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About the book

Our Physical Chemistry has always started with thermodynamics, progressed on to quantum
mechanics, and then brought these two great rivers together by considering statistical 
thermodynamics. We always took care to enrich the thermodynamics with molecular 
understanding, and wrote the text so that it could be used flexibly to suit the pedagogical 
inclinations of its users. There are many, though, who consider it more appropriate to build
an understanding of the subject from a firm foundation of quantum theory and then to
show how the concepts of thermodynamics emerge as the microscopic evolves into the
macroscopic. This text is directed at them.

We have taken the cloth of Physical Chemistry, unravelled it, and woven a new cloth that
begins from quantum theory, establishes the link with the macroscopic world by introduc-
ing statistical thermodynamics, and then shows how thermodynamics is used to describe
bulk properties of matter. But this is no mere reordering of topics. As we planned the book
and then progressed through its writing, we realized that we had to confront issues that 
required fundamentally new approaches even to very familiar material. In fact, we experi-
enced a kind of intellectual liberation that comes from looking at a familiar subject from a
new perspective. Therefore, although readers will see material that has appeared throughout
the editions of Physical Chemistry, there is an abundance of new material, new approaches
to familiar topics, and—we hope—a refreshing new insight into the familiar.

The text is divided into five parts and preceded by a Fundamentals section that reviews the
material that we presume is already familiar to readers at this level but about which their
memories might need a gentle prod. In Part 1, Quantum theory, we set out the foundations
of quantum mechanics in terms of its postulates and then show how these principles are
used to describe motion in one and more dimensions. We have acknowledged the present
surge of interest in nanoscience, and have built our presentation around these exciting 
systems. In Part 2, Atoms molecules, and assemblies, we turn to the more traditional nano-
systems of chemistry and work progressively through the building blocks of chemistry, 
ending with solids. We have paid particular attention to computational chemistry, which is,
of course, of great practical significance throughout chemistry. We have confronted head on
the sheer difficulty of presenting computational chemistry at this level by illustrating all the
major techniques by focusing on an almost trivially simple system. Our aim in this import-
ant chapter was to give a sense of reality to this potentially recondite subject: we develop 
understanding and provide a launching platform for those who wish to specialize further.
Part 3, Molecular spectroscopy, brings together all the major spectroscopic techniques, build-
ing on the principles of quantum mechanics introduced in Part 1.

Part 4, Molecular thermodynamics, was for us the most challenging—and therefore the
most exciting—part to write, for here we had to make the awesome passage from the quan-
tum theory of microscopic systems to the thermodynamic properties of bulk matter. The
bridge is provided by that most extraordinary concept, the Boltzmann distribution. Once
that concept has been established, it can be used to develop an understanding of the central
thermodynamic properties of internal energy and entropy. We have trodden carefully
through this material, trying to maintain the sense that thermodynamics is a self-contained
subject dealing with phenomenological relations between properties but, at the same time,
showing the illumination that comes from a molecular perspective. We hope this sensitivity
to the subject is apparent and that the new insights that we ourselves have acquired in the
course of developing this material will be found to be interesting and informative. There are
parts of traditional thermodynamics (phase equilibria, among them), we have to admit, that
are not open to this kind of elucidation or at least would be made unduly complicated, and
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we have not hesitated where our judgement persuaded us to set the molecular aside and 
present the material from a more straightforward classical viewpoint.

In Part 5, Chemical dynamics, we turn to another main stream of physical chemistry, the
rates of reactions. Some of this material—the setting up of rate laws, for instance—can be
expressed in a purely traditional manner, but there are aspects of the dynamics of chemical
reactions that draw heavily on what has gone before.

The ‘Using the book’ section that follows gives details of the pedagogical apparatus in the
book, but there is one feature that is so important that it must be mentioned in this Preface.
The principal impediment to the ‘quantum first’ approach adopted by this text is the level of
mathematics required, or at least the perceived level if not the actual level, for we have taken
great pains to step carefully through derivations. The actual level of mathematics needed to
understand the material is not great, but the thought that it exists can be daunting. To help
overcome this barrier to understanding we have included a series of Mathematical back-
ground features between various chapters. These sections (there are eight) give background
support to the mathematics that has been used in the preceding chapter and which will be
drawn on in later chapters. We are aware that many chemists prefer the concrete to the 
abstract, and have illustrated the material with numerous examples.

We hope that you will enjoy using the book as much as we have enjoyed—and learned
from—writing it and will appreciate that we have aimed to produce a book that illuminates
physical chemistry from a new direction.

PWA
JdeP
RSF



Using the book

We have paid attention to the needs of the student, and have provided a lot of 
pedagogical features to make the learning process more enjoyable and effective. This
section reviews these features. Paramount among them, though, is something that
pervades the entire text: we have tried throughout to interpret the mathematical 
expressions, for mathematics is a language, and it is crucially important to be able to
recognize what it is seeking to convey. We have paid particular attention to the level 
at which we introduce information, the possibility of progressively deepening one’s
understanding, and providing background information to support the development
in the text. We have also been very alert to the demands associated with problem 
solving, and have provided a variety of helpful procedures.

Organizing the information

Notes on good practice

Science is a precise activity and its language should be used 
accurately. We have used this feature to help encourage the use of
the language and procedures of science in conformity to inter-
national practice (as specified by IUPAC, the International
Union of Pure and Applied Chemistry) and to help avoid com-
mon mistakes.

Checklist of key ideas

We have summarized the principal concepts introduced in each
chapter as a checklist at the end of the chapter. We suggest
checking off the box that precedes each entry when you feel
confident about the topic.

Checklist of key ideas

1. A van der Waals interaction between closed-shell molecules
is inversely proportional to the sixth power of their
separation.

2. The permittivity is the quantity ε in the Coulomb potential
energy, V = Q1Q2/4πεr.

3. A polar molecule is a molecule with a permanent electric
dipole moment; the magnitude of a dipole moment is the
product of the partial charge and the separation.

4. The potential energy of the dipole–dipole interaction
between two fixed (non-rotating) molecules is proportional
to μ1μ2/r3 and that between molecules that are free to rotate
is proportional to μ2μ2/kTr6

8. A hydrogen bond is an interacti
where A and B are N, O, or F.

9. The Lennard-Jones (12,6) poten
is a model of the total intermole

10. In real gases, molecular interact
state; the true equation of state i
coefficients B, C, . . . : pVm = RT

11. The van der Waals equation of s
the true equation of state in whi
represented by a parameter a an
by a parameter b: p = nRT/(V −

IMPACT ON BIOCHEMISTRY

I13.1 The helix–coil transition in polypeptides

The hydrogen bonds between amino acids of a polypeptide give
rise to stable helical or sheet structures, which may collapse into
a random coil when certain conditions are changed. The un-
winding of a helix into a random coil is a cooperative transition,
in which the polymer becomes increasingly more susceptible to
structural changes once the process has begun. We examine here
a model based on the principles of statistical thermodynamics
that accounts for the cooperativity of the helix–coil transition in
polypeptides.

To calculate the fraction of polypeptide molecules present as
helix or coil we need to set up the partition function for the vari-

g
ward: we simply replace the upper lim

A cooperative transformation is
modate, and depends on building a
facilitate each other’s conformational
model, conversion from h to c is allo
cent to the one undergoing the conv
Thus, the zipper model allows a tran
. . . → . . . hhhcc . . . , but not a trans
. . . → . . . hchch. . . . The only except
the very first conversion from h to

q

q 0 0

=
=
∑C n i si

i

n

( , )

Self-test 10.4 Repeat the problem for C35ClH3 (see Self-test
10.2 for details).

[Lines of separation 0.944 cm−1 (28.3 GHz)]

A note on good practice For the discussion of spectroscopic
transitions, the upper state is written first. So X → Y is an
emission and X ← Y is an absorption, where X and Y specify
the states in some way (such as by giving the value of the 
rotational quantum number J, as we have done above).

absorbed by a molecule, the angular
d system is conserved. If the
ame sense as the spin of the
reases by 1.

For hydrogen, I = 1–2, and the ratio is 3:1. For N2, with I = 1, the
ratio is 1:2.

Justification 10.1 The effect of nuclear statistics on rotational
spectra

Hydrogen nuclei are fermions (particles with half-integer
spin quantum number; in their case I = 1–2), so the Pauli 
principle requires the overall wavefunction to change sign
under particle interchange. However, the rotation of an H2

molecule through 180° has a more complicated effect than
merely relabelling the nuclei, because it interchanges their
spin states too if the nuclear spins are paired (↑ ↓) but not if
they are parallel (↑ ↑).

For the overall wavefunction of the molecule to change

otational wavefunctions (shown
dimensional rotor) under a rotation
s with J even do not change sign;

Impact sections

Where appropriate, we have separated the principles from their
applications: the principles are constant; the applications come
and go as the subject progresses. The Impact sections show 
how the principles developed in the chapter are currently being
applied in a variety of modern contexts, especially biology and
materials science.

Justifications

On first reading it might be sufficient simply to appreciate the
‘bottom line’ rather than work through detailed development of
a mathematical expression. However, mathematical development
is an intrinsic part of physical chemistry, and to achieve full 
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understanding it is important to see how a particular expression
is obtained. The Justifications let you adjust the level of detail
that you require to your current needs, and make it easier to 
review material.

interActivities

You will find that many of the graphs in the text have an
interActivity attached: this is a suggestion about how you can 
use the on-line-resources of the book’s website to explore the
consequences of changing various parameters or of carrying 
out a more elaborate investigation related to the material in the
illustration.

Synoptic tables and the Resource section

Long tables of data are helpful for assembling and solving exer-
cises and problems, but can break up the flow of the text. The
Resource section at the end of the text consists of a Data section
with a lot of useful numerical information and a collection of
other useful tables. Short extracts in the Synoptic tables in the
text itself give an idea of the typical values of the physical quan-
tities we are introducing.

where I(0) is given by eqn 10.23 wi
carried out numerically in a compu
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Fig. 10.25 An interferogram produced as the path length p is
changed in the interferometer shown in Fig. 10.24. Only a single
frequency component is present in the signal, so the graph is a
plot of the function I(p) = I0(1 + cos 2π#p), where I0 is the
intensity of the radiation.

interActivity Referring to Fig. 10.24, the mirror M1 moves 
in finite distance increments, so the path difference p

is also incremented in finite steps. Explore the effect of
increasing the step size on the shape of the interferogram for a
monochromatic beam of wavenumber # and intensity I0. That is,
draw plots of I(p)/I0 against #p, each with a different number of
data points spanning the same total distance path taken by the
movable mirror M1.
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Fig. 10.26 An interferogram obtained 
three) frequencies are present in the r

interActivity For a signal consis
monochromatic beams, the in

replaced by a sum over the finite num
this information to draw your own ve
go on to explore the effect of varying 
intensities of the three components o
of the interferogram.

Further information 13.2 The partition functions of polyatomic rotors

The energies of a symmetric rotor are

EJ,K,MJ
= hcèJ(J + 1) + hc(é − è)K2

with J = 0, 1, 2, . . . , K = J, J − 1, . . . , −J, and MJ = J, J − 1, . . . , −J. Instead
of considering these ranges, we can cover the same values by allowing K
to range from −∞ to ∞, with J confined to |K |, |K | + 1, . . . , ∞ for each
value of K (Fig. 13.23). Because the energy is independent of MJ, and
there are 2J + 1 values of MJ for each value of J, each value of J is (2J + 1)-
fold degenerate. It follows that the partition function

can be written equivalently as

(13.59)
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Physical properties of selected materials

r/(g cm−3 ) Tf /K Tb /K r/(g cm−3 ) T
at 293 K† at 293 K†

Elements

Aluminium(s) 2.698 933.5 2740

Argon(g) 1.381 83.8 87.3

Boron(s) 2.340 2573 3931

Bromine(l) 3.123 265.9 331.9

Carbon(s, gr) 2.260 3700s

Carbon(s, d) 3.513

Chlorine(g) 1.507 172.2 239.2

Copper(s) 8.960 1357 2840

Fluorine(g) 1.108 53.5 85.0

Gold(s) 19.320 1338 3080

Helium(g) 0.125 4.22

Hydrogen(g) 0.071 14.0 20.3

Iodine(s) 4.930 386.7 457.5

Iron(s) 7.874 1808 3023

Krypton(g) 2.413 116.6 120.8

Lead(s) 11.350 600.6 2013

Inorganic compounds

CaCO3(s, calcite) 2.71 1

CuSO4·5H2O(s) 2.284

HBr(g) 2.77

HCl(g) 1.187

HI(g) 2.85

H2O(l) 0.997

D2O(l) 1.104

NH3(g) 0.817

KBr(s) 2.750 1

KCl(s) 1.984 1

NaCl(s) 2.165 1

H2SO4(l) 1.841

Organic compounds

Acetaldehyde, CH3CHO(l) 0.788

Acetic acid, CH3COOH(l) 1.049

Part 1 Data section

A brief comment A symmetry operation is an action (such 
as a rotation, reflection, or inversion) that leaves an object 
looking the same after it has been carried out. There is a 
corresponding symmetry element for each symmetry opera-
tion, which is the point, line, or plane with respect to which
the symmetry operation is performed. For instance, an n-fold
rotation (the symmetry operation) about an n-fold axis of
symmetry (the corresponding symmetry element) is a rota-
tion through 360°/n. See Chapter 7 for a more detailed 
discussion of symmetry.

sided (but not necessarily
h the entire crystal structure can be
nslations (not reflections, rotations,

Further information

In some cases, we have judged that a derivation is too long, too
detailed, or too different in level for it to be included in the text.
In these cases, the derivations will be found less obtrusively at
the end of the chapter.

Mathematics support

A brief comment

A topic often needs to draw on a mathematical procedure or a
concept of physics; A brief comment is a quick reminder of the
procedure or concept.
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Mathematical background

It is often the case that you need a more full-bodied account of 
a mathematical concept, either because it is important to under-
stand the procedure more fully or because you need to use a 
series of tools to develop an equation. The eight Mathematical
background sections are located between chapters, primarily
where they are first needed, and include many illustrations of
how each concept is used.

Worked examples

Each Worked example has a Method section to suggest how to set
up the problem (another way might seem more natural: setting
up problems is a highly personal business) and use or find the
necessary data. Then there is the worked-out Answer, where we
emphasize the importance of using units correctly.

MATHEMATICAL BACKGROUND 8: MULTIVA

MATHEMATICAL BACKGROUND 8

Multivariate calculus

A property of a system typically depends on a number of vari-
ables, such as the pressure depending on the amount, volume,
and temperature according to an equation of state, p = f(n,T,V).
To understand how these properties vary with the conditions we
need to understand how to manipulate their derivatives. This is
the field of multivariate calculus, the calculus of several variables.

MB8.1 Partial derivatives
A partial derivative of a function of more than one variable, such
as f(x,y), is the slope of the function with respect to one of the
variables, all the other variables being held constant (Fig. MB8.1).
Although a partial derivative shows how a function changes
when one variable changes, it may be used to determine how the
function changes when more than one variable changes by an
infinitesimal amount. Thus, if f is a function of x and y then,
when x and y change by dx and dy, respectively, f changes by

(MB8.1)d d df
f

x
x

f

y
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y x
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l A BRIEF ILLUSTRATION

Suppose that f(x,y) = ax3y + b
Fig. MB8.1), then

Then, when x and y undergo infi
by

df = 3ax2y dx + (ax3 + 2by)dy

To verify that the order of taking
is irrelevant, we form

Self test MB8.1 Evaluate df for f
verify that the order of taking the 
is irrelevant. [df = 4x
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l A BRIEF ILLUSTRATION

Consider a complex salt with three unpaired electrons per
complex cation at 298 K, of mass density 3.24 g cm−3, and
molar mass 200 g mol−1. First note that

Consequently,

Substitution of the data with S = 3–2 gives χm = 7.9 × 10−8 m3

mol−1. Note that the density is not needed at this stage. To
obtain the volume magnetic susceptibility, the molar sus-
ceptibility is divided by the molar volume Vm = M/ρ, where ρ
is the mass density. In this illustration, Vm = 61.7 cm3 mol−1,
so χ = 1.3 × 10−3. l

χm
3

K
m mol= × ×

+− −6 3001 10
16 1.

( )

/

S S

T

 

N g

k
A e B 3m K mol

2
0

2
6 1 1

3
6 3001 10

μ μ
= × − − −.

(c) Induced magnetic moments

An applied magnetic field induces the ci
currents. These currents give rise to a mag
opposes the applied field, so the substan
few cases the induced field augments the
substance is then paramagnetic.

The great majority of molecules with
spins are diamagnetic. In these cases, the
rents occur within the orbitals of the mole
in its ground state. In the few cases in whi
magnetic despite having no unpaired e
electron currents flow in the opposite d
can make use of unoccupied orbitals that 
in energy. This orbital paramagnetism 
from spin paramagnetism by the fact that
pendent: this is why it is called temperatu
magnetism (TIP).

We can summarize these remarks as 

Example 13.5 Evaluating the rotational partition function explicitly

Evaluate the rotational partition function of 1H35Cl at 25°C,
given that è = 10.591 cm−1.

Method We use eqn 13.19 and evaluate it term by term. Once
again, we use kT/hc = 207.224 cm−1 at 298.15 K. The sum is
readily evaluated by using mathematical software.

Answer To show how successive terms contribute, we draw
up the following table by using hcè/kT = 0.051 11 (Fig. 13.8):

J 0 1 2 3 4 . . . 10

(2J + 1)e−0.05111J(J+1) 1 2.71 3.68 3.79 3.24 . . . 0.08

The sum required by eqn 13.19 (the sum of the numbers in the
second row of the table) is 19.9, hence q R = 19.9 at this tem-
perature. Taking J up to 50 gives qR = 19.902. Notice that about
ten J-levels are significantly populated but the number of popu-
lated states is larger on account of the (2J + 1)-fold degeneracy
of each level. We shall shortly encounter the approximation
that q R ≈ kT/hcè, which in the present case gives q R = 19.6, in
good agreement with the exact value and with much less work.

At room temperature kT/hc ≈ 200
stants of many molecules are close 
13.2) and often smaller (though the 
which è = 60.9 cm−1, is one except
rotational levels are populated at no
this is the case, the partition function

Linear rotors:

Non-linear rotors:

where é, è, and ê are the rotationa
expressed as wavenumbers. However
sions, read on (to eqns 13.21 and 13.

   
q R =

⎛

⎝
⎜

⎞

⎠
⎟

kT

hc

3

   
q R =

kT

hcè

CO2 ν1

ν2 3

ν3

* For more values, see Table 10.2
and use hc/k = 1.439 K cm.

Discussion questions

17.1 Explain how the mixing of reactants and products affects the
position of chemical equilibrium.

17.2 Explain how a reaction that is not spontaneous may be driven
forward by coupling to a spontaneous reaction.

17.3 Use concepts of statistical thermodynamics to describe the
molecular features that determine the magnitudes of equilibrium
constants and their variation with temperature.

17.4 Suggest how the thermodynamic equilibrium constant may
respond differently to changes in pressure and temperature from the
equilibrium constant expressed in terms of partial pressures.

17.5 Account for Le Chatelier’s principle in terms of thermodynamic
quantities. Can you think of a reason why the principle might fail?

17.6 State the limits to the generality of th
as in eqn 17.28.

17.7 Distinguish between galvanic, electro

17.8 Explain why salt bridges are routinel
measurements.

17.9 Discuss how the electrochemical seri
redox reaction is spontaneous.

17.10 Describe a method for the determin
of a redox couple.

17.11 Describe at least one non-calorimet
determining a standard reaction enthalpy

Problem solving

A brief illustration

A brief illustration is a short example of how to use an equation
that has just been introduced in the text. In particular, we show
how to use data and how to manipulate units correctly.

Self-tests

Each Worked example has a Self-test with the answer provided 
as a check that the procedure has been mastered. There are also
a number of free-standing Self-tests that are located where 
we thought it a good idea to provide a question to check your 
understanding. Think of Self-tests as in-chapter exercises designed
to help you monitor your progress.

Discussion questions

The end-of-chapter material starts with a short set of questions
that are intended to encourage reflection on the material and to
view it in a broader context than is obtained by solving numer-
ical problems.
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Exercises and Problems

The core of testing understanding is the collection of end-of-
chapter Exercises and Problems. The Exercises are straightfor-
ward numerical tests that give practice with manipulating
numerical data. The Problems are more searching. They are 
divided into ‘numerical’, where the emphasis is on the manipu-
lation of data, and ‘theoretical’, where the emphasis is on the
manipulation of equations before (in some cases) using numer-
ical data. At the end of the Problems are collections of problems
that focus on practical applications of various kinds, including
the material covered in the Impact sections. Although this text
includes many of the hundreds of Exercises and Problems that are
present in the 8th edition of Physical chemistry, well more than
half of them are entirely new or have been modified.

Exercises

17.1(a) Write the expressions for the equilibrium constants of the
following reactions in terms of (i) activities and (ii) where appropriate,
the ratios p/p7 and the products γb/b7:

(a) CO(g) + Cl2(g) 5 COCl(g) + Cl(g)
(b) 2 SO2(g) + O2(g) 5 2 SO3(g)
(c) Fe(s) + PbSO4(aq) 5 FeSO4(aq) + Pb(s)
(d) Hg2Cl2(s) + H2(g) 5 2 HCl(aq) + 2 Hg(l)
(e) 2 CuCl(aq) 5 Cu(s) + CuCl2(aq)

17.1(b) Write the expressions for the equilibrium constants of the
following reactions in terms of (i) activities and (ii) where appropriate,
the ratios p/p7 and the products γb/b7:

(a) H2(g) + Br2(g) 5 2 HBr(g)
(b) 2 O3(g) 5 3 O2(g)
(c) 2 H2(g) + O2(g) 5 2 H2O(l)
(d) H2(g) + O2(g) 5 H2O2(aq)
(e) H2(g) + I2(g) 5 2 HI(aq)

17.2(a) Identify the stoichiometric numbers in the reaction 
Hg2Cl2(s) + H2(g) → 2 HCl(aq) + 2 Hg(l).

17.2(b) Identify the stoichiometric numbers in the reaction 
CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l).

17.4(b) The equilibrium pressure of H2 ov
hydride, UH3, at 500 K is 139 Pa. Calculat
formation of UH3(s) at 500 K.

17.5(a) From information in the Data sect
Gibbs energy and the equilibrium constan
for the reaction PbO(s) + CO(g) 5 Pb(s)
reaction enthalpy is independent of tempe

17.5(b) From information in the Data sect
Gibbs energy and the equilibrium constan
the reaction CH4(g) + 3 Cl2(g) 5 CHCl3(
reaction enthalpy is independent of tempe

17.6(a) For CaF2(s) 5 Ca2+(aq) + 2 F−(aq
the standard Gibbs energy of formation o
Calculate the standard Gibbs energy of for

17.6(b) For PbI2(s) 5 Pb2+(aq) + 2 I−(aq)
the standard Gibbs energy of formation o
Calculate the standard Gibbs energy of for

17.7(a) In the gas-phase reaction 2 A + B 5
when 1.00 mol A, 2.00 mol B, and 1.00 mo
come to equilibrium at 25°C, the resulting
at a total pressure of 1.00 bar. Calculate (a
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Fundamentals

Chemistry is the science of matter and the changes it can undergo. Physical chemistry
is the branch of chemistry that establishes and develops the principles of the subject
in terms of the underlying concepts of physics and the language of mathematics. 
It provides the basis for developing new spectroscopic techniques and their inter-
pretation, for understanding the structures of molecules and the details of their 
electron distributions, and for relating the bulk properties of matter to their con-
stituent atoms. Physical chemistry also provides a window on to the world of chem-
ical reactions, and allows us to understand in detail how they take place. In fact, 
the subject underpins the whole of chemistry, providing the principles in terms of
which we understand structure and change and which form the basis of all techniques
of investigation.

Throughout the text we shall draw on a number of concepts that should already be
familiar from introductory chemistry. This section reviews them. In almost every case
the following chapters will provide a deeper discussion, but we are presuming that we
can refer to these concepts at any stage of the presentation. Because physical chemistry
lies at the interface between physics and chemistry, we also need to review some of the
concepts from elementary physics that we need to draw on in the text.

F.1 Atoms

Matter consists of atoms. The atom of an element is characterized by its atomic num-
ber, Z, which is the number of protons in its nucleus. The number of neutrons in a
nucleus is variable to a small extent, and the nucleon number (which is also com-
monly called the mass number), A, is the total number of protons and neutrons, which
are collectively called nucleons, in the nucleus. Atoms of the same atomic number but
different nucleon number are the isotopes of the element.

According to the nuclear model, an atom of atomic number Z consists of a nucleus
of charge +Ze surrounded by Z electrons each of charge −e (e is the fundamental
charge: see inside the front cover for its value). These electrons occupy atomic
orbitals, which are regions of space where they are most likely to be found, with no
more than two electrons in any one orbital. The atomic orbitals are arranged in shells
around the nucleus, each shell being characterized by the principal quantum number,
n = 1, 2, . . . . A shell consists of n2 individual orbitals, which are grouped together into
n subshells; these subshells, and the orbitals they contain, are denoted s, p, d, and f.
For all neutral atoms other than hydrogen, the subshells of a given shell have slightly
different energies.

The sequential occupation of the orbitals in successive shells results in periodic
similarities in the electronic configurations, the specification of the occupied orbitals,
of atoms when they are arranged in order of their atomic number, which leads to the
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formulation of the periodic table (a version is shown inside the
back cover). The vertical columns of the periodic table are called
groups and (in the modern convention) numbered from 1 to 
18. Successive rows of the periodic table are called periods, the
number of the period being equal to the principal quantum
number of the valence shell, the outermost shell of the atom.
The periodic table is divided into s, p, d, and f blocks, according
to the subshell that is last to be occupied in the formulation 
of the electronic configuration of the atom. The members of 
the d block (specifically in Groups 3–12) are also known as the
transition metals; those of the f block (which is not divided into
numbered groups) are sometimes called the inner transition
metals. The upper row of the f block (Period 6) consists of the
lanthanoids (still commonly the ‘lanthanides’) and the lower
row (Period 7) consists of the actinoids (still commonly the 
‘actinides’). Some of the groups also have familiar names: Group 1
consists of the alkali metals, Group 2 (more specifically, calcium,
strontium, and barium) of the alkaline earth metals, Group 17
of the halogens, and Group 18 of the noble gases. Broadly 
speaking, the elements towards the left of the periodic table are
metals and those towards the right are nonmetals; the two
classes of substance meet at a diagonal line running from boron
to polonium, which constitute the metalloids, with properties
intermediate between those of metals and nonmetals.

An ion is an electrically charged atom. When an atom gains
one or more electrons it becomes a negatively charged anion;
when it loses them it becomes a positively charged cation. The
charge number of an ion is called the oxidation number of the
element in that state (thus, the oxidation number of magnesium
in Mg2+ is +2 and that of oxygen in O2− is −2). It is appropriate,
but not always done, to distinguish between the oxidation num-
ber and the oxidation state, the latter being the physical state of
the atom with a specified oxidation number. Thus, the oxidation
number of magnesium is +2 when it is present as Mg2+, and it is
present in the oxidation state Mg2+. The elements form ions that
are characteristic of their location in the periodic table: metallic
elements typically form cations by losing the electrons of their
outermost shell and acquiring the electronic configuration of
the preceding noble gas. Nonmetals typically form anions by
gaining electrons and attaining the electronic configuration of
the following noble gas.

F.2 Molecules

A chemical bond is the link between atoms. Compounds that
contain a metallic element typically, but far from universally,
form ionic compounds that consist of cations and anions in a
crystalline array. The ‘chemical bonds’ in an ionic compound
are due to the Coulombic interactions (Section F.6) between all
the ions in the crystal, and it is inappropriate to refer to a bond
between a specific pair of neighbouring ions. The smallest unit
of an ionic compound is called a formula unit. Thus NaNO3,

consisting of a Na+ cation and a NO3
− anion, is the formula unit

of sodium nitrate. Compounds that do not contain a metallic
element typically form covalent compounds consisting of dis-
crete molecules. In this case, the bonds between the atoms of a
molecule are covalent, meaning that they consist of shared pairs
of electrons.

The pattern of bonds between neighbouring atoms is dis-
played by drawing a Lewis structure, in which bonds are shown
as lines and lone pairs of electrons, pairs of valence electrons
that are not used in bonding, are shown as dots. Lewis structures
are constructed by allowing each atom to share electrons until it
has acquired an octet of eight electrons (for hydrogen, a duplet
of two electrons). A shared pair of electrons is a single bond, two
shared pairs constitute a double bond, and three shared pairs
constitute a triple bond. Atoms of elements of Period 3 and later
can accommodate more than eight electrons in their valence
shell and ‘expand their octet’ to become hypervalent, that is,
form more bonds than the octet rule would allow (for example,
SF6), or form more bonds to a small number of atoms (for 
example, a Lewis structure of SO4

2− with double bonds). When
more than one Lewis structure can be written for a given 
arrangement of atoms, it is supposed that resonance, a blending
of the structures, may occur and distribute multiple-bond char-
acter over the molecule (for example, the two Kekulé structures
of benzene). Examples of these aspects of Lewis structures are
shown in Fig. F.1.

Except in the simplest cases, a Lewis structure does not express
the three-dimensional structure of a molecule. The simplest 
approach to the prediction of molecular shape is valence-shell
electron pair repulsion theory (VSEPR theory). In this approach,
the regions of high electron density, as represented by bonds—

Fig. F.1 A collection of typical Lewis structures for simple
molecules and ions. The structures show the bonding patterns
and lone pairs and except in simple cases do not express the
shape of the species.
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whether single or multiple—and lone pairs, take up orientations
around the central atom that maximize their separations. Then
the position of the attached atoms (not the lone pairs) is noted
and used to classify the shape of the molecule. Thus, four regions
of electron density adopt a tetrahedral arrangement; if an atom
is at each of these locations (as in CH4), then the molecule is
tetrahedral; if there is an atom at only three of these locations
(as in NH3), then the molecule is trigonal pyramidal, and so on.
The names of the various shapes that are commonly found are
shown in Fig. F.2. In a refinement of the theory, lone pairs are 
assumed to repel bonding pairs more strongly than bonding
pairs repel each other, and the shape a molecule adopts, if it 
is not determined fully by symmetry, is such as to minimize 
repulsions from lone pairs. Thus, in SF4 the lone pair adopts an
equatorial position and the two axial S-F bonds bend away from
it slightly, to give a bent see-saw shaped molecule (Fig. F.3).

Covalent bonds may be polar, or correspond to an unequal
sharing of the electron pair, with the result that one atom has 
a partial positive charge (denoted δ+) and the other a partial
negative charge (δ−). The ability of an atom to attract electrons
to itself when part of a molecule is measured by the electronega-
tivity, χ (chi), of the element. The juxtaposition of equal and 
opposite partial charges constitutes an electric dipole. If those
charges are +Q and −Q and they are separated by a distance d,
the magnitude of the electric dipole moment is μ = Qd. Whether
or not a molecule as a whole is polar depends on the arrangement
of its bonds, for in highly symmetrical molecules there may be
no net dipole. Thus, although the linear CO2 molecule has polar
CO bonds, their effects cancel and the OCO molecule as a whole
is nonpolar.

F.3 Bulk matter

Bulk matter consists of large numbers of atoms, molecules, or
ions. Its physical state may be solid, liquid, or gas:

A solid is a form of matter that adopts and maintains a shape
that is independent of the container it occupies.

A liquid is a form of matter that adopts the shape of the part
of the container it occupies (in a gravitational field, the lower
part) and is separated from the unoccupied part of the con-
tainer by a definite surface (for example, a meniscus).

A gas is a form of matter that immediately fills any container
it occupies.

Linear

Angular Trigonal planar Tetrahedral

Square planar Trigonal bipyramidal Octahedral

Fig. F.2 The names of the shapes of the geometrical figures used to describe symmetrical polyatomic molecules and ions.

(a) (b)

Fig. F.3 (a) The influences on the shape of the SF4 molecule
according to the VSEPR model. (b) As a result, the molecule
adopts a bent see-saw shape.
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A liquid and a solid are examples of a condensed state of matter.
A liquid and a gas are examples of a fluid form of matter: they
flow in response to forces (such as gravity) that are applied.

The state of a bulk sample of matter is defined by specifying
the values of various properties. Among them are:

The mass, m, a measure of the quantity of matter present
(unit: kilogram, kg).

The volume, V, a measure of the quantity of space the sample
occupies (unit: cubic metre, m3).

The amount of substance, n, a measure of the number of
specified entities present (unit: mole, mol).

An extensive property of bulk matter is a property that depends
on the amount of substance present in the sample; an intensive
property is a property that is independent of the amount of sub-
stance. The volume is extensive; the mass density, ρ (rho), the
mass of a sample divided by its volume, ρ = m/V, is intensive.

The amount of substance, n (colloquially, ‘the number of
moles’), is a measure of the number of specified entities present
in the sample. ‘Amount of substance’ is the official name of the
quantity; it is commonly simplified to ‘chemical amount’ or
simply ‘amount’. The unit 1 mol is defined as the number of 
carbon atoms in exactly 12 g of carbon-12. The number of entities
per mole is called Avogadro’s constant, NA; the currently accepted
value is 6.022 × 1023 mol−1 (note that NA is a constant with units,
not a pure number). The molar mass of a substance, M (units:
formally kilograms per mole but commonly grams per mole, 
g mol−1) is the mass per mole of its atoms (its ‘atomic weight’), 
its molecules (its ‘molecular weight’), or its formula units (its
‘formula weight’). The amount of substance of specified entities
in a sample can readily be calculated from its mass by noting that

(F.1)

A sample of matter may be subjected to a pressure, p (unit:
pascal, Pa; 1 Pa = 1 kg m−1 s−2), which is defined as the force, F, 
it is subjected to, divided by the area, A, to which that force 
is applied. A sample of gas exerts a pressure on the walls of 
its container because the molecules of gas are in ceaseless,
random motion, and exert a force when they strike the walls.
The frequency of the collisions is normally so great that the
force, and therefore the pressure, is perceived as being steady.
Although pascal is the SI unit of pressure (Section F.8), it is
also common to express pressure in bars (1 bar = 105 Pa) or 
atmospheres (1 atm = 101 325 Pa exactly), both of which cor-
respond to typical atmospheric pressure. The standard pressure
is currently defined as p7 = 1 bar exactly.

To specify the state of a sample fully it is also necessary to give
its temperature, T. The temperature is formally a property that
determines in which direction energy will flow as heat when two
samples are placed in contact through thermally conducting

n
m

M
=

walls: energy flows from the sample with the higher temperature
to the sample with the lower temperature. The symbol T is used
to denote the thermodynamic temperature, which is an absolute
scale with T = 0 as the lowest point. Temperatures above T = 0
are then most commonly expressed by using the Kelvin scale, 
in which the gradations of temperature are called kelvin (K).
The Kelvin scale is defined by setting the triple point of water
(the temperature at which ice, liquid water, and water vapour
are in mutual equilibrium) at exactly 273.16 K. The freezing
point of water (the melting point of ice) at 1 atm is then found
experimentally to lie 0.01 K below the triple point, so the freez-
ing point of water lies at approximately 273.15 K. The Kelvin
scale is unsuitable for everyday measurements of temperature,
and it is common to use the Celsius scale, which is defined in
terms of the Kelvin scale as

θ/°C = T/K − 273.15 (F.2)

Thus, the freezing point of water is 0°C and its boiling point (at
1 atm) is found to be 100°C. Note that in this text T invariably
denotes the thermodynamic (absolute) temperature and that
temperatures on the Celsius scale are denoted θ (theta).

The properties that define the state of a system are not in gen-
eral independent of one another. The most important example
of a relation between them is provided by the idealized fluid
known as a perfect gas (also, commonly, an ‘ideal gas’):

pV = nRT (F.3)

Here R is the gas constant, a universal constant (in the sense 
of being independent of the chemical identity of the gas) with
the value 8.314 J K−1 mol−1. Equation F.3, the perfect gas law, is
a summary of three empirical conclusions, namely, Boyle’s law 
(p ∝ 1/V at constant temperature and amount), Charles’s law 
(p ∝ T at constant volume and amount), and Avogadro’s prin-
ciple (V ∝ n at constant temperature and pressure).

All gases obey the perfect gas law ever more closely as the
pressure is reduced towards zero. That is, eqn F.3 is an example
of a limiting law, a law that becomes increasingly valid in a 
particular limit, in this case as the pressure is reduced to zero. 
In practice, normal atmospheric pressure at sea level (about 
1 atm) is already low enough for most gases to behave almost
perfectly and, unless stated otherwise, we shall always assume in
this text that the gases we encounter behave perfectly and obey
eqn F.3.

A mixture of perfect gases behaves like a single perfect gas.
According to Dalton’s law, the total pressure of such a mixture
is the sum of the partial pressures of the constituents, the pres-
sure to which each gas would give rise if it occupied the con-
tainer alone:

p = pA + pB + . . . (F.4)

Each partial pressure, pJ, can be calculated from the perfect gas
law in the form pJ = nJRT/V.
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F.4 Thermodynamic properties

The central unifying concept of physical chemistry is energy.
The systematic discussion of the transfer and transformation 
of energy in bulk matter is called thermodynamics. This subtle
subject is treated in detail in Part 4 of the text, but it will be 
familiar from introductory chemistry that there are two central
concepts, the internal energy, U (unit: joule, J), and the entropy,
S (unit: joules per kelvin, J K−1).

The internal energy is the total energy of a system. The first
law of thermodynamics states that the internal energy is con-
stant in a system isolated from external influences. The internal
energy of a sample of matter increases as its temperature is
raised, and we write

ΔU = CΔT (F.5)

where ΔU is the change in internal energy when the temperature
of the sample is raised by ΔT. The constant C is called the heat
capacity (units: joules per kelvin, J K−1), of the sample. If the
heat capacity is large, a small increase in temperature results in a
large increase in internal energy. This remark can be expressed
in a physically more significant way by inverting it: if the heat 
capacity is large, then even a large transfer of energy into the sys-
tem leads to only a small rise in temperature. The heat capacity
is an extensive property, and values for a substance are com-
monly reported as the molar heat capacity, Cm = C/n (units:
joules per kelvin per mole, J K−1 mol−1) or the specific heat 
capacity, Cs = C/m (units: joules per kelvin per gram, J K−1 g−1),
both of which are intensive properties.

Thermodynamic properties are often best discussed in terms
of infinitesimal changes, in which case we would write eqn F.5 as
dU = CdT. When this expression is written in the form

(F.6)

we see that the heat capacity can be interpreted as the slope of the
plot of the internal energy of a sample against the temperature.

As will also be familiar from introductory chemistry and will
be explained in detail later, for systems maintained at constant
pressure it is usually more convenient to modify the internal 
energy by adding to it the quantity pV, and introducing the 
enthalpy, H (unit: joule, J):

H = U + pV (F.7)

The enthalpy, an extensive property, greatly simplifies the 
discussion of chemical reactions, in part because changes in 
enthalpy can be identified with the energy transferred as heat
from a system maintained at constant pressure (as in common
laboratory experiments).

The entropy, S, is a measure of the quality of the energy of a
system. If the energy is distributed over many modes of motion
(for example, the rotational, vibrational, and translational 

 
C

U

T
=

d

d

motions for the particles which comprise the system), then the
entropy is high. If the energy is distributed over only a small
number of modes of motion, then the entropy is low. The sec-
ond law of thermodynamics states that any spontaneous (that
is, natural) change in an isolated system is accompanied by an
increase in the entropy of the system. This tendency is com-
monly expressed by saying that the natural direction of change is
accompanied by dispersal of energy from a localized region or to
a less organized form.

The entropy of a system and its surroundings is of the greatest
importance in chemistry because it enables us to identify the
spontaneous direction of a chemical reaction and to identify the
composition at which the reaction is at equilibrium. In a state 
of dynamic equilibrium, which is the character of all chemical
equilibria, the forward and reverse reactions are occurring at the
same rate and there is no net tendency to change in either direc-
tion. However, to use the entropy to identify this state we need
to consider both the system and its surroundings. This task can
be simplified if the reaction is taking place at constant tempera-
ture and pressure, for then it is possible to identify the state of
equilibrium as the state when the Gibbs energy, G (unit: joule,
J), of the system has reached a minimum. The Gibbs energy is
defined as

G = H − TS (F.8)

and is of the greatest importance in chemical thermodynamics.
The Gibbs energy, which informally is called the ‘free energy’, is
a measure of the energy stored in a system that is free to do 
useful work, such as driving electrons through a circuit or caus-
ing a reaction to be driven in its unnatural (nonspontaneous)
direction.

F.5 The relation between molecular and 
bulk properties

The energy of a molecule, atom, or subatomic particle that is
confined to a region of space is quantized, or restricted to cer-
tain discrete values. These permitted energies are called energy
levels. The values of the permitted energies depend on the char-
acteristics of the particle (for instance, its mass) and the extent 
of the region to which it is confined. The quantization of energy
is most important—in the sense that the allowed energies are
widest apart—for particles of small mass confined to small regions
of space. Consequently, quantization is very important for elec-
trons in atoms and molecules, but usually unimportant for
macroscopic bodies, for which the separation of translational
energy levels of particles in containers of macroscopic dimen-
sions is so small that for all practical purposes their translational
motion is unquantized and can be varied virtually continuously.
As we shall see in detail in Part 1, quantization becomes increas-
ingly important as we change focus from rotational to vibrational
and then to electronic motion. The separation of rotational 
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energy levels (in small molecules, about 10−23 J or 0.01 zJ, 
corresponding to about 0.01 kJ mol−1) is smaller than that of 
vibrational energy levels (about 10 kJ mol−1), which itself is
smaller than that of electronic energy levels (about 10−18 J or 1 aJ,
where a is another uncommon but useful SI prefix (Section F.8),
standing for atto, 10−18, corresponding to about 103 kJ mol).
Figure F.4 depicts these typical energy level separations.

(a) The Boltzmann distribution

The continuous thermal agitation that the molecules experience
in a sample at T > 0 ensures that they are distributed over the
available energy levels. One particular molecule may be in a state
corresponding to a low energy level at one instant, and then be
excited into a high energy state a moment later. Although we
cannot keep track of the state of a single molecule, we can speak
of the average numbers of molecules in each state; even though
individual molecules may be changing their states as a result of
collisions, the average number in each state is constant (pro-
vided the temperature remains the same).

The average number of molecules in a state is called the 
population of the state. Only the lowest energy state is occupied
at T = 0. Raising the temperature excites some molecules into
higher energy states, and more and more states become access-
ible as the temperature is raised further (Fig. F.5). The formula
for calculating the relative populations of states of various ener-
gies is called the Boltzmann distribution and was derived by the
Austrian scientist Ludwig Boltzmann towards the end of the
nineteenth century. This formula gives the ratio of the numbers
of particles in states with energies Ei and Ej as

(F.9)

where k is Boltzmann’s constant, a fundamental constant with
the value k = 1.381 × 10−23 J K−1. This constant occurs throughout
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physical chemistry, often in a disguised ‘molar’ form as the gas
constant, for

R = NAk (F.10)

where NA is Avogadro’s constant. We shall see in Part 4 that the
Boltzmann distribution provides the crucial link for expressing
the macroscopic properties of matter in terms of microscopic
behaviour.

The important features of the Boltzmann distribution to bear
in mind are that the distribution of populations is an exponen-
tial function of energy and temperature, and that more levels are
significantly populated if they are close together in comparison
with kT (like rotational and translational states) than if they are
far apart (like vibrational and electronic states). Moreover, at a
high temperature more energy levels are occupied than at a low
temperature. Figure F.6 summarizes the form of the Boltzmann
distribution for some typical sets of energy levels. The peculiar
shape of the population of rotational levels stems from the 
fact that eqn F.9 applies to individual states and, for molecular
rotation, the number of rotational states corresponding to a
given energy level—broadly speaking, the number of planes of
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Fig. F.5 The Boltzmann distribution of populations for a system
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Fig. F.6 The Boltzmann distribution of populations for rotational,
vibrational, and electronic energy levels at room temperature.
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rotation—increases with energy; therefore, although the popu-
lation of each state decreases with energy, the population of the
levels goes through a maximum.

One of the simplest examples of the relation between micro-
scopic and bulk properties is provided by kinetic molecular 
theory, a model of a perfect gas. In this model, it is assumed that
the molecules, imagined as particles of negligible size, are in
ceaseless, random motion and do not interact except during
their brief collisions. Different speeds correspond to different
energies, so the Boltzmann formula can be used to predict the
proportions of molecules having a specific speed at a particular
temperature. The expression giving the fraction of molecules
that have a particular speed is called the Maxwell distribution,
and has the features summarized in Fig. F.7. The Maxwell distri-
bution, which is discussed more fully in Chapter 18, can be used
to show that the mean speed, K, of the molecules depends on the
temperature and their molar mass as

(F.11)

Thus, the average speed is high for light molecules at high tem-
peratures. The distribution itself gives more information. For
instance, the tail towards high speeds is longer at high tempera-
tures than at low, which indicates that at high temperatures more
molecules in a sample have speeds much higher than average.
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(b) Equipartition

The Boltzmann distribution can be used to calculate the average
energy associated with each mode of motion of a molecule.
However, for modes of motion that can be described by classical
mechanics (which in practice means translation of any molecule
and the rotation of all except the lightest molecules) there is 
a short cut, called the equipartition theorem. This theorem
states that, in a sample at a temperature T, all quadratic contri-
butions to the total energy have the same mean value, namely
1–2kT. A ‘quadratic contribution’ simply means a contribution
that depends on the square of the position or the velocity (or 
momentum). For example, because the kinetic energy of a 
body of mass m free to undergo translation in three dimensions
is Ek = 1–2mvx

2 + 1–2mvy
2 + 1–2mvz

2, there are three quadratic terms. 
The theorem implies that the average kinetic energy of motion
parallel to the x-axis is the same as the average kinetic energy 
of motion parallel to the y-axis and to the z-axis. That is, in a
normal sample (one at thermal equilibrium throughout), the
total energy is equally ‘partitioned’ over all the available modes
of motion. One mode of motion is not especially rich in energy
at the expense of another. Because the average contribution of
each mode is 1–2kT, the average kinetic energy of a molecule free
to move in three dimensions is 3–2kT, as there are three quadratic
contributions to the kinetic energy.

F.6 Particles

Molecules are built from atoms and atoms are built from sub-
atomic particles. To understand their structures we need to
know how these bodies move under the influence of the forces
they experience. There are two approaches to the description of
the motion of particles: classical mechanics, the description of
matter formulated by Isaac Newton in the seventeenth century,
and quantum mechanics, formulated in the twentieth century.
Quantum mechanics is the more fundamental theory and must
be used to describe small particles, such as electrons, atoms, and
molecules. Classical mechanics is acceptable for the description
of large particles. Quantum mechanics is dealt with at length in
Part 1 of the text and is not considered here.

In this section we consider some elementary aspects of the
classical mechanics of particles. This discussion is necessarily
more mathematical than the foregoing. However, that is a 
virtue, for it introduces us to the origin of the power of physical
chemistry: that it provides a quantitative foundation for chem-
istry. A great deal of the usefulness of physical chemistry stems 
from the fact that its central ideas can be expressed precisely in
terms of mathematics and that the consequences of those ideas
can be deduced precisely and logically—once again, in terms 
of mathematics. Mathematics is a central feature of physical
chemistry and, provided we constantly keep in mind the inter-
pretation of the equations that arise, through it we acquire a
whole new language for the description of nature.
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Fig. F.7 The distribution of molecular speeds with temperature
and molar mass. Note that the most probable speed
(corresponding to the peak of the distribution) increases with
temperature and with decreasing molar mass, and
simultaneously the distribution becomes broader.

interActivity (a) Plot different distributions by keeping the
molar mass constant at 100 g mol−1 and varying the 

temperature of the sample between 200 K and 2000 K. (b) Use
mathematical software or the Living graph applet from the text’s
web site to evaluate numerically the fraction of molecules with
speeds in the range 100 m s−1 to 200 m s−1 at 300 K and 1000 K.
(c) Based on your observations, provide a molecular
interpretation of temperature.
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(a) Force and work

‘Translation’ is the motion of a particle through space. The 
velocity, 1, of a particle is the rate of change of its position r:

(F.12)

For motion confined to a single dimension, we would write vx =
dx/dt. The velocity and position are vectors, with both direction
and magnitude. The magnitude of the velocity is the speed, v.
The linear momentum, p, of a particle of mass m is related to its
velocity, 1, by

p = m1 (F.13)

Like the velocity vector, the linear momentum vector points in
the direction of travel of the particle (Fig. F.8); its magnitude is
denoted p.

According to Newton’s second law of motion, the rate of
change of momentum is equal to the force acting on the particle:

(F.14a)

For motion confined to one dimension, we would write dpx /dt =
Fx. Equation F.14a may be taken as the definition of force. The SI
unit of force is the newton (N), with

1 N = 1 kg m s−2

Because p = m(dr/dt), it is sometimes more convenient to write
eqn F.14a as

(F.14b)

where a is the acceleration of the particle, its rate of change of
velocity. It follows that, if we know the force acting everywhere
and at all times, solving eqn F.14 will give the trajectory, the 
position and momentum of the particle at each instant.
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l A BRIEF ILLUSTRATION

A harmonic oscillator consists of a particle that experiences a
‘Hooke’s law’ restoring force, one that is proportional to its
displacement from equilibrium. An example is a particle of
mass m attached to a spring or an atom attached to another
by a chemical bond. For a one-dimensional system, Fx = −kx,
where the constant of proportionality k is called the force con-
stant. Equation F.14b becomes

If x = 0 at t = 0, a solution (as may be verified by substitution)
is

x(t) = A sin 2πνt

This solution shows that the position of the particle varies
harmonically (that is, as a sine function) with a frequency ν,
and that the frequency is high for light particles (m small) 
attached to stiff springs (k large). l

The description of rotation is very similar to that of transla-
tion. The rotational motion of a particle about a central point is
described by its angular momentum, J. The angular momentum
is a vector: its magnitude gives the rate at which a particle circu-
lates and its direction indicates the axis of rotation (Fig. F.9).
The magnitude of the angular momentum, J, is

J = Iω (F.15)

where ω is the angular velocity of the body, its rate of change of
angular position (in radians per second), and I is the moment
of inertia, a measure of its resistance to rotational acceleration.
For a point particle of mass m moving in a circle of radius r, 
the moment of inertia about the axis of rotation is I = mr 2. To

ν =
⎛

⎝
⎜

⎞

⎠
⎟

1
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π
k

m

/

 
m

x

t
kx

d

d

2

2
= −

pz

px py

x

y

z

p

Fig. F.8 The linear momentum p is denoted by a vector of
magnitude p and an orientation that corresponds to the
direction of motion.

Jz

Jx Jy

x

y

z

J

Fig. F.9 The angular momentum of a particle is represented by a
vector along the axis of rotation and perpendicular to the plane
of rotation. The length of the vector denotes the magnitude of
the angular momentum. The direction of motion is clockwise to
an observer looking in the direction of the vector.
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accelerate a rotation it is necessary to apply a torque, T, a twist-
ing force. Newton’s equation is then

(F.16)

The analogous roles of m and I, of v and ω, and of p and J in 
the translational and rotational cases, respectively, should be re-
membered because they provide a ready way of constructing and
recalling equations. These analogies are summarized in Table F.1.

Work, w, is motion against an opposing force. For an
infinitesimal motion through ds (a vector), the work done is

dw = −F ·ds (F.17)

where F ·ds is the scalar product of the vectors F and ds.
Generally speaking, the scalar product of two vectors u and 1 is
written u ·1 = uv cos θ, where θ is the angle between them. For
motion in one dimension, we write dw = −Fxdx. The total work
done along a path is the integral of this expression, allowing for
the possibility that F changes in direction and magnitude at each
point of the path. With force in newtons and distance in metres,
the unit of work is the joule (J), with

1 J = 1 N m = 1 kg m2 s−2

l A BRIEF ILLUSTRATION

The work needed to stretch a chemical bond that behaves like
a spring through an infinitesimal distance dx is

dw = −Fxdx = −(−kx)dx = kxdx

The total work needed to stretch the bond from zero dis-
placement (x = 0) at its equilibrium length Re to a length R,
corresponding to a displacement x = R − Re, is

We see that the work required increases as the square of the
displacement: it takes four times as much work to stretch a
bond through 20 pm as it does to stretch it through 10 pm. l

w kx x k x x k R R

R R R R

= = = −
− −
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(b) Energy

As we have indicated, much of chemistry is concerned with
transfers and transformations of energy, and it is now appro-
priate to define this familiar quantity precisely: energy is the 
capacity to do work. The SI unit of energy is the same as that of
work, namely, the joule. Calories (cal) and kilocalories (kcal) are
still encountered in the chemical literature. Caution needs to 
be exercised as there are several different kinds of calorie. The
thermochemical calorie, cal15, is the energy required to raise the
temperature of 1 g of water at 15°C by 1°C. The calorie is now
defined in terms of the joule, with 1 cal = 4.184 J (exactly).

A particle may possess two kinds of energy, kinetic energy and
potential energy. The kinetic energy, Ek, of a body is the energy
the body possesses as a result of its motion. For a body of mass m
travelling at a speed v,

Ek = 1–2mv 2 (F.18)

It follows from Newton’s second law that if a particle of mass m
is initially stationary and is subjected to a constant force F for a
time τ, then its speed increases from zero to Fτ/m and therefore
its kinetic energy increases from zero to

(F.19)

The energy of the particle remains at this value after the force
ceases to act. Because the magnitude of the applied force, F, 
and the time, τ, for which it acts may be varied at will, eqn F.19
implies that the energy of the particle may be increased to any
value.

The potential energy, Ep or V, of a body is the energy it pos-
sesses as a result of its position. Because (in the absence of losses)
the work that a particle can do when it is stationary in a given 
location is equal to the work that had to be done to bring it there,
we can use the one-dimensional version of eqn F.17 to write 
dV = −Fx dx, and therefore

(F.20)
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Table F.1 Analogies between translation and rotation

Translation

Property

Mass, m

Speed, v

Magnitude of linear momentum, p

Translational kinetic energy, Ek

Equation of motion

Significance

Resistance to the effect of a force

Rate of change of position

p = mv

Ek = 1–2 mv2 = p2/2m

dp/dt = F

Rotation

Property

Moment of inertia, I

Angular velocity, ω
Magnitude of angular momentum, J

Rotational kinetic energy, Ek

Equation of motion

Significance

Resistance to the effect of a torque

Rate of change of angle

J = Iω
Ek = 1–2 Iω2 = J 2/2I

dJ/dt = T
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No universal expression for the potential energy can be given
because it depends on the type and magnitude of the force the
body experiences. For a particle of mass m close to the surface of
the Earth, the gravitational force (the ‘weight’ of the particle) is
–mg (with x measured outwards), where g is the acceleration of
free fall (g = 9.81 m s−2); so the potential energy of the particle at
an altitude h is

(F.21)

The zero of potential energy is arbitrary. For a particle close to
the surface of the Earth, it is common to set V(0) = 0.

The total energy of a particle is the sum of its kinetic and 
potential energies:

E = Ek + V (F.22)

We make use of the apparently universal law of nature that 
energy is conserved, that is, energy can neither be created nor 
destroyed. Although energy can be transferred from one loca-
tion to another and transformed from one form to another, the
total energy is constant. In terms of the linear momentum, the
total energy of a particle is

(F.23)

This expression may be used in place of Newton’s second law to
calculate the trajectory of a particle.

l A BRIEF ILLUSTRATION

Consider an argon atom free to move in one direction (along
the x-axis) in a region where V = 0 (so the energy is independ-
ent of position). Because v = dx /dt, it follows from eqns F.12
and F.18 that dx /dt = (2Ek/m)1/2. As may be verified by sub-
stitution, a solution of this differential equation is

The linear momentum is

p(t) = mv(t) = = (2mEk)1/2

and is a constant. Hence, if we know the initial position and
momentum, we can predict all later positions and momenta
exactly. l

(c) The Coulomb potential energy

One of the most important forms of potential energy in chem-
istry is the Coulomb potential energy between two electric
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charges. For a point charge Q1 at a distance r in a vacuum from
another point charge Q2, their potential energy is

(F.24)

Charge is expressed in coulombs (C), often as a multiple of 
the fundamental charge, e. Thus, the charge of an electron is 
−e and that of a proton is +e; the charge of an ion is ze, with z
the charge number (positive for cations, negative for anions).
The constant ε0 (epsilon zero) is the vacuum permittivity, a 
fundamental constant with the value 8.854 × 10−12 C2 J−1 m−1. 
In a medium other than a vacuum, the potential energy of 
interaction between two charges is reduced, and the vacuum
permittivity is replaced by the permittivity, ε, of the medium.
The permittivity is commonly expressed as a multiple of the 
vacuum permittivity:

ε = εrε0 (F.25)

with εr the dimensionless relative permittivity (formerly, the 
dielectric constant). The Coulomb potential energy is equal to
the work that must be done to bring up a charge Q1 from infinity
to a distance r from a charge Q2. It is conventional (as in eqn F.24)
to set the potential energy equal to zero at infinite separation of
charges. Then two opposite charges have a negative potential
energy at finite separations, whereas two like charges have a pos-
itive potential energy.

Care should be taken to distinguish potential energy from 
potential. The potential energy of a charge Q1 in the presence of
another charge Q2 can be expressed in terms of the Coulomb
potential, φ (phi):

V = Q1φ (F.26)

The units of potential are joules per coulomb, J C−1 so, when φ is
multiplied by a charge in coulombs, the result is in joules. The
combination joules per coulomb occurs widely and is called a
volt (V):

1 V = 1 J C−1

If there are several charges Q2, Q3, . . . present in the system, the
total potential experienced by the charge Q1 is the sum of the 
potential generated by each charge:

φ = φ2 + φ3 + . . . (F.27)

Just as the potential energy of a charge Q1 can be written V =
Q1φ, so the magnitude of the force on Q1 can be written F = Q1E ,
where E is the magnitude of the electric field strength (units:
volts per metre, V m−1) arising from Q2 or from some more gen-
eral charge distribution. The electric field strength (which, like
the force, is actually a vector quantity) is the negative gradient of

φ
ε

=
Q

r
2

04π

V
Q Q

= 1 2

04πε r
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the electric potential. In one dimension, we write the magnitude
of the electric field strength as

(F.28)

The language we have just developed also inspires an import-
ant alternative energy unit, the electronvolt (eV): 1 eV is defined
as the kinetic energy acquired when an electron is accelerated
from rest through a potential difference of 1 V. The relation 
between electronvolts and joules is

1 eV = 1.602 × 10−19 J

Many processes in chemistry involve energies of a few electron-
volts. For example, to remove an electron from a sodium atom
requires about 5 eV.

(d) Power

The rate of supply of energy is called the power (P), and is 
expressed in watts (W):

1 W = 1 J s−1

A particularly important way of supplying energy in chemistry
(as in the everyday world) is by passing an electric current
through a resistance. An electric current (I) is defined as the rate
of supply of charge, I = dQ/dt, and is measured in amperes (A):

1 A = 1 C s−1

If a charge Q is transferred from a region of potential φi, where
its potential energy is Qφi, to where the potential is φf and its 
potential energy is Qφf, and therefore through a potential difference 
Δφ = φf − φi, the change in potential energy is QΔφ. The rate at
which the energy changes is (dQ/dt)Δφ, or IΔφ. The power is
therefore

P = IΔφ (F.29)

With current in amperes and the potential difference in volts,
the power is in watts. The total energy, E, supplied in an interval
Δt is the power (the rate of energy supply) multiplied by the du-
ration of the interval:

E = PΔt = IΔφΔt (F.30)

The energy is obtained in joules with the current in amperes, the
potential difference in volts, and the time in seconds.

F.7 Waves

Several important investigative techniques in physical chemistry,
such as spectroscopy and X-ray diffraction, involve electromag-
netic radiation, a wave-like electromagnetic disturbance. We shall
also see that the properties of waves are central to the quantum

  
E = −

d

d

φ
x

mechanical description of electrons in atoms and molecules. 
To prepare for those discussions, we need to understand the
mathematical description of waves.

A wave is an oscillatory disturbance that travels through
space. Examples of such disturbances include the collective 
motion of water molecules in ocean waves and of gas particles 
in sound waves. A harmonic wave is a wave with a displacement
that can be expressed as a sine or cosine function.

An electromagnetic field is an oscillating electric and mag-
netic disturbance that spreads as a harmonic wave through empty
space, the vacuum. The wave travels at a constant speed called
the speed of light, c = 2.998 × 108 m s−1. As its name suggests, 
an electromagnetic field has two components, an electric field
that acts on charged particles (whether stationary or moving)
and a magnetic field that acts only on moving charged particles.
The electromagnetic field is characterized by a wavelength, λ
(lambda), the distance between the neighbouring peaks of the
wave, and its frequency, ν (nu), the number of times per second
at which its displacement at a fixed point returns to its ori-
ginal value (Fig. F.10). The frequency is measured in hertz, where
1 Hz = 1 s−1. The wavelength and frequency of an electromagnetic
wave are related by

λν = c (F.31)

Therefore, the shorter the wavelength, the higher the frequency.
The speed of light in a medium, c ′, is less than in a vacuum. The
difference is expressed in terms of the refractive index, nr, of the
medium, where

(F.32)

The refractive index depends on the frequency of the light, and
typically increases with frequency. The characteristics of a wave

 
n

c

cr =
′

Wavelength,

(a) (b)

"

Fig. F.10 (a) The wavelength, λ, of a wave is the peak-to-peak
distance. (b) The wave is shown travelling to the right at a speed
c. At a given location, the instantaneous amplitude of the wave
changes through a complete cycle (the four dots show half a
cycle) as it passes a given point. The frequency, ν, is the number
of cycles per second that occur at a given point. Wavelength and
frequency are related by λν = c.
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are also reported by giving the wavenumber, # (nu tilde), of the
radiation, where

(F.33)

A wavenumber can be interpreted as the number of complete
wavelengths in a given length. Wavenumbers are normally 
reported in reciprocal centimetres (cm−1), so a wavenumber of 
5 cm−1 indicates that there are 5 complete wavelengths in 1 cm.

  
# = =

ν
λc

1

The classification of the electromagnetic field according to its
frequency and wavelength is summarized in Fig. F.11.

The functions that describe the oscillating electric field, /(x,t),
and magnetic field, ;(x,t), travelling along the x-direction with
wavelength λ and frequency ν are

/(x,t) = / 0 cos{2πν t − (2π/λ)x + φ} (F.34a)

;(x,t) = ;0 cos{2πν t − (2π/λ)x + φ} (F.34b)

where / 0 and ;0 are the (vector) amplitudes of the electric and
magnetic fields, respectively, and φ is the phase of the wave,
which may lie between −π and π and gives the relative location
of the peaks of two waves (Fig. F.12). Note that the magnetic
field is perpendicular to the electric field and both are perpen-
dicular to the propagation direction.

Equation F.34 describes electromagnetic radiation that is
plane-polarized; it is so called because the electric and magnetic
fields each oscillate in a single plane (Fig. F.13). The plane of 
polarization may be orientated in any direction around the dir-
ection of propagation. An alternative mode of polarization is
circular polarization, in which the electric and magnetic fields
rotate around the direction of propagation in either a clockwise
or a counter-clockwise sense but remain perpendicular to it 
and each other. A plane-polarized beam can be regarded as a 
superposition of two oppositely rotating circularly polarized
components (and vice versa). By convention, in right-handed
circularly polarized light the electric vector rotates clockwise as
seen by an observer facing the oncoming beam (Fig. F.14).

If two waves, in the same region of space, with the same wave-
length have phases that differ by ±π (so the peaks of one wave
coincide with the troughs of the other), then the resultant wave,
the sum of the two, will have a diminished amplitude. This effect
is called destructive interference. If the phases of the two waves
are the same (coincident peaks), the resultant has an enhanced
amplitude. This effect is called constructive interference.

It follows by differentiating eqn F.34a or F.34b that

where ψ(x,t) is either /(x,t) or ;(x,t) and the derivatives are
‘partial derivatives’, which will be explained in more detail in 
the text. Briefly, in the first expression the second derivative of
ψ(x,t) with respect to x is calculated with t treated as a constant.
Likewise, in the second expression, the second derivative of
ψ(x,t) with respect to t is calculated with x treated as a constant.
By comparing these two equations we find that

(F.35)

This ‘partial differential equation’ is known as the wave equation.
According to classical electromagnetic theory, the intensity of

electromagnetic radiation is proportional to the square of the
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Fig. F.11 The electromagnetic spectrum and its classification into
regions (the boundaries are not precise).
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and may be multiplied and divided. Thus, the same length could
be reported as l /m = 5.1. The symbols for physical properties 
are always italic (sloping; thus V for volume, not V), including
Greek symbols (thus, μ for electric dipole moment, not μ), but
available typefaces are not always so obliging.

In the International System of units (SI, from the French
Système International d’Unités), the units are formed from seven
base units listed in Table F.2. All other physical quantities may
be expressed as combinations of these physical quantities and
reported in terms of derived units. Thus, volume is (length)3

and may be reported as a multiple of 1 metre cubed (1 m3), and
density, which is mass/volume, may be reported as a multiple of
1 kilogram per metre cubed (1 kg m−3).

A number of derived units have special names and symbols.
The names of units derived from names of people are lower case
(as in torr, joule, pascal, and kelvin), but their symbols are upper
case (as in Torr, J, Pa, and K). Among the most important for
our purposes are those listed in Table F.3.

In all cases (both for base and derived quantities), the units
may be modified by a prefix that denotes a factor of a power of
10. The Greek prefixes of units are upright (as in μm, not μm).

Table F.2 The SI base units

Physical quantity Symbol for quantity Base unit

Length l metre, m

Mass m kilogram, kg

Time t second, s

Electric current I ampere, A

Thermodynamic temperature T kelvin, K

Amount of substance n mole, mol

Luminous intensity Iv candela, cd

Table F.3 A selection of derived units

Physical quantity Derived unit* Name of derived unit

Force 1 kg m s−2 newton, N

Pressure 1 kg m−1 s−2 pascal, Pa

1 N m−2

Energy 1 kg m2 s−2 joule, J

1 N m

1 Pa m3

Power 1 kg m2 s−3 watt, W

1 J s−1

* Equivalent definitions in terms of derived units are given following the definition
in terms of base units.

& = '& = 0

& = /2'

&&

&

Fig. F.12 The phase (φ) of a wave specifies the relative location of
its peaks.

E

B

Fig. F.13 In a plane-polarized wave, the electric and magnetic
fields oscillate in orthogonal planes and are perpendicular to the
direction of propagation.

L

Fig. F.14 In a circularly polarized wave, the electric and magnetic
fields rotate around the direction of propagation but remain
perpendicular to one another. The illustration also defines ‘right’
and ‘left (L)-handed’ polarizations.

amplitude of the wave. For example, the light detectors dis-
cussed in Chapter 11 are based on the interaction between the
electric field of the incident radiation and the detecting element,
so light intensities are proportional to E 0

2.

F.8 Units

The measurement of a physical property is expressed as

Physical property = numerical value × unit

For example, a length (l) may be reported as l = 5.1 m, if it 
is found to be 5.1 times as great as a defined unit of length,
namely 1 metre (1 m). Units are treated as algebraic quantities,
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Among the most common prefixes are those listed in Table F.4.
Examples of the use of these prefixes are

1 nm = 10−9 m 1 ps = 10−12 s 1 μmol = 10−6 mol

The kilogram (kg) is anomalous: although it is a base unit, it is
interpreted as 103 g, and prefixes are attached to the gram (as in
1 mg = 10−3 g). Powers of units apply to the prefix as well as the
unit they modify:

1 cm3 = 1 (cm)3 = 1 (10−2 m)3 = 10−6 m3

Note that 1 cm3 does not mean 1 c(m3). When carrying out 
numerical calculations, it is usually safest to write out the 
numerical value of an observable as a power of 10.

There are a number of units that are in wide use but are
not a part of the International System. Some are exactly equal 
to multiples of SI units. These include the litre (L), which is 
exactly 103 cm3 (or 1 dm3) and the atmosphere (atm), which is

Table F.5 Some common units

Physical Name of unit Symbol Value*
quantity for unit

Time minute min 60 s

hour h 3600 s

day d 86 400 s

Length ångström Å 10−10 m

Volume litre L, l 1 dm3

Mass tonne t 103 kg

Pressure bar bar 105 Pa

atmosphere atm 101.325 kPa

Energy electronvolt eV 1.602 177 × 10−19 J

96.485 31 kJ mol−1

* All values in the final column are exact, except for the definition of 1 eV, which
depends on the measured value of e.

Exercises

F.1 Atoms

F1.1(a) Summarize the nuclear model of the atom.

F1.1(b) Define the terms atomic number, nucleon number, mass
number.

F1.2(a) Express the typical ground-state electron configuration of an
atom of an element in (a) Group 2, (b) Group 7, (c) Group 15 of the
periodic table.

F1.2(b) Express the typical ground-state electron configuration of an
atom of an element in (a) Group 3, (b) Group 5, (c) Group 13 of the
periodic table.

F1.3(a) Identify the oxidation numbers of the elements in (a) MgCl2, 
(b) FeO, (c) Hg2Cl2.

F1.3(b) Identify the oxidation numbers of the elements in (a) CaH2, 
(b) CaC2, (c) LiN3.

F1.4(a) Where in the periodic table are metals and nonmetals found?

F1.4(b) Where in the periodic table are transition metals, lanthanoids,
and actinoids found?

F.2 Molecules

F2.1(a) Summarize what is meant by a single and multiple bond.

F2.1(b) Identify a molecule with (a) one, (b) two, (c) three lone pairs on
the central atom.

F2.2(a) Draw the Lewis (electron dot) structures of (a) SO3
2−, (b) XeF4,

(c) P4.

F2.2(b) Draw the Lewis (electron dot) structures of (a) O3, (b) ClF3
+, 

(c) N3
−.

F2.3(a) Summarize the principal concepts of the VSEPR theory of
molecular shape.

F2.3(b) Identify four hypervalent compounds.

F2.4(a) Use VSEPR theory to predict the structures of (a) PCl3, (b) PCl5,
(c) XeF2, (d) XeF4.

F2.4(b) Use VSEPR theory to predict the structures of (a) H2O2, (b) 
FSO3

−, (c) KrF2, (d) PCl4
+.

F2.5(a) Identify the polarities (by attaching partial charges δ+ and δ−) of
the bonds (a) C-Cl, (b) P-H, (c) N-O.

Table F.4 Common SI prefixes

Prefix z a f p n μ m c d

Name zepto atto femto pico nano micro milli centi deci

Factor 10−21 10−18 10−15 10−12 10−9 10−6 10−3 10−2 10−1

Prefix k M G T P

Name kilo mega giga tera peta

Factor 103 106 109 1012 1015

exactly 101.325 kPa. Others rely on the values of fundamental
constants, and hence are liable to change when the values of 
the fundamental constants are modified by more accurate or
more precise measurements. Thus, the size of the energy unit
electronvolt (eV), the energy acquired by an electron that is 
accelerated through a potential difference of exactly 1 V, depends
on the value of the charge of the electron, and the present (2008)
conversion factor is 1 eV = 1.602 177 × 10−19 J. Table F.5 gives
the conversion factors for a number of these convenient units.
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F2.5(b) Identify the polarities (by attaching partial charges δ+ and δ−) of
the bonds (a) C-H, (b) P-S, (c) N-Cl.

F2.6(a) State whether you expect the following molecules to be polar or
nonpolar: (a) CO2, (b) SO2, (c) N2O, (d) SF4.

F2.6(b) State whether you expect the following molecules to be polar or
nonpolar: (a) O3, (b) XeF2, (c) NO2, (d) C6H14.

F2.7(a) Arrange the molecules in Exercise F2.6a by increasing dipole
moment.

F2.7(b) Arrange the molecules in Exercise F2.6b by increasing dipole
moment.

F.3 Bulk matter

F3.1(a) Compare and contrast the properties of the solid, liquid, and gas
states of matter.

F3.1(b) Compare and contrast the properties of the condensed and
gaseous states of matter.

F3.2(a) Classify the following properties as extensive or intensive: 
(a) mass, (b) mass density, (c) temperature, (d) number density.

F3.2(b) Classify the following properties as extensive or intensive: 
(a) pressure, (b) specific heat capacity, (c) weight, (d) molality.

F3.3(a) Calculate (a) the amount of C2H5OH (in moles) and (b) the
number of molecules present in 25.0 g of ethanol.

F3.3(b) Calculate (a) the amount of C6H12O6 (in moles) and (b) the
number of molecules present in 5.0 g of glucose.

F3.4(a) Calculate (a) the mass, (b) the weight on the surface of the Earth
(where g = 9.81 m s−2) of 10.0 mol H2O(l).

F3.4(b) Calculate (a) the mass, (b) the weight on the surface of Mars
(where g = 3.72 m s−2) of 10.0 mol C6H6(l).

F3.5(a) Calculate the pressure exerted by a person of mass 65 kg standing
(on the surface of the Earth) on shoes with soles of area 150 cm2.

F3.5(b) Calculate the pressure exerted by a person of mass 60 kg standing
(on the surface of the Earth) on shoes with stiletto heels of area 2 cm2

(assume that the weight is entirely on the heels).

F3.6(a) Express the pressure calculated in Exercise F3.5a in atmospheres.

F3.6(b) Express the pressure calculated in Exercise F3.5b in atmospheres.

F3.7(a) Express a pressure of 1.45 atm in (a) pascal, (b) bar.

F3.7(b) Express a pressure of 222 atm in (a) pascal, (b) bar.

F3.8(a) Convert blood temperature, 37.0°C, to the Kelvin scale.

F3.8(b) Convert the boiling point of oxygen, 90.18 K, to the 
Celsius scale.

F3.9(a) Equation F.2 is a relation between the Kelvin and Celsius scales.
Devise the corresponding equation relating the Fahrenheit and Celsius
scales and use it to express the boiling point of ethanol (78.5°C) in
degrees Fahrenheit.

F3.9(b) The Rankine scale is a version of the thermodynamic
temperature scale in which the degrees (°R) are the same size as degrees
Fahrenheit. Derive an expression relating the Rankine and Kelvin scales
and express the freezing point of water in degrees Rankine.

F3.10(a) A sample of hydrogen gas was found to have a pressure of 
110 kPa when the temperature was 20.0°C. What can its pressure be
expected to be when the temperature is 7.0°C?

F3.10(b) A sample of 325 mg of neon occupies 2.00 dm3 at 20.0°C. Use
the perfect gas law to calculate the pressure of the gas.

F3.11(a) At 500°C and 93.2 kPa, the mass density of sulfur vapour is
3.710 kg m−3. What is the molecular formula of sulfur under these
conditions?

F3.11(b) At 100°C and 16.0 kPa, the mass density of phosphorus vapour
is 0.6388 kg m−3. What is the molecular formula of phosphorus under
these conditions?

F3.12(a) Calculate the pressure exerted by 22 g of ethane behaving as a
perfect gas when confined to 1000 cm3 at 25.0°C.

F3.12(b) Calculate the pressure exerted by 7.05 g of oxygen behaving as a
perfect gas when confined to 100 cm3 at 100.0°C.

F3.13(a) A vessel of volume 10.0 dm3 contains 2.0 mol H2 and 1.0 mol N2
at 5.0°C. Calculate the partial pressure of each component and their total
pressure.

F3.13(b) A vessel of volume 100 cm3 contains 0.25 mol O2 and 0.034 mol
CO2 at 10.0°C. Calculate the partial pressure of each component and
their total pressure.

F.4 Thermodynamic properties

F4.1(a) The heat capacity of a sample of iron was 3.67 J K−1. By how
much would its temperature rise if 100 J of energy was transferred to it 
as heat?

F4.1(b) The heat capacity of a sample of water was 5.77 J K−1. By how
much would its temperature rise if 50.0 kJ of energy was transferred to it
as heat?

F4.2(a) The molar heat capacity of lead is 26.44 J K−1 mol−1. How much
energy must be supplied (by heating) to 100 g of lead to increase its
temperature by 10°C?

F4.2(b) The molar heat capacity of water is 75.2 J K−1 mol−1. How much
energy must be supplied by heating to 10.0 g of water to increase its
temperature by 10.0°C?

F4.3(a) The molar heat capacity of ethanol is 111.46 J K−1 mol−1. What is
its specific heat capacity?

F4.3(b) The molar heat capacity of sodium is 28.24 J K−1 mol−1. What is
its specific heat capacity?

F4.4(a) The specific heat capacity of water is 4.18 J K−1 g−1. What is its
molar heat capacity?

F4.4(b) The specific heat capacity of copper is 0.384 J K−1 g−1. What is its
molar heat capacity?

F4.5(a) By how much does the molar enthalpy of oxygen gas differ from
its molar internal energy at 298 K? Assume perfect gas behaviour.

F4.5(b) By how much does the molar enthalpy of hydrogen gas differ
from its molar internal energy at 1000°C? Assume perfect gas behaviour.

F4.6(a) The mass density of lead is 11.350 g cm−3. By how much does the
molar enthalpy of lead differ from its molar internal energy at 1 bar?

F4.6(b) The mass density of water is 0.997 g cm−3. By how much does the
molar enthalpy of water differ from its molar internal energy at 1 bar?

F4.7(a) Which do you expect to have the greater entropy at 298 K and 
1 bar, liquid water or water vapour?

F4.7(b) Which do you expect to have the greater entropy at 0°C and 
1 atm, liquid water or ice?

F4.8(a) Which do you expect to have the greater entropy, 100 g of iron at
300 K or 3000 K?
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F4.8(b) Which do you expect to have the greater entropy, 100 g of water
at 0°C or 100°C?

F4.9(a) State the second law of thermodynamics.

F4.9(b) Can the entropy of the system that is not isolated from its
surroundings decrease during a spontaneous process?

F4.10(a) Give three examples of a system that is in dynamic equilibrium.
What might happen when the equilibrium is disturbed?

F4.10(b) Give three examples of a system that is in static equilibrium.
What might happen when the equilibrium is disturbed?

F.5 The relation between molecular and bulk properties

F5.1(a) What is meant by quantization of energy?

F5.1(b) In what circumstances are the effects of quantization most
important for microscopic systems?

F5.2(a) Suppose two states differ in energy by 1.0 eV (electronvolts, see
inside the front cover); what is the ratio of their populations at (a) 300 K,
(b) 3000 K?

F5.2(b) Suppose two states differ in energy by 2.0 eV (electronvolts, see
inside the front cover); what is the ratio of their populations at (a) 200 K,
(b) 2000 K?

F5.3(a) Suppose two states differ in energy by 1.0 eV, what can be said
about their populations when T = 0?

F5.3(b) Suppose two states differ in energy by 1.0 eV, what can be said
about their populations when the temperature is infinite?

F5.4(a) A typical vibrational excitation energy of a molecule corresponds
to a wavenumber of 2500 cm−1 (convert to an energy separation by
multiplying by hc; see Section F.7). Would you expect to find molecules
in excited vibrational states at room temperature (20°C)?

F5.4(b) A typical rotational excitation energy of a molecule corresponds
to a frequency of about 10 GHz (convert to an energy separation by
multiplying by h; see Section F.7). Would you expect to find gas-phase
molecules in excited rotational states at room temperature (20°C)?

F5.5(a) What are the assumptions of the kinetic molecular theory?

F5.5(b) What are the main features of the Maxwell distribution of speeds?

F5.6(a) Suggest a reason why most molecules survive for long periods at
room temperature.

F5.6(b) Suggest a reason why the rates of chemical reactions typically
increase with increasing temperature.

F5.7(a) Calculate the relative mean speeds of N2 molecules in air at 0°C
and 40°C.

F5.7(b) Calculate the relative mean speeds of CO2 molecules in air at
20°C and 30°C.

F5.8(a) Calculate the relative mean speeds of N2 and CO2 molecules in air.

F5.8(b) Calculate the relative mean speeds of Hg2 and H2 molecules in a
gaseous mixture.

F5.9(a) Use the equipartition theorem to calculate the contribution of
translational motion to the internal energy of 5.0 g of argon at 25°C.

F5.9(b) Use the equipartition theorem to calculate the contribution 
of translational motion to the internal energy of 10.0 g of helium 
at 30°C.

F5.10(a) Use the equipartition theorem to calculate the contribution 
to the total internal energy of a sample of 10.0 g of (a) carbon dioxide,

(b) methane at 20°C; take into account translation and rotation but not
vibration.

F5.10(b) Use the equipartition theorem to calculate the contribution to
the total internal energy of a sample of 10.0 g of lead at 20°C, taking into
account the vibrations of the atoms.

F5.11(a) Use the equipartition theorem to compute the molar heat
capacity of argon.

F5.11(b) Use the equipartition theorem to compute the molar heat
capacity of helium.

F5.12(a) Use the equipartition theorem to estimate the heat capacity of
(a) carbon dioxide, (b) methane.

F5.12(b) Use the equipartition theorem to estimate the heat capacity of
(a) water vapour, (b) lead.

F.6 Particles

F6.1(a) A particle of mass 1.0 g is released near the surface of the Earth,
where the acceleration of free fall is g = 9.81 m s−2. What will be its speed
and kinetic energy after (a) 1.0 s, (b) 3.0 s? Ignore air resistance.

F6.1(b) The same particle is released near the surface of Mars, where the
acceleration of free fall is g = 3.72 m s−2. What will be its speed and
kinetic energy after (a) 1.0 s, (b) 3.0 s? Ignore air resistance.

F6.2(a) An ion of charge ze moving through water is subject to an electric
field of strength E which exerts a force zeE , but it also experiences a
frictional drag proportional to its speed s and equal to 6πηRs, where R is
its radius and η (eta) is the viscosity of the medium. What will be its
terminal velocity?

F6.2(b) A particle descending through a viscous medium experiences a
frictional drag proportional to its speed s and equal to 6πηRs, where R is
its radius and η (eta) is the viscosity of the medium. If the acceleration of
free fall is denoted g, what will be the terminal velocity of a sphere of
radius R and mass density ρ (rho)?

F6.3(a) Confirm that the general solution of the harmonic oscillator
equation of motion (md2x /dt 2 = −kx) is x(t) = A sin ω t + B cos ω t with 
ω = (k/m)1/2.

F6.3(b) Given the general solution of a harmonic oscillator in Exercise
F6.3a, how does the momentum of the oscillator vary with time?

F6.4(a) Consider a harmonic oscillator with B = 0 (in the notation of
Exercise F6.3a); relate the total energy at any instant to its maximum
displacement amplitude.

F6.4(b) Identify the turning points of a harmonic oscillator, the
displacements at the ends of its swing.

F6.5(a) In an early (‘semiclassical’) picture of a hydrogen atom, an
electron travels in a circular path of radius 53 pm at 2188 km s−1. What is
the magnitude of the average acceleration that the electron undergoes
during one-quarter of a revolution?

F6.5(b) Given the acceleration calculated in Exercise F6.5a, what is 
the magnitude of the average force that the electron experiences in its
orbit?

F6.6(a) Use the information in Exercise F6.5a to calculate the magnitude
of the angular momentum of an electron in the semiclassical picture of
the hydrogen atom. Go on to express your result as a multiple of h/2π,
where h is Planck’s constant (see inside front cover).

F6.6(b) In a continuation of the semiclassical picture, the electron is
excited into an orbit of radius 4a0 but continues to travel at 2188 km s−1.
Calculate the magnitude of the angular momentum of the electron and
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express your result as a multiple of h/2π, where h is Planck’s constant
(see inside front cover).

F6.7(a) The force constant of a C-H bond is about 450 N m−1. How
much work is needed to stretch such bond by (a) 10 pm, (b) 20 pm?

F6.7(b) The force constant of the H-H bond is about 575 N m−1. How
much work is needed to stretch such bond by (a) 10 pm, (b) 20 pm?

F6.8(a) An electron is accelerated in an electron microscope from rest
through a potential difference Δφ = 100 kV and acquires an energy of
eΔφ. What is its final speed? What is its energy in electronvolts (eV)?

F6.8(b) A C6H4
2+ ion is accelerated in a mass spectrometer from rest

through a potential difference Δφ = 20 kV and acquires an energy of
2eΔφ. What is its final speed? What is its energy in electronvolts (eV)?

F6.9(a) Calculate the work that must be done in order to remove a Na+

ion from 200 pm away from a Cl− ion to infinity (in a vacuum). What
work would be needed if the separation took place in water? (εr = 78)

F6.9(b) Calculate the work that must be done in order to remove an
Mg2+ ion from 250 pm away from an O2− ion to infinity (in a vacuum).
What work would be needed if the separation took place in water? 
(εr = 78)

F6.10(a) Calculate the electric potential due to the nuclei at a point in a
LiH molecule located at 200 pm from the Li nucleus and 150 pm from
the H nucleus.

F6.10(b) Plot the electric potential due to the nuclei at a point in a
Na+Cl− ion pair located on a line halfway between the nuclei (the
internuclear separation is 283 pm) as the point approaches from 
infinity and ends at the midpoint between the nuclei.

F6.11(a) An electric heater is immersed in a flask containing 200 g of
water, and a current of 2.23 A from a 15.0 V supply is passed for 12.0
minutes. How much energy is supplied to the water? Estimate the rise in
temperature (for water, C = 75.3 J K−1 mol−1).

F6.11(b) An electric heater is immersed in a flask containing 150 g of
ethanol, and a current of 1.12 A from a 12.5 V supply is passed for 172 s.
How much energy is supplied to the ethanol? Estimate the rise in
temperature (for ethanol, C = 111.5 J K−1 mol−1).

F.7 Waves

F7.1(a) Calculate the wavenumber and frequency of yellow light, of
wavelength 590 nm.

F7.1(b) Calculate the wavenumber and frequency of red light, of
wavelength 710 nm.

F7.2(a) What is the speed of light in water if the refractive index of water
is 1.33?

F7.2(b) What is the speed of light in benzene if the refractive index of
water is 1.52?

F7.3(a) The wavenumber of a typical vibrational transition of a
hydrocarbon is 2500 cm−1. Calculate the corresponding wavelength and
frequency.

F7.3(b) The wavenumber of a typical vibrational transition of an O-H
bond is 3600 cm−1. Calculate the corresponding wavelength and
frequency.

F7.4(a) Draw the graph of the wave f(x) = cos{2πx /λ} against x for 
λ = 1 cm, and then on the same graph the wave f(x) = cos{(2πx /λ) + φ}
with φ = π/3.

F7.4(b) Draw the graph of the wave f(x) = cos{2πx /λ} against x for 
λ = 1 cm, and then on the same graph the wave f(x) = cos{(2πx/λ) + φ}
with φ = −π/3.

F7.5(a) Confirm that f(x,t) = cos{2πνt − (2π/λ)x} satisfies the wave
equation.

