understood as large enough compared with the molecular
diameter, but still within the boundaries of the system.)

For any finite distance R, factoring of p(z)(X’ ,X") into a product is, in
general, not valid. We now introduce the pair correlation function g(X’, X”)
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which measures the extent of deviation from (2.38) and is defined byT
P, X) = o (X)) (X g (X, X")
= (p/87*)’g(X’, X"). (2.39)
The second equality holds for a homogeneous and isotropic fluid. A related

quantity is the locational pair correlation function, defined in terms of the
locational pair distribution function, i.e.,

pP (R, R') = p’g(R,R). (2.40)
The relation between g(R’,R”) and g(X’, X") follows from (2.35), (2.39)
and (2.40):

/ /! 1 / /! ! 1
(R, R) :(8n2)2// a2 d2'g(x, X"), (2.41)

which can be viewed as the average of g(X’, X”) over all the orientations of the
two particles. Note that this average is taken with the probability distribution
d2'df"/(8n*)*. This is the probability of finding one particle in orientation
df2’ and a second particle in d2” when they are at infinite separation from each
other. At any finite separation, the probability of finding one particle in d$2’
and the second in df2” given the locations of R’ and R” is
p(z)(X/,X//)d.fZ/ i’
f p(z) (X',X”)d.fl/ 192"
! " / /!
_ 8 X )ast A" (2.42)
(87%)°¢(R, R")

It is only for |R” — R'| — oo that this probability distribution becomes d€2’
ae"|(8n*)>.

In this book, we shall only be interested in homogeneous and isotropic fluids.
In such a case, there is a redundancy in specifying the full configuration of the

Pr(2,2"/ R,R") d2' 2" =

pair of particles by 12 coordinates (X', X"). It is clear that for any configuration
of the pair X', X", the correlation g(X’, X”) is invariant to translation and
rotation of the pair as a unit, keeping the relative configuration of one particle
toward the other fixed. Therefore, we can reduce to six the number of inde-
pendent variables necessary for the full description of the pair correlation
function. For instance, we may choose the location of one particle at the origin
of the coordinate system, R’ = 0, and fix its orientation, say, at ¢' =0’ =/’ =0.
Hence, the pair correlation function is a function only of the six variables
X" — R”, Q'

T The correlation function as defined here differs from the correlation defined in probability theory.
In probability theory, it is defined as the difference between the probability of the intersection of the
two events and the product of the probabilities of each of the events. It is also normalized in such a way
that its range of variation is between —1 and +1.
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Similarly, the function g(R’,R”) is a function only of the scalar distance
R=|R” — R'|. For instance, R’ may be chosen at the origin R’ = 0, and because
of the isotropy of the fluid, the relative orientation of the second particle is of
no importance. Therefore, only the separation R is left as the independent
variable. The function g(R), i.e., the pair correlation function expressed
explicitly as a function of the distance R, is often referred to as the radial
distribution function. This function plays a central role in the theory of fluids.

The generalization to multicomponent systems is quite straightforward.
Instead of one pair correlation g(X’, X”), we shall have pair correlation func-
tions for each pair of species a.ff. For instance, if A and B are spherical particles,
then we have three different pair correlation functions g44(R), gap(R) = gga(R)
and ggp(R). We shall describe these in more detail in section 2.9.

2.4 Conditional probability and conditional density

We now turn to a somewhat different interpretation of the pair distribution
function. We define the conditional probability of observing a particle in dX” at
X", given a particle at X', by

p(2>(X’,X") dX/ dX//
pW(X') dX'
= pW(X")g(X', X") dX" (2.43)

p(X///X/) dx// —

The last equality follows from the definition of g(X’, X”) in (2.39). Note that
the probability of finding a particle at an exact configuration X” is zero, which
is the reason for taking an infinitesimal element of volume at X”. On the other
hand, the conditional probability may be defined for an exact condition: “given a
particle at X’.” This may be seen formally from (2.43), where dX’ cancels out
once we form the ratio of the two distribution functions. Hence, one can
actually take the limit dX’ — 0 in the definition of the conditional probability.
What remains is a conditional probability of finding a particle at X”, given a
particle at exact configuration X'.

We recall that the quantity p"(X”) dX” is the local density of particles at X"
We now show that the quantity defined in (2.43) is the conditional local density
at X", given a particle at X’. In other words, we place a particle at X’ and view
the rest of the N— 1 particles as a system subjected to the field of force pro-
duced by the particle at X'. Clearly, the new system is no longer homogeneous,
nor isotropic. Therefore, the local density may be different at each point of
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the system. To show this we first define the binding energy, B;, of one particle,
say 1, to the rest of the system by

N
Un(X1,...» Xn) = Uv1(Xos .., XN) + Z U (X1, X))
j=2

= Uy-1 + Bi. (2.44)

In (2.44), we have split the total potential energy of the system of N particles
into two parts: the potential energy of the interaction among the N — 1 particles
and the interaction of one particle, chosen as particle 1, with the N— 1 par-
ticles. Once we fix the configuration of particle 1 at Xj, the rest of the system
can be viewed as a system in an “external” field defined by B;.

From the definitions (2.1), (2.23), (2.31) and (2.43), we get

iy NIN=1) [ [dX" exp[- BUN(XV)]0 (X1 — X')0(X, — X")
p(X/X) = N [ [ dXN exp[—BUx(XN)]5(X, — X)
(N1 [ [dX,...dXyexp[~BUn(X, Xa.. ., XN)]O(Xs — X)
B [ [dX,...dXyexp[—BUn(X', X2, ..., XN)]
=(N- 1)/~--/dX2...dXN P*(X', X2, ..., XN)8(X, — X")

(2.45)

where P*(X’, X, ..., Xy) is the basic probability density of a system of N— 1
particles in an “external” field produced by a particle fixed at X/, i.e.,

exp(—fUn-1 — fB1)
[---[dX,...dXyexp(—BUn_1 — fBi)’

We now observe that relation (2.45) has the same structure as relation (2.23)
but with two differences. First, (2.45) refers to a system of N— 1 instead of N
particles. Second, the system of N — 1 particles is in an “external” field. Hence,
(2.45) is interpreted as the local density at X" of a system of N— 1 particles
placed in the external field B;. This is an example of a conditional singlet
molecular distribution function which is not constant everywhere.

Similarly, for the locational pair correlation function, we have the relation

p(RY/R) = pg(R,R), (2.47)

where p(R"/R’) is the conditional average density at R” given a particle at R'.
In the last relation, the pair correlation function measures the deviation of the

P(X,X5,...,XN) = (2.46)

local density at R”, given a particle at R’ from the bulk density p. In Appendix F
we present another expression for the correlation function in terms of local
fluctuation in the density. Note again that in a multicomponent system, we
have several different conditional densities, e.g., the conditional density of A at
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a distance R from an A-particle, the conditional density of A at a distance R
from a B-particle, etc.

2.5 Some general features of the radial
distribution function

In this section, we illustrate the general features of the radial distribution
function (RDF), g(R), for a system of simple spherical particles. From the
definitions (2.31) and (2.39) (applied to spherical particles), we get
N(N—=1) [---[dR;...dRyexp[—-fUx(R,R',Rs, ..., Ry)]
p? J---JdRy...dRyexp[—BUN(Ry,...,Ry)]
(2.48)

g(Rl, R//) —

A useful expression, which we shall need only for demonstrative purposes, is
the density expansion of g(R’, R"), which reads'

S(R,R) = exp[~U(R, R)|{1 + BR,R')p+ C(R,R")p* + - }
(2.49)

where the coefficients B(R’, R"), C(R’, R"), etc., are given in terms of integrals
over the so-called Mayer f-function, defined by

f(R,R") = exp[-BU(R,R")] — 1. (2.50)
For instance, the expression for B(R’, R") is
B(R,R") = /f(R’, R3;)f(R',R;) dRs. (2.51)
v

We now turn to some specific cases.

2.5.1 Theoretical ideal gas

A theoretical ideal gas is defined as a system of strictly noninteracting particles.

The RDF for such a system can be obtained directly from definition (2.48). With

Un= 0 for all configurations, the integrations in (2.48) become trivial and we get

N(N—1)[---[dRs...dRy N(N—1)VN=2
p2  [---[dR,...dRy p2 VN

g(R,R") = (2.52)

T See, for example, Hill (1956). We shall not need this expansion in p of the pair correlation
function. However, it should be noted that this expansion is derived in an open system, i.e., using the
grand partition function. In a closed system, we always have an additional term of the order of N~ '.
See Appendix G for details.
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or equivalently

g(R) =1 —I\%- (2.53)

As is expected, g(R) is practically unity for any value of R. This behavior reflects
the basic property of an ideal gas i.e., the absence of correlation follows from
the absence of interaction. The term N~ ' is typical of a closed system'. At the
thermodynamic limit N— oo, V— 00, N/V=const., this term, for most
purposes, may be dropped. Of course, in order to get the correct normalization
of g(R), one should use the exact relation (2.53), i.e.,

p /V (R, R')dR' = p /V 01— (1/N)dR' = N — 1, (2.54)

which is exactly the total number of particles in the system, excluding the one
fixed at R'.

It should be clear that the pair correlation function has, in general, two
contributions. One is due to interaction, which in this case is unity. The second
arises from the closure condition with respect to N. Placing a particle at a fixed
position changes the conditional density of particles everywhere in the system
from N/Vinto (N — 1)/V. Hence, the pair correlation due to this effect is

o(®) = NIV 1

=1-——.
N/V N
More on this aspect of the pair correlation can be found in Appendix G.

2.5.2 Very dilute gas

For any real gas at very low densities, p — 0, we may neglect all powers of p in
the density expansion of g(R), in which case we get, from (2.49)}

g(R) = exp[-BU(R)], p—0, (2.55)
where U(R) is the pair potential operating between two particles. Relation
(2.55) is essentially the Boltzmann distribution law. Since at low densities
encounters in which more than two particles are involved are very rare, the pair
distribution function is determined solely by the pair potential.

A direct way of obtaining (2.55) from the definition (2.48) (and not through
the density expansion) is to consider the case of a system containing only two
particles.

T In an open system, g(R) is everywhere unity for a theoretical ideal gas. For more details, see
Appendix G.
Again, we note that since (2.49) is derived for the open system, also (2.55) is valid for an open
system.
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Letting N=2 in (2.48), we get

, 2.56
p2 Z2 ( )

where Z, is the configurational partition function for a system of two particles
in V.
Since we choose U(R) — 0 as R— 00, we can use (2.56) to form the ratio

8(R)

= =exp|—pU(R)]. 2.57

oy = el pUR) (2.57)
Assuming that as R— oo, g(00) is practical unityT, we get from (2.57)

8(R) = exp[-BU(R)], (2.58)

which is the same as (2.55). Note that (2.55) and (2.58) have been obtained for
two apparently different systems (p — 0 on one hand and N=2 on the other).
The identical results for g(R) in two cases reflects the fact that at very low
densities, only interactions between pairs determine the behavior of g(R).
The form of g(R) as p — 0 for a system of hard spheres (HS) and Lennard-
Jones (LJ) particles is depicted in figure 2.2. It is seen that for HS particles as
p — 0, correlation exists only for R< g. For R> g, the function g(R) is iden-
tically unity. For L] particles, we observe a single peak in g(R) at the same point
for which U(R) has a minimum, namely at R= 216
the behavior of g(R) which are common to any gas. First, at large distance

0. There are two features of

R— 00, g(R) — 1; this is normally attained for R on the order of a few mole-
cular diameters. Second, for R < g, g(R) — 0, where ¢ is a length referred to as
the molecular diameter of the particles. For L] particles U(R=¢) =0.

It should be noted that for any gas with any intermolecular interactions,
when p — 0, we obtain the ideal-gas behavior. For instance, the equation of
state has the typical and well-known form. One should distinguish between the
ideal-gas behavior of a real gas as p — 0, and a theoretical ideal gas which is a
model system, where no interactions exist. Such a system does not exist;
however, the equation of state of such a model system is the same as the
equation of state of a real system as p — 0.

In this section, we have seen that in the limit p — 0, the pair correlation is
(2.55). This is different from the theoretical ideal gas case obtained in section
(2.5.1). There, the form of g(R) is valid for any density provided that all

T By R — oo we mean here a very large distance compared with the molecular diameter of the
particles, but still within the macroscopic system of volume V. The assumption that g(co) =1 is valid
for an open system. In a closed system, we have an additional N~ ' term. This is negligible whenever we
are interested in g(R) itself. It becomes important when we integrate over the entire volume of the
systems. See also Appendix G.
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Figure 2.2. The form of the pair correlation function g(R) at very low densities (o — 0): (a) for hard
spheres with ¢ = 1; (b) for Lennard-Jones particles with parameters ¢ =1 and &/kT=0.5.

intermolecular interactions are strictly zero. In (2.55) we have the limit of a
ratio p'"(R'/R") and p'V(R’). Both of these densities tend to zero at p — 0, but
their ratio is finite at this limit.

2.5.3 Slighty dense gas

In the context of this section, a slightly dense gas is a gas properly described by
the first-order expansion in the density, i.e., up to the linear term in (2.49).
Before analyzing the content of the coefficient B(R’, R”) in the expansion of
g(R), let us demonstrate its origin by considering a system of exactly three
particles. Putting N=3 in (2.48), we get

6 [ dRs exp[-fU(R,R",R;)]
R,R") =— 2.59
S(R.R) =, ~ (2.59)
where Z; is the configurational partition function for a system of three

particles.
Assuming pairwise additivity of the potential energy Us, and using the
definition of the function fin (2.50), we can transform (2.59) into

¢(R,R") = §exp[—ﬁU<R',R">]

» JdRs[f(R,Rs)f(Rs,R") + f(R,Rs) + f(R", R3) + 1] .

2 (2.60)
Noting again that U(R’, R”) =0 for R= |R” — R'| — o0, we form the ratio
g(R)
= =exp|—PU(R
£ — enl-pU)
degf(R/,Rg,)f(R_?,,R”) +2 de3f(R’,R3) +V (2.61)

“limp_| [ dRof (R, Rs)f (Rs, R") + 2 [ dRof (R, R3) + V]’
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Clearly, the two integrals over f(R’, R;) and f(R”, Rs) are equal and inde-
pendent of the separation R. Denoting by

c— /V dR; f(R, Rs) = /V iR, [(R',Rs) (2.62)

and noting that since f{R) is a short-range function of R, the integral in (2.62)
does not depend on V, for macroscopic V. On the other hand, we have the
limiting behavior

lim / dR, f(R, R)f(Rs, R') = 0, (2.63)

R—o0

which follows from the fact that two factors in the integrand contribute to the
integral only if R; is close simultaneously to both R” and R”, a situation that
cannot be attained if R= |R” — R'| — oc.

Using (2.62), (2.63), and (2.51), we can now rewrite (2.61) as

B(R,R")+2C+V

S — expl-pUR) =T L

(2.64)

Since C is constant, it may be neglected, as compared with V; in the thermo-
dynamic limit. Also, assuming that g(co) is practically unity,’ we get the final
form of g(R) for this case:

¢(R) = exp[-BU(R)][1+ (1/V)B(R,R")], R=|R"—R|.  (2.65)

Note that 1/V, appearing in (2.65), replaces the density p in (2.49). In fact, the
quantity 1/V may be interpreted as the density of “free particles” (i.e., the
particles besides the two fixed at R’, R”) for the case N=3.

The derivation of (2.65) illustrates the origin of the coefficient B(R’, R"),
which in principle results from the simultaneous interaction of three particles
[compare this result with (2.58)]. This is actually the meaning of the term
“slightly dense gas.” Whereas in a very dilute gas we take account of interac-
tions between pairs only, here we also consider the effect of interactions among
three particles, but not more. For hard spheres (HS), we can calculate B(R’, R”)
exactly; in this case we have

| -1 forR<o
f(R)_{ 0 forR>¢o (2.66)

Thus, the only contribution to the integral in (2.51) comes from regions in which
both f (R’,R;) and f (R”,R;) are equal to —1. This occurs for R< 20. The
integrand vanishes when either |R" — Rs;| >0 or |R” — Rs;| > o. Furthermore,
for |R"—R'| <o, the exponential factor in (2.65), exp[— fU(R',R")],

T Note again that this is strictly true for an open system. See Appendix G.
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Figure 2.3. The form of g(R) for hard-
sphere particles (¢ = 1), using the first- 0.5f
order expansion in the density (equation
2.68). The three curves correspond to ‘ \ . \ |
p=0.1 (lower), p = 0.4 (intermediate), 05 1 15 2 25 3
and p = 0.9 (upper). R

vanishes. Thus, the only region of interest is ¢ < R<2¢. Since the value of
the integrand in the region where it is nonzero equals (—1) x (—1)=1, the
integration in (2.51) reduces to the geometric problem of computing the volume
of the intersection of the two spheres of radius ¢. The solution to this problem is
well known." The result is

B(R) = 4”36 [1 —Z ? +% (g) ] (2.67)

Using (2.67), we can now rewrite explicitly the form of the radial distribution

function for hard spheres at “slightly dense” concentration:

0 for R<o
4ng3 3R 1 (R\’
Ry =<1 -4+ —(= fi R<2 2.68
$(R) TP [ 4a+l6<a>] oro<R<2s  (2.68)
1 for R >20.

The form of this function is depicted in figure 2.3.

2.5.4 Lennard-Jones particles at moderately high densities

Lennard-Jones (LJ) particles are model particles, the behavior of which
resembles the behavior of real, simple spherical particles such as argon. In this
section, we present some further information on the behavior of g(R) and its
dependence on density and on temperature. The L] particles are defined by
means of their pair potential as

Uy (R) = 4 [(%) v (%)6] . (2.69)

Figure 2.4 demonstrates the variation of g(R) as we increase the density. The
dimensionless densities po” are recorded next to each curve. At very low

T See, for instance, Ben-Naim (1992), page 279.
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Figure 2.4. Dependence of the pair correlation function g(R) for the L J particles on the number density.
The density p is indicated next to each curve in the dimensionless quantity pa°. We choose ¢ =1 and
&/kT=0.5in the L Jpotential. All the illustrations of g(R) for this book were obtained by numerical solution
of the Percus—Yevick equation. See Appendix E for more details.
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densities, there is a single peak, corresponding to the minimum in the potential
function (2.69). The minimum of U (R) is at R, = 2¢0. Hence, the first
maximum of g(R) at low densities is also at Ry;,. At successively higher dens-
ities, new peaks develop which become more and more pronounced as the
density increases. The location of the first peak is essentially unchanged, though
its height increases steadily. The locations of the new peaks occur nearly at
integral multiples of g, i.e., at R~ ¢, 20, 307, ... This feature reflects the pro-
pensity of the spherical molecules to pack, at least locally, in concentric and
nearly equidistant spheres about a given molecule. This is a very fundamental
property of simple fluids and deserves further attention.

Consider a random configuration of spherical particles in the fluid. An
illustration in two dimensions is depicted in figure 2.5. Now consider a
spherical shell of width do and radius o, and count the average number of
particles in this element of volume. If the center of the spherical shell has been
chosen at random, as on the rhs of figure 2.5, we should find that on the
average, the number of particles is p47wzdaT. On the other hand, if we choose
the center of a spherical shell so that it coincides with the center of the particle,
then on the average, we find more particles in this element of volume. The
drawing on the left illustrates this case for one configuration. One sees that, in
this example, there are more particles in the element of volume on the left as
compared with the elements of volume on the right. Similarly, we could have
drawn spherical shells of width do at 26 and again have found excess particles
in the element of volume, the origin of which has been chosen at the center of
the particle. The excess of particles at the distances of about g, 20, 30, etc., from
the center of a particle is manifested in the various peaks of the function g(R).
Clearly, this effect decays rapidly as the distance from the center increases.
We see from figure 2.4 that g(R) is almost unity for R > 4¢. This means that
correlation between the local densities at two points R and R” extends over a
relatively short range, of a few molecular diameters only.

At short distances, say in the range of ¢ <R < 5g, in spite of the random
distribution of the particles, there is a sort of order as revealed by the form
of the RDF. This order is often referred to as the local structure of the liquid.
The local character of this structure should be noted. It contrasts with the
long-range order typical of the solid state.

From the definition of g(R), it follows that the average number of particles in
a spherical shell of radius R (from the center of a given particle) and width dR is

N(dR) = pg(R) 4nR* dR. (2.70)

T This is for the three-dimensional case. In the two-dimensional case illustrated in the figure, the
average number of particles in a ring of width do is p2nods.
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Figure 2.5. A random distribution of spheres in two dimensions. Two spherical shells of width do with
radius o and 2 are drawn (the diameter of the spheres is ¢). On the left, the center of the spherical shell
coincides with the center of one particle, whereas on the right, the center of the spherical shell has been
chosen at a random point. It is clearly observed that two shells on the left are filled by centers of particles
to a larger extent than the corresponding shells on the right. The average excess of particles in these shells,
drawn from the center of a given particle, is manifested by the various peaks of g(R).

100

Figure 2.6. The average coordination number Ny as a function of Ry, (equation 2.71) for different
densities pa> and &/kT=0.5. The curves from the lowest upwards correspond to p =0.1, 0.2, 0.4, 0.6,
0.8 and 1.

Hence, the average number of particles in a sphere of radius Ry, (excluding the
particle at the center) is

Ry

Nen (Ry) = p /0 ¢(R) 4nR* dR. (2.71)

The quantity Nen(Ry) may be referred to as the coordination number of
particles, computed for the particular sphere of radius R,z A choice of
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0 < Ry < 1.5¢ will give a coordination number that conforms to the common
meaning of the concept of the first coordination number. Figure 2.6 illustrates
the dependence of the coordination number on Ry, for L] particles, for different
densities p03 (and constant &/kT=0.5). At large values of Ry, the function
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Figure 2.7. The functions G(Ry,) defined in (2.72) as a function of Ry, for the same system and the same
densities as in figure 2.4.
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takes the form p3nR>. Figure 2.7 shows the integrals
Ry
G(Ry) = / [g(R) — 1]4nR* dR (2.72)
0

at several densities, corresponding to the values in figure 2.4. The quantity
pG(Ryy) is the excess' in the average number of particles in a spherical volume
of radius R, centered at a given particle, relative to the average number of
particles in a random sphere of the same radius. Note that all curves start at
zero at Ry;=0. At large R, of the order of a few molecular diameters, the
function G(R,,) tends to a constant value.

The limit

RMHOO

G= lim G(RM):/Oc[g(R)—l]sz2 dR (2.73)

is the so-called Kirkwood—Buff integral. We shall encounter these integrals very
frequently throughout this book.

Figure 2.8 shows one of the functions G(R,) and the corresponding pair
correlation functions. Note that the maxima and minima of the function

3
2-
p=0.8
']-
. I
1tk
oL
0 2 4 6 8 10

Figure 2.8. The combined curves of g(R), upper curve, and G(Ry), lower curve, for the case of p =0.8
and e/kT=0.5.

A negative excess is considered a deficiency.
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G(Ryy) correspond to points at which g(R) = 1. Note also that the oscillations in
G(Ryy) are quite pronounced even at distances where g(R) looks almost flat on
the scale of this figure.

In figure 2.9 we show the variation of g(R) with &/kT for a given density
p = 0.8. The values of ¢ in units of kT are indicated near each curve. Clearly, one
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Figure 2.9. Variation of g(R) with ¢ (in units of k7) for a specific density p =0.8.
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can interpret the variation of g(R) either as a result of changing ¢ (in units of
kT), or as changing the temperature T (in units of &/k).

Finally we show two illustrations of g(R) for real liquids, first, figure 2.10 for
liquid argon (drawn as a function of the reduced distance R* = R/3.5). Clearly
the general behavior is similar to the LJ fluid. It is also shown in the figure
that the theoretical curve, obtained from the solution of the Percus—Yevick
equation, is almost indistinguishable from the experiment curve.

The second, figure 2.11, shows g(R) for H,O and D,O at 4 ° C. Note that the
two curves are almost indistinguishable on the scale of the figure. In water we
see a second peak of g(R) at 4.5 A, which indicates a high degree of “structure”
in this liquid. For a normal, spherical particles of diameter 2.8 A we would have
expected a second peak at about 5.6 A.

g(R) for argon

Figure 2.10 The pair correlation function for g(R*) for liquid argon (at 84.25 K and 0.71 atm) with
R* = R/3.5. The dotted curve is experimental values provided by N.S. Gingrich (to which the author is very
grateful). The solid curve is a solution of the Percus—Yevick equation with parameters ¢ =3.54,
&/kT=1.39 and pa>=0.85 (for details see Appendix E). The theoretical and experimental curves are
almost indistinguishable.

g(R) for H,0-D,O

-2

Figure 2.11 The pair correlation function for H,0 and D,0 at 4° C and 1atm, as a function of R (in A).
The two curves are almost indistinguishable at this scale (based on data provided by A.N. Narten to which
the author is very grateful).
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2.6 Molecular distribution functions in the grand
canonical ensemble

In the previous section, we introduced the MDF in the canonical ensemble, i.e.,
the MDF in a closed system with fixed values of T, V, N. Similarly, one can define
the MDF in any other ensemble, such as the T, P, N ensemble. Of particular
interest, for this book, are the MDFs in the grand canonical ensemble, i.e., the
MDF pertaining to an open system characterized by the variables T, V, . The
fundamental probability in the grand canonical ensemble is

P(N) = T, ;/(:lr\r )‘ffi)[ﬁum, (2.74)

where Q (T, V, N) and Z (T, V, u) are the canonical and the grand canonical
partition functions in the two ensembles, respectively. P(N) is the probability of
finding a system in the T, V, u ensemble with exactly N particles.

The conditional nth-order MDF of finding the configuration X", given that
the system has N particles, is'

N [f dX,y ... dXy exp[—BUn(XN))]
(N — n)! J--] dXY exp[-BUN(XY)]

This quantity is defined for n < N only. The nth-order MDF in the T, V, u
ensemble is defined as the average of (2.75) with the weight given in (2.74), i.e.,

Pl (X7 =3 P(N) o) (X/N)

N>n

E & (N —n)!

y Q(T,V,N)exp(BuN) [-+-[ dX,1...dXyexp[—BUy (XV)]
ZN '

Pl (X"/N) =

(2.75)

(2.76)

The bar over p(") (XN) denotes the average in the T, V, u ensemble’. Recalling
that the canonical partition function is

Q(T, V.N) = (¢"/N!)Zy (2.77)

and denoting by A the absolute activity which is related to the chemical
potential by

4 = exp(Bu), (2.78)

' For more details on this and other expressions in this section, see Ben-Naim (1992).
 We use either an over-bar or the brackets ( ) to denote averages in the open system.



MDFs IN THE GRAND CANONICAL ENSEMBLE 49

we can rewrite (2.76) as

Z M // dX 1 ... dXyexp[—BUy (XV)].

pi) (X7) =
& (N —n)!

[ —

(2.79)

The normalization condition for p(® (X") is obtained from (2.76) by
integrating over all the configurations X":

// dax" o (x7) = 3" P(N) (NI\_”n)!:<(Nli!n)!>. (2.80)

N>n

Two simple important cases are the following. For n=1, we have
/Xm pM (X)) = (N!/(N —1)!) = (N), (2.81)

which is simply the average number of particles in a system in the T, V, u
ensemble (compare this with (2.19) in the T, V, N ensemble). Using essentially
the same arguments as in section 2.1, we get for a homogeneous and isotropic
system

N) _p
(X)) = { —
P (X) 8n2V  8m?,

which is the same as in (2.26) but with the replacement of the exact N by the

average (N).
For n=2, we get from (2.80)

// dX,dX> P (X0, X5) = (NV/(N — 2)1) = (N(N — 1))
= (N?) — (N). (2.83)

(2.82)

As in the T, V, N ensemble, one may introduce correlation functions in the 7, V,
u ensemble. Of particular importance is the pair correlation function defined by

pP (X1,X0) = p0) (X1) ) (X3) g (X0 Xo).  (2.84)

One important property of g(X;,X>), defined in the T, V, u ensemble, is its
limiting behavior at low densities, i.e.,

X0 X0) =2 exp[-BUX1, X5)] (2.85)

which is strictly true without additional terms on the order of (N) ~'. Also for
the (theoretical) ideal gas, where U(X;, X;) =0, (2.85) reduces to

See also Appendix G.



50 MOLECULAR DISTRIBUTION FUNCTIONS

2.7 Generalized molecular distribution functions

We present here a few examples of generalized molecular distribution functions
MDFs (see Ben-Naim 1973a). Of particular interest is the singlet GMDF. These
have been found very useful to establish a firm basis for the mixture model
approach to any liquid (Ben-Naim 1972a, b, and 1973b, 1974), and in particular
to aqueous solutions. It also provides some new relationships between MDFs and
thermodynamic quantities. These will be presented in the next chapter.

The general procedure of defining the generalized MDF is the following. We
recall the general definition of the nth-order MDF, say in the T, V, N ensemble,
which for a system of spherical particles is written in the following two
equivalent forms:

N!
,O(n) (Sl’-”)sn>:W/”'/anJrl”-dRNP(Sl)--'asn;RnJrl’”wRN)

_Z Z/ /dRN P(RY)

=1 i,=1

WFipFE
X [0(R;, — 81) -+ 3(R;, —S,)]. (2.87)

Here, P(RY) is the basic probability density in the T, V, N ensemble. In the
first form on the rhs of (2.87), we have made the distinction between fixed
variables S, ..., S, and dummy variables R, , 1,..., Rn. The latter undergo
integration. The second form on the rhs has the form of an average quantity of
the function in the squared brackets. We first recognize that the squared
brackets in the integrand comprise a stipulation on the range of integration,
i.e., they serve to extract from the entire configurational space only those
configurations (or regions) for which the vector R; attains the value Sy, ... and
the vector R; attains the value §,.

2.7.1 The singlet generalized molecular distribution function

In this section, we present a special case of the generalization procedure out-
lined above. Consider the ordinary singlet MDEF:

N
W(s))ds, = dSl/ /dRN P(RY) >~ 5(Ri — 1)
i=1

=N dS, // dRNP(RN) §(R, — §)). (2.88)
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Here, NL(l) (81) dS, is the average number' of particles occupying the element
of volume dS;. For the present treatment, we limit our discussion to spherical
molecules only. As we have already stressed in section 2.1, the quantity defined
in (2.88) can be assigned two different meanings. The first follows from the first
form on the rhs of (2.88), which is an average quantity in the T, V, N ensemble.
The second form on the rhs of (2.88) provides the probability of finding
particle 1 in the element of volume dS,. Clearly, this probability is given by
NV (8,)dS,/N.

Let us now rewrite (2.88) in a somewhat more complicated way. For each
configuration R", we define the property of the particle i as

Li(RY) = R,. (2.89)

The property of the i-th particle, defined in (2.89), is the location of particle i,
giving a configuration R" which is simply R;. This is the reason for using the
letter L in the definition of the function L; (RY).

Next, we define the counting function of the property L by

N
N (RY, 81)ds = > S[Li(RY) — 8,1, (2.90)

i=1

This is the number of particles whose property L attains a value within 4§, at
S1, given the configuration RY. The average number (here in the T, V, N
ensemble) of such particles is

NY(8,)ds, = <NL“>(RN, sl)> ds,

N

:dSl/---/ dRNP(RY) Y " S[Li(RN) — )] (2.91)
i—1
which is the same as (2.88).
We present a few illustrative examples of properties that may replace L in
(2.90) and (2.91), and which are of interest in the theory of liquids and solutions.

2.7.2 Coordination number

A simple property which has been the subject of many investigations is the
coordination number (CN). We recall that the average coordination number
can be obtained from the pair distribution function (section 2.5). Here, we are
interested in more detailed information on the distribution of CN.

! Here we use the letter N rather than p for the density of particles. This is done in order to unify the
system of notation for the continuous as well as discrete cases that are treated in this section.
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Let R be a fixed number, to serve as the radius of the first coordination shell.
If o is the effective diameter of the particles of the system, a reasonable choice of
Rc for our purposes could be ¢ < Rc < 1.50. This range for R¢ is in conformity
with the meaning of the concept of the radius of the first coordination sphere
around a given particle. In what follows, we assume that R had been fixed, and
we omit it from the notation.

The property to be considered here is the CN of the particle i at a given
configuration R of the system. This is defined by

N
C/(RY) = > H(IR - R - Rc), (2.92)
=Lt
where H(x) is a unit step function, defined as
0 if x>0
H(x)_{l if x < 0. (293)

Each term in (2.92) contributes unity whenever | R;— R;| < R, i.e., whenever
the center of particle j falls within the first coordination sphere of particle i.
Hence, C(R") is the number of particles (j# 1) that falls in the coordination
sphere of a particle i for a given configuration R". Next, we define the counting
function for this property by

N

N (RY,K) =Y 9[Ci(RY) — K] (2.94)

i1
Here, we have used the notation é(x— K) for the Kronecker delta function,
instead of the more common notation J, g, for the sake of unity of notation.
The meaning of 6 as a Dirac or Kronecker delta should be clear from the
context. In the sum of (2.94) we scan all the particles (i=1,2,..., N) of the
system at a given configuration R". Each particle whose CN is exactly K con-
tributes unity to the sum (2.94), and zero otherwise. Hence, the sum in (2.94)
counts all particles whose CN is exactly K for the particular configuration R".
The average number of such particles is

N (K) = (NO(RY, K) )

RN
N[ / dRVP(RY) 5[C,(RY) — K]. (2.95)

We can also define the following quantity:

N (K)

XC(K> = N

_ / / dRVP(RY) S[C,(RY) — K] (2.96)
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From the definition of Ng)(K ) in (2.95), it follows that x(K) is the mole
fraction of particles whose coordination number is equal to K. On the other
hand, the second form on the rhs of (2.96) provides the probabilistic meaning
of x(K); i.e., this is the probability that a specific particle, say 1, will be found
with CN equal to K. The quantity x-(K) can be viewed as a component of
a vector

xc = (xc(0), xc(1), -...,). (2.97)

This vector gives the “composition” of the system with respect to the CN, i.e.,
each component is the mole fraction of particles with a given CN. The average
CN of particles in the system is given by

= i Kxc(K). (2.98)

We also use this example to demonstrate that changes in the condition can be
achieved easily. For instance, with the same property (CN), we can ask for the
average number of particles whose CN is less than or equal to, say, five. This is
obtained from (2.95):

J(K < 5) ZN V(K (2.99)

The CN, as defined above, may be viewed as a property conveying the local
density around the particles. Another quantity conveying a similar meaning will
be introduced in section 2.7.4.

2.7.3 Binding energy

An example of a continuously varying property is the binding energy (BE). This
is defined for particle i and for the configuration R" as follows:

Bi(RN) = UN(Rlx >Ry, Ri) Ri+1’ cee >RN)
~ Uv_i(Riy...,Ri,Risr, ..., Ry). (2.100)

This is the work required to bring a particle from an infinite distance with
respect to all the other particles, to the position R;. For a system of pairwise
additive potentials, (2.100) is simply the sum
N
B(RY) = Y  U(R,R)). (2.101)

J=1

! Note that (K) as defined in (2.98) coincides with the definition of the average CN given in section
2.5 provided that we choose R in this section to be the same as Ry, in section 2.5.



54 MOLECULAR DISTRIBUTION FUNCTIONS

The counting function corresponding to this property is

N(l)(RN, v)dv = deé (RNY — v, (2.102)
i=1
which is the number of particles having BE between v and v+ dv for the
specified configuration R". Note that since v is a continuous variable, the
o-function in (2.102) is the Dirac delta function. The average number of
particles having BE between v and v+ dv is thus

N (v) dv = dv <Z(S Bi(RV) — v > (2.103)

The corresponding mole fraction is

xp(v) dv = ————, (2.104)

With the normalization condition

/OO xg(v) dv =1. (2.105)

o0

The function xp(v) is referred to as the distribution of BE. By analogy with the
vector (2.97) which has discrete components, we often write xp for the whole
distribution function, the components of which are xg(v). For simple spherical
particles, the function x(v) has one maximum at 2{Uy)/N. For more complex
liquids such as water, this function has more “structure,” reflecting the pos-
sibility of the different structural environments of a molecule in the liquid (for
more details, see Ben-Naim 1974).

2.7.4 Volume of the Voronoi polyhedron

Another continuous-type local property of interest in the study of liquids is the
Voronoi polyhedron (VP), or the Dirichlet region, defined as follows. Consider
a specific configuration R and a particular particle i. Let us draw all the
segments [;(j=1,..., N, j# i) connecting the centers of particles i and j. Let P;
be the plane perpendicular to and bisecting the line [;. Each plane P;; divides
the entire space into two parts. Denote by Vj; that part of space that includes
the point R;. The VP of particle i for the configuration R" is defined as the
intersection of all the Vj; (j=1,..., N, j#1):
N
(VP), = [ Vi(R:Ry). (2.106)
J=1
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6
2
5
3 Figure 2.12. Construction of the Voronoi
polygon of particle 1 in a two-dimensional
4 system of particles.

A two-dimensional illustration of the construction of a VP is shown in
figure 2.12. It is clear from the definition that the region (VP); includes all the
points in space that are “nearer” to R; than to any R(j# 7). Furthermore, each
VP contains the center of one and only one particle.

The concept of VP can be used to generate a few local properties'; the one we
shall be using is the volume of the VP, which we denote by

Y;(RY) = volume of (VP);. (2.107)

The counting function for this property is

N
N (RY, ) dg = d >~ ol (RY) - ¢, (2.108)
i=1
and its average is
N
N () do = dp( > oli(RY) - ¢] ). (2.109)

N!/(jl)(qS)qu is the average number of particles whose VP has a volume between
¢ and ¢ + d¢. The VP of a particle i, in a system at a specific configuration R",
conveys a measure of the contribution of this particle to the total volume of the
system at this specific configuration. See also section 3.6 for the relation
between the volume of the system and the partial molar volume of the “species”
of particles having a specific volume of VP. Clearly, the larger the volume of the
VP, the smaller the local density around the particle.

t Note that the form of the VP is also a property which can be considered in the context of this
section. Other properties of interest are the number of faces of the VP, the surface area of the VP, etc.
The distribution functions defined in this section involve random variables whose values are real
numbers. If we choose the form of the VP as a random variable, then its range of variation is the space
of geometric figures and not real numbers.
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2.7.5 Combination of properties

One way of generating new properties is by combination of properties. For
instance, the counting function of BE and the volume of the VP is defined as

Ny, (RN, v, ) dv dp = dvdgbZé Bi(RY) — v[o[y,(RN) — ¢]  (2.110)

which counts the number of particles having BE between v and v+ dv and
the volume of the VP between ¢ and ¢ + d¢. The average number of such
particles is

Ny, (v ¢)dvd¢—dvdd)<25 Bi(RY) —v]é[t//i(RN)—¢]>. (2.111)

Note that although we have combined two properties, we still have a singlet
generalized MDEF. A related singlet generalized MDF which conveys similar
information to that in (2.111), but is simpler for computational purposes, is
constructed by the combination of BE and CN, i.e.

N (v, K dv—dv<25 Bi(RY) — v]6 [Ci(RN)—K}.>. (2.112)

In (2.112) the firs § on the rhs is a Dirac delta function, whereas the second is a
Kronecker delta function.

The general procedure of defining generalized MDFs is now clear. We first
define a property which is a function definable on the configurational space, and
then introduce its distribution function in the appropriate ensemble. Examples
of some of these may be found in Ben-Naim (1973a and 1974).

2.8 Potential of mean force

The potential of mean force (PMF) is an important quantity related to the pair
correlation function. In this section, we show that PMF as defined below,
equation (2.113), is the work involved (the Helmholtz energy in the T, V, N
ensemble or the Gibbs energy in the T, P, N ensemble) in bringing two selected
particles from infinite separation to the final configuration X', X”. We shall
also show that the gradient of this function is the average force exerted on one
particle at X', given a second particle at X", averaged over all configurations of
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the particles in the system. We shall start with the definition of the PMF for
a one-component system consisting of N spherical particles in the 7, V, N
ensemble.

W(R,R") = —kT Ing(R,R"). (2.113)
Using the definition of the pair correlation function in (2.48) we have
exp[-fW(R,R")]

CN(N=1) [--[dR;...dRy exp[~BUN(R,R',R;, ..., Ry)]
E Zn '

(2.114)

We now take the gradient of W(R’, R”) with respect to the vector R’, and get
_ ,BV/W(R/,R”)

= V/{h’l/ . / dR3 . dRN CXP[—ﬁUN(R/, RH, Rs,... ,RN)]} (2115)

The symbol V' stands for the gradient with respect to the vector R’ = (', y/, Z),
i.e.,

., (3 0
V'={ow 5y 52) (2.116)

We also assume that the total potential energy is pairwise additive. Hence,
we write

N
Un(R,R',Rs,...,Ry) = Uy 2(Rs,...,Ry) + Y [U(R;, R
i=3
+ U(R,R")] + U(R,R"). (2.117)

The gradient of Uy with respect to R’ in (2.117) is
N
V'Uny(R,R",Rs,...,Ry) = Z V'UR;R)+V'UR,R"). (2.118)
i—3
Taking the gradient of Win (2.115), we get
. V/W(R/,R”)
N
[---[dRs...dRy exp(—BUy) {— S V'U(R,R)—V'U(R,R")
— i=3

[---[dRs---dRy exp(—BUy)

(2.119)
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Note that the integration in the numerator of (2.119) is over Rs,...,Rn,
and the quantity V'U(R’, R”) is independent of these variables. We also
introduce the conditional probability density of finding the N — 2 particles at
a specified configuration Rs, ... ,Ry given that the two particles are at R’ and
R”, namely

P(R,R',R;,...,Ry)
P(R/, R//)
_ exp[-BUN(R,R",Rs,...,Ry]
— .

P(R;,...,Ry/R,R") =

Zn
. J+--[dRs...dRy exp[—BUN(R,R",Rs,...,Ry)]

_ exp[~BUn(R,R",Rs, ..., Ry)]
[+ [dRs...dRy exp[~BUN(R,R',R;,...,Ry)]

(2.120)

Using (2.120) we rewrite (2.119) as

~-V'W(R,R")=—-V'U(R,R") +// dR;...dRNP(R;,...,Ry/R,R")

N

x Y [-V'U(R,R)]

i=3
(N-2)
= —V'UR,R")+ < Zv U(R;,R) > . (2121)

In (2.121), we expressed —V W(R’, R”) as a sum of two terms. The first term is
simply the direct force exerted on the particle at R’ when the second particle is
at R”. This is the same force operating between the two particles in vacuum.
The second term is the conditional average force (note that the average has been
calculated using the conditional probability density 2.120) exerted on the
particle R’ by all the other particles present in the system. It is an average over
all the configurations of the N — 2 particles given that the two particles are at R’
and R”. The latter may be referred to as the indirect force operating on the
particle at R’, which originates from all the other particles excluding the one
at R”. The foregoing discussion justifies the designation of W(R’, R”) as the
potential of mean force. Its gradient gives the average force, including direct and
indirect contributions, operating on the particle at R’.
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We can further simplify (2.121) by noting that the sum over i produces N — 2
equal terms, i.e.,

N
// dR;...dRyP(Rs,...,Ry/R,R') Y V'U(R,R)

1=3

= (N_Q)/..-/ dR;...dRyP(Rs,...,Ry/R,R")V'U(R;, R)
= (N—Z)/dR3V’U(R3,R’)/m/ dR,...dRNP(Rs,...,Ry/R,R")
= (N -2) / dR;V'U(Rs,R)P(R;/R,R")

= / dR [V'U(R,R)|p(R/R,R"). (2.122)

The quantity p(R/R’, R”), introduced in (2.122), is the conditional density at a
point R, given two particles at R’ and R”. This is a straightforward general-
ization of the conditional density introduced in section 2.4. The total force
acting on 1 can now be written as

Fi = —V'U(R,R') / iR [VURK)p(R/R,R).  (2.123)

This form is useful in the study of forces applied to solutes or to groups in
proteins, in aqueous solutions. The first term is referred to as the direct force
and the second term as the solvent-induced force.

The form of the function W(R), with R= |R” — R’|, for L] particles, and its
density dependence are depicted in figure 2.13. At very low densities, the
potential average force is identical to the pair potential; this follows from
the negligible effect of all the other particles present in the system. At higher
densities, the function W(R) shows successive maxima and minima [corre-
sponding to the minima and maxima of g(R)]. The interesting point worth
noting is that the indirect force at, say, R > ¢ can be either attractive or repulsive
even in the region where the direct force is purely attractive.” We now derive an
important relation between the PMF and the change of the Helmholtz energy.

Consider a system of N simple spherical particles in a volume V at tem-
perature T. The Helmholtz energy for such a system is

exp[—BA(T, V, N)] = (1/NIA*) / / dRY exp[—BU(RNY]. (2.124)

Now consider a slightly modified system in which two specific particles, say 1
and 2, have been fixed at the points R’ and R”, respectively. The Helmholtz

! In fact this oscillatory behavior is manifested even by a system of hard spheres for which the direct
force is zero beyond R>g.
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Figure 2.13. The potential of mean force W(R) for the same system and the same densities as in
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energy for such a system is denoted by A(R’, R”) and we have
1
(N —2)IA*N-2)
X / . / dR3 cen dRN exp[—ﬂUN(R’, R”,R3, - ,RN)].
(2.125)

exp[—BA(R, R")] =

Let us denote by A(R), with R= |R” — R'|, the Helmholtz energy of such a system
when the separation between the two particles is R, and form the difference

AA(R) = A(R) — A(c0). (2.126)

This is the work required to bring the two particles from fixed positions at
infinite separation to fixed positions where the separation is R. The process is
carried out at constant volume and temperature. From (2.113), (2.114), (2.125)
and (2.126), we get

f' de3 dRN exp[—ﬁUN(R’,R”,R3,...,RN)]
“BAA(R)] =
P PAAR)] = T T dRs . dRy exp|—BUx (R R, Ry, Ry)

= 8(R) = exp{—p[W(R) — W(c0)]}. (2.127)

This is an important and useful result. The correlation between two particles at
distance R is related to the work required (here for constant T, V) to bring the
two particles from infinite separation to a distance R. Since g(R) is proportional
to the probability density of finding the two particles at a distance R, we can
conclude that the probability of finding the event “two particles at R” is related
to the work required to create that event. This is a particular example of a much
more general relation between the probability of observing an event and the
work required to create that event.

In this section, we used the T, V, N ensemble to obtain relation (2.127). A
similar relation can be obtained for any other ensemble. Of particular
importance is the analog of (2.127) in the T, P, N ensemble. It has the same
form but the events occur in a T, P, N system and instead of the Helmholtz
energy change, we need to use the Gibbs energy change.

2.9 Molecular distribution functions in mixtures

Molecular distribution functions (MDFs) in mixtures are defined in a similar
way as in the case of the one-component system; the only complication is
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notational. For two-component systems, we use the shorthand notation for the
configuration of the entire system of N, particles of type A and Np particles of
type B:

Na+N,
X A+Np :X17X2)"')XNA’XNA+1>XNA+2"")XNA+NB' (2128)
The total interaction energy for a specific configuration is

UNA, Np (XNA’ XNB)

Ny N;
= —Z UAA XI,X Z UBB XZ,X + zA:ZB: UAB XI)X (2129)
i£j ,35] i=1 j=1

Here we have assumed pairwise additivity of the total potential energy
and adopted the convention that the order of arguments in the parentheses
corresponds to the order of species as indicated by subscript of U. Thus X;
in the first sum on the rhs of (2.129) is the configuration of the ith
molecule (i=1, 2,..., N,) of species A, whereas Xj, in the last term on the rhs
of (2.129), stands for the configuration of the jth molecule (j=1, 2,..., Nj) of
species B.
The basic probability density in the canonical ensemble is

P(XNA+NB) — P(XNA,XNB)
_ exp[—BUn, Ny (XM, X))
f' ’ .deNA dx™e eXp[_ﬁUNA-,NB(XNA’XNB)] ‘

(2.130)

The singlet distribution function for the species A is defined in complete
analogy with the definition in the pure case (section 2.1),

X/ / / XNAJ”NB P XNAJFNB Za XA Xl

_ NA/' . '/dXNA+NB P(XNA+NB) 5(X’f —X’) (2'131)
and similarly
p%l)(X/) _ NB/' . ‘/dXNA+NBP(XNA+NB) 5(X? — X’)_ (2.132)

Clearly, pgl) (X") is the probability of finding any molecule of type A in a small
region dX’ at X'. Similar interpretation applies to pg)(X’).

As in the case of a one-component system, ,01(0‘1 (X') is also the average density
of A molecules in the configuration X'. In a homogenous and isotropic fluid,
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we have (see section 2.1 for more details)

1) xy = _Na
X = 2.133
) = (2133)

(1) /7 Ng
= ) 2.134
pB ( ) 87T2V ( )

The average local density of A molecules at R’ is defined by
M)y — F Wy Na

VR = [agpl(x) =2 =), (2.135)

and a similar definition applies to pg)(R’ ).
The probability density of finding an A-particle at a specific orientation €
(independently of its location) is

(1) N (1) /o /_N
(2') = / (X") dR o (2.136)

and a similar definition applies to B. Note that pf;)(R’ ) and pg)(ﬂ’) are the
marginal probability densities, derived from pflp(X’).

In a similar fashion, one defines the pair distribution functions for the four
different pairs AA, AB, BA and BB. For instance,

Ny Ny

P (X, X") / / dXNtNe p(x NN § NN P (x4 X6 (XA - X)

i=1 1
=

=Nu(Ny—1) / / dX NN p( XNt 5 (x4 — X9 (X2 — X).
(2.137)
Similarly, for different species,

A B
DX, X" / / dXNATNs p(xNat+Ns) ZZ 5(X} —X"o(XP - X")

i=1 j=1
= NuNj / . / dXNatNs p(xNatNey5( x4 — X') 5(XP — X").
(2.138)

The pair correlation functions g,5(X’, X”) where o and f§ can either be A or B,
are defined by

pizﬁ)(X,’X//) _ (1)(X,),0[; (x") G (x', X" (2.139)
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and the spatial pair correlation functions by

B fdﬂlfdﬂﬁgaﬁ(X/)XU)
N (872)° '

&p(R,R") (2.140)

As in a one-component system, the functions g,s(R’, R”) depend only on the
scalar distance R= |R” — R’|. Hence, for the spatial pair correlation function,
we have

g48(R) = ga(R). (2.141)

The conditional distribution functions are defined by
pan(X [X") = plip(X, X" [ pls) (X7) = p) (X)) gan(X,X"). (2142)

As in the one-component case, p4/5(X’/X") may be interpreted as the density
(or probability density) of finding A in a small region at X', given that a
B-particle is at an exactly fixed configuration X” (see also section 2.4). Note
also that the probability interpretation of the singlet distribution function holds
only in a very small region around X'; the density interpretation holds true for
any region including the entire range of configuration.

The normalization conditions for the pair distribution functions in a closed

system are
/ pA(X', X") dX'dX" = No(Ns — 1) (2.143)
/ p D (X', X") dX'dX" = NsNp. (2.144)

The first is simply a statement that the total number of A— A pairs is
Na(N4 —1). The second refers to the total number of A — B pairs which is
NaNp. Note that since we are in a closed system, these numbers are exact. We
shall see in chapter 4 the analogs of these equations in an open system.

As in the case of the one-component system, we also expect here that as the
distance becomes very large, the pair distribution function becomes a product
of the corresponding singlet distribution functions.

We now turn to discuss some features of the pair correlation functions that
are typical to mixtures of two (or more) components. We have seen in section
2.5 that for spherical particles, the pair correlation has peaks at roughly o, 20,
30, etc., where ¢ is the effective diameter of the particles. However, it is not
exactly at multiples of g, first because the minimum of the pair potential is at
26 ¢ and not at g, and second because of the randomness of the packing of
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Figure 2.14. (3) At a distance of about R=g¢ the correlation is determined mainly by the direct
interaction between A and B (clear circles). (b) At R> g, the direct interaction between A and B is weak.
The correlation between A and B (clear circles) is mediated by the surrounding molecules (shaded circle),
which interact with both A and B.

spheres in the liquid state. In mixtures, say of A and B, the location of the first
maximum of gap (R) is expected to be at about g 45, where g5 is defined as

OAB = %(O'AA + O-BB) (2.145)

Note that this is the exact distance of closest approach for two hard
sphere particles. For Lennard-Jones particles 045 is defined in (2.145). This is
practically the distance of closest approach for A and B. The occurrence of
the first peak at g4 is due to the dominance of the direct interaction between A
and B at this distance. This is true for one-component as well as for multi-
component systems. However, the other peaks of g(R) are not determined by
the direct interactions. Normally at a distance of about 2¢ and beyond, U(R) is
very weak and what determines the location of the second, third, etc., peaks
is not the direct interactions but the indirect correlation mediated by the
surroundings of the pair A, B. The difference between these two cases is
schematically depicted in figure 2.14.

We now turn to examine some features of the pair correlation functions of
the mixture of A and B. Let A and B be two simple spherical molecules
interacting through pair potentials which we denote by Ua4(R), Uap(R), and
Usggp(R). For simplicity, assume Lennard-Jones particles

Uua(R) =t (78) - (0] (2.146)
Ups(R) = 4epp [(%) s (%) 6} (2.147)

Uns(R) = Usa (R) = 4eap [(%) v (%2) 6}. (2.148)
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We also assume the combination rules

GAB:O-BA:(O-AA+O-BB)/2 (2149)

ol—

eap = €pa = (£4a€BB)*. (2.150)

Before proceeding to mixtures at high densities, it is instructive to recall the
density dependence of g(R) for a one-component system (see section 2.5). We
have noticed that the second, third, etc., peaks of g(R) develop as the density
increases. The illustrations in sections 2.5 were calculated for Lennard-Jones
particles with ¢ = 1.0 and increasing (number) density p. It is clear, however,
that the important parameter determining the form of g(R) is the dimensionless
quantity po’ (assuming for the moment that &/kT is fixed). This can be
illustrated schematically with the help of figure 2.15. In the two boxes, we have
the same number density, whereas the volume density (qualitatively the “actual”
volume occupied by the particles) defined below is quite different. Clearly, the
behavior of these two systems will differ markedly even when A and B are hard
spheres differing only in their diameters. Thus we expect that the form of g(R)
will be quite different for these two systems. The reason is that although the
average separation between the particles is the same in a and b, the average
interaction between the particles is quite different in a and b. In this illustration,
the particles in a are most of the time within the range of the intermolecular
interactions, whereas in b, the particles are far apart relative to the range of
interactions; hence the effects of intermolecular interactions are negligible.

Now consider mixtures of A and B (with g4, >> opp) at different composi-
tions but at constant total number density p. If we study the dependence of say
g4 (R) on the mole fraction of x,4, we shall find that at x4 ~ 1, g4p (R) behaves

e L e
© ©
o ©
0

. . 5 O

Figure 2.15. Two systems with the same number density but differing in the volume densities.
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as in the case of a high-density fluid, whereas at x4 ~ 0, we shall observe the
behavior of the low-density fluid. In order to highlight those effects that are
specific to the properties of the mixtures, it is advantageous to study the
behavior of the pair correlation function when the total “volume density” is
constant. The latter is defined as follows. In a one-component system of par-
ticles with effective diameter o, the ratio of the volume occupied by the particles
to the total volume of the system is

_ Ndn(e/2)’  pno?
Vo3 6

Similarly, the total volume density of a mixture of two components A and B is
defined by

(2.151)

N =(PaTia + PpOsp) = 1P (X404 + XB03p) (2.152)

In the second equation on the rhs of (2.152), we have expressed # in terms of
the total (number) density and the mole fractions.

We shall now illustrate some of the most salient features of the behavior of
the various pair correlation functions in systems of Lennard-Jones particles
obeying relations (2.146)—(2.148) with the parameters

OAp = 1.0 OBB = 1.5

€AA _ €BB

— =—=05 = 0.45. 2.153

KT~ kT 1 (2.153)
Note that the volume density of closed pack spheres is about #.,~ 0.74. The
choice of = 0.45, which is about 6/10 of the maximum density, was chosen for
convenience. In fact even at these densities converging of the Percus—Yevick
equation is quite slow (see also Appendix E).

We shall discuss separately three regions of compositions.

(1) Systems that are dominated by the presence of A’s, between any pair of
particles, i.e., x4~ 1.

Figure 2.16 shows the three pair correlation functions for a system with
composition x4 =0.99. Here, gaa (R) is almost identical to the pair correlation
function for pure A. The peaks occur at about 6 44, 20 44, 36 44, and 4G 4. Since
7 =0.45 in (2.153) corresponds to quite a high density, we have four pro-
nounced peaks. The function g5 (R) has the first peak at about ¢ 4. (The value
of 6 4p1s (644 + 0pp)/2 =1.25, but due to errors in the numerical computation
and the fact that the minimum of U,y is at 2ig Ap> we actually obtain the first
maximum at about R=1.3.) Similarly the first peak of ggz(R) is at about
opg=1.5. The second, third, and fourth peaks of g5 (R) are determined not by
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Figure 2.16. The three pair correlation functions g gss= gsa and ggs for a system with parameters
as in equation (2.153) and = 0.45 and x4 =10.99.

multiples of 45 but by the addition of Gax That is, the maxima are at
R0 4p, O+ Oan Oag—+ 2044, etc. This is a characteristic feature of a dilute
solution of B in A, where the spacing between the maxima is determined by
O A 1.€., the diameter of the dominating species. The molecular reason for this
is very simple. The spacing between, say, the first and second peaks is deter-
mined by the size of the molecule that will most probably fill the space between
the two molecules under observation. Because of the prevalence of A molecules
in this case, they are the most likely to fill the space between A and B. The
situation is depicted schematically in Figure 2.17 where we show the most likely
filling of space between a pair of molecules for the case x4~ 1, i.e., for a very
dilute solution of B in A. The first row in Figure 2.17 shows the approximate
locations of the first three peaks of g4 (R); other rows correspond successively
to gap (R) = gpa (R) and ggp (R).

For x4~ 1, the component A may be referred to as the solvent and B as the
solute. For any pair of species of, we can pick up two specific particles (one of
species o and the other of species 5) and refer to these particles as a “dimer.”
From the first row of figure 2.17, we see that the most probable configurations of
the dimers occur either when the separation is ¢, or when they are “solvent
separated,” i.e., when the distances are R~ 6,5 + 16 44, where n=1, 2, 3, for the
second, third, and fourth peaks. Note that because of the approximate nature of
the computations, the curves g45 (R) and gga (R) may come out a little different;
however, theoretically they should be identical and in our computation they are
nearly identical and may not be distinguished on the scale of figure 2.16.

t The second peak of gap (R) is clearly related to 645+ 044 and the third to 045+ 20 44. If we had
chosen 044=1.0 and g35=2.0 then we could not have distinguished between 645+ 2044 and
04+ opp. It is for this reason that we have chosen the values of 644 = 1.0 and 63z = 1.5 which could
lead to less ambiguity in the interpretation of the first two peaks.
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Figure 2.17. Configurations corresponding to the first three peaks of g, (R) for a system of B diluted in
A (e.g., x4=0.99) corresponding to figure 2.16. The two unshaded particles are the ones under obser-
vation, i.e., these are the particles for which g,4(R) is considered. The shaded particles here, which are
invariably of species A, are the ones that fill the spaces between the observed particles. The locations of the
expected peaks of g,4(R) can be estimated with the help of this figure with ,=1.0 and gg=1.5.
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Figure 2.18. The three pair correlation functions gas gas= gsa and g for the same system as in
figure 2.16 and = 0.45 and x4, =0.01.

(2) System dominated by the presence of B’s, between any pair of particles,
ie., x4 ~0.

This is the other extreme case where x4~ 0 or xg== 1. Figure 2.18 shows the
pair correlation functions for this case. Here A is diluted in B and the
separation between the peaks is determined by opp, since now it is B that
dominate the space between any pair of particles. Thus the first peak of g44 (R)
appears at g, as expected. But the second and third peaks are roughly at
R~ 04+ nogs n=1, 2, 3 for the second, third, and fourth peaks.
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Figure 2.19. Same as figure 2.17 but for the case x4, =0.01. The particles that fill the space between the
pair o in g, (R) are now B particles.
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Figure 2.20. The functions G,4 (Ry) for the same system as that of figure 2.18.

Figure 2.19 shows the configurations corresponding to first three peaks of
2 (R) for the system of A diluted in B. Note that in this case it is the B particles
that fill the space between the pair of particles for which g,z(R) is under
consideration.

Figures 2.20 and 2.21 show the functions G,z (Ry) and the potential of mean
force W, (R) for the same system as in figure 2.18.

(3) Systems of intermediate composition; x4 = 0.64.

Figure 2.22 shows the pair correlation functions g,z(R) for the composition
x4 =0.64. The most remarkable feature of these curves is the almost complete
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Figure 2.21. The potential of mean force W, (R) for the same system as in figure 2.18.
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Figure 2.22. The three pair correlation functions gaa, gas= gsa and gss for the same system as in figure
2.16 but with 7 =0.45 and x,=0.64. Note the relatively flat region where a second peak is expected.

disappearance of the third and fourth peaks. The second peak is less pro-
nounced than in the case of either x4 =0.99, or x4, =0.01. Since there is no
component that is dominant in this case, we cannot describe the most likely
configuration as we did in figure 2.17 and 2.19.

It is interesting to note the composition dependence of g44 (R) in the region
1.2 < R<3.0. The most important point to be noted is the way the location of
the second peak changes from about g4+ 044 at x4 =0.99 (A being the
“solvent”) to about 644 + op at x4 =0.01 (B being the “solvent”). The second
peak has its maximal value of about 1.2 for the case x4 =0.99. It gradually
decreases when the composition changes until about x4, =0.64. The curve
becomes flat in the region between G4+ 0asa and oas+ opg. When x4
decreases further, a new peak starts to develop at g4 + g, which reaches its
highest value of about 1.18 at x4, =0.01. Figure 2.23a shows gs4 (R) for the
three compositions, x4 =0.01, 0.64 and 0.99, and figure 2.23b shows the
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Figure 2.23. (a) The function gu4(R) for three compositions: x;=0.01, 0.99 and 0.64 (dashed). Other
parameters are as in figure 2.18. (b) The function ggs(R) for the three compositions: x,=0.01, 0.99 and
0.64 (dashed). Other parameters are as in figure 2.18.

behavior of ggg(R) for the same three compositions. A more detailed variation
of g4a(R) as a function of x4 has been described by Ben-Naim (1992).

We stress that the fading away of the second peak of g44(R) as the composition
changes is not a result of the decrease in the density of the system. We recall that
in a one-component system all the peaks of g(R), except the first one, will vanish
as p — 0. The same is true in the mixture if we let p, + pg— 0. In both cases the
disappearance of successive peaks in g,s(R) is simply a result of the fact that as
p — 0 the availability of the particles to occupy the space between the “tagged
dimer” become vanishingly small. The phenomenon we have observed in the
mixture at a relatively high volume density (7 =0.45) is not a result of the
scarcity of particles in the system but a result of the competition between the
species A and B, to occupy the space between the two selected particles.

We recall that the location of the second peak is determined principally by
the size of the particles that fill the space between the two selected particles. For
x4 =0.99 it is most likely that the space will be filled by A molecules. Similarly,
for x4 =0.01, it is most probable that the B molecules will be filling the space.
The strong peak at 2044 in the first case and at 6,4 + op in the second case
reflects the high degree of certainty with which the system chooses the species
for filling the space between any pair of selected particles. As the mole fraction
of A decreases, the B molecules become competitive with A for the “privilege”
of filling the space. At about x4~ 0.64, B is in a state of emulating A (in the
sense of filling the space). The situation is schematically shown in figure 2.24.

The fact that this occurs at x4 = 0.64 and not, say at x5 ~ 0.5 is a result of the
difference in g of the two components. Since Bis “larger” than A, its prevalence
as volume occupant is effective at xz~0.36 < 0.5. The fading of the second
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Figure 2.24. A schematic description of the
competition between A and B to fill the
spaces between two A's (the smaller circles).

peak reflects the inability of the system to “make a decision” as to which kind of
particle should be filling the space between the two selected particles. We shall
see in the next section an equivalent interpretation in terms of the force acting
between the two particles. As in section 2.5, we stress again that all our con-
siderations here are valid for spherical particles. For mixtures of more com-
plicated molecules, the location of the various peaks is determined both by the
abundance of molecules occupying the space between the tagged particles as
well as by the strength of the intramolecular forces between the various species.
For example, for the pair distribution function for two methane molecules in
water, the second peak is determined by the structure of water and less by its
molecular volume.

2.10 Potential of mean force in mixtures

In section 2.8, we defined the potential of mean force (PMF) between two
tagged particles in a one-component system. This definition can be extended to
any pair of species; for example, for the A—A pair, the potential of average force
is defined by

244 (R) = exp[—fWaa(R)]. (2.154)
Similar definitions apply to other pairs of species. Repeating exactly the same
procedure as in section 2.8, we can show that the gradient of W, 4 (R) is related
to the average force between the two tagged particles. The generalization of the

expression (2.123) is quite straightforward. The force acting on the first A
particle at R/, given a second A particle at R”, can be written as

Fy = —V'Un(R, R") — / R4V Uns (Ra, B)|p(Ra/ R, R)

- / dR5[V' Uss (Rs, R)|p(Rs/R, R'). (2.155)
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The first term on the rhs of (2.155) is simply the direct force exerted on the first
A particle at R, by the second A particle at R”. The average force exerted by the
solvent now has two terms, instead of one in (2.123). The quantity —V' Uy,
(R4, R') is the force exerted by any A particle (other than the two selected A’s)
located at R, on the particle at the fixed position R" and p(R4/R’, R") is the
conditional density of A particles at R4, given two A’sat R’ and R”. Integration
over all locations of R, gives the average force exerted by the A component on
the A particle at R’. Similarly, the third term on the rhs of (2.155) is the average
force exerted by the B component on the A particle at R’. The combination of
the two last terms can be referred to as the “solvent” induced force (the term
“solvent” is used here for all the particles in the system except the two selected
or “tagged” particles).

Two extreme cases of equation (2.155) are the following. If pg— 0, then
p(Rp/R’, R") — 0 also and the third term on the rhs of (2.155) vanishes. This is
the case of a pure A. The “solvent” in this case will consist of all the A particles
other than the two tagged particles at R’ and R”.

The second extreme case occurs when p, — 0. Note, however, that we still
have two A’s at fixed positions (R’, R”), but otherwise the solvent (here in the
conventional sense) is pure B. We have the case of an extremely dilute solution
of A in pure B. Note also that at the limit p, — 0, both the pair and the singlet
distribution functions of A tend to zero, i.e.,

PU(RLR) =0 (2.156)
p(R) = o. (2.157)

However, the pair correlation function as well as the potential of average force
are finite at this limit. We can think of W,4(R) in the limit of p4, — 0 as the
work required to bring two A’s from infinite separation to the distance R in a
pure solvent Bat constant T'and V (or T, P depending on the ensemble we use).

As in the case of pure liquids, the solvent-induced force can be attractive or
repulsive even in regions where the direct force is negligible. An attractive force
corresponds to a positive slope of W(R), or equivalently, to a negative slope
of g(R). The locations of attractive and repulsive regions change when the
composition of the system changes. Specifically, for x4 — 1 we have the second
peak of gaa (R) at about g 44+ 044 ~2. On the other hand, for x4 — 0, the
second peak of g44(R) is at 044 + 045~ 2.5 Clearly, there are regions that are
attractive when x4, — 1 (say 2 < R<2.5), but become repulsive when x4 — 0.
Therefore, when we change the composition of the system continuously,
there are regions in which the two terms on the rhs of (2.155) produce
forces in different directions. The result is a net diminishing of the overall



POTENTIAL OF MEAN FORCE IN MIXTURES 75

solvent-induced force between the two tagged A particles. This corresponds to
the flattening of g(R) or of W(R) which we have observed in figures 2.23a and
2.23b at x4~ 0.64.

Another useful way of examining the behavior of say, ga4(R) in a mixture of
A and B is to look at the first-order expansion of g44(R) in ps and pp. The
generalization of (2.49) for two-component systems is

gan(R) = exp[— U (R)] [1 o [ Faa(R ) fus (R ) s

+pp / fas (R, Rp) fga(Rp, R") dRB+-~} (2.158)

where f,5 are defined as
fup (R,R") = exp[—PU,(R,R")] — 1. (2.159)

As we have discussed in section 2.5, we expect that the first integral, on the rhs
of equation (2.158), will contribute an attractive force (even for hard-sphere
particles) in the region g4, < R< 2044, whereas the second integral will have
an attractive region at o453 < R< 2043



THREE

Thermodynamic quantities
expressed in terms of
molecular distribution
functions

In this chapter, we derive some of the most important relations between
thermodynamic quantities and the molecular distribution function (MDF). As
in the previous chapter, we shall first present the relation for a one-component
system. This is done mainly for notational convenience. One can easily repeat
exactly the same steps to derive the generalized relation for a multicomponent
system. This is, in general, not necessary to do. As a rule, once we have the
relation for a one-component system, we can almost straightforwardly write
down the generalized relation without resorting to a full derivation. All that is
needed is a clear understanding of the meaning of the various terms of the
relations. An exception to this rule is the relation for the isothermal com-
pressibility. Here, the one-component equation does not provide any clue for
its generalization. We shall devote part of chapter 4 to derive the generalization
of the compressibility equation, along with other relations between thermo-
dynamic quantities and the MDF.

Most of the relations discussed in this chapter apply to systems obeying the
assumption of pairwise additivity for the total potential energy. We shall
indicate, however, how to modify the relations when higher order potentials are
to be incorporated in the formal theory. In general, higher order potentials
bring in higher order MDFs. Since very little is known about the analytical
behavior of the latter, such relationships are rarely useful in applications.

Of particular importance to solution chemistry is the expression for the
chemical potential, first derived by Kirkwood (1933). We shall devote a rela-
tively large part of this chapter to discuss various expressions for the chemical
potential.
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The derivations carried out in this chapter apply to systems of simple
spherical particles. We shall also point out the appropriate generalizations for
non-spherical particles that do not possess internal rotations. For particles
with internal rotations, one needs to take the appropriate average over all
conformations. An example of such an average is discussed in chapter 7.

There are some steps common to most of the procedures leading to the
relations between thermodynamic quantities and the pair distribution func-
tion. Therefore, in the next section we derive a general theorem connecting
averages of pairwise quantities and the pair distribution function.

3.1 Average values of pairwise quantities

Consider an average of a general function of the configuration, F(X"), in the
T, V, N ensemble:

(F) = // dxVP(XN)F(xN), (3.1)

with

_ expl-BUNXY)
ZN

P(xM) (3.2)
A pairwise quantity is defined as a function that is expressible as a sum of
terms, each of which depends on the configuration of a pair of particles, namely

FXN) =YY (X, X)) (3.3)
i# o
where the sum is over all different pairs. In most of the applications, we shall
have a factor of % in (3.3) to account for the fact that this sum counts each
pairwise function f(X; X;) twice, i.e., f(X;, X;) appears when i=1 and j=2
and when i=2 and j=1. In the present treatment, all of the N particles are
presumed to be equivalent, so that the function fis the same for each pair of
indices. (The extension to mixtures will be discussed at the end of this section.)
Substituting (3.3) in (3.1) we get

#) = [ [ axveex) >r0xx)

-y / . / dxN p(XN)f (X, X;)

i#]
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=N(N-1) // dx™ P(xX™) f(X1,X,)

:/Xm/dXZ f(X1,X,) [N(N— 1) // dXs...dXy P(X")
:/Xm/dXz (X1, X)) p?P (X1, Xs). (3.4)

It is instructive to go through the steps in (3.4) since these are standard steps in
the theory of classical fluids. In the first step, we have merely interchanged the
signs of summation and integration. In the second step, we exploit the fact that
all particles are equivalent; thus each term in the sum has the same numerical
value, independent of the indices i, j. Hence, we replace the sum over N(N — 1)
terms by N(N—1) times one integral. In the latter, we have chosen the
(arbitrary) indices 1 and 2.