F7.5(b) Confirm that f(x,t) = cos{2πνt − (2π/λ)x + π} satisfies the wave
equation.

F.8 Units

F8.1(a) Express a volume of 1.45 cm3 in cubic metres.

F8.1(b) Express a volume of 1.45 dm3 in cubic centimetres.

F8.2(a) Express a mass density of 11.2 g cm−3 in kilograms per cubic 
metre.

F8.2(b) Express a mass density of 1.12 g dm−3 in kilograms per cubic
metre.

F8.3(a) Express pascal per joule in base units.

F8.3(b) Express (joule)2 per (newton)3 in base units.

F8.4(a) The expression kT/hc sometimes appears in physical chemistry.
Evaluate this expression at 298 K in reciprocal centimetres (cm−1).

F8.4(b) The expression kT/e sometimes appears in physical chemistry.
Evaluate this expression at 298 K in millivolts (mV).

F8.5(a) Given that R = 8.3144 J K−1 mol−1, express R in decimetre cubed
atmospheres per kelvin per mole.

F8.5(b) Given that R = 8.3144 J K−1 mol−1, express R in pascal centimetre
cubed per kelvin per molecule.

F8.6(a) Convert 1 dm3 atm into joules.

F8.6(b) Convert 1 J into litre-atmospheres.

F8.7(a) Determine the SI units of e 2/ε0r 2. Express them in (a) base units,
(b) units containing newtons.

F8.7(b) Determine the SI units of μB
2 /μ0r 3, where μB is the Bohr

magneton (μB = e$/2me) and μ0 is the vacuum permeability (see inside
front cover). Express them in (a) base units, (b) units containing joules.
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MATHEMATICAL BACKGROUND 1

Differentiation and integration

Two of the most important mathematical techniques in the
physical sciences are differentiation and integration. They occur
throughout the subject, and it is essential to be aware of the pro-
cedures involved. However, both techniques have much richer
implications than these remarks might suggest, as will become
apparent as the subject unfolds.

MB1.1 Differentiation: definitions

Differentiation is concerned with the slopes of functions, such as
the rate of change of a variable with time. The formal definition
of the derivative, df /dx, of a function f(x) is

(MB1.1)

As shown in Fig. MB1.1, the derivative can be interpreted as the
slope of the tangent to the graph of f(x). A positive first deriva-
tive indicates that the function slopes upwards (as x increases),
and a negative first derivative indicates the opposite. It is some-
times convenient to denote the first derivative as f ′(x). The sec-
ond derivative, d2f /dx2, of a function is the derivative of the first
derivative:

(MB1.2)

It is sometimes convenient to denote the second derivative f ″.
As shown in Fig. MB1.1, the second derivative of a function can
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be interpreted as an indication of the sharpness of the curvature
of the function. A positive second derivative indicates that the
function is 9 shaped, and a negative second derivative indicates
that it is 8 shaped.

The derivatives of some common functions are as follows:

(MB1.3a)

(MB1.3b)

(MB1.3c)

MB1.2 Differentiation: manipulations

It follows from the definition that a variety of combinations of
functions can be differentiated by using the following rules:

(MB1.4a)

(MB1.4b)

(MB1.4c)

The last of these three relations follows from the second.

l A BRIEF ILLUSTRATION

To differentiate the function f = {(sin ax)/x}2, we use eqn MB1.4
to write

The function and this first derivative are plotted in Fig.
MB1.2. l

MB1.3 Partial derivatives

When a function depends on more than one variable, we need
the concept of a partial derivative, ∂f /∂x. Note the change from
d to ∂: partial derivatives are dealt with at length in Mathematical
background 8 ; all we need know at this stage is that they signify
that all variables other than the stated variable are regarded as
constant when evaluating the derivative.
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Fig. MB1.1 (a) The first derivative of a function is equal to the slope of
the tangent to the graph of the function at that point. The small circle
indicates the extremum (in this case, maximum) of the function,
where the slope is zero. (b) The second derivative of the same function
is the slope of the tangent to a graph of the first derivative of the
function. It can be interpreted as an indication of the curvature of the
function at that point.
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l A BRIEF ILLUSTRATION

Suppose we are told that f is a function of two variables, and
specifically f = 4x 2y 3. Then, to evaluate the partial derivative
of f with respect to x, we regard y as a constant (like the 4),
and obtain

Similarly, to evaluate the partial derivative of f with respect to
y, we regard x as a constant (again, like the 4), and obtain

l

MB1.4 Series expansions

One application of differentiation is to the development of
power series for functions. The Taylor series for a function f(x)
in the vicinity of x = a is

(MB1.5)

where the notation (. . .)a means that the derivative is evaluated
at x = a and n! denotes a factorial, given by

n! = n(n − 1)(n − 2) . . . 1 (MB1.6)

By definition 0! = 1. The Maclaurin series for a function is a 
special case of the Taylor series in which a = 0.
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l A BRIEF ILLUSTRATION

To evaluate the expansion of cos x around x = 0 we note that

and in general

Therefore,

l

The following Taylor series (specifically, Maclaurin series) are
used at various stages in the text:

(MB1.7a)

(MB1.7b)

(MB1.7c)

Taylor series are used to simplify calculations, for when x << 1 it
is possible, to a good approximation, to terminate the series after
one or two terms. Thus, provided x << 1 we can write

(1 + x)−1 ≈ 1 − x (MB1.8a)

e x ≈ 1 + x (MB1.8b)

ln(1 + x) ≈ x (MB1.8c)

A series is said to converge if the sum approaches a finite,
definite value as n approaches infinity. If the sum does not 
approach a finite, definite value, then the series is said to diverge.
Thus, the series in eqn MB1.7a converges for x < 1 and diverges
for x ≥ 1.There are a variety of tests for convergence, which are
explained in mathematics texts.

MB1.5 Integration: definitions

Integration (which formally is the inverse of differentiation) is
concerned with the areas under curves. The integral of a func-
tion f(x), which is denoted ∫f dx (the symbol ∫ is an elongated 
S denoting a sum), between the two values x = a and x = b is
defined by imagining the x-axis as divided into strips of width δx
and evaluating the following sum:

(MB1.9)
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As can be appreciated from Fig. MB1.3, the integral is the area
under the curve between the limits a and b. The function to be
integrated is called the integrand. It is an astonishing mathem-
atical fact that the integral of a function is the inverse of the
differential of that function in the sense that, if we differentiate f
and then integrate the resulting function, then we obtain the
original function f (to within a constant). The function in eqn
MB1.9 with the limits specified is called a definite integral. If it is
written without the limits specified, then we have an indefinite
integral. If the result of carrying out an indefinite integration is
g(x) + C, where C is a constant, the following notation is used to
evaluate the corresponding definite integral:

= g(b) − g(a) (MB1.10)

Note that the constant of integration disappears.
Some of the common indefinite integrals encountered in

chemistry are as follows (with C a constant in each case):

(MB1.11a)

(MB1.11b)

(MB1.11c)

� ln ax dx = x ln ax − x + C (MB1.11d)
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� sin ax dx = (MB1.11e)

� cos ax dx = (MB1.11f )

As may be verified, these relations are the inverse of those in eqn
MB1.3.

MB1.6 Integration: manipulations

When an indefinite integral is not in the form of one of eqns
MB1.11a–f, it is sometimes possible to transform it into one of
the forms by using integration techniques such as:

Substitution. Introduce a variable u related to the independent
variable x (for example, an algebraic relation such as u = x2 − 1
or a trigonometric relation such as u = sin x). Express the
differential dx in terms of du (for these substitutions, du = 2x dx
and du = cos x dx, respectively). Then transform the original
integral written in terms of x into an integral in terms of u
upon which, in some cases, a standard form such as one of
those above can be used.

l A BRIEF ILLUSTRATION

To evaluate the indefinite integral ∫cos2x sin x dx, which 
occurs in the discussion of atomic structure, we make the
substitution u = cos x. It follows that du/dx = −sin x, and
therefore that sin x dx = −du. The integral is therefore

To evaluate the corresponding definite integral, we have to
convert the limits on x into limits on u. Thus, if the limits are
x = 0 and x = π, the limits become u = cos 0 = 1 and u = cos π
= −1:

l

Integration by parts. For two functions f(x) and g(x):

(MB1.12a)

which may be abbreviated as:

� f dg = fg − � g df (MB1.12b)

� �f
g

x
x fg g

f

x
x

d

d
d

d

d
d= −

� �
0

2

1

1
2 1

3
3

1

1

2
3

π

cos sin { }x x x u u u Cd d= − = − + =
− −

  
� �cos sin cos2 2 1

3
3 1

3
3x x x u u u C x Cd d= − = − + = − +

 

1

a
ax Csin +

 
− +

1

a
ax Ccos

Fig. MB1.3 A definite integral is evaluated by forming the product of the
value of the function at each point and the increment δx, with δx → 0,
and then summing the products f(x)δx for all values of x between the
limits a and b. It follows that the value of the integral is the area under
the curve between the two limits.
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l A BRIEF ILLUSTRATION

Integrals over xe−ax and their analogues occur commonly in
the discussion of atomic structure and spectra. They may be
integrated by parts, as in the following:

l

MB1.7 Multiple integrals

A function may depend on more than one variable, in which
case we may need to integrate over both the variables:

(MB1.13)

The conventions vary, but we shall adopt the convention that a
and b are the limits of the variable x and c and d are the limits for
y. This procedure is simple if the function is a product of func-
tions of each variable and of the form f(x,y) = X(x)Y(y). In this
case, the double integral is just a product of each integral:

(MB1.14)
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l A BRIEF ILLUSTRATION

Double integrals of the form

occur in the discussion of the translational motion of a particle
in two dimensions, where L1 and L2 are the maximum extents
of travel along the x- and y-axes, respectively. To evaluate I
we use eqn MB1.14 and the indefinite integral

to write
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PART 1
Quantum theory

The phenomena of chemistry cannot be understood thoroughly without a firm

understanding of the principal concepts of quantum mechanics, the most

fundamental description of matter that we currently possess. The same is 

true of virtually all the spectroscopic techniques that are now so central to

investigations of composition and structure. Present-day techniques for studying

chemical reactions have progressed to the point at which the information is so

detailed that quantum mechanics has to be used in its interpretation. And, of

course, the very currency of chemistry—the electronic structures of atoms and

molecules—cannot be discussed without making use of quantum mechanical

concepts.

Part 1 of the text introduces the fundamental principles of quantum mechanics

and its basic manipulation. We begin by describing the results of three crucial

experiments that led to the conclusion that energy is quantized and that particles

have wave-like dynamical properties that can be deduced from a wavefunction.

Then we determine the wavefunctions corresponding to several basic types 

of motion: translation (in one and several dimensions); vibration; and rotation 

(in two and three dimensions). Along the way we discover phenomena and

properties that are purely quantum mechanical in nature and have no classical

analogues. In subsequent parts of the text we use these concepts to understand

atomic structure, molecular structure, and chemical reactivity.

1 The principles of quantum theory
Mathematical background 2:
Differential equations

2 Nanosystems 1: motion in one
dimension
Mathematical background 3:
Complex numbers

3 Nanosystems 2: motion in several
dimensions
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The principles of
quantum theory

This chapter introduces some of the basic principles of quantum mechanics. First, it reviews
the experimental results that called into question the fundamental assumptions of classical
physics. These experiments led to the conclusion that particles cannot in general have an
arbitrary energy and that the classical concepts of ‘particle’ and ‘wave’ blend together. The
result was the formulation of quantum mechanics, which postulates that the properties of 
a system are expressed in terms of a wavefunction obtained by solving the Schrödinger
equation. In this chapter, we interpret wavefunctions and see that they lead to the uncer-
tainty principle, one of the most profound departures from classical physics. We also intro-
duce some of the techniques of quantum mechanics by making use of mathematical
constructs known as operators.

The first goal of our study of physical chemistry is to gain a firm understanding of
atomic and molecular structure. It was once thought that the motion of atoms and
subatomic particles could be expressed using classical mechanics, the laws of motion
introduced in the seventeenth century by Isaac Newton, for these laws explained the
motion of common objects and planets. However, towards the end of the nineteenth
century, experimental evidence accumulated showing that classical mechanics failed
when it was applied to particles as small as electrons, and the appropriate concepts and
equations for describing them were not discovered until the 1920s. In this chapter, 
we introduce this new mechanics, which is called quantum mechanics.

The concepts of quantum mechanics are used by computational chemists in theor-
etical studies of molecular structure and reactivity. Quantum mechanical phenomena
also form the basis of virtually all the modes of spectroscopy and microscopy that are
now so central to investigations of composition and structure in both chemistry and
biology. Present-day techniques for studying chemical reactions have progressed to
the point where the information is so detailed that quantum mechanics has to be used
in its interpretation. For these reasons, the language of quantum mechanics will be
used throughout the text.

Three crucial experiments

The basic principles of classical mechanics are reviewed in Fundamentals. In brief,
they show that classical physics (1) predicts a trajectory for particles, with precisely
specified locations and momenta at each instant, and (2) allows the translational, 
rotational, and vibrational modes of motion to be excited to any energy simply by con-
trolling the forces that are applied. These conclusions agree with everyday experience.
Everyday experience, however, does not extend to individual atoms and molecules,

1
Three crucial experiments

1.1 Quantization of energy

1.2 The particle character of
electromagnetic radiation

1.3 The wave character of particles

I1.1 Impact on biology: Electron
microscopy

The postulates

1.4 Postulate I: the wavefunction

1.5 Postulate II: the Born
interpretation

1.6 Postulate III: quantum
mechanical operators

1.7 Postulate IV: eigenvalues and
eigenfunctions

1.8 Postulate V: superpositions and
expectation values

Complementary observables

1.9 The Heisenberg uncertainty
principle

1.10 The general form of the
uncertainty principle

Checklist of key ideas

Further information 1.1: Dirac notation

Discussion questions

Exercises

Problems
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and careful experiments of the type described below have shown
that classical mechanics fails when applied to the transfers of
very small energies and to objects of very small mass.

1.1 Quantization of energy

The most compelling evidence that particles can absorb or re-
lease energy only in discrete amounts (that is, that the energy of
particles is quantized) comes from spectroscopy, the detection
and analysis of the electromagnetic radiation absorbed, emitted,
or scattered by a substance. The record of light intensity trans-
mitted or scattered by a molecule as a function of frequency (ν),
wavelength (λ), or wavenumber (# = ν/c) is called its spectrum
(from the Latin word for appearance).

A typical atomic spectrum is shown in Fig. 1.1 and a typical
molecular spectrum is shown in Fig. 1.2. The obvious feature of
both is that radiation is emitted or absorbed at a series of discrete

frequencies. This observation can be understood if the energy 
of the atoms or molecules is also confined to discrete values, 
for then energy can be discarded or absorbed only in discrete
amounts (Fig. 1.3). Then, if the energy of an atom decreases by
ΔE, the energy is carried away as radiation of frequency ν, and an
emission ‘line’, a sharply defined peak, appears in the spectrum.
We say that a molecule undergoes a spectroscopic transition, a
change of state, when the Bohr frequency condition

ΔE = hν (1.1)

is fulfilled. The fundamental constant h, known as Planck’s
constant, has a value 6.626 × 10−34 J s.

We develop the principles and applications of atomic 
spectroscopy in Chapter 4 and of molecular spectroscopy in
Chapters 10–12.

1.2 The particle character of electromagnetic
radiation

Classical physics treats electromagnetic radiation as a wave.
However, the photoelectric effect, the ejection of electrons from
metals when they are exposed to ultraviolet radiation, suggests
that radiation also has properties normally associated with 
particles. The experimental characteristics of the effect are as 
follows.

1. No electrons are ejected, regardless of the intensity of 
the radiation, unless the frequency of the radiation exceeds a
threshold value characteristic of the metal.

2. The kinetic energy of the ejected electrons increases lin-
early with the frequency of the incident radiation but is inde-
pendent of the intensity of the radiation.

3. Even at low light intensities, electrons are ejected if the 
frequency is above the threshold.
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Fig. 1.1 A region of the spectrum of radiation emitted by excited 
iron atoms consists of radiation at a series of discrete wavelengths
(or frequencies).
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Fig. 1.2 When a molecule changes its state, it does so by
absorbing radiation at definite frequencies. This spectrum is 
part of that due to the electronic, vibrational, and rotational
excitation of sulfur dioxide (SO2) molecules. This observation
suggests that molecules can possess only discrete energies, not an
arbitrary energy.
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Fig. 1.3 Spectroscopic transitions, such as those shown above, 
can be accounted for if we assume that a molecule emits
electromagnetic radiation as it changes between discrete energy
levels. Note that high-frequency radiation is emitted when the
energy change is large.
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Figure 1.4 illustrates the first and second characteristics.
Albert Einstein explained these observations by suggesting that

the photoelectric effect depends on the ejection of an electron
when it is involved in a collision with a particle-like projectile
that carries enough energy to eject the electron from the metal.
If we suppose that the projectile is a photon, a particle of elec-
tromagnetic radiation, of energy hν, where ν is the frequency of
the radiation, then it follows from the conservation of energy
that the kinetic energy of the ejected electron should be given by

1–2mev
2 = hν − Φ (1.2)

In this expression Φ (uppercase phi) is a characteristic of the
metal called its work function, the energy required to remove 
an electron from the metal to infinity (Fig. 1.5), the analogue 
of the ionization energy of an individual atom or molecule.
Photoejection cannot occur if hν < Φ because the photon brings
insufficient energy: this conclusion accounts for observation
(1). Equation 1.2 predicts that the kinetic energy of an ejected
electron should increase linearly with frequency, in agreement
with observation (2). When a photon collides with an electron,
it gives up all its energy, so we should expect electrons to appear
as soon as the collisions begin, provided the photons have
sufficient energy: this conclusion agrees with observation (3). A
practical application of eqn 1.2 is that it provides a technique for
the determination of Planck’s constant, for the slopes of the lines
in Fig. 1.4 are all equal to h.
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Fig. 1.4 In the photoelectric effect, it is found that no electrons
are ejected when the incident radiation has a frequency below a
value characteristic of the metal and, above that value, the
kinetic energy of the photoelectrons varies linearly with the
frequency of the incident radiation.

interActivity Calculate the value of Planck’s constant given
that the following kinetic energies were observed for 

photoejected electrons irradiated by radiation of the wavelengths
noted.

λi/nm 320 330 345 360 385

E k/eV 1.17 1.05 0.885 0.735 0.511

Energy needed
to remove
electron from
metal

Kinetic
energy
of ejected
electron

h	

1 2–2 m ve

7

(b)(a)

h	 7

	

	

Fig. 1.5 The photoelectric effect can be explained if it is supposed
that the incident radiation is composed of photons that have
energy proportional to the frequency of the radiation. (a) The
energy of the photon is insufficient to drive an electron out of
the metal. (b) The energy of the photon is more than enough to
eject an electron, and the excess energy is carried away as the
kinetic energy of the photoelectron (the ejected electron).

The revolutionary idea behind this interpretation of the 
photoelectric effect is the view that a beam of electromagnetic
radiation is a collection of particles, the photons, each with 
energy hν. It follows that the total energy emitted by a source 
of radiation of frequency ν is Nhν, where N is the number of
photons emitted.

Example 1.1 Calculating the number of photons

Calculate the number of photons emitted by a monochro-
matic (single frequency) 100 W sodium vapour lamp in 1.0 s. 
Take the wavelength as 589 nm and assume 100 per cent
efficiency.

Method Each photon has an energy hν, so the total number
of photons needed to account for an energy E is E/hν. To 
use this equation, we need to know the frequency of the 
radiation (from ν = c/λ) and the total energy emitted by the
lamp. The latter is given by the product of the power (P, in
watts) and the time interval for which the lamp is turned on 
(E = PΔt).

Answer The number of photons is

Substitution of the data gives

N =
× × ×
×

− −( . ( ) ( .5 89 10 100 1 07 1m) J s s)

(6.626 100 J s) (2.998 10 m s8− −× ×
= ×

34 1
203 0 10

)
.

N
E

h

P t

h c

P t

hc
= = =

ν λ
λΔ Δ

( / )
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Electron
beam

Nickel crystal

Diffracted
electrons

Fig. 1.6 The Davisson–Germer experiment. The scattering of an
electron beam from a nickel crystal shows a variation of intensity
characteristic of a diffraction experiment in which waves
interfere constructively and destructively in different directions.

Short wavelength,
high momentum

Long wavelength,
low momentum

Fig. 1.7 An illustration of the de Broglie relation between
momentum and wavelength. The wave is associated with a
particle (shortly this wave will be seen to be the wavefunction 
of the particle). A particle with high momentum has a
wavefunction with a short wavelength, and vice versa.

A brief comment A characteristic property of waves is that
they interfere with one another, giving a greater displacement
where peaks or troughs coin-
cide, leading to constructive 
interference, and a smaller dis-
placement where peaks coin-
cide with troughs, leading to
destructive interference. See the
diagram, in which two lighter
colour waves interfere to give
the darker one; (a) constructive,
(b) destructive.

The Davisson–Germer experiment, which has since been re-
peated with other particles (including α particles and molecular
hydrogen), shows clearly that particles have wave-like properties,
and the diffraction of neutrons is a well-established technique
for investigating the structures and dynamics of condensed phases
(Chapter 9). We have also seen that waves of electromagnetic 
radiation have particle-like properties. Thus we are brought to
the heart of modern physics. When examined on an atomic
scale, the classical concepts of particle and wave melt together,
particles taking on the characteristics of waves, and waves the
characteristics of particles.

Some progress towards coordinating these properties had 
already been made by the French physicist Louis de Broglie
when, in 1924, he suggested that any particle, not only photons,
travelling with a linear momentum p should have (in some
sense) a wavelength given by the de Broglie relation:

(1.3)

That is, a particle with a high linear momentum has a short wave-
length (Fig. 1.7). Macroscopic bodies have such high momenta

λ =
h

p

Note that it would take nearly 35 min to produce 1 mol of
these photons.

A note on good practice To avoid rounding and other 
numerical errors, it is best to carry out algebraic calculations
first, and to substitute numerical values into a single, final
formula. Moreover, an analytical result may be used for other
data without having to repeat the entire calculation.

Self-test 1.1 How many photons does a monochromatic 
infrared source of power 1 mW and wavelength 1000 nm
emit in 0.1 s? [5 × 1014]

1.3 The wave character of particles

Classical physics treats electrons as particles, but experiments
carried out in 1925 required consideration of the possibility that
electrons, and matter in general, possessed wave-like properties.
The crucial experiment was performed by the American physi-
cists Clinton Davisson and Lester Germer, who observed the
diffraction of electrons by a crystal (Fig. 1.6). Diffraction is 
the interference caused by an object in the path of waves.
Depending on whether the interference is constructive or 
destructive, the result is a region of enhanced or diminished 
intensity of the wave. Davisson and Germer’s success was a 
lucky accident, because a chance rise of temperature caused
their polycrystalline sample to anneal, and the ordered planes of
atoms then acted as a diffraction grating. At almost the same
time, George Thomson, working in Scotland, showed that a
beam of electrons was diffracted when passed through a thin
gold foil. Electron diffraction is the basis for special techniques
in microscopy used by biologists and materials scientists
(Impact I1.1 and Section 9.4).
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be varied continuously and that, for small objects, the discrete-
ness of energy is highly significant. In classical mechanics, 
in contrast, energies could be varied continuously. Such total
failure of classical physics for small objects implied that its 
basic concepts were false. A new mechanics had to be devised to
take its place.

IMPACT ON BIOLOGY

I1.1 Electron microscopy

The basic approach of illuminating a small area of a sample and
collecting light with a microscope has been used for many years
to obtain magnified images of small specimens. However, the
resolution of a microscope, the minimum distance between two
objects that leads to two distinct images, is of the order of the
wavelength of light used as a probe. Therefore, conventional 
microscopes employing visible light have resolutions in the 
micrometre range and cannot resolve features on a scale of
nanometres.

There is great interest in the development of new experi-
mental probes of very small specimens that cannot be studied 
by traditional light microscopy. For example, our understanding
of biochemical processes, such as enzymatic catalysis, protein
folding, and the insertion of DNA into the cell’s nucleus, will be
enhanced if it becomes possible to image individual biopolymers
—with dimensions much smaller than visible wavelengths—at
work. One technique that is often used to image nanometre-
sized objects is electron microscopy, in which a beam of elec-
trons with a well defined de Broglie wavelength replaces the
lamp found in traditional light microscopes. Instead of glass or
quartz lenses, magnetic fields are used to focus the beam. In trans-
mission electron microscopy (TEM), the electron beam passes
through the specimen and the image is collected on a screen.
In scanning electron microscopy (SEM), electrons scattered back
from a small irradiated area of the sample are detected and 
the electrical signal is sent to a video screen. An image of the 
surface is then obtained by scanning the electron beam across
the sample.

As in traditional light microscopy, the wavelength of the 
incident beam and the ability to focus the beam—in this case a
beam of electrons—govern the resolution. Electron wavelengths
in typical electron microscopes can be as short as 10 pm, but it 
is not possible to focus electrons well with magnetic lenses so, 
in the end, typical resolutions of TEM and SEM instruments 
are about 2 nm and 50 nm, respectively. It follows that elec-
tron microscopes cannot resolve individual atoms (which have 
diameters of about 0.2 nm). Furthermore, only certain samples
can be observed under certain conditions. The measurements
must be conducted under high vacuum. For TEM observations,
the samples must be very thin cross-sections of a specimen 
and SEM observations must be made on dry samples. A con-
sequence of these requirements is that neither technique can be
used to study living cells. In spite of these limitations, electron

even when they are moving slowly (because their mass is so
great), that their wavelengths are undetectably small, and the
wave-like properties cannot be observed.

Example 1.2 Estimating the de Broglie wavelength

Estimate the wavelength of electrons that have been accelerated
from rest through a potential difference of 40 kV.

Method To use the de Broglie relation, we need to know the
linear momentum, p, of the electrons. To calculate the linear
momentum, we note that the energy acquired by an electron
accelerated through a potential difference V is eV, where e
is the magnitude of its charge. At the end of the period of 
acceleration, all the acquired energy is in the form of kinetic
energy, Ek = 1–2mev

2 = p2/2me, so we can determine p by setting
p2/2me equal to eV. As before, carry through the calculation
algebraically before substituting the data.

Answer The expression p2/2me = eV implies that p =
(2meeV)1/2; then, from the de Broglie relation λ = h/p,

Substitution of the data and the fundamental constants
(from inside the front cover) gives

= 6.1 × 10−12 m

where we have used 1 V C = 1 J and 1 J = 1 kg m2 s−2. The
wavelength of 6.1 pm is shorter than typical bond lengths 
in molecules (about 100 pm). Electrons accelerated in this
way are used in the technique of electron diffraction for the
determination of molecular structure (Section 9.4).

Self-test 1.2 Calculate (a) the wavelength of a neutron with a
translational kinetic energy equal to kT at 300 K, (b) a tennis
ball of mass 57 g travelling at 80 km h−1.

[(a) 178 pm, (b) 5.2 × 10−34 m]

We now have to conclude that not only has electromagnetic
radiation the character classically ascribed to particles, but elec-
trons (and all other particles) have the characteristics classically
ascribed to waves. This joint particle and wave character of 
matter and radiation is called wave–particle duality. Duality
strikes at the heart of classical physics, where particles and waves
are treated as entirely distinct entities. We have also seen that 
the energies of electromagnetic radiation and of matter cannot
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microscopy is very useful in studies of the internal structure of
cells (Fig. 1.8).

The postulates

We have seen that classical physics was unable to explain the res-
ults of several experiments involving electromagnetic radiation
and particles as small as electrons and atoms. Although the work
of Einstein and de Broglie successfully explained a number of
these phenomena, it soon became clear that the development of
a new theory of matter was needed to understand the behaviour
of all known forms of matter, including electrons, atoms, and
molecules. The new theory of matter that emerged is called
quantum mechanics. In the system of mechanics we are about to
present, it should not be too surprising that Planck’s constant
will play an important role given its appearance in the Bohr fre-
quency condition (eqn 1.1), the photoelectric effect (eqn 1.2),
and the de Broglie relation (eqn 1.3).

There are two approaches to the formal introduction of 
quantum mechanics. One is to see the theory gradually emerg-
ing from the work of Planck, Einstein, Heisenberg, Schrödinger,
and Dirac, in which experiment and intuition together deter-
mined the form of the theory. The other approach is to stand 
at a point in time at which the theory has already been well-
developed and look at its underlying structure. We adopt the 
latter approach here and see how quantum mechanics can be 
expressed in terms of and developed from a small set of under-
lying principles or postulates.

1.4 Postulate I: the wavefunction

Quantum mechanics acknowledges the wave–particle duality of
matter by supposing that, rather than travelling along a definite
path, a particle is distributed through space like a wave. This re-
mark, which may seem mysterious, is interpreted and developed
more fully below. The mathematical representation of the wave

that in quantum mechanics replaces the classical concept of a
trajectory is called a wavefunction, ψ (psi). A principal tenet of
quantum mechanics is that the wavefunction contains informa-
tion about all the properties of the system that are subject to 
experimental determination.

The wavefunction depends on the spatial coordinates (r1,
r2, . . . ) of all the particles (1, 2, . . . ) that constitute the system
and, in general, the time t. The wavefunction Ψ(r1, r2, . . . ; t) is
called the time-dependent wavefunction. When we are not con-
cerned with the evolution of the system over time we use the
time-independent wavefunction ψ(r1, r2, . . . ). Throughout this
chapter we shall consider only time-independent wavefunctions
and take up the question of their time dependence in Chap-
ter 4. The wavefunction may also depend on the spin states of
the particles but we ignore this property for now and return to it
in Chapter 3.

This discussion is summarized by the first postulate of quan-
tum mechanics.

Postulate I The state of the system is described as fully as
possible by the wavefunction ψ(r1, r2, . . . ).

We need to know how to calculate the wavefunction of any 
system and extract information from it. We address the latter
question first.

1.5 Postulate II: the Born interpretation

The wavefunction contains all the dynamical information about
the system it describes. Here we concentrate on the information
it carries about the location of the particles. For simplicity, we
assume initially that the system is composed of a single particle
and that the wavefunction is simply ψ(r), or ψ for short.

The interpretation of the wavefunction is based on a sugges-
tion made by Max Born. He made use of an analogy with the
wave theory of light, in which the square of the amplitude of 
an electromagnetic wave in a region is interpreted as its intensity
and therefore (in quantum terms) as a measure of the prob-
ability of finding a photon present in the region. The Born
interpretation of the wavefunction focuses on the square of 
the wavefunction (or the square modulus, |ψ |2 = ψ*ψ, if ψ is
complex):

Postulate II′ For a system described by the wavefunction
ψ(r), the probability of finding the particle in the volume 
element dτ at r is proportional to |ψ |2dτ.

(Postulate II′, which is relevant to a system composed of a single
particle, is a special case of the more general Postulate II 
presented below.) Thus, |ψ |2 is the probability density, and to
obtain the probability it must be multiplied by the volume of the
infinitesimal region dτ (Fig. 1.9) The wavefunction ψ itself is
called the probability amplitude. The prime on this postulate

Fig. 1.8 A TEM image of a cross-section of a plant cell showing
chloroplasts, organelles responsible for the reactions of
photosynthesis (Chapter 19). Chloroplasts are typically 
5 μm long. (Image supplied by Brian Bowes.)
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Fig. 1.9 The Born interpretation of the wavefunction in three-
dimensional space implies that the probability of finding the
particle in the volume element dτ = dx dy dz at some location r is
proportional to the product of dτ and the value of |ψ |2 at that
location.

number will be discarded when we generalize it to more than
one particle at the end of this section.

A brief comment Complex numbers and functions are dis-
cussed in Mathematical background 3. They have the form 
z = x + iy, where i = (−1)1/2. To form the complex conjugate,
ψ*, of a complex function, replace i wherever it occurs by −i.
For instance, the complex conjugate of eikx is e−ikx. If the
wavefunction is real, |ψ |2 = ψ2.

The Born interpretation does away with any worry about 
the significance of a negative (and, in general, complex) value 
of ψ because |ψ |2 is real and never negative. There is no direct
significance in the negative (or complex) value of a wavefunc-
tion: only the square modulus, a positive quantity, is directly
physically significant, and both negative and positive regions 
of a wavefunction may correspond to a high probability of find-
ing a particle in a region (Fig. 1.10). However, later we shall see
that the presence of positive and negative regions of a wavefunc-
tion is of great indirect significance, because it gives rise to the
possibility of constructive and destructive interference between
different wavefunctions.

Example 1.3 Interpreting a wavefunction

We shall see in Chapter 4 that the wavefunction of an elec-
tron in the lowest energy state of a hydrogen atom is propor-
tional to e−r/a0, with a0 a constant and r the distance from the
nucleus. (Notice that this wavefunction depends only on this
distance, not the angular position relative to the nucleus.)
Calculate the relative probabilities of finding the electron 
inside a region of volume 1.0 pm3, which is small even on the
scale of the atom, located at (a) the nucleus and at (b) a dis-
tance a0 from the nucleus.

Method The region of interest is so small on the scale of the
atom that we can ignore the variation of ψ within it and write
the probability, P, as proportional to the probability density
(ψ 2; note that ψ is real) evaluated at the point of interest 
multiplied by the volume of interest, δV. That is, P ∝ ψ 2δV,
with ψ2 ∝ e−2r/a0.

Answer In each case δV = 1.0 pm3. (a) At the nucleus, r = 0, so

P ∝ e0 × (1.0 pm3) = (1.0) × (1.0 pm3)

(b) At a distance r = a0 in an arbitrary direction,

P ∝ e−2 × (1.0 pm3) = (0.14) × (1.0 pm3)

Therefore, the ratio of probabilities is 1.0/0.14 = 7.1. Note
that it is more probable (by a factor of about 7) that the elec-
tron will be found at the nucleus than in a volume element 
of the same size located at a distance a0 from the nucleus. 
The negatively charged electron is attracted to the positively
charged nucleus, and is likely to be found close to it.

A note on good practice The square of a wavefunction is 
not a probability: it is a probability density, and (in three 
dimensions) has the dimensions of 1/length3. It becomes a
(unitless) probability when multiplied by a volume. (The
probabilities in Example 1.3 appear to carry units because we
deal with proportionalities, and the unshown constant of
proportionality—see below—cancels the units.) In general,
we have to take into account the variation of the amplitude of
the wavefunction over the volume of interest, but here we are
supposing that the volume is so small that the variation of ψ
in the region can be ignored.

Self-test 1.3 The wavefunction for the electron in its lowest
energy state in the ion He+ is proportional to e−2r/a0. Repeat
the calculation for this ion. Any comment? 

[55; more compact wavefunction]

Postulate II′ refers to a proportionality between probability
and |ψ |2dτ. To determine the actual value of the probability 
we write ψ ′ = Nψ, where N is a (real) constant selected so 
that |ψ ′|2dτ is equal to the probability that the particle is in 
the volume element dτ. To determine this constant, we note 
that the total probability of finding the particle anywhere in
space must be 1 (it must be somewhere). If the system is one-
dimensional, the total probability of finding the particle is the
sum (integral) of all the infinitesimal contributions |ψ ′ |2dτ, and
we can write

�
−∞

∞

′ ′ =( )*ψ ψ dx 1
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A wavefunction that satisfies this condition is said to be nor-
malized (strictly, normalized to 1). In terms of the original
wavefunction this equation becomes

It follows that the normalization constant N is given by

(1.4)

A brief comment Almost all wavefunctions go to zero at
sufficiently great distances so there is rarely any difficulty
with the evaluation of this integral. Wavefunctions for which
the integral in eqn 1.4 exists (in the sense of having a finite
value) are said to be ‘square-integrable’.

From now on, unless we state otherwise, we always use wave-
functions that have been normalized to 1. That is, from now on
we assume that ψ already includes a factor that ensures that (in
one dimension)

(1.5a)

In three dimensions, the wavefunction is normalized if

(1.5b)� � �
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Fig. 1.10 The sign of a wavefunction has no direct physical
significance: the positive and negative regions of this
wavefunction both correspond to the same probability
distribution (as given by the square modulus of ψ and 
depicted by the density of shading).

In general, the normalization condition may be written

(1.6)

where dτ stands for the volume element in the appropriate
number of dimensions and the limits of integrations are not
written explicitly. In all such integrals, the integration is over 
all the space accessible to the particle. The form of this integral 
is often simplified even further by using Dirac notation; see
Further information 1.1.

Example 1.4 Normalizing a wavefunction

Carbon nanotubes are thin hollow cylinders of carbon atoms
that are excellent electrical conductors and can be used as
wires in nanodevices (Section 9.9). The tubes have diameters
between 1 and 2 nm and lengths of several micrometres. A
long carbon nanotube can be modelled as a one-dimensional
structure. According to a simple model introduced in
Chapter 2, the electrons of the nanotube are described by the
wavefunction sin πx /L, where L is the length of the nanotube.
Find the normalized wavefunction.

Method We need to carry out the integration specified in 
eqn 1.5a where the limits of integration are 0 and L. The
wavefunction is real, so ψ* = ψ. The following indefinite 
integral is required:

Answer We write the wavefunction as ψ = N sin πx/L, where
N is the normalization factor. It follows that

and

The normalized wavefunction is then

Note that, because L is a length, the dimensions of ψ are
1/length1/2 and therefore those of ψ 2 are 1/length as is appro-
priate for a probability density.

Self-test 1.4 Normalize the wavefunction sin 2πx/L for a 
particle confined to a region of length L. [N = (2/L)1/2]
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The Born interpretation puts severe restrictions on the 
acceptability of wavefunctions. The principal constraint is that ψ
must not be infinite over a finite region. If it were, the integral in
eqn 1.4 would be infinite and the normalization constant would
be zero. The normalized function would then be zero every-
where, except where it is infinite, which would be unacceptable.
The Born interpretation also implies that a wavefunction cannot
have more than one value because it would be absurd to have
more than one probability that a particle is at the same point.
This restriction is expressed by saying that the wavefunction
must be single-valued, that is, have only one value at each point
of space.

A brief comment Infinitely sharp spikes are acceptable pro-
vided they have zero width. In elementary quantum mechanics
the simpler restriction, that ψ cannot be infinite anywhere, 
is sufficient.

Finally, we need to be aware of the interpretation of the wave-
function for a system with more than one particle. In this case, 
ψ(r1, r2, . . . ) is used to calculate the overall probability of finding
each particle in its own specific volume element.

Postulate II For a system described by the wavefunction
ψ(r1, r2, . . . ), the probability of finding particle 1 in the vol-
ume element dτ1 at r1, particle 2 in the volume element dτ2 at
r2, etc. is proportional to |ψ |2dτ1dτ2. . . .

1.6 Postulate III: quantum mechanical operators

We shall now begin to see how to deduce the form of the wave-
function and in the process introduce two more postulates
(there are five altogether).

In 1926, the Austrian physicist Erwin Schrödinger proposed 
a special second-order differential equation for finding the
wavefunction of any system. (For an introduction to differential
equations, see Mathematical background 2.) The time-independent
Schrödinger equation for a particle of mass m moving in one 
dimension with energy E is

(1.7)

where V is the potential energy of the particle and $ = h/2π
(which is read h-cross or h-bar) is a convenient modification 
of Planck’s constant. Extensions of the Schrödinger equation 
to more than one dimension and its time-dependent form are
shown in Table 1.1.1 We could regard eqn 1.7 itself as a postulate,

   
− + =

$2 2

22m x
V E

d

d

ψ
ψ ψ

but it turns out to be far more fruitful to interpret it in a special
way and to regard it as a consequence of deeper, more general
postulates.

First, though, we should note that the fact that a wavefunc-
tion is a solution to a second-order differential equation (the
Schrödinger equation) introduces two further restrictions on 
its acceptability in addition to the two implied by the Born inter-
pretation. For eqn 1.7 to be meaningful, the second derivative of
ψ must be well-defined everywhere. We can take the second
derivative of a function only if its first derivative, its slope, is
continuous (so there are no kinks in the function), and we can
take the first derivative only if the function itself is continuous

1 A detailed discussion of the form of these operators can be found in our
Molecular quantum mechanics, Oxford University Press, Oxford (2005).

Table 1.1 The Schrödinger equation

For one-dimensional systems:

where V(x) is the potential energy of the particle and E is its total energy.

For two-dimensional systems:

For three-dimensional systems:

where V may depend on position and ∇2 (‘del squared’) is

In systems with spherical symmetry three equivalent forms are

where

In the general case the Schrödinger equation is written

@ψ = Eψ

where @ is the hamiltonian operator for the system:

For the evolution of a system with time, it is necessary to solve the time-
dependent Schrödinger equation:
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(so there are no sharp steps in it). In summary, at this point we
know that a wavefunction must:

1. be continuous;

2. have a continuous slope;

3. be single-valued;

4. be square-integrable.

These restrictions are summarized in Fig. 1.11. They are so 
severe that we shall find that, in general, acceptable solutions of
the Schrödinger equation can be found only for certain values of
the energy E. You should be able to sense that the quantization
of energy is starting to emerge. We shall see in Chapter 2 specific
examples of the origins of quantization. However, by adopting
the more general route that we shall now describe, we shall dis-
cover that the quantization of energy is only one of the extra-
ordinary consequences of quantum mechanics.

A brief comment There are cases, and we shall meet them,
where acceptable wavefunctions have kinks. These cases arise
when one of the terms in the Schrödinger equation (namely,
the potential energy) has peculiar properties, such as rising
abruptly to infinity. There are only two cases of this beha-
viour in elementary quantum mechanics, and the peculiarity
will be mentioned when we meet them.

To start our journey of generalization, we note that eqn 1.7
and its three-dimensional counterparts in Table 1.1 may all be
written in the succinct form

@ψ = Eψ (1.8a)

where in one dimension

(1.8b)

(For reasons that will shortly become clear, we have noted that
the potential energy of the particle depends on its position, x.)
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= − + ×

2 2
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d

d
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The quantity @ is an operator, something that carries out a
mathematical operation on the function ψ. In this case, the 
operation is to take the second derivative of ψ and (after multi-
plication by −$2/2m) to add the result to the outcome of multi-
plying ψ by the value of V at the position x. The operator @ plays
a special role in quantum mechanics, and is called the hamiltonian
operator after the nineteenth century mathematician William
Hamilton, who developed a form of classical mechanics that, it
subsequently turned out, is well suited to the formulation of
quantum mechanics. We can infer from the form of eqn 1.8a
that the hamiltonian operator is the operator corresponding to
the total energy of the system, the sum of the kinetic and poten-
tial energies. It then follows that the first term in eqn 1.8b (the
term proportional to the second derivative) must be the opera-
tor for the kinetic energy.

Equation 1.8a is highly suggestive of a more general formula-
tion. First, it suggests that there might be other observables, or
measurable properties, of a system that can be represented by
other operators, and that the structure

[energy operator (hamiltonian)]ψ = [value of energy] × ψ

is a special case of the more general form

[operator for the observable Ω]ψ = [value of the observable
Ω] × ψ

From now on, we represent the operator corresponding to the
observable Ω (uppercase omega) by ), the value of the observ-
able Ω by ω (lowercase omega), and write the last equation as

)ψ = ωψ (1.9)

Our immediate problem is to discover how to formulate the
operator corresponding to an observable. Once again, eqn 1.8
gives us a clue. In classical mechanics, the total energy of a 
particle in one dimension can be expressed in terms of the linear
momentum p as

Comparison of this expression with eqn 1.8b strongly suggests
that the operator for position, x, is just multiplication by posi-
tion (x ×), because then the potential energy V(x) is represented
by the multiplicative operation V(x) ×. For instance, if the 
potential energy is proportional to x2, as it is for a harmonic 
oscillator (see Chapter 2, where we see that V = 1–2kx2), then the
potential energy operator becomes

1–2 k(x ×)2 = 1–2 kx × x × = 1–2 kx2 × = V(x) ×

as required. The comparison also strongly suggests that the oper-
ator for the linear momentum is proportional to the operation
of taking the derivative of a function. If we write Y = ($/i)d/dx,
then the operator corresponding to p2/2m becomes
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Fig. 1.11 The wavefunction must satisfy stringent conditions 
for it to be acceptable. (a) Unacceptable because it is not
continuous; (b) unacceptable because its slope is discontinuous;
(c) unacceptable because it is not single-valued; (d) unacceptable
because it is infinite over a finite region.
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which corresponds to the first term in the hamiltonian operator.
This discussion is summarized by the following postulate.

Postulate III For each observable property Ω of a system
there is a corresponding operator ) built from the following
position and linear momentum operators:

[1.10]

The multiplication sign for multiplicative operators is not 
normally written, and from now on we shall omit it. However, 
it must always be remembered that x is the operation that 
multiplies any function on its right. When we are discussing
one-dimensional systems, we discard the index x on p; for three-
dimensional systems, we use subscripts x, y, and z to denote the
components of the vector p along each direction, with the corres-
ponding operators defined analogously.

A brief comment The rules summarized by eqn 1.10 apply to
observables that depend on spatial variables; intrinsic prop-
erties, such as spin (see Section 3.5) are treated differently.

With Postulate III established, we can immediately write
down the operator for the kinetic energy, Ek, of a particle in one
dimension:

(1.11)

In mathematics, the second derivative of a function is a measure
of its curvature: a large second derivative indicates a sharply
curved function (Fig. 1.12). It follows that a sharply curved
wavefunction is associated with a high kinetic energy, and one
with a low curvature is associated with a low kinetic energy. This
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interpretation is consistent with the de Broglie relation, which
predicts a short wavelength (a sharply curved wavefunction)
when the linear momentum (and hence the kinetic energy) is
high. However, it extends the interpretation to wavefunctions
that do not spread through space and resemble those shown 
in Fig. 1.12. The curvature of a wavefunction in general varies
from place to place. Wherever a wavefunction is sharply curved,
its contribution to the total kinetic energy is large (Fig. 1.13).
Wherever the wavefunction is not sharply curved, its contribu-
tion to the overall kinetic energy is low.

A brief comment We are using the term ‘curvature’ inform-
ally: the precise technical definition of the curvature of a
function f is (d2f /dx2)/{1 + (df /dx)2}3/2.

A list of the operators more commonly encountered in quan-
tum mechanics is collected in the Resource section at the end of
the text.

1.7 Postulate IV: eigenvalues and eigenfunctions

We know how to construct operators for observables, we know
(in principle) the solutions of the Schrödinger equation, so we
know (in principle) the wavefunction for the system, and we
know that the value of the observable of interest is the ω in 
eqn 1.9 ()ψ = ωψ). The interpretation of this equation must
now be expressed more precisely.

First, we note that eqn 1.9 has the form

(Operator)(function) = (constant factor) × (same function)
(1.12)

An equation of this form is called an eigenvalue equation; the
constant factor is called the eigenvalue of the operator and 
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Fig. 1.12 Even if a wavefunction does not have the form of a
periodic wave, it is still possible to infer from it the average
kinetic energy of a particle by noting its average curvature. This
figure shows two wavefunctions: the sharply curved function
corresponds to a higher kinetic energy than the less sharply
curved function.
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Fig. 1.13 The observed kinetic energy of a particle is an 
average of contributions from the entire space covered by the
wavefunction. Sharply curved regions contribute a high kinetic
energy to the average; slightly curved regions contribute only a
small kinetic energy.
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permitted eigenvalues of an operator, we shall know the per-
mitted values of that observable. Each eigenvalue corresponds to
a particular eigenfunction (specifically, each energy corresponds
to a particular wavefunction), and we have already seen that there
are severe restrictions on the acceptability of wavefunctions. We
can anticipate, therefore, that, because only certain wavefunc-
tions are acceptable, only certain eigenvalues are allowed. In
other words, in general, an observable is quantized. We sum-
marize the discussion so far in the language introduced in this 
section with the following postulate:

Postulate IV If the system is described by a wavefunction ψ
that is an eigenfunction of ) such that )ψ = ωψ, then the
outcome of a measurement of Ω will be the eigenvalue ω.

l A BRIEF ILLUSTRATION

We saw in Example 1.5 that eikx is an eigenfunction of the lin-
ear momentum operator with eigenvalue k$. Therefore, if the
wavefunction of an electron accelerated in a linear accelera-
tor to a certain energy is eikx, then we know from Postulate IV
that, if we were to measure its linear momentum, we would
find the value p = +k$. Similarly, if the wavefunction is e−ikx,
then, because the eigenvalue is now −k$ (note the change in
sign), a measurement of the linear momentum would give
the value p = −k$. The magnitude of the linear momentum 
of the electron is the same in each case (k$), but the signs 
are different: in (a) the electron is travelling to the right 
(positive x) but in (b) the linear accelerator is pointed in the
opposite direction and the electron is travelling to the left
(negative x). l

Self-test 1.6 As a result of its acceleration in a linear acceler-
ator, the wavefunction of a proton became cos kx. What is the
kinetic energy of the proton? [Ek = k2$2/2mp]

Because the value of an observable is a real quantity (real, that
is, in the mathematical sense of not involving the imaginary
number i), Postulate IV implies that the eigenvalues of any 
operator that corresponds to an observable must themselves be
real. The reality of eigenvalues is guaranteed if the operator has
the special property of ‘hermiticity’ (named for the nineteenth
century French mathematician Charles Hermite). A hermitian
operator is one for which the following equality is true:

Hermiticity: [1.13]

where f and g are any two wavefunctions. It is easy to confirm
that the position operator (x ×) is hermitian because we are free
to change the order of the factors in the integrand:
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the function that occurs on both sides of the equation is called
the eigenfunction of the operator. Each function that satisfies an
equation of this form corresponds to a characteristic multiplica-
tive factor. That is, each eigenfunction corresponds to a specific
eigenvalue. If we use this language, then by referring to eqn 1.8a
(@ψ = Eψ) it follows that another way of saying ‘solve the
Schrödinger equation’ is to say ‘find the eigenvalues and the cor-
responding eigenfunctions of the hamiltonian operator for the
system’. The wavefunctions are the eigenfunctions of the hamil-
tonian operator, and the corresponding eigenvalues are the 
allowed energies. Eigenfunctions and eigenvalues of operators
play a crucial role in quantum mechanics and we will encounter
them throughout the text.

Example 1.5 Identifying an eigenfunction

Show that eikx is an eigenfunction of the linear momentum
operator, and find the corresponding eigenvalue. Then show
that the bell-shaped ‘Gaussian function’ e−ax2

is not an eigen-
function of this operator.

Method We need to operate on the function with the oper-
ator and check whether the result is a constant factor times the
original function. In each case we identify the operator )
with the linear momentum operator Y = ($/i)d/dx.

Answer For ψ = eikx:

Therefore eikx is indeed an eigenfunction of Y, and its eigen-
value is k$. For ψ = e−ax2

,

We have used −2/i = 2i. This is not an eigenvalue equation
even though the same function ψ occurs on the right, because
ψ is now multiplied by a variable factor (2ia$x), not a con-
stant factor. Alternatively, if the right-hand side is written
2ia$(xe−ax2

), we see that it is a constant (2ia$) times a different
function.

Self-test 1.5 Is the function cos ax an eigenfunction of (a) the
linear momentum operator, (b) the kinetic energy operator?

[(a) No, (b) yes]

There are far-reaching consequences that result from the inter-
pretation of eqn 1.9 (and the Schrödinger equation, eqn 1.8) as
an eigenvalue equation. First, we need to note that the allowed
value of an observable Ω (such as the energy E) is the eigenvalue
of an eigenvalue equation. Therefore, once we have found all the
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The demonstration that the linear momentum operator is her-
mitian is more involved because we cannot just alter the order of
functions we differentiate, but it is hermitian, as we show in the
following Justification.

Justification 1.1 The hermiticity of the linear momentum
operator

Our task is to show that

with Y given in eqn 1.10. To do so, we use ‘integration by
parts’, the relation

with u = f * and v = g. In the present case we write

The first term on the right is zero, because all wavefunctions
are zero at infinity in either direction (or, in special cases,
have equal values at each infinity), so we are left with

as we set out to prove.

Self-test 1.7 Confirm that the kinetic energy operator is 
hermitian.

Equation 1.13 might seem to be far removed from being
equivalent to the statement that the eigenvalues of hermitian
operators are real, but in fact the proof is quite straightforward,
as the following Justification shows.
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Justification 1.2 The reality of eigenvalues of hermitian
operators

For a wavefunction ψ that is normalized to 1 and is an eigen-
function of an hermitian operator ) with eigenvalue ω, we 
can write

However, by taking the complex conjugate we can write

The conclusion that ω* = ω confirms that ω is real.

1.8 Postulate V: superpositions and 
expectation values

We have seen that, if the wavefunction of a particle is an eigen-
function of the operator corresponding to an observable, then it
is easy to identify the value of that observable: we just pick out
the corresponding eigenvalue. Suppose, though, that the wave-
function of the system is not an eigenfunction of the operator
corresponding to the property of interest: what can we then say?
For instance, suppose the wavefunction of a particle is cos kx. This
is an eigenfunction of the kinetic energy operator (with eigenvalue
k2$2/2m) so we know that a measurement of the kinetic energy
will certainly give that value. However, cos kx is not an eigen-
function of the linear momentum operator (because d cos kx/dx
= −k sin kx), and so in this case we cannot use Postulate IV to
predict the outcome of a measurement of the linear momentum.

The clue we need in order to make progress is to note that we
can use Euler’s formula, eix = cos x + i sin x and e−ix = cos x − i sin x,
to write

cos kx = 1–2 eikx + 1–2 e−ikx

and each of the exponential functions is an eigenfunction of the
linear momentum operator (as we saw in the previous illustra-
tion) with eigenvalues +k$ and −k$, respectively. We say that the
actual wavefunction is a linear combination or superposition of
eikx and e−ikx and that the actual wavefunction is a superposition
of more than one eigenfunction. Symbolically we can write the
superposition as

ψ = ψ→ + ψ←

Particle with Particle with
linear linear
momentum momentum
+k$ −k$

ω ψ ψ τ
ψ
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A brief comment In general, a linear combination of two
functions f and g is c1 f + c2g, where c1 and c2 are numerical
coefficients, so a linear combination is a more general term
than ‘sum’. In a sum, c1 = c2 = 1. A linear combination might
have the form 0.567f + 1.234g, for instance, so it is more 
general than the simple sum f + g. The function cos kx can 
be written as the linear combination 1–2eikx + 1–2e−ikx since eikx =
cos kx + i sin kx.

The interpretation of this composite wavefunction is that, if 
the momentum of the particle is repeatedly measured in a long
series of observations, then its magnitude will be found to be k$
in all the measurements (because that is the value for each of 
the eigenfunctions). However, because the two eigenfunctions
occur equally in the superposition (the same numerical coeffi-

cient occurs in the linear combination), half the measurements
will show that the particle is moving to the right (p = +k$), and
half the measurements will show that it is moving to the left 
(p = −k$). According to quantum mechanics, we cannot predict
in which direction the particle will in fact be found to be travel-
ling; all we can say is that, in a long series of observations, if the
particle is described by this wavefunction, then there are equal
probabilities of finding the particle travelling to the right and to
the left. Furthermore, since half the measurements yield p = +k$
and half yield p = −k$, we expect the average value of a large
number of measurements to be zero.

This discussion motivates the following generalization to the
case when the system is known to be a superposition of many
different eigenfunctions of the operator ) corresponding to the
observable of interest and written as the linear combination

(1.14)

where the ck are numerical (and possibly complex) coefficients
and the ψk correspond to different eigenfunctions of the operator,
with )ψk = ωkψk. Then:

Postulate V When the value of an observable Ω is measured
for a system that is described by a linear combination of
eigenfunctions of ), with coefficients ck, each measurement
gives one of the eigenvalues ωk of ) with a probability pro-
portional to |ck|2.

If the system is described by a wavefunction that is normalized,
then the probability of obtaining the eigenvalue ωk equals |ck|2.

l A BRIEF ILLUSTRATION

A linear accelerator does not accelerate particles to a precisely
defined linear momentum, so the wavefunction of the par-
ticles is a superposition of functions corresponding to the
range of momenta present in the beam. Suppose we model
the wavefunction of the electrons in the beam as the (normal-
ized) superposition

  

ψ ψ ψ ψ= + + = ∑c c ck k
k

1 1 2 2

ψ = (3–8)1/2ψ1 −
1–2ψ2 + i(3–8)1/2ψ3

where ψ1 corresponds to the linear momentum +k1$, ψ2 to
+k2$, and ψ3 to +k3$. According to Postulate V, when we
measure the linear momentum of the electrons in the beam
we will get one of the values +k1$, +k2$, or +k3$, but which one
we get is unpredictable. The probabilities that we measure
each value will be |(3–8)1/2|2 = 3–8 for +k1$, | − 1–2 |2 = 1–4 for +k2$, 
and |i(3–8)1/2 |2 = 3–8 for +k3$. l

Self-test 1.8 What would be the result of measuring the kinetic
energy of the electrons of the previous illustration?

[individual measurements: k1
2$2/2me (probability = 3/8);

k2
2$2/2me (probability = 1/4); k3

2$2/2me (probability = 3/8)]

The mean (that is, average) value from measurement of the
observable Ω is equal to the expectation value of the operator ),
denoted 〈Ω〉 and defined as

[1.15a]

This definition applies whether or not ψ is written as a linear
combination of wavefunctions. For a normalized wavefunction,
the denominator is 1 and this expression simplifies to

(1.15b)

If ψ happens to be an eigenfunction of ), then every meas-
urement of the observable will yield a single eigenvalue, say ω,
and the average value is also ω. In this case, the expectation value
of ) is simply

If ψ is not an eigenfunction of ), we have more work to do to
justify Postulate V.

First, we need to note a further very special feature of hermi-
tian operators other than the fact that their eigenvalues are real.
We show in the Justification below that eigenfunctions corres-
ponding to different eigenvalues of the same hermitian operator 
are orthogonal. To say that two different functions ψi and ψj

are orthogonal means that the integral (over all space) of their
product is zero:

Orthogonality: �ψi*ψj dτ = 0 [1.16]

For example, the hamiltonian operator is hermitian (it corres-
ponds to an observable, the energy). Therefore, if ψi corres-
ponds to one energy, and ψj corresponds to a different energy,
then we know at once that the two functions are orthogonal and
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that the integral of their product is zero. Being able to set integ-
rals to zero in this way greatly simplifies the calculations that we
shall do in the following chapters and also provides a foundation
for the justification of Postulate V, as we shall see.

Justification 1.3 The orthogonality of eigenfunctions

Suppose we have two eigenfunctions of ) with unequal
eigenvalues:

)ψi = ωiψi and  )ψj = ωjψj

with ωi not equal to ωj. Multiply the first of these eigenvalue
equations on both sides by ψj* and the second by ψi*, and 
integrate over all space:

Now take the complex conjugate of the first of these two 
expressions (noting that, by the hermiticity of ), the eigen-
values are real):

However, by hermiticity, the first term on the left is

Subtraction of this line from the preceding line then gives

But we know that the two eigenvalues are not equal, so the 
integral must be zero, as we set out to prove.

Example 1.6 Verifying orthogonality

We shall see in Chapter 2 that two possible wavefunctions 
for an electron confined to a one-dimensional quantum dot 
(a collection of atoms with dimensions in the range of nano-
metres and of great interest in nanotechnology) are of the
form sin x and sin 2x. These two wavefunctions are eigen-
functions of the kinetic energy operator, which is hermitian,
and correspond to different eigenvalues:

Ê x
m

x

x m
xk

e e

d

d
sin

sin
sin= − =

$ $2 2

2

2

2 2

   
0 = −( ) *ω ω ψ ψ τi j i j� d

    
� � �ψ ψ τ ψ ψ τ ω ψ ψ τj i i j j i j* * * *) )d d d

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= =

    
� � �ψ ψ τ ω ψ ψ τ ω ψ ψ τj i i j i i i j* * * *) d d d

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= =

    
� �ψ ψ τ ω ψ ψ τi j j i j* *) d d=

    
� �ψ ψ τ ω ψ ψ τj i i j i* *) d d=

Verify that the two wavefunctions are mutually orthogonal.

Method To verify the orthogonality of two functions, we 
integrate their product, sin 2x sin x, over all space, which we
may take to span from x = 0 to x = 2π, because both functions
repeat themselves outside that range. Hence proving that the
integral of their product is zero within that range implies that
the integral over the whole of space is also zero (Fig. 1.14).
We need the standard integral

, 

if a2 ≠ b2
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Fig. 1.14 The integral of the function f (x) = sin 2x sin x is 
equal to the area (tinted) below the brown curve, and is 
zero, as can be inferred by symmetry. The function—and 
the value of the integral—repeats itself for all replications 
of the section between 0 and 2π, so the integral from −∞
to ∞ is zero.

Answer It follows that, for a = 2 and b = 1, and given the fact
that sin 0 = 0, sin 2π = 0, and sin 6π = 0,

and the two functions are mutually orthogonal.

Self-test 1.9 When the electron is excited to higher energies,
its wavefunction may become sin 3x. Confirm that the func-
tions sin x and sin 3x are mutually orthogonal.

[∫
∞

−∞
sinx sin3xdx = 0]
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Now we take the final step, and demonstrate in the follow-
ing Justification that the expectation value of ) can be written 
in terms of the coefficients ck and the individual eigenvalues 
ωk as

(1.17)

This conclusion shows that the expectation value is a weighted
average of the eigenvalues of ), with the weighting equal to the
square modulus of the expansion coefficients ck. This is the basis
of Postulate V, for it strongly suggests that the measurement of
the property Ω gives a series of values ω k, with occurrences that
are determined by the values of |ck|2.

l A BRIEF ILLUSTRATION

For the system described in the previous illustration that fol-
lowed Postulate V, the mean value of the linear momentum,
from eqn 1.17, is

〈p〉 = 3–8k1$ + 1–4k2$ + 3–8k3$ l

Self-test 1.10 What is the mean value of the kinetic energy of
the system of Self-test 1.8?

[〈Ek〉 = ($2/2me)(3k1
2/8 + k2

2/4 + 3k3
2 /8)]

Justification 1.4 The expectation value of an operator as a
weighted average

For simplicity, suppose the (normalized) wavefunction is the
sum of two eigenfunctions (the general case can easily be 
developed). Then, from eqn 1.15b,

The first two integrals on the right are both equal to 1 because
the eigenfunctions are individually normalized. Because ψ1

and ψ2 correspond to different eigenvalues of an hermitian
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operator, they are orthogonal, so the third and fourth integ-
rals on the right are zero. We can conclude that

〈Ω〉 = |c1|2ω1 + |c2 |2ω2

in accord with eqn 1.17.

Example 1.7 Calculating an expectation value

Calculate the average value of the position of an electron in
the carbon nanotube described in Example 1.4.

Method The average value is the expectation value of the 
operator corresponding to position, which is multiplication
by x. To evaluate 〈x〉, we need to know the normalized wave-
function (from Example 1.4) and then evaluate the integral
in eqn 1.15b. The following integral is required:

Answer The average value is given by the expectation value

which evaluates to

This result means that, if a very large number of measure-
ments of the position of the electron are made, then their 
mean value will be exactly one-half the length of the nanotube.
However, each different observation will give a different and
unpredictable individual result because the wavefunction is
not an eigenfunction of the operator corresponding to x.
(Note that we used eqn 1.15b, rather than eqn 1.17, because
ψ was not expressed as a linear combination of eigenfunc-
tions of X.)

Self-test 1.11 Evaluate the root mean square position, 〈x2〉1/2,
of the electron using the indefinite integral

We shall see in Section 1.9 a relationship between the root
mean square position and the uncertainty in the position of
the particle. [L{1/3 − 1/(2π2)}1/2]
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particle (Fig. 1.15). In other words, if the wavefunction of the
particle is given by Neikx, then we cannot predict where we will
find the particle. The extraordinary conclusion is that, if we
know the linear momentum precisely, then we can say nothing
about the position. This complementarity of two observables, in
this case linear momentum and position, pervades the whole of
quantum mechanics.

How do we recognize complementary observables, and what
are their consequences? Can we specify the energy of a molecule
at the same time, for instance, as its dipole moment or are they
complementary too? First, we consider linear momentum and
position in more detail, then generalize to other properties.

1.9 The Heisenberg uncertainty principle

The conclusion that, if the momentum is specified precisely,
then it is impossible to predict the location of the particle is one
conclusion that we can draw from the Heisenberg uncertainty
principle proposed by Werner Heisenberg in 1927:

It is impossible to specify simultaneously, with arbitrary pre-
cision, both the momentum and the position of a particle.

Before discussing the principle further, we must establish its
other half: that if we know the position of a particle exactly then
we can say nothing about its momentum. The argument draws
on the idea of regarding a wavefunction as a superposition of
eigenfunctions, and runs as follows.

If we know that the particle is at a definite location, its wave-
function must be large there and zero everywhere else (Fig. 1.16).
Such a wavefunction can be created by superimposing a large
number of harmonic (sine and cosine) functions, or, equiva-
lently, a number of eikx functions. In other words, we can create
a sharply localized wavefunction, called a wavepacket, by form-
ing a linear combination of wavefunctions that correspond to
many different linear momenta. The superposition of a few har-
monic functions gives a wavefunction that spreads over a range

Im e = sinikx kx

Re e = cosikx kx

| |  = 12AA

Fig. 1.15 The square modulus of a wavefunction corresponding
to a definite state of linear momentum is a constant, so it
corresponds to a uniform probability of finding the particle
anywhere.

Table 1.2 The postulates of quantum mechanics

I. The state of the system is described as fully as possible by the
wavefunction ψ(r1, r2, . . . ) where (r1, r2, . . . ) are the spatial coordinates of
the particles (1, 2, . . . ).

II. For a system described by the normalized wavefunction ψ(r1, r2, . . . ),
the probability of finding particle 1 in the volume element dτ1 at r1, particle
2 in the volume element dτ2 at r2, etc. is equal to |ψ |2dτ1dτ2 . . . .

III. For each observable property Ω of a system there is a corresponding
hermitian operator ) built from the following position and linear
momentum operators:

IV. Suppose the system is described by a wavefunction ψ that is an
eigenfunction of ) with eigenvalue ω :

)ψ = ωψ
Then the outcome of a measurement of the observable property Ω will 
be ω.

V. Suppose the system is described by a normalized wavefunction ψ that is
a linear combination of eigenfunctions of ):

with  )ψk = ωkψk

Then when the value of an observable Ω is measured, each measurement
gives one of the eigenvalues ωk with a probability equal to |ck |2. The mean
(that is, average) value of the measurements is equal to the expectation
value 〈Ω〉.
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We have reached an important point in our study of quantum
mechanics. Having described the postulates, which are summar-
ized in Table 1.2, we can now use them to understand atomic
and molecular structure and chemical change. This task will 
occupy our attention for the remainder of the text.

Complementary observables

The fact that particles are described by wavefunctions and that
the outcome of observations depends on the properties of oper-
ators and eigenvalues leads to profound differences between
quantum mechanics and classical mechanics. We can begin to
appreciate these differences by considering the wavefunction for
a particle travelling in one dimension towards positive x with
linear momentum k$. As we saw in Section 1.7, the wavefunc-
tion is Neikx, where N is the (real) normalization factor.

Where is the particle? To answer this question, we use
Postulate II to calculate the probability density:

|ψ |2 = (Neikx)*(Neikx) = N2(e−ikx)(eikx) = N2 (1.18)

This probability density is independent of x, so, wherever we
look on the x-axis, there is an equal probability of finding the
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of locations (Fig. 1.17). However, as the number of wavefunc-
tions in the superposition increases, the wavepacket becomes
sharper on account of the more complete interference between
the positive and negative regions of the individual waves. When
an infinite number of components is used, the wavepacket is 
a sharp, infinitely narrow spike, which corresponds to perfect 
localization of the particle. Now the particle is perfectly localized.

However, we have lost all information about its momentum 
because, as we saw above, a measurement of the momentum will
give a result corresponding to any one of the infinite number of
waves in the superposition and which one it will give is unpre-
dictable. Hence, if we know the location of the particle precisely
(implying that its wavefunction is a superposition of an infinite
number of momentum eigenfunctions), then its momentum is
completely unpredictable.

The quantitative version of the Heisenberg uncertainty prin-
ciple is

ΔpΔq ≥ 1–2$ (1.19a)

In this expression Δp is the ‘uncertainty’ in the linear momen-
tum parallel to the axis q, and Δq is the uncertainty in position
along that axis. These ‘uncertainties’ are precisely defined, for
they are the root mean square deviations of the properties from
their mean values:

Δp = {〈p2〉 − 〈p〉2}1/2 Δq = {〈q2〉 − 〈q〉2}1/2 [1.19b]

If there is complete certainty about the position of the particle
(Δq = 0), then the only way that eqn 1.19a can be satisfied is 
for Δp = ∞, which implies complete uncertainty about the 
momentum. Conversely, if the momentum parallel to an axis is
known exactly (Δp = 0), then the position along that axis must
be completely uncertain (Δq = ∞).

The p and q that appear in eqn 1.19 refer to the same direction
in space. Therefore, whereas simultaneous specification of the
position on the x-axis and momentum parallel to the x-axis 
is restricted by the uncertainty relation, simultaneous location 
of position on x and motion parallel to y or z is not restricted.
Table 1.3 summarizes the restrictions that the uncertainty prin-
ciple implies.

21

5

2
A

x

Fig. 1.17 The wavefunction for a particle with an ill-defined
location can be regarded as the superposition of several
wavefunctions of definite wavelength that interfere
constructively in one place but destructively elsewhere. 
As more waves are used in the superposition (as given by 
the numbers attached to the curves), the location becomes 
more precise at the expense of uncertainty in the particle’s
momentum. An infinite number of waves is needed to 
construct the wavefunction of a perfectly localized particle.

interActivity Use mathematical software or an electronic 
spreadsheet to construct superpositions of cosine 

functions as ψ(x) =
N
∑
k=1

(1/N)cos(kπx), where the constant 1/N is 

introduced to keep the superpositions with the same overall
magnitude. Explore how the probability density ψ 2(x) changes
with the value of N.

A

x

Location
of particle

Fig. 1.16 The wavefunction for a particle at a well-defined
location is a sharply spiked function which has zero amplitude
everywhere except at the particle’s position.

Table 1.3* Constraints of the uncertainty principle

Variable 1

Variable 2 x y z px py pz

x

y

z

px

py

pz

* Pairs of observables that cannot be determined simultaneously with arbitrary
precision are marked with a blue rectangle; all others are unrestricted.
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Example 1.8 Using the uncertainty principle

Suppose the speed of a projectile of mass 1.0 g is known to
within 1 μm s−1. Calculate the minimum uncertainty in its 
position.

Method Estimate Δp from mΔv, where Δv is the uncertainty
in the speed; then use eqn 1.19a to estimate the minimum
uncertainty in position, Δq.

Answer The minimum uncertainty in position is

where we have used 1 J = 1 kg m2 s−2. The uncertainty is 
completely negligible for all practical purposes concerning
macroscopic objects. However, if the mass is that of an elec-
tron, then the same uncertainty in speed implies an uncer-
tainty in position far larger than the diameter of an atom (the
analogous calculation gives Δq = 60 m), so the concept of a
trajectory, the simultaneous possession of a precise position
and momentum, is untenable.

Self-test 1.12 Estimate the minimum uncertainty in the speed
of an electron in a one-dimensional region of length 2a0,
where a0 = 53 pm (the Bohr radius) [547 km s−1]

=
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1.10 The general form of the uncertainty
principle

The Heisenberg uncertainty principle is a special case of a very
general form of an uncertainty principle developed by H.P.
Robertson in 1929. The latter applies to any pair of observables
called complementary observables, which are defined in terms
of the properties of their operators. Specifically, two observables
Ω1 and Ω2 are complementary if

)1 )2ψ ≠ )2 )1ψ (1.20)

When the effect of two operators depends on their order (as this
equation implies), we say that they do not commute. The differ-
ent outcomes of the effect of applying )1 and )2 in a different
order are expressed by introducing the commutator of the two
operators, which is defined as

[)1,)2] = )1 )2 − )2 )1 [1.21]

Example 1.9 Demonstrating non-commutativity

Show that the operators for position and momentum do 
not commute and therefore that these observables are 
complementary.

Method Consider the effect of XY on a wavefunction ψ (that is,
the effect of Y followed by the effect on the outcome of multi-
plication by x), then the effect of YX on the same function (that
is, the effect of multiplication by x followed by the effect of Y
on the outcome). Finally, take the difference of the two results.

Answer The effect of XY on ψ is

The effect of YX on the same function is

(For this step we have used the standard rule about differ-
entiating a product of functions.) The second expression is
clearly different from the first, so the two operators do not
commute. Their commutator is calculated by subtracting the
second of these two equations from the first:

Because this relation is true for any ψ, it follows that [X, Y] =
i$. This relation is valid for linear momentum along the 
x-axis (that is, when Y is actually Yx). The same kind of calcu-
lation can be used to deduce that [X, Yy] = 0 and [X, Yz] = 0.

Self-test 1.13 Do the operators for potential energy and 
kinetic energy commute?

[No: ]

We can conclude from the calculation in Example 1.9 that the
commutator of the operators for position and linear momen-
tum parallel to the same axis is

[X, Yx] = i$ (1.22)

with similar expressions for other axes. This commutator is 
of such vital significance in quantum mechanics that it is taken
as a fundamental distinction between classical mechanics and
quantum mechanics. In fact, rather than giving the explicit
forms of the operators for position and linear momentum in
eqn 1.10, we could have stated Postulate III (Section 1.6) as:
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For every observable property Ω of a system there is a cor-
responding hermitian operator ) built from position and
linear momentum operators that satisfy the commutation 
relation stated in eqn 1.22.

With the concept of the commutator established, the most
general form of the uncertainty principle can be given. For any
two pairs of observables, Ω1 and Ω2, the uncertainties (to be pre-
cise, the root mean square deviations of their values from the
mean) in simultaneous determinations are related by

| (1.23)

We obtain the special case of eqn 1.19a when we identify the 
observables with x and px and use eqn 1.22 for their commutator.

A brief comment The ‘modulus’ notation | . . . | means take
the magnitude of the term the bars enclose: for a real quantity
x, |x| is the magnitude of x (its value without its sign); for 
an imaginary quantity iy, |iy| is the magnitude of y; and—
most generally—for a complex quantity z = x + iy, |z| is the
value of (z*z)1/2. For example, |−2| = 2, |3i| = 3, and |−2 + 3i| =
{(−2 − 3i)(−2 + 3i)}1/2 = 131/2. Physically, the modulus on the
right of eqn 1.23 ensures that the product of uncertainties has
a real, non-negative value.

Example 1.10 Determining the complementarity of two
observables

Can the electric dipole moment and the energy of a molecule
be specified simultaneously?

Method First, determine if the electric dipole moment and 
the energy are complementary observables by evaluating the
commutator, eqn 1.21, of the operators corresponding to the
observables. Then use the general form of the uncertainty
principle, eqn 1.23, to determine if the observables can be
specified simultaneously. That is, can the product of their 
uncertainties be identically zero?

Answer The electric dipole moment of a charge distribu-
tion of a proton at the origin and an electron at a position 
r is m = −er; therefore the operator corresponding to the
dipole moment is ¢ = −er ×, which is normally written sim-
ply ¢ = −er, with multiplication understood. For a one-
dimensional system, the electric dipole moment operator is 
−ex and the energy operator is the hamiltonian operator in
eqn 1.8b. To evaluate the commutator of −ex and @, we need
to see if x commutes with the potential energy operator 
and with the kinetic energy operator. The potential energy
operator commutes with x because they are both multiplica-

  
Δ ΔΩ Ω1 2

1
2 1 2≥ 〈 〉| |[ , ]) )

tive, and xV(x) = V(x)x. To decide whether the kinetic energy
operator commutes with x we need to evaluate the following 
expression:

To do so, we note that

It then follows that

and therefore that

Hence,

Because the electric dipole moment operator does not com-
mute with the hamiltonian, in general, the electric dipole 
moment and the energy are complementary observables.
However, eqn 1.23 tells us that the restriction on their simul-
taneous determination is

Therefore, provided the electron has no net linear momen-
tum (so 〈Yx 〉 = 0), there will be no restriction on the simul-
taneous determination of the electric dipole moment and 
the energy even though the corresponding operators are
complementary.

Self-test 1.14 Can the potential and kinetic energies be 
simultaneously specified for an electron undergoing oscilla-
tory motion in one dimension x with a potential energy pro-
portional to x 2?

[No: ][ , ] ( )X
$

$ Y2 2Êk
e

i= +
m

x x

   
≥ − = − 〈 〉1

2 2
e

m

e

mx x
i

e e

$
Y

$
Y

   Δ Δ Δ Δμ E e x E e= − ≥ − 〈 〉1
2 | |[ , ]X @

[ , ] [ , ] [ , ] [ , ] [ , ]X @ X W X X W X
$

Y= + = + = =Ê Ê Êk k k
e

i

m xx

[ , ]X
$

YÊk
e

i
=

m x

[ , ]X
$ $

YÊk
e e

d

d

i
ψ

ψ
ψ= =

2

m x m x

= + +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = +

d

d

d

d

d

d

d

d

d

d

2 2ψ ψ ψ ψ ψ
x x

x
x x

x
x2 2

2

  

d

d

d

d

d

d

d

d

d

d

2

2x
x

x x
x

x
x

x
ψ ψ ψ

ψ
=

⎛

⎝
⎜

⎞

⎠
⎟ = +

⎛

⎝
⎜

⎞

⎠
⎟

   
[ , ]X

$
Êk

e

d

d

d

d
ψ ψ= − −

⎛

⎝⎜
⎞

⎠⎟
2 2

2

2

22m
x

x x
x



1 THE PRINCIPLES OF QUANTUM THEORY 45

Complementary observables are observables with non-
commuting operators (that is, those with nonzero commuta-
tors). With the discovery that some pairs of observables are
complementary (we meet more examples in the later chapters),
we are at the heart of the difference between classical and quan-
tum mechanics. Classical mechanics supposed, falsely as we 
now know, that the position and momentum of a particle could 
be specified simultaneously with arbitrary precision. However,

quantum mechanics shows that position and momentum are
complementary, and that we have to make a choice: we can spe-
cify position at the expense of momentum, or momentum at the
expense of position.

The realization that some observables are complementary 
allows us to make considerable progress with the calculation of
atomic and molecular properties, but it does away with some of
the most cherished concepts of classical physics.

Checklist of key ideas

1. Spectroscopic transitions are changes in populations of
quantized energy levels of a system involving the absorption,
emission, or scattering of electromagnetic radiation, 
ΔE = hν.

2. The photoelectric effect is the ejection of electrons 
from metals when they are exposed to ultraviolet 
radiation: 1–2mev

2 = hν − Φ, where Φ is the work function, 
the energy required to remove an electron from the metal 
to infinity.

3. The photoelectric effect and electron diffraction are
phenomena that confirm wave–particle duality, the joint
particle and wave character of matter and radiation.

4. The de Broglie relation, λ = h/p, relates the momentum of a
particle with its wavelength.

5. A wavefunction is a mathematical function obtained by
solving the Schrödinger equation and which contains all the
dynamical information about a system.

6. The Born interpretation of the wavefunction states that 
the value of |ψ |2, the probability density, at a point is
proportional to the probability of finding the particle 
at that point.

7. Quantization is the confinement of a dynamical observable
to discrete values.

8. An acceptable wavefunction must be continuous, have a
continuous first derivative, be single-valued, and be square-
integrable.

9. The time-independent Schrödinger equation in one
dimension is −($2/2m)(d2ψ /dx2) + V(x)ψ = Eψ.

10. An operator is something that carries out a mathematical
operation on a function. The position and momentum
operators are X = x × and Yx = ($/i)d/dx, respectively.

11. The hamiltonian operator is the operator for the total energy
of a system, @ψ = Eψ, and is the sum of the operators for
kinetic energy and potential energy.

12. An eigenvalue equation is an equation of the form )ψ = ωψ.
The eigenvalue is the constant ω in the eigenvalue equation;
the eigenfunction is the function ψ in the eigenvalue
equation.

13. The expectation value of an operator is 〈Ω〉 = ∫ψ*)ψdτ for
a normalized wavefunction.

14. A hermitian operator is one for which 
. The eigenvalues of 

hermitian operators are real and correspond to observables,
measurable properties of a system. The eigenfunctions of
hermitian operators are orthogonal, meaning that 
∫ψi*ψj dτ = 0.

15. The Heisenberg uncertainty principle states that it is
impossible to specify simultaneously, with arbitrary
precision, both the momentum and the position of a
particle; ΔpΔq ≥ 1–2$.

16. Two operators commute when [)1,)2] = )1 )2 − )2 )1 = 0.

17. Complementary observables are observables corresponding
to non-commuting operators.

18. The general form of the uncertainty principle is 

.
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Further information

Further information 1.1 Dirac notation

The normalization condition of eqn 1.6 is often written as (replacing ψ
by ψn)

〈n |n〉 = 1

and the orthogonality relation of eqn 1.16 as

〈n|n′〉 = 0 (n′ ≠ n)

This Dirac bracket notation is much more succinct than writing out 
the integrals in full. It also introduces the words ‘bra’ and ‘ket’ into 
the language of quantum mechanics. Thus, the bra 〈n | corresponds to
ψn* and the ket |n′〉 corresponds to the wavefunction ψn′. When the bra
and ket are put together as in the above expressions, integration over all
space is understood. The two expressions can be combined into one:

〈n|n′ 〉 = δnn′ (1.24)
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Here δnn′, which is called the Kronecker delta, is 1 when n′ = n and 0
when n′ ≠ n.

Integrals of the form , which we first encounter in 
the definition of an hermitian operator (Section 1.7), and which are
commonly called ‘matrix elements’, are incorporated into the bracket
notation by writing

[1.25]

Note how the operator stands between the bra and the ket (which may
denote different states), in the place of the c in 〈bra|c|ket〉. An integration

   〈 〉 =n m n m| | ∫) )ψ ψ τ* d

∫ψ ψ τn m*) d

is implied whenever a complete bracket is written. In this 
notation, an expectation value for a normalized wavefunction 
(eqn 1.15b) is

〈Ω〉 = 〈n | )|n〉 (1.26)

with the bra and the ket corresponding to the same state 
(with wavefunction ψn). An operator is hermitian 
(eqn 1.13) if

〈n| )|m〉 = 〈m| )|n〉* (1.27)

Discussion questions

1.1 Summarize the evidence that led to the introduction of quantum
mechanics.

1.2 Describe how a wavefunction determines the dynamical properties
of a system and how those properties may be predicted.

1.3 Account for the uncertainty relation between position and linear
momentum in terms of the shape of the wavefunction.

1.4 Suggest how the general shape of a wavefunction can be predicted
without solving the Schrödinger equation explicitly.

1.5 Explain the meaning and consequences of wave–particle duality.

1.6 Describe the relationship between operators and observables in
quantum mechanics.

1.7 Compare the results of experimental measurements of an observable
when the wavefunction is (a) an eigenfunction of the corresponding
operator, (b) a superposition of eigenfunctions of that operator.

1.8 Describe the properties of wavepackets in terms of the Heisenberg
uncertainty principle.

Exercises

1.1(a) Atomic sodium produces a yellow glow (as in some street lamps):
what is the energy separation of the levels responsible for the radiation of
wavelength 590 nm?

1.1(b) Neon lamps emit red radiation of wavelength 736 nm. What is the
energy separation of the levels responsible for the emission?

1.2(a) Calculate the size of the quantum involved in the excitation of 
(a) a molecular vibration of period 20 fs, (b) a pendulum of period 2.0 s.
Express the results in joules and kilojoules per mole.

1.2(b) Calculate the size of the quantum involved in the excitation of 
(a) a molecular vibration of period 3.2 fs, (b) a balance wheel of period
1.0 ms. Express the results in joules and kilojoules per mole.

1.3(a) The work function for metallic caesium is 2.14 eV. Calculate the
kinetic energy and the speed of the electrons ejected by light of
wavelength (a) 580 nm, (b) 250 nm.

1.3(b) The work function for metallic rubidium is 2.09 eV. Calculate the
kinetic energy and the speed of the electrons ejected by light of
wavelength (a) 520 nm, (b) 355 nm.

1.4(a) In an experiment to study the photoelectric effect, a photon of
radiation of wavelength 465 nm was found to eject an electron from a
metal with a kinetic energy 2.11 eV. What is the maximum wavelength
capable of ejecting an electron from the metal?

1.4(b) A photon of radiation of wavelength 305 nm ejects an electron
from a metal with a kinetic energy 1.77 eV. What is the maximum
wavelength capable of ejecting an electron from the metal?

1.5(a) When light of wavelength 165 nm strikes a certain metal surface,
electrons are ejected with a speed of 1.24 × 106 m s−1. Calculate the speed

of electrons ejected from the metal surface by light of wavelength 
265 nm.

1.5(b) When light of wavelength 195 nm strikes a certain metal surface,
electrons are ejected with a speed of 1.23 × 106 m s−1. Calculate the speed
of electrons ejected from the metal surface by light of wavelength 
255 nm.

1.6(a) In an X-ray photoelectron experiment, a photon of wavelength
150 pm ejects an electron from the inner shell of an atom and it emerges
with a speed of 2.14 × 107 m s−1. Calculate the binding energy of the
electron.

1.6(b) In an X-ray photoelectron experiment, a photon of wavelength
121 pm ejects an electron from the inner shell of an atom and it emerges
with a speed of 5.69 × 107 m s−1. Calculate the binding energy of the
electron.

1.7(a) Calculate the energy per photon and the energy per mole of
photons for radiation of wavelength (a) 620 nm (red), (b) 570 nm
(yellow), (c) 380 nm (blue).

1.7(b) Calculate the energy per photon and the energy per mole of
photons for radiation of wavelength (a) 188 nm (ultraviolet), 
(b) 125 pm (X-ray), (c) 1.00 cm (microwave).

1.8(a) A sodium lamp emits yellow light of wavelength 590 nm. How
many photons does it emit each second if its power is (a) 10 W, 
(b) 250 W?

1.8(b) A laser used to read CDs emits red light of wavelength 700 nm.
How many red photons does it emit each second if its power is 
(a) 0.25 W, (b) 1.5 mW?
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1.9(a) Calculate the de Broglie wavelength of (a) a mass of 2 g 
travelling at 1 cm s−1, (b) the same, travelling at 250 km s−1, 
(c) a He atom travelling at 1000 m s−1 (a typical speed at room
temperature).

1.9(b) Calculate the de Broglie wavelength of an electron accelerated
from rest through a potential difference of (a) 100 V, (b) 15 kV, 
(c) 250 kV.

1.10(a) Electron diffraction makes use of electrons with wavelengths
comparable to bond lengths. To what speed must an electron be
accelerated for it to have a wavelength of 100 pm? What accelerating
potential difference is needed?

1.10(b) Could proton diffraction be an interesting technique for the
investigation of molecular structure? To what speed must a proton be
accelerated for it to have a wavelength of 100 pm? What accelerating
potential difference is needed?

1.11(a) The impact of photons on matter exerts a force that can move it,
but the effect of a single photon is insignificant except when it strikes an
atom or subatomic particle. Calculate the speed to which a stationary
electron would be accelerated if it absorbed a photon of 150 nm
radiation.

1.11(b) Similarly, calculate the speed to which a stationary H atom would
be accelerated if it absorbed a photon of 100 nm radiation.

1.12(a) Consider a time-independent wavefunction of a particle moving
in three-dimensional space. Identify the variables upon which the
wavefunction depends.

1.12(b) Consider a time-dependent wavefunction of a particle moving 
in two-dimensional space. Identify the variables upon which the
wavefunction depends.

1.13(a) Consider a time-independent wavefunction of a hydrogen atom.
Identify the variables upon which the wavefunction depends.

1.13(b) Consider a time-dependent wavefunction of a helium atom.
Identify the variables upon which the wavefunction depends.

1.14(a) Repeat Exercise 1.13a but use spherical polar coordinates.

1.14(b) Repeat Exercise 1.13b but use spherical polar coordinates.

1.15(a) An unnormalized wavefunction for a light atom rotating around
a heavy atom to which it is bonded is ψ(φ) = eiφ with 0 ≤ φ ≤ 2π.
Normalize this wavefunction.

1.15(b) An unnormalized wavefunction for an electron in a carbon
nanotube of length L is sin(2πx/L). Normalize this wavefunction.

1.16(a) For the system described in Exercise 1.15a, what is the probability
of finding the light atom in the volume element dφ at φ = π?

1.16(b) For the system described in Exercise 1.15b, what is the
probability of finding the electron in the range dx at x = L/2?

1.17(a) For the system described in Exercise 1.15a, what is the probability
of finding the light atom between φ = π/2 and φ = 3π/2?

1.17(b) For the system described in Exercise 1.15b, what is the
probability of finding the electron between x = L/4 and x = L/2?

1.18(a) Construct the operator for kinetic energy of a particle moving in
two dimensions.

1.18(b) Construct the potential energy operator of a particle subjected to
a Coulombic potential.

1.19(a) Complex functions of the form eikx can be used to model the
wavefunctions of particles in a linear accelerator. Show that any linear

combination of the complex functions e2ix and e−2ix is an eigenfunction
of the operator d2/dx2 and identify its eigenvalue.

1.19(b) Functions of the form sin(nx) can be used to model the
wavefunctions of electrons in a carbon nanotube. Show that 
any linear combination of the functions sin(3x) and cos(3x) 
is an eigenfunction of the operator d2/dx2 and identify its 
eigenvalue.

1.20(a) The momentum operator is proportional to d/dx. Which of the
following functions are eigenfunctions of d/dx: (a) eikx, (b) eax2

, (c) x, 
(d) x2, (e) ax + b, (f) sin(x + 3a)? Give the corresponding eigenvalue
where appropriate.

1.20(b) The kinetic energy operator is proportional to d2/dx2. Which of
the following functions are eigenfunctions of d2/dx2: (a) eax, (b) e−ax2

, 
(c) k, (d) kx2, (e) ax + b, (f ) cos(kx + 5)? Give the corresponding
eigenvalue where appropriate.

1.21(a) Functions of the form sin(nπx /L) can be used to model the
wavefunctions of electrons in a carbon nanotube of length L. Show that
the wavefunctions sin(nπx /L) and sin(mπx /L), where n ≠ m, are
orthogonal for a particle confined to the region 0 ≤ x ≤ L.

1.21(b) Functions of the form cos(nπx /L) can be used to model the
wavefunctions of electrons in metals. Show that the wavefunctions 
cos(nπx /L) and cos(mπx /L), where n ≠ m, are orthogonal for a particle
confined to the region 0 ≤ x ≤ L.

1.22(a) A light atom rotating around a heavy atom to which it is bonded
is described by a wavefunction of the form ψ(φ) = eimφ with 0 ≤ φ ≤ 2π
and m an integer. Show that the m = +1 and m = +2 wavefunctions are
orthogonal.

1.22(b) Repeat Exercise 1.22a for the m = +1 and m = −1 wavefunctions.

1.23(a) An electron in a carbon nanotube of length L is described by the
wavefunction ψ(x) = sin(2πx/L). Compute the expectation value of the
position of the electron.

1.23(b) An electron in a carbon nanotube of length L is described by the
wavefunction ψ(x) = sin(πx/L). Compute the expectation value of the
kinetic energy of the electron.

1.24(a) An electron in a one-dimensional metal of length L is described
by the wavefunction ψ(x) = sin(πx/L). Compute the expectation value of
the momentum of the electron.

1.24(b) A light atom rotating around a heavy atom to which it is bonded
is described by a wavefunction of the form ψ(φ) = eiφ with 0 ≤ φ ≤ 2π. 
If the operator corresponding to angular momentum is given by
($/i)d/dφ, compute the expectation value of the angular momentum 
of the light atom.

1.25(a) Confirm that the kinetic energy operator, −($2/2m)d2/dx 2, is
hermitian.

1.25(b) When we discuss rotational motion, we shall see that the
operator corresponding to the angular momentum of a particle is
($/i)d/dφ, where φ is an angle. Is this operator hermitian?

1.26(a) You might come across an operator of the form X + iaYx, where a is
a real constant, and wonder if it corresponds to an observable. Could it?

1.26(b) Likewise, you might wonder if X2 − iaÊk, where a is a real
constant, corresponds to an observable. Could it?

1.27(a) The speed of a certain proton is 6.1 × 106 m s−1. If the uncertainty
in its momentum is to be reduced to 0.0100 per cent, what uncertainty in
its location must be tolerated?
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1.27(b) The speed of a certain electron is 1000 km s−1. If the uncertainty
in its momentum is to be reduced to 0.0010 per cent, what uncertainty in
its location must be tolerated?

1.28(a) Calculate the minimum uncertainty in the speed of a ball of mass
500 g that is known to be within 1.0 μm of a certain point on a bat. What
is the minimum uncertainty in the position of a bullet of mass 5.0 g that
is known to have a speed somewhere between 350.000 00 m s−1 and
350.000 01 m s−1?

1.28(b) An electron in a nanoparticle is confined to a region of length
0.10 nm. What are the minimum uncertainties in (a) its speed, (b) its
kinetic energy?

1.29(a) Evaluate the commutators (a) [X, õ], (b) [Yx, Yy], (c) [X, Yx], 
(d) [X2, Yx], (e) [Xn, Yx].

1.29(b) Evaluate the commutators (a) [(1/X), Yx], (b) [(1/X), Yx
2], 

(c) [XYy − õYx, õYz − üYy], (d) [X2(∂2/∂y 2), õ(∂/∂x)].

Problems*

Numerical problems

1.1 Suppose that the normalized wavefunction for an electron in a carbon
nanotube of length L = 10.0 nm is ψ = (2/L)1/2 sin(πx/L). Calculate the
probability that the electron is (a) between x = 4.95 nm and 5.05 nm, 
(b) between x = 7.95 nm and 9.05 nm, (c) between x = 9.90 nm and 
10.00 nm, (d) in the left half of the box, (e) in the central third of the box.

1.2 The normalized wavefunction for the electron in a hydrogen atom is

where a0 = 53 pm (the Bohr radius). (a) Calculate the probability that the
electron will be found somewhere within a small sphere of radius 1.0 pm
centred on the nucleus. (b) Now suppose that the same sphere is located
at r = a0. What is the probability that the electron is inside it?

1.3 A hydrogen atom attached to a metallic surface is undergoing
oscillatory motion so that the state of the atom is described by a
wavefunction that is proportional to the square of the atom’s
displacement from the metallic surface. Assume that the motion of the H
atom is constrained to one dimension between x = 0 and x = π and that
its state is described by the unnormalized wavefunction ψ(x) = x2. If the
probability of finding the atom between x = 0 and x = a is 1–2 , what is the
value of a?

1.4 A particle free to move along one dimension x (with 0 ≤ x < ∞) is
described by the unnormalized wavefunction ψ(x) = e−ax with a = 2 m−1.
What is the probability of finding the particle at a distance x ≥ 1 m?

1.5 The rotation of a light atom around a heavier atom to which it is
bonded can be described quantum mechanically. The unnormalized
wavefunctions for a light atom confined to move on a circle (with a
heavier atom at the circle’s centre) are ψ(φ) = e−imφ, where m = 0, ±1, ±2,
±3, . . . . and 0 ≤ φ ≤ 2π. Determine 〈φ〉.

1.6 Atoms in a chemical bond vibrate around the equilibrium bond
length. An atom undergoing vibrational motion is described by the
wavefunction ψ(x) = Ne−x2/(2a2), where a is a constant and −∞ < x < ∞. 
(a) Normalize this function. (b) Calculate the probability of finding the
particle in the range −a ≤ x ≤ a. Hint. The integral encountered in part
(b) is the error function. It is defined and tabulated in M. Abramowitz
and I.A. Stegun, Handbook of mathematical functions, Dover (1965) and
is provided in most mathematical software packages.

1.7 Suppose that the state of the vibrating atom in Problem 1.6 is
described by the wavefunction ψ(x) = Nxe−x2/(2a2). Where is the most
probable location of the particle?
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1.8 An atom undergoing vibrational motion is described by the
wavefunction ψ(x) = (2a/π)1/4e−ax2

, where a is a constant and 
−∞ < x < ∞. Verify that the value of the product ΔpΔx is consistent 
with the predictions from the uncertainty principle.

1.9 A particle freely moving in one dimension x with 0 ≤ x < ∞ is in a
state described by the wavefunction ψ(x) = a1/2e−ax/2, where a is a
constant. Determine the expectation values of the position and
momentum operators.

Theoretical problems

1.10 Normalize the following wavefunctions: (a) sin(nπx/L) in the 
range 0 ≤ x ≤ L, where n = 1, 2, 3, . . . (this wavefunction can be used to
describe delocalized electrons in a linear polyene), (b) a constant in the
range −L ≤ x ≤ L, (c) e−r/a in three-dimensional space (this wavefunction
can be used to describe the electron in the ion He+), (d) xe−r/2a in three-
dimensional space. Hint. The volume element in three dimensions is 
dτ = r2dr sin θ dθ dφ, with 0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

1.11 Write the time-independent Schrödinger equations for (a) an
electron moving in one dimension about a stationary proton and
subjected to a Coulombic potential, (b) a free particle, (c) a particle
subjected to a constant, uniform force.

1.12 (a) Two (unnormalized) excited state wavefunctions of the H 
atom are

(i) (ii) ψ = r sin θ cos φ e−r/2a0

Normalize both functions to 1. (b) Confirm that these two functions are
mutually orthogonal.

1.13 Confirm the following properties of commutators:

(i) [Â, U] = −[U, Â];

(ii) [Â, U + >] = [Â, U] + [Â, >]  (we used this relation in 
Example 1.10);

(iii) [Â2, U] = Â[Â, U] + [Â, U]Â (this relation was used in Self-test 1.14).

1.14 Evaluate the commutators (a) [@, Yx] and (b) [@, X], where 
@ = Y2

x /2m + W(x). Choose (i) V(x) = V, a constant, (ii) V(x) = 1–2 kx2.

1.15 Evaluate the limitation on the simultaneous specification of the
following observables: (a) the position and momentum of a particle in
one dimension, (b) the three components of linear momentum of a
particle, (c) the kinetic energy and potential energy of a particle in one
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* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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dimension, (d) the electric dipole moment and the total energy of a one-
dimensional system, (e) the kinetic energy and the position of a particle
in one dimension.

1.16 Construct quantum mechanical operators for the following
observables: (a) kinetic energy in one and in three dimensions, 
(b) the inverse separation, 1/x, (c) electric dipole moment in one
dimension, (d) the mean square deviations of the position and
momentum of a particle in one dimension from the mean values.

1.17 Determine which of the following functions are eigenfunctions of
the inversion operator î (which has the effect of making the replacement
x → −x): (a) x3 − kx, (b) cos kx, (c) x2 + 3x − 1. State the eigenvalue of î
when relevant.

1.18 The wavefunction of an electron in a linear accelerator is 
ψ = (cos χ)eikx + (sin χ)e−ikx, where χ (chi) is a parameter. What is 
the probability that the electron will be found with a linear momentum
(a) +k$, (b) −k$? What form would the wavefunction have if it were 
90 per cent certain that the electron had linear momentum +k$?

1.19 Evaluate the kinetic energy of the electron with wavefunction given
in Problem 1.18.

1.20 Calculate the average linear momentum of a particle described by
the following wavefunctions: (a) eikx, (b) cos kx, (c) e−ax2

, where in each
one x ranges from −∞ to +∞.

1.21 Evaluate the expectation values of r and r2 for a hydrogen atom with
wavefunctions given in Problem 1.12.

1.22 Calculate (a) the mean potential energy and (b) the mean kinetic
energy of an electron in the hydrogen atom whose state is described by
the wavefunction given in Problem 1.2.

1.23 Show that the expectation value of an operator that can be written
as the square of an hermitian operator is positive.

1.24 (a) Given that any operators used to represent observables must
satisfy the commutation relation in eqn 1.22, what would be the operator
for position if the choice had been made to represent linear momentum
parallel to the x-axis by multiplication by the linear momentum? These
different choices are all valid ‘representations’ 
of quantum mechanics. (b) With the identification of X in this
representation, what would be the operator for 1/x? Hint. Think 
of 1/x as x−1.

1.25 Max Planck found that he could account for the experimental
observations of a black-body radiator (an object capable of emitting and
absorbing all frequencies of radiation uniformly) by proposing that the
energy of each electromagnetic oscillator was quantized. He derived the
expression

  
ρ λ

λ λ( )
( )/
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−
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15
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hc kTe

for the spectral energy density (so that ρ(λ)dλ is the energy density   
of radiation in the range λ to λ + dλ, and ρ(λ)Vdλ is the total energy 
in that wavelength range in a region of volume V). (a) Plot the Planck
distribution for ρ as a function of wavelength (take T = 298 K). 
(b) Show mathematically that, as λ → 0, ρ → 0 and therefore that the
‘ultraviolet catastrophe’ (the infinite acccumulation of radiation energy
at short wavelengths) is avoided. (c) Show that for long wavelengths
(hc/λkT <<1), the Planck distribution reduces to the Rayleigh–Jeans law,
the classical expression ρ(λ) = 8πkT/λ4.

1.26 Derive Wien’s law, that λmaxT is a constant, where λmax is the
wavelength corresponding to the maximum in the Planck distribution
(Problem 1.25) at the temperature T, and deduce an expression for the
constant as a multiple of the second radiation constant, c2 = hc/k. Values
of λmax from a small pinhole in an electrically heated container were
determined at a series of temperatures, and the results are given below.
Deduce a value for Planck’s constant using the values of c2 and k.

θ/°C 1000 1500 2000 2500 3000 3500

λmax/nm 2181 1600 1240 1035 878 763

Applications: to astrophysics and nanoscience

1.27‡ The temperature of the Sun’s surface is approximately 5800 K. On
the assumption that the human eye evolved to be most sensitive at the
wavelength of light corresponding to the maximum in the Sun’s radiant
energy distribution, determine the colour of light to which the eye is the
most sensitive. Hint. See Problem 1.26.

1.28 We saw in Impact I1.1 that electron microscopes can obtain images
with several hundredfold higher resolution than optical microscopes
because of the short wavelength obtainable from a beam of electrons. For
electrons moving at speeds close to c, the speed of light, the expression
for the de Broglie wavelength (eqn 1.3) needs to be corrected for
relativistic effects:

where c is the speed of light in vacuum and V is the potential difference
through which the electrons are accelerated. (a) Use the expression
above to calculate the de Broglie wavelength of electrons accelerated
through 50 kV. (b) Is the relativistic correction important?

1.29 Suppose that the wavefunction of an electron in a carbon nanotube
is a linear combination of cos(nx) functions. Use mathematical software
to construct superpositions of cosine functions and determine the
probability that a given momentum will be observed. If you plot the
superposition (which you should), set x = 0 at the centre of the screen
and build the superposition there. Evaluate the root mean square
location of the packet, 〈x2〉1/2.
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MATHEMATICAL BACKGROUND 2

Differential equations

A differential equation is a relation between a function and its
derivatives, as in

(MB2.1)

where f is a function of the variable x and the factors a, b, c may
be either constants or functions of x. If the unknown function
depends on only one variable, as in this example, the equation is
called an ordinary differential equation; if it depends on more
than one variable, as in

(MB2.2)

it is called a partial differential equation. Here, f is a function of
x and y, and the factors a, b, c may be either constants or func-
tions of both variables. Note the change in symbol from d to ∂ to
signify a ‘partial derivative’ (see Mathematical background 1).

MB2.1 The structure of differential equations

The order of the differential equation is the order of the highest
derivative that occurs in it: both examples above are second-
order equations. Only rarely in science is a differential equation
of order higher than 2 encountered.

A linear differential equation is one for which if f is a solution
then so is constant × f. Both examples above are linear. If the 0
on the right were replaced by a different number or a function
other than f, then they would cease to be linear.

Solving a differential equation means something different
from solving an algebraic equation. In the latter case, the solu-
tion is a value of the variable x (as in the solution x = ±2 of the
quadratic equation x2 − 4 = 0). The solution of a differential
equation is the entire function that satisfies the equation, as in

(MB2.3)

with A and B constants. The process of finding a solution of a
differential equation is called integrating the equation. The 
solution in eqn MB2.3 is an example of a general solution of a
differential equation, that is, it is the most general solution of 
the equation and is expressed in terms of a number of constants
(A and B in this case). When the constants are chosen to accord
with certain specified initial conditions (if one variable is the
time) or certain boundary conditions (to fulfil certain spatial re-
strictions on the solutions), we obtain the particular solution of
the equation. The particular solution of a first-order differential
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equation requires one such condition; a second-order differential
equation requires two.

l A BRIEF ILLUSTRATION

If we are informed that f(0) = 0, then because, from eqn
MB2.3, it follows that f(0) = B, we can conclude that B = 0.
That still leaves A undetermined. If we are also told that 
df/dx = 2 at x = 0 (that is, f ′(0) = 2, where the prime denotes a
first derivative), then, because the general solution (but with
B = 0) implies that f ′(x) = A cos x, we know that f ′(0) = A, 
and therefore A = 2. The particular solution is therefore f(x)
= 2 sin x. Figure MB2.1 shows a series of particular solutions
corresponding to different boundary conditions. l

MB2.2 The solution of ordinary differential
equations

The first-order linear differential equation

(MB2.4a)

with a a function of x or a constant can be solved by direct integ-
ration. To proceed, we use the fact that the quantities df and dx
(called differentials) can be treated algebraically like any quantity
and rearrange the equation into

(MB2.4b)

and integrate both sides. For the left-hand side, we use the 
familiar result ∫dy/y = ln y + constant. After pooling all the con-
stants into a single constant A, we obtain:

ln f = −�a dx + A (MB2.4c)
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Fig. MB2.1 The solution of the differential equation in eqn MB2.3 with
three different boundary conditions (as indicated by the resulting
values of the constants A and B).
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l A BRIEF ILLUSTRATION

Suppose that in eqn MB2.4a the factor a = 2x; then the gen-
eral solution, eqn MB2.4c, is

ln f = −2�x dx + A = −x 2 + A

(We have absorbed the constant of integration into the con-
stant A.) Therefore

f = eAe−x2

If we are told that f(0) = 1, then we can infer that A = 0 and
therefore that f = e−x2

. l

The solution of even first-order differential equations quickly
becomes more complicated. A non-linear first-order equation
of the form

(MB2.5a)

with a and b functions of x (or constants) has a solution of the form

(MB2.5b)

as may be verified by differentiation. Mathematical software
packages can often perform the required integrations.

Second-order differential equations are in general much
more difficult to solve than first-order equations. One powerful
approach commonly used to lay siege to second-order differ-
ential equations is to express the solution as a power series:

(MB2.6)

and then to use the differential equation to find a relation 
between the coefficients. This approach results, for instance, in
the Hermite polynomials that form part of the solution of the
Schrödinger equation for the harmonic oscillator (Section 2.5).
Many of the second-order differential equations that occur in
this text are tabulated in compilations of solutions or can be
solved with mathematical software, and the specialized tech-
niques that are needed to establish the form of the solutions may
be found in mathematical texts.
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MB2.3 The solution of partial differential
equations

The only partial differential equations that we need to solve are
those that can be separated into two or more ordinary differ-
ential equations by the technique known as separation of vari-
ables. To discover if the differential equation in eqn MB2.2 can
be solved by this method we suppose that the full solution can be
factored into functions that depend only on x or only on y, and
write f(x,y) = X(x)Y(y). At this stage there is no guarantee that
the solution can be written in this way. Substituting this trial 
solution into the equation and recognizing that

we obtain

We are using d instead of ∂ at this stage to denote differentials
because each of the functions X and Y depend on one variable, x
and y, respectively. Division through by XY turns this equation
into

Now suppose that a is a function only of x, b a function of y, 
and c a constant. (There are various other possibilities that 
permit the argument to continue.) Then the first term depends
only on x and the second only on y. If x is varied, only the first
term can change. But as the other two terms do not change 
and the sum of the three terms is a constant (0), even that first
term must be a constant. The same is true of the second term.
Therefore, because each term is equal to a constant, we can 
write

We now have two ordinary differential equations to solve by the
techniques described in Section MB2.2. An example of this pro-
cedure is given in Section 3.1, for a particle in a two-dimensional
region.
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Nanosystems 1:
motion in one
dimension
To find the properties of systems according to quantum mechanics we need to solve the
appropriate Schrödinger equation. This and the following chapter present the essentials of
the solutions for three basic types of motion: translation, vibration, and rotation. We shall
see that only certain wavefunctions and their corresponding energies are acceptable.
Hence, quantization emerges as a natural consequence of the equation and the condi-
tions imposed on it. The solutions bring to light a number of highly nonclassical, and 
therefore surprising, features of particles, especially their ability to tunnel into and through
regions where classical physics would forbid them to be found. In this chapter, we consider
translational and vibrational motion in one dimension and illustrate the postulates intro-
duced in Chapter 1. By restricting our attention to motion in a single dimension, we keep 
the mathematical treatment relatively simple and focus on extracting physical insight 
from the Schrödinger equation that can be applied to problems in multiple dimensions 
as well.

Modern chemistry is increasingly interested in nanomaterials, materials composed of
entities with dimensions up to about 100 nm. It always has been: from its earliest days,
chemistry has been concerned with atoms, which have dimensions of the order of 
0.1 nm, and molecules, which have dimensions of the order of 1 nm. Now, though, 
its attention is turning to aggregates of atoms and molecules that have dimensions of
up to 100 nm and which—for quantum mechanical reasons—have properties that are
often strikingly different from those of bulk matter.

This chapter will show how quantum mechanics is applied to a range of systems.
For simplicity, we confine attention to one-dimensional systems initially. Although
they are simple, one-dimensional systems illustrate many of the principles of quan-
tum mechanics in an uncluttered way, and in some cases are directly relevant to the
discussion of nanomaterials.

We shall build on the foundations laid in Chapter 1. Because, according to Postu-
late I, all the dynamical information about a system is contained in its wavefunc-
tion, we must determine the wavefunction ψ(x) for the system of interest by 
solving the appropriate Schrödinger equation. We have to be aware, though, that 
an acceptable wavefunction of any system must satisfy the constraints specified 
in Section 1.6: it must be continuous, its slope must be continuous, it must be single-
valued, and not become infinite. To extract the information in the wavefunction, we
shall draw on the Born interpretation (Postulate II) and the properties of operators
(Postulates III to V). We have to be prepared, though, for the concept of comple-
mentarity (Section 1.9) to restrict the type of question that, in quantum mechanics, 
it is meaningful to ask.

2
Translational motion

2.1 Free motion

2.2 A particle in a box

2.3 Tunnelling

I2.1 Impact on nanoscience:
Scanning probe microscopy

Vibrational motion

2.4 The energy levels

2.5 The wavefunctions

Techniques of approximation

2.6 An overview of approximation
techniques

2.7 Time-independent perturbation
theory

Checklist of key ideas

Further information 2.1: Time-
independent perturbation theory

Discussion questions

Exercises

Problems
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Translational motion

Translation (motion through space) is the most primitive form
of motion and is where we begin. Despite being primitive, it is of
great importance: it is the form of motion by which gas-phase
molecules store energy, it is the type of motion by which elec-
trons conduct electricity, and—when the particle is trapped into
a small region of space—it accounts for some of the properties
of nanomaterials.

2.1 Free motion

The Schrödinger equation for a particle of mass m (with m = me

for an electron, m = mp for a proton, and so on) free to move in
one dimension was stated in eqn 1.7:

(2.1a)

For a region of space where the potential energy is zero, we can
set V = 0 and consider the equation

(2.1b)

The general solutions of this equation are

ψk = Aeikx + Be−ikx (2.2)

with A and B constants, as may be verified by substitution. 
Note that we are now labelling both the wavefunctions and the
energies (that is, the eigenfunctions and eigenvalues of @ ) with
the index k. These solutions are continuous, have continuous
slope everywhere, are single-valued, and do not go to infinity, and
so—in the absence of any other information—are acceptable for
all values of k. Because the energy of the particle is proportional
to k2, all values of the energy are permitted. It follows that the
translational energy of a free particle is not quantized.

The values of the constants A and B depend on how the state
of motion of the particle was prepared. If it is shot towards 
positive x, then its linear momentum will be +k$, as explained 
in Section 1.7, and its wavefunction will be proportional to eikx.
In this case B = 0 and A will be a normalization factor. If the 
particle is shot in the opposite direction, towards negative x,
then its linear momentum will be −k$ and its wavefunction 
proportional to e−ikx. In this case, A = 0 and B will be the norm-
alization factor. The wavefunctions eikx and e−ikx exemplify a
general feature of quantum mechanics: a particle with net 
motion is described by a complex wavefunction. A real wave-
function (for instance, if A = B = 1–2 in eqn 2.2 and ψ = cos kx) 
corresponds to zero net motion.
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A brief comment The wavefunction for a free particle, e±ikx, is
not square-integrable in a region of infinite length. To get
round this problem, we assume temporarily that the particle
is in a region of length L, and normalize the wavefunction. At
the end of any subsequent calculation using the wavefunc-
tion, L is allowed to become infinite: see Problem 2.11.

If the particle is in either of the pure momentum states eikx

or e−ikx, its probability density |ψ |2 is uniform. According to the
Born interpretation (Postulate II, Section 1.5), nothing further
can be said about the location of the particle. That conclusion 
is consistent with the uncertainty principle because, if the 
momentum is certain, then the position cannot be specified 
(the operators corresponding to x and p do not commute,
Section 1.10).

2.2 A particle in a box

In this section, we consider a particle in a box, in which a par-
ticle of mass m is confined between two walls at x = 0 and x = L: 
the potential energy is zero inside the box but rises abruptly 
to infinity at the walls (Fig. 2.1). Although this problem is very
elementary, there has been a resurgence of research interest in 
it now that nanostructures are used to trap electrons in cavities
resembling square wells. The particle in a box model is also 
an idealization of the potential energy of a gas-phase molecule
that is free to move in a one-dimensional container, and forms
the basis of a primitive treatment of the electronic structure of 
metals (Chapter 9) and conjugated molecules such as butadiene.
The particle in a box is also used in statistical thermodynamics
in assessing the contribution of the translational motion of
molecules to their thermodynamic properties (Chapter 13).
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Fig. 2.1 A particle in a one-dimensional region with impenetrable
walls. Its potential energy is zero between x = 0 and x = L, and
rises abruptly to infinity as soon as it touches the walls.
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(a) The acceptable solutions

The Schrödinger equation for a particle when it is between 
the walls (and where V = 0) is the same as for a free particle 
(eqn 2.1b), so the general solutions given in eqn 2.2 are also the
same. However, it will prove convenient to use e±ix = cos x ±
i sin x to write

ψk = Aeikx + Be−ikx = A(cos kx + i sin kx) + B(cos kx − i sin kx)
= (A + B) cos kx + (A − B)i sin kx

If we absorb all numerical factors into two new coefficients C
and D, then the general solutions and their energies take the
form

For 0 ≤ x ≤ L, ψk(x) = C sin kx + D cos kx (2.3a)

When the particle touches the walls, its potential energy rises
sharply to infinity. As a result, it is never found inside the mater-
ial of the walls and its wavefunction is zero there. That is

For x < 0 and x > L, ψk(x) = 0 (2.3b)

The requirement of the continuity of the wavefunction (which
stems from Postulates II and III) then implies that ψk(x) as given
by eqn 2.3a must also be zero at the walls, for it must match 
the wavefunction inside the material of the walls, where the
functions meet. That is, the wavefunction must satisfy the fol-
lowing two boundary conditions, or constraints on the function
at certain locations:

ψk(0) = 0 and ψk(L) = 0 (2.4)

In a more sophisticated treatment, the potential energy is sup-
posed not to be infinite initially, and the Schrödinger equation is
solved for all three regions. Then the potential energy is allowed
to rise to infinity. The continuity of the wavefunction at the two
walls then results in the same two boundary conditions.

As we show in the following Justification, the requirement 
that the wavefunction satisfy the boundary conditions in eqn 2.4
implies that only certain wavefunctions are acceptable and that
the only permitted wavefunctions and energies of the particle
are

(2.5)

where C is an as yet undetermined constant. That is, the 
presence of boundary conditions and the constraints on the
wavefunction implied by Postulates II and III imply that only
certain wavefunctions are acceptable and hence that the energy
is quantized. Note that the wavefunction and energy are 
now labelled with the dimensionless integer n instead of the
quantity k.
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Justification 2.1 The energy levels and wavefunctions of a
particle in a one-dimensional box

For an informal demonstration of quantization, we consider
each wavefunction to be a de Broglie wave that fits into the
container in the sense that an integral number of half wave-
lengths (one bulge, two bulges, . . . , Fig. 2.2) is equal to the
length of the box:

n × 1–2λ = L n = 1, 2, . . .

and therefore

with n = 1, 2, . . .

According to the de Broglie relation, these wavelengths cor-
respond to the momenta

The particle has only kinetic energy inside the box (where 
V = 0), so the permitted energies are

with n = 1, 2, . . .

as in eqn 2.5.
A more formal and widely applicable approach is as follows.

From the boundary condition ψk(0) = 0 and the fact that,
from eqn 2.3a, ψk(0) = D (because sin 0 = 0 and cos 0 = 1), we
can conclude that D = 0. It follows that the wavefunction
must be of the form

ψk(x) = C sin kx

From the second boundary condition, ψk(L) = 0, we know
that ψk(L) = C sin kL = 0. We could take C = 0, but doing 
so would give ψk(x) = 0 for all x, which would conflict with
Postulate II and the Born interpretation (the particle must be
somewhere). The alternative is to require that kL be chosen
so that sin kL = 0. This condition is satisfied if

kL = nπ n = 1, 2, . . .
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Fig. 2.2 An acceptable wavefunction must have a de Broglie
wavelength such that the wave fits into the box.
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The value n = 0 is ruled out, because it implies k = 0 and ψk(x)
= 0 everywhere (because sin 0 = 0), which is unacceptable.
Negative values of n merely change the sign of sin kL (because
sin(−x) = −sin x) and do not result in new solutions. The
wavefunctions are therefore

ψn(x) = C sin(nπx/L) n = 1, 2, . . .

(This is the point where we start to label the solutions with
the index n instead of k.) Because k and Ek are related by 
eqn 2.3a, and k and n are related by kL = nπ, it follows that the
energy of the particle is limited to En = n2h2/8mL2, the values
obtained by the informal procedure and stated in eqn 2.5.

We conclude that the energy of the particle in a one-dimensional
box is quantized and that this quantization arises from the bound-
ary conditions that ψ must satisfy. This is a general conclusion:
the need to satisfy boundary conditions in conjunction with the gen-
eral requirements of Postulates II and III implies that only certain
wavefunctions are acceptable, and hence restricts observables to
discrete values. So far, only energy has been quantized; shortly we
shall see that other physical observables may also be quantized.

We need to determine the constant C in eqn 2.5. To do so, we
normalize the wavefunction to 1. Because the wavefunction is
zero outside the range 0 ≤ x ≤ L, we use

for all n. Therefore, the complete solution to the particle in a box
problem is

(2.6a)

(2.6b)

It should be recalled from Section 1.8 that the hermiticity of the
hamiltonian operator implies that wavefunctions correspond-
ing to different energies are orthogonal. For the present system,
orthogonality means that

(2.7)

This relation was confirmed in Example 1.6 in Section 1.8 for the
specific examples of wavefunctions with n = 1 and n′ = 2.

Self-test 2.1 Provide the intermediate steps for the deter-
mination of the normalization constant C. Hint. Use the
standard integral ∫sin2ax dx = 1–2x − (1/4a) sin 2ax + constant
and the fact that sin 2nπ = 0, with n an integer.
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The energies and wavefunctions are labelled with the ‘quan-
tum number’ n. A quantum number is an integer (in some cases,
as we shall see, a half-integer) that labels the state of the system.
For a particle in a box there is an infinite number of acceptable
solutions, and the quantum number n specifies the one of 
interest (Fig. 2.3). As well as acting as a label, a quantum number
can often be used to calculate the energy corresponding to the
state and to write down the wavefunction explicitly (in the 
present example, by using the relations in eqn 2.6).

(b) The properties of the solutions

Figure 2.4 shows some of the wavefunctions of a particle in a
box: they are all sine functions with the same amplitude but 
different wavelengths. Shortening the wavelength results in a
sharper average curvature of the wavefunction and therefore an
increase in the kinetic energy of the particle (its only source of
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Fig. 2.3 The allowed energy levels for a particle in a box. Note that
the energy levels increase as n2, and that their separation
increases as the quantum number increases.

12345

x
A

Fig. 2.4 The first five normalized wavefunctions of a particle 
in a box. Each wavefunction is a standing wave, and successive
functions possess one more half wave and a correspondingly
shorter wavelength.

interActivity Plot the probability density for a particle in a
box with n = 1, 2, . . . 5 and n = 50. How do your plots 

illustrate the correspondence principle?
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energy because V = 0 inside the box). Note that the number of
nodes, which are points where the wavefunction passes through
zero (not merely reaching zero, as at the walls), also increases 
as n increases, and that the wavefunction ψn has n − 1 nodes.
Increasing the number of nodes between walls of a given separa-
tion increases the average curvature of the wavefunction and
hence the kinetic energy of the particle.

The linear momentum of a particle in a box is not well defined
because the wavefunction sin kx is not an eigenfunction of the
linear momentum operator. However, each wavefunction is a
superposition of the linear momentum eigenfunctions eikx and
e−ikx. Then, because sin x = (eix − e−ix)/2i, we can write

(2.8)

It follows (from Postulate V) that measurement of the linear
momentum will give the value +k$ for half the measurements of
momentum and −k$ for the other half. This detection of oppos-
ite directions of travel with equal probability is the quantum
mechanical version of the classical picture that a particle in a box
rattles from wall to wall and in any given period spends half its
time travelling to the left and half travelling to the right.

Self-test 2.2 What is (a) the average value of the linear 
momentum of a particle in a box with quantum number n,
(b) the average value of p2?

[(a) 〈p〉 = 0, (b) 〈p2〉 = n2h2/4L2]

Because n cannot be zero, the lowest energy that the particle
may possess is not zero (as would be allowed by classical 
mechanics, corresponding to a stationary particle) but

(2.9)

This lowest, irremovable energy is called the zero-point energy.
The physical origin of the zero-point energy can be explained in
two ways:

• The Heisenberg uncertainty principle requires a particle 
to possess kinetic energy if it is confined to a finite region: the 
location of the particle is not completely indefinite (Δx ≠ ∞), 
so the uncertainty in its momentum cannot be precisely zero
(Δp ≠ 0). Because Δp = (〈p2〉 − 〈p〉2)1/2 = 〈p2〉1/2 in this case, Δp ≠ 0
implies that 〈p2〉 ≠ 0, which implies that the particle must always
have nonzero kinetic energy.

• If the wavefunction is to be zero at the walls, but smooth,
continuous, and not zero everywhere, then it must be curved,
and curvature in a wavefunction implies the possession of 
kinetic energy.
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The separation between adjacent energy levels with quantum
numbers n and n + 1 is

(2.10)

This separation decreases as the length of the container in-
creases, and is very small when the container has macroscopic
dimensions. The separation of adjacent levels becomes zero
when the walls are infinitely far apart. Atoms and molecules free
to move in normal laboratory-sized vessels may therefore be
treated as though their translational energy is not quantized. We
have already seen (Section 2.1) that the translational energy of
completely free particles (those not confined by walls) is not
quantized.

Example 2.1 Estimating an absorption wavelength

β-Carotene (1) is a linear polyene in which 10 single and 11
double bonds alternate along a chain of 22 carbon atoms.

If we take each CC bond length to be about 140 pm, then the
length L of the molecular box in β-carotene is L = 2.94 nm.
Estimate the wavelength of the light absorbed by this mole-
cule from its ground state to the next higher excited state.

Method For reasons that will be familiar from introductory
chemistry, each C atom contributes one p electron to the π
orbitals. Use eqn 2.10 to calculate the energy separation 
between the highest occupied and the lowest unoccupied 
levels, and convert that energy to a wavelength by using the
Bohr frequency relation (eqn 1.1).

Answer There are 22 C atoms in the conjugated chain; each
contributes one p electron to the levels, so each level up to 
n = 11 is occupied by two electrons. The separation in energy
between the ground state and the state in which one electron
is promoted from n = 11 to n = 12 is

= 1.60 × 10−19 J

It follows from the Bohr frequency condition (ΔE = hν) that
the frequency of radiation required to cause this transition is
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n = 1

n = 1
n = 2

n = 2
(a)

(c)

(b)

Wall Wall

Fig. 2.5 (a) The first two wavefunctions, (b) the corresponding
probability densities, and (c) a representation of the probability
density in terms of the darkness of shading.

or 241 THz (1 THz = 1012 Hz). The experimental value is 
603 THz (λ = 497 nm), corresponding to radiation in the vis-
ible range of the electromagnetic spectrum. Considering the
crudeness of the model we have adopted here, we should be
encouraged that the computed and observed frequencies
agree to within a factor of 2.5.

Self-test 2.3 Estimate a typical nuclear excitation energy 
in electronvolts (1 eV = 1.602 × 10−19 J; 1 GeV = 109 eV) by
calculating the first excitation energy of a proton confined to
a square well with a length equal to the diameter of a nucleus
(approximately 1 × 10−15 m, or 1 fm). [0.6 GeV]

The probability density for a particle in a box is

(2.11)

and varies with position. The nonuniformity is pronounced
when n is small (Fig. 2.5), but—provided we ignore the fine 
detail of the increasingly rapid oscillations—ψ 2(x) becomes
more uniform as n increases. The probability density at high
quantum numbers reflects the classical result that a particle
bouncing between the walls spends, on the average, equal times
at all points. That the quantum result corresponds to the clas-
sical prediction at high quantum numbers is an illustration 
of the correspondence principle, which states that classical 
mechanics emerges from quantum mechanics as high quantum
numbers are reached.
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Example 2.2 Using the particle-in-a-box solutions

The wavefunctions of an electron in a conjugated polyene
can be approximated by particle-in-a-box wavefunctions.
What is the probability, P, of locating the electron between 
x = 0 (the left-hand end of a molecule) and x = 0.2 nm in 
its lowest energy state in a conjugated molecule of length 
1.0 nm?

Method According to the Born interpretation, ψ 2dx is the
probability of finding the particle in the small region dx
located at x; therefore, the total probability of finding the 
electron in the specified region is the integral of ψ 2dx over
that region. The wavefunction of the electron is given in eqn
2.6b with n = 1. A useful integral is provided in Self-test 2.1.

Answer The probability of finding the particle in a region 
between x = 0 and x = l is

We then set n = 1 and l = 0.2 nm, which gives P = 0.05.
The result corresponds to a chance of 1 in 20 of finding the
electron in the region. As n becomes infinite, the sine term,
which is multiplied by 1/n, makes no contribution to P and
the classical result, P = l /L, is obtained.

Self-test 2.4 Calculate the probability that an electron in the
state with n = 1 will be found between x = 0.25L and x = 0.75L
in a conjugated molecule of length L (with x = 0 at the left-
hand end of the molecule). [0.82]

2.3 Tunnelling

If the potential energy of a particle does not rise to infinity when
it is in the walls of the container, and E < V, the wavefunction
does not decay abruptly to zero. If the walls are thin (so that the
potential energy falls to zero again after a finite distance), then
the wavefunction oscillates inside the box, varies smoothly 
inside the region representing the wall, and oscillates again on
the other side of the wall outside the box (Fig. 2.6). Hence the
particle might be found on the outside of a container whereas
according to classical mechanics the particle has insufficient 
energy to escape and will be reflected off the wall. Such leakage
by penetration through a classically forbidden region is called
tunnelling and is a consequence of the wave character of matter.
Tunnelling has very important implications for the electronic
properties of materials, not only nanomaterials, for the rates of
electron transfer reactions, the properties of acids and bases, and
for the techniques currently used to study surfaces.
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The Schrödinger equation can be used to calculate the prob-
ability of tunnelling of a particle of mass m incident from the left
on a barrier that extends from x = 0 to x = L. For simplicity, we
suppose that, once inside the barrier, the particle has a constant
potential energy V. On the left of the barrier (x < 0) the wave-
functions are those of a particle with V = 0, so from eqn 2.2 we
can write

ψ = Aeikx + Be−ikx k$ = (2mE)1/2 (2.12)

The Schrödinger equation for the region representing the bar-
rier (0 ≤ x ≤ L), where the potential energy is the constant V, is

(2.13)

We shall consider particles that have E < V (so, according to clas-
sical physics, the particle has insufficient energy to pass through
the barrier), and therefore V − E is positive. The general solu-
tions of this equation are

ψ = Ceκx + De−κx κ$ = {2m(V − E)}1/2 (2.14)

as we can readily verify by differentiating ψ twice with respect 
to x. The important feature to note is that the two exponentials
in eqn 2.14 are now real functions, as distinct from the complex,
oscillating functions for the region where V = 0. (Oscillating
functions would be obtained in the region 0 ≤ x ≤ L if we consid-
ered energies above the barrier height, E > V; see Problem 2.14.)
To the right of the barrier (x > L), where V = 0 again, the wave-
functions are

ψ = A′eikx + B′e−ikx k$ = (2mE)1/2 (2.15)

We now investigate the relationships among the coefficients
A, B, C, D, A′, and B′, which might be complex numbers. The
complete wavefunction for a particle incident from the left con-
sists of (Fig. 2.7):
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• an incident wave (recall that Aeikx corresponds to positive
momentum);

• a wave reflected from the barrier (recall that Be−ikx corres-
ponds to negative momentum, motion to the left);

• the exponentially changing amplitudes inside the barrier
(eqn 2.14); and

• an oscillating wave (eqn 2.15) representing the propagation
of the particle to the right after tunnelling through the barrier
successfully.

The acceptable wavefunctions must obey the conditions set
out in Section 1.6. In particular, they must be continuous at the
edges of the barrier (at x = 0 and x = L, remembering that e0 = 1):

A + B = C + D CeκL + De−κL = A′eikL + B′e−ikL (2.16a)

Their slopes (their first derivatives) must also be continuous
there (Fig. 2.8):

ikA − ikB = κC − κD
κCeκL − κDe−κL = ikA′eikL − ikB′e−ikL (2.16b)

At this stage, we have four equations for the six unknown
coefficients. However, since the particles are shot towards the
barrier from the left, there can be no particles travelling to the
left on the right of the barrier (x > L) and therefore, we can set 
B′ = 0. This removes one more unknown. Note that we cannot 
set B = 0 because some particles may be reflected back from 
the barrier toward negative x. A normalization requirement 
for the complete wavefunction would present a fifth equation
from which the five unknown coefficients could be determined.
However, we shall calculate the ratio of coefficients and there-
fore not need to invoke normalization.

The probability that a particle is travelling towards positive x
(to the right) on the left of the barrier (x < 0) is proportional 
to | A |2, and the probability that it is travelling to the right on the
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Fig. 2.6 A particle incident on a barrier from the left has an
oscillating wavefunction, but inside the barrier there are no
oscillations (for E < V). If the barrier is not too thick, the
wavefunction is nonzero at its opposite face, and so oscillations
begin again there. (Only the real component of the wavefunction
is shown.)

Incident wave

Reflected wave

Transmitted
wave

Fig. 2.7 When a particle is incident on a barrier from the left, the
wavefunction consists of a wave representing linear momentum
to the right, a reflected component representing momentum 
to the left, a varying but not oscillating component inside the
barrier, and a (weak) wave representing motion to the right on
the far side of the barrier.
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right of the barrier (x > L) is | A′ |2. The ratio of these two prob-
abilities is called the transmission probability, T. After some 
algebra (see Problem 2.13) we find

(2.17a)

where ε = E/V. This function is plotted in Fig. 2.9; the transmis-
sion coefficient for E > V (which you are invited to calculate in
Problem 2.14) is shown there too. For high, wide barriers (in the
sense that κL >> 1), eqn 2.17a simplifies to
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T ≈ 16ε(1 − ε)e−2κL (2.17b)

The transmission probability decreases exponentially with the
thickness of the barrier and with m1/2. It follows that particles of
low mass are more able to tunnel through barriers than heavy
ones (Fig. 2.10). Tunnelling is very important for electrons and
muons (mμ ≈ 207me), and moderately important for protons
(mp ≈ 1840me); for heavier particles it is less important.

A number of effects in chemistry (for example, the isotope-
dependence of some reaction rates) depend on the ability of the
proton to tunnel more readily than the deuteron. The very rapid
equilibration of proton transfer reactions is also a manifestation
of the ability of protons to tunnel through barriers and transfer
quickly from an acid to a base. Tunnelling of protons between
acidic and basic groups is also an important feature of the mech-
anism of some enzyme-catalysed reactions.

IMPACT ON NANOSCIENCE

I2.1 Scanning probe microscopy

As we have indicated, nanoscience is the study of atomic and
molecular assemblies with dimensions ranging from 1 nm to
about 100 nm and nanotechnology is concerned with the incor-
poration of such assemblies into devices. The future economic
impact of nanotechnology could be very significant. For exam-
ple, increased demand for very small digital electronic devices
has driven the design of ever smaller and more powerful micro-
processors. However, there is an upper limit on the density of
electronic circuits that can be incorporated into silicon-based
chips with current fabrication technologies. As the ability to
process data increases with the number of circuits in a chip, it
follows that soon chips and the devices that use them will have to
become bigger if processing power is to increase indefinitely.
One way to circumvent this problem is to fabricate devices from
nanometre-sized components.

A

x

V

Fig. 2.8 The wavefunction and its slope must be continuous at the
edges of the barrier. The conditions for continuity enable us to
connect the wavefunctions in the three zones and hence to
obtain relations between the coefficients that appear in the
solutions of the Schrödinger equation.
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Fig. 2.10 The wavefunction of a heavy particle decays more
rapidly inside a barrier than that of a light particle.
Consequently, a light particle has a greater probability 
of tunnelling through the barrier.
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Fig. 2.9 The transmission probabilities for passage through a
barrier. The horizontal axis is the energy of the incident particle
expressed as a multiple of the barrier height. The curves are
labelled with the value of L(2mV)1/2/$. The graph on the left is
for E < V and that on the right for E > V. Note that T > 0 for 
E < V whereas classically T would be zero. However, T < 1 for 
E > V, whereas classically T would be 1.

interActivity Plot T against ε for a hydrogen molecule, a 
proton, and an electron.
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We will explore several concepts of nanoscience through-
out the text. We begin with the description of scanning probe 
microscopy (SPM), a collection of techniques that can be used to
visualize and manipulate objects as small as atoms on surfaces.
Consequently, SPM has far better resolution than electron 
microscopy (Impact I1.1).

One version of SPM is scanning tunnelling microscopy (STM),
in which a platinum–rhodium or tungsten needle is scanned
across the surface of a conducting solid. When the tip of the
needle is brought very close to the surface, electrons tunnel
across the intervening space (Fig. 2.11). In the ‘constant-current
mode’ of operation, the stylus moves up and down correspond-
ing to the form of the surface, and the topography of the surface,
including any adsorbates, can be mapped on an atomic scale.
The vertical motion of the stylus is achieved by fixing it to a
piezoelectric cylinder, which contracts or expands according to
the potential difference it experiences. In the ‘constant-z mode’,
the vertical position of the stylus is held constant and the current
is monitored. Because the tunnelling probability is very sensitive
to the size of the gap, the microscope can detect tiny, atom-scale
variations in the height of the surface.

Figure 2.12 shows an example of the kind of image obtained
with a surface, in this case of gallium arsenide, that has been
modified by addition of atoms, in this case caesium atoms. Each
‘bump’ on the surface corresponds to an atom. In a further vari-
ation of the STM technique, the tip may be used to nudge single
atoms around on the surface, making possible the fabrication of
complex and yet very tiny nanometre-sized structures.

In atomic force microscopy (AFM) a sharpened stylus attached
to a cantilever is scanned across the surface. The force exerted by
the surface and any bound species pushes or pulls on the stylus
and deflects the cantilever (Fig. 2.13). The deflection is monitored
either by interferometry or by using a laser beam. Because no

current is needed between the sample and the probe, the technique
can be applied to non-conducting surfaces too. A spectacular
demonstration of the power of AFM is given in Fig. 2.14, which
shows individual DNA molecules on a solid surface.

Scanning probe microscopy is an essential tool in character-
ization and even fabrication of nanowires (Section 9.9). For 
example, Fig. 2.15 shows an AFM image of germanium nanowires
on a silicon surface. The wires are about 2 nm high, 10–32 nm

Scan

Tunnelling current

Fig. 2.11 A scanning tunnelling microscope makes use of the
current of electrons that tunnel between the surface and the tip.
That current is very sensitive to the distance of the tip above the
surface.

Fig. 2.12 An STM image of caesium atoms on a gallium arsenide
surface.

Surface

Probe

Cantilever

Laser
radiation

Probe

Fig. 2.13 In atomic force microscopy, a laser beam is used to
monitor the tiny changes in the position of a probe as it is
attracted to or repelled from atoms on a surface.

Fig. 2.14 An AFM image of bacterial DNA plasmids on a mica
surface. (Courtesy of Veeco Instruments.)
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Fig. 2.15 Germanium nanowires fabricated on to a silicon surface
by molecular beam epitaxy. (Reproduced with permission from
T. Ogino et al., Acc. Chem. Res. 32, 447 (1999).)

wide, and 10–600 nm long. Direct manipulation of atoms on a
surface can lead to the formation of nanowires. The Coulomb
attraction between an atom and the tip of an STM can be 
exploited to move atoms along a surface, arranging them into
patterns, such as wires.

Example 2.3 Exploring the origin of the current in scanning
tunnelling microscopy

To appreciate the distance dependence of the tunnelling cur-
rent in STM, suppose that the wavefunction of the electron 
in the gap between sample and needle is given by ψ = Be−κx,
where κ = {2me(V − E)/$2}1/2; take V − E = 2.0 eV. By what 
factor would the current drop if the needle is moved from 
L1 = 0.50 nm to L2 = 0.60 nm from the surface?

Method We regard the tunnelling current to be proportional
to the transmission probability T, so the ratio of the currents
is equal to the ratio of the transmission probabilities. To
choose between eqn 2.17a or 2.17b for the calculation of T, first
calculate κL for the shortest distance L1: if κL1 > 1, then use
eqn 2.17b.

Answer When L = L1 = 0.50 nm and V − E = 2.0 eV = 3.20 
× 10−19 J the value of κL is

× (5.0 × 10−10 m)

= (7.24 × 109 m−1) × (5.0 × 10−10 m) = 3.6
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Because κL1 > 1, we use eqn 2.17b to calculate the transmis-
sion probabilities at the two distances. It follows that

We conclude that, at a distance of 0.60 nm between the 
surface and the needle, the current is 24 per cent of the value
measured when the distance is 0.50 nm.

Self-test 2.5 The ability of a proton to tunnel through a 
barrier contributes to the rapidity of proton transfer reac-
tions in solution and therefore to the properties of acids and
bases. Estimate the relative probabilities that a proton and 
a deuteron (md = 3.342 × 10−27 kg) can tunnel through the
same barrier of height 1.0 eV (1.6 × 10−19 J) and length 100 pm
when their energy is 0.9 eV. Any comment?

[TH/TD = 3.1 × 102; we expect proton transfer reactions 
to be much faster than deuteron transfer reactions.]

Vibrational motion

Vibrational motion is the second type of motion we consider. It
is important in chemistry because atoms in molecules and solids
vibrate around their mean positions as bonds stretch, compress,
and bend. The detection and interpretation of vibrational fre-
quencies is the basis of infrared spectroscopy, and we need to
understand molecular vibration in order to interpret thermo-
dynamic properties such as heat capacities. Molecular vibration
also plays a role in the rates of chemical reactions, so we need
this material when discussing the quantum mechanical aspects
of chemical kinetics.

2.4 The energy levels

The only type of vibrational motion we need consider at this
stage is ‘harmonic motion’ in one dimension. A particle under-
goes harmonic motion if it experiences a restoring force propor-
tional to its displacement:

F = −kx (2.18)

where k is the force constant: the stiffer the ‘spring’, the greater
the value of k. Because force is related to potential energy by 
F = −dV/dx (see Fundamentals Section F.6), the force in eqn 2.18
corresponds to the particle having a potential energy

V(x) = 1–2kx2 (2.19)
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when it is displaced through a distance x. This expression, which
is the equation of a parabola (Fig. 2.16), is the origin of the term
‘parabolic potential energy’ for the potential energy character-
istic of a harmonic oscillator. The Schrödinger equation for the
particle is therefore

(2.20)

We can anticipate that the energy of an oscillator will be quantized
because the wavefunction has to satisfy boundary conditions: it
will not be found with very large extensions because its potential
energy rises to infinity there. That is, when we impose the bound-
ary conditions ψ = 0 at x = ±∞, we can expect to find that only cer-
tain wavefunctions and their corresponding energies are possible.

Equation 2.20 is a standard equation in the theory of differential
equations and its solutions are well known to mathematicians.1

The permitted energy levels are

Ev = (v + 1–2)$ω v = 0, 1, 2, . . . (2.21)

where v is another example of a quantum number. Note that ω
(omega) increases with increasing force constant and decreasing
mass. It follows that the separation between adjacent levels is

Ev+1 − Ev = $ω (2.22)

which is the same for all v. Therefore, the energy levels form a
uniform ladder of spacing $ω (Fig. 2.17). The energy separation
$ω is negligibly small for macroscopic objects (with large mass),
but is of great importance for objects with mass similar to that of
atoms. As an example, which we describe in the illustration below,
for a diatomic molecule X-H, where X is a heavy atom treated
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as a stationary anchor and the light hydrogen atom moving and
vibrating as a harmonic oscillator, we can substitute mH for m.

Because the smallest permitted value of v is 0, it follows from
eqn 2.21 that a harmonic oscillator has a zero-point energy

E0 = 1–2$ω (2.23)

The mathematical reason for the zero-point energy is that v
cannot take negative values, for if it did the wavefunction would
be ill-behaved. The physical reason is the same as for the particle
in a box: the particle is confined, its position is not completely
uncertain, and therefore its momentum, and hence its kinetic
energy, cannot be exactly zero. We can picture this zero-point
state as one in which the particle fluctuates incessantly around
its equilibrium position; classical mechanics would allow the
particle to be perfectly still.

l A BRIEF ILLUSTRATION

Atoms vibrate relative to one another in molecules with the
bond acting like a spring. Consider an X-H chemical bond,
where a heavy X atom forms a stationary anchor for the very
light H atom. That is, only the H atom moves, vibrating as a
harmonic oscillator. Therefore, eqn 2.21 describes the allowed
vibrational energy levels of an X-H bond. The force constant
of a typical X-H chemical bond is around 500 N m−1. For 
example k = 516.3 N m−1 for the 1H35Cl bond. Because the
mass of a proton is about 1.7 × 10−27 kg, using k = 500 N m−1

in eqn 2.21 gives ω ≈ 5.4 × 1014 s−1 (540 THz). It follows from
eqn 2.22 that the separation of adjacent levels is $ω ≈ 5.7 ×
10−20 J (57 zJ, about 0.36 eV). This energy separation corres-
ponds to 34 kJ mol−1, which is chemically significant. From
eqn 2.23, the zero-point energy of this molecular oscillator is
about 28 zJ, which corresponds to 0.18 eV, or 17 kJ mol−1.

The excitation of the vibration of the bond from one level
to the level immediately above requires 57 zJ. Therefore, if 
it is caused by a photon, the excitation requires radiation of
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Fig. 2.16 The parabolic potential energy V = 1–2 kx 2 of a harmonic
oscillator, where x is the displacement from equilibrium. The
narrowness of the curve depends on the force constant k: the
larger the value of k, the narrower the well.
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Fig. 2.17 The energy levels of a harmonic oscillator are evenly
spaced with separation $ω, with ω = (k/m)1/2. Even in its lowest
state, an oscillator has an energy greater than zero.

1 For details, see our Molecular quantum mechanics, Oxford University Press,
Oxford (2005).
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frequency ν = ΔE/h = 86 THz and wavelength λ = c/ν = 3.5 μm.
It follows that transitions between adjacent vibrational energy
levels of molecules are stimulated by or emit infrared radi-
ation (see Chapter 10). l

2.5 The wavefunctions

It is helpful at the outset to identify the similarities between the
harmonic oscillator and the particle in a box, for then we shall 
be able to anticipate the form of the oscillator wavefunctions 
without detailed calculation. Like the particle in a box, a particle
undergoing harmonic motion is trapped in a symmetrical well
in which the potential energy rises to large values (and ulti-
mately to infinity) for sufficiently large displacements (compare
Figs. 2.1 and 2.16). However, there are two important differ-
ences. First, because the potential energy climbs towards infinity
only as x 2 and not abruptly, the wavefunction approaches zero
more slowly at large displacements than for the particle in a box.
Second, as the kinetic energy of the oscillator depends on the
displacement in a more complex way (on account of the vari-
ation of the potential energy), the curvature of the wavefunction
also varies in a more complex way.

(a) The form of the wavefunctions

The detailed solution of eqn 2.20 shows that the wavefunctions
for a harmonic oscillator have the form

ψ(x) = N × (polynomial in x) 
× (bell-shaped Gaussian function)

where N is a normalization constant. A Gaussian function is a
bell-shaped function of the form e−x2

(Fig. 2.18). The precise
form of the wavefunctions is

ψv(x) = NvHv(y)e−y2/2 (2.24)

The factor Hv(y) is a Hermite polynomial; their form and some
of their properties are listed in Table 2.1.
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A brief comment Hermite polynomials are members of a
class of functions called orthogonal polynomials. These poly-
nomials have a wide range of important properties that allow
a number of quantum mechanical calculations to be done
with relative ease.

Because H0(y) = 1, the wavefunction for the ground state (the
lowest energy state, with v = 0) of the harmonic oscillator is

ψ0(x) = N0e−y2/2 = N0e−x 2/2α 2
(2.25a)

and the corresponding probability density is

ψ2
0(x) = N 2

0e−y2 = N 2
0e−x2/α 2

(2.25b)

The wavefunction and the probability density are shown in 
Fig. 2.19. Both curves have their largest values at zero displace-
ment (at x = 0), so they capture the classical picture of the 
zero-point energy as arising from the ceaseless fluctuation of 
the particle about its equilibrium position.

The wavefunction for the first excited state of the oscillator,
the state with v = 1, is obtained by noting that H1(y) = 2y
(note that some of the Hermite polynomials are very simple
functions!):

(2.26)

This function has a node at zero displacement (x = 0), and the
probability density has maxima at x = ±α (Fig. 2.20). The shapes
of several wavefunctions are shown in Fig. 2.21. The shading 
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Fig. 2.18 The graph of the Gaussian function, f(x) = e−x2
.

Table 2.1 The Hermite polynomials Hv(y)

V HV(y)

0 1

1 2y

2 4y2 − 2

3 8y3 − 12y

4 16y4 − 48y2 + 12

5 32y5 − 160y3 + 120y

6 64y6 − 480y4 + 720y2 − 120

The Hermite polynomials are solutions of the differential equation

Hv″ − 2yHv′ + 2vHv = 0

where primes denote differentiation. They satisfy the recursion relations

Hv+1 − 2yHv + 2vHv−1 = 0

An important integral is
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in Figs 2.19 and 2.20 that represents the probability density 
is based on the squares of these functions. At high quantum
numbers, harmonic oscillator wavefunctions have their largest
amplitudes near the turning points of the classical motion (the
locations at which V = E, so the kinetic energy is zero). We see
classical properties emerging in the correspondence limit of
high quantum numbers, for a classical particle is most likely to
be found at the turning points (where it travels most slowly) and
is least likely to be found at zero displacement (where it travels
most rapidly).

We shall pause frequently throughout the text to interpret
various mathematical expressions. In the case of the harmonic
oscillator wavefunctions in eqn 2.24, we should note the following:

• The Gaussian function goes very strongly to zero as the 
displacement increases (in either direction), so all the wavefunc-
tions approach zero at large displacements.

• The exponent y2 is proportional to x2 × (mk)1/2, so the wave-
functions decay more rapidly for large masses and stiff springs.
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Fig. 2.19 The normalized wavefunction and probability density
(shown also by shading) for the lowest energy state of a
harmonic oscillator.
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Fig. 2.20 The normalized wavefunction and probability density
(shown also by shading) for the first excited state of a harmonic
oscillator.
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Fig. 2.21 The normalized wavefunctions for the first five states of
a harmonic oscillator. Note that the number of nodes is equal to
v and that alternate wavefunctions are symmetrical or
antisymmetrical about y = 0 (zero displacement).
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Fig. 2.22 The probability densities for the first five states of a
harmonic oscillator and the state with v = 20. Note how the
regions of highest probability density move towards the turning
points of the classical motion as v increases.

interActivity To gain some insight into the origins of the
nodes in the harmonic oscillator wavefunctions, plot the 

Hermite polynomials Hv(y) for v = 0 through 5.

• As v increases, the Hermite polynomials become larger 
at large displacements (as xv), so the wavefunctions grow large
before the Gaussian function damps them down to zero: as a re-
sult, the wavefunctions spread over a wider range as v increases
(Fig. 2.22).



Example 2.4 Normalizing a harmonic oscillator wavefunction

Find the normalization constant for the harmonic oscillator
wavefunctions.

Method Normalization is carried out by evaluating the integ-
ral of |ψ |2 over all space and then finding the normalization
factor from eqn 1.4. The normalized wavefunction is then
equal to Nψ. In this one-dimensional problem, the volume 
element is dx and the integration is from −∞ to +∞. The 
wavefunctions are expressed in terms of the dimensionless
variable y = x/α, so begin by expressing the integral in terms 
of y by using dx = αdy. The integrals required are given in
Table 2.1.

Answer The unnormalized wavefunction is

ψv(x) = Hv(y)e−y2/2

It follows from the integrals given in Table 2.1 that

= α π1/22vv!

where v! = v(v − 1)(v − 2) . . . 1. Therefore,

Note that for a harmonic oscillator Nv is different for each
value of v.

Self-test 2.6 Confirm, by explicit evaluation of the integral,
that ψ0 and ψ1 are orthogonal.

[Evaluate the integral ∫∞
−∞ψ0*ψ1 dx by using the 

information in Table 2.1]

Example 2.5 Locating the nodes of a harmonic oscillator

Consider the X-H chemical bond of the illustration on p. 62
where the X atom acts as a stationary anchor for the H atom.
If the H atom is undergoing harmonic motion with v = 2, 
determine the X-H bond distances at which there is zero
probability density of finding the proton. Take the mass 
of the proton to be 1.7 × 10−27 kg, the force constant to be 
500 N m−1, and the X-H equilibrium bond length to be 
1.20 × 10−10 m.
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Method The distances at which there is zero probability 
density of finding the H atom are the nodes of the v = 2 
harmonic oscillator wavefunction. Since the Gaussian func-
tion does not pass through zero, the nodes will be those 
values of x at which the Hermite polynomial passes though
zero.

Answer Because H2(y) = 4y2 − 2, we need to solve 4y2 − 2 = 0
which has solutions at y = ±1/21/2. The nodes are therefore at 
x = ±α/21/2. From eqn 2.24 and the values of m and k given,
we find x = ±7.6 pm. Because x is the displacement from 
equilibrium, these displacements correspond to X-H bond
distances of 112 pm and 128 pm. For higher values of v, it 
is best and often necessary to use numerical methods (for 
example, a root-extraction procedure of a mathematics pack-
age) to locate zeroes.

Self-test 2.7 Suppose the molecule is vibrationally excited to
the state v = 3. Where will the proton not be found?

[x = 0, ±α(3/2)1/2; 120 pm, 107 pm, 133 pm]

(b) The properties of oscillators

We saw in Section 1.8 that the average value of a property is cal-
culated by evaluating the expectation value of the corresponding
operator (eqn 1.15). Now that we know the wavefunctions of the
harmonic oscillator, we can start to explore its properties by
evaluating integrals of the type

(2.27)

(Here and henceforth, the wavefunctions are all taken to be nor-
malized to 1.) When the explicit wavefunctions are substituted,
the integrals look fearsome, but the Hermite polynomials have
many simplifying features. For instance, we show in the follow-
ing example that the mean displacement, 〈x〉, and the mean
square displacement, 〈x 2〉, of the oscillator when it is in the state
with quantum number v are

〈x〉 = 0 (2.28)

The result for 〈x〉 shows that the oscillator is equally likely 
to be found on either side of x = 0 (like a classical oscillator). 
The result for 〈x2〉 shows that the mean square displacement 
increases with v. This increase is apparent from the probability
densities in Fig. 2.22, and corresponds to the classical amplitude
of swing increasing as the oscillator becomes more highly 
excited.
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The mean potential energy of an oscillator, the expectation
value of V = 1–2kx 2, can now be calculated very easily:

(2.29a)

Because the total energy in the state with quantum number v is
(v + 1–2)$ω, it follows that

〈V 〉 = 1–2Ev (2.29b)

The total energy is the sum of the potential and kinetic energies, so
it follows at once that the mean kinetic energy of the oscillator is
(as could also be shown using the kinetic energy operator)

〈Ek〉 = 1–2Ev (2.29c)

The result that the mean potential and kinetic energies of a
harmonic oscillator are equal (and therefore that both are equal
to half the total energy) is a special case of the virial theorem:

If the potential energy of a particle has the form V = ax b, then
its mean potential and kinetic energies are related by

2〈Ek〉 = b〈V 〉 (2.30)

For a harmonic oscillator b = 2, so 〈Ek〉 = 〈V 〉, as we have found.
The virial theorem is a short cut to the establishment of a num-
ber of useful results, and we shall use it again.

An oscillator may be found at extensions with V > E that are
forbidden by classical physics, for they correspond to negative
kinetic energy. For example, it follows from the shape of the
wavefunction (see the Justification below) that in its lowest 
energy state there is about an 8 per cent chance of finding an 
oscillator stretched beyond its classical limit and an 8 per cent
chance of finding it with a classically forbidden compression.
These tunnelling probabilities are independent of the force con-
stant and mass of the oscillator. The probability of being found
in classically forbidden regions decreases quickly with increas-
ing v, and vanishes entirely as v approaches infinity, as we would
expect from the correspondence principle. Macroscopic oscilla-
tors (such as pendulums) are in states with very high quantum
numbers, so the probability that they will be found in a classic-
ally forbidden region is wholly negligible. Molecules, however,
are normally in their vibrational ground states, and for them the
probability is very significant.

Justification 2.2 Tunnelling in the quantum mechanical
harmonic oscillator

According to classical mechanics, the turning point, xtp, of an
oscillator occurs when its kinetic energy is zero, which is
when its potential energy 1–2kx2 is equal to its total energy E.
This equality occurs when
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Example 2.6 Calculating properties of a harmonic oscillator

Consider the harmonic oscillator motion of the X-H molecule
encountered in Example 2.5. Calculate the mean displacement
of the oscillator when it is in a state with quantum number v.

Method Normalized wavefunctions must be used to calcu-
late the expectation value. The operator for position along x
is multiplication by the value of x (Section 1.6). The resulting
integral can be evaluated either by inspection (the integrand
is the product of an odd and an even function), or by explicit
evaluation using the formulas in Table 2.1. To give practice in
this type of calculation, we illustrate the latter procedure. We
shall need the relation x = αy, which implies that dx = αdy.

A brief comment An even function is one for which f(−x) =
f(x); an odd function is one for which f(−x) = −f(x). The
product of an odd and even function is itself odd, and the 
integral of an odd function over a symmetrical range about 
x = 0 is zero.

Answer The integral we require is

Now use the recursion relation (Table 2.1) to form

yHv = vHv−1 + 1–2Hv+1

which turns the integral into

Both integrals are zero, so 〈x〉 = 0. As remarked in the text, 
the mean displacement is zero because the displacement 
occurs equally on either side of the equilibrium position. 
The following Self-test extends this calculation by examin-
ing the mean square displacement, which we can expect to 
be nonzero and to increase with increasing v.

Self-test 2.8 Calculate the mean square displacement 〈x2〉
of the H atom (attached to the stationary X atom) from its
equilibrium position. (Use the recursion relation twice.)

[eqn 2.28]
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with E given by eqn 2.21. The probability of finding the oscil-
lator stretched beyond a displacement xtp is the sum of the
probabilities ψ2dx of finding it in any of the intervals dx lying
between xtp and infinity:

The variable of integration is best expressed in terms of y = x/α
with α = ($2/mk)1/4, and then the turning point on the right
lies at

For the state of lowest energy (v = 0), ytp = 1 and the prob-
ability is

The integral is a special case of the error function, erf z, which
is defined as follows:

The values of this function are tabulated and available in
mathematical software packages, and a small selection of 
values is given in Table 2.2. In the present case (see Example 2.4
for N0 and use 0! = 1)

P = 1–2(1 − erf 1) = 1–2(1 − 0.843) = 0.079

It follows that in 7.9 per cent of a large number of observa-
tions, any oscillator in the state v = 0 will be found stretched
to a classically forbidden extent. There is the same probability
of finding the oscillator with a classically forbidden compres-
sion. The total probability of finding the oscillator tunnelled
into a classically forbidden region (stretched or compressed)
is about 16 per cent. A similar calculation for the state with v
= 6 shows that the probability of finding the oscillator outside
the classical turning points has fallen to about 7 per cent.
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Techniques of approximation

All the applications treated so far have had exact solutions and
we shall encounter in the following two chapters several more
examples where the Schrödinger equation can be solved exactly.
However, many problems—and almost all the problems of in-
terest in chemistry—do not have exact solutions. For example, if
we were modelling a nanometre-sized, electrically conducting
metallic particle by a square-well potential (a ‘quantum well’), it
might be more realistic to allow for a small variation in potential
energy across the material rather than supposing that V = 0 
everywhere. Also, a molecular vibration is not exactly harmonic
because a bond is not a perfect spring: at large extensions the
bond breaks and at high compressions the potential energy rises
much more rapidly than parabolically. To make progress with
these problems we need to develop techniques of approximation.

2.6 An overview of approximation techniques

There are three major approaches to finding approximate solu-
tions. The first is to try to guess the shape and the mathematical
form of the wavefunction. Variation theory provides a criterion
of success with such an approach and, as it is most commonly
encountered in the context of molecular orbital theory, we 
consider it there (Chapter 5). The second approach, the self-
consistent field procedure, is useful for trying to find solutions 
of the Schrödinger equation for systems of many particles. This
iterative method will be described in Chapter 6.

The third approach takes the hamiltonian operator for the
problem that cannot be solved exactly and separates it into two
pieces: one piece represents a model hamiltonian for which the
Schrödinger equation can be solved exactly and the other piece
(which is the difference between the true and model hamilton-
ians) represents a ‘perturbation’. Perturbation theory, which pro-
vides the mathematical tools for solving complex problems by
this approach, comes in two flavours depending on whether 
or not the perturbation varies with time. We consider time-
independent perturbation theory below and postpone a discus-
sion of time-dependent perturbation theory until Chapter 4
where we consider the response of atoms and molecules to time-
dependent electromagnetic fields.

2.7 Time-independent perturbation theory

In perturbation theory, we suppose that the hamiltonian for the
problem we are trying to solve, @, can be expressed as the sum of
a simple hamiltonian, @(0), which has known eigenvalues and
eigenfunctions, and a contribution, @(1), which represents the
extent to which the true hamiltonian differs from the ‘model’
hamiltonian:

@ = @(0) + @(1) (2.31)

Table 2.2 The error function

z erf z

0 0

0.01 0.0113

0.05 0.0564

0.10 0.1125

0.50 0.5205

1.00 0.8427

1.50 0.9661

2.00 0.9953
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In time-independent perturbation theory, the perturbation 
is always present and unvarying. For example, if we were 
modelling a metallic nanoparticle, then @(0) would be the hamil-
tonian for the particle in a box and the perturbation might 
represent a dip in the potential energy of a particle in a box in
some region along the length of the box.

In time-independent perturbation theory, we suppose that
the true energy of the system differs from the energy of the 
simple system, and that we can write

E = E(0) + E(1) + E(2) + . . . (2.32)

where E(1) is the ‘first-order correction’ to the energy, a con-
tribution proportional to @(1), and E(2) is the ‘second-order cor-
rection’ to the energy, a contribution proportional to @(1)2, and
so on. For instance, if the potential energy of an electron trapped
in a metallic nanoparticle modelled as a square well is lowered 
by an amount V when it is near the centre of the nanoparticle
(Fig. 2.23), then the first-order correction would be propor-
tional to V, the second-order correction would be proportional
to V 2, and so on. The true wavefunction also differs from the
‘simple’ wavefunction, and we write

ψ = ψ (0) + ψ (1) + ψ (2) + . . . (2.33)

In practice, we need to consider only the ‘first-order correction’
to the wavefunction, ψ (1), the contribution to the wavefunction
that depends on @(1). In our metallic-nanoparticle model, we
would say that the distortion of the unperturbed (particle-in-a-
box) wavefunction was proportional to the depth of the central
part of the well.

In most applications it is sufficient to know only the correc-
tions to the energy. We show in Further information 2.1 that the
first-order correction to the energy of the ground state (with the
wavefunction ψ0

(0)) is

E(1) = �ψ0
(0)*@(1)ψ0

(0)dτ (2.34)

The integral will be recognized as an expectation value: in this
case it is the expectation value of the perturbation calculated

0 L x
V

Fig. 2.23 The potential energy for a particle in a box with a
potential that varies as V across the floor of the box. We can
expect the particle to accumulate more in the centre of the box
(in the ground state at least) than in the unperturbed box.

Large
effect

No
effect

Small
effect(a)

(b)

Perturbed
wavefunction

Fig. 2.24 (a) The first-order energy is an average of the perturbation
(represented by the hanging weights) over the unperturbed
wavefunction. (b) The second-order energy is a similar average,
but over the distortion induced by the perturbation.

using the unperturbed ground-state wavefunction. We can
therefore interpret E(1) as the average value of the effect of the
perturbation. An analogy is the shift in energy of vibration of a
violin string when small weights are hung along its length. The
weights hanging close to the nodes have little effect on its energy
of vibration. Those hanging at the antinodes (locations of max-
imum amplitude), however, have a pronounced effect (Fig. 2.24a).
The overall effect is the average of all the weights.

Example 2.7 Using perturbation theory

In this example we model the effect of a varying potential in a
one-dimensional metallic nanoparticle by supposing that the
potential energy of an electron trapped in a box of length L is
not zero but V(x) = −ε sin(πx/L) (see Fig. 2.23). Evaluate the
first-order correction to the energy of the ground state.

Method Identify the first-order perturbation hamiltonian
and evaluate E(1) from eqn 2.34. We can expect a small lower-
ing of the energy because the average potential energy of the
particle is lower in the distorted box.

Solution The perturbation hamiltonian is @(1) = −ε sin(πx/L)
and the unperturbed ground-state (n = 1) wavefunction in
the notation of Section 2.2 is ψ (0)

1 (x) = (2/L)1/2 sin(πx/L).
Therefore, the first-order correction to the energy is

Note that the energy is lowered by the perturbation, as would
be expected for the shape shown in Fig. 2.23.

Self-test 2.9 Evaluate the first-order correction to the energy of
the ground state if, in the same model, V(x) = −ε sin2(πx/L).

[E(1) = −3ε/4]
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The second-order correction to the energy of the unper-
turbed ground state is rather more complicated, but has a
straightforward interpretation:

(2.35)

The sum is over all states of the system other than the ground
state (the state for which we are calculating the correction to 
the energy). This correction also represents a similar average 
of the perturbation, but now it is an average taken over the 
perturbed wavefunctions. In terms of the violin analogy, the 
average is now taken over the distorted waveform of the vibrat-
ing string, in which the nodes and antinodes are slightly shifted
(Fig. 2.24b).

We shall not need to carry out an explicit calculation of E(2) in
this text, but it will be the basis of our discussion of the electric

E
E E

n

nn

( )
( ) ( ) ( )

( ) ( )

*2
0 1

0
0 2

0
0 0

0

=
−≠

∑ |∫ |ψ ψ τ@ d

and magnetic properties of molecules. It will then be important
to have in mind the following three features:

• Because En
(0) > E 0

(0), all the terms in the denominator of 
eqn 2.35 are negative, and because the numerators are all posi-
tive, E(2) is negative. That is, the second-order energy correction, 
but not necessarily the first-order correction, always lowers the
energy of the ground state.

• The perturbation appears (as its square) in the numerator;
so the stronger the perturbation, the greater the lowering of the
ground-state energy.

• If the energy levels of the system are widely spaced, all the
denominators are large, so the sum is likely to be small. In this
case the perturbation has little effect on the energy of the system:
the system is ‘stiff’, and unresponsive to perturbations. The 
opposite is true when the energy levels lie close together.

Checklist of key ideas

1. The wavefunction of a free particle is ψk = Aeikx + Be−ikx, 
Ek = k2$2/2m.

2. The wavefunctions and energies of a particle in a 
one-dimensional box of length L are, respectively, 
ψn(x) = (2/L)1/2 sin(nπx/L) and En = n2h2/8mL2, n = 1,2, . . . .
The zero-point energy, the lowest possible energy, is 
E1 = h2/8mL2.

3. The correspondence principle states that classical mechanics
emerges from quantum mechanics as high quantum
numbers are reached.

4. The functions ψn and ψn′ are orthogonal if ∫ψn*ψn′dτ = 0; 
all wavefunctions corresponding to different energies of a
system are orthogonal.

5. Tunnelling is the penetration into or through classically
forbidden regions. The transmission probability is given 
by eqn 2.17a.

6. Harmonic motion is the motion in the presence of a
restoring force proportional to the displacement, F = −kx,
where k is the force constant. As a consequence, V = 1–2kx 2.

7. The wavefunctions and energy levels of a quantum
mechanical harmonic oscillator are given by eqns 2.24 and
2.21, respectively.

8. The virial theorem states that, if the potential energy of a
particle has the form V = axb, then its mean potential and
kinetic energies are related by 2〈Ek〉 = b〈V 〉.

9. Perturbation theory is a technique that supplies
approximate solutions to the Schrödinger equation and in
which the hamiltonian for the problem is expressed as a sum
of simpler hamiltonians.

10. In time-independent perturbation theory, the perturbation
is always present and unvarying. The first- and second-order
corrections to the energy are given by eqns 2.34 and 2.35,
respectively.

Further information

Further information 2.1 Time-independent perturbation theory

To develop the expressions for the corrections to the wavefunction 
and energy of a system subjected to a time-independent perturbation, 
we write

ψ = ψ (0) + λψ (1) + λ2ψ (2) + . . .

where λ is a dummy variable that will help us keep track of the order of the
correction. At the end of the calculation, we discard it. Likewise, we write

@ = @(0) + λ@(1)

and

E = E(0) + λE(1) + λ2E(2) + . . .
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When these expressions are inserted into the Schrödinger equation, 
@ψ = Eψ, we obtain

(@(0) + λ@(1))(ψ (0) + λψ (1) + λ2ψ (2) + . . . ) 
= (E(0) + λE(1) + λ2E(2) + . . . )(ψ (0) + λψ (1) + λ2ψ (2) + . . . )

which we can rewrite as

@(0)ψ (0) + λ(@(1)ψ (0) + @(0)ψ (1)) + λ2(@(0)ψ (2) + @(1)ψ (1)) + . . .

= E(0)ψ (0) + λ(E(0)ψ (1) + E(1)ψ (0)) + λ2(E(2)ψ (0) + E(1)ψ (1)

+ E(0)ψ (2)) + . . .

By comparing powers of λ , we find

Terms in λ0: @(0)ψ (0) = E(0)ψ (0)

Terms in λ: @(1)ψ (0) + @(0)ψ (1) = E(0)ψ (1) + E(1)ψ (0)

Terms in λ2: @(0)ψ (2) + @(1)ψ (1) = E(2)ψ (0) + E(1)ψ (1) + E(0)ψ (2)

and so on. At this point λ has served its purpose, and can now be
discarded.

The equations we have derived are applicable to any state of the
system. From now on we shall consider only the ground state ψ0 with
energy E0. The first equation, which we now write as

@ (0)ψ 0
(0) = E 0

(0)ψ 0
(0)

is the Schrödinger equation for the ground state of the unperturbed
system, which we assume we can solve (for instance, it might be the
equation for the ground state of the particle in a box, with the solutions
given in eqn 2.6). To solve the next equation, which is now written as

@ (1)ψ 0
(0) + @ (0)ψ 0

(1) = E 0
(0)ψ (1) + E 0

(1)ψ 0
(0)

we suppose that the first-order correction to the wavefunction can be
expressed as a linear combination of the wavefunctions of the
unperturbed system, and write

(2.36)

Substitution of this expression gives

We can isolate the term in E 0
(1) by making use of the fact that the ψ (0)

n

form a complete orthogonal and normalized set in the sense that

Therefore, when we multiply through by ψ0
(0)* and integrate over all

space, we get
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which is eqn 2.34.
To find the coefficients cn, we multiply the same expression through

by ψ (0)
k *, where now k ≠ 0, and integrate over all space, which gives

Since both summations above reduce to a single term,

which we can rearrange into

(2.37)

The second-order energy is obtained starting from the second-order
expression, which for the ground state is

@(0)ψ 0
(2) + @(1)ψ 0

(1) = E 0
(2)ψ 0

(0) + E 0
(1)ψ 0

(1) + E 0
(0)ψ 0

(2)

To isolate the term E0
(2) we multiply both sides by ψ 0

(0)*, integrate over all
space, and obtain

In the first term, we have used the hermiticity of @(0). The first and last
terms cancel, and we are left with

We have already found the first-order corrections to the energy and the
wavefunction, so this expression could be regarded as an explicit
expression for the second-order energy. However, we can go one step
further by substituting eqn 2.36:

where we use the notation Hij = ∫ ψ i *@ψj dτ. The final term cancels the
term c0 H00

(1) in the sum, and we are left with

Substitution of the expression for cn in eqn 2.37 now produces the final
result, eqn 2.35.
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Discussion questions

2.1 Discuss the physical origin of quantization of energy for a particle
confined to motion inside a one-dimensional box.

2.2 Discuss the correspondence principle and provide two examples.

2.3 Define, justify, and provide examples of zero-point energy.

2.4 Discuss the physical origins of quantum mechanical tunnelling.
Identify chemical systems where tunnelling might play a role.

2.5 Describe the features that stem from nanometre-scale dimensions
that are not found in macroscopic objects.

2.6 Describe three approximation techniques used in quantum
mechanics and explain why they are useful.

2.7 Explain why the particle in a box and the harmonic oscillator are
useful models for quantum mechanical systems: what chemically
significant systems can they be used to represent?

Exercises

2.1(a) Determine the linear momentum and kinetic energy of a free
electron described by the wavefunction eikx with k = 3 m−1.

2.1(b) Determine the linear momentum and kinetic energy of a free
proton described by the wavefunction e−ikx with k = 5 m−1.

2.2(a) Write the wavefunctions for an electron travelling to the right 
(x > 0) after being accelerated from rest through a potential difference 
of (a) 1.0 V, (b) 10 kV.

2.2(b) Write the wavefunction for a particle of mass 1.0 g travelling to 
the right at 10 m s−1.

2.3(a) Calculate the energy separations in joules, kilojoules per mole,
wavenumbers, and electronvolts between the levels (a) n = 2 and n = 1,
(b) n = 6 and n = 5 of an electron in a one-dimensional nanoparticle
modelled by a box of length 1.0 nm.

2.3(b) Calculate the energy separations in joules, kilojoules per mole,
wavenumbers, and electronvolts between the levels (a) n = 3 and n = 1,
(b) n = 7 and n = 6 of an electron in a one-dimensional nanoparticle
modelled by a box of length 1.5 nm.

2.4(a) A conjugated polyene can be modelled by a particle in a one-
dimensional box. Calculate the probability that an electron will be found
between 0.49L and 0.51L in a box of length L when it has (a) n = 1, 
(b) n = 2. Take the wavefunction to be a constant in this narrow range.

2.4(b) A conjugated polyene can be modelled by a particle in a one-
dimensional box. Calculate the probability that a particle will be found
between 0.65L and 0.67L in a box of length L when it has (a) n = 1, 
(b) n = 2. Take the wavefunction to be a constant in this narrow range.

2.5(a) Calculate the expectation values of Y and Y2 for a particle in the
state n = 1 in a square-well potential used to model a one-dimensional
nanoparticle.

2.5(b) Calculate the expectation values of Y and Y2 for a particle in the
state n = 2 in a square-well potential used to model a one-dimensional
nanoparticle.

2.6(a) An electron is squeezed between two confining walls, one of which
can be moved inwards. At what separation of the walls will the zero-
point energy of the electron be equal to its rest mass energy, mec

2?
Express your answer in terms of the parameter λC = h/mec, the 
‘Compton wavelength’ of the electron.

2.6(b) Now replace the electron in Exercise 2.6a by a proton. At what
separation of the walls will the zero-point energy of the proton be equal
to its rest mass energy, mpc2?

2.7(a) What are the most likely locations of a particle in a box of length L
in the state n = 3?

2.7(b) What are the most likely locations of a particle in a box of length L
in the state n = 4?

2.8(a) Suppose that the junction between two semiconductors can be
represented by a barrier of height 2.0 eV and length 100 pm. Calculate
the (transmission) probability that an electron with energy 1.5 eV can
tunnel through the barrier.

2.8(b) Suppose that a proton of an acidic hydrogen atom is confined to
an acid that can be represented by a barrier of height 2.0 eV and length
100 pm. Calculate the (transmission) probability that a proton with
energy 1.5 eV can escape from the acid.

2.9(a) Calculate the zero-point energy of a harmonic oscillator 
consisting of a proton attached to a metal surface by a bond of force
constant 155 N m−1.