Clearly, due to the equivalence of the particles, we could have chosen any
other two indices. The third and fourth steps make use of the definition of the
pair distribution function defined in section 2.2.

We can rewrite the final result of (3.4) as

(F) = / dx’' / dx"f(x', x"p?(x', X" (3.5)

where we have changed to primed vectors to stress the fact that we do not refer
to any specific pair of particles.

A simpler version of (3.5) may be obtained for spherical particles, for which
each configuration X consists only of the locational vector R. This is the
most frequently used case in the theory of simple fluids. The corresponding
expression for the average quantity in this case is

(F) = / dR / dR'f(R,R")p? (R, R"). (3.6)

Normally the function f(R’, R”) depends only on the separation between the
two points R=| R” — R'|. In addition, for homogeneous and isotropic fluids,
pP (R, R") depends only on the scalar R. This permits the transformation
of (3.6) into a one-dimensional integral. To do this, we first transform to
relative coordinates

R=R, R=R'-R. (3.7)

Hence,

(#) = [ & [ arg®p?(R) = v [ dRFRPOR.  (38)
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The integration over the entire volume yields the volume V.
Next, we transform to polar coordinates:

dR = dxdy dz = R*sin0 d0 d¢ dR. (3.9)

Since the integrand in the last form of (3.1.8) depends only on the scalar R, we
can integrate over all the orientations to get the final form

(F)=V /0 h f(R)p®(R)4nR? dR

= p*V /0 h f(R)g(R)4nR* dR. (3.10)

It is clear from (3.10) that a knowledge of the pairwise function f(R) in (3.3),
together with the radial distribution function g(R), is sufficient to evaluate the
average quantity (F). Note that we have taken as infinity the upper limit of the
integral in (3.10). This is not always permitted. In most practical cases, how-
ever, f(R) will be of finite range, i.e., f(R) = 0 for R > Rc. Since g(R) tends to
unity at distances of a few molecular diameters (excluding the region near the
critical point), the upper limit of the integral can be extended to infinity
without affecting the value of the integral.

Now, we briefly mention two straightforward extensions of equation (3.5).

(1) For mixtures of, say, two components, A and B, a pairwise function is
defined as

F(XNNe) =" fua(X X5) + Y fon(Xi X))
7 7
Ny Ng Np Ny

+Z Z fan(Xi» Xj) +Z Z faa(XuXj)  (3.11)

where X' stands for the configuration of the whole system of N4+ Nj
particles of species A and B. Here, f,5 is the pairwise function for the pair
of species o and f(a=A, B and f=A, B). Altogether, we have in (3.11)
Na(Ng— 1)+ Np(Np—1) +2N4Ng terms which correspond to the total of
(Na + Ng) (Na + N — 1) pairs in the system. Note that here we count the pair i, ¢
and j, i as different pairs'.

Note that in (3.11) we have assumed summation over i# j for pairs of the

same species. This is not required for pairs of different species. Using exactly

T We also note that, as in (3.3), for most quantities of interest we need only half of the sums in
(3.11). See the example in the next section.
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the same procedure as for the one-component system, we get for the average
quantity the result

(#) = [ ax [ ax” (e, x0pg 00 x7)
- / dx' / dX"fos(X', X")pa (X', X")
b [ax [ ax e X0 x)
+ / ax’' / AX" (X, X)) (X, X" (3.12)
)

where p, g are the pair distribution functions for species « and f.

(2) For functions F that depend on pairs as well as on triplets of particles of
the form

F(XN) =3 f(Xa X))+ Y h(Xi X)X (3.13)
7 777k

the corresponding average is
<F> :/dX//dX”f(X’,X”)p(z)(X/,XN)
—i—/dX//dXN /deh(X/,X”,X///)p(s)(X/,XN,XN/). (3.14>

The arguments leading to (3.14) are the same as those for (3.6). The new
element which enters here is the triplet distribution function. Similarly, we can
write formal relations for average quantities which depend on larger numbers
of particles. The result would be integrals involving successively higher order
molecular distribution functions. Unfortunately, even (3.14) is rarely useful
since we do not have sufficient information on p®.

3.2 Internal energy

We now derive an important expression for the internal energy of a liquid.
Consider a system in the T, V, N ensemble and assume that the total potential
energy of the interaction is pairwise additive, namely,
Un(XY) = 13 U(X, X)), (3.15)
i#j
The factor % is included in (3.15) since the sum over i# j counts each pair
interaction twice.



INTERNAL ENERGY 81

The canonical partition function for the system is

qN

Q(T,V,N) =7 A _q—|// dX"N exp[—BUn(XM)] (3.16)

where the momentum partition function is included in ¢".
The internal energy of the system is given by'

0(A/T) , 0InQ , Olng , 0lnZy
= kT = NkT T
or U p = N o TR
The first term on the rhs includes the internal and the kinetic energy of the
individual molecules. For instance, for spherical and structureless molecules,
we have g= A" and hence

E=-T°

(3.17)

ol
NeX = NkT? (1) = 2 NkT (3.18)
oT
which is the average translational kinetic energy of the molecules. This con-
sists of JkT for the average Kinetic energy per particle along the x, y, and z
coordinates.
The second term on the rhs (3.17) is the average energy of interaction among
the particles. This can be seen immediately by performing the derivative of the
configurational partition function:

GanN _ f . f dXN exp[ﬁUN(XN)] UN(XN)

kT?

oT ZN
:// AXNP(XN) Uy (XN) = (Uy). (3.19)

Hence, the total internal energy is
E = Ne* + (Uy) (3.20)

where Ne¥ originates from the first term on the rhs of (3.17), which in general
can include contributions from the translational, rotational, and vibrational
energies.

The average potential energy in (3.20), with the assumption of pairwise
additivity (3.15), fulfills the conditions of the previous section; hence, we can
immediately apply theorem (3.5) to obtain

E=Ne +1 / dx’' / dx" u(x,x") p@x’, x"). (3.21)

! Note that E is referred to as the internal energy in the thermodynamic sense. &¥ designates the
internal energy of a single molecule.
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For spherical particles, we can transform relation (3.16) into a one-
dimensional integral. Using the same arguments as were used to derive (3.10),
we get from (3.21)

E = N +1Np / U(R)g(R)4nR* dR. (3.22)
0

Note again that integration in (3.22) extends to infinity. The reason is that
U(R) usually has a range of a few molecular diameters; hence, the main con-
tribution to the integral on the rhs (3.22) comes from the finite region around
the origin.

The interpretation of the second term on the rhs of (3.22) is quite simple. We
select a particle and compute its total interaction with the rest of the system.
Since the local density of particles at a distance R from the center of the selected
particle is pg(R), the average number of particles in the spherical element of
volume 47R* dR is pg(R)4mR’ dR. Hence, the average interaction of a given
particle with the rest of the system is

/ h U(R)pg(R)4nR* dR. (3.23)

We now repeat the same computation for each particle. Since the N particles
are identical, the average interaction of each particle with the medium is the
same. However, if we multiply (3.23) by N, we will be counting each pair
interaction twice. Hence, we must multiply by N and divide by two to obtain
the average interaction energy for the whole system, i.e.,

Np /0 ) U(R)g(R)4nR* dR. (3.24)

Once we have an analytical form for U(R) and acquired information (from
either theoretical or experimental sources) on g (R), we can compute the energy
of the system by a one-dimensional integration.

The generalization of the result (3.21) or (3.22) is quite straightforward once
we recognize the meaning of each term. The first term is the total kinetic and
internal energy of all the particles. Instead of Ne® we simply have to write a sum
over all species in the system, i.e., Zf:]- N; EIK where the sum extends over all
the ¢ species. Similarly, the second term on the rhs of (3.21) should be replaced
by a double sum over all pairs of species. The final result for a c-component
system is thus

E=d Nt +130) [ax [axu e xf o x. 629
i=1

i=1 j=1
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3.3 The pressure equation

We first derive the pressure equation for a one-component system of spherical
particles. This choice is made only because of notational convenience. We shall
quote the equation for nonspherical particles at the end of this section, along
with the generalization for multicomponent systems.

The pressure in the T, V, N ensemble is obtained from the Helmholtz

energy by
A
p—— (a_) (3.26)
oV/)rn

A= —kTInQ(T, V,N). (3.27)

where

Note that the dependence of Q on the volume comes only through the con-
figurational partition, hence

P=kT <aanN> . (3.28)
oV Jrn

To continue, we first express Zy explicitly as a function of V. For macroscopic
systems, we assume that the pressure is independent of the geometric form of
the system. Hence, for convenience, we choose a cube of edge L= V5 so that the
configurational partition function is written as

L L
Iy = / . / dx) dy, dz, - -+ dxy dyn dzy exp[—ﬂUN(RN)]. (3.29)
0 0

Next we transform variables:

=1

X, = V3x yi = V3, 4 =V’z (3.30)
so that the limits of the integral in (3.29) become independent of V, hence we

write

1 1
N = VN/ = / dx, dy| dz; - - - dx\, dyy dzy exp(—BUy).  (3.31)
0 0

After the transformation of variables, the total potential becomes a function of
the volume, i.e.,

U =1 T UR) =1 T UV Ry). (.32
i#j i#j
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The relation between the distances expressed by the two sets of variables is
1
2 2 212
Ry = | (5 =)+ = 7) " +(z— =)

l / / 2 / / 2 / / 2 %
=3l (5= %) + (=) + (4 - 4)
1
— V3 jo. (3.33)

We now differentiate (3.31) with respect to the volume to obtain

(aaiVN> = NVN_I/I“‘/1 dx; - - - dz; exp(— B Uy)
TN 0 0
+ VN/O /o dx{"-dzf\,[exp(—ﬁUN)]< ﬁaﬂ> (3.34)

From (3.32), we also have

aUN
v 22 aR,]

OU(Ry)

_ 1 =2
_%Z OR:: %V3jo
i#] "
OU(R;i
- ( J)R,-j. (3.35)
6V v GR,-j

Combining (3.34) and (3.35) and transforming back to the original variables,
we obtain

dlnz QU(R;
AN ———/ / dRVP(RY) Y Ri) . (3.36)
oV Jon V6V OR;

The second term on the rhs of (3.36) is an average of a pairwise quantity.
Therefore, we can apply the general theorem of section 3.1 to obtain

InZ o0
pP= kT(a 1 N) = ——/ aU ¢(R)4nR*dR.  (3.37)
OV Jrn

This is the pressure equation for a one-component system of spherical particles
obeying the pairwise additivity for total potential energy. Note that the first
term is the “ideal gas” pressure. The second is due to the effect of the inter-
molecular forces on the pressure. Note that in general, g(R) is a function of the
density; hence, the second term in (3.37) is not the second-order term in the
density expansion of the pressure.
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The pressure equation is very useful in computing the equation of state
of a system based on the knowledge of the form of the function g(R). Indeed,
such computations have been performed to test theoretical methods of
evaluating g (R).

In a mixture of ¢ components, the generalization of (3.37) is straightforward.
Instead of the density p in the first term on the rhs of (3.37), we use the total
density p; = > . p,. Also, the second term is replaced by a double sum over all
pair of species. The result is

‘ ou,
P:;kTpa Zpapﬁ/o ﬁgw( R)4nR® dR (3.38)

o, =1
where p, is the density of the o species and g,3(R) is the pair correlation
function for the pair of species o and f.
For a system of rigid, nonspherical molecules, the derivation of the pressure
equation is essentially the same as that for spherical molecules. The result is

P=kTp— (%) / ax’ / dX"[R- VRU(X',X")p? (X, X") (3.39)

where R=R’ — R and Vg is the gradient with respect to the vector R.

3.4 The chemical potential

3.4.1 Introduction

The chemical potential is the most important quantity in chemical thermo-
dynamics and, in particular, in solution chemistry. There are several routes for
obtaining a relationship between the chemical potential and the pair correla-
tion function. Again we start with the expression for the chemical potential in a
one-component system, and then generalized to multicomponent systems
simply by inspection and analyzing the significance of the various terms.

In this section, we discuss several different routes to “build up” the expression
for the chemical potential. Note, however, that in actual applications only dif-
ferences in chemical potentials can be measured.

The chemical potential is defined, in the T, V, N ensemble, by

= (aa—l’:‘])m. (3.40)

For reasons that will become clear in the following paragraphs, the chemical
potential cannot be expressed as a simple integral involving the pair correlation



86 THERMODYNAMIC QUANTITIES EXPRESSED IN TERMS OF MDFs

function. Consider, for example, the pressure equation that we have derived in
section 3.3 which we write symbolically as

P = P[g(R); p, T|. (3.41)

By this notation, we simply mean that we have expressed the pressure
as a function of p and T, and also in terms of g(R), which is itself a function of
pand T.

Since the pressure is also given by

where a=A/N and p~ '= V/N, we can integrate (3.42) to obtain
o=~ [ Ple(®yi p.TId(p ). (5.3

Clearly, in order to express a in terms of g(R), we must know the explicit
dependence of ¢g(R) on the density. Thus, if we used the pressure equation in
the integrand of (3.43) we need a second integration over the density to get the
Helmholtz energy per particle.

The chemical potential can then be obtained as

u=a-+ Pv (3.44)

with v = V/N.
A second method of computing the chemical potential is to use the energy
equation derived in section 3.2, which we write symbolically as

E = E[g(R); p, T]. (3.45)

The relation between the energy per particle and the Helmholtz energy is

e= % = —Tz{%}p (3.46)

which can be integrated to obtain

a

=N [ Eg(Ryp. 1)/ 1T, (347)

Again, we see that if we use the energy expression [in terms of g(R)] in
the integrand of (3.47), we must also know the dependence of g(R) on the
temperature.

The two illustrations above show that in order to obtain a relation between u
and g(R), it is not sufficient to know the function g(R) at a given p and T; one
needs the more detailed knowledge of g(R) and its dependence on either p or T.
This difficulty follows from the fact that the chemical potential is not an average
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of a pairwise quantity, and therefore the general theorem of section 3.1 is not
applicable here. Nevertheless, the two procedures above are useful in the
numerical computation of the chemical potential.

3.4.2 Insertion of one particle into the system

The chemical potential in the T, V, N ensemble may be written as

= (@A> _ lim [A<N +dN) = A(N)] AN +1) — A(N)
Ty dN=0

oN N = 1 . (3.48)
In (3.48), we start with the definition of the chemical potential in the T, V, N
system, then take the limit AN — 0 as if N was a continuous variable. If Nis very
large, the addition of one particle may be viewed as an “infinitesimal” change in
the variable N.'

The replacement of a derivative with respect to N by a difference is justified
since the Helmholtz energy is an extensive function, i.e., it has the property
A(T, aV, aN) =aA(T, V, N) for any « > 0. Now define o = 1/dN, M = N/dN,
and Y= V/dN. Instead of taking the limit dN— 0, we take the limits M — oo
and Y— oo, but M/Y is kept constant (this is the thermodynamic limit).

Thus, we rewrite (3.48) as

[A(T, V,N + dN) — A(T, V, N)]

dAN—0 dN
V N V N
=1 Al T, —, —+1)-A(T, —, —
dﬁrﬂo[ ( AN dN+> < dN, dN)]
= lim A(T,Y,M+1) = A(T, Y, M). (3.49)
M—oo
p=M/Y=const.

Relation (3.49) simply means that in order to compute the chemical potential,

it is sufficient to compute the change of the Helmholtz energy upon the

addition of one particle. We now use the connection between the Helmholtz

energy and the canonical partition function to obtain

Q(T,V,N+1)
Q(T,V,N)

[ NN 1) [ [ dRy - dRy exp(—BUp 1)
N (qN/A3NN!)f~--de1'“dRNeXP(—ﬁUN) '

exp(—pu) =exp{—BIA(T,V,N +1) — A(T,V,N)|} =

(3.50)

T Clearly, this “approximation” is not valid for any function. Take for instance sin(N); one cannot
approximate the derivative limgy_o((sin(N + dN) — sin(N))/(dN)), by taking dN=1, no matter
how large N is.
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Note that the added particle has been given the index zero. Using the
assumption of pairwise additivity of the total potential, we may split Uy, ; into
two terms:

N
Un+1(Ro,...»Ry) = Uy(Ry,...,Ry) + Z U(Ro, R;
j=1
= Un(Ry, ..., Ry) + B(Ry, ... Ry). (3.51)

In (3.51), we have included all the interactions of the zeroth particle with the
rest of the system into the quantity B(R,, ..., Ry). The quantity B(R,, ..., Ry)
may be referred to as the binding energy of the particle at R, to the rest of the
particles at Ry, ..., Ry. Using (3.51) and the general expression for the basic
probability density in the T, V, N ensemble, we rewrite (3.50) as

exp(—Bu) :m// dRydR, ... dRyP(Ry,...,Ry)
x exp[—pB(Ry, - .., RN)]. (3.52)
Next, we transform to coordinates relative to R, i.e.,
R.=R,— Ry, i=12,...,N.

Note that B(Ry,...,Ry) is actually a function only of the relative coordinates
R}, ..., Ry; for instance, U(Ry, R)) is a function of R} and not of both R, and R;.
Hence, we rewrite the chemical potential as

exp(—fu) = A3N+ /Ro/ /dR .dRP(R,...,Ry)
x exp[—BB(Ry, ... (3.53)

In this form, the integrand is independent of R,. Therefore, we may integrate
over R, to obtain the volume. The inner integral is simply the average in the
T, V, N ensemble of the quantity exp (—fB), i.e.,

() = s (2B (3.54)

Since p = N/V=(N+ 1)/V (macroscopic system), we can rearrange (3.54) to
obtain the final expression for the chemical potential:

= kTIn(pA’q ") — kT'In(exp(—fB)). (3.55)

This is a very important and very useful expression for the chemical potential.
As we shall soon see, this form is retained almost unchanged upon general-
ization to non- spherical particles, mixtures of species, or in different ensembles.
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Note that when the newly added particle does not interact with the other par-
ticles in the system, i.e., B=0, the second term on the rhs of (3.55) is zero (of
course, this is also true when there are no interactions among all the particles, in
which case we have an ideal gas). The addition of a new particle at Ry (or
equivalently at Ry=0) can be viewed as “turning on” of an “external field”
acting on the system of N particles. This external field introduces the factor
exp (—pB) in the expression for the chemical potential. More explicitly, if the
potential energy is pairwise additive, then

exp[—BB(Ry, .. ., Ry)] = H exp[—BU(Ro, R))]. (3.56)
j=1

Clearly, this is not a pairwise additive quantity in the sense of (3.3), i.e., it is not
a sum, but a product of pairwise functions. This is the reason why we cannot
express the chemical potential as a simple integral involving only the pair
distribution function.

The expression (3.54) follows directly from the definition of the chemical
potential in (3.48). It was first derived in a slightly different notation by Widom
(1963, 1982).

We now re-express the second term on the rhs of (3.55) in terms of the pair
distribution function.

3.4.3 Continuous coupling of the binding energy

In section 3.4.1, we have seen that the chemical potential could be expressed

in terms of g(R) provided that we also know the dependence of g(R) on either T

or p. We now derive a third expression due to Kirkwood (1933), which employs

the idea of a coupling parameter &.' The ultimate expression for the chemical

potential would be an integral over both R and ¢ involving the function g(R, &).
We start by defining an auxillary potential function as follows:

U(&) = Un(Ry,...,Ry) + gi U(Ro, R;) (3.57)

which can be compared with (3.51). Clearly, we have the following two limiting
cases:

U(¢ =0) = Uy(Ry, ..., Ry) (3.58)

U(E=1) = Uns1(Ro, ..., Ry). (3.59)

! This idea is a generalization of the charging process employed in the theory of ionic solutions.
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The idea is that by changing ¢ from zero to unity, the function U(£) changes
continuously from Uy to Uy ;. Another way of saying the same thing is that
by changing £ from zero to unity the binding energy of the newly added particle
at Ry is “turned on” continuously. This is, of course, a thought experiment. We
mentally “add” the new particle by “switching” on its interaction with the rest
of the particles in the system.

Note, however, that within the assumption of pairwise additivity of the total
potential energy, the quantity Uy is unaffected by this coupling of the binding
energy of the newly added particle.

For each function U(¢), we also define the corresponding configurational
partition function by

— / . / dRy dR; ...dRy exp[—pU(&)]. (3.60)

Clearly, we have the following two limiting cases:

and
Z(¢E=1)=Zns1- (3.62)

The expression (3.50) for the chemical potential can be rewritten using the
above notation as

p=kTIn(pA’q ") — kTIn Z(é = 1) + kTIn Z(¢ = 0) (3.63)

or, using the identity

1
lenZ(é:l)—lenZ(é:O):kT/ alna?é)dg (3.64)
0
we get
_ '0lnZ(¢)
= kTIn(pA’q ") — kT | —=2 dé. 3.65
n=KTn(pn'q ™) — k7 [ S5 ae (3.69)

We can now differentiate Z (£) in (3.60) with respect to ¢ to obtain

N

_ﬁ Z U(RO) R])

j=1

OlnZ(c) _ kT [ e dRe fexpl—
kT _Z(é)/ /dRo dRy{exp[-BU(&)]}

o¢
N
- / /dRO -dRyP RN“éZURO,

j=1
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N
- —Z// dRy - -- dRyP(RY™, £)U(Ry, R;)
i—1

- —N//dROdR1 U(RO,Rl)/---/ dR; - dRyP(RNT! &)

1

— _N—_H/ / dROdR1 U(Ro,Rl)p(z) (RO) Rlaé)

=—p /OOC U(R)g(R, &)4nR*dR. (3.66)

It is instructive to go through the formal steps in (3.66). They are very similar to
those in section 3.1. The only new feature in (3.66) is the appearance of the
parameter &, in the pair distribution functions.

We now combine (3.66) with (3.65) to obtain the final expression for the
chemical potential:

1 0
= kTIn(pA’q™") + p/ df/ U(R)g(R, &)4nR*dR. (3.67)
0 0

We can also define the standard chemical potential in the ideal gas phase by
1% = kTIn(A’q ™) (3.68)

and the corresponding activity coefficient

1 00
kT Inyidel &8 — / dé / U(R)g(R, ¢)4nR*dR, (3.69)
0 0

to rewrite (3.67) in the form

1= 1% + kT In(pyldet &), (3.70)

In (3.69) we have an explicit expression for the activity coefficient ' %5,

which measures the extent of deviation of the chemical potential from the
ideal-gas form. The quantity pg (R, &), is the local density of particles around a
given particle that is coupled to the extent of ¢, to the rest of the system. Note
that (3.67) is not a simple integral involving g(R). A more detailed knowledge
of the function g(R, &) is required to calculate the chemical potential.

The interpretation of the terms in (3.67) is as follows. Suppose that we have a
system of N interacting particles at a given T and p, we now add a hypothetical
particle which carries the same momentum and internal partition function as
all other particles of the system. This particle is initially uncoupled in the sense
of £ =0. The corresponding chemical potential of this particular particle at this
stage is

W =kTIn(A’qg v, (3.71)
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Note that since we have added one particle which is initially different from all
the other N particles, its density is p' =V~ ! The volume V enters here because
the particle can reach any point within the system.

We now “turn on” the coupling parameter £ until it reaches the value of
unity. The chemical potential of the added particle changes in two ways. First,
we have the work required to build up the interaction between the added
particle and the rest of the system. This is the second term on the rhs of (3.67).
Second, as long as the new particle is distinguishable from all the other particles
(ie, £#1), its density remains fixed p'=V~'. At the point {=1, it
abruptly becomes identical to the other particles. This involves an assimilation
Helmholtz energy of amount (see Appendices H and I)

AA =kTIn(N/1) = kTIn(pV). (3.72)

This, together with the coupling work, converts (3.71) into (3.67). A second
way of interpreting the two terms in (3.67), or equivalently in (3.55), will be
discussed in the next section.

3.4.4 Insertion of a particle at a fixed position:
the pseudo-chemical potential

The chemical potential is the work (here, at constant T,V') associated with the
addition of one particle to a macroscopically large system:

p=A(T,V,N+1)— A(T, V,N). (3.73)

The pseudo-chemical potential refers to the work associated with the addition
of one particle to a fixed position in the system, say at Ry.'

1 = A(T,V,N +1; Ry) — A(T, V, N). (3.74)

The statistical mechanical expression for the pseudo-chemical potential can
be obtained in a similar way as in (3.50), i.e., as a ratio between two parti-
tion functions corresponding to the difference in the Helmholtz energies in
(3.74), i.e.,

(¢ /ANNY) [+ [dR, ... dRy exp[~BUn11(Ro, - - -, Ry)]
(gN/A’NN!) [---[dR; ...dRy exp[~BUn(Ry,...,RN)].
(3.75)

exp(—fu) =

It is instructive to note carefully the differences between (3.50) and (3.75).
Since the added particle in (3.74) is devoid of the translational degree of

T This process is meaningful in classical statistical mechanics. The particle at R is assumed to have
an exact location and exact velocity.
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freedom, it will not bear a momentum partition function. Hence, we have AN
in (3.75) instead of A>*™*1 in (3.50). For the same reason, the integration in
the numerator of (3.75) is over the N locations R;,..., Ry and not over
Ry, ..., Ry as in (3.50). Furthermore, since we have added a particle to a fixed
position, it is distinguishable from the other particles; hence, we have N! in
(3.75) instead of (N+ 1)! in (3.50).

Once we have set up the statistical mechanical expression (3.75), the fol-
lowing formal steps are nearly the same as in the previous section. The result is

p* =kTlng ' — kTIn{exp(—pBB))

1 o0 (3.76)
=kTlng '+ p/ dé/ U(R)g(R, &)4nR*dR
0 0

which should be compared with (3.55) and (3.67). Note that we have added the
particle to a fixed position Ry; therefore, from the formal point of view, p*
depends on Ry. However, in a homogeneous fluid, all the points of the system
are presumed to be equivalent (except for a small region near the boundaries,
which is negligible for our present purposes), and therefore u* is effectively
independent of R,,.

Combining (3.76) with either (3.55) or (3.67), we obtain the expression for
the chemical potential

w= @+ kTln(pA?). (3.77)

Here, the work required to add a particle to the system is split into two parts.
This is shown schematically in figure 3.1. First, we add the particle to a fixed
position, say Ry, the corresponding work being u*. Next, we remove the con-
straint imposed by fixing the position of the particle; the corresponding work is
the second term on the rhs of (3.77). The last quantity was referred to as the
liberation Helmholtz energy'. Since we are dealing with classical statistics
pA’ < 1 and therefore the liberation Helmholtz energy is always negative.
Thus, liberating the particle from its fixed position is always associated with a
decrease in free energy. Note also that the term kT In(pA°) is in general not the
ideal-gas chemical potential of the particles. The latter is kT In(pA’q ") where g
is the internal partition function of the particles.

It is instructive to recognize the three different sources that contribute to
the liberation free energy. First, the particle at a fixed position is devoid of
momentum partition function (though it still has all other internal partition
functions such as rotational and vibrational). Upon liberation, the particle

! In some articles, this term is referred to as the “mixing free energy.” Clearly, since no mixing
process occurs, we prefer the term “liberation of free energy.”
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Figure 3.1 The process of adding one A particle to a solution is carried out in two steps. First, we insert
the particle at a fixed position, then we release the particle to wander in the entire system. The corre-
sponding free energy changes are 1, and kT In psA°, respectively.

acquires momentum, the distribution of which depends on the temperature. The
corresponding contribution to the free energy is kT In A”. Second, the released
particle that was confined to a fixed position can now access the entire volume V.
The corresponding contribution is —k7T In V. Finally, and most importantly, the
particle at Ry is distinguishable from all other particles in the system. Once it is
released, it becomes indistinguishable from the other N members of the same
particles. We call this process assimilation and the corresponding contribution to
the change in free energy is kT1n N. Together, the three contributions comprise
the liberation free energy in which only the dimensionless quantity pA”> features.
It is important to realize that these three contributions are independent and
conceptually arise from different sources. One can change one of these without
changing the others (see also Appendices H and I).

3.4.5 Building up the density of the system

A third interpretation of the expression for the chemical potential in a one-
component system may be obtained in terms of the Kirkwood—Buff integrals as
discussed in section 3.5. We quote here only one result which we shall use for
the purpose of this section [see equation (3.126) in section 3.5]:

<2—g>T: KT (% 1 +GpG> (3.78)

G= /oc [¢(R) — 1]4nR* dR (3.79)

where G is defined by
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and g (R) is the pair correlation function, defined in an open system (see section
3.5 for more details). Integrating (3.79) with respect to p (assuming that at
p =0 we have the ideal-gas behavior) we obtain

G
14+p'G

p
p=kTInA’q"' +kTlnp — kT/ dp'. (3.80)
0

The third term on the rhs of (3.80) may be identified with the coupling work;
i.e., comparing (3.80) with (3.55), we have

G
kT'1 —pB)) = kT dp'. 3.81
nlexp(~pB) = KT [ = dp (81
The coupling work is interpreted in (3.81) as the work required to increase the
density from p =0 to the final density p. A slightly different interpretation is
obtained by rewriting (3.80) as

P11 G
= (kTInA’q ' + kT1 kT/ - — dp’
p=(kTInA’q" + kTInp,) + v 10 I

= (kTInA’q~ ' + kTl
(kTInA’q~ + kT'Inp,) + o 119G

p
kTIn 2 — kT / G dp']. (3.82)
I

The expression within the first set of parentheses corresponds to the work
required to introduce one particle to an ideal-gas system (po very low). The
second term is the work involved in changing the density from p, to the final
destiny p. This work is composed of two contributions; first, the change in the
assimilation term kTln p/p, (note that V is constant in the process), and sec-
ond, the coupling work (3.81).

Since (3.82) is valid for any po~ 0, we can put po =0 and get the expression
(3.80). Note also that in order to express the chemical potential in terms of the
pair correlation function, we need to take two integrations, one over R as in
(3.79), and one over the density in (3.80).

3.4.6 Some generalizations

We now briefly summarize the modifications that must be introduced into the
equation for the chemical potential for more complex systems.

(1) For systems that do not obey the assumption of pairwise additivity for
the potential energy, equation (3.67) becomes invalid. In a formal way, one can
derive an analogous relation involving higher order molecular distribution
functions. This does not seem to be useful at present. However, in many
applications for mixtures, one can retain the general expression (3.55) even
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when the potential energy of the solvent does not obey any additivity assump-
tion. We briefly discuss this case below.

(2) For rigid, nonspherical particles whose potential energy obeys the
assumption of pairwise additivity, a relation similar to (3.67) holds. However,
one must now integrate over the orientation as well as over the location of the
particle. The generalized relation is

1
= kTIn(pA’q ") + / dé / ax"u(x’, X" p(X"/X',&).  (3.83)
0

Here, g includes the rotational as well as the internal partition function of a
single molecule. The quantity p(X” / X', &) is the local density of particles at
X', given a particle at X', coupled to the extent of . Clearly, the whole integral
on the rhs of (3.83) does not depend on the choice of X’ (for instance, we can
take R’ =0 and ' = 0 and measure X' relative to this configuration).

(3) For mixtures of ¢ components, the expression for the chemical potential
can be written upon inspection of the terms in the case of a one-component
system. Consider first the expression (3.55), which is the more general one.
Once we know the meaning of the two terms on the rhs (3.55), we can write
down the chemical potential of any component i, immediately, i.e.,

p; = kTlnp;Alq: " — kT In(exp[—BBi]), (3.84)

where the first term is the liberation term for particle of species i. This term
does not depend on the presence of other species in the system, and it is the
same as for pure i. The second term is the coupling work of i to the entire
system. Note also that the significance of this term does not depend on any
assumption of pairwise additivity i.e., B; is defined simply as

Bi=U(N,Ns, ...,Ni+1,...,N) = UN, Ny, ..., Njy ..., N.) (3.85)

i.e., B;is the change in the total potential energy of the system being at a specific
configuration, upon the addition of one particle of type i at a fixed position,
say Ry.

Note that the average ( ), in (3.84) is over all the configurations of the
“solvent” molecules, i.e., all the molecules of the system except the one placed at
a fixed position.

If the total potential energy does fulfill the assumption of pairwise additivity,
then we can obtain the generalization of equation (3.67) as

c 1 00
‘ui:lenp,-quil—l—ij/ d&/ U;i(R)g;i(R, &)4nR*dR.  (3.86)
0 0

j=1
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(4) For molecules having internal rotational degrees of freedom (say poly-
mers), the expression for the chemical potential should be modified to take into
account all possible conformations of the molecules. In particular, the rota-
tional partition function of the molecules (included in g) might be different for
different conformations. We shall discuss a simple case of such molecules in
chapter 7, section 7.8.

(5) The expression of the chemical potential in other ensembles. In all previous
sections, we have used the definition of the chemical potential in the T, V, N
ensemble. This was done mainly for convenience. In actual applications, and in
particular when comparison with experimental results is required, it is necessary
to use the T, P, N ensemble. In that case, the chemical potential is defined by

where G is the Gibbs energy of the system. It is easy to show that the formal split
of 1 into two terms as in (3.77) or (3.84) is maintained. In the T, P, N ensemble,
p = N/(V) where (V) is the average volume, and ( ) should be interpreted as a
T, P, N average. In the T, V, u ensemble, p is one of the independent variables
used to describe the system. Yet it can also be written in the form (3.77), with
the reinterpretation of the density p = (N)/V, where (N) is the average in the T,
V, 1 ensemble; for more details see Ben-Naim (1987).

3.4.7 First-order expansion of the coupling work

We end this long section on the chemical potential with one simple and useful
expression. We note first that in all of the expressions we had so far, the
chemical potential was expressed as integrals over the pair correlation function.
It is desirable to have at least one expression of the chemical potential in terms
of molecular interactions. This can be obtained for very low densities, for which
we know that the pair correlation function takes the form

g(R) = exp[-fU(R)] (3.88)
and hence for the added particle we write
8(R, &) = exp[-BEU(R)]. (3.89)

Substituting (3.89) into (3.67), we get an immediate integral over ¢, hence
1 00
/ dé / U(R) exp[—BEU(R)]4nR*dR
0 0

= —kT /OO {exp[~BU(R)] — 1}4nR*dR. (3.90)
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Using the notation for the second virial coefficient (see section 1.5)
By(T) = —%/ {exp[-BU(R) — 1]}4nR*dR (3.91)
0

we can write (3.67) for this case as
1= u" + kTln p 4 2kTB,(T)p. (3.92)

The last term on the rhs of (3.92) is the first-order term in the expansion of the
coupling work in the density.

The virial expansion for the pressure may be recovered from (3.92) by using
the thermodynamic relation

dP = pdu (T constant). (3.93)
From (3.92) we have

du = kFT dp + 2kTB,(T)dp. (3.94)

Combining (3.93) and (3.94) yields
dP = [kT + 2kTB,(T)p]dp. (3.95)
This may be integrated between p =0 and the final destiny p to yield
P = kTp + kTB,(T)p* (3.96)

which is the leading form of the virial expansion of the pressure.

It should be noted that for p — 0, we obtain the ideal-gas expression for the
chemical potential. In (3.92), we have the first-order term in the expansion of
the nondivergent part of the chemical potential in the density.

The same result can be obtained by expanding the third term on the rhs of
(3.80) to first order in the density, i.e.,

G
—kT dp' = —kTpG’ 3.97
/0 el p (3.97)
where we have denoted by
G’ = lim G. (3.98)
p—0

From (3.97) and (3.92), we can identify G as
G’ = —2B,(T) = /OO {exp[-BU(R)] — 1}4nR* dR (3.99)
0

We shall discuss the generalization of equation (3.92) for mixtures in the next
chapter.
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3.5 The compressibility equation

The compressibility relation is one of the simplest and most useful relations
between a thermodynamic quantity and the pair correlation function. In
this section, we derive this relation and point out some of its outstanding
features.

We consider here a one-component system of rigid, nonspherical particles in
the T, V, u ensemble. We stress from the outset that no assumption of addi-
tivity of the potential energy is invoked at any stage of the derivation. As we
shall soon see, the generalization of this equation for a multicomponent system
is not straightforward.

We recall the normalization conditions for p(V)(X,) and for p® (X3, X;) in
the T, V, u ensemble:

[ axi0) = ) (3.100)
/Xmdsz(z) (X1,X,) = (N*) = (N). (3.101)

Either bars or the bracket ( ) stand for the average in the T, V, u ensemble. We
used bars for MDFs defined in the T, V, u ensemble, whereas the symbol () is
used for averages computed with these MDFs.

By squaring equation (3.100) and subtracting from (3.101), we get

/ dX,dX,[p? (X1, X,) — pD(X1)  pD(X,)] = (N?) — (N)’—(N).

(3.102)
For a homogeneous and isotropic fluid we also have
0(xy)= 2. 3.103
PX)= 2 (3.10)
The definition of the pair correlation function is
- (X, X
g(X1, X;) = =2 X, X5) (3.104)

p(X1) p(X2)

and the corresponding spatial pair correlation function is defined by

- 1 -
g(Rl,Rz) :W/dﬁl,dﬂzg(Xl,Xz). (3105)
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We can rewrite (3.102) as
o / AR AR, [g(R Ry — 1] = (N?) — (N)—(N). (3.106)

Since g(R;, R;) depends only on the scalar distance R = |R, — R;|, we can
rewrite (3.106) as

(N?) = (N)*

1+p/dR[g(R)—1]: )

N (3.107)
=1 +p/ [g(R) — 1]4nR*dR.

Relation (3.107) is an important connection between the radial distribution
function and fluctuations in the number of particles. The fluctuations in the
number of particles can be obtained directly from the grand partition function.
The relation is (see section 1.3)

(N?) — (N)’= kTVp*kr (3.108)

where xr is the isothermal compressibility of the system. Combining (3.108)
with (3.107), we get the final result

1 1 —
‘=5 g, AR~ 1)

1 | —
=+ — R) — 1]4nR? dR. 3.10
ot ), 80— 1 (3.109)

This is known as the compressibility equation. We define the quantity’
G= / [g(R) — 1]4nR* dR. (3.110)
0
In terms of G, the compressibility equation is written as

kTpxr =1+ pG. (3.111)

Note that the first term on the rhs of (3.109) is the compressibility of an ideal
gas. That is, for a system obeying the equation of state P = pkT, we have

_ Ly _(Ghe) _ L (3.112)
=y \er). o \op ), kT ‘

Hence, the second term on the rhs of (3.109) conveys the contribution to the
compressibility due to the existence of interactions (and therefore correlation)

! We use the letter G for both the Gibbs energy and the Kirkwood—Buff integral, as defined
in (3.110).
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among the particles. Note also that the last expression for the isothermal
compressibility holds either for an ideal gas in the sense of U(R) =0, for any
density p, or for a real gas at very low density, for which the equation of state
P=pk T holds. Clearly, in the limit p — 0, k+— oc. Originally, the compres-
sibility equation was used by Ornstein and Zernike (1914) in their theory of the
well-known phenomenon of critical opalescence. Since kdiverges to infinity at
the critical point, it follows also that G diverges at the critical point. Since
pg(R) has probabilistic meaning, the integrand in (3.110) must be bounded
from above. Therefore, the divergence of G should be a result of long-range
correlations near the critical point.

The compressibility equation has some outstanding features which we now
highlight.

(1) We recall that no assumption of additivity on the total potential energy
has been introduced to obtain (3.109). In the previous sections, we found
relations between some thermodynamic quantities and pair correlation func-
tions which were based explicitly on the assumption of the pairwise additivity
of the total potential energy. We also recall that higher order molecular dis-
tribution functions must be introduced if higher order potentials are not
negligible. Relation (3.109) does not depend on the additivity assumption;
hence, it does not undergo any modification should high-order potentials be of
importance. In this respect, the compressibility equation is far more general
than the previously obtained relations (e.g., the energy or the pressure relation).

(2) The compressibility equation involves the radial distribution function
even when the system consists of nonspherical particles. We recall that pre-
viously obtained relations between, say, the energy or the pressure, and the pair
correlation function were dependent on the type of particle under considera-
tion. The compressibility depends only on the spatial pair correlation function.
If nonspherical particles are considered, it is understood that g(R) in (3.109) is
the average over all orientations (3.105). In the following, we shall remove the
bar over g(R). We shall assume that the angle average has been taken before

using the compressibility equation.

(3) The compressibility equation is a simple integral over g(R). It does not
require explicit knowledge of U(R) (or higher order potentials). It is true that
g(R) is a functional of U(R). However, once we have obtained g(R), we can use
it directly to compute the compressibility by means of (3.109). This is not
possible for the computation of, say, the energy.

One of the most important applications of the compressibility equation is to
test the accuracy of various methods of computing ¢(R). We recall that the
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pressure equation (3.37) has been found useful for computing the equation of
state of a substance, and hence can be used as a test of the theory that has
furnished g(R). Similarly, by integrating the compressibility equation, we
obtain the equation of state of the system, which may serve as a different test of
the theory. Clearly, if we use the exact function g(R) in either the pressure or in
the compressibility equations, we must end up with the same equation of state.
However, since we usually have only an approximation for g(R), the results of
the two equations may be different. Therefore, the discrepancy between the two
results obtained with the same g(R) using the pressure and the compressibility
equations, can serve as a sensitive test of the accuracy of the method of com-
puting g(R).

In applying the compressibility equation (3.109), care must be exercised to
use the pair correlation function g(R) as obtained in the grand canonical
ensemble, rather than the corresponding function g(R) obtained in a closed
system. Whenever this distinction is important, we use the notation go (R) and
gc(R) for open and closed systems, respectively. Although the difference
between the two is in a term of the order of N~ ' this small difference becomes
important when integration over the entire volume is performed as in the
definition of the quantity G (equation 3.110).

Let us first demonstrate the source of difficulty by a simple example. Con-
sider an ideal gas in the T, V, N ensemble. In section 2.5, we saw that g-(R) in
this case has the form (see also Appendix G)

gc(R) =1—1/N (ideal gas: T, V, N ensemble). (3.113)
On the other hand, go(R) in the T, V, u ensemble is
20(R) =1 (ideal gas: T, V, u ensemble). (3.114)

The difference between the two results (3.113) and (3.114) arises from the finite
number of particles in the T,V,N system. Even when there are no interactions,
U(RY) =0, there is still correlation between the particles. The density at any
point in the system is p(R) = N/ V. The conditional density at R given a particle
at any other point R is not p(R) = N/V but (N — 1)/V. Fixing one particle at
some point has an effect on the density at any other point merely because the
number of particles was reduced from N to N — 1. Such an effect does not exist
if we open the system, in which case the pair correlation function go(R) is unity
everywhere for an ideal gas.

Clearly, we can always take the infinite-system size limit of (3.113) to obtain

I\l]im gc(R) =1 (3.115)

which can be used in the compressibility equation.
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Thus, although the difference between g-(R) and go(R) is extremely small for
macroscopic systems (N ~ 10°%), the results obtained upon integration over a
macroscopic volume are not negligible. The different results obtained using
gc(R) and go(R) in equation (3.109) for an ideal gas are

1 1 —1 1 1
S S Y i I S S G R) from (3.113
“T=kTp kT, <N> kT krp O Lusing sc(R) from (3.113)
(3.116)

KT [using go(R) from (3.114)]. (3.117)

:m

Clearly, only the second result gives the correct compressibility of the ideal gas.
Relations (3.113) and (3.114) hold for an ideal gas. In the general case, the
limiting behavior of g-(R) as R— oo is (see also Appendix G)

pkTKr

gc(R) — 1 — (T, V,N ensemble) (3.118)

20 (R) — 1 (T,V,u ensemble). (3.119)

Clearly, (3.119) can be obtained from (3.118) by taking the infinite-system-size
limit (N— o0). Another way of demonstrating the discrepancy between the
two results in the T,V,N and T,V,u ensembles is in the difference in the nor-
malization conditions for the molecular distribution functions. In particular, in
the T, V, N ensemble, we have

(N?) = (N)’= N~ (3.120)
Hence, the normalization condition is
/XmdXz [p(z)(Xl,Xz) - p(1>(X1)p(1>(X2)] =N (3.121)
which is equivalent to the normalization condition
P /OO [gc(R) — 1]4nR*dR = —1, (T, V, N ensemble). (3.122)
0

The last result simply means that the total number of particles in the system, N,
is equal to the total number of particles around a given particle at the origin,
plus that particle at the origin. This simple calculation does not hold for an
open system where N is not a fixed number.

The corresponding normalization condition in the T, V, i ensemble is (3.106)
in which (N°) # (N)?. Here, instead of (3.122), we have the compressibility
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equation (3.109) which we write again as

p/ [¢0(R) — 1]4nR*dR = —1 + kTpxr. (3.123)
0

Clearly, the difference, kTpx 1, between (3.122) and (3.123) is finite and arises
from the difference in the long-range behavior of g-(R) and go(R). For more
details, see Appendix G.

The reader may wonder why we have dealt only now with the question of the
limiting behavior of g(R) as R— oo. The reason is quite simple. In all of our
previous integrals, g (R) appeared with another function in the integrand. For
instance, in the equation for the energy, we have an integral of the form

/ N U(R)g(R)4nR* dR. (3.124)

Clearly, since U(R) is presumed to tend to zero, as, say, R~ 6as R— oo, itisof no
importance whether the limiting behavior of g (R) is given by (3.118) or (3.119);
in both cases the integrand will become practically zero as R becomes large
enough so that U(R) ~ 0. The unique feature of the compressibility relation is
that only g(R) appears under the integral sign. Therefore, different results may
be anticipated according to the different limiting behavior of g(R) as R — oo.

As a corollary to this section, we derive a relation between the density
derivative of the chemical potential and an integral involving g(R). Recall the
thermodynamic identity

6/1) 1
— | = . 3.125
<ap r Krp? ( )
Combining (3.125) and (3.111) yields
(a—“) __ kK kT(l— G ) (3.126)
op)r p+p*G p 1+4+pG

Relation (3.126) will be generalized in the next chapter for mixtures. Here, we
note that by integrating (3.126) with respect to the density, we get the chemical
potential, i.e.,

kT dp
u= + const. (3.127)
p+p*G

Thus, once we have G and its density dependence, we can determine u from
(3.127) up to a constant. The constant of integration is evaluated as follows. We
choose a very low density (py — 0) in such a way that the chemical potential has
the ideal-gas form, i.e.,

#(po) = kTIn(pA’q~") = p + kT In p,. (3.128)
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The chemical potential may be obtained by integrating (3.126) from p, to the
final density p, i.e.,

’ (1 G
= kT [ (- dp’
u(p) = ulpo) + /p <p, 1+pr> p

% + kT1 +kT/p L G dp’
= n —_—
M Po L\ 149G p

P G
= 1% + kT1 —kT/ do'. 3.129
1 +kTlnp TG (3.129)

Note that in the last form on the rhs of (3.129), we have replaced the lower limit
po by po =0. This could not have been done when the divergent part (p') " was
in the integrand.

Finally, we note that unlike the procedure we have used to generalize pre-

vious expression to mixtures, here there is no straightforward generalization
procedure. In all of the previous examples we have generalized for mixtures
simply by inspection of the expression for the one-component system. Looking
at the compressibility equation (3.109) or (3.123), we see no hint or clue that
suggests a generalization for mixtures. We shall indeed see that the analog of
the compressibility equation for mixtures is far more complicated than what we
would have expected from our experience so far with the equation for the
energy, the pressure, and the chemical potential. We shall devote the next
chapter to obtain this generalization. In doing so, we shall also reach for new,
interesting and very important relations between thermodynamic quantities
and integrals over the pair correlation functions.

3.6 Relations between thermodynamic
quantities and generalized molecular
distribution functions

In section 2.7, we introduced the generalized molecular distribution functions
GMDFs. Of particular importance are the singlet GMDF, which may be
re-interpreted as the quasi-component distribution function (QCDEF). These
functions were deemed very useful in the study of liquid water. They provided a
firm basis for the so-called mixture model approach to liquids in general, and
for liquid water in particular (see Ben-Naim 1972a, 1973a, 1974).

In this section we shall derive some new relationships between thermodynamic
quantities and GMDF. In previous sections we have derived a few relationships
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between thermodynamic quantities and pair distribution functions. It is well
known and easy to see that if we try to express quantities such as heat capacity,
compressibility, thermal expansion coefficients, etc., we shall need higher order
MDFs. Since these are largely unknown, such relationships were not found to be
useful. However, by using GMDFs, we can express these thermodynamic
quantities in terms of singlet and pair distribution functions. It is hoped that
once we gain information on the singlet and pair distribution function, these
relations would be more useful.” However, even without knowing any details of
these GMDFs, some of these relationships were found useful in interpreting some
anomalous properties of water and aqueous solutions (Ben-Naim 1974).

In this section we shall be working in the T, P, N ensemble, and all the
distribution functions are presumed to be defined in this ensemble. We denote
by x either a vector or a function which serves as a QCDF. An appropriate
subscript will be used to indicate the property employed in the classification
procedure. For instance, using the coordination number (CN) as a property,
the components of xc are the quantities xo(K). Similarly, using the BE as a
property, the components of xp are the quantities xz(v). When reference is
made to a general QCDF, we simply write x without a subscript. Once a QCDF
is given, we can obtain the average number of each quasi-component directly
from the components of the vector N= Nx.}

Let E be any extensive thermodynamic quantity expressed as a function of the
variables T, P, and N (where N is the total number of molecules in the system).
Viewing the same system as a mixture of quasi-components, we can express E as a
function of the new set of variables T, P, and N. For correctness, consider a QCDF
based on the concept of CN. The two possible functions mentioned above are then

E(T,P,N) = E(T, P, N (0), N (1),..). (3.130)

For the sake of simplicity, we henceforth use N(K) in place of Nél)(K ), so that
the treatment will be valid for any discrete QCDF. Since E is an extensive
quantity, it has the property

E(T, P,aN(0),aN(1),...) = oE(T, P, N(0), N(1),...) (3.131)
for any real a > 05 i.e., E is a homogeneous function of order one with respect to

the variables N(0), N(1),..., keeping T, P constant. For such a function, the
Euler theorem states that

oo
E(T,P,N) =Y E(T,P,N)N(i) (3.132)
i=0
t Matubayasi and Nakahara (2000, 2002, 2003) have recently investigated a related topic, specif-

1cally for dilute solutions.
 Note that N is the vector N=(Nj, N», ..., N,), but N is the sum of all N; (i=1, ..., ¢).
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where E(T, P, N) is the partial molar (or molecular) quantity defined by

E(T,P,N) = [ oF (3.133)

aN(i)] TPNG) A

In (3.132) and (3.133), we have stressed the fact that the partial molar
quantities depend on the whole vector N.

At this point, we digress to discuss the meaning of the partial derivatives
introduced in (3.133). We recall that the variables N(i) are not independent;
therefore, it is impossible to take the derivatives of (3.133) experimentally. One
cannot, in general, add dN(i) of the i-species while keeping all the N(j), j# i,
constant, a process which can certainly be achieved in a mixture of independent
components. However, if we assume that in principle E can be expressed in
terms of the variables T, Pand N, then E; is the component of the gradient of E
along its ith axis. Here, we must assume that in the neighborhood of the
equilibrium vector N, there is a sufficiently dense set of vectors (which describe
various frozen-in systems) so that the gradient of E exists along each axis.

The generalization of (3.132) and (3.133) for the case of a continuous QCDF
requires the application of the technique of functional differentiation. We
introduce the generalized Euler theorem by way of analogy with (3.133). More
details can be found in Appendix B.

The generalization can be easily visualized if we rewrite (3.132) in the form

TPN:i E(T, P,N; i)N(i) (3.134)

where we have introduced the (discrete) variable i as one of the arguments of
the function E. If N is a vector derived from a QCDF based on a continuous
variable, say v, then the generalization of (3.134) is simply

E(T,P,N) = /OO E(T, P, N;v)N(v) dv (3.135)

where E(T, P, N;v) is the functional derivative of E(T, P, N) with respect to
N(v), i.e.,

OE(T,P,N)

E(T P N3y) = =5

(3.136)

By analogy with the discrete case, we may assign to E(T, P, N;v) the meaning of
a partial molar quantity of the appropriate v -species. The functional derivative
in (3.136) is viewed here as a limiting case of (3.133) when the index i becomes
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a continuous variable. As an example of (3.135), the volume of the system can
be written as

V(T,P,N{)) = /OOO SN, (¢) dop. (3.137)

Note that this relation is based on the fact that the volumes of the Voronoi
polyhedron (VP) of all the particles add up to build the total volume of the
system. Here we have an example of an explicit dependence between Vand N, M
which could have been guessed. Therefore, the partial molar volume of the
¢-species can be obtained by taking the functional derivative of V with respect
to Nf//l)(qﬁ), ie.,

_ W . OV(LENY)

V(T,P,N, ;d)):T:qﬁ. (3.138)

ON, " (¢)
W
This is a remarkable result. It states that the partial molar volume of the ¢’-
species is exactly equal to the volume of its VP. We note that, in general, the
partial molar volume of a species is not related, in a simple manner, to the
actual volume contributed by that species to the total volume of the system We
also note that in this particular example, the partial volume V (T, P, N q,’) ) is
independent of T, P, Nl(//)
A second example is the average internal energy E, which in the T, P, N

ensemble is given by

E(T,P,NY)) = NeX + (Uy) = NeK +/ yNSP (v dv  (3.139)

where ¢ is the average kinetic energy of a single particle, and Nl(gl)(v) is the
singlet distribution function for the binding energy.
Note that in (3.139), E stands for the energy, whereas in previous expressions
in this section, we have used E for any extensive thermodynamic quantity.
. o on f (1) .
Since the normalization condition for N’ is

/ NP (v)ydv =N (3.140)
we can rewrite (3.139) as
E(T,P,NY)) = / (X + )N (v) dv. (3.141)

This again is an explicit relation between the energy and the singlet generalized
MDEF, Ng). By direct functional differentiation, we obtain

SE(T,P,NY))

E(T,P,NY;v) =
’ Ny (v))

=+ 1 (3.142)
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Thus, the partial molar energy of the v'-species is equal to its average kinetic
energy and half of its BE . Here again, the partial molar energy does not depend
on the composition, although it still depends on T through &X We recall, from
section 3.2, that the energy of the system is expressed in terms of the pair
distribution function. Here, the energy of the system is expressed in terms of
the singlet GMDF.

Consider next the temperature derivatives of (3.137) and (3.141):

(av) _/quSMde (3.143)

T )py oT

OF ko1 [T N ()

—) = 1 =B 7 144
<6T>P7N Nc —1—2/_00\1 oT dv (3.144)

where Nc* is the contribution of the kinetic energy to the heat capacity.

The first derivative (3.143) is related to the thermal expansivity; the second is
part of the heat capacity at constant pressure (see below).

Similarly, the pressure derivatives of V and E are

ov * ON,(¢)
(a_P>T,N: /O ¢—5p ¢ (3.145)
OF ~ aN{M ()
(Gt LT 214

By taking the temperature and pressure derivatives of the singlet GMDF,
N(l)(cb) and N(l)(v) we can express all of the four derivati

) 5 (v), p vatives as average
quantities using the singlet and pair distributions only.

The simplest expression is for the isothermal compressibility defined by

P <6V> (3.147)
v \aP ),y

Here, Vis the average volume in the T, P, N ensemble. This volume is given in
equation (3.137) and can also be rewritten as

(V) =Ny (3.148)

where (/) is the average Voronoi polyhedron of a specific particle, say particle 1.
The pressure derivative of the volume can now be written as

<%>m:  INCR) = ) + NN = D) — (1) ()]

(3.149)
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where (if7) and () are averages taken with the singlet GMDF and (\/11/,) is
taken with respect to the pair GMDEF. The pressure derivative of the volume,
hence the isothermal compre531b111ty, can be expressed explicitly in terms of the
singlet and pair GMDFs, lpl) and N (see Ben-Naim 1973b, 1974). Here we
have expressed this quantity as ﬂuctuatlons and cross fluctuations of the
Voronoi polyhedra of one and two particles.

The second quantity is the thermal expansivity at constant pressure

a =L (2 (3.150)
PvAOT Jpy '

Again we note that Vin (3.150) is the average volume in the T, P, N ensemble.
Since we already have an expression for (V), we need to express only its
derivative with respect to temperature. Using the definition of N, (1 )((b), see
section 2.7.4, we get for (3.143)

@_gpfﬁ INCW1Br) = (1) (B1)) + N(N = D) ({9 B2) — (1) (Ba))]

T+ IN (W) — 1)) + NN = D) — 1) )]

kT?
(3.151)
We note again that all the averages in (3.151) are taken with respect to the

singlet and the pair GMDF. Explicit relations are given in Ben-Naim (1974).
Similarly, the heat capacity at constant volume and constant pressure are

cvz@—fﬂ)V’ = Nc +4sz[ ((BI) = (B)") + N(N = 1)({BiBy)

—(B1){B2))] (3.152)

= () — (%) (Y (3.153)
PTNOT oy \OT/py \OT /5y ‘

Since we have already obtained the second term on the rhs of (3.153), we only
need the first term:

@%N = NS4 N Br) — () (B)) + NV = 1)(0, )

— B + s INC(BE) = (B1)) + NN = 1)((B )
— (B1)(Ba))]. (3.154)
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Note that the averages in (3.152) are in the T, V, N ensemble, whereas in
(3.154) and (3.151), the averages are in the T, P, N ensemble.

The generalization of the relationships derived in this section to mixtures is
quite straightforward, the only difficulty is notational. We therefore discuss
only the relations which are of interest in the study of solvation in an ideal
dilute system. We consider a system of N solvent molecules for which the total
energy is given by (3.141). We now add one solute s at a fixed position R, in the
solvent. The solvation energy is (see chapter 7)

AE' = (B) +1 / VIND (v/R) — NO ()] dv. (3.155)

Thus, the solvation energy here in the T, V, N ensemble has two contributions;
an average binding energy to the solvent and the change in the average potential
energy of the solvent molecules caused by placing the solute at a fixed position
R.. Similarly, the solvation volume, here in the T, P, N ensemble, may be
written as

AVY = () + / SN (/R,) — N. ()] dob (3.156)

Again, there are two contributions to AV: one is the average Voronoi poly-
hedra of the solute; the second is the change in the average Voronoi polyhedra
of the solvent molecules caused by placing s at R,. The last term may also be
interpreted as structural changes induced by the solute on the solvent. Similar
interpretations hold for the second term on the rhs of 3.155. For more details
see Ben-Naim (1992).



FOUR

The Kirkwood-Buff theory
of solutions

The Kirkwood-Buft (KB) theory is the most important theory of solutions.
This chapter is therefore central to the entire book. We devote this chapter to
derive the main results of this theory. We start with some general historical
comments. Then we derive the main results, almost exactly as Kirkwood and
Buff did, only more slowly and in more detail, adding occasionally a comment
of clarification that was missing in the original publication. We first derive the
results for any multicomponent system, and thereafter specialize to the case of
two-components system. In section 4, we present the inversion of the KB
theory, which has turned a potentially useful theory into an actually useful,
general and powerful tool for investigating solutions on a molecular level.
Three-component systems and some comments on the application of the KB
theory to electrolyte solutions are discussed in the last sections.

4.1 Introduction

The Kirkwood-Buff (KB) theory of solutions was published in 1951. In the
original paper, Kirkwood and Buff derived some new relationships between
thermodynamic quantities and molecular distribution functions for multi-
component systems in the T, V, u ensemble. One of these is a generalization of
the compressibility equation for the one-component system (section 3.5) to
multicomponent systems. As we have noted in section 3.5, there is no obvious
or straightforward way to generalize the compressibility equation even though
we fully grasp the meaning and the origin of each of the terms in the equation.
The same is true for the equation for the derivative of the chemical potential
with respect to the density.

We have also noted in section 3.5 that the compressibility equation is out-
standing in comparison with other relationships between thermodynamic
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quantities and MDFs. The same is true for the Kirkwood-Buff theory. It is also
more general in its applicability than the McMillan—-Mayer theory published in
1945 (see section 6.5). As such, the Kirkwood—Buff theory is the most general
and most powerful theory of solutions. In essence, it provides a direct rela-
tionship between thermodynamic properties such as compressibility, partial
molar volumes and derivatives of the chemical potentials, in terms of the
so-called KB integrals (KBI), defined by

G,‘j = /OOO [gij(R) — 1]477:R2 dR (4.1)

where gz-j(R) is the pair correlation function defined in the open, or the T, V, p,
system for the two species i and j. Thus, the theory may be used to compute the
thermodynamic quantities based on our knowledge of the pair correlation
function. Symbolically

{gi} — {Thermodynamic quantities}. (4.2)

Unfortunately, almost nothing was known at that time on the pair correlation
functions in any mixture. Even today, most of the known MDFs for mixtures
are obtained either from solving integral equations or from simulations. It is
not surprising therefore that the Kirkwood—Buff theory, though general and
potentially powerful, was practically dormant for many years. For almost
20 years, there were merely a handful of publications where the Kirkwood-Buff
theory had been used'. Moreover, the KB theory was almost ignored by many
authors of books on the theory of mixtures and solutions.

The first turning point occurred in the beginning of 1972 when the
Kirkwood-Buff theory was found useful in interpreting some properties of
water and aqueous solutions. The main idea was to apply the Kirkwood-Buff
theory of solutions, to pure one-component systems viewed as a mixture of
various quasi-component systems. The KB theory was also applied in the analysis
of various ideal solutions on a molecular level (Ben-Naim 1973b, 1974).

A more dramatic turning point for the Kirkwood-Buff theory occurred
in 1978 after the publication of the inversion of the Kirkwood-Buff theory
(Ben-Naim 1978). Symbolically, the inversion theory may be written as

{Thermodynamic quantities} — {G;;} (4.3)

where the quantities Gj; could be extracted from measurable thermodynamic
quantities. In a strict sense, G;; are not molecular properties. However, they do

T Soon after its publication, the KB theory was followed up and extended by Buff and Brout (1955)
and by Mazo (1958), Buff and Schindler (1958), Miinster and Sagel (1959). Much later, Debenedetti
(1987) has generalized the KB theory. It seems however, that the KB theory as well as the followed-up
articles never took off from the formal theoretical grounds into the realm of application.
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convey information on the local mode of packing of the various species. As
such, the theory provides a powerful tool to probe local properties of the
mixtures. Ever since the publication of the inversion of the KB theory, the
number of papers published grew steadily and dramatically.

4.7 General derivation of the
Kirkwood-Buff theory

The derivation of the relationship between the thermodynamic quantities and
KBIs consists of two parts. First, we use the normalization conditions for the
singlet and the pair distribution functions in the T, V, u ensemble. This pro-
vides relationships between the KBIs and the fluctuations in the number of the
particles in the open system. Next, by differentiation of the grand partition
function, we obtain relationships between thermodynamic quantities and
fluctuations in the number of particles. Finally, by eliminating the fluctuations
in the number of particles, we obtain the required relations between thermo-
dynamic quantities and the KBIs.

We start by considering the grand canonical ensemble characterized by the
variables T, V, and u where g = (11, l, ..., o) is the vector comprising the
chemical potentials of all the ¢ components of the system. The normalization
conditions for the singlet and the pair distribution functions follow directly
from their definitions. Here, we use the indices o and f§ to denote the species
o f=1, 2,...,c. The two normalization conditions are (for particles not
necessarily spherical)

/ (X)) dX' = (N,) (4.4)

() (51 1 / " <N0<Nﬁ> if o # f

| P xax ax ‘{<N1<Nz—1>> if o = §
= (NuNp) — (Ni)up (4.5)

where the symbol ( ) stands for an average in the grand canonical ensemble. In
(4.5), we make a distinction between two cases: o 7 f§ and o= f. The two cases
can be combined into a single equation by using the Kronecker delta function:
0,p=1"for o= f and 6,3 =0, for o # . For homogeneous and isotropic fluids,
we also have the following relations (see chapter 2)

Py
i (X) = 5 (46)
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_ Papp Gup(XX")
(872)°

P (X, X") (4.7)

Here, p, is the average number density of molecules of species o, i.e., p,=
(N,)/'V, with V the volume of the system. We also recall the definition of the
spatial pair correlation function

&p(R,R") = (87%) 77 / d' d2" ¢,5(X', X") (4.8)
which is a function of the scalar distance R= | R’ — R'|. The angular depen-

dence of the pair correlation function has been averaged out in (4.8).
From (4.4) and (4.5) we obtain

=[x -l ) ax ax’
— (NJNp) — (N)oap — (N, (N, (49)
Using relations (4.6) to (4.8), we can simplify (4.9) as
puty [ T RR) — 1) AR AR = (N.Ny) — (N0 — (o) (N (4:10)

Next, we define the quantity, referred to as the KB integral (KBI), by

Gyp = / [g5(R) — 1]4nR* dR. (4.11)
0

Combining (4.10) and (4.11) we get

= S {NuNp) = (N,){Np)  up
G“’*”( (N2 (Np) <N1>>‘

This concludes the first part of the derivation of the KB theory.
Equation (4.12) is a connection between the cross fluctuations in the number

(4.12)

of particles of various species, and integrals involving only the spatial pair
correlation functions for the corresponding pairs of species o and f.

Before we derive the second part, i.e., the connection between the KBIs, Gyﬁ,
and thermodynamics, it should be stressed that all the distribution functions
used in this section are defined in the open system. This has been indicated by a
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bar over the various distribution functions. If we were in a closed system, the
normalization conditions would have been

/pg”(x’)dx’ =N, (4.13)
and
/ P (X', X") dX' dX" = N,Ng — Nyduyp. (4.14)
Thus, instead of relation (4.12), we would have the result
e

where N, and V are the exact number of o particles and the volume of the
closed system, respectively.

The reason for this fundamentally different behavior of G, in the closed
and open systems is the same as in the one-component system discussed in
section 3.5. See also Appendix G.

Relation (4.15) can be written as

PG = 1 (4.16)
paGlz~ " =0 (4.17)

The difference in the values of G,z in open and a closed systems should be
noted carefully. In a closed system, placing an A at a fixed position say, Ry,
changes the average number of A particles in the entire surroundings of A at R,
by exactly — 1. Placing an A at a fixed position does not change the total
number of B’s in its entire surroundings. This is a direct consequence of the
closure of the system with respect to the number of particles. Since we shall use
only the G,z defined in the open system, we remove the bar over G, in the
following derivation of the KB theory .

The next part of the theory involves a connection between the fluctuations in
the number of molecules and thermodynamic quantities. We start with the
grand canonical partition function for a c-component system:

=(T,V,m) = 3 QT V,N) exp(fe - N) (418)

where N=(N;, N,,...,N,) and the summation is over each of the N;, from
zero to infinity. The exponential function includes the scalar product

c
p-N=> wN. (4.19)
i=1

“ Note that the KB theory does not impose any restrictions on the signs of Gyp. Unfortunately the
literature is replete with erroneous claims regarding the possible signs of Gyg.
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The average number of, say, o molecules in the system is’
(Np) =E7! Z N,Q(T,V,N)exp(fp - N)

N
0lnE(T, V,u)

::kT[ ] (4.20)
a:uot TV, i,

where i, stands for the vector (u;, i, . . ., u.), excluding u,, i.e., W, = fiy, ...,

Hoy—15 Hyt15 - - -5 He
Differentiating (N,) in (4.20) with respect to ug, we get

o (aél;)) — =S NN QUT, Vi N) explBi - N) — (N (Np)
T,V N

= (NyNg) — (Ny)(Np)- (4.21)

Since all the equations are symmetrical with respect to interchanging the
indices o and f5, we have

O(Nx) L ((Ng) B B
kT< Oug )T,V,;/_ kT< Oty )T,V,uﬁ,_ Wabip) = (N (Mg (4:22)

We now combine the results of the two parts, relations (4.22) with (4.12), to
eliminate the fluctuations in the number of particles. The result it

T p
By = kT O(Na) = kT O = 0uPpGup + Py0up.  (4.23)
\%4 , 6uﬁ ,
TV, T, 1y

Oup

Note that G, 3= Gg, by virtue of the symmetry with respect to interchanging
the o and f indices.

The result (4.23) is already a relation between thermodynamic quantities and
molecular distribution functions. However, since the derivatives in (4.23) are
taken at constant chemical potentials, these relations are of importance mainly
in osmotic systems. Here, we are interested in derivatives at constant fem-
perature and pressure. Obtaining these require some simple transformations of
the partial derivatives. We first define the elements of the matrix A by

V [ Ou ) 1 [Ou
Agp = — [ e - (H=) . (4.24)
B kT <a<Nﬂ> T,V.,N//j kT (@pﬁ) Ty

g

Note again that we use Ny and pj; to denote vectors from which we have
excluded the components Ny and pg, respectively. Using the chain rule of

* Note that W,» N, and p), are vectors. However we shall not use bold-face better for these quantities.
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differentiation, we get the identity

ou ~ (0 0pg -
ow=\ac] =25 5] =D Auby.  (429)
Hy T, i, B=1 B T, p}} Hy T, i, p=1

The elements B, were defined in (4.23). In equation (4.25) we have a product
of two matrices. It can be rewritten in matrix notation as

A-B=1 (4.26)
where I'is the unit matrix of order ¢ X ¢. From (4.26), we can solve for A if we know
B. Taking the inverse' of the matrix B, we get for the elements of the matrix A,

A= B"/|B] (4.27)
where B*f stands for the cofactor of the element B, in the determinant | B]|.
The cofactor of B,y is obtained by eliminating the row and the column con-
taining B, in the determinant | B|, and multiplying' the result by (—1)**%.
The existence of the inverse of the matrix B is equivalent to a stability condition
of the system. Since the B, are already expressible in terms of the G, through
(4.23), relation (4.27) also connects A,z with the molecular quantities G,.

Next, we transform from the volume as an independent variable, into the

pressure. This can be achieved by using the thermodynamic identity¥ (see also
Appendix A)

0 0 0 oP
(69 ™ @), (68), @),y 0
aNﬁ T,V,N, aNﬁ T,P,N} oP T,N aNﬁ T,V.Nj
We also use the identity (see Appendix A)
oP ONp ov
— — —) =-1 (4.29)
aNﬂ T,V.N; oV T,P.N} oP T,N
together with the definitions of the partial molar volumes
— ov ou
= () = (%) (430)
ONz/ 1 p.n: OP )1 N
to get from (4.28) the relation
oy, o, Vv,V
Hap = (aN ) = (aT) Ve (4:31)
B/ .pN; B7 T, v,N; Kt

T The existence of the inverse of B is guaranteed by the stability condition of the system. See also
section 4.3 below. Equation (4.27) is known as Cramer’s rule for solving a set of linear equations.

¥ Here, « and f must take numerical values, otherwise (—1)“+ﬂ is meaningless. In the following
applications, we shall take o and f§ to stand, for say, components A and B, respectively. In this case, we may
assign the number 1, say, to A, and the number 2 to B.

9 From hereon, for convenience of notation, we use N, instead of (N,). It should be clear from the
context whether we refer to an exact or an average quantity.
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where k1 is the isothermal compressibility of the system, defined as

o= —L (V) (432)
v\er ),y

We now have all the necessary relations to express the thermodynamic quan-
tities flyp, V4 and K in terms of the Gup-

In order to obtain the explicit expressions for the ¢ + c+ 1 quantities [¢*
derivatives p,z (o, f=1, 2,...,¢), c partial molar volumes Vi (i=1,...,0),
and the isothermal compressibility k], we need to solve the following
&+ c+ 1 equations:
¢ equations for Hap

kT BV, Vy
Wy = VB VKTﬁ (for each o and p) (4.33)
¢ Gibbs—Duhem equations
Zp“uaﬁ =0 (for each f) (4.34)

and the identity

Z p.Vi=1. (4.35)

Solving the E+ce+1 equations for u,p (o, f=1,2,..., ¢, Vi(i=1,..., 0,
and K, we obtain the final result’

kTZi,jpiij
— . 0.B™
i,j PiPj
d kT > ;pip;[B*’ B — B*BF
uaﬂ=<ﬂ> _ KT 2] _ | (4.38)
aNﬁ T.P.N; V|B| Zi,jpiijJ

In equations (4.36)—(4.38), we have expressed the quantities /i, V4 and K1
in terms of the G;; (included in the matrix B and its various cofactors). Clearly,
these are quite involved expressions in the general case of ¢ components.

! In their original paper, Kirkwood and Buff (1951) derived an equation which is useful whenever
one component is the solvent, say, water. A detailed derivation of this equation [equation (12) in the
original article] may be found in Miinster (1969), p. 341. The results in this chapter are more general
and apply to mixtures of arbitrary composition. The author is grateful to Dr. R.M. Mazo for his
comment on this specific result of Kirkwood and Buff.
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Therefore, we shall discuss some special cases of two- and three-component
systems in the following sections.

Before turning to the specific cases, we note that for one-component system,
the above equations reduce to

_p’G+p  pG+1

K1 = T (4.39)
— p 1
v=Fr_Z 4.40
75 (4.40)
(a—“> __ M, (a—”‘> __ KT (4.41)
ON/ryv Vi(p+p’G) Op)r p+p*G
a,u)
=) =o. (4.42)
(&%),

Equation (4.39) is simply the compressibility equation for a one-component
system. Equation (4.40) is simply the molar volume of a one-component
system and (4.41) is the derivative of the chemical potential at constant volume.
Note that since p is an intensive quantity, its derivative with respect to N, at
constant P, T, is zero.

As we have noted in section 3.5, the generalization from a one-component
system to a multicomponent system is not straightforward. There are no clues
in equations (4.39)—(4.42) to indicate how to generalize to multicomponent
systems. That is probably the reason why Kirkwood and Buff had to go through
the lengthy derivation of equations (4.36)—(4.38).

Before closing this long section, we recap the main features of the KB theory,
which make it so general and powerful.

First, the theory is valid for any kind of particles, not necessarily spherical
particles. Only the spatial pair correlation function features in G,p, even when
the particles are not spherical. Second, no assumption on pairwise additivity of
the total potential energy is invoked in the theory. Finally, we note that in this
book, we discuss only classical systems; the Kirkwood—Buff results, however,
hold for quantum systems as well.

In the following sections, we shall discuss in more detail some aspects of the
KB theory for two- and three-component mixtures.

4.3 Two-component systems

The KB theory, as well as its inversion, has been used mainly for two-component
systems. The KB results for a two-component system may be obtained from the
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general equations (4.36)—(4.38), simply by taking the summation over only two
species, say A and B. For these systems, the determinant | B| reduces to

pa+ PiGaa PaP5Gas
P4PpGas pp + p3Gas
= papp[L + PaGas + ppGas + papp(GanGrs — Gip)|.  (4:43)

Bl =

The four cofactors of | B| are
B =py+p3Gap, B =B =—p,pGas, B =p,+p3Gas. (4.44)

Also, we have

S pipiBT = papslos+ pp+ paps(Gar+ Gos — 2Gap)].  (4.45)
i

It is convenient to define the two auxiliary quantities:

n=ps+pg+paps(Gan+ Gpp — 2Gap) (4.46)

{ =1+ paGaa+ pyGas + paps(GarGes — Gip)- (4.47)

With this notation we can express all the thermodynamic quantities o> Ve
and x7 in terms of the Kirkwood—-Buff integrals, G,:

¢
= — 4.48
KT = 1T (4.48)
— 1 Gpp — G
VA — + pB( BB AB) (449)
n
— 1 Gaa — G
V= Pa(Gar = Gas) (4.50)
n
ppkT pAkT kT
_ , =4 = = ——, 4.51
Han P Vil HUpB psVil HUap = Upa Vi ( )

In equations (4.48)—(4.51), we have completed the process of expressing the
thermodynamic quantities in terms of the molecular quantities.” We now
examine a few limiting cases. In the limit pg — 0, we have

lim n =p, and lim { =1+ p’ G}, (4.52)
pp—0 pp—0

! Note that the letter B is used for both the matrix B and as one of the species.

! From the stability conditions of the system, it can be proven that # > 0 and { > 0 always. The first
follows from the stability condition applied to the chemical potential. We must have u,5 <0 and
taa >0, ugg> 0, hence 1 > 0. Furthermore, since k1> 0, it follows that { > 0 also. These conditions
ensure that the inverse of the matrix B exists (here for the two-component system).
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In this limit, the compressibility in (4.3.6) reduces to

_ 14 PaGi

4.53
pp—0 kTp% ( )

This is just the compressibility equation for a one-component system (G, and
pY are the limiting values of G4 and p4 as pg— 0, respectively). Similarly,
from (4.49) and (4.50) we obtain, in this limit,

— — 1 °0(GY, — G°
lim V4 =—; and lim Vg = + Pa %A )
pp—0 Pa pp—0 Pa

. (4.54)

Thus, for the component A, we simply get the molar (or molecular) volume of
pure A, whereas for component B, we get the partial molar volume at infinite
dilution.

Also, in this limit, we have

0 —kT —kT kr kT (4.55)
‘LL =0, M = M ==, ‘LL ~ — = — .
AA AB BA p%V NA BB pBV NB

Next, we derive some relations which will prove useful in later applications of
the theory. All of the following relations are obtainable by the application of
simple identities between partial derivatives, such as (see also Appendix A)

aﬂA) <6HB>
— + = =0 4.56
pA<aPB TP Pp Opg TP ( )
(%) (%) (%) -1 (4.57)
Opg Tpp Oug Tota Ouy T.pp

(%) _ (%) +(%) (%) S (s
Opp T,P Opp T, Oty T.pp Opp TP

From (4.56)—(4.58), we can eliminate the required derivative at constant P and
T, to obtain

<%) _ pA(Oup/0pp) 1, (O1a/Opp) 1 4, (4.59)
T.p Pa

Opp (Oua/0pp) T, HB_PB(G#B/GPB)T, I .

On the rhs of (4.59), we only have quantities that are expressible in terms of the
G,p. Explicitly:

<6u3> B kT
Opp/) rp Pe(1+ psGes — ppGasp)
1 Ggg— G
_ kT(— B BB AB >
pgp 1+ ppGpp — ppGas

(4.60)
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The second form on the rhs of (4.60) will be found useful for the study of very
dilute solutions of B in A.
From equations (4.60) and (4.56), we also get

<%) :_@(CE) _ kT (4.61)
o0/ r.p Pa\Opg/) rp Pa(1+ ppGes — ppGap)

Similarly, if we interchange the roles of A and B, we obtain

(%) - kT (4.62)

04/ 1rp Pl +paGaa — paGasp)

(%) - KT (4.63)
0p4 T.p pp(1+ p4Gaa — poGas)

Note that unlike the derivatives in (4.22), here the two derivatives are not

equal, i.e.,
a:“B) Olta
B) 2 (— . (4.64)
<6PA T,P Opp T,P

The relation between these two derivatives can be obtained by taking the ratio
of (4.61) and (4.63), i.e.,

<%> _ (%) P(1+paGar—psGas) _ <%> P5 Vs (4.65)
Opg) rp  \OPa) 1pPa(1+ppGrs—ppGas) \Opa/ 1.pPAVaA
Another useful relation is
<%> _ (0pa/Oup)rp 14 paGan — paGas _E (4.66)
Opp/) rp  (Opp/Oa)rp 1+ ppGpp — ppGas Va

Similarly, we can get the following derivatives of the chemical potentials

2
Oxa TP Psh
2
<%> _ —KkT(pa+ ps) (4.68)
Oxp T,P pan

where on the rhs of (4.67) and (4.68), we have expressions in terms of G,p.
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Again, we note that, in general, the two derivatives in (4.67) and (4.68) are

not equal, i.e.,
a.“A) <6,u3>
—= —= . 4.69
<6x3 T,P# Oxa TP ( )

The relationship between the two can be obtained either from the Gibbs—
Duhem relation, or from (4.67) and (4.68), namely

(%) _ (%) Np (4.70)
axB TP 6xA T,PNA

Another useful derivative of the chemical potential with respect to the mole
fraction is obtained from

auA> <auA> (apA) <auA> 5
. 4.71
<6xA rp \0Pa)rp\Oxa)rp \Opy Typ(PA +p5) Vs (4.71)

In the last form on the rhs of (4.71), we have used the derivative of x4 with
respect to pgu, i.e.,

6xA 1 1
) = —=— (4.72)
0pa) e (pa+pp) Ve PV
where p = p4+ pp is the total density
From (4.71), (4.50), (4.62), we get the final important result

G kT p? 1 A
<_“A> M <_ ___Pplan ) (4.73)
0xa e Pall x4 14 ppxalap
where we have defined the quantity A,p as
Aap = Gaa + Ggg — 2Gyp. (4.74)

Relation (4.73) will be most useful for the study of various concepts of ideality
carried out in the next chapter.

4.4 Inversion of the Kirkwood-Buff theory

The Kirkwood-Buff theory of solutions was originally formulated to obtain
thermodynamic quantities from molecular distribution functions. This for-
mulation is useful whenever distribution functions are available either from
analytical calculations or from computer simulations. The inversion procedure
of the same theory reverses the role of the thermodynamic and molecular
quantities, i.e., it allows the evaluation of integrals over the pair correlation
functions from thermodynamic quantities. These integrals G;; referred to as the
Kirkwood-Buff integrals (KBIs), were found useful in the study of mixtures on
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a molecular level. They are also used in the theory of preferential solvation,
discussed in chapter 8.
The main result of the KB theory can be symbolically written as:

{Gij} — {Vi 1, 0p;/0p;}. (4.75)

Having information on the Gj, one can compute the thermodynamic
quantities’. However, the original KB theory could have been used only in rare
cases where Gj; could be obtained from theoretical work. In principle, having an
approximate theory for computing the various pair correlation functions g;(R),
it is possible to evaluate the integrals G;j; and then compute the thermodynamic
quantities through the KB theory. Comparison between the thermodynamic
quantities thus obtained, and the corresponding experimental data, could serve
as a test of the theory that provides the pair correlation functions.
The inversion procedure may be symbolically written as

{Visxer,0u:/0p;} — {Gjy}- (4.76)

In this form, the thermodynamic quantities are used as input to compute the
molecular quantities Gj;. Since it is relatively easier to measure the required
thermodynamic quantities, the inversion procedure provides a new and pow-
erful tool to investigate the characteristics of the local environments of each
species in a multicomponent system.

It should be noted that there are some difficulties in obtaining accurate values
of the KBI from the available thermodynamic data (Kato 1984; Zaitsev et al.
1985, 1989). Matteoli and Lepori (1984) have made an extensive comparison
between the values of Gj; calculated by different authors (e.g., Ben-Naim 1977;
Donkersloot 1979a, b; Patil 1981) and found large discrepancies between the
reported results. Another method of obtaining the KBI is the small-angle x-ray or
neutron scattering intensities from mixtures; see, for example, Nishikawa (1986),
Nishikawa et al. (1989), Hayashi et al. (1990), Misawa and Yoshida (2000),
Almasy et al. (2002), and Dixit et al. (2002).

In the following we shall discuss only the mathematical aspects of the inver-
sion procedure and not delve into the problem of the accuracies of the results.

The inversion procedure can be carried out in principle for any mixture of ¢
components. In (4.36)—(4.38), we have F4c+1 expressions for the thermo-
dynamic quantities fi,p, V., and k7. These are not independent equations,
because of the ¢+ 1 relationships (4.34) and (4.35). Hence, only ¢* independent
relationships exist between the thermodynamic quantities and the ¢* KBIs Gijj.

! There is an equivalent set of relationships between integrals over the direct correlation functions
(see Appendix C) and the thermodynamic quantities. (O’Connell [1971, 1975, 1981, 1990], Hamad
et al. [1989]).
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Since the inversion procedure becomes increasingly complicated for larger
values of ¢, we shall outline the procedure for two-component mixtures here
and further discuss the three-component case in section 4.5.

For two-component systems, we have already written the KB results in
(4.48)—(4.51). Altogether, these are seven equations. However, because of the
following three equations

Paktaa + Ppitap =0 (4.77)
PHpp + Palap =0 (4.78)
paVa+pgVp=1 (4.79)

we are left with only four independent relationships between the thermo-
dynamic quantities and the four KBIs G, . In fact, since p1op = fig4 we have only
three equations for the three quantities G4, Ggp, and Gaz= Gga.

To solve for Gjj, we first eliminate n from any of the relationships in (4.51) to
obtain:

kT kT —kT
= Pp _ PPa _ . (4.80)
PaVitaa  PeVigs  Viiap
Next, we eliminate { from (4.48)
{ = kTnkr. (4.81)

Now, we can use (4.49) and (4.50) together with (4.79) to express all of the G,z
in terms of experimental quantities. The results are

GAB = kTKT — pVA‘_/B/D (482)
pBVBp
Pa PaD
PaVaP

GBB = kTKT ——+

—+= (4.84)
B B

where p=p4+ pp and D denotes

Xa [Ouy
D=—|-— . 4.85
kT (axA> TP ( )

The three equations (4.82)—(4.84) can be cast in a more condensed form as
Oap

(1= p.V.) (1= V)
— + pkT
Py po(pﬁ:ufx/f

Gyp = kTrcr — (4.86)

where p=p,+ ppand p,p is (aua/GNﬁ)P’TW’;.
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In (4.86), we have expressed all of the G,z in terms of the thermodynamic
quantities xr, V,, and Hyp- In practice, one uses the derivative (4.85) obtained
either from the second derivative of the excess Gibbs energy of the system, or
from data on the vapor pressure of one of the components.

The excess Gibbs energy (per mole of the mixture) of the two-component
system is defined by

EX
EX G

=————— = XAl +Xplg— XA (,uf; + lenxA) — xp (,ug + lean) (4.87)
N4+ Np

4
where pf and p} are the chemical potentials of pure A and B, respectively.

Taking the second derivative with respect to x4 and using the Gibbs—Duhem
relationship, we obtain

X4 [Oly XAXB angX
D=2 (1X4 =14+== 4,
kT (axA)RT T (axg or (4.88)

which can be used in equations (4.82)—(4.84).

Another source of experimental information can be used if the vapor above
the mixture may be considered to be an ideal-gas mixture, in which case the
chemical potential of each component in the gaseous phase has the form

wy = 1 = 155 + kT lnp, (4.89)

where p, is the partial vapor pressure of the component «.
Hence, in this case

_ x4 (Opy __Olnpy  Olnpg
D_kT (axA>P7T— XA o = xp x| (4.90)

Clearly, only one of the derivatives on the rhs of (4.90) is needed.

4.5 Three-component systems

The general equations for k1, V,, and Uqp are given in (4.36)—(4.38). As we
have seen in the case of c=2 (two-component systems), it is easy to write the
explicit expressions for the thermodynamic equations in terms of Gj For
three-component systems, ¢=3, these expressions become very long and
complicated, especially the expression for u,s which contains a sum over
nine determinants, each of which when fully expanded consists of a large
number of terms. Fortunately, there exists a simplification of equation (4.38)
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which reads (see Appendix K)

kT |E(o,p
where E(a, ) and D are two matrixes derived from the matrix
G +pi! G Gis...
G = Gai Gnt+py' Gs |, (4.92)
The general element of the matrix G is
(G)ij: Gi]‘ + 5,']‘/);1 (4.93)

where G;j; are the KBIs. Details of the derivation of equation (4.91) are provided
in Appendix K.

The expressions for the thermodynamic quantities can be written in some-
what shorter forms by defining the quantities:

A%B =Gy + Gﬁ/} — ZGaﬁ (4.94)
5113 = G, Gpp — Géﬂ (4.95)

N=ps+pp+pPc+PaPpAaB+ PppcApc + PapcAac
- lepApoC(AiB + Aéc + Aic —2A4cApe
— 2A A Ac — 2AABABC) (496)

which is the generalization of n defined for a two-component system in
section 4.3.
Similarly, we define

(=14 paGaa+ ppGes + pcGoc + pappdas + papcosc + PP cdsc
+ paPpPc(Gaadsc + Gppdac + Geedap — 2Gaa G Gee +2GapGac Gae)
(4.97)
which is the generalization of { defined for a two-component system in
section 4.3.

In terms of these quantities, the thermodynamic quantities for a three-
component system are:

kT(pg + pc + pppcAsc)
Vinp,

KT (pa+ pc+ papcBac)
Vipg

s = (4.98)

Hpp = (4.99)
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kT A
lee = (pa+ Pp+ PaPBAAB) (4.100)
Vinpc
kT|1 + pc(Gap + Gee — Gac — Gae
i = ST - ) (4.101)
1+ py(Gac + Gos — Ga — Goc)
—kT P AC — Gap — Gpe
Hac = 7 E I — (4.102)
n
—kT[1+ p4(Gpc + Gaa — Gac — Gas
g = —FTULY s v ) (4.103)
n
Va=(1/n)[1 + pg(Gps — Gap) + pc(Gee — Gac)
+ ppPc(GapGae + GacGae + GpsGec
— GacGas — GapGee — Gie)] (4.104)
Ve =(1/m)[1 + ps(Gaa — Gag) + pc(Gee — Gae)
+ papc(GapGac + GacGae + GaaGee
— GaaGpe — GapGee — Gi)] (4.105)
Ve =(1/n)[1 + pp(Ges — Gpe) + pa(Gaa — Gac)
+ pap5(GagGac + GapGpe + GaaGap
— GaaGre — GacGrs — Gy (4.106)
4
= —. 4.107
T kTn ( )

We note again that as in the extension from one-component to two-component
systems, the generalization to a three-component system is not straightforward
and cannot be done only by inspection of the expressions for the two-com-
ponent case.

The inversion of the KB theory for a three-component system is quite
complicated. The present author tried unsuccessfully to find a simple
expression such as (4.86) for the three-component system. Ruckenstein and
Shulgin (2001a, b, ¢) spelled out these long and complicated expressions
explicitly. Matteoli and Lepori (1995), however, suggested that it is simpler to
use the relations (4.23) to express all G,5 in terms of B,g. This is already a
relation between G, and thermodynamic quantities. However, one can go
further and express all the B,z in terms of A, g, by solving equation (4.6), and
then express A,z in terms of the required thermodynamic quantities p,p, V.,
and xr via (4.31). This procedure is straightforward for practical calculations
of G,, though it does not provide simple, explicit expressions in terms of the
thermodynamic quantities.
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4.6 Dilute system of Sin A and B

In the previous section, we have seen that the application of the KB theory for
three or more components become very complicated. Therefore, the main
application of the KB theory has been for dilute solution'.

In this section, we shall derive only the equations for the system of three
components, A, B and S, where S is very dilute in the mixture of A and B, i.e.,
we examine the limit of pg — 0. This case is important in the study of solvation
phenomena (chapter 7).

From the general expressions from the previous section, we rename C as S
and take the limit pg— 0. We get

4
=— 4.108
KT kTiq ( )
kTpg kTp, kT

_ , =4 = - 4.109
Haa o Vi HUpB PV Hap = Hpa Vi ( )

_ 1 Ggg — G — 1 Gypa — G
V.= + pp(Gss AB) V= + p4(Gaa AB) (4.110)

n n

where # is the same as in (4.46). As expected, the quantities (4.108)—(4.110) are
the same as in a two-component system, see equations (4.48)—(4.51). The new
expressions for the three-component system as ps— 0 are:

—kT[1 + pg(Gpg — Ggs) + pp(Gas — Gasp)
fas = Hsa = Lt ps v B ] (4.111)

—kT[1 + ps(Gaa — Gas) + pp(Gps — Gas)]

4.112
v (@112)

Ups = Hsp =

and

Vs = (1 + pa(Gaa — Gas) + pp(Gss — Gas) + p4pplGaaGes — GzzaB
+ Gas(Gap — Ggg) + Gps(Gap — Gaa)l)/n
= kTKT — pAVAGAS — pBVBGBS- (4.113)

! As an example, Shulgin and Ruckenstein (2002) have derived an expression for Henry’s constant
in binary solvent mixtures.
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The only term which diverges as ps— 0 is uss; in this limit ugs~ kT/N,. Hence,
we look for the limiting behavior of the nondivergent part

lim [#ss - k—T]
ps—0 Ny
= (—kT[4(1 + psAas + ppAss) + pypy
X (A% + N + Afg — 2Aa5Aps — 2A4sA5s)])/(4nV)  (4.114)
where

Aaﬁ = Gyy + Ggp — 2Gyp. (4.115)

A more useful derivative of the chemical potential of the solute, in this limit, is

() () (@)
Oxs T,P,N4, Np ONis T,P,Ns, Nj Oxs T,P,Ns, Nj

2

p+V

:Mss< L > (4.116)
PatPp

where pr=pa+ pp+ ps. Again, this is a complicated function of G;;. However,
one can express this derivative as a function of A, 3 and then show that when all

A, =0, we get
0 kT
C&> - (4.117)
0Xs) 1.p Ny Ny XS

This is the case of SI solutions discussed in the next chapter.

4.7 Application of the KB theory to
electrolyte solutions

The simplest system of electrolyte solution is one solvent, say water (W) and
one, completely dissociable solute, say KCI, which we denote by S. It is assumed
that S dissociates completely into two fragments

S— A+B. (4.118)

We stress from the outset that the fragments A and B could be either neutral
or ions.

The above system could be viewed in two equivalent ways. One is to ignore the
dissociation (4.118) and view the system as a two-component system of W and S.
For such a system, the KB theory as derived in section 4.3 applies; simply change
notation from A and B in section 4.3 into Wand S, and we can use all the results
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from the KB theory. Specifically, the matrix B, written explicitly for this case, is

2
B— (PW+PWGWW Pspw?sw ) (4.119)
psPwGsw  ps+ psGss

The second view is to admit the occurrence of dissociation into fragments
(4.118) and to treat the system as a three-component system. Again, all the
results of section 4.3 apply here. Specifically the matrix B, for the system of
three components, W, A and B, is

pw +PyGww  PwPAGwa  PwPGws
B=| pwpaGwa patpiGas  PaPsGas |- (4.120)
PwPpGws paPpGas Py + P5Gas

All the derivations of the KB results can be followed as in section 4.5.
However, when the dissociation of S into fragments (4.118) produces ionic
species, say

KCl — K™ + CI™ (4.121)
one invokes the so-called electro-neutrality (electro-neutrality) conditions.

These are statements on the electro-neutrality of the entire system, i.e., the total
charge around a solvent molecule must be zero, hence

where p = ps=pa= pp is the number density of the solute S. Equivalently
Gwa = Gws (4.123)

Similarly, we must have the conservation of the total charge around A and

around B, hence
1+ ,OGAA = pGAB (4.124)

1 4 pGpg = pGag. (4.125)

The three conditions (4.123)—(4.125) are referred to as the electro-neutrality
conditions. Note that from (4.124) and (4.125), one may also obtain

Gaa = Ggp. (4.126)

Substituting these conditions in the matrix B, we obtain

Pw + PiwGww  pwpGwa P pGwa
B=1 pwpGwa p*Gas p*Gag |- (4.127)
PwPGwa p>Gag 0*Gagp

Clearly, since two rows and two columns in this matrix are identical B is a
singular matrix and the corresponding determinant |B| is zero. This renders the
solution of the matrix equation (4.26) impossible, i.e., B has no inverse.
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Therefore, one cannot proceed with the KB theory.T Sometimes, this rendering of
the KB theory impossible, is attributed to the long-range interactions
between the ionic solutes. However, the KB theory does not require any
specific behavior of the intermolecular interactions. The KB theory can be
applied for ionic solutions without any restriction on the type of interac-
tions. The apparent impossibility of obtaining an inverse of the matrix B
is not due to any special electro-neutrality condition, but is a result of
mismatch of the KBIs, G, defined in different ensembles. To clarify the
situation, we consider the following two examples

(1) One-component system

Here, we have the compressibility equation

pGo = =1+ pkTkr. (4.128)
The corresponding B matrix for this case is simply
B=p*Go+p (4.129)

where we used the subscript O for an open system.
If, however, we use the KBI, as defined in the closed system (C), i.e., the one
with the normalization
pGe = —1 (4.130)
we obtain the matrix
B=—p+p=0 (4.131)

which is singular. Furthermore, if we use (4.130) in the compressibility equa-
tion, we get the absurd result

—1=-1 +kaKT

or equivalently

pkTxr = 0. (4.132)
Clearly, the singularity of the matrix B results from using the wrong G, i.e., the
KBI for the closed system in (4.129), where the KBI for an open system, Go,
should be used.

(2) Two-component system
Suppose we have a two-component system of A and B. The matrix B in this
case is

2
B— (PA"‘PAGAA pApBg;AB > (4.133)
paPsGap  pp+ p3Gas

T The problem of the occurrence of the singularity of the matrix B, hence noninvertability, was
pointed out by many authors Friedman and Ramanathan 1970: Kusalik and Patey 1987; Behera 1998;
Newman 1988, 1989a, b, 1990, 1994, Beeby 1973. In particular Kusalik and Patey (1987) wrote: “The
condition renders indeterminate all the thermodynamic quantities obtained by direct substitution into
the KB equations.”
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where again, one should use the KBI in an open system. If, on the other hand,
we use G, from the closed system, i.e., with the normalization conditions

Py Gup.c = —0up (4.134)

in (4.133), we get a singular matrix

B = 0 0 . 4.135
(5 0) (4.135)

Again, we note that the singularity of the matrix B in (4.135) arises from using
the wrong G, ¢ (i.e., the KBIs for the closed system) in a theory derived in an
open system.

It is now clear that the singularity of the matrix B as written in (4.127) is not
the result of some special features of the interactions between the ionic species
(the KB theory applies for any type of intermolecular interactions), but from
using the wrong G, in the KB theory.

To see this, we first note that though it is true that for ionic species, equations
(4.123)—(4.126) can result from the electro-neutrality conditions, the condi-
tions themselves are not necessarily a result of the electric charge neutrality.
They arise from the closure condition with respect to the fragments A and B.
Thus, for a solute S dissociating into two neutral fragments A and B, as in
(4.118) not necessarily ionic species as in (4.121), we still have the following
conservation relations:

(a) The total number of A and B particles must be the same, viewed from a
solvent molecule at the center, i.e.,

o [ suw® dR=py [ gu(R) R (4.136)

From this condition the relation (4.123) follows

(b) The total number of A’s must be equal to the total number of B’s, when
viewed from either an A or from a B particle at the center, i.e.,

1+py /VgAA(R) dR = pg /VgAB(R) dR (4.137)

1+pB/ 8s5(R) dR:pA/ gas(R) dR (4.138)
\4 \4

from which relations (4.124) and (4.125) follow.

Thus, we see that the requirement that the solute fully dissociates as stated in
(4.118) or (4.121) imposes closure conditions on Gaa, Gap, Gpp Gaws and
Gaw- Therefore, care must be exercised to label these KBIs properly, e.g., we
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should write instead of (4.123)—(4.125) the relations

GWA,C = Gwsa.c (4.139)
1+ pGAA,c = ,OGAB‘,C (4.140)
1+ pGBB7C = pGAB,C. (4.141)

The subscript C stands for closure with respect to A and B individually. The
system can still be opened with respect to W and S, but we do not allow the
concentrations of A and B to change independently. With this labeling, it is
clear that we cannot use relations (4.139)—(4.141) in the KB theory which was
derived in the grand ensemble and hence all the KBIs in the matrix B must be
defined in a system open with respect to W, A, B. Failing to take this precaution
leads to absurd results, exactly as in the example given in (4.131) and (4.134).
However, if we open the system for all the species A, B,and W, then we can use
the KB theory as it is without any modification. It is true though that if we
open the system with respect to A, B,and W, and if A and B are charged
particles, then there will be fluctuations in the total charge of the system. In
this case the problem is not the applicability of the KB theory nor in the
application of its inversion. The problem is that the thermodynamic
quantities on the rhs of (4.75) are simply not available.

It should be noted that Kirkwood and Buff in their original publication
commented that equation (20) in their publication (4.60 in this chapter) is
“completely general” and provides an alternative to the usual “charging pro-
cess.” They also added that “in the absence of long-range intermolecular forces,
the integrals G,; may be developed in power series in the solute concentration.”
It is clear that Kirkwood and Buff did not see any difficulty in applying their
results for ionic solutions as long as one uses the open-system G,;.

To summarize, for ionic solutions, one can either adopt the view that the
system is a two-component mixture and use the KB theory for a two non-ionic
species, say water and salt [as has been done by Friedman and Ramanathan
(1970) and by Chitra and Smith (2002)], where the system is open with respect
to the water and the salt (as a single entity). In this view, there is no place for
ion-ion correlations hence the electro-neutrality condition is irrelevant. In this
view only correlations between neutral molecules are meaningful. Or we can
view the system as water, cation, and anion — but in this case one must open the
system with respect to each of the species individually (hence allow also charged
fluctuations in the system). In this case, the KBI are meaningful, but the
thermodynamic quantities such as V; or du;/0N; are not available. In the
second view, the ion-ion correlations do enter into the KB theory, but again
the electro-neutrality condition is irrelevant.



FIVE
Ideal Solutions

There exist several reference states of solutions referred to as “ideal state,” for
which we can say something on the behavior of the thermodynamic functions of
the system. The most important “ideal states” are the ideal-gas mixtures, the
symmetric ideal solutions and the dilute ideal solution. The first arises from
either the total lack of interactions between the particles (the theoretical ideal
gas), or because of a very low total number density (the practical ideal gas). The
second arises when the two (or more) components are “similar.” We shall discuss
various degrees of similarities in sections 5.2. The last arises when one compo-
nent is very dilute in the system (the system can consist of one or more com-
ponents). Clearly, these are quite different ideal states and caution must be
exercised both in the usage of notation and in the interpretations of the various
thermodynamic quantities. Failure to exercise caution is a major reason for
confusion, something which has plagued the field of solution chemistry.

5.1 Ideal-gas mixtures

As in the case of a one-component system, ideal-gas (IG) mixtures also enjoy
having a simple and solvable molecular theory, in the sense that one can calculate
all the thermodynamic properties of the system from molecular properties of
single molecules. We also have a truly molecular theory of mixtures of slightly
nonideal gases, in which case one needs in addition to molecular properties of
single molecules, also interactions between two or more molecules.

As in the case of a one-component system, we should also make a distinction
between the theoretical ideal gas, and the practical ideal gas. The former is a
system of noninteracting particles; the latter applies to any real system at very
low densities. Occasionally, the former serves as a model for the latter. For
instance, to obtain the equation of state of an ideal gas

BP=p (5.1)
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we can either take a real gas and let p — 0, or we can envisage a model system of
noninteracting particles at any finite density. Both come up with the same
equation of state (5.1). However, if we are to study deviation from the ideal-gas
state, we write a density expansion of the form

BP = p+ Byp* + Bsp® +--- (5.2)

where B;(T') are the virial coefficients which depend on temperature and on the
interactions among the i particles. Clearly, for a theoretical ideal gas, all
the By(T) are zero, hence (5.2) reduces to (5.1). However, for a real gas, the
coefficient are non-zero. For any finite value of By(T), (5.2) reduces to (5.1) in
the limit of p — 0. Thus, the ideal-gas equation of state is the same for the
theoretical and the practical ideal gas, but the reasons for reaching (5.1) are
different: in one, because all B{T) =0; in the second, because p — 0.

The theoretical ideal-gas partition function for a system of ¢ components of
composition N= Nj, N,,..., N, contained in a volume V at temperature T is

Q(T,V,N) = VvV H o A3N (5.3)

where V¥ = V2N is obtained from the configurational partition function of the
system. Hence, we have »_N; integrations over the volume V. g; is the internal
partition function of a molecule of species 7, excluding the momentum parti-
tion function A’.

The Helmbholtz energy of the system is obtained from

A(T,V,N) = —kT In Q(T, V, N) (5.4)

The chemical potential of the species i can be obtained by direct differentiation
with respect to N;, i.e.,

Ui = <6A> = kT ln /\3 oL (5.5)
T,V,N!

ON,

From (5.3) and (5.4), we can derive all the thermodynamic quantities for our
system. However, in this chapter, we shall be interested in the T, P, N system;
these are the most common variables that are controlled in the experiments.
Hence, we use the T, P, N ensemble to derive the quantities of interest. Here the
chemical potential is defined as'

3
1, = (a@ — G(T,P,N + 1,) — G(T, P,N) (5.6)
TPN'

! Note that we add one particle of species i (denoted 1;) to obtain the derivative defining the
chemical potential.
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where G is the Gibbs energy and sz is the vector obtained from N=Nj,
N,,..., N, by eliminating the ith component, N; namely N{ = (N, Ny, ..o,
Ni-1 Nit1, ..., N.). Using the T, P, N partition function, we obtain for the
chemical potential

 AT,PN+1) g _ai(V)
P = TR Ny AN ) /dVP(V)V_ AN, ©7)

1 1

where P(V') is the probability density of finding the system with volume V.
This is the same as (5.5) except for the replacement of the exact volume Vin
the T, V, N ensemble by the average volume (V) in the T, P, N ensemble. We
have also replaced N;+ 1 by N; for the macroscopic system.
We define the average density p;=N;/(V) in the T, P, N ensemble and
rewrite (5.7) as

w = kT InpAiq; !
= kT InAlg; ' + kT Inp,
= kT InAlq; 'py + kT Inx;

1

= 1 + kT Inx; (5.8)

where pr=> p; is the total (average) density of the system, and x; is the mole
fraction of the species i in the system. (T, P) is the chemical potential of the
pure component i, at the same T and P. Its density is p, i.e., one can obtain the
pure i at the same T, P, N by replacing each of the particles of the system by an i
particle keeping the total density p7 fixed. It is clear from (5.8) that knowing
the molecular properties of the system like the mass, vibrational energy, etc., we
can calculate y; and hence all the properties of the system.
The Gibbs energy of this system is

G= Z Ni,ui = ZNluf + Z kTNl In Xi. (5.9)

The first term on the rhs of (5.9) is the Gibbs energy of ¢ systems each con-
taining the pure component i at the same T, P. Sometimes, this is referred to as
the system before mixing (figure 5.1). Since each of these systems contains N;
particles at the same P, T, the volumes of each system before mixing are
VP = N;kT/P. Removing the partitions separating the pure systems, we obtain
the mixture at the rhs of figure 5.1. The system’s volume is now V=">_N;kT/P
(same T, P). The quantity > kTN; Inx; (or the corresponding quantity per
mole of the mixture Y kTx; Inx;) is referred to erroneously as the free energy
of mixing. However, tracing the origin of the change in the Gibbs energy in
the process depicted in figure 5.1 shows that this change in due only to the
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Ny, T, P N,, T, P N3, T, P » Ny, Ny, N3, T, P

Figure 5.1 A process of mixing ideal gases. Initially we have three systems, each compartment con-
taining A; particles of species J, at the same Tand P. The final state is obtained by removing the partitions
between the systems. The temperature and the total pressure remains the same T and P.

expansion of each component from the initial volume V7 into the final volume
V. More precisely, for the ith component we have

Ni(y; — f) = Ni(kT Inp; — kT In pf)

= N;| kT lnﬁ— kT ln&
\%4 vk
P

= kTNl an71 = kT N,' In X (5.10)

and the total change in the Gibbs energy is
ZNi(ui—,uf) :ZNikT In x; (5.11)

which clearly shows that the decrease of the total Gibbs energy is due to the
expansion of each component, from the initial volume ViP at P, T, to the final
volume V (= > V?), at the same P, T.

By taking the temperature derivative of (5.9), one can obtain the corre-
sponding entropy and enthalpy of the system

oG .
S=-— <ﬁ>P’N— ZN,’SI- — Z kN,' lnx,- (5.12)

H=G-TS=> NHf (5.13)

where S¥ and H are the entropy and the enthalpy (per molecule) of the pure
ith component at the same P, T, respectively. Note again that the quantity
— > kN;In x; is erroneously referred to as the entropy of mixing. Clearly, by the
same argument given above, one can easily show that this change in entropy
arises from the expansion of each component from the initial volume V7 to the
final volume V (at the same P, T). The mixing of ideal gases in itself has
no effect on any thermodynamic quantity of the system. More on that in
Appendices H, I and J.

The (average) volume of the system may be obtained from the pressure
derivative of the Gibbs energy, i.e.,

0G
V=|(—]) =) NV 14
(&7),,,~ X o1
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Note that since each of the pure components is an ideal gas at P, T, we have
VI-P = N;kT /P, hence

kT
V== >N (5.15)

or equivalently

P
pr=3 P =1z (5.16)

which is the equation of state for the ideal-gas mixture.

We note again that the equation of state (5.16) is obtained for either the
theoretical model of noninteracting particles at any density pr, or for a real
system of interacting particles but at very low density, where encounters
between particles, hence interactions, are rare events. In both cases, the pressure
of the system is a result of the interactions of the particles with the walls of the
system. (By noninteracting particles, one assumes that the intramolecular
interactions among the ) N; particles in the system are switched off. There
must still be an interaction between the particles and the wall, otherwise the
particles will not be confined to the volume V.)

Finally, we note that once we have the molecular properties of the molecules,
we can calculate all the thermodynamic quantities of the system, such as the
Gibbs energy, entropy, enthalpy, etc., Note also that the equation of state does
not depend on the specific properties of the system, only on the total number of
the particles in the system, at a given P, T. The same is true for the derivatives of
the volume with respect to pressure and temperature.

5.2 Symmetrical ideal solutions

In the previous section, we have derived the equations for the thermodynamic
quantities of ideal-gas mixtures. We could also compute all of these quantities
from the knowledge of the molecular properties of the single molecules. Once
we get into the realm of liquid densities, we cannot expect to obtain that
amount of detailed information on the thermodynamics of the system.

We have seen that in an ideal-gas mixture, the chemical potential of each
species can be written in one of the following forms:

1= kT Inp,Alg! (5.17)
=W + kT Inp,A] (5.18)
= ! + kT Inx,. (5.19)
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Clearly knowing A? and g; allows us to compute the chemical potential y;. This
is not possible for real mixtures at high densities. Nevertheless, both theory and
experiments show that under certain conditions, the chemical potential of
species i depends on the density p; or on the mole fraction x; in the same way as
in (5.18) and (5.19) with some constants y} or u! which are independent of p;
or x;, respectively, but whose actual dependence on the molecular properties of
the system is not known.

In this section, we shall discuss a class of mixture for which the chemical
potential of each species i depends on x; as in (5.19). In the next section, we
shall study the condition under which the chemical potential depends on p; as
in (5.18) with y; independent of p;. In both cases, we shall be satisfied in
obtaining conditions under which the chemical potential has this particular
dependence on p; or on x;, even though the constants u or u’ cannot be
calculated from the theory.

We start by defining a symmetrical ideal (SI) solution as a system for which
the chemical potential of each species has the form

i =t + kT Inx; (5.20)

where ,uf is the chemical potential of pure i at the same P, T as in the mixture,
and we require that this form is valid in the entire range of compositions
0<x<1.

Clearly, an ideal-gas mixture is a particular example of a SI solution, as we
have seen in the previous section (particularly equation 5.18). Here we discuss
a real mixture at normal liquid densities, consisting of interacting molecules.
We shall examine first the conditions on the molecular properties (specifically
on the intermolecular interactions) that lead to this particular form of the
chemical potential. In section 5.2.2, we shall examine the local conditions under
which relation (5.20) is achieved.

5.2.1 Very similar components: A sufficient condition for
Sl solutions

For notational convenience, we shall discuss a two-component mixture of A
and B. The generalization for multicomponent system is quite straightforward.
We consider a system of two components in the T, P, Ny, Ny ensemble. We
have chosen the T, P, N4, Np ensemble because the isothermal-isobaric systems
are the most common ones in actual experiments. By very similar components,
we mean, in the present context, that the potential energy of interaction among
a group of n molecules in a configuration X" is independent of the species we
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assign to each configuration Xi. For example, the pair potential Uys(X, X") is
nearly the same as the pair potential U,p(X', X”) or Upp(X', X”), provided that
the configuration of the pair is the same in each case. Clearly, we do not expect
that this property will be fulfilled exactly for any pair of different real molecules.
However, for molecules differing in, say, isotopic constitution, it may hold to a
good approximation.?

The chemical potential of component A is defined by

0G
= <_> = G(T,P,Ns +1,Np) — G(T,P,Na, N3)  (5.21)
ONa T,P,N3

where G is the Gibbs energy and the last equality is valid by virtue of the same
reasoning as given in section 3.4.

The connection between the chemical potential and statistical mechanics
follows directly from the definition of the chemical potential in (5.21), i.e.,

A(T,P,N,+1,Ng)

A(T,P,N,Ng)
_qafdv [dX" 1 dXN exp| — PV — BUy, 11,n, (XN TLXN) |
T AL(Na+1) [dV [ dXN4dX N exp[—BPV — Uy, N, (XN, XN8)]
(5.22)

exp(—Puy) =

where A’ and g, are the momentum and the internal partition function of an A
molecule, respectively. An obvious shorthand notation has been used for the
total potential energy of the system. The configuration (X4, X*) denotes the
total configuration of N4 molecules of type A and Ny molecules of type B.

Next, consider a system of N particles of type A only. The chemical potential
for such a system (at the same P and T as before) is

_ qa JfaV [dX"H exp|-pPV — fUNH (XNT))
AN 1) [dV [dXN exp[—BPV — BUn(XN)]

exp(—fpy) (5.23)

where we have denoted by uf the chemical potential of pure A at the same P
and T as for the mixture,

Now we choose N in (5.23) to be equal to Ny+ Np in (5.22). The
assumption of very similar components implies, according to its definition, the

! If the particles are spherical, we need to specify only the locations of the particles. In case of non-
spherical particles, we specify the configuration of each particle by the same set of locational and
orientational coordinates.

¥ It is interesting to note that even mixtures of isotopes sometimes show measurable deviations
from SI solutions. Examples are mixtures of 3Ar and *°Ar (Calado et al. 2000) and mixtures of CH,
and CD, (Calado et al. 1994). However, mixtures of H,O and D,O do not show any significant
deviations from SI solutions (Jancso and Jakli 1980).
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two equalities’

Un(XY) = Uy, n, (XM, XM) (5.24)
Une i1 (XN41) = Upgy 1, (X1, X0). (5.25)
Using (5.24) and (5.25) in (5.22), we get

(N+1)

N (5.26)

exp(—Buy + Bry) ~

Rearranging (5.26) and noting that for macroscopic systems

NA (NA +1)

MENT N

we get the final result
14 (T, Py x4) = (T, P) + kT In x,. (5.27)

Thus, the chemical potential, when expressed in terms of the intensive
variables T, P and x4, has this explicit dependence on the mole fraction x,.
A system for which relation of the form (5.27) is obeyed by each component,
in the entire range of composition, is called a symmetrical ideal solution®.
It is symmetrical in the sense that from the assumptions (5.24) and (5.25), it
follows that relation (5.27) holds true for any component in the system. In a
two-component system, it is sufficient to define SI behavior for one component
only. The same behavior of the second component, follows from the Gibbs—
Duhem relation

a#A a.“B

— =0. 5.28
axA X *B S axA ( )

Thus, whenever (5.27) is true for all 0 < x4 <1, it follows that
Ug = ,ug + kT In xp for 0 < xp < 1. (5.29)

The generalization for multicomponent systems is quite straightforward. The
condition on the equality of all interaction potentials is sufficient for the SI
behavior of all the components in the system. In the multicomponent system,
we have to require that the SI behavior of the type (5.27) holds for ¢—1
components; the Gibbs—Duhem relation ensures the validity of the SI behavior
for the cth component.

T This is the same as requiring that replacing any A at X by a B molecule at the same configuration X
w1ll have no effect on the total potential energy.

¥ It should be noted that this nomenclature is not universally accepted. Sometimes the term
“perfect” solution is used instead (Guggenhein 1967; Prigogine 1957). See also the end of section 5.4.
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Relation (5.27) is important since it gives an explicit dependence of the
chemical potential on the composition, the fruitfulness of which was recognized
long ago. This relation has been obtained at the expense of the very strong
requirement that the two components be very similar. We know from experiment
that a relation such as (5.27) holds also under much weaker conditions. We shall
see in the next section that relations of the form (5.27) can be obtained under
much weaker assumptions on the extent of the “similarity” of the two compon-
ents. In fact, relation (5.27) could not have been so useful had it been restricted
to the extreme case of very similar components, such as two isotopes.

An alternative derivation of (5.20), which employs a somewhat weaker
assumption, is the following; we write the general expression for the chemical
potential of A in pure A denoted by uf as

ph =1, + kT Inp, A = W(AJA) + kT Inph Al gyt (5.30)

We use the notation W(A | A) to designate the coupling work of A against an
environment which is pure A, p% being the density of pure A at the same P, T.
A straightforward generalization of (5.30) for a two-component mixture is

ty, = W(A|A+ B) + kT Inp, Al q;" (5.31)

where W(A | A+ B) is a shorthand notation for the coupling work of A against
an environment composed of a mixture of A and B at the same P and T.

We now replace each B molecule in the environment of the A molecule (for
which we have written the chemical potential) by an A’ molecule. By A" mole-
cules, we mean molecules that interact with A in exactly the same manner as B
interacts with A. However, A’ is still distinguishable from A. If we do that, then
the particle A that is being coupled to its environment would not notice the
difference in its environment. Hence, the coupling work in (5.31), W(A | A+ B),
will be the same as W(A| A) in (5.30). But note that since the A’ molecules are
distinguishable from the A molecules, the density p4 in (5.31) does not change.
Thus, substituting W(A| A+ A') = W(A| A) from (5.31) into (5.30), we obtain

pa =ty — KT InpiAsay’ + KT Inp,Ajdy!

=l + kT Inx, (5.32)
where
Pa Pa
A ph pat s

This is the same result as (5.27). Although we have used the assumption that
A and B are “very similar,” it is clear that the requirements in the second
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derivation are somewhat weaker. We only need that W(A | A+ B) be the same for
any replacement of A and B in the environment of A. This condition is weaker
since it involves only an average quantity and not the bare pair potentials
themselves. We shall make this statement more precise in the next section.

The symmetrical ideal behavior is equivalent to the well-known Raoult
law. Suppose that a mixture of A and B is in equilibrium with an ideal-gas
phase; let P4 be the partial pressure of A. The chemical potential of A in the gas
phase is

Ayq;'P
@5 = kT In <$>. (5.34)

From the equilibrium condition u8 = (T, P, x4), we obtain from (5.27) and
(5.34)

Pa=Plxa 0<x <1

The proportionality constant P§ can be identified as the vapor pressure of
pure A at the same temperature and total pressure P.

5.2.2 Similar components: A necessary and sufficient condition
for Sl solutions

In the previous section, we showed that for a mixture of “very similar” (in the
sense defined there) components, the chemical potential of each component i
has the form'

=@ +kTlnx,  (0<x<1) (5.35)

in the entire range of compositions. We have referred to a mixture for which
(5.35) is valid for all its components as an SI solution.

Experimentally, it had been known long ago that many mixtures are SI
although the two (or more) components are far from being “very similar” in
the sense of section 5.2.1.

A classical example is a mixture of ethylene bromide (EB) and propylene
bromide (PB). Figure 5.2a shows the partial and the total pressures of these
mixtures as a function of the mole fraction of (PB) at 85 °C, Based on the work
of von Zawidzki (1900) quoted by Guggenheim (1952). These two components
clearly cannot be considered as being identical, or “very similar.” Yet, the fact
that they form an SI solution in the entire range of compositions is equivalent

! The superscript p on ub stands for the pure species. We reserve the symbol y? to denote the
standard chemical potential (see chapter 7).
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Figure 5.2 The partial vapor pressures and the total pressure of a system of (a) ethylene bromide (EB)
and propylene bromide (PB) as a function of composition x (mole fraction PB) at T=85°C, based on data
by von Zawidski (1900) cited by Guggenheim (1952); (b) benzene (B) and bromobenzene (BB) at 80 °C.
Note that although the two components have widely different vapor pressures the mixture is nearly SI.
(Based on data from McGlashan and Wingrove 1956.)

to the assertion that the two components are similar in the sense discussed
below. A second example is the mixture of benzene (B) and bromobenzene
(BB). These two components have very different vapor pressures in their pure
states, yet their mixture is nearly SI in the entire range of composition. Figure
5.2b shows the vapor pressures for this system, based on data by McGlashan
and Wingrove (1956).

We shall now show that indeed a much weaker condition is required for SI,
which turns out to be both a sufficient and a necessary condition.

We first discuss a two-component system of A and Bat T, Pand x,4. Since pf
is independent of x,, differentiation of u, in (5.35) gives

(%) KT o< <), (5.36)
aXA T, P XA

Clearly, (5.35) and (5.36) are equivalent conditions for SI solutions, in the sense
that each one follows from the other.
From the KB theory we have equation (4.73)

0 1 A
(ﬂ) kT <_ _ M) (5.37)
axA T,P XA 1+ pTxAxBAAB
where p7=p4+ pp is the total number density in the mixture. We now show

that at any finite density', pr, a necessary and a sufficient condition for an SI
solution (in a binary system at T, P constant) is

A = Gaa + Gpg — 2G4 =0 for 0 < x4 < 1. (538)

t Note, however, that here pris not an independent variable; it is determined by T, P, x4. Also, we
shall assume throughout that all the G,; are finite quantities.
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The condition (5.38) is clearly a sufficient condition for SI solutions. This
follows by substituting A ,p=10 in (5.37). Conversely, if (5.36) and (5.37) are to
be equivalent, we must have

xpp7Aap =0 for (0 < x4 <1). (5.39)

Since pris presumed to be nonzero, (5.39) implies (5.38) and hence (5.38) is
also a necessary condition for SI solutions.

We note that the necessary and sufficient condition, Asz=0, for SI was
derived here and is valid for mixtures at constant P, T. The condition (5.38) is
very general for SI solutions. It should be recognized that this condition does
not depend on any model assumption for the solution. For instance, within the
lattice models of solutions we find a sufficient condition for SI solutions of the
form (Guggenheim 1952)

W = Wys + Wpg —2Wyp =0 (5.40)

where W,z are the interaction energies between the species o and f situated on
adjacent lattice points.

We now define the concept of similarity between two components A and B
whenever they fulfill condition (5.38). We shall soon see that the concept of
“similarity” defined here implies a far less stringent requirement on the two
components than does the concept of “very similar” as defined in the previous
section.

The concept of “very similar” was defined by the requirement that all
intermolecular interactions be the same. For instance, for simple particles,
we require

UAA = UAB = UBA = UBB- (541)

We have seen in section (5.17) that (5.41) is a sufficient condition for an SI
solution.

We now show that condition (5.38) is weaker than (5.41). Let us examine the
following series of conditions:

(a):  Uaa = Uap = Upa = Ups (5.42a)
(b):  gaa = gaB = gBa = gbB (5.42b)
(c): Gaa = Gap = Gps (5.42¢)
(d): Gaa+Grp—2Gas =0 (0< x4 <1). (5.42d)

Clearly, each of the conditions in (5.42) follows from its predecessor.
Symbolically, we can write

(a) = (b) = (c) = (d). (5.43)
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The first relation, (a) = (b), follows directly from the formal definition of the
pair correlation function, assuming pairwise additivity of the total potential
energy. The second relation, (b) = (c), follows from the definition of G,g, and
the third relation (c) = (d), is obvious.

Since we have shown that condition (d) is a sufficient condition for SI
solutions, any condition that precedes (d) will also be a sufficient condition.
In general, the arrows in (5.43) may not be reversed. For instance, the condition
(c) implies an equality of the integrals, which is a far weaker requirement
than equality of the integrands g,s. It is also obvious that (d) is much weaker
than (c); i.e., the G,5 may be quite different and yet fulfill (d). It is not clear
whether relation (a) follows from (b). If we require the condition (b) to hold
for all compositions, and all P, T it is likely that (a) will follow.

We now elaborate on the meaning of condition (5.38) for “similarity”
between two components on a molecular level. First, we note that the
concept of “very similarity” as defined in section (5.2.1) is independent of
temperature or pressure. This is not the case, however, for the concept of
“similarity”; Aap can be equal to zero at some P, T but different from zero at
another P, T.

We recall the definition of G, in equation 4.1 of section 4.1. Suppose we
pick up an A molecule and observe the local density in spherical shells around
this molecule. The local density of, say, B molecules at a distance Ris pp gpa(R);
hence, the average number of B particles in a spherical shell of width dR at
distance R from an A particle is ppgsa(R)4mR*dR. On the other hand,
pp4nR*dR is the average number of B particles in the same spherical shell,
the origin of which has been chosen at random. Therefore, the quantity
plgsa(R) — 1]4nR*dR measures the excess (or deficiency) in the number of B
particles in a spherical shell of volume 4tR*dR centered at the center of an A
molecule, relative to the number that would have been measured there using
the bulk density pg. Hence, the quantity ppGpa is the average excess of the
number of B particles around A. Similarly, p,G,p is the average excess of the
number of A particles around B'. Thus, G, is the average excess of A (or B)
particles around B (or A) per unit density of A (or B). It is therefore appropriate
to refer to Gap as a measure of the affinity of A toward B (and vice versa). A
similar meaning is ascribed to G4 and Ggp.

Note that the aforementioned meaning ascribed to G, is valid only when
these quantities have been defined in an open system. In a closed system, if we
place an A at the origin of our coordinate system, the total deficiency of A’s in

f Note that p,Gp can be positive or negative. In the latter case we can say that the “excess” is
negative, i.e., there is an average deficiency of the number of A particles around B.



SYMMETRICAL IDEAL SOLUTIONS 149

the entire volume is exactly — 1. The total deficiency of B’s in the entire volume
is exactly zero. In both cases, the correlation due to intermolecular interactions
extend to a distance of a few molecular diameters. Denote the correlation
distance by R., we can write the local change in the number of A’s around an
A at the origin by

ANu(R) = p, /O " g (R) — 14nR%R. (5.44)

In the open system, gaa(R) is practically unity for R > R, therefore, the local
change AN, can be equated to the global change p4Gay in the entire volume.
On the other hand, if AN, is defined in the closed system, it still has the
meaning of the local change in the number of A’s in the sphere of radius R.. It is
also true that this is the change due to molecular interactions in the system.
However, this meaning cannot be retained if we extend the upper limit of the
integral from R, to infinity. The reason is the same as in the one-component
system, as discussed in chapter 3. In a closed system, there is a long-range
correlation of the form 1 — N~ ! due to the closure condition with respect to the
number of particles. Therefore, if we extend the limit of integration from R, to
infinity, we add to the integral a finite quantity, the result of which is that pGa,
would not be a measure of the local change in the number of A’s around an A.

Thus, in a closed system, we have the equality p,G$, = psGs; = —1. If
pa=pp then it follows that G, = G§;. This is an exact result for a closed
system. From this equality, one cannot deduce anything regarding the relative
affinities between the AA and BB pairs.

In terms of affinities, the condition (5.38) for the SI solutions, A,z=0, is
equivalent to the statement that the affinity of A toward B is the arithmetic
average of the affinities of A toward A, and B toward B. This is true for all
compositions 0 <x, <1 at a given T, P. We shall see in chapter 8 another
interpretation of A,p in terms of preferential solvation.

We end this section by considering the phenomenological characterization of
SI solutions in terms of their partial molar entropies and enthalpies. If one
assumes that equation (5.35) is valid for a finite interval of temperatures and
pressures, then, by differentiation, we obtain

_ oy, ,

i=—(==) =8 — klnx 5.45
N <6T>P S; nx (5.45)
H;=uw+ TS;=H (5.46)

Vi= (aﬂ’) =V (5.47)
op),
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where Sf , Hf and Vip are the molar quantities of pure i, and Si, H;, V,, are the
corresponding partial molar quantities. An alternative, although equivalent way
of describing SI solutions phenomenologically is by introducing the excess
thermodynamic functions defined by

GEX — G_ Gideal — G_

ZC: N;(#f +kT'In x,-)] (5.48)

i=1

Cc
SEX —S— Sideal =S — [Z Nl(Sf — kTln xi)] (549)
i=1
VI =y - videl =y NNV (5.50)
i=1
Cc
H™ = H - H'=H-) NH. (5.51)
i=1

The SI solutions are characterized by zero excess thermodynamic functions.
Clearly, the phenomenological characterization of SI requires stronger
assumptions than the condition (5.38).

Finally, we note that the condition (5.38) for SI solutions applies only for
systems at constant P, T. This condition does not apply to systems at constant
volume.

We have discussed in this section the condition for SI solutions for a two-
component system. One can show that similar conditions for SI solutions apply
to multicomponent systems. We can prove, based on the KB theory, and with a
great deal of algebra, that in three- and four-component systems, a necessary and
sufficient condition for SI solutions, in the sense of (5.35) for all 4, is

Aaﬁ = Gy + Gﬂﬁ - ZGa/)’ =0 (5.52)

for all compositions and all pairs of different species o # . The proof for
the general case is relatively easy if we use the expression (4.91). We defer to
Appendix K the proof of this contention for the general case.

5.3 Dilute ideal solutions

We now turn to a different class of ideal solutions which has been of central
importance in the study of solvation thermodynamics. We shall refer to a dilute
ideal (DI) solution whenever one of the components is very dilute in the
solvent. The term “very dilute” depends on the system under consideration,
and we shall define it more precisely in what follows. The solvent may be
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a single component or a mixture of several components. Here, however,
we confine ourselves to two-component systems. The solute, say A, is the
component diluted in the solvent B. The generalization to multicomponent
systems is quite straightforward.

The very fact that we make a distinction between the solute A and the solvent
B means that the system is treated unsymmetrically with respect to A and B.
This is in sharp contrast to the behavior of symmetrical ideal solutions.

The characterization of a DI solution can be carried out along different but
equivalent routes. Here we have chosen the Kirkwood-Buff theory to provide
the basic relations from which we derive the limiting behavior of DI solutions.
The appropriate relations needed are (4.23), (4.24), and (4.62) which, when
specialized to a two-component system, can be rewritten as

0 kT 1 G

(ﬂ) - kT <_ At ) (5.53)
s/ 1y, PaGaAT P4 Pa 1+paGaa
0 1 Gar — G

<ﬂ> = kT (— L aa T A ) (5.54)
004/ r.p Pa 1+ pa(Gas — Gap)

(%) kT (i B Gaa + p5(GaaGas — Gip) )
04/ 1, Pa 1+ paGan+ ppGes + papp(GaaGes — Gip) /)

(5.55)

Since we are interested in the limiting behavior p, — 0, we have separated the
singular part p; ' as a first term on the rhs; this term leads to the divergence of
the chemical potential as p4 — 0.

Note that the response of the chemical potential to variations in the density
p 4 is different for each set of thermodynamic variables. The three derivatives in
(5.53)—(5.55) correspond to three different processes. The first corresponds to a
process in which the chemical potential of the solvent is kept constant (the
temperature being constant in all three cases) and therefore is useful in the
study of osmotic experiments. This is the simplest expression of the three and it
should be noted that if we simply drop the condition of constant yp, we get the
appropriate derivative for pure A. This is not an accidental result; in fact, this is
the case where a strong resemblance exists between the behavior of the solute A
in a solvent B under constant g and a system A in a vacuum which replaces the
solvent. We shall return to this analogy in chapter 6.

The second derivative (5.54) is the most important one from the practical
point of view since it is concerned with a system under constant temperature
and pressure. The third relation (5.55) is concerned with a system under
constant volume which is rarely used in practice.
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A common feature of all the derivatives (5.53)—(5.55) is the p;' divergence
as p4 — 0 (note that we always assume that all the G, are finite quantities). For
sufficiently low solute density, p 4 — 0, the first term on the rhs of each equation
(5.53)—(5.55) becomes the dominant one; hence, we get the limiting form of
these equations:

0p4 T i 0p4 T,p 0p4 Tpy, PAa

which, upon integration, yields
#a(T > pa) = My (To pip) + kT Inp,y
1a(To Popy) = 3 (T, P) + kT Inpy,  py —0 (5.57)

#a(T, ppr pa) = 13 (T, p) + kT Inpy.

We see that the general dependence on p4 for p4 — 0 is the same for the three
cases. In (5.57) we have used the notation p for the standard chemical
potential of A. A few comments regarding equations (5.57) are now in order.

(1) The precise condition that p, must satisfy to attain the limiting behavior
depends on the independent variables we have chosen to describe the system.
For instance, if p4Gaa < 1, then we may assume the validity of (5.56). The
corresponding requirement for (5.54) is that pa(Gaa — Gap) < 1, which is
clearly different from the previous condition, if only because the latter depends
on Guy as well as on Gup. Similarly, the precise condition under which the
limiting behavior of (5.56) is obtained from (5.55) involves all three G,5. We
can define a DI solution for each case, whenever p 4 is sufficiently small, so that
the limiting behavior of either (5.56) or (5.57) is valid.

(2) Once the limiting behavior (5.57) has been attained, we see that all
three equations have the same formal form, i.e., a constant of integration,
independent of p4, and a term of the form kT In p 4. This is quite a remarkable
observation, which holds only in this limiting case. This uniformity of
the behavior of the chemical potential already disappears in the first-order
deviation from a DI solution, a topic discussed in the next chapter.

(3) The quantities x4 which appear in (5.57) are constants of integration, and
as such depend on the thermodynamic variables we use to describe the system.
They are referred to as the “standard chemical potentials” of A in the corre-
sponding set of thermodynamic variables. It is important to realize that these
quantities, in contrast to ,uﬁ of the previous section, are not the chemical
potentials of A in any real system. Therefore, it is preferable to refer to u§
merely as a constant of integration.
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(4) Instead of starting with relations (5.53)—(5.55), we could have started from
relation (4.73) of the Kirkwood-Buff theory, namely

0 1 A
G@ _HG__&ﬁL) (5.58)
0xa/ 1.p x4 1+ ppxalap
A limiting behavior of (5.58) is obtained for x4 — 0, in which case we have
0 kT
Ha)y L x—0 (5.59)
Oxa/)rp Xa

which, upon integration in the region for which (5.59) is valid, yields
pa(T, P xp) = p (T, P) + kT Inx4, x4 — O. (5.60)

Again, % (T, P) is merely a constant of integration. It is different from
1% (T, P) in (5.57), and therefore it is wise to use a different superscript to stress
this difference. The exact relation between p’ and u% can be obtained by
noting that x4 = p4/p1, where pr is the total density of the solution. Hence,
from (5.60) we get

iy = u5(T,P) + kT Inp, — kT Inpy

= W4(T,P) + kT Inp,. (5.61)
Hence,
(T, P) = (T, P) — kT In py, (p, — 0) (5.62)

where p? is the density of pure B. The replacement of p by p¥ is permissible
since pr — pb as py— 0.

In actual applications, it is sometimes convenient to use the molality scale.
Instead of p, or x4 as a concentration variable, one uses the molality of A,
which is related to x, (for dilute solutions) by

1000x4
my =
Mp

(5.63)

Mj being the molecular weight of B. From (5.63) and (5.60), we get

Mpmy
1000

2 = 5(T, ) + & In

M,
= [,ugx(T, P) + kT ln(lo(f())] + kT Inm,, my — 0

= u"(T, P) + kT In my, (5.64)
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where we have introduced a new standard chemical potential u%m, which is
different from both 1 and p5*.

We now discuss briefly the behavior of the solvent in a DI solution of a two-
component system. The simplest way of obtaining the chemical potential of the
solvent B is to apply the Gibbs—Duhem relation, which, in combination with
(5.59), yields

0 0 0
X3 <ﬁ> T x <ﬂ> — —xp <ﬂ> + KT = 0. (5.65)
axA TP axA TP axB TP
From (5.65), upon integration in the region for which (5.65) is valid, we get
pp(T, P,xg) = C(T,P) + kT Inxg, x4 — 0. (5.66)

Since the condition x4 — 0 is equivalent to the condition xz— 1, we can
substitute xg=1in (5.66) to identify the constant of integration as the chemical
potential of pure B at the same T and P, i.e.,

up(T, Py xg) = ub(T,P) + kT Inxp, xp— 1. (5.67)

Note that (5.67) has the same form as, say, (5.35), except for the restriction
xg— 1 in the former.

5.4 Summary

In this chapter, we have discussed three types of “ideal” solutions. We stress
here that the sources of ideality are different for each case. All of the three cases
can be derived from the KB theory, specifically, from the relation (5.58), which

0 1 A
(ﬂ) T <_ _ M) - (5.68)
Ox4 TP x4 14 prxaxgAagp
An ideal gas (IG) mixture is obtained from (5.68) either (theoretically) when no
interactions exist, hence all G;;=0, hence A,5=0, hence

<%> = k—T; (5.69)

axA TP XA

we rewrite as

or when p7— 0 for which we again obtain (5.69) from (5.68), but now A,p
is finite.

The symmetric ideal (SI) solution is obtained for similar components in the
sense that A, =0 for all compositions 0 < x4 < 1, which again leads to (5.69)
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for all compositions 0 < x4 < 1. Clearly, the interactions could be strong and
the total density could be large; hence, this case is conceptually very different
from the ideal-gas case. The third case is the diluted ideal (DI) case obtained
whenever x, (or p,) is very small, so that (x4)" " becomes very large, hence the
dominating term on the rhs of (5.68). Again, we note that there is no limitation
on the interactions in the system, nor on the total density of the system.

Clearly, the three types of ideal behavior are quite different. As we shall see in
the next chapter, deviations from each of these ideal behaviors occurs for
different reasons.

Note that some authors refer to the “symmetrical convention” as the limiting
behavior of y;— 1 as x;— 1, see, for example, Prausnitz et al. (1986). However,
this limiting behavior is manifested for any mixture, when one of its mole
fractions approaches unity. Similarly, for any mixture, when x;— 0, we have
7;— 1. The concept of SI solution is very different from these limiting behaviors.
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Deviations from ideal
solutions

In the previous chapter, we described three types of ideal solution, and the
conditions under which these behaviors are attained. In this chapter, we discuss
deviations from these three types of ideality. The nature of the deviation from
ideality is different for each case. The first is due to turning on the interactions
in the system. The second arises when the components do not subscribe to the
condition of similarity. The third is due to increasing the solute density (the
solute being that component which is very diluted in the system).

The deviations from ideality can be expressed either as activity coefficients or
as excess functions. Care must be exercised both in notation and in the
interpretation of these activity coefficients or the excess functions. Failure to do
so is a major source of confusion and erroneous statements regarding these
quantities. As before, we treat only two-component systems of A’s and B’s. The
generalization to multicomponent systems is quite straightforward.

6.1 Deviations from ideal-gas mixtures

We start with the KB result, equation (4.73) from chapter 4,

(%) — kT (i __ Prxshas > (6.1)
0xa T.p x4 14 prxaxgAagp

Integrating over xz, and noting that dx, = —dxp, we have

/
prXxAap

— BT X, 6.2
1+ pTxng’gAAB B ( )

ta(T, Py xa) = b (T, P) + kT Inxy + kT/
0
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where ,ui( T, P) is the chemical potential of pure A at the same P, T. This has the
general form

W5(T, P) = W(AJA) + KT'n ph (T, P)A% g (6.3)
where W(A | A) is the coupling work of A against a surrounding of pure A, and
pl is the density of pure A, as determined by T and P.

When there are no interactions in the system (theoretical ideal gas), we
must have

W(AJA) =0, Asp=0, ph(T,P)=pP. (6.4)
Hence, the chemical potential in the ideal-gas reference state is

W = kTIn(BPA%qy") + kT Inx, (6.5)

which is the well-known expression for the chemical potential in an ideal-gas
mixture.

The excess chemical potential and the corresponding activity coefficient are
now defined by

'S =y (T, P xa) — iy (T, P, xa)

W prxpAas /
= W(AJA) + kT In(p(T,P)/pP) + kT | — LB "2
(A14) + KTWn(p}(T, P)/pP) + &7 [ 08— gy
(6.6)
WS = kT ny'S, (6.7)

When we turn off all the interactions, all the three terms on the rhs of
(6.6) become zero. Hence, MEX’IG measures the deviations of the chemical
potential in a real system from the corresponding chemical potential in an
ideal-gas system due to turning on all the interactions in the system. The same
is true when p7 — 0.

We now evaluate the first-order deviations from ideal gas behavior

ph(T,P) = BP — Baa(BP)* + - (6.8)

and
kT In(p% (T, P)/BP) = —BaaP + - -- (6.9)
W(A|A) = 2kTByaph (T, P) = 2ByaP + - - - (6.10)

XB 2
kT / PPN, dey = P2 [+ Gl — 263]
0

= —x3P[Baa + Bgg — 2Bag) (6.11)
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where we used the definition of the virial coefficients
By = ——/ {exp[—BU,(R)] — 1}4nR* dR = ——G°° (6.12)

Goﬂ are the limiting values of G,3as P — 0 or pr — 0.
The excess chemical potential, and the corresponding activity coefficient, for
this case are

U216 = 2ByaP — ByaP — x3P(Baa + Bgs — 2Bag)
= BAAP — xB (BAA + BBB — ZBAB) = lel’l'}) (613)
Note that the Gibbs—Duhem relation determines the behavior of up once the

behavior of p, is known. The result for B is thus

H%X IG—B BP—XAP<BAA+BBB_ZBAB) —lel’l'}/ (6l4>

6.2 Deviations from SI behavior

Again, we use the KB result (6.1) and integrate to obtain (6.2). In the SI
solution, by definition A 5= 0, hence

1w = uh 4 kTln xy, 0< x4 <l. (6.15)

The excess chemical potential, due to deviations from symmetrical ideal
behavior, is thus

120 = (T, Pyxa) — (T, Pyxy)
XB /A
- kT/ _ PrTICAR g (6.16)
o L+ prxyxpAap
= lenyiI

Here, both the excess chemical potential, and the activity coefficient measure
the deviations from similarity of the two quantities. This is fundamentally
different from the deviations from the ideal-gas behavior (i.e., total lack of
interactions), discussed in section 6.1. Here the limiting behavior of the activity
coefficient is

Ahm ySI =1 (at T, P, x4 constants). (6.17)
0

The general case (6.16) is not very useful since in general, we do not know the
dependence of A,p on the composition. However, if the two components
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deviate only slightly from similarity (i.e., from A, 5=0), we can assume that
pTxAxBAAB <1 (O < xp < 1). (618)

Note that since here we exclude the case of an ideal-gas mixture, pr is finite,
and the condition (6.18) is essentially a condition on A 4. If we further assume
that p7A 4 is independent of the composition, then we can integrate (6.16) to
obtain the first-order deviations from SI behavior, namely

WS & kTppAspxl/2. (6.19)

In the phenomenological characterization of small deviations from SI
solutions, the concepts of regular and athermal solutions were introduced.
Normally, the theoretical treatment of these two cases was discussed within
the lattice theories of solutions'. Here, we discuss only the very general
conditions for these two deviations to occur. First, when prAsp does not
depend on temperature, we can differentiate (6.19) with respect to T to obtain

EX,SI outest
S, =— = —k,OTAAB’sz;/2 (6.20)
aT Pxy
and
HEOS = XSt XSt (6.21)

This is the case of athermal solution, i.e., no excess enthalpy but finite excess
entropy, both with respect to SI solutions.