2.9(b) Calculate the zero-point energy of a harmonic oscillator consisting
of a rigid CO molecule adsorbed to a metal surface by a bond of force
constant 285 N m−1.

2.10(a) For a harmonic oscillator of effective mass 1.33 × 10−25 kg, the
difference in adjacent energy levels is 4.82 zJ. Calculate the force constant
of the oscillator.

2.10(b) For a harmonic oscillator of effective mass 2.88 × 10−25 kg, the
difference in adjacent energy levels is 3.17 zJ. Calculate the force constant
of the oscillator.

2.11(a) Suppose a hydrogen atom is adsorbed on the surface of a gold
nanoparticle by a bond of force constant 855 N m−1. Calculate the
wavelength of a photon needed to excite a transition between its
neighbouring vibrational energy levels.

2.11(b) Suppose an oxygen atom (m = 15.9994mu) is adsorbed on the
surface of a nickel nanoparticle by a bond of force constant 544 N m−1.
Calculate the wavelength of a photon needed to excite a transition
between its neighbouring vibrational energy levels.

2.12(a) Refer to Exercise 2.11a and calculate the wavelength that would
result from replacing hydrogen by deuterium.

2.12(b) Refer to Exercise 2.11b and calculate the wavelength that would
result from replacing the oxygen atom by a rigid dioxygen molecule.

2.13(a) Confirm that the wavefunction for the ground state of a one-
dimensional linear harmonic oscillator given in eqn 2.25a is a solution 
of the Schrödinger equation for the oscillator and that its energy is 1–2 $ω.
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2.13(b) Confirm that the wavefunction for the first excited state of a 
one-dimensional linear harmonic oscillator given in equation 2.26 is a
solution of the Schrödinger equation for the oscillator and that its 
energy is 3–2 $ω.

2.14(a) Locate the nodes of the harmonic oscillator wavefunction with 
v = 4.

2.14(b) Locate the nodes of the harmonic oscillator wavefunction with 
v = 5.

2.15(a) Calculate the normalization constant for an oscillator with v = 2
and confirm that its wavefunction is orthogonal to the wavefunction for
the state v = 4.

2.15(b) Calculate the normalization constant for an oscillator with v = 3
and confirm that its wavefunction is orthogonal to the wavefunction for
the state v = 1.

2.16(a) Assuming that the vibrations of a 35Cl2 molecule are equivalent 
to those of a harmonic oscillator with a force constant k = 329 N m−1,
what is the wavenumber of the radiation needed to excite the molecule
vibrationally? The mass of a 35Cl atom is 34.9688mu; the mass to use in
the expression for the vibrational frequency of a diatomic molecule is the
‘effective mass’ μ = mAmB/(mA + mB), where mA and mB are the masses of
the individual atoms.

2.16(b) Assuming that the vibrations of a 14N2 molecule are equivalent to
those of a harmonic oscillator with a force constant k = 2293.8 N m−1,
what is the wavenumber of the radiation needed to excite the molecule
vibrationally? The mass of a 14N atom is 14.0031mu; see Exercise 2.16a.

2.17(a) Calculate the probability that an O-H bond treated as a
harmonic oscillator will be found at a classically forbidden extension
when v = 1.

2.17(b) Calculate the probability that an O-H bond treated as a
harmonic oscillator will be found at a classically forbidden extension
when v = 2.

2.18(a) What is the relation between the mean kinetic and potential
energies for a particle if the potential is proportional to x3?

2.18(b) What is the relation between mean kinetic and potential energies
of an electron in a hydrogen atom?

2.19(a) Calculate the first-order correction to the energy of an electron in
a one-dimensional nanoparticle modelled as a particle in a box when the
perturbation is V(x) = −ε sin(2πx/L) and n = 1.

2.19(b) Calculate the first-order correction to the energy of an electron in
a one-dimensional nanoparticle modelled as a particle in a box when the
perturbation is V(x) = −ε sin(3πx/L) and n = 1.

2.20(a) Calculate the first-order correction to the energy of a particle in a
box when the perturbation is V(x) = −ε cos(2πx/L) and n = 1.

2.20(b) Calculate the first-order correction to the energy of a particle in a
box when the perturbation is V(x) = −ε cos(3πx/L) and n = 1.

2.21(a) Suppose that the ‘floor’ of a one-dimensional box slopes up from
x = 0 to ε at x = L. Calculate the first-order effect on the energy of the
state n = 1.

2.21(b) Suppose that the ‘floor’ of a one-dimensional box slopes up from
x = 0 to ε at x = L. Calculate the first-order effect on the energy of the
state n = 2.

2.22(a) Does the vibrational frequency of an O-H bond depend on
whether it is horizontal or vertical at the surface of the Earth? Suppose
that a harmonic oscillator of mass m is held vertically, so that it
experiences a perturbation V(x) = mgx, where g is the acceleration of free
fall. Calculate the first-order correction to the energy of the ground state.

2.22(b) Repeat the previous exercise to find the change in excitation
energy from v = 1 to v = 2 in the presence of the perturbation.

2.23(a) Evaluate the second-order correction to the energy of the
harmonic oscillator for the perturbation described in Exercise 2.22a.
Hint. You will find that there is only one term that contributes to the
sum in eqn 2.35.

2.23(b) Evaluate the second-order correction to the energy of a particle
in a one-dimensional square well for the perturbation described in
Exercise 2.20(a). Hint. The only term that contributes to the sum in 
eqn 2.35 in n = 3.

Problems*

Numerical problems

2.1 Calculate the separation between the two lowest translational 
energy levels of an O2 molecule in a one-dimensional container of 
length 5.0 cm. At what value of n does the energy of the molecule reach
1–2 kT at 300 K, and what is the separation of this level from the one
immediately below?

2.2 The state of an electron in a one-dimensional cavity of length 
1.0 nm in a semiconductor is described by the normalized wavefunction
ψ(x) = 1–2 ψ1(x) + (1/2i)ψ2(x) − ( 1–2 )1/2ψ4(x), where ψn(x) is given by eqn
2.6b. When the energy of the electron is measured, what is the outcome?
What is the expectation value of the energy?

2.3 The mass to use in the expression for the vibrational frequency of a
diatomic molecule is the effective mass μ = mAmB/(mA + mB), where mA
and mB are the masses of the individual atoms. The following data on the

infrared absorption wavenumbers (# = 1/λ = ν/c) of molecules is taken
from G. Herzberg, Spectra of diatomic molecules, van Nostrand (1950):

H35Cl H81Br HI CO NO

#/cm−1 2990 2650 2310 2170 1904

Calculate the force constants of the bonds and arrange them in order of
increasing stiffness.

2.4 An electron confined to a metallic nanoparticle is modelled as a
particle in a one-dimensional box of length L. If the electron is in the
state n = 1, calculate the probability of finding it in the following regions:
(a) 0 ≤ x ≤ 1–2 L, (b) 0 ≤ x ≤ 1–4L, (c) 1–2 L − δx ≤ x ≤ 1–2 L + δx.

2.5 Repeat Problem 2.4 for a general value of n.

2.6 Suppose that the floor of a one-dimensional nanoparticle has an
imperfection that can be represented by a small step in the potential

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.



2 NANOSYSTEMS 1: MOTION IN ONE DIMENSION 73

Po
te

n
ti

al
 e

n
er

g
y,

V

a

H

0 1–2L L
x

Fig. 2.25 The definition of the potential in Problem 2.6.
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Fig. 2.26 Changes in the reaction profile when a C-H bond
undergoing cleavage is deuterated. In this figure the C-H and
C-D bonds are modelled as simple harmonic oscillators. 
The only significant change is in the zero-point energy of the
reactants, which is lower for C-D than for C-H. As a result, 
the activation energy is greater for C-D cleavage than for C-H
cleavage. 

energy, as in Fig. 2.25. (a) Write a general expression for the first-order
correction to the ground-state energy, E0

(1). (b) Evaluate the energy
correction for a = L/10 (so the blip in the potential occupies the central
10 per cent of the well) with n = 1.

2.7 We normally think of the one-dimensional well as being horizontal.
Suppose it is vertical; then the potential energy of the particle depends on
x because of the presence of the gravitational field. Calculate the first-
order correction to the zero-point energy, and evaluate it for an electron
in a box on the surface of the Earth. Account for the result. Hint. The
energy of the particle depends on its height as mgh, where g = 9.81 m s−2.
Because g is so small, the energy correction is small; but it would be
significant if the box were near a very massive star.

2.8 Calculate the second-order correction to the energy for the system
described in Problem 2.7 and calculate the ground-state wavefunction.
Account for the shape of the distortion caused by the perturbation. 
Hint. The following integrals are useful

2.9 The vibrations of molecules are only approximately harmonic
because the energy of a bond is not exactly parabolic. Calculate the 
first-order correction to the energy of the ground state of a harmonic
oscillator subjected to an anharmonic potential of the form ax3 + bx4,
where a and b are small (anharmonicity) constants. Consider the three
cases in which the anharmonic perturbation is present (a) during bond
expansion (x ≥ 0) and compression (x ≤ 0), (b) during expansion only,
(c) during compression only.

2.10 To make progress with this problem you may wish to review
concepts of chemical kinetics introduced in introductory chemistry. 
The kinetic isotope effect is the decrease in the rate constant of a chemical
reaction upon replacement of one atom in a reactant by a heavier
isotope. The effect arises from the change in activation energy that
accompanies the replacement of an atom by a heavier isotope on account
of changes in the zero-point vibrational energies. Consider a reaction in
which a C-H bond is cleaved. If scission of this bond is the rate-
determining step, then the reaction coordinate corresponds to the
stretching of the C-H bond and the potential energy profile is shown in
Fig. 2.26. On deuteration, the dominant change is the reduction of the
zero-point energy of the bond (because the deuterium atom is heavier).
The whole reaction profile is not lowered, however, because the relevant
vibration in the activated complex has a very low force constant, so there
is little zero-point energy associated with the reaction coordinate in
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either form of the activated complex. (a) Assume that the change in the
activation energy Ea arises only from the change in zero-point energy of
the stretching vibration and show that

where # is the relevant vibrational wavenumber and μ is the relevant
effective mass. (b) Now consider the effect of deuteration on the rate
constant, k, of the reaction. (i) Starting with the Arrhenius equation, 
k = Ae−Ea/kT, and assuming that the pre-exponential factor A does not
change upon deuteration, show that the rate constants for the two
species should be in the ratio

(ii) Does k(C-D)/k(C-H) increase or decrease with decreasing
temperature? (c) From infrared spectroscopy, the fundamental
vibrational wavenumber for stretching of a C-H bond is about 
3000 cm−1. Predict the value of the ratio k(C-D)/k(C-H) at 298 K. 
(d) In some cases, substitution of deuterium for hydrogen results in
values of k(C-D)/k(C-H) that are too low to be accounted for by the
model described above. Explain this effect.

Theoretical problems

2.11 The wavefunction for a free particle eikx is not square-integrable and
therefore cannot be normalized in a box of infinite length. However, to
circumvent this problem, we suppose that the particle is in a region of
finite length L, normalize the wavefunction, and then allow L to become
infinite at the end of the calculations that use the wavefunction. Find the
normalization constant for the wavefunction eikx, assuming that a free
particle is in a region of length L.

2.12 Consider two different particles moving in one dimension x,
one (particle 1) described by the (unnormalized) wavefunction
ψ1(x) = ei(x/m) and the second (particle 2) described by the
(unnormalized) wavefunction ψ2(x) = 1–2 (e2i(x/m) + e3i(x/m) + e−2i(x/m) +
e−3i(x/m)). If the positions of the particles were measured, which would be
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found to be more localized in space (that is, which has a position known
more precisely)? Explain your answer with a diagram.

2.13 Derive eqn 2.17a, the expression for the transmission probability
and show that it reduces to eqn 2.17b when κL >> 1.

2.14 Repeat the analysis of Section 2.3 to determine the transmission
coefficient T and the reflection probability, R, the probability that a
particle incident on the left of the barrier will reflect from the barrier and
be found moving to the left away from the barrier, for E > V. Suggest a
physical reason for the variation of T as depicted in Fig. 2.9.

2.15 An electron inside a one-dimensional nanoparticle has a potential
energy different from its potential energy once it has escaped through 
the confining barrier. Consider a particle moving in one dimension 
with V = 0 for −∞ < x ≤ 0, V = V2 for 0 < x ≤ L, and V = V3 for L ≤ x < ∞
and incident from the left. The energy of the particle lies in the 
range V2 > E > V3. (a) Calculate the transmission coefficient, T. 
(b) Show that the general equation for T reduces to eqn 2.17a 
when V3 = 0.

2.16 The wavefunction inside a long barrier of height V is ψ = Ne−κx.
Calculate (a) the probability that the particle is inside the barrier and 
(b) the average penetration depth of the particle into the barrier.

2.17 Confirm that a function of the form e−κx2
is a solution of the

Schrödinger equation for the ground state of a harmonic oscillator and
find an expression for κ in terms of the mass and force constant of the
oscillator.

2.18 Calculate the mean kinetic energy of a harmonic oscillator by using
the relations in Table 2.1.

2.19 Calculate the values of 〈x3〉 and 〈x4〉 for a harmonic oscillator by
using the relations in Table 2.1.

2.20 Determine the values of Δx = (〈x2〉 − 〈x〉2)1/2 and Δp = (〈p2〉 − 〈p〉2)1/2

for the ground state of (a) a particle in a box of length L and (b) a
harmonic oscillator. Discuss these quantities with reference to the
uncertainty principle.

2.21 Repeat Problem 2.20 for (a) a particle in a box and (b) an harmonic
oscillator in a general quantum state (n and v, respectively).

2.22 Show for a particle in a box that Δx approaches its classical value as
n → ∞. Hint. In the classical case the distribution is uniform across the
box, and so in effect ψ(x) = 1/L1/2.

2.23 We shall see in Chapter 4 that the intensity of spectroscopic
transitions between the vibrational states of a molecule are proportional
to the square of the integral ∫ψv′xψvdx over all space. Use the relations
between Hermite polynomials given in Table 2.1 to show that the only
permitted transitions are those for which v′ = v ± 1 and evaluate the
integral in these cases.

2.24 The potential energy of the rotation of one CH3 group relative 
to its neighbour in ethane can be expressed as V(φ) = V0 cos 3φ, where 
φ is the angle shown in 2. (a) Show that for small displacements the

motion of the group is harmonic and calculate the
(molar) energy of excitation from v = 0 to v = 1. (b)
What is the force constant for these small-amplitude
oscillations? (c) The energy of impacts with any
surrounding molecules is typically kT, where k is
Boltzmann’s constant. Should you expect the
oscillations to be excited? (d) What do you expect to
happen to the energy levels and wavefunctions as the
excitation increases?

2.25 The motion of a pendulum can be thought of as representing the
location of a wavepacket that migrates from one turning point to the

other periodically. Show that, whatever superposition of harmonic
oscillator states is used to construct a wavepacket, it is localized at the
same place at the times 0, T, 2T, . . . , where T is the classical period of the
oscillator.

2.26 The ‘most classical’ linear combinations of harmonic oscillator
wavefunctions are the so-called coherent states:

where α is a parameter. These states can be used to describe the 
radiation generated by lasers. (a) Show that the normalization constant 
is N = e−|α |2/2. (b) Show that two coherent states ψα and ψβ are not in
general orthogonal. (c) Go on to show that a coherent state is the 
‘most classical’ in the sense that the uncertainty relation for position 
and momentum for a particle it describes has its minimum value 
(that is, ΔxΔp = 1–2 $). Hint. Use a recursion relation in Table 2.1.

Applications: to biology and nanotechnology

2.27 When β-carotene is oxidized in vivo, it forms two molecules of
retinal (vitamin A), a precursor to the pigment in the retina responsible
for vision (Impact I11.1). The conjugated system of retinal consists of 
11 C atoms and one O atom. In the ground state of retinal, each level up
to n = 6 is occupied by two electrons. Assuming an average internuclear
distance of 140 pm, calculate (a) the separation in energy between the
ground state and the first excited state in which one electron occupies the
state with n = 7, and (b) the frequency and wavelength of the radiation
required to produce a transition between these two states. (c) Using your
results, choose among the words in parentheses in the following sentence
to generate a rule for the prediction of frequency shifts in the absorption
spectra of linear polyenes:

The absorption spectrum of a linear polyene shifts to 
(higher/lower) frequency as the number of conjugated atoms
(increases/decreases).

2.28 Many biological electron transfer reactions, such as those 
associated with biological energy conversion, may be visualized as 
arising from electron tunnelling between protein-bound co-factors, 
such as cytochromes, quinones, flavins, and chlorophylls. This
tunnelling occurs over distances that are often greater than 1.0 nm, 
with sections of protein separating electron donor from acceptor. 
For a specific combination of donor and acceptor, the rate of electron
tunnelling is proportional to the transmission probability, with 
κ ≈ 7 nm−1 (eqn 2.17). By what factor does the rate of electron tunnelling
between two co-factors increase as the distance between them changes
from 2.0 nm to 1.0 nm? 

2.29 Carbon monoxide binds strongly to the Fe2+ ion of the haem 
group of the protein myoglobin. Estimate the vibrational frequency 
of CO bound to myoglobin by using the data in Problem 2.3 and by
making the following assumptions: the atom that binds to the haem
group is immobilized, the protein is infinitely more massive than 
either the C or O atom, the C atom binds to the Fe2+ ion, and 
binding of CO to the protein does not alter the force constant 
of the C.O bond.

2.30 Of the four assumptions made in Problem 2.29, the last two are
questionable. Suppose that the first two assumptions are still reasonable
and that you have at your disposal a supply of myoglobin, a suitable
buffer in which to suspend the protein, 12C16O, 13C16O, 12C18O, 13C18O,
and an infrared spectrometer. Assuming that isotopic substitution 
does not affect the force constant of the C.O bond, describe a set 
of experiments that: (a) proves which atom, C or O, binds to the 
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haem group of myoglobin, and (b) allows for the determination 
of the force constant of the C.O bond for myoglobin-bound 
carbon monoxide.

2.31 When in Chapter 8 we come to study macromolecules, such as
synthetic polymers, proteins, and nucleic acids, we shall see that one
conformation is that of a random coil. For a one-dimensional random
coil of N units, the restoring force at small displacements and at a
temperature T is

where l is the length of each monomer unit and nl is the distance
between the ends of the chain. Show that for small extensions 
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(n << N) the restoring force is proportional to n and therefore that the
coil undergoes harmonic oscillation with force constant kT/Nl 2. Suppose
that the mass to use for the vibrating chain is its total mass Nm, where 
m is the mass of one monomer unit, and deduce the root mean square
separation of the ends of the chain due to quantum fluctuations in its
vibrational ground state.

2.32 The forces measured by AFM (atomic force microscopy) 
arise primarily from interactions between electrons of the stylus 
and on the surface. To get an idea of the magnitudes of these forces,
calculate the force acting between two electrons separated by 2.0 nm. 
To calculate the force between the electrons, use F = −dV/dr where 
V is their mutual Coulombic potential energy and r is their 
separation. 
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MATHEMATICAL BACKGROUND 3

Complex numbers

We describe here general properties of complex numbers and
functions, which are mathematical constructs frequently 
encountered in quantum mechanics.

MB3.1 Definitions

Complex numbers have the general form

z = x + iy (MB3.1)

where i = (−1)1/2. The real numbers x and y are, respectively, the
real and imaginary parts of z, denoted Re(z) and Im(z). When 
y = 0, z = x is a real number; when x = 0, z = iy is a pure imagin-
ary number. Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2

are equal when x1 = x2 and y1 = y2. Although the general form of
the imaginary part of a complex number is written iy, a specific
numerical value is typically written in the reverse order; for 
instance, as 3i.

The complex conjugate of z, denoted z*, is formed by replac-
ing i by −i:

z* = x − iy (MB3.2)

The product of z* and z is denoted |z |2 and is called the square
modulus of z. From eqn MB3.1,

|z |2 = (x + iy)(x − iy) = x2 + y2 (MB3.3)

since i2 = −1. The square modulus is a real number. The absolute
value or modulus is itself denoted |z | and is given by:

|z | = (z*z)1/2 = (x2 + y2)1/2 (MB3.4)

Since z z* = |z |2 it follows that z × (z*/|z |2) = 1, from which we can
identify the (multiplicative) inverse of z (which exists for all
nonzero complex numbers):

(MB3.5)

l A BRIEF ILLUSTRATION

Consider the complex number z = 8 − 3i. Its square modulus
is

|z |2 = z*z = (8 − 3i)*(8 − 3i) = (8 + 3i)(8 − 3i) = 64 + 9 = 73

The modulus is therefore |z | = 731/2. From eqn MB3.5, the 
inverse of z is

lz− =
+

= +1 8
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MB3.2 Polar representation

The complex number z = x + iy can be represented as a point 
in a plane, the complex plane, with Re(z) along the x-axis and
Im(z) along the y-axis (Fig. MB3.1). If, as shown in the figure, 
r and φ denote the polar coordinates of the point, then since 
x = r cos φ and y = r sin φ, we can express the complex number in
polar form as

z = r(cos φ + i sin φ) (MB3.6)

The angle φ, called the argument of z, is the angle that z makes
with the x-axis. Because y/x = tan φ, it follows that the polar form
can be constructed from

(MB3.7a)

To convert from polar to Cartesian form, use

x = r cos φ and y = r sin φ to form z = x + iy (MB3.7b)

One of the most useful relations involving complex numbers
is Euler’s formula:

eiφ = cos φ + i sin φ (MB3.8a)

The simplest proof of this relation is to expand the exponential
function as a power series and to collect real and imaginary
terms. It follows that

cos φ = 1–2(eiφ + e−iφ) sin φ = − 1–2i(eiφ − e−iφ) (MB3.8b)

The polar form in eqn MB3.6 then becomes

z = reiφ (MB3.9)

l A BRIEF ILLUSTRATION

Consider the complex number z = 8 − 3i. From the previous
illustration, r = |z | = 731/2. The argument of z is

The polar form of the number is therefore

z = 731/2e−0.359i l

φ =
−

= − − °arctan . .
3
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z x y= + i

Fig. MB3.1 The representation of a complex number z as a point in the
complex plane using cartesian coordinates (x, y) or polar coordinates
(r, φ).
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MB3.3 Operations

The following rules apply for arithmetic operations for the com-
plex numbers z1 = x1 + iy1 and z2 = x2 + iy2.

1. Addition: z1 + z2 = (x1 + x2) + i(y1 + y2) (MB3.10a)

2. Subtraction: z1 − z2 = (x1 − x2) + i(y1 − y2) (MB3.10b)

3. Multiplication: z1z2 = (x1 + iy1)(x2 + iy2) 
= (x1x2 − y1y2) + i(x1y2 + y1x2) (MB3.10c)

4. Division: We interpret z1/z2 as z1z2
−1 and use 

eqn MB3.5 for the inverse:

(MB3.10d)

l A BRIEF ILLUSTRATION

Consider the complex numbers z1 = 6 + 2i and z2 = −4 − 3i.
Then

z1 + z2 = (6 − 4) + (2 − 3)i = 2 − i

z1 − z2 = 10 + 5i

z1z2 = {6(−4) − 2(−3)} + {6(−3) + 2(−4)}i = −18 − 26i

l

The polar form of a complex number is commonly used to
perform arithmetical operations. For instance the product of
two complex numbers in polar form is

z1z2 = (r1eiφ1)(r2eiφ2) = r1r2ei(φ1+φ2) (MB3.11)

This multiplication is depicted in the complex plane as shown in
Fig. MB3.2. The nth power and the nth root of a complex num-
ber are

zn = (reiφ)n = rneinφ z1/n = (reiφ)1/n = r1/neiφ/n (MB3.12)

The depictions in the complex plane are shown in Fig. MB3.3.
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l A BRIEF ILLUSTRATION

To determine the 5th root of z = 8 − 3i, we note that from the
illustration in Section MB3.2 its polar form is

z = 731/2 e−0.359i = 8.544e−0.359i

The 5th root is therefore

z1/5 = (8.544e−0.359i)1/5 = 8.5441/5 e−0.359i/5 = 1.536e−0.0718i

It follows that x = 1.536 cos(−0.0718) = 1.532 and y = 1.536  ×
sin(−0.0718) = −0.110 (note that we work in radians), so

(8 − 3i)1/5 = 1.532 − 0.110i l
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Fig. MB3.2 The multiplication of two complex numbers depicted in the
complex plane.
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complex number depicted in the complex plane.



Nanosystems 2:
motion in several
dimensions
This chapter presents the solutions for translational and rotational motions in two and three
dimensions. We use the technique of separation of variables to find acceptable wavefunc-
tions and quantized energies for these basic types of motion. In the discussion of rotational
motion, angular momentum plays an important role and introduces a property of the elec-
tron, its spin, that has no classical counterpart.

Real systems are three-dimensional. The clusters of atoms that constitute real metallic
nanoparticles are three-dimensional, atoms are three-dimensional, and so are molecules.
Moreover, in one dimension there is no such mode of motion as rotation, yet the 
rotations of molecules make an important contribution to their thermodynamic and
spectroscopic properties. Clearly, we need to be able to extend the considerations so
far to higher than one dimension.

That does not mean that the material in Chapter 2 is not useful. First, a number of
real systems can be modelled by a one-dimensional analogue, and certain nanosystems
—we have in mind electron corals, in which an electron is confined to a surface by a
ring of atoms—are intermediate in dimension between 1 and 3 (that is, of dimension 2).
We shall also see that the equations for three-dimensional systems can often be 
broken down into equations for one-dimensional systems, so we can draw on the 
conclusions in Chapter 2 to describe them.

Finally, some properties are not manifested in ordinary space but are intrinsic to
the particle itself. In a sense, this property of ‘spin’ extends the number of dimensions
we need to discuss to more than three if we are to understand the properties of elec-
trons and other subatomic particles fully.

Translational motion

We presented translation in one dimension in Chapter 2 as an example of a primitive
kind of motion. We saw that, if the particle was free to move without constraint, then
its energy was not quantized. However, as soon as its motion is restricted to a finite 
region of space, its energy is quantized. The same is true in two and three dimensions,
as for the molecules of a gas in a container. Our problem is to discover the allowed 
energy levels and wavefunctions for these more realistic systems. They will prove es-
sential for understanding the thermodynamic properties of gases and the behaviour
of electrons in metals and semiconductors.

3
Translational motion

3.1 Motion in two dimensions

3.2 Motion in three dimensions

I3.1 Impact on nanoscience:
Quantum dots

Rotational motion

3.3 Rotation in two dimensions: a
particle on a ring

3.4 Rotation in three dimensions:
the particle on a sphere

3.5 Spin

Checklist of key ideas

Discussion questions

Exercises

Problems
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3.1 Motion in two dimensions

We shall work up from one dimension to three in two steps: first
we consider a two-dimensional system, and then generalize it to
three. As we have indicated, even a two-dimensional system is
now of practical significance, for it is a model of an electron
confined to a small region of a surface by a ring of atoms.

To keep the discussion simple, we shall consider a rectangular
two-dimensional region of a surface with length L1 in the x-
direction and L2 in the y-direction; the potential energy is zero
everywhere except at the walls, where it is infinite (Fig. 3.1).
Because the particle has contributions to its kinetic energy from
its motion in both the x- and y-directions, the Schrödinger
equation has two kinetic energy terms, one for each axis, and for
a particle of mass m in a region where the potential energy is zero
the equation is

(3.1)

This is a partial differential equation (Mathematical background 2),
a differential equation in more than one variable, and the result-
ing wavefunctions are functions of both x and y, denoted ψ(x,y).
All this means is that the wavefunction and the corresponding
probability density depend on where we are in the plane, with
each position specified by the coordinates x and y.

(a) Separation of variables

A partial differential equation of the form of eqn 3.1 can be sim-
plified by the separation of variables technique, which divides
the equation into two or more ordinary differential equations,
one for each variable. To implement this approach, we explore
whether a solution of eqn 3.1 can be found by writing the wave-
function as a product of functions, one depending only on x and
the other only on y:
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With this substitution, we show in the Justification below that
eqn 3.1 does indeed separate into two ordinary differential equa-
tions, one for each coordinate:

(3.2)

The quantity EX is the energy associated with the motion of the
particle parallel to the x-axis, and likewise for EY and motion
parallel to the y-axis.

Justification 3.1 The separation of variables

The first step to confirm that the Schrödinger equation is 
separable and the wavefunction factorizable into the product
of two functions X and Y is to note that, because X is inde-
pendent of y and Y is independent of x, we can write

Then eqn 3.1 becomes

Next, we divide both sides by XY, and rearrange the resulting
equation into

The first term on the left is independent of y, so if y is varied
only the second term of the two on the left can change. 
But the sum of these two terms is a constant given by the
right-hand side of the equation; therefore, if the second term
did change then the right-hand side could not be constant.
Consequently, even the second term cannot change when y
is changed. In other words, the second term is a constant,
which we write −2mEY/$2. By a similar argument, the first
term is a constant when x changes, and we write it −2mEX/$2,
with E = EX + EY. Therefore, we can write

which rearrange into the two ordinary (that is, single vari-
able) differential equations in eqn 3.2.

Each of the two ordinary differential equations in eqn 3.2 is
the same as the one-dimensional particle-in-a-box Schrödinger
equation. The boundary conditions are also the same, apart
from the detail of requiring X(x) to be zero at x = 0 and L1, and
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Fig. 3.1 A two-dimensional square well. The particle is confined
to the plane bounded by impenetrable walls. As soon as it
touches the walls, its potential energy rises to infinity.
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Y(y) to be zero at y = 0 and L2. We can therefore adapt the results
obtained in Section 2.2 without further calculation:

Then, because ψ = XY, we obtain

(3.3a)

Outside the box, the wavefunction is everywhere zero. Similarly,
because E = EX + EY, the energy of the particle is limited to the
values

(3.3b)

with the two quantum numbers taking the values n1 = 1, 2, . . .
and n2 = 1, 2, . . . independently.

Some of the wavefunctions are plotted as contours in Fig. 3.2.
They are the two-dimensional versions of the wavefunctions
shown in Fig. 2.4. Whereas in one dimension the wavefunctions
resemble states of a vibrating string with ends fixed, in two 
dimensions the wavefunctions correspond to vibrations of a
plate with fixed edges.

(b) Degeneracy

A special feature of the solutions arises when the box is not
merely rectangular but square, with L1 = L2 = L. Then the wave-
functions and their energies become
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Consider the cases n1 = 1, n2 = 2 and n1 = 2, n2 = 1:

We see that, although the wavefunctions are different, they have
the same energy. The technical term for different wavefunctions
corresponding to the same energy is degeneracy, and we say that
the state with energy 5h2/8mL2 is ‘doubly degenerate’.

The occurrence of degeneracy is related to the symmetry of
the system. Figure 3.3 shows contour diagrams of the two de-
generate functions ψ1,2 and ψ2,1. Because the box is square, we
can convert one wavefunction into the other simply by rotating
the plane by 90°. Interconversion by rotation through 90° is not
possible when the plane is not square, and ψ1,2 and ψ2,1 are then
not degenerate. We shall see many other examples of degeneracy
in the pages that follow (for instance, in the hydrogen atom),
and all of them can be traced to the symmetry properties of the
system (see Section 7.4).

3.2 Motion in three dimensions

We are now ready to take the final step, to three dimensions. 
The system consists of a particle of mass m confined to a box of
length L1 in the x-direction, L2 in the y-direction, and L3 in the z-
direction. Inside the box, the potential energy is zero and at the
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Fig. 3.2 The wavefunctions for a particle confined to a
rectangular surface depicted as contours of equal amplitude. 
(a) n1 = 1, n2 = 1, the state of lowest energy, (b) n1 = 1, n2 = 2, 
(c) n1 = 2, n2 = 1, and (d) n1 = 2, n2 = 2.

interActivity Use mathematical software to generate three-
dimensional plots of the functions in this illustration. 

Deduce a rule for the number of nodal lines in a wavefunction as
a function of the values of n1 and n2.
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Fig. 3.3 The wavefunctions for a particle confined to a square
surface. Note that one wavefunction can be converted into the
other by a rotation of the box by 90°. The two functions
correspond to the same energy. Degeneracy and symmetry are
closely related.
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walls it is infinite. This system could be a model for a quantum
mechanical system of a gas in a container of macroscopic dimen-
sions or for an electron confined to a small cavity in a solid.

The step is easy to take, for it should be obvious (and can be
proved by the method of separation of variables) that the wave-
function simply has another factor:

(3.5a)

Outside the box, the wavefunction is zero. Likewise, the energy
has a third contribution from motion in the z-direction:

(3.5b)

The quantum numbers n1, n2, and n3 are all positive integers 
that can be varied independently. The system has a zero-point
energy and, as for the two-dimensional system, there can be 
degeneracies.

Example 3.1 Analysing transitions in a cubic box

Solutions of metals in liquid ammonia are widely used as re-
ducing agents in organic synthesis. For example, the addition
of sodium to ammonia generates a solvated electron that is
effectively trapped in a cavity 0.3 nm in diameter formed by
ammonia molecules. The solvated electron can be modelled
as a particle moving freely inside a cubic box with ammonia
molecules on the surface of the cube. If the length of the box
is taken to be 0.3 nm, what energy is required for the electron
to undergo a transition from its lowest energy state to the
state that is second-lowest in energy?

Method The quantized energies are given in eqn 3.5b. The
lowest energy state corresponds to (n1 = 1, n2 = 1, n3 = 1). The
electron makes a transition to the state (n1 = 2, n2 = 1, n3 = 1)
which has the next lowest energy and is also degenerate with
(1,2,1) and (1,1,2). Compute ΔE = E2,1,1 − E1,1,1.

Answer Using eqn 3.5b with L1 = L2 = L3 = L = 0.3 × 10−9 m,
we find
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or 2.01 aJ. If this transition were caused by radiation, it would
follow from the Bohr frequency condition that the transition
frequency would be ν = ΔE/h = 3.03 × 1015 Hz (3.03 PHz).

Self-test 3.1 In dilute solutions of sodium in ammonia, 
there is an absorption of 0.20 PHz radiation by the solvated
electrons which accounts for the blue colour of the solution.
In the particle-in-a-box model of the solvated electron, 
what box length L would account for an absorption of this
frequency? [L = 1.2 nm]

IMPACT ON NANOSCIENCE

I3.1 Quantum dots

In Impact I2.1 we outlined some advantages of working in the
nanometre regime. Another is the possibility of using quantum
mechanical effects that render the properties of an assembly 
dependent on its size. Here we focus on the origins and con-
sequences of these quantum mechanical effects.

Ordinary bulk metals conduct electricity because, in the 
presence of an electric field, electrons become mobile when they
are easily excited by thermal motion. Ignoring the attraction of
the electrons to the nuclei and the repulsions between them, 
we can treat these electrons as occupying the energy levels 
characteristic of a three-dimensional box. Because the box has
macroscopic dimensions, we know from eqn 3.5b that the 
separation between neighbouring levels is so small that they
form a continuum. Consequently, we are justified in neglecting 
quantum mechanical effects on the properties of the material.
However, in a nanocrystal, a small cluster of atoms with dimen-
sions in the nanometre scale, eqn 3.5b predicts that quantization
of energy will be significant and will affect the properties of 
the sample. This quantum mechanical effect can be observed 
in ‘boxes’ of any shape. For example, you are invited to show 
in Problem 3.33 that the (spherically symmetrical, l = 0) energy
levels of an electron in a spherical cavity of radius R are given by

(3.6)

The quantization of energy in nanocrystals has important tech-
nological implications when the material is a semiconductor, in
which electrical conductivity increases with increasing tempera-
ture or upon excitation by light. That is, transfer of energy to a
semiconductor increases the mobility of electrons in the material
(see Chapter 9 for a more detailed discussion). Three-dimensional
nanocrystals of semiconducting materials containing 10 to 105

atoms are called quantum dots. They can be made in solution or
by depositing atoms on a surface, with the size of the nanocrystal
being determined by the details of the synthesis (see, for ex-
ample, Impact I2.1).
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For every electron that moves to a different site in a semi-
conductor a unit of positive charge, called a hole, is left behind. 
The holes are also mobile, so a complete mathematical model 
of electrical conductivity in semiconductors should consider 
the movement of electron–hole pairs, not simply electrons.
However, for the sake of gaining physical insight into the prop-
erties of quantum dots, it suffices to use eqn 3.6 as a guide. First,
we see that the required energy to induce electronic transitions
from lower to higher energy levels, thereby increasing the 
mobility of electrons and inducing electrical conductivity, 
depends on the size of the quantum dot. The electrical proper-
ties of large, macroscopic samples of semiconductors cannot 
be tuned in this way. Second, in many quantum dots, such as 
the nearly spherical nanocrystals of cadmium selenide (CdSe),
mobile electrons can be generated by absorption of visible light.
Therefore, we predict that, as the radius of the quantum dot 
decreases, the excitation wavelength decreases. That is, as the
size of the quantum dot varies, so does the colour of the mater-
ial. This phenomenon is indeed observed in suspensions of CdSe
quantum dots of different sizes.

Because quantum dots are semiconductors with tunable 
electrical properties, there are many uses for these materials 
in the manufacture of transistors. But the special optical prop-
erties of quantum dots can also be exploited. Just as the 
generation of an electron–hole pair requires absorption of 
light of a specific wavelength, so does recombination of the 
pair result in the emission of light of a specific wavelength. 
This property forms the basis for the use of quantum dots in 
the visualization of biological cells at work. For example, a CdSe
quantum dot can be modified by covalent attachment of an 
organic spacer to its surface. When the other end of the spacer
reacts specifically with a cellular component, such as a protein,
nucleic acid, or membrane, the cell becomes labelled with 
a light-emitting quantum dot. The spatial distribution of 
emission intensity and, consequently, of the labelled mole-
cule can then be measured with a microscope. Though this 
technique has been used extensively with organic molecules 
as labels, quantum dots are more stable and are stronger light
emitters.

Rotational motion
There is no such thing as rotation in one dimension, so we are
about to embark on the description of a different type of system.
Rotation is enormously important throughout chemistry. We
have already remarked that molecular rotation has thermo-
dynamic and spectroscopic consequences. However, even more
fundamental to chemistry is the motion of electrons around 
nuclei in atoms, which gives rise to the concept of atomic orbitals
that will be familiar from introductory chemistry and thence to
the structure of the periodic table.

As in the discussion of translational motion, we shall work 
up in the number of dimensions. However, we have to start 
with two dimensions, and consider a particle circulating on a
ring. Actually, that model applies much more widely than its
artificiality might suggest. For instance, once we have solved that
problem, we can stack together rings of different sizes to form a
sphere, and use it to discuss rotation in three dimensions. Once
we have got to that point, we shall have the basis for describing
molecular rotation, the motion of electrons in atoms, and par-
ticles trapped in spherical cavities.

This discussion will draw on the concepts of angular momen-
tum and moment of inertia, so it would be a good idea to review
them in Fundamentals F.6.

3.3 Rotation in two dimensions: a particle 
on a ring

Just as linear momentum was the central concept for the discus-
sion of linear motion, angular momentum is the central concept
for the discussion of rotational motion. For a particle moving on
a circle of radius r in the xy-plane and having a linear momen-
tum of magnitude p at some instant, the angular momentum
around the perpendicular z-axis is

Jz = ±pr (3.7)

A positive sign corresponds to clockwise motion (seen from
below) and a negative sign corresponds to counter-clockwise
motion. The kinetic energy of a particle of mass m and linear
momentum p is Ek = p2/2m; the potential energy for the particle,
freely moving on the circle, is 0. Therefore, in terms of the 
angular momentum, the total energy E = Jz

2/2mr2. However, 
the moment of inertia, I, of the particle around the centre of 
rotation is mr2, so

(3.8)

This expression applies to any body of moment of inertia I
undergoing two-dimensional rotation, not just a point mass on
a circle. For instance, it applies to a circular disc of mass M and
radius R, with I = 1–2MR2, and to a diatomic molecule of bond
length R composed of atoms of masses mA and mB, with the mo-
ment of inertia interpreted as I = μR2, with μ = mAmB/(mA + mB).

(a) The qualitative origin of quantized rotation

The linear momentum that appears in eqn 3.7 can be ex-
pressed as a wavelength by using the de Broglie relation p = h/λ,
which gives Jz = ±hr/λ. Likewise, the energy in eqn 3.8 becomes 
E = h2r2/2Iλ2. Suppose for the moment that λ can take an arbitrary
value. In that case, the wavefunction depends on the azimuthal
angle φ as shown in Fig. 3.4a. When φ increases beyond 2π, 
the wavefunction continues to change, but for an arbitrary

E
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wavelength it gives rise to a different value at each point, which is
unacceptable because a wavefunction must be single-valued. An
acceptable solution is obtained only if the wavefunction repro-
duces itself on successive circuits, as in Fig. 3.4b. Because only
some wavefunctions have this property, it follows that only some
angular momenta are acceptable, and therefore that only certain
rotational energies exist. Hence, the energy of the particle is
quantized. Specifically, an integer number of wavelengths must
fit the circumference of the ring (which is 2πr):

nλ = 2πr n = 0, 1, 2, . . .

The value n = 0 corresponds to λ = ∞; a ‘wave’ of infinite 
wavelength has a constant height at all values of φ. The angular
momentum is therefore limited to the values

where we have allowed ml (the conventional notation for this
quantum number) to have positive or negative values. That is,

Jz = ml $ ml = 0, ±1, ±2, . . . (3.9)

Positive values of ml correspond to rotation in a clockwise sense
around the z-axis (as viewed in the direction of z, Fig. 3.5) and
negative values of ml correspond to counter-clockwise rotation
around z. It then follows from eqn 3.8 that the energy is limited
to the values

(3.10a)

We shall see shortly that the corresponding normalized wave-
functions are
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The wavefunction with ml = 0 is ψ0(φ) = 1/(2π)1/2, and has 
the same value at all points on the circle and Eml

= 0; there is no
zero-point energy in this system.

We have arrived at a number of conclusions about rotational
motion by combining some classical notions with the de Broglie
relation. Such a procedure can be very useful for establishing 
the general form (and, as in this case, the exact energies) for 
a quantum mechanical system. However, to be sure that the 
correct solutions have been obtained, and to obtain practice 
for more complex problems where this less formal approach 
is inadequate, we need to solve the Schrödinger equation 
explicitly. The formal solution is described in the Justification
that follows.

Justification 3.2 The energies and wavefunctions of a
particle on a ring

The hamiltonian for a particle of mass m travelling on a 
circle in the xy-plane (with V = 0) is the same as that given in
eqn 3.1:

but with the constraint to a path of constant radius r. It is 
always a good idea to use coordinates that reflect the full 
symmetry of the system, especially when there is a restric-
tion of the particle to a definite path corresponding to that
symmetry, so we introduce the coordinates r and φ (Fig. 3.6),
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Fig. 3.4 Two solutions of the Schrödinger equation for a particle
on a ring. The circumference has been opened out into a straight
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Fig. 3.5 The angular momentum of a particle confined to a plane
can be represented by a vector of length |ml | units along the 
z-axis and with an orientation that indicates the direction of
motion of the particle. The direction is given by the right-hand
screw rule.
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where x = r cos φ and y = r sin φ. By standard manipulations
(see Table 3.1 for useful relations among coordinate systems)
we can write

(3.11)
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However, because the radius of the path is fixed, the deriva-
tives with respect to r can be discarded. The hamiltonian then
becomes

The moment of inertia I = mr2 has appeared automatically, so
@ may be written

(3.12)

and the Schrödinger equation is

(3.13)

The (unnormalized) general solutions of this equation are

as can be verified by substitution. The quantity ml is just a 
dimensionless number at this stage.

We now select the acceptable solutions from among these
general solutions by imposing the condition that the wave-
function should be single-valued. That is, the wavefunction
ψ must satisfy a cyclic boundary condition and match at
points separated by a complete revolution: ψ(φ + 2π) = ψ(φ).
On substituting the general wavefunction into this condition,
we find

ψml
(φ + 2π) = eiml(φ+2π) = eimlφe2πiml = ψml

(φ)e2πiml

= ψml
(φ)(eπi)2ml

As eiπ = cos π + i sin π = −1, this relation is equivalent to

ψml
(φ + 2π) = (−1)2mlψml

(φ)

Because we require (−1)2ml = 1, 2ml must be a positive or a
negative even integer (including 0), and therefore ml must be
an integer: ml = 0, ±1, ±2, . . . .

We now normalize the wavefunction by finding the norm-
alization constant N given by eqn 1.4:

(3.14)

and we obtain the normalized wavefunction of eqn 3.10b.
The expression for the energies of the states is obtained by 
rearranging the relation ml = ±(2IE)1/2/$.
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systems with axial (cylindrical) symmetry. For a particle
confined to the xy-plane, only r and φ can change.

Table 3.1 Useful relations between Cartesian and other
coordinate systems

Cylindrical coordinates (z, r, φ). See Fig. 3.6.

x = r cos φ
y = r sin φ
dxdy = rdrdφ

Spherical polar coordinates (r, θ, φ). See Fig. 3.11.

x = r sin θ cos φ
y = r sin θ sin φ
z = r cos θ
dxdydz = r 2 sin θ drdθdφ

where
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(b) Quantization of rotation 

We can summarize the conclusions so far as follows. The energy
for a particle on a ring is quantized and restricted to the values
given in eqn 3.10a (Eml

= ml
2$2/2I). The occurrence of ml as 

its square means that the energy of rotation is independent 
of the sense of rotation (the sign of ml), as we expect physically.
In other words, states with a given value of |ml | are doubly 
degenerate, except for ml = 0, which is non-degenerate. The
non-degeneracy of the ground state is consistent with the 
interpretation that, when ml = 0, the particle has an infinite 
wavelength and is ‘stationary’; the question of the direction of
rotation does not arise.

We have also seen that the angular momentum is quantized
and confined to the values given in eqn 3.9 (Jz = ml $). The in-
creasing angular momentum is associated with the increasing
number of nodes in the real (cos ml φ) and imaginary (sin ml φ)
parts of the wavefunction eimlφ (the complex function does not
have nodes but its real and imaginary components do): the wave-
length decreases stepwise as |ml | increases, so the momentum
with which the particle travels round the ring increases (Fig. 3.7).
We can come to the same conclusion more formally by using 
the argument about the relation between eigenvalues and the
values of observables established in Section 1.7 by Postulate IV.
In the discussion of translational motion in one dimension, we
saw that the opposite signs in the wavefunctions eikx and e−ikx

correspond to opposite directions of travel, and that the linear
momentum is given by the eigenvalue of the linear momentum
operator. The same conclusions can be drawn here, but now we
need the eigenvalues of the angular momentum operator.

In classical mechanics the angular momentum lz about the 
z-axis is defined as the ‘moment of momentum’:

lz = xpy − ypx (3.15)

where px is the component of linear momentum parallel to 
the x-axis and py is the component parallel to the y-axis. The 

operators for the linear momentum components are given in
eqn 1.10, so the operator for angular momentum about the 
z-axis is

(3.16a)

When expressed in terms of the coordinates r and φ, by standard
manipulations (see Table 3.1) this equation becomes

(3.16b)

With the angular momentum operator available, we can test
if the wavefunction in eqn 3.10b is an eigenfunction. Since the
wavefunction depends only on the coordinate φ, the partial
derivative in eqn 3.16b can be replaced by a complete derivative
and we find

(3.17)

That is, ψml
is an eigenfunction of Zz, and corresponds to an 

angular momentum ml $. When ml is positive, the angular 
momentum is positive (clockwise rotation when seen from
below); when ml is negative, the angular momentum is negative
(counter-clockwise when seen from below).

These features are the origin of the vector representation of
angular momentum, in which the magnitude is represented 
by the length of a vector and the direction of motion by its 
orientation (Fig. 3.8). This vector representation of angular 
momentum is also useful in classical physics but there is one
crucial difference: in quantum mechanics the length of the 
vector is restricted to discrete values (corresponding to per-
mitted values of ml), whereas in classical physics the length is
continuously variable.
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To locate the particle given its wavefunction in eqn 3.10b, we
form the probability density:

Because this probability density is independent of φ, the prob-
ability of locating the particle somewhere on the ring is also 
independent of φ (Fig. 3.9). Hence the location of the particle 
is completely indefinite (other than knowing that the particle
must be somewhere on the ring), and knowing the angular 
momentum precisely eliminates the possibility of specifying 
the particle’s location. Angular momentum and angle are a pair
of complementary observables (in the sense defined in Section
1.10; see Problem 3.19), and the inability to specify them sim-
ultaneously with arbitrary precision is another example of the
uncertainty principle.

3.4 Rotation in three dimensions: the particle on
a sphere

We now consider a particle of mass m that is free to move 
anywhere on the surface of a sphere of radius r. This hugely 
important problem will turn out to be central to the discussion
of a wide range of problems in chemistry. Most obviously, it 
is part of the problem of the hydrogen atom, where an electron
circulates around a central nucleus. Because the hydrogen atom
is a basis of a model of all atoms, the problem is relevant to the
entire periodic table. If, as in the case of a particle on a ring, we
express the solutions in terms of the moment of inertia I = mr2,
then we can use them to describe the three-dimensional rotation
of any body of that moment of inertia, such as a solid ball
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Fig. 3.9 The probability density for a particle in a definite state of
angular momentum is uniform, so there is an equal probability
of finding the particle anywhere on the ring.

Example 3.2 Finding expectation values of a particle-on-a-ring
wavefunction

A synchrotron, a type of cyclic particle accelerator, is used 
to accelerate protons along an effectively circular path. Since
the synchrotron does not accelerate particles to a precisely
defined angular momentum, the wavefunction of the pro-
tons is a superposition of functions. If, at some instant of
time, the state of the proton is described by the wavefunction

what value(s) of the angular momentum would be found? 
If more than one value is possible, what is the probability of
obtaining each value and what is the average value?

Method Postulate IV tells us that, if ψ is an eigenfunction of
the angular momentum operator Zz, then only a single value
of the angular momentum (the corresponding eigenvalue)
will be found. Rather than explicitly testing if ψ is an eigen-
function by performing the operation Zzψ, we can use a short
cut by recognizing that the wavefunction is written as a linear
combination of eigenfunctions ψml

of eqn 3.10b whose eigen-
values are given in eqn 3.9. However, we must be careful
when using Postulate V to identify the coefficients ck in the
superposition.

Answer We rewrite the wavefunction as

The wavefunction is a linear combination of normalized
eigenfunctions ψml

(with eigenvalues ml $) and we can use
Postulate V. When the angular momentum is measured, a
value of 4$ will be found with a probability of 5/6 and a value
of 3$ will be found with a probability of 1/6. The average
value of the angular momentum is given by the expectation
value in eqn 1.17:

〈lz〉 = (5/6)(4$) + (1/6)(3$) = (23/6)$

Self-test 3.2 Repeat the above problem for the energy of 
the proton. Assume that the synchrotron has an effective
radius r.

[With I = mpr2, 〈H 〉 = (5/6)(16$2/2I)
+ (1/6)(9$2/2I) = 89$2/12I]
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(which, if its mass is M and its radius is R, has I = 2–5MR2) or a
molecule, such as CH4 (which, if the C-H bond length is R, has
I = (8/3)mHR2). The solutions we are about to find also occur in
the description of particles trapped in spherical cavities, such as
that used to model a three-dimensional quantum dot, a molecule
in a helium droplet, or an electron in a metal–ammonia solution.
Even more fundamentally, the discussion leads to an account of
angular momentum, which is one of the most important prob-
lems in quantum mechanics, with applications that range from
the classification of atomic states to many aspects of molecular
spectroscopy.

We shall build on the work we have already done on the par-
ticle on a ring. This should not be surprising given that a sphere
can be thought of as a three-dimensional stack of rings with the
additional freedom for the particle to migrate from one ring to
another. The cyclic boundary condition for the particle on a ring
will once again lead to a quantum number, the same ml that we
have already encountered. However, the requirement that the
wavefunction should match as a path is traced over the poles as
well as round the equator of the sphere surrounding the central
point introduces a second cyclic boundary condition and there-
fore a second quantum number (Fig. 3.10).

(a) The Schrödinger equation

The hamiltonian operator for motion in three dimensions
(Table 1.1) is

(3.18a)

As remarked in that table, the laplacian, ∇2 (read ‘del squared’),
is a convenient abbreviation for the sum of the three second
derivatives. For the particle confined to a spherical surface, V = 0
wherever it is free to travel and r is a constant. The wavefunction
is therefore a function of the colatitude θ, and the azimuth φ

@
$

= − ∇ + ∇ = + +
2

2 2
2

2

2

2

2

22m
V

x y z

∂
∂

∂
∂

∂
∂

(Fig. 3.11), and we write it ψ(θ,φ). The Schrödinger equation is
therefore

(3.18b)

Our remark that a sphere can be regarded as a stack of rings
suggests that the solutions of eqn 3.18b can be written

ψ(θ,φ) = Θ(θ)Φ(φ) (3.19)

where Θ is a function only of θ, and Φ, a function only of φ, 
is the solution for a particle on a ring. This separation of vari-
ables is confirmed in the following Justification, where we show
that the solutions are specified by quantum numbers l and ml

restricted to the values

l = 0, 1, 2, . . . ml = l, l − 1, . . . , −l

The orbital angular momentum quantum number l is non-
negative and, for a given value of l, there are 2l + 1 permitted 
values of the magnetic quantum number, ml.

Justification 3.3 The separation of variables technique
applied to the particle on a sphere

To take advantage of the symmetry of the problem and the
fact that r is a constant for a particle on a sphere, we use
spherical polar coordinates, the radius r, the colatitude θ,
and the azimuth φ (Fig. 3.12), with

x = r sin θ cos φ y = r sin θ sin φ z = r cos θ

We saw in Table 1.1 and Table 3.1 that the laplacian in spher-
ical polar coordinates is

(3.20a)

where the legendrian, Λ2, is

(3.20b)Λ2
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Fig. 3.10 The wavefunction of a particle on the surface of a sphere
must satisfy two cyclic boundary conditions; this requirement
leads to two quantum numbers for its state of angular
momentum.
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Fig. 3.11 The spherical polar coordinates used for discussing
systems with spherical symmetry.
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Because r is constant, we can discard the part of the laplacian
that involves differentiation with respect to r, and so write the
Schrödinger equation as

The moment of inertia, I = mr2, has appeared. This expres-
sion can be rearranged into

Λ2ψ = −εψ

To verify that this expression is separable, we try the substitu-
tion ψ = ΘΦ with the form of the legendrian in eqn 3.20b:

We now use the fact that Θ and Φ are each functions of 
one variable, so the partial derivatives become complete
derivatives:

Division through by ΘΦ, multiplication by sin2θ, and minor
rearrangement give

The first term on the left depends only on φ and the remain-
ing two terms depend only on θ. By the same argument used
in Justification 3.1, each term is equal to a constant. Thus, if
we set the first term equal to the numerical constant −ml

2
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The first of these two equations is the same as that in
Justification 3.2, so—as we anticipated—it has the same 
solutions (eqn 3.10b). The second equation is new, but its 
solutions are well known to mathematicians as ‘associated
Legendre functions’. The cyclic boundary condition for the
matching of the wavefunction at φ = 0 and 2π restricts ml to
positive and negative integer values (including 0), as for a
particle on a ring. The additional requirement that the wave-
function also match on a journey over the poles results in 
the introduction of a second quantum number, l, with non-
negative integer values. However, the presence of the quantum
number ml in the second equation implies that the ranges of
the two quantum numbers are linked, and it turns out that l
can take the values 0, 1, 2, . . . and, for a given value of l, ml

ranges in integer steps from −l to +l, as quoted in the text.

The normalized wavefunctions ψ(θ,φ) for a given l and ml are
usually denoted Ylml

(θ,φ) and are called the spherical harmonics
(Table 3.2). They are as fundamental to the description of waves
on spherical surfaces as the harmonic (sine and cosine) functions

I

&
02'

0

'

Fig. 3.12 The surface of a sphere is covered by allowing θ to range
from 0 to π, and then sweeping that arc around a complete circle
by allowing φ to range from 0 to 2π.

Table 3.2 The spherical harmonics

l ml Yl,ml
(q,f)

0 0
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are to the description of waves on lines and planes. Figure 3.13 is
a representation of the spherical harmonics for l = 0 to 4 and 
ml = 0. There are no angular nodes (the positions at which 
the wavefunction passes through zero) around the z-axis for
functions with ml = 0. The spherical harmonic with l = 0, ml = 0
has no nodes at all: it is a ‘wave’ of constant height at all positions
of the surface. The spherical harmonic with l = 1, ml = 0 has a 
single angular node at θ = π/2; therefore, the equatorial plane is
a nodal plane. The spherical harmonic with l = 2, ml = 0 has two 
angular nodes (at colatitudes θ = 54.7° and 125.3°; close to the
latitudes of Los Angeles and Buenos Aires on an actual globe). 
In general, the number of angular nodes is equal to l. As the
number of nodes increases, the wavefunctions become more
buckled, and with this increasing curvature we can anticipate
that the kinetic energy of the particle increases.

The increase in energy with increasing l is confirmed by the
full solution of the Schrödinger equation, which shows that the
energy of the particle is restricted to the values

(3.21)

independent of the value of ml. Because there are 2l + 1 different
wavefunctions (one for each value of ml) that correspond to the
same energy, it follows that a level with quantum number l is 
(2l + 1)-fold degenerate. Notice also that there is no zero-point
energy because the ground-state (l = 0, ml = 0) wavefunction has
a constant value and all its derivatives are zero. The appearance
of the factor l(l + 1) in eqn 3.21 has its roots in the properties 
of the angular momentum operator, in particular the operator
for the square of the magnitude of the angular momentum, Z 2,
introduced in Section 3.4(d).

  
E l l

I
l= + =( ) , , , . . .1

2
0 1 2

2$

(b) Angular momentum

Just as important as the quantization of energy is the quantiza-
tion of the particle’s angular momentum. We can infer that 
the angular momentum is quantized with very little further 
calculation by noting that the energy of a rotating particle is 
related classically to its angular momentum J by E = J 2/2I (see
Fundamentals F.6). Therefore, by comparing this equation with
eqn 3.21, we can deduce that the magnitude of the angular 
momentum is confined to the values

Magnitude of angular momentum = {l(l + 1)}1/2$
l = 0, 1, 2 . . . (3.22a)

We have already seen (in the context of rotation in a plane) that
the angular momentum about the z-axis is quantized, and that
for a given value of l it has the values

z-Component of angular momentum = ml $
ml = +l, l − 1, . . . , −l (3.22b)

A note on good practice When quoting the value of ml, 
always give the sign, even if ml is positive. Thus, write ml = +2,
not ml = 2.

The fact that the number of nodes in Ylml
(θ,φ) increases with 

l reflects the fact that higher angular momentum implies 
higher kinetic energy, and therefore a more sharply buckled
wavefunction.

l A BRIEF ILLUSTRATION

As a first approximation to the description of the rotation 
of a 1H127I molecule, we can imagine an 1H atom orbiting
a heavy, stationary 127I atom at a distance r = 160 pm, the 
equilibrium bond distance. The moment of inertia of 1H127I
is then I = mHr2 = 4.284 × 10−47 kg m2. It follows that

or 0.1299 zJ. This energy corresponds to 78.23 J mol−1. From
eqn 3.21, the first few rotational energy levels are therefore 0
(l = 0), 0.2598 zJ (l = 1), 0.7794 zJ (l = 2), and 1.559 zJ (l = 3).
The degeneracies of these levels are 1, 3, 5, and 7, respectively
(from 2l + 1), and the magnitudes of the angular momentum
of the molecule are 0, 21/2$, 61/2$, and (12)1/2$ (from eqn
3.22a). It follows from our calculations that the l = 0 and l = 1
levels are separated by ΔE = 0.2598 zJ. A transition between
these two rotational levels of the molecule can be brought
about by the emission or absorption of a photon with a fre-
quency given by the Bohr frequency condition (eqn 1.1):
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Fig. 3.13 A representation of the wavefunctions of a particle on
the surface of a sphere that emphasizes the location of angular
nodes: dark and light shading correspond to different signs of
the wavefunction. Note that the number of nodes increases as
the value of l increases. All these wavefunctions correspond to 
ml = 0; a path round the vertical z-axis of the sphere does not 
cut through any nodes.
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Radiation with this frequency belongs to the microwave 
region of the electromagnetic spectrum, so microwave spec-
troscopy is a convenient method for the study of molecular
rotations. Because the transition energies depend on the 
moment of inertia, microwave spectroscopy is a very accurate
technique for the determination of bond lengths. We discuss
rotational spectra further in Chapter 10. l

Self-test 3.3 Repeat the calculation for a 2H127I molecule
(same bond length as 1H127I).

[Energies are smaller by a factor of two; same angular
momenta and numbers of components]

(c) Space quantization

The result that ml is confined to the values l, l − 1, . . . , −l for a
given value of l means that the component of angular momentum
about the z-axis—the contribution to the total angular momen-
tum of rotation around that axis—may take only 2l + 1 values. 
If we represent the angular momentum by a vector of length 
{l(l + 1)}1/2, then it follows that this vector must be oriented so
that its projection on the z-axis is ml and that it can have only 
2l + 1 orientations rather than the continuous range of orienta-
tions of a rotating classical body (Fig. 3.14). The remarkable 
implication is that the orientation of a rotating body is quantized.

The quantum mechanical result that a rotating body may not
take up an arbitrary orientation with respect to some specified
axis (for example, an axis defined by the direction of an externally
applied electric or magnetic field) is called space quantization. It
was confirmed by an experiment first performed by Otto Stern
and Walther Gerlach in 1921, who shot a beam of silver atoms
through an inhomogeneous magnetic field (Fig. 3.15). The idea

behind the experiment was that a rotating, charged body (such
as the 5s1 electron in the silver atom) behaves like a magnet and
interacts with the applied field. According to classical mechanics,
because the orientation of the angular momentum can take any
value, the associated magnet can take any orientation. Because
the direction in which the magnet is driven by the inhomo-
geneous field depends on the magnet’s orientation, it follows that
a broad band of atoms is expected to emerge from the region
where the magnetic field acts. According to quantum mechanics,
however, because the orientation of the angular momentum is
quantized, the associated magnet lies in a number of discrete
orientations, so several sharp bands of atoms are expected.

In their first experiment, Stern and Gerlach appeared to
confirm the classical prediction. However, the experiment is
difficult because collisions between the atoms in the beam 
blur the bands. When the experiment was repeated with a beam
of very low intensity (so that collisions were less frequent), 
they observed discrete bands, and so confirmed the quantum
prediction.

(d) The vector model

So far, we have discussed the magnitude of the angular momen-
tum and its z-component. In classical physics, we would be 
able to specify the components about the x- and y-axes too and
be able to represent the angular momentum by a vector with 
a definite orientation. According to quantum mechanics, we 
already have as complete a description of the angular momen-
tum of a rotating object as it is possible to have, and can say
nothing further about the orientation of the vector.

The reason for this restriction is that the components of 
angular momentum are complementary to each other (in the
sense described in Section 1.10) and that, if we specify any one 
of them (the z-component, typically), then the other two com-
ponents cannot be specified. To verify that the components are

z

ml = +2

ml = +1

ml = 0

ml = –2

ml = –1

Fig. 3.14 The permitted orientations of angular momentum 
when l = 2. We shall see soon that this representation is too
specific because the azimuthal orientation of the vector 
(its angle around z) is indeterminate.

(b)

(c)

(a)

Fig. 3.15 (a) The experimental arrangement for the
Stern–Gerlach experiment: the magnet provides an
inhomogeneous field. (b) The classically expected result. 
(c) The observed outcome using silver atoms.
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complementary, we need to examine the corresponding oper-
ators. Each one is like the operator in eqn 3.16a:

(3.23)

As you are invited to show in Problem 3.27, these three opera-
tors do not commute with one another:

[Zx,Zy] = i$Zz [Zy,Zz] = i$Zx [Zz,Zx] = i$Zy (3.24)

Therefore, lx, ly, and lz are complementary observables and we
cannot specify more than one of them at a time (unless l = 0). On
the other hand, the operator for the square of the magnitude of
the angular momentum is

Z 2 = Z x
2 + Z y

2 + Z z
2 (3.25)

This operator does commute with all three components (see
Problem 3.29):

[Z 2,Zq] = 0 q = x, y, and z (3.26)

Therefore, because Z 2 and Zq commute, we may specify precisely
and simultaneously the magnitude of the angular momentum
and any one of the components of the angular momentum. 
It follows that the schematic in Fig. 3.14, which is summarized 
in Fig. 3.16a, gives a false impression of the state of the system,
because it suggests definite values for the x- and y-components.
A more accurate picture must reflect the impossibility of speci-
fying lx and ly if lz is known.

The vector model of angular momentum uses pictures like that
in Fig. 3.16b. The cones are drawn with sides of length {l(l + 1)}1/2,
and represent the magnitude of the angular momentum. Each
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cone has a definite projection (of ml) on the z-axis, representing
the system’s precise value of lz. The lx and ly projections, how-
ever, are indefinite. The vector representing the state of angular
momentum can be thought of as lying with its tip on any point
on the mouth of the cone. At this stage it should not be thought
of as sweeping round the cone; that aspect of the model will 
be added later when we allow the picture to convey more 
information.

3.5 Spin

Stern and Gerlach observed two bands of Ag atoms in their 
experiment. This observation seems to conflict with one of the
predictions of quantum mechanics, because an angular momen-
tum l gives rise to 2l + 1 orientations, which is equal to 2 only if 
l = 1–2, contrary to the conclusion that l must be an integer. The
conflict was resolved by the suggestion that the angular momen-
tum they were observing was not due to orbital angular momen-
tum (the motion of an electron around the atomic nucleus) but
arose instead from the motion of the electron about its own 
axis. This intrinsic angular momentum of the electron is called
its spin. The explanation of the existence of spin emerged when
Dirac combined quantum mechanics with special relativity and
established the theory of relativistic quantum mechanics.

The spin of an electron about its own axis does not have 
to satisfy the same boundary conditions as those for a particle 
circulating around a central point, so the quantum number for
spin angular momentum is subject to different restrictions. To
distinguish this spin angular momentum from orbital angular
momentum we use the spin quantum number s (in place of l;
like l, s is a non-negative number) and ms, the spin magnetic
quantum number, for the projection on the z-axis. The magni-
tude of the spin angular momentum is {s(s + 1)}1/2$ and the
component ms$ is restricted to the 2s + 1 values

ms = s, s − 1, . . . , −s (3.27)

A note on good practice You will sometimes see the quan-
tum number s used in place of ms, and written s = ± 1–2. That is
wrong: like l, s is never negative and denotes the magnitude of
the spin angular momentum. For the z-component, use ms.

The detailed analysis of the spin of a particle is sophisticated
and shows that the property should not be taken to be an actual
spinning motion. It is better to regard ‘spin’ as an intrinsic prop-
erty like mass and charge. However, the picture of an actual
spinning motion can be very useful when used with care. For an
electron it turns out that only one value of s is allowed, namely 
s = 1–2, corresponding to an angular momentum of magnitude 
(3–4)1/2$ = 0.866$. This spin angular momentum is an intrinsic
property of the electron, like its rest mass and its charge, and
every electron has exactly the same value: the magnitude of the

+2

+1

0

–1

–2

z

ml

(a)

–1
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z
+2

+1

0

(b)

Fig. 3.16 (a) A summary of Fig. 3.14. However, because the
azimuthal angle of the vector around the z-axis is indeterminate,
a better representation is as in (b), where each vector lies at an
unspecified azimuthal angle on its cone.
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spin angular momentum of an electron cannot be changed. The
spin may lie in 2s + 1 = 2 different orientations (Fig. 3.17). One
orientation corresponds to ms = + 1–2 (this state is often denoted 
α or ↑); the other orientation corresponds to ms = − 1–2 (this state
is denoted β or ↓).

The outcome of the Stern–Gerlach experiment can now be
explained if we suppose that each Ag atom possesses an angular
momentum due to the spin of a single electron, because the two
bands of atoms then correspond to the two spin orientations.
Why the atoms behave like this is explained in Chapter 4 (but it
is already probably familiar from introductory chemistry that
the ground-state configuration of a silver atom is [Kr]4d105s1, a
single unpaired electron outside a closed shell).

Like the electron, other elementary particles have character-
istic spin. For example, protons and neutrons are spin- 1–2 particles
(that is, s = 1–2) and invariably spin with angular momentum 
(3–4)1/2$ = 0.866$. Because the masses of a proton and a neutron
are so much greater than the mass of an electron, yet they all
have the same spin angular momentum, the classical picture
would be of these two particles spinning much more slowly than
an electron. Some elementary particles have s = 1, and so have an
intrinsic angular momentum of magnitude 21/2$. Some mesons
are spin-1 particles (as are some atomic nuclei), but for our pur-
poses the most important spin-1 particle is the photon. We shall
see the importance of photon spin in the next chapter and the
importance of proton spin in Chapter 12 (magnetic resonance).

Particles with half-integral spin are called fermions and those
with integral spin (including 0) are called bosons. Thus, elec-
trons and protons are fermions and photons are bosons. It is a
very deep feature of nature that all the elementary particles that
constitute matter are fermions whereas the elementary particles
that are responsible for the forces that bind fermions together
are all bosons. Photons, for example, transmit the electromag-
netic force that binds together electrically charged particles.
Matter, therefore, is an assembly of fermions held together by
forces conveyed by bosons.

The properties of angular momentum that we have developed
are set out in Table 3.3. As mentioned there, when we use the
quantum numbers l and ml we shall mean orbital angular 
momentum (circulation in space). When we use s and ms we shall
mean spin angular momentum (intrinsic angular momentum).
When we use j and mj we shall mean either (or, in some contexts
to be described in Chapter 4, a combination of orbital and spin
momenta).

ms = +–12

ms = ––12

Fig. 3.17 An electron spin (s = 1–2 ) can take only two orientations
with respect to a specified axis. An α electron (top) is an 
electron with ms = + 1–2 ; a β electron (bottom) is an electron with
ms = −1–2 . The vector representing the spin angular momentum
lies at an angle of 55° to the z-axis (more precisely, the half-angle
of the cones is arccos(ms /{s(s + 1)}1/2) = arccos(1/31/2)).

Table 3.3 Properties of the angular momentum of an electron

Quantum number Symbol* Values† Specifies

Orbital angular momentum l 0, 1, 2, . . . Magnitude, {l(l + 1)}1/2$

Magnetic ml l, l − 1, . . . , −l Component on z-axis, ml $

Spin s 1–2 Magnitude, {s(s + 1)}1/2$

Spin magnetic ms ± 1–2 Component on z-axis, ms $

Total‡ j l + s, l + s − 1, . . . , |l − s | Magnitude, {j( j + 1)}1/2$

Total magnetic mj j, j − 1, . . . , −j Component on z-axis, mj $

*For many-electron systems, the quantum numbers are designated by upper-case letters (L, ML, S, MS, etc.).
†Note that the quantum numbers for magnitude (l, s, j, etc.) are never negative.
‡To combine two angular momenta, use the Clebsch–Gordan series (Section 4.5):

j = j1 + j2, j1 + j2 − 1, . . . , | j1 − j2 |
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Checklist of key ideas

1. The wavefunctions and energies of a particle in a two-
dimensional box are given by eqn 3.3.

2. Degenerate wavefunctions are different wavefunctions
corresponding to the same energy. Degeneracy results from
the symmetry of the system.

3. A particle in a three-dimensional box has wavefunctions and
energies given by eqn 3.5.

4. Angular momentum is the moment of momentum around a
point.

5. The wavefunctions and energies of a particle on a ring are,
respectively, ψml

(φ) = (1/2π)1/2eimlφ and Eml
= ml

2$2/2I, with 
I = mr2 and ml = 0, ±1, ±2, . . . .

6. The wavefunctions of a particle on a sphere are the spherical
harmonics, the functions Yl,ml

(θ,φ) (Table 3.2). The energies
are E = l(l + 1)$2/2I, l = 0, 1, 2, . . . .

7. For a particle on a sphere, the magnitude of the angular
momentum is {l(l + 1)}1/2$ and the z-component of the
angular momentum is ml$, ml = l, l − 1, . . . , −l.

8. Space quantization is the restriction of the component of
angular momentum around an axis to discrete values.

9. For three-dimensional rotation, because of the uncertainty
principle, only the magnitude of the angular momentum
and one of its components can be specified precisely and
simultaneously.

10. Spin is an intrinsic angular momentum of a fundamental
particle. A fermion is a particle with a half-integral spin
quantum number; a boson is a particle with an integral 
spin quantum number.

11. For an electron, the spin quantum number is s = 1–2.

12. The spin magnetic quantum number is ms = s, s − 1, . . . , −s;
for an electron, ms = + 1–2, − 1–2.

Discussion questions

3.1 Discuss the physical origin of quantization of energy for a particle
confined to motion around a ring.

3.2 Discuss the appearance or absence of zero-point energy for
translational and rotational motions in 2 and 3 dimensions.

3.3 Distinguish between a fermion and a boson. Provide examples of
each type of particle.

3.4 Describe the features of the solution of the particle in a one-
dimensional box that appear in the solutions of the particle in two- and
three-dimensional boxes. What concept applies to the latter but not to a
one-dimensional box?

3.5 Describe the features of the solution of the particle on a ring that
appear in the solution of the particle on a sphere. What concept applies
to the latter but not to the former?

3.6 Describe the vector model of angular momentum in quantum
mechanics. What features does it capture? What is its status as a 
model?

3.7 Compare and contrast the properties of spin angular momentum
and the properties of angular momentum arising from rotational
motion in two and three dimensions.

Exercises

3.1(a) Some nanostructures can be modelled as an electron confined to 
a two-dimensional region. Calculate the energy separations in joules,
kilojoules per mole, wavenumbers, and electronvolts between the levels
(a) n1 = n2 = 2 and n1 = n2 = 1, (b) n1 = n2 = 6 and n1 = n2 = 5 of an
electron in a square box with sides of length 1.0 nm.

3.1(b) Some nanostructures can be modelled as an electron confined to 
a three-dimensional region. Calculate the energy separations in joules,
kilojoules per mole, wavenumbers, and electronvolts between the levels
(a) n1 = n2 = n3 = 2 and n1 = n2 = n3 = 1, (b) n1 = n2 = n3 = 6 and n1 = n2
= n3 = 5 of an electron in a cubic box with sides of length 1.0 nm.

3.2(a) Nanostructures commonly show physical properties that
distinguish them from bulk materials. Calculate the wavelength and
frequency of the radiation required to cause a transition between the
levels in Exercise 3.1a.

3.2(b) Nanostructures commonly show physical properties that
distinguish them from bulk materials. Calculate the wavelength and

frequency of the radiation required to cause a transition between the
levels in Exercise 3.1b.

3.3(a) Suppose a nanostructure is modelled by an electron confined to a
rectangular region with sides of lengths L1 = 1.0 nm and L2 = 2.0 nm and
is subjected to thermal motion with a typical energy equal to kT where k
is Boltzmann’s constant. How low should the temperature be for the
thermal energy to be comparable to (a) the zero-point energy, (b) the
first excitation energy of the electron?

3.3(b) Suppose a nanostructure is modelled by an electron confined to a
three-dimensional region with sides of lengths L1 = 1.0 nm, L2 = 2.0 nm,
and L3 = 1.5 nm and is subjected to thermal motion with a typical energy
equal to kT where k is Boltzmann’s constant. How low should the
temperature be for the thermal energy to be comparable to (a) the 
zero-point energy, (b) the first excitation energy of the electron?

3.4(a) For quantum mechanical reasons, particles confined to
nanostructures are not distributed uniformly through them. 
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Calculate the probability that an electron confined to a square region
with sides of length L will be found in the region 0.49L ≤ x ≤ 0.51L
and 0.49L ≤ y ≤ 0.51L when it is in a state with (a) n1 = n2 = 1, 
(b) n1 = n2 = 2. Take the wavefunction to be a constant in this 
narrow range.

3.4(b) For quantum mechanical reasons, particles confined to
nanostructures are not distributed uniformly through them. 
Calculate the probability that a hydrogen atom in a cubic cavity
with sides of length L will be found in the region 0.49L ≤ x ≤ 0.51L, 
0.49L ≤ y ≤ 0.51L, and 0.49L ≤ z ≤ 0.51L when it has (a) n1 = n2 = n3 = 1, 
(b) n1 = n2 = n3 = 2. Take the wavefunction to be a constant in this
narrow range.

3.5(a) What are the most likely locations of an electron in a
nanostructure modelled by a particle in a square box with sides 
of length L when it is in the state n1 = 2, n2 = 3?

3.5(b) What are the most likely locations of an electron in a
nanostructure modelled by a particle in a cubic box with sides of 
length L when it is in the state n1 = 1, n2 = 4, n3 = 5?

3.6(a) Locate the nodes of the wavefunction of an electron in a
nanostructure modelled by a particle in a square region with sides of
length L when it is in the state n1 = 2, n2 = 3.

3.6(b) Locate the nodes of the wavefunction of an electron in a
nanostructure modelled by a particle in a cubic well with sides of 
length L when it is in the state n1 = 3, n2 = 4, n3 = 5.

3.7(a) Also for quantum mechanical reasons, particles confined to
nanostructures cannot be perfectly still even at T = 0. Calculate the
expectation values of Yx and Y2 for an electron in the ground state of a
nanostructure modelled by a square box with sides of length L.

3.7(b) Also for quantum mechanical reasons, particles confined to
nanostructures cannot be perfectly still even at T = 0. Calculate the
expectation values of Yx and Y2 for an electron in the ground state of a
nanostructure modelled by a cubic box with sides of length L.

3.8(a) In Exercise 2.6a you were invited to explore whether 
compression could cause the zero-point energy of an electron to
rise to equal its rest mass, mec

2, in one dimension. Repeat that
calculation for a two-dimensional container. Express your answer 
in terms of the parameter λC = h/mec, the ‘Compton wavelength’ of 
the electron.

3.8(b) Repeat Exercise 3.8a for an electron squeezed inside a cubic box.

3.9(a) For a particle in a rectangular box with sides of length L1 = L
and L2 = 2L, find a state that is degenerate with the state n1 = n2 = 2.
Degeneracy is normally associated with symmetry; why, then, are these
two states degenerate?

3.9(b) For a particle in a rectangular box with sides of length L1 = L
and L2 = 2L, find a state that is degenerate with the state n1 = n2 = 4.
Degeneracy is normally associated with symmetry; why, then, are these
two states degenerate?

3.10(a) Consider a particle in a cubic box. What is the degeneracy of the
level that has an energy three times that of the lowest level?

3.10(b) Consider a particle in a cubic box. What is the degeneracy of the
level that has an energy 14––3 times that of the lowest level?

3.11(a) Calculate the percentage change in a given energy level of a
particle in a cubic box when the length of the side of the cube is
decreased by 10 per cent in each direction.

3.11(b) Calculate the percentage change in a given energy level of a
particle in a square box when the length of the side of the square is
decreased by 10 per cent in each direction.

3.12(a) Should a gas be treated quantum mechanically? An oxygen
molecule is confined in a cubic box of volume 2.00 m3. Assuming 
that the molecule has an energy equal to 3–2 kT at T = 300 K, what is the
value of n = (n1

2 + n2
2 + n3

2)1/2, for this molecule? What is the energy
separation between the levels n and n + 1? What is its de Broglie
wavelength? Would it be appropriate to describe this particle as 
behaving classically?

3.12(b) Should a gas be treated quantum mechanically? A nitrogen
molecule is confined in a cubic box of volume 1.00 m3. Assuming that
the molecule has an energy equal to 3–2 kT at T = 300 K, what is the 
value of n = (n1

2 + n2
2 + n3

2)1/2, for this molecule? What is the energy
separation between the levels n and n + 1? What is its de Broglie
wavelength? Would it be appropriate to describe this particle as 
behaving classically?

3.13(a) Confirm that wavefunctions for a particle on a ring with different
values of the quantum number ml are mutually orthogonal.

3.13(b) Confirm that the wavefunction for a particle on a ring (eqn 3.10b)
is normalized.

3.14(a) The rotation of a molecule can be represented by the motion of a
point mass rotating on the surface of a sphere. Calculate the magnitude
of its angular momentum when l = 1 and the possible components of the
angular momentum on an arbitrary axis. Express your results as
multiples of $.

3.14(b) The rotation of a molecule can be represented by the motion 
of a point mass rotating on the surface of a sphere with angular
momentum quantum number l = 2. Calculate the magnitude of its
angular momentum and the possible components of the angular
momentum on an arbitrary axis. Express your results as multiples of $.

3.15(a) Draw scale vector diagrams to represent the states (a) s = 1–2, 
ms = + 1–2, (b) l = 1, ml = +1, (c) l = 2, ml = 0. What is the angle that the
vector makes to the z-axis?

3.15(b) Draw scale vector diagrams for all the permitted rotational states
of a body with l = 6. What are the angles that the vectors make to the 
z-axis?

3.16(a) In later chapters we shall see that the number of states
corresponding to a given energy plays a crucial role in atomic structure
and thermodynamic properties. Determine the degeneracy of a body
rotating with l = 3.

3.16(b) In later chapters we shall see that the number of states
corresponding to a given energy plays a crucial role in atomic structure
and thermodynamic properties. Determine the degeneracy of a body
rotating with l = 4.

3.17(a) The moment of inertia of an H35Cl molecule is 2.73 × 10−47 kg m2.
What energy is needed to excite the molecule from its rotational ground
state to the next higher level? What is the wavelength of electromagnetic
radiation that would achieve that excitation? Where in the
electromagnetic spectrum does that radiation lie?

3.17(b) The average moment of inertia of a benzene molecule is 
1.5 × 10−45 kg m2. What energy is needed to excite the molecule from its
rotational ground state to the next higher level? What is the wavelength
of electromagnetic radiation that would achieve that excitation? Where
in the electromagnetic spectrum does that radiation lie?

3.18(a) The classical picture of an electron is that of a sphere of radius 
re = 2.82 fm. On the basis of this model, how fast is a point on the
equator of the electron moving? Is this answer plausible?

3.18(b) A proton has a spin angular momentum with I = 1–2. Suppose it is
a sphere of radius 2 pm. On the basis of this model, how fast is a point on
the equator of the proton moving?
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Problems

Numerical problems

3.1 Calculate the separation between the two lowest translational energy
levels for an O2 molecule in a cubic box with sides of length 5.0 cm. At
what value of n = n1 = n2 = n3 does the energy of the molecule reach 3–2 kT
at 300 K, and what is the separation of this level from one of the
degenerate levels immediately below?

3.2 The particle in a two-dimensional box is a useful model for the
motion of electrons around the indole rings (1), the conjugated cyclic
compound found in the side chain of the amino acid tryptophan. As a
first approximation, we can model indole as a rectangle with sides of
length 280 pm and 450 pm, with 10 electrons in the conjugated system
(the N atom provides two from its lone pair). Assume that in the ground
state of the molecule each of the lowest available energy levels is occupied
by two electrons. (a) Calculate the energy of an electron in the highest
occupied level. (b) Calculate the wavelength of the radiation that 
can induce a transition between the highest occupied and lowest
unoccupied levels.

3.3 A very crude model of the buckminsterfullerene molecule (C60) is to
treat it as a collection of electrons in a cube with sides of length equal to
the mean diameter of the molecule (0.7 nm). Suppose that only the π
electrons of the carbon atoms contribute, and predict the wavelength 
of the first excitation of C60. (The actual value is 730 nm.)

3.4 Now treat the buckminsterfullerene molecule as a sphere of radius 
a = 0.35 nm and predict the wavelength of the lowest energy transition of
C60 resulting from excitation into an energy level not completely filled.
You need to know that the energies are

with the factors F and degeneracies g as follows:

n,l 1,0 1,1 1,2 2,0 1,3 2,1 1,4 2,2

Fn,l 1 1.430 1.835 2 2.224 2.459 2.605 2.895

gn,l 1 3 5 1 7 3 9 5

3.5 When alkali metals dissolve in liquid ammonia, they lose an electron
and give rise to a deep blue solution that contains unpaired electrons
occupying cavities in the solvent. These ‘metal–ammonia solutions’ have
a maximum absorption at 1500 nm. Suppose that the absorption is due
to the excitation of an electron in a spherical square well from its ground
state to the next higher state (see the preceding problem for
information), what is the radius of the cavity?

3.6 The detailed distribution of particles within nanostructures is 
of interest. Use mathematical software to draw contour maps of the
wavefunctions and probability densities of a particle confined to a 
square surface with n1 = 4 and n2 = 6 (or other values of your choice).
This problem is taken further in Problem 3.31. Go on—and this is a real
challenge—to devise a way to depict the wavefunctions and probability
densities of a cubic quantum dot in various states.

3.7 A synchrotron accelerates protons along a circular path of radius r.
The state of the proton is described by the unnormalized wavefunction
ψ(φ) = ψ−1(φ) + 31/2iψ+1(φ). (a) Normalize this wavefunction. If
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measurements are made to determine (b) the total angular momentum
and (c) the total energy of the proton, what will be the outcome? 
(d) What are the expectation values of these quantities?

3.8 Can the electronic structures of aromatic molecules be treated 
as electrons on a ring? Use such a model to predict the π electronic
structure of benzene, allowing two electrons to occupy each state 
and supposing a radius of 133 pm. What is the wavelength of the first
absorption band that you would predict on the basis of this model? 
(The actual value is 185 nm.)

3.9 The rotation of an 1H127I molecule can be pictured as the orbital
motion of an H atom at a distance 160 pm from a stationary I atom.
(This picture is quite good; to be precise, both atoms rotate around their
common centre of mass, which in this case is very close to the I nucleus.)
Suppose that the molecule rotates only in a plane (a restriction removed
later in the next problem). (a) Calculate the wavelength of electromagnetic
radiation needed to excite the molecule into rotation. (b) What, apart
from 0, is the minimum angular momentum of the molecule?

3.10 Modify Problem 3.9 so that the molecule is free to rotate in three
dimensions, using for its moment of inertia I = μR2, with μ = mHmI/
(mH + mI) and R = 160 pm. Calculate the energies and degeneracies 
of the lowest four rotational levels, and predict the wavelength of
electromagnetic radiation emitted in the l = 1 → 0 transition. In which
region of the electromagnetic spectrum does this wavelength appear?

3.11 A diatomic molecule with μ = 2.000 × 10−26 kg and bond length
250.0 pm is rotating about its centre of mass in the xy-plane. The state of
the molecule is described by the normalized wavefunction ψ(φ). When
the total angular momentum of different molecules is measured, two
possible results are obtained: a value of 3$ for 25 per cent of the time and
a value of −3$ for 75 per cent of the time. However, when the rotational
energy of the molecules is measured, only a single result is obtained. 
(a) What is the expectation value of the angular momentum? (b) Write
down an expression for the normalized wavefunction ψ(φ). (c) What is
the result of measuring the energy?

3.12 A helium atom moving on the surface of a buckminsterfullerene
molecule before it diffuses into the molecule’s interior can be modelled
as a free particle on the surface of a sphere of radius 0.35 nm. Suppose
the state of the atom is described by a wavepacket of composition 
ψ(θ,φ) = 21/2Y2,+1(θ,φ) + 3iY2,+2(θ,φ) + Y1,+1(θ,φ). (a) Normalize this
wavefunction. If (b) the total angular momentum, (c) the z-component
of angular momentum, and (d) the total energy of the atom are
measured, what results will be found? (e) What are the expectation
values of these observables?

3.13 Use the properties of the spherical harmonics to identify the most
probable angles a rotating linear molecule will make to an arbitrary axis
when l = 1, 2, and 3.

Theoretical problems

3.14 The energy levels of an electron in a nanoparticle and confined to a
geometrically square region are proportional to n2 = n1

2 + n2
2. This is an

equation for a circle of radius n in (n1,n2)-space (with meaningful values
in one quadrant). (a) Produce an argument that uses this relation to
predict the degeneracy of a level with a high value of n. (b) Extend this
argument to three dimensions.

3.15 Use the separation of variables method to derive the wavefunctions
of eqn 3.5a.

3.16 Can the location and momentum of an electron confined to 
two-dimensional motion in a nanostructure be determined precisely 
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and simultaneously? Determine the values of Δx = (〈x2〉 − 〈x〉2)1/2 and 
Δpx = (〈px

2〉 − 〈px〉2)1/2 for a particle in a square box of length L in its
lowest energy state. Go on to calculate Δpy = (〈py

2〉 − 〈py〉2)1/2. Discuss
these quantities with reference to the uncertainty principle.

3.17 Confirm by explicit differentiation that the wavefunction given in
eqn 3.3a is a solution of the Schrödinger equation, eqn 3.1, for a particle
in a two-dimensional box with energies given by eqn 3.3b.

3.18 What is the average angular position for a proton accelerated to a
well-defined angular momentum in a synchroton? Calculate the mean
value of 〈φ〉 for a particle on a ring described by the wavefunction in 
eqn 3.10b. Explain your answer.

3.19 The uncertainty principle takes on a different form for cyclic
systems: ΔlzΔsinφ ≥ 1–2$|〈cosφ〉|, where ΔX = {〈X2〉 − 〈X 〉2}1/2 in each 
case. Evaluate the quantities that appear in this expression for (a) a
particle with angular momentum +$, (b) a particle with wavefunction
proportional to cos φ. Is the uncertainty principle satisfied in each case?
Is there a difference between the two cases; if so, why?

3.20 Evaluate the z-component of the angular momentum and the
kinetic energy of a proton in a synchroton of radius r whose state is
described by the (unnormalized) wavefunctions (a) eiφ, (b) e−2iφ, 
(c) cos φ, and (d) (cos χ)eiφ + (sin χ)e−iφ.

3.21 If a proton were accelerated on an elliptical ring rather than a
circular ring, how would solution of the relevant Schrödinger equation
proceed? In particular, is the Schrödinger equation for a particle on an
elliptical ring of semimajor axes a and b separable? Hint. Although r
varies with angle φ, the two are related by r2 = a2 sin2φ + b2 cos2φ.

3.22 Use mathematical software to construct a wavepacket of the form

with coefficients c of your choice (for example, all equal). Explore how
the wavepacket migrates on the ring but spreads with time.

3.23 Confirm that the spherical harmonics (a) Y0,0, (b) Y2,−1, and (c)
Y3,+3 satisfy the Schrödinger equation for a particle free to rotate in three
dimensions, and find its energy and angular momentum in each case.

3.24 Confirm by explicit integration that Y1,+1 and Y2,0 are orthogonal.
(The integration required is over the surface of a sphere.)

3.25 Confirm that Y3,+3 is normalized to 1. (The integration required is
over the surface of a sphere.)

3.26 Derive an expression in terms of l and ml for the half-angle of the
apex of the cone used to represent an angular momentum according to
the vector model. Evaluate the expression for an α spin. Show that the
minimum possible angle approaches 0 as l → ∞.

3.27 Derive (in Cartesian coordinates) the quantum mechanical
operators for the three components of angular momentum starting 
from the classical definition of angular momentum, l = r × p. Show that
any two of the components do not mutually commute, and find their
commutator.

3.28 Starting from the operator Zz = XYy − õYx, prove that in spherical
polar coordinates Zz = −i$∂/∂φ.

3.29 Show that the commutator [Z2,Zz] = 0, and then, without further
calculation, justify the remark that [Z 2,Zq] = 0 for all q = x, y, and z.

Applications: to biology and nanotechnology

3.30 The particle on a ring is a useful model for the motion of electrons
around the porphine ring (2), the conjugated macrocycle that forms the
structural basis of the haem group and the chlorophylls. We may treat
the group as a circular ring of radius 440 pm, with 22 electrons in the
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conjugated system moving along the perimeter of the ring. We assume
that in the ground state of the molecule each level is occupied by two
electrons. (a) Calculate the energy and angular momentum of an
electron in the highest occupied level. (b) Calculate the frequency of
radiation that can induce a transition between the highest occupied and
lowest unoccupied levels.

3.31 In Problem 3.6 you were invited to plot contours showing the
amplitude of the wavefunction and the probability density for various
states of a particle confined to a plane. Develop that visualization in
relation to the porphine ring (Problem 3.30), treating it as a square. Plot
contours of the highest occupied wavefunction and the corresponding
probability density superimposed on a drawing of the molecule. Does
your map bear any relation to reality?

3.32 Here we explore further the idea introduced in Impact I3.1 that
quantum mechanical effects need to be invoked in the description of the
electronic properties of metallic nanocrystals, here modelled as three-
dimensional boxes. (a) Set up the Schrödinger equation for a particle 
of mass m in a three-dimensional rectangular box with sides L1, L2, and
L3. Show that the Schrödinger equation is separable. (b) Show that the
wavefunction and the energy are defined by three quantum numbers. 
(c) Specialize the result from part (b) to an electron moving in a cubic
box of side L = 5 nm and draw an energy diagram showing the first 15
energy levels. Note that each energy level may consist of degenerate
energy states. (d) Compare the energy level diagram from part (c) with
the energy level diagram for an electron in a one-dimensional box of
length L = 5 nm. Are the energy levels becoming more or less sparsely
distributed in the cubic box than in the one-dimensional box?

3.33 We remarked in Impact I3.1 that a particle confined to within a
spherical cavity is a reasonable starting point for the discussion of the
electronic properties of spherical metal nanoparticles. Here, we justify
eqn 3.6, which shows that the energy of an electron in a sphere is
quantized. (a) The hamiltonian for a particle free to move inside a 
sphere of radius a is

Show that the Schrödinger equation is separable into radial and angular
components. That is, begin by writing ψ(r,θ,φ) = R(r)Y(θ,φ), where 
R(r) depends only on the distance of the particle away from the centre 
of the sphere, and Y(θ,φ) is a spherical harmonic. Then show that the
Schrödinger equation can be separated into two equations, one for R(r),
the radial equation, and the other for Y, the angular equation. You may
wish to consult Further information 4.1 for additional help. (b) Consider
the case l = 0. Show by differentiation that the solution of the radial
equation has the form

(c) Now go on to show (by acknowledging the appropriate boundary
conditions) that the allowed energies are given by En = n2h2/8ma2. With
substitution of me for m and of R for a, this is eqn 3.6 for the energy.
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PART 2
Atoms, molecules,
and assemblies

In this part of the text we apply the principles of quantum mechanics to systems

of great chemical significance. First, we draw on the foregoing material to

describe the electronic structures of atoms. As we shall see, a few simple ideas

based on the simplest atom of all, the hydrogen atom, can be developed to

account for the structure of the periodic table and the periodicity of the

properties of the elements. Then we allow the atoms to form bonds and see

that, once again, a simple species, in this case the hydrogen molecule, provides

a model on which the structures of even quite elaborate molecules can be built.

In both of these chapters we focus on the concepts involved; in the chapter that

follows we show how modern computational chemistry is brought to bear on the

same issues and results in quantitative accounts of the properties of molecules.

Here too we illustrate the varieties of computation that are used in contemporary

quantum chemistry by focusing once again on the hydrogen molecule and

demonstrating as explicitly as possible the underlying formulation of modern

molecular structure computational software. One of the most powerful tools for

setting up molecular structure calculations, formulating molecular orbitals, and

assessing a molecule’s properties and spectroscopic behaviour is group theory,

the mathematical theory of symmetry, and we show how straightforward ideas

about symmetry can be made quantitative. Then we turn to bulk systems. Here

we need to know the interactions that result in the aggregation of molecules,

either weakly as in gases and liquids or strongly as in molecular solids. Finally,

we explore the properties of solids in which atoms, ions, and molecules lie in

regular arrays. We see how to classify crystals, how atoms form different types

of solids, and how these structures are established experimentally by X-ray

diffraction. Solids have characteristic mechanical, electrical, optical, and

magnetic properties, and we conclude this part by showing how the ideas

developed in the preceding chapters are relevant to extended arrays of atoms.

4 Atomic structure and spectra
Mathematical background 4:
Vectors

5 The chemical bond
Mathematical background 5:
Matrices

6 Computational chemistry

7 Molecular symmetry

8 Molecular assemblies

9 Solids
Mathematical background 6:
Fourier series and Fourier
transforms
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Atomic structure 
and spectra

We now use the principles of quantum mechanics introduced in the earlier chapters to 
describe the internal structures of atoms. We see what experimental information is avail-
able from a study of the spectrum of atomic hydrogen. Then we set up the Schrödinger
equation for an electron in an atom and separate it into angular and radial parts. The wave-
functions obtained are the ‘atomic orbitals’ of hydrogenic atoms. Next, we use these 
hydrogenic atomic orbitals to describe the structures of many-electron atoms. In conjunc-
tion with the Pauli exclusion principle, we account for the periodicity of atomic properties.
The spectra of many-electron atoms are more complicated than those of hydrogen, but the
same principles apply. We see in the closing sections of the chapter how such spectra are
described by using term symbols, and the origin of the finer details of their appearance.

In this chapter we see how to use quantum mechanics to describe the electronic struc-
ture of an atom, the distribution of electrons around its nucleus. The concepts we
meet are of central importance for understanding the structure and reactivity of
atoms and molecules, and hence have extensive chemical applications. We need to
distinguish between two types of atom. A hydrogenic atom is a one-electron atom or
ion of general atomic number Z; examples of hydrogenic atoms are H, He+, Li2+, O7+,
and even U91+. A many-electron atom (or polyelectronic atom) is an atom or ion with
more than one electron; examples include all neutral atoms other than H. So even He,
with only two electrons, is a many-electron atom. Hydrogenic atoms are important
because their Schrödinger equations can be solved exactly. They also provide a set of
concepts that are used to describe the structures of many-electron atoms and, as we
shall see in the following chapter, the structures of molecules too.

Hydrogenic atoms

When an electric discharge is passed through gaseous hydrogen, the H2 molecules are
dissociated and the energetically excited H atoms that are generated emit light of dis-
crete frequencies, producing a spectrum of a series of ‘lines’ (Fig. 4.1). The Swedish
spectroscopist Johannes Rydberg noted (in 1890) that all of the lines are described by
the expression

(4.1)
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Hydrogenic atoms

4.1 The structure of hydrogenic
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Many-electron atoms

I4.1 Impact on astrophysics: 
The spectroscopy of stars
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4.1 The structure of hydrogenic atoms

The Coulomb potential energy of an electron in a hydrogenic
atom of atomic number Z (and nuclear charge Ze) is (see
Fundamentals F.6)

(4.2)

where r is the distance of the electron from the nucleus and ε0 is
the vacuum permittivity. Because this expression depends only
on the distance from a single point (here, the nucleus), it is an
example of a central potential. The hamiltonian operator for the
electron and a nucleus of mass mN is therefore

(4.3)

The subscripts on ∇2 indicate differentiation with respect to the
electronic or nuclear coordinates.

(a) The separation of variables

Physical intuition suggests that the full Schrödinger equation ought
to separate into two equations, one for the motion of the atom as
a whole through space and the other for the motion of the electron
relative to the nucleus. We show in Further information 4.1 how
this separation is achieved, and that the Schrödinger equation for
the internal motion of the electron relative to the nucleus is

(4.4)

where differentiation is now with respect to the coordinates of
the electron relative to the nucleus. The quantity μ is called the
reduced mass. The reduced mass is very similar to the electron
mass because mN, the mass of the nucleus, is much larger than
the mass of an electron, so μ ≈ me. In all except the most precise
work, the reduced mass can be replaced by me.

Because we can think of the electron as free to move around
the nucleus on a spherical surface—the ‘particle-on-a-sphere’
problem treated in Section 3.4—with the additional freedom to
move between concentric surfaces of different radii, we can sus-
pect that the problem will separate into angular and radial parts.
Therefore, we write

ψ(r,θ,φ) = R(r)Y(θ,φ) (4.5)

and examine whether the Schrödinger equation can be separ-
ated into two equations, one for R and the other for Y. To do so,
we use the laplacian in three dimensions from Table 1.1 to write
the Schrödinger equation in eqn 4.4 as
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Fig. 4.1 The spectrum of atomic hydrogen. Both the observed
spectrum and its resolution into overlapping series are shown.
Note that the Balmer series lies in the visible region.

with n1 = 1 (the Lyman series), 2 (the Balmer series), and 3 (the
Paschen series), and that in each case n2 = n1 + 1, n1 + 2, . . . .
The constant RH is now called the Rydberg constant for the 
hydrogen atom.

The form of eqn 4.1 strongly suggests that each spectral line
arises from a transition, a jump from one state to another, each
with an energy proportional to RH/n2, with the difference in 
energy discarded as electromagnetic radiation of frequency (and
wavenumber) given by the Bohr frequency condition (Section
1.1). Our tasks in the first part of this chapter are therefore to 
determine the origin of this energy quantization, to find the per-
mitted energy levels, and to account for the value of RH.

Example 4.1 Calculating the shortest and longest wavelength
lines in a series

Determine the shortest and longest wavelength lines in the
Balmer series.

Method Identify the value of n1 for the Balmer series. The
shortest wavelength line corresponds to the largest wave-
number; from eqn 4.1, recognize that this line will arise from
n2 = ∞. The longest wavelength corresponds to the smallest
wavenumber, which will arise from n2 = n1 + 1. To convert
from wavenumber to wavelength, use λ = 1/#.

Answer The Balmer series corresponds to n1 = 2. The lar-
gest wavenumber (use n2 = ∞), calculated from eqn 4.1, is 
27 419 cm−1, which corresponds to a wavelength of 365 nm.
The smallest wavenumber (use n2 = 3) is 15 233 cm−1, which 
corresponds to a wavelength of 656 nm.

Self-test 4.1 Calculate the shortest and longest wavelength
lines in the Paschen series. [821 nm, 1876 nm]
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Because R depends only on r and Y depends only on the angular
coordinates, this equation becomes

On multiplying through by r 2/RY, we obtain

At this point we employ the usual argument for the separation 
of variables (Section 3.1). The term in Y is the only one that 
depends on the angular variables, so it must be a constant and
the differential equation separates into two equations:

When we write the constant as $2l(l + 1)/2μ, we immediately
obtain a familiar equation for Y:

Λ2Y = −l(l + 1)Y (4.6)

This equation is the same as the Schrödinger equation for a ‘par-
ticle on a sphere’ (Section 3.4); its solutions are the spherical
harmonics (Table 3.2), and they are labelled with the quantum
numbers l and ml that specify the angular momentum of the
particle. We consider them in more detail shortly. The appear-
ance of the second separated equation is simplified if we write 
R = u(r)/r, for it then becomes

(4.7a)

where

(4.7b)

Equation 4.7 is called the radial wave equation and describes 
the motion of a particle of mass μ in a one-dimensional region 
0 ≤ r < ∞ where the potential energy is Veff.

(b) The radial solutions

We can anticipate some features of the shapes of the radial wave-
functions by analysing the form of Veff. The first term in eqn 4.7b
is the Coulomb potential energy of the electron in the field of 
the nucleus. The second term, which depends on the angular
momentum of the electron around the nucleus, stems from
what in classical physics would be called the centrifugal effect.
When l = 0, the electron has no angular momentum, and the
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effective potential energy is purely Coulombic and attractive 
at all radii (Fig. 4.2). When l ≠ 0, the centrifugal term gives 
a positive (repulsive) contribution to the effective potential 
energy. When the electron is close to the nucleus (r ≈ 0), this 
repulsive term, which is proportional to 1/r 2, dominates the 
attractive Coulombic component, which is proportional to 1/r,
and the net result is an effective repulsion of the electron from
the nucleus. The two effective potential energies, the one for 
l = 0 and the one for l ≠ 0, are qualitatively very different close to
the nucleus. However, they are similar at large distances because
the centrifugal contribution tends to zero more rapidly (as 1/r 2)
than the Coulombic contribution (as 1/r). Therefore, we can 
expect the solutions with l = 0 and l ≠ 0 to be quite different near
the nucleus but similar far away from it. We show in the follow-
ing Justification that:

1. Close to the nucleus the radial wavefunction is propor-
tional to r l.

2. Far from the nucleus all wavefunctions approach zero 
exponentially.

It follows that when l ≠ 0 (and r l = 0 when r = 0) there is a zero
probability density for finding the electron at the nucleus, and
the higher the orbital angular momentum, the less likely the
electron is to be found near the nucleus (Fig. 4.3). However,
when l = 0 (and r l = 1 even when r = 0) there is a nonzero prob-
ability density of finding the electron at the nucleus. The contrast
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Fig. 4.2 The effective potential energy of an electron in the
hydrogen atom. When the electron has zero orbital angular
momentum, the effective potential energy is the Coulombic
potential energy. When the electron has nonzero orbital angular
momentum, the centrifugal effect gives rise to a positive
contribution that is very large close to the nucleus. We can
expect the l = 0 and l ≠ 0 wavefunctions to be very different near
the nucleus.

interActivity Plot the effective potential energy against r for 
several nonzero values of the orbital angular momentum

l. How does the location of the minimum in the effective
potential energy vary with l?
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in behaviour has profound implications for chemistry, as we
shall see, for it underlies the structure of the periodic table. The
exponential decay of wavefunctions has a further important 
implication: it means that atoms can, to a good approximation,
be represented by spheres with reasonably well defined radii.
This feature is especially important when we come to discuss
solids, which are commonly modelled as aggregates of spheres
representing their atoms and ions.

Justification 4.1 The shape of the radial wavefunction

When r is very small (close to the nucleus), u = rR ≈ 0, so the
right-hand side of eqn 4.7a is zero; we can also ignore all but
the largest terms (those depending on 1/r 2) in eqn 4.7b and
write

The solution of this equation (for r ≈ 0) is

as may be verified by substitution of the solution into the
differential equation. Because R = u/r, and R cannot be
infinite anywhere and specifically at r = 0, we must set B = 0,
and hence obtain R ≈ Ar l, as we wanted to show.

Far from the nucleus, when r is very large and we can
ignore all terms in 1/r and 1/r 2, eqn 4.7a becomes

where t means ‘asymptotically equal to’. Because
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this equation has the form

The acceptable (finite) solution of this equation (for r large
and E < 0) is

and the wavefunction decays exponentially towards zero as r
increases.

We shall not go through the technical steps of solving the radial
equation for the full range of radii, and see how the form r l close
to the nucleus blends into the exponentially decaying form at
great distances.1 It is sufficient to know that the two limits can be
matched only for integral values of a new quantum number n,
and that the allowed energies corresponding to the allowed 
solutions are

(4.8)

with n = 1, 2, . . . . Likewise, it is found that the radial wavefunc-
tions depend on the values of both n and l (but not on ml) with l
restricted to values 0, 1, . . . , n − 1, and all radial wavefunctions
have the form

R(r) = r l × (polynomial in r) × (decaying exponential in r)

These functions are most simply written in terms of the dimen-
sionless quantity ρ (rho), where (for simplicity, and introducing
negligible error, replacing μ with me)

(4.9)

The Bohr radius, a0, has the value 52.9 pm; it is so called 
because the same quantity appeared in Bohr’s early model of the
hydrogen atom as the radius of the electron orbit of lowest energy.
Specifically, the radial wavefunctions for an electron with quan-
tum numbers n and l are the (real) functions

Rn,l(r) = Nn,lρlL2l+1
n+1(ρ)e−ρ/2 (4.10)

where L is a polynomial in ρ called an associated Laguerre poly-
nomial, a function commonly used in mathematical physics: it
connects the r ≈ 0 solutions on its left (corresponding to R ∝ ρ l )
to the exponentially decaying function on its right. The notation
might look fearsome, but the polynomials have quite simple forms,
such as 1, ρ, and 2 − ρ (they can be picked out in Table 4.1, with
ρ ∝ r). We can interpret the components of this expression as
follows:

1. The exponential factor ensures that the wavefunction 
approaches zero far from the nucleus.
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Fig. 4.3 Close to the nucleus, orbitals with l = 1 are proportional
to r, orbitals with l = 2 are proportional to r 2, and orbitals with 
l = 3 are proportional to r 3. Electrons are progressively excluded
from the neighbourhood of the nucleus as l increases. An orbital
with l = 0 has a finite, nonzero value at the nucleus.

1 For details, see our Molecular quantum mechanics, Oxford University Press,
Oxford (2005).
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2. The factor ρ l ensures that (provided l > 0) the wavefunc-
tion vanishes at the nucleus.

3. The associated Laguerre polynomial is a function that 
oscillates from positive to negative values and accounts for the
presence of radial nodes.

Expressions for some radial wavefunctions are given in Table 4.1
and illustrated in Fig. 4.4. Note that, because r is never negative,
the zero in the radial wavefunctions at r = 0 (for l > 0) is not a
node: the wavefunction does not pass through zero there.

l A BRIEF ILLUSTRATION

To calculate the probability density at the nucleus for an elec-
tron with n = 1, l = 0, and ml = 0, we begin by evaluating ψ1,0,0

at r = 0:

The probability density is therefore

which evaluates to 2.15 × 10− 6 pm−3 when Z = 1. l

Self-test 4.2 Evaluate the probability density at the nucleus
for an electron with n = 2, l = 0, ml = 0. [(Z/a0)3/8π]
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4.2 Atomic orbitals and their energies

An atomic orbital is a one-electron wavefunction for an electron
in an atom. Each hydrogenic atomic orbital (eqn 4.5) is defined
by three quantum numbers, designated n, l, and ml. When an
electron is described by one of these wavefunctions, we say that
it ‘occupies’ that orbital.

Table 4.1 Hydrogenic radial wavefunctions

Orbital n l Rn,l

1s 1 0

2s 2 0

2p 2 1

3s 3 0

3p 3 1

3d 3 2

ρ = (2Z/na)r with a = 4πε0$2/μe 2. For an infinitely heavy nucleus (or one that may
be assumed to be so), μ = me and a = a0, the Bohr radius. The full wavefunction is
obtained by multiplying R by the appropriate Y given in Table 3.2.
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Fig. 4.4 The radial wavefunctions of the first few states of
hydrogenic atoms of atomic number Z. Note that the orbitals
with l = 0 have a nonzero and finite value at the nucleus. The
horizontal scales are different in each case: orbitals with high
principal quantum numbers are relatively distant from the nucleus.

interActivity Use mathematical software to find the 
locations of the radial nodes in hydrogenic 

wavefunctions with n up to 3.
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Fig. 4.5 The energy levels of a hydrogen atom. The values are
relative to an infinitely separated, stationary electron and a proton.

A brief comment We could go on to say, using Dirac notation
(Further information 1.1), that the electron is ‘in the state
|n,l,ml 〉’. For instance, an electron described by the wave-
function ψ1,0,0 and in the state |1,0,0〉 is said to occupy the 
orbital with n = 1, l = 0, and ml = 0.

The quantum number n is called the principal quantum
number; it can take the values n = 1, 2, 3, . . . and determines the
energy of the electron:

An electron in an orbital with quantum number n has an 
energy given by eqn 4.8.

The two other quantum numbers, l and ml, come from the 
angular solutions and, as we have already seen in Section 3.4,
specify the angular momentum of the electron around the 
nucleus. However, the various boundary conditions that the 
angular and radial wavefunctions must satisfy put additional
constraints on their values:

An electron in an orbital with quantum number l has an 
angular momentum of magnitude {l(l + 1)}1/2$, with l = 0, 1,
2, . . . , n − 1.

An electron in an orbital with quantum number ml has a 
z-component of angular momentum ml$, with ml = 0, ±1,
±2, . . . , ±l.

Note how the value of the principal quantum number, n, con-
trols the maximum value of l and how l restricts the range of 
values of ml.

Example 4.2 Determining values of observables for an electron
occupying an atomic orbital

The single electron in a certain excited state of a hydrogenic He+

ion (Z = 2) is described by the wavefunction R3,2(r)Y2,−1(θ,φ).
What are the energy, total angular momentum, and z-
component of the angular momentum of its electron?

Method Identify the quantum numbers n, l, and ml by noting
that radial wavefunctions are designated Rn,l and angular
wavefunctions are designated Yl,ml

. Then use eqn 4.8 to calcu-
late the energy from n and infer the values of the angular 
momentum from l and ml. To a good approximation, the 
reduced mass in eqn 4.8 can be replaced by me. As remarked
in the text, the energy of a hydrogenic atom depends on n but
is independent of the values of l and ml.

Answer We identify n = 3, l = 2, and ml = −1. For the energy,
eqn 4.8 gives:

 = 9.676 J− × −10 19

E3

2 31 19 42 9 109 10 1 602 10

32
= −

× × × ×− −( . ( .kg) C)

π22 12 1 2 348 854 10 1 055 10× × × ×− − − −( . ) ( .J C m J2 1 s)2 23×

or −0.9676 aJ (a, for atto, is the prefix that denotes 10−18).
Because l = 2, the magnitude of the angular momentum is
61/2$; because ml = −1, the z-component is −$. For greater 
accuracy, we should use the reduced mass of the electron and
helium nucleus.

Self-test 4.3 Repeat the problem for the electron in an 
excited state of a Li2+ ion (Z = 3) for which the wavefunction
is known to be R4,3(r)Y3,−2(θ,φ).

[−1.225 aJ (1 aJ = 10−18 J), 2(3)1/2$, −2$]

To define the state of an electron in a hydrogenic atom fully
we need to specify not only the orbital it occupies but also its spin
state. We saw in Section 3.5 that an electron possesses an intrinsic
angular momentum, its ‘spin’, that is described by the two quan-
tum numbers s and ms (the analogues of l and ml). The value
of s is fixed at 1–2 for an electron, so we do not need to consider it
further at this stage. However, ms may be either + 1–2 or − 1–2, and to
specify the electron’s state in a hydrogenic atom we need to spe-
cify which of these values describes it. It follows that to specify
the state of an electron in a hydrogenic atom, we need to give the
values of four quantum numbers, namely n, l, ml, and ms.

(a) The energy levels

The energy levels predicted by eqn 4.8 are depicted in Fig. 4.5.
The energies, and also the separation of neighbouring levels, are
proportional to Z2, so the levels are four times as wide apart (and
the ground state four times deeper in energy) in He+ (Z = 2) than
in H (Z = 1). All the energies given by eqn 4.8 are negative. They
refer to the bound states of the atom, in which the energy of the
atom is lower than that of the infinitely separated, stationary
electron and nucleus (which corresponds to the zero of energy
and n = ∞). There are also solutions of the Schrödinger equation
with positive energies. These solutions correspond to unbound
states of the electron, the states to which an electron is raised
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is emitted. However, because I = −Elower, it follows that

A plot of the wavenumbers against 1/n2 should give a straight
line of slope −RH and intercept I/hc. Use mathematical soft-
ware to make a least-squares fit of the data to get a result that
reflects the precision of the data.

Answer The wavenumbers are plotted against 1/n2 in Fig. 4.6.
The (least-squares) intercept lies at 109 679 cm−1, so the 
ionization energy is 2.1788 aJ (1312.1 kJ mol−1). The slope is,
in this instance, numerically the same, so RH = 109 679 cm−1.
A similar extrapolation procedure can be used for many-
electron atoms (see Section 4.4).
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Fig. 4.6 The plot of the data in Example 4.3 used to determine the
ionization energy of an atom (in this case, of H).

interActivity The initial value of n was not specified in
Example 4.3. Show that the correct value can be determined

by making several choices and selecting the one that leads to a
straight line.

when it is ejected from the atom by a high-energy collision or
photon. The energies of the unbound electron are not quantized
and form the continuum states of the atom.

Equation 4.8 is consistent with the spectroscopic result sum-
marized by eqn 4.1, which suggested that the energy levels are
proportional to 1/n2, and we can identify the Rydberg constant
for hydrogen (Z = 1), after using # = ν/c and the Bohr frequency
condition eqn 1.1, as

[4.11]

where μH is the reduced mass for hydrogen. The Rydberg con-
stant itself, R, is defined by the same expression except for the
replacement of μH by the mass of an electron, me, corresponding
to a nucleus of infinite mass:

[4.12]

Insertion of the values of the fundamental constants into the
expression for RH gives almost exact agreement with the experi-
mental value. The only discrepancies arise from the neglect of
relativistic corrections (in simple terms, the increase of mass with
speed), which the non-relativistic Schrödinger equation ignores.

(b) Ionization energies

The ionization energy, I, of an element is the minimum energy
required to remove an electron from the ground state, the state
of lowest energy, of one of its atoms in the gas phase. Because 
the ground state of hydrogen is the state with n = 1, with energy
E1 = −hcRH, and the atom is ionized when the electron has been
excited to the level corresponding to n = ∞ (see Fig. 4.5), the 
energy that must be supplied is

I = hcRH (4.13)

The value of I is 2.179 aJ, which corresponds to 13.60 eV.

Example 4.3 Measuring an ionization energy spectroscopically

The emission spectrum of atomic hydrogen shows lines at 
82 259, 97 492, 102 824, 105 292, 106 632, and 107 440 cm−1,
which correspond to transitions to the same lower state.
Determine (a) the ionization energy of the lower state, (b) the
value of the Rydberg constant.

Method The spectroscopic determination of ionization 
energies depends on the determination of the ‘series limit’,
the wavenumber at which the series terminates and becomes
a continuum. If the upper state lies at an energy −hcRH/n2,
then, when the atom makes a transition to Elower, a photon of
wavenumber
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Self-test 4.4 The emission spectrum of atomic deuterium
shows lines at 15 238, 20 571, 23 039, and 24 380 cm−1, which
correspond to transitions to the same lower state. Determine
(a) the ionization energy of the lower state, (b) the ionization
energy of the ground state, (c) the mass of the deuteron (by 
expressing the Rydberg constant in terms of the reduced
mass of the electron and the deuteron, and solving for the
mass of the deuteron).

[(a) 328.1 kJ mol−1, (b) 1312.4 kJ mol−1, (c) 2.8 × 10−27 kg, 
a result very sensitive to RD]
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(c) Shells and subshells

All the orbitals of a given value of n are said to form a single shell
of the atom. In a hydrogenic atom, all orbitals of given n, and
therefore belonging to the same shell, have the same energy. It is
common to refer to successive shells by upper-case letters:

n = 1 2 3 4 . . .

K L M N . . .

Thus, all the orbitals of the shell with n = 2 form the L shell of the
atom, and so on.

The orbitals with the same value of n but different values of l
are said to form a subshell of a given shell. These subshells are
generally referred to by lower-case letters:

l = 0 1 2 3 4 5 6 . . .

s p d f g h i . . .

The letters then run alphabetically omitting j (because some lan-
guages do not distinguish between i and j). Figure 4.7 is a version
of Fig. 4.5 which shows the subshells explicitly. Because l can
range from 0 to n − 1, giving n values in all, it follows that there
are n subshells of a shell with principal quantum number n.
Thus, when n = 1, there is only one subshell, the one with l = 0.
When n = 2, there are two subshells, the 2s subshell (with l = 0)
and the 2p subshell (with l = 1).

When n = 1 there is only one subshell, that with l = 0, and that
subshell contains only one orbital, with ml = 0 (the only value of
ml permitted). When n = 2, there are four orbitals, one in the s
subshell with l = 0 and ml = 0, and three in the l = 1 subshell with
ml = +1, 0, −1. When n = 3 there are nine orbitals (one with l = 0,
three with l = 1, and five with l = 2). The organization of orbitals
in the shells is summarized in Fig. 4.8. In general, the number of

orbitals in a shell of principal quantum number n is n2, so in a
hydrogenic atom each energy level is n2-fold degenerate.

(d) Atomic orbitals

The orbital occupied in the ground state is the one with n = 1
(and therefore with l = 0 and ml = 0, the only possible values of
these quantum numbers when n = 1). From Tables 3.2 and 4.1
we can write (for Z = 1):

(4.14)

This wavefunction is independent of angle and has the same
value at all points of constant radius; that is, the 1s orbital is
spherically symmetrical. The wavefunction decays exponentially
from a maximum value of 1/(πa0

3)1/2 at the nucleus (at r = 0). It
follows that the most probable point at which the electron will
be found is at the nucleus itself.

We can understand the general form of the ground-state
wavefunction by considering the contributions of the potential
and kinetic energies to the total energy of the atom. The closer
the electron is to the nucleus on average, the lower its aver-
age potential energy. This dependence suggests that the lowest 
potential energy should be obtained with a sharply peaked 
wavefunction that has a large amplitude at the nucleus and is
zero everywhere else (Fig. 4.9). However, this shape implies a
high kinetic energy, because such a wavefunction has a very high
average curvature. The electron would have very low kinetic 
energy if its wavefunction had only a very low average curvature.
However, such a wavefunction spreads to great distances from
the nucleus and the average potential energy of the electron 
will be correspondingly high (that is, less negative). The actual
ground-state wavefunction is a compromise between these two
extremes: the wavefunction spreads away from the nucleus (so
the expectation value of the potential energy is not as low as in
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Fig. 4.7 The energy levels of the hydrogen atom showing the
subshells and (in square brackets) the numbers of orbitals in
each subshell. In hydrogenic atoms, all orbitals of a given shell
have the same energy.

K shell, = 1n

L shell, = 2n

M shell, = 3n

s p d

Subshells

Orbitals

Shells

Fig. 4.8 The organization of orbitals (white squares) into
subshells (characterized by l) and shells (characterized by n).
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the first example, but nor is it very high) and has a reasonably low
average curvature (so the expectation value of the kinetic energy
is not very low, but nor is it as high as in the first example).

A brief comment It is sometimes awkward to keep in mind
what ‘higher’ and ‘lower’ potential energy means. When attrac-
tions are dominant, the potential energy is negative and a
lower (more negative) potential energy is ‘more stable’ and a
higher (less negative) potential energy is ‘less stable’.

The energies of ns orbitals increase (become less negative; the
electron becomes less tightly bound) as n increases because the
average distance of the electron from the nucleus increases. By
the virial theorem with b = −1 (eqn 2.30), 〈Ek〉 = − 1–2 〈V 〉 so, even
though the average kinetic energy decreases as n increases, the
total energy is equal to 1–2 〈V 〉, which becomes less negative as n
increases.

One way of depicting the probability density of the electron is
to represent |ψ |2 by the density of shading (Fig. 4.10). A simpler
procedure is to show only the boundary surface, the surface that
captures a high proportion (typically about 90 per cent) of the
electron probability density. For the 1s orbital, the boundary
surface is a sphere centred on the nucleus (Fig. 4.11).

All s orbitals are spherically symmetric, but differ in the num-
ber of radial nodes. For example, the 1s, 2s, and 3s orbitals have
0, 1, and 2 radial nodes, respectively (see Fig. 4.4 and note the
number of zeroes in the radial wavefunction). In general, an ns
orbital has n − 1 radial nodes. (In general, an orbital with quan-
tum numbers n and l has n − l − 1 radial nodes.)

Radius, r

E
n

er
g

y
(a) Low potential energy
but
high kinetic energy

(b) Low kinetic energy
but
high potential energy

(c) Lowest total energy

Fig. 4.9 The balance of kinetic and potential energies that
accounts for the structure of the ground state of hydrogen (and
similar atoms). (a) The sharply curved but localized orbital has
high mean kinetic energy, but low mean potential energy; (b) the
mean kinetic energy is low, but the potential energy is not very
favourable; (c) the compromise of moderate kinetic energy and
moderately favourable potential energy.

x y

z

Fig. 4.11 The boundary surface of an s orbital, within which there
is a 90 per cent probability of finding the electron.

(a) 1s (b) 2s

Fig. 4.10 Representations of cross-sections through the 1s 
and 2s hydrogenic atomic orbitals in terms of their electron
probability densities (as represented by the density of 
shading).

Self-test 4.5 Locate the nodes of (a) a 2s orbital, (b) a 3s 
orbital in a hydrogenic atom of atomic number Z.

[(a) 2a0 /Z; (b) 1.90a0 /Z and 7.10a0 /Z]

Example 4.4 Calculating the mean radius of an orbital

Use hydrogenic orbitals to calculate the mean radius of a 1s 
orbital.

Method The mean radius is the expectation value

〈r〉 = �ψ *rψ dτ = � r |ψ |2 dτ

We therefore need to evaluate the integral using the wave-
functions given in Table 4.1; the volume element in spherical
polar coordinates is dτ = r 2drsinθ dθdφ. The angular parts of
the wavefunction are normalized in the sense that

  
� �

0 0

2

2 1

π π

| |Yl ml, sinθ θ φd d =
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A
A*

d

Radius, r

A
:

A

Fig. 4.12 A constant-volume electron-sensitive detector (the
small cube) gives its greatest reading at the nucleus, and a
smaller reading elsewhere. The same reading is obtained
anywhere on a circle of given radius: the s orbital is spherically
symmetrical.
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Fig. 4.13 The radial distribution function P gives the probability
that the electron will be found anywhere in a shell of radius r.
For a 1s electron in hydrogen, P is a maximum when r is equal to
the Bohr radius a0. The value of P is equivalent to the reading
that a detector shaped like a spherical shell would give as its
radius is varied.

Now consider the probability of finding the electron any-
where between the two walls of a spherical shell of thickness dr at
a radius r. The sensitive volume of the probe is now the volume
of the shell (Fig. 4.13), which is 4πr 2dr (the product of its surface
area, 4πr 2, and its thickness, dr). The probability that the elec-
tron will be found between the inner and outer surfaces of this
shell is the probability density at the radius r multiplied by the
volume of the probe, or |ψ |2 × 4πr 2dr. This expression has the
form P(r)dr, where

P(r) = 4πr 2|ψ |2 (4.15a)

where the limits on the first integral sign refer to θ, and those
on the second to φ (recall the procedure for multiple integra-
tion in Mathematical background 1). The integral over r is 
evaluated by using

where n! denotes a factorial: n! = n(n − 1)(n − 2) . . . 1 and by
definition 0! = 1. Replace the constant a by 2Z/a0.

Answer With the wavefunction written in the form ψ = RY,
the integration is

For a 1s orbital,

Hence

For H, 〈r〉 = 79 pm; for He+, with its higher nuclear charge, 
〈r〉 = 40 pm.

Self-test 4.6 Evaluate the mean radius of (a) a 3s orbital and
(b) a 3p orbital by integration. [(a) 27a0 /2Z; (b) 25a0 /2Z]

(e) Radial distribution functions

The wavefunction tells us, through the value of |ψ |2, the prob-
ability of finding an electron in any region in space. We can
imagine a probe with a volume dτ that is sensitive to elec-
trons and can move around near the nucleus of a hydrogen
atom. Because the probability density in the ground state of the
atom is |ψ |2 ∝ e−2Zr/a0, the reading from the probe decreases 
exponentially as the probe is moved out along any radius but 
is constant if the probe is moved on a circle of constant radius
(Fig. 4.12).
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In the following Justification we show that the more general 
expression, which also applies to orbitals that are not spherically
symmetrical, is

P(r) = r 2R(r)2 (4.15b)

where R(r) is the radial wavefunction for the orbital in question.

Justification 4.2 The general form of the radial distribution
function

The probability of finding an electron in a volume element
dτ when its wavefunction is ψ = RY is R2|Y |2dτ with dτ =
r 2dr sinθ dθdφ (recall R is real). The total probability of find-
ing the electron at any angle at a constant radius is the integ-
ral of this probability over the surface of a sphere of radius r,
and is written P(r)dr, so

The last equality follows from the fact that the spherical har-
monics are normalized to 1 (see Example 4.4). It follows that
P(r) = r 2R(r)2, as stated in the text.

The radial distribution function, P(r), is a probability density
in the sense that, when it is multiplied by dr, it gives the prob-
ability of finding the electron anywhere between the two walls of
a spherical shell of thickness dr at the radius r. For a 1s orbital,

(4.16)

Let’s interpret this expression:

1. Because r 2 = 0 at the nucleus, at the nucleus P(0) = 0.
Although the probability density itself is a maximum at the 
nucleus, the radial distribution function is zero at r = 0 on account
of the r 2 factor.

2. As r → ∞, P(r) → 0 on account of the exponential term.

3. The increase in r2 and the decrease in the exponential fac-
tor means that P passes through a maximum at an intermediate 
radius (see Fig. 4.13).

The maximum of P(r), which can be found by differentiation,
marks the most probable radius at which the electron will be
found and, for a 1s orbital in hydrogen occurs at r = a0, the Bohr
radius. When we carry through the same calculation for the 
radial distribution function of the 2s orbital in hydrogen, we
find that the most probable radius is 5.2a0 = 275 pm. This larger
value reflects the expansion of the atom as its energy increases.
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Example 4.5 Calculating the most probable radius

Calculate the most probable radius, r*, at which an electron
will be found when it occupies a 1s orbital of a hydrogenic
atom of atomic number Z, and tabulate the values for the
one-electron species from H to Ne9+.

Method We find the radius at which the radial distribution
function of the hydrogenic 1s orbital has a maximum value
by solving dP/dr = 0. If there are several maxima, then we
choose the one corresponding to the greatest amplitude (the
largest value of P).

Answer The radial distribution function is given in eqn 4.16.
It follows that

This function is zero where the term in parentheses is zero 
(ignore r = 0 which corresponds to a minimum in P), which 
is at

Then, with a0 = 52.9 pm, the most probable radius is at

H He+ Li2+ Be3+ B4+ C5+ N6+ O7+ F8+ Ne9+

r*/pm 52.9 26.5 17.6 13.2 10.6 8.82 7.56 6.61 5.88 5.29

Notice how the 1s orbital is drawn towards the nucleus as 
the nuclear charge increases. At uranium the most probable
radius is only 0.58 pm, almost 100 times closer than for 
hydrogen. (On a scale where r* = 10 cm for H, r* = 1 mm for
U91+.) The electron then experiences strong accelerations and
relativistic effects are important.

Self-test 4.7 Find the most probable distance of an electron
from the nucleus in a hydrogenic atom when it occupies a 2s 
orbital. [(3 + 51/2)a0 /Z]

(f) p Orbitals

The three 2p orbitals are distinguished by the three different 
values that ml can take when l = 1. Because the quantum number
ml tells us the orbital angular momentum around an axis, these
different values of ml denote orbitals in which the electron has
different orbital angular momenta around an arbitrary z-axis
but the same magnitude of that momentum (because l is the
same for all three). The orbital with ml = 0, for instance, has 
zero angular momentum around the z-axis. Its angular variation 
is proportional to cos θ, so the probability density, which is 
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proportional to cos2θ, has its maximum value on either side of
the nucleus along the z-axis (at θ = 0 and 180°). The wavefunc-
tion of a 2p orbital with ml = 0 is

= r cos θ f(r) (4.17a)

where f(r) is a function only of r. Because in spherical polar 
coordinates z = r cos θ, this wavefunction may also be written

ψpz
= zf(r) (4.17b)

All p orbitals with ml = 0 have wavefunctions of this form 
regardless of the value of n (of course, the function f differs with
n). This way of writing the orbital is the origin of the name ‘pz

orbital’: its boundary surface is shown in Fig. 4.14. The wave-
function is zero everywhere in the xy-plane, where z = 0, so the
xy-plane is a nodal plane of the orbital and θ = π/2 is an angular
node: the wavefunction changes sign on going from one side of
the nodal plane to the other.

The wavefunctions of 2p orbitals with ml = ±1 have the
following form:

(4.18a)

We remarked in Section 2.1 that a moving particle is described
by a complex wavefunction. In the present case, these functions
correspond to nonzero angular momentum about the z-axis:
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e+iφ corresponds to clockwise rotation when viewed from below,
and e−iφ corresponds to counter-clockwise rotation (from the same
viewpoint). They have zero amplitude where θ = 0 and 180°
(along the z-axis) and maximum amplitude at 90°, which is in
the xy-plane. To draw the functions it is usual to represent them
as standing waves. To do so, we take the real linear combinations

(4.18b)

(4.18c)

These linear combinations are indeed standing waves with no
net orbital angular momentum around the z-axis, as they are 
superpositions of states with equal and opposite values of ml.
The px orbital has the same shape as a pz orbital, but it is directed
along the x-axis (see Fig. 4.14); the py orbital is similarly directed
along the y-axis. The wavefunction of any p orbital of a given
shell can be written as a product of x, y, or z and the same radial
function (which depends on the value of n). The following
Justification explains why it is permissible to take linear com-
binations of degenerate orbitals when we want to indicate a 
particular point.

Justification 4.3 The linear combination of degenerate
wavefunctions

The freedom to take linear combinations of degenerate func-
tions rests on the fact that, whenever two or more wavefunc-
tions correspond to the same energy (such as p+1 and p−1),
any linear combination of them (such as px or py) is an
equally valid solution of the Schrödinger equation.

Suppose ψ1 and ψ2 are both solutions of the Schrödinger
equation with energy E; then we know that

@ψ1 = Eψ1 @ψ2 = Eψ2

Now consider the linear combination

ψ = c1ψ1 + c2ψ2

where c1 and c2 are arbitrary coefficients. Then it follows that

@ψ = @(c1ψ1 + c2ψ2) = c1@ψ1 + c2@ψ2

= c1Eψ1 + c2Eψ2 = E(c1ψ1 + c2ψ2) = Eψ

Hence, the linear combination is also a solution correspond-
ing to the same energy E. Furthermore, the result that a linear
combination of eigenfunctions of an operator (all having the
same eigenvalue) is also an eigenfunction of the operator
(with the same eigenvalue) applies to all quantum mechan-
ical operators, not just the hamiltonian.

(g) d Orbitals

When n = 3, l can be 0, 1, or 2. As a result, this shell consists of
one 3s orbital, three 3p orbitals, and five 3d orbitals. The five d
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Fig. 4.14 The boundary surfaces of p orbitals. A nodal plane
passes through the nucleus and separates the two lobes of each
orbital. The dark and light areas denote regions of opposite sign
of the wavefunction.

interActivity Use mathematical software to plot the
boundary surfaces of the real parts of the spherical

harmonics Y1,ml
(θ,φ). The resulting plots are not strictly the p

orbital boundary surfaces, but sufficiently close to be reasonable
representations of the shapes of hydrogenic orbitals.
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orbitals have ml = +2, +1, 0, −1, −2 and correspond to five
different angular momenta around the z-axis (but the same
magnitude of angular momentum, because l = 2 in each case). 
As for the p orbitals, d orbitals with opposite values of ml (and
hence opposite senses of motion around the z-axis) may be
combined in pairs to give real standing waves and the boundary
surfaces of the resulting shapes are shown in Fig. 4.15. The real
combinations have the following forms:

dxy = xyf(r) dyz = yzf(r) dzx = zxf(r)

dx2−y2 = 1–2 (x 2 − y 2)f(r) dz2 = (1–2 3)(3z 2 − r 2)f(r) (4.19)

4.3 Spectroscopic transitions

The energies of the hydrogenic atoms are given by eqn 4.8.
When the electron undergoes a transition from an orbital with
quantum numbers n1, l1, ml1 to another (lower energy) orbital
with quantum numbers n2, l2, ml2, it undergoes a change of 
energy ΔE and discards the excess energy as a photon of elec-
tromagnetic radiation with a frequency ν given by the Bohr 
frequency condition (eqn 1.1).

It is tempting to think that all possible transitions are per-
missible, and that a spectrum arises from the transition of an
electron from any initial orbital to any other orbital. However,
this is not so, because a photon has an intrinsic spin angular 
momentum corresponding to s = 1 (Section 3.5). The change in
angular momentum of the electron must compensate for the 
angular momentum carried away by the photon. Thus, an electron
in a d orbital (l = 2) cannot make a transition into an s orbital 
(l = 0) because the photon cannot carry away enough angular
momentum. Similarly, an s electron cannot make a transition 

to another s orbital, because there would then be no change in
the electron’s angular momentum to make up for the angular
momentum carried away by the photon. It follows that some
spectroscopic transitions are allowed, meaning that they can
occur, whereas others are forbidden, meaning that they cannot
occur. A selection rule is a statement about which transitions are
allowed. We describe below more completely the basis for selec-
tion rules.

(a) Selection rules and the transition dipole moment

According to classical physics, for an atom to absorb or emit a
photon of frequency ν, it must possess, at least temporarily, an
electric dipole that oscillates at that frequency. An electric dipole
consists of two electric charges +Q and −Q separated by a vector
R; the electric dipole moment is m = QR, and can oscillate either
because the charges change or because their vector separation
changes (see Mathematical background 4 for a discussion of 
vectors).

To develop a quantum mechanical view of absorption and
emission from an initial state ψi to a final state ψf , we first need
to write an expression for the dipole moment operator using
Postulate III (Section 1.6). For a one-electron atom, the opera-
tor ¢ is multiplication by −er, where e is the fundamental charge
and r is a vector from the origin (that is, the nucleus) to the elec-
tron with components x, y, and z. It follows that ¢ is a vector
with components Nx = −ex, Ny = −ey, Nz = −ez. The expression for
the rate of a spectroscopic transition, and hence the intensity of
absorption or emission of radiation, is derived by making use of
time-dependent perturbation theory in which the perturbation
arises from an oscillating electric field of strength /(t).

We begin by writing the hamiltonian for the system as

@ = @ (0) + @ (1)(t) (4.20)

where @ (1)(t) is the time-dependent perturbation and @ (0) is the
hamiltonian in the absence of the perturbation. Because the per-
turbation arises from the effect of an oscillating electric field
with the electric dipole moment, we write

@ (1)(t) = −¢·/(t) (4.21a)

or for the z-component (we generalize to x and y below)

@ (1)(t) = −NzE cos ω t (4.21b)

where ω is the frequency of the field and E is its amplitude. We
suppose that the perturbation is absent until t = 0, and then it is
turned on.

We show in Further information 4.2 that the rate of change 
of population of the state ψf due to transitions from state ψi, 
denoted wf←i, is proportional to the square modulus of the 
matrix element of the perturbation between the two states:

(4.22)
  
w H H Hf i fi fi f id← ∝ = * ˆ( ) ( ) ( )| |1 2 1 1�ψ ψ τ

z

x
y

dz2 dx2 y2–

dxy dyz dzx

Fig. 4.15 The boundary surfaces of d orbitals. Two nodal planes
in each orbital intersect at the nucleus and separate the lobes of
each orbital. The dark and light areas denote regions of opposite
sign of the wavefunction.

interActivity To gain insight into the shapes of the f
orbitals, use mathematical software to plot the boundary

surfaces of the spherical harmonics Y3,ml
(θ,φ).
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Because in our case the perturbation is that of the interaction of
the electric component of the electromagnetic field with an
atom (eqn 4.21b), we conclude that

wf←i ∝ |μz,fi|2 E 2 (4.23)

where

μz,fi = �ψf *Nzψidτ [4.24]

The x- and y-components are defined similarly. The transition
rate is proportional to the square modulus of the transition
dipole moment, mfi, with |mfi|2 = |μx,fi|2 + |μy,fi|2 + |μz,fi|2. The mag-
nitude of the transition dipole can be regarded as a measure 
of the extent and form of the charge redistribution that accom-
panies a transition: a transition will be active (and generate or
absorb photons) only if the accompanying charge redistribution
is dipolar (Fig. 4.16). In other words, the transition is forbidden
if all three components of the transition dipole moment are
zero; it is allowed if any one component of the transition dipole
moment is nonzero.

To identify the selection rules (for both atomic and molecular
spectra), we must establish the conditions for which mfi ≠ 0.
Specific selection rules express the allowed transitions in terms
of the changes in particular quantities, most usually quantum
numbers. For the atomic spectra of hydrogenic atoms, the spe-
cific selection rules are derived by identifying the transitions 
that conserve angular momentum when a photon is emitted or
absorbed and are shown in the Justification below to be

Δ l = ±1 Δml = 0, ±1 (4.25)

The principal quantum number n can change by any amount
consistent with the Δl for the transition, because it does not 
relate directly to the angular momentum.

l A BRIEF ILLUSTRATION

To identify the orbitals to which a 4d electron may make 
radiative transitions, we first identify the value of l and then
apply the selection rule for this quantum number. Because 
l = 2, the final orbital must have l = 1 or 3. Thus, an electron
may make a transition from a 4d orbital to any np orbital
(subject to Δml = 0, ±1) and to any nf orbital (subject to the
same rule). However, it cannot undergo a transition to any
other orbital, so a transition to any ns orbital or to another nd 
orbital is forbidden. l

Self-test 4.8 To what orbitals may an electron in a 4s orbital
make electric-dipole allowed radiative transitions?

[to np orbitals only]

Justification 4.4 The identification of selection rules

To determine the selection rules for atoms, we need to iden-
tify the conditions for which the transition dipole moment,
mfi, connecting the final state ψf and the initial state ψi is
nonzero:

mfi = �ψf *¢ψi dτ

We consider each component in turn. For example, for the 
z-component,

μz,fi = −e�ψf *zψi dτ

To evaluate the integral, we note from Table 3.2 that z =
(4π/3)1/2rY1,0, so

This multiple integral is the product of three factors, an integ-
ral over r and two integrals over the angles, so the factors on
the right can be grouped as follows:

  

4

3

1 2

0

2

0 0

π π 2π⎛

⎝
⎜

⎞

⎠
⎟

∞/

, , ,� � �R rR r r Yn l n l lf f i i f
d mm l ml l

Y Y
, ,
* sin, ,f i i

d d1 0 θ θ φ

  
�ψ ψ τf i d*z =

� � �
0 0 0

4

3

∞ ⎛π 2π π
R Yn l l mlf f f f

f

, ,

*

,
*

ψ

⎝⎝
⎜

⎞

⎠
⎟

1 2

1 0

/

, , , ,
rY R Y

z

n l l mli i i i

ψ ii

d d d

d

r r2 sinθ θ φ
τ

  
�ψ ψ τf i d*z =

(a) (b)

Fig. 4.16 (a) When a 1s electron becomes a 2s electron, there is a
spherical migration of charge. Since there is no dipole moment
associated with this migration of charge, this transition is
electric-dipole forbidden. (b) In contrast, when a 1s electron
becomes a 2p electron, there is a dipole associated with the
charge migration; this transition is allowed. (There are subtle
effects arising from the sign of the wavefunction that give the
charge migration a dipolar character, which this diagram does
not attempt to convey.)
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We now use the property of the spherical harmonics that

unless l, l′, and l″ are integers that can form the sides of a tri-
angle and ml + ml′ + ml″ = 0. It follows that the integral

is zero unless lf = li ± 1 and ml,f = ml,i + m. Because m = 0 in the
present case, the angular integral, and hence the z-component
of the transition dipole moment, is zero unless Δl = ±1 and
Δml = 0, which is a part of the set of selection rules. The same
procedure, but considering the x- and y-components, results
in the complete set of rules.

The selection rules and the atomic energy levels jointly account
for the structure of a Grotrian diagram (Fig. 4.17), which sum-
marizes the energies of the states and the transitions between
them. The thicknesses of the arrows depicting the transitions 
denote their relative intensities in the spectrum obtained by
evaluating the transition dipole moments.

(b) Spectral linewidths

A number of effects contribute to the widths of spectroscopic
lines. Some contributions to linewidths can be modified by
changing the conditions, and to achieve high resolutions we
need to know how to minimize these contributions.

One important broadening process in atomic gaseous samples
is the Doppler effect, in which radiation is shifted in frequency
when the source is moving towards or away from the observer: the
transition frequency remains unchanged (because ΔE/h remains

� �
0 0

1

π 2π

Y Y Yl m m l ml lf f i i
d d, , ,, ,

* sinθ θ φ

� �
0 0

π 2π

Y Y Yl m l m l ml l l′′ ′′ ′ ′, , ,( , )* ( , ) ( ,θ φ θ φ θ φ))sinθ θ φd d = 0

unchanged), but an observer detects different frequencies. When
a source emitting electromagnetic radiation of frequency ν moves
with a speed s relative to an observer, the observer detects radi-
ation of frequency

(4.26a)

where c is the speed of light. For nonrelativistic speeds (s << c),
these expressions simplify to

(4.26b)

Atoms reach high speeds in all directions in a gas, and a station-
ary observer detects the corresponding Doppler shifted range of
frequencies. Some atoms approach the observer, some move
away; some move quickly, others slowly. The detected spectral
‘line’ is the absorption or emission profile arising from all the 
resulting Doppler shifts. As shown in the following Justification,
the profile reflects the distribution of atomic velocities parallel
to the line of sight, which is a bell-shaped Gaussian curve. The
Doppler line shape is therefore also a Gaussian (Fig. 4.18), and
we show in the Justification that, when the temperature is T and
the mass of the atom is m, then the observed width of the line at
half-height (in terms of frequency or wavelength) is

(4.27)δλ
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Fig. 4.17 A Grotrian diagram that summarizes the appearance
and analysis of the spectrum of atomic hydrogen. The thicker 
the line, the more intense the transition.
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Fig. 4.18 The Gaussian shape of a Doppler-broadened spectral
line reflects the Maxwell distribution of speeds in the sample at
the temperature of the experiment. Notice that the line broadens
as the temperature is increased.

interActivity In a spectrometer that makes use of phase-
sensitive detection the output signal is proportional to the

first derivative of the signal intensity, dI/dν. Plot the resulting
line shape for various temperatures. How is the separation of the
peaks related to the temperature?
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A brief comment A Gaussian function of the general form
y(x) = ae−(x−b)2/2σ2

, where a, b, and σ are constants, has a 
maximum y(b) = a and a width at half-height δx = 2σ(2 ln 2)1/2.

For atomic hydrogen at room temperature (T ≈ 300 K), δν/ν ≈
1.2 × 10−5. Doppler broadening increases with temperature 
because the atoms acquire a wider range of speeds. Therefore, to
obtain spectra of maximum sharpness, it is best to work with
cold samples.

Justification 4.5 Doppler broadening

We know from the Boltzmann distribution (Fundamentals
F.5) that the probability that a gas atom or molecule of mass
m and speed s in a sample with temperature T has kinetic 
energy Ek = 1–2ms2 is proportional to e−ms2/2kT. The observed
frequencies, νobs, emitted or absorbed by the atom or molecule
are related to its speed by eqn 4.26b:

where ν is the unshifted frequency. When s << c, the Doppler
shift in the frequency is

νobs − ν ≈ ±νs/c

which implies a symmetrical distribution of observed
frequencies with respect to atomic or molecular speeds. More
specifically, the intensity I of a transition at νobs is propor-
tional to the probability of finding the atom or molecule that
emits or absorbs at νobs, so it follows from the Boltzmann 
distribution and the expression for the Doppler shift that

I(νobs) ∝ e−mc 2(νobs−ν)2/2ν2kT

which has the form of a Gaussian function. The width at half-
height can be identified directly from the exponent to give
eqn 4.27.

Even when Doppler broadening has been largely eliminated by
working at low temperatures, spectroscopic lines from gas-phase
samples are not infinitely sharp. The same is true of the spectra
of samples in condensed phases and solution. This residual
broadening is due to quantum mechanical effects. Specifically,
when the Schrödinger equation is solved for a system that is
changing with time, it is found that it is impossible to specify 
the energy levels exactly. If on average a system survives in a state
for a time τ (tau), the lifetime of the state, then its energy levels
are blurred to an extent of order δE, where

(4.28a)δE ≈
$
τ

ν νobs =
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This expression is reminiscent of the Heisenberg uncertainty prin-
ciple (Section 1.9), and consequently this lifetime broadening is
often called ‘uncertainty broadening’. When the energy spread
is expressed as a wavenumber through δE = hcδ#, and the values
of the fundamental constants introduced, this relation becomes

(4.28b)

No excited state has an infinite lifetime; therefore, all states are
subject to some lifetime broadening, and the shorter the life-
times of the states involved in a transition, the broader the 
corresponding spectral lines.

Two processes are responsible for the finite lifetimes of 
excited states. The dominant one for low frequency transitions is
collisional deactivation, which arises from collisions between
atoms or with the walls of the container. If the collisional life-
time, the mean time between collisions, is τcol, the resulting 
collisional linewidth is δEcol ≈ $/τcol. Because τcol is inversely
proportional to the collision frequency and, as we shall see in
Section 18.1, the collision frequency is proportional to the pres-
sure, we see that the collisional linewidth is proportional to the
pressure. The collisional linewidth can therefore be minimized
by working at low pressures.

Excited states also emit radiation spontaneously (this process
is treated quantitatively in Further information 10.1) and this
rate of spontaneous emission cannot be changed. Hence it is a
natural limit to the lifetime of an excited state, and the resulting
lifetime broadening is the natural linewidth of the transition.
The natural linewidth is an intrinsic property of the transition,
and cannot be changed by modifying the conditions. Natural
linewidths depend strongly on the transition frequency, so low
frequency transitions have very small natural linewidths, and
collisional and Doppler line-broadening processes are domin-
ant. Electronic transitions occur at high frequencies and there-
fore have short natural lifetimes and large natural linewidths.
For example, a typical electronic excited state natural lifetime is
about 10−8 s (10 ns), corresponding to a natural width of about
5 × 10−4 cm−1 (15 MHz).

Many-electron atoms
The Schrödinger equation for a many-electron atom is highly
complicated because all the electrons interact with one another.
Even for a helium atom, with its two electrons, no analytical 
expression for the wavefunctions and energies can be given, and
we are forced to make approximations. We shall adopt a simple
approach, called the ‘orbital approximation’, based on what 
we already know about the structure of hydrogenic atoms and
the energies of orbitals. In Chapter 6, we shall see the types of
numerical computations that are used to obtain accurate wave-
functions and energies.

δ# ≈
−5 3 1.

/

cm
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Atomic spectra rapidly become very complicated as the num-
ber of electrons increases, but there are some important and
moderately simple features that make atomic spectroscopy 
useful in the study of the composition of samples as large and
as complex as stars (Impact I4.1). The general idea is straight-
forward: lines in the spectrum (in either emission or absorp-
tion) occur when the atom undergoes a transition with a change 
of energy |ΔE |, and emits or absorbs a photon of frequency 
ν = |ΔE |/h and # = |ΔE |/hc. Hence, we can expect the spectrum to
give information about the energies of electrons in atoms.
However, the actual energy levels are not given solely by the 
energies of the orbitals, because the electrons interact with one
another in various ways, and it is necessary to consider contri-
butions to the energy beyond those of the orbital approximation.

IMPACT ON ASTROPHYSICS

I4.1 The spectroscopy of stars

The bulk of stellar material consists of neutral and ionized forms
of hydrogen and helium atoms, with helium being the product
of ‘hydrogen burning’ by nuclear fusion. However, nuclear fusion
also makes heavier elements and contributes to the process of
nucleosynthesis. It is generally accepted that the outer layers of
stars are composed of lighter elements, such as H, He, C, N, O,
and Ne in both neutral and ionized forms. Heavier elements,
including neutral and ionized forms of Si, Mg, Ca, S, and Ar, are
found closer to the stellar core. The core itself contains the heav-
iest elements and 56Fe is particularly abundant because it is a
very stable nuclide. All of these elements are in the gas phase on
account of the very high temperatures in stellar interiors. For 
example, the temperature is estimated to be 3.6 MK halfway to
the centre of the Sun.

Astronomers use spectroscopic techniques to determine the
chemical composition of stars because each element, and indeed
each isotope of an element, has a characteristic spectral signa-
ture that is transmitted through space by the star’s light. To 
understand the spectra of stars, we must first know why they
shine. Nuclear reactions in the dense stellar interior generate 
radiation that travels to less dense outer layers. Absorption and
re-emission of photons by the atoms and ions in the interior give
rise to a quasi-continuum of radiation energy that is emitted
into space by a thin layer of gas called the photosphere. To a good
approximation, the distribution of energy emitted from a star’s
photosphere resembles the intensity distribution for a very hot
body, which for the Sun corresponds to a temperature of 5.8 kK.
Superimposed on the radiation continuum are sharp absorption
and emission lines from neutral atoms and ions present in the
photosphere. Analysis of stellar radiation with a spectrometer
mounted on to a telescope yields the chemical composition of
the star’s photosphere by comparison with known spectra of 
the elements. The data can also reveal the presence of small
molecules, such as CN, C2, TiO, and ZrO, in certain ‘cold’ stars,
which are stars with relatively low effective temperatures.

The two outermost layers of a star are the chromosphere, a re-
gion just above the photosphere, and the corona, a region above
the chromosphere that can be seen (with proper care) during
eclipses. The photosphere, chromosphere, and corona comprise
a star’s ‘atmosphere’. Our Sun’s chromosphere is much less
dense than its photosphere and its temperature is much higher,
rising to about 10 kK. The reasons for this increase in tempera-
ture are not fully understood. The temperature of our Sun’s
corona is very high, rising up to 1.5 MK, so black-body emission
is strong from the X-ray to the radiofrequency region of the
spectrum. The spectrum of the Sun’s corona is dominated by
emission lines from electronically excited species, such as neu-
tral atoms and a number of highly ionized species. The most in-
tense emission lines in the visible range are from the Fe13+ ion at
530.3 nm, the Fe9+ ion at 637.4 nm, and the Ca4+ ion at 569.4 nm.

Because only light from the photosphere reaches our tele-
scopes, the overall chemical composition of a star must be in-
ferred from theoretical models of its interior and from spectral
analysis of its atmosphere. Data on the Sun indicate that it is 91
to 94 per cent hydrogen and 6 to 9 per cent helium by atom. The
remaining mass is due to heavier elements, among which C, N,
O, Ne, and Fe are the most abundant. More advanced analysis of
spectra also permits the determination of other properties of stars,
such as their relative speeds and their effective temperatures.

4.4 The orbital approximation

The wavefunction of a many-electron atom is a very compli-
cated function of the coordinates of all the electrons, and we
should write it ψ(r1,r2, . . . ), where ri is the vector from the 
nucleus to electron i. However, in the orbital approximation 
we suppose that a reasonable first approximation to this exact
wavefunction is obtained by thinking of each electron as occu-
pying its ‘own’ orbital, and write the product

ψ(r1,r2, . . . ) = ψ(r1)ψ(r2 ) . . . (4.29)

We can think of the individual orbitals as resembling the hydro-
genic orbitals, but corresponding to nuclear charges modified
by the presence of all the other electrons in the atom. This 
description is only approximate, as explained in the following
Justification, but it is a useful model for discussing the chemical
properties of atoms, and is the starting point for more sophist-
icated descriptions of atomic structure.

Justification 4.6 The orbital approximation

The orbital approximation would be exact if there were no
interactions between electrons. To demonstrate the validity
of this remark, we need to consider a system in which the
hamiltonian for the energy is the sum of two contributions,
one for electron 1 and the other for electron 2:

@ = @1 + @2
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In an actual atom (such as helium), there is an additional
term corresponding to the interaction of the two electrons,
but we are ignoring that term. We shall now show that, 
if ψ(r1) is an eigenfunction of @1 with energy E1, and ψ(r2) is
an eigenfunction of @2 with energy E2, then the product
ψ(r1,r2) = ψ(r1)ψ(r2) is an eigenfunction of the combined
hamiltonian @. To do so we write

@ψ(r1,r2) = (@1 + @2)ψ(r1)ψ(r2) 
= @1ψ(r1)ψ(r2) + ψ(r1)@2ψ(r2)
= E1ψ(r1)ψ(r2) + ψ(r1)E2ψ(r2) 
= (E1 + E2)ψ(r1)ψ(r2)
= Eψ(r1,r2)

where E = E1 + E2. This is the result we need to prove.
However, if the electrons interact (as they do in fact), then the
proof fails; nevertheless, it remains a reasonable and almost
universally used starting point for the discussion of atomic
structure.

(a) The helium atom

The orbital approximation allows us to express the electronic
structure of an atom by reporting its configuration, the list of
occupied orbitals (usually, but not necessarily, in its ground
state). Thus, as the ground state of a hydrogenic atom consists 
of the single electron in a 1s orbital, we report its configuration
as 1s1.

The He atom has two electrons. We can imagine forming the
atom by adding the electrons in succession to the orbitals of 
the bare nucleus (of charge 2e). The first electron occupies a 1s
hydrogenic orbital, but because Z = 2 that orbital is more com-
pact than in H itself. The second electron joins the first in the 1s
orbital, so the electron configuration of the ground state of He
is 1s2.

(b) The Pauli principle

Lithium, with Z = 3, has three electrons. The first two occupy a
1s orbital drawn even more closely than in He around the more
highly charged nucleus. The third electron, however, does not
join the first two in the 1s orbital because that configuration is
forbidden by the Pauli exclusion principle:

No more than two electrons may occupy any given orbital and,
if two do occupy one orbital, then their spins must be paired.

Electrons with paired spins, denoted ↑↓, have zero net spin 
angular momentum because the spin of one electron is cancelled
by the spin of the other. Specifically, one electron has ms = + 1–2,
the other has ms = − 1–2 and they are orientated on their respective
cones so that the resultant spin is zero (Fig. 4.19). The exclusion
principle is the key to the structure of complex atoms, to chem-
ical periodicity, and to molecular structure. It was proposed by
Wolfgang Pauli in 1924 when he was trying to account for the

absence of some lines in the spectrum of helium. Later he was
able to derive a very general form of the principle from theoret-
ical considerations.

The Pauli exclusion principle in fact applies to any pair of
identical fermions (particles with half integral spin). Thus it 
applies to protons, neutrons, and 13C nuclei (all of which have
spin 1–2) and to 35Cl nuclei (which have spin 3–2). It does not apply
to identical bosons (particles with integral spin), which include
photons (spin 1) and 12C nuclei (spin 0). Any number of iden-
tical bosons may occupy the same state (that is, be described by
the same wavefunction).

The Pauli exclusion principle is a special case of a general
statement called the Pauli principle:

When the labels of any two identical fermions are exchanged,
the total wavefunction changes sign; when the labels of any
two identical bosons are exchanged, the total wavefunction
retains the same sign.

By ‘total wavefunction’ is meant the entire wavefunction, in-
cluding the spin of the particles, that is, the total wavefunction
must be a function of the positions as well as spins of the par-
ticles. To see that the Pauli principle implies the Pauli exclusion
principle, we consider the (total) wavefunction for two electrons
ψ(1,2). The Pauli principle implies that it is a fact of nature
(which has its roots in the theory of relativity) that the wave-
function must change sign if we interchange the labels 1 and 2
wherever they occur in the function:

ψ(2,1) = −ψ(1,2) (4.30)

Suppose the two electrons in an atom occupy an orbital ψ, a 
spatial wavefunction which depends on the coordinates in space
of the electron; then in the orbital approximation the overall
spatial wavefunction is ψ(1)ψ(2). To apply the Pauli principle,
we must consider the total wavefunction, the wavefunction

ms = +–12

ms = ––12

Fig. 4.19 Electrons with paired spins have zero resultant spin
angular momentum. They can be represented by two vectors
that lie at an indeterminate position on the cones shown here
but, wherever one lies on its cone, the other points in the
opposite direction; their resultant is zero.
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including spin. There are several possibilities for two spins: both
electrons can be in state α, denoted α(1)α(2); both β, denoted
β(1)β(2); and one α the other β, denoted either α(1)β(2) or
α(2)β(1). Because we cannot tell which electron is α and which
is β, in the last case it is appropriate to express the spin states as
the (normalized) linear combinations

σ+(1,2) = (1/21/2){α(1)β(2) + β(1)α(2)} (4.31a)

σ−(1,2) = (1/21/2){α(1)β(2) − β(1)α(2)} (4.31b)

because these combinations allow one spin to be α and the other
β with equal probability. The total wavefunction of the system is
therefore the product of the orbital part and one of the four spin
states:

ψ(1)ψ(2)α(1)α(2) ψ(1)ψ(2)β(1)β(2)
ψ(1)ψ(2)σ+(1,2) ψ(1)ψ(2)σ−(1,2)

The notation for the first two functions can be made more com-
pact by introducing the spinorbital, a combination of one orbital
function and one spin function, such as ψ α(1) = ψ(1)α(1).
More generally, for electron n with an orbital function ψ(n),
there are two possible spinorbitals, ψ α(n) = ψ(n)α(n) and
ψ β(n) = ψ(n)β(n). The first two wavefunctions can then be 
denoted ψ α(1)ψ α(2) and ψ β(1)ψ β(2).

A brief comment A stronger justification for taking linear
combinations in eqn 4.31 is that they correspond to eigen-
functions of the total spin operators Ç2 and Çz, with S = 1, 
MS = 0 for σ+ and S = 0, MS = 0 for σ− (see Section 4.5). The
linear combinations are also orthogonal in the sense that the
integral of their product over spin ‘coordinates’ vanishes.

The Pauli principle says that, for a total wavefunction to be
acceptable (for electrons), it must change sign when the elec-
trons are exchanged. In each case, exchanging the labels 1 and 2
converts the factor ψ(1)ψ(2) into ψ(2)ψ(1), which is the same,
because the order of multiplying the functions does not change
the value of the product. The same is true of α(1)α(2) and
β(1)β(2). Therefore, the two overall products (in the first row of
the two rows listed above) are not allowed, because they do not
change sign. The combination σ+(1,2) changes to

σ+(2,1) = (1/21/2){α(2)β(1) + β(2)α(1)} = σ+(1,2)

because it is simply the original function written in a different
order. The third overall product is therefore also disallowed.
Finally, consider σ−(1,2):

σ−(2,1) = (1/21/2){α(2)β(1) − β(2)α(1)}
= −(1/21/2){α(1)β(2) − β(1)α(2)} = −σ−(1,2)

This combination does change sign (it is ‘antisymmetric’).
The product ψ(1)ψ(2)σ−(1,2) also changes sign under particle 
exchange, and therefore it is acceptable.

Now we see that only one of the four possible states is allowed
by the Pauli principle, and the one that survives has paired α and
β spins. This is the content of the Pauli exclusion principle. The
exclusion principle is irrelevant when the orbitals occupied by
the electrons are different, and both electrons may then have
(but need not have) the same spin state. Nevertheless, even then
the overall wavefunction must still be antisymmetric, and must
still satisfy the Pauli principle itself.

A final point in this connection is that the acceptable product
wavefunction ψ(1)ψ(2)σ−(1,2) can be expressed as a determinant:

Any acceptable wavefunction for a closed-shell species (a species
with a noble-gas configuration) can be expressed as a deter-
minant, which in this context is called a Slater determinant. In
general, for N electrons in orbitals ψa, ψb, . . . , the total wave-
function Ψ (we use upper-case psi whenever the wavefunction
includes both spatial and spin parts) is

[4.32]

Writing a many-electron wavefunction in this way ensures that
it is antisymmetric under the interchange of any pair of elec-
trons, as is explored in Problem 4.25. Slater determinants will
appear again in Chapter 6, as they are commonly used in calcula-
tions on atoms and, more importantly for chemists, molecules.

Now we can return to lithium. In Li (Z = 3), the third electron
cannot enter the 1s orbital because that orbital is already full: we
say the K shell is complete and that the two electrons form a
closed shell. Because a similar closed shell is characteristic of the
He atom, we denote it [He]. The third electron is excluded from
the K shell and must occupy the next available orbital, which is
one with n = 2 and hence belonging to the L shell. However, we
now have to decide whether the next available orbital is the 2s
orbital or a 2p orbital, and therefore whether the lowest energy
configuration of the atom is [He]2s1 or [He]2p1.

(c) Penetration and shielding

In hydrogenic atoms all orbitals of a given shell are degenerate.
In many-electron atoms, although orbitals of a given subshell
remain degenerate, the subshells themselves have different 
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energies. The difference can be traced to the fact that an electron
in a many-electron atom experiences a Coulombic repulsion
from all the other electrons present. If it is at a distance r from
the nucleus, it experiences an average repulsion that can be rep-
resented by a point negative charge located at the nucleus and
equal in magnitude to the total charge of the electrons within a
sphere of radius r (Fig. 4.20). The effect of this point negative
charge, when averaged over all the locations of the electron, is 
to reduce the full charge of the nucleus from Ze to Zeff e, the
effective nuclear charge. In everyday parlance, Zeff itself is com-
monly referred to as the ‘effective nuclear charge’. We say that
the electron experiences a shielded nuclear charge, and the differ-
ence between Z and Zeff is called the shielding constant, σ :

Zeff = Z − σ [4.33]

The electrons do not actually ‘block’ the full Coulombic 
attraction of the nucleus: the shielding constant is simply a way
of expressing the net outcome of the nuclear attraction and the
electronic repulsions in terms of a single equivalent charge at the
centre of the atom.

The shielding constant is different for s and p electrons because
they have different radial distribution functions (Fig. 4.21). An s
electron has a greater penetration through inner shells than a p
electron, in the sense that it is more likely to be found close to 
the nucleus than a p electron of the same shell (the wavefunction
of a p orbital, remember, is zero at the nucleus). Because only
electrons inside the sphere defined by the location of the electron
(in effect, the core electrons) contribute to shielding, an s elec-
tron experiences less shielding than a p electron. Consequently,
by the combined effects of penetration and shielding, an s elec-
tron is more tightly bound than a p electron of the same shell.
Similarly, a d electron penetrates less than a p electron of the
same shell (recall that the wavefunctions of orbitals are propor-
tional to r l close to the nucleus and therefore that a d orbital varies

as r 2 close to the nucleus, whereas a p orbital varies as r), and
therefore experiences more shielding. The consequence of pen-
etration and shielding is that the energies of subshells of a shell
in a many-electron atom in general lie in the order s < p < d < f.

Shielding constants for different types of electrons in atoms
have been calculated from their wavefunctions obtained by 
numerical solution of the Schrödinger equation (Table 4.2). 
We see that, in general, valence-shell s electrons do experience
higher effective nuclear charges than p electrons, although there
are some discrepancies. We return to this point shortly.

We can now complete the Li story. Because the shell with 
n = 2 consists of two non-degenerate subshells, with the 2s orbital
lower in energy than the three 2p orbitals, the third electron 
occupies the 2s orbital. This occupation results in the ground-
state configuration 1s22s1, with the central nucleus surrounded
by a complete helium-like shell of two 1s electrons, and around
that a more diffuse 2s electron. The electrons in the outermost
shell of an atom in its ground state are called the valence elec-
trons because they are largely responsible for the chemical
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No net effect
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electrons

Net effect
equivalent to
a point charge
at the centre

Fig. 4.20 An electron at a distance r from the nucleus experiences
a Coulombic repulsion from all the electrons within a sphere of
radius r and which is equivalent to a point negative charge
located on the nucleus. The negative charge reduces the effective
nuclear charge of the nucleus from Ze to Zeff e.

0 4 8 12 16

3p

3s

Zr a/ 0

R
ad

ia
l d

is
tr

ib
u

ti
o

n
fu

n
ct

io
n

,P

Fig. 4.21 An electron in an s orbital (here a 3s orbital) is more
likely to be found close to the nucleus than an electron in a p
orbital of the same shell (note the closeness of the innermost
peak of the 3s orbital to the nucleus at r = 0). Hence an s electron
experiences less shielding and is more tightly bound than a p
electron.

interActivity Calculate and plot the graphs given above for
n = 4.

Synoptic table 4.2* Effective nuclear charge, Zeff = Z − σ

Element Z Orbital Zeff

He 2 1s 1.6875

C 6 1s 5.6727

2s 3.2166

2p 3.1358

* More values are given in the Data section.
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bonds that the atom forms. Thus, the valence electron in Li is a
2s electron and its other two electrons belong to its core.

(d) The building-up principle

The extension of this argument is called the building-up prin-
ciple, or the Aufbau principle, from the German word for build-
ing up, which will be familiar from introductory courses. In
brief, we imagine the bare nucleus of atomic number Z, and then
feed into the orbitals Z electrons in succession. The order of 
occupation is

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s

and each orbital may accommodate up to two electrons. As an
example, consider the carbon atom, for which Z = 6 and there
are six electrons to accommodate. Two electrons enter and 
fill the 1s orbital, two enter and fill the 2s orbital, leaving two
electrons to occupy the orbitals of the 2p subshell. Hence the
ground-state configuration of C is 1s22s22p2 or, more succinctly,
[He]2s22p2 with [He] the helium-like 1s2 core. However, we can
be more precise: we can expect the last two electrons to occupy
different 2p orbitals because they will then be further apart on
average and repel each other less than if they were in the same
orbital. Thus, one electron can be thought of as occupying the
2px orbital and the other the 2py orbital (the x, y, z designation is
arbitrary, and it would be equally valid to use the complex forms
of these orbitals), and the lowest energy configuration of the
atom is [He]2s22p1

x 2p1
y . The same rule applies whenever degen-

erate orbitals of a subshell are available for occupation. Thus,
another rule of the building-up principle is:

Electrons occupy different orbitals of a given subshell before
doubly occupying any one of them.

For instance, nitrogen (Z = 7) has the configuration
[He]2s22p1

x 2p1
y 2p1

z, and only when we get to oxygen (Z = 8) is a
2p orbital doubly occupied, giving [He]2s22p2

x 2p1
y 2p1

z . When
electrons occupy orbitals singly we invoke Hund’s maximum
multiplicity rule:

An atom in its ground state adopts a configuration with the
greatest number of electrons with unpaired spins.

The explanation of Hund’s rule is subtle, but it reflects the
quantum mechanical property of spin correlation, that elec-
trons with parallel spins behave as if they have a tendency to stay
well apart (see the following Justification), and hence repel each
other less. In essence, the effect of spin correlation is to allow the
atom to shrink slightly, so the electron–nucleus interaction is
improved when the spins are parallel. We can now conclude that
in the ground state of the carbon atom, the two 2p electrons
have the same spin, that all three 2p electrons in the N atom have
the same spin, and that the two 2p electrons in different orbitals
in the O atom have the same spin (the two in the 2px orbital are
necessarily paired).

Justification 4.7 Spin correlation

Suppose electron 1 is described by a spatial wavefunction
ψa(r1) and electron 2 is described by a wavefunction ψb(r2);
then, in the orbital approximation, the joint wavefunction 
of the electrons is the product ψ = ψa(r1)ψb(r2). However,
this wavefunction is not acceptable, because it suggests
that we know which electron is in which orbital, whereas 
we cannot keep track of electrons. According to quantum 
mechanics, the correct description is either of the two follow-
ing wavefunctions:

ψ± = (1/21/2){ψa(r1)ψb(r2) ± ψb(r1)ψa(r2)}

According to the Pauli principle, because ψ+ is symmetrical
under particle interchange, it must be multiplied by an anti-
symmetric spin function (the one denoted σ− in eqn 4.31b).
That combination corresponds to a spin-paired state. Con-
versely, ψ− is antisymmetric, so it must be multiplied by one
of the three symmetric spin states. These three symmetric
states correspond to electrons with parallel spins (as will be
explained in Section 4.5).

Now consider the values of the two combinations ψ± when
one electron approaches another, and eventually r1 = r2. We
see that ψ− vanishes, which means that there is zero probabil-
ity of finding the two electrons at the same point in space
when they have parallel spins. The decreasing probability
that the electrons approach one another in the state ψ− is
called a Fermi hole. The other combination does not vanish
when the two electrons are at the same point in space.
Because the two electrons have different relative spatial dis-
tributions depending on whether their spins are parallel or
not, it follows that their Coulombic interaction is different,
and hence that the two states have different energies, with the
state corresponding to parallel spins being lower in energy.

However, we have to be cautious with this explanation, for
it supposes that the original wavefunctions are unchanged.
Detailed numerical calculations have shown that in the
specific case of a helium atom electrons with parallel spins are
actually closer together than those with antiparallel spins.
The explanation in this case is that spin correlation between
electrons with parallel spins allows the entire atom to shrink.
Therefore, although the average separation is reduced, the
electrons are found closer to the nucleus, which lowers their
potential energy.

Neon, with Z = 10, has the configuration [He]2s22p6, which
completes the L shell. This closed-shell configuration is denoted
[Ne], and acts as a core for subsequent elements. The next elec-
tron must enter the 3s orbital and begin a new shell, so an Na
atom, with Z = 11, has the configuration [Ne]3s1. Like lithium
with the configuration [He]2s1, sodium has a single s electron
outside a complete core. This analysis has brought us to the
origin of chemical periodicity. The L shell is completed by eight
electrons, so the element with Z = 3 (Li) should have similar
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properties to the element with Z = 11 (Na). Likewise, Be (Z = 4)
should be similar to Z = 12 (Mg), and so on, up to the noble
gases He (Z = 2), Ne (Z = 10), and Ar (Z = 18).

Ten electrons can be accommodated in the five 3d orbitals,
which accounts for the electron configurations of scandium 
to zinc. Calculations of the type discussed in Chapter 6 show
that for these atoms the energies of the 3d orbitals are always
lower than the energy of the 4s orbital. However, spectroscopic 
results show that Sc has the configuration [Ar]3d14s2, instead of
[Ar]3d3 or [Ar]3d24s1. To understand this observation, we have
to consider the nature of electron–electron repulsions in 3d and
4s orbitals, where the effects are particularly finely balanced 
because there is only a small difference in energy between the 
orbitals. The most probable distance of a 3d electron (with no
radial nodes) from the nucleus is less than that for a 4s electron
(with three radial nodes), so two 3d electrons repel each other
more strongly than two 4s electrons. As a result, Sc has the
configuration [Ar]3d14s2 rather than the two alternatives, for
then the strong electron–electron repulsions in the 3d orbitals
are minimized. The total energy of the atom is least despite the
cost of allowing electrons to populate the high energy 4s orbital
(Fig. 4.22). The effect just described is generally true for scan-
dium through zinc, so their electron configurations are of the
form [Ar]3dn4s2, where n = 1 for scandium and n = 10 for zinc.
Two notable exceptions, which are observed experimentally,
are Cr, with electron configuration [Ar]3d54s1, and Cu, with
electron configuration [Ar]3d104s1. The theoretical basis of the 
exceptions represented by Cr and Cu is the additional energy
lowering characteristic of half-filled and completely filled d 
subshells.

At gallium, the building-up principle is used in the same 
way as in preceding periods. Now the 4s and 4p subshells consti-
tute the valence shell, and the period terminates with krypton.