The second case is when Tp1A 43 is independent of temperature, in which
case

a,uEX,SI

SRSt — =0 6.22

A aT pa ( )
s AA

HYS = )5 4 1S5 = kTprAapxd/2; (6.23)

no excess entropy, but finite excess enthalpy. Again, the excesses are with respect to
SI solutions-This is the case of regular solutions. We have shown here the theoretical
requirements for obtaining the athermal and regular solution behavior. The phe-
nomenological characterization is made through the experimental excess entropies
and enthalpies of the various components as in equations (6.20)—(6.23). We shall
show a possible molecular reason for these two cases in section 6.4.

! The term “regular solutions” was first coined by Hildebrand (1929). It was characterized phe-
nomenoligically in terms of the excess entropy of mixing. It was later used in the context of lattice
theory of mixtures mainly by Guggenheim (1952). It should be stressed that in both the phenom-
enological and the lattice theory approaches, the “regular solution” concept applies to deviations from
SI solutions. (see also Appendix M).
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6.3 Deviations from dilute ideal solutions

In the previous two sections we have discussed deviations from ideal-gas and
symmetrical ideal solutions. We have discussed deviations occurring at fixed
temperature and pressure. There has not been much discussion of these ideal
cases in systems at constant volume or of constant chemical potential. The case
of dilute solutions is different. Both constant, T, P and constant T, up (osmotic
system), and somewhat less constant, 7, V have been used. It is also of theo-
retical interest to see how deviations from dilute ideal (DI) behavior depends
on the thermodynamic variable we hold fixed. Therefore in this section, we
shall discuss all of these three cases.

We have already seen that the form of the expression for the chemical
potential in the limit of dilute ideal solutions is the same in the three cases;
equations (5.56) and (5.57).

In all cases the limiting behavior has the form

s =y +kTnp,, (pa —0) (6.24)

where 1 is a constant, independent of p .

Deviations from DI are observed whenever we increase the density of the
solute p 4, beyond the range for which (6.24) is valid. The extent of the devia-
tions will, of course, depend on how, i.e., under which conditions, we add the
solute. Keeping T, Por T, ugor T, V constant will result in different deviations.
The general cases may be obtained by integrating equations (5.53)—(5.55)
under the different conditions T, ug, or T, P, or T, V constant. For instance, in
the open system (with respect to B) we have

1a(Ts pips pa) = ,u?f(T, fig) + kT'ln PAV,IZI(T’ Ip)- (6.25)

Hence, the excess chemical potential for this case is

Pt = (T g pa) = 13 (T i )
= kTIn VBI(T; HUp> pA)
Pa _GAA
_ kT 7(1 /. 6.26
/0 T+ phGaa 020

Similar but more complicated expressions may be obtained from (5.54) and
(5.55). Clearly, since we do not know the dependence of G, on p, we cannot
perform these integrations.
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From hereon, we shall discuss only small deviations from DI solutions. By

expanding the nondivergent parts in equations (5.53)—(5.55), and retaining the
first order in p,, we obtain

a.“A) ( 1 0 )

OHa —kr(——-G°, +--- (6.27)

<apA T g Pa A

(&)
0P, T,P

(%) . {i _ Ghy+ phlGhGhs — (Gap)’
T.pp

kT [é — (G, — GYp) + - ] (6.28)

0pa Pa 1+ p3Ggp " } (625)
The superscript zero in (6.27)—(6.29) stands for the limiting value of the cor-
responding quantity as p4, — 0. Note that the limit p, — 0 is taken under
different conditions in each case, i.e., T and pp are constants in the first, Tand P
are constants in the second, and T and pp in the third.

Since all the Ggﬁ in (6.27)—(6.29) are independent of p,, we can integrate
equations (6.27)—(6.29) in the region of p 4, for which the first-order expansion
is valid, to obtain the first-order correction to DI solutions. These are:

1a(Ts pig ) = 13(To pip) + kTInpy — KTGRupp + - (6.30)
1a(T, Ppa) = (T, P) + kT lnp, — kT(Gyy — Gap)pa + -+ (6.31)
0 0 P%(GgB)Z
Ha(Toppop ) =tia(Topp) +kTInp = kT | Gyy == = —|pat- (6.32)

1+ppGgp

It is instructive to compare these relations with (5.57). The most important
difference between equations (6.30)—(6.32) and (5.57) is that the uniformity
shown in the limit of p, — 0 breaks down once we consider deviations from
DI behavior. The first-order deviations from DI solutions depend on the
thermodynamic variables we choose to describe our system. We can now
introduce the excess functions and the activity coefficients corresponding to the
first-order deviations from the DI behavior. These are defined by

1Py pa) = KT IR (To g, p0) = —KTGlapy (6:33)

WO P, Py py) = KTIngR (T, P, py) = —kT(Gh, — Gop)ps  (6.34)
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0(0 \2
> p G
KEP (T ) =KTIng ! (Toppup) =T Gou—2BLN ) (6.35)
1+ppGgp

Hence, equations (6.30)—(6.32) can now be written as

1a(Ts g p) = W4 (T, i) + KT Infp 4y (T, i, )] (6.36)
#a(T, P, pa) = pi3(T, P) + kT Infp,y3 (T, P, py)] (6.37)
(T, pp,pa) = 13(T, py) + KT Infp, 3 (T, pi, p ). (6.38)

It is clearly observed that the activity coefficients in (6.33)—(6.35) differ fun-
damentally from the activity coefficient introduced in sections 6.1 and 6.2. To
stress this difference, we have used the superscript DI to denote deviations from
DI behavior. Furthermore, each of the activity coefficients defined in (6.33)—
(6.35) depends on the thermodynamic variables, say T and pp, or Tand P, or T
and pp. This has also been indicated in the notation. In practical applications,
however, one usually knows which variables have been chosen, in which case
one can drop the arguments in the notation for 5.

The limiting behavior of the activity coefficients defined in (6.33)—(6.35) is,
for example,

lim0 YT, P,p,) = 1, T, P constant. (6.39)
Pa—

Consider next the content of the first-order contribution to the activity coef-
ficients in (6.33)—(6.35). Note that all of these contain the quantity G9,. Recall
that G, is a measure of the solute-solute affinity. In the limit of DI, the
quantity G}, is still finite, but its effect on the activity coefficient vanishes in the
limit p4 — 0. It is quite clear on qualitative grounds that the standard che-
mical potential is determined by the solvent—solvent and solvent—solute affi-
nities (this will be shown more explicitly in the next section). Thus, the effect of
solute—solute affinity becomes operative only when we increase the solute
concentration so that the solute molecules “see” each other, which is the reason
for the appearance of G5, in (6.33)—(6.35). In addition to GY,, relation (6.34)
also includes GY5 and relation (6.35) also includes G%j.

The quantity G4s (or G5,) is often referred to as representing the solute—
solute interaction. In this book, we reserve the term “interaction” for the direct
intermolecular interaction operating between two particles. For instance, two
hard-sphere solutes of diameter ¢ do not interact with each other at a distance
R> 0, yet the solute—solute affinity conveyed by G4, may be different from
zero. Therefore, care must be exercised in identifying DI solutions as arising
from the absence of solute—solute interactions.
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Another very common misinterpretation of experimental results is the
following. Suppose we measure deviations from a DI solution in a 7, P, N4, Np
system. The corresponding activity coefficient is given by (6.34); the same
quantity is often referred to as the excess chemical potential of the solute. One
then expands the activity coefficient (or the excess chemical potential) to first
order in p, and interprets the first coefficient as a measure of the extent of
“solute—solute interaction.” Clearly, such an interpretation is valid for an
osmotic system provided we understand “interaction” in the sense of affinity, as
pointed out above. However, in the T, P, N4, Np system, the first-order coef-
ficient depends on the difference G4, — G55 It is in principle possible that G5,
be, say, positive, whereas the first-order coefficient in (6.34) can be positive,
negative, or zero. This clearly invalidates the interpretation of the first-order
coefficient in (6.34) in terms of solute—solute correlation. Similar expansions
are common for the excess enthalpies and entropies where the first-order
coefficient in the density expansion is not known explicitly.

In practice, the most important set of thermodynamic variables is of course T,
P, p 4, employed in (6.34). However, relation (6.33) is also useful and has enjoyed
considerable attention in osmotic experiments where 3 is kept constant. This set
of variables provides relations which bear a remarkable analogy to the virial
expansion of various quantities of real gases. We demonstrate this point by
extracting the first-order expansion of the osmotic pressure 7 in the solute
density p4. This can be obtained by the use of the thermodynamic relation

on ) <6uA>
— ) =p,(A : 6.40
(aPA T, g A 0p,4 T, up ( )

Using (6.27) in (6.40), we get

on kT Pa—0
—) =———— = kT(1 - Gps+-). 6.41
()., =5 (- Gapat ) (641
This may be integrated to obtain
n
= pa— G (6.42)
This expansion is known in the more familiar form
n * 2
= Pt Biph (6.43)

where Bj is the analog of the second virial coefficient in the density expansion
of the pressure (see section 6.5)

p 2
r=P Bt (6.44)



164 DEVIATIONS FROM IDEAL SOLUTIONS

Thus, the virial coefficient B, in (6.44) depends on the pair potential. The virial
coefficient B} depends on the pair correlation function (or equivalently on the
potential of the mean force).

Next, we turn to the chemical potential of the solvent B for a system
deviating slightly from DI behavior. The simplest way of doing this is to use
relation (4.73) from the Kirkwood-Buff theory, which when written for the B
component and expanded to first order in x,, yields

<%> — kT (i — P3N g + - ) xs — 0, (6.45)
T,P

axB XB

where p% and A?«B are the limiting values of prand A,pas x4 — 0. Integrating
(6.45) yields

XA
,uB(T,P,xB):u‘g(T,P)—{—lean—i—/ kTS A% px, dxy, x4—0 (6.46)
0

Here, pOTA%B is independent of composition; hence, we can integrate (6.46) to
obtain

(T, Py xa) = ub(T, P) + kT In xp —i—%kTp%AOABxi, x4 — 0. (6.47)

Clearly, in the limit p4, — 0, we can replace pOT by p%, the density of the pure
solvent B at the given T, P. Note, however, the difference between the excess
chemical potential in (6.47), i.e., the last term on the rhs of (6.47), and relation
(6.19). These look very similar. Here the expansion is valid for small x, but
otherwise the value of p%AgB is unrestricted. In (6.19), on the other hand, we
have a first-order expansion in A ,p, which is required to hold for all compo-
sitions 0 < x, < 1.

6.4 Explicit expressions for the deviations
from IG, SI, and DI behavior

This section is devoted to illustrating explicitly the three fundamentally dif-
ferent types of ideal mixtures. The first and simplest case is that of the ideal-gas
(IG) mixtures, which, as in the case of an ideal gas, are characterized by the
complete absence (or neglect) of all intermolecular forces. This case is of least
importance in the study of solution chemistry.

The second case, referred to as symmetric ideal (SI) solutions, occurs
whenever the various components are “similar” to each other. There are no
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restrictions on the magnitude of the intermolecular forces or on the densities.
The third case, dilute ideal (DI) solutions, consist of those solutions for which
at least one component is very diluted in the remaining solvent, which may be a
one-component or a multicomponent system. Again, there are no restrictions
on the strength of the intermolecular forces, the total density, or the degree of
similarity between the various components.

Any mixture of two components can be viewed as deviating from one of the
ideal reference cases. This can be written symbolically as

a = a + kTIn(xayy’)
= ¢ + kT In(x473)
= ¢ + kT In(xayYY) (6.48)

where the constants ¢; are independent of x,. Here, 77,751, y2! are the activity
coefficients that incorporate the correction due to non-ideality'.

There are several ways of reporting experimental data on the deviations from
ideal behavior. The most common ones are either the activity coefficients of
each component, or the total excess Gibbs energy of the system. If the vapor
above the liquid -mixture can be assumed to be an ideal gas, then it is also
convenient to plot P4/P} as a function of x, where P, and P4 are the partial
pressure and the vapor pressure of A, respectively.

Figure 6.1 shows such curves for mixtures of carbon disulphide and acetone,
and the second for mixtures of chloroform and acetone. The first shows
positive deviations from SI behavior in the entire range of compositions; the
second shows negative deviations from SI solution.

We now consider two particular examples of a system which, on the one
hand, are not trivial, since interactions between particles are taken into
account, yet are sufficiently simple that all three activity coefficients can be
written in an explicit form.

6.4.1 First-order deviations from ideal-gas mixtures

We choose a two-component system for which the pressure (or the total
density) is sufficiently low such that the pair correlation function for each pair
of species has the form (see section 2.5)

8ap(R) = exp[—fUp(R)]. (6.49)

 For the purpose of demonstration, we have chosen T, P, x, as the thermodynamic variables.
A parallel treatment can be carried out for any other set of thermodynamic variables.
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Figure 6.1. (a) Reduced partial pressure (PA/PE) of carbon disulfide A= (CS,) as a function of the mole
fraction x4 in mixtures of CS, and B=acetone, at 35.2°C. (b) Reduced partial pressure (PA/PX) of
chloroform A= (CHCl5) as a function of the mole fraction x, in mixtures of CHCl; and B= acetone
at 35.2°C.

For simplicity, we have assumed that all the pair potentials are spherically
symmetrical, and that all the internal partition functions are unity. The general
expression for the chemical potential of, say, A in this system is obtained by a
simple extension of the one-component expression given in chapter 3.

1 00
ty = kTIn(p,A}) + pA/ dé/ Uaa(R)gaa(R, &)4nR* dR
0 0

1 00
+ pg / dé / Uap(R)gan(R, €)4nR* dR
0 0
= kTIn(p,Ad) + 2kTBaap, + 2kTBagpy, (6.50)

where we have used expression (6.49) with ¢U,z(R) replacing U,g(R) so that
integrating over ¢ becomes immediate. Also, we have used the more familiar
notation

B = —%/OOC {exp[—BU,(R)] — 1}4nR* dR. (6.51)

We now analyze equation (6.50) with respect to the various kinds of ideality.
For the purpose of this section, it is preferable to transform (6.50) so that u, is
expressed as a function of T, P, and x4. To do this, we use the analog of the
virial expansion for mixtures, which reads

BP = (pa+ pp) + [X3Baa + 2xaxpBap + x3Bas] (pa + pp)° + - (6.52)
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The factor in the square brackets can be viewed as an “average” virial coefficient
for the mixture of two components. We now invert this relation by assuming
an expansion of the total density p = p7 in the form

p=p4+pp=PP+CP +-- (6.53)

This is substituted into the rhs of (6.52). On equating coefficients of equal
powers of P, we get

P =Pa + Pp = ﬁp — (xiBAA + ZXAXBBAB + XéBBB)(ﬂP)Z + - (6.54)

Transforming p, = x4p and pg= xpp in (6.50), and using the expansion (6.54)
for p, we get the final form of the chemical potential:

14 (T,Pxs)=kTIn(xsA2)+kTInfP
+len[1—(xiBAA—i-ZxAxBBAB—Fxf;BBB)ﬁP]
+(2kTBaaxa+2kTBapxp) X [.BP—(xiBAA+2xAxBBAB+xlngBB)(ﬁp)z]
In the last form of (6.55), we have retained only first-order terms in the
pressure (except for the logarithmic term). We now view expression (6.55) in
various ways, according to the choice of the reference ideal state. Essentially, we

shall rewrite the same equation in three different ways, each viewed as deviating
from a different reference ideal state.

(1) Ideal-gas mixture as a reference system. For P — 0 (or if no interactions
exist, so that B,z =0), (6.55) reduces to

1Y = kTn(x,A}) + kT'In BP
= u(T, P) + kT In x, (6.56)

where ,uig (T, P) is defined in (6.4.9) as the IG standard chemical potential of A
(note its dependence on both T and P but not on x,).

Comparing (6.55) with (6.56), we find the correction due to deviations from
the IG mixture. The corresponding activity coefficient is

kT Iny'® = PByy — Pxi(Baa + Bgs — 2Bap), (6.57)
and hence

1 (T, P, x4) = (T, P) 4 kT In(x4y'S). (6.58)
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It is clear that 9!C measures deviations from ideal-gas behavior due to
all interactions between the two species. In equation (6.58), we have rewritten
the chemical potential by grouping terms which are included in ,u?f (T, P)
and in y'7.

(2) Symmetric ideal solution as a reference system. In the next case we assume
that the two components A and B are “similar” in the sense of section 5.2,
which means that

Ba + By — 2Bag = 0. (6.59)
This is the condition of an SI solution. Substituting in (6.55), we obtain
15 = kTn(xaA2) + kT In(BP) + PBaa
= p5 (T, P) + kT In x,. (6.60)
Clearly, 1% is the chemical potential of pure A at this particular T and P, and
therefore it depends only on the A — A interactions through Bs,. If, on the

other hand, the system is not SI, then we define the activity coefficient, for this
case, as

kT Iny3 = —Pxg(Baa + Bgs — 2Bag), (6.61)
and (6.55) can be rewritten as
Ha(T, Pyxa) = i+ KT (), (6.62)

where 79 as defined in (6.62) is a measure of the deviations due to the dis-
similarity between the two components. In (6.62), we rewrote (6.55) again by
regrouping the various terms in (6.55).

(3) Dilute ideal solution as a reference system. In this case, we assume that A is
very diluted in B, i.e., x4— 0, or xg— 1. This is the case of a DI solution.
Equation (6.55) reduces to

ugl = kT ln(xAAi) + kT ln(ﬁP) + P(ZBAB — BBB)
= ,ugx 4+ kT In x4, (6.63)
where p%* is defined in (6.63). We can easily transform (6.63) by substituting
Xa=palp in (6.63) and using (6.54) to obtain
iR = kT1n(p,A%) + 2PBag = 1 + kT1Inp, (6.64)

where ,u?f is defined in (6.64). Note that u%* and ,u(j\p do not include the term
B4, which is a measure of the solute-solute interactions. The word “interac-
tion” is appropriate in the present context since in the present limiting case, we
know that g,5(R) depends only on the direct interaction between the pair of
species o and f§, as we have assumed in (6.49).
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The activity coefficients corresponding to the two representations (6.63) and
(6.64) are obtained by comparison with (6.55), i.e.,

kT Iny " = 2x,P(Baa + Bps — 2Bas) (6.65)

kT Iny2"* = 2kTp,(Baa — Bag). (6.66)

In (6.65) and (6.66), we have retained only the first-order terms in x4 and in p 4.
Using these activity coefficients, the chemical potential in (6.55) can be
rewritten in two alternative forms:

1a(T, Pyixa) = 1 + KT In(a7) (6.67)
Ha(T, Pypy) = H(f)xp + len(PAVELP)- (6.68)

The different notations " and ;" have been introduced to distinguish

between the two cases.

6.4.2 One-dimensional model for mixtures of hard “spheres”

The second example where we can write the exact expression for the chemical
potential is a one-dimensional mixture of hard rods (i.e., hard spheres in one-
dimensional system). For a system of N4 rods of length (diameter) 64 and Np
rods of length o5, in a “volume” L at temperature T, the canonical partition
function is well known' (Ben-Naim 1992).

(L — Npyo 4 — Ngap)V

QUL L Ny Nb) = == 8 AN

(6.69)
from which one can derive the exact expression for the chemical potential

a(Tspaspp) = kTInp, Ay — kTIn(1 — p,04 — ppos)
kT(ps + pp)oa
+
1—pa 04— ppos

(6.70)

and in terms of T, P, p4 we have'

1+ py(op — 04)
1+ ﬁPO’B

us(T, P, py) :lenpAAA—i—O'AP—len{ ] (6.71)

T Note that in the one-dimensional case, the canonical partition function has the form of
Q= VfN /N!A where Vf\’ is the free volume. In this case, the quantity Vyis indeed the volume
unoccupied by particles. In the “free volume” theories of liquids, this form of the partition function
was assumed to hold for a three-dimensional liquid.

¥ This is obtained from eliminating pp from the equation of state (6.72) and substituting in (6.70).
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Also, the equation of state, and the virial expansion can easily be written for this
model:

P = Pa+Pp
1-— Pa0A — PpOB
_ Pr
1 — pp(xa04 + x505p)
= pr + BpT + Bapy + - (6.72)

where x4 = pa/pr and pr=pa+ pp is the total density. The virial coefficients
are given by

By = (x404 + xgop)<". (6.73)

Note that in this model we always have g = (64 + 05)/2. Transforming into
variables T, P, x4, we obtain the expression for the chemical potential

pa(T, P, x4) = kTInx4Ap + kT'In BP + g4 P. (6.74)

We now use the last expression to derive the three deviations, or the excess
chemical potential, with respect to the three ideal behaviors. As in the previous
case, we shall rewrite expression (6.74) in three different forms, as follows:

(1) Deviation from Sl behavior. For x4 =1, we obtain the chemical potential
of pure A at the same T, P, i.e.,

ph (T, P) = kTn BPA4 + 04P. (6.75)
Substituting in (6.49), we obtain
pia(T, Py xa) = (T, P) + kT In x4. (6.76)

This means that a mixture of A and B differing in size will always behave as an
SI solution. Hence, the corresponding excess function is zero:

EX,SI

E (6.77)

This result holds for any multicomponent one-dimensional system. The reason
that we observe SI behavior in the one-dimensional system of hard rods, but
not for systems of hard disks or hard spheres, is as follows.

The condition for SI behavior is that the coupling work of each molecule is
independent of the composition (in the P, T, N system). In the one-dimensional
system, each particle “sees” only two “hard points” (the surfaces) in its neigh-
borhood, one in front and one in its back. Hence, the average interaction free
energy is independent of the sizes of its neighbors. This property is particular to
the one-dimensional system.



THE MCMILLAN-MAYER THEORY OF SOLUTIONS 171

The SI behavior is also consistent with the condition A = Gau
+ Gpg—2Gap=0. In this model, it is easy to compute each of the KB
integrals.” The results are

Gy =~ a3+ i + py? (678)
where ¢; is the length (diameter) of the rod of species i.

Hence, the condition A,z=0 is fulfilled for all compositions.

(2) Deviations from DI behavior. Taking the limiting behavior, p, — 0, in
equations (6.70) and (6.71), we obtain

kT
2t = kTInp,Ay — kTn(1 — pgop) P4
1 —ppos
= kTInp,As + kT In(1 + Pog) + g4P. (6.79)

The excess chemical potential with respect to the DI solution is obtained from
(6.71) and (6.79).

Pt = g — !
= —leIl[l + pA(GB — GA)]
= kTp,(oa — 0p) + kT (64 — 05)°p% + - (6.80)

(3) Deviations from ideal gas (IG) behavior. Taking the limit P — 0, or p7 —
0, we have the ideal-gas chemical potential

W = kTInp,Ay. (6.81)
Hence, from (6.71) and (6.81) we obtain
EX,IG IG
Ky = Ha— Hy
1 P
:len[ + PPas ] 4+ g4P
1+ pA(O'B - O'A)

kT(pa + pp)oa
1 —py04— ppos

We have thus expressed the three forms of the excess chemical potentials

= —kTIn(1 — p,04 — 0p0p) + (6.82)

corresponding to the three cases of ideal behaviors.

6.5 The McMillan-Mayer theory of solutions

The McMillan—-Mayer (MM) theory is essentially a formal generalization of the
theory of real gases. In the theory of real gases we have an expansion of the

t Since we have an explicit expression for the chemical potential, we can also write explicit
expressions for the derivatives with respect to the various densities. Using the KB theory one can solve
for all Gj;. The procedure is lengthy but quite straightforward. Note also that for a one-component
system, one can get G directly from the compressibility expression, i.e., G= —2g + pa”.
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pressure in power series in the density (see chapter 1)
BP = p+ By(T)p? + By (T)p* + - -- (6.83)

where B, is the jth virial coefficient. Note that B/(T) is a function of tem-
perature. The MM theory provides an expansion of the osmotic pressure in
power series in the solute density. For a two-component system of A
diluted in B, the analogue of the virial expansion is

Br = pu+ Bs(T, 2g)p% + By(T, Ap)ply + - - (6.84)

In this case the coefficients B; are called the virial coefficients of the osmotic
pressure. Note that these virial coefficients depend on both the temperature
and the solvent activity Az, or the solvent chemical potential 45 = exp(Sup).

In the case of real gases, the terms in the expansion (6.83) correspond to
successive corrections to the ideal-gas behavior, due to interactions among
pairs, triplets, quadruplets, etc., of particles. One of the most remarkable fea-
tures of the theory is that the coefficients B; depend on the properties of a
system containing exactly j particles. For instance, B,(T) can be computed from
a system of two particles in a volume V at temperature T.

Similarly, the coefficients B; are expressed in terms of the properties of
exactly j solute particles in a pure solvent B at a given solvent activity Az and
temperature T. When Az — 0, we recover the expansion (6.83) from (6.84). In
this case we may say that the vacuum “fills” the space between the particles.
Thus, in (6.83) we have a special (and the simplest) “solvent”. In this sense the
expansion (6.84) is a generalization of (6.83).

In the MM theory, there is the distinction between the solute and the
solvent. The most useful case is the expansion up to p3, i.e., the first-order
deviation from the dilute ideal behavior. Higher-order corrections to the
ideal-gas equations are sometimes useful if we know the interaction energy
among j particles. This is not so in the case of the higher-order corrections to
the dilute ideal behavior. We shall soon see that B; is an integral over the pair
correlation function for two solutes in a pure solvent. Similarly, B; requires
knowledge of the triplet correlation function for three solutes in pure solvent.
Since we know almost nothing of the triplet (and higher) correlation func-
tions, the expansion (6.84) is useful in actual applications, up to the second-
order term in the solute density. For this limiting behavior the result we
obtain from the MM theory is identical with the result obtained in section 6.3,
from the KB theory. It is in this sense that the KB is a more general theory
than the MM theory.

We shall now derive the main result of the MM theory. More detailed
derivations may be found elsewhere (Hill 1956: Ben-Naim 1992).
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Consider a two-component system of a solute A and a solvent B at a given
temperature and activities A4 and A, respectively. The grand partition function
of such a system is defined by

B(T,V,ipda)=> > Q(T,V,Ng,Ns) 2 A"

N4>0Np>0

—ZZZA "ZZ\? '/exp [—BU(Np,N,)] dXNe axNa

Naxo NB>O

/ { 7' / exp| ﬁU(NB,NA)]dXNB} (6.85)
NA>O NB>0

where we have denoted

L
A (8m2)
Also, we have used the shorthand notation U(NgN,) for the total interaction
energy among the N, + Njp particles in the system.

In the limit of the dilute ideal solution, we already know the relation between
Aa and py4. This is

z, = (6.86)

tty = W(A|B) + kTnp,Adq;", (6.87)
where W(A| B) is the coupling work of A against pure B, or equivalently
ia = exp(Bis) = paNidy’ exp[BW(A[B)]. (6.88)
The limiting behavior of z, is obtained from (6.86) and (6.87), i.e.,

z48T>

Y% = lim = exp[fW(A|B)]. (6.89)
Pa—0 Py

Thus, y%, defined in (6.89), is related to the coupling work of A against pure B.

The general definition of the molecular distribution function of n,4 solute

particles in an open system (chapter 2) is

N4 _Np

na Ay =~ 2 % 5 A—NA B
pr(xm) =" " Zm/exp[—ﬁU(NB,NA)]dXN dx™
Np>ny Np>0 ’ ’

NNB

A rm=—=— z ,
=Za BT Z Z A/|I\1; '/eXp[—ﬁU(NB,NA—F HA)]dXNA ax™e
N, >0Np=>0 A

(6.90)

where E=E(T, V, A, A4). In the second form on the rhs of (6.90), we
have changed variables from N, >n, to N} = Ny — ny > 0. p"(X™) is the
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probability density of finding 7, particles at a configuration X" =X, ..., X,
in an open system characterized by the variables T, V, Ap, A4. The correlation
function for n, is defined by

pl™) (X™)
ol (x)™

zA871 — zA ZB
= < ) = Z Z NAING!

N;>0 Np>0

gm(xm) =

X / exp[—BU(Ng, Na + n4)] dX™* dXNe (6.91)

where p 4 is the average density of A (in the open system), and we have replaced
N/, by N,; otherwise, the sum in (6.90) is the same as the sum in (6.91).

We now take the limit p, — 0 or (z4 — 0; the two are proportional to each
other at low density). In this limit, z487*/p, — 79, and all the terms in the sum
(6.91) are zero except those for which Ny = 0. Therefore, denoting

g™ (X";z4 = 0) = lim 8 (m) (XM, 24), (6.92)

pa—0
we obtain from (6.91) the expression

g (X520 = 0) = ()" E(T, V, 45) "'

NB
x{ / exp| ﬂU(NB,nA)]dXN"}. (6.93)
NB>O

Clearly, for pure solvent B (p4 =0, or z4 = 0) there are no solute particles and
therefore one cannot define the correlation function among the solute particles.
The quantity defined in (6.92) is the correlation function among n,4 solute
particles when the density of all the remaining solute particles becomes zero. In
other words, g(”A) (X"3;z4 = 0) is the correlation function for exactly n, solute
particles at configuration X™ in a pure solvent B.

Next we note that the expression in curly brackets in (6.93) is the same as in
(6.85) except for the replacement of N4 by n4. Hence, we rewrite (6.85) using
(6.93) as

- _ (ZA/VOA)NA = ) (Na) (xNa.y, — Ny
E(T, V, )LB, AA) = Z T:‘(T, V, /LB) g (X O)dX
Na>0 A

(6.94)
We now define the potential of mean force for Ny A molecules in a pure
solvent B, by

W(XN5z4 = 0) = —kT'In g™ (XN4;24 = 0). (6.95)
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We also recall the fundamental relation between the pressure of a system and
the grand partition function

P(T,V, 5 ia)V = —kTInE(T, V, ip, in) (6.96)

and for pure B
P(T,V,ip)V = —kTInE(T, V, 1p). (6.97)
In (6.96), P(T, V, ip, A4) is the pressure of a system characterized by the
variables T, V, Ap, A4 whereas P(T, V, Ap) in (6.97) is the corresponding

pressure of the pure solvent B at T, V, Ag. The difference between these two
pressures is, by definition, the osmotic pressure, thus

nV = [P(T, V, }vB,iA) — P(T, V, )B)]V

E(T,V, g, 2a)
= —kThh|————F= 6.98
n[ =(T, V, /p) (6.58)
Denoting
(=22, (6.99)
VA
we can rewrite (6.94) a
exp(fnV) = Z A / exp[—fW (XN z4 = 0)] dX™M. (6.100)

Na>0
This result should be compared with the corresponding expression for the one-

component system
N

exp(BPV) = Z% / exp[—BU(XN)] dXV. (6.101)

N>0
In (6.101), we have expressed the pressure of a one-component open system as
integrals over the potentials of N particles ux™). Similarly, in (6.100) the
osmotic pressure is related to integrals over the potentials of mean force of N
solute particles, W(X"*; z,=0) in a pure solvent B.

The virial expansion of the osmotic pressure, although formally exact, is not
very useful beyond the first-order correction to the DI limiting case. Higher-
order correction terms involve higher-order potentials of mean force about
which very little is known.

The derivation of the virial expansion of the osmotic pressure is quite
lengthy. We present only the final result for the second virial coefficient in the
expansion of the osmotic pressure

pr=p,+ Bipi+ - (6.102)

which is essentially the same as the first-order expansion of the pressure, except
for the replacement of the virial coefficients B; by B;.
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The explicit form of the second virial coefficient in the expansion (6.102) is

B = —%/OOO {exp[—ﬁwﬁ(R)] - 1}47IR2 dR, (6.103)

where W/(j‘) (R) is the potential of the mean force between two solutes A at a
distance R, in pure solvent Bat a given T'and ug. As expected, the coefficient B;
is related to Wf(éf (R) in the same manner as B, is related to U(R) for real gases.
When we let 15— 0 in (6.103), W/(é) (R) — Uaa(R) and B; — B;.

Using the notation of the KB theory, we arrive at the relation between B; and
the KBI

B; = —1G},, (6.104)

where GY, is the limit of G44 when p4 — 0.

We conclude this section by noting that until the 1980s the MM theory
has enjoyed far more attention than the KB theory. This is quite strange in
view of the fact that the KB theory is easier to derive and easier to use. Its scope
of application is far more wide and general, and its interpretive power is
greater.

6.6 Stability condition and miscibility based
on first-order deviations from Sl solutions

In this section we discuss the stability conditions of a mixture with respect to
material flow. There are several ways of expressing the condition of stability.
The simplest is in terms of the derivatives of the chemical potential.

Consider a mixture of two components A and B at some given T and P. Let
x4 = Na/(N4+ Np) be the mole fraction of A. The condition of stability is

<%) >0. (6.105)
Oxa P,T

Basically, this condition means that if a fluctuation occurs at some region in the
system such that x, increases relative to the bulk composition, then the cor-
responding chemical potential in that region must increase. As a result of this,
A will flow out of the region, and the equilibrium composition in this region
will be restored.
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Another way of expressing the stability condition is in terms of the Gibbs
energy of the system. If G is the Gibbs energy of the mixture, then
G = Nafiy + Napig. (6.106)
Taking the second derivative with respect to x4 and using the Gibbs—Duhem
relation, we obtain

2 1 1
<6_<§> = — (%) - <%> >0 (6.107)
0x3 pr  XB Ox pT (1 — xp) \Oxp pT

where g= G/(N,+ Np). Thus the condition of stability is equivalent to a
positive curvature of g (or G) when plotted as a function of x4.

Geometrically, a positive curvature means that the curve is upward concave.
For concave functions the following theorem holds. If a function f{x) is upward
concave, i.e., if 0 f/0x? is positive in some region say between x¥' < x < x”, then
any point on the straight line connecting f{x’') and f{x"") (point a in figure 6.2)
must lie above the point f{x) on the curve (point b in figure 6.2). The physical
significance of this theorem is the following.

If g(x) has a positive curvature in some region ¥ <x<x", then a single-
phase mixture of composition x is always more stable than any pair of phases
with compositions ¥ and x” at equilibrium.” When g(x) has a negative cur-
vature, the single phase with composition x is less stable than a pair of mixtures
of compositions ¥ and x”. In figure (6.3), we show g(x) that is a downward
concave in the region («, X¥’). Any point on the curve g(x) has a higher Gibbs
energy than a pair of mixtures with compositions ¥ and x’, and overall
composition x. Therefore, the single phase will split into two phases. The total
quantities of the two phases can be calculated as follows.

T In this section, g(x) is the Gibbs energy per mole of the mixture, and x is used for x,.
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The conservation of the total number of A’s and B’s in the system is

Ni=N,+N’,  Nzy=Nj+N. (6.108)
The corresponding mole fractions are
x' = N,/(N\ + Np), x" = N} /(N} + Np). (6.109)
Hence, the overall composition x may be expressed in terms of X' and x” as
follows
Ny N, N, +Nj N, N/ + Nj
X = =
Ns+Ng N, + NpNys+ Ng N+ NjNs+ Np
=ox' + (1 — a)x" (6.110)
where 0 <o <1 1is
N/, + N
o= AT (6.111)
Na + Np

Thus, in this case we have

g(x) >oag(x') + (1 — o) g(x"). (6.112)
Hence, the single phase at x will split into two phases with compositions ¥ and
X', with proportional quantities o and (1 — o).
When the system is SI then

g = xa(pdy + kTInxs) + xp(uf + kT In xp) (6.113)
and

o’ kT

“2) =250 forall xy, 0< x4 < 1. (6.114)

0x; pT  XAXB

This guarantees that there are no two mixtures of composition x’ and x” that
are more stable than the mixture with composition x,. In other words, the two
components A and B are miscible in the entire region 0 <x, <1.
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If the system is not SI, then there could be regions for which the curvature of
g(x) is negative. First note that negative curvature cannot be realized in the
entire range of composition 0 < x4 < 1. If this happens then for each mixture
with composition x, there are two pure phases of A and B with overall com-
position x such that the two pure phases are more stable than the one-phase
solution. Clearly this cannot happen for all x4. We know that at very dilute
solution, the system obeys Henry’s law which is equivalent to

2
<6_§2;> = KT >0 (at x4 = 0). (6.115)
0x3 pT  XAXB
Thus, whenever either x4 — 0 or xz— 0, we must have positive curvature of
g(x). Physically this means that the two strictly pure phases cannot exist at
equilibrium when at contact. Since the chemical potential of say A in pure B
will be — oo, this will produce infinite driving force for A to flow into pure B,
and the same applies for B to flow into pure A. Of course, this theoretical
condition might not be realized in practice. In extreme cases, the solubility
could be less than, say 10~ 30 mol/cm? which means that on average one cannot
find even one A molecule in one mole of pure B. In general, the curve of g(x) is
similar to the one drawn in figure 6.3, i.e., the one-phase mixture is stable near
x=0 and x=1 but in the “inner” region 0 <x <x<x’ <1, there are two
phases with compositions ' and x”, the combined Gibbs energy of which is
lower than the Gibbs energy of the one-phase mixture at x. In this region, no
single phase exists with composition x, ¥ <x<x".

We now turn to examine the molecular origin of this kind of instability. We
first use the first-order deviation from SI solution (see section 6.2)

1a(T, P, xa) = pihy + kT Inxs + kT p A apx. (6.116)
This is equivalent to
g = xailhy + xpuf + kTxaInx + kTxzInxp + kTprxaxgAap.  (6.117)
If prA4p is independent of x4, then

0’g kT
— =———kTp A p. 11
(ax%‘)Pj XaXa kTprAap (6.118)

The following discussion is the “traditional” way of examining the condition of
stability. It was originally discussed in the context of the lattice model of
mixtures (see below).

First, when A,5< 0, the curvature is always positive hence the one-phase
system is always stable. A negative A p means that G44 + Gpp < 2Gyp, i.e., the
affinity between A—B pairs is larger than the average of affinities between A-A
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and B-B pairs. This makes sense since if A “prefers” to be surrounded by B
more than by A, and B “prefers” to be surrounded by A rather than by B, the
mixture will always be more stable than two separate mixtures. It should be
stressed however, that this is true only within the first-order deviations, as
expressed in 6.116-6.118. See also section 6.7.
Second, when A 5> 0, but small, i.e.T,
0<phus< —— < 4 (6.119)
XAXB
we shall still have a stable one-phase system. However, whenA 45> 0 becomes
very large, such that pA,z>4 then the curvature changes sign and becomes
negative. Hence, the one-phase system is not stable. A large positive value of A,p
means that G44 + Gpg > 2G4, meaning that the average affinities between A-A
and B-Bis larger than the affinity G,p. Again, it makes sense to expect instability
in this case but one must be careful in reaching any conclusion regarding the
stability for | pA| >4 since in this case the first-order expansion we have used
(equation 6.116) might not be valid. See also section 6.7, and Appendix M.

In figure 6.4, we present a few examples of negative deviations from Raoult’s
law, ie, P;= PA/P2<xA, for different values of pAjsg= -5, —4,
—3, —2, —1,0. It is seen that the system is stable in the entire range of com-
positions. Note that since p is always positive, the sign of the deviation is
determined by A4p.

Figure 6.5 shows some examples of small positive deviations from Raoult’s
law, pAsp=0, 1, 2, 3, 4. Again in this case, the system is stable in the entire
range of compositions. Note that when pA 4,5 =4, the curve for P; = P4/ P has
an inflection point at x4 =1. Figure 6.6 shows the behavior for large values of
pAsp =4, 6, 8. Here for each value of pA ,p >4, we have a region of instability
where Ou,/0x, becomes negative, or equivalently the excess of Gibbs energy
becomes concave downward. In all of these cases, the instability region is
around the center x, =1, and there are always two regions of stability near the
edges x4~ 0 and x4~ 1. The latter becomes narrower as we increase pA,p. A
summary of the regions of stability and instability is shown in figure 6.7.

We now turn to some simple examples where A 45 can be calculated. We still
stay within the first-order deviation from ideal symmetrical solution.

(1) Mixture of gases at very low Pressure. In the limit of P— 0 or pr— 0, we
have

Gy = /OOO {exp[~BU;] — 1}4nR* dR. (6.120)

T In the following we use p instead of pr.



Figure 6.4. Negative deviations
from Raoult's law. Plots of PA/PLJ (or
the activity) as a function of x4 for
different values of pAg= —5,
—4, =3, =2, —1, 0. The larger
| pPAsg| the farther the curve from
the diagonal line.

Figure 6.5. Small positive devia-
tions. Same as in figure 6.4 but with
pA=0,1,2, 3, 4.

Figure 6.6 Large positive devia-
tions. Same as in figure 6.4 but with
,OAAB:4: 6, 8.
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Figure 6.7. Region of stability and instability as determined by pA 45, based on first-order deviation from
S| solutions.

Note that this is not a theoretical ideal gas. We take the limit P— 0 for a real gas
mixture. U;(R) is the pair potential for the 7j pair. We assume that the pair
potential has a square-well form, i.e.,
oo for R<aj
Uij(R) = ¢ —¢; for ¢; <R<a;+3; (6.121)
0 for R>0j + 0

where 9;;is the range of the potential. If all f¢;; are small, we can write (6.120) as

ojj Gii+0i
G;j = / (—1)4nR* dR + / BeiiAnR* dR
0 gij
4na},
= —T—FﬁSijV,j. (6.122)
The first term on the rhs of (6.122) is due to the “hard” part of the interaction;
it equals the volume of a sphere of radius ¢;;. The second is due to the “soft”
part of the interaction; here, V;; is the region where the soft part is operative.
One can easily see that for hard-sphere mixtures’ (i.e., all &;;=0) Ayp <0, hence
the curvature of g is always positive.
Next suppose that A and B have the same size and the same interaction range,
ie., Vjj= Vi, but differ in the soft interaction parameter &;; in which case

Asp = BVint[ean + eps — 2eap)]. (6.123)

Here we obtain A >0 whenever g s+ &g > 2645 and A, <0 whenever
eaa+ epp<2éesp. It is tempting to conclude that in these two cases we shall
obtain stable and unstable mixtures, respectively. However, we must remember
that in the limit of P— 0, p7= fPand p1Aag= f>PVinc[ean + 655 — 2645) must
be small. Therefore, one cannot predict the behavior at large values of | prA 5] .

Thus, from the above discussion one can predict the occurrence of positive
or negative deviations from SI solutions. But since in this limit P— 0, and
pr— 0 we also expect | prAp| to be small, therefore we must have miscibility
in the entire region of compositions.

 Note that this is true for hard spheres which obeys g 45= (044 + 04p)/2. In a one-dimensional
system, A =0, see section 6.4.



ANALYSIS OF THE STABILITY CONDITION BASED 183

(2) Lattice model of solutions. In a lattice model of mixtures (Guggenheim
1952) the size of particles are assumed to be nearly the same. Hence A and B can
occupy the same lattice sites. It is well known that in this case the deviations
from SI solutions are expressed in the form (see Appendix M)

2
zZWxj

s = 4+ kTlnxy — (6.124)
where W= E,, + Egg— 2E4p is the so-called exchange energy. E;; <0 are the
interaction energies between i and j on adjacent sites, and z is the coordination
number or the number of nearest neighbors to any site. The condition for
instability is when W is large and negative, i.e.,

W = Eaa + Egg — 2EA <0 (6125)

(note that Ej; <0, whereas ¢;; in (6.123) are positive).

Most of the analysis of the conditions for stability were carried out using
equation (6.124) (see Guggenheim 1952; Denbigh 1966; Prausnitz et al. 1986).
Unfortunately, it was not explicitly recognized that the expression (6.124) is the
first-order deviation from SI. However, going through the arguments reveals
that at some point one uses the approximation

(%) e, (6.126)

This “elevation” of the average sign to the exponent is valid only when X is
small compared to unity. For more details, see Appendix M. Failing to
recognize the “first-orderness” of the expression (6.124) has misled almost two
generations of scientists to conclude that large positive deviations in the sense of
prAap> 0 lead to instability, but, large negative deviations do not produce any
instability. It should be stressed however, that either (6.116) or (6.124) are valid
only for small values of |pA,p| or |zW], respectively. Therefore, no con-
clusions should be reached for large deviations from SI behavior. This point
will be further examined in the next section.

6.7 Analysis of the stability condition based
on the Kirkwood-Buff theory

In section 6.6, we have examined the conditions for stability using the first-
order deviations from SI solutions. The regions of stability and instability were
summarized in figure 6.7.
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We noted in section 6.6 that care must be exercised when examining the
conditions for stability, based on first-order deviations. The reason is simple —
the first-order expansion is valid only for small values of p7A 4p. Clearly, one
cannot use the first-order expansion to examine the behavior of these solutions
at large values of | prA | . To the best of the author’s knowledge the molecular
conditions for stability were never studied beyond the first-order correction to
SI solutions'. This is true also within the lattice theories of solutions where the
conditions for stability were examined in terms of the exchange energy W, in
equation (6.124).

In this section, we examine the conditions for stability using the exact result

of the KB theory
g _ 1 (Ouy
0x2)  xp \Oxa T

_kT <i xppAap >

xg \%a 1+ xaxgpAag
B kT
B xpxa(1 + xaxppAap)
As in section 6.6, we shall examine the conditions under which the derivative in
equation (6.127) is positive, i.e., when the free energy is concave upwards. The

(6.127)

examination of the excess chemical potential, or the activity coefficient, is less
convenient in this case since it requires integration of equation (6.127). In most
of what follows we assume that A,y is independent of the composition. We
shall examine the conditions under which the rhs of (6.127) changes sign.

First, it is clear that for any positive values of pA,p, the system is stable
everywhere, i.e., the Gibbs energy of the system is concave upwards, in the
entire range of compositions. This is in sharp contrast to the conclusion based
on the first-order expansion, where we found that instability ensues when pA 43
became large and positive beyond pA 4> 4. See figure 6.7.

Second, for pA sz < 0 we have two regions.

(1) For —4 < pAp< 0 (in the entire range of compositions) the rhs of (6.127)
is positive, and the system is stable.

(2) At pAgp= —4 the derivative diverges at x4 = xB:% and for pAg< —4, we
have regions of stability at the edges, i.e., near x4 ~ 0 and x4~ 1 but
instabilities in the center of the composition range.

This is summarized in figure 6.8 which should be compared with figure 6.7
of the previous section. Note that in the region where |pA,p| <4, the two

' Much work has been done on the regions of stability and instability using empirical expression for
the excess free energy; see, for example, Prausnitz et al. (1968) and Novak et al. (1987).
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Figure 6.8. Region of stability and instability based on the exact KB expression (6.127).

figures agree. They do not agree for larger values of | pA,p| > 4. For larger

values of | pA,p| the use of the first-order expansion should not be trusted.
The reason for this discrepancy is quite simple. If we expand the rhs of

equation (6.127) in a power series about the point pA 5= 0, we have

o’ kT
(ﬁ) :% [1 —xAprAAB+ (XAXBPAAB)Z—(xAprAAB)3+' . ] . (6 128)
A/ P, T

Clearly, we can trust the first-order expansion only for small values of | pAp].
As we have seen in section 6.6, positive values of pA,p lead to positive devia-
tions from Raoult’s law, and negative values of pA 45 lead to negative deviations
from Raoult’s law. However, once we get beyond the first-order deviations
from SI solutions, one must use higher-order terms in the expansion, or better,
the exact analytical expression (6.127) which is valid for all values of pA,p
except for values of pA 3 where the denominator is zero.

We next turn to some numerical illustrations of the behavior of the deri-
vative (6.127) for different values of pA 4.

In figure 6.9, we plot the second derivative of g with respect to x,, for a few
values of pA 4. First, for values of pA, =0, 1, 2, 3, 4 we have a stable phase
in agreement with the case of the first-order deviations. For pA, =4, 6, 8 we
find a stable phase, in disagreement with the case of the first-order deviations.
For pA,g= —0.35, —0.36, —0.37, —0.38, —0.39 we still have a stable phase,
but as pAsp approaches pA,p= —4, the second derivative of g diverges at
X4 =xXp=1.

Figure 6.10 shows what happens when pA 45 decreases beyond —4. Recall that
within the first-order deviations, we found that the system is stable. Here,
however, once we pass below pA < —4 we have instability in the “inner”
region of compositions (around x4 = %), but stability in the “outer” region, i.e.,
near the edges of x4, ~ 0 and x4 ~ 1. Clearly as pA 45 becomes more negative, the
region of instability widens and the regions of stability are pushed towards the
edges. This again is in contrast to the conclusions reached in section 6.6. For each
value of pA, p< —4 there are two points at which the rhs of equation (6.127)
diverges. The two points are the solution of the equation 1 4 x(1 — x)pAg=0.
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Figure 6.9. The second derivative of g (the Gibbs energy of the system per mole of the mixture) as a
function of x4 for various values of pA 45: (a) small positive values of pAss=0, 1, 2, 3, 4. The upper curve
is for pAp=0, the lower for pA z=4; (b) large positive values of pAss=14, 6, 8 (the upper curve for
pA 5= 14, the lower for pA 5= 8); (c) small negative values of pAsz= —0.35, —0.36, —0.37, —0.38
and —0.39; (d) divergence of the derivative at x4 = 1/2 for the case pAs= — 4.

In figure 6.11, we plot the pair of compositions (', ¥’) between which the
system is unstable. In this particular example all the pairs (x/, x/) are sym-
metrical about xA:%. This is a result of the choice of a constant value (i.e.,
independent of composition) of pA ,p. Clearly for pA 5> 4, there are no real
solutions to the equation 1+ x(1 — x)pAp=0. For pA, 5 <—4 there are two
solutions ¥/, /. These are plotted for different values of pA 4.

Finally, we note first that in all our calculations, we have assumed that
pAap is constant in the entire range of composition. In real systems we
should expect that pA,p will change with composition. This will affect the
details of the regions of stability and instability but grossly the qualitative
behavior should not be much different. In figure 6.12, we present two
examples of the behavior of the second derivative of g for two cases when
pA,p depends linearly on x4. Second, we recall that the KB theory and the
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Figure 6.10. The second derivative of g as a function of x, for large negative values of pAs= —4.1,
—4.5, —6, —10. In each case there are two points x4 (symmetrical about x,= 1/2) at which the curve
diverges.

result we have used in equation (6.127) is valid for stable mixture. This was
explicitly assumed in chapter 4 when we inverted the matrix B. The existence
of the inverse matrix is equivalent to the assumption of stability. Therefore,
one cannot use the KB theory to study systems that are unstable with respect
to composition. In Appendix P we further examine the relation between
deviations from SI as measured by pA,p, and experimental deviations from
Raoult’s law as measured by P4/P§ or by the activity coefficient 3.

6.8 The temperature dependence of the region
of instability: Upper and lower critical
solution temperatures

In sections 6.6 and 6.7 we have analyzed the region of stability for a constant
value of pA 45. We have seen that when the “magic” value of —4 is crossed, we
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Figure 6.12. Asin figure 6.10 but now we assume that pA 45 is a function of composition. This particular
illustration is for pAag= — 10 + ax, with different values of a as indicated.

pass from stable to unstable mixtures.” In this section we examine the
conditions under which we get upper and lower critical solution temperatures
(UCST and LCST, respectively). These are obtained when, as a result of change
in the temperature (or the pressure) we cross the “magic” border of
pA p= —4. We shall still assume that pA 43 is independent of composition, but
assume that it is a function of temperature. To obtain a UCST or LCST we must
cross the borderline of pA 5= —4. We now examine a few possible cases of the
temperature dependence of pA 5= f(T). In all cases, in order to obtain either a
UCST or a LCST, the function f{T) must cross the borderline of {T) = —4 at
least once.

T The unique value of pA,z= —4 is simply a result of the fact that the product x,4(1 — x4) has a
maximum value of 1/4 at x, = % Hence, whenever pA 5= —4, the denominator of equation (6.127)
becomes zero. The divergence of the derivative at exactly x4 =1 is a result of the assumption of pA 5

being independent of composition.
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Figure 6.13. (a) A T(x) diagram for a linearly increasing function of f(T). In this particular illustration
f(T)= —6+2T. (b) As in (a) but for a linear decreasing function f(T). Specifically f(T)= —3 —T.

(1) A linearly increasing function of T. Figure 6.13a shows a linearly increasing
function f{T) that crosses the line at — 4. Clearly, as long as f{T) is below —4,
we have a region of instability with a width (x;(T'), x, (T')). As the temperature
increases, the width of the instability region decreases and at the temperature
where f{(T) = — 4, the region of instability shrinks to zero. Beyond {T) = —4
we have a single stable phase. This is the case of a UCST. In figure 6.13 we show
both the function f{T) and the corresponding T(x) diagram.

An example of a system with a UCST is a mixture of n-hexane and nitro-
benzene. At one atmospheric pressure, this system has a critical temperature at
about 19°C.

(2) A linearly decreasing function of T. Figure 6.13b shows a simple linearly
decreasing function f{T) that starts above the line —4 and cross downward
below —4. As long as f{T) is above — 4 we have a single and stable phase.

Once we cross the borderline, we have an incipient instability — the system
splits into two phases with compositions (x; (T), x, (T)). At the temperature
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Tc when we cross the line — 4, we obtain a LCST. An example of the system
with a LCST is a mixture of water and diethylamine, which has a critical
temperature at about 143.5°C.

In both of the examples above, we have assumed that pA 4 is independent of
composition and that the dependence of pA,p on the temperature is linear.
Clearly if the temperature dependence is nonlinear, but still monotonically
increasing or decreasing functions of T, we shall obtain UCST and LCST,
respectively. If, on the other hand, pA,p is also a function of x,, then we lose
the symmetrical behavior of the T(x) diagram, but still the general phenom-
enon is the same.

(3) A function f(T) that crosses the borderline twice; upwards then downwards.
Figure 6.14a shows an example of a function f{T), here chosen as a parabolic
function that starts at low temperature, below —4, at higher temperature cross

(b) -
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Figure 6.14. (a) As in figure 6.13 but with a parabolic function f(T). In this illustration
f(T)= —10+48T— 272 (b) Here again we have a parabolic function but concave downwards, specifically
f(T)=2—8T+2T.
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Figure 6.15. (a) A possible system with three critical temperatures, first UCST then LCST, then UCST
again with f(T)= —40+43.6T— 16.6T2 4273, (b) A possible system with four critical temperatures,
first UCST followed by LCST, UCST, and LCST, with f(T)= — 22+ 23T — 11724+ 273 —0.1T%,

the line —4 upwards, then at even higher temperature crosses again the bor-
derline —4 downwards. The corresponding behavior of the T(x,) diagram is
simply a combination of the two cases (a) and (b) of figure 6.13. Initially, when
pA 45 < —4 we have instability in the region (x;(T), x, (T)), at crossing the
border line at —4, we enter into a single-phase region, and stay there as long as
fT) is above —4. Once the function f{T) crosses the borderline again we enter
into an instability region. The T(x,) will show first a UCST and then a LCST.
An example of such a system where two-phase regions are separated by a one-
phase region is carbon dioxide and ethane. This kind of behavior is observed in
solutions of polymers (Sandler 1994).

(4) A function f(T ) that crossed the borderline twice; downwards then upwards.
Figure 6.14b shows what happens when the function f{T) crosses the border-
line twice, first downward then upwards. In this case we get first a LCST at low
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Figure 6.16. An asymmetric 7(x) curve obtained for a system for which pA s is a function of Tand x.
pAs5=(—6+0.5% + (0.1 + 0.8XT. This system shows a UCST at a mole fraction of about x=0.4.

temperature, then a closed loop of instability region at higher temperature and
eventually reaching a UCST at higher temperature. Examples of such a closed
loop with UCST and LCST are mixtures of nicotine and water, and of glycerol
and water.

(5) A function that crosses the borderline thrice. Figures 6.15 shows two
possible cases. In (a) the function f{T) crosses the line — 4 three times; first
starts lower than — 4, crosses the borderline upwards, then crosses downwards
and then crosses upward again. A second possibility is shown in (b) where the
function f{T) crosses the line —4 four times.

One can go on and examine more complex functions f{T) that cross the
borderline many times; the corresponding T(x) diagram would have as many
LCST and UCST as the number of times the function crosses the borderline.
Theoretically, there is no limit to the number of LCST and UCST, the only
question is whether there are real mixtures for which pA 45 will have this kind
of complex behavior.

Figure 6.16 shows an example for which pA 45 is a function of both T'and x:
pArp=(—6+0.5x) + (0.1 +0.8x) T. This system shows a UCST at a mole
fraction of about x=0.4.



SEVEN
Solvation thermodynamics

The study of solvation thermodynamics has a very long history. Almost any
experiment carried out in a solution necessarily involves solvation. Prior to the
1970s there were several quantities referred to as standard Gibbs energies of
solution (or hydration, when the solvent is water). All of these were defined in
terms of a process of transferring of a solute from a specified standard state in
the gaseous phase into some other standard state in the liquid phase. It was not
at all clear which of these quantities is truly a measure of the Gibbs energy of
interaction between the solute and the solvent. It is no wonder that Lewis and
Randall (1961) have written on this matter: “Of all the applications of ther-
modynamics to chemistry, none has in the past presented greater difficulty, or
been subject to more misunderstanding.”

Traditionally, solvation was studied within the context of thermodynamics.
In this context, it could be studied only in the limit of very dilute solution, i.e.,
in the concentration range when Henry’s law is obeyed.

In 1978, a new process of solvation was introduced along with the corre-
sponding thermodynamic quantities (Ben-Naim 1978, 1987). Initially the new
measure was referred to as “nonconventional,” “generalized”, and “local”
quantities. It was only much later, after I had been convinced that these
quantities are the only bonafide measure of solvation, that I claimed the already
used term “solvation thermodynamic quantities” to the newly introduced
quantities. With this new concept, the study of solvation became a powerful
tool to probe the extent of interaction between the solute and the solvent, and
the effect of the solute on various molecular distribution functions in the
solvent. We shall study these aspects of solvation in the following sections.
Before doing that, we present here several situations in which the concept of
solvation Gibbs energy arise “naturally,” hence justifies its study. The rest of the
chapter is devoted to the study of solvation of different systems with increasing
degree of complexity.

T This paper was entitled: “Standard thermodynamics of transfer. Uses and misuses.” Later in 1987,
a monograph was published where all the advantageous aspects of the new quantities were spelled out
in great detail.
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7.1 Why do we need solvation thermodynamics?

Consider a general chemical reaction in the gaseous phase, written symboli-
cally as

R—P (7.1)

where R stands for all the reactants, and P for all the products. If the reaction
(7.1) is carried out in an ideal-gas phase, then one can compute the equilibrium
constant of this reaction, as well as the corresponding standard thermodynamic
quantities of this reaction, from the knowledge of the properties of all the
molecules involved in the reaction. For many relatively simple reactions, one
can actually compute the partition function of each of the species involved
in the reaction and from that, the equilibrium constant by the well-known
procedure of statistical mechanics.
First, the chemical potential of each species is written as

i =kTlnpAlq; " = i + kTInp, (7.2)

where p; is the number density, Af the momentum partition function (or the
de Broglie thermal wavelength), and ¢; include all the internal partition
functions of the species i.

At any given P, T and composition N=(Nj, ..., N,) of the system, the total
Gibbs energy is given by

6= Nu, (7.3
i=1

where the sum is over all c-components in the system (including all reactants
and products). At equilibrium, the Gibbs energy must attain its minimum with
respect to the “reaction coordinate;” any infinitesimal change in the compo-
sition of the system away from the equilibrium composition must increase the

Gibbs function. This leads to the well-known equilibrium condition'

Z vip; =0 (7.4)
i=1

where v; is the stoichiometric coefficient for the species i in the reaction (7.1).
By convention, v; is positive for the products and negative for the reactants.
Using the expression (7.2) for each of the species involved in reaction (7.1), we

! See, for example, Prigogine and Defay (1954), or Denbigh (1966).
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arrive at the expression for the ideal-gas equilibrium constant
i vit¥ + kT'n H Pl =0, (7.5)
i=1 i=1

or equivalently,
ke = [[ o = expl—pAGY 7.6)

i=1
where AG® is the standard Gibbs energy of the reaction in the ideal-gas phase
AG% = i: vi,u?g. (7.7)
i1

As a simple example, suppose two monomers (M) form a dimer (D). The
reaction is

2M < D. (7.8)

The equilibrium constant, and the corresponding standard Gibbs energy of this
reaction, are

. ig
K8 = <'0—2D> = exp|—BAGY] (7.9)
M/eq
and
AGYS = u% — 2158 (7.10)

where “eq” indicates that the ratio is evaluated at equilibrium. Now, suppose
that we carry out exactly the same process, at the same P, T, but in some sol-
vent . How is the equilibrium constant (and the corresponding standard
Gibbs energy) modified by this transfer? The qualitative answer, as suggested by
inspection of figure 7.1, is that each chemical potential in (7.3) is modified by
the appropriate coupling work W(i), hence

w; = W)+ kTlnp,Alg; " (7.11)
The modified equilibrium constant in the liquid phase is
pp\ :
K' = (—) = exp[—PAGY] = K¥ exp|—f(Auy — 28i5)]  (7.12)
M/eq

where Ay’ is the solvation Gibbs energy of the component i. This will be defined
more precisely in section 7.2. It is clear that in order to obtain the standard
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Figure 7.1 Schematic diagram showing the relation between standard free energies of reaction in two
phases (ideal gas and a liquid), and the corresponding solvation Gibbs energies of all the species involved
in the reaction.

Gibbs energy in the liquid phase, we have to transfer each of the species from
the ideal-gas phase into the liquid. This transfer involves the solvation Gibbs
energies of all the species participating in the reaction.

The second situation, where the solvation Gibbs energy features naturally, is
in the distribution of a solute s between two phases « and f3. Let a solute s be
distributed between two phases o and f8. At equilibrium, we have

=il (7.13)

Hence,

B
(%) = exl-pan? - auol (7.14)

S
Thus the distribution of s between the two phases « and f is determined by the
difference in the solvation Gibbs energies of s in the two phases. As we shall see
in the next sections, relation (7.14) is actually used to measure the solvation
Gibbs energy when one of the phases is chosen to be an ideal-gas phase. Thus,
when « is an ideal-gas phase then

!

(f) = expl—pAu) (7.15)
N eq

which defines Au:' of s in the liquid I We shall discuss this definition of the

solvation quantities in detail in the next section.

Beyond the importance of the solvation Gibbs energy in calculating equili-
brium constants in solutions, or solubilities (which is also an equilibrium
constant), the solvation Gibbs energy and its derivatives are themselves valuable
tools for studying the interaction between the solute (or any molecule) and the
solvent (or any liquid in which the molecule is immersed), and the effect of the
inserted molecule on the solvent, such as structural changes in the solvent or
the effect of the solute on various molecular distribution functions of the
solvent. As we shall see throughout this chapter, solvation quantities are
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powerful tools for probing the effect of a solute on the solvent at a local level,
i.e., in the immediate surroundings of the solutes.

In the aforementioned paragraphs, we have referred to the solute and solvent
in their traditional meanings, i.e., when one component, the solute, is relatively
diluted in the solvent. As we shall see in the next section, the process of sol-
vation and the corresponding thermodynamic quantities can be defined for any
molecule in any medium. This has infinitely increased the range of systems for
which this concept could be defined and applied.

7.2 Definition of the solvation process and the
corresponding solvation thermodynamics

For the sake of convenience, we define the process of solvation using the follow-
ing simple thought experiment. We transfer a molecule s from a fixed position
in an ideal gas phase into a fixed position in the liquid phase, Figure 7.2.

If s is a spherical particle, such as argon, then we place the center of s at the
fixed position. When s is not spherical, then we may choose the center of mass
of the molecule, or any other convenient point, say the center of the oxygen
atom in water, to be the center of the molecule”.

Clearly, the process as defined above cannot be carried out experimentally,
but since we consider a classical system, it is meaningful to think of a particle
lacking any translational degrees of freedom, i.e., at fixed position and zero
velocity. As we shall see later in this section, this thought experiment is con-
venient but not essential for constructing the thermodynamic quantities
associated with the process of solvation. Once we have established the meaning
of the thermodynamic quantities defined below, we can do away with this
thought experiment. Instead, we can just imagine fixing the origin of our
coordinate system at the center of the inserted particle.

We start with the general expression for the chemical potential of s in any
liquid system which reads

p = u(T,P,N) = w'(T,P,N) + kTInp A>. (7.16)

We use here the independent variables T, P, N. These are the most common
variables that are controlled in solution chemistry. In writing (7.16), we

T Since all points in the system are considered equivalent except for some negligible region near the
boundaries of our system, we do not need to specify the location of the fixed point.

! We also assume in most of this chapter that the molecule is rigid or nearly rigid. In sections 7.8
and 7.11, we shall also treat molecules with internal rotations, such as butane or a protein. In this case,
one must define an average solvation Gibbs energy, averaged over all internal configurations.
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®

Figure 7.2 Definition of the solvation process.
A solute s is transferred from a fixed position in Liquid
an ideal gas phase to a fixed position in a liquid.

have already committed ourselves to systems where the translational degrees
of freedom are classical (A’ arises from the integration over the classical,
Maxwell-Boltzmann, distribution of momenta). Any other internal degrees
of freedom that s might have can be treated either classically or quantum
mechanically. The corresponding internal partition function of s is included in
g5 and q; is absorbed by 1!,

In section 3.4 we also found a convenient interpretation of the two terms
in equation (7.16). The process of adding one s to the system is performed in
two steps, figure 3.1. First, we place s at a fixed position in the system. The
corresponding change in Gibbs energy is u; referred to as the pseudo-chemical
potential of s. Second, we release the particle from the constraint of being at a
fixed position. We call this the liberation process. The corresponding change in
Gibbs energy is kT'Inp,A’. We have also shown that there are three, con-
ceptually different, contributions to the liberation free energy. One is due to the
acquiring of momenta; the second is due to gaining access to the entire volume
V of the system; the third is due to the process of assimilation of the newly
added s particles into the community of the already existing Nj particles of the
same species. Altogether, the liberation Gibbs energy must be negative'.

It is also convenient to introduce the concept of a solvaton. The solvaton s is
simply that particular particle which we have added to our system. As long as it
is outside the system, i.e., before its insertion, or when it is at some fixed
position, it is distinguishable from all other particles of the same species in the
system; otherwise it is identical to all N particles. Once we have released the

! This is the condition for which the classical partition function is valid.
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solvaton from its fixed position, it loses its distinguishability. Alternatively we
may think of the solvaton as one selected particle at the center of which we
place our origin of the coordinate systems. All the locations of the other par-
ticles are defined with respect to this origin.

If s is in an ideal gas phase, then its chemical potential has the form

isg = ,u;‘ig +kTlnpA?
= —kTlng,+ kTInp,A’. (7.17)

Again, we may interpret the first term on the rhs of (7.17) as the change in
Gibbs energy for the process of placing s at a fixed position in the ideal-gas
phase. Clearly, in this process the particle carries with it all its internal degrees
of freedom. By definition of the ideal-gas system, there are no interactions
between s and any of the particles in the system.We now define the solvation
Gibbs energy associated with the solvation process by the difference

Aw; = AG: (i — 1) = ! — i (7.18)

Note that in writing (7.16) and (7.17), we have assumed that A? is the same in
the two phases. Again, classically speaking, the momentum partition function
depends only on the temperature and is not affected by the interaction of the
solvaton with the rest of the system. Any other degrees of freedom might or
might not be affected by the interactions. In most sections of this chapter, we
assume that ¢ is unaffected by the interaction of the solvaton with the rest of
the system. Hence, in this case, (7.18) reduces to

Au; = AG; (ig — 1) = W(s|l) = —kT In(exp[—fBi]), (7.19)

i.e., the solvation Gibbs energy is the coupling work of s to the rest of the system.
This is the average of the quantity exp [—fB,], where B, is the binding energy of
s to the rest of the system at some fixed configuration. The average is taken over
all the configurations of the molecules in the system, in the 7, P, N ensemble,
using the distribution function of configurations of all the particles in the
system before the addition of s; this average is indicated by the symbol ( ).

In the more general case, when s is inserted into the system, some internal
degrees of freedom might change. Hence, Ay}, in general, includes both the
coupling work and the effect of the solvation process on the internal degrees of
freedom. We shall discuss an example of this in section 7.8, but from hereon we
shall assume that g, (as well as Af ) is not affected by the process of solvation. To
avoid confusion, two comments are in order:

First, Ay} is in general not the excess chemical potential of s, neither with
respect to ideal gas, nor with respect to dilute ideal solutions (see sections 6.1
and 6.3, respectively). Unfortunately, Au{ is sometimes referred to as the
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excess chemical potential of the solute. The two excess chemical potentials are
defined as

EXIG — yf — kTInp,A2g! (7.20)
pEXPt = b — (1% + kT1np,). (7.21)

When ¢, is unaffected by the interactions, we have

=Wl +kTinpAlg! = wf + kTnp, A2 (7.22)
Hence, (7.20) and (7.21) reduce to
EXIG — w(s|l) = Aujl (7.23)

s

EXDL — ws|l) — ,}iin@ W(s|l) = A’ — l}ir_n@ A (7.24)
Thus, only when ¢ is unaffected by the solvation process, £ becomes
identical with the solvation Gibbs energy, whereas pf*P!
difference in the solvation Gibbs energy in the actual system and in the limit of
the dilute ideal system with respect to s.

The second comment concerns the choice of standard states. Clearly, in

is reduced to the

defining the process of solvation, one must specify the thermodynamic variables
under which the process is carried out. Here we used the temperature T, the
pressure P, and the composition Nj, . .., N, of the system into which we added
the solvaton. In the traditional definitions of solvation, one needs to specify, in
addition to these variables, a standard state for the solute in both the ideal gas
phase and in the liquid phase. In our definition, there is no need to specify any
standard state for the solvaton. This is quite clear from the definition of the
solvation process yet there exists some confusion in the literature regarding the
“standard state” involved in the definition of the solvation process. The con-
fusion arises from the fact that Ay is determined experimentally in a similar way
as one of the conventional standard Gibbs energy of solvation. The latter does
involve a choice of standard state, but the solvation process as defined in this
section does not. For more details, see the next two sections.

We have used the variables T, P, N to define, the chemical potential and the
solvation process. These are the most common variables used in practice.
However, one can define solvation quantities in any other ensemble. Some-
times it is more convenient in theoretical work to use the T, V, N ensemble.

Note that Ay} as defined in (7.19) may be referred to as the free energy of
interaction of s with the system. This should be clearly distinguished from the
average interaction energy between s and 1.
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Having defined the Gibbs energy of solvation, we can derive all the other
thermodynamic quantities of solvation by using standard thermodynamic
relationships. The most important quantities are the first derivatives of the
Gibbs energy, i.e.,

OAGH
ASF = — s 7.2
s ( 2 ) (7.25)
AH? = AG' + TAS; (7.26)
AVF = (aAG5> . (7.27)
P ),

The Helmholtz energy of solvation is given by AA} = AG; — PAV and the
internal energy of solvation is AE; = AH; — PAV}. However, for most of the
specific systems discussed in this book, the term PAV is usually negligible with
respect to AH or AG!. Therefore, the distinction between AG; and AA or
between AH; and AE; is usually insignificant. For more details see Ben-Naim
(1987).

Clearly, all the thermodynamic quantities associated with the solvation
process, as defined above, pertain to exactly the same process. We stress again
that the process of solvation is not experimentally feasible, i.e., we cannot carry
out this process in the laboratory. For this reason, it cannot be handled within
the realm of classical thermodynamics. Fortunately, as we shall see in the fol-
lowing section, statistical mechanics does provide a simple connection between
solvation quantities and experimentally measurable quantities.

7.3 Extracting the thermodynamic quantities of
solvation from experimental data

In this section we turn to the question of evaluating the pertinent thermo-
dynamic quantities from experimental data. We discuss in this section the case
of a solvaton s which does not undergo dissociation in any of the phases. The
more complicated case of dissociated solvatons (such as ionic solutes) will be
discussed separately in section 7.9.

Consider two phases o and f in which s molecules are distributed. We do not
impose any restrictions on the concentration of s in the two phases. At equili-
brium, assuming that the two phases are at the same temperature and pressure,
we have the following equation for the chemical potential of s in two phases:

=l (7.28)
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In the traditional thermodynamic treatment, one usually imposes the restric-
tion of a very dilute solution of s in two phases. However, here we shall use the
general expression (7.16) for the chemical potential of s in the two phases, to
rewrite (7.28) as

W+ kTlnp* = P + kTn pf (7.29)
From (7.29) we obtain
AGP — AG* = (1 — ) — (w0 — )

Py
= kTIn (ﬁ> (7.30)
Ps eq

where p* and p are the number densities of s in the two phases, at equilibrium

*0L
— 'us

(eq). Relation (7.30) provides a very simple way of computing the difference in
the solvation Gibbs energies of s in the two phases o and f, from the mea-
surement of the two densities p* and pf at equilibrium. A specific case of (7.30)
occurs when one of the phases, say g, is an ideal gas. In such a case AG!* =0
and relation (7.30) reduces to

ig
AP = AGP = kTn (—/3> : (7.31)
Ps eq

It is important to note that there are no restrictions on the density of s in phase
B, but pi# must be low enough to ensure that this phase is an ideal gas'. A
specific example is a liquid—vapor equilibrium in a one-component system. If
the vapor pressure is low enough, we may safely assume that the vapor behaves
as an ideal gas. In such a case we rewrite equation (7.31) as

P

ig
Ap'? = AG?? = kT'n (p—s> (7.32)
Ps eq

where ApiP or (AG;P) is the solvation Gibbs energy of sin its own pureliquid s.
As we shall see in the next section, this quantity cannot be studied within the
traditional approach to solvation.

Another limiting case is the very dilute solution of s in phase f, say, argon in
water, for which we have the limiting form of equation (7.31) which reads

ig

Ap® = AG?® = kTIn (”—ﬂ> . (7.33)

ps
eq

! We cannot use here the theoretical definition of an ideal gas since we are concerned with
experimentally determinable quantities.
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This relation is identical in form to an equation derived from thermodynamics.

However, we stress that conceptually, the two relations differ from each other.
Further elaboration on this point is given in the next section.

Relation (7.31) [as well as (7.32) and (7.33)], provide a simple and con-
venient way of determining Ay} from experimental data. It is fortunate that
statistical mechanical considerations have provided us with means of measuring
a quantity which pertains to an unfeasible process.

Having obtained the Gibbs energy of solvation through one of the relations
cited above, it is a straightforward matter to calculate other thermodynamic
quantities of solvation using the standard relations. For instance, the solvation
entropy can be calculated from the temperature dependence of the AG#, i.e.,

3 0 s
ASF = —{ — |kTIn| =, . (7.34)

S or o

eq P
The differentiation in this equation is carried out at constant pressure P. One
must distinguish between this derivative and the derivative along the liquid—
vapor equilibrium line. The relation between the two quantities is discussed in
section 7.6.

Using standard thermodynamic relationships, we can derive all the thermo-
dynamic quantities of solvation from experimental data using equation (7.31).

7.4 Conventional standard Gibbs energy of
solution and the solvation Gibbs energy

In this section, we present a detailed comparison between the solvation quan-
tities as defined in section 7.2 and the conventional standard thermodynamic
quantities of solutions. The latter are also referred to as solvation quantities. As
we shall demonstrate in this section, the conventional quantities are always
restrictive measures of solvation quantities, sometimes even inadequate mea-
sures of solvation.

There are quite a few conventional quantities that have been employed in the
literature. We shall discuss in this section only three of these, which we believe
to be the most frequently used. In order to avoid any (understandable) con-
fusion, a special notation will be used for the various conventional processes
(i.e., x-process, p-process, etc.) The superscript asterisk is reserved for the
solvation process as defined in section 7.2.
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Let C; be any concentration unit utilized to measure the concentration of s in
the system. The most common units are the molarity p,, the molality m,, and
the mole fraction x,. We shall often refer to p; as either the molar or the number
density. The two differ by the Avogadro number. It should be clear from the
context as to which of these we are referring to in a particular case.

The conventional thermodynamic approach always applies to the limit of a
very dilute solution of s, where the chemical potential of the solute s can be
written as

py = 12 + kT1n C; (7.35)

where ;% is referred to as the standard chemical potential of s, based on the
concentration scale of C. This is formally defined as the limit

pe = éimo(,uS — kTInCy) (7.36)

but it is interpreted using (7.35) as the chemical potential of s in a “standard”
state where C,= 1. In general, one cannot guarantee that in this standard state,
the system is DI'. Hence, the meaning assigned to the 1% is dubious.

In all the conventional processes to be discussed below, it is important to
bear in mind that the so-called (conventional) standard quantities only apply to
very dilute solutions of s in the system. This is a very severe restriction on the
applicability of the standard quantities defined below.

Let o and 8 be two phases in which the concentrations of s are C* and C?,
respectively. If the limiting expression (7.35) applies to both phases, we may
define the Gibbs energy change for the process of transferring one s (or one
mole of s) from o to f as

NG|t | =i s = kT, G
s> s
We shall always assume that the temperature and the pressure are the same in
the two phases. Hence, these will be omitted from our notation. On the left-
hand side of relation (7.37), we do specify the concentrations of s in the two
phases. These can be chosen freely as long as they are within the range of
validity of equation (7.35).

Next, one makes a choice of a standard process. In principle, one can choose

any specific values of C* and CP to characterize this standard process. The three

most commonly employed choices in the literature are the following.

(1) The p-process. This is the process of transferring one s molecule from an
ideal-gas phase into a dilute ideal solution (Henry’s law) at fixed temperature

! In fact, one cannot guarantee that such a physical state exists at all. I owe this comment to
Dr. R M. Mazo.
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and pressure and such that p! = pg. This is essentially a special case of the
general process described in (7.37) with the choice of number (or molar)
concentration units for C; i.e., Cf = pi, C? = pg. The corresponding Gibbs
energy change is

AGY = AG; (p-process) = u" — 18 (7.38)

where AG; (p-process) is a shorthand notation for

l
AG( 57 ) . 7.39
<p§ = p! (7.39)
The superscript “0Opl” stands for standard, p-units, and liquid phase 1.
The relation between AG; (p-process) and the solvation Gibbs energy AG;
may be obtained by applying relation (7.16) to the two phases:

AGY” = AG,(p-process) = p! — 1t = Au’. (7.40)

Thus, the standard Gibbs energy of solvation AG?” is equal to the solvation
Gibbs energy. It is also determined experimentally in the same way as in (7.31).
To see that, we write the chemical potential of s in the two phases in the tra-
ditional convention, valid only in the limit of ideal gas and ideal dilute solutions:

18 = pd% + kT ln p$ (7.41)
pt = p¥' + kTnpl. (7.42)
At equilibrium (7.28) holds, hence from (7.41) and (7.42) it follows that

AGY = p¥! — % = —kT'n(p!/pf),, (7.43)

which is exactly the same as relationship as (7.31).

Relation (7.40) is quite remarkable. The apparent identity of the two free
energy changes is deceiving, however. One should be careful in interpreting this
relation as implying the identity of the two processes.

The reason for misinterpretation, which is commonly committed in the
literature, is the following. The p-process and the solvation process are two
distinctly different processes. It so happens that under very special conditions
(s is very diluted in the two phases), their Gibbs energy changes are equal in
magnitude as stated in (7.40). This has led some authors to identify Ay with
the Gibbs energy change for the p-process and actually refer to Ay} as the
standard Gibbs energy of solvation based on the p standard states. This is not
the case, however. First because Ay is applicable to an infinitely larger range
of concentrations than the very restricted range of applicability of AG;
(p-process). The magnitude of the two quantities happen to coincide only in
the limit of p;— 0 in both phases. Second, some of the other thermodynamic
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quantities, as we shall see below, have different magnitudes for the two pro-
cesses even in the limit of DI solutions in both phases. For instance, an equality
of the form (7.40) does not exist for the entropy change even in the limit of DI
solutions (see below).

(2) The x-process. This is defined as the process of transferring an s molecule
from an ideal gas at 1 atm pressure to a hypothetical dilute-ideal solution in
which the mole fraction of s is unity. (The temperature T and pressure of 1 atm
are the same in the two phases).'

The relation between the standard Gibbs energy of the x-process and the
solvation Gibbs energy is obtained from the general expression (7.16) for the
chemical potential. Thus,

S

AGY = AG,(x-process) = [ — 1'% + len(pi/pf)]psj (7.44)

where we must substitute P;=1 atm and x,=1 in equation (7.44). To achieve
that, we transform variables as follows. Since the x-process applies for ideal
gases, we have

p$ = P,/kT (7.45)

where P; is the partial pressure of s in the gaseous phase. Furthermore, the
x-process applies to dilute-ideal solutions; hence, we may write

! !
I _ ps ~ ps
KRS DA
2P P
where pl is the number density of the solvent B, which in principle can be a
mixture of many components.

p,—0 (7.46)

After this transformation of the variables, we rewrite equation (7.44) in
the form

AGY = AG,(x-process) =[u}' — u¢ + len(xSlp%kT/Ps)]psi
=i — ¥ + kT In(kTp})
=AG' + kT In(kTph). (7.47)
Note that since we put P;=1 atm, kTpé3 must also be expressed in units of
atmospheres. This renders the argument of the logarithm a dimensionless
quantity.

The connection between AGY and experimental data is similar to the
connection (7.43). One writes the chemical potentials of s in the two phases, in

! The hypothetical dilute ideal state with x,= 1 is awkward, to say the least. More on this can be
found in Ben-Naim (1978).
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the traditional form

8 = 1% + kT'In P (7.48)

pul=p + kTIn ! (7.49)

and imposes the equilibrium condition (7.28) to obtain

Xs

P
AGY = p — p¥ = —kT'n <—> : (7.50)
eq

Clearly, in this case, we do not have an equality of the type (7.40). In (7.47), we
see that AG?’“ and AG] are, in general, different quantities, pertaining to two
distinctly different processes.

Relationship (7.47) clearly shows that AG™ could be either larger or smaller
than AG?, depending on whether kTp} is larger or smaller than 1 atm. One
could adopt AG** as a measure of solvation Gibbs energy shifted by the
quantity kT In(kTpk). This is unacceptable, however, for reasons that could not
have been noticed within the traditional approach to solvation. The reason is
that in the limit of very small p, Ap; must tend to zero since in this limit the
average of the quantity exp[—fB;] will tend to unity; hence, Au} — 0. On the
other hand, AG* will diverge to minus infinity. This renders AG** invalid as a
measure of the solvation Gibbs energy. Unfortunately, this fact was both elusive
to the traditional approach to solvation as well as to the most trained eyes of
practitioners in this field.

(3) The m-process. This is defined as the process of transferring one s
molecule from an ideal-gas phase at 1 atm pressure to a hypothetical ideal
solution in which the molality of s is unity’. (The temperature T and the
pressure of 1 atm are the same in the two phases.)

The basic connection between the Gibbs energies of the m-process and the
solvation process is again obtained from equation (7.16). The result is

AG™ = AG,(m-process) = [ut! — 1 + kTIn(p!/p%)] (7.51)

el
Assuming that the gas is ideal, we can use the transformation (7.45). Further-
more, for very dilute solutions of s and assuming for simplicity that the solvent
B is a one-component liquid with density p% and molecular mass Mjp, we can
write the transformation from p’ into molality units 1, as follows:

pl = Mgplim,/1000. (7.52)

! As in the previous case, the hypothetical state of dilute ideal solution at 1 molality is awkward
since at this concentration, in reality, the system would not be dilute ideal.
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Substitution of relations (7.45) and (7.52) into equation (7.51) yields
AG’™ =AG,(m-process)
=[! — 8 + KT In(MpphmkT /1000P,)]

Ps=
ms=1

—=AG’ + kT In(MgpLkT/1000)] (7.53)

which is the required relation between the Gibbs energy changes for the
m-process and for the solvation process.

We now summarize the three relationships between the various Gibbs
energies of solution and the Gibbs energy of solvation:

AGY” = AG,(p-process) = AG" (7.54)
AGY™ = AG,(x-process) = AG' + kT In(kTp) (7.55)
AGY™ = AG,(m-process) = AG’ + kT In(MppLkT /1000). (7.56)

Note that in both (7.55) and (7.56), the argument in brackets under the
logarithm sign must be rendered dimensionless, consistent with the substitu-
tion of 1 atm in (7.55), and 1 atm and 1 molal in (7.56).

Some general comments are now in order. First, we stress that all the three
relations (7.54)—(7.56) are valid for the limiting case when one phase is an ideal
gas and one phase is dilute ideal solution with respect to the solute s. It is only
in this case that the three traditional standard quantities are defined and
applicable. AG?, on the other hand, is defined and applicable for all the con-
centration range of s, from p;=0 up to the concentration of pure s, pf .

Second, the equality in (7.54) is somewhat deceptive; it is an equality
between two quantities which pertain to two different processes and which
happen to have the same magnitude at very specific conditions of ideality. For
most concentrations of p; in either phase, no such equality exists.

Third, the equality of the Gibbs energies for the p-process and the solvation
process do not imply equality between any other thermodynamic quantities
pertaining to these two processes. One must exercise extreme care in deriving
the relations between, say, the standard entropy of the p-process and the
entropy of solvation; these cannot be obtained by taking the temperature
derivative of equation (7.54). As we shall see in the next section, this is a tricky
point which has been overlooked even by experts working in this field.

Finally, we note that in both (7.55) and (7.56) the term kT In kTpp origi-
nates from the liberation Gibbs energy (or the translation Gibbs energy) of
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the solvent B. The solvation Gibbs energy AG; does not include any con-
tribution due to the translational free energy of either the solute or the solvent.
From (7.54) it is clear that also AG,(p-process) is devoid of any contribution due
to the translational free energy’. As we shall soon see, the entropy change cor-
responding to the p-process does include the temperature derivative of the
solvent density pp.

In relations (7.55) and (7.56), we see that the difference between the Gibbs
energy of the thermodynamic process (either x-process or m-process), and the
solvation process is a constant quantity depending on the properties of the
solvent. This means that if we wish to compare various solutes in the same
solvent B we may disregard the constant quantities on the rhs of equations
(7.55) and (7.57). But what if we wish to study a single solute in various sol-
vents? Here we encounter a serious problem because of the special way the
solvent density features in the quantities on the rhs of equations (7.55) and
(7.56)%. To demonstrate the difficulty, suppose we wish to study the solvation
Gibbs energy of a given solute s in a series of solvents B having decreasing
densities pp. It can easily be shown that AG? will tend to zero as pl — 0. This
is clearly the behavior we should expect from a quantity that measures the
extent of the Gibbs energy of interaction between s and its environment. In the
extreme case when pg = 0, we have AG] = 0 as it should be! On the other hand,
a glance at equations (7.55) and (7.56) show that when p% — 0 both AG; (x-
process) and AG, (m-process) will tend to minus inﬁnityﬂ. This behavior is
clearly unacceptable for a quantity that is presumed to measure the Gibbs energy
of interaction between s and its environment. We shall see below that such
divergent behavior is exhibited by other thermodynamic quantities corre-
sponding to the x-process and the m-process. It is for this reason that both of
these quantities cannot, in principle, serve as bona fide measures of the solvation
Gibbs energy.

f In discussing the various standard states, Friedman and Krishnan (1973) commented that “At an
elementary level, the choice of the standard state in equation (16) (referring to the p-process) elim-
inates the translational entropy contribution to AG(p-process), but a deeper analysis shows that this is
not really so.” In spite of my correspondence with these authors, I still do not know what that “deeper
analysis” is and why that comment has been made.

i Arnett and McKelvey (1969) found that the standard free energy of transferring propane from
H,0 to D,O have different signs if calculated using the mole fraction or molality scale. They referred
to this finding as a “shocking example,” and indeed it is. Thus, within the conventional standard
quantities of solvation, one could not tell even the sign of the change when passing from one solvent to
another.

¥ It is ironic to note that Tanford, who has enthusiastically advocated the use of the mole fraction
scale (Tanford 1973; Reynolds et al. 1974), reacted to my publication (Ben-Naim 1978), by saying that
“...those who dismiss work of this kind on the basis of second-order terms in theoretical equations. ..”
(See Tanford 1979, and Ben-Naim 1979). Divergence to infinity is deemed to be “second order terms!”
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7.5 Other thermodynamic quantities of solvation

In this section, we derive some more relations between the solvation quantities
and standard thermodynamic quantities of solution.

7.5.1 Entropy

As before, our starting point is the general equation (7.16) for the chemical
potential. The partial molar (or molecular) entropy of s is
o w0 , KTdln(p,AY)
A L T
All the differentiations are taken at constant pressure and composition of the
system.
We denote by S; the entropy change corresponding to the process of adding
one s molecule to a fixed position in the system. On performing the differ-

(7.57)

entiation with respect to temperature in equation (7.57), we obtain
S;= S —klnpA] + kTo, + 32k (7.58)

where a,=V" '0V/OT is the thermal expansion coefficient of the system at
constant pressure.

Applying equation (7.58) for an ideal-gas phase and for an ideal dilute solu-
tion, we may derive the entropy changes associated with the standard processes
as defined above. For the solvation process we simply have the relation
—0AG;

oT
(In most cases, the superscript g for “gas” is understood to stand for ideal gas. If
the gaseous phase is not ideal, then AS; is the difference in the solvation
entropy between the two phases.)

For the p-process, we have

AS;(p-process) = [gi - gg}pz:

AS: =8 — 88 =

(7.59)

slpl=pf
*] * I
=S8 — §* + kTo, — kToj
= AS! + kToh, — k (7.60)

where ocf, = T~! for the ideal-gas phase.
Similarly, for the x-process and the m-process we have, respectively.

AS,(x-process) :[gi - gf]psi} =857~ 8% — kIn(kTph) + kTocll) —k
=AS; — kIn(kTpy) + kTe, — k (7.61)
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and
AS;(m-process) = [Eﬁ - gf]PSill
= AS! — kln(MpphkT/1000) + kTol, — k. (7.62)

We see that in contrast to the case of the solvation Gibbs energies where we
encountered only three different quantities which correspond to four distinctly
different processes, here we have four different quantities. The entropy change
for the p-process is unequal to the entropy of solvation. Hence, one cannot
identify the solvation process with the p-process. Unfortunately, such an iden-
tification is frequently made in the literature. We also note that AS;
(p-process) cannot be obtained by direct differentiation of AG,(p-process) with
respect to the temperature. When we take the temperature derivative of AGY” we
do not get the entropy change for the p-process. The reason is quite subtle and has
to do with the choice of standard states. We shall elaborate further on this aspect.

We recall that the pseudo-chemical potential was defined as the Gibbs energy
change for the process of inserting s at a fixed position. Hence, the temperature
derivative gives the entropy change for the same process, i.e.,

ou*
= - . 7.63
> <6T>RN 7.63)

When we take the temperature derivative of i/ with respect to temperature, we
obtain

3In(p,A?)

3T (7.64)

< op 3
s=—|==] =S8—klnpA] — kT
S <6T>P,N S —klnpA; — k

We can read this equation as follows. The entropy change for adding one s
particle to the system is composed of two parts: the entropy change associated
with the process of placing the added solute s at a fixed position; this is S}, a
second term due to the liberation of the particle. The latter consists of the two
terms on the rhs of (7.64). Equation (7.64) and the interpretation of the two
contributions to the entropy just mentioned holds true for any p..

The situation is different when we write the expression for the chemical
potential in the traditional convention, either (7.41) or (7.42). For example,
when we take the temperature derivative of 1! we obtain

_ ou oudr! 0l
SS:_<“5> = kmp, — kTS (7.65)
PN

oT oT oT

0pl
S

Normally, is defined as an integration constant and has no meaning as a

chemical potential. However, u’' has been traditionally interpreted as the
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chemical potential of s in the hypothetical dilute ideal solutions, for which
ps=1. Clearly, in (7.65), we cannot interpret —(du%'/dT) as the entropy
change corresponding to the process of adding an s particle to the system at
ps=1. To do this, we must substitute p,=1 in (7.65) to obtain the required
entropy change which we denote by

- U kT [0V
S, (atp, = 1) = — gST +5 <6_T> . (7.66)
PN

In other words, one cannot substitute p,=1 in (7.42) and then take the
temperature derivative of yi!(p, = 1) to obtain the required entropy. Instead,
one must first take the temperature derivative of (7.42) to obtain (7.65),
thereafter substitute p,= 1 to obtain the required entropy, (7.66). Repeating the
same process for the two phases, we obtained relation (7.60). Actually, to
obtain (7.60), we do not need to choose p,=1 for each phase. It is sufficient to
require p! = p¢ when we form the quantity AS, (p-process). Similar procedures
should be taken to obtain (7.61) and (7.62).

A glance at the expressions (7.61) and (7.62) for ASy(x-process) and AS;
(m-process) shows that both contain the solvent density p’ under the logarithm
sign. Thus, for a series of solvents with decreasing densities, both AS; (x-process)
and AS,(m-process) will diverge to infinity, clearly an undesirable feature for a
quantity that is presumed to measure the solvation entropy of a molecule s.
On the other hand, AS; tends to zero as the solvent density decreases to zero, as
it should! In addition to this unacceptable behavior of AS(x-process) and
AS(m-process), all of these standard entropies of transfer contain the term
kTocé — k, which is irrelevant to the solvation process of the molecule s.

7.5.2 Enthalpy

The enthalpies of the various processes are obtained from the combination
H; = u, + TS;. The results are

AH! = H' — H'® = AG' + TAS! (7.67)
AH;(p-process) =AH,(x-process)
=AH,(m-process)
=AH; + kT?x, — kT. (7.68)
We see that the enthalpy changes for the three standard processes are identical.
This follows from the assumption of ideality introduced in the definition of

these processes. On the other hand, these three processes produce an enthalpy
change which differs from the solvation enthalpy by the quantity szocé — KkT.
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Although this quantity is not divergent as p — 0, it is certainly irrelevant to
the process of solvation.

7.5.3 Volume

Taking the derivative of the general expression for the chemical potential with
respect to pressure, we obtain the partial molar (or molecular) volume of s, i.e.,

V=), - (), ()
o), \ar), oP ), (7.69)

* I
=V + kT

where V! is the volume change due to the addition of one s molecule at a fixed
position in the system and «/- is the isothermal compressibility of the phase I,

defined as
) —1l[oVv
=3 (35). (7.70)

which, for an ideal-gas phase, reduces to
K8 =1/P. (7.71)

The volume changes for the four processes of interest are

0AG!
e S v BV (7.72)

A VS* aP N S

AV, (p-process) = AV? + [kT (k) — P71)] (7.73)

pl=pt

AV, (x-process) = AV (m-process) = AV: + kT (k. — 1/atm).  (7.74)

Note that the volume changes for the last two processes are identical. We note
also that for the liquid phases at room temperature x’. is much smaller than 1
-1 (e.g., for water at 0°C, kTrkr~1 cm® mol 1, AV = 20 cm?® mol ™},
and kT / atm ~2 x 10*cm® mol ~ ). Similarly, in equation (7.73) x}. < P!
(the limit of an ideal-gas phase). Thus, the volume change for the three
standard processes is dominated by the terms which originate from the ideal-
gas compressibility. Because of this undesirable feature, it is common to
abandon these processes when studying the volume of solvation. Almost all
researchers who study the solvation phenomena apply one of these standard

processes for quantities like the Gibbs energy, entropy and enthalpy of

atm
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solvation, but for the volume of solvation they switch to partial molar volumes
at infinite dilution. The latter clearly corresponds to a different process. Similar
difficulties are encountered in the study of higher-order derivatives of the
free energy.

No such difficulty arises in the study of the solvation process as defined in
section 7.2. This can be applied uniformly to all the thermodynamic quantities
of solvation. Obviously, this is a convenient feature of the solvation process
which is not shared by the conventional standard processes.

From the quantities derived above, one may construct the internal energy
of solvation (AE; = AH; — PAV) and the Helmholtz energy of solvation
(AA; = AG; — PAV}). As noted in section 7.2, the difference between AE;
and AH; and between AA} and AG] is usually very small and may be neglected
for most systems of interest discussed in this book. For more details see
Ben-Naim (1987).

It is straightforward to go beyond first-order derivatives of the Gibbs energy.
One can define the compressibility, heat capacity, thermal expansion, and so
on, for the process of solvation. These quantities are of potential interest in the
study of solvation phenomena.

We now recap the main differences between the two approaches to the study
of solvation phenomena. First and foremost is the fact that the solvation
process as defined in section 7.2 is the most direct tool of probing the free
energy of interaction of a solvaton with its environment. All the thermo-
dynamic quantities of solvation tend to zero when the solvent density goes to
zero (i.e., when there are no interactions between the solvaton and its envir-
onment). This is not the case for the conventional thermodynamic quantities,
some of which even diverge to plus or minus infinity in this limit. Furthermore,
by adopting the solvation process we achieve both a generalization and a
uniformity in application of this concept. The generalization involves the
extension of the range of concentration of s for which the solvation thermo-
dynamics may be studied, from the very dilute s up to pure liquid s. This
immensely increases the range of systems which may be studied by means of
solvation. The uniformity involves the application of the same process for all
thermodynamic quantities. This is in sharp contrast to the conventional
approach where different processes are used for studying different thermo-
dynamic quantities.

Finally, we may add that once we adopt the definition of the solvation
process as given in section 7.2, we can forget about all standard states. This is a
drastic simplification compared to the traditional approach where in addition
to specifying the thermodynamic variables of the system, one must also choose
a standard state.
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7.6 Further relationships between solvation
thermodynamics and thermodynamic data

In section 7.3, we outlined the fundamental connections between solvation
thermodynamics and experimental data. However, in many cases thermo-
dynamic data are available that may be directly converted into solvation
thermodynamic quantities without going through the fundamental relation-
ships. Some of these transformations are presented here.

7.6.1 Very dilute solutions of sin /

These are the only systems for which studies of solvation, in the conventional
meaning, have been carried out. For these systems there are numerous pub-
lications of tables of thermodynamics of solution (or solvation) which pertain
to one of the processes discussed in section 7.4. All the conversion formulas for
these cases have already been derived in the previous section. Here, we add one
more connection with a very commonly used quantity, the Henry law constant.
In its most common form it is defined by

Kir = lim (P./) (7.75)
where P, is the partial pressure and x! is the mole fraction of s in the system and
the limit takes x! into the range where Henry’s law becomes valid. The general
expression for the solvation Gibbs energy in this case is

AGY = kTIn(p/p}) - (7.76)

Assuming that we have a sufficiently dilute solution of s in I such that Henry’s
law in the form P, = KHxsl is obeyed, we can transform equation (7.76) into

AG:® = kT In(P,/kTx!pL)

= kT In(Ky /kTpL). 777)

This is a connection between the tabulated values of Kj; as defined in (7.75),
and the solvation Gibbs energy. (Here we have assumed, for simplicity, that the
solvent consists of one component with a number density p%.) We also note
that from relations (7.52) and (7.77), we also have

AG;(x-process) = kT In Ky (7.78)

i.e., information on K is essentially equivalent to information on the Gibbs
energy change for the x-process.
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7.6.2 Concentrated solutions

For solutions (or rather mixtures) of s at higher concentrations beyond the
realms of Henry’s law, we depart from the traditional notion of solvation and
must use the definition as presented in section 7.2. There exists a variety of data
which measures the extent of deviation from dilute ideal solutions. These
include tables of activity coefficients, osmotic coefficients, and excess functions.
All of these may be used to compute solvation thermodynamic quantities.

As always, our starting point is the general expression for the chemical
potential of s in the liquid phase I, equation (7.16),

= +kTlnp!Al. (7.79)

The chemical potential in the same system may be expressed in conventional
thermodynamics as

=y + kTln p' + kT InyP» (7.80)

where P is the activity coefficient which measures deviations with respect to
the ideal-dilute behavior, based on the number density p as concentration units;
1% is the conventional standard chemical potential of s in the p-concentration
scale, and is formally defined by

1% = lim (u, — kT1np'). (7.81)

pi—0

Substitution of equation (7.79) into (7.81) yields
pr = ,}?TO(“?I +kTInp!A} — kTInp!) = W + kTIn A2 (7.82)

which is the required connection between the conventional standard chemical
potential 4%, and the pseudo-chemical potential of s at infinite dilution w*. By

using relations (7.79), and (7.80) and (7.81), we arrive at the final expression:

,u;‘l - ,u;‘OZ = kT InyP? (7.83)

P
This quantity is equivalent to the difference between the solvation Gibbs energy
of s in the phase [, and the solvation Gibbs energy of s in the same phase except

for taking the limit p,— 0. Using the notation of section 7.2, we may rewrite
this quantity as

AG: — AG = ' — 1 = kTInyP». (7.84)

Thus, from the activity coefficient (based on the p-concentration scale), one
can compute the solvation Gibbs energy of s in a liquid phase / (containing any
quantity of s), relative to the solvation Gibbs energy of s in the same phase but
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as p;— 0. This quantity is quite useful whenever the infinite dilute limit is
already known.

Relation (7.83) holds only for the activity coefficient as defined in equation
(7.82), i.e., based on the number density scale. However, it is quite a simple
matter to use any other activity coefficient to extract the same information. Let
C;be any other concentration units (e.g., molality, mole fraction, etc). We write
the general conversion relation between C; and p, symbolically as

p, = T:C,. (7.85)

Where T is defined in (7.85)
The general expression of the chemical potential may be expressed in the
C, scale as

= 1+ kTIn TECAD. (7.86)

In the limit of a very dilute solution p;— 0, we have

py = 1 + kTIn TOCA? (7.87)
where
T = glino T¢. (7.88)

The conventional standard chemical potential in the C; scale is given by
4 = i, — KT C)
= pljin()(ugf’ + kTInpyP? — kTn C,)
=12 + kTIn T°. (7.89)
Hence, the relation between the two activity coefficients is
kT InyP¢ =y — 1% — kTIn C; = p, — p% — kTIn(Tp,/ TY)
= kTInyP? + kT In(T¢/T5°). (7.90)
The connection with the solvation Gibbs energy is
AG' — AG?® = kTInyP* + kTIn(T¢/T) (7.91)

which may be used when activity coefficients based on any concentration scale
are available.

The second source of data available for multicomponent mixtures are the
excess thermodynamic quantities. These are equivalent to activity coefficients
that measure deviations from symmetrical ideal solutions and should be dis-
tinguished carefully from activity coefficients which measure deviations from
ideal dilute solutions (see chapter 6). In a symmetrical ideal (SI) solution, the
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chemical potential is written in the form
w; = ,u*f + kT In x; (7.92)

where ull) is the chemical potential of the pure component i at the same tem-
perature and pressure.

The SI behavior is realized by a variety of two-component systems of
two “similar” species. Deviations from this behavior may be expressed by
introducing either an activity coefficient 7% or an excess function. These are
defined as

i = + kTlnx; + kTIny$' = pf + kT Inx; + 5% (7.93)

The total excess Gibbs energy of the entire system is defined as
= Z Nip:™ (7.94)
i
and the excess Gibbs energy per molecule of the mixture is defined by

EX GEX/ Z N, = Zx,-ufx. (7.95)
i i

For some two-component systems, the quantity ¢"* is available as an ana-
Iytical function of the composition of the system. Let A and B be the two
components, and x4 the mole fraction of A in the system:

Ny

N (7.96)
Njy+ Np

XA —

When g™ is given as a function of x" in the entire range of compositions, one
can recover both p&* and pEX using the following well-known procedure:

'uEX_ <aGEX>
i =
ON4 P,T,Ng

[(N4+ N5)g™]

6NA
= (Na+N )EJF (7.97)
A B oN, 4 :

Transforming variables from N, into x,

¢ Ny O (7.98)
ONy (NA—i-NB)2 0xa '
yields
og*t
= g™+ xp—=— g (7.99)

Oxy
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and similarly

ag™*

o (7.100)

g =g+ xa
The connection between excess chemical potentials and solvation Gibbs
energies may be obtained as follows. We write both y, and 1, using the general
expression (7.16), and the expression (7.92) to obtain

pa =t + kTInxy + pi = W + kTIn ph A xn + (7.101)

iy = Wy +kTlnp, A (7.102)
By comparing equation (7.100) with (7.101), we arrive at
AG, — AG = iy — il = KT In(plxa/py) + iy (7.103)

In (7.103), we obtained the solvation Gibbs energy of A in the mixture AG}
relative to the solvation of A, in pure A AG)” (at the same temperature and
pressure). This may be computed for any composition from knowledge of the
excess chemical potential uﬁx, and the densities of A in the mixture and in the
pure component, p4 and p, respectively. A similar expression may be written
for the second component B.

Sometimes, the densities p, are not available in the entire range of com-
positions. Instead, data on excess volume are available. This may be used as
follows. The excess volume per molecule of the mixture is given by

x VS VNV - NpVE
eSS N4+ Np

=V — xaVh —xgVE  (7.104)

where V% and V} are the molar (or molecular) volumes of pure A and B,
respectively, and v,,, is the volume per molecule of the mixture given by v,,,= V/
(NA + NB) Thus,

phxa _ A _ U _ VEX 4 x VI 4+ x V)
pPa Patpes Vi Vi

(7.105)

This may be used in (7.103) to calculate the relative solvation Gibbs energy of A.

7.6.3 Pure liquids

The extreme limit of high density of s is the pure liquid. Normally, the liquids
of interest are either at room temperature and 1atm pressure or along the
liquid—vapor coexistence equilibrium line. Let  and g be the liquid and the
gaseous phases of a pure component s at equilibrium. The Gibbs energy of
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transferring s from a fixed position in g into a fixed position in / is equal to the
difference in the solvation Gibbs energies of s in the two phases, i.e.,

i = 1 = AG! — AGE = KTn(pS/p) (7.106)

Knowing the densities s of in the two phases at equilibrium, gives us only the
difference in the solvation Gibbs energies of s in two phases. However, in many
cases, especially near the triple point, the density of the gaseous phase is quite
low, in which case we may assume that AG;¢ = 0 and therefore relation (7.106)
reduces to

AG? = kT In(pE/py)eq
= kT In(P,/kTp}),, (7.107)

where P; is the vapor pressure of s at temperature T.
When evaluating other thermodynamic quantities of solvation from data
along the equilibrium line, care must be exercised to distinguish between

derivatives at constant pressure and derivatives along the equilibrium line. The
connection between the two is

(dAG;‘) B <aAG;> . (am;) (@) (7,108
ar ), \or ), \op ) \ar),, '

Here, we use straight derivatives to indicate differentiation along the equili-

brium line. The two derivatives of AG; on the rhs of equation (7.108) are
identified as the solvation entropy and the solvation volume, respectively; thus,

*p
<dAGs> :_AsjP+Av:P<£> : (7.109)
eq €q

dTr dT

Usually, data are available to evaluate both of the straight derivatives in
equation (7.108). This is not sufficient, however, to compute both AS:? and
AV?, Fortunately, AV ? may be obtained directly from data on molar volume
and compressibility of the pure liquid. For the pure system s we have

1 = P + kTln pPA (7.110)
Differentiation with respect to P at constant T yields
— ou?
P *
V= (a—PS> = VP + kTch, (7.111)
T

where x% is the isothermal compressibility of the pure s.
We now write the analog of (7.111) for an ideal gas system as

VE = Ve 4 kT (7.112)



STEPWISE SOLVATION PROCESSES 221

(all quantities are for pure s). Hence, the solvation volume is
AVP = VP —VE  kT[ih — i8] (7.113)

Care must be exercised in taking the limit of ideal gas (p —0 or P—0). In
general, one cannot take the limiting behavior of \_/lsg and K% as:

—i kT i 1

V‘f—>?, K‘ﬁ_>1—). (7.114)
This would lead to VS*ig = 0, which in general, is not correct!. Further dis-
cussion of this point is presented in Appendix O.

7.7 Stepwise solvation processes

We have defined the solvation process as the process of transfer from a fixed
position in an ideal gas phase to a fixed position in a liquid phase. We have seen
that if we can neglect the effect of the solvent on the internal partition function
of the solvaton s, the Gibbs or the Helmholtz energy of solvation is equal to the
coupling work of the solvaton to the solvent (the latter may be a mixture of any
number of component, including any concentration of the “solute” s). In actual
calculations, or in some theoretical considerations, it is often convenient to
carry out the coupling work in steps. The specific steps chosen to carry out the
coupling work depend on the way we choose to write the solute—solvent
interaction.

For simplicity, we discuss here a solute s in a one-component solvent b, in a
system atT, V, N, N;,.J“r We assume that the solute—solvent interaction can be
written as a sum of two parts, say

Ua(R) = U3 (R) + UJ (R). (7.115)

The coupling work is the same as the work of “turning on” the interaction
Ug(R). If Ug(R) has the form (7.115), we can carry out the coupling work in
two steps; first we couple UX(R), and then we couple the second part U} (R).
This procedure was found useful in interpreting the solvation quantities of
simple solutes in water, the study of hydrophobic hydrophilic interactions and

T For a theoretical ideal gas V8 = 0. But this is not true for a real gas at p — 0 or P — 0. This
error has been made in Ben-Naim (1987).

 Note that we use the terms “solute” and “solvent” in the nontraditional sense. The solute can be
any molecule and its concentration in the solvent can either be very low p; — 0 or very high p, — p£.
In the latter, we have pure liquid s, where the traditional distinction between solute and solvent does

not apply.



222 SOLVATION THERMODYNAMICS

the solvation of macromolecules, such as proteins (see section 7.11). In all cases
we assume some kind of additivity of the intermolecular potential and then
derive the corresponding split of solvation Gibbs or Helmholtz energy.

7.7.1 Stepwise coupling of the hard and the
soft parts of the potential

One of the earliest attempts to interpret the anomalous properties of aqueous
solutions was based on splitting the solvation process into two parts: first, we form
a cavity in the solvent, then introduce the solute into the cavity. In the present
section, we shall discuss the statistical-mechanical basis for such a split of the
solvation process. For more details see Eley (1939, 1944) Ben-Naim (1992).

In essence, the molecular basis for splitting the solvation into two (or more)
steps stems from the recognition of the two (or more) parts of the solute—
solvent intermolecular potential function, in the present case, the hard and soft
parts of the interactions.

For simplicity, we assume that the solute—solvent pair potential is a function
of the distance R only, and that this function may be written as

Uw(R) = UY(R) + U3(R) (7.116)

where the “hard” part of the potential is defined, somewhat arbitrarily, by
choosing an effective hard-core diameter for the solute o, and the solvent gy,
respectively, i.e.,

g _Joo forR<oy
Uy (R) = { 0 forR>ay, (7.117)

where 6, = (0,+ 0,)/2. In practice, one can always find a small enough value of
g4 such that for R<ag, the potential function rises so steeply so as to justify
an approximation of the form (7.117). The “soft” part, U3, is next defined
through equation (7.116). This is illustrated in figure 7.3.

We now write the solvation Helmholtz energy of s as follows

AAT = —kT In{exp(—fB;)),
= —len(exp(—ﬁBf — ﬁBSS»o (7.118)

where B and B are the “hard” and “soft” parts of the binding energies of s to
all the solvent molecules.

The average quantity in (7.118) can be viewed as an average of a product of
two functions. If these were independent (in the sense of the independence of
two random variables), one could rewrite this average as a product of two
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(a) (b) (c)
U(R) L-J Potential U(R) Soft part U(R) Hard part

1 1 1
0.8 0.8 0.8
06 06 06
0.4 04 0.4
0.2 0.2 0.2
. LR R . LR
02F 05 5 2 25 3 _gob 05 5 2 25 3 _gob 05 1 15 2 25 3
04 E W ~0.4 t \/(f 70.4t

Figure 7.3 A typical Lennard-Jones pair potential (a), is split into two parts: a soft part (b) and a hard
part (c).

averages, i.e.,
(exp(—BBH) exp(BBS))y = (exp(—BB)olexp(—BB))y  (7.119)
and AA] could be split into a sum of two terms’
AAT = AATH + AAPS. (7.120)

However, the factorization in equation (7.119) is in general invalid, and
therefore a split of AA] in terms of a hard and soft part in the form as in (7.120)
is not justified. To see why, we rewrite the average in (7.119) as

(exp(—BB;') exp(—fBY)),
_ JdX"N exp(—pUy — BBY) exp(—BB;)
[ dXN exp(—BUn)
_ JaxNexp(—pUy — BB") [ dX" exp(—pUy — BB") exp(—PB;)
J dX" exp(—BUy) J dX" exp(—pUy — BBH)
= (exp(=BB;"))o(exp(=BB;)) - (7.121)
The first average on the rhs of (7.121) is the same as in (7.119); the second

average on the rhs of equation (7.121) is a conditional average, using the
probability distribution function
p(xN, x1 exp(—pUy — BBl
P(xH)  [dXNexp(—pUy — BBH)
where P(XY/X™) is the probability density of finding a configuration X" of
the N particles, given a hard particle at X”. By using the form (7.121), the
solvation Helmholtz energy can be written as

AAT = AATH £ AATSTH (7.123)

where AA*H is the Helmholtz energy of solvation of the hard part of the
potential. This part is the same as in (7.120). The second term on the rhs of
(7.122), AA;‘S/ H s the conditional Helmholtz energy of solvation of the soft part

(7.122)

T Note that the subscript s is for solute, and the superscript S for the soft part of the potential.
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of the potential. This is different from the second term in (7.120). It is the work
required to couple, or to switch-on, the soft part of the solute—solvent inter-
action, given that the hard part of the potential has already been coupled.
Clearly, the procedure outlined above may be generalized to include other
contributions to the pair potential. An important generalization of equation
(7.116) might be the inclusion of electrostatic interactions, hydrogen bonding,
etc. The generalization of equation (7.116) might look like this:

Ug(R) = UY(R) + US(R) + US(R) + UHE(R). (7.124)

Correspondingly, the solvation Helmholtz energy will be written in a gen-
eralization of expression (7.123) as follows:

AAL = AAT + AASIT 4+ AATYST 4 AATIB/ e SH (7.125)

where AA*/SH is the conditional Helmholtz energy of solvation of the elec-
trostatic part of the interaction, given that a solvaton with the soft and hard
parts (excluding the electrostatic part) has already been placed at a fixed
position in the solvent. Similar interpretation applies to the last term on the rhs
of (7.125).

It is important to take note of the order in which we couple each part of the
potential. When the nth part has already been coupled, it has an effect on
the distribution of the configurations of the solvent molecules. Therefore, in the
next step we have to replace the distribution function used in the coupling of
the nth part by a conditional distribution function for calculating the average
in the (n+ 1)th part.

The solvation Helmholtz energy of a hard particle in a solvent is related to
the probability of finding a cavity of suitable size in the liquid (see section 7.11
and appendix N). Hence, (7.123) may be rewritten as

exp(—BAAY) = Pr(cavity)(exp(—BB’)) (7.126)

Equation (7.126) is useful in actual estimation of the solvation Helmholtz
energy. The cavity work is usually estimated by the scaled particle theory
(Appendix N). If the soft part of the interaction is small, i.e., if | B%| <1, then
we may estimate

(exp(—BB)))y ~ 1 = BB (7.127)

where (BBS), is the conditional average binding energy of the soft part of the
interaction between the solute s and the solvent, given that the hard part has
already been coupled.
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7.7.2 Stepwise coupling of groups in a molecule

In this section, we examine the molecular basis of a group-additivity approach.
As we shall see, the problem is essentially the same as treated in the previous
section; i.e., it originates from a split of the solute—solvent intermolecular
potential function into two or more parts.

Consider a solute of the form X — Y, where X and Y are two groups, say CH;
and CHj3; in ethane, or CH3 and OH in methanol. We assume that the solute—
solvent interaction may be split into two parts as follows:

UX — Y, i) = UX,i) + U(Y, i) (7.128)
where U(X, i) and U(Y, i) are interaction energies between the groups X and Y,
and the ith solvent molecule, respectively (figure 7.4).

As in the preceding section, where we had split the interaction energy into a
hard and soft part, we also have here an element of ambiguity as to the exact
manner in which this split may be achieved. For instance for ethane, we assume
that the ethane—water interaction may be written as the sum of the two methyl-
water interactions, as schematically depicted in figure 7.4. Next, we proceed to
split the total binding energy of the solute X—Y into two parts,

N N
By =Y U(X,i)+ > U(Y,i) =By + By. (7.129)
i=1 i=1

The solvation Helmholtz energy of the solute X—Y is now written as
AAy_y = —kTIn(exp(—BBx-v))o
= —kT In{exp(—fBx) exp(—fBy)),- (7.130)
As in the previous section, we have again an average of a product of two
functions. This, in general, may not be factorized into a product of two average
quantities. If this could have been done, then relation (7.130) could have been
written as a sum of two terms, i.e.,
AAY_, = —kT In(exp(—pBx)), — kT In{exp(—fBy)),
= AA\ + AA (7.131)

H,O

Figure 7.4 Schematic split of the ethane—
water interaction into two methyl—water

interactions. CHs

CHj
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Such a group additivity, though very frequently assumed to hold for AA}_, (as
well as for other thermodynamic quantities), has clearly no justification on a
molecular basis, even when the split of the potential function in expression
(7.128) is exact.

The reason is quite simple: since the two groups X and Y are very close to
each other, their solvation must be correlated, and therefore the average in
(7.130) cannot be factored into a product of two averages. In order to achieve
some form of “additivity” similar to relation (7.131), we rewrite equation
(7.130) as follows:

AAy_y = —kTIn(exp(—BBx — fBy)),
J dX" exp(—BUy) exp(—PBx) exp(—fBy)
JdX" exp(—BUy) exp(—fBx)
XY exp(~pU) exp(—ﬁqu
[ dX" exp(—BUn)
= —kTIn [ / dxXNp(xXN /X x)exp(—PBBy) / dX" P(X") exp(—fBx)

= AAY +AAY . (7.132)

= —len[

The interpretation of equation (7.132) is the following. The solvation
Helmholtz energy of the solute X—Y is written [presuming the validity of
relation (7.129)] as a sum of two contributions. First, the solvation Helmholtz
energy of the group X, and second, the conditional solvation Helmholtz energy
of the group Y, given that the group X is already at a fixed point in the liquid.
This is schematically shown in figure 7.5.

) ®

v
v

v v

® XO

Figure 7.5 Insertion of a solute X-Y in two steps. First, we insert the group X. The resulting solvation
Helmholtz energy is AA%. Next we insert ¥ to a fixed position next to X. The conditional solvation
Helmholtz energy is AA .
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Clearly, since the second group Y is brought to a location very near X, one
cannot ignore the effect of X on the (conditional) solvation of Y. In other
words, in the first step, we insert X in pure solvent. In the second, we insert Yin
a solvent which has been perturbed by the presence of X. It is only in very
extreme cases when X and Y are very far apart that we could assume that their
solvation Helmholtz energies will be strictly additive, as in equation (7.131).

Because of symmetry, we could, of course, replace equation (7.132) by the
equivalent relation

AAL_y = AAY + AAY . (7.133)

We see that relations (7.132) and (7.133) have the same form as relation
(7.120). Placing X at a fixed position has an effect on the distribution of the
configurations of solvent molecules around X. Therefore, when we couple
the group Y at a location near X, the average work is now calculated with the
conditional distribution function as shown in (7.132). The procedure outlined
above may be generalized to include large molecules with many groups. We
shall make use of such a procedure for proteins in section 7.11.

Note that since AA%_, applies to the entire molecule X—Y, the conditional
solvation Helmholtz energy AAY ), does not include the direct bond energy
between X and Y. We shall see in the next section the relation between AA
and AAY%, and the correlation function between the two groups.

*
X/Y

7.7.3 Conditional solvation and the pair correlation function

In this section, we examine in some more detail the relation between the
conditional and the unconditional solvation Helmholtz energies. Consider a
solvent [ at any given temperature, volume, and composition. Let s be a simple
spherical molecule. The solvation Helmholtz energy of s is given by

exp[—BAA;(Ry)] = (exp[—FBs(R)]),- (7.134)

Note that we have explicitly introduced the location of R, at which we have
placed the solvation s. This is in general not necessary since all points in the
solvent are equivalent. In this section, however, we shall produce inhomo-
geneity in the solvent by introducing two particles at R; and R,; therefore, the
recording of their locations is important. In this section, we assume that we
have a dilute solution of s in a solvent. Theoretically, we can think of having just
one s in a pure solvent. The symbol ( ), stands for an average over all the
configurations of the solvent molecules in the T, V, N ensemble, i.e.,

(xRN = [ [ ax BxX) expl-pB (R XY (7139
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where Po(X") is the probability density of finding a configuration X, i.e.,

exp[—BU(X™)]
Py(xN) = : (7.136)
oo Jaxt exp[-pU(XY)]
Suppose we have one solute at R; and we introduce a second solute at a
different location R,. The corresponding work is obtained by taking the ratio of
the two partition functions

Q(Ta V: N7 Rl) RZ)
Q(T) V) Na Rl)

exp[—BAA{ (R /Ry)| =

[+ [ dXN exp[-BU(XN) — BB(R;) — BBi(R,) — fU(Ry, Ry)]
[+ [dXN exp[-BU(XN) — BBy(Ry)]

— exp[—BU (R, Ry)] (exp|—BB(Ro)]) g, (7.137)

Here, U(R;, R,) is the direct interaction between the two solutes at R;, R,
and the symbol ( ) stands for a conditional average, i.e., an average over all
configurations of the solvent molecules, given one solute at R;. The corre-
sponding conditional density is

P(XN/Rl) _ exp[—ﬁU(XN) — ﬁBs(Rl)] (7.138)

[ JaxN exp[-pU(XY) — BB(Ry)]
Equation (7.137) can be rewritten in another equivalent form as

(exp[—PBs(Ri, RZ)]>0
(exp[—BBs(Ri)])q

where By (R;, R;) = B{(R;) + By(R,). Equation (7.139) can be rearranged into
exp[—BAA{ (R, /R1)] = g(Ri, Ry) exp[—BAA(Ry)]. (7.140)

exp[—BAA{ (R, /Ry)] = {exp[-fU(Ry, Ry)])

(7.139)

Thus, the correlation function g(R;, R;) “connects” the solvation Helmholtz
energy on the first “site” and on the second “site.” Equation (7.140) can also be
rewritten as

W(R1, Ry) = AA*(Ry/Ry)] — AA*(Ry). (7.141)

This means that the potential of mean force is the same as the solvation
Helmholtz energy at R, given a particle at R;, minus the solvation Helmholtz
energy at R,. In other words the difference between the conditional and the
unconditional quantities on the rhs of (7.141) is equal to the work required to
bring the second s from infinity to position R,, given that another s is already
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placed at R;. If we are dealing with two different solutes, say s; and, s, then,
instead of (7.141) we write

Wi s (R, Ry) = AAL , (Ry/Ry) — AA( (Ry)
— AA, (Ri/R) — AA(R).  (7.142)

51/52

In (7.142), we have written the work of bringing the two solutes from infinity to
the positions R; and R, in two equivalent forms. The result of the two steps is
the same work W, , (R, R,).

In the aforementioned examples, the conditional solvation Helmholtz energy
includes the direct interaction between the two solute particles, as well as the
effect of the solvent. In some applications it is found useful to exclude the direct
interaction. This occurs whenever we want to estimate the contributions to the
solvation Helmholtz energy of each part of a combined solute. In our defini-
tions of both AA!(Ry) and AA}(R,/R;), we transferred one solute s from a
fixed position in an ideal gas into the liquid. Now suppose that we are given
a pair of solutes at a distance R= |R, — R,| in an ideal gas. This pair of solutes
can be viewed as a single molecule. We wish to know the contribution of
each particle (1 and 2) to the Helmholtz energy of solvation of the pair. The
latter is

exp[—BA (R, Ry)] = (exp[—BB«(Ry, Ry)])- (7.143)

Instead of transferring the pair as a single entity, we first transfer one particle.
The solvation Helmholtz energy change is almost the same as in (7.134) but we
must also add the energy required to break the S-S bond in the vacuum. In the
second step, we transfer the second particle; the corresponding work is now
exactly as in (7.139) where we now gain the S-S bond energy in the liquid.
Therefore, in the entire process, the direct interaction, between the two solutes
cancel out.

Thus, instead of equation (7.140), we now write the corresponding relation
excluding the direct interaction. First, define

¥(Ri, Ry) = g(Ry, o) explBU(Ry, Ry)] (7.144)
and rewrite the analog (7.140) as

(exp[—BB:(Ry)]) g, = y(Ru> Ry)(exp[fBi(Ry)])o- (7.145)

Note that the average on the rhs of (7.145) is the same as in (7.134); i.e., this
is the same as the solvation Helmholtz energy of one s particle in a pure
solvent. On the lhs of (7.145), we have the conditional solvation Helmholtz
energy as in (7.137), but excluding the direct interaction between the two
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solutes. Note that since the solute at R, affects the distribution of the solvent
configurations, the average on the lhs of (7.145) is different from the average on
the rhs of (7.145).

Another useful form of ¥(Ry, R,) is

O . ) PO 7 X .5 PR
(exp[—BB(Ri)]), (exp[—BB(R)]);

Note that both averages on the rhs of (7.146) are taken with the distribution

function of the pure solvent (7.136). If |R, — R,| — 0o, the two solutes are

uncorrelated and the average in the numerator of (7.146) can be factored into a

product of two averages, i.e.,

(exp[—PBss(Ri, Ry)])g = (exp[—BB(R1)]);. (7.147)
In this case we have

y(R;,R) =1, |R — Ry — (7.148)

which means that there is no solvent-induced correlation.

7.8 Solvation of a molecule having internal
rotational degrees of freedom

So far, in all of our discussions of the solvation phenomena, we assumed that
the internal partition function is not affected by the solvent; i.e., g was assumed
to be the same in the gas or in the liquid state. This assumption is approxi-
mately correct for the internal partition function of simple molecules in a simple
solvent. There is one important exception where we must take into account the
solvent effects even in simple solvents: the case in which the molecule can have
different conformations, each with a different rotational partition function.
Clearly, for large polymers, the rotational partition function of the extended
polymer differs significantly from the rotational partition function of a com-
pact conformer of the same molecule. Since these two conformations have
different binding energies to the solvent, the relative weights given to each
conformation will be different in the gas and in the liquid state. We shall
demonstrate this effect for a small molecule such as butane (figure 7.6) and
then generalize to larger polymers.

Consider a solute s with internal rotational degrees of freedom. We assume
that the vibrational, electronic, and nuclear partition functions are separable
and independent of the configuration of the molecules in the system. We define
the pseudo-chemical potential of a molecule having a fixed conformation P as
the change in the Helmholtz energy for the process of introducing s into the
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Figure 7.6 Schematic description of n-butane. Here we show only two conformers: the cis and trans.

system [ (at fixed T, V) in such a way that its center of mass is at a fixed position
R,. If we release the constraint on the fixed position of the center of mass, we
can define the chemical potential of the P; conformer in the gas and liquid
phases as follows:

K (P,) = 5 (P) + KT In pS(P)A] (7.149)
W(P) = ! (P,) + KT In pl(P)A’. (7.150)

Note that the rotational partition function of the entire molecule, as well as the
internal partition functions of s, are included in the pseudo-chemical potential.
In classical systems, the momentum partition function A? is independent of the
environment, whether it is a gas or a liquid phase.

The solvation Helmholtz energy of the P, conformer is defined as

A:“:(PS) = :“:I(PS) - :“jg(PS)
= —kT In{exp[—fB;(Ps)]), (7.151)

i.e., this is the Helmholtz energy of transferring an s molecule, having a fixed
conformation, from a fixed position in g to a fixed position in L If we assume
that all vibrational, electronic, and nuclear degrees of freedom are not affected
by this transfer from g to ], we can write the second equality on the rhs of
equation (7.151).

We now wish to find an expression for the Helmholtz energy of solvation of
the molecule s, without specifying its conformation. We do this in two steps,
and for convenience we use the T, V, N ensemble. Suppose first that s can attain
only two conformations A and B, say the cis and trans conformations of a given
molecule at equilibrium (figure 7.6). The pseudo-chemical potential of the
conformer A is the change in the Helmholtz energy for placing an A molecule at
a fixed position in L The corresponding statistical-mechanical expression is

0] XY 42, explBUN(XY) — BB, (XY) — BU(4)
P(=hii) (872) [ dX™ expl—FUn(XV)]

(7.152)

where B,(X") is the binding energy of A to the rest of the system of
N molecules at a specific configuration XY, U*(A) denotes the intramolecular
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potential or the internal rotation potential function of s in the state A. We also
assume that g, has the form

qA = 4v9eqr.a (7.153)
where g, and g, are presumed to be independent of the conformation as well as
of the solvent. g, 4 is the rotational partition function of the entire molecule in
state A. Clearly, since the two conformations have different moments of inertia,
they will also have different rotational partition functions.

Equation (7.152) may be rewritten as

exp(—p) = gaexp[—BU" (A)](exp(—BBa)), (7.154)

where the average is over all the configurations of the N molecules in the system
excluding the solvaton A. Likewise, in the gaseous phase, we have

exp(—fuy’) = qrexp[—pU"(A)]. (7.155)
Hence, the solvation Helmholtz energy of the conformer A is obtained from
(7.154) and (7.155) i.e.,
exp(—BAw;) = (exp(—fBa)),. (7.156)
A similar expression holds for the conformer B.
To obtain the connection between Ay, Auyl, and Ap!, we start with the
equilibrium condition
Mo = [y = My (7.157)
or equivalently

W+ kTInp!A? = @i}l + kTn p, A} = 1} + kT'In pLA? (7.158)

where pi = pl + pl and p, and pk, are the densities of A and B at equilibrium.

Equation (7.158) may be rearranged to obtain
!

* ps *
exp(— ') = = exp(—Buy) (7.159)
Pa
and similarly
!
* ps *
exp(—pp') = p—exp(—ﬂugl)- (7.160)
B

On multiplying equation (7.159) by x/,, and equation (7.160) by x5, and adding
the resulting two equations (where x|, = p/,/p! and x}, =1 — x!,), we get

exp(—pu;") = exp(—Puy) + exp(Buy) (7.161)

which is the required connection between the three pseudo-chemical poten-
tials. Equation (7.161) is equivalent to the statement that the partition func-
tion of a system with one additional s particle at a fixed position is the sum
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of the partition function of the same system with one A particle at a fixed
position and the partition function of the same system with one B particle at a
fixed position.

We now write the corresponding expression for the ideal-gas phase, namely,

exp(—pusf) = exp(—puy) + exp(Buy). (7.162)

Taking the ratio between expressions (7.161) and (7.162), with the aid of
equations (7.154) and (7.156), we obtain

exp(—pAw")

_ qaexp[—pU*(A)] exp(—PAwY) + gp exp[—BU" (B)] exp(—pAuj)
qa exp[—pU*(A)] + g5 exp[—fU*(B)]

(7.163)

or equivalently,
exp(—PA") = v} exp(—BAuy) + v exp(—PAwy) (7.164)

where y% and y3 are the equilibrium mole fractions of A and B in the gaseous
phase. These are defined by

41 exp[-U" (A)]
= , Yy =1—y5. 7.165)
A el BU A+ e pUrB] BT
Equation (7.164) is the required relation between the solvation Helmholtz
energy of the solute s and the solvation Helmholtz energies of the two con-
formers A and B. Note that if g, and g, are the same for the two conformations,

they will cancel in (7.165) and (7.163). What remains is only the rotational
partition function of the two conformers. Generalization to the case with n
discrete conformations is straightforward: if there are n conformers, we have
instead of (7.163) and (7.164)

oy iy Giexp[=BU(i)](exp(=PBi)),
exp(_ﬁA/Jsl> = S g exp[—BU(7)]

=3 expl(—pa) (7.166)

and for the continuous case , we have

exp(— sl _ fdPs q(P) exp[—ﬁU*(Ps)]<exp[—ﬁB(P5)>0
P(AA) J P, q(P.) exp[~pU" (P,)

- / AP, y¥(P,) exp[—pAu’(P,)] = ((expl—BB(P)])y).
(7.167)
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Here, q(P) denotes the rotational, vibrational, etc., partition function of a
single s molecule at a specific conformation. P;, y* (P;) dP; is the mole fraction
of s molecules at conformations between P, and P,+ dP,. The final expression
on the rhs of equation (7.167) is a double average quantity; one, over all
configurations of the N molecules (excluding the solvaton) and the second (the
outer average), over all the conformations of the s molecule with distribution
function y*(P;).
The chemical potential of s in an ideal gas phase can now be written as

= 15 1 T pA?
= —len{/ dP; q(Py) exp[—ﬁU*(Ps)]} + kTln psA2

= —kTIng}

nt

+ kT 1n péA> (7.168)

where the term in the curly brackets can be interpreted as the internal partition
function of a single s in the gas phase. This is denoted by ¢’

In the liquid state we have the corresponding equation for the chemical
potential of s

W= 11+ KT In pIA?

— —irin{ [ dP.a(P) expl-pU (P expl- BB, | + KT nplA:
(7.169)

Here we cannot separate the internal partition function from the coupling
work. The reason is that each conformation has a different binding energy to
the solvent. In a formal way, we can use the definition of ¢} from (7.168) to
rewrite (7.169) as

f=—kTngl, + A’ + kTnp!Al. (7.170)

S

In (7.170), the first term on the rhs is the same as in (7.168) but Auj’ includes
both the coupling work of all the conformations, as well as the effect of the
solvent on the internal degrees of freedom of the molecule.

In (7.165), we have written the mole fraction of the A and B conformers.
These are also the probabilities of finding the solute s in A or B, respectively.
When the conformation changes continuously, say in butane, as a function of
the dihedral angle ¢, (7.165) generalizes to

q(¢) exp[-BU*(P)]

4 —
79) Ji" dd q(d) exp[—BU* ()]

(7.171)
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where *(¢) d¢ is the probability of finding the molecule at angle between ¢
and ¢ + d¢. Likewise, in the solution, the probability density is
Jo" d¢ a(¢) exp[—pU*(§) — AW (§)]
The difference between (7.171) and (7.172) is the addition of the solvation
Gibbs energy Au*(¢). Note, that y*(¢) and yl(d>) are the actual distribution
of the ¢ conformers for butanes in the ideal gas, and in the liquid phase. A
related function, which has been calculated theoretically and by simulations
[Rosenberg et al (1982), Jorgensen (1982), Jorgensen and Buckner (1987),
Tobias and Brooks (1990), Zichi and Rossky (1986), Imai and Hirata (2003)], is
the dihedral distribution of a molecule lacking translation and rotational
degrees of freedom (i.e., as if we were holding the orientation of the C,—C;
bond fixed and measure the distribution of the angle of rotation about this
bond). This function s(¢) is obtained from y*(¢) or yl((,b) by eliminating the
rotational partition function g(¢) in (7.171) and (7.172).

Figure 7.7 shows the qualitative change in the distribution s(¢p) when the
molecule is transferred from an ideal gas into aqueous solution. Note that the
trans conformer (¢ =7) dominates in the gaseous phase. In the liquid phase
there is a shift of the distribution in favor of the gauche conformers (¢ =n/3)
and (¢ =5n/3).

The solvation Gibbs energy of the solute s, in this case, is given by

exp [ pAu!] = / dby* () expl— A ()] (7.173)

which is a particular case of (7.167), for a solute with one internal rotation.

(7.172)

= b gauche

gauche

Figure 7.7 The angle distribution of butane, s(¢), in the gaseous phase (dashed line) and in the aqueous
phase (solid line). The particular illustration here is an “average” result taken from various sources
(see text).
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Figure 7.8 The five-step process of transferring butane from the gaseous to the liquid phase
(conf. = conformation, pos. = position).

In this section, we have arrived at the expression for Au*' by relying on the
equilibrium conditions (7.157) among the different conformers.

It is instructive to re-derive this expression in a stepwise process, as depicted
in figure 7.8. This stepwise process will also be helpful in understanding the
process of solvation as carried out in the case of dissociable solute and will be
discussed in the next section. The process of solvating s is carried out in five
steps as depicted in figure 7.8. For convenience, we shall use the case of discrete
species, i.e., the solute s is distributed among n isomers with mole fractions y?.
We can use the language of either a single-solvaton in the system distributed
with probability y¥, or of a one-mole-of-solvatons distributed with mole
fractions y¥. The latter is easier to visualize. We also assume that this mole of
solvatons are far apart from each other hence, independent. For simplicity, we
also assume that the solvent initially does not contain any solutes. We shall start
with one mole s in an ideal gas phase. Each molecule has full translational and
rotational freedom.

In the first step, we convert all the mole of s molecules into one specific
isomer say i= 1. The corresponding change in Gibbs energy (in the T, P, N
ensemble) is

AGy = [ + kTIn psAY] = > yf[u;® + kTIn pSA]). (7.174)

Since p%/p¢ = y¥ is the mole fraction of the isomer i in the gaseous phase, we
can rewrite (7.174) as

AG = [i* =Y yfuf] =Y kTyfInyf. (7.175)
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Note that there are two contributions to AG;. One, in squared brackets,
resulting from the changes in the energetics of all the species when transformed
into the specific species i = 1. The second is the increase in the Gibbs energy due
to the loss of identity of the n distinguishable species (i.e., different conformers).
This quantity is often referred to as the demixing free energy. It is not! In this
process, we do not demix anything. Instead we have a process where we had
initially n different species transformed into one specific species (i.e., the con-
former i=1). We shall refer to this process as assimilation. Assimilation
involves an increase in Gibbs energy (or decrease in entropy). See Appendix H
and I for more details.

Next, we freeze the translational degrees of freedom of this mole of single
species. The change in Gibbs energy is

AG, = —kTlnpsA? (7.176)

where p¢ is the density of this particular single species in the gaseous phase.
In the third step, we solvate the species i= 1. This involves the change

AGs = i — 135 (7.177)

Next, we liberate the solvatons from their fixed positions in L The corre-
sponding change in Gibbs energy is

AGy = kTInp!A2. (7.178)

Finally, we release the constraint on the conformer i= 1 and allow the solvaton
to reach an equilibrium among the species but with a new distribution y! in the
liquid phase. The corresponding Gibbs energy change is

AGs = [Z i = w'
i

Again, AGs consists of two parts: one due to the change in the internal ener-

+ Y kTylIny). (7.179)

getics upon transferring the species i=1 into n species (n conformers); the
second is due to the process of acquiring new identities, i.e., one species is split
into n different species. We refer to this process as deassimilation. The deas-
similation process always involves a decrease in Gibbs energy (or increase in
entropy). Again, we note that the latter quantity is often referred to as the
mixing free energy. Obviously, it is not. There is no process of mixing in this
step, as there is no process of demixing in step one. We now combine the
change in the Gibbs energies of the five steps to obtain

ES:AGk =Y ' +kTIn Y yilnp = yfuf —kTIny_ yflnpf
k=1 i i i i
= =y yfu (7.180)
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Note that (7.180) does not depend on the choice of the particular species i=1.
We could have chosen any other species for carrying out the solvation step.
Using the equilibrium conditions among all the species in both phases

Ho= =ty = = 4,
p= === (7.181)
we can reach the conclusion that
D AG=Ap =t - (7.182)
k=1

which is the solvation Gibbs energy of the solvaton s (i.e., the solute at its
equilibrium distribution with respect to all conformers). As we have seen in
(7.166), Au; can be expressed in terms of the solvation Gibbs energies of all the
species as

exp[— AR =y exp[—pAp;]. (7.183)

As a direct result of the equilibrium condition between all the species, we can
write the mole fraction of the species i as
)= Pl AUT — pAw]
b2 qiexp[—BUr — fAW]

(7.184)

7.9 Solvation of completely dissociable solutes

In section 7.2, we introduced the process of solvation as the process of transferring
a single molecule from a fixed position in an ideal-gas phase to a fixed position in
the liquid. For solutes which do not dissociate into fragments, the solvation
Helmholtz or Gibbs energy is related to experimental quantities by the equation

AG! = kTIn(p¥/p)) - (7.185)

In this section, we generalize this relation to solutes which dissociate in the
liquid. The most important solutes of this kind are electrolytes, but the treat-
ment is general and applies to any type of dissociable solutes.

We consider a molecule which is only in a state of a dimer D in the gaseous
phase. When introduced into the liquid, it completely dissociates into two frag-
ments A and B. Of foremost importance is the case of ionic solutes; e.g., D may be
KCl, then A and Bare K™ and Cl ~, respectively. For simplicity, we assume that A
and B do not have any internal degrees of freedom. The generalization in the case
of multi-ionic solutes and polynuclear ions is quite straightforward.
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Figure 7.9 The solvation process of two l R = l /
f o ; AB ~
ragments A and B. This is a straightforward A e L > B

generalization of the process of solvation of a
solute s as depicted in figure 7.2.

The relevant solvation process is depicted in figure 7.9. Since the particles are
presumed not to possess any internal degrees of freedom, the Gibbs energy of
solvation of the pair of ions is simply the coupling work of A and B to the liquid
phase J; thus

AG:, = W(A, BJl). (7.186)

For simplicity, we shall use below the T, V, N ensemble. Hence, we shall derive
an expression for AA’, ;. However, it is easy to show that AA}; at constant T, V
is the same quantity as AG}; at constant T, P, provided that the exact volume in
the former is equal to the average volume in the latter.

Consider a system of Ny, solvent molecules, say water, and Np solute
molecules contained in a volume V at temperature 7. By “solute,” we mean
those molecules D for which we wish to evaluate the solvation thermodynamic
quantities. The “solvent,” which is usually water, may be any liquid or any
mixture of liquids and could contain any number of other solutes besides D. In
the most general case, Ny, will be the total number of molecules in the system
except those that are counted as “solutes” in Np. However, for notational
simplicity, we shall treat only two-component systems, W and D.

For a system of Ny solvent molecules and Np, solute molecules at given V, T,
the corresponding partition function is

qu q,I;]A‘IB deN v d XN dX N exp[—BU(Nw, Ny, NB)]

Q(T, V, Nw, ND) A3NWA3NAA3NBN WINg!IN,,!

(7.187)

In writing (7.187), we have assumed that the solute molecules are completely
dissociated into A and B in the liquid; U(N,, N,, Njp) is the total potential
energy of interaction among the N,,, Ny and Ny molecules at a specific
configuration (with Np= N, = Np).

We next add one dimer D, or equivalently one A and one B, to the liquid in
two ways: first, without any further restrictions; and second, with the constraint
that A and B be placed at two fixed positions R4 and Rp, respectively. The
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corresponding partition functions are
Q(T,V,Nw,Np + 1)
qIVVV a gyt [dRs dRy [ dXNetNatNe exp[— BU(N,,, Np + 1)]
AN ASNED ASINS U N LN 4 1) 1N 4 1)

(7.188)
and
Q(T V Nw,ND + l'RA,RB)
_awar gy [aXN NN exp[—BU(Ny, Np + )]
AN A AN, N, ! Np!