Because 18 electrons have intervened since argon, this period is
the first ‘long period’ of the periodic table. The existence of the
d-block elements (the ‘transition metals’) reflects the stepwise
occupation of the 3d orbitals, and the subtle shades of energy
differences and effects of electron–electron repulsion along this
series gives rise to the rich complexity of inorganic d-metal
chemistry. A similar intrusion of the f orbitals in Periods 6 and 7
accounts for the existence of the f block of the periodic table (the
lanthanoids and actinoids).

We derive the configurations of cations of elements in the s, p,
and d blocks of the periodic table by removing electrons from
the ground-state configuration of the neutral atom in a specific
order. First, we remove valence p electrons, then valence s elec-
trons, and then as many d electrons as are necessary to achieve
the specified charge. For instance, because the configuration of
V is [Ar]3d34s2, the V2+ cation has the configuration [Ar]3d3. It
is reasonable that we remove the more energetic 4s electrons in
order to form the cation, but it is not obvious why the [Ar]3d3

configuration is preferred in V2+ over the [Ar]3d14s2 configura-
tion, which is found in the isoelectronic Sc atom. Calculations
show that the energy difference between [Ar]3d3 and [Ar]3d14s2

depends on Zeff. As Zeff increases, transfer of a 4s electron to a 3d
orbital becomes more favourable because the electron–electron
repulsions are compensated by attractive interactions between
the nucleus and the electrons in the spatially compact 3d orbital.
Indeed, calculations reveal that, for a sufficiently large Zeff,
[Ar]3d3 is lower in energy than [Ar]3d14s2. This conclusion 
explains why V2+ has an [Ar]3d3 configuration and also accounts
for the observed [Ar]4s03dn configurations of the M2+ cations of
Sc through Zn.

The configurations of anions of the p-block elements are 
derived by continuing the building-up procedure and adding
electrons to the neutral atom until the configuration of the 
next noble gas has been reached. Thus, the configuration of the 
O2− ion is achieved by adding two electrons to [He]2s22p4, giv-
ing [He]2s22p6, the same as the configuration of neon.

(e) Ionization energies and electron affinities

The minimum energy necessary to remove an electron from 
a many-electron atom in the gas phase is the first ionization 
energy, I1, of the element. The second ionization energy, I2, is
the minimum energy needed to remove a second electron (from
the singly charged cation). Some numerical values are given in
Table 4.3. The electron affinity, Eea, is the energy released when
an electron attaches to a gas-phase atom (Table 4.4). In a com-
mon, logical, but not universal convention (which we adopt),
the electron affinity is positive if energy is released when the elec-
tron attaches to the atom.

As will be familiar from introductory chemistry, ionization
energies and electron affinities show periodicities (Fig. 4.23).
The former is more regular and we concentrate on it. Lithium
has a low first ionization energy because its outermost electron
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Fig. 4.22 Strong electron–electron repulsions in the 3d orbitals
are minimized in the ground state of Sc if the atom has the
configuration [Ar]3d14s2 (shown on the left) instead of
[Ar]3d24s1 (shown on the right). The total energy of the atom is
lower when it has the [Ar]3d14s2 configuration despite the cost
of populating the high energy 4s orbital.
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is well shielded from the nucleus by the core electrons (Zeff = 1.3,
compared with Z = 3). The ionization energy of beryllium 
(Z = 4) is greater but that of boron is lower because in the latter
the outermost electron occupies a 2p orbital and is less strongly
bound than if it had been a 2s electron. The ionization energy
increases from boron to nitrogen on account of the increasing
nuclear charge. However, the ionization energy of oxygen is less
than would be expected by simple extrapolation. The explana-
tion is that at oxygen a 2p orbital must become doubly occupied,
and the electron–electron repulsions are increased above what
would be expected by simple extrapolation along the row. In 
addition, the loss of a 2p electron results in a configuration with
a half-filled subshell (like that of N), which is an arrangement 

of low energy, so the energy of O+ + e− is lower than might 
be expected, and the ionization energy is correspondingly low
too. (The kink is less pronounced in the next row, between phos-
phorus and sulfur because their orbitals are more diffuse.) The
values for oxygen, fluorine, and neon fall roughly on the same
line, the increase of their ionization energies reflecting the 
increasing attraction of the more highly charged nuclei for the
outermost electrons.

The outermost electron in sodium is 3s. It is far from the 
nucleus, and the latter’s charge is shielded by the compact, com-
plete neon-like core. As a result, the ionization energy of sodium
is substantially lower than that of neon. The periodic cycle starts
again along this row, and the variation of the ionization energy
can be traced to similar reasons.

Electron affinities are greatest close to fluorine, for the incom-
ing electron enters a vacancy in a compact valence shell and can
interact strongly with the nucleus. The attachment of an elec-
tron to an anion (as in the formation of O2− from O−) invariably
requires the absorption of energy, so Eea is negative. The incom-
ing electron is repelled by the charge already present. Electron
affinities are also small, and may be negative, when an electron
enters an orbital that is far from the nucleus (as in the heavier 
alkali metal atoms) or is forced by the Pauli principle to occupy
a new shell (as in the noble gas atoms).

The values of ionization energies and electron affinities can
help us to understand a great deal of chemistry and, through
chemistry, biology. For example, we can now begin to see why
carbon is an essential building block of complex biological
structures. Among the elements in Period 2, carbon has inter-
mediate values of the ionization energy and electron affinity, so
it can share electrons (that is, form covalent bonds) with many
other elements, such as hydrogen, nitrogen, oxygen, sulfur, and,
more importantly, other carbon atoms. As a consequence, such
networks as long carbon–carbon chains (as in lipids) and chains
of peptide links can form readily. Because the ionization energy
and electron affinity of carbon are neither too high nor too low,
the bonds in these covalent networks are neither too strong nor
too weak. As a result, biological molecules are sufficiently stable
to form viable organisms but are still susceptible to dissociation
and rearrangement. In Chapter 5 we shall develop additional
concepts that will complete this story about carbon.

(f ) Self-consistent field calculations

The treatment we have given to the electronic configuration of
many-electron species is only approximate because it is hopeless
to expect to find exact solutions of a Schrödinger equation that
take into account the interaction of all the electrons with one 
another. However, computational techniques are available that
give very detailed and reliable approximate solutions for the
wavefunctions and energies. The techniques were originally 
introduced by D. R. Hartree (before computers were available)
and then modified by V. Fock to take into account the Pauli

Synoptic table 4.3* First and second ionization energies

Element I1/(kJ mol−1) I2/(kJ mol−1)

H 1312

He 2372 5250

Mg 738 1451

Na 496 4562

* More values are given in the Data section.

Synoptic table 4.4* Electron affinities, Eea/(kJ mol−1)

Cl 349

F 322

H 73

O 141 O− −844

* More values are given in the Data section.
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Fig. 4.23 The first ionization energies of the elements plotted
against atomic number.
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principle correctly. These techniques are of great interest to
chemists when applied to molecules, and are explained in detail
in Chapter 6; however, we should be aware of the general prin-
ciples at this stage too. In broad outline, the Hartree–Fock
self-consistent field (HF-SCF) procedure is as follows.

Imagine that we have an approximate idea of the structure
of the atom. In the Ne atom, for instance, the orbital approx-
imation suggests the configuration 1s22s22p6 with the orbitals
approximated by hydrogenic atomic orbitals. Now consider 
one of the 2p electrons. A Schrödinger equation can be written
for this electron by ascribing to it a potential energy due to the 
nuclear attraction and the repulsion from the other electrons.
Although the equation is for the 2p orbital, it depends on 
the wavefunctions of all the other occupied orbitals in the atom.
To solve the equation, we guess an approximate form of the
wavefunctions of all the orbitals except 2p and then solve the
Schrödinger equation for the 2p orbital. The procedure is then
repeated for the 1s and 2s orbitals. This sequence of calculations
gives the form of the 2p, 2s, and 1s orbitals, and in general they
will differ from the set used initially to start the calculation.
These improved orbitals can be used in another cycle of calcula-
tion, and a second improved set of orbitals and a better energy
are obtained. The recycling continues until the orbitals and 
energies obtained are insignificantly different from those used 
at the start of the current cycle. The solutions are then self-
consistent and accepted as solutions of the problem.

Figure 4.24 shows plots of some of the HF-SCF radial distri-
bution functions for sodium. They show the grouping of elec-
tron density into shells, as was anticipated by the early chemists,
and the differences of penetration as discussed above. These SCF
calculations therefore support the qualitative discussions that
are used to explain chemical periodicity. They also considerably
extend that discussion by providing detailed wavefunctions and
precise energies.

4.5 Term symbols

Now that we know how to account for the ground-state configu-
rations of atoms it is appropriate to examine the states of these
atoms in more detail, especially their excited states, and to con-
sider the transitions between them. A complication we immedi-
ately encounter is that a single configuration of an atom, such 
as the excited configuration of He, 1s12s1 for instance, or the
ground state of C, [He]2s22p2, can give rise to a number of
different individual states with various energies. Our first task is
to identify these states and find a way to label them with a ‘term
symbol’. Atomic term symbols, and their molecular counter-
parts, play a crucial role in spectroscopy, in the discussion of
magnetic properties, in the photochemistry of the atmosphere,
and in the description of the operation of lasers.

The key to identifying the various states that can arise from 
a configuration and attaching a term symbol is the angular 
momentum of the electrons: that includes their orbital angular
momentum, their spin, and their total angular momentum. 
Our first job is to identify the allowed values of these angular 
momenta for atoms with more than one electron.

(a) The total orbital angular momentum

Let’s consider an atom with two electrons outside a closed core,
so there are two sources of orbital angular momentum. We sup-
pose that the orbital angular momentum quantum numbers of
the two electrons are l1 and l2. If the electron configuration of the
atoms we are considering is p2, both electrons are in p orbitals
and l1 = l2 = 1. The total orbital angular momenta that can arise
from a configuration depends on the magnitudes and the relat-
ive orientation of these individual momenta, and is described by
the total orbital angular momentum quantum number, L, a non-
negative integer obtained by using the Clebsch–Gordan series:

L = l1 + l2, l1 + l2 − 1, . . . , | l1 − l2 | (4.34)

For instance, if l1 = l2 = 1, then L = 2, 1, and 0. Once we know the
value of the L we can calculate the magnitude of the total orbital
angular momentum from {L(L + 1)}1/2$. As for any angular 
momentum, the total orbital angular momentum has 2L + 1 ori-
entations distinguished by the quantum number ML, which can
take the values L, L − 1, . . . , −L.

Just as we use lower-case letters to tell us the value of l, so 
we use an upper-case letter to tell us the value of L. The code 
for converting the value of L into a letter is the same as for the 
s, p, d, f, . . . designation of orbitals, but uses upper-case letters:

L: 0 1 2 3 4 5 6 . . .

S P D F G H I . . .

Thus a p2 configuration can give rise to D, P, and S terms. A
closed shell has zero orbital angular momentum because all 
the individual orbital angular momenta sum to zero. Therefore,
when working out term symbols, we need consider only the
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Fig. 4.24 The radial distribution functions for the orbitals of Na
based on SCF calculations. Note the shell-like structure with the
3s orbital outside the inner K and L shells.
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already, when we saw that spin correlation results in states with
parallel spins having a lower energy than states with antiparallel
spins (Section 4.4). Parallel (unpaired) and antiparallel (paired)
spins differ in their overall spin angular momentum. In the
paired case, the two spin momenta cancel each other, and there
is zero net spin (as was depicted in Fig. 4.19), and so once again
we are brought to a correlation between an angular momentum,
in this case spin, and an energy.

When there are several electrons to be taken into account, we
must assess their total spin angular momentum quantum num-
ber, S (a non-negative integer or half integer). To do so, we use
the Clebsch–Gordan series, this time in the form

S = s1 + s2, s1 + s2 − 1, . . . , |s1 − s2| (4.35)

noting that each electron has s = 1–2, which gives S = 1, 0 for two
electrons (Fig. 4.25). If there are three electrons, the total spin
angular momentum is obtained by coupling the third spin to
each of the values of S for the first two spins, which results 
in S = 3–2, and S = 1–2. The value of S for a term is expressed by 
giving the multiplicity of a term, the value of 2S + 1, as a left-
superscript on the term symbol. Thus, 1P is a ‘singlet’ term 
(S = 0, 2S + 1 = 1) and 3P is a ‘triplet’ term (S = 1, 2S + 1 = 3). The
multiplicity actually tells us the number of permitted values of
MS = S, S − 1, . . . , −S for the given value of S, and hence the
number of orientations in space that the total spin can adopt.
We shall see the importance of this information shortly.

MS = 0

ms = +–12

ms = ––12

MS = +1

ms = +–12

MS = –1

ms = ––12

Fig. 4.25 When two electrons have parallel spins, they have a
nonzero total spin angular momentum. There are three ways of
achieving this resultant, which are shown by these vector
representations. Note that, although we cannot know the
orientation of the spin vectors on the cones, the angle between
the vectors is the same in all three cases, for all three
arrangements have the same total spin angular momentum (that
is, the resultant of the two vectors has the same length in each
case, but points in different directions). Compare this diagram
with Fig. 4.19, which shows the antiparallel case. Note that,
whereas two paired spins are precisely antiparallel, two ‘parallel’
spins are not strictly parallel.

electrons of the unfilled shell. In the case of a single electron out-
side a closed shell, the value of L is the same as the value of l, so
the configuration [Ne]3s1 has only an S term.

The terms that arise from a given configuration differ in energy
due to the Coulombic interaction between the electrons. For 
example, to achieve a D (L = 2) term from a 2p13p1 configura-
tion, both electrons need to be circulating in the same direc-
tion around the nucleus but, to achieve an S (L = 0) term, they
would need to be circulating in opposite directions. In the 
former arrangement, they do not meet; in the latter they do. 
On the basis of this classical picture, we can suspect that the 
repulsion between them will be higher if they meet, and there-
fore that the S term will lie higher in energy than the D term. 
The quantum mechanical analysis of the problem supports this 
interpretation.

Example 4.6 Deriving the total orbital angular momentum of 
a configuration

Find the terms that can arise from the configurations (a) d2, 
(b) p3.

Method Use the Clebsch–Gordan series and begin by finding
the minimum value of L (so that we know where the series 
terminates). When there are more than two electrons to couple
together, use two series in succession: first couple two electrons,
and then couple the third to each combined state, and so on.

Answer (a) The minimum value is | l1 − l2 | = |2 − 2 | = 0.
Therefore,

L = 2 + 2, 2 + 2 − 1, . . . , 0 = 4, 3, 2, 1, 0

corresponding to G, F, D, P, S terms, respectively. (b)
Coupling two electrons gives a minimum value of |1 − 1| = 0.
Therefore,

L′ = 1 + 1, 1 + 1 − 1, . . . , 0 = 2, 1, 0

Now couple l3 = 1 with L′ = 2, to give L = 3, 2, 1; with L′ = 1, to
give L = 2, 1, 0; and with L′ = 0, to give L = 1. The overall 
result is

L = 3, 2, 2, 1, 1, 1, 0

giving one F, two D, three P, and one S term.

Self-test 4.9 Repeat the question for the configurations 
(a) f1d1 and (b) d3.

[(a) H, G, F, D, P; (b) I, 2H, 3G, 4F, 5D, 3P, S]

(b) The total spin angular momentum

The energy of a term also depends on the relative orientation of
the electron spins. We have seen a glimmer of this dependence
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A note on good practice Throughout our discussion of
atomic spectroscopy, distinguish italic S, the total spin 
quantum number, from Roman S, the term label. Thus, 3S 
is a triplet term with S = 1 (and L = 0). All state symbols 
are upright; all quantum numbers and physical observables
are sloping.

When S = 0 (as for a closed shell, like 1s2), MS = 0, the electron
spins are all paired and there is no net spin: this arrangement
gives a singlet term, 1S. A single electron has S = s = 1–2 (MS = ms

= ± 1–2), so a configuration such as [Ne]3s1 can give rise to a 
doublet term, 2S. Likewise, the configuration [Ne]3p1 is a doublet,
2P. When there are two electrons with unpaired spins, S = 1 
(MS = ±1, 0), so 2S + 1 = 3, giving a triplet term, such as 3D. We
saw in Section 4.4 that the energies of two states, one with paired
spins and one with unpaired spins, will differ on account of the
different effects of spin correlation. The fact that the parallel 
arrangement of spins, as in the 1s12s1 configuration of the He
atom, lies lower in energy than the antiparallel arrangement can
now be expressed by saying that the triplet state of the 1s12s1

configuration of He lies lower in energy than the singlet state.
This is a general conclusion that applies to other atoms (and
molecules) and, for states arising from the same configuration, the
triplet state generally lies lower in energy than the singlet state. The
latter is an example of Hund’s rule of maximum multiplicity
(Section 4.4) which can be restated as:

For a given configuration, the term of greatest multiplicity
lies lowest in energy.

Because the Coulombic interaction between electrons in an
atom is strong, the difference in energies between singlet and
triplet states of the same configuration can be large. The triplet
and singlet terms of He1s12s1, for instance, differ by 6421 cm−1

(corresponding to 0.80 eV).

(c) The total angular momentum

When there is a net orbital angular momentum and a net spin
angular momentum in an atom, we can expect to be able to
combine these angular momenta into a total angular momentum
and—perhaps—for the energy of the atom to depend on its
value. The total angular momentum quantum number, J (a
non-negative integer or half integer), takes the values

J = L + S, L + S − 1, . . . , |L − S | (4.36)

and, as usual, we can calculate the magnitude of the total angu-
lar momentum from {J(J + 1)}1/2$. The specific value of J is given
as a right-subscript on the term symbol; for example, a 3P term
with J = 2 is fully dressed as 3P2.

If S ≤ L, there are 2S + 1 values of J for a given L, so the num-
ber of values of J is the same as the multiplicity of the term. Each
possible value of J designates a level of a term so, provided S ≤ L,

2 For details, see our Inorganic chemistry, Oxford University Press and W. H.
Freeman & Co. (2006).

the multiplicity tells us the number of levels. For example, the
[Ne]3p1 configuration of sodium (an excited state) has L = 1 and
S = 1–2 and a multiplicity of 2; the two levels are J = 3–2 and 1–2 and the
2P term therefore has two levels, 2P3/2 and 2P1/2.

Before moving on, we should note that there is a hidden
assumption in eqn 4.36. We have assumed that the orbital angu-
lar momenta of the electrons all combine to give a total, that
their spins all combine to give a total spin, and that only then 
do these two totals combine to give the overall total angular 
momentum of the atom. This procedure is called Russell–
Saunders coupling. An alternative is that the orbital and spin
angular momenta of each electron combine separately into a 
resultant for each one (with quantum number j), and then those
resultants combine to give an overall total. We shall not deal
with this so-called jj-coupling case: Russell–Saunders coupling
turns out to be reasonably accurate for light atoms.

Example 4.7 Deriving term symbols

Write the term symbols arising from the ground-state con-
figurations of (a) Na and (b) F, and (c) the excited configura-
tion 1s22s22p13p1 of C.

Method Begin by writing the configurations, but ignore
inner closed shells. Then couple the orbital momenta to find
L and the spins to find S. Next, couple L and S to find J.
Finally, express the term as 2S+1{L}J, where {L} is the appro-
priate letter. For F, for which the valence configuration is 2p5,
treat the single gap in the closed-shell 2p6 configuration as a
single particle.

Answer (a) For Na, the configuration is [Ne]3s1, and we con-
sider the single 3s electron. Because L = l = 0 and S = s = 1–2, it
is possible for J = j = s = 1–2 only. Hence the term symbol is 2S1/2.
(b) For F, the configuration is [He]2s22p5, which we can treat
as [Ne]2p−1 (where the notation 2p−1 signifies the absence of
a 2p electron). Hence L = 1, and S = s = 1–2. Two values of J = j
are allowed: J = 3–2, 1–2. Hence, the term symbols for the two 
levels are 2P3/2, 2P1/2. (c) We are treating an excited configura-
tion of carbon because, in the ground configuration, 2p2, 
the Pauli principle forbids some terms, and deciding which
survive (1D, 3P, 1S, in fact) is quite complicated.2 That is,
there is a distinction between ‘equivalent electrons’, which
are electrons that occupy the same orbitals, and ‘inequivalent
electrons’, which are electrons that occupy different orbitals;
we only consider the latter here. The excited configuration 
of C under consideration is effectively 2p13p1. This is a two-
electron problem, and l1 = l2 = 1, s1 = s2 = 1–2. It follows that 
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For atoms with less-than-half-full shells, the level with the
smallest value of J will be lowest in energy; for atoms with
more-than-half-full shells, the level with the largest value of J
will be lowest in energy.

For a quantitative treatment of spin–orbit coupling, we need
to include in the hamiltonian a term that depends on the relative
orientation of the vectors that represent the spin and orbital 
angular momenta. The simplest procedure is to write the contri-
bution as

@so = λL ·S (4.37)

where L ·S is the scalar product of the vectors L and S (as we 
see in Mathematical background 4, L ·S is proportional to cos θ,
where θ is the angle between the two vectors). To use this ex-
pression, we note that the total angular momentum is J = L + S,
so

J ·J = (L + S) ·(L + S) = L2 + S2 + 2L ·S

and therefore

λL ·S = 1–2λ( J2 − L2 − S2)

The eigenvalues of this expression are

Eso = 1–2λ$2{J(J + 1) − L(L + 1) − S(S + 1)} (4.38)

l A BRIEF ILLUSTRATION

When L = 1 and S = 1–2, as in a 2P term,

Eso = 1–2λ$2{J( J + 1) − 2 − 3–4} = 1–2λ$2{J( J + 1) − 11––4 }

Therefore, for a level with J = 3–2, Eso = 1–2λ$2, and for a level
with J = 1–2 from the same configuration, Eso = −λ$2. The sep-
aration of the two levels is therefore ΔEso = 3–2λ$2. l

l
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Fig. 4.26 Angular momentum gives rise to a magnetic moment
(m). For an electron, the magnetic moment is antiparallel to the
orbital angular momentum, but proportional to it. For spin
angular momentum, there is a factor 2, which increases the
magnetic moment to twice its expected value. The constant of
proportionality γe = −e/2me, is called the magnetogyric ratio.
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Fig. 4.27 Spin–orbit coupling is a magnetic interaction between
spin and orbital magnetic moments. When the angular
momenta are parallel, as in (a), the magnetic moments are
aligned unfavourably; when they are opposed, as in (b), the
interaction is favourable. This magnetic coupling is the cause of
the splitting of a configuration into levels.

L = 2, 1, 0 and S = 1, 0. The terms are therefore 3D and 1D, 3P
and 1P, and 3S and 1S. For 3D, L = 2 and S = 1; hence J = 3, 2, 1
and the levels are 3D3, 3D2, and 3D1. For 1D, L = 2 and S = 0, so
the single level is 1D2. The triplet of levels of 3P is 3P2, 3P1, and
3P0, and the singlet is 1P1. For the 3S term there is only one
level, 3S1 (because J = 1 only), and the singlet term is 1S0.

Self-test 4.10 Write down the terms arising from the con-
figurations (a) 2s12p1, (b) 2p13d1.

[(a) 3P2, 3P1, 3P0, 1P1;
(b) 3F4, 3F3, 3F2, 1F3, 3D3, 3D2, 3D1, 1D2, 3P2, 3P1, 3P0, 1P1]

The different levels of a term, such as 2P1/2 and 2P3/2, have
different energies due to spin–orbit interaction, a magnetic
interaction between angular momenta. To see the origin of this
coupling, we need to note that a circulating current gives rise to
a magnetic moment (Fig. 4.26). The spin of an electron is one
source of magnetic moment and its orbital angular momentum
is another. Two magnetic dipole moments close to each other
interact to an extent that depends on their relative orientation.
However, the relative orientation of the two momenta also 
determines the electron’s total angular momentum, so there is a
correlation between the energy of interaction and the value of J
(Fig. 4.27). Magnetic dipole moments that are antiparallel (that
is, lie in opposite directions) will be lower in energy than when
they are parallel; therefore, a lower energy is achieved when the
orbital and spin angular momenta are antiparallel, correspond-
ing to a lower value of J. In the case of the 2P term, we predict
that the 2P1/2 level is lower in energy than the 2P3/2 level. For a
system with many electrons, a detailed analysis yields the follow-
ing general statement:
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The strength of the spin–orbit coupling depends on the 
nuclear charge. To understand why this is so, imagine riding on
the orbiting electron and seeing a charged nucleus apparently
orbiting around us (like the Sun rising and setting). As a result,
we find ourselves at the centre of a ring of current. The greater
the nuclear charge, the greater this current, and therefore the
stronger the magnetic field we detect. Because the spin magnetic
moment of the electron interacts with this orbital magnetic
field, it follows that, the greater the nuclear charge, the stronger
the spin–orbit interaction. The coupling increases sharply with
atomic number (as Z 4 in hydrogenic atoms). Whereas it is only
small in H (giving rise to shifts of energy levels of no more than
about 0.4 cm−1), in heavy atoms like Pb it is very large (giving
shifts of the order of thousands of reciprocal centimetres).

Two spectral lines are observed when the p electron of an 
electronically excited alkali metal atom undergoes a transition
and falls into a lower s orbital. The higher frequency line is due
to a transition starting in a 2P3/2 level and the other line is due 
to a transition starting in the 2P1/2 level of the same configura-
tion. The presence of these two lines is an example of fine struc-
ture, the structure in a spectrum due to spin–orbit coupling.
Fine structure can be clearly seen in the emission spectrum 
from sodium vapour excited by an electric discharge (for ex-
ample, in one kind of street lighting). The yellow line at 589 nm
(close to 17 000 cm−1) is actually a doublet composed of one
line at 589.76 nm (16 956.2 cm−1) and another at 589.16 nm
(16 973.4 cm−1); the components of this doublet are the ‘D lines’
of the spectrum (Fig. 4.28). Therefore, in Na, the spin–orbit
coupling affects the energies by about 17 cm−1.

(d) Selection rules

Any state of the atom, and any spectral transition, can be
specified by using term symbols. For example, the transitions
giving rise to the yellow sodium doublet (which were shown in
Fig. 4.28) are

3p1 2P3/2 → 3s1 2S1/2 3p1 2P1/2 → 3s1 2S1/2

By convention, the upper term precedes the lower. The corres-
ponding absorptions are therefore denoted 2P3/2 ← 2S1/2 and
2P1/2 ← 2S1/2 (the configurations have been omitted).

We have seen that selection rules arise from the conservation
of angular momentum during a transition and from the fact that
a photon has a spin of 1. They can therefore be expressed in

terms of the term symbols, because the latter carry informa-
tion about angular momentum. A detailed analysis leads to the 
following rules:

ΔS = 0 ΔL = 0, ±1 Δl = ±1 
ΔJ = 0, ±1, but J = 0 ô J = 0 (4.39)

where the symbol ô denotes a forbidden transition. The rule
about ΔS (no change of overall spin) stems from the fact that the
light does not affect the spin directly. The rules about ΔL and Δl
express the fact that the orbital angular momentum of an indi-
vidual electron must change (so Δl = ±1), but whether or not this
results in an overall change of orbital momentum depends on
the coupling.

The selection rules given above apply when Russell–Saunders
coupling is valid (in light atoms). If we insist on labelling the
terms of heavy atoms with symbols like 3D, then we shall find
that the selection rules progressively fail as the atomic number
increases because the quantum numbers S and L become ill
defined as jj-coupling becomes more appropriate. As explained
above, Russell–Saunders term symbols are only a convenient
way of labelling the terms of heavy atoms: they do not bear any
direct relation to the actual angular momenta of the electrons in
a heavy atom. For this reason, transitions between singlet and
triplet states (for which ΔS = ±1), while forbidden in light atoms,
are allowed in heavy atoms.
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Fig. 4.28 The energy-level diagram for the formation of the
sodium D lines. The splitting of the spectral lines (by 17 cm−1)
reflects the splitting of the levels of the 2P term.
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Checklist of key ideas

1. A hydrogenic atom is a one-electron atom or ion of general
atomic number Z. A many-electron (polyelectronic) atom is
an atom or ion with more than one electron.

2. The Lyman, Balmer, and Paschen series in the spectrum of
atomic hydrogen arise, respectively, from the transitions 
n → 1, n → 2, and n → 3.

3. The wavenumbers of all the spectral lines of a hydrogen
atom can be expressed as # = RH(1/n1

2 − 1/n2
2), where RH is

the Rydberg constant for hydrogen.

4. The wavefunction of a hydrogenic atom is the product of a
radial wavefunction and an angular wavefunction (spherical
harmonic) and is labelled by the quantum numbers n, l, and
ml : ψn,l,ml

(r,θ,φ) = Rn,l(r)Yl,ml
(θ,φ).

5. An atomic orbital is a one-electron wavefunction for an
electron in an atom.

6. The energies of an electron in a hydrogenic atom are given
by En = −Z 2μe4/32π2ε0

2$2n2, where n is the principal
quantum number, n = 1, 2, . . . ; the total orbital angular
momentum is given by {l(l + 1)}1/2$, where l = 0, 1, 2, . . . , 
n − 1; the z-component of angular momentum is given by
ml $, where ml = 0, ±1, ±2, . . . , ±l.

7. All the orbitals of a given value of n belong to a given shell;
orbitals with the same value of n but different values of l
belong to different subshells.

8. The radial distribution function is a probability density that,
when it is multiplied by dr, gives the probability of finding
the electron anywhere in a shell of thickness dr at the radius
r; P(r) = r 2R(r)2.

9. The rate of change of population of the state ψf due to
transitions from state ψi is wf←i ∝ |μz,fi|2E 2, where 
μz,fi = ∫ψf*Nzψidτ is the transition dipole moment. The
expression for the rate of change arises from time-
dependent perturbation theory.

10. Doppler broadening and uncertainty broadening contribute
to the widths of spectroscopic lines.

11. A selection rule is a statement about which spectroscopic
transitions are allowed; a specific selection rule expresses the
allowed transitions in terms of the changes in quantum
numbers.

12. A Grotrian diagram is a diagram summarizing the energies
of the states of the atom and the transitions between them.

13. In the orbital approximation it is supposed that each electron
occupies its ‘own’ orbital, ψ(r1, r2, . . . ) = ψ(r1)ψ(r2) . . . .
The configuration is the list of occupied orbitals.

14. The Pauli exclusion principle states that no more than two
electrons may occupy any given orbital and, if two do
occupy one orbital, then their spins must be paired.

15. The Pauli principle states that, when the labels of any two
identical fermions are exchanged, the total wavefunction

changes sign; when the labels of any two identical bosons are
exchanged, the total wavefunction retains the same sign.

16. The effective nuclear charge Zeff is the net charge experienced
by an electron allowing for electron–electron repulsions.

17. Shielding is the effective reduction in charge of a nucleus by
surrounding electrons; the shielding constant σ is given by
Zeff = Z − σ.

18. Penetration is the ability of an electron to be found inside
inner shells and close to the nucleus.

19. The building-up (Aufbau) principle is the procedure for
filling atomic orbitals that leads to the ground-state
configuration of an atom.

20. Hund’s maximum multiplicity rule states that an atom in its
ground state adopts a configuration with the greatest
number of electrons with unpaired spins.

21. The first ionization energy I1 is the minimum energy
necessary to remove an electron from a many-electron atom
in the gas phase; the second ionization energy I2 is the
minimum energy necessary to remove an electron from an
ionized many-electron atom in the gas phase.

22. The electron affinity Eea is the energy released when an
electron attaches to a gas-phase atom.

23. The allowed values of the total orbital angular momentum L
of a configuration are obtained by using the Clebsch–Gordan
series L = l1 + l2, l1 + l2 −1, . . . , | l1 − l2 |.

24. The allowed values of the total spin angular momentum S
are obtained by using the Clebsch–Gordan series S = s1 + s2,
s1 + s2 − 1, . . . , |s1 − s2|.

25. Spin–orbit coupling is the interaction of the spin magnetic
moment with the magnetic field arising from the orbital
angular momentum.

26. Russell–Saunders coupling is a coupling scheme based on
the view that, if spin–orbit coupling is weak, then it is
effective only when all the orbital momenta are operating
cooperatively.

27. The total angular momentum J, in the Russell–Saunders
coupling scheme, has possible values J = L + S,  L + S − 1, . . . ,
|L − S|.

28. A level is a group of states with a common value of J.

29. The multiplicity of a term is the value of 2S + 1; provided 
L ≥ S, the multiplicity is the number of levels of the term.

30. A term symbol is a symbolic specification of the state of an
atom, 2S+1{L}J.

31. Fine structure is the structure in a spectrum due to
spin–orbit coupling.

32. The selection rules for spectroscopic transitions in
polyelectronic atoms are: ΔS = 0, ΔL = 0, ±1, Δl = ±1, ΔJ = 0,
±1, but J = 0 É J = 0. These selection rules apply when
Russell–Saunders coupling is valid.
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Further information

Further information 4.1 The separation of internal and 
external motion

Consider a one-dimensional system in which the potential energy
depends only on the separation of the two particles. The total energy is

where p1 = m1R1, p2 = m2 R2, and the dot signifies differentiation with
respect to time, as in R = dx/dt. The centre of mass (Fig. 4.29) is located at

and the separation of the particles is x = x1 − x2. It follows that

The linear momenta of the particles can be expressed in terms of the
rates of change of x and X:

Then it follows that

where μ is given by 1/μ = 1/m1 + 1/m2. By writing P = m| for the linear
momentum of the system as a whole and defining p as μR, we find

The corresponding hamiltonian (generalized to three dimensions) is
therefore

where the first term differentiates with respect to the centre of mass
coordinates and the second with respect to the relative coordinates.

Now we write the overall wavefunction as the product ψtotal = ψc.m.ψ,
where the first factor is a function of only the centre of mass coordinates
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and the second is a function of only the relative coordinates. The overall
Schrödinger equation, @ψtotal = Etotalψtotal, then separates by the
argument that we have used in Sections 3.1 and 3.4, with Etotal = Ec.m. + E.

Further information 4.2 Time-dependent perturbation theory

To cope with a perturbed wavefunction that evolves with time, we need
to solve the time-dependent Schrödinger equation,

(4.40)

If we write the first-order correction to the wavefunction as

(4.41a)

then the coefficients in this expansion are given by

(4.41b)

The formal demonstration of eqn 4.41 is quite lengthy.3 Here we shall
show that, given eqn 4.41b, then a perturbation that is switched on very
slowly to a constant value gives the same expression for the coefficients
as we obtained for time-independent perturbation theory. For such a
perturbation, we write

@(1)(t) = @(1)(1 − e−t/τ)

and take the time constant τ to be very long (Fig. 4.30). Substitution of
this expression into eqn 4.41b gives
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Fig. 4.29 The coordinates used for discussing the separation of the
relative motion of two particles from the motion of the centre of
mass.
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Fig. 4.30 The time-dependence of a slowly switched perturbation.
A large value of τ corresponds to very slow switching.

3 For details, see our Molecular quantum mechanics, Oxford University Press
(2005).
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At this point we suppose that the perturbation is switched slowly, in the
sense that τ >> 1/ωn0 (so that the 1/τ in the second denominator can be
ignored). We also suppose that we are interested in the coefficients long
after the perturbation has settled down into its final value, when t >> τ
(so that the exponential in the second numerator is close to zero and
can be ignored). Under these conditions,

Now we recognize that $ωn0 = E(0)
n − E(0)

0 , which gives

When this expression is substituted into eqn 4.41a, we obtain the time-
independent expression, eqn 2.37 (apart from an irrelevant overall
phase factor).
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In accord with the general rules for the interpretation of
wavefunctions, the probability that the system will be found in the state 
n is proportional to the square modulus of the coefficient of the state,
|cn(t)|2. Therefore, the rate of change of population of a final state ψf due
to transitions from an initial state ψi is

Because the coefficient is proportional to the matrix elements of the
perturbation, wf←i is proportional to the square modulus of the matrix
element of the perturbation between the two states:

wf ← i ∝ |H fi
(1)|2

which is eqn 4.22.

w
c
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fd

d← =
| |2

Discussion questions

4.1 Discuss the origin of the series of lines in the emission spectra of
hydrogen. What region of the electromagnetic spectrum is associated
with each of the series shown in Fig. 4.1?

4.2 Discuss the separation of variables procedure as it is applied to
simplify the description of a hydrogenic atom free to move through
space.

4.3 List and discuss the significance of the quantum numbers needed to
specify the internal state of a hydrogenic atom.

4.4 Describe how the presence of orbital angular momentum affects the
shape of the atomic orbital.

4.5 Specify and account for the selection rules for transitions in
hydrogenic atoms. Are they strictly valid?

4.6 Discuss the significance of (a) a boundary surface and (b) the radial
distribution function for hydrogenic orbitals.

4.7 Discuss the relationship between the location of a many-electron
atom in the periodic table and its electron configuration.

4.8 Describe and account for the variation of first ionization energies
along Period 2 of the periodic table. Would you expect the same
variation in Period 3?

4.9 Describe the orbital approximation for the wavefunction of a many-
electron atom. What are the limitations of the approximation?

4.10 Describe why the Slater determinant provides a useful
representation of electron configurations of many-electron atoms. Why
is it an approximation to the true wavefunction?

4.11 Explain the origin of spin–orbit coupling and how it affects the
appearance of a spectrum.

4.12 Describe the physical origins of linewidths in absorption and
emission spectra. Do you expect the same contributions for species in
condensed and gas phases?

Exercises

4.1(a) Determine the shortest and longest wavelength lines in the Lyman
series.

4.1(b) The Pfund series has n1 = 5. Determine the shortest and longest
wavelength lines in the Pfund series.

4.2(a) Compute the wavelength, frequency, and wavenumber of the 
n = 2 → n = 1 transition in He+.

4.2(b) Compute the wavelength, frequency, and wavenumber of the 
n = 5 → n = 4 transition in Li2+.

4.3(a) What is the orbital angular momentum of an electron in the
orbitals (a) 2s, (b) 3p, (c) 5f? Give the numbers of angular and radial
nodes in each case.

4.3(b) What is the orbital angular momentum of an electron in the
orbitals (a) 3d, (b) 4f, (c) 3s? Give the numbers of angular and radial
nodes in each case.

4.4(a) Compute the ionization energy of the He+ ion.

4.4(b) Compute the ionization energy of the Li2+ ion.

4.5(a) When ultraviolet radiation of wavelength 58.4 nm from a helium
lamp is directed on to a sample of krypton, electrons are ejected with a
speed of 1.59 × 106 m s−1. Calculate the ionization energy of krypton.

4.5(b) When ultraviolet radiation of wavelength 58.4 nm from a helium
lamp is directed on to a sample of xenon, electrons are ejected with a
speed of 1.79 × 106 m s−1. Calculate the ionization energy of xenon.

4.6(a) What is the degeneracy of an energy level in the L shell of a
hydrogenic atom?

4.6(b) What is the degeneracy of an energy level in the M shell of a
hydrogenic atom?

4.7(a) State the orbital degeneracy of the levels in a hydrogen atom that
have energy (a) −hcRH, (b) − 1–4hcRH, (c) − 1––16hcRH.
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4.7(b) State the orbital degeneracy of the levels in a hydrogenic atom 
(Z in parentheses) that have energy (a) −hcRatom, (2), (b) − 1–4hcRatom (4),
and (c) − 25––16 hcRatom (5).

4.8(a) The wavefunction for the ground state of a hydrogen atom is 
Ne−r/a0. Determine the normalization constant N.

4.8(b) The wavefunction for the 2s orbital of a hydrogen atom is 
N(2 − r/a0)e−r/2a0. Determine the normalization constant N.

4.9(a) By differentiation of the 2s radial wavefunction, show that it has
two extrema in its amplitude and locate them.

4.9(b) By differentiation of the 3s radial wavefunction, show that it has
three extrema in its amplitude and locate them.

4.10(a) Locate the radial node in the 2s orbital of an H atom.

4.10(b) Locate the radial node in the 3p orbital of an H atom.

4.11(a) Calculate the average kinetic and potential energies of an electron
in the ground state of an He+ ion.

4.11(b) Calculate the average kinetic and potential energies of a 3s
electron in an H atom.

4.12(a) Compute the mean radius and the most probable radius for a 2s
electron in a hydrogenic atom of atomic number Z.

4.12(b) Compute the mean radius and the most probable radius for a 2p
electron in a hydrogenic atom of atomic number Z.

4.13(a) Write down the expression for the radial distribution function of
a 3s electron in a hydrogenic atom and determine the radius at which the
electron is most likely to be found.

4.13(b) Write down the expression for the radial distribution function of
a 3p electron in a hydrogenic atom and determine the radius at which
the electron is most likely to be found.

4.14(a) Locate the angular nodes and nodal planes of each of the 2p
orbitals of a hydrogenic atom of atomic number Z. To locate the angular
nodes, give the angle that the nodal plane makes with the z-axis.

4.14(b) Locate the angular nodes and nodal planes of each of the 3d
orbitals of a hydrogenic atom of atomic number Z. To locate the angular
nodes, give the angle that the nodal plane makes with the z-axis.

4.15(a) Which of the following transitions are allowed in the normal
electronic emission spectrum of an atom: (a) 3s → 1s, (b) 3p → 2s, 
(c) 5d → 2p?

4.15(b) Which of the following transitions are allowed in the normal
electronic emission spectrum of an atom: (a) 5d → 3s, (b) 5s → 3p, 
(c) 6f → 4p?

4.16(a) What is the Doppler-shifted wavelength of a red (680 nm) traffic
light approached at 60 km h−1?

4.16(b) At what speed of approach would a red (680 nm) traffic light
appear green (530 nm)?

4.17(a) Estimate the lifetime of a state that gives rise to a line of width 
(a) 0.20 cm−1, (b) 2.0 cm−1.

4.17(b) Estimate the lifetime of a state that gives rise to a line of width 
(a) 200 MHz, (b) 2.45 cm−1.

4.18(a) A molecule in a liquid undergoes about 1.0 × 1013 collisions 
in each second. Suppose that (a) every collision is effective in
deactivating the molecule vibrationally and (b) that one collision in 
100 is effective. Calculate the width (in cm−1) of vibrational transitions in
the molecule.

4.18(b) A molecule in a gas undergoes about 1.0 × 109 collisions in each
second. Suppose that (a) every collision is effective in deactivating the
molecule rotationally and (b) that one collision in 10 is effective.
Calculate the width (in hertz) of rotational transitions in the molecule.

4.19(a) Write a Slater determinant for the ground state of a magnesium
atom.

4.19(b) Write a Slater determinant for the ground state of a fluorine
atom.

4.20(a) What are the values of the quantum numbers n, l, ml, s, and ms
for each of the valence electrons in the ground state of a carbon atom?

4.20(b) What are the values of the quantum numbers n, l, ml, s, and ms
for each of the valence electrons in the ground state of a nitrogen atom?

4.21(a) Write the ground-state electron configurations of the d-metals
from scandium to zinc.

4.21(b) Write the ground-state electron configurations of the d-metals
from yttrium to cadmium.

4.22(a) (a) Write the electron configuration of the Pd2+ ion. (b) What are
the possible values of the total spin quantum numbers S and MS for this
ion?

4.22(b) (a) Write the electron configuration of the Nb2+ ion. (b) What
are the possible values of the total spin quantum numbers S and MS for
this ion?

4.23(a) Calculate the permitted values of j for (a) a d electron, (b) an f
electron.

4.23(b) Calculate the permitted values of j for (a) a p electron, (b) an h
electron.

4.24(a) An electron in two different states of an atom is known to have 
j = 5–2 and 1–2. What are the possible orbital angular momentum quantum
numbers in each case?

4.24(b) An electron in two different states of an atom is known to have 
j = 7–2 and 3–2 . What are the possible orbital angular momentum quantum
numbers in each case?

4.25(a) What are the allowed total angular momentum quantum
numbers of a composite system in which j1 = 1 and j2 = 2?

4.25(b) What are the allowed total angular momentum quantum
numbers of a composite system in which j1 = 4 and j2 = 2?

4.26(a) What information does the term symbol 3P2 provide about the
angular momentum of an atom?

4.26(b) What information does the term symbol 2D3/2 provide about the
angular momentum of an atom?

4.27(a) Suppose that an atom has (a) 2, (b) 3 electrons in different
orbitals. What are the possible values of the total spin quantum number
S? What is the multiplicity in each case?

4.27(b) Suppose that an atom has (a) 4, (b) 5, electrons in different
orbitals. What are the possible values of the total spin quantum number
S? What is the multiplicity in each case?

4.28(a) What atomic terms are possible for the electron configuration
ns1nd1? Which term is likely to lie lowest in energy?

4.28(b) What atomic terms are possible for the electron configuration
np1nd1? Which term is likely to lie lowest in energy?

4.29(a) What values of J may occur in the terms (a) 3S, (b) 2D, (c) 1P?
How many states (distinguished by the quantum number MJ) belong to
each level?
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4.29(b) What values of J may occur in the terms (a) 3F, (b) 4G, (c) 2P?
How many states (distinguished by the quantum number MJ) belong to
each level?

4.30(a) Give the possible term symbols for (a) Na [Ne]3s1, (b) K [Ar]3d1.

4.30(b) Give the possible term symbols for (a) Y [Kr]4d15s2, 
(b) I [Kr]4d105s25p5.

4.31(a) Which of the following transitions between terms are allowed 
in the normal electronic emission spectrum of a many-electron atom: (a)
3D2 → 3P1, (b) 3P2 → 1S0, (c) 3F4 → 3D3?

4.31(b) Which of the following transitions between terms are allowed 
in the normal electronic emission spectrum of a many-electron atom: (a)
2P3/2 → 2S1/2, (b) 3P0 → 3S1, (c) 3D3 → 1P1?

Problems*

Numerical problems

4.1 The Humphreys series is a group of lines in the spectrum of atomic
hydrogen. It begins at 12 368 nm and has been traced to 3281.4 nm.
What are the transitions involved? What are the wavelengths of the
intermediate transitions?

4.2 A series of lines in the spectrum of atomic hydrogen lies at 656.46 nm,
486.27 nm, 434.17 nm, and 410.29 nm. What is the wavelength of the
next line in the series? What is the ionization energy of the atom when it
is in the lower state of the transitions?

4.3 The Li2+ ion is hydrogenic and has a Lyman series at 740 747 cm−1,
877 924 cm−1, 925 933 cm−1, and beyond. Show that the energy levels are
of the form −hcR/n2 and find the value of R for this ion. Go on to predict
the wavenumbers of the two longest-wavelength transitions of the
Balmer series of the ion and find the ionization energy of the ion.

4.4 A series of lines in the spectrum of neutral Li atoms rise from
combinations of 1s22p1 2P with 1s2nd1 2D and occur at 610.36 nm,
460.29 nm, and 413.23 nm. The d orbitals are hydrogenic. It is known
that the 2P term lies at 670.78 nm above the ground state, which is 
1s22s1 2S. Calculate the ionization energy of the ground-state atom.

4.5‡ Wijesundera et al. (Phys. Rev. A 51, 278 (1995)) attempted to
determine the electron configuration of the ground state of lawrencium,
element 103. The two contending configurations are [Rn]5f147s27p1 and
[Rn]5f146d17s2. Write down the term symbols for each of these
configurations, and identify the lowest level within each configuration.
Which level would be lowest according to a simple estimate of spin–orbit
coupling?

4.6 The characteristic emission from K atoms when heated is purple and
lies at 770 nm. On close inspection, the line is found to have two closely
spaced components, one at 766.70 nm and the other at 770.11 nm.
Account for this observation, and deduce what information you can.

4.7 Calculate the mass of the deuteron given that the first line in the
Lyman series of H lies at 82 259.098 cm−1 whereas that of D lies at 
82 281.476 cm−1. Calculate the ratio of the ionization energies of H and D.

4.8 Positronium consists of an electron and a positron (same mass,
opposite charge) orbiting round their common centre of mass. The
broad features of the spectrum are therefore expected to be hydrogen-
like, the differences arising largely from the mass differences. Predict the
wavenumbers of the first three lines of the Balmer series of positronium.
What is the binding energy of the ground state of positronium?

4.9 The Zeeman effect is the modification of an atomic spectrum by the
application of a strong magnetic field. It arises from the interaction
between applied magnetic fields and the magnetic moments due to

orbital and spin angular momenta (recall the evidence provided for
electron spin by the Stern–Gerlach experiment, Section 3.4). To gain
some appreciation for the so-called normal Zeeman effect, which is
observed in transitions involving singlet states, consider a p electron,
with l = 1 and ml = 0, ±1. In the absence of a magnetic field, these three
states are degenerate. When a field of magnitude B is present, the
degeneracy is removed and it is observed that the state with ml = +1
moves up in energy by μBB, the state with ml = 0 is unchanged, and the
state with ml = −1 moves down in energy by μBB, where μB = e$/2me 
= 9.274 × 10−24 J T−1 is known as the Bohr magneton. Therefore, a
transition between a 1S0 term and a 1P1 term consists of three spectral
lines in the presence of a magnetic field where, in the absence of the
magnetic field, there is only one. (a) Calculate the splitting in reciprocal
centimetres between the three spectral lines of a transition between a 
1S0 term and a 1P1 term in the presence of a magnetic field of 2 T (where
1 T = 1 kg s−2 A−1). (b) Compare the value you calculated in (a) with
typical optical transition wavenumbers, such as those for the Balmer
series of the H atom. Is the line splitting caused by the normal Zeeman
effect relatively small or relatively large?

4.10 In 1976 it was mistakenly believed that the first of the ‘superheavy’
elements had been discovered in a sample of mica. Its atomic number
was believed to be 126. What is the most probable distance of the
innermost electrons from the nucleus of an atom of this element? (In such
elements, relativistic effects are very important, but ignore them here.)

4.11 An electron in the ground-state He+ ion undergoes a transition to a
state described by the wavefunction R4,1(r)Y1,+1(θ,φ). (a) Describe the
transition using term symbols. (b) Compute the wavelength, frequency,
and wavenumber of the transition. (c) By how much does the mean
radius of the electron change due to the transition?

4.12 The electron in a Li2+ ion is prepared in a state that is the following
superposition of hydrogenic atomic orbitals:

ψ(r,θ,φ) = −(1–3)1/2R4,2(r)Y2,−1(θ,φ) + 2–3 iR3,2(r)Y2,+1(θ,φ) 

− (2–9)1/2R1,0(r)Y0,0(θ,φ)

(a) If the total energy of different Li2+ ions in this state is measured, 
what values will be found? If more than one value is found, what is the
probability of obtaining each result and what is the average value? 
(b) After the energy is measured, the electron is in a state described by an
eigenfunction of the hamiltonian. Are transitions to the ground state of
Li2+ allowed and, if so, what are the frequency and wavenumber of the
transition(s)?

4.13 (a) Calculate the probability of the electron being found anywhere
within a sphere of radius 53 pm for a hydrogenic atom. (b) If the radius
of the atom is defined as the radius of the sphere inside which there is a
90 per cent probability of finding the electron, what is the atom’s radius?

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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4.14 The collision frequency z of a molecule of mass m in a gas at a
pressure p is z = 4σ(kT/πm)1/2p/kT, where σ is the collision cross-section.
Find an expression for the collision-limited lifetime of an excited state
assuming that every collision is effective. Estimate the width of a
rotational transition in HCl (σ = 0.30 nm2) at 25°C and 1.0 atm. To 
what value must the pressure of the gas be reduced in order to ensure
that collision broadening is less important than Doppler broadening?

Theoretical problems

4.15 At what point in the hydrogen atom is there maximum probability
of finding a (a) 2pz electron, (b) 3pz electron? How do these most
probable points compare to the most probable radii for the locations of
2pz and 3pz electrons?

4.16 Show by explicit integration that hydrogenic (a) 1s and 2s orbitals
are mutually orthogonal, (b) 2px and 2pz orbitals are mutually orthogonal.

4.17‡ Explicit expressions for hydrogenic orbitals are given in Tables 4.1
and 3.2. (a) Verify that the 3px orbital is normalized and that 3px and
3dxy are mutually orthogonal. (b) Determine the positions of both the
radial nodes and nodal planes of the 3s, 3px, and 3dxy orbitals. (c)
Determine the mean radius of the 3s orbital. (d) Draw a graph of the
radial distribution function for the three orbitals (of part (b)) and
discuss the significance of the graphs for interpreting the properties of
many-electron atoms. (e) Create both xy-plane polar plots and boundary
surface plots for these orbitals. Construct the boundary plots so that the
distance from the origin to the surface is the absolute value of the
angular part of the wavefunction. Compare the s, p, and d boundary
surface plots with that of an f orbital; for example, ψf ∝ x(5z 2 − r 2) ∝
sin θ (5 cos2θ − 1)cos φ.

4.18 Show that d orbitals with opposite values of ml may be combined 
in pairs to give real standing waves with boundary surfaces as shown in
Fig. 4.15 and with forms that are given in eqn 4.19.

4.19 The ‘size’ of an atom is sometimes considered to be measured by
the radius of a sphere that contains 90 per cent of the probability density
of the electrons in the outermost occupied orbital. Calculate the ‘size’ of
a hydrogen atom in its ground state according to this definition. Go on
to explore how the ‘size’ varies as the definition is changed to other
percentages, and plot your conclusion.

4.20 A quantity important in some branches of spectroscopy is the
probability density of an electron being found at the same location as
the nucleus. Evaluate this probability density for an electron in the 1s-,
2s-, and 3s-orbitals of a hydrogenic atom. What happens to the
probability density when an orbital other than s is considered?

4.21 Some atomic properties depend on the average value of 1/r rather
than the average value of r itself. Evaluate the expectation value of 1/r for
(a) a hydrogen 1s orbital, (b) a hydrogenic 2s orbital, (c) a hydrogenic 
2p orbital.

4.22 Atomic units of length and energy may be based on the properties
of a particular atom. The usual choice is that of a hydrogen atom, with
the unit of length being the Bohr radius, a0, and the unit of energy 
being the (negative of the) energy of the 1s orbital. If the positronium
atom (e+,e−) were used instead, with analogous definitions of units of
length and energy, what would be the relation between these two sets of
atomic units?

4.23 Some of the selection rules for hydrogenic atoms were derived in
Justification 4.4. Complete the derivation by considering the x- and
y-components of the electric dipole moment operator.

4.24‡ Stern–Gerlach splittings of atomic beams are small and require
either large magnetic field gradients or long magnets for their

observation. For a beam of atoms with zero orbital angular momentum,
such as H or Ag, the deflection is given by x = ±(μBL2/4Ek)dB/dz, where
μB is the Bohr magneton (Problem 4.9), L is the length of the magnet, Ek
is the average kinetic energy of the atoms in the beam, and dB/dz is the
magnetic field gradient across the beam. (a) Given that the average
translational kinetic energy of the atoms emerging as a beam from a
pinhole in an oven at temperature T is 1–2 kT, calculate the magnetic field
gradient required to produce a splitting of 2.00 mm in a beam of 
Ag atoms from an oven at 1200 K with a magnet of length 80 cm.

4.25 The wavefunction of a many-electron closed-shell atom can be
expressed as a Slater determinant (Section 4.4). A useful property of
determinants is that interchanging any two rows or columns changes
their sign and therefore that, if any two rows or columns are identical,
then the determinant vanishes. Use this property to show that (a) the
wavefunction is antisymmetric under particle exchange, (b) no two
electrons can occupy the same orbital with the same spin.

Applications: to astrophysics and biochemistry

4.26 Hydrogen is the most abundant element in all stars. However,
neither absorption nor emission lines due to neutral hydrogen are found
in the spectra of stars with effective temperatures higher than 25 000 K.
Account for this observation.

4.27 The distribution of isotopes of an element may yield clues about 
the nuclear reactions that occur in the interior of a star. Show that it is
possible to use spectroscopy to confirm the presence of both 4He+ and
3He+ in a star by calculating the wavenumbers of the n = 3 → n = 2 and 
of the n = 2 → n = 1 transitions for each isotope.

4.28‡ Highly excited atoms have electrons with large principal quantum
numbers. Such Rydberg atoms have unique properties and are of interest
to astrophysicists. Derive a relation for the separation of energy levels
for hydrogen atoms with large n. Calculate this separation for n = 100;
also calculate the average radius, the geometric cross-section, and the
ionization energy. Could a thermal collision with another hydrogen
atom ionize this Rydberg atom? What minimum velocity of the second
atom is required? Could a normal sized neutral H atom simply pass
through the Rydberg atom leaving it undisturbed? What might the radial
wavefunction for a 100s orbital be like?

4.29 The spectrum of a star is used to measure its radial velocity with
respect to the Sun, the component of the star’s velocity vector that is
parallel to a vector connecting the star’s centre to the centre of the Sun.
The measurement relies on the Doppler effect. When a star emitting
electromagnetic radiation of frequency ν moves with a speed s relative to
an observer, the observer detects radiation of frequency νreceding = ν f or
νapproaching = ν/f, where f = {(1 − s/c)/(1 + s/c)}1/2 and c is the speed of
light. (a) Three Fe I lines of the star HDE 271 182, which belongs to 
the Large Magellanic Cloud, occur at 438.882 nm, 441.000 nm, and
442.020 nm. The same lines occur at 438.392 nm, 440.510 nm, and
441.510 nm in the spectrum of an Earth-bound iron arc. Determine
whether HDE 271 182 is receding from or approaching the Earth and
estimate the star’s radial speed with respect to the Earth. (b) What
additional information would you need to calculate the radial velocity 
of HDE 271 182 with respect to the Sun?

4.30 In Problem 4.29, we saw that Doppler shifts of atomic spectral lines
are used to estimate the speed of recession or approach of a star. From
the discussion in Section 4.3, it can be inferred that Doppler broadening
of an atomic spectral line depends on the temperature of the star that
emits the radiation. A spectral line of 48Ti8+ (of mass 47.95mu) in a
distant star was found to be shifted from 654.2 nm to 706.5 nm and to 
be broadened to 61.8 pm. What is the speed of recession and the surface
temperature of the star?
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4.31 The d-metals iron, copper, and manganese form cations with
different oxidation states. For this reason, they are found in many
oxidoreductases and in several proteins of oxidative phosphorylation
and photosynthesis (Impacts I17.3 and I19.1). Explain why many d-
metals form cations with different oxidation states.

4.32 Thallium, a neurotoxin, is the heaviest member of Group 13 of 
the periodic table and is found most usually in the +1 oxidation state.

Aluminium, which causes anaemia and dementia, is also a member of the
group but its chemical properties are dominated by the +3 oxidation state.
Examine this issue by plotting the first, second, and third ionization
energies for the Group 13 elements against atomic number. Explain
the trends you observe. Hints. The third ionization energy, I3, is the
minimum energy needed to remove an electron from the doubly charged
cation: E2+(g) → E3+(g) + e−(g), I3 = E(E3+) − E(E2+). For data, see the
links to databases of atomic properties provided in the text’s web site.
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MATHEMATICAL BACKGROUND 4

Vectors

A scalar physical property (such as temperature) in general
varies through space and is represented by a single value at each
point of space. A vector physical property (such as the electric
field strength) also varies through space, but in general has a
different direction as well as a different magnitude at each point.

MB4.1 Definitions

A vector 1 has the general form (in three dimensions):

1 = vxi + vy j + vz k (MB4.1)

where i, j, and k are unit vectors, vectors of magnitude 1, point-
ing along the positive directions on the x-, y-, and z-axes and
vx, vy, and vz are the components of the vector on each axis 
(Fig. MB4.1). The magnitude of the vector is denoted v or |1|
and is given by

v = (vx
2 + vy

2 + vz
2)1/2 (MB4.2)

The vector makes an angle θ with the z-axis and an angle φ to the
x-axis in the xy-plane. It follows that

vx = v sin θ cos φ vy = v sin θ sin φ vz = v cos θ (MB4.3a)

and therefore that

θ = arccos(vz /v) φ = arctan(vy /vx) (MB4.3b)

l A BRIEF ILLUSTRATION

The vector 1 = 2i + 3j − k has magnitude

v = {22 + 32 + (−1)2}1/2 = 141/2 = 3.74

Its direction is given by

θ = arccos(−1/141/2) = 105.5° φ = arctan(3/2) = 56.3° l

MB4.2 Operations

Consider the two vectors

u = uxi + uy j + uz k 1 = vxi + vy j + vzk

The operations of addition, subtraction, and multiplication are
as follows:

1. Addition:

1 + u = (vx + ux)i + (vy + uy)j + (vz + uz)k (MB4.4a)

2. Subtraction:

1 − u = (vx − ux)i + (vy − uy)j + (vz − uz)k (MB4.4b)

l A BRIEF ILLUSTRATION

Consider the vectors u = i − 4j + k (of magnitude 4.24) and
1 = −4i + 2j + 3k (of magnitude 5.39) Their sum is

u + 1 = (1 − 4)i + (−4 + 2)j + (1 + 3)k = −3i −2j + 4k

The magnitude of the resultant vector is 291/2 = 5.39. The
difference of the two vectors is

u − 1 = (1 + 4)i + (−4 − 2)j + (1 − 3)k = 5i − 6j − 2k

The magnitude of this resultant is 8.06. Note that in this case
the difference is longer than either individual vector. l

3. Multiplication:

(a) The scalar product, or dot product, of the two vectors u
and 1 is

u ·1 = uxvx + uyvy + uzvz (MB4.4c)

and is itself a scalar quantity. We can always choose a new co-
ordinate system—we shall write it X, Y, Z—in which the Z-axis
lies parallel to u, so u = uK, where K is the unit vector parallel 
to u. It then follows from eqn MB4.4c that u ·1 = uvZ. Then, with
vZ = v cos θ, where θ is the angle between u and 1, we find

u ·1 = uv cos θ (MB4.4d)

(b) The vector product, or cross product, of two vectors is

= (uyvz − uzvy)i − (uxvz − uzvx)j + (uxvy − uyvx)k
(MB4.4e)

(Determinants are discussed in Mathematical background 5.)
Once again, choosing the coordinate system so that u = uK, leads
to the simple expression:

u × 1 = (uv sin θ)l (MB4.4f)

where θ is the angle between the two vectors and l is a unit vector
perpendicular to both u and 1, with a direction determined by
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Fig. MB4.1 The vector 1 has components vx, vy, and vz on the x-, y-, and
z-axes, respectively. It has a magnitude v and makes an angle θ with
the z-axis and an angle φ to the x-axis in the xy-plane.
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the ‘right-hand rule’ as in Fig. MB4.2. A special case is when each
vector is a unit vector, for then

i × j = k j × k = i k × i = j (MB4.5)

It is important to note that the order of vector multiplication is
important and that u × 1 = −1 × u.

l A BRIEF ILLUSTRATION

The scalar and vector products of the two vectors in the 
previous illustration, u = i − 4j + k (of magnitude 4.24) and
1 = −4i + 2j + 3k (of magnitude 5.39) are

u ·1 = {1 × (−4)} + {(−4) × 2} + {1 × 3} = −9

= {(−4)(3) − (1)(2)}i − {(1)(3) − (1)(−4)}j
+ {(1)(2) − (−4)(−4)}k

= −14i − 7j − 14k

The vector product is a vector of magnitude 21.00 pointing 
in a direction perpendicular to the plane defined by the two
individual vectors. l

Self-test MB4.1 Determine the scalar and vector products of
1 = −i + 4j + k and u = 2i + 3j − k.

[u ·1 = 9, u × 1 = 7i − j + 11k]

MB4.3 The graphical representation of vector
operations
Consider two vectors 1 and u making an angle θ (Fig. MB4.3).
The first step in the addition of u to 1 consists of joining the tip

u
i j k

× = −
−

1 1 4 1
4 2 3

(the ‘head’) of u to the starting point (the ‘tail’) of 1. In the sec-
ond step, we draw a vector 1res, the resultant vector, originating
from the tail of u to the head of 1. Reversing the order of addi-
tion leads to the same result; that is, we obtain the same 1res

whether we add u to 1 or 1 to u. To calculate the magnitude of
1res, we note that

v2
res = (u + 1) ·(u + 1) = u ·u + 1 ·1 + 2u ·1

= u2 + v2 + 2uv cos θ′

where θ′ is the angle between u and 1. In terms of the angle 
θ = π − θ′ shown in the figure, and cos(π − θ) = − cos θ, we 
obtain the law of cosines:

v2
res = u2 + v2 − 2uv cos θ (MB4.6)

for the relation between the lengths of the sides of a triangle.
Subtraction of u from 1 amounts to addition of –u to 1. It fol-

lows that in the first step of subtraction we draw –u by reversing
the direction of u (Fig. MB4.4). Then, the second step consists of
adding –u to 1 by using the strategy shown in the figure; we draw
a resultant vector 1res by joining the tail of –u to the head of 1.

Fig. MB4.2 A depiction of the ‘right-hand rule’. When the fingers of the
right hand rotate u into 1, the thumb points in the direction of u × 1.

(a) (b) (c)

u

v
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v v

u u

u
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– I

Fig. MB4.3 (a) The vectors 1 and u make an angle θ. (b) To add u to 1,
we first join the head of u to the tail of 1, making sure that the angle θ
between the vectors remains unchanged. (c) To finish the process, we
draw the resultant vector by joining the tail of u to the head of 1.

(a) (b)

v

I –u

v

–u

v
u

–

Fig. MB4.4 The graphical method for subtraction of the vector u
from the vector 1 (as shown in Fig. MB4.3a) consists of two steps: 
(a) reversing the direction of u to form –u, and (b) adding –u to 1.
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Vector multiplication is represented graphically by drawing a
vector (using the right-hand rule) perpendicular to the plane
defined by the vectors u and 1, as shown in Fig. MB4.5. Its length
is equal to uv sin θ, where θ is the angle between u and 1.

MB4.4 Vector differentiation

The derivative d1/dt, where the components vx, vy, and vz are
themselves functions of t, is

(MB4.7)
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The derivatives of scalar and vector products are obtained using
the rules of differentiating a product:

(MB4.8a)

(MB4.8b)

In the latter, note the importance of preserving the order of vectors.
The gradient of a function f(x,y,z), denoted grad f or ∇f, is

(MB4.9)

where partial derivatives were mentioned in Mathematical back-
ground 1 and will be treated at length in Mathematical back-
ground 8. Note that the gradient of a scalar function is a vector.
We can treat ∇ as a vector operator (in the sense that it operates
on a function and results in a vector), and write

(MB4.10)

The scalar product of ∇ and ∇f, using eqns MB4.9 and MB4.10, is

(MB4.11)

Equation MB4.11 defines the laplacian (∇2 = ∇ ·∇) of a function.
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Fig. MB4.5 The direction of the cross products of two vectors u and 1
with an angle θ between them: (a) u × 1 and (b) 1 × u. Note that the
cross product, and the unit vector l of eqn MB4.4f, are perpendicular
to both u and 1 but the direction depends on the order in which the
product is taken. The magnitude of the cross product, in either case, 
is uv sin θ.



The chemical bond

The concepts developed in Chapter 4, particularly that of orbitals, can be extended to a 
description of the electronic structures of molecules. There are two principal quantum 
mechanical theories of molecular electronic structure. In valence-bond theory the starting
point is the concept of the shared electron pair. We see how to write the wavefunction for
such a pair, and how it may be extended to account for the structures of a wide variety 
of molecules. The theory introduces the concepts of s and p bonds, promotion, and 
hybridization that are used widely in chemistry. In molecular orbital theory (with which 
the bulk of the chapter is concerned), the concept of atomic orbital is extended to that of
molecular orbital, which is a wavefunction that spreads over all the atoms in a molecule.

In this chapter we consider the origin of the strengths, numbers, and three-dimensional
arrangement of chemical bonds between atoms. The quantum mechanical descrip-
tion of chemical bonding has become highly developed through the use of computers,
and it is now possible to consider the structures of molecules of almost any complex-
ity. We shall concentrate on the quantum mechanical description of the covalent
bond, which was identified by G.N. Lewis (in 1916, before quantum mechanics was
fully established) as an electron pair shared between two neighbouring atoms. We
shall see, however, that the other principal type of bond, an ionic bond, in which the
cohesion arises from the Coulombic attraction between ions of opposite charge, is
also captured as a limiting case of a covalent bond between dissimilar atoms. In fact,
although the Schrödinger equation might at first seem to obscure the fact, all chemical
bonding can be traced to the interplay between the attraction of opposite charges, the
repulsion of like charges, and the effect of changing kinetic energy as the electrons are
confined to various regions when bonds form.

There are two major approaches to the calculation of molecular structure, valence-
bond theory (VB theory) and molecular orbital theory (MO theory). Almost all 
modern computational work makes use of MO theory, and we concentrate on that
theory in this chapter. Valence-bond theory, though, has left its imprint on the 
language of chemistry, and it is important to know the significance of terms that
chemists use every day. Therefore, our discussion is organized as follows. First, we set
out the concepts common to all levels of description. Then we present VB theory,
which gives us a simple qualitative understanding of bond formation. Finally, we pre-
sent the basic ideas of MO theory as a foundation for a full quantitative treatment in
Chapter 6.

5
The Born–Oppenheimer
approximation

Valence-bond theory

5.1 Homonuclear diatomic
molecules

5.2 Polyatomic molecules

Molecular orbital theory

5.3 The hydrogen molecule-ion

5.4 Homonuclear diatomic
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5.8 Butadiene and π-electron
binding energy

5.9 Benzene and aromatic stability

Checklist of key ideas

Discussion questions

Exercises

Problems



138 5 THE CHEMICAL BOND

The Born–Oppenheimer
approximation

All theories of molecular structure make the same simplification
at the outset. Whereas the Schrödinger equation for a hydrogen
atom can be solved exactly, an exact solution is not possible for
any molecule because even the simplest consists of three particles
(two nuclei and one electron). We therefore adopt the Born–
Oppenheimer approximation in which it is supposed that the
nuclei, being so much heavier than an electron, move relatively
slowly and may be treated as stationary while the electrons move
in their field. We can therefore think of the nuclei as being fixed
at arbitrary locations, and then solve the Schrödinger equation
for the wavefunction of the electrons alone.

The approximation is quite good for ground-state molecules,
for calculations suggest that the nuclei in H2 move through 
only about 1 pm while the electron speeds through 1000 pm, 
so the error of assuming that the nuclei are stationary is small.
Exceptions to the validity of the approximation include certain
excited states of polyatomic molecules and the ground states of
cations; both types of species are important when considering
photoelectron spectroscopy (Section 5.4) and mass spectrometry.

The Born–Oppenheimer approximation allows us to select an
internuclear separation in a diatomic molecule and then to solve
the Schrödinger equation for the electrons at that nuclear separ-
ation. Then we choose a different separation and repeat the 
calculation, and so on. In this way we can explore how the 
energy of the molecule varies with bond length and obtain a
molecular potential energy curve (Fig. 5.1). More generally, in
polyatomic molecules, where the energy also varies with angles
and bond lengths, we obtain a potential energy surface. We
need to consider the potential energy only because the kinetic
energy of the stationary nuclei is zero. Once the potential energy
curve of a diatomic molecule has been calculated or determined
experimentally (by using the spectroscopic techniques described

in Chapters 10 and 11), we can identify the equilibrium bond
length, Re, the internuclear separation at the minimum of the
curve, and the bond dissociation energy, D0, which is closely 
related to the depth, De, of the minimum below the energy of the
infinitely widely separated and stationary atoms.

A note on good practice Be aware that the dissociation 
energy differs from the depth of the well by an energy equal 
to the zero-point vibrational energy of the bonded atoms: 
D0 = De − 1–2$ω, where ω is the vibrational frequency of the
bond (Section 2.4).

Valence-bond theory

Valence-bond theory was the first quantum mechanical theory
of bonding to be developed. The language it introduced, which
includes concepts such as spin pairing, orbital overlap, σ and π
bonds, and hybridization, is widely used throughout chemistry,
especially in the description of the properties and reactions of
organic compounds. Here we summarize essential topics of VB
theory that are familiar from introductory chemistry and set the
stage for the development of MO theory.

5.1 Homonuclear diatomic molecules

In VB theory, a bond is regarded as forming when an electron 
in an atomic orbital on one atom pairs its spin with that of an
electron in an atomic orbital on another atom. To understand
why this pairing leads to bonding, we have to examine the wave-
function for the two electrons that form the bond. We begin by
considering the simplest possible two-electron chemical bond,
the one in molecular hydrogen, H2.

The spatial wavefunction for an electron on each of two
widely separated H atoms is

ψ = χH1sA
(r1)χH1sB

(r2)

if electron 1 is on atom A and electron 2 is on atom B; in this
chapter we use χ (chi) to denote atomic orbitals. For simplicity,
we shall write this wavefunction as ψ = A(1)B(2). When the
atoms are close, it is not possible to know whether it is elec-
tron 1 that is on A or electron 2. An equally valid description 
is therefore ψ = A(2)B(1), in which electron 2 is on A and elec-
tron 1 is on B. When two outcomes are equally probable, quan-
tum mechanics instructs us to describe the true state of the
system as a superposition of the wavefunctions for each pos-
sibility (Section 1.8), so a better description of the molecule 
than either wavefunction alone is the (unnormalized) linear 
combination

ψ = A(1)B(2) ± A(2)B(1) (5.1)

E
n

er
g

y

Internuclear
separation, RRe

–De

0

Fig. 5.1 A molecular potential energy curve. The equilibrium
bond length corresponds to the energy minimum.
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It turns out that the combination with lower energy is the one
with a + sign, so the valence-bond wavefunction of the H2

molecule is

ψ = A(1)B(2) + A(2)B(1) (5.2)

The formation of the bond in H2 can be pictured as being 
due to the high probability that the two electrons will be found 
between the two nuclei and hence will bind them together. More
formally, the wave pattern represented by the term A(1)B(2) 
interferes constructively with the wave pattern represented by
the contribution A(2)B(1), and there is an enhancement in the
value of the wavefunction in the internuclear region (Fig. 5.2).

The electron distribution described by the wavefunction in
eqn 5.2 is called a s bond. A σ bond has cylindrical symmetry
around the internuclear axis, and is so called because, when
viewed along the internuclear axis, it resembles a pair of elec-
trons in an s orbital (and σ is the Greek equivalent of s).

A chemist’s picture of a covalent bond is one in which the
spins of two electrons pair as the atomic orbitals overlap. The
origin of the role of spin is that the wavefunction given in eqn 5.2
can be formed only by a pair of electrons with opposed spins. Spin
pairing is not an end in itself: as we show in the following Justifica-
tion, it is a means of achieving a wavefunction (and the probabil-
ity distribution it implies) that corresponds to a low energy.

Justification 5.1 Electron pairing in VB theory

The Pauli principle requires the wavefunction of two electrons
to change sign when the labels of the electrons are inter-
changed (see Justification 4.7). The total VB wavefunction for
two electrons is

ψ(1,2) = {A(1)B(2) + A(2)B(1)}σ(1,2)

where σ represents the spin component of the wavefunction.
When the labels 1 and 2 are interchanged, this wavefunction
becomes

ψ(2,1) = {A(2)B(1) + A(1)B(2)}σ(2,1) 
= {A(1)B(2) + A(2)B(1)}σ(2,1)

The Pauli principle requires that ψ(2,1) = −ψ(1,2), which is
satisfied only if σ(2,1) = −σ(1,2). The combination of two
spins that has this property is

σ−(1,2) = (1/21/2){α(1)β(2) − α(2)β(1)}

which corresponds to paired electron spins (Section 4.4).
Therefore, we conclude that the state of lower energy (and
hence the formation of a chemical bond) is achieved if the
electron spins are paired.

The VB description of H2 can be applied to other homo-
nuclear diatomic molecules, such as nitrogen, N2. To construct
the valence-bond description of N2, we consider the valence
electron configuration of each atom, which is 2s22px

1 2py
1 2pz

1 . It is
conventional to take the z-axis to be the internuclear axis, so we
can imagine each atom as having a 2pz orbital pointing towards
a 2pz orbital on the other atom (Fig. 5.3), with the 2px and 2py

orbitals perpendicular to the axis. A σ bond is then formed by
spin pairing between the two electrons in the two 2pz orbitals. Its
spatial wavefunction is given by eqn 5.2, but now A and B stand
for the two 2pz orbitals.

The remaining 2p orbitals cannot merge to give σ bonds as
they do not have cylindrical symmetry around the internuclear
axis. Instead, they merge to form two π bonds. A p bond arises
from the spin pairing of electrons in two p orbitals that 
approach side-by-side (Fig. 5.4). It is so called because, viewed
along the internuclear axis, a π bond resembles a pair of elec-
trons in a p orbital (and π is the Greek equivalent of p). There 
are two π bonds in N2, one formed by spin pairing in two 
neighbouring 2px orbitals and the other by spin pairing in two
neighbouring 2py orbitals. The overall bonding pattern in N2 is
therefore a σ bond plus two π bonds (Fig. 5.5), which is con-
sistent with the Lewis structure :N.N: for nitrogen.

A B(1) (2) A B(2) (1)

A B A B(1) (2) + (2) (1)

Enhanced
electron density

Fig. 5.2 It is very difficult to represent valence-bond
wavefunctions because they refer to two electrons
simultaneously. However, this figure is an attempt. The atomic
orbital for electron 1 is represented by the black contours, and
that of electron 2 is represented by the blue contours. The top
two illustrations represent the contributions of A(1)B(2) and
A(2)B(1) to the lower illustration, which represents the overall
structure of the molecule.

Fig. 5.3 The orbital overlap and spin pairing between electrons in 
two collinear p orbitals that results in the formation of a σ bond.
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5.2 Polyatomic molecules

Each σ bond in a polyatomic molecule is formed by the spin
pairing of electrons in atomic orbitals with cylindrical symmetry
about the relevant internuclear axis. Likewise, π bonds are formed
by pairing electrons that occupy atomic orbitals of the appropri-
ate symmetry. However, it will be familiar from introductory
chemistry that VB theory in this simple form does not lead to 
accurate descriptions of polyatomic molecules. For example, 
the theory does not account for carbon’s tetravalence (its ability
to form four bonds). The ground-state configuration of C is
2s22px

1 2py
1 , which suggests that a carbon atom should be capable

of forming only two bonds, not four. It will be familiar from 
introductory chemistry that this deficiency is overcome by allow-
ing for promotion and hybridization, which are reviewed below.

Promotion is the excitation of an electron to an orbital of
higher energy. In carbon, for example, the promotion of a 2s
electron to a 2p orbital can be thought of as leading to the
configuration 2s12px

1 2py
1 2pz

1 , with four unpaired electrons in
separate orbitals. These electrons may pair with four electrons in
orbitals provided by four other atoms (such as four H1s orbitals

if the molecule is methane, CH4), and hence form four σ bonds.
Although energy was required to promote the electron, it is
more than recovered by the promoted atom’s ability to form
four bonds in place of the two bonds of the unpromoted atom.
Promotion, and the formation of four bonds, is a characteristic
feature of carbon because the promotion energy is quite small:
the promoted electron leaves a doubly occupied 2s orbital and
enters a vacant 2p orbital, hence significantly relieving the 
electron–electron repulsion it experiences in the former.

The description of the bonding in CH4 (and other alkanes) is
still incomplete because it implies the presence of three σ bonds
of one type (formed from H1s and C2p orbitals) and a fourth 
σ bond of a distinctly different character (formed from H1s 
and C2s). This problem is overcome by hybridization, which is
predicated on the notion that the electron density distribution
in the promoted atom is equivalent to the electron density in
which each electron occupies a hybrid orbital formed by inter-
ference between the C2s and C2p orbitals. The origin of the 
hybridization can be appreciated by thinking of the four atomic
orbitals centred on a nucleus as waves that interfere destruc-
tively and constructively in different regions, and give rise to
four new shapes. However, we need to remember that promo-
tion and hybridization are not ‘real’ processes in which an atom
somehow becomes excited, forms hybrid orbitals, and then
forms bonds: together, these processes help us account for the
overall energy change that occurs when bonds form.

The specific linear combinations that give rise to four equi-
valent hybrid orbitals are

h1 = s + px + py + pz h2 = s − px − py + pz

h3 = s − px + py − pz h4 = s + px − py − pz
(5.3)

As a result of the interference between the component orbitals,
each hybrid orbital consists of a large lobe pointing in the direc-
tion of one corner of a regular tetrahedron (Fig. 5.6). The angle
between the axes of the hybrid orbitals is the tetrahedral angle,
109.47°. Because each hybrid is built from one s orbital and three
p orbitals, it is called an sp3 hybrid orbital.

It is now easy to see how the valence-bond description of the
CH4 molecule leads to a tetrahedral molecule containing four
equivalent C-H bonds. Each hybrid orbital of the promoted C
atom contains a single unpaired electron; an H1s electron can
pair with each one, giving rise to a σ bond pointing in a tetrahe-
dral direction. For example, the (unnormalized) wavefunction
for the bond formed by the hybrid orbital h1 and the 1sA orbital
(with wavefunction that we shall denote A) is

ψ = h1(1)A(2) + h1(2)A(1)

Because each sp3 hybrid orbital has the same composition, all
four σ bonds are identical apart from their orientation in space
(Fig. 5.7). A hybrid orbital has enhanced amplitude in the inter-
nuclear region, which arises from the constructive interference
between the s orbital and the positive lobes of the p orbitals. As a
result, the bond strength is greater than for a bond formed from

Internuclear
axis

Nodal
plane

Fig. 5.4 A π bond results from orbital overlap and spin pairing
between electrons in p orbitals with their axes perpendicular to
the internuclear axis. The bond has two lobes of electron density
separated by a nodal plane.

Fig. 5.5 The structure of bonds in a nitrogen molecule: there is
one σ bond and two π bonds. As explained later, the overall
electron density has cylindrical symmetry around the
internuclear axis.
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an s or p orbital alone. This increased bond strength is another
factor that helps to repay the promotion energy.

Hybridization can also be used to describe the structure of an
ethene molecule, H2C=CH2, and the torsional rigidity of double
bonds. An ethene molecule is planar, with HCH and HCC bond
angles close to 120°. To reproduce the σ bonding structure, 
we promote each C atom to a 2s12p3 configuration. However,
instead of using all four orbitals to form hybrids, we form sp2

hybrid orbitals:

h1 = s + 21/2py h2 = s + (3–2)1/2px − (1–2)1/2py

h3 = s − (3–2)1/2px − (1–2)1/2py

(5.4)

that lie in a plane and point towards the corners of an equilateral
triangle (Fig. 5.8). The third 2p orbital (2pz) is not included in
the hybridization; its axis is perpendicular to the plane in which
the hybrids lie. As always in superpositions, the proportion of
each orbital in the mixture is given by the square of the corres-
ponding coefficient. Thus, in the first of these hybrids the ratio
of s to p contributions is 1:2. Similarly, the total p contribution
in each of h2 and h3 is 3–2 + 1–2 = 2, so the ratio for these orbitals 
is also 1:2. The different signs of the coefficients ensure that 
constructive interference takes place in different regions of
space, so giving the patterns in the figure.

We can now describe the structure of CH2=CH2 as follows.
The sp2-hybridized C atoms each form three σ bonds by spin

pairing with either the h1 hybrid of the other C atom or with H1s
orbitals. The σ framework therefore consists of C-H and C-C
σ bonds at 120° to each other. When the two CH2 groups lie in
the same plane, the two electrons in the unhybridized p orbitals
can pair and form a π bond (Fig. 5.9). The formation of this π
bond locks the framework into the planar arrangement, for any
rotation of one CH2 group relative to the other leads to a weaken-
ing of the π bond (and consequently an increase in energy of the
molecule).

A similar description applies to ethyne, HC.CH, a linear
molecule. Now the C atoms are sp hybridized, and the σ bonds
are formed using hybrid atomic orbitals of the form

h1 = s + pz h2 = s − pz (5.5)

These two orbitals lie along the internuclear axis and point in
opposite directions. The electrons in them pair either with an
electron in the corresponding hybrid orbital on the other C
atom or with an electron in one of the H1s orbitals. Electrons in
the two remaining p orbitals on each atom, which are perpen-
dicular to the molecular axis, pair to form two perpendicular π
bonds (Fig. 5.10).

We can also generalize this discussion by noting that, in 
valence-bond theory, all single bonds are σ bonds, a double
bond consists of one σ and one π bond, and a triple bond is 
composed of one σ and two π bonds.

109.47°

Fig. 5.6 An sp3 hybrid orbital formed from the superposition of 
s and p orbitals on the same atom. There are four such hybrids:
each one points towards the corner of a regular tetrahedron. 
The overall electron density remains spherically symmetrical.

C

H

Fig. 5.7 Each sp3 hybrid orbital forms a σ bond by overlap with
an H1s orbital located at the corner of the tetrahedron. This
model accounts for the equivalence of the four bonds in CH4.

(a) (b)

Fig. 5.8 (a) An s orbital and two p orbitals can be hybridized to
form three equivalent orbitals that point towards the corners of
an equilateral triangle. (b) The remaining, unhybridized p
orbital is perpendicular to the plane.

Fig. 5.9 A representation of the structure of a double bond in
ethene; only the π bond is shown explicitly.
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Self-test 5.1 Hybrid orbitals do not always form bonds. They
may also contain lone pairs of electrons. Use valence-bond
theory to suggest the shape for the ammonia molecule, NH3.

[There are four hybrid orbitals around the N atom, three
of which forming N-H bonds and one occupied by a lone

pair of electrons. Each H-N-H bond angle is predicted 
to be approximately 109° (experimental: 107°).]

Other hybridization schemes, particularly those involving d
orbitals, are often invoked in elementary work to be consistent
with other molecular geometries (Table 5.1). The hybridization
of N atomic orbitals always results in the formation of N hybrid
orbitals, which may either form bonds or may contain lone pairs
of electrons. For example, sp3d2 hybridization results in six

equivalent hybrid orbitals pointing towards the corners of a 
regular octahedron and is sometimes invoked to account for the
structure of octahedral molecules, such as SF6.

Molecular orbital theory

In MO theory, it is accepted that electrons should not be 
regarded as belonging to particular bonds between 2 atoms 
(except of course in a diatomic molecule) but should be treated
as spreading throughout the entire molecule. This theory has
been more fully developed than VB theory and provides the 
language that is widely used in modern discussions of bonding.
To introduce it, we follow the same strategy as in Chapter 4,
where the one-electron H atom was taken as the fundamental
species for discussing atomic structure and then developed it
into a description of many-electron atoms. In this chapter we
use the simplest molecular species of all, the hydrogen molecule-
ion, H2

+, to introduce the essential features of bonding, and then
use it as a guide to the structures of more complex systems. To
that end, we will progress to homonuclear diatomic molecules,
which, like the H2

+ molecule-ion, are formed from two atoms 
of the same element, then describe heteronuclear diatomic
molecules, which are diatomic molecules formed from atoms 
of two different elements (such as CO and HCl), and end with 
a treatment of polyatomic molecules that forms the basis for
modern computational models of molecular structure and
chemical reactivity.