(7.189)

The differences in the two partition functions (7.188) and (7.189) should be
noted carefully. In equation (7.188), we have two more integrations over R,
and Rp, and also one more AZ and one more A%. Also, we have (N, + 1)! and
(Ng+1)! in equation (7.188), but only N,4! and Np! in (7.189). All these dif-
ferences arise from the constraint we have imposed on the locations R4 and Ry
in equation (7.189). The total potential energies of interaction in the two
systems are related by the equation

U(Nw,ND + 1) = U(NW, ND) + UAB(RA,RB) + BD(RA, RB) (7.190)
where a shorthand notation is used for the configuration of the system, except for
R, and Rp. The quantity U,p(R4, Rp) is the direct interaction potential between
A and Bbeing at R, and Rp, respectively; Bp(R4, Rp) is the “binding energy,” i.e.,
the total interaction energy between the solvaton, i.e., the pair A and B at (R,
Rjp) and all the other particles in the system at some specific configuration.

The chemical potential of the solute D in the liquid [ is obtained from the
partition functions in equations (7.187) and (7.188):

Q(Ta V; Nw; ND +1
Q(T) V) NW) ND)

= — leIl{ [quB/dRA dRB exp[—ﬁUAB(RA, RB)]

ul[,:— len[

X / dX N tNatNs expl— BU(N,,, Np) — [fBD(RA,RB)]] :

X {AZA%(NAJr (N +1) / dX Nt NAtNs exp[— BU(N,,, ND)]] }

qaqs
AGAG (N4 + 1)(Np + 1)

« / ARy ARy exp[—BUns(Ra, R)] (exp (—ﬂBD))*} (7.191)

=—In



SOLVATION OF COMPLETELY DISSOCIABLE SOLUTES 241

Here the symbol ( ), stands for an average over all configurations of the

N,,+ N4+ N particles excluding only the solvatons A and B at R4 and Rp.
Equation (7.191) may be transformed into a simpler form as follows. The

pair distribution function for the species A and B in the liquid is defined by

p@ Ry, Rs) = (Nj + 1)(Np + 1)
fde +NA+NB exp{ ﬁU(NW) ND + )]
deN wH(Na+1)+(Np+1) exp[—pU(Ny, Np + 1)]

(7.192)

The pair distribution function at infinite separation is denoted by pfg(oo). We
now write the following ratio:

plip(Ra, Rp)
pin(o)
_ Jax™ Rt exp[—BU(Nw, Np) — BBp(Ry, Rp) — BUas(Ras Rs)]
JAXN NN exp[—BU(Nyy, Np) — BBp(00) — BUas(c0)]
(7.193)

where we have used equation (7.190) and also introduced the notation Bp(co)
and Uyp(0o) for the binding energy and interaction energy at infinite separa-
tion, respectively. Using now the same probability distribution as was used in
relation (7.191), we rewrite equation (7.193) in the form

PYs(Ras Ry) _ exp|—BUas(Ra, Ry)|(exp[—BBp(Ra, Rn)),
@ (00) exp[—BUas(00)] {exp[— BB (0)]),

P 0

(7.194)

Equation (7.194) is now introduced into relation (7.191) to obtain

1

T (quB [ dRydRyp D) (R4, Rp) exp[—ﬁUAB(oo)](exp[—ﬁBD(oo)])*) |
AZA(Nx+ 1)(Np +1)pl5p(00)

(7.195)

We can further simplify (7.195) as follows.
Since we define our zero potential energy at R4z = 00, we have Uyp(co) =0
Also at Ryp= 00, we have pfg(oo) = p,pp- The normalization condition for

pfg in a closed system is

/ ARy dRyp ) (Ra, Rp) = (Na + 1)(Nj + 1). (7.196)
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Hence, expression (7.195) can be rewritten in the final form:

PAPBAZA%>

7.197
0rs (7.197)

phy = —kT In{exp[—BBp(c0)]), + len(
Note that in relation (7.191), we wrote ng as an average over all possible
locations of A and B; the simplification achieved in equation (7.197) was
rendered possible because there is equilibrium among all pairs of A and B at any
specific configuration Ry, Rp. This fact allows us to choose one configuration
Rap=o00 and use it to obtain the simplified form of the chemical potential &,
Next, we identify the liberation Helmholtz energy of the pair A and B. For
any specific configuration, this may be obtained from the ratio of the partition
functions (7.188) and (7.189), i.e.,

AA(Lib)
Q(T) V) NW) ND + 1)
Q(T> V)Nw>ND + I;RA>RA)
T [dRydRg [dXNv+NatNs exp[—BU(N,, Np + 1)]
ASAR(Na+ D)(Na + 1) JdX 5 exp[—fU(Ny Np + 1))

= —kTIn

= kTIn[A’ A3 p@ (Ry, Rp)] (7.198)

which is a generalization of the expression for the liberation Helmholtz energy
of one particle. Here, the liberation Helmholtz energy depends on the parti-
cular configuration of A and B from which these particles are being released.
For our application, we only need the liberation energy at infinite separation
namely,

AA(Lib, 00) = kT In(A3 A0 4p5)- (7.199)

Extracting the liberation Helmholtz energy (7.199) from (7.197), we can
identify the pseudo-chemical potential of the pair A and B, i.e.,

Up = AA; — kTlnqaqs
= —kT In(exp[—fBp(>0)]), — kT In qags. (7.200)

The chemical potential of D in the gaseous phase, where it is assumed to exist
only in dimeric form, is simply

1 = kT'n p$Ad qp! (7.201)

where p§, is the number density and A}, the momentum partition function
of D; gp includes the rotational, vibrational, and electronic partition functions
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of D. For all practical purposes, we may assume that the dimer D at room
temperature is in its electronic and vibrational ground states. We also assume
that the rotation may be treated classically; hence, we write

ap = Grot eXp(—3Phv) exp(—Pea) = Gror exp(SDo) (7.202)

where &= Usp(c) — Usp(00) is the energy required to bring A and B from
infinite separation to the equilibrium distance Ryz=0. The experimental
dissociation energy, as measured relative to the vibrational zero-point energy, is

Dy = —5hv — & = —3hv — [Uap(0) — Uap(00)] (7.203)

where 1hv is the zero-point energy for the vibration D. Note that in the case of
an ionic solution we can either separate the two ions from ¢ to oo, or first
separate the neutral atoms and then add the ionization energy and electron
affinity of the cation and anion, respectively. Using the equilibrium condition
for D in the two phases, and assuming for simplicity that g4 = gg=1, we have

0 = up, —
= [—len(p%A%qr_oi) — %hv] + [UAB(OO) — UAB(O')]
— KTIn(exp[—Bp(c0)]), + [kT'In ppsALAY) (7.204)

From Equation (7.204), we can eliminate the required Helmholtz energy of
solvation of the pair AB to obtain the final relation

AAyg = —kTIn(exp[—fBp(c0)]).

Ap Ph
=—Dy+ kT'In T3 1) - (7.205)
A AR Grot PAPB/ eq

We see that in this case we need not only the number densities of D and of A
and B at equilibrium, but also the molecular quantities Ai\, A%, A%, Grot> and Dy.

Some numerical values of AA}; are given in Ben-Naim (1987).

Equation (7.204) corresponds to the following stepwise process. At equili-
brium ub, = p$,. We first “freeze in” the translational and rotational degrees of
freedom of D, then separate the two fragments A and B from their equilibrium
distance to two fixed positions but at infinite separation. Next, solvate the two
fragments A and B when they are at infinite separation from each other, finally
release the two fragments to attain their liberation free energy.

In deriving equation (7.200) for the pseudo-chemical potential uj,, we have
selected one specific distance between the two particles A and B. This was
rendered possible by using (7.194). There is an analogy between the procedure
used in section 7.8, figure 7.8, and the procedure that we took in this case.
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Figure 7.10 An analogous five-step process to transfer a dissociated solute from the gaseous phase to
the liquid phase. Here the various “conformers” are the various “dimers” defined by distance Rz (instead
of the angle ¢ in figure 7.8). The analog of the species 1 in figure 7.8 is here the “species” at Ryp= oo.

To see that suppose we view the molecule D in the liquid / as a mixture of
“species,” each characterized by the distance R4p. These are the analogs of the
different conformers of the solvaton in the previous section. As in section 7.8,
since there exists chemical equilibrium between all the species, we could write
in analogy with (7.184), the ratio between the two mole fractions of the two
“species” in (7.194). In contrast to the case of section 7.8, we have here one
particular “conformer,” the one for which R p= 00, which is convenient
because of Upa(oo) =0. This rendered the simplification of (7.191) into
(7.195), and hence (7.200) too. A process analogous to the one carried out in
section 7.8, figure 7.8, is depicted in figure 7.10. In this process, we transfer the
two fragments from the gaseous to the liquid phase. This is slightly different
from the process discussed in this section where we assumed that A and B form
a dimmer D in the gaseous phase.

7.10 Solvation in water: Probing into the
structure of water

In this section, we demonstrate how one can use solvation Gibbs energies to
extract structural information on liquid water. We present here only a tiny part
of a very large and important field of research. For more details, see Ben-Naim
(1992).

The idea that liquid water retains much of the structure of ice upon melting
is very old. It has been used in numerous ways to explain the peculiar properties
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of liquid water and aqueous solutions. For many years, the concept of the
structure of water (structure of water) has been defined in terms of some
mixture-model description of liquid water. The simplest model of this kind
views water as a mixture of two components; one having structure similar to
ice, and a second as a random packed fluid. The structure of water in this model
is simply the concentration, or the mole fraction of the icy component of
the liquid. In the next section, we shall define the concept of structure of water
based on a particular form assumed for the water—water pair potential.
With this definition, we shall show that from the isotope effect on the solvation
Gibbs energy of water in liquid water, we can extract a measure of the structure
of the liquid. Adding a solute to pure water will in general change the structure
of water. Again, the isotope effect of the solvation Gibbs energy of the solute
provide information on the extent of change in the structure of water induced
by the solute.

7.10.1 Definition of the structure of water

For convenience, let us start with the assumption that the water—water pair
potential has the general form (more details can be found in chapter 6 of
Ben-Naim 1992)

U(Xi, X]') = U(Rij) + Uel(X,',Xj) + SHBG(Xi, Xj) (7.206)

where U(R;j) is a spherically symmetric contribution to the total interaction
between two water molecules. This part may conveniently be chosen to have
the Lennard-Jones form with the appropriate parameters of neon, an atom
isoelectronic with a water molecule. Its main function is to account for the
very short-range interaction. The electrostatic interaction part Ug (X; Xj) may
include the interaction between a few electric multipoles, such as dipole and
quadrupoles. This part is to account for the long-range interaction between two
water molecules. The third term on the rhs of equation (7.206) is to account
for the interaction energy at intermediate distances around 2.8A. There exists
no information on the analytical form of the potential function in this inter-
mediate range of distances. However, recognizing the known fact that two
water molecules form a hydrogen bond (HB) at some quite well-defined
configuration (Xj X;), we shall refer to this part of the potential as the HB part.
There have been several suggestions for an explicit form for this part of the
potential. However, for our purposes we shall not need to describe this function
in any detail. Instead, it will be sufficient to describe the most important feature
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of this function that is essential for our definition of the structure of water. This
part should be present in any reasonable pair potential used to study liquid
water!,

We assume that the HB part consists of an energy parameter e, which we
refer to as the HB energy, and a geometric function G(X; Xj), which is
essentially a stipulation on the relative configuration of the pair potential of
molecules i and j. Namely, this function attains a maximum value of unity
whenever the configuration of the two molecules is most favorable to form a
HB. Its value drops sharply to zero when the configuration deviates con-
siderably from the one required for the formation of a HB.

With this qualitative description, we define the function G(X; X)) by

1 if i and j are in configurations
G(X;, Xj) = favorable for a HB formation (7.207)
0 for all other configurations.

Although we did not specify which configurations are favorable for a HB
formation, we have in mind configurations such that the O—O distance is about
2.76 A, and that one of the O—H bonds on one molecule is directed toward one
of the lone pair electrons on the second molecule. Also, in equation (7.207), we
let the value of G(X;, X;) drop sharply to zero. One way of achieving such a drop
in a continuous manner is by using Gaussian functions or similar functions.
For more details, see chapter 6 in Ben-Naim (1992).

Clearly, with the aforementioned qualitative description of G(X; X;), we
leave a great deal of freedom as to the manner in which we split the potential
(7.206) into its various contributions, and as to the specific form we wish to
choose for this function. The important feature that we need for our definition
of the structure of water is the following: let xN=X,,..., Xy be a specific
configuration of all the N water molecules in the system at some T and P. We
select one molecule, say the ith one, and define the quantity

N
vi(xXN) =) G(Xi, X;). (7.208)

=1

J#i
Since G(X;, X;) by definition (7.207) contributes unity to the sum on the rhs of
equation (7.208) whenever the jth molecule is hydrogen bonded to the ith

molecule, ;(X") measures the number of HBs in which the ith molecule
participates when the entire system is at the configuration X". Based on what

T It should be stressed that (7.206) is not, and should not be, the actual pair potential for water
molecules in vacuum. The latter, even if exactly known, will not be useful in the study of the properties
of liquid water. The reason is that the structure of water is determined not only by the pair potential
but also by higher order potentials. Therefore, (7.206) should be viewed as an effective pair potential
designed for the study of the properties of liquid water.
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we know about the behavior of water molecules, ¥ ;(X") may attain values
between zero and four.'

When ¥;(Xy) =4, we may say that the local structure around the ith
molecule, at the configuration, XV is similar to that of ice. When l,bi(XN =0,
the local structure around the ith molecule bears no resemblance to that of ice.
Hence, we can use 1/;(X") to serve as a measure of the local structure around
the ith molecule at the given configuration of the whole system.

Next, we define the average value of i;(X") in the T, P, N ensemble:

V), = / dv / dxNp(xN, vy, (xN) (7.209)

where P(XY, V) is the fundamental distribution function in the T, P, N
ensemble. Since all molecules in the system are equivalent, the average in
(7.209) is independent of the subscript i hence, we denote this quantity (),
and not (¥/;)o. The subscript 0 indicates that the average is taken with the
distribution P(X™, V) for pure water; this should be distinguished from a
conditional average discussed in the following sections.

Thus, (/)¢ is the average number of the HBs formed by (any) single water
molecule in pure water at a given T and P. This quantity may serve as a
definition of the local structure around a given molecule in the system. The
total average of the HBs in the entire system is evidently

(HB)y = > (). (7.210)

The division by 2 is required since in N{i/), we count each HB twice.
From the definition of y;(X"), we may also rewrite equation (7.210) in
the form

N N
_ N N
== /dV/dX p(x¥, E G(X;, X;)

]:
J#i

N N

/dV/dXNP (xN, v ZZG (X5, X))
i=1 j=1
j#i

i=1
i<j

:/dV/dXNP(XN,V) i iG(Xij)- (7.211)

T Basically, i/; is a counting function, as defined in section 2.7. Because of the “on and off” nature of
the HB, the distribution of ¥, is discrete, i.e., the ith molecule can have 0, 1, 2, 3, 4, hydrogen-bonded
neighbors.
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In subsequent sections, we shall use the last form of the rhs of relation (7.211)
as our definition of the structure of water. Clearly, either (i), or (HB), can be
used for that purpose. Also, as we shall see in the following sections, we need
not assume a full pairwise additivity of the total potential energy of the system.
Instead, we require only that

N N

UXN)y=UXN)+ems Y D G(Xi X)) (7.212)

i=1 =1
i<j

where in U’ we lumped together both the Lennard-Jones and the electrostatic
interactions among all the N water molecules. The pairwise additivity is
required only from the total HB interactions, as is explicitly written on the rhs
of equation (7.212).

7.10.2 General relations between solvation thermodynamics
and the structure of water

We first consider the case of a simple spherical solute s in a very dilute solution
in water w. By very dilute, we mean that all solute—solute interactions may be
neglected. Formally, this is equivalent to a system containing just one s solute
and N water molecules. Also, for convenience, we assume that the system is at a
given temperature T and volume V. The Helmholtz energy of solvation of s in
this system is

AAT = —kT In{exp(—fB;)), (7.213)
where

(g — JAXN expl—BUN(XY) — fB,(R, X))
< P( ﬂBS»O deNeXp[—ﬂUN(XN)]

= / dXNP(XN) exp[—BB:(Ry, XN)]. (7.214)

We have denoted by By(R,, X") the total binding energy of s to all the N water
molecules at the specific configuration X". The solute is presumed to be at
some fixed position R,. However, since the choice of R; is irrelevant to the value
of the solvation Helmholtz energy, it does not appear in the notation on the 1hs
of equation (7.214). We also note that the average (), is taken with the
probability distribution of the N water molecules of pure liquid water, i.e., in
the absence of a solute s at R,. The subscript zero serves to distinguish this
average from a conditional average introduced below.
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The solvation entropy of s is obtained by taking the derivative of equation
(7.214) with respect to T, i.e.,

AS; = —(0AA;/3T)y y
1
= Kln{exp(—BB)y + 7 ((B), + (Un), — (Un)y)  (7219)
where the symbol (), stands for a conditional average over all configurations of
the solvent molecules, given a solute s at a fixed position R,. This conditional
distribution is defined by
exp[—fUn(X"Y) — BBy(R;, X)]

P(XN/R,) = TaX™ expl—BUn(X™) — BB,(R, X™)] (7.216)

The solvation energy is obtained from equations (7.213) and (7.215) i.e.,
AE! = AA* + TAS! = (B,), + (Ux), — (Un),- (7.217)

Had we used the solvation process at constant T, P, we should have obtained
the same formal expression for AG; in (7.213), for AS; in (7.215) and for AH;
in (7.217), but with the interpretation of all the averages as averages in the T, P,
N ensemble.

The solvation energy as presented in equation (7.217) has a very simple
interpretation. It consists of an average binding energy of s to the system, and a
change in the average total interaction energy among all the N water molecules,
induced by the solvation process. For any solvent, this change in the total
potential energy may be reinterpreted as a structural change induced by s on the
solvent. This aspect is dealt with in great detail in chapter 5 of Ben-Naim
(1992). For the special case of liquid water, we use the split of the total potential
energy as in equation (7.212) to rewrite equation (7.217) as

AE] = (Bs), + (Uy), — (Uy)o + ens((HB), — (HB),). (7.218)

Hence, we see that AE] explicitly contains a term which originates from the
change in the average number of HBs in the system, induced by the solvation
process. We also note that the same term also appears in the solvation entropy
as written in equation (7.215). Furthermore, when we form the combination of
AE? — TAS;, this term cancels out. The conclusion is that any structural
change in the solvent induced by the solute might affect AE} and AS;, but will
have no effect on the solvation Helmholtz energy. This conclusion has been
derived for more general processes and for more general notions of structural
changes in the solvent (Ben-Naim 1992).
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The second case of interest is the solvation of a water molecule in pure
liquid water!. Again, we assume that we have a T, V, N system and we add
one water molecule to a fixed position, say Ry. The solvation Helmholtz
energy is

AA}, = —kT In(exp(—fBw)), (7.219)
where (), indicates an average over all the configurations of the N water
molecules excluding the solvaton. The corresponding entropy and energy of

solvation of a water molecule are obtained by standard relationships. The
results are
. 1
AS;, = kin(exp(~ B}y + 7 (Buhy + (U — (Uxdy)  (7.220)

and
AEy, = (Bw)w + (Un)w — (Un)g (7.221)
where here the conditional average is taken with the probability distribution

N _exp[—BUyua (XN
P(X"/Xw) = TaX™ expl—Un 1 (X)) (7.222)

which is the probability density of finding a configuration X" given one water
molecule at a specific configuration Xy,. Hence,

P(XN, Xw)

(7.223)

Formally, equations (7.220) and (7.221) are similar to the corresponding
equations (7.215) and (7.217). It follows that one can also give a formal
interpretation to the various terms as we had done before. However, since we
have here the case of pure liquid water, it is clear that the average binding
energy of a water molecule is the same as the conditional average binding energy

! We note that this quantity could note have been defined within the traditional definitions of
solvation where only a solute in dilute solutions in a solvent could be investigated. In this sense, the
new measure of solvation can be viewed as a “generalization,” from two to one component systems.
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of a water molecule, i.e.,

(Bw)y = / dXNP(XN /X )Bw

[ dXNP(XN, Xy )By
a P(Xw)

[ axNP(XN, Xw)Bw
- 812/ V

= / dXwdXNP(XN, X)Bw

= (Bw), (7.224)
where (B,,) is the average binding energy of a water molecule in a system of
pure water (of either N or N+ 1 molecules). Furthermore,

(Un)y = [dXNP(XN, X)) Un
P(Xw)

_ [dXNP(XN, X ) Uy
82/ V

= / dXwdXNP(XN /X ) Uy

= / dXwdXNP(XN, Xy)(Uys1 — Bw)

= <UN+1>0 - <BW>0- (7-225)

Using the latter equation, we can rewrite the expression (7.221) for AEj, in the
simpler form

AB, = (Bl +—— (Budy = (Bw)y =5 (Budy = 5{Buw)ye (7220

Thus, the solvation energy of a water molecule in pure liquid water is simply
half the average binding energy of a single water molecule. This result is, of
course, more general and applies to any pure liquid (Ben-Naim 1992).
Finally, we note that for convenience, we have used the T, V, N ensemble in
this section. Similar results may be obtained in any other ensemble as well.

7.10.3 Isotope effect on solvation Helmholtz energy and
structural aspects of aqueous solutions

In the previous section, we derived a general and formal relationship between
thermodynamics of solvation and structural changes induced in the water.
Now, we present an approximate relationship between the structure of water,
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and the isotope effect on the solvation Helmholtz energy of a water molecule.
Similarly, from the isotope effect on the solvation Helmholtz energy of an inert
solute, we can estimate the extent of structural change induced by the solute on
the solvent. The presentation in this section is quite brief. A more detailed
treatment may be found in chapter 6 of Ben-Naim (1992).

Pure liquid water
As in section (7.10.1), we assume in this section that water molecules interact
according to a potential function of the form (7.206). We also assume that H,O
and D,0O have essentially the same pair potential function, except for the HB
energy parameter. It is assumed that |eyp| is slightly larger for D,O than for
H,0. We denote by ¢p and &y the energy parameters for D,O and H,O
respectively.

Viewing AAj, as a function of the HB energy parameter, we expand AA},
about AAj;  to first order in &p-¢ and obtain

0AA;

Adp,o = Adigo + 75— (ep —en) + - (7.227)

The derivative of AAj, with respect to ey may be obtained from the general
expression

AAY, = —kT In(exp(—fBw)),
= —kTIn [/dXN exp(—ﬂUNH)//dXN exp(—ﬁUN)]

Next, we use the general form for the total potential energy (7.212) of the
systems of N and N+ 1 particles to perform the differentiation of AAj, with
respect to egp. The result is

0AA;,  [dXN exp(—BUn1) Yoty G(irj)
aSHB deN CXP(—ﬁUN+1)

B JaxX exp(—pUy41) Z]Ii] G(i )
deN exp(—fUy)

N+1
/dXNPXN/XO > Gli,j)- /dXNPXN ZGU

i<j i<j

(7.229)

where the first integral on the rhs of (7.229) is identified as a conditional
average, i.e., an average over all the configurations of the N water molecules,
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given one water molecule at X,. Thus, using equation (7.211), we rewrite
(7.229) as

OAAY,
68HB

= (HB)}),"' — (HB),. (7.230)

We note that the conditional average number of HBs in a system of N+ 1 water
molecules, given that one of them is at a fixed configuration X,, will not be
changed if we release the condition. In other words, the average number of HBs
in the system of N+ 1 water molecules is invariant to fixing the location and
orientation of one of its molecules. Hence, we may write

(HB)y"™ = (HB); " = ¥ on (7.231)
and
(HB) = §<‘P>o- (7.232)
Hence, the derivative of AAj, may be simplified to
i B0, - 5 o = 500 (7.233)

and the approximate relation (7.227) is now rewritten as
AAL 6 — AAfyo = 5(W)o(ep — en). (7.234)

On the lhs we have a measurable quantity, the isotope effect on the solvation
Helmholtz energy of a water molecule in pure liquid water. On the rhs, we have
a measure of structure of pure water (), (see section 7.10.1). This quantity
may be evaluated if we can estimate the difference ¢p — €. Relation (7.234) has
been used to estimate the structure of pure water (Marcus and Ben-Naim 1985;
Ben-Naim 1987 Ben-Naim 1992).

Dilute solution of inert solutes

We now extend the treatment for pure liquid water to dilute aqueous solutions.
We assume that the solute s does not form any HBs with the solvent molecules.
Furthermore, we assume that the solute-solvent interaction is the same
between s and H,0 and between s and D,o0. The solvation Gibbs energy of s is

AA; = —kT (exp(—fBs)), (7.235)

where the average is over all the configurations of the solvent molecules, in the
T, V, N ensemble.
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Again, viewing H,O and D,O as essentially the same liquid, except for a
small difference in the HB energy parameter, we write the following expansion
similar to equation (7.227) namely

AAAY,

AA*(D,0) = AA*(H,0) +
E€HB

(ED — EH). (7.236)

where now the solvaton is the solute s, rather than a water molecule as in
(7.227).
The derivative of AA§ with respect to gyp is
oAA;  [dXN exp(—BUy — BBs) LN, Gl )
Oeyp JdX" exp(—BUy — BBs)
X" exp(—BUN) SN, Gl )
[dXN exp(—BUy)

— (HB)Y — (HB);'. (7.237)

Therefore, the expansion to first order in first ¢p-¢5 becomes
AA?(D,0) — AA?(H,0) = ((HB)Y — (HB))) (ep — en). (7.238)

On the lhs of equation (7.238), we have measurable quantities — the solvation
Helmholtz (or Gibbs) energy of a solute in H,O and in D,0. On the rhs, we
have the quantity (<HB>£\] — (HB) ), which measures the change in the
average number of HBs in a system of N water molecules, induced by
the solvation process. This may be estimated, provided we have an estimated
value for the difference &5 — &p. Thus, whereas in (7.234) we obtained an
estimate of the structure of pure water, here we got an estimate of the structural
changes induced by a simple solute. More details can be found in Ben-Naim
(1992).

7.11 Solvation and solubility of globular proteins

We end this long chapter with a brief discussion of a very important subject of
intensive research. We present here only a few aspects of protein solvation.
Since proteins do not have any measurable vapor pressure, their solvation
Gibbs energy cannot be measured. It is also extremely difficult to compute it
either theoretically or by simulation methods. However, owing to the utmost
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importance in understanding biochemical processes involving proteins (such as
protein folding, binding of small molecules to proteins or binding of proteins
to DNA), it is worthwhile to invest time and effort, if only to gain a feeling for
the degree of complexity of the solvation of these molecules.

As we have noted in section 7.1, the solvation Gibbs energy of molecules is
needed whenever we are interested in the standard Gibbs energy of a reaction
carried out in a solvent. We have seen that if we know the solvation Gibbs
energies of all the molecules involved in a chemical reaction, we can calculate
the equilibrium constant of the reaction in the liquid, from the knowledge of
the equilibrium constant of the same reaction in the gaseous phase. Protein
folding is an example of such a reaction, which we write as

U—F (7.239)

where U and F are the unfolded and the folded forms of the protein. Clearly,
knowing the solvation Gibbs energies of both U and F will tell us quantitatively
why and to what extent the folded form is much more stable in aqueous
solutions than the unfolded form. Studying the dependence of the solvation
Gibbs energy on temperature, pressure and solvent composition will also tell us
when we can expect to observe destabilization of the folded form leading to
denaturation of the protein.

Clearly, the solvation Gibbs energy of proteins cannot be studied experi-
mentally. This would require measurable vapor of the protein. Therefore, the
only option of studying the solvation of proteins is by theoretical means. As we
shall see below, in spite of the enormous complexity of the problem, theory does
suggest some guidance as to how to dissect the problem into relatively small
and manageable problems.

Before describing this, it should be noted that the solvation Gibbs energy of a
globular protein is in itself an important quantity since it determines the
solubility of the protein; the solubility of proteins is a marvel in itself. The
problem is this: suppose we consider a medium size protein of about 150 amino
acid residues; there are some 20"° possible sequences of polypeptides of such a
length. In the “beginning,” when polypeptides of random sequences formed
spontaneously, they were probably very insoluble in water (see below). Evo-
lution has probably not acted on this immense number of polypeptides but
only on a tiny fraction of these which were soluble in aqueous solutions. Today,
we have both soluble and insoluble (in water) proteins in living systems. We
shall only be interested in the former: those which can be carried by water — the
main component of the blood — from one place to another within the living
system.
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But what makes this special class of protein soluble? As we shall see, the
answer is not fully known. However, some indications as to the molecular
reasons for the solubility were recently revealed (Wang and Ben-Naim 1996,
1997).

The solubility is determined relative to the solid phase. At saturation we have

the equilibrium condition’

=yl =+ kTinp!Al. (7.240)
Thus, the solubility is determined by the quantity
(Pe)eg = AL exp[=B(1" = ). (7.241)

Since y, the chemical potential of the pure solid, is constant we can estimate
the relative solubilities of s in two liquids, say and ; and L, by

;
<%> = exp[—B(u" — 1t?)] = exp[—B(Ar" — Ap?)] (7.242)
s/ eq

where Ap*" is the solvation Gibbs energy of s in liquid /. Since this cannot be
measured, we must resort to some theoretical estimates of these quantities.
Here we encounter two serious difficulties. One is the large number of con-
tributions to Ag:'. The second is more subtle. If the solubility is known to be
*Tor (u) is independent of p. Therefore, having an estimate of
i — w (or Ap') can give us the solubility of s. However, if the solubility is
large (beyond the limit of DI behavior), then both x and Ay’ depend on p'.

The problem is that one must compute Au?’ in the liquid , having a solute with

small, then Ay

an unknown concentration p!. In other words, (p!) eq 18 determined by Ap'. But
I

S

the computation of Au’’ depends on the knowledge of (p!) e Which depends
on the knowledge of A,u:l and so on. Of course, had we had an analytical
expression for the dependence of u' on p!, we could have tried to solve the

implicit equation
(01)eq = AL exp[—B(us (1) — 1. (7.243)

Such a relation unknown, even for simple solutes. We note that this problem
exists for any solute, the solubility of which is beyond the region of DI behavior.

We shall leave this problem for a while. We next discuss some aspects of the
solvation Gibbs energy of protein, and at the end of this section present some
tentative conclusions regarding the molecular reasons for the solubility of
proteins.

T The subscript s is for solute. The superscript s is for solid phase.
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We now turn to the theoretical consideration of the solvation Gibbs energy
of a globular protein which is very diluted in water. Assume for simplicity that
the protein is a rigid molecule (it is certainly not), and that all the internal
degrees of freedom are unaffected by the insertion process — again, there is such
an effect, and probably large. However, for the qualitative discussion below, we
ignore these effects, in which case, the solvation Gibbs energy is simply the
coupling work of the protein s to the solvent I

At = W(s|l) = —kT'In (exp[—fB;), (7.244)

S
where B is the total binding energy of the protein to all solvent molecules at a
specific configuration, X", and the average in (7.244) is over all the config-
urations of the solvent molecules, in the absence of s. Clearly, since the protein
molecule is very large (having many groups on its surface, each of which
interacts differently with the solvent molecules), a calculation of W(s|I) is
beyond the reach of our computational means.

The procedure we undertake here is to dissect the solvation Gibbs energy
into small, more manageable quantities. Here, only a brief description is pre-
sented. For more details, see Ben-Naim (1992). First, one assumes a pairwise
additivity for the solute—solvent interactions, i.e., we write the binding energy
of the protein o' to the solvent at a specific configuration X, ..., Xy as

N
B, =) U(X,X). (7.245)
i=1
For simple solute o, such as argon, one can separate each of the solute—solvent
pair potentials into two contributions (see section 7.7)

UX,, X;) = U+ US (7.246)

where U is the “hard,” or the repulsive part of the interaction potential
function, and US is the “soft,” or the van der Waals part of the interaction. For
such a solute, the solvation Gibbs energy may be written as a sum of two terms

AG: = AGH + AGS/H, (7.247)

The first term corresponds to the solvation of the hard core of the solute. This is
equivalent to the work required to create a cavity of a suitable size and shape to
accommodate the solute. The second term is the conditional solvation Gibbs
energy of the soft part, given that the hard part has already been turned on (see
section 7.7).

T 'We change notation for the solute form s to o since we shall need s to denote the “soft” interaction
below.
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For proteins, the simple split of the solute—solvent pair potential as in (7.246)
is not appropriate; one needs a more elaborate description of the ingredients of
this pair potential. There are several ways of performing such a split into a sum
of contributions. One way is to recognize that in addition to the hard and soft
parts of the potential, there are also specific functional groups such as charged
or polar groups which interact with water in a way different from a simple
nonpolar group.

To account for these specific interactions, we write the solute—solvent pair
interaction for protein «, in generalization of (7.246), as

UXy, X)) = U+ US4+ > U (7.248)
k

where Uy is the contribution of the kth functional group to the solute—solvent
interaction. Note that Uy includes both hard and soft, as well as any specific
interaction with the solvent. Figure 7.11 shows a schematic example of such a
split of the total solute—solvent interaction. When the solvation Gibbs energy is
computed through (7.244) using (7.248) we obtain

AG; — AG;H +AG:S/H + EAG:k/H,S +ZAG*k’j/H’S
k k,j
+ ) CAGHIS (7.249)
ij.k
The first two terms on the rhs of (7.249) are the same as in (7.247). The third
term is the coupling work of all the independently solvated groups. The fourth
term includes all the pair correlated groups, and so forth.

Thus, even when the additivity assumption in (7.248) is a good approx-
imation, or even exact, the solvation Gibbs energy of o is, in general, not
additive with respect to the contributions of all the functional groups. The
reason is that the solvation of a group of two or more functional groups might

Figure 7.11 A schematic split of the protein—water interaction into a sum of “group” interactions, similar
to the split depicted in figure 7.4.
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be correlated, and therefore, depending on the extent of correlation, one must
account for independent functional groups, pair correlated groups, triplet
correlated groups, etc.

The expansion of the solvation Gibbs energy as done in (7.249) is useful in
the study of the various contributions to the solubility of a globular protein. Of
course, the specific implementation of such an expansion depends upon many,
some arbitrary, decisions on how to split the potential function into its
ingredients. For instance, one must decide where to make the cut-off between
the hard and soft part of the interaction (a problem which exists even for the
simplest solute such as argon), how to select the criterion which distinguishes
between functional groups that are exposed or unexposed to the solvent, etc.
These details are not described here; see Wang and Ben-Naim (1996, 1997). The
qualitative meaning of the expansion (7.249) is very simple. Instead of inserting
the whole protein to some fixed position in the liquid, we can first insert the
hard part H, i.e., creating a cavity of radius R.,,. Then, we turn on the soft
interaction S; the contribution is the conditional solvation Gibbs energy
AG:S/ M Next, we turn on each of the functional groups on the surface of the
protein. It is here that one should be careful to turn on first all the indepen-
dently solvated functional groups, then all the pair correlated groups, and so
on. The corresponding sums are on the rhs of (7.249). The expansion (7.249)
allow us to estimate the solvation Gibbs energy of the protein from estimates of
each of the contributions to AG], from either theoretical or experimental
source.

We next describe very briefly the procedure for estimating some of these
contributions.

(1) The hard part. The first term in (7.249), AGH, corresponds to turning on
the hard part of the protein—solvent interaction potential. This is the same
as the free energy of creating a cavity of suitable size at some fixed position
in the solvent. We assume that the globular protein is spherical with an
effective diameter d,, so we can calculate AGH using thoe scaled particle
theory (see section and Appendix N). If we choose d,,=2.8 A as the diameter
of a water molecule, then the cavity suitable to accommodate the protein has
a radius of

Rew = (dy + d,) /2. (7.250)

According to SPT, the Gibbs energy of cavity formation is calculated by (see
appendix N).

AG™ = Ky + KiReay + KGR, + KR (7.251)

cav
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where the coefficients K; are
Ky =kT(~In(1 — y) + 4.52*) — nPd’ /6
K, = — kT(6z + 182%)/d,, + nPd’,
K, =kT(12z + 182%)/d’, — 2nPd,,
K; =4nP/3

y=mp,d, /6 z=y(1—y) (7.252)

where p,, is the solvent density and P is the pressure. Taking the density of
water at 298.15K, p,, = 3.344 x 10%? molecules/cm?® and Pas 1 atmosphere, we
can calculate the solvation Gibbs energy of the hard part as a function of
protein diameter d,. The result is that the solvation Gibbs energy is a steeply
increasing function of d,, corresponding to a very steep decrease of the solu-
bility (see figure N.2 in appendix N).

(2) The soft part. The second term in (7.249) corresponds to the soft part of
the protein—water interaction potential. This is given by (see section 7.7)

AG™/M = —kTIn{exp[-BBS]),, (7.253)

where B® is the total van der Waals interaction of the protein with the
surrounding water molecules.

The soft part AG ¥ is calculated by assuming that the surface of the
globular protein consists of methane-like groups, so that the total soft inter-
action between o and a water molecule is the sum of the interactions between
these methane-like molecule and a water molecule. These pair interactions are
assumed to be of a Lennard-Jones type. As expected, this part of the solvation
Gibbs energy is positive. However, it is about an order of magnitude smaller
than the values of the cavity work. Hence, a solute o of the size of a typical
globular protein having only hydrophobic groups (methane-like) on its surface
will be extremely insoluble in water.

(3) The specific hydrogen-bonding interactions. The next and the most critical
step is to add the interaction between all hydrophilic groups which are exposed
to the solvent and the water molecules. As expected and as is well known,
the addition of the hydrophilic groups to the surface of the protein reduces
dramatically the solvation Gibbs energy, i.e., making the protein less insoluble
than the “hard and soft” protein. What was less expected, and to a large extent a
surprising finding, was that when one adds all the hydrophilic groups of a
specific protein, and assuming that each of these is solvated independently, the
reduction in AG}, though dramatic, is not enough to make AG} change its sign
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from positive to negative. It was found that the addition of pair and triplet
correlations between the solvation of the hydrophilic groups is crucial in
changing the sign of AG; making it negative, i.e., making o soluble, or very
soluble in aqueous solutions. In other words, if we “turn-on” all the hydrophilic
groups as being independent, each contributing some negative free energy to
the total AG}, we shall find this hypothetical protein to be only slightly soluble
in water. What makes it very soluble is the fact that some of these hydrophilic
groups on the surface are correlated, giving an additional negative Gibbs
energy to the solvation Gibbs energy of the protein. It has been estimated that
each pair correlated hydrophilic groups (at the right distance and orientation)
can contribute about — 2.5kcal / mol to AG}, which is translated to a factor of
about 100 to the solubility of the protein. For details, see Wang and Ben-Naim
(1997).



EIGHT

Local composition and
preferential solvation

In this chapter, we discuss an important application of the Kirkwood-Buff
integrals. We first define the local composition around any molecule in the
mixture. Comparison of the local with the global composition leads to the
concept of preferential solvation (PS).

After defining the local composition and preferential solvation, we turn to
discuss these quantities in more detail: first, in three-component systems and
later in two-component systems. This “order” of systems is not accidental.
The concept of PS was first defined and studied only in three-component
systems: a solute s diluted in a two-component solvent. It is only in such
systems that the concept of PS could have been defined within the traditional
approach to solvation’. However, with the new concept of solvation, as
defined in section 7.2, one can define and study the PS in the entire range of
compositions of two-component systems. In the last section of this chapter, we
present a few representative examples of systems for which a complete local
characterization is available. These examples should convince the reader that
local characterization of mixture is not only equivalent to its global char-
acterization, but also offers an alternative and more informative view of the
mixture in terms of the local properties around each species in the mixture.
We also present here a brief discussion of two difficult but important systems:
electrolyte and protein solutions. It is hoped that these brief comments will
encourage newcomers into the field to further study these topics of vital
importance.

! There are other methods of studying PS which do not depend on the concepts of solvation
thermodynamics. Perhaps the earliest treatment of PS of ions in a two-component solvent was pre-
sented by Grunwald et al. (1960). This was followed by Covington and Newman (1976, 1988). For a
review see Engberts (1979).
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8.1 Introduction

The problem of preferential solvation (PS) arises naturally in many studies of
the physical-chemical properties of a solute in mixed solvents. Suppose we are
interested in a property 6 which could be chemical reactivity, spectroscopy,
diffusion coefficient, etc., of a solute s in mixed solvents of A and B. The
question is how to relate the value of the measured property 0 45 of the solute s,
in the mixture of composition x,, to the values 4 and dp in the pure solvents
A and B, respectively. We shall first discuss the simplest case of one solute s
which is very diluted in a solvent composed of two components A and B.

The most naive assumption would be to write d 4p as an average of 5, and d3
of the form

0AB = X404 + xp05. (8.1)

Such an average would be reasonable for an ideal-gas mixture. In most cases,
however, the property ¢ is affected by the interactions between the solute s and
the surrounding solvent molecules. Unless these interactions are very weak, one
cannot expect that a relationship of the form (8.1) will hold'. The reason is
simple: the solute—solvent interactions have limited range, normally of a few
molecular diameters, far smaller than the size of the macroscopic system.
Therefore, we should expect that all the effects of the solvent molecules on the
property o of the solute arise from the solvent molecules in the neighborhood
of the solute, i.e., solvent molecules that are in some local “sphere” around the
solute s.

In general, in such a local sphere around the solute, the composition of
the solvent might be different from the bulk composition x4. Let xk (and
x5 =1 — x%) be the composition of the solvent in this local sphere. We shall
refer to x5 as the local composition of the solvent around the solute. We shall
discuss further the meaning of the word local in the next section, but in the
meantime we assume that we can choose some sphere of radius R, centered at
the center of s, where R, is on the order of a few molecular diameters.

Since only the solvent molecules in this sphere are presumed to affect the
property 0, a better approximation for J 45 might be

5AB = X/I;5A + XééB. (82)

Unlike relation (8.1), this new relationship cannot be tested. In general, we
do not know what is the local composition x5. However, since the quantities

! Actually, since all the quantities in (8.1) are measurable, one can easily test the validity of (8.1)
experimentally.
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04 Op, and J,p are measurable, one can define operationally the local com-
position by assuming the validity of (8.2). In other words, one defines x5} as

5AB - 5B

04— 0p

xh = (8.3)
Clearly, if x% is defined in terms of the property d, we should expect to obtain
different values of the local compositions for different properties J. This is
certainly an undesirable feature of a quantity which is supposed to describe the
local composition of the solvent around s.

In the following sections, we shall define a measure of the local composition
around a molecule (not necessarily a solute in dilute solutions) in various
solvents. This measure is independent of the property ¢ of the molecule. In
principle, one can use this measure of the local composition to test the validity
of an equation of the type (8.2).

Once we have obtained a measure of the local composition, we can define the
preferential solvation (PS) of a “solute” s with respect to a solvent molecule of
species i simply by the difference

PS(ils) = x{(s) — x; (8.4)

where x!(s) is the mole fraction of the species i in some correlation sphere of
radius R, and of volume V, = 4nR} /3 around s.

We shall say that the PS of s with respect to species i is positive (or negative)
whenever PS(i|s) is positive (or negative). Some possible cases of PS are shown
schematically in figure 8.1.

Positive PS of s
with respect to i

— No PS

| Negative PS of s
with respect to i

PS depends on
composition

Figure 8.1 Possible signs
of preferential solvation of s
with respect to i. 0 X 1
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8.2 Definitions of the local composition and
the preferential solvation

Consider the general case of a multicomponent system of composition
(X .. .»x.), (with > x;=1) at some temperature T and pressure P. We select
an arbitrary molecule of type s in the system. It is convenient to refer to this
particularly selected molecule as the solvaton. The solvaton s is identical to all the
N, molecules of the same type. We have selected this particular molecule, referred
to as the solvaton, from the center of which we want to examine its local
environment. It goes without saying that whatever we find for the solvation s will
be equally true for any other s molecule in the system. Also, take note that we do
not impose any restriction on the relative concentration of s in the system.

Consider now the volume V, = 47'CR; /3 of a sphere of radius R,, centered at
the center of solvaton s. At the moment, R, is any arbitrarily chosen radius.
Let N;(s, R,) be the average number of molecules of type i, in the volume V,
around the solvaton s. The local mole fraction of i in V, is defined by

N,’(S, Ra)

L
X; (S,R ) - = =, -
’ Zj:l Nj(s, Ra)

1

(8.5)

We recall that p; g;;(R)dR is the average number of i particles in the element of
“volume” dR, relative to an s molecule at the center of our coordinate system.
It is assumed that we have already integrated over all orientations of both
iand s to obtain the radial (or the spatial) distribution function, i.e., a function
depending on the scalar R only. Hence, p; gi(R)4mR” dR is the average number
of i particles in a spherical shell of radius R and width dR centered at s. We can
now write the local composition for each i as

p; 2 gi(R)4nR* dR
R, '
>oic1 P Jo " gs(R)4nR? dR

x(s,Ry) =

1

(8.6)

This is valid for any R,. However, since in general we do not know the various
radial distribution functions, this relation is not useful. Before transforming
(8.6) into a more useful and computable form, we recall the following two
characteristic features of the radial distribution functions g;(R).

First, the correlation between i and s originates from two sources: from the
interactions between i and s; and from the closure of the system with respect to
the number of particles. We have seen in section 2.5 that if there are no
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intermolecular interactions in the system (the theoretical ideal gas), there still
exists correlation. Placing a particle, say of species s, at a fixed position in the
system, changes the average density of s at any other point of the system from
N,/V to (Ny—1)/V. Hence, there is always a residual correlation, which is
proportional to N !, which is due to the closure of the system with respect to
this species. This kind of correlation does not feature in an open system (see
Appendix G).

Second, the correlation due to the intermolecular interactions is usually
(except for perfect solids or near the critical point) of short range (normally, a
few molecular diameters). For the present discussion, “diameter” could be
defined as an average diameter of the species in the system. We do not need any
more precise definition of this quantity here. All we need to assume is that the
chosen molecular diameter is much smaller than the size of the macroscopic
system. Hence, we assume that there exists a correlation distance R¢ such that
for R> R there are no correlations due to intermolecular interactions. The
existence of such a correlation distance is supported both by experiments and
by theoretical considerations (for more details see Appendix G).

If we now assume that we have taken the thermodynamic limit, i.e., all N; — oo,
V— 0o but p;= NV constants, or equivalently if we take all the pair corre-
lations in an open system with respect to all species, we can safely assume that
there exists a distance R, such that for all i

g,'s(R) ~ 1 for R>Rc. (8.7)

For the specific choice of R, = R, beyond which (8.7) is valid, we can write
Ni(s,R¢c) = pi/ [gis(R) — 1]4nR?* dR +/ pATR? dR
0 0

= Pi/ [gis(R) — 1]4nR* dR + p,; Ve
0
= piGis + inC- (8.8)

We may refer to Rc as the correlation radius and to V¢ as the correlation
volume'. In general, R would be dependent on the species i and s. Therefore,
in (8.8) we shall take the largest R which fulfills relation (8.7) for all i. It should
be noted that Rc has the true meaning of the correlation distance in the sense
that, beyond R, there exists no correlations due to intermolecular forces.

It should be noted that our definition of R is in terms of the pair correlation function as in (8.7).
Mansoori and Ely (1985) defined the correlation radius (or the “radius of the sphere of influence”) as
the distance R, for which the integral |, ;Z [gi(R) — 1]4mR? dR is zero for all pairs of species i and j. This
is an unacceptable definition of a correlation radius. Because of the oscillatory nature of g;(R), one can
have more than one R for which this integral is zero. Therefore, such a definition of Rc does not
confer the meaning of a correlation radius.
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Although we have started with an arbitrarily chosen R, in (8.6), once we have
reached the last equality on the rhs of (8.8), specifically the replacement of R¢
in the upper limit of the integration by infinity, we are committed to a choice of
R,> Rcin (8.8).

With this commitment we have undertaken, we can identify the quantities
G in (8.8) as the Kirkwood—Buff integrals. As we have seen in chapter 4, the
KB integrals may be obtained from experimental data for any multicomponent
system. The local composition in the volume V, is now written as

~ NilsR)  — piGis+piVa
__Nils - , (8.9)
i Ni(sRa) 221 (piGis + pVa)

xF(s, R,)

1

Equation (8.9) is valid for any R, > R¢ i.e., when R, is at least as large as the
correlation radius of the system. Thus, having all the G;; and a choice of a
volume V,, we can calculate the local composition for any mixture. Clearly, if
R, is very large then x[(s, R,) will approach the bulk composition and we shall
miss the local character of x/. Therefore, we have to choose R, large enough to
take into account all the effects of s on its environment, but not too large that
the local composition is washed out.

We next define the preferential solvation (PS) of s with respect to i as the
difference’

xi(Gis—> i1 %Gis)  xiY...:%(Gis— Gj
PS(i!s):x.L(s,Ra)—xi: ( ICS 21_1] ]S): lz]f (Gis— Ge)
ijlx]'st-f-Va Zj:lijjS+Vﬂ

(8.10)

1

Note that G;; are independent of Vi, provided we have chosen R¢ large enough
so that the replacement of the upper limit of the integral in (8.8) by infinity
is valid.

Note also that the first equality in (8.10) can be defined for any R, pro-
vided we use R, as the upper limit of the integral in (8.6). The second and
third equalities hold true only for R, > Rc where R is the correlation dis-
tance in the system. Since we can obtain all the G;; from the inversion of the
KB theory, we can also compute PS(i|s) for each i and s. Clearly, for very
large R,, we have PS(i|s) =0. This makes sense, since for very large volume
V. the “local” composition must approach the bulk composition, hence the
PS of s with respect to all i will tend to zero. As with the local composition,

T It should be noted that a quasi-lattice, quasi-chemical theory of preferential solvation has been
developed by Marcus (1983, 1988, 1989, 2002). In the author’s opinion, this approach is not adequate
to describe PS in liquid mixtures, especially when the different species have widely different sizes.
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the PS of s with respect to i may be calculated for any chosen V, provided we
have chosen R, > Rc.

Because of the abovementioned property of PS, and since in general we do
not know the value of V¢ we expand PS(i|s) in power series about V! to
obtain the first order of the PS in V,!. The result is

xi Y izi %[ Gis — G 1
AN j#i J
PS(I‘S) =0+ Vu + O(ﬁ) (811)
Thus, the first-order coefficient of this expansion is
PSO(lls) = X E x]'[G,'S - Gj ] (8.12)

J#i

Clearly, this quantity is independent of V,. Operationally, PS° is the limiting
slope of the PS(i|s) drawn as a function of ¢ = V', At =0, PS(i|s) =0, hence
PS°(i|s) gives the direction in which the PS(i|s) is changing when we increase &
(or decrease V, from infinity).

Note that the sign of the PS is determined by the numerator of (8.10).
Although each of the Gj; can be either positive or negative, the entire
denominator is always positive. This follows from the fact that the denominator
of (8.10) is proportional to the average number of particles as in (8.9).
Therefore, the sign of the first-order coefficient in (8.11) gives the correct sign
of the PS at any R, > Rc.

Extreme care must be exercised in interpreting both PS(i|s) and PS°(i]s).
First, equation (8.9), when Gj; are used as the KB integrals, is valid only for any
R, > R¢. Therefore, one cannot compute values of the PS in first, second, etc.,
coordination spheres where the radius of the coordination sphere is smaller
than Re.'

Clearly, one can compute the PS for any R, provided that all the G;/'s in (8.9)
and (8.10) are defined as in (8.6), i.e., with a finite upper limit of the integrals.
This requires a detailed knowledge of all g;(R) as a function of R. If, however,
we use Gj; from the KB theory, then we must commit ourselves to R, beyond the
correlation radius Rc. It is meaningless to compute the PS(i|s) from (8.10) with
G;j from the KB theory, for the first or the second coordination spheres.

The quantity PS°(i|s) in (8.12) is not the PS at any specific volume, not even
in a volume larger than the correlation volume V. The correct interpretation
of this quantity is the following.

T This error has been committed by the author in the original publication of this definition of PS.
It has been followed by others, calculating the PS for radii smaller than Rc.
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Suppose we use the definition of PS as in (8.10) but with finite radius R,,.
In this case, equation (8.10) is a function of R, of the form
A(Rs)
B(R,) + 4nR3/3

PS(R,) = (8.13)

where A(R,) and B(R,) depend on R, through the upper limit of integration.
Plotting PS(R, ) as a function of R, would give us a very complicated
function PS(R,) (equation 8.13), but once we cross R, = R¢, A(R,), and B(R,)
become constants and hence, we are guaranteed that this function behaves as
_ AR
B(Rc) + V,
with A(R¢ ) and B(Rc) constants; the dependence of PS on R, is only through
V.. This property is illustrated in figure 8.2. The figures here correspond to a

PS(R,) (8.14)

two-component system of A and B as discussed in section 8.4. They are shown
here only to illustrate the behavior of PS at large V..
Taylor expansion of the PS as a function of ¢ = V! has the form

PS(e) = 0 + PS°(i[s) + O(&?). (8.15)
Thus, PS°(i|s) measures the slope of the function PS(¢) at ¢ = 0. As we increase &

from zero to ¢ = V!, we are guaranteed that PS(e) is a monotonic function of ¢
of the form

eA(R
PS(e) = _¢ARe) (8.16)
8B(Rc) +1
b
(a)o.ooom PS (AlA) (b) 0 PS (BIB)
8x108 | -0.00001 |
i _0.00002 |
6x107° 1 ;
X -0.00003 f
4x10°8 | 3
I -0.00004
2x10° | ~0.00005
~0.00006 L

8 10 12 14 16 18 20 8 10 12 14 16 18 20
Ra Ra
Figure 8.2 The behavior of the function PS(A | A) and PS(B| B) as a function of R, for large values of R,

(equation (8.13) but applied to a two-component system). The dotted curve is the limiting behavior of the
PS as R, — oo (equation 8.14) but applied to a two-component system of A and B.
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PS(BIB)

~0.00001
-0.00002
-0.00003
-0.00004

~0.00005 |

Figure 8.3 lllustration of the behavior of the —0.00006 |
preferential solvation in the limit & = V;' — 0. C
The full curve was calculated for the same system T
as in figure 8.2. The dotted curve shows the limiting 0102030405060708
behavior as & — 0. € X 1000

with constants A (Rc ) and B (Rc ). By taking the limiting slope of this function
at ¢ =0, we obtain the direction of the change of PS(¢) up to ¢ = V 1 Hence,
PS® gives the correct sign of the PS beyond the correlation volume V. Figure 8.3
shows the behavior of the PS as a function of ¢. The linear behavior (8.15) is the
dotted line.

8.3 Preferential solvation in three-component
systems

In the previous section, we have defined the concepts of the local composition
and the preferential solvation for any mixture. In a three-component system
of s, A, and B, we can define three local compositions around each of the
molecules, e.g., x4(s), x5(s) and xL(s).

However, since the sum of these is unity (provided we have chosen the same
correlation volume for the three cases), we have only two independent quan-
tities for each type of solvaton. Altogether, we have six independent local
compositions x!(j) in the system. Likewise there are three PS(i/s):

PS(s[s) = x5(s) — xs
PS(Als) = xk(s) — xa
PS(B[s) = x5(s) — xs. (8.17)
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Since these are related by the equation
PS(s|s) + PS(A[s) + PS(B|s) =0, (8.18)

only two of these are independent. Hence, in our system we have six inde-
pendent PS quantities, two for each species selected as the solvaton.

As in the general case discussed in section 8.2, for any choice of a volume V,
which is at least the size of correlation volume Vi, one can obtain all the KB
integrals from the inversion of the KB theory. Hence, we can compute all the
local compositions as well as the preferential solvation around any species in
the system. To the best of our knowledge, such a complete computation
has not been undertaken for any three-component system. However, there
exists abundant information, both experimental and theoretical, on a three-
component system where one solute say, s, is very dilute in the mixed solvents
of A and B." Although one can define the local composition and PS around s, A
and B, only one of these has been studied, the component s which is diluted in
the mixed solvent. It is worthwhile noting that in the traditional approach to
solvation thermodynamics, only very dilute solutions could be studied, i.e., a
dilute solution of s in a mixed solvent of fwo components was a minimal
requirement for studying PS. We shall see in the next section that PS can be
studied in a two-component system as well.

From now on we focus on the solute s and define the local composition
around it. Since x,— 0, we have from (8.9)

i xaGas + x4V,
xaGas + x5Gps + V-

xk(s) (8.19)
Since xk(s) 4+ x5(s) = 1, only one local composition around s is defined and the
corresponding PS is

XAXB ( Gas — GBs)

PS(Als) = xk(s) — x4 = .
(45 Als) = xa xaGas + xpGps + V,

(8.20)

PS(A|s) is the preferential solvation of s with respect to A. A positive value of
PS(A|s) means that the local mole fraction x4(s) is larger than the bulk mole
fraction x,4. In this system, PS(A|s) = — PS(B|s), i.e., a positive PS(A|s) implies
a negative PS(B|s). Hence, in this system, we can also say that a positive
PS(A|s) implies a preference of s to have A’s in its surroundings more than B’s.
This is also clear from the quantity Ga;— Gps in the numerator of (8.20).
A positive PS(A|s) is equivalent to the statement that the affinity between A

and s is larger than the affinity between B and s. This statement is not valid in

t See, for example, Zielkiewicz (1995a, b, 1998, 2000, 2003).
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general when s (or any other solvaton) has more than two species in its
surroundings, as is clear from the general expression (8.10). In our case, since
there are only two species in the surroundings of s (as also will be the case
discussed in the next section), PS(A[s) has a true meaning of preferences for
one species over the other.

From (8.20), we see that when Ga,= Gp, (equal affinities), then there is
no PS. Furthermore, when either of the components A or B is very dilute, say
when x4, — 0, there is only one component in the surroundings of s and
PS(Als) =0. On the other hand, if PS(A|s) =0 for all compositions x4, then it
follows that G4,= Gg,.

Note again that the sign of the PS is determined by the numerator of (8.20),
i.e., by Gas— G, of (8.20). The denominator is always positive (though each of
the Gj, could either be positive or negative), and is a monotonically increasing
function of R, as R? provided that R, > Rc.

The first-order behavior of PS(AJs) as a function of ¢ = V Uis

PS(A’S) = 8XAxB<GA5 — GBs)- (8.21)

In figure 8.3, we illustrate the behavior of the PS(A|s) as a function of ¢. The
function starts at PS(A|s)=0 for ¢=0, and the slope at ¢=0 is xaxp

(GAS - GBS)'

All the G;J’s in equation (8.20) or (8.21) may be computed from KB theory.
For our special case, when s is highly diluted in a solvent mixture of s and B of
composition x,, the chemical potential of the solute is

U(T, Pxa, p,) = (T, P, x4) + kTInp A2 (8.22)

The derivative of (8.22) with respect to Ny is

(a_‘ui> = (%) _ kTVA (8.23)
ON4 T,P,Ng,Ng ON4 T,P,Ng,Ng 4

where V, is the partial molar volume of A in the mixture. This derivative, as

well as V4, may be expressed in terms of the Kirkwood—Buff integrals. The
algebra is quite lengthy; therefore, we present here the final result (some further
details are discussed in Appendix K)

*] T 2
lim (a“s > _ KTpatpy). (Ggs — Gas) (8.24)
Ox, TP n

where 7 is defined as in chapter 4

n=pas+pp+paps(Gaa + Gps — 2Gap). (8.25)
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Figure 8.4 Solvation Gibbs energy of methane in mixtures of (a) water-p-dioxane, and in (b) water
ethanol at two temperatures.

Let 178 be the pseudo-chemical potential of s in an ideal-gas phase. Clearly,
w8 is independent of x,. Therefore, we may rewrite (8.24) as

(E)AG;‘) _ kT(pa+ p5)° (
0xa ) pr n

lim Gps — Gus) (8.26)

ps—0
where AG" = ! — 1% is the solvation Gibbs energy of s in our system. Thus,
from the slope of the solvation Gibbs energy as a function of x,, we can extract
the required difference Gp,— Ga..

Recall that n is a measurable quantity through the inversion of the
Kirkwood—Buff theory. Since # >0, the entire quantity kT(p+ pg)’/n is
always positive. Therefore, the sign of the derivative on the lhs of (8.25) is the
same as the sign of Gg;— Gy,

Figure 8.4 shows the solvation Gibbs energy of methane in mixtures of water
(A) and p-dioxane (B)(figure 8.4a) and water (A), and ethanol (B),(figure 8.4b)
as a function of the mole fraction of the organic component (B) throughout the
entire range compositions. Regions in which the slope is positive correspond to
Ga.— Gps>0," which in the case of water—ethanol means that methane is
preferentially solvated by water. Note that this occurs only in a very small
region, say 0.1 < Xeghanot < 0.15. In most of the composition range, methane is
preferentially solvated by ethanol. The same is true for the PS in the water—
dioxane system.

Relation (8.26) is useful for solute s, the solvation Gibbs energy of which
can be determined. If we are interested in proteins as solutes, then (8.26) is
impractical. However, we can still measure the solvation free energy of sin a

! Note that a positive slope in the curve of AGg as a function of xp corresponds to negative slope of
AG§ as a function of x4 (A being water in this example).
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mixture of [ relative to, say, pure A (e.g., solvation of protein in a solution
relative to the solvation in pure water). The relevant relation is

A
AAG' = AG" — AG™ = kTIn (Z-;) . (8.27)
S €q

Thus, by measuring the density of s in [, and in pure A at equilibrium with
respect to the pure solid s, we can determine AAG! from (8.27). Since AG* is
independent of x,, we can apply (8.27) in (8.26) to obtain

x 2
lim 0(AAG?) _ kT(p4+ pp)
ps—0  Oxp n

(Gps — Gas) (8.28)

which is a useful relation for solutes, the solvation Gibbs energy of which are not
measurable. Note also that the Kirkwood-Buff theory allows us to express both
Ggs and Gy, in terms of measurable quantities. Again, the algebra involved is
quite lengthy. We therefore present the final result only (more details are in
Appendix K). First, we express the partial molar volume of s in the limit of very
dilute solution in terms of the Kirkwood—Buff integrals. This relation is

‘_/(5) = plslgl()‘_/s = kTKT - ,OA‘_/AGAS — pB‘_/B GBs- (829)
In equations (8.26) and (8.29), all the quantities k7, 7, P, P, Vs Vs \_/S, and
O0AG: /Ox, are experimentally determinable. Hence, these two equations may
be used to eliminate the required quantities Gg, and Ga, Thus, denoting

AG? T 2
1= lim <6 G5> ’ bzw, ¢ = kTkr (8.30)
P,T

Oxa n

we may solve for G5 and Ggs. The results are

a

Gp,=c¢c— Vg + b pAVA (831)
—0 a J—
GAs =C— VS — Z pBVB (832)

which are the required quantities.
It is interesting to note that if the mixed solvent of A and B forms a
symmetrical ideal (SI) solutions, i.e., when

Gaa+ Ggg — 2G4 =0 (833)

then, equation (8.26) reduces to

. (OAG;
lim < S) = kT(pA + pB)(GBS — GAs)‘ (834)
P,T

ps—0\ 0x4
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Thus, even when A and B are “similar” in the sense of (8.33), they can still
have different affinities towards a third component. This was pointed out in
both the original publication on the PS [Ben-Naim (1989, 1990b)] in two-
component systems (see next section) as well as in Ben-Naim (1992). It was
stressed there that “similarity” does not imply lack of PS. These are two dif-
ferent phenomena. Failing to understand that has led some authors to express
their astonishment in finding out that symmetrical ideal solutions manifest
preferential solvation. As we have seen above, SI behavior of the mixed solvents
of A and B does not imply anything on the PS of s. This can have any value. In
the next section, we shall see that the PS in two-component mixtures is related
to the condition (8.33). However, the PS is not determined by the condition of
SI solutions. In a three-component system, even when we assume the stronger
condition of SI for the whole system, not only on the solvent mixture, i.e., when
in addition to (8.33) we also have

Gss + Gaa — 2G4 =0

Gss + GBB - 2GBs =0 (835)
then we get
GAA — GBB = 2(GA5 — GBs)- (836)

Thus, complete ideality [in the sense of (8.33) and (8.35)] does not imply lack
of PS. Conversely, lack of PS (in the sense of G4, = Gg,) does not imply ideality.
We shall further discuss this point in relation to PS in two-component systems
in the next section.

Equations (8.26) and (8.28) are also important in connection with the
problem of the effect of added co-solvent on the solubility of s. When
the co-solvent is a salt, this effect is well-known as the “salting-out” or the
“salting-in” effect.

Let s be any solute diluted in a mixed solvent. Its solubility relative to the
solubility in pure A is determined by equation (8.27). If B is a salt and A is
water, then for dilute solutions of s we have

(aAAGf> __(AKTInpi) (8.37)
axB P,T a.X'B PT‘ '

If we start from pure A (say water) and add B (say electrolyte), an increase

in the solvation Gibbs energy of s is equivalent to a decrease in solubility of s.
This may be referred as a “salting-out” effect. A decrease in AG; upon adding
A is equivalent to an increase in solubility of s, hence a “salting-in” effect. From
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(8.26) or (8.28), we see that the “salting-out” effect is equivalent to positive
PS(A|s) and the “salting-in” effect is equivalent to negative PS(Als). Of
course, these conclusions are valid for any solution not necessarily containing
electrolytes. It should be noted also that the derivative in (8.37) is related to
the Sechenov coefficient — see for example Ruckenstein and Shulgin (2002).
The latter is usually expressed in terms of Henry’s constant, but in dilute
solutions, the Henry constant is equivalent to the solvation Gibbs energy of
the solute.

8.4 Local composition and preferential solvation
in two-component systems

In the previous section, we discussed the theory of preferential solvation of a
solute s in a two-component system. In the traditional concept of solvation
thermodynamics, only very dilute solutions could be treated. Therefore, the
minimum number of components required for such a study are three: a solute
and a two-component solvent. However, the question of PS can also be asked in
a two-component system, say of A and B. At any composition x4, we may focus
on an A solvaton and ask what is the PS of A with respect to the two com-
ponents A and B. Likewise, we may focus on a B solvaton and ask the same, but
independent question of the PS of B with respect to the two components A and
B. In this sense, the treatment of the two-component system is a “general-
ization” of the corresponding three-component system, as discussed in the
previous section.

Let R, be any arbitrary radius, and let V, = 4nR>/3 be the corresponding
sphere, the center of which coincides with the center of an A solvaton. The local
composition in the volume V, is defined as (see section 8.2)

XAGAA + XAVa
XAGAA + xBGAB + Va '

xH(AR,) = (8.38)
Clearly, in a two-component system, there is only one local composition
around A, xt (and x5 =1 — xk). Likewise, there is one local composition
around B which we choose to define as

xgGap + xV,
xAGAB + xBGBB + Va '

x5(B, R,) = (8.39)

Since there are only two components around either an A solvaton or a B
solvaton, we have only one PS of A and one PS of B. For reasons of symmetry,
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we choose these as

x4x5(Gaa — Gap)

PS(A|A) = x(A, R,) — x4 = 8.40
(414) A4 Ra) =1 xaGaa + x5Gap + V, (8.40)
and
xaxp(Gpp — Gap)
PS(B|B) = xk(B,R,) — x5 = . 8.41
(BIB) = (B R) — = s M (s.41)
Note that PS(A|A) and PS(B|B) are two independent quantities, but
PS(A|A) = —PS(BJA)
PS(B|B) = —PS(A|B). (8.42)

Again, we stress that all the quantities in (8.38)—(8.41) can be defined for any
R,, provided that we choose R, as the upper limit of the KB integrals as in (8.6).
However, if we want to use the Gjj from the KB theory, we must take the infinite
size limiting behavior of g;(R) so that only correlations due to intermolecular
interactions are captured in Gj; and choose R, to be at least as large as the
correlation distance R, > R for all the pairs of species. The PS(A|A) can be
correctly assigned the meaning of preferential solvation, in the sense that a
positive PS(A|A) means that an A solvaton prefers to be solvated by A compared
to B. This is also reflected by the numerator of (8.40), the denominator being
always positive. A positive PS(A|A) is equivalent to a larger affinity between the
pair AA, relative to affinity between the pair AB. A similar interpretation
applies to PS(B|B). As in the more general cases discussed in sections 8.2 and
8.3, the PS will necessarily tend to zero as we increase R, up to the macroscopic
size of the system. Hence, it is useful to take the first-order expansion of the PS
with respect to ¢ = V! to obtain

PS(A|A) = ePS°(A|A) + - - - = exaxp(Gaa — Gap) + - - - (8.43)

PS(B|B) = ¢PS°(B|B) + - - - = exaxp(Ggp — Gap) + - - (8.44)

Again, we note that if A and B form a SI solution, in the sense of (8.33), we
can write it as

This does not imply anything regarding neither the sign nor the magnitude
of the PS. This fact was stressed and explained in the original publication of
the concept of PS in a two-component system (Ben-Naim 1989). The two
properties of SI solutions and of PS arise from the two different attributes of



278 LOCAL COMPOSITION AND PREFERENTIAL SOLVATION

the molecules in the system. One arises from the “similarity” of the two species,
as defined in (8.45), and the other arises from the difference in the affinities
between the species. Hence, in general, one behavior does not imply anything
about the other.

Although it is very clear that SI behavior does not necessarily imply lack of
PS, some authors expressed puzzlement at finding that PS exists in an SI
solution (e.g. Marcus 2002). In the author’s opinion, the puzzlement is a result
of confusing the condition of similarity, as defined in chapter 4, which is a
necessary and sufficient condition for SI behavior, with “indistinguishable”
intermolecular interactions. In fact, Matteoli (1997), in referring to SI solu-
tions, writes “this reference mixture, for which, by definition, all interactions
between species are indistinguishable.” Indeed if all interactions between
species are indistinguishable, then all of G;; will necessarily be equal, hence, no
PS could occur and the mixture would be SI. Matteoli has also suggested to
“correct” these integrals by subtracting a quantity fo which pertains to a
hypothetical SI solution. In the author’s opinion, these new quantities do not
have a clear-cut meaning.

Note, however, that if both PS(A|A) and PS(B|B) are zero, then both sides of
(8.45) are zero, hence we have a special case of an SI solution. However, the
reverse of this is, in general, not true. In an SI solution (8.45) holds, but nothing
is implied regarding either the sign or the magnitude of the PS. It does imply
that PS(A|A) and PS(B|B) have opposite signs, or PS(A|A) and PS(A| B) have
the same signs.

Again, we stress that both the KB integrals and preferential solvation are
well-defined, well-interpreted, and meaningful quantities. There is no need to
“correct” these quantities and replace them with less meaningful quantities. '

Unfortunately, several authors have already computed these “corrected”
quantity,’ a practice that the present author believes should be abandoned.
Furthermore, there is no need to seek a reference state for the proper
interpretation of the PS. The PS has a “built-in” reference state in its very
definition.

In chapter 4, we have derived a general relationship between the KB integrals
and experimentally measurable quantities. Hence, in principle we can compute
all the KB integrals for the two-component system, and then obtain the
required quantities for the local composition and the preferential solvation.

»

T The present author specifically objects to the usage of the adjective “corrected,” in conjunction
with the modified KB integrals, as first suggested by Matteoli (1997), and later followed by Marcus
(2001), and others. Even if the modified quantities do convey any new information, it does not mean
that the original quantities are somehow defective or subject to “correction.” This is a fortiori true
when the original quantities convey significant information that is not conveyed by the new quantities.

' See Marcus (2001) and shulgin and Ruckenstein (2005a, b, c).
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To obtain the limiting coefficient of the PS in (8.43) and (8.44), we can use
equations (4.49), (4.50) and (4.51) to obtain the quantities

kTp.V 1
Gan — Gup = Mpr¥e 2
PBHBB Pa
kTp.V 1
GBB — GAB = M - (846)
PaMas PB

where u; = (Ou;/ONj)p 1. N It is seen that the sign of PS in the system is
determined by the derivatives of the chemical potentials and the partial molar
volumes; no need for the isothermal compressibility of the mixture. One can
also use excess Gibbs energies and excess volume to calculate the two PS’s.

8.5 Local composition and preferential solvation
in electrolyte solutions

All the definitions of the local composition and preferential solvation are
applicable for any mixture, including electrolyte solutions. Suppose for sim-
plicity we have a solution of an electrolyte D in water W. Viewing this system as
a mixture of a two-component system, we can apply all the equations of the
previous section.

However, we could also view this system as a three-component system of W,
the anion A, and the cation C. If the system is open with respect to W and D,
but not to the individual ions, then we must have the following conditions:

Pp=Pa=Pc=Pp- (8.47)

The total number of A’s around W must be equal to the total number of C’s
around W, hence

oo

MAMMMM—HMWMFWQA[md@—ﬂ“ﬁﬂhﬂ (8.48)

or equivalently
Gwa = Gwe. (8.49)

The upper limit of the integrals in (8.48) should be understood to be very
large compared with the correlation distance. Likewise, the total number of C
around A must be equal to the total number of C around C, hence

oo

po [ lgne® ~ 14k k= pe [ lgcel®) - 1ank dR 1 (850
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or equivalently
GC(;— GAC: —l/p. (8.51)

Similarly, the conservation of the total number of A’s in the system leads to
o0 o0
pA/ [gac(R) — 1]4nR* dR = pA/ [gaa(R) — 1]4nR*dR+ 1 (8.52)
0 0

or equivalently
GAA — GAC = —l/p. (8.53)

The conditions (8.49), (8.51), and (8.53), are often referred to as the electro-
neutrality conditions since in most cases they apply to electrolyte solutions
where the total charge in the system is fixed. However, it is clear that the same
conditions apply to any solute D that dissociates into two fragments

D—A+C (8.54)

where A and C could be either charged or neutral. As can be easily checked,
inserting the conditions (8.49), (8.51), and (8.53) into the matrix B of the KB
theory (see equation 4.23), leads to singular matrix that cannot be inverted as
in (4.27).

Clearly, the conditions above hold because the system, though open with
respect to D, is not open with respect to A and C individually. The KB theory
applies for any three-component system of W, A, and C without any restriction
on the concentrations of A and C, i.e., when the system is open to each of its
components . If this happens for an electrolyte solution, clearly the conserva-
tion of the total charge in the system will not hold, and fluctuations in A and C
would lead to fluctuations in the net charge of the system. One should not
interpret equations (8.49), (8.51), or (8.53), as implying anything on the pre-
ferential solvation of W, A, or C. The reason is that the condition of the
conservation of the total number of A and C must impose a long-range
behavior on the various pair correlation functions. This is similar to a two-
component system of A and B in a closed system, where we have (see section
4.2) the conservation relations

pAG;lzsed - (8.55)
PaGaE* =0 (8:36)

hence
Gllosed _ Gelosed _ _y /5 (8.57)

* Here, as in section 4.7, the so-called electro-neutrality conditions are not relevant to the KB
theory
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This cannot be interpreted in terms of PS. Because of the long-range correla-
tions imposed by the closure condition, these G,z are not the Kirkwood-Buff
integrals. In the same sense, the relations (8.49), (8.51), and (8.53) hold true
because of the closure condition with respect to the individual particles A and
C. Clearly, one cannot conclude from (8.49) that the PS of W is zero. The sign
of PS of W is determined by the difference Gy4 and Gy, provided that Gy
and Gyyc are evaluated in a system open with respect to the three components.
Of course, we can define the local quantities

Ra
G}]‘.’Ca‘ = / gi(R) — 1]4nR* dR (8.58)
0

for all the species in the three-component system W, A, and C, and even
compute these for any given R, to obtain the local excess densities and com-
position. However, one cannot obtain these local quantities from the inversion
of the KB theory.

8.6 Preferential solvation of biomolecules

One of the most important applications of the theory of PS is to biomolecules.
There have been numerous studies on the effect of various solutes (which may
be viewed as constituting a part of a solvent mixture) on the stability of pro-
teins, conformational changes, aggregation processes, etc., (Arakawa and
Timasheff 1985; Timasheff 1998; Shulgin and Ruckenstein 2005; Shimizu
2004). In all of these, the central quantity that is affected is the Gibbs energy of
solvation of the biomolecule s. Formally, equation (8.26) or equivalently (8.28),
applies to a biomolecule s in dilute solution in the solvent mixture A and B.
However, in contrast to the case of simple, spherical solutes, the pair correla-
tion functions gs5 and ggs depend in this case on both the location and the
relative orientation of the two species involved (figure 8.5). Therefore, we write
equation (8.26) in an equivalent form as:

0AG! kTp?
lim < 5) = ﬂ (GBs - GAS)
p—0 axA T.p 17

_ kTpi

1 {/V[ng(XB) —1]dXp _/V[gAS(XA) .Y dXA}

(8.59)

where the integration is over all the locations and orientations of A and B,
relative to a fixed position and orientation of s. However, the Gibbs energy of
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R”

Figure 8.5 Schematic description of

the dependence of the correlation on

the orientation. The solvent densities R’
at two points R and R” are different

although the scalar distances

R=|R|=|R"| are equal.

solvation of a biomolecule may be considered to be composed of several
ingredients, each of which contributes differently to the overall PS. In order to
study these individual contributions, we write the Gibbs energy of solvation of
s as [see section 7.11 and Ben-Naim (1992)]

m
AG = AGH + AGPP Y TAGHHS £ Y CAGHIS o (8.60)
i=1 ij
where the first two terms on the rhs of (8.60) correspond to the work required
to introduce the “hard” and “soft” parts of the interaction of s with the solvent.
The third term is the sum of all the contributions due to specific functional
groups, or side chains protruding from s that are independently solvated. The
fourth term takes into account pair-correlated functional groups, etc. [for more
details, see section 7.11 and Ben-Naim (1992)].
Corresponding to each of the contributions to the solvation Gibbs energy of s
in (8.60), we can write the affinities G45 and Ggg as a sum of terms, i.e.,

Gas = G+ G+ 3G+ 3 G (8.61)
i W

and similar expansion for Gp,. The meaning of each of the terms in (8.61) is as
follows. The first term is the affinity between the hard part of the interaction
between the solute s and A. Next, we “turn on” the soft part of the interaction;
the corresponding change in the affinity is G:ZH. Next, we turn on each of
the independently solvated functional groups. Each functional group i con-
tributes a change in the affinity denoted by GZSH’S. The sum over i corresponds
to integration over the correlation regions of all the independently solvated
functional groups. Thus, formally, the integration over X, is extended
only over each of the regions that are affected by the functional group i.
Similarly, we have contributions due to pair-correlated, and higher correlated
functional groups that are exposed to the solvent. Altogether, the integration
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over X, (and similarly over Xp) will cover the entire correlation region affected
by all the groups on the surface of s. Clearly, this is a very complicated
expression and cannot be studied at present for any real protein. However, one
can study each contribution to the solvation Gibbs energy by using simple
model compounds. The methodology of such an approach has been discussed
in great detail in Ben-Naim (1992). The same methodology can be applied in
the study of the PS of each functional group, using simple model compounds.
Once this information is available, we can estimate the PS of the entire protein
from the sum of the contributions of all the functional groups.

It is well-known that the solvent-induced driving force for protein folding, or
protein denaturation, can be expressed as the difference in the solvation Gibbs
energy of the protein in the folded, and in the unfolded forms (or any other
two conformers, e.g., in the case of conformational change of hemoglobin. See
Ben-Naim (2001); see also Shimizu and Boon (2004) and Shimizu and Smith
(2004). Therefore, the study of the PS of a protein in any two conformations
can tell us the direction of the change in the equilibrium constant induced by
changes in the solvent composition.

8.7 Some illustrative examples

Traditionally, mixtures of two (or more) components were characterized and
studied by examining the excess thermodynamic functions. These offer a kind of
global view of the system. In this book, we have developed the local point of view
of mixtures. This view consists of the KB integrals, the local composition, the PS,
and the solvation thermodynamic quantities. All of these convey local infor-
mation of the system. Therefore, the study of these quantities provides new and
complementary information on the local behavior around each molecule in the
mixture. We present, in this last section, a few illustrative examples of systems for
which such a complete set of local quantities is available.

8.7.1 Lennard-Jones particles with the same ¢ but
different diameter o

The first example is a mixture of two kinds of Lennard-Jones (LJ) particles.
These particles are defined by the pair potentials

iR = 5| ()"~ ()] (5.62)
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with parameters

€AA  €BB  €AB
— =—=-—=0.5
kT kT kT

OAA — 1, OB — 15, O'AB:%(O'AA—FGBB). (863)

The pair correlation functions for this system were calculated by solving the
Percus—Yevick equations as described in section 2.9, and Appendices D and E.

The calculations were done for mixtures at eleven mole fractions x4 = 0.01,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, and a fixed volume density n =0.4.
The functions g;(R) were calculated at 100 points in the range of (0, Rpax)
where R, =120 44. The KB integrals were calculated as

Gi(R) = /0 " [g(R) — 1]4nR? dR (8.64)

and it is assumed that Ry, is larger than the correlation length in the system.

Figure 8.6a shows the variation of Gj; as a function of composition in units
of cm’/mole. The first calculations of this type were done over 30 years ago
(Ben-Naim 1977). Similar calculations were also performed by Kojima et al.
(1984). The general behavior of these quantities as recorded here is qualitatively
similar to the results in previous publications. In all of these composition
ranges, Ga, 1s negative and almost independent of x,. G4z and Ggp start with a
small negative slope at small values of x,, then continue with larger slope at
higher values of x,. In figure 8.6b, we plot the derived quantities

Aup = Gaa + Gpg — 2Gyp = 04 + 05
04 = Gaa — Gup
0p = Gpp — Gas- (8.65)

The first quantity measures the extent of deviations from SI solution. The
second and the third quantities are the two contributions to A , that reflect the

T
T

OF Gas—Gas

cm3 mol™’
'S
cm?3 mol™’
'S
T
)/P
o

02 04 06 08 1 02 04 06 08 1

Figure 8.6 Computed results for a mixture of LJ particles with parameters as described in equation
(8.63): (a) values of Gy in cm3/mol; (b) values of Agg, 8,4 and 85 as defined in equation (8.65).
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Figure 8.7 Same as in figure 8.6 but with parameters as described in equations (8.66).

signs of the limiting PS about an A particle and B particle, respectively. We see
that in this system, the deviation from SI is negative and quite small (relative to
the system discussed below), and the PS about A is positive, while the PS about
B s negative in the entire range of compositions. Similar results were obtained
for L] particles with diameter 6,4,=1 and ogg=2, and also g,4=1, and
opg=23 (Ben-Naim 1977).

Having numerical values of A,z as a function of x,, we can integrate
equation (6.1) to obtain the excess Gibbs energy for this system'. From the
excess Gibbs energies, one can also compute the excess solvation Gibbs ener-
gies. See the examples below.

8.7.2 Lennard-Jones particles with the same o but with
different ¢

Figure 8.7 shows the same set of Gj; for L] particles with parameters

Opaa = 0pg = 03 = 1

%’f — 05, %*f =0.25, e15 = \/Eantss. (8.66)
The calculations were done at the same set of composition as in subsection
(8.62) and for # =0.4.

The results are quite similar to the case presented in figure 8.6. Again, Ga, is
very small and almost independent of x,. G4p is almost constant except for a
small region near x4 ~ 1, and Ggp drops more sharply as x4, — 1. The signs of
the PS about A and about B are positive and negative, respectively, as in the
previous example (figure 8.6b), and the deviations from SI are negative
throughout the entire concentration range.

! Note that the calculations were carried out at constant volume density n=mp,
(%4034 + xp03) /6. From this relation, we can derive the total density of the mixtures at each
composition x,4.
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For spherical particles, a convenient way of analyzing the variation of G,
with composition, is to write

Gop = / gp(R) — 1]4nR? dR
0

0'9,/; o
- / _4nR® dR+ / [gp(R) — UanR2dr ~ (8:67)
0 (7]

= - 1/3+Ia/3-

V,p is essentially the volume of a sphere of radius o,4, where o, is the distance
below which the pair correlation function is practically zero. I,4 is the overall
total correlation between o and f in the range between o4, and the correlation
length Rc. Whereas the first term is negative and almost composition inde-
pendent, the second term may be either positive or negative. The negative

values observed for G,z for the L] particles are probably due to the dominance
of the volume term — V.

8.7.3 The systems of argon-krypton and krypton-xenon

Figure 8.8 shows the excess Gibbs energy (¢"*/kT), and the excess volume for
the argon—krypton and krypton—xenon systems. Figure 8.9 shows the values of
Gij» and the quantities 0,4, 05, and A,p for the argon—krypton system at
115.77 K, based on data from Davies et al. (1967), and Chui and Canfield
(1971), and Calado and Staveley (1971). Here, the values of Gj; are negative in
most of the composition range except at the very edges (i.e., x4 ~ 0.0 and
x4 =~ 1.0). The deviations from SI solution are positive in the entire compo-
sition range. Also, the two components of A,p; d4, and Jdp, are positive and
show strong dependence on the composition. We present in figure 8.9 also the

(@) 0.1 (b) e
0.4
0.08
ArKr," ™, K
0.06 '\ 0.2 K Ar—Kr
é@ ’// . / ‘\‘ ﬁ> /: \
004 7/ " | 02 [\ 02 04 06 08
!/ Kr—Xe \ X !
002| /; 02| kexe
02 02 04 06 08 1 o4 . ,
0.02

Figure 8.8 Excess Gibbs energy and excess volume for the systems of argon—krypton and krypton—xenon.
Based on data from Davies et al. (1967), Chui and Canfield (1971), Calado and Staveley (1971).
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Figure 8.9 Calculated values of G; and the derived quantities Aag 04 d5 and AAG} for the argon-
krypton system.
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Figure 8.10 Same as in figure 8.9 but for the krypton—xenon system.

values of the excess of the solvation Gibbs energies AAG for argon and
krypton. These were calculated from data on excess Gibbs energies and excess
volumes. Details of the calculations are reported by Ben-Naim (1987):

AAG, = AG](in the mixture) — AG,(in pure o). (8.68)

The set of Gjs along with the derived quantities Asp, 04, 05 and AAG;,
provide detailed local information on these mixtures. The first calculations of
AAG; for this system were reported by Ben-Naim (1987). In figure 8.9, we have
recalculated these data for completeness. We note that the solvation Gibbs
energy of argon in pure argon is negative (Ben-Naim 1987). From figure 8.9, we
see that as we add krypton to pure argon, AAG} is positive, which means that
the absolute magnitude of the solvation Gibbs energy decreases upon the
addition of krypton. This finding was interpreted as arising from the change in
the coordination number around the argon solvaton. Similarly, AGy of
krypton in pure krypton is negative. Adding argon to pure krypton causes a
decrease in the solvation Gibbs energy of krypton. This was interpreted as a
result of the weaker interaction between argon and krypton, compared with the
krypton—krypton interaction (Ben-Naim 1987).
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Figure 8.10 presents the same set of results on the krypton—xenon system.
The general form of the curves is similar to the case of argon—krypton. The
deviations from SI are still positive, somewhat larger than the case of argon—
krypton. Also, the excess solvation Gibbs energies are somewhat larger than the
values for argon and krypton, but the general form of the curves is similar to
figure 8.9. The interpretation of the form of the curves of AAG" of both Kr and
Xe is similar to the interpretation given for the system of Ar and Kr.

8.7.4 Mixtures of water and alcohols

Here, we present some examples of a non-simple system. Before discussing
mixtures, we first show in figure 8.11 the values of G, for pure water as a
function of temperature. These were calculated from the compressibility equa-
tion (Ben-Naim 1977). GY,, is always negative and decreases with temperature.

In figure 8.11, we also plot the values of G}, for a series of linear alcohols
CH3(CH,),,_,OH as a function of nat t =0 °C. We also show the value of G},
at the same temperature. Note that the value Gy, is quite near the value that
can be extrapolated from the linear plot of G},(n) at n=0 (n=1 corresponds
to methanol, n=2 to ethanol, and n=0 correspond to an extrapolated
“alcohol” with no methyl group). This is an important observation and it might
indicate that the value of G, is not very sensitive to the extent of the structure
of water. This is in sharp contrast to the behavior of the entropy of solvation of
inert gases in water, and in a series of alcohols. It is known (Ben-Naim 1987)
that the value of AS} of say, argon or methane in water, is far more negative
than the value that one can extrapolate from the solvation entropy in a series of
alcohols.

Figure 8.12 presents some “global” information on the systems of water and
a few alcohols. The corresponding local information on water—methanol is

G, for pure water and alcohols

(a) 16 Gy, for pure water (b) 0
~16.25 -20
-16.5 -40
-16.75 -60
o3 17 \' o 80
© -17.25 -100
175 -120
-17.75 -140
0 20 40 60 80 100 0 2 4 6 8 10
t°C n

Figure 8.11 (a) Values of GBVW for pure water as a function of temperature, and (b) values of GE\A for
pure alcohols as a function of the number of carbon atoms (n).
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Figure 8.12 Excess Gibbs energy (per mole of mixture) and excess volume (per mole of mixture) for
various aqueous mixtures at 25°C. Based on data from Marcus (2002).
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Figure 8.13 Local quantities for the water—methanol system at 25°C. [Based on data from Marcus
(1999, 2002)]

shown in figure 8.13. It is seen that while Gy and Gy, are negative and
relatively independent of composition, the values of Gy start from a negative
value of about —17 cm>/mol at pure water (at 25°C), and increases to large
positive values as we add methanol to the system. Thus, the water—water affi-
nity increases up to mole fraction of about 0.7, then decreases when more
methanol is added. This behavior indicates that Gy, does not have a simple
interpretation in terms of the extent of structure of water in these mixtures.

The slight increase in the methanol-methanol affinity in the water-rich
region might be interpreted as resulting from hydrophobic interaction which
peaks at about Xyethanol = 0.2, and then stays almost constant for the entire
range of compositions.

Figure 8.13 also shows the quantities dyy, dps and Ay in the entire range of
compositions. Note that in almost the entire range of compositions, Ay, is
positive. In the water-rich, and in the methanol-rich, regions, the value of Ay,
is nearly zero. It should be noted that the near-zero value of Ay, at xp,~ 0 and
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Figure 8.14 Local quantities for the water—ethanol system at 25 °C. [Based on data from Marcus (1999,
2002)]

at xp; ~ 1is a result of the opposite signs of the PS about M and about W. This
clearly shows that the magnitudes of the PS of the two components could be
quite large, yet the combinations of the two produce nearly SI behavior. It is
also interesting to note that the extent of deviations from SI behavior goes
through a maximum as the composition changes. This information is not so
obvious from the curves of the global properties.

The excess solvation Gibbs energies of water and methanol are also shown in
figure 8.13. The Value of AGj, in pure water at t= 25 °C is about —27k]J / mol.
We see from figure 8.13 the solvation Gibbs energy of water in the mixture,
reaching the value of about —23 kJ/mol in pure methanol. On the other hand,
the variation of the solvation Gibbs energy of methanol is far less significant in
the entire range of compositions.

Figure 8.14 shows similar local results for the water—ethanol system.
Qualitatively, the results are similar to the case of water—methanol. In all cases,
Gwr and Ggg are negative and relatively small, whereas Gy climbs to large
values of about 50 cm>®/mol and reaches a maximum at about x; ~ 0.8. Note
also that the deviations from SI are much larger than in the case of water—
methanol. The quantity Ay is almost identical to Jyy in the entire range of
compositions, whereas dp is nearly zero. Also, we note that AAG], increases
more dramatically when we add ethanol compared to the addition of methanol.
This means that the solvation Gibbs energy of water in pure ethanol is much
smaller (in absolute magnitude) than in pure methanol.

8.7.5 Mixtures of water: 1,2-ethanediol and of water—glycerol

The global information of these two systems is shown in figure 8.12. The excess
Gibbs energies are negative for these two systems, in contrast to the
systems discussed in subsection 8.7.4. Also, the excess volumes are negative but
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relatively small in the entire range of composition. Figures 8.15 and 8.16 show
the relevant local quantities for these two systems. It in interesting to note that
the deviations from SI behavior are negative but relatively small. In water—

glycerol, Ay is almost zero at xg=0.7. This indicates that the solution is
almost an SI solution at this composition. However, dy and d are quite large
very similar in the two systems.

and have opposite signs. The behavior of AAG;, and AAG, and of AAG]), are
8.7.6 Mixtures of water and acetone

The global quantities for the water—acetone system are also included in
figure 7.12. It is seen that both the excess Gibbs energies, and the excess
the previous subsections.

volumes for this system are quite large relative to all the systems discussed in

The relevant local information is shown in figure 8.17. The results are

qualitatively similar to the results of water—ethanol, only the magnitudes of the

quantities such as Gy, Awa, and AAG;, are much larger in this case. Recently,
Perera et al. (2004, 2005) have done an extensive examination of the data for

this system obtained by different methods and by different authors. They found
large discrepancies in the data from the different sources.
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Figure 8.15 Local quantities for the system of water and 1-4 ethanediol at 25 °C. [Based on data from
Marcus (2002)]
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Figure 8.16 Local quantities for the water—glycerol system at 25°C. [Based on data from Marcus
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Figure 8.17 Local quantities for the water—acetone system at 25°C. [Based on data from Marcus
(2002)]

8.7.7 Aqueous mixtures of 1-propanol and 2-propanol

The last examples presented here are the two systems of water-1-propanol and
water-2-propanol. These two systems illustrate quite dramatically the difference
between the global and the local views of the mixtures. The two isomers of
propanol are quite simple molecules and similar in structure. Only one group,
the hydroxyl group, moves from one carbon atom to another. The curves for g™~
and V™ for these two systems are shown in figure 8.18. The excess Gibbs energies
of two systems are nearly the same. The maximum for the water-1-propanol is
slightly shifted to the left, whereas for water-2-propanol, it is shifted to the right.
The values at the maximum are nearly the same, differing by at most 20%.
Similarly, the excess volume, though differing considerably in values, both have a
shift of the minimum to the left.

On the other hand, the information provided by the local quantities in
figures 8.19 and 8.20 is much richer, sharper, and accentuate the differences
in these two systems. We note some of these features.

(1) The excess Gibbs energy of solvation of water is always positive. This
means decreasing the absolute magnitude of the solvation Gibbs energy relative
to solvation in pure water. The solvation of water in pure-1-propanol is con-
siderably larger (in absolute values) than in pure-2-propanol. This could be a
result of the relative ease of 1-propanol to form hydrogen bonds with water as
compared with 2-propanol. If 1-propanol molecules can form more hydrogen
bonds with a water molecule, compared with the 2-propanol isomer, then this
can account for the larger reduction of the solvation Gibbs energy of water in
pure-2-propanol. The excess solvation Gibbs energy of 2-propanol in the entire
range of composition is negative, very small and nearly independent of com-
position. Adding water to 2-propanol almost does not change the solvation

Gibbs energy of 2-propanol, indicating again that water molecule do not form
more hydrogen bonds with the 2-propanol molecule, compared with propanol-
propanol hydrogen bonding. On the other hand, for 1-propanol, the picture is
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Figure 8.18 Excess Gibbs energies and excess volumes for the system of water-1-propanol and water-2-
propanol at 25°C. Based on data from Nakagawa (2002) and Marcus (2002) and Benson et al (1980).
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Figure 8.19 Local quantities for the system of water-1-propanol at 25°C. Based on data from Benson
and Kiyohara (1980) and Nakagawa (2002)
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Figure 8.20 Local quantities for the system of water-2-propanol at 25°C. Based on data from Marcus
(2002)

quite different. Adding water to pure 1-propanol has a negative effect initially,
probably because water forms more hydrogen bonds with the 1-propanol.
However, as we add more and more water, the excess Gibbs energy of
1-propanol becomes positive. The interpretation of this phenomena on a
molecular level is unclear.
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(2) The extent of deviations from SI solutions as measured by Ay has a
sharp maximum at about xp &~ 0.2 for 1-propanol, whereas at about xp =~ 0.7
for 2-propanol. This is similar to the information on the Gibbs excess functions
in figure 8.18. However, the effect here is much sharper, and also the magnitude
of the deviation from SI is considerably larger in 2-propanol compared with the
1-propanol solutions. Here, in contrast to the global information, we can also
tell which of the two “ingredients” dyy or Jp is responsible for the deviations
from SI. In 2-propanol, dp is almost zero, indicating almost the same affinities
between 2-propanol-2-propanol and water-2-propanol. The corresponding
values of 0p are much larger in solutions of 1-propanol, indicating that the
1-propanol-1-propanol affinity is larger than the 1-propanol-water affinity.

(3) The KBIs for the two systems also show quite different magnitude and
composition dependence in these two systems. The values of Gpp and Gyyp are
much larger and strongly dependent on the composition.

To conclude, we have demonstrated that a host of local information may be
obtained from the KBI, the derived quantities Aap, d4, 5 and from the sol-
vation Gibbs energies. Such information cannot be obtained directly from the
global quantities of these systems.

More results on local properties of both binary and tertiary systems can be
found in Matteoli and Lepori (1984, 1990a, b, 1995), Ruckenstein and Shulgin
(2001a, b, c¢), Rubio et al (1987), Marcus (2002) and Zielkiewicz (1995a, b,
1998, 2000, 2003), Zielkiewicz and Mazerski (2002).
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APPENDIX A

A brief summary of some
useful thermodynamic
relations

Statistical mechanics provides relations between macroscopic thermodynamic
quantities and microscopic molecular properties. Thermodynamics, on the
other hand, provides only relationships between various thermodynamic
quantities. The multitude of these relationships arise from the freedom we have
in choosing the independent variables to describe a thermodynamic system. For
instance, we can choose the variables T, V, N to describe the system. Hence, all
the other variables such as energy, entropy, pressure, etc., are viewed as func-
tions of these independent variables; or we could choose T, P, N to describe the
system and view all other variables, such as energy, entropy, volume, etc., as
functions of T, P, N.
The most fundamental relationships are'

dE=TdS—PdV+Y u;dN, (A.1)
dH = TdS+ VdP+)_ p;dN, (A.2)
dA=—SdT —PdV + ) y;dN, (A.3)
dG=—SdT + VdP+ Y p;aN;. (A.4)

In equation (A.1), we view the energy E as a function of the entropy S, the
volume V, and the number of particles of each species N;. In equation (A.2), we
view the enthalpy H as a function of S, P, and N=Nj,..., N, In equation
(A.3), we view the Helmholtz energy A as a function of T, V, N and in equation
(A.4), we view the Gibbs energy G as a function of the most commonly used
independent variables T, P, N.

! Note that in thermodynamics, U is used for the total internal energy of the system. In this book,
we use E instead of U and reserve the symbols U for the total potential energy of the system.
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From equations (A.1)—(A.4), one can obtain immediately

@6, e

= (er), (a7, @7

The most important relation is for the chemical potential®

<6E> (aH) <6A> <6G> (A8)
nui = = = = .
ON; S,V,N! ON; S,P,N] ON; T,V,N! ON; T,P,N/

where N is the vector comprising all the components of N=Nj, ..., N, except
the component N;i.e, N/ = (Ny,...,Ni_1, Nit1,..., Np).

Many more relationships can be obtained from equations (A.1)—(A.4). Some
of the more useful are the heat capacity at constant volume and at constant

pressure:
OF 0’A
Cy=|=—= =-T=— A9
G I GO 9
o0H *G
Cr=|=— =-T|=— ; A.10
’ (M)m <aT2>p,N (10
the isothermal compressibility
3G
. 1 <6V> 1 <62G> (aPZ>T,N (A1)
r=———) =——=(=—) =-——-—""5 :
V\OP /)y V\OP? ) (g—g)T’N

and the coefficient of thermal expression

op

JEAELLIDN

~“v\er e

A.12
o, A1)

where in the numerator of (A.12) we first take the derivative of G(T, P, N) with
respect to P, then a second derivative with respect to T.

T Sometimes the notation y; = (0G/ONi) 7, 2n, is used. This is ambiguous. First, because one
does not know how many of the N;” s are constants. Second, what if the number of say N; happens to
be equal to say Nj? For this reason, it is better to use the notation as in equation (A.8).
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Partial molar quantities are defined for any extensive quantity E, as the
partial derivative of E with respect to N;, at constant T, P, N i.e.,

E = <6E> ) (A.13)
ON; T,P,N!

The chemical potential defined in (A.8) is the partial molar Gibbs energy.
From the Euler theorem for homogenous functions of order one, one gets for
any extensive quantity, the identity

E=Y NE (A.14)
i=1

and of special importance is the expression for the Gibbs energy, in terms of the
chemical potentials u;:

G=) N, (A.15)
i=1

Taking the total differential of G, we get
dG =" Nidu;+ Y p;dN;. (A.16)
Comparing with (A.4), we obtain the Gibbs—Duhem equation

~SdT + VdP+» Nidu; =0 (A.17)
i=1

1

which is essentially a statement on the dependence of the variables T, P, y, i.e.,
one cannot vary all of these variables independently.

Very often, we want to switch from a derivative of a quantity in one set of
variables into a derivative with respect to another set of variables. For example,
in a two-component system, we can choose the independent variables, say
T, pa, pp where p; is the number density of i (in moles per liter or number of
particles per unit of volume).

In this set of independent variables, the total differential of say, p4, is

a.“A) (@M) <a.“A>
duy, = <— aT + | — dp, + | =— dpg. A.18
§ or PasPB 0pa T.pg ! Opp T,pa ’ ( )

Now, suppose we choose T, tta, p4 as our independent variables and need, say
the derivative of pp with respect to p,4 at constant T, pi4. From (A.18), we have

0= <%) = <%> +<%) <%> (A.19)
0p4 T pia 0p4 Tpg Opp T4 0p4 T,
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or rearranging (A.19) to obtain the identity

<%> <%) <%> _ 1L (A.20)
0pa T.ps Oty T.pa Opp Ty

Note that T is constant in all three derivatives in (A.20). This is a very general
relation. If a system is described by the variables (X, Y, Z,...), we can always

write the relation
0X oz oY _ (A21)
oY), \ox/), \oz/), ’

.” stands for all the variables that are kept constants in all derivatives.

3

where “. .
Another useful relation may be obtained from (A.18). Suppose we want to
choose T, g, pa as independent variables, and we need the derivative of pu
with respect to p4 at T, up constants.
From (A.18) and (A.20), we have

(%) _ <%> +<%> (%)
0p4 T it 0p4 T.pp Opp Tpa 0pa T g

_ (aﬂ) _(%) (Ous/0p4) 1, (A.22)
apA T,pp apB T,pA(a/'LB/apB)T,pA

where we now have on the rhs of (A.22) only derivatives with respect to the set
of independent variables T, p4, pp. Relation (A.22) can be generalized to any
variable X instead of ug.

Finally, we mention the chain rule for differentiation; for instance, if we have
the derivative of p, with respect to the density p, at some set of constant
variables C, we now want the derivative of p,4 with respect to, say, the mole
fraction x4, at the same set of constant variables C. We have

<%> _ (%) <%) . (A.23)
0p4/ c 0x4 ) ¢ \Opa/ ¢

We could choose any other variable instead of x,, say pp. Then we have

(a:uA) (a:uA) <ap B> ( A '24)
apA c apB c apA C
which can be rewritten as

(%) (%) <%) . (A.25)
0pa/c\Ota/ c\OpPB/ ¢

Note that the pattern of the derivatives is the same as in (A.20). But here, all the
derivatives are taken holding the same set of constants C.
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Functional derivative and
functional Taylor expansion

We present here a simplified definition of the operations of functional deri-
vative and functional Taylor expansion. It is based on a formal generalization of
the corresponding operations applied to functions of a finite number of
independent variables.

Consider first a function of one variable

y = f(%). (B.1)
The derivative of this function with respect to x is defined as'

dy S+~ ()

dx  &50 £ (B2)

The derivative itself is a function of x and may be evaluated at any point x, in
the region where there it is defined. For example

y=f(x) = ax
dy . a(x+e)—a(x)
o 11_{%# = a. (B.3)

Here, the derivative is a constant and has the value a at any point x= x,.
A second example is

y=f(x) =« (B.4)
The derivative of this function is
dy
=2 B.5
1= 2 (B.5)

and its value at x=x; is 2xp.

! In this rather qualitative presentation, we shall not discuss the conditions such as differentiability
and integrability under which the operations of integration and differentiation are valid.
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Next, consider a function of n independent variables xi,...,x,. A simple
example of such a function is

f(xl, ey xn) = Z:l: a;x;. (B6>

The partial derivative of f with respect to, say x;j, is

n 0 ox; n
ax ; Xi ; 61,’51‘]' = aq; (B7)

7

where 0;; is the Kronecker delta function.

A further generalization of (B.6) is the case of the vector y=(y1,...,¥,)
which is a function of the vector x=(x,...,x,). This connection can be
written symbolically as

y = Fx (B.8)
where F is a matrix operating on a vector x to produce a new vector y.

We now generalize (B.8) as follows. We first rewrite the vector x in a new
notation

x=(x1,...,%0) = [x(1),...,x(n)] (B.9)

i.e., we rewrite the component x; as x(i), where i is a discrete variable, i=1,
2,..., n. We now let i take any value in a continuous range of real numbers
a<i<b. This procedure gives us a new vector x, with an infinite number of
components x(). The relation (B.8) is now reinterpreted as a relation between a
function x and a function y.

In equation (B.8), x and y are vectors and F is a matrix operating in a vector
space (of finite dimensions). When x and y are functions of a continuous
variable, say ¢, they are viewed as vectors with infinite number of components.
In this case, Fis an operator acting in a functional space rather than on a finite-
dimensional vector space. A simple relation between two such functions is

b
() = / K(s, £)x(s) ds (B.10)

That is for each function x whose components are x(s), we get a new function y,
whose components are y(t). The function K(s, t) is presumed to be known.
Relation (B.10) can also be written symbolically in the form (B.8) which reads:
F operates on x to give the result y.

In the discrete case, for any two components x; and x; of the vector x, we have

the relation

axi
ox = S (B.11)
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Similarly, viewing x(#) and x(s) as two “components” of the functions x, we have

ox(t) B —5
ox(s) o(t —s) (B.12)

where the Dirac delta function replaces the Kronecker delta function in (B.11).

In (B.7), the quantity Ox;/0x; is referred to as the partial derivative of f with
respect to the component x;. Similarly, the functional derivative of y in (B.10)
with respect to the “component” x(s') is

20 _ s i s = s s—s)ds=K(s
5x(5,)—/1<( ,t)(;x(s,)d —/K( ,1)8(s — ) ds = K(s',1).  (B.13)

In section 3.6, we encountered the following example of a functional. The

average volume of a system in the T, P, N ensemble is written as
— [ onto)do, (B.14)
0

(Here, we use N instead of the more cumbersome notation N (1)
The functional derivative of V with respect to the component N(¢') is thus

(Ben-Naim 1974)
/ b

As a second example of the application of the functional derivatives, we show

of section 3.6.)

d¢ /¢>5¢ $dp=¢.  (B.S)

that the pair distribution function can be obtained as a functional derivative of
the configurational partition function. For a system of N spherical particles,
with pairwise additive potential, we write

/ /dRNeXp[ BY U(R,R))|.

i<j

(B.16)

In (B.16), we view Z as a functional of the function U (i.e., the pair potential
which is considered here as a continuous function of six variables).
The functional derivative of Z with respect to the “component” U(R’, R") is

3Z(U)

Xp! By U R,,R]

SU(R, R")
SU(R; R;)
N 1>
/ /dR [ ﬁZ(SUR’R”
i<j
—B> (R — R)o R”]exp[ B U(R,R;)

/ / dRY
i<j i<j

= B (R, R)Z(V)/2 (817)
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where we have used the definition of the pair distribution function (see
section 2.2). Relation (B.17) can be written as

p?P(R,R") = —2kTd[ln Z(U)]/6U(R, R"). (B.18)

Before turning to functional Taylor expansion, we note that many operations
with ordinary derivatives can be extended to functional derivatives. We note, in
particular, the chain rule of differentiation.
For functions of one variable y= f(x) and x= g(t), we have
dydx dy

— = B.19
dxdt dt ( )
and, in particular,
dy dx
In the case of functions of » variables, say
Ve =fi(x1,..,x), k=1,...,n (B.21)
we have'
dye = Oyx dx;
— = — B.22
dt ;ax,- dt ( )
and, in particular
Ay “~ Oy Ox;
kj:T: 0 6_ (B.23)
Vi = 9% )

The generalization of (B.23), in the case of functional space, is straightforward.
We view y= F(x) as a connection between the two functions whose compo-
nents are y(t) and x(t), respectively, and write by analogy with (B.23)

oy(e) _ [oy(e)ox(s) , <
5y(V)_/ ox(s) oy(n) B =0 =) (B.24)

where integration replaces the summation in (B.23).

We now consider the functional Taylor expansion. We start with a simple
function of one variable f(x) for which the Taylor expansion about x=0 is

of 10°f

=f(0 —— 2. B.25

J) =f0) 45 xtgpal @ (B.25)
As an example, f(x) = a+ bx. Then, we have
of

 We assume here that the functions and their inverse are differentiable.
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Hence, from (B.25) we get

f(x) =a+ bx (B.27)
i.e., the expansion to first order in x is, in this case, exact for any x. In general, if
we take the first-order expansion

of

) =f0) +5| = (B.28)

x=0

we get an approximate value for f(x). The quality of the approximation
depends on x and on the function f.
For a function of # variables f(x,,...,x,), the Taylor expansion about the
point x=0 is
n af
F e x) = £(0,...,0) + > ==

X+ (B.29)
= Oxi

x=0

where all the derivatives are evaluated at the point x=0. Again, the quality of
the approximation (B.29) depends both on fand all the x;’s.
The generalization to the continuous case is, by analogy to (B.29),

) =0+ [

where the partial derivative has become the functional derivative and the

x(£)dt + - - (B.30)

x=0

summation over i has become the integration over . We note again that the
first-order expansion in (B.30) can be viewed as an approximation to f(x).
The quality of the approximation depends on both x and on the function f. In
Appendix D, we present an application of such a first-order Taylor expansion.

As for the nomenclature, the quantity 0f/0x; |,—o in (B.29) is referred to as
the partial derivative of f with respect to the component x;, evaluated at the
point x= 0. Similarly, in (B.30), we have functional derivative of fwith respect
to the “component” x(t), at the point x=0.

In the theory of variations, one starts with a functional f(x) where x is a
function of say t, and asks for the effect of variation of the function x on f. To
first order the variation in fis

of (%)
0 = oxdt. B.31
0= [ S| s (B.31)
This is a generalization of the total differential of a function f(x,,. .., x,)

df = ;ﬂl%dxi. (B.32)
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Thus, the partial derivative in (B.32) is replaced by the functional derivative in
(B.31). The sum in (B.32) over the discrete index i is replaced by an integral in
(B.31). 0f(x) is referred to either as the differential or the first-order variation
of the functional f(x).

Thus, both (B.32) and (B.31) give the first-order effect of the variation of the
whole vector x on the function f. The vector in (B.32) is a finite-dimensional
vector (x,...,%,), whereas in (B.31), it is an infinite dimensional vector x
whose “components” are x(t).

Note again that as the partial derivatives in (B.32) depend on both the index i
and on the point of evaluation x, the functional derivative depends on the index
of the component x(t), as well as on the entire vector x.

One easy way of performing the functional derivative is to add to the
function with respect to which we take the derivative, the “variation” function
£0(x— x'), and take the partial derivative with respect to ¢.

For instance

:/@Nwm¢ (B.33)

ot = 5iL [ #9260 - )] d

=/¢a¢—wmw=¢ﬁ (B.34)
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The Ornstein—Zernike relation

The original derivation of the Ornstein—Zernike relation (Ornstein and Zernike
1914) employs arguments on local density fluctuations in the fluid. We present
here a different derivation based on the method of functional derivatives
(Appendix B). A very thorough discussion of this topic is given by Miinster
(1969), and by Gray and Gubbins (1984).

Consider the grand partition function of a system of spherical particles
exposed to an external potential ¥:

=) =D (N [ [ R epl-puRN ] (C)
where o
U(RY, ¥) = Un(R") + XNj V(R;) (C2)
and .
z = glexp(fu)]/A°. (C3)

Here, Un(R") is the total potential energy due to interactions among the par-
ticles N, and the second term on the rhs of (C.2) is due to interaction of the
system at configuration R" with the external potential. As in Appendix B, we use
the symbol ¢ to designate the whole function whose “components” are /(R;).
The functional derivative of In E with respect to the component (R') is

(Ri)
“— oy(R)

ZN: O(R, — R
= —Bp " (R|¥). (C4)

exp[~BU(RY, ¥)]

=
-
SRS
<

exp[-BU(RY, )]
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In the last step on the rhs, we used the definition of the singlet molecular
distribution function of a system in an external potential ¥

Next, consider the second functional derivative of In E with respect to ¥ (R'),
which can be obtained from (C.4):

5’ InE(y) spW(R|y)

oY (R')oy(R") Sy (R")
2251(_/,){ 2\ dRN! 5(R,-—R’)5(R-—R”)]
3 (5) [ fame [ Sota-rrna

xexp[—pU (RN, ¥)]—p) (R |9)p" (R'¥) |
=B {p"? (R.R'|$)+p" (R|$)0(R —R")

—p (R )" (R'|9)} (C.5)
where p® (R,R' | ¥) is the pair distribution function in the presence of the
external potential . In the second step on the rhs of (C.5), we have separated
the double sum over i and j into two terms, the first containing all terms for

which i# j, and the second, all terms with i=.
We next define the total correlation function by

WR,R") = g(R,R') — 1 (C.6)

and rewrite (C.5) when evaluated at ¥ =0 as

(R
e Ry R R 1 ) (RYS(R — RY) (c.7)

W (R") [y
i.e., the functional derivative of the singlet molecular distribution function,
evaluated at ¥ =0 is “almost” equal to the total correlation function. The
singular case arises when R'=R".

We now introduce the so-called direct correlation function, which is defined
in terms of the inverse functional derivative in (C.7). To do this, we view ¥ as a
functional of the density, which we write symbolically as (R’ | o). Now, the
“external” potential is produced by preparing a system with an arbitrary local
density p'"). It is for this reason that it is necessary to work in the grand
ensemble where an arbitrary density change may be envisaged; see Percus
(1964)".

The direct correlation function is defined by

o (R|p!) (R —R")
spM(R") — pW(R)

(R, R") = (C.8)

T Recently the corresponding Ornstein—Zernike equation in a closed system has been derived by
White and Velasco (2001)
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Next, we apply the chain rule of functional derivatives (see Appendix B), which,
for the present case, takes the form

Sy (R |p) 5o (R" )
5o (R")  oy(R")

dR" = 5(R — R'). (C.9)
¥=0

Substituting (C.7) and (C.8) in (C.9), we obtain
_ /[C(R/, R/l/) _ pflé(R/ _ R,//)][p2h(R//, R///) +p5(RN _ R,N)] dR/l/
=J6(R — R") (C.10)

which yields, upon rearrangement, and using the basic property of the Dirac
delta function, the result

h(R/,R”) _ C(R/,R”) +,0/C(R/,R,N)h(R”,RNI) dR" (C.ll)

which is the Orsntein—Zernike relation for a system of spherical particles. One
straightforward interpretation of this integral may be obtained by substituting
the whole the rhs of (C.11) into the integrand on the rhs of (C.11), and con-
tinuing this process, we get

h(R,, R//) — C(RI, R/l) + p/ C(Rl, R/”)C(RN, Rl/l)de//

+p2 / C(R/, R/”)C(R/”, R/”/)C(RHH, RI/)dRI//dR//lI + .. (CIZ)

In this form, the total correlation function is viewed as a sum of “chains” of
direct correlation functions between the two points R" and R”.

Relation (C.11) may be viewed as an implicit definition of the direct cor-
relation ¢(R) in terms of the total correlation h(R). It can be made explicit by
taking the Fourier transform of both sides of equation (C.11), and noting that
the integral on the rhs of (C.11) is a convolution (for spherical particles); hence,
applying the convolution theorem, we obtain

h=¢+pe-h (C.13)
where f is the Fourier transform of f. Hence, we can define the direct correlation
function as

~

h
c=—-. (C.14)
1+ ph
Taking the inverse transform of (C.14), we get back the function c. It should
be noted that the physical meaning of ¢(R) is not clear', i.e., to what extent is

* Rushbrook (1968) wrote: “The Introduction of ¢(R) merely enriches the language we can use in
discussing the structure of fluids, without necessarily adding to our understanding.”
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the function c¢(R) a correlation function, in the probabilistic sense — correlation
between which quantities?

Relations (C.11), or equivalently (C.13) or (C.14), are relations between the
functions c(R) and h(R). A simpler relation between the integrals of these
function may be obtained by integrating both sides of (C.11) over R”, noting
that both ¢ and h are functions of the scalar distance R. We obtain

1 +p/ h(R)4n R*dR] x [(1 — p/ ¢(R)4nR* dR)] = 1. (C.15)
Using the compressibility equation and equation (C.15), we obtain
1= / ¢(R)4TR: dR = (KT picr) . (C.16)

Thus, even when x 7 diverges to infinity (at the critical point), the integral over
c(R) does not diverge. In fact, since p =p.and T= T, are finite at the critical
point, it follows that at this point

p. / c(R)4mR* dR = 1. (C.17)
For mixtures of spherical particles, the generalization of the Ornstein—Zernike
equation is
hi(R,R") = c;(R,R") + > p, / (R, R")h;(R",R") dR"  (C.18)
k
which is the generalization of equation (C.11). Again, integrating over R, and

noting that the functions c;; and h;; are functions of the distance only, one can
obtain the relations between the integrals

H,'j = G,'j = / hij(R)47'CR2 dR (C.19)
Ci= / c(R)4nR* dR (C.20)
Gj=GCj+ Z P Cik Gy (C.21)
K
which can be written as
G=C+ CpG (C.22)

where p is a diagonal matrix

P1
1)

o= ps (C.23)
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This can be transformed into a form analogous to (C.15) as follows.
Multiply (C.22) by p and rearrange:

pG(I — pC) = pC. (C.24)

where I is a unit matrix of the same dimensions as the number of components.
Hence, (C.24) can be rewritten as

pG = pC(I — pC)~" (C.25)
or equivalently
I+ pG=(I—-pC)"". (C.26)

As we have expressed the compressibility equation in terms of the integral over
the direct correlation function in (C.16), one can write the KB theory in terms
of C;; instead of G;; the two are equivalent formulations. O’Connel (1971) has
expressed the view that the formulation in terms of C;; might be more useful for
numerical work since the direct correlation function is considered to be
“shorter range” than the pair correlation function'. For further applications of
this approach, see O’Connel (1971), Perry and O’Connel (1984), and Hamad
et al. (1987, 1989, 1990a, b, 1993, 1997, 1998).

 One can also argue that the direct correlation functions might be of “shorter range”, but their
meaning as correlations is not clear.
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The Percus-Yevick integral
equation

The history of the search for an integral equation for the pair correlation
function is quite long. It probably started with Kirkwood (1935), followed by
Yvon (1935, 1958), Born and Green (1946), and many others. For a summary
of these efforts, see Hill (1956), Fisher (1964), Rushbrooke (1968), Miinster
(1969), and Hansen and McDonald (1976). Most of the earlier works used the
superposition approximation to obtain an integral equation for the pair cor-
relation function. It was in 1958 that Percus and Yevick developed an integral
equation that did not include explicitly the assumption of superposition, i.e.,
pairwise additivity of the higher order potentials of mean force. The Percus—
Yevick (PY) equation was found most useful in the study of both pure liquids as
well as mixtures of liquids.

We present here a derivation of the Percus—Yevick equation based on the
material of Appendices B and C. As in Appendix C, we consider a system in an
“external” potential . In the present case, the external potential is produced by
a particle (identical to the other particles of the system) fixed at Ry:

Y(Ry) = U(Ro, Ry) (D.1)

i.e., the “external” potential at R; is equal to the potential produced by placing a
particle at Ry. When ¢ = 0, the particle at Ry is “switched off.”

Consider the singlet density at R; in the presence and in the absence of ¥.
Clearly, we have (using the notation of Appendix C)

p"(Ry|¥) = p(R;/Ro) (D.2)

PRy [Y = 0) = p(R). (D3)

Both the vertical and the slashed lines can be read as “given that.” On the lhs of
(D.2) and (D.3), we have the singlet density given and external potential ¥,
whereas on the rhs, we have the conditional density given a particle at Ry.
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Viewing p'"(R, |¥) as a functional of ¥, we write the functional Taylor
expansion (see Appendix B).

(R 9= p (R [y 0) 4 [P (Ri¥)
PRI = =0y [FEE pRIdR e (D)

This particular expansion does not prove to be useful. The reason, as explained

in Appendix B, is that a first-order Taylor expansion is expected to be useful
when the “increment” here, ¥, is “small.” For instance, in equation (B.28) of
Appendix B, if x is very large, we cannot expect that a first-order Taylor
expansion will lead to a good approximation. In (D.4), ¥ replaces x (of the one-
dimensional example). Since /(R') — oo as R — R, the increment ¥ cannot
be considered to be “small.”

Instead, Percus (1962) suggested a different expansion of a functional of a
function which is everywhere finite, hence expecting a better approximation.

Consider the following two functionals of ¥:

ERilY) = pM (Ri[9) explBys(Ry))] (D.5)
n(Ri|Y) = P<l)(R1|'/’) (D.6)

where we have

SR =0)=pV(R) Ry =0)=p"(R). (D.7)

We now view £ as a functional of y which itself is a functional of ¥. In this way,
we avoid the possibility of an infinite increment as in (D.4). Thus, the first-
order functional Taylor expansion is

O&(Ry)
on(Ry)

E(R|) =R $=0) + / n(Ro|Y) —n(RJY=0)]dR,. (D)

The functional derivative' in (D.8) is of &, viewed as a functional of 7, taken at
the point y = p“), i.e., at Y =0;see (D.7). Using (D.1), (D.2)—(D.6), we rewrite
(D.8) as

p(R1/Ro) exp[By(Ry)]

= pW(R)) + /[5€(R1)/5'7(Rz)][p(Rz/Ro) —pV(R)]dR,. (D)
Using the chain rule for the functional derivative (Appendix B), we find

O¢(R1) [ O&(Ry) OY(Rs) dR;. (D.10)

on(Ry) oY (Rs) on(Ry)

T In (D.8) and the following equation, we use a shorthand notation whenever possible. For instance,
the notation d&(R;)/0n(R,) means that we view & as a functional of 5 and take the derivative with
respect to 1(R,), the derivative being evaluated at the point = p'", corresponding to ¥ =0.
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The two functional derivatives on the rhs can be obtained from (D.5)
and (D.6):

S¢(Ry)  dp(R 1\1”)
+ B! 1 (Rl\llf) exp[BY(R1)] 6(Ri — Rs) (D.11)
which, at the point ¥ = 0, reduces to (see also equation (C.7) of Appendix C)
O¢(Ry)
oY (Rs)|,—o

= —Blp®h(R,Rs) +pV(R)) (R, — Rs)] + Bp)(R)) (R, —Rs).  (D.12)
Similarly, from (D.6) and from equation (C.8) of Appendix C, we get

W(Rs)| _ Op(Rs) 6(R, — Rs)
on(Ry)|y—y  0pW(Rs) pV(R,)

Substituting (D.12) and (D.13) into (D.10), we get, after rearrangement,

O&(Ry)
on(Ry)

(D.13)

=p! [C(RbRs) -
=0

= ph(R,,Ry) — /h (Ri,Rs) c(Ry, R3) dR; = pc(Ry, Ry)
y=0
(D.14)

where in the second step on the rhs we have used the Ornstein—Zernike relation
(Appendix C). Substituting (D.14) into (D.9), we get

pg(Ry, Ry) exp[By(Ry)] = p + p° / ¢(Ri, Ry)h(Ry, Ry) dR,. (D.15)

Using the notation

f(R,Ry) = exp[—fU(R;, Ry)] — 1 (D.16)
y(Ri, Ry) = g(Ry, Ry) exp[BU(Ry, Ry)] (D.17)

and the Ornstein—Zernike relation, we can rewrite (D.15) as
C(Rl,Rz) :)/(Rl,Rz)f(Rl,Rz). (DIS)

Here, we obtained ¢(R) as a result of the first-order expansion. When (D.18) is
used in the Ornstein—Zernike relation, we get the PY equation. Alternatively,
one can assume relation (D.18) rewritten as

¢(R) = y(R) exp[-BU(R)] — y(R) = g(R) — y(R). (D.19)

g(R) is referred to as the “total” correlation and y(R) is referred to as the
“indirect” correlation. Then the difference should have the meaning of
the “direct” correlation. It is also clear that with this definition of ¢(R), it has
the same range as U(R), i.e., c(R) vanishes when U(R) vanishes.

* Here R=|R, — R [is a scalar
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Alternatively, one can expand y(R) to first order in S[W(R) — U(R)] to
obtain

y(R) = exp{—B[W(R) — UR)]|} = 1 = fW(R) — U(R)].  (D.20)

Then, redefine ¢(R) as
¢(R) = g(R) — 1+ B[W(R) — U(R)]
=¢(R) —1—Iny(R). (D.21)
This, when used in the Ornstein—Zernike equation, gives the so-called hyper-
netted- chain equation for g(R).

Relation (D.18) is often referred to as the Percus—Yevick approximation. If we
use (D.18) in the Ornstein—Zernike relation, we get an integral equation for y:

YRR =14 p [ y(RuRIf (R R)
X [y(Ry, R3)f (R, Rs) + y(Ry, R3) — 1] dRs. (D.22)

This is the Percus—Yevick integral equation for y. Once a solution for y is
obtained, one can calculate g from (D.17).

Another simpler and useful form of this equation is obtained by trans-
forming to bipolar coordinates

M:|R1—R3|, vV = |R2—R3| R:|R1—R2| (D23)

The element of volume is

dRs = 2nuv dudv/R (D.24)
and for spherical particles, (D.22) is transformed into
0 R+u
YR =14 2mpR ™ [ (wudu [ W)+ 50) = v
0 |R—u

(D.25)

Another equivalent equation that was useful in the numerical solution of the PY
equation is for the function

z(R) = y(R)R. (D.26)
With (D.26) and (D.25), we get an integral equation for z(R), which reads

R+u

z(R) = R+ 2mp /000 z(u)f (u) du / [z(V)f(v) + z(v) —v]dv. (D.27)

R—u|

This equation was found to be a convenient form for a numerical solution. This
is further discussed in Appendix E.
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Numerical solution of the
Percus-Yevick equation

The exact solution of the Percus—Yevick (PY) equation is known for a one-
component system of hard spheres (Wertheim 1963; Thiele 1963) and for
mixtures of hard spheres (Lebowitz 1964). Numerical solutions of the PY
equation (for Lennard-Jones particles) have been carried out by many authors,
e.g., Broyles (1960, 1961), Broyles et al. (1962), Throop and Bearman (1966),
Baxter (1967), Watts (1968), Mandel et al. (1970), Grundke and Henderson
(1972a, b)

We present here a brief account of the numerical procedure employed for the
computations of g (R) which we have used for our illustrations in this book. We
start with the integral equation for the function z(R) (see Appendix D)

00 R+u
z(R) = R+ 2mp / z(u)f (u) du / [z(v)f(v) + z(v) — v]dv. (E.1)
0 |R—u|
We begin the iterative procedure by substituting the initial function
z(R) =R (E-2)
in the rhs of (E.1), to obtain
oo R+u
z1(R) = R+ 2mp / uf (u) du / vf(v) dv (E.3)
0 |R—u

Next, z;(R) from (E.3) is substituted in the rhs of (1) to obtain z,(R), and so
forth. It turns out that for high densities p, such a procedure does not lead to a
convergent solution. Instead, one uses a “mixing” parameter 4, 0 <A<1
(Broyles 1960, 1962; Throop and Bearman 1966; Ben-Naim 1972a, b, 1974) so
that the (k4 1)th input function is constructed from the kth input and the kth
output, as follows:

A%, (R) = A" (R) + (1 — D)2P(R). (E4)

In practice, it is found that as p increases, one is compelled to use smaller values
of 42 in (E.4), and large numbers of iterations to get a convergent result.
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As a criterion of convergence, we can choose the quantity

{ = Ng! Z\zk — 21 (i) (E.5)

where Ny is the number of division points at which the function z is evaluated.
z;(7) denotes the value of the function z; at the point R;. The iterative procedure
is terminated when ( falls below a certain small value, say 10~ > or 107,
depending on the required accuracy.

For mixtures, of say, two components (equation E.1) is generalized to

z,(R) = R+ Z 27zpy/ Zyy (1) fory (1) dut

_1[}

R+u

<[ ) ) e (E6)
—u

where the sum includes two terms y = a, 5. The numerical procedure is similar

to the case for one component. One starts with

2,5(R) = R (E.7)

for all the four functions z,5(R) and proceeds to solve the four integral equa-
tions (E.6) by iteration.

In most of the illustrations for this book, we calculated the pair correlation
functions at volume densities of 0.4 and 0.45. For hard spheres Yau et al. (1999)
reported calculations of PY up to # = 0.52. Even at these, relatively far from the
close-packing densities, the convergence of the solutions is very slow and
requires up to 1000 iterations.



APPENDIX F
Local density fluctuations

In chapters 1 and 4, we have discussed fluctuations in the number of particles in
the entire system. Here, we shall be interested in the fluctuations of the density
in a given region S within the system.

Consider, for example, a system in the T, V, N ensemble. We select a region S
within the system and inquire as to the number of particles that fall within S for
a given configuration' R™:

N(RY,S) = ZN:/S 5(R; — R)dR. (F.1)

Each term in the sum over i is unity whenever R;is in S, and is zero otherwise.
Therefore, the sum over i counts all the particles that are within S at a given
configuration R™. The average number of particles in S is

(N(S)) :ﬁ;/-.v./dRNP(RN)/Sé(Ri—R’) dR

—N/-{/-/dRN P(RN)/Sé(Rl —R)dR

:/SdR’N/-\-/-/dRNP(RN)é(Rl —R)
:/SdR/p(l) (R) = pV(S). (F.2)

In (F.2), we have used the definition of the singlet molecular distribution
function. The last relation holds for a homogenous fluid, where V(S) is the
volume of the region S, and p is the the bulk density p = N/ V.

Next, consider the average of the square of N(RY, S):

(N(S)*)= / = / dRN P(RN) /S ié(Ri—R’)dR’ /S ié(Rj—R”)dR”. (F.3)
i=1 j=1

T The results of this section apply to a system of particles which are not necessarily spherical. Here,
we use RY for describing the locations of all the centers of the particles. The orientations are of no
importance for the present considerations.
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Rearranging (F.3), we obtain

EN:EN:/S dR’/SdR”/-\-/-/ dRY P(RY)6(R;— R')6(R; — R")

1=1

EN: / dR' / dR"§(R — R') / / dRY P(RN)§(R; — R')
/ dr / drR’ / / dRY P(RY)5(R; —R') 6(R; — R")
/ dR' / dR"5(R — R")p(R)) + / dR' / dR'p® (R, R")
/ dr' / dR'pP(R,R"). (F.4)

In the second step on the rhs of (F.4), we have split the double sum over i and j

into two sums; the first over all the terms with i=j, and the second over the
terms with i# j. We have also used the identity of the product of two Dirac
functions’

5(R; — R)3(R; — R') = 5(R; — R)3(R — R). (E.5)

In the third step of (F.4), we have used the definition of the pair distribution
function.
The fluctuations in the number of particles within S are given by

(AN(S)) = ((N(8) = (N(9)))°)
= (N()°) = (N(S))*

— (N(S)) + / iR / dR'p (R, R')

/S dR pV (R / dR p"(R")
= (N(S)) + p? / dr' / dR" [g(R) — 1] (F.6)

where R=|R —R"|.

Relation (F.6) holds for any region S within the system. Care must be
exercised in applying (F.6) for the whole volume V. If we are in the T, V, u
ensemble, then, taking S as the whole volume of the system, we get the com-
pressibility relation. However, if we are in the T, V, N ensemble, then N is fixed

t The analog of (F.5) in the discrete case is 6;xJ;j= 0 yj.
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and we have
(N(V)) =N(V)=N (F.7)
and (F.6) reduces to

N—i—p2/ dR’/ dR"[g(R) —1] =0 (F.8)

which is the correct normalization condition for g(R) in the T, V, N ensemble.
Another limiting case is that in which S is an infinitesimally small region
such that at most one particle can occupy S at any given time. For instance, if
the maximum diameter of S is smaller than o (the effective diameter of the
particles), then g(R) is zero in the integrand of (F.6), and (F.6) reduces to

(AN(S)?) = (N(S)) = p*V(8)" = pV(S) [L = pV(S)].  (F9)

Thus, if V(S) is infinitesimally small, then fluctuations in the number of par-
ticles are dominated by p*V(S).

Next, consider two regions S; and S, within the system, Figure F.1. The cross
fluctuations in the number of particles in the two regions are given by

(AN(S1)AN(S2))=([N(S1) = (N(S))[N(S2) = (N(S2))])
:<N(31)N(52)>—<N(51)><N(52)>
:/.\././dRNP(RN)/SI;5(Ri—R’)dR’/SZ;5(Rj—R”)dR”

_ dR/p(l)(R/) dR//p(l)(R//)
S[ SZ

:zN: /s dR' /s dR'5(R —R") / = / dRNP(RY)5(R,—R')
= /s ;

+;/S dR’/SZdR”/~‘-/-/dRNP(RN)é(R,-—R’)(S(R]-—R”)

—/Sl dR/p(l)(R/)/SzdR”p(U(R”)

= SldR’ /S zdR”p(l)(R’)é(R'—R”)

+ [ ar [ ar R RO RRY] (10

where we have used again the definitions of the singlet and the pair distribution
functions.
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G

R'

R Figure F.1 Two regions S; and S,
within the system. R” and R” are
two points within $; and S5,
respectively.

We now distinguish between two cases:

(1) If the two regions S; and S, do not overlap, the first term on the rhs of
(F.10) is zero. This follows from the property of the Dirac delta function:

dR'S(R —R') =0  if R¢S,. (F.11)
S
Since R’ is always within Sy, relation (F.11) will hold whenever S, and S, do not

intersect.

(2) If S; and S, do intersect, the first term on the rhs of (F.10) is

/1 /oplh\ 0 lf Rl¢82
) dR'5(R — R') = {1 RS (F.12)
But R’ is always within S;, hence
dR pV(R) / dR'S(R —R")= dR pW(R)=pV(5NS,)  (F.13)
S S, SiNS;

where S;NS, is the intersection region between S; and S,. The last equality on
the rhs of (F.13) holds for homogeneous fluids. For this case, we write the final
form of (F.10) as

(AN(S)AN(S,)) = pV($i 1 8y) + p? /

1

dr' / dR"[g(R) —1]. (F.14)
$
Two special cases of (F.14) are the following:

(a) If S; and S, are identical, i.e., S; =S, =S, then (F.14) reduces to the pre-
vious result (equation F.6).

(b) If S; and S, are infinitesimal, nonoverlapping regions of volumes, say dR’
and dR’, then

(AN(dR)AN(dR")) = p*[g(R) — 1]dR dR". (F.15)
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On the other hand, dividing (F.15) by dR' dR” and using the second equality on
the rhs of (F.10), we get

(AN(dR')AN(dR")) B (N(dR)N(dR")) — (N(dR"))(N(dR"))
dR dR" N dR'dR"
= (p(R)p(R")) — (p(R)){p(R")) (F.16)

where p(R) is for the local density at R for a given configuration R" of the
system. Note the difference between p(R) and pm(R). Combining (F.16) and
(F.15), we get

(p(R)p(R") — {p(R))(p(R")) = p*[g(R) — 1] (F.17)
(p(R)p(R")) = p’g(R), R=|R'—R| and R#R'.  (F.18)

The last result can also be viewed as a definition of g(R), i.e., this function
conveys the correlation in the local densities at two points R and R” in the fluid.
Note that if we also allow the case R’ =R/, then (F.18) should be modified
to read

(p(R)p(R")) = pd(R — R") + p’g(R). (F.19)
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The long-range behavior of
the pair correlation function

In sections 3.5 and 4.2 we inferred from the normalization condition on the
pair correlation function that the pair correlation function must have different
behaviors in an open (O) and in a closed (C) system. In this appendix, we
further elaborate on this aspect of the pair correlation function.

We start with a (theoretical) ideal gas, i.e., when there are no intermolecular
interactions between the particles. For such a system, the pair correlation
function may be calculated exactly from the corresponding partition functions.

The pair distribution function in a closed (C) system of N particles is

O N(N-1)VN-1  N(N-1)

Q== (G.1)

This can be obtained directly from the definition of the pair distribution function
(section 2.2) by putting Ux=0 for all configurations of the N particles.
The singlet distribution function is
O NyN-1 o N

— =_ = . G.2
Hence, the pair correlation, in a closed system is
)
2 P 1
g Ry =L =1 (G3)
(Pt N

In an open system (O), the singlet and the pair distribution functions are
obtained from the grand partition function

= _Z / dRs ...dRy exp[—pUy]
N>2
= 7 (G.4)
and
Py =2 (G5)
where z=exp[fu]/A’ is the activity.
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Hence, from (G.4) and (G.5), we obtain for an ideal gas
g5 (R) =1. (G.6)

For most practical purposes, when we are interested in the behavior of the pair
correlation function itself, the difference between (G.3) and (G.6) is negligible
for macroscopic system, where N~ 10%°. However, this small difference
becomes important when we integrate over macroscopic volumes. This is clear
from the following two exact normalization conditions (see section 3.5)

pGe=p [ 16 (R) ~ 1JaR = 1 (G7)
pGo = p/ g2 (R) = 1]dR = —1 + kTpxr. (G.8)

Here, the integrations extend over the entire volume of the system. The
interpretation of (G.7) and (G.8) is straightforward. The quantity pG is the
change in the number of particles in the entire system caused by placing one
particle at some fixed point, say Ry. When N is constant, this change is exactly
—1; the particle we have placed at. No such closure condition is imposed in an
open system. Equation (G.8) is just the compressibility equation.

The probabilistic interpretation of (G.3) and (G.6) is also straightforward.
Placing a particle at in an ideal gas system of exactly N particles, changes the
conditional probability (or density) of finding a particle at any location in the
system from N/V into (N — 1)/V; hence, the correlation function has the form
(G.3). In an open system, placing a particle at a fixed position does not affect
the density at any other point in the system. This is so since the chemical
potential p, rather than N is fixed, hence the density at any point in the system
is constant, (N)/V, figure G.1.

The aforementioned arguments are exact for a theoretical ideal gas at any
concentration. Of course, such a system does not exist. We now turn to a real
gas, which in the limit of p — 0 behaves as an ideal gas.

For a real gas, as p — 0, we also have the following well-known results

/0 = (1) exwl-UR) (G9)
and

g5 (R) = exp[~BU(R)]. (G.10)

Here, we can say that the short-range behavior is dominated by exp[—fU(R)]
in both the open and the closed system. However, the difference between the
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Closed system
go(R = o0) =1 — pkTk1/N

Open system
Go(R—> ) =1

-

N
. Pa . S Pa=Pa S

Figure G.1 The difference in the response of the density of an A particle at large distances to placing a
particle (dot) at the center of the correlation sphere, in a closed and in an open system. R is the correlation
distance; R is the macroscopic length of the system.

two systems is in the “long range” behavior, i.e., for R large enough so that U(R)
is practically zero, we have for an open system g(o2 >(R) = 1, while for a closed
system g7/ (R) =1 — N1,

Note, however, that while the first contribution to the pair correlation is
justifiably referred to as the short-range behavior, the second contribution
applies for any R. It is true that the second contribution is negligible at short
distances when U(R) is finite, and it has an effect only when integration extends
over long range. However, strictly speaking, the behavior 1 —1/N is valid
everywhere, as in the case of a theoretical gas. For this reason, we prefer to refer to
the first contribution as the effect of the direct interaction, and since the direct
interactions, even the long-range ones, are always local, we shall refer to this part
as the local correlation (LC). The second contribution due to the closure con-
dition will be referred to as closure correlation (CC). This is nonlocal correlation.
The terms localand nonlocal correlations might better be applied than short range
and long range (the latter is also referred to as asymptotic behavior).

We now turn to a system of interacting particles. The “long range” or the
“asymptotic” behavior of the pair correlation functions are well known for
closed and open systems:

kTpir

g2 (R) =1 5 (G.11)

g?(R) = 1. (G.12)
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Relations (G.11) and (G.12) are referred to as either the asymptotic
behavior' or the long-range behavior of the correlation function.

Relations (G.11) and (G.12) strictly hold (for systems of interacting par-
ticles) at large distances. Therefore, the terms long-range or asymptotic
behavior for this case are appropriate. However, since for ideal gases equa-
tions (G.3) and (G.6) hold true for any R, not only in the limit R — oo, a
more descriptive term should apply for both the ideal gas case as well as for
system of interacting particles. This would have the advantage of indicating
the source of the correlation.

We shall now derive relation (G.11) using a more intuitive, albeit less rig-
orous argument, based on the two exact normalization conditions.

pGe = p/ooo ge(R) — 1)]4nR2 dR = —1 (G.13)

pGo = p /OOO [(g0(R) — 1)]4nR* dR = —1 + KTpkr. (G.14)

We have dropped the superscript (2) from g(R) for convenience. We have also
changed from integration over the volume V to integration over the entire
range of distances (0, o). We shall discuss the pair correlation function only.
Since both (G.13) and (G.14) are exact, it follows that g- and go must be
different functions of R.

We now recognize that correlation between densities at different locations
can arise from two sources. One is due to direct intermolecular interactions,
and the other is due to the closure condition. We assume that the first is
operative only at short distances* say 0 < R< Rcor, where Rcor is the corre-
lation distance beyond which a particle placed at fixed position does not have
any influence on the density at any other position. This is the distance Rcor,
beyond which g(R) is nearly equal to 1. The second, is normally referred to as
long-range correlation. We shall refer to it as the closure correlation (CC). Since
this part has the N~' dependence on N, it has a negligible effect on g(R) at
R< Rcor. It becomes important when integration extends to R — oo.

T Hill (1956) has derived this asymptotic behavior based on cluster expansion argument due to
DeBoer (1940). Lebowitz and Percus (1961, 1963), who also generalized these equations, for the cor-
relation between two groups of nand m particles, referred to this behavior as the long-range correlations,
and specifically refer to equation (G.11) as the Ornstein—Zernike relation (Ornstein and Zernike 1914).