5.3 The hydrogen molecule-ion

The hamiltonian for the single electron in H2
+ is

(5.6)

where rA1 and rB1 are the distances of the
electron from the two nuclei (1) and R
is the distance between the two nuclei. In
the expression for V, the first two terms in
parentheses are the attractive contribution
from the interaction between the electron and the nuclei; the re-
maining term is the repulsive interaction between the nuclei.

The one-electron wavefunctions obtained by solving the
Schrödinger equation @ψ = Eψ are called molecular orbitals
(MO). A molecular orbital ψ gives, through the value of |ψ |2, the
probability distribution of the electron in the molecule. A
molecular orbital is like an atomic orbital, but spreads through-
out the molecule.

The Schrödinger equation can be solved analytically for H2
+

(within the Born–Oppenheimer approximation), but the wave-
functions are very complicated functions; moreover, the solution
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Fig. 5.10 A representation of the structure of a triple bond in
ethyne; only the π bonds are shown explicitly. The overall
electron density has cylindrical symmetry around the axis 
of the molecule.

Table 5.1 Some hybridization schemes

Coordination number Arrangement Composition

2 Linear sp, pd, sd 

Angular sd

3 Trigonal planar sp2, p2d

Unsymmetrical planar spd

Trigonal pyramidal pd2

4 Tetrahedral sp3, sd3

Irregular tetrahedral spd2, p3d, dp3

Square planar p2d2, sp2d

5 Trigonal bipyramidal sp3d, spd3

Tetragonal pyramidal sp2d2, sd4, pd4, p3d2

Pentagonal planar p2d3

6 Octahedral sp3d2

Trigonal prismatic spd4, pd5

Trigonal antiprismatic p3d3

Source: H. Eyring, J. Walter, and G.E. Kimball, Quantum chemistry, Wiley (1944).

A BR

rA1 rB1

1
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boundary surfaces. Plots like these are readily obtained using
commercially available software. The calculation is quite straight-
forward, because all we need do is feed in the mathematical
forms of the two atomic orbitals and then let the program do the
rest. In this case, we use

(5.8)

and note that rA and rB are not independ-
ent (2), but related by the law of cosines
(see the following Comment):

rB = {rA
2 + R2 − 2rAR cos θ}1/2 (5.9)

To make this plot, we have taken N 2 = 0.31 (Example 5.1).

A brief comment The law of cosines states that, for a triangle
with sides a, b, and c and angle C facing side c, then c2 = a2 +
b2 − 2ab cos C.
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cannot be extended to polyatomic systems. Therefore, we adopt
a simpler procedure that, while more approximate, can be ex-
tended readily to other molecules.

(a) Linear combinations of atomic orbitals

If an electron can be found in an atomic orbital belonging to atom
A and also in an atomic orbital belonging to atom B, then the over-
all wavefunction is a superposition of the two atomic orbitals:

ψ± = N(A ± B) (5.7)

where, for H2
+, A denotes χH1sA

, B denotes χH1sB
, and N is a 

normalization factor. The technical term for the superposition
in eqn 5.7 is a linear combination of atomic orbitals (LCAO).
An approximate molecular orbital formed from a linear com-
bination of atomic orbitals is called an LCAO-MO. A molecular
orbital that has cylindrical symmetry around the internuclear
axis, such as the one we are discussing, is called a s orbital
because it resembles an s orbital when viewed along the axis and,
more precisely, because it has zero orbital angular momentum
around the internuclear axis.

Example 5.1 Normalizing a molecular orbital

Normalize the molecular orbital ψ+ in eqn 5.7.

Method We need to find the factor N such that

�ψ*ψ dτ = 1

To proceed, substitute the LCAO into this integral, and 
make use of the fact that the atomic orbitals are individually
normalized.

Answer When we substitute the wavefunction, we find

�ψ*ψ dτ = N2 �A2 dτ +�B2 dτ + 2�AB dτ

= N2(1 + 1 + 2S)

where S = ∫AB dτ. For the integral to be equal to 1, we require

In H2
+, S ≈ 0.59, so N = 0.56.

Self-test 5.2 Normalize the orbital ψ− in eqn 5.7.
[N = 1/{2(1 − S)}1/2, so N = 1.10 in H2

+]

Figure 5.11 shows the contours of constant amplitude for 
the two molecular orbitals in eqn 5.7, and Fig. 5.12 shows their
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Fig. 5.11 (a) The amplitude of the bonding molecular orbital in a
hydrogen molecule-ion in a plane containing the two nuclei and
(b) a contour representation of the amplitude.

interActivity Plot the 1σ orbital for different values of the 
internuclear distance. Point to the features of the 1σ

orbital that lead to bonding.

Boundary
surface

Nuclei

Fig. 5.12 A general indication of the shape of the boundary
surface of a σ orbital.
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(b) Bonding orbitals

According to the Born interpretation, the probability density 
of the electron in H2

+ is proportional to the square modulus of 
its wavefunction. The probability density corresponding to the
(real) wavefunction ψ+ in eqn 5.7 is

ψ+
2 = N2(A2 + B2 + 2AB) (5.10)

This probability density is plotted in Fig. 5.13.
An important feature of the probability density becomes 

apparent when we examine the internuclear region, where both
atomic orbitals have similar amplitudes. According to eqn 5.10,
the total probability density is proportional to the sum of

• A2, the probability density if the electron were confined to
the atomic orbital A.

• B2, the probability density if the electron were confined to
the atomic orbital B.

• 2AB, an extra contribution to the density.

This last contribution, the overlap density, is crucial, because 
it represents an enhancement of the probability of finding the
electron in the internuclear region. The enhancement can be
traced to the constructive interference of the two atomic orbitals:
each has a positive amplitude in the internuclear region, so the
total amplitude is greater there than if the electron were confined
to a single atomic orbital.

We shall frequently make use of the result that electrons
accumulate in regions where atomic orbitals overlap and interfere
constructively. The conventional explanation is based on the 
notion that accumulation of electron density between the nuclei
puts the electron in a position where it interacts strongly with
both nuclei. Hence, the energy of the molecule is lower than that
of the separate atoms, where each electron can interact strongly
with only one nucleus. This conventional explanation, however,

has been called into question because shifting an electron away
from a nucleus into the internuclear region raises its potential
energy. The modern (and still controversial) explanation does
not emerge from the simple LCAO treatment given here. It
seems that, at the same time as the electron shifts into the 
internuclear region, the atomic orbitals shrink. This orbital
shrinkage improves the electron–nucleus attraction more than
it is decreased by the migration to the internuclear region, so
there is a net lowering of potential energy. The kinetic energy 
of the electron is also modified because the curvature of the
wavefunction is changed, but the change in kinetic energy is
dominated by the change in potential energy. Throughout the
following discussion we ascribe the strength of chemical bonds
to the accumulation of electron density in the internuclear re-
gion. We leave open the question whether in molecules more
complicated than H2

+ the true source of energy lowering is that
accumulation itself or some indirect but related effect.

The σ orbital we have described is an example of a bonding
orbital, an orbital that, if occupied, helps to bind two atoms 
together. Specifically, we label it 1σ as it is the σ orbital of lowest
energy. An electron that occupies a σ orbital is called a s electron
and, if that is the only electron present in the molecule (as in the
ground state of H2

+), then we report the configuration of the
molecule as 1σ1.

The energy E1σ of the 1σ orbital is (see Problem 5.23):

(5.11)

where j0 is a convenient symbol for the commonly occurring
term e2/4πε0 and

(5.12a)

(5.12b)

(5.12c)

We can interpret the preceding integrals as follows:

• All three integrals are positive and decline towards zero 
at large internuclear separations (S and K on account of the 
exponential term; J on account of the factor 1/R).

• The integral J is a measure of the interaction between a 
nucleus and electron density centred on the other nucleus.

• The integral K is a measure of the interaction between a 
nucleus and the excess probability in the internuclear region
arising from overlap.
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Fig. 5.13 The electron density calculated by forming the square 
of the wavefunction used to construct Fig. 5.11. Note the
accumulation of electron density in the internuclear region.
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Figure 5.14 is a plot of E1σ against R relative to the energy of the
separated atoms. The energy of the 1σ orbital decreases as the
internuclear separation decreases from large values because
electron density accumulates in the internuclear region as the
constructive interference between the atomic orbitals increases
(Fig. 5.15). However, at small separations there is too little space
between the nuclei for significant accumulation of electron den-
sity there. In addition, the nucleus–nucleus repulsion (which is
proportional to 1/R) becomes large. As a result, the energy of the
molecule rises at short distances, and there is a minimum in the
potential energy curve. Calculations on H2

+ give Re = 130 pm and
De = 1.77 eV (171 kJ mol−1); the experimental values are 106 pm
and 2.6 eV, so this simple LCAO-MO description of the
molecule, while inaccurate, is not absurdly wrong.

(c) Antibonding orbitals

The linear combination ψ− in eqn 5.7 corresponds to a higher
energy than that of ψ+. Because it is also a σ orbital we label it 

2σ. This orbital has an internuclear nodal plane where A
and B cancel exactly (Figs. 5.16 and 5.17). The probability 
density is

ψ −
2 = N2(A2 + B2 − 2AB) (5.13)

There is a reduction in probability density between the nuclei
due to the −2AB term (Fig. 5.18); in physical terms, there is 
destructive interference where the two atomic orbitals overlap.
The 2σ orbital is an example of an antibonding orbital, an orbital
that, if occupied, contributes to a reduction in the cohesion 
between two atoms and helps to raise the energy of the molecule
relative to the separated atoms.
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Fig. 5.14 The calculated and experimental molecular potential
energy curves for a hydrogen molecule-ion showing the
variation of the energy of the molecule as the bond length 
is changed.

Region of
destructive
interference

Fig. 5.16 A representation of the destructive interference that
occurs when two H1s orbitals overlap and form an antibonding
2σ orbital.

(b)(a)

Fig. 5.17 (a) The amplitude of the antibonding molecular orbital
in a hydrogen molecule-ion in a plane containing the two nuclei
and (b) a contour representation of the amplitude. Note the
internuclear node.

interActivity Plot the 2σ orbital for different values of the 
internuclear distance. Point to the features of the 2σ

orbital that lead to antibonding.

Region of
constructive
interference

Fig. 5.15 A representation of the constructive interference that
occurs when two H1s orbitals overlap and form a bonding σ
orbital.
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The energy E2σ of the 2σ antibonding orbital is given by (see
Problem 5.23)

(5.14)

where the integrals S, J, and K are given by eqn 5.12. The vari-
ation of E2σ with R is shown in Fig. 5.14, where we see the dest-
abilizing effect of an antibonding electron. The effect is partly
due to the fact that an antibonding electron is excluded from the 
internuclear region, and hence is distributed largely outside the
bonding region. In effect, whereas a bonding electron pulls two
nuclei together, an antibonding electron pulls the nuclei apart
(Fig. 5.19). Figure 5.14 also shows another feature that we draw
on later: |E− − EH1s | > |E+ − EH1s |, which indicates that the anti-
bonding orbital is more antibonding than the bonding orbital 
is bonding. This important conclusion stems in part from the
presence of the nucleus–nucleus repulsion (the term j0 /R): this
contribution raises the energy of both molecular orbitals. Anti-
bonding orbitals are often labelled with an asterisk (*), so the 2σ
orbital could also be denoted 2σ* (and read ‘2 sigma star’).
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For homonuclear diatomic molecules, it is helpful to describe
a molecular orbital by identifying its inversion symmetry, the
behaviour of the wavefunction when it is inverted through the
centre (more formally, the centre of inversion) of the molecule.
Thus, if we consider any point on the bonding σ orbital, and
then project it through the centre of the molecule and out an
equal distance on the other side, then we arrive at an identical
value of the wavefunction (Fig. 5.20). This so-called gerade
symmetry (from the German word for ‘even’) is denoted by a
subscript g, as in σg. On the other hand, the same procedure 
applied to the antibonding 2σ orbital results in the same size 
but opposite sign of the wavefunction. This ungerade symmetry
(‘odd symmetry’) is denoted by a subscript u, as in σu. This 
inversion symmetry classification is not applicable to diatomic
molecules formed by atoms from two different elements (such
as CO) because these molecules do not have a centre of inver-
sion. When using the g,u notation, each set of orbitals of the
same inversion symmetry are labelled separately, so whereas 1σ
becomes 1σg, its antibonding partner, which so far we have
called 2σ, is the first orbital of a different symmetry, and is 
denoted 1σu. The general rule is that each set of orbitals of the
same symmetry designation are labelled separately.

A note on good practice When treating homonuclear diatomic
molecules, we shall favour the more modern notation that
focuses attention on the symmetry properties of the orbital.
For all other molecules, on occasion we shall use asterisks to
denote antibonding orbitals.

5.4 Homonuclear diatomic molecules

In Chapter 4 we used the hydrogenic atomic orbitals and the
building-up principle to deduce the ground electronic configura-
tions of many-electron atoms. We now do the same for many-
electron diatomic molecules by using the H2

+ molecular orbitals.
The general procedure is to construct molecular orbitals by

Fig. 5.18 The electron density calculated by forming the square 
of the wavefunction used to construct Fig. 5.17. Note the
elimination of electron density from the internuclear region.

Tg Tu

Centre of
inversion

+
+

+
–

Fig. 5.20 The parity of an orbital is even (g) if its wavefunction is
unchanged under inversion through the centre of symmetry of
the molecule, but odd (u) if the wavefunction changes sign.
Heteronuclear diatomic molecules do not have a centre of
inversion, so for them the g, u classification is irrelevant.

(a)

(b)

Fig. 5.19 A partial explanation of the origin of bonding and
antibonding effects. (a) In a bonding orbital, the nuclei are
attracted to the accumulation of electron density in the
internuclear region. (b) In an antibonding orbital, the nuclei 
are attracted to an accumulation of electron density outside the
internuclear region.
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combining the available atomic orbitals. The electrons supplied
by the atoms are then accommodated in the orbitals so as to
achieve the lowest overall energy subject to the constraint of 
the Pauli exclusion principle, that no more than two electrons
may occupy a single orbital (and then must be spin-paired). As
in the case of atoms, if several degenerate molecular orbitals are
available, we add the electrons singly to each individual orbital
before doubly occupying any one orbital (because that minimizes
electron–electron repulsions). We also take note of Hund’s
maximum multiplicity rule (Section 4.4) that, if electrons do 
occupy different degenerate orbitals, then a lower energy is 
obtained if they do so with parallel spins.

(a) s orbitals

Consider H2, the simplest many-electron diatomic molecule.
Each H atom contributes a 1s orbital (as in H2

+), so we can form
the 1σg and 1σu orbitals from them, as we have seen already. At
the experimental internuclear separation these orbitals will have
the energies shown in Fig. 5.21, which is called a molecular
orbital energy level diagram. Note that from two atomic orbitals
we can build two molecular orbitals. In general, from N atomic
orbitals we can build N molecular orbitals.

There are two electrons to accommodate, and both can enter
1σg by pairing their spins, as required by the Pauli principle (see
the following Justification). The ground-state configuration is
therefore 1σg

2 and the atoms are joined by a bond consisting of
an electron pair in a bonding σ orbital. This approach shows
that an electron pair, which was the focus of Lewis’s account of
chemical bonding, represents the maximum number of electrons
that can enter a bonding molecular orbital.

Justification 5.2 Electron pairing in MO theory

The spatial wavefunction for two electrons in a bonding
molecular orbital ψ such as the bonding orbital in eqn 5.7, is

ψ+(1)ψ+(2). This two-electron wavefunction is obviously
symmetric under interchange of the electron labels. To 
satisfy the Pauli principle, it must be multiplied by the anti-
symmetric spin state α(1)β(2) − β(1)α(2) to give the overall
antisymmetric state

ψ(1,2) = ψ+(1)ψ+(2){α(1)β(2) − β(1)α(2)}

Because α(1)β(2) − β(1)α(2) corresponds to paired electron
spins, we see that two electrons can occupy the same molecu-
lar orbital (in this case, the bonding orbital) only if their spins
are paired.

The same argument shows why He does not form diatomic
molecules. Each He atom contributes a 1s orbital, so 1σg and 1σu

molecular orbitals can be constructed. Although these orbitals
differ in detail from those in H2, the general shape is the same,
and we can use the same qualitative energy level diagram in the
discussion. There are four electrons to accommodate. Two can
enter the 1σg orbital, but then it is full, and the next two must
enter the 1σu orbital (Fig. 5.22). The ground electronic configu-
ration of He2 is therefore 1σg

21σu
2. We see that there is one bond

and one antibond. Because an antibond is slightly more anti-
bonding than a bond is bonding, an He2 molecule has a higher
energy than the separated atoms, so it is unstable relative to the
individual atoms. Diatomic helium ‘molecules’ have been pre-
pared below 10 K: they consist of pairs of atoms held together by
weak van der Waals forces of the type described in Chapter 8.

We shall now see how the concepts we have introduced apply to
homonuclear diatomic molecules in general. In elementary treat-
ments, only the orbitals of the valence shell are used to form mole-
cular orbitals, so for molecules formed with atoms from Period 2
elements, only the 2s and 2p atomic orbitals are considered.

A general principle of molecular orbital theory is that all
orbitals of the appropriate symmetry contribute to a molecular 
orbital. Thus, to build σ orbitals, we form linear combinations 
of all atomic orbitals that have cylindrical symmetry about the
internuclear axis. These orbitals include the 2s orbitals on each

2 (1 )T Tu

H1s H1s

1 (1 )T Tg

Fig. 5.21 A molecular orbital energy level diagram for orbitals
constructed from the overlap of H1s orbitals; the separation of
the levels corresponds to that found at the equilibrium bond
length. The ground electronic configuration of H2 is obtained by
accommodating the two electrons in the lowest available orbital
(the bonding orbital).

He1s He1s

2 (1 )T Tu

1 (1 )T Tg

Fig. 5.22 The ground electronic configuration of the hypothetical
four-electron molecule He2 has two bonding electrons and two
antibonding electrons. It has a higher energy than the separated
atoms, and so is unstable.
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atom and the 2pz orbitals on the two atoms (Fig. 5.23). The 
general form of the σ orbitals that may be formed is therefore

ψ = cA2sχA2s + cB2sχB2s + cA2pz
χA2pz

+ cB2pz
χB2pz

(5.15)

From these four atomic orbitals we can form four molecular 
orbitals of σ symmetry by an appropriate choice of the coeffi-

cients c.
The procedure for calculating the coefficients will be described

in Section 5.5. At this stage we adopt a simpler route, and sup-
pose that, because the 2s and 2pz orbitals have distinctly differ-
ent energies, they may be treated separately. That is, the four σ
orbitals fall approximately into two sets, one consisting of two
molecular orbitals of the form

ψ = cA2sχA2s + cB2sχB2s (5.16a)

and another consisting of two orbitals of the form

ψ = cA2pz
χA2pz

+ cB2pz
χB2pz

(5.16b)

Because atoms A and B are identical, the energies of their 2s 
orbitals are the same, so the coefficients are equal (apart from a
possible difference in sign); the same is true of the 2pz orbitals.
Therefore, the two sets of orbitals have the form χA2s ± χB2s and
χA2pz

± χB2pz
.

The 2s orbitals on the two atoms overlap to give a bonding
and an antibonding σ orbital (1σg and 1σu, respectively) in 
exactly the same way as we have already seen for 1s orbitals. The
two 2pz orbitals directed along the internuclear axis overlap
strongly. They may interfere either constructively or destruc-
tively, and give a bonding or antibonding σ orbital, respectively
(Fig. 5.24). These two σ orbitals are labelled 2σg and 2σu, re-
spectively. In general, note how the numbering follows the order
of increasing energy.

A note on good practice Note that we number only the
molecular orbitals formed from atomic orbitals in the valence
shell. In an alternative system of notation, 1σg and 1σu are
used to designate the molecular orbitals formed from the
core 1s orbitals of the atoms; the orbitals we are considering
would then be labelled starting from 2.

(b) p orbitals

Now consider the 2px and 2py orbitals of each atom. These 
orbitals are perpendicular to the internuclear axis and may overlap
broadside-on. This overlap may be constructive or destructive,
and results in a bonding or an antibonding p orbital (Fig. 5.25).
The notation π is the analogue of p in atoms for, when viewed
along the axis of the molecule, a π orbital looks like a p orbital,
and has one unit of orbital angular momentum around the 
internuclear axis. The two 2px orbitals overlap to give a bonding
and antibonding πx orbital, and the two 2py orbitals overlap to
give two πy orbitals. The πx and πy bonding orbitals are degener-
ate; so too are their antibonding partners. We also see from 
Fig. 5.25 that a bonding π orbital has odd parity and is denoted
πu and an antibonding π orbital has even parity, denoted πg.

(c) The overlap integral

The extent to which two atomic orbitals on different atoms
overlap is measured by the overlap integral, S:

S = �χA*χB dτ (5.17)

If the atomic orbital χA on A is small wherever the orbital χB on
B is large, or vice versa, then the product of their amplitudes is
everywhere small and the integral—the sum of these products—

2s 2s

2pz 2pz
A B

Fig. 5.23 According to molecular orbital theory, σ orbitals are
built from all orbitals that have the appropriate symmetry. In
homonuclear diatomic molecules of Period 2, that means that
two 2s and two 2pz orbitals should be used. From these four
orbitals, four molecular orbitals can be built.

3 (2 )T Tg

4 (2 )T Tu

Fig. 5.24 A representation of the composition of bonding and
antibonding σ orbitals built from the overlap of p orbitals. 
These illustrations are schematic.
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Fig. 5.25 A schematic representation of the structure of π
bonding and antibonding molecular orbitals. The figure also
shows that the bonding π orbital has odd parity, whereas the
antibonding π orbital has even parity.
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is small (Fig. 5.26). If χA and χB are simultaneously large in some
region of space, then S may be large. If the two normalized
atomic orbitals are identical (for instance, 1s orbitals on the
same nucleus), then S = 1. In some cases, simple formulas can be
given for overlap integrals and the variation of S with bond
length plotted (Fig. 5.27). It follows that S = 0.59 for two H1s 
orbitals at the equilibrium bond length in H2

+, which is an un-
usually large value. Typical values for orbitals with n = 2 are in
the range 0.2 to 0.3.

Now consider the arrangement in which an s orbital is 
superimposed on a px orbital of a different atom (Fig. 5.28). The 
integral over the region where the product of orbitals is positive
exactly cancels the integral over the region where the product of
orbitals is negative, so overall S = 0 exactly. Therefore, there is no
net overlap between the s and p orbitals in this arrangement.

(d) The electronic structures of homonuclear diatomic
molecules

To construct the molecular orbital energy level diagram for
Period 2 homonuclear diatomic molecules, we form eight

molecular orbitals from the eight valence shell orbitals (four
from each atom). In some cases, π orbitals are less strongly
bonding than σ orbitals because their maximum overlap occurs
off-axis. This relative weakness suggests that the molecular 
orbital energy level diagram ought to be as shown in Fig. 5.29.
However, we must remember that we have assumed that 2s and
2pz orbitals contribute to different sets of molecular orbitals,
whereas in fact all four atomic orbitals contribute jointly to the
four σ orbitals. Hence, there is no guarantee that this order of
energies should prevail, and it is found experimentally (by spec-
troscopy) and by detailed calculation that the order varies along
Period 2 (Fig. 5.30). The order shown in Fig. 5.31 is appropriate
as far as N2, and Fig. 5.29 applies for O2 and F2. The relative
order is controlled by the separation of the 2s and 2p orbitals in
the atoms, which increases across the group. The consequent
switch in order occurs at about N2.

With the orbitals established, we can deduce the ground con-
figurations of the molecules by adding the appropriate number
of electrons to the orbitals and following the building-up rules.

(a) (b)

Fig. 5.26 (a) When two orbitals are on atoms that are far apart,
the wavefunctions are small where they overlap, so S is small. 
(b) When the atoms are closer, both orbitals have significant
amplitudes where they overlap, and S may approach 1. Note that
S will decrease again as the two atoms approach more closely
than shown here, because the region of negative amplitude of the
p orbital starts to overlap the positive overlap of the s orbital.
When the centres of the atoms coincide, S = 0.

+

–

Fig. 5.28 A p orbital in the orientation shown here has zero net
overlap (S = 0) with the s orbital at all internuclear separations.

0
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Fig. 5.27 The overlap integral, S, between two H1s orbitals as a
function of their separation R.

2p 2p

2s 2s
1Tg

1Tu

2Tu

1'u

1'g

Atom Molecule Atom

2Tg

Fig. 5.29 The molecular orbital energy level diagram for
homonuclear diatomic molecules. The lines in the middle are an
indication of the energies of the molecular orbitals that can be
formed by overlap of atomic orbitals. As remarked in the text,
this diagram should be used for O2 (the configuration shown)
and F2.
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Anionic species (such as the peroxide ion, O2
2−) need more elec-

trons than the parent neutral molecules; cationic species (such
as O2

+) need fewer.
Consider N2, which has 10 valence electrons. Two electrons

pair, occupy, and fill the 1σg orbital; the next two occupy and fill
the 1σu orbital. Six electrons remain. There are two 1π orbitals,
so four electrons can be accommodated in them. The last two
enter the 2σg orbital. Therefore, the ground-state configuration
of N2 is 1σg

21σu
21πu

42σg
2.

A measure of the net bonding in a diatomic molecule is its
bond order, b:

b = 1–2(n − n*) (5.18)

where n is the number of electrons in bonding orbitals and n* is
the number of electrons in antibonding orbitals. Thus each elec-
tron pair in a bonding orbital increases the bond order by 1 and
each pair in an antibonding orbital decreases b by 1. For H2, 
b = 1, corresponding to a single bond, H-H, between the two

atoms. In He2, b = 0, and there is no bond. In N2, b = 1–2(8 − 2) =
3. This bond order accords with the Lewis structure of the
molecule (:N.N:).

The ground-state electronic configuration of O2, with 12 
valence electrons, is based on Fig. 5.29, and is 1σg

21σu
22σg

21πu
41πg

2.
Its bond order is 2. According to the building-up principle,
however, the two 1πg electrons occupy different orbitals: one
will enter 1πg,x and the other will enter 1πg,y. Because the elec-
trons are in different orbitals, they will have parallel spins.
Therefore, we can predict that an O2 molecule will have a net
spin angular momentum S = 1 and, in the language introduced
in Section 4.5, be in a triplet state. Because electron spin is the
source of a magnetic moment, we can go on to predict that oxy-
gen should be paramagnetic, a substance that tends to move into
a magnetic field (Chapter 9). This prediction, which VB theory
does not make, is confirmed by experiment.

An F2 molecule has two more electrons than an O2 molecule.
Its configuration is therefore 1σg

21σu
22σg

21πu
41π g

4 and b = 1. We
conclude that F2 is a singly bonded molecule, in agreement with
its Lewis structure. The hypothetical molecule dineon, Ne2, has
two further electrons: its configuration is 1σg

21σu
22σg

21πu
41πg

22σu
2

and b = 0. The zero bond order is consistent with the monatomic
nature of Ne.

The bond order is a useful parameter for discussing the 
characteristics of bonds, because it correlates with bond length
and bond strength. For bonds between atoms of a given pair of
elements:

• The greater the bond order, the shorter the bond.

• The greater the bond order, the greater the bond strength.

Table 5.2 lists some typical bond lengths in diatomic and poly-
atomic molecules. The strength of a bond is measured by its
bond dissociation energy, D0, the energy required to separate 
the atoms to infinity. Table 5.3 lists some experimental values of
dissociation energies.

Li2 Be2 B2 C2 N2 O2 F2

1Tg

1Tu

2Tg

2Tu

1'u

1'g

Fig. 5.30 The variation of the orbital energies of Period 2
homonuclear diatomics.

2p 2p

2s 2s

Atom Molecule Atom

1Tg

1Tu

2Tg

2Tu

1'u

1'g

Fig. 5.31 An alternative molecular orbital energy level diagram for
homonuclear diatomic molecules. As remarked in the text, this
diagram should be used for diatomics up to and including N2

(the configuration shown).

Synoptic table 5.2 Bond lengths*

Bond Order Re /pm

HH 1 74.14

NN 3 109.76

HCl 1 127.45

CH 1 114

CC 1 154

CC 2 134

CC 3 120

* More values will be found in the Data section. Numbers in italics are mean values
for polyatomic molecules.
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Because energy is conserved when a photon ionizes a sample,
the energy of the incident photon hν must be equal to the sum 
of the ionization energy, I, of the sample and the kinetic energy
of the photoelectron, the ejected electron (Fig. 5.32):

hν = 1–2mev
2 + I (5.19a)

This equation (which is like the one used for the photoelectric
effect, Section 1.2) can be refined by considering that photoelec-
trons may originate from one of a number of different orbitals,
and each one has a different ionization energy. Hence, a series of
different kinetic energies of the photoelectrons will be obtained,
each one satisfying

hν = 1–2mev
2 + Ii (5.19b)

where Ii is the ionization energy for ejection of an electron from
an orbital i. Therefore, by measuring the kinetic energies of the
photoelectrons, and knowing ν, these ionization energies can 
be determined. Photoelectron spectra are interpreted in terms
of an approximation called Koopmans’ theorem, which states
that the ionization energy Ii is equal in magnitude to the orbital
energy εi of the ejected electron (formally: Ii = −εi). That is, we
can identify the ionization energy with the energy of the orbital
from which it is ejected. Similarly, the energy of unfilled (‘virtual
orbitals’) is related to the electron affinity. The theorem is only
an approximation because it ignores the fact that the remaining
electrons can adjust their distributions in response to changes in
internuclear distances upon ionization.

The ionization energies of molecules are several electronvolts
even for valence electrons, so it is essential to work in at least the
ultraviolet region of the spectrum and with wavelengths of less
than about 200 nm. Its use gives rise to the technique of ultra-
violet photoelectron spectroscopy (UPS). When core electrons
are being studied, photons of even higher energy are needed to
expel them: X-rays are used, and the technique is denoted X-ray
photoelectron spectroscopy (XPS).

Synoptic table 5.3 Bond dissociation energies*

Bond Order D0 /(kJ mol−1)

HH 1 432.1

NN 3 941.7

HCl 1 427.7

CH 1 435

CC 1 368

CC 2 720

CC 3 962

* More values will be found in the Data section. Numbers in italics are mean values
for polyatomic molecules.

Example 5.2 Judging the relative bond strengths of molecules
and ions

Judge whether N2
+ is likely to have a larger or smaller dissoci-

ation energy than N2.

Method Because the molecule with the larger bond order is
likely to have the larger dissociation energy, compare their
electronic configurations and assess their bond orders.

Answer From Fig. 5.31, the electron configurations and
bond orders are

N2 1σg
21σu

21πu
42σg

2 b = 3

N2
+ 1σg

21σu
21πu

42σg
1 b = 2 1–2

Because the cation has the smaller bond order, we expect it to
have the smaller dissociation energy. The experimental dis-
sociation energies are 942 kJ mol−1 for N2 and 842 kJ mol−1

for N2
+.

Self-test 5.3 Which can be expected to have the higher disso-
ciation energy, F2 or F2

+? [F2
+]

(e) Photoelectron spectroscopy

So far we have treated molecular orbitals as purely theoretical
constructs, but is there experimental evidence for their existence?
Photoelectron spectroscopy (PES) measures the ionization 
energies of molecules when electrons are ejected from different
orbitals by absorption of a photon of the proper energy, and uses
the information to infer the energies of molecular orbitals. The
technique is also used to study solids, and in Chapter 21 we shall
see the important information that it gives about species at or on
surfaces.

X

X+

h	

Orbital i

Ii

h – Ii	

Ek(e )–

	

	

Fig. 5.32 An incoming photon carries an energy hν ; an energy 
Ii is needed to remove an electron from an orbital i, and the
difference appears as the kinetic energy of the electron.
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l A BRIEF ILLUSTRATION

Much UPS work has been done with radiation generated by 
a discharge through helium: the He(I) line (1s12p1 → 1s2) 
lies at 58.43 nm, corresponding to a wavenumber of 1.711 
× 105 cm−1 and photon energy of 21.22 eV. Photoelectrons
ejected from N2 with He(I) radiation had kinetic energies of
5.63 eV (1 eV = 8065.5 cm−1). Then, from eqn 5.19, 21.22 eV
= 5.63 eV + Ii, so Ii = 15.59 eV. This ionization energy is the
energy needed to remove an electron from the highest energy
occupied orbital of the N2 molecule, the 2σg bonding orbital
(see Fig. 5.31). l

Self-test 5.4 Under the same circumstances, photoelectrons
are also detected at 4.53 eV. To what ionization energy does
that correspond? Suggest an origin. [16.7 eV, 1πu]

5.5 Heteronuclear diatomic molecules

The electron distribution in the covalent bond between the
atoms in a heteronuclear diatomic molecule is not shared evenly
because it is energetically favourable for the electron pair to be
found closer to one atom than the other. This imbalance results
in a polar bond, a covalent bond in which the electron pair 
is shared unequally by the two atoms. The bond in HF, for 
instance, is polar, with the electron pair closer to the F atom. 
The accumulation of the electron pair near the F atom results in
that atom having a net negative charge, which is called a partial
negative charge and denoted δ−. There is a matching partial
positive charge, δ+, on the H atom.

(a) Polar bonds

A polar bond consists of two electrons in an orbital of the form

ψ = cAA + cBB (5.20)

with unequal coefficients. The proportion of the atomic orbital
A in the bond is |cA|2 and that of B is |cB|2. A nonpolar bond has
|cA|2 = |cB |2 and a pure ionic bond has one coefficient zero (so the
species A+B− would have cA = 0 and cB = 1). The atomic orbital
with the lower energy makes the larger contribution to the
bonding molecular orbital. The opposite is true of the antibond-
ing orbital, for which the dominant component comes from the
atomic orbital with higher energy.

These points can be illustrated by considering HF, and judging
the energies of the atomic orbitals from the ionization energies
of the atoms. The general form of the molecular orbitals is

ψ = cHχH + cFχF (5.21)

where χH is an H1s orbital and χF is an F2p orbital. The H1s 
orbital lies 13.6 eV below the zero of energy (the separated pro-
ton and electron) and the F2p orbital lies at 17.4 eV (Fig. 5.33).

Hence, the bonding σ orbital in HF is mainly F2p and the anti-
bonding σ orbital is mainly H1s orbital in character. The two
electrons in the bonding orbital are most likely to be found in
the F2p orbital, so there is a partial negative charge on the F
atom and a partial positive charge on the H atom.

(b) Electronegativity

The charge distribution in bonds is commonly discussed in
terms of the electronegativity, χ, of the elements involved (there
should be little danger of confusing this use of χ with its use to
denote an atomic orbital, which is another common conven-
tion). The electronegativity is a parameter introduced by Linus
Pauling as a measure of the power of an atom to attract electrons
to itself when it is part of a compound. Pauling used valence-
bond arguments to suggest that an appropriate numerical scale
of electronegativities could be defined in terms of bond dissoci-
ation energies, D, in electronvolts and proposed that the differ-
ence in electronegativities could be expressed as

|χA − χB | = {D(A-B) − 1–2[D(A-A) + D(B-B)]}1/2 (5.22)

Electronegativities based on this definition are called Pauling
electronegativities (Table 5.4). The most electronegative elements
are those close to fluorine; the least are those close to caesium. It
is found that, the greater the difference in electronegativities, the
greater the polar character of the bond. The difference for HF,
for instance, is 1.78; a C-H bond, which is commonly regarded
as almost nonpolar, has an electronegativity difference of 0.35.

The spectroscopist Robert Mulliken proposed an alternative
definition of electronegativity. He argued that an element is
likely to be highly electronegative if it has a high ionization 
energy (so it will not release electrons readily) and a high electron
affinity (so it is energetically favourable to acquire electrons).
The Mulliken electronegativity scale is therefore based on the
definition

χM = 1–2(I + Eea) (5.23)

H1s

F2p

0.97 – 0.24V VH F

0.24 + 0.97V VH F

Ionization limit

13
.6

eV

13
.4

eV

17
.6

eV

17
.4

eV

Fig. 5.33 The atomic orbital energy levels of H and F atoms and
the molecular orbitals they form.
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where I is the ionization energy of the element and Eea is its elec-
tron affinity (both in electronvolts, Section 4.4). The Mulliken
and Pauling scales can be brought into close alignment. A 
reasonably reliable conversion between the two is χP = 1.35χ1/2

M

− 1.37.

(c) The variation principle

A more systematic way of discussing bond polarity and finding
the coefficients in the linear combinations used to build molecu-
lar orbitals is provided by the variation principle:

If an arbitrary wavefunction is used to calculate the energy,
the value calculated is never less than the true energy.

This principle, which is established in the following Justification,
is the basis of all modern molecular structure calculations
(Chapter 6). The arbitrary wavefunction is called the trial wave-
function. The principle implies that, if we vary the coefficients in
the trial wavefunction until the lowest energy is achieved (by
evaluating the expectation value of the hamiltonian operator for
each wavefunction), then those coefficients will be the best. We
might get a lower energy if we use a more complicated wave-
function (for example, by taking a linear combination of several
atomic orbitals on each atom), but we shall have the optimum
(minimum energy) molecular orbital that can be built from the
chosen basis set, the given set of atomic orbitals.

Justification 5.3 The variation principle

To justify the variation principle, consider a trial wavefunction

written as a linear combination of the true 

(but unknown), normalized, and orthogonal wavefunctions
ψn that are solutions of the equations @ψn = Enψn. The energy
associated with this normalized trial wavefunction is then

   
ε ψ ψ τ=� trial trial* d@

ψ ψtrial = ∑cn n
n

With E0 the lowest energy for the system described by this
basis set of ψn functions, the variation principle states that 
ε ≥ E0, or ε − E0 ≥ 0, for any ψtrial. Now we must prove that this
assertion is true.

The difference ε − E0 may be written as the integral

Because ∫ψ*n@ψn′dτ = En′∫ψ*nψn′dτ and ∫ψ*nE0ψn′dτ = E0∫ψ*nψn′dτ,
we write

�ψ*n(@ − E0)ψn′dτ = (En′ − E0)�ψ*nψn′dτ

and

However, the functions ψn are orthogonal, so that ∫ψ*nψn′dτ = 1
if n = n′ and ∫ψ*nψn′dτ = 0 if n ≠ n′. Therefore,

We already know that En − E0 ≥ 0 and it is also true that 

cn*cn = |cn|2 > 0. It follows that 

which is the result we set out to prove.

The method can be illustrated by the trial wavefunction in
eqn 5.20. We show in the next Justification that the coefficients
are given by the solutions of the two secular equations

(αA − E)cA + (β − ES)cB = 0 (5.24a)

(β − ES)cA + (αB − E)cB = 0 (5.24b)

The parameter α is called a Coulomb integral. It is a negative
number that can be interpreted as the energy of the electron when
it occupies A (for αA) or B (for αB). In a homonuclear diatomic
molecule, αA = αB. The parameter β is called a resonance integral
(for classical reasons). It vanishes when the orbitals do not over-
lap, and at equilibrium bond lengths it is normally negative.

ε − = − ≥∑E c c E En n
n

n0 0 0* ( ) ,

ε − = −∑E c c E En n
n

n0 0* ( )

ε ψ ψ τ− = −∑E c c E En n
n n

n n n0 0* ( ) *
,

′
′

′ ′� d

= −∑c c En n
n n

n n* *( )
,

′
′

′�ψ ψ τ@ 0 d

   
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑� c E cn n

n
n n

n

* * ( )ψ ψ τ@ 0 ′ ′
′

d

   
= −�ψ ψ τtrial trial* d( )@ E0

   
= −� �ψ ψ τ ψ ψ τtrial trial trial trial* d * d@ E0

ε ψ ψ τ ψ

ε

− = −E E0 0� �trial trial* d@ ttrial trial* dψ τ

=1

Synoptic table 5.4* Pauling electronegativities

Element cP

H 2.2

C 2.6

N 3.0

O 3.4

F 4.0

Cl 3.2

Cs 0.79

* More values will be found in the Data section.
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Justification 5.4 The variation principle applied to a
heteronuclear diatomic molecule

The trial wavefunction in eqn 5.20 is real but not normalized
because at this stage the coefficients can take arbitrary values.
Therefore, we can write ψ* = ψ but do not assume that ∫ψ2dτ
= 1. The energy of the trial wavefunction is the expectation
value of the energy operator (the hamiltonian operator, @,
Section 1.6):

(5.25)

We must search for values of the coefficients in the trial func-
tion that minimize the value of E. This is a standard problem
in calculus, and is solved by finding the coefficients for which

The first step is to express the two integrals in terms of the
coefficients. The denominator is

�ψ2 dτ = �(cAA + cBB)2 dτ

= cA
2�A2 dτ + cB

2�B2 dτ + 2cAcB�AB dτ

= cA
2 + cB

2 + 2cAcBS

because the individual atomic orbitals are normalized and
the third integral is the overlap integral S (eqn 5.17). The 
numerator is

�ψ@ψ dτ = �(cAA + cBB)@(cAA + cBB) dτ

= cA
2�A@A dτ + cB

2�B@B dτ + cAcB�A@B dτ + cAcB�B@A dτ

There are some complicated integrals in this expression, but
we can combine them all into the parameters

αA = �A@A dτ αB = �B@B dτ (5.26)

β = �A@B dτ = �B@A dτ (by the hermiticity of @ and the 

reality of A and B)

Then

�ψ @ψ dτ = cA
2αA + cB

2αB + 2cAcBβ

The complete expression for E is

(5.27)E
c c c c
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+ +
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Its minimum is found by differentiation with respect to the
two coefficients and setting the results equal to 0. After some
work, we obtain

For the derivatives to vanish, the numerators of these ex-
pressions must vanish. That is, we must find values of cA and
cB that satisfy the conditions

cAαA − cAE + cBβ − cBSE = (αA − E)cA + (β − ES)cB = 0

cAβ − cASE + cBαB − cBE = (β − ES)cA + (αB − E)cB = 0

which are the secular equations (eqn 5.24).

To solve the secular equations for the coefficients we need to
know the energy E of the orbital. As for any set of simultaneous
equations, the secular equations have a solution if the secular
determinant, the determinant (see Mathematical background 5)
of the coefficients, is zero; that is, if

(5.28)

This determinant expands to a quadratic equation in E (see the
following illustration). Its two roots give the energies of the bond-
ing and antibonding molecular orbitals formed from the atomic
orbitals and, according to the variation principle, the lower root
is the best energy achievable with the given basis set.

l A BRIEF ILLUSTRATION

To find the energies E of the bonding and antibonding 
orbitals of a homonuclear diatomic molecule, we need to
know that a 2 × 2 determinant expands as follows:

Setting αA = αB = α in eqn 5.28, we get

The solutions of this equation are

l

The values of the coefficients in the linear combination are
obtained by solving the secular equations using the two energies
obtained from the secular determinant. The lower energy (E+ in
the illustration) gives the coefficients for the bonding molecular
orbital; the upper energy (E−) the coefficients for the antibond-
ing molecular orbital. The secular equations give expressions for
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the ratio of the coefficients in each case, so we need a further
equation in order to find their individual values. This equation
is obtained by demanding that the best wavefunction should
also be normalized. This condition means that, at this final stage,
we must also ensure that

�ψ2 dτ = cA
2 + c B

2 + 2cAcBS = 1 (5.29)

l A BRIEF ILLUSTRATION

To find the values of the coefficients cA and cB in the linear
combination that corresponds to the energy E+ from the pre-
vious illustration, we use eqn 5.27 (with αA = αB = α) to write

Now we use the normalization condition, eqn 5.29, to set 
c A

2 + cB
2 + 2cAcBS = 1, and so write

This expression implies that

and cB = cA

Proceeding in a similar way to find the coefficients in the lin-
ear combination that corresponds to the energy E−, we write

which implies that

and

cB = −cAl

(d) Two simple cases

The complete solutions of the secular equations are very cum-
bersome, even for 2 × 2 determinants, but there are two cases
where the roots can be written down very simply.

We saw in the two illustrations we have worked through that,
when the two atoms are the same, and we can write αA = αB = α,
the solutions are (choosing cA to be positive)

(5.30a)

(5.30b)

In this case, the bonding orbital has the form
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and its antibonding partner is

(5.31b)

in agreement with the discussion of homonuclear diatomics we
have already given, but now with the normalization constant in
place.

The second simple case is for a heteronuclear diatomic
molecule but with S = 0 (a common approximation in ele-
mentary work). The secular determinant is then

The solutions can be expressed in terms of the parameter ζ (zeta),
with

(5.32)

and are

E− = αB − β tan ζ ψ− = −A sin ζ + B cos ζ (5.33a)

E+ = αA + β tan ζ ψ+ = A cos ζ + B sin ζ (5.33b)

An important feature revealed by these solutions is that as 
the energy difference |αB − αA | between the interacting atomic 
orbitals increases, the value of ζ decreases. We show in the fol-
lowing Justification that, when the energy difference is very large,
in the sense that |αB − αA | >> β2, the energies of the resulting
molecular orbitals differ only slightly from those of the atomic
orbitals, which implies in turn that the bonding and antibond-
ing effects are small. That is, the strongest bonding and antibond-
ing effects are obtained when the two contributing orbitals have
closely similar energies. The difference in energy between core
and valence orbitals is the justification for neglecting the contri-
bution of core orbitals to bonding. The core orbitals of one atom
have a similar energy to the core orbitals of the other atom; but
core–core interaction is largely negligible because the overlap
between them (and hence the value of β) is so small.

Justification 5.5 Bonding and antibonding effects in
heteronuclear diatomic molecules

When x << 1, we can write sin x ≈ x, cos x ≈ 1, tan x ≈ x, and
arctan x = tan−1x ≈ x. It follows that when |αB − αA| >> 2|β | and
2|β |/|αB − αA| << 1, we can write arctan 2|β |/|αB − αA| ≈
2|β |/|αB − αA| and, from eqn 5.32, ζ ≈ |β |/(αB − αA). It follows
that tan ζ ≈ |β |/(αB − αA). Noting that β is normally a nega-
tive number, so that β/|β | = −1, we can use eqn 5.33 to write

(In Problem 5.25 you are invited to derive these expressions
in a different way.) It follows that, when the energy difference
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stable (on account of the triple bond connecting the atoms) and
unreactive that nitrogen fixation, the reduction of atmospheric
N2 to NH3, is among the most thermodynamically demanding
of biochemical reactions, in the sense that it requires a great deal
of energy derived from metabolism. So taxing is the process that
only certain bacteria and archaea are capable of carrying it out,
making nitrogen available first to plants and other microorgan-
isms in the form of ammonia. Only after incorporation into
amino acids by plants does nitrogen adopt a chemical form that,
when consumed, can be used by animals in the synthesis of 
proteins and other nitrogen-containing molecules.

The reactivity of O2, while important for biological energy
conversion, also poses serious physiological problems. During
the course of the biological oxidation of glucose, a key set of re-
actions of metabolism, some electrons escape from the protein
complexes that catalyse the process with the result that some O2

is reduced to superoxide ion, O2
−. The ground-state electronic

configuration of O2
− is 1σ g

21σu
22σ g

21πu
41πg

3, so the ion is a radical
with a bond order b = 3–2. We predict that the superoxide ion is a
reactive species that must be scavenged to prevent damage to
cellular components. The enzyme superoxide dismutase pro-
tects cells by catalysing the disproportionation (or ‘dismuta-
tion’) of O2

− into O2 and H2O2:

2 O2
− + 2 H+ → H2O2 + O2

However, H2O2 (hydrogen peroxide), formed by the reaction
above and by leakage of electrons out of the respiratory chain, is
a powerful oxidizing agent and also harmful to cells. It is meta-
bolized further by catalases and peroxidases. A catalase catalyses
the reaction

2 H2O2 → 2 H2O + O2

and a peroxidase reduces hydrogen peroxide to water by oxidiz-
ing an organic molecule. For example, the enzyme glutathione
peroxidase catalyses the reaction

2 glutathionered + H2O2 → glutathioneox + 2 H2O

There is growing evidence for the involvement of the damage
caused by reactive oxygen species (ROS), such as O2

−, H2O2, and
·OH (the hydroxyl radical), in the mechanism of ageing and 
in the development of cardiovascular disease, cancer, stroke,
inflammatory disease, and other conditions. For this reason,
much effort has been expended on studies of the biochemistry of
antioxidants, substances that can either deactivate ROS directly
(as glutathione does) or halt the progress of cellular damage
through reactions with radicals formed by processes initiated 
by ROS. Important examples of antioxidants are vitamin C
(ascorbic acid), vitamin E (α-tocopherol), and uric acid.

Nitric oxide (nitrogen monoxide, NO) is a small molecule
that diffuses quickly between cells, carrying chemical messages
that help initiate a variety of processes, such as regulation of
blood pressure, inhibition of platelet aggregation, and defence
against inflammation and attacks to the immune system. The

between the atomic orbitals is so large that |αB − αA| >> β2, the
energies of the two molecular orbitals are E− ≈ αB and E+ ≈ αA.

Now consider the behaviour of the wavefunctions in the
limit of large |αB − αA|, when ζ << 1. In this case, sin ζ ≈ ζ and
cos ζ ≈ 1 and, from eqn 5.33, we write ψ− ≈ B and ψ+ ≈ A. That
is, the molecular orbitals are respectively almost pure B and
almost pure A.

Example 5.3 Calculating the molecular orbitals of HF

Calculate the wavefunctions and energies of the σ orbitals 
in the HF molecule, taking β = −1.0 eV and the following 
ionization energies: H1s: 13.6 eV, F2s: 40.2 eV, F2p: 17.4 eV.

Method Because the F2p and H1s orbitals are much closer in
energy than the F2s and H1s orbitals, to a first approximation
neglect the contribution of the F2s orbital. To use eqn 5.32,
we need to know the values of the Coulomb integrals αH and
αF. Because these integrals represent the energies of the H1s
and F2p electrons, respectively, by Koopmans’ theorem they
are approximately equal to (the negative of) the ionization
energies of the atoms. Calculate ζ from eqn 5.32 (with A
identified as F and B as H), and then write the wavefunctions
by using eqn 5.33.

Answer Setting αH = −13.6 eV and αF = −17.4 eV gives tan 2ζ
= 0.53; so ζ = 13.9°. Then

E− = −13.4 eV ψ− = 0.97χH − 0.24χF

E+ = −17.6 eV ψ+ = 0.24χH + 0.97χF

Notice how the lower energy orbital (the one with energy 
−17.6 eV) has a composition that is more F2p orbital than
H1s, and that the opposite is true of the higher energy, anti-
bonding orbital.

Self-test 5.5 The ionization energy of Cl is 13.1 eV; find the
form and energies of the σ orbitals in the HCl molecule using
β = −1.0 eV.

[E− = −12.3 eV, ψ− = −0.62χH + 0.79χCl; 
E+ = −14.4 eV, ψ+ = 0.79χH + 0.62χCl]

IMPACT ON BIOCHEMISTRY

I5.1 The biochemical reactivity of O2, N2, and NO

We can now see how some of the concepts introduced in this
chapter are applied to diatomic molecules that play a vital bio-
chemical role. At sea level, air contains approximately 23.1 per
cent O2 and 75.5 per cent N2 by mass. Molecular orbital theory
predicts—correctly—that O2 has unpaired electron spins and,
consequently, is a reactive component of the Earth’s atmosphere;
its most important biological role is as an oxidizing agent. By
contrast N2, the major component of the air we breathe, is so
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molecule is synthesized from the amino acid arginine in a series
of reactions catalysed by nitric oxide synthase and requiring O2

and NADPH.
Figure 5.34 shows the bonding scheme in NO and illustrates a

number of points we have made about heteronuclear diatomic
molecules. The ground configuration is 1σ22σ23σ21π42π1. The
3σ and 1π orbitals are predominantly of O character as that is
the more electronegative element. The highest energy occupied
orbital is 2π, contains one electron, and has more N character
than O character. It follows that NO is a radical with an unpaired
electron that can be regarded as localized more on the N atom
than on the O atom. The unoccupied orbital of lowest energy is
4σ, which is also localized predominantly on N.

Because NO is a radical, we expect it to be reactive. Its half-life
is estimated at approximately 1–5 s, so it needs to be synthesized
often in the cell. As we saw above, there is a biochemical price to
be paid for the reactivity of biological radicals. Like O2, NO par-
ticipates in some reactions that are not beneficial to the cell.
Indeed, the radicals O2

− and NO combine to form the peroxyni-
trite ion:

NO· + O2
−· → ONOO−

where we have shown the unpaired electrons explicitly. The per-
oxynitrite ion is a reactive oxygen species that damages proteins,
DNA, and lipids, possibly leading to heart disease, amyotrophic
lateral sclerosis (Lou Gehrig’s disease), Alzheimer’s disease, and
multiple sclerosis. Note that the structure of the ion is consistent
with the bonding scheme in Fig. 5.34: because the unpaired elec-
tron in NO is slightly more localized on the N atom, we expect
that atom to form a bond with an O atom from the O2

− ion.

Polyatomic molecules: the Hückel
approximation

The molecular orbitals of polyatomic molecules are built in the
same way as in diatomic molecules, the only difference being that
we use more atomic orbitals to construct them. As for diatomic

molecules, polyatomic molecular orbitals spread over the entire
molecule. A molecular orbital has the general form

(5.34)

where χi is an atomic orbital and the sum extends over all the 
valence orbitals of all the atoms in the molecule. The atomic 
orbitals used in this LCAO constitute the basis set of the calcula-
tion. To find the coefficients ci, we set up the secular equations
and the secular determinant, just as for diatomic molecules,
solve the latter for the energies, and then use these energies 
in the secular equations to find the coefficients of the atomic 
orbitals for each molecular orbital.

The principal difference between diatomic and polyatomic
molecules lies in the greater range of shapes that are possible: a
diatomic molecule is necessarily linear, but a triatomic molecule,
for instance, may be either linear or angular with a characteristic
bond angle. The shape of a polyatomic molecule—the specifica-
tion of its bond lengths and its bond angles—can be predicted
by calculating the total energy of the molecule for a variety of
nuclear positions, and then identifying the conformation that
corresponds to the lowest energy.

Molecular orbital theory takes large molecules and extended
aggregates of atoms, such as solid materials, into its stride. In
this chapter we shall consider conjugated hydrocarbons, in
which there is an alternation of single and double bonds along a
chain of carbon atoms. Although the classification of an orbital
as σ or π is strictly valid only in linear molecules, as will be 
familiar from introductory chemistry courses, it is also used to
denote the local symmetry with respect to a given A-B bond
axis. In Chapter 6, we shall develop more sophisticated tech-
niques that are applicable to any molecule and form the basis for
modern computational techniques in chemistry.

The π molecular orbital energy level diagrams of conjugated
hydrocarbons can be constructed using a set of approximations
suggested by Erich Hückel in 1931. In his approach, the π
orbitals are treated separately from the σ orbitals, and the latter
form a rigid framework that determines the general shape of 
the molecule. All the C atoms are treated identically, so all the
Coulomb integrals α for the atomic orbitals that contribute to
the π orbitals are set equal. For example, in ethene, we take the σ
bonds as fixed, and concentrate on finding the energies of the
single π bond and its companion antibond.

5.6 Ethene

We express the π orbitals as LCAOs of the C2p orbitals that lie
perpendicular to the molecular plane. In ethene, for instance, we
would write

ψ = cAA + cBB (5.35)

where the A is a C2p orbital on atom A, and so on. Next, the 
optimum coefficients and energies are found by the variation

ψ χ= ∑ci i
i
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Fig. 5.34 The molecular orbital energy level diagram for NO.
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principle as explained in Section 5.5. That is, we have to solve the
secular determinant, which in the case of ethene is eqn 5.28 with
αA = αB = α:

(5.36)

The roots of this determinant can be found very easily (they are
the same as those in the first illustration from Section 5.5c). In 
a modern computation all the resonance integrals and overlap
integrals would be included, but an indication of the molecular
orbital energy level diagram can be obtained very readily if we
make the following additional Hückel approximations:

• All overlap integrals are set equal to zero.

• All resonance integrals between non-neighbours are set
equal to zero.

• All remaining resonance integrals are set equal (to β).

These approximations are obviously very severe, but they let us
calculate at least a general picture of the molecular orbital energy
levels with very little work. The assumptions result in the fol-
lowing structure of the secular determinant:

• All diagonal elements: α − E.

• Off-diagonal elements between neighbouring atoms: β.

• All other elements: 0.

These approximations lead in the case of ethene to

(5.37)

The roots of the equation are

E± = α ± β (5.38)

The + sign corresponds to the bonding combination (β is 
negative) and the – sign corresponds to the antibonding com-
bination (Fig. 5.35). We see the effect of neglecting overlap by
comparing this result with eqn 5.30.
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The building-up principle leads to the configuration 1π2, 
because each carbon atom supplies one electron to the π system.
The highest occupied molecular orbital (HOMO) in ethene is
the 1π orbital; the lowest unoccupied molecular orbital (LUMO)
is the 2π orbital (or, as it is sometimes denoted, the 2π* orbital).
These two orbitals jointly form the frontier orbitals of the
molecule. The frontier orbitals are important because they are
largely responsible for many of the chemical and spectroscopic
properties of the molecule. For example, we can estimate that
2|β | is the π* ← π excitation energy of ethene, the energy 
required to excite an electron from the 1π to the 2π orbital. The
constant β is often left as an adjustable parameter; an approx-
imate value for π bonds formed from overlap of two C2p atomic
orbitals is about −2.4 eV (−230 kJ mol−1).

5.7 The matrix formulation of the Hückel method

In preparation for making Hückel theory more sophisticated
and readily applicable to bigger molecules, we need to reformu-
late it in terms of matrices (see Mathematical background 5). We
have seen that the secular equations that we have to solve for a
two-atom system have the form

(HAA − Ei SAA)ci,A + (HAB − Ei SAB)ci,B = 0 (5.39a)

(HBA − Ei SBA)ci,A + (HBB − Ei SBB)ci,B = 0 (5.39b)

where Hij = ∫χi*@χj dτ, Sij = ∫χi*χj dτ, and the eigenvalue Ei is that
for a wavefunction of the form ψi = ci,AA + ci,BB. (These expres-
sions generalize eqn 5.24, for which Sii = 1.) There are two
atomic orbitals, two eigenvalues, and two wavefunctions, so
there are two pairs of secular equations, with the first corres-
ponding to E1 and ψ1:

(HAA − E1SAA)c1,A + (HAB − E1SAB)c1,B = 0 (5.40a)

(HBA − E1SBA)c1,A + (HBB − E1SBB)c1,B = 0 (5.40b)

and another corresponding to E2 and ψ2:

(HAA − E2SAA)c2,A + (HAB − E2SAB)c2,B = 0 (5.40c)

(HBA − E2SBA)c2,A + (HBB − E2SBB)c2,B = 0 (5.40d)

The four expressions in eqn 5.40 can all be written as a single
equation if we introduce the following four matrices

(5.41)

where H is the hamiltonian matrix and S is the overlap matrix.
Then the entire set of equations we have to solve can be ex-
pressed as

HC = SCE (5.42)
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Fig. 5.35 The Hückel molecular orbital energy levels of ethene.
Two electrons occupy the lower π orbital.
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Self-test 5.6 Show by carrying out the necessary matrix 
multiplications that eqn 5.42 summarizes all four equations
in eqn 5.40.

In the Hückel approximation, HAA = HBB = α, HAB = HBA = β,
and we neglect overlap, setting S = 1, the unit matrix (with 1 on
the principal diagonal and 0 elsewhere). Then

HC = CE (5.43)

At this point, we multiply from the left by C −1, the inverse of the
matrix C, use C −1C = 1, and find

C −1HC = E (5.44)

In other words, to find the eigenvalues Ei, we have to find a
transformation of H that makes it diagonal. This procedure 
is called matrix diagonalization. The diagonal elements then
correspond to the eigenvalues Ei and the columns of the matrix
C that brings about this diagonalization are the coefficients of
the members of the basis set used in the calculation, and hence
give us the composition of the molecular orbitals. If there are 
N orbitals in the basis set (there are only two in our example),
then we have to diagonalize an N × N hamiltonian matrix H.
Needless to say, all such heavy numerical work is done on a 
computer.

Example 5.4 Finding the molecular orbitals by matrix
diagonalization

Set up and solve the matrix equations within the Hückel 
approximation for the π orbitals of butadiene (3).

Method The matrices will be four-dimensional for this four-
atom system with a basis set of four atomic orbitals, one on
each atom. Ignore overlap, and construct the matrix H by
using the Hückel parameters α and β. Find the matrix C that
diagonalizes H: for this step, use mathematical software. Full
details are given in Mathematical background 5.

Solution The hamiltonian matrix is
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Mathematical software then diagonalizes this matrix to

and the matrix that achieves the diagonalization is

We can conclude that the energies and molecular orbitals are

E1 = α + 1.62β ψ1 = 0.372χA + 0.602χB + 0.602χC + 0.372χD

E2 = α + 0.62β ψ2 = 0.602χA + 0.372χB − 0.372χC − 0.602χD

E3 = α − 0.62β ψ3 = 0.602χA − 0.372χB − 0.372χC + 0.602χD

E4 = α − 1.62β ψ4 = −0.372χA + 0.602χB − 0.602χC + 0.372χD

where the C2p atomic orbitals are denoted by χA, . . . , χD.
Note that the orbitals are mutually orthogonal and, with
overlap neglected, normalized.

Self-test 5.7 Repeat the exercise for the allyl radical, ·CH2-
CH=CH2.

[E = α + 21/2β, α, α − 21/2β; ψ1 = 1–2χA + ( 1–2)1/2χB + 1–2χC; 
ψ2 = ( 1–2)1/2χA − ( 1–2)1/2χC; ψ3 = 1–2χA − ( 1–2)1/2χB + 1–2χC]

5.8 Butadiene and p-electron binding energy

As we saw in the preceding example, the energies of the four
LCAO-MOs for butadiene are

E = α ± 1.62β, α ± 0.62β (5.45)

These orbitals and their energies are drawn in Fig. 5.36. Note
that, the greater the number of internuclear nodes, the higher
the energy of the orbital. There are four electrons to accommod-
ate, so the ground-state configuration is 1π22π2. The frontier 
orbitals of butadiene are the 2π orbital (the HOMO, which is
largely bonding) and the 3π orbital (the LUMO, which is largely
antibonding). ‘Largely bonding’ means that an orbital has both
bonding and antibonding interactions between various neigh-
bours, but the bonding effects dominate. ‘Largely antibonding’
indicates that the antibonding effects dominate.

An important point emerges when we calculate the total 
p-electron binding energy, Eπ, the sum of the energies of each 
π electron, and compare it with what we find in ethene. In
ethene the total energy is

Eπ = 2(α + β) = 2α + 2β
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Fig. 5.36 The Hückel molecular orbital energy levels of butadiene
and the top view of the corresponding π orbitals. The four p
electrons (one supplied by each C) occupy the two lower π
orbitals. Note that the orbitals are delocalized.

C

H

Fig. 5.37 The σ framework of benzene is formed by the overlap of
Csp2 hybrids, which fit without strain into a hexagonal
arrangement.

In butadiene it is

Eπ = 2(α + 1.62β) + 2(α + 0.62β) = 4α + 4.48β

Therefore, the energy of the butadiene molecule lies lower by
0.48β (about 110 kJ mol−1) than the sum of two individual π
bonds. This extra stabilization of a conjugated system is called
the delocalization energy. A closely related quantity is the 
p-bond formation energy, Ebf , the energy released when a π
bond is formed. Because the contribution of α is the same in 
the molecule as in the atoms, we can find the π-bond formation
energy from the π-electron binding energy by writing

Ebf = Eπ − Nα (5.46)

where N is the number of carbon atoms in the molecule. The 
π-bond formation energy in butadiene, for instance, is 4.48β.

Example 5.5 Estimating the delocalization energy

Use the Hückel approximation to find the energies of the π
orbitals of cyclobutadiene, and estimate the delocalization
energy.

Method Set up the secular determinant using the same basis
as for butadiene, but note that atoms A and D are also now
neighbours. Then solve for the roots of the secular equation
and assess the total π-bond energy. For the delocalization 
energy, subtract from the total π-bond energy the energy of
two π bonds.

Answer The hamiltonian matrix is
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Diagonalization gives the energies of the orbitals as

E = α + 2β, α, α, α − 2β

Four electrons must be accommodated. Two occupy the 
lowest orbital (of energy α + 2β), and two occupy the doubly
degenerate orbitals (of energy α). The total energy is there-
fore 4α + 4β. Two isolated π bonds would have an energy 
4α + 4β; therefore, in this case, the delocalization energy is
zero.

Self-test 5.8 Repeat the calculation for benzene.
[See next subsection]

5.9 Benzene and aromatic stability

The most notable example of delocalization conferring extra
stability is benzene and the aromatic molecules based on its
structure. Benzene is often expressed in a mixture of valence-
bond and molecular orbital terms, with typically valence-bond
language used for its σ framework and molecular orbital lan-
guage used to describe its π electrons.

First, the valence-bond component. The six C atoms are 
regarded as sp2 hybridized, with a single unhybridized perpen-
dicular 2p orbital. One H atom is bonded by (Csp2, H1s) overlap
to each C atom, and the remaining hybrids overlap to give 
a regular hexagon of atoms (Fig. 5.37). The internal angle of 
a regular hexagon is 120°, so sp2 hybridization is ideally suited
for forming σ bonds. We see that benzene’s hexagonal shape
permits strain-free σ bonding.

Now consider the molecular orbital component of the descrip-
tion. The six C2p orbitals overlap to give six π orbitals that spread
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all round the ring. Their energies are calculated within the
Hückel approximation by diagonalizing the hamiltonian matrix

The MO energies, the eigenvalues of this matrix, are simply

E = α ± 2β, α ± β, α ± β (5.47)

as shown in Fig. 5.38. The orbitals there have been given symmetry
labels, which we explain in Chapter 7. Note that the lowest 
energy orbital is bonding between all neighbouring atoms, the
highest energy orbital is antibonding between each pair of neigh-
bours, and the intermediate orbitals are a mixture of bonding,
nonbonding, and antibonding character between adjacent atoms.

We now apply the building-up principle to the π system.
There are six electrons to accommodate (one from each C
atom), so the three lowest orbitals (a2u and the doubly degener-
ate pair e1g) are fully occupied, giving the ground-state configu-
ration a2

2ue4
1g. A significant point is that the only molecular

orbitals occupied are those with net bonding character.
The π-electron energy of benzene is

Eπ = 2(α + 2β) + 4(α + β) = 6α + 8β

If we ignored delocalization and thought of the molecule as 
having three isolated π bonds, it would be ascribed a π-electron
energy of only 3(2α + 2β) = 6α + 6β. The delocalization energy
is therefore 2β ≈ −460 kJ mol−1, which is considerably more than
for butadiene. The π-bond formation energy in benzene is 8β.
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This discussion suggests that aromatic stability can be traced
to two main contributions. First, the shape of the regular
hexagon is ideal for the formation of strong σ bonds: the σ
framework is relaxed and without strain. Second, the π orbitals
are such as to be able to accommodate all the electrons in bond-
ing orbitals, and the delocalization energy is large.

The theoretical principles we have developed here are ex-
panded and applied in subsequent chapters. In Chapter 6, we 
see how more sophisticated computational techniques based on
the variation principle can lead to the prediction of molecular
structure and reactivity. In Chapter 9, we apply the matrix for-
malism of the Hückel method to a discussion of the structure of
solids.

b2g

e2u

e1g

a2u

Fig. 5.38 The Hückel orbitals of benzene and the corresponding
energy levels. The symmetry labels are explained in Chapter 7.
The bonding and antibonding character of the delocalized
orbitals reflects the numbers of nodes between the atoms. 
In the ground state, only the bonding orbitals are occupied.

Checklist of key ideas

1. In the Born–Oppenheimer approximation, nuclei are
treated as stationary while electrons move around them.

2. In valence-bond theory (VB theory), a bond is regarded as
forming when an electron in an atomic orbital on one atom
pairs its spin with that of an electron in an atomic orbital on
another atom.

3. A valence-bond wavefunction with cylindrical symmetry
around the internuclear axis is a σ bond. A π bond arises
from the merging of two p orbitals that approach side-by-
side and the pairing of electrons that they contain.

4. Hybrid orbitals are mixtures of atomic orbitals on the same
atom and are invoked in VB theory to explain molecular
geometries.

5. In molecular orbital theory (MO theory), electrons are
treated as spreading throughout the entire molecule.

6. A bonding orbital is a molecular orbital that, if occupied,
contributes to the strength of a bond between two atoms. An
antibonding orbital is a molecular orbital that, if occupied,
decreases the strength of a bond between two atoms.

7. A σ molecular orbital has zero orbital angular momentum
about the internuclear axis. A π molecular orbital has one
unit of angular momentum around the internuclear axis; in
a linear molecule, it has a nodal plane that includes the
internuclear axis.

8. The electronic configurations of homonuclear diatomic
molecules are shown in Figs. 5.29 and 5.31.
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9. When constructing molecular orbitals, we need to consider
only combinations of atomic orbitals of similar energies and
of the same symmetry around the internuclear axis.

10. The bond order of a diatomic molecule is b = 1–2(n − n*),
where n and n* are the numbers of electrons in bonding and
antibonding orbitals, respectively.

11. The electronegativity, χ, of an element is the power of its
atoms to draw electrons to itself when it is part of a
compound.

12. In a bond between dissimilar atoms, the atomic orbital
belonging to the more electronegative atom makes the larger
contribution to the molecular orbital with the lowest energy.
For the molecular orbital with the highest energy, the
principal contribution comes from the atomic orbital
belonging to the less electronegative atom.

13. The hamiltonian matrix, H, is formed of all integrals 
Hij = ∫ψi*@ψj dτ. The overlap matrix, S, is formed of all 
Sij = ∫ψi*ψj dτ.

14. The variation principle states that, if an arbitrary
wavefunction is used to calculate the energy, the value
calculated is never less than the true energy.

15. In the Hückel method, all Coulomb integrals Hii are set
equal (to α), all overlap integrals Sij for i ≠ j are set equal to
zero, all resonance integrals Hij between non-neighbours are
set equal to zero, and all remaining resonance integrals are
set equal (to β).

16. The π-electron binding energy is the sum of the energies of
each π electron. The π-bond formation energy is the energy
released when a π bond is formed. The delocalization energy
is the extra stabilization of a conjugated system.

Discussion questions

5.1 State and compare the approximations on which the valence-bond
and molecular orbital theories are based.

5.2 Discuss the role of the Born–Oppenheimer approximation in the
calculation of a molecular potential energy curve or surface.

5.3 Write the Lewis structure of the peroxynitrite ion, ONOO-. Label
each atom with its state of hybridization and specify the composition of
each of the different types of bond.

5.4 Describe the various types of hybrid orbitals and how they are used
to describe the bonding in alkanes, alkenes, and alkynes. How does
hybridization explain that in allene, CH2=C=CH2, the two CH2 groups
lie in perpendicular planes?

5.5 Describe the Pauling and Mulliken electronegativity scales. Why
should they be approximately in step?

5.6 Discuss the steps involved in the calculation of the energy 
of a system by using the variation principle. Are any assumptions
involved?

5.7 Discuss the scope, consequences, and limitations of the
approximations on which the Hückel method is based.

5.8 Distinguish between delocalization energy, π-electron binding
energy, and π-bond formation energy. Explain how each concept is
employed.

5.9 Use concepts of molecular orbital theory to describe the chemical
and biochemical reactivity of O2, N2, and NO.

5.10 Draw diagrams to show the various orientations in which a p
orbital and a d orbital on adjacent atoms may form bonding and
antibonding molecular orbitals.

Exercises

5.1(a) Describe the structure of a P2 molecule in valence-bond terms.
Why is P4 a more stable form of molecular phosphorus?

5.1(b) Describe the structures of SO2 and SO3 in terms of valence-bond
theory.

5.2(a) Describe the bonding in 1,3-butadiene using hybrid orbitals.

5.2(b) Describe the bonding in 1,3-pentadiene using hybrid orbitals.

5.3(a) Show that the linear combinations h1 = s + px + py + pz and 
h2 = s − px − py + pz are mutually orthogonal.

5.3(b) Show that the linear combinations h1 = (sin ζ)s + (cos ζ)p and 
h2 = (cos ζ)s − (sin ζ)p are mutually orthogonal for all values of the
angle ζ.

5.4(a) Normalize the sp2 hybrid orbital h = s + 21/2p given that the s and p
orbitals are each normalized to 1.

5.4(b) Normalize the linear combinations in Exercise 5.3b given that the
s and p orbitals are each normalized to 1.

5.5(a) Give the ground-state electron configurations and bond orders of
(a) Li2, (b) Be2, and (c) C2.

5.5(b) Give the ground-state electron configurations of (a) F2
−, 

(b) N2, and (c) O2
2−.

5.6(a) Give the ground-state electron configurations of (a) CO, 
(b) NO, and (c) CN−.

5.6(b) Give the ground-state electron configurations of (a) XeF, 
(b) PN, and (c) O2

−.

5.7(a) From the ground-state electron configurations of B2 and C2,
predict which molecule should have the greater bond dissociation
energy.

5.7(b) From the ground-state electron configurations of Li2 and Be2,
predict which molecule should have the greater bond dissociation
energy.

5.8(a) Which of the molecules N2, NO, O2, C2, F2, and CN would you
expect to be stabilized by the addition of an electron to form AB−?
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5.8(b) Which of the molecules N2, NO, O2, C2, F2, and CN would you
expect to be stabilized by the removal of an electron to form AB+?

5.9(a) Sketch the molecular orbital energy level diagram for XeF and
deduce its ground-state electron configuration. Is XeF likely to have a
shorter bond length than XeF+?

5.9(b) Sketch the molecular orbital energy level diagram for IF and
deduce its ground-state electron configuration. Is IF likely to have a
shorter bond length than IF− or IF+?

5.10(a) Use the electron configurations of NO− and O2
+ to predict which

is likely to have the shorter bond length.

5.10(b) Arrange the species O2
+, O2, O2

−, O2
2− in order of increasing bond

length.

5.11(a) For each of the species in Exercise 5.10b, specify which molecular
orbital is the HOMO.

5.11(b) For each of the species in Exercise 5.10b, specify which molecular
orbital is the LUMO.

5.12(a) Give the parities of the wavefunctions for the first four levels of a
harmonic oscillator. How may the parity be expressed in terms of the
quantum number v?

5.12(b) State the parities of the six π orbitals of benzene.

5.13(a) Normalize the molecular orbital ψ = ψA + λψB in terms of the
parameter λ and the overlap integral S.

5.13(b) A better description of the molecule in Exercise 5.13a might 
be obtained by including more orbitals on each atom in the linear
combination. Normalize the molecular orbital ψ = ψA + λψB + λ′ψB′ in
terms of the parameters λ and λ′ and the appropriate overlap integrals 
S, where ψB and ψB′ are mutually orthogonal orbitals on atom B.

5.14(a) Suppose that a molecular orbital has the (unnormalized) form
0.145A + 0.844B. Find a linear combination of the orbitals A and B that 
is orthogonal to this combination and determine the normalization
constants of both combinations using S = 0.250.

5.14(b) Suppose that a molecular orbital has the (unnormalized) form
0.727A + 0.144B. Find a linear combination of the orbitals A and B that 
is orthogonal to this combination and determine the normalization
constants of both combinations using S = 0.117.

5.15(a) What is the speed of a photoelectron ejected from an orbital 
of ionization energy 12.0 eV by a photon of radiation of wavelength 
100 nm?

5.15(b) What is the speed of a photoelectron ejected from a molecule
with radiation of energy 21 eV and known to come from an orbital of
ionization energy 12 eV?

5.16(a) A reasonably reliable conversion between the Mulliken 
and Pauling electronegativity scales is given in Section 5.5b. Using 
Table 5.4, comment on how good the conversion formula is for 
Period 2 elements.

5.16(b) A reasonably reliable conversion between the Mulliken 
and Pauling electronegativity scales is given in Section 5.5b. Using 
Table 5.4, comment on how good the conversion formula is for 
Period 3 elements.

5.17(a) The languages of valence-bond theory and molecular orbital
theory are commonly combined when discussing unsaturated organic
compounds. Construct the molecular orbital energy level diagrams of
ethene on the basis that the molecule is formed from the appropriately
hybridized CH2 or CH fragments.

5.17(b) The languages of valence-bond theory and molecular orbital
theory are commonly combined when discussing unsaturated organic
compounds. Construct the molecular orbital energy level diagrams of
ethyne (acetylene) on the basis that the molecule is formed from the
appropriately hybridized CH2 or CH fragments.

5.18(a) Write down the secular determinants for (a) linear H3, (b) cyclic
H3 within the Hückel approximation.

5.18(b) Write down the secular determinants for (a) butadiene, 
(b) cyclobutadiene within the Hückel approximation.

5.19(a) Predict the electron configurations of (a) the benzene anion, (b)
the benzene cation. Estimate the π-electron binding energy in each case.

5.19(b) Predict the electron configurations of (a) the allyl radical, (b) the
cyclobutadiene cation. Estimate the π-electron binding energy in each
case.

5.20(a) Compute the delocalization energy and π-bond formation energy
of (a) the benzene anion, (b) the benzene cation.

5.20(b) Compute the delocalization energy and π-bond formation
energy of (a) the ally radical, (b) the cyclobutadiene cation.

5.21(a) Write down the secular determinants for (a) anthracene (4), 
(b) phenanthrene (5) within the Hückel approximation and using the
C2p orbitals as the basis set.

5.21(b) Write down the secular determinants for (a) azulene (6), 
(b) acenaphthalene (7) within the Hückel approximation and using the
C2p orbitals as the basis set.

5.22(a) Use mathematical software to estimate the π-electron binding
energy of (a) anthracene (4), (b) phenanthrene (5) within the Hückel
approximation.

5.22(b) Use mathematical software to estimate the π-electron binding
energy of (a) azulene (6), (b) acenaphthalene (7) within the Hückel
approximation.
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Problems*

Numerical problems

5.1 Calculate the molar energy of repulsion between two hydrogen
nuclei at the separation in H2 (74.1 pm). The result is the energy 
that must be overcome by the attraction from the electrons that 
form the bond. Does the gravitational attraction between them 
play any significant role? Hint. The gravitational potential energy of 
two masses is equal to −Gm1m2/r where G = 6.673 × 10−11 Nm2 kg−2

is the gravitational constant.

5.2 Show that if a wave cos kx centred on A (so that x is measured from
A) interferes with a similar wave cos k′x centred on B (with x measured
from B) a distance R away, then constructive interference occurs in the
intermediate region when k = k′ = π/2R and destructive interference if 
kR = 1–2 π and k′R = 3–2 π.

5.3 The overlap integral between two H1s orbitals on nuclei separated by
a distance R is S = {1 + (R/a0) + 1–3 (R/a0)2}e−R/a0. Plot this expression as a
function of R and account for its variation.

5.4 Before doing the calculation below, sketch how the overlap between
an s orbital and a 2p orbital directed towards it can be expected to
depend on their separation. The overlap integral between an H1s orbital
and an H2p orbital directed towards it on nuclei separated by a distance
R is S = (R/a0){1 + (R/a0) + 1–3 (R/a0)2}e−R/a0. Plot this function, and find
the separation for which the overlap is a maximum.

5.5 Calculate the total amplitude of the normalized bonding and
antibonding LCAO-MOs that may be formed from two H1s orbitals at 
a separation of 106 pm. Plot the two amplitudes for positions along the
molecular axis both inside and outside the internuclear region.

5.6 Repeat the calculation in Problem 5.5 but plot the probability
densities of the two orbitals. Then form the difference density, the
difference between ψ2 and 1–2 (ψA

2 + ψB
2 ).

5.7‡ Use the 2px and 2pz hydrogenic atomic orbitals to construct 
simple LCAO descriptions of 2pσ and 2pπ molecular orbitals. 
(a) Make a probability density plot, and both surface and contour plots
of the xz-plane amplitudes of the 2pzσ and 2pzσ* molecular orbitals. 
(b) Make surface and contour plots of the xz-plane amplitudes of the
2pxπ and 2pxπ* molecular orbitals. Include plots for both an
internuclear distance, R, of 10a0 and 3a0, where a0 = 52.9 pm. Interpret
the graphs, and explain why this graphical information is useful.

5.8 Imagine a small electron-sensitive probe of volume 1.00 pm3

inserted into an H2
+ molecule-ion in its ground state. Calculate the

probability that it will register the presence of an electron at the
following positions: (a) at nucleus A, (b) at nucleus B, (c) halfway
between A and B, (c) at a point 20 pm along the bond from A and 10 pm
perpendicularly. Do the same for the molecule-ion the instant after the
electron has been excited into the antibonding LCAO-MO.

5.9 The energy of H2
+ with internuclear separation R is given by the

expression

where EH is the energy of an isolated H atom, V1 is the attractive
potential energy between the electron centred on one nucleus and the
charge of the other nucleus; V2 is the attraction between the overlap
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density and one of the nuclei; S is the overlap integral. The values are
given below. Plot the molecular potential energy curve and find the bond
dissociation energy (in electronvolts) and the equilibrium bond length.

R/a0 0 1 2 3 4

V1/Eh 1.000 0.729 0.472 0.330 0.250

V2/Eh 1.000 0.736 0.406 0.199 0.092

S 1.000 0.858 0.587 0.349 0.189

where Eh = 27.2 eV, a0 = 52.9 pm, and EH = − 1–2 Eh.

5.10 The same data as in Problem 5.9 may be used to calculate the
molecular potential energy curve for the antibonding orbital, which is
given by

Plot the curve. Examine whether occupation of the bonding orbital with
one electron (as calculated in the preceding problem) has a greater or
lesser bonding effect than occupation of the antibonding orbital with
one electron. Is that true at all internuclear separations?

5.11‡ The LCAO-MO approach described in the text can be used to
introduce numerical methods needed in quantum chemistry. In this
problem we evaluate the overlap, Coulomb, and resonance integrals
numerically and compare the results with the analytical equations 
(eqns 5.12). (a) Use the LCAO-MO wavefunction and the H2

+

hamiltonian to derive equations 5.11 and 5.12 for the relevant integrals
and use mathematical software or an electronic spreadsheet to evaluate
the overlap, Coulomb, and resonance integrals numerically, and the total
energy for the 1sσg MO in the range a0 < R < 4a0. Compare the results
obtained by numerical integration with results obtained analytically. 
(b) Use the results of the numerical integrations to draw a graph of the
total energy, E(R), and determine the minimum of total energy, the
equilibrium internuclear distance, and the dissociation energy (De ).

5.12 In a particular photoelectron spectrum using 21.21 eV photons,
electrons were ejected with kinetic energies of 11.01 eV, 8.23 eV, and
5.22 eV. Sketch the molecular orbital energy level diagram for the
species, showing the ionization energies of the three identifiable orbitals.

5.13 Set up and solve the Hückel secular equations for the π electrons 
of CO3

2−. Express the energies in terms of the Coulomb integrals αO and
αC and the resonance integral β. Determine the delocalization energy of
the ion.

5.14 In the ‘free electron molecular orbital’ (FEMO) theory, the
electrons in a conjugated molecule are treated as independent 
particles in a box of length L. Sketch the form of the two occupied
orbitals in butadiene predicted by this model and predict the 
minimum excitation energy of the molecule. The conjugated tetraene
CH2=CHCH=CHCH=CHCH=CH2 can be treated as a box of length
8R, where R ≈ 140 pm (as in this case, an extra half bond-length is often
added at each end of the box). Calculate the minimum excitation energy
of the molecule and sketch the HOMO and LUMO. Estimate the colour
a sample of the compound is likely to appear in white light.

5.15 The FEMO theory (Problem 5.14) of conjugated molecules is rather
crude and better results are obtained with simple Hückel theory. (a) For
a linear conjugated polyene with each of N carbon atoms contributing an
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* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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electron in a 2p orbital, the energies Ek of the resulting π molecular
orbitals are given by:

Use this expression to determine a reasonable empirical estimate of 
the resonance integral β for the homologous series consisting of ethene,
butadiene, hexatriene, and octatetraene given that π←π ultraviolet
absorptions from the HOMO to the LUMO occur at 61 500, 46 080, 
39 750, and 32 900 cm−1, respectively. (b) Calculate the π-electron
delocalization energy, Edeloc = Eπ −n(α + β), of octatetraene, where 
Eπ is the total π-electron binding energy and n is the total number 
of π electrons. (c) In the context of this Hückel model, the π molecular
orbitals are written as linear combinations of the carbon 2p orbitals. 
The coefficient of the jth atomic orbital in the kth molecular orbital is
given by:

Determine the values of the coefficients of each of the six 2p orbitals in
each of the six π molecular orbitals of hexatriene. Match each set of
coefficients (that is, each molecular orbital) with a value of the energy
calculated with the expression given in part (a) of the molecular orbital.
Comment on trends that relate the energy of a molecular orbital with its
‘shape’, which can be inferred from the magnitudes and signs of the
coefficients in the linear combination that describes the molecular
orbital.

5.16 For monocyclic conjugated polyenes (such as cyclobutadiene and
benzene) with each of N carbon atoms contributing an electron in a 2p
orbital, simple Hückel theory gives the following expression for the
energies Ek of the resulting π molecular orbitals:

(a) Calculate the energies of the π molecular orbitals of benzene and
cyclooctatetraene. Comment on the presence or absence of degenerate
energy levels. (b) Calculate and compare the delocalization energies of
benzene (using the expression above) and hexatriene (see Problem 5.15).
What do you conclude from your results? (c) Calculate and compare the
delocalization energies of cyclooctatetraene and octatetraene. Are your
conclusions for this pair of molecules the same as for the pair of
molecules investigated in part (b)?

5.17 Set up the secular determinants for the molecules treated in
Problem 5.15 and diagonalize them by using mathematical software. Use
your results to show that the π molecular orbitals of linear polyenes obey
the following rules:

• The π molecular orbital with lowest energy is delocalized over all
carbon atoms in the chain.

• The number of nodal planes between C2p orbitals increases with the
energy of the π molecular orbital.

5.18 Set up the secular determinants for cyclobutadiene, benzene, and
cyclooctatetraene and diagonalize them by using mathematical software.
Use your results to show that the π molecular orbitals of monocyclic
polyenes with an even number of carbon atoms follow a pattern in which:

• The π molecular orbitals of lowest and highest energy are 
non-degenerate.

• The remaining π molecular orbitals exist as degenerate pairs.
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5.19 Electronic excitation of a molecule may weaken or strengthen some
bonds because bonding and antibonding characteristics differ between
the HOMO and the LUMO. For example, a carbon–carbon bond in a
linear polyene may have bonding character in the HOMO and
antibonding character in the LUMO. Therefore, promotion of an
electron from the HOMO to the LUMO weakens this carbon–carbon
bond in the excited electronic state, relative to the ground electronic
state. Consult Figs. 5.36 and 5.38 and discuss in detail any changes in
bond order that accompany the π←π ultraviolet absorptions in
butadiene and benzene.