¥ For charged particles, the interactions are also long-ranged, but still there exists some Rcor
beyond which no direct influence of the interaction is noticeable. There are several studies of the
manner that the pair correlation function decays to unity [see for example Fisher and Widom (1969),
Perry and Throup (1972)]. In any case, even when g(R) is of relatively long-range, we can still find a
radius Rc beyond which the pair correlation is practically unity.
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Denoting by g(LC) the local correlation due to direct interactions, and by
g(CC) the closure correlation, we rewrite (G.13) and (G.14) as

Rcor 00
pGc = p/ [(gc(LC) — 1)]4nR* dR + ,0/ [gc(CC) — 1]4nR*dR = —1
0 Rcor

(G.15)

Rcor
pGo = p/ [(g0(LC) — 1)]4nR* dR = —1 + kTpxr. (G.16)
0

The existence of such a correlation distance is intuitively clear and is con-
firmed by experimental data. There exists no formal proof of this contention,
however. Lebowitz and Percus (1961) argued that such a proof would be
extremely difficult to obtain. Since the existence of such a correlation length
would be violated for the solid state, a proof of the existence of such a
correlation length is tantamount to a criterion for distinction between a fluid
and a crystal.

Note that in an open system, all the correlation is due to the direct inter-
actions, no closure condition is in effect; beyond R > Rcor, g§o(LC) = 1. Next,
we assume that within the correlation distance, both g- and gp are the same (or
nearly the same, but the difference is negligible) function of R. Subtracting
(G.16) from (G.15) we obtain

p/oo [(gc(CC) —1)]4nR*dR = —1— (=1 +kTpKy) = —kTprr. (G.17)
R

COR

Finally, we assume that go(CC) in the second integral on the rhs of (G.15) is
independent of the distance R (this is the reason why we prefer to refer to this
part as the nonlocal correlation). Hence,

p[gc(CC) — 1][V — VCOR] = —kTpKT. (G18)
Since V >> Vcor = (4nR} o) /3 we get from (G.18) the final form

kTpxr

gc(CC) =1~ N

(G.19)

which is the required result.

We next turn to the probabilistic interpretation of (G.19). We have seen that
for an ideal gas there is a very simple probabilistic interpretation of behavior
(G.3), and we have seen that the N~ ! term is a result of the closure correlation.

The probabilistic interpretation of g-(CC) in (G.19) is not as obvious, and it
is a little more tricky than in the case of an ideal gas. We provide here the
appropriate probabilistic interpretation of the closure correlation in (G.19).
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We recall the interpretation of p Go. This is the change in the average number
of particles in Vor due to placing a particle at the center of Vcor. We write
this as

pGo = AN(VCOR). (G.ZO)
From the compressibility equation we have
pGo = —1+ kTpxr. (G.21)

Hence, from (G.19), (G.20) and (G.21) we find

1+ pG
gc(CC) =1 —$
N N-1- pGo
N N
_ N—1—AN(Vcor)
N N
1 AN(V,
= (1 ——) _ AN(Veor) (G.22).
N N

We have seen that in the ideal gas, the closure correlation is due to the change
of the density at any point R, R# R, from N/Vinto (N — 1)/N. This is also true
for system of interacting particles, i.e., placing one particle at a fixed point Ry
changes the density at any other point from N/Vinto (N — 1)/V. This produces
the first term in brackets on the rhs of (G.22) which is the same as in equation
(G.3). In systems of interacting particles, we have an additional contribution to
the closure correlation. Placing a particle at some fixed position changes the
average number of particles in Voor by the amount AN(Vcor) (equation
G.20). Because of the closure condition, this change in the number of particles
must change the average number of particles in the volume outside Vcor i.e., in
V— Vcor by exactly the amount —AN(Vcor). This causes a change in the
average density in V— Vor of —AN(Vcor)/ V.

Thus, the change in the conditional density due to the closure condition has
two contributions: one is due to the missing particle that has been placed at the
center of Vcor; the second is due to the change of the density caused by the
direct interaction of the particle at the center with its surroundings.

We can now rewrite (G.22) as

[N —1-AN(Veor)]/V _ p"(R/Ro)

(G.23)

where p is the bulk density, and p" (R/R,) is the conditional density at R
(beyond Vor), given a particle placed at the center of Viog, say at Ry.
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Clearly, when p — 0, we recover the ideal-gas behavior for g-(CC). Since in
this case, AN(V-or) =0, we have

gc(CC) =1- % (G.24)

For a theoretical ideal gas, U(R) =0, equation (G.24) is also the total correla-
tion as in (G.3). But for real gas as p — 0, we have an additional contribution
due to the intermolecular interaction as in (G.9). The latter, is in general of
short range, hence the former is referred to as the long-range correlation. As we
have noted before, this part of the correlation for an ideal gas holds true at any
distance, not necessarily for R — oo. Therefore, we feel that the term closure
correlation is more appropriate for g-(CC).

In writing equation (G.22), we have used both gc on the lhs, and go (within
Go) on the rhs. There exists no inconsistency however. We recall that Go has
only a contribution from the local correlations (no long-range correlation). The
local correlation in G is assumed to be the same as the local correlation in G
(see equations G.15 and G.16). Hence, in equation (G.22) we can actually
replace pGo by the first integral on the rhs of equation (G.15), using g-(LC)
within VCOR-

Hence, equation (G.22) can also be rewritten as

1 1 Reor
gc(CC) = <1 - —> - = [¢c(LC) — 1]4nR* dR. (G.25)
N) NJ,
Here, we use only gc (in the closed system). It clearly shows how the local
correlation, due to direct interaction, g-(LC) affects the closure correlation,
8c(CQ).

Another interesting way of interpreting (G.22) is to use the relation for the
partial molar volume of a particle placed at a fixed position in a system char-
acterized by T, P, N. The relevant relation is (see section 7.5 and appendix O)

pV* = —pGo = —AN(Vcor). (G.26)
Thus, in a constant-pressure system, placing a particle at a fixed position causes
a change in the volume of the system V*. Relation (G.26) shows that the average
change in the number of particles in Vcor ina 7T, V, N system is the same as the
average number of particles occupying V* (i.e., pV*) in a T, P, N system.

We now extend the result obtained above for two-component system of A
and B. We first write the general result from the inversion of the Kirkwood—
Buff theory (section 4.4).

Oup KT (1= P Vo) (1 = py V)

Go7 = kTKT —
" Py 14 pap[ftuaﬂ

(G.27)
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where k1 is the isothermal compressibility of the system, V'is the total volume
of the system, and j,5 = (O, /ONp) 1 p yr -
For closed system with respect to both A and B, we have

—dup

Geap = (G.28)

o

We now write the analogs of equations (G.15) and (G.16) for each of the
pairs aff. We make the same assumptions as before. First, that the local cor-
relation (LC) due to the direct interactions is local, i.e. it extends to a distance
Rcor which is on the order of a few molecular diameters.” Second, that
the integral over [g(R) — 1] in the correlation volume Vop is the same for the
open and the closed systems, and finally that the correlation due to the closure
(CC) is independent of R for R > Rcopg-

Thus, we have the analogs of (G.15) and (G.16):

Rcor 00
GC,oc/}:/ [gc71[;(LC)—1]47tR2dR+/ [gcap(CC) —1]4nR*dR
0 Reor
—dup
= G.29
P (G29)
Reor 5
Goup = / [80.4p(LC) — 1]4nR" dR
0
—0y KT(1—p,V,)(1—psV
_ KTy — =0 KT = Vo) (1= 0y V). (G.30)
Pa Vpap[j’.ucxﬁ
From (G.29) and (G.30) we obtain
> kT(1—p, V) (1—p,V
[ scan(C0)-tne arm ey IR,y
Rocor Vpap[;,uaﬁ

Again, assuming that the correlation due to closure is independent of R outside
Vcor, and assuming that V>> Vo, we get the final result

kTxr kT(1 = p, Vo) (1 = psVp)
14 V2P, gt

8cap(CC) =1 — (G.32)
which is the generalization of equation (G.19) for the closure correlation in a
two-component system.

Since the inversion of the KB theory can be done to any multicomponent
system to obtain all the G,z’s in an open system, one can repeat the same
procedure to obtain the closure correlation for any multicomponent system.

 Note that for the mixtures, Reor might be different for each pair of species and might depend on
the composition. It is assumed that there exists a large enough correlation distance Rcor which serves

for all the pairs af, and is still on the order of a few molecular diameters. In other words, is g,5(R) is
practically unity for R> Rcor for each pair of species.



THE LONG-RANGE BEHAVIOR OF THE PAIR CORRELATION FUNCTION 331

In the case of the one-component system, we have noted that the prob-
abilistic interpretation of (G.19) is not so obvious as in the case of an ideal gas.
It is less obvious for the case of mixtures. In order to interpret (G.30) prob-
abilistically, we proceed to do a similar transformation of equation (G.30).
From (G.28) and (G.30), we obtain the general result

50{/3 _ GO,ocﬂ

8cap(CC) =1 — NV
o

(G.33)

which is the analog of (G.22).
The probabilistic interpretation is now straightforward. For the case
o= =A, we have
gcaa(CC) =1 — NLA - /OAI(\;]%
_ (Na—1-p4Goan)/V
NA/V

_ P3 (R /Ry) (G.34)

1
ol (R))
where gc 44 is the ratio of the conditional density of A at R/, given A at Ry, and
the bulk density of A. Similarly, for o # f3, we have two possibilities. Suppose we
place A at Ry, and ask for the change in the density of Bat R} given A at R, the
result is

_ PeGos _ (Ng —PBGO,AB)/V:P%U (Ry/Ry)

N Ni/V Py (Ry)

Note that in the case « # f, placing A at R, does not reduce by one the number of

B’s in the system. In (G.33), also the change in the average number of B’s in Vor

around A contributes to the closure correlation. A similar result is obtained for

placing B at Rp and asking for the conditional density of A at some point R',.
It is interesting to note that if the mixture is symmetrical ideal, then

gc.A8(CC)=1 (G.35)

kTXB
= G.36
Haa xAN7 ( )
—kT
=— G.37
Hap Ny ( )
where N;-= N, + Ny Hence, the closure correlations in this case are
kTkr  pi V.
T TVB
CO)=1l—————"— G.38
8c,.a4(CC) % % (G.38)
kTr  prVa Vs
CC)=1- — G.39
8c.48(CC) v v ( )
kTx Vv
gem(CC) =1 -1 P14, (G.40)

|4 |4
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If in addition, the system has no change of volume upon mixing, then the
partial molar volumes V4 and V, turn into the molar volumes of the pure A
and B, respectively. A further simplification arises when the molar volumes are
equal, i.e., V4= Vz=1V,, in which case V= NV, and we have

kTKT n 1— 250([; .
\%4 Nr

8cap(CC) =1 — (G.41)
To summarize, we emphasize again that whenever using the compressibility
equation or the KB theory, one must take the pair correlation function as
defined in an open system. Alternatively, one can use the pair correlation
defined in the closed system, but first one must take the thermodynamic limit
g0 =limge (G.42)

N—oo

V—oo
N/V=constant

before carrying the integration over the distance R.



APPENDIX H

Thermodynamics of mixing
and assimilation in ideal-gas
systems

In this appendix, we discuss briefly the concept of “free energy of mixing” and
“entropy of mixing,” and the relatively newly defined concept of assimilation. A
more detailed discussion of this topic may be found elsewhere (Ben-Naim
1987a,b).

Consider a general mixture of ¢ components at some given temperature T
and pressure P, and composition N, ..., N.. The Gibbs energy of this system is

G = ZNiﬂi
=Y NiW(ill) + > NikTIn p!A? (H.1)

where W(i| ) is the coupling work of i to the liquid mixture J, and for sim-
plicity we assume that the molecules do not possess any internal degrees of
freedom. The sum over i is over all the species that are present in the system.

Let 1/ be the chemical potential of the pure i th species at the same P and T.
The total Gibbs energy of the combined pure species before the mixing, is then

G = Z N
=Y N;W(ili) + Y NkTIn pfA; (H.2)

where W(i| i) is the coupling work of i at the same P and T, and p! is the
density of i in this pure state. Thus, the Gibbs energy change for the process
formation of the mixture from the pure liquids is given by

AGM =G — G =Y NjW(ill) - W(ili) + Y NikTIn(p}/p?). (H.3)

A particular case of equation (H.3), which is discussed in almost all textbooks
of thermodynamics, is the case of mixing ideal gases. In this case, the first sum
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on the rhs of equation (H.3) is zero (no interactions). Also, since the total
pressure of the mixture is the same as the pressure of each pure component i
before the process, we have

pP= kTZpﬁ = kTp". (H.4)

Hence,
pi/pt =pi/ > pi=xi (H.5)

where x; is the mole fraction of the 7 th species in the ideal-gas mixture. In this
case, equation (H.3) reduces to

AGM =) NikTInx; (H.6)

This quantity is commonly referred to as the “free energy of mixing” (or Gibbs
energy of mixing). Similarly, the quantity

ASM = =3 " NikInx; (H.7)

is referred to as the “entropy of mixing.” These terms are applied to quantities
of the form (H.6) and (H.7) even for system of interacting molecules. Thus, in
the general equation (H.3), the first term is referred to as the interaction Gibbs
energy while the second term, or a modified form of it, is referred to as the
mixing Gibbs energy.

In this appendix, we shall discuss a system of ideal gases. We shall examine
the suitability of the terms “mixing entropy” and “mixing Gibbs energy,” and
the validity of the statement that “the mixing process is essentially reversible”,
see, for example, Denbigh (1966).

In the next appendix (I), we shall discuss systems with interacting particles.
These are more relevant to solution chemistry.

H.1 Simple case mixing of two components

We begin by considering a classical process of mixing as described by most
textbooks of thermodynamics and statistical thermodynamics. For simplicity,
we discuss only a two-component system and also take the simplest case as
depicted in process I (figure H.1). In this process, we have two compartments,
one of which contains N, molecules A in volume V,, and the second,
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Ny Ng | Na+ Ng
—
Va Ve Vat Vg
N, N, 2N,
Il
Va Vs Vat Vg

Figure H.1 Process I: process of mixing two ideal gases A and B. Initially, the two gases are separated by
a partition. The mixing occurs after removing the partition. It is assumed that Ny= Nz and V4= V;.
Process II: the same as process |, but now the two compartments contain the same gas, say, A.

Npg molecules B in volume V3. Furthermore, for simplicity we assume that
N=Ny=N; V=V,=Vs (H.8)

An elementary calculation leads to the result that the Gibbs energy change in
process I (figure H.1) is

AGI == NAkT In XA + NBleIl XB (H9)
and the corresponding entropy change is
ASI = —NAkll’lXA — NBklan (HIO)

where x4 and xp are the mole fractions of A and B, respectively. In our parti-
cular example, equations (H.9) and (H.10) reduce to

AG; = 2NkTIn1/2<0 (H.11)
and

AS; = —2NkIn1/2>0. (H.12)

The results (H.9) and (H.11) are referred to as “free energy of mixing,” and
(H.10) and (H.12) as “entropy of mixing.” Since the first is always negative, and
the second is always positive, most authors conclude that the mixing process is
inherently an irreversible process, i.e., the mixing is the cause for the increase of
the entropy and the decrease in free energy.

We shall now show that mixing is not an irreversible process, and the entropy
change, in the process depicted in figure H.1, is not due to the mixing process,
but to expansion. Therefore, the reference to the quantity (H.10) or (H.12) as
entropy of mixing is inappropriate and should be avoided.

The simplest and the most straightforward argument is to calculate the
entropy change for the process depicted in figure H.1. Taking the partition
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function of the system before and after the process, we arrive at the result
2V
AS; = 2Nkln7 = 2NkIn?2. (H.13)

Clearly, the change in entropy in process I is due to expansion, not to mixing.
Each particle, which initially could access the volume V, is accessing the volume
2V at the final state of the process. One can also show that the mixing process
could be carried out reversibly and the demixing process can be irreversible;
therefore, it is clear that the “mixing” in itself is not reversible or irreversible. It
simply does not contribute anything to the change of the entropy or the free
energy of the process.

This conclusion, though clear and irrefutable, leaves us uneasy when com-
paring processes I and II in figure H.1. One can easily compute the change in the
entropy in process II and find

ASy = 0. (H.14)

In other words, one observes mixing in process I with accompanying increase
in entropy, whilst in process II nothing happens, and no change in entropy. The
natural conclusion is that mixing in I must be responsible for the increment in
entropy. This conclusion is erroneous, however. First, because we have already
seen that (H.10) and (H.12) are due to expansion, not to the mixing. Second, it
is not true that nothing happens in process II. In fact, we can easily calculate the
change in entropy for process II. The result is

ASH = 2Nklnl — kIn (ZN)Z'
v (N)

This entropy change is always positive. This follows from the identity

22N:(1+1)2N:22N:<2N). (H.16)

- 1
1=0

>0. (H.15)

If we now replace the sum of positive binomial coefficients on the rhs of (H.16)
by the maximal term, we must have the inequality

ow_ (2N _(2N)!
2N ( N > =W (H.17)
2NIn2>In (2N)2!. (H.18)
(NY)

It is only in the limit of macroscopic system that the two terms on the rhs of
(H.15) cancel out, and we have

2V
ASy = 2NkIn =~ — 2NkIn2 = 0. (H.19)
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We can now conclude that in process II, there are two contributions to the
entropy change; these two contributions are, in general, not equal in magni-
tude. However, for a large system they become equal in magnitude and cancel
each other. Conceptually, they are of different origins; one is due to expansion
from V to 2V. The second is due to assimilation, i.e., initially, we have two
compartments with N indistinguishable particles; in the final state we have 2N
indistinguishable particles in one compartment. The latter contributes nega-
tively to the entropy change in process II.

Thus, in comparing the two processes in I and II, we have a positive change
in entropy in I due to expansion, but in II, we have both expansion and
assimilation which contributes equal quantities, but of opposite signs to pro-
duce a net zero change in entropy, in process II. In no case does the mixing, in
itself, contribute anything to the change in entropy.

H.2 Process involving assimilation and
deassimilation

We have seen that the assimilation in process II contributes negatively to the
entropy change. Therefore, we expect that the reverse of the assimilation
process, i.e., the deassimilation process, will increase the entropy. Figure H.2
shows a “pure” process of deassimilation where the entropy change is positive.
Consider an ideal gas of 2N molecules, each containing one chiralic center.
Initially, we prepare the system in such a way that all the molecules are in one of
the enantiomeric forms, say the d enantiomer. We then introduce a catalyst
which induces a racemization process in adiabatic conditions. At equilibrium,
we obtain N'molecules of the d enantiomer and N molecules of the  enantiomer.
The entropy change in this spontaneous process is well known:

AS = 2kNIn2>0. (H.20)

Ny N,V

Figure H.2 A pure process of deassimilation. We start with a system of 2/ molecules of type d, and let
the system evolve into a mixture of /and d. If d and /are two enantiomers of the same molecule, the final
equilibrium number of d and of / molecules will be the same.
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If we analyze carefully the various factors involved in the expression of the
chemical potential of the d and I molecules, we find that the momentum
partition function, the internal partition function of each molecule, and the
volume accessible to each molecule are unchanged during the entire process.
The only change that does take place is the deassimilation process; hence, the
entropy change is due to the deassimilation of 2N identical molecules into two
subgroups of distinguishable molecules; N of one kind, and N of a second kind.
This process, along with an alternative route for its realization, is described in
detail in Ben-Naim (1987a, b).

The aforementioned example clearly involves neither proper mixing nor
inter-diffusion. The spontaneous process which occurs is the transformation of
one species into two distinguishable species, and this process evolves in a
homogeneous phase with no apparent mutual diffusion of one species into the
other. Therefore, the term “mixing” may not be used here either causatively or
even descriptively. In spite of this, and curiously enough, the entropy change in
this process, e.g., equation (H.20), is traditionally referred to as the “mixing
entropy.” If the process of racemization is referred to as “mixing,” should we
refer to the reverse as “demixing?” The only reason which leads to such mis-
interpretation is probably the lack of recognition of the role of the deassimi-
lation phenomenon.

The deassimilation process may also occur in more complex reactions. For
example, in a cis—trans reaction, we have the equilibrium condition

Ncis/Ntmns = eXP(—AGO/kT) (H'ZI)

Suppose we start with 2N molecules in the cis form of dichloroethylene and
allow the system to reach equilibrium, where we have N and Ny,,,; molecules,
and N+ Ngans=2N. In this case, the entropy change will have one con-
tribution due to the reaction, and another contribution due to the deassimi-
lation of 2N molecules into two subgroups, i.e.,

AS - ASreaction + ASdeassimilation (sz)

The process of racemization described in figure H.2 is a special case of a
chemical reaction for which AG® = 0; hence N;= N;= N. More details can be
found in Ben-Naim (1987a, b).
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Mixing and assimilation in
systems with interacting
particles

In Appendix H, we have examined processes involving mixing and assimilation
in ideal-gas systems. We have seen that mixing in itself does not contribute
anything to the thermodynamics of the process, whereas assimilation and
deassimilation do. We now examine similar processes in nonideal systems
where intermolecular interactions exist. We shall examine the change in the
Gibbs energy, rather than the entropy. But the conclusions are the same.

We first consider the following processes, figure I.1: two compartments of
the same volume V and temperature T; one contains N; and the second con-
tains N, particles of the same species, say A. Upon removing the partition
between the two compartments, the change in Gibbs energy between the initial
state i to the final state fis:

AG =G — G = Nyl + Nyl — Ny — Nyt
1% 1%
N KT In— + NokT In —
+[ kinoy nzv}

N, + N N + N
+ [leTln%—i—Nszlng].
1 2

(L1)

We have included in brackets three different types of contributions to the
change in the free energy. The first arises from the changes in the interactions

v vV 2v

Figure 1.1 Two compartments of equal volumes, V, containing Ny and N, molecules (N; # N5) of the
same kind. The system is not an ideal gas system.
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among the molecules from their initial states (i; and i,) to their common final
state (f). The second is the expansion term from V to 2V (for simplicity we
choose V; =V, = V). The third term is the contribution due to assimilation.
This classification of the various terms is independent of any assumption of
ideality of the system. To emphasize the advantage of this point of view,
consider the same processes carried out with ideal gases. Here, relation (I.1)

reduces to
. v v N, + N N, + N
AGE = NKTIn— + NokTIn— + N AT In L 22 4 kT Il 2
2V 2V N, N

g. (12)

B

= N1kT1nﬁ + NkT In
I

On the rhs of (I.2), we expressed AG' as it might appear in a typical textbook of
thermodynamics, i.e., N} molecules are transferred from an initial pressure P;
into the final pressure P Likewise, N, molecules are transferred from P; into
Py. This way of computing AG is only valid for ideal gases. Once interactions
among the particles are present, the transfer from P; to Py does not tell us
anything about the Gibbs energy change.

In fact, thermodynamics cannot tell us anything about the significance of the
various terms on the rhs of relation (I.1), whether or not the system is an ideal
gas. On the other hand, by introducing the concept of assimilation, we have a
clear-cut classification of the three terms in relation (I.1). This classification is
valid, independent of any assumption of ideality.

Next, consider the process depicted in figure 1.2. Here again, thermo-
dynamics would have taught us that the system is compressed with a Gibbs

energy change equal to
P P
NikTIn (P—f> + NokT In (P—f> . (L3)

i [

This is again valid only for ideal gases. Once we have interacting particles, the
validity of expression (I.3) as a measure of the Gibbs energy change is lost, and
we cannot claim that the compression of the system is the only cause of the
Gibbs energy change.

Considering the same process from the molecular point of view, we see that
each particle is allowed to wander in the same volume V, before and after the
process. Therefore, here we only have two contributions to AG, one due to a
change in interactions and the second due to assimilation. If the gas is ideal, the

only contribution is due to assimilation and amounts to

N+ N N, &N
leTln%+N2kT1ng.

: % (1.4)



MIXING AND ASSIMILATION IN SYSTEMS WITH INTERACTING PARTICLES 341

% v v

Figure 1.2 The initial state is the same as in figure I.1. In the final state, the gas is contained in a
volume V.

Na Ng 1l Na+ Npg

Va Vg Vat Vg

Figure 1.3 The same as in figure 1.1, but now the two compartments contain N, A particles and Ng B
particles, respectively. Process Ill is the same as Process | of figure H.1 but for nonideal gases.

This very term would have been referred to as “compression” in the traditional
thermodynamic language.

Next, we perform the same experiment as in figure I.1, but when we have N,
molecules of type A, and Ny molecules of type B, figure 1.3, process III. The
Gibbs energy change for this process is

AGy=G -G
= NA[W(AJA+ B) — W(A]A)]

2V 2V
+ Na[W (BIA+B) — W(BIB)] - [NKTIn -+ NpkTln ] (L)

Here, the first two terms are due to the change in the coupling work in the
process. Initially, each A particle interacted with A particles only; its coupling
work has changed from W(A|A) into W(A| A+ B). Similarly, the coupling
work of each B particle has changed from W(B| B) into W(B| A+ B). The last
term on the rhs of (I.5) is due to the change of the accessible volume for each
particle from V to 2V. Note, however, that there is no contribution to assim-
ilation as we had in process I of figure I.1. Again, we stress that the last term on
the rhs of (1.5) is traditionally referred to as the mixing free energy. If we have
started from two different volumes V4 and Vp, the last term on the rhs of (1.5)
can be written as

CNkTIn A YE ki YA YE N kT In g 4 NakTInys (16)

Va Va

where y, and yg are the volume fractions, as defined in (1.6). This term certainly
cannot be interpreted as the mixing free energy. We have had the same
expansion term in process I where we have no mixing at all. Perhaps, the first
two terms in (I.5) could be more appropriately referred to as the mixing free
energy, in the sense that they arise from the change of the environments of A
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and B upon mixing. But clearly, this term would be zero when no interactions
exist, i.e., an ideal gas this “mixing free energy” would be zero.

Next, we consider the analog of process II, but when we start with N, in V,
and N molecules in V, the temperature is kept constant T. The change in the
Gibbs energy for this case is obtained from (1.6) by letting the volume fractions
ya=yp= L. Clearly, since there is no change in the accessible volume for each
particle, the last term on the rhs of (I.5) is zero, and we are only left with the
change due to the changes in the coupling work of A and B. Again, we stress
that in this case, although we observe mixing of A and B, there exists no mixing
free energy in the conventional form of (1.6). Also in this case, there is no
assimilation term as we had in process II.

We shall briefly discuss now two special cases of ideal solutions.

(1) Symmetrical ideal solution. Let A and B be similar particles, in the sense
discussed in chapter 5. We perform the same process III as in figure 1.3. The
corresponding change in Gibbs energy is (1.5). If we perform the same process,
but under the same pressure before and after the mixing, we have for the
chemical potentials of A and B, in the final states

(= b (P, T) + kTInx, (1.7)
,u’; = (P, T) + kT Inxp (1.8)

where 1 (P, T) and u%(P, T) are the chemical potential of pure A and pure B,
under the same T and P. In this case, the change of free energy in the process is

AG™ = Naliy — ] + Naudy — 1)
= NAkT In XA + NBkT In XB (19)

Note that the coupling terms in equation (1.5) does not appear in this case. The
change in free energy is due only to the expansion from V, to V, + Vg for A,
and from Vzto V4 + Vjfor B. It should be stressed that the origin of the mole
fractions x4 and xg is

_ é _ NpVy _ Va
ph (Va4 VB)Ny  Vu+ Vg
where p!, is the density of A in the mixture, and p/, is the density of A in pure A

at the same P, T. Since we can form the SI solution by replacing all B’s by A’s,
i.e, pr = pu + pp = pl, we can also interpret x4 as the mole fraction of A, i.e.,

XA (L.10)

1
N,
xA: lpA i = A . (Ill)
patpp  NatNp

We conclude that whereas in process I1I, the driving force for the mixing consists

of both the change in the coupling work and the expansion, in the SI case, though
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interactions exist, there is no contribution due to the changes in the coupling
work. The only contribution comes from the expansion and not to the mixing.

(2) The dilute-ideal (DI) solutions. This is the case which has attracted the
most attention in solution chemistry. Unfortunately, this is also the case where
most of the misconceptions have been involved. Here, we only focus on one
aspect of the problem, namely the identification of the so-called mixing terms.
Consider the case of a very dilute solution of A in B, such that N4 < Np. In this
case, when we mix A and B, we may assume that

W(A|A+ B)~ W(A|B), W(B|A+ B)~ W(B|B). (L12)

Also, one can approximate p = p, i.e., the addition of a small amount of A
to pure B causes a negligible effect on p% and on the coupling work of B. In this
case, the general expression for AG reduces to

AGP" = NA[W(A|B) — W(A| A)] + NakTIn(p, /0h). (1.13)

In this process, a particle A which “sees” only A particles in the pure A, is
“seeing” now only pure Bin its environment. Here, there are two contributions
to the Gibbs energy change: one is due to the (extreme) change in the envir-
onment of A (from pure A into pure B), and the second, to the change of the
accessible volume available to A.

Neither of these terms is an adequate candidate to be referred to as mixing
term. However, if one insists on using the term “mixing Gibbs energy,” it is
perhaps more appropriate to refer to the first term on the rhs of equation
(I.13), but certainly not to the second term. The traditional view is, quite
astonishingly, the opposite. It is very common to refer to the second term as the
“mixing Gibbs energy.” A more conventional form of equation (I.13) is
obtained after transforming into mole fractions. For this case, the transfor-
mation of variables is

X = pal(Pa+Pp) = palph (1.14)
We can rewrite AG”" in the conventional thermodynamic way as
AGP" = NS — ph] + NukT In x4 (L.15)

where ,u%" is the standard chemical potential of A in the mole fraction scale, and
1 is the chemical potential of pure A.

The reference to N4kT'In x, as a “mixing Gibbs energy” term is so ubiquitous
that it is really difficult to find exceptions. This erroneous interpretation of the
term kT In x, also leads to an erroneous interpretation of the term u%* — i,
which is very common in solution chemistry.

When investigating dilute solutions of, say, argon in water or xenon in
organic solvents, the stated purpose of the investigators is to study the Gibbs
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energy of interaction (or solvation) of the solute in the solvent (chapter 7).
Usually, the primary quantity that is obtained in the experiment is a partition
coefficient, i.e., a ratio of the number of densities of the solute between two
phases. This ratio is directly related to the quantity W(A| A+ B) which mea-
sures the solvation Gibbs energy of the solute A in the solvent (chapter 7).

However, because of the prevalent erroneous interpretation of the term kT'In
X4 as a “mixing term”, sometimes referred to as “cratic” term' (Gurney 1953;
Tanford 1973), one transforms the concentration units from number densities
into mole fractions and then compute a so-called “standard Gibbs energy of
solution.” This is also referred to as the “unitary” term (Gurney 1953).
Unfortunately, the whole procedure involves superfluous work and, in fact,
misses the principal aim of the investigation. As we have seen, kT In x4 is not a
mixing Gibbs energy, and the quantity left after subtracting this term from
AG"" does not necessarily have the meaning so often assigned to it.

T The terms “cratic” and “unitary” were introduced by Gurney (1953). In my opinion, these terms
were misused. A detailed discussion of these terms can be found in Ben-Naim (1978).
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Delocalization process,
communal entropy and
assimilation

The concept of communal entropy has featured within the lattice models of
liquids and mixtures. We show in this appendix that this entropy change is due
to a combination of assimilation and expansion.

In figure J.1, we depict a process of delocalization. Initially, we have N
particles each confined to a cell of size v. We remove all the partitions and the
particles are allowed to occupy the entire volume V. The entropy change upon
the removal of all the partitions is

AS = Sig . Sloc
= kN1In(V/A’) — kInN! + 3kN — kN In(v/A’) — 2kN (J.1)
where v= V/N is the volume of each cell. Application of the Stirling approx-
imation yields the well-known result

AS = kN. (J.2)

This is known as the communal entropy. Closer examination reveals that AS in
equation (J.2) is a net result of two effects; the increase of the accessible volume

° oo ° ° [ ] ° °
K ° ® 9
°
° . °
° |® ol @ e *V e °
o|® ole ° ° o o
V>yv

Figure J.1 A delocalization experiment. Initially, there are N particles of the same kind, each in a cell of
volume v. Upon removal of the partitions between the cells, each particle can access the entire volume
V= Nv. The entropy change in this process, for an ideal gas, is the so-called communal entropy.
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for each particle from v to V, and the assimilation of N particles. The two
contributions are explicitly

AS = kN1In(V/v) — kln N\ (1.3)

Note that since we chose v= V/N, the first term on the rhs is the dominating

one, i.e., the contribution of the volume change accessible to each particle is

larger than the assimilation contribution (the latter is always negative).
Within the Stirling approximation, we have partial cancellation leading to

AS=kNInN — [kNIn N — kN] = kN. (7.4)

Originally, Hirschfelder et al. (1937) introduced the concept of communal
entropy to explain the entropy of melting of solids. They specifically stated that
“this communal sharing of volume gives rise to an entropy of fusion.” This idea
was later criticized by Rice (1938) and by Kirkwood (1950) and now the whole
concept of communal entropy in the context of the theory of liquids is con-
sidered to be obsolete.

Here we have cited this example to stress the point that the communal
entropy in equation (J.2) is not a result of volume change only but a combi-
nation of volume change and assimilation.
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A simplified expression
for the derivative of the
chemical potential

In section 4.2, we have derived the expression for the derivative of the chemical
potential with respect to the number of particles

Ou;
Wi = <6Nj> —_— (K.1)

For a c-component system at a given T and P, the general expression for
within the Kirkwood-Bulff theory is (see section 4.2)

BT puppB? =3 p,psBBY
kT o8 o,p

- VIB| %mmmﬁ
o

/'Lij (KZ)
where p, = N,/V is the average density of o in the open system. The summa-

tions extend over all species in the system o, f=1, 2, 3,..., ¢
The matrix B is constructed from the elements

Bjj = pip;Gij + p9ij (K.3)

where Gj; are the Kirkwood—Buff integrals
@:/[MM—MMMQ (K.4)
0

and g;(R) is the pair correlation function for the pair of species i and j.

The quantity B’ denotes the cofactor of the element Bj; in the determinant
|B|. Namely, B is a determinant obtained from |B| by deleting the ith row
and the jth column, and the result is multiplied by the sign (—1)"*".

Relation (K.2) is quite simple for ¢=2 and becomes somewhat cumbersome
for c=3. For ¢> 3, the application of (K.2) is impractical since it requires
handling of a large number of terms.
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Fortunately, it was noticed that when one fully expands the expression (K.2)
in terms of Gj» many terms cancelled out. This led to a search of a more
compact, and easier to use expression for u;;. Here, we shall present a schematic
proof of the procedure of simplification of expression (K.2). More details are
available elsewhere (Ben-Naim 1975a).

First, define the matrix G by

G+ py! G2 Gz
G = Gy Gnt+py! Guoo | (K.5)

Note that the elements of the matrix are
(G),‘j =Gjj+ 5z'jpi_1 (K.6)

where Gj; are given by (K.4). Thus, care must be exercised to distinguish
between G;; and (G);; Note also that G is a symmetric matrix.

By extracting p; from the ith row, and p; from the jth column, one can easily
get the following relations:

|B| = p°|G| (K.7)
B ZGij
Bi =" (K.8)
PiP;
¢ . GYGB
> p.pgBIBY = p* (K.9)
w1 wp PiPj
c
Z papﬁB“ﬁ = p? Z G, (K.10)
o, f=1 o,

Note that we have denoted the product of all the densities by
p=1]r: (K.11)
i=1

Substituting (K.7) and (K.8) into (K.2), we getT
kT Za,[)’ [thGoc,B _ GhﬁGock]

= K.12
PP V|G| Za,ﬁ G ( )

Uk

T Note that we use k for the Boltzmann constant as well as a subscript indicating a species.
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This is a more convenient form than (K.2) since we have eliminated all the p;’s
under the summation signs. (Note, however that all the G,-]-’s are still dependent
on the densities.) Note also that some of the terms in the numerator of (K.12)
vanish. More specifically,

G"™G* — G"G* =0 fora = h(and any f8) or for = k(and any o).
(K.13)

The nonvanishing terms can be viewed as minors of the adjoint determinant of
|G|, ie.,
th Gh[)’
Gozk Gaﬁ

(K.14)

is a minor of order (2) in the adjoint determinant of | G|, provided that the
indices h, k, o and B fulfill certain conditions. The details of the algebraic steps
are presented elsewhere (Ben-Naim 1975a).
The final result for the quantity p; in (K.2) is
kT |E(h, k)|
pwokV D

Here, D is a matrix of order c+ 1 constructed from G by appending a row and a

Hk (K.15)

column of unities, except for the element Dy, , which is zero, i.e.,

o1 1 1---
1

The general element of D is

Dy = 0m + 01 — 20,101 + (G) nm=12,...,c+1. (K.17)

n—1,m—1

Note that (G);j is defined in equation (K.6) for i, j=1,2,..., c. We add the
definitions (G);;=0 for any other indices in (K.17).

The determinant in the numerator of (K.15) is constructed from the matrix
G by replacing the hth row and the kth column of | G| by unities, except for the
element hk, which is replaced by zero. The general element of E(h, k) is

[E(h, k)]“ﬁ = Opy + Okp — 201, 0kp + (G)(xﬂ(l — Opy) (1 — 5]4;). (K.18)

Relation (K.15) is far easier to apply for a multicomponent system than the
original relations (K.2) or (K.12). One application of this simplified expression
to examine the solute and solvent effects on chemical equilibrium has been
published by Ben-Naim (1975a). In this article, it was also shown that if
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Gjj= %( Gii+ Gj) for each pair of species, one can always reduce the determin-
ants |E(h, k)| and |D| to a simple form', i.e.,

B 1) = pupi/ T] o (K.19)
Dl ==>"n:/ T - (K.20)

With this simplification it is easy to prove that the condition G;;= %(GZ-,-+ Gj)
(for all 4, j) is necessary and sufficient for SI solution for any mixture of ¢
components.

Another useful application is the limiting form of |D| and | E(A4, s)| as
ps— 0. It is easy to see that in the limit of dilute solution p;— 0, we have

_ 1 + pp(Gpg — Gag)

|E(A’ 5)| + (GAS - GBS)
PB
=nVa/ps+ (Gas — Ggs) (K.21)
|E(B,s)| =nVg/ps+ (Gps — Gas) (K.22)
) E—— (K.23)
pspApB
Hence, in this limit
(Wﬁ KT [E(A9)
ONa/ rpngn, PsPaV D
—kT
= V—ﬂ (14 pp(Gas — Gga) + pp(Gas — Gg;)]
kT _
=——[mVa+ pp(Gas — Ggy)]. (K.24)
Vi
For the derivative of the pseudo-chemical potential, we have
ou* —kT  — kTV
<L> = ——[Va+ pp(Gas — Gpy)] +———
ON4/ 1pNyN Vi |4
BT (K.25)
_ _kTpB(GAs - GBS)
Vi '
The latter can be transformed into derivative with respect to x,, i.e.,
ou* kT 2
lim (O5)  Z K oat ) o Gy (K.26)
p—0 aXA T.P n

' This can be achieved simply by adding and subtracting rows and columns of the determinants,
leaving the value of the determinants unchanged.
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Since for the ideal-gas mixture we have

*ig
(a“ : ) =0 (K.27)
GxA TP

we obtain

(Gps — Gas) (K.28)

p—0\ Oxg n

* 2
lim <6Aus> _ KT (ps+p5)
TP

where Ay} is the solvation Gibbs energy of s in dilute solution of A and B.
Another useful expression for the partial molar volume of s in the limit
ps— 0 may be obtained from the Gibbs—Duhem relation

Pallas + Pplps + Pslss = 0 (K29)
Using the KB results for u;; (section 4.2), we can eliminate V; to obtain
V(S) = 111’1‘10 VS = kTKT — pAVAGAs — pBVBGBs- (K30)
I)S—>

For the partial molar volume at fixed position, we have
V:O = _pAVAGAs — pBVBGBs (K31)

which is a generalization of equation for V" in pure s (Appendix O).
From equations (K.28) and (K.31), one can solve for G4, and Gg,. The results
are

<0 npgVe (OAL
Gus = kTxp — V' — s K.32
As KT s kszT ( x4 b ( )
0 npaVa (O
Gpe = kTp — V° s) . K.33
Bs Kt s + kTng <axA> p ( )

Since all the quantities on the rhs of (K.32) and (K.33) are measurable
(including # which can be determined from the inversion of the KB theory in a
two-component mixture of A and B), one can calculate both G4, and Gg,.
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On the first order-deviations
from SI solutions

We have seen in section 6.2 that the first-order deviations from symmetrical
ideal solution have the form

WS = (L.1)
or
g = i+ kTnxy + ayxh (L.2)

where a, can be a function of T, P, but not of x,.
If (L.2) holds for all 0 <x, <1, then the Gibbs—Duhem relations impose a
similar expression for ug, i.e.,

fy = up + kTInxp + apx; (L.3)

with the same constant a, as in (L.2). We note that this is also the first-order
correction and must start as a,x3. We could have attempted to write

Uy :ui—i—lenxA—i—ao —|—a1x3+a2x123. (L.4)

Since at x3=0 we must have u, = pX, hence ay=0. Applying the Gibbs—
Duhem relation to (L.4) we, obtain

Ug = ug 4+ kTlnxg — a;Inxg + a;xg + azxj. (L.5)

But since as xz— 0, the chemical potential must diverge as kT In xp, we must
have a, =0, and we are back to equation (L.3)

 Note also that the same expressions (L.2) and (L.3) are obtained had we attempted power series of
the form p, = ,ui + kTInxs + ag + ayxy + azxj; we should find that this must have the form
bo(1 — xA)2 = byx}. This is true when we are interested in deviations from SI solutions. On the other
hand, if we are interested in deviations from DI solutions, then b, together with ,uP will form the new
constant of integration, or the standard chemical potential, and one can obtain an expression of the
form byx, + bzxj - - - for the excess chemical potential with respect to DI solutions.
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The excess Gibbs energy per mole of the mixture with respect to SI is

GE*S! EX,SI EX,SI
EX,SI , ) 2 2
§ T = =xall, " +Xplg T = dXaXp + daXpXy
Ny + Np
= Ay XAXB. (L.6)

Historically, this form of the excess Gibbs energy was suggested as the simplest
function which obeys the requirements that ¢°" must be zero when either
x4 — 0 or xg— 0. This is known as Margules equation, see, e.g., Prausnitz et al
(1986). From (L.6), one can obtain both equations (L.3) and (L.4). The latter
was derived from theoretical arguments based on lattice model for mixtures
(Guggenheim 1952).

Higher-order deviations from SI solutions are equally expressed as power
series of the form

EX,SI

g

where the coefficients are determined by fitting the experimental data. The last
equation is known as the Redlich—Kister equation (Redlich and Kister 1948).
Clearly, for any expansion of the form (L.7), the excess chemical potentials of A
and B are determined by the relations

= XAXB[Q + b(XA — XB) + C(XA — XB)Z + d(XA — X3)3 + - ] (L7)

EX,SI
EX,SI 0g

EX,SI
aXA

Ha

g (L.8)

and

EX,SI EX,SI agEX’SI
Up > =g+ xa e (L.9)
XB
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Lattice model for ideal
and regular solutions

In this appendix, we present a very brief outline of the lattice theory of ideal and
regular solutions, developed mainly by Guggenheim (1952). The main reason
for doing so is to emphasize the first-order character of the deviations from SI,
equation (M.12) below.

The system consists of M lattice sites occupied by a mixture of N4 molecules
A and Np molecules B, such that Ny + Ngp=M (figure M.1). It is assumed that
A and B have roughly the same size and that they can exchange sites without
disturbing the structure of the lattice.

For each configuration of the system, the canonical partition function is
written as

Q(Ns, N5, T) = q5" g Z&GXP —BE]] (M.1)

where g4 and g are the internal partition functions of A and B, respectively.
The sum is over all energy levels E;, and g;is the degeneracy of that energy level.
It is assumed that the energy levels are determined only by the nearest-neighbor

B A B A B A A A B A

A B A B A B B B A A

B A B A A B A A B A

A A A A B B B B A A

B A B A B B A B A B

A B A A B B B B A B

A A B B B A A A B B

A A B A A B B A B B

. . B B A B A A A A A B
Figure M.1 A lattice model of A A A ABBAGBA A

mixture of A and B.
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interaction energies E,z for pair of species « and  occupying adjacent sites.
Hence, for any configuration of the system we have

E = NpaEps + NppEpp + NagEap (M.2)

where N,z are the number of o—f pairs in that specific configuration. The three
N, are connected by the two relations (z is the number of nearest neighbors to
each site)

ZNA = 2NAA + NAB
ZNB = 2NBB + NAB~ (M?))

Therefore, the energy level Eis determined by the single parameters N4p. Hence,
we can replace the sum over jin (M.1), by a sum over all possible Nup, i.e.,

zNy— N, zNg— N,
{—ﬁ[ A AB p I B AB

Q=qy"qy" > 8(Nas)exp 5 A4 5

Nap

= Qu(Na)Qs(N5) > g(Nas)exp[—BNasW /2] (M.4)

Epp+ NABEAB:| } .

where Q4 and Qp are the canonical partition function of pure A and B,
respectively, and W is defined as

W = Eap + Epg — 2Ex3. (MS)

W is referred to as the exchange energy. The sum in (M.4) is over all possible
values of Nyg.

Although g(N,p) is a very complicated function, we know that the sum over
all g(N4p) must be the total number of configurations, i.e.,

M!
Npp) = ——— M.6

which is simply the number of ways of arranging N, particles A, and Np
particles B on the total number of lattice sites M= N, + Np.

When W=0, it follows immediately from (M.4) and (M.5) that the system
will be S, i.e.,

0lnQ
ON,

Uy = —kT = b+ kTnxy. (M.7)

Thus, the condition W=0 is a sufficient (but not necessary) condition for SI
behavior within this particular lattice model.
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The next step is to assume that fN,3W / 2 is small for all configurations, i.e.,
all N,p’s. Hence, we can expand the exponent in (M.4) to obtain

(exp[—BNapW/2]) = Pr(Nap) exp[—NasW /2]
= Z PI'(NAB) — ‘BTWE PI'(NAB)NAB
=Y Pr(Nay) [1 _w <NAB)} (M.8)

2
where the average is taken with the probability distribution
g(NAB)NA!NB!

PI'(NAB) = M' (M9)
and the partition function is now written as
M! pWw
= N, Np) —— —— (N, . M.10
Q = Qa(Na)Qp(Np) NAIN;! exp{ 2 ( AB>] ( )

Now the average (N,p) can be estimated as follows. If each site has z nearest
neighbors, and if Pr(B/A) is the conditional probability of finding a B in the
neighborhood of A, then the average number of A-B pairs is

N4 Npg

<NAB> = ZNA PI'(B/A) =2 (Mll)
where in the last equality we have replaced the conditional probability Pr(B/A)
by the bulk probability of finding a site occupied by B. This assumption is
sometimes referred to as the randomness assumption. It is clear, however, that
this assumption is true only when W is small.

With the assumption (M.11) introduced in (M.10), we get for the chemical
potential

B dlnQ zZWxj
Uy = —kT N, =, + kTInxy > (M.12)

This behavior has been referred to as strictly regular solution (Guggenheim
1952). This should be compared with the first-order deviations from SI
behavior discussed in section 6.6. There, the last term on the rhs of (M.12) is
replaced by the more general term kT p;A 45x3/2. The point to be emphasized

here is that the expression (M.12) is valid only for a small value of W, i.e., this is
only a first-order term in the expansion of the excess chemical potential, as
shown, for the more general case, in section 6.6. Failure to recognize this fact
has misled many scientists to reach invalid conclusions regarding the behavior
of the mixture for large values of W (or equivalently low temperatures T).
Further discussion of this aspect of large deviations from SI behavior is pre-
sented in sections 6.6—6.8.
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Elements of the scaled
particle theory

The scaled particle theory (SPT) was developed in the late 1950s and the early
1960s. It started with the quest for the probability of creating a cavity, or a hole,
in the liquid (Hill 1958). It was developed as a theory that was initially designed
for hard spheres, and then applied for more realistic fluids and mixtures (Reiss
et al. 1959, 1960, 1966; Helfand et al. 1960).

Basically, the SPT is an approximate procedure to compute the work
required to create a cavity at a fixed position in a liquid. The work required to
create a cavity in the liquid is fundamental in the study of the solvation of
solutes in any solvent. The simplest solute is a hard-sphere (HS) particle, and
the simplest solvent also consists of HS particles. The solvation process can
always be decomposed into two parts; creating a suitable cavity and then
turning on the other parts of the solute—solvent interaction.

The basic ingredients of the SPT and the nature of the approximation
involved are quite simple. We shall present here only a brief outline of the
theory, skipping some of the more complicated details.

The SPT starts by consideration of the work of creating a cavity at some fixed
position in the fluid. In a fluid consisting of HS particles of diameter g, a cavity
of radius r at Ry is nothing but a stipulation that no centers of particles may be
found in the sphere of radius r centered at R,. In this sense, creation of a cavity
of radius r at R, is equivalent to placing at Ry a HS solute of diameter b, such
that r= (a+ b)/2 (figure N.1). A cavity of radius zero is equivalent to placing a
HS of negative diameter b= — a. The work required to create such a cavity is
equivalent to the work required to introduce a HS solute at R,y. The work is
computed by using a continuous process of building up the particle in the
solvent. This is the origin of the name “scaled particle theory.” The idea is
similar to the Kirkwood’s charging process involving the parameter ¢ as
described in section 3.4.
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Figure N.1 A particle of dia-
meter a produces an excluded
volume of radius a. This excluded
volume is equivalent to a cavity or
radius a.

S8

In a system of HSs, the molecular parameters that fully describe the particles
are the mass m and the diameter a.” It is important to bear this fact in mind
when the theory is applied to real fluids, in which case one needs at least three
molecular parameters to describe the molecules, and more than three para-
meters for complex molecules such as water. It is a unique feature of the HS
fluid that only two molecular parameters are sufficient for its characterization.

The fundamental distribution function in the SPT is Py(r), the probability
that no molecule has its center within the spherical region of radius r centered
at some fixed point Ry in the fluid. Let Py(r+ dr) be the probability that a cavity
of radius (r+ dr) is empty. (In all the following, a cavity is always assumed to be
centered at some fixed point R, even when this is not mentioned explicitly.)
This probability may be written as a product of two factors

Py(r + dr) = Py(r)Py(dr/r). (N.1)

On the rhs of (N.1), we have introduced the symbol Py(dr/r) for the conditional
probability of finding the spherical shell of width dr empty, given that the
sphere of radius r is empty. The equality (N.1) is nothing but the well-known
definition of a conditional probability in terms of the joint probability.

Next, we define an auxiliary function G(r) by the relation

4nr*pG(r) = 1 — Py(dr/r). (N.2)

Since Py(dr/r) is the conditional probability of finding the spherical shell empty,
given that the sphere of radius r is empty, the rhs of (N.2) is the conditional
probability of finding the center of at least one particle in this spherical shell,
given that the sphere of radius ris empty. This clearly follows from the fact that
the spherical shell can be either empty or occupied.

Expanding Py(dr/1r) to first order in dr, we get
0P,

O dr+ - (N.3)

Py(r+dr) = Py(r) + a

! The mass is a molecular parameter that enters into the momentum partition function, but this
parameter does not enter in the calculation of the work required to create a cavity.
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From (N.1), (N.2), and (N.3), we obtain

0ln Py(r)
or

Thus, the function G(r) may be defined either through (N.2) or through (N.4);
the latter may also be written in an integral form

= —4nr’pG(r) (N.4)

InPy(r) —InPy(r=0) = —p /r47t)»2G(/1) da. (N.5)

0

Clearly, the probability of finding a cavity of radius zero is unity, hence
InPy(r) = —p/ 4n)*G()) dJ. (N.6)
0

There is a general relation between Py(r), and the work W(r) required to form a
cavity of radius r (Ben-Naim 1992), which we write as

W(r)=A(r) — A= —kTIlnPy(r) = kTp/ 4mt/*G(2) da. (N.7)
0
Since the work required to create a cavity of radius r is the same as the work
required to insert a hard sphere of diameter b=2r — a at R, we can write the
pseudo-chemical potential of the added “solute” in the solvent as

(a+b)/2
i = W(r) = kTp / 4mi2G2) di. (N.8)
0

In order to get the chemical potential of the solute having diameter b, we
have to add to (N.8) the liberation free energy’ namely

W, = W + kTlnp,A;. (N.9)

It should be noted that p;, = 1/V'is the “solute” density, whereas p = N/ V'is the
“solvent” density.

A particular case is obtained when we insert a “solute” having a diameter
b= a, i.e., a solute which is indistinguishable from other particles in the system.
In this case we have

W =W(r=a)= kTp/ 4n)*G(A)d. (N.10)
0

! In the original publication of the SPT, this quantity has been referred to as the “mixing free
energy.” As explained in section 3.4, the term liberation free energy is more appropriate for this term
(see also Appendix H). Note also that the mass of the particles enter only in Az. Note that as long as the
particle is not fully coupled, it is distinguishable from all the other particles. It becomes indis-
tinguishable when it is fully coupled to the system.
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The integral on the rhs of (N.10) describes the work of coupling a new particle
to the system using a continuous “charging,” or coupling parameter A.

At this stage, it is interesting to cite the equation of state for a system of hard
spheres of diameter a, namely

kiT — p + 2uap*G(a) (N.11)
i.e., the equation of state is determined by the function G(r) at a single point
r=a. Note that for the chemical potential, one needs the entire function G(1)
and not just its value at single point.

The SPT aims at providing an approximate expression for Py(r) or,
equivalently, for G(1). Before presenting this expression, we note that an
exact expression is available for Py(r) at very small r. If the diameter of the
HS particles is g, then in a sphere of radius r < a/2, there can be at most one
center of a particle at any given time. Thus, for such a small r, the probability
of finding the sphere occupied is 477" p/3. Since this sphere may be occupied
by at most one center of an HS, the probability of finding it empty is simply

4mr? a
=1—-—- <. .
Py(r) =1 3P (for r< 2> (N.12)

For spheres with a slightly larger radius, namely for r<a/+/3, there can be at
most two centers of HSs in it; the corresponding expression for Py(r) is

4 3 2
Po(r)=1—%p+%// g(Ri, R,) dR, dR, (N.13)
v(r)

where g(R;, R,) is the pair correlation function, and the integration is carried
out over the region defined by the sphere of radius r denoted by v(r). The last
equation is valid for a radius smaller than a/ V/3. In a formal fashion, one can
write expressions similar to (N.13) for larger cavities, but these involve higher-
order molecular distribution functions, and therefore are not useful in practical
applications.

Using relation (N.4), we obtain the equivalent of (N.12) in terms of G(1), i.e.,

4nr3

—1
G(r) = <1 - p) for r < g (N.14)
3 2
and the corresponding work, W(r) is
4 3
W(r) = —kT1n<1 — %p) for r < g. (N.15)
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We now turn to the other extreme case, i.e., to very large cavities. In this case,
the cavity becomes macroscopic and the work required to create it is simply

W(r) = Pv(r) (forr — o0) (N.16)

where P is the macroscopic pressure and v(r) is the volume of the cavity.

Another way of obtaining (N.16) is to use the basic probability in the grand
canonical ensemble. For a very large cavity, we can treat the volume v(r) as the
volume of a macroscopic system in the T, v, u ensemble. The probability of
finding the system empty is simply

(N.17)

Po(r) = E(T,v(r), 1) " = exp [—PV(r)]

kT

where = is the grand partition function and the last equality holds for the
macroscopic systems. Using relation (N.7), we obtain

W(r) = —kTInPy(r) = Pv(r) (r— o0) (N.18)

which is the same as (N.16).

Equation (N.16) is the leading term for a macroscopic volume, i.e., r — oo.
For finite cavities, one may include a term proportional to v*"? to account for
the work required to create the surface area, in which case equation (N.16) is
modified as

4 3
w(r) =P

+ 4nria (N.19)

where o is the surface tension between the fluid and a hard wall. For a still
smaller radius, a correction due to the curvature of the cavity may be intro-
duced into (N.19). Also, from relation (N.7) we may obtain the limit of G(r) as
r— 00,

p

G(r — o) = KT (N.20)
At this stage, we have two exact results for G(r): one for very small  (N.14), and
for very large r (N.20). This information suggests trying to bridge the two ends
by a smooth function of r. In fact, this was precisely the procedure taken by
Reiss et al. (1959, 1960). The arguments used by the authors to make a par-
ticular choice of such a smooth function are quite lengthy and involved. They
assumed that G(r) is a monotonic function of r in the entire range of r. They
suggested a function of the form

G(r)=A+Br ' +Cr? (N.21)
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The coefficients A, B, and C were determined by using all the available inform-
ation on the behavior of the function G(r) for a fluid of hard spheres. The final
expression obtained for G(r), after being translated into W(r), i.e., integration
of relation (N.7), is the following:

W(r) = Ko + Kir + K1 + Ks7” (N.22)
with the coefficients given by

Ky = kT[—In(1 — y) + 4.52%] — inPa’

kT )
K = (62 + 182%) + nPa
a
kT
(12z 4+ 182 — 2nPa
4P
K= = (N.23)

where a is the diameter of the hard spheres and y and z are defined by

= mpa , zZ= A
6 (1=y)
Thus, in essence, what we have obtained is an approximate expression for the
work required to create a cavity of radius rin a fluid of HSs characterized by the
diameter a.

In figure N.2, we show W(r*)/kT as a function of the reduced radius of cavity
r* = r/a, where a is the diameter of the hard spheres. Equation (N.15) was used

(N.24)

5
4 p=1.0
£ 3
£
= 2
Figure N.2 The work W(r*)/kT 1
required to create a cavity in a liquid 7 SPT
as a function of the reduced distance i
r* =rla, for two densities as 0.2 0.4 0.6 0.8 1

indicated in the figure. re
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up to r*=1/2, and equation (N.22) for r* > 1/2. Note that the monotonic
increasing function W(r*) is a general property of this function, independent of
the assumptions of the SPT.

Using expression (N.22) for the particular choice of r=a, we obtain an
expression for the chemical potential:

= kTIlnpA®> + W(r = a). (N.25)

Note that at the point r=a, the “solute” becomes identical to the solvent
molecules and therefore it is assimilated into the system; i.e., p, = 1/Vin (N.9)
turns into p = N/V in (N.25).

Relations (N.22-N.25) is the main result of the SPT. From (N.25), one
can get the Gibbs energy G= Ny as a function of the independent variables T,
P, N. In actual application, one uses the SPT, but in addition to specifying
T, P, N, one must introduce the density p into the theory. In this sense, the
SPT is not a purely molecular theory. Normally, if we have G(T, P, N), we
should be able to calculate as output the the average volume V= (0G/OP)rx
hence the density. In the SPT, the density is introduced as an additional input
in the theory.

This comment should be borne in mind when the theory is applied to real
fluids. In any real liquid, and certainly for water, we need a few molecular
parameters to characterize the molecules, say ¢ and a in a Lennard-Jones fluid,
or in general, a set of molecular parameters a, b, ¢, . ... Thus, a proper statis-
tical-mechanical theory of real liquid should provide us with the Gibbs energy
as a function of T, P, N and the molecular parameters a, b, ¢, . . ., i.e., a function
of the form G(T, P, N; a, b, ¢,...). Instead, the SPT makes use of only one
molecular parameter, the diameter a. No provision of incorporating other
molecular parameters is offered by the theory. This deficiency in the char-
acterization of the molecules is partially compensated for by the use of the
measurable density p as an input parameter.

The scaled particle theory was extended to mixture of hard spheres by
Lebowitz et al. (1965). In a one-component system of hard spheres of diameter
a, placing a hard particle of radius Rys produces a cavity of radius r= Rys +
a/2. When there is a mixture of hard spheres of diameters g;, the radius of a
cavity produced by a hard sphere of radius Rys depends on the species i, i.e.,
ri= RHS + ai/2.

The exact result (N.15) for r < a/2 is rewritten as

47I(RHS + a/2)3

W(RHs) = —kTIn [1 — 3

], for Rys <0 (N.26)
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and the generalization for a multicomponent system is

m
W(Rus) = —KTIn |1 — 4?”2 (Rus + a/2)° |, for Rus <0.  (N.27)
i=1
Thus, in mixture of hard spheres, it is meaningful to place a hard sphere of
radius Rys at some fixed position. However, the size of the cavity is different for
the different species.
The generalization of equation (N.22), now written for the work required to
place a hard sphere of radius Ryg at some fixed position, is

W(Rys) = Ko + Ky Rus + KxRpy + KRy (N.28)
where
6&,
Ky = —kTIn(1 — , Ky =kT
0 n( 53) 1 (1 — 53)
12¢ 18¢2 ] 4mP
K, = kT - , Ky =—
’ [1—63 a-& 73
where
5] — T Zi:l pi(al) (N29>

6

As can be easily verified, (N.28) reduces to (N.22) for a one-component system,
say when p; =p and p;=0 for i# 1 and r= Rys + a,/2.
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Solvation volume of
pure components

We have noted in section 7.6 that V8 is in general not zero. This is an example
of the difference between the theoretical ideal gas and the ideal gas limit of
real gas as P— 0. In this appendix we shall first derive a general expression for
the partial molar volume at a fixed position then apply the result to the case of
ideal gas.

We start from the general expression for the chemical potential for pure A

wh =Wl +kTnp, Al (0.1)
The molar volume per particle is
ok 0lnV
VP = <ﬂ> = VA*P—kT< = >
0P ) ; 0P ), (02)
= V;P + kTx,

where x4 is the isothermal compressibility of pure A. We now use the com-
pressibility equation for the one-component system

kTpua =1+ Gh,. (0.3)
From (0.2) and (0.3), we obtain (note that p, V}: = 1, for pure A)
Vil =—-Gh,. (0.4)

This is an important result. The change in volume when placing A at a fixed
position is equal to the KB integralT. From (0O.2) and (O.4), we obtain the result
for the molar volume per particle:

Vi = —Gh\ + kTka. (0.5)

The value of V} for an ideal gas system depends on which ideal gas system we
are referring to.

If we switch off all interactions (i.e., take a theoretical ideal gas), then

g44(R) =1 and Gpy =0 (recall that G4 is taken here in the open system, where

' Normally VP is positive, hence G4, is negative. However, this does not need to be the case
always. e.g. for ionic solute V' might be negative.
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all the correlations are due to the intermolecular interactions). Hence,
VA*ig =0, (theoretical ideal gas). (0.6)

On the other hand, if we are interested in an ideal gas obtained from a real gas
as p, — 0, then we know that in this limit

8aa(R) = exp[=fUax(R)] (0.7)

hence

yie /0 " (exp-BUM(R)] — 1)4nR® dR (0.8)

= 2Baa, (ideal gas,p,—0)

where By, is the second virial coefficient of pure A. A simple case of (O.8) is
when A is a hard sphere of diameter ¢4 in which case

3
4oy

Ve = —/O (—1)4nR* dR = (0.9)

Thus, placing a single A at a fixed position changes the volume of the system by
the exact amount of the excluded volume of A with respect to A particles.

Care must be exercised when calculating V" from the derivative of the
chemical potential. We have used equation (O.1) to take the derivative with
respect to P, then take the limit of p, — 0. If we first take the low-density limit
of (0.1) and then differentiate, we get the wrong result. The limiting behavior
of the chemical potential is

p
[y A lenk—TAi, + PBya (0.10)
hence,
- ou kT
Vi=(=2) ==+ Bu. 11
A <6P ) r P o (O-41)
If we now take the limiting expression for the compressibility
i 1
'~ — 0.12
KR (0.12)
and using (0.11) and (0.12) in (O.2) we obtain
o kT kT
Vi =—+Byy——=23B 13
A = tBuu——5 = Bu (0.13)

which is the wrong result (see equation O.8). To obtain the correct result, we
should either proceed as we have done in obtaining equation (O.4) and then
take the limiting behavior of (0.8) or instead of (O.12) we must also take the
first-order expansion of the nondivergent part of x4, which can be easily
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obtained from the virial expansion of p(P). The result is

kT
kTKA ~ ? — BAA- <014)
Now using (O.11) and (0O.14) in (0O.2), we obtain
i kT kT
Vi =— 4+ Baa— [ — — Baa | =2Baa (0.15)
P p
which is the correct result.
The solvation volume is thus
AV = Vil — Vzig = —(Gaa — GifA) = —(Gaa + 2Baa). (0.16)

In general, the term kT¥k, in (O.2) is small compared with either V! or V7.
For instance, for water at 20 °C we have

Vi =18.05cm’mol™! and kTky = 1.12cm’mol .
For n-heptane at 20°C

V}; = 146.6cm’mol™! and kTky = 3.39 cm®mol .
For benzene at 20°C

Vg —88.86cm’mol™'  and kTkg = 2.28 cm®mol .
For argon at 100K

Vf =30.47cm’mol™!  and kTk, = 2.622cm’mol .

We see that in general the term kT 4 is small compared with either V¥ or V*.
Using the result (0.4) for argon we can write

Vil = —Gjs
_ —/(gAA(R) ~ 1)4nR dR

:—/ —47R? dR—/ (gaa(R) — 1)4nR* dR
0 o

- 4’;‘73 - /:C (ga4(R) — 1)4nR? dR (0.17)

Thus, the molar volume (at fixed position) of argon has two components. One
is due to the repulsive part of the potential. This is eight times the “actual”
molecular volume of argon 47R%/3. The second is due to the interaction,
usually both repulsive and attractive beyond R > ¢.
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Deviations from SI solutions
expressed in terms of pA g
and in terms of P,/P2

In sections 6.6 and 6.7, we analyzed the conditions of stability using the
parameter pA,p as a measure of the deviations from SI solutions. When
A, =0, we had symmetrical ideal SI solutions. We found that for positive
values of A 4p, the system was always stable. For large negative values of A 45, we
found regions of instability. This conclusion seems to conflict with the
experimental results that positive deviations from Raoult’s law lead to
instability'. The classical examples shown in many books are mixtures of water
and various normal alcohols. We reproduce the relevant curves in figure P.1.
Here, we plot the relative partial pressure of the alcohols in mixtures of water
with methanol, ethanol, propanol and n-butanol. Clearly, in all of the four
cases, deviations from Raoult’s law as measured by either the quantities

Pa/PS = x4ySL 15 = kTInyS! (P.1)

are positive in the sense that 3! are larger than unity, or equivalently the partial
pressure over the solutions of component A is larger than the partial pressure
expected, had the solutions obeyed Raoult’s law (i.e., P4/ Pg = x4). We note
that the vapor above the solution is assumed to be an ideal-gas mixture. The
excess chemical potential with respect to SI is u®%5,

For the water—methanol, water—ethanol, and water—propanol, systems
deviations from Raoult’s law are positive. The single phase is stable in the entire
range of compositions. In water-n-butanol, we know experimentally that
the two components are not miscible in the entire range of compositions. We

see from the figure that deviations from Raoult’s law are large and positive.

T 'We have also shown that the theoretical results based on the Kirkwood—Buff theory are in conflict
with the conclusions based on the first-order deviations from SI. This conflict is simply a result of
applying first-order expression in pA,p, for large values of pA4p.
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PAIPS

0.8
0.6
0.4

0.2

Xa
0.2 0.4 0.6 0.8 1

Figure P.1 Values of P4/PJ as a function of x4 for water—methanol, water—ethanol, water—propanol and
water-n-butanol at 25 °C. Based on data from Butler et al (1933). A s the alcohol component. Lower curve
for methanol, successive higher curves for ethanol, propanol and n-butanol.

This fact seems to support the conclusion based on first-order deviations from
SI solutions (see section 6.6), but in disagreement with the conclusion based on
the KB theory (section 6.7). Since at large deviations from SI we must trust the
full KB expression (section 6.7) rather than the first-order (in terms of pA 4p)
deviation, we are facing a conflict between the conclusions based on the KB
theory and the experimental data.

In this appendix, we resolve the conflict by showing that the two measures of
the deviations from SI behavior, pA,p and 5! (or P4/PY), are not, in general,
equivalent. We start with the first-order expression for the partial pressure, say
of water, in the mixture

Pa/ P = x475 = x4 exp[pAapxi/2]
W = kT InyS = kTpAapx3 /2. (P.2)

This expression, or the equivalent one in the lattice theory of solution, has been
traditionally used to analyze deviations from SI solution and stability of the
system. It is clear from (P.2) that when pA,p is positive (or negative), devia-
tions from Raoult’s law will be positive (or negative) and vice versa.
Unfortunately, these simple relationships between pA 45 and P4/PY do not
hold for large values of pA 4. The general relation between the two quantities
follows from the general expression for the chemical potential (equation 6.2,
chapter 6)
pxpAap
1 + pxaxpAap
= ub + kTInxy + u5°° (P.3)

XB
iy = s+ kTlnx, + kT/
0
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Assuming that the vapor above the solution is an ideal gas mixture, we get
instead of (P.2) the more general expression

™ pxpAap }
P,/P% = x4 ex [/ e 4
4/ P AP o L1+ pxaxgAap (b4)

It is clear from (P.4) that pA,p determines uniquely the value of P,/P§. In
other words, the molecular measure of the deviations from SI, pA4p, determ-
ines not only the stability of the system (see sections 6.6 and 6.7), but also the
deviations from Raoult’s law as measured by the quantity P4/P} (presuming
that the vapor is an ideal-gas mixture).

On the other hand, the values of P4/ Pg (whether larger or smaller than x4)

do not determine uniquely either the stability condition or the value of pA 4p.

This can be seen if we expand uiX’SI to second order in pA,p. The result is

Mo roanp[E-3]). ps)

EX,SI SI
iy ” =kTIny) =

Clearly, in the first-order expansion (P.2), the sign of pA ,p is the same as the

sign of ,uiX’Sl. On the other hand, in the second-order expansion in terms of

pA4p, equation (P.5) shows that pA,p determines uiX’SI, but uiX’SI (or the

value of y5!) does not uniquely determine the value of pA 4. Figure P.2 shows a

plot of ,uix"SI /KT as a function of pA,p/kT for one composition x, = xB:%. It

is clear that in the first-order expansion, ,uiX’SI and pAp have the same sign.

However, for the second-order expansion, the values of ,uf;X’SI do not uniquely

determine pA,p. The same conclusion may be drawn by expanding MEX’SI to

nE*S kT
1
0.75
0.5
0.25
' ' ' = pA
_ . -10 5 10 P78
Figure P.2 1, /KT as a 05
function of pA 45 according to the
) . -0.5
first- and second-order expansion
in pA 4z at one composition -0.75
Xa=Xg= 0.5.
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higher order in pA,p. Odd and even order show similar behavior to the first-

and the second-order expansion in pA,p.
In the more general case, we have the relation

(%) — kT <a In xAy,SqI> _ 1 (P_6)
0xa/ p 1 Oxa  Jpr xa(l+ pxaxsAap)

or equivalently for ideal-gas vapor pressures

 fom(Py/PY)\ I
f(xA) - ( GxA >P,T_ XA(l + prxBAAB) (P.7)

where f(x,) is a measurable quantity. From (P.7) we can eliminate pA,p to
obtain

1-— fo(XA)
App = ——"7+-—-. P.8
POl = xaf (xa) (®8)
Thus, from (P.6), (P.7), and (P.8), it is clear that the values of either PA/PX or of

uiX’SI do not determine either the stability condition or the value of pA,p.

Instead, the quantity flx,), i.e., the derivative of the quantity In[P4/P}] with
respect to x4, determines both the stability condition as well as pA 4. Thus, if we
characterize deviations from SI by the values of P4/ P, (being larger than x,), this
in itself does not determine the values of the molecular measure of the deviations
from SI, pA 4, nor the stability condition. One needs both P4/ Pg as well as its
composition dependence to determine pA 4 and the stability condition.
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