Theoretical problems

5.20 An sp2 hybrid orbital that lies in the xy-plane and makes an angle of
120° to the x-axis has the form

Use hydrogenic atomic orbitals to write the explicit form of the hybrid
orbital. Show that it has its maximum amplitude in the direction
specified.

5.21 In Problems 5.9 and 5.10 you were invited to use a numerical
procedure to explore the relative bonding and antibonding
characteristics of molecular orbitals. In this problem, proceed as far 
as you can analytically by setting up an expression for 1–2 (E(antibond) +
E(bond)) and explore its consequences. At some stage, you will have 
to proceed numerically. Show that the antibonding orbital is more
antibonding than the bonding orbital is bonding at most internuclear
separations. At what separation is that no longer true?

5.22 Show, if overlap is ignored, (a) that any molecular orbital expressed
as a linear combination of two atomic orbitals may be written in the
form ψ = ψA cos θ + ψB sin θ, where θ is a parameter that varies between
0 and π, and (b) that, if ψA and ψB are orthogonal and normalized to 1,
then ψ is also normalized to 1. (c) To what values of θ do the bonding
and antibonding orbitals in a homonuclear diatomic molecule
correspond?

5.23 Derive eqns 5.11 and 5.14 by working with the normalized 
LCAO-MOs for the H2

+ molecule-ion (Section 5.3a). Proceed by
evaluating the expectation value of the hamiltonian for the ion. Make 
use of the fact that A and B each individually satisfy the Schrödinger
equation for an isolated H atom.

5.24 Suppose that the function ψ = Ae−ar2
, with A being the

normalization constant and a being an adjustable parameter, is used as a
trial wavefunction for the 1s orbital of the hydrogen atom. Show that

where e is the fundamental charge, and μ is the reduced mass for 
the H atom. What is the minimum energy associated with this trial
wavefunction?

5.25 We saw in Section 5.5 that, to find the energies of the bonding and
antibonding orbitals of a heteronuclear diatomic molecule, we need to
solve the secular determinant

where αA ≠ αB and we have taken S = 0. Equations 5.33a and 5.33b give
the general solution to this problem. Here, we shall develop the result for
the case (αB − αA)2 >> β2. (a) Begin by showing that
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where E+ and E− are the energies of the bonding and antibonding
molecular orbitals, respectively. (b) Now use the expansion

to show that

which is the limiting result used in Justification 5.5.

5.26 Explore the consequences of not setting S = 0 in the preceding
problem.

5.27‡ Prove that for an open chain of N conjugated carbons the
characteristic polynomial of the secular determinant (the polynomial
obtained by expanding the determinant), PN(x), where x = (α − E)/β,
obeys the recurrence relation PN = xPN−1 − PN−2, with P1 = x and P0 = 1.

5.28 You will recall from your previous study of chemistry that the
standard potential is a measure of the thermodynamic tendency of an
atom, ion, or molecule to accept an electron (see also Chapter 17).
Studies indicate that there is a correlation between the LUMO energy
and the standard potential of aromatic hydrocarbons. Do you expect the
standard potential to increase or decrease as the LUMO energy
decreases? Explain your answer.

Applications: to astrophysics and biology

5.29‡ In Exercise 5.18a you were invited to set up the Hückel secular
determinant for linear and cyclic H3. The same secular determinant
applies to the molecular ions H3

+ and D3
+. The molecular ion H3

+ was
discovered as long ago as 1912 by J.J. Thomson but the equilateral
triangular structure was confirmed by M.J. Gaillard et al. much more
recently (Phys. Rev. A17, 1797 (1978)). The molecular ion H3

+ is the
simplest polyatomic species with a confirmed existence and plays an
important role in chemical reactions occurring in interstellar clouds that
may lead to the formation of water, carbon monoxide, and ethyl alcohol.
The H3

+ ion has also been found in the atmospheres of Jupiter, Saturn,
and Uranus. (a) Solve the Hückel secular equations for the energies of
the cyclic H3 system in terms of the parameters α and β, draw an energy
level diagram for the orbitals, and determine the binding energies of H3

+,
H3, and H3

−. (b) Accurate quantum mechanical calculations by G.D.
Carney and R.N. Porter (J. Chem. Phys. 65, 3547 (1976)) give the
dissociation energy for the process H3

+ → H + H + H+ as 849 kJ mol−1.
From this information and data in Table 5.3, calculate the enthalpy 
of the reaction H+(g) + H2(g) → H3

+(g). (c) From your equations and 
the information given, calculate a value for the resonance integral β
in H3

+. Then go on to calculate the binding energies of the other H3
species in (a).

5.30‡ There is some indication that other hydrogen ring compounds
and ions in addition to H3 and D3 species may play a role in interstellar
chemistry. According to J. S. Wright and G.A. DiLabio ( J. Phys. 
Chem. 96, 10793 (1992)), H5

−, H6, and H7
+ are particularly stable 

whereas H4 and H5
+ are not. Confirm these statements by Hückel

calculations.

5.31 Here we develop a molecular orbital theory treatment of the
peptide group (8), which links amino acids in proteins, and establish the
features that stabilize its planar conformation.
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(a) It will be familiar from introductory chemistry that valence-bond
theory explains the planar conformation by invoking delocalization of
the π bond over the oxygen, carbon, and nitrogen atoms by resonance:

It follows that we can model the peptide group using molecular orbital
theory by making LCAO-MOs from 2p orbitals perpendicular to the
plane defined by the O, C, and N atoms. The three combinations have
the form:

ψ1 = aψO + bψC + cψN ψ2 = dψO − eψN ψ3 = fψO − gψC + hψN

where the coefficients a to h are all positive. Sketch the orbitals ψ1, ψ2,
and ψ3 and characterize them as bonding, non-bonding, or antibonding
molecular orbitals. In a non-bonding molecular orbital, a pair of
electrons resides in an orbital confined largely to one atom and not
appreciably involved in bond formation. (b) Show that this treatment 
is consistent only with a planar conformation of the peptide link. 
(c) Draw a diagram showing the relative energies of these molecular
orbitals and determine the occupancy of the orbitals. Hint. Convince
yourself that there are four electrons to be distributed among the
molecular orbitals. (d) Now consider a non-planar conformation 
of the peptide link, in which the O2p and C2p orbitals are perpendicular
to the plane defined by the O, C, and N atoms, but the N2p orbital lies
on that plane. The LCAO-MOs are given by

ψ4 = aψO + bψC ψ5 = eψN ψ6 = fψO − gψC

Just as before, sketch these molecular orbitals and characterize them 
as bonding, non-bonding, or antibonding. Also, draw an energy 
level diagram and determine the occupancy of the orbitals. (e) Why
is this arrangement of atomic orbitals consistent with a non-planar
conformation for the peptide link? (f) Does the bonding MO associated
with the planar conformation have the same energy as the bonding MO
associated with the non-planar conformation? If not, which bonding
MO is lower in energy? Repeat the analysis for the non-bonding and
antibonding molecular orbitals. (g) Use your results from parts 
(a)–(f) to construct arguments that support the planar model for 
the peptide link.

5.32 Carbon is an essential building block of complex biological
structures. It can form covalent bonds with many other elements, such as
hydrogen, nitrogen, oxygen, sulfur, and, more importantly, other carbon
atoms. As a consequence, such networks as long carbon–carbon chains
(as in lipids) and chains of peptide links can form readily. Furthermore,
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carbon atoms can form chains and rings containing single, double, or
triple C-C bonds. Such a variety of bonding options leads to the
intricate molecular architectures of proteins, nucleic acids, and cell
membranes. But the balance of bond strengths is critical to biology:
bonds need to be sufficiently strong to maintain the structure of the cell
and yet need to be susceptible to dissociation and rearrangement during

biochemical reactions. Discuss how the following properties of carbon
explain the bonding features that make it an ideal biological building
block: (i) among the elements in Period 2, carbon has intermediate
values of the ionization energy, electron affinity, and electronegativity;
(ii) carbon has four valence electrons; and (iii) a C-C bond is stronger
than a C-N or C-O bond.
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MATHEMATICAL BACKGROUND 5

Matrices

A matrix is an array of numbers that is a generalization of 
an ordinary number. We shall consider only square matrices,
which have the numbers arranged in the same number of rows
and columns. By using matrices, we can manipulate large num-
bers of ordinary numbers simultaneously. A determinant is a
particular combination of the numbers that appear in a matrix
and is used to manipulate the matrix.

Matrices may be combined together by addition or multi-
plication according to generalizations of the rules for ordinary
numbers. Although we describe below the key algebraic pro-
cedures involving matrices, it is important to note that most 
numerical matrix manipulations are now carried out with
mathematical software. You are encouraged to use such 
software if it is available to you.

MB5.1 Definitions

Consider a square matrix M of n2 numbers arranged in n
columns and n rows. These n2 numbers are the elements of the
matrix, and may be specified by stating the row, r, and column,
c, at which they occur. Each element is therefore denoted Mrc. A
diagonal matrix is a matrix in which the only nonzero elements
lie on the major diagonal (the diagonal from M11 to Mnn). Thus,
the matrix

is a 3 × 3 diagonal square matrix. The condition may be written

Mrc = mrδrc (MB5.1)

where δrc is the Kronecker delta (Further information 1.1), which
is equal to 1 for r = c and to 0 for r ≠ c. In the above example, 
m1 = 1, m2 = 2, and m3 = 1. The unit matrix, 1 (and occasionally
I), is a special case of a diagonal matrix in which all nonzero 
elements are 1.

The transpose of a matrix M is denoted MT and is defined by

MT
mn = Mnm (MB5.2)

That is, the element in row n, column m of the original matrix
becomes the element in row m, column n of the transpose (in
effect, the elements are reflected across the diagonal). The deter-
minant, |M |, of the matrix M is a real number arising from a
specific procedure for taking sums and differences of products
of matrix elements. For example, a 2 × 2 determinant is evalu-
ated as

D =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 0 0
0 2 0
0 0 1

(MB5.3a)

and a 3 × 3 determinant is evaluated by expanding it as a sum of
2 × 2 determinants:

(MB5.3b)

= a(ei − fh) − b(di − fg) + c(dh − eg)

Note the sign change in alternate columns (b occurs with a 
negative sign in the expansion). An important property of a 
determinant is that, if any two rows or any two columns are 
interchanged, then the determinant changes sign.

l A BRIEF ILLUSTRATION

The matrix

is a 2 × 2 matrix with the elements M11 = 1, M12 = 2, M21 = 3,
and M22 = 4. Its transpose is

and its determinant is

l

MB5.2 Matrix addition and multiplication

Two matrices M and N may be added to give the sum S = M + N,
according to the rule

Src = Mrc + Nrc (MB5.4)

That is, corresponding elements are added.
Two matrices may also be multiplied to give the product

P = MN according to the rule

(MB5.5)

These procedures are illustrated in Fig. MB5.1. It should be 
noticed that in general MN ≠ NM, and matrix multiplication is
in general non-commutative (that is, depends on the order of
multiplication).

l A BRIEF ILLUSTRATION

Consider the matrices

and
 
N = ⎛

⎝⎜
⎞
⎠⎟

5 6
7 8

 
M = ⎛

⎝⎜
⎞
⎠⎟

1 2
3 4

P M Nrc rn nc
n

= ∑

| |M = = × − × = −1 2
3 4

1 4 2 3 2

M T = ⎛
⎝⎜

⎞
⎠⎟

1 3
2 4

 
M = ⎛

⎝⎜
⎞
⎠⎟

1 2
3 4

a b c
d e f
g h i

a
e f
h i

b
d f
g i

c
d e
g h

= − +

a b
c d

ad bc= −
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Their sum is

and their product is

l

The inverse of a matrix M is denoted M−1, and is defined so that

MM −1 = M −1M = 1 (MB5.6)

The inverse of a matrix can be constructed by using mathemat-
ical software, but in simple cases the following procedure can be
carried through without much effort:

1. Form the determinant of the matrix, |M |.
2. Form the transpose of the matrix, MT.

3. Form the matrix of co-factors, M′, of MT.

4. Construct the inverse as M −1 = M′/|M |

In step 3, the element M ′rc of the matrix M′ is the co-factor of 
the element M T

rc of the transposed matrix MT. To form this 
co-factor, form the determinant from MT with the row r and
column c struck out and multiply the determinant by (−1)r+c.
Then construct M′ by repeating this operation for all the ele-
ments of MT. At this point you will certainly come to appreciate
the usefulness of mathematical software, which performs all
these operations automatically!

 
= × + × × + ×

× + × × + ×
⎛
⎝⎜

⎞
⎠⎟

=1 5 2 7 1 6 2 8
3 5 4 7 3 6 4 8

19 22
43 500

⎛
⎝⎜

⎞
⎠⎟

P = ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1 2
3 4

5 6
7 8

 
S = ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

1 2
3 4

5 6
7 8

6 8
10 12

l A BRIEF ILLUSTRATION

Consider the matrix M from the first illustration in this sec-
tion. We know from that illustration that:

1. The determinant of M is |M | = −2.

2. The transpose of M is 

3. The matrix of co-factors of MT is 

For example, to form the element M ′11, we strike out the 1 3 in
the first row of MT and the 1 2 in the first column, and then
form the determinant of what is left, just the number 4,
which, upon multiplication by (−1)1+1, becomes the 11 ele-
ment of M ′.

4. It follows that the inverse of M is

l

MB5.3 Eigenvalue equations

An eigenvalue equation is an equation of the form

Mx = λx (MB5.7a)

where M is a square matrix with n rows and n columns, λ is a
constant, the eigenvalue, and x is the eigenvector, an n × 1 (col-
umn) matrix that satisfies the conditions of the eigenvalue equa-
tion and has the form:

In general, there are n eigenvalues λ(i), i = 1,2, . . . n, and n corre-
sponding eigenvectors x(i). We write eqn MB5.7a as (noting that
1x = x)

(M − λ1)x = 0 (MB5.7b)

Equation MB5.7b has a solution only if the determinant |M − λ1|
of the coefficients of the matrix M − λ1 is zero. It follows that the
n eigenvalues may be found from the solution of the secular
equation:

|M − λ1| = 0 (MB5.8)

A brief comment If the inverse of the matrix M − λ1 exists,
then, from eqn MB5.7b, (M − λ1)−1(M − λ1)x = x = 0, a tri-
vial solution. For a nontrivial solution, (M − λ1)−1 must not
exist, which is the case if eqn MB5.8 holds.

x =
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−

⎛
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⎠
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.

M T =
⎛
⎝
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⎞
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.

=
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6

Fig. MB5.1 (a) The addition of two matrices: adding the matrix
elements represented by triangles of the same colour in the matrices 
to the left of the equal sign gives the matrix element represented by 
the corresponding square in the matrix to the right of the equal sign.
(b) The multiplication of matrices: to evaluate the matrix element
represented by the red square, multiply the matrix elements
represented by the triangles of the same colour in the intersecting 
row and column and add these products together.
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l A BRIEF ILLUSTRATION

Once again we use the matrix M in the first illustration, and
write eqn MB5.7 as

rearranged into

From the rules of matrix multiplication, the latter form 
expands into

which is simply a statement of the two simultaneous equations

(1 − λ)x1 + 2x2 = 0 and 3x1 + (4 − λ)x2 = 0

The condition for these two equations to have solutions is

This condition corresponds to the quadratic equation

λ2 − 5λ − 2 = 0

with solutions λ = +5.372 and λ = −0.372, the two eigenvalues
of the original equation. l

The n eigenvalues found by solving the secular equations are
used to find the corresponding eigenvectors. To do so, we begin
by considering an n × n matrix X which will be formed from the
eigenvectors corresponding to all the eigenvalues. Thus, if the
eigenvalues are λ1, λ2, . . . , and the corresponding eigenvectors are

etc. (MB5.9a)

the matrix X is

(MB5.9b)

Similarly, we form an n × n matrix L with the eigenvalues λ
along the diagonal and zeroes elsewhere:

(MB5.10)
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Now all the eigenvalue equations Mx(i) = λi x
(i) may be confined

into the single matrix equation

MX = XL (MB5.11)

l A BRIEF ILLUSTRATION

In the preceding illustration we established that if 

then λ1 = +5.372 and λ2 = −0.372, with eigenvectors 

respectively. We form

The expression MX = XΛ becomes

which expands to

This is a compact way of writing the four equations

x(1)
1 + 2x(1)

2 = 5.372x(1)
1 x(2)

1 + 2x(2)
2 = −0.372x(2)

1

3x(1)
1 + 4x(1)

2 = 5.372x(1)
2 3x(2)

1 + 4x(2)
2 = −0.372x(2)

2

corresponding to the two original simultaneous equations
and their two roots. l

Finally, we form X −1 from X and multiply eqn MB5.11 by it
from the left:

X −1MX = X −1XL = L (MB5.12)

A structure of the form X −1MX is called a similarity transforma-
tion. In this case the similarity transformation X −1MX makes M
diagonal (because L is diagonal). It follows that, if the matrix X
that causes X −1MX to be diagonal is known, then the problem is
solved: the diagonal matrix so produced has the eigenvalues as
its only nonzero elements, and the matrix X used to bring about
the transformation has the corresponding eigenvectors as its
columns. As will be appreciated once again, the solutions of
eigenvalue equations are best found by using mathematical 
software.

l A BRIEF ILLUSTRATION

To apply the similarity transformation, eqn MB5.12, to the 

matrix from the preceding illustration it is best to use 

mathematical software to find the form of X. The result is
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This result can be verified by carrying out the multiplication
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The result is indeed the diagonal matrix L calculated in the
preceding illustration. It follows that the eigenvectors x(1) and
x(2) are
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Computational
chemistry

In this chapter we extend the description of the electronic structure of molecules presented
in Chapter 5 by introducing methods that harness the power of computers to calculate elec-
tronic wavefunctions and energies. These calculations are among the most useful tools
used by chemists for the prediction of molecular structure and reactivity. The computational
methods we discuss handle the electron–electron repulsion term in the Schrödinger equa-
tion in different ways. One such method, the Hartree–Fock method, treats electron–electron
interactions in an average and approximate way. This approach typically requires the numer-
ical evaluation of a large number of integrals. Semiempirical methods set these integrals 
to zero or to values determined experimentally. In contrast, ab initio methods attempt to
evaluate the integrals numerically, leading to a more precise treatment of electron–electron
interactions. Configuration interaction and Møller–Plesset perturbation theory are used to
account for electron correlation, the tendency of electrons to avoid one another. Another
computational approach, density functional theory, focuses on electron probability densit-
ies rather than on wavefunctions. The chapter concludes by comparing results from differ-
ent electronic structure methods with experimental data and by describing some of the
wide range of chemical and physical properties of molecules that can be computed.

The field of computational chemistry, the use of computers to predict molecular
structure and reactivity, has grown in the past few decades due to the tremendous 
advances in computer hardware and to the development of efficient software pack-
ages. The latter are now applied routinely to compute molecular properties in a wide
variety of chemical applications, including pharmaceuticals and drug design, atmo-
spheric and environmental chemistry, nanotechnology, and materials science. Many
software packages have sophisticated graphical interfaces that permit the visualization
of results. The maturation of the field of computational chemistry was recognized by
the awarding of the 1998 Nobel Prize in Chemistry to J.A. Pople and W. Kohn for their
contributions to the development of computational techniques for the elucidation of
molecular structure and reactivity.

The central challenge

The goal of electronic structure calculations in computational chemistry is the 
solution of the electronic Schrödinger equation, @Ψ = EΨ, where E is the electronic
energy and Ψ is the many-electron wavefunction, a function of the coordinates of all
the electrons and the nuclei. To make progress, we invoke at the outset the Born–
Oppenheimer approximation and the separation of electronic and nuclear motion
(Chapter 5). The electronic hamiltonian @ is

6
The central challenge

6.1 The Hartree–Fock formalism

6.2 The Roothaan equations

6.3 Basis sets

The first approach:
semiempirical methods

6.4 The Hückel method revisited

6.5 Differential overlap

The second approach: ab initio
methods

6.6 Configuration interaction

6.7 Many-body perturbation
theory

The third approach: density
functional theory

6.8 The Kohn–Sham equations

6.9 The exchange–correlation
energy

Current achievements

6.10 Comparison of calculations
and experiments

6.11 Applications to larger
molecules

I6.1 Impact on nanoscience: The
structures of nanoparticles

I6.2 Impact on medicine: Molecular
recognition and drug design

Checklist of key ideas

Discussion questions

Exercises

Problems
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(6.1a)

where

• the first term is the kinetic energy of the Ne electrons;

• the second term is the potential energy of attraction 
between each electron and each of the Nn nuclei, with electron i
at a distance rIi from nucleus I of charge ZIe;

• the final term is the potential energy of repulsion between
two electrons separated by rij.

The factor of 1–2 in the final sum ensures that each repulsion is
counted only once. The combination e2/4πε0 occurs throughout
computational chemistry, and we denote it j0. Then the hamilton-
ian becomes

(6.1b)

We shall use the following labels:

Species Label Number used

Electrons i and j = 1, 2, . . . Ne

Nuclei I = A, B, . . . Nn

Molecular orbitals, ψ m = a, b, . . .

Atomic orbitals used to construct the o = 1, 2, . . . Nb
molecular orbitals (the ‘basis’), χ

Another general point is that the theme we develop in the 
sequence of illustrations in this chapter is aimed at showing 
explicitly how to use the equations that we have presented, and
thereby give them a sense of reality. To do so, we shall take the
simplest possible many-electron molecule, dihydrogen (H2).
Some of the techniques we introduce do not need to be applied
to this simple molecule, but they serve to illustrate them in a
simple manner and introduce problems that successive sections
show how to solve. One consequence of choosing to develop 
a story in relation to H2, we have to confess, is that not all the 
illustrations are actually as brief as we would wish; but we 
decided that it was more important to show the details of each
little calculation than to adhere strictly to our normal use of the
term ‘brief ’.

l A BRIEF ILLUSTRATION

The notation we use for the description of H2 is shown in 
Fig. 6.1. For this two-electron (Ne = 2), two-nucleus (Nn = 2)
molecule the hamiltonian is
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To keep the notation simple, we introduce the one-electron
operator

(6.2)

which should be recognized as the hamiltonian for electron i
in an H2

+ molecule-ion. Then

(6.3)

We see that the hamiltonian for H2 is essentially that of each
electron in an H2

+-like molecule-ion but with the addition of
the electron–electron repulsion term. l

It is hopeless to expect to find analytical solutions with a
hamiltonian of the complexity of that shown in eqn 6.1, even 
for H2, and the whole thrust of computational chemistry is to
formulate and implement numerical procedures that give ever
more reliable results.

6.1 The Hartree–Fock formalism

The electronic wavefunction of a many-electron molecule is a
function of the positions of all the electrons, Ψ(r1,r2, . . . ). To
formulate one very widely used approximation, we build on the
material in Chapter 5, where we saw that in the MO description
of H2 we supposed that each electron occupies an orbital and
that the overall wavefunction can be written ψ(r1)ψ(r2). . . .
Note that this orbital approximation is quite severe and loses
many of the details of the dependence of the wavefunction on
the relative locations of the electrons. We do the same here, with
two small changes of notation. To simplify the appearance of the
expressions we write ψ(r1)ψ(r2) . . . as ψ(1)ψ(2). . . . Next, we
suppose that electron 1 occupies a molecular orbital ψa with
spin α, electron 2 occupies the same orbital with spin β, and so
on, and hence write the many-electron wavefunction Ψ as the
product Ψ = ψa

α(1)ψ a
β(2). . . . The combination of a molecular

orbital and a spin function, such as ψ a
α(1), is the spinorbital

introduced in Section 4.4; for example, the spinorbital ψ a
α

should be interpreted as the product of the spatial wavefunction
ψa and the spin state α, so ψa

α(1) = ψa(1)α(1), and likewise 
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Fig. 6.1 The notation used for the description of molecular
hydrogen, introduced in the brief illustration preceding Section
6.1 and used throughout the text.
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for the other spinorbitals. We shall consider only closed-shell
molecules but the techniques we describe can be extended to
open-shell molecules.

A simple product wavefunction does not satisfy the Pauli
principle and change sign under the interchange of any pair of
electrons (Section 4.4). To ensure that the wavefunction does
satisfy the principle, we modify it to a sum of all possible per-
mutations, using plus and minus signs appropriately:

Ψ = ψ a
α(1)ψa

β(2) . . . ψ z
β(Ne) − ψ a

α(2)ψa
β(1) . . . ψ z

β(Ne) + . . .

(6.4)

There are Ne! terms in this sum, and the entire sum can be 
represented by the Slater determinant (Section 4.4):

(6.5a)

The factor 1/ ensures that the wavefunction is normalized
if the component molecular orbitals ψm are normalized. To save
the tedium of writing out large determinants, the wavefunction
is normally written by using only its principal diagonal:

Ψ = (1/Ne!)
1/2|ψa

α(1)ψ a
β(2) . . . ψ z

β(Ne)| (6.5b)

l A BRIEF ILLUSTRATION

The Slater determinant for H2 (Ne = 2) is

where both electrons occupy the molecular wavefunction ψa.
We should recognize the spin factor as that corresponding 
to a singlet state (eqn 4.31b, σ− = (1/ 2){αβ − βα}), so Ψ
corresponds to two spin-paired electrons in ψa. l

According to the variation principle (Section 5.5), the best
form of Ψ is the one that corresponds to the lowest achievable
energy as the ψ are varied, that is, we need the wavefunctions ψ
that will minimize the expectation value ∫Ψ*@Ψ dτ. Because the
electrons interact with one another, a variation in the form of
ψa, for instance, will affect what will be the best form of all the
other ψs, so finding the best form of the ψs is a far from trivial
problem. However, D.R. Hartree and V. Fock showed that 
the optimum ψs each satisfy an at first sight very simple set of
equations:

f1ψa(1) = εaψa(1) (6.6)
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where f1 is called the Fock operator. This is the equation to solve
to find ψa; there are analogous equations for all the other occu-
pied orbitals. This Schrödinger-like equation has the form we
should expect (but its formal derivation is quite involved). Thus,
f1 has the following structure:

f1 = core hamiltonian for electron 1 (h1)
+ average Coulomb repulsion from electrons 2, 3, . . . 
(VCoulomb)
+ average correction due to spin correlation (VExchange)

= h1 + VCoulomb + VExchange

By the core hamiltonian we mean the one-electron hamiltonian
h1 defined by eqn 6.2 and representing the energy of electron 1 in
the field of the nuclei. The Coulomb repulsion from all the other
electrons contributes a term that acts as follows (Fig. 6.2):

(6.7a)

This integral represents the repulsion experienced by electron 1
in orbital ψa from electron 2 in orbital ψm, where it is distributed
with probability density ψm*ψm. There are two electrons in each
orbital, so we can expect a total contribution of the form

where the sum is over all the occupied orbitals, including orbital
a. You should be alert to the fact that counting 2 for the orbital
with m = a is incorrect, because electron 1 interacts only with the
second electron in the orbital, not with itself. This error will be
corrected in a moment. The spin correlation term takes into 
account the fact that electrons of the same spin tend to avoid
each other (Section 4.4), which reduces the net Coulomb inter-
action between them. This contribution has the following form:

(6.7b)K j
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1
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Fig. 6.2 A schematic interpretation of the physical interpretation
of the Coulomb repulsion term, eqn 6.7a. An electron in orbital
ψa experiences repulsion from an electron in orbital ψm where it
has probability density |ψm |2.



The equation to solve is therefore

This equation for ψa must be solved self-consistently (and
numerically) because the integral that governs the form of 
ψa requires us to know ψa already. In the following examples
we shall illustrate some of the procedures that have been
adopted. l

6.2 The Roothaan equations

The difficulty with the HF-SCF procedure lies in the numerical
solution of the Hartree–Fock equations, an onerous task even
for powerful computers. As a result, a modification of the 
technique was needed before the procedure could be of use 
to chemists. We saw in Chapter 5 how molecular orbitals are
constructed as linear combinations of atomic orbitals. This 
simple approach was adopted in 1951 by C.C.J. Roothaan and
G.G. Hall independently, who found a way to convert the
Hartree–Fock equations for the molecular orbitals into equa-
tions for the coefficients that appear in the LCAO used to 
simulate the molecular orbital. Thus, they wrote (as we did in
eqn 5.34)

(6.9)

where com are unknown coefficients and the χo are the atomic 
orbitals (which we take to be real). Note that this approximation
is in addition to those underlying the Hartree–Fock equations
because the basis is finite and so cannot reproduce the molecu-
lar orbital exactly. The size of the basis set (Nb) is not necessarily
the same as the number of atomic nuclei in the molecule (Nn),
because we might use several atomic orbitals on each nucleus
(such as the four 2s and 2p orbitals of a carbon atom). From Nb

basis functions, we obtain Nb linearly independent molecular
orbitals ψ.

We show in Justification 6.1 that the use of a linear combina-
tion like in eqn 6.9 leads to a set of simultaneous equations for
the coefficients called the Roothaan equations. These equations
are best summarized in matrix form by writing

Fc = Sc e (6.10)

where F is the Nb × Nb matrix with elements

Foo′ = �χo(1)f1χo′(1)dτ1 (6.11a)
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For a given electron 1 there is only one electron of the same spin
in all the occupied orbitals, so we can expect a total contribution
of the form

The negative sign reminds us that spin-correlation keeps elec-
trons apart, and so reduces their classical, Coulombic repulsion.
By collecting terms, we arrive at a specific expression for the
effect of the Fock operator:

(6.8)

with the sum extending over all the occupied orbitals. Note that
Ka(1)ψa(1) = Ja(1)ψa(1), so the term in the sum with m = a loses
one of its 2Ja, which is the correction that avoids the electron 
repelling itself, which we referred to above.

Equation 6.8 reveals a second principal approximation of 
the Hartree–Fock formalism (the first being its dependence on 
the orbital approximation). Instead of electron 1 (or any other
electron) responding to the instantaneous positions of the other
electrons in the molecule through terms of the form 1/r1j, it 
responds to an averaged location of the other electrons through
integrals of the kind that appear in eqn 6.7. When we look for
reasons why the formalism gives poor results, this approxima-
tion is a principal reason; it is addressed in Section 6.6.

Although eqn 6.6 is the equation we have to solve to find 
ψa, eqn 6.7 reveals that it is necessary to know all the other 
occupied wavefunctions in order to set up the operators J and 
K and hence to find ψa. To make progress with this difficulty, 
we can guess the initial form of all the one-electron wave-
functions, use them in the definition of the Coulomb and 
exchange operators, and solve the Hartree–Fock equations. 
That process is then continued using the newly found wave-
functions until each cycle of calculation leaves the energies εm

and wavefunctions ψm unchanged to within a chosen criterion.
This is the origin of the term self-consistent field (SCF) for 
this type of procedure in general and of Hartree–Fock self-
consistent field (HF-SCF) for the approach based on the orbital
approximation.

l A BRIEF ILLUSTRATION

We continue with the H2 example. According to eqn 6.6, the
Hartree–Fock equation for ψa is f1ψa(1) = εaψa(1) with

f1ψa(1) = h1ψa(1) + 2Ja(1)ψa(1) − Ka(1)ψa(1)

because there is only one term in the sum (there is only one
occupied orbital). In this expression
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S is the Nb × Nb matrix of overlap integrals:

Soo′ = �χo(1)χo′(1)dτ1 (6.11b)

and c is an Nb × Nb matrix of all the coefficients we have to find:

(6.11c)

The first column is the set of coefficients for ψa, the second col-
umn for ψb, and so on. Finally, e is a diagonal matrix of orbital
energies εa, εb, . . . :

(6.11d)

Justification 6.1 The Roothaan equations

To construct the Roothaan equations we substitute the linear
combination of eqn 6.9 into eqn 6.6, which gives

Now multiply from the left by χo(1) and integrate over the
coordinates of electron 1:

That is,

This expression has the form of the matrix equation in 
eqn 6.10.

l A BRIEF ILLUSTRATION

In this illustration we show how to set up the Roothaan equa-
tions for H2. To do so, we adopt a basis set of real, normalized
functions χA and χB, centred on nuclei A and B, respectively.
We can think of these functions as H1s orbitals on each 
nucleus, but they could be more general than that, and in a later
illustration we shall make a computationally more friendly
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choice. The two possible linear combinations corresponding
to eqn 6.9 are

ψa = cAaχA + cBaχB ψb = cAbχA + cBbχB

so the matrix c is

and the overlap matrix S is

with S = �χA(1)χB(1)dτ1

The Fock matrix is

with Foo′ = �χo(1)f1χo′(1)dτ1

We shall explore the explicit form of the elements of F in a
later illustration; for now, we just regard them as variable
quantities. The Roothaan equations are therefore

l

l ANOTHER BRIEF ILLUSTRATION

In this continuation of the preceding illustration, we establish
the simultaneous equations corresponding to the Roothaan
equations we have just established. After multiplying out the
matrices constructed in the preceding illustration, we obtain

On equating matching elements, we obtain the following
four simultaneous equations:

FAAcAa + FABcBa = εa cAa + SεacBa

FBAcAa + FBBcBa = εa cBa + SεacAa

FAAcAb + FABcBb = εb cAb + SεbcBb

FBAcAb + FBBcBb = εb cBb + SεbcAb

Thus, to find the coefficients for the molecular orbital ψa, we
need to solve the first and second equations, which we can
write as

(FAA − εa)cAa + (FAB − Sεa)cBa = 0
(FBA − Sεa)cAa + (FBB − εa)cBa = 0

There is a similar pair of equations (the third and fourth) for
the coefficients in ψb. l
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If we write the Roothaan equations as (F − Se)c = 0 we see that
they are simply a collection of Nb simultaneous equations for the
coefficients. This point was demonstrated explicitly in the pre-
ceding illustration. Therefore, they have a solution only if

| F − eS | = 0 (6.12)

In principle, we can find the orbital energies that occur in e by
looking for the roots of this secular equation and then using
those energies to find the coefficients that make up the matrix c
by solving the Roothaan equations. There is a catch, though: the
elements of F depend on the coefficients (through the presence
of J and K in the expression for f1). Therefore, we have to pro-
ceed iteratively: we guess an initial set of values for c, solve the
secular equation for the orbital energies, use them to solve the
Roothaan equations for c, and compare the resulting values with
the ones we started with. In general they will be different, so we
use those new values in another cycle of calculation, and con-
tinue until convergence has been achieved (Fig. 6.3).

l A BRIEF ILLUSTRATION

The two simultaneous equations for the coefficients in ψa

obtained in the previous illustration have a solution if

The determinant expands to give the following equation:

(FAA − ε)(FBB − ε) − (FAB − Sε)(FBA − Sε) = 0

On collecting terms, we arrive at

(1 − S2)ε2 − (FAA + FBB − SFAB − SFBA)ε
+ (FAAFBB − FABFBA) = 0

 

F F S
F S F

AA AB

BA BB

− −
− − =ε ε

ε ε 0

This is a quadratic equation for the orbital energies ε, and
may be solved by using the quadratic formula. Thus, if we
summarize the equation as aε2 + bε + c = 0, then

With these energies established and taking the lower of the
two energies to be εa since ψa is occupied in ground-state H2,
we can construct the coefficients by using the relation

in conjunction with the normalization condition c 2
Aa + c 2

Ba

+ 2cAacBaS = 1. (For this homonuclear diatomic molecule, 
there is, of course, a much simpler method of arriving at 
cAa = cBa.) l

The principal outstanding problem is the form of the ele-
ments of the Fock matrix F and its dependence on the LCAO
coefficients. The explicit form of Foo′ is

Foo′ = �χo(1)h1χo′(1)dτ1

(6.13)

where the sums are over the occupied molecular orbitals. The
dependence of F on the coefficients can now be seen to arise from
the presence of the ψm in the two integrals, for these molecular
orbitals depend on the coefficients in their LCAOs.

l A BRIEF ILLUSTRATION

At this point we are ready to tackle the matrix elements 
that occur in the treatment of H2, using the LCAOs set up 
in a previous illustration. As we saw there, we need the four
matrix elements FAA, FAB, FBA, and FBB. We show here how to
evaluate FAA. Only one molecular orbital is occupied (ψa), so
eqn 6.13 becomes
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Fig. 6.3 The iteration procedure for a Hartree–Fock self-
consistent field calculation.
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With ψa = cAaχA + cBaχB, the second integral on the right is

From now on we shall use the notation

(6.14)

Integrals like this are fixed throughout the calculation 
because they depend only on the choice of basis, so they can be
tabulated once and for all and then used whenever required.
Our task later in this chapter will be to see how they are evalu-
ated. For the time being, we can treat them as constants. In
this notation, the integral we are evaluating becomes

= cAacAa(AA |AA) + 2cAacBa(AA |BA) + cBacBa(AA |BB)

(We have used (AA |BA) = (AA |AB).) There is a similar term
for the third integral, and overall

FAA = EA + cAa
2 (AA |AA) + 2cAacBa(AA |BA) 

+ cBa
2 {2(AA |BB) − (AB |BA)}

where

EA = �χA(1)h1χA(1)dτ1 (6.15)

is the energy of an electron in orbital χA based on nucleus A,
taking into account its interaction with both nuclei. Similar
expressions may be derived for the other three matrix ele-
ments of F. The crucial point, though, is that we now see how
F depends on the coefficients that we are trying to find. l

Self-test 6.1 Construct the element FAB using the same basis.
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6.3 Basis sets

One of the problems with molecular structure calculations 
now becomes apparent. The basis functions appearing in 
eqn 6.14 may in general be centred on different atomic nuclei 
so (AB | CD) is in general a so-called ‘four-centre, two-electron 
integral’. If there are several dozen basis functions used to build
the one-electron wavefunctions, there will be tens of thousands
of integrals of this form to evaluate (the number of integrals 
increases as N b

4). The efficient calculation of such integrals poses
the greatest challenge in an HF-SCF calculation but can be alle-
viated by a clever choice of basis functions.

The simplest approach is to use a minimal basis set, in which
one basis function is used to represent each of the orbitals in 
an elementary valence theory treatment of the molecule, that is, 
we include in the basis set one function each for H and He 
(to simulate a 1s orbital), five functions each for Li to Ne (for the
1s, 2s, and three 2p orbitals), nine functions each for Na to Ar,
and so on. For example, a minimal basis set for CH4 consists of
nine functions: four basis functions to represent the four H1s
orbitals, and one basis function each for the 1s, 2s, 2px, 2py, and
2pz orbitals of carbon. Unfortunately, minimal basis set calcula-
tions frequently yield results that are far from agreement with
experiment.

Significant improvements in the agreement between electronic
structure calculations and experiment can often be achieved 
by increasing the number of basis set functions. In a double-zeta
(DZ) basis set, each basis function in the minimal basis is re-
placed by two functions; in a triple-zeta (TZ) basis set, by three
functions. For example, a double-zeta basis for H2O consists of
fourteen functions: a total of four basis functions to represent
the two H1s orbitals, and two basis set functions each for the 1s,
2s, 2px, 2py, and 2pz orbitals of oxygen. In a split-valence (SV)
basis set, each inner-shell (core) atomic orbital is represented by
one basis set function and each valence atomic orbital by two
basis set functions; an SV calculation for H2O, for instance, uses
thirteen basis set functions. Further improvements to the accur-
acy of electronic structure calculations can often be achieved by
including polarization functions in the basis; these functions
represent atomic orbitals with higher values of the orbital angular
momentum quantum number l than considered in an elementary
valence theory treatment. For example, polarization functions
in a calculation for CH4 include basis functions representing d
orbitals on carbon or p orbitals on hydrogen. Polarization func-
tions often lead to improved results because atomic orbitals are
distorted (or polarized) by adjacent atoms when bonds form in
molecules.

One of the earliest choices for basis set functions was that of
Slater-type orbitals (STO) centred on each of the atomic nuclei
in the molecule and of the form

χ = Nr ae−brYlml
(θ,φ) (6.16)



N is a normalization constant, a and b are (non-negative) 
parameters, Ylml

is a spherical harmonic (Table 3.2), and (r,θ,φ)
are the spherical polar coordinates describing the location of 
the electron relative to the atomic nucleus. Several such basis
functions are typically centred on each atom, with each basis
function characterized by a unique set of values of a, b, l, and ml.
The values of a and b generally vary with the element and there
are several rules for assigning reasonable values. For molecules
containing hydrogen, there is an STO centred on each proton
with a = 0 and b = 1/a0, which simulates the correct behaviour of
the 1s orbital at the nucleus (see eqn 4.14). However, using the
STO basis set in HF-SCF calculations on molecules with three 
or more atoms requires the evaluation of so many two-electron
integrals (AB | CD) that the procedure becomes computationally
impractical.

The introduction of Gaussian-type orbitals (GTO) by S.F.
Boys largely overcame the problem. Cartesian Gaussian func-
tions centred on atomic nuclei have the form

χ = Nxiy jzke−αr2
(6.17)

where (x,y,z) are the Cartesian coordinates of the electron at 
a distance r from the nucleus, (i,j,k) are a set of non-negative 

integers, and α is a positive constant. An s-type Gaussian has i =
j = k = 0; a p-type Gaussian has i + j + k = 1; a d-type Gaussian has
i + j + k = 2 and so on. Figure 6.4 shows contour plots for various
Gaussian-type orbitals. The advantage of GTOs is that the prod-
uct of two Gaussian functions on different centres is equivalent
to a single Gaussian function located at a point between the two
centres (Fig. 6.5). Therefore, two-electron integrals on three and
four different atomic centres can be reduced to integrals over two
different centres, which are much easier to evaluate numerically.

l A BRIEF ILLUSTRATION

There are no four-centre integrals in H2, but we can illustrate
the principle by considering one of the two-centre integrals
that appear in the Fock matrix and, to be definite, we consider

We choose an s-type Gaussian basis and write

χA(1) = Ne−α|r1−RA|2 χB(1) = Ne−α|r1−RB| 2

where r1 is the coordinate of electron 1 and RI is the coordin-
ate of nucleus I. The product of two such Gaussians, one 
centred on A and one centred on B, for electron 1, is

χA(1)χB(1) = N2e−α|r1−RA|2
e−α |r1−RB|2 = N2e−α{|r1−RA|2+|r1−RB|2}

By using the relation

|r − R |2 = (r − R) · (r − R) = |r|2 + |R |2 − 2r · R

we can confirm that 

|r1 − RA |2 + |r1 − RB |2 = 1–2R2 + 2 |r1 − R0 |2

where R0 = 1–2(RA + RB) is the midpoint of the molecule and 
R = |RA − RB | is the bond length. Hence

χA(1)χB(1) = N2e− 1–2αR2
e−2α| r1−R0 | 2

The product χA(2)χB(2) is the same, except for the index on
r. Therefore, the two-centre, two-electron integral (AB |AB)
reduces to

This is a single-centre two-electron integral, with both expon-
ential functions spherically symmetrical Gaussians centred
on the midpoint of the bond, and much faster to evaluate
than the original two-centre integral. l

Some of the basis sets that employ Gaussian functions and are
commonly used in electronic structure calculations are given in
Table 6.1. An STO-NG basis is a minimal basis set in which each
basis function is itself a linear combination of N Gaussians; the
STO in the name of the basis reflects the fact that each linear
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Fig. 6.4 Contour plots for Gaussian-type orbitals. (a) s-type
Gaussian, e−r 2

; (b) p-type Gaussian xe−r 2
; (c) d-type Gaussian,

xye−r 2
.

Fig. 6.5 The product of two Gaussian functions on different
centres is itself a Gaussian function located at a point between
the two contributing Gaussians. The scale of the product has
been increased relative to that of its two components.
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combination is chosen by a least-squares fit to a Slater-type
function. An m-npG basis is a split-valence basis set in which
each core atomic orbital is represented by one function (a linear
combination of m Gaussians) and each valence orbital is repre-
sented by two basis functions, one a linear combination of n
Gaussians and the other of p Gaussian functions. The addition
of d-type polarization functions for non-hydrogen atoms to the
m-npG basis yields an m-npG* basis; further addition of p-type
polarization functions for hydrogen atoms results in an m-
npG** basis set. In an m-npqG basis, each valence atomic orbital
is represented by three basis functions, linear combinations of n,
p, and q Gaussians, respectively. Addition of diffuse (small α-
valued, eqn 6.17) s- and p-type Gaussians on non-hydrogen
atoms results in an m-npq+G basis set; additional diffuse func-
tions to hydrogen, m-npq++G. A considerable amount of work
has gone into the development of efficient basis sets and this is
still an active area of research.

We have arrived at the point where we can see that the
Hartree–Fock approach, coupled with the use of basis set func-
tions, requires the evaluation of a large number of integrals.
There are two approaches commonly taken at this point. In

semiempirical methods, the integrals encountered are either set
to zero or estimated from experimental data. In ab initio methods,
an attempt is made to evaluate the integrals numerically, using
as input only the values of fundamental constants and atomic
numbers of the atoms present in the molecule.

The first approach: semiempirical
methods

In semiempirical methods, many of the integrals that occur in 
a calculation are estimated by appealing to spectroscopic data 
or physical properties such as ionization energies, or by using a
series of rules to set certain integrals equal to zero. These methods
are applied routinely to molecules containing large numbers of
atoms because of their computational speed but there is often a
sacrifice in the accuracy of the results.

6.4 The Hückel method revisited

Semiempirical methods were first developed for conjugated π
systems, the most famous semiempirical procedure being Hückel
molecular orbital theory (HMO theory, Section 5.6).

The initial assumption of HMO theory is the separate treat-
ment of π and σ electrons, which is justified by the different 
energies and symmetries of the orbitals. The secular determin-
ant, from which the π-orbital energies and wavefunctions are
obtained, has a form similar to that of eqn 6.12 and is written 
in terms of overlap integrals and hamiltonian matrix elements.
The overlap integrals are set to 0 or 1, the diagonal hamilton-
ian matrix elements are set to a parameter α, and off-diagonal
elements either to 0 or the parameter β. The HMO approach is
useful for qualitative, rather than quantitative, discussions of
conjugated π systems because it treats repulsions between elec-
trons very poorly.

l A BRIEF ILLUSTRATION

Here we return to the third illustration of Section 6.2 and set
S = 0. The diagonal Fock matrix elements are set equal to α
(that is, we set FAA = FBB = α), and the off-diagonal elements
are set equal to β (that is, we set FAB = FBA = β). Note that the
dependence of these integrals on the coefficients is swept
aside, so we do not have to work towards self-consistency.
The quadratic equation for the energies

(1 − S2)ε2 − (FAA + FBB − SFAB − SFBA)ε
+ (FAAFBB − FABFBA) = 0

becomes simply

ε2 − 2αε + α2 − β2 = 0

and the roots are ε = α ± β, exactly as we found in Section 5.6. l

Table 6.1 Basis set designations and example basis sets for H2O

General basis Example basis Basis functions

STO-NG STO-3G For each O 1s, 2s, 2px, 2py, 2pz and H 1s
orbital:

One function, a linear combination of 3 
Gaussians

m-npG 6-31G For O 1s orbital:

One linear combination of 6 Gaussians

For each O 2s, 2px, 2py, 2pz and H 1s
orbital:

2 functions:

– One Gaussian function

– One linear combination of 3
Gaussians

m-npG* 6-31G* 6-31G plus d-type polarization functions
on O

m-npG** 6-31G** 6-31G* plus p-type polarization functions
on each H

m-npqG 6-311G 6-31G plus an additional Gaussian for
each

O 2s, 2px, 2py, 2pz and H 1s orbital

m-npq+G 6-311+G 6-311G plus diffuse s- and p-type
Gaussians on O

m-npq++G 6-311++G 6-311+G plus diffuse Gaussians on each H

m-npq+G* 6-311+G* 6-311+G plus d-type polarization
functions on O

m-npq+G** 6-311+G** 6-311+G* plus p-type polarization
functions on each H



6.5 Differential overlap

In the second most primitive and severe approach, called com-
plete neglect of differential overlap (CNDO), all two-electron
integrals of the form (AB |CD) are set to zero unless χA and χB

are the same, and likewise for χC and χD. That is, only integrals
of the form (AA |CC) survive and they are often taken to be para-
meters with values adjusted until the calculated energies are in
agreement with experiment. The origin of the term ‘differential
overlap’ is that what we normally take to be a measure of ‘over-
lap’ is the integral ∫χAχBdτ. The differential of an integral of a
function is the function itself, so in this sense the ‘differential’
overlap is the product χAχB. The implication is that we then 
simply compare orbitals: if they are the same, the integral is 
retained; if different, it is discarded.

l A BRIEF ILLUSTRATION

The expression for FAA derived in the final illustration in
Section 6.2 is

FAA = EA + cAa
2 (AA |AA) + 2cAacBa(AA |BA) 

+ cBa
2 {2(AA |BB) − (AB |BA)}

The last integral has the form

The ‘differential overlap’ term χA(1)χB(1) is set equal to zero,
so in the CNDO approximation the integral is set equal to
zero. The same is true of the integral (AA |BA). It follows that
we write

FAA ≈ EA + cAa
2 (AA |AA) + 2cBa

2 (AA |BB)

and identify the surviving two two-electron integrals as 
empirical parameters. l

Self-test 6.2 Apply the CNDO approximation to FAB for the
same system.

[FAB = �χA(1)h1χB(1)dτ1 − cAacBb(AA |BB)]

More recent semiempirical methods make less draconian 
decisions about which integrals are to be ignored, but they are all
descendants of the early CNDO technique. Whereas CNDO sets
integrals of the form (AB |AB) to zero for all different χA and χB,
intermediate neglect of differential overlap (INDO) does not
neglect the (AB |AB) for which different basis functions χA and
χB are centred on the same nucleus. Because these integrals are
important for explaining energy differences between terms cor-
responding to the same electronic configuration, INDO is much
preferred over CNDO for spectroscopic investigations. A still
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less severe approximation is neglect of diatomic differential
overlap (NDDO) in which (AB |CD) is neglected only when χA

and χB are centred on different nuclei or when χC and χD are
centred on different nuclei.

There are other semiempirical methods, with names such as
modified intermediate neglect of differential overlap (MINDO),
modified neglect of differential overlap (MNDO), Austin model 1
(AM1), PM3, and pairwise distance directed Gaussian (PDDG).
In each case, the values of integrals are either set to zero or set to
parameters with values that have been determined by attempt-
ing to optimize agreement with experiment, such as measured
values of enthalpies of formation, dipole moments, and ioniza-
tion energies. MINDO is useful for the study of hydrocarbons; it
tends to give more accurate computed results than MNDO but
it gives poor results for systems with hydrogen bonds. AM1,
PM3, and PDDG are improved versions of MNDO.

The second approach: ab initio
methods

In ab initio methods, the two-electron integrals are evaluated
numerically. However, even for small molecules, Hartree–Fock
calculations with large basis sets and efficient and accurate cal-
culation of two-electron integrals can give very poor results 
because they are rooted in the orbital approximation and the 
average effect of the other electrons on the electron of interest.
Thus, the true wavefunction for H2 is a function of the form
Ψ(r1,r2), with a complicated behaviour as r1 and r2 vary and per-
haps approach one another. This complexity is lost when we
write the wavefunction as a simple product of two functions,
ψ(r1)ψ(r2) and treat each electron as moving in the average 
field of the other electrons. That is, the approximations of the
Hartree–Fock method imply that no attempt is made to take
into account electron correlation, the tendency of electrons to
stay apart in order to minimize their mutual repulsion. Most
modern work in electronic structure, such as the approaches
discussed in the following two sections as well as more sophistic-
ated approaches that are beyond the scope of this text, tries to
take electron correlation into account.

6.6 Configuration interaction

When we work through the formalism described so far using 
a basis set of Nb orbitals, we generate Nb molecular orbitals.
However, if there are Ne electrons to accommodate, in the
ground state only 1–2Ne of these Nb orbitals are occupied, leaving
Nb − 1–2Ne so-called virtual orbitals unoccupied. The ground
state is

Ψ0 = (1/Ne!)
1/2 |ψa

α(1)ψ a
β(2)ψ b

α(3)ψb
β(4) . . . ψu

β(Ne) |
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where ψu is the HOMO (Section 5.6). We can envisage trans-
ferring an electron from an occupied orbital to a virtual orbital
ψv, and forming the corresponding singly excited determinant,
such as

Ψ1 = (1/Ne!)
1/2 |ψa

α(1)ψ a
β(2)ψ b

α(3)ψ v
β(4) . . . ψu

β(Ne) |

Here a β electron, ‘electron 4’, has been promoted from ψb into
ψv, but there are many other possible choices. We can also envis-
age doubly excited determinants, and so on. Each of the Slater
determinants constructed in this way is called a configuration
state function (CSF).

Now we come to the point of introducing these CSFs. In 
1959 P.-O. Löwdin proved that the exact wavefunction (within
the Born–Oppenheimer approximation) can be expressed as a 
linear combination of CSFs found from the exact solution of 
the Hartree–Fock equations:

Ψ = C0Ψ0( ) + C1Ψ1( ) + C2Ψ2( ) + . . . (6.18)

The inclusion of CSFs to improve the wavefunction in this way
is called configuration interaction (CI). Configuration inter-
action can, at least in principle, yield the exact ground-state
wavefunction and energy and thus accounts for the electron 
correlation neglected in Hartree–Fock methods. However, the
wavefunction and energy are exact only if an infinite number of
CSFs are used in the expansion in eqn 6.18; in practice, we are
resigned to using a finite number of CSFs.

l A BRIEF ILLUSTRATION

We can begin to appreciate why CI improves the wavefunc-
tion of a molecule by considering H2 again. We saw in the
first illustration in Section 6.1 that, after expanding the Slater
determinant, the ground state is

Ψ0 = ψa(1)ψa(2)σ−(1,2)

where σ−(1,2) is the singlet spin state wavefunction. We also
know that if we use a minimal basis set and ignore overlap, we
can write ψa = (1/ 2){χA + χB}. Therefore

Ψ0 = 1–2{χA(1) + χB(1)}{χA(2) + χB(2)}σ−(1,2) 

= 1–2{χA(1)χA(2) + χA(1)χB(2) + χB(1)χA(2) 

+ χB(1)χB(2)}σ−(1,2)

We can see a deficiency in this wavefunction: there are equal
probabilities of finding both electrons on A (the first term) or
on B (the fourth term) as there are for finding one electron on
A and the other on B (the second and third terms). That is,
electron correlation has not been taken into account and we
can expect the calculated energy to be too high.

From two basis functions we can construct two molecular
orbitals: we denote the second one ψb = (1/ 2){χA − χB}. We
need not consider the singly excited determinant constructed
by moving one electron from ψa to ψb because it will be of

ungerade symmetry and therefore not contribute to the gerade
ground state of dihydrogen. A doubly excited determinant
based on ψb would be

Ψ2 = ψb(1)ψb(2)σ−(1,2)
= 1–2{χA(1) − χB(1)}{χA(2) − χB(2)}σ−(1,2)
= 1–2{χA(1)χA(2) − χA(1)χB(2) − χB(1)χA(2) 

+ χB(1)χB(2)}σ−(1,2)

If we were simply to subtract one CSF from the other, the
outer terms would cancel and we would be left with

Ψ0 − Ψ2 = {χA(1)χB(2) + χB(1)χA(2)}σ−(1,2)

According to this wavefunction, the two electrons will never
be found on the same atom: we have overcompensated for
electron configuration. The obvious middle-ground is to
form the linear combination Ψ = C0Ψ0 + C2Ψ2 and look for
the values of the coefficients that minimize the energy. l

The illustration shows that even a limited amount of CI can
introduce some electron correlation; full CI—using orbitals
built from a finite basis and allowing for all possible excitations
—will take electron correlation into account more fully. The 
optimum procedure, using orbitals that form an infinite basis
and allowing all excitations, is computationally impractical.

The optimum expansion coefficients in eqn 6.18 are found 
by using the variation principle; as in Justification 6.1 for the
Hartree–Fock method, application of the variation principle for
CI results in a set of simultaneous equations for the expansion
coefficients.

l A BRIEF ILLUSTRATION

If we take the linear combination Ψ = C0Ψ0 + C2Ψ2, the usual
procedure for the variation method (Section 5.5) leads to the
secular equation |H − ES | = 0, from which we can find the 
improved energy. Specifically:

and the secular equation we must solve to find E is (note that
S02 = S20 and that H02 = H20 due to hermiticity)

which is easily rearranged into a quadratic equation for E. As
usual, the problem boils down to an evaluation of various 
integrals that appear in the matrix elements.
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Because the core hamiltonian in the Fock operator in eqn 6.8
cancels the one-electron terms in the full hamiltonian, the 
perturbation is the difference between the instantaneous inter-
action between the electrons (the third term in eqn 6.1) and the
average interaction (as represented by the operators J and K in
the Fock operator). Thus, for electron 1

(6.20)

where the first sum (the true interaction) is over all the electrons
other than electron 1 itself and the second sum (the average 
interaction) is over all the occupied orbitals. This choice was first
made by C. Møller and M.S. Plesset in 1934 and the method is
called Møller–Plesset perturbation theory (MPPT). Applications
of MPPT to molecular systems were not undertaken until the
1970s and the rise of sufficient computing power.

As usual in perturbation theory, the true wavefunction is
written as a sum of the eigenfunction of the model hamiltonian
and higher-order correction terms. The correlation energy, the
difference between the true energy and the HF energy, is given
by energy corrections that are second order and higher. If we
suppose that the true wavefunction of the system is given by a
sum of CSFs like that in eqn 6.18, then (see eqn 2.35)

(6.21)

According to Brillouin’s theorem, only doubly excited Slater 
determinants have nonzero @ (1) matrix elements and hence
only they make a contribution to E 0

(2). The identification of the
second-order energy correction with the correlation energy is
the basis of the MPPT method denoted MP2. The extension of
MPPT to include third- and fourth-order energy corrections are
denoted MP3 and MP4, respectively.

l A BRIEF ILLUSTRATION

According to Brillouin’s theorem, and for our simple model
of H2 built from two basis orbitals, we write

Ψ = C0Ψ0 + C2Ψ2 with Ψ0 = ψa(1)ψa(2)σ−(1,2) 
Ψ2 = ψb(1)ψb(2)σ−(1,2)

The only matrix element we need for the sum in eqn 6.21 is

All the integrals over terms based on J and K are zero because
these are one-electron operators and so either ψa(1) or ψa(2)
is left unchanged and its orthogonality to ψb ensures that the
integral vanishes. We now expand each molecular orbital in
terms of the basis functions χA and χB, and obtain

�Ψ2 @(1)Ψ0dτ1dτ2 = cAb
2 cAa

2 (AA |AA) 

+ cAbcBbcAa
2 (BA |AA) + . . . + cBb

2 cAb
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The molecular orbitals ψa and ψb are orthogonal, so S is 
diagonal and, provided ψa and ψb are normalized, S00 = S22 = 1.
To evaluate the hamiltonian matrix elements, we first write
the hamiltonian as in eqn 6.3 (@ = h1 + h2 + j0/r12), where h1

and h2 are the core hamiltonians for electrons 1 and 2, 
respectively, and so

The first term in this integral (noting that the spin states are
normalized) is:

�Ψ0h1Ψ0dτ1dτ2 = �ψa(1)ψa(2)h1ψa(1)ψa(2)dτ1dτ2

= �ψa(1)h1ψa(1)dτ1

Similarly,

�Ψ0h2Ψ0dτ1dτ2 = �ψa(2)h2ψa(2)dτ2

For the electron–electron repulsion term, using the notation
of eqn 6.14,

= cAa
4 (AA |AA) + cAa

3 cBa(AA |AB) + . . . + cBa
4 (BB |BB) 

Expressions of a similar kind can be developed for the other
three elements of H, so the optimum energy can be found by
substituting the calculated values of the coefficients and the
integrals into the expression for the roots of the quadratic
equation for E. The coefficients in the CI expression for Ψ
can then be found in the normal way by using the lowest
value of E and solving the secular equations. l

6.7 Many-body perturbation theory

The application of perturbation theory to a molecular system of
interacting electrons and nuclei is called many-body perturba-
tion theory. Recall from discussions of perturbation theory in
Chapter 2 (see eqn 2.31) that the hamiltonian is expressed as a
sum of a simple, ‘model’ hamiltonian, @ (0), and a perturbation
@ (1). Because we wish to find the correlation energy, a natural
choice for the model hamiltonian are the Fock operators of the
HF-SCF method and for the perturbation we take the difference
between the Fock operators and the true many-electron hamil-
tonian (eqn 6.1). That is,

@ = @ (0) + @ (1) with (6.19)@( )0

1

=
=
∑ fi
i

Ne

  
� �Ψ Ψ0

0

12
0 1 2 0

12

1 1
1

2 2
j

r
j

ra a a ad dτ τ ψ ψ ψ ψ= ( ) ( ) ( ) ( ))d dτ τ1 2

  
H h h

j

r00 0 1 2
0

12
0 1 2= + +

⎛

⎝⎜
⎞

⎠⎟�Ψ Ψ d dτ τ



184 6 COMPUTATIONAL CHEMISTRY

If we ignore overlap the coefficients are all equal to ±1/ 2,
and if we use symmetries like (AA |AB) = (AA |BA) and
(AA |AB) = (BB |BA), this expression simplifies to

�Ψ2 @(1)Ψ0dτ1dτ2 = 1–2{(AA |AA) − (AA |BB)}

It follows that the second-order estimate of the correlation
energy is

The term (AA |AA) − (AA |BB) is the difference in repulsion
energy between both electrons being confined to one atom
and each being on a different atom. l

The third approach: density
functional theory

A technique that has gained considerable ground in recent 
years to become one of the most widely used procedures for the
calculation of molecular structure is density functional theory
(DFT). Its advantages include less demanding computational
effort, less computer time, and—in some cases, particularly for
d-metal complexes—better agreement with experimental values
than is obtained from Hartree–Fock based methods.

6.8 The Kohn–Sham equations

The central focus of DFT is not the wavefunction but the 
electron probability density, ρ (Section 1.5). The ‘functional’
part of the name comes from the fact that the energy of the
molecule is a function of the electron density and the electron
density is itself a function of the positions of the electrons, ρ(r).
In mathematics a function of a function is called a functional,
and in this specific case we write the energy as the functional
E[ρ]. We have encountered a functional before but did not use
this terminology: the expectation value of the hamiltonian is 
the energy expressed as a functional of the wavefunction, for a
single value of the energy, E[ψ], is associated with each function
ψ. An important point to note is that because E[ψ] is an integral
of ψHψ over all space, it has contributions from the whole range 
of values of ψ.

Simply from the structure of the hamiltonian in eqn 6.1 we
can suspect that the energy of a molecule can be expressed as
contributions from the kinetic energy, the electron–nucleus 
interaction, and the electron–electron interaction. The first two
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contributions depend on the electron density distribution. The
electron–electron interaction is likely to depend on the same
quantity, but we have to be prepared for there to be a modifica-
tion of the classical electron–electron interaction due to electron
exchange (the contribution which in Hartree–Fock theory is ex-
pressed by K). That the exchange contribution can be expressed
in terms of the electron density is not at all obvious, but in 1964
P. Hohenberg and W. Kohn were able to prove that the exact
ground-state energy of an Ne-electron molecule is uniquely 
determined by the electron probability density. They showed
that it is possible to write

E[ρ] = EClassical[ρ] + EXC[ρ] (6.22)

where EClassical[ρ] is the sum of the contributions of kinetic 
energy, electron–nucleus interactions, and the classical electron–
electron potential energy, and EXC[ρ] is the exchange–correlation
energy. This term takes into account all the non-classical 
electron–electron effects due to spin and applies small corrections 
to the kinetic energy part of EClassical that arise from electron–
electron interactions. The Hohenberg–Kohn theorem guarantees
the existence of EXC[ρ] but—like so many existence theorems in
mathematics—gives no clue about how it should be calculated.

The first step in the implementation of this approach is to 
calculate the electron density. The relevant equations were 
deduced by Kohn and L.J. Sham in 1965, who showed that ρ can
be expressed as a contribution from each electron present in the
molecule, and written

(6.23)

ψi is called a Kohn–Sham orbital and is a solution of the
Kohn–Sham equation, which closely resembles the form of the
Schrödinger equation (on which it is based). For a two-electron
system,

(6.24)

The first term is the usual core term, the second term is the 
classical interaction between electron 1 and electron 2, and the
third term takes exchange effects into account and is called 
the exchange–correlation potential. The εi are the Kohn–Sham
orbital energies.

6.9 The exchange–correlation energy

The exchange–correlation potential plays a central role in DFT
and can be calculated once we know the exchange–correlation
energy EXC[ρ] by forming the following ‘functional derivative’:

(6.25)
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A functional derivative is defined like an ordinary derivative, but
we have to remember that EXC[ρ] is a quantity that gets its value
from the entire range of values of ρ(r), not just from a single
point. Thus, when r undergoes a small change dr, the density
changes by δρ to ρ(r + dr) at each point and EXC[ρ] undergoes a
change that is the sum (integral) of all such changes:

Note that VXC is an ordinary function of r, not a functional: it 
is the local contribution to the integral that defines the global 
dependence of EXC[ρ] on δρ throughout the range of integration.

l A BRIEF ILLUSTRATION

The greatest challenge in density functional theory is to find
an accurate expression for the exchange–correlation energy.
One widely used but approximate form for EXC[ρ] is based
on the model of a uniform electron gas, a hypothetical elec-
trically neutral system in which electrons move in a space of
continuous and uniform distribution of positive charge. For
a uniform electron gas, the exchange–correlation energy can
be written as the sum of an exchange contribution and a cor-
relation contribution. The latter is a complicated functional
that is beyond the scope of this chapter; we ignore it here.
Then the exchange–correlation energy is

EXC[ρ] = �Aρ4/3dr with A = –(9/8)(3/π)1/2j0

When the density changes from ρ(r) to ρ(r) + δρ(r) at 
each point (Fig. 6.6), the functional changes from EXC[ρ] to
EXC[ρ + δρ]:

EXC[ρ + δρ] = �A(ρ + δρ)4/3dr
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The integrand can be expanded in a Taylor series (Mathem-
atical background 1) and, discarding terms of order δρ2 and
higher, we obtain:

EXC[ρ + δρ] = �(Aρ4/3 + 4–3Aρ1/3δρ)dr

= EXC[ρ] + � 4–3Aρ1/3δρdr

Therefore, the differential δEXC of the functional (the differ-
ence EXC[ρ + δρ] − EXC[ρ] that depends linearly on δρ) is

δEXC[ρ] = � 4–3Aρ1/3δρdr

and therefore

VXC(r) = 4–3Aρ(r)1/3 = − 3–2(3/π)1/3j0ρ(r)1/3 (6.26) l

Self-test 6.3 Find the exchange–correlation potential if the
exchange–correlation energy is given by EXC[ρ] = ∫Bρ2dr.

[VXC(r) = 2Bρ(r)]

The Kohn–Sham equations must be solved iteratively and
self-consistently (Fig. 6.7). First, we guess the electron density; it
is common to use a superposition of atomic electron probability
densities. Second, the exchange–correlation potential is calcu-
lated by assuming an approximate form of the dependence 
of the exchange–correlation energy on the electron density and
evaluating the functional derivative. Next, the Kohn–Sham
equations are solved to obtain an initial set of Kohn–Sham 
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Fig. 6.6 The change in the exchange–correlation energy
functional from EXC[ρ] to EXC[ρ + δρ] (the area under each
curve) as the density changes from ρ to ρ + δρ at each point r.
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Fig. 6.7 The iteration procedure for solving the Kohn–Sham
equations in density functional theory.
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orbitals. This set of orbitals is used to obtain a better approx-
imation to the electron probability density (from eqn 6.23) and
the process is repeated until the density remains constant to
within some specified tolerance. The electronic energy is then
computed by using eqn 6.22.

As is the case for the Hartree–Fock one-electron wavefunc-
tions, the Kohn–Sham orbitals can be expanded using a set of
basis functions; solving eqn 6.24 then amounts to finding the
coefficients in the expansion. Various basis functions, including
Slater-type and Gaussian-type orbitals, can be used. Whereas
Hartree–Fock methods have computational times that scale as
N b

4, DFT methods scale as N b
3. Therefore, DFT methods are

computationally more efficient, though not necessarily more 
accurate, than HF methods.

l A BRIEF ILLUSTRATION

In applying DFT to molecular hydrogen, we begin by 
assuming that the electron density is a sum of atomic 
electron densities arising from the presence of electrons in 
the atomic orbitals χA and χB (which may be STOs or GTOs)
and write ρ(r) = |χA |2 + |χB |2 for each electron. For the 
exchange–correlation energy EXC we use the form appropriate
to a uniform electron gas and the corresponding exchange–
correlation potential derived in the previous illustration
(eqn 6.26).

The Kohn–Sham orbital for the molecule is a solution of 

We insert the ρ(r1) and ρ(r2) we have assumed and solve this
equation numerically for ψ1. Once we have that orbital, we
replace our original guess at the electron density by ρ(r) =
|ψ1(r)|2. This density is then substituted back into the
Kohn–Sham equation to obtain an improved function ψ1(r)
and the process repeated until the density and exchange–
correlation energy are unchanged to within a specified toler-
ance on successive iterations.

When convergence of the iterations has been achieved, the
electronic energy (eqn 6.22) is calculated from

where the first term is the sum of the energies of the two 
electrons in the field of the two nuclei, the second term is the
electron–electron repulsion, and the final term includes the
correction due to nonclassical electron–electron effects. l
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Current achievements

Electronic structure calculations provide valuable informa-
tion about a wide range of important physical and chemical 
properties. One of the most important is the equilibrium mole-
cular geometry, the arrangement of atoms that results in the
lowest energy for the molecule. The calculation of equilibrium
bond lengths and bond angles supplements experimental data 
obtained from structural studies such as X-ray crystallography
(Section 9.3), electron diffraction (Section 9.4), and micro-
wave spectroscopy (Section 10.3). Furthermore, analyses of the
molecular potential energy curve can yield vibrational frequen-
cies for comparison with results from infrared spectroscopy
(Section 10.6) as well as molecular dipole moments.

6.10 Comparison of calculations and
experiments

The choice of an electronic structure method to solve a chemical
problem is not usually an easy task. Both the chemical accuracy
associated with the method and the cost of the calculation 
(in terms of computational speed and memory) must be taken
into account. An ab initio method such as full CI or MP2, each
of which is capable of yielding accurate results on a molecule
with a small number of atoms and electrons, is often computa-
tionally impractical for many-electron molecules. In contrast, a
semiempirical or DFT calculation might make an electronic
structure calculation on the large molecule feasible but with an
accompanying sacrifice in reliability. Indeed, no single method-
ology has been found to be applicable to all molecules. However,
the promise that computational chemistry has to enhance our
ability to predict chemical and physical properties of a wide
range of molecules is sufficient to drive further development of
electronic structure methods.

First consider molecular hydrogen, the subject of most of the
illustrations in this chapter. To compare results from different
electronic structure methods, we need to say a few words about
the basis set used in the calculations. A minimal basis set uses the
fewest possible basis set functions (Section 6.3). However, the
Hartree–Fock limit is achieved by the use of an infinite number
of basis functions. Although this limit is not computationally 
attainable, a finite basis is considered to have reached the limit 
if the energy, equilibrium geometry, and other calculated 
properties have converged and do not vary within a specified 
tolerance upon further increases in the size of the basis set. The
results presented for Hartee–Fock calculations that use such a
basis set are labelled ‘HF limit’ in the accompanying tables. (In
practice, the ‘HF-limit’ in the tables corresponds to a 6-311+G**
basis; see Table 6.1.) So that we can compare different electronic
structure methods more directly, we report literature results
where the same or a similar basis set was used in the different



types of calculations. The density functional theory calculations
to which we refer all used the exchange–correlation potential for
a uniform electron gas, including the correlation component
neglected in the first illustration of Section 6.9.

Table 6.2 compares the equilibrium bond length for dihydro-
gen determined from various electronic structure methods; 
the equilibrium geometry corresponds to the minimum in the
calculated molecular potential energy. Not surprisingly, the CI
and MPPT ab initio methods are the most accurate. However,
for this simple molecule the Hartree–Fock result is also within
chemical accuracy (about 1 pm); the semiempirical methods do
not fare as well by comparison but, as also shown in Table 6.2,
MNDO and PM3 are more accurate for calculations on water
than on dihydrogen. The CI and MP2 methods also achieve
chemical accuracy (within 1°) for the bond angle in water. As for
the dipole moment of water, the semiempirical methods are
found to be slightly more accurate than the Hartree–Fock and
density-functional calculations.

Table 6.3 shows some results from semiempirical, MPPT, and
DFT calculations of carbon–carbon bond lengths in a variety of

small organic molecules as well as the C=C stretching wave-
numbers in the alkenes. As we shall see in Section 10.7, vibrational
wavenumbers depend on the ‘force constants’ for displacements
from the equilibrium geometry, and they in turn depend on the
second derivatives of the potential energy with respect to the dis-
placement. The methods generally do a good job of predicting
bond lengths of the single and double bonds and, even though
the semiempirical methods do not perform as well in calculating
vibrational wavenumbers, the results from Table 6.3 do give us a
reasonable level of confidence in the predictive abilities of DFT
and semiempirical calculations.

Confidence in DFT and semiempirical methods becomes 
particularly important when the cost of computations makes ab
initio methods impractical; such is the case for typical inorganic
and organometallic compounds. Hartree–Fock methods gener-
ally perform poorly for d-metal complexes and ab initio methods
can be prohibitively costly. However, DFT and semiempirical
methods (such as PM3, which includes parameters for most d
metals) have vastly improved the performance of applications of
electronic structure theory to inorganic chemistry.

6.11 Applications to larger molecules

In the area of thermodynamics, computational chemistry is 
becoming the technique of choice for estimating the enthalpies
of formation (Section 14.8) of molecules with complex three-
dimensional structures. It also opens the way to exploring the
effect of solvation on enthalpies of formation by calculating 
the enthalpy of formation in the gas phase and then including
several solvent molecules around the solute molecule. The 
numerical results should currently be treated as only estimates
with the primary purpose of predicting whether interactions
with the solvent increase or decrease the enthalpy of formation.
As an example, consider the amino acid glycine, which can exist
in a neutral (NH2CH2COOH) or zwitterionic (+NH3CH2CO2

−)
form. It has been found computationally that, whereas in the gas
phase the neutral form has a lower enthalpy of formation than
the zwitterion, in water the opposite is true because of strong 
interactions between the polar solvent and the charges in the
zwitterion. Therefore, we might suspect that the zwitterionic
form is the predominant one in polar media, as is confirmed by
protonation/deprotonation calculations of the type carried out
in introductory chemistry courses.

Computational chemistry can be used to predict trends 
in electrochemical properties, such as reduction potentials
(Section 17.6). Several experimental and computational studies
of aromatic hydrocarbons indicate that decreasing the energy 
of the lowest unoccupied molecular orbital (LUMO) enhances 
the ability of the molecule to accept an electron into the LUMO,
with an attendant increase in the value of the molecule’s re-
duction potential. The effect is also observed in quinones and
flavins, which are co-factors involved in biological electron

Table 6.2 Comparison of methods for small H-containing
molecules

Expt HF limit MNDO PM3 CI* MP2 DFT

R(H-H)/pm 74.2 73.6 66.3 69.9 73.9 73.8 76.7

R(O-H)/pm 95.8 94.3 94.3 95.1 95.2 96.0 97.1
in H2O

Bond angle/° 104.5 106.4 106.8 107.7 104.9 103.5 105.1
in H2O

Dipole moment, 1.85 2.2 1.8 1.7 1.9 2.2 2.2
μ(H2O)/D†

* For dihydrogen, full CI. For water, CI with inclusion of singly and doubly excited
determinants.
† 1 D (debye) = 3.336 × 10−30 C m.

Table 6.3 Comparison of methods for small organic molecules

Expt PM3 MP2 DFT

R(C-C)/pm

propane 152.6 151.2 152.9 151.2

cyclobutane 154.8 154.2 155.0 153.7

R(C=C)/pm

propene 131.8 132.8 134.1 133.0

cyclobutene 133.2 134.9 135.2 134.1

#(C=C stretch)/cm−1

propene 1656 1862 1698 1680

cyclobutene 1570 1772 1598 1600
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transfer reactions. For example, stepwise substitution of the 
hydrogen atoms in p-benzoquinone by methyl groups (-CH3)
results in a systematic increase in the energy of the LUMO and 
a decrease in the reduction potential for formation of the semi-
quinone radical (1):

The reduction potentials of naturally occurring quinones are
also modified by the presence of different substituents, a strategy
that imparts specific functions to specific quinones. For ex-
ample, the substituents in coenzyme Q are largely responsible
for positioning its reduction potential so that the molecule can
function as an electron shuttle between specific proteins in the
respiratory chain (Impact I17.3).

The electronic structure calculations described in this chapter
provide insight into spectroscopic properties by correlating the
absorption wavelengths and the energy gap between the LUMO
and the HOMO in a series of molecules. For example, consider
the linear polyenes shown in Table 6.4, all of which absorb in the
UV region. The table shows that, as expected, the wavelength of
the lowest-energy electronic transition decreases as the HOMO–
LUMO energy difference increases. The smallest HOMO–LUMO
gap and greatest transition wavelength is found for octatetraene,
the longest polyene in the group. The wavelength of the trans-
ition increases with increasing number of conjugated double
bonds in linear polyenes and extrapolation of the trend suggests
that a sufficiently long linear polyene should absorb light in the
visible region. This is indeed the case for β-carotene (2), which
absorbs light with λ ≈ 450 nm. The ability of β-carotene to 
absorb visible light is part of the strategy employed by plants 
to harvest solar energy for use in photosynthesis (Impact I19.1).

Table 6.4 Electronic structure calculations and spectroscopic data

Polyene ΔE/eV* λ /nm

(C2H4) 18.1 163

14.5 217

12.7 252

11.8 304

* ΔE = E(HOMO) − E(LUMO).

Fig. 6.8 The rutile structure of TiO2 (blue spheres: Ti; red
spheres: O).

IMPACT ON NANOSCIENCE

I6.1 The structures of nanoparticles

Semiconductor oxides, such as TiO2 and ZnO, are a major area
of current research because they can act as photocatalysts, sub-
stances that accelerate chemical reactions upon absorption of
light. Reactions that can be enhanced by photocatalysts include
the splitting of water into H2 and O2, and the decomposition of
pollutants. Among the most popular photocatalytic materials is
TiO2 due to its low cost and catalytic efficiency. The method of
preparation of the bulk oxide has a strong influence on its cata-
lytic properties and experiments that attempt to control the
form of its crystal lattice have been undertaken widely. Similarly,
there is widespread interest in controlling the structure and
photocatalytic properties of TiO2 on the nanometre scale. Com-
putational studies on small clusters of TiO2 particles can pro-
vide insight into effects of size on photochemical properties 
of nanometre-sized materials, the nature of oxide–substrate 
interactions, and the growth of larger aggregates.

The most stable form of bulk TiO2 at atmospheric pressure
and room temperature is rutile (Fig. 6.8), in which each tita-
nium atom is surrounded by six oxygen atoms and each O is 



surrounded by three Ti atoms. Each octahedron composed of
the six O atoms around the Ti centre shares two edges with other
octahedrons. Some experimental studies on TiO2 nanoparticles
suggest that the nanostructure is anatase, an elongated form 
of rutile in which the octahedrons share four edges. Other 
structural distortions appear to be possible as the particle size
decreases.

A recent computational study on small TinO2n clusters with 
n = 1–15 has identified the most stable structures for nanopar-
ticles with sizes less than 1 nm. To accomplish the challenging
computational task of finding the most probable cluster struc-
tures, density functional theory was used to evaluate the energy
as a function of geometry and specialized minimization algorithms
were used to find equilibrium structures. The calculations 
revealed compact equilibrium structures with coordination
numbers of the Ti atoms increasing with particle size. These
structures were found not to be related to anatase. For Ti11O22

up to Ti15O30, the largest nanoparticle studied, the structures
with lower energies consisted of a central octahedron surrounded
by square base pyramids, trigonal bipyramids, and tetrahedra
(Fig. 6.9). The DFT calculations revealed that structures with a
small number of square base pyramids are particularly stable.
The stable structures found for the various cluster sizes can 
be used in further computational work to study the effects of
nanostructure on the photochemical properties of TiO2.

IMPACT ON MEDICINE

I6.2 Molecular recognition and drug design

A drug is a small molecule or protein that binds to a specific 
receptor site of a target molecule, such as a larger protein or 
nucleic acid, and inhibits the progress of disease. To devise

efficient therapies, we need to know how to characterize and 
optimize both the three-dimensional structure of the drug and
the molecular interactions between the drug and its target.

The binding of a ligand, or guest, to a biopolymer, or host, 
is also governed by molecular interactions. Examples of biolo-
gical host–guest complexes include enzyme–substrate complexes, 
antigen–antibody complexes, and drug–receptor complexes. In
all these cases, a site on the guest contains functional groups that
can interact with complementary functional groups of the host.
Many specific intermolecular contacts must in general be made
in a biological host–guest complex and, as a result, a guest binds
only to hosts that are chemically similar. The strict rules govern-
ing molecular recognition of a guest by a host control every bio-
logical process, from metabolism to immunological response,
and provide important clues for the design of effective drugs for
the treatment of disease.

A full assessment of molecular recognition between a drug
and its target requires knowledge of the full spectrum of inter-
actions discussed in Chapter 8. But we can already anticipate
some of the factors that optimize the formation of host–guest
complexes. For example, a hydrogen bond donor group of the
guest must be positioned near a hydrogen bond acceptor group
of the host for tight binding to occur. We also expect that an
electron-poor region in a host should interact strongly with an
electron-rich region of a guest. Computational studies of the
types described in this chapter can identify regions of a molecule
that have high or low electron densities. Furthermore, graphical
representation of numerical results allows for direct visualiza-
tion of molecular properties, such as the distribution of electron
density, thereby enhancing our ability to predict the nature of
intermolecular contacts between host and guest.

Consider a protein host with the amino acid serine in a site
that binds guests. Electronic structure methods on the serine
molecule can provide electronic wavefunctions and electron
probability densities at any point in the molecule. From the elec-
tron probability densities and the charges of the atomic nuclei,
one can compute the electric potential (Fundamentals F.6) at
any point in the molecule (except at the nuclei themselves). The
resulting electric potential can be displayed as an electrostatic
potential surface (an ‘elpot surface’) in which net positive 
potential is shown in one colour and net negative potential is
shown in another, with intermediate gradations of colour. Such
an elpot surface for serine (NH2CH(CH2OH)COOH) is shown
in Fig. 6.10 where net positive potential is shown in blue and net
negative potential in red. The electron-rich regions of the amino
acid are susceptible to attack by an electropositive species and
the electron-poor regions to attack by an electronegative species.

There are two main strategies for the discovery of a drug. 
In structure-based design, new drugs are developed on the basis
of the known structure of the receptor site of a known target.
However, in many cases a number of so-called lead compounds
are known to have some biological activity but little information
is available about the target. To design a molecule with improved

Fig. 6.9 Stable geometries for TinO2n clusters, with n = 10, 13, and
15, determined from density functional theory calculations.
[From S. Hamad et al. J. Phys. Chem. B, 2005, 109, 15741.]
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pharmacological efficacy, quantitative structure–activity rela-
tionships (QSAR) are often established by correlating data on
activity of lead compounds with molecular properties, also
called molecular descriptors, which can be determined either 
experimentally or computationally.

In broad terms, the first stage of the QSAR method consists of
compiling molecular descriptors for a very large number of lead
compounds. Descriptors such as molar mass, molecular dimen-
sions and volume, and relative solubility in water and nonpolar
solvents are available from routine experimental procedures.
Quantum mechanical descriptors determined by calculations 
of the type described in this chapter include bond orders and
HOMO and LUMO energies.

In the second stage of the process, biological activity is ex-
pressed as a function of the molecular descriptors. An example
of a QSAR equation is:

Activity = c0 + c1d1 + c2d1
2 + c3d2 + c4d 2

2 + . . . (6.27)

where di is the value of the descriptor and ci is a coefficient cal-
culated by fitting the data by regression analysis. The quadratic
terms account for the fact that biological activity can have a
maximum or minimum value at a specific descriptor value. For
example, a molecule might not cross a biological membrane and
become available for binding to targets in the interior of the cell
if it is too hydrophilic, in which case it will not partition into the
hydrophobic layer of the cell membrane (see Impact I16.1 for
details of membrane structure), or too hydrophobic, for then 
it may bind too tightly to the membrane. It follows that the 

activity will peak at some intermediate value of a parameter that
measures the relative solubility of the drug in water and organic
solvents.

In the final stage of the QSAR process, the activity of a drug
candidate can be estimated from its molecular descriptors and
the QSAR equation either by interpolation or extrapolation of
the data. The predictions are more reliable when a large number
of lead compounds and molecular descriptors are used to gener-
ate the QSAR equation.

The traditional QSAR technique has been refined into 3D
QSAR, in which sophisticated computational methods are used
to gain further insight into the three-dimensional features of
drug candidates that lead to tight binding to the receptor site of
a target. The process begins by using a computer to superimpose
three-dimensional structural models of lead compounds and
looking for common features, such as similarities in shape, 
location of functional groups, and electrostatic potential plots.
The key assumption of the method is that common structural
features are indicative of molecular properties that enhance
binding of the drug to the receptor. The collection of super-
imposed molecules is then placed inside a three-dimensional grid
of points. An atomic probe, typically an sp3-hybridized carbon
atom, visits each grid point and two energies of interaction 
are calculated: Esteric, the steric energy reflecting interactions 
between the probe and electrons in uncharged regions of the
drug, and Eelec, the electrostatic energy arising from interactions
between the probe and a region of the molecule carrying a partial
charge. The measured equilibrium constant for binding of the

Fig. 6.10 An electrostatic potential surface for the amino acid
serine. Positive charge is shown in blue and negative charge in
red, with intermediate gradations of colour. The red regions 
of the molecule are electron-rich and the blue regions are
electron-poor.

Fig. 6.11 A 3D QSAR analysis of the binding of steroids,
molecules with the carbon skeleton shown, to human
corticosteroid-binding globulin (CBG). The ellipses indicate
areas in the protein’s binding site with positive or negative
electrostatic potentials and with little or much steric crowding. 
It follows from the calculations that addition of large
substituents near the left-hand side of the molecule (as it is
drawn on the page) leads to poor affinity of the drug to the
binding site. Also, substituents that lead to the accumulation of
negative electrostatic potential at either end of the drug are likely
to show enhanced affinity for the binding site. [Adapted from 
P. Krogsgaard-Larsen, T. Liljefors, U. Madsen (ed.), Textbook of
drug design and discovery, Taylor & Francis, London (2002).]



drug to the target, Kbind, is then assumed to be related to the 
interaction energies at each point r by the 3D QSAR equation

(6.28)

where the c(r) are coefficients calculated by regression analysis,
with the coefficients cs and ce reflecting the relative importance
of steric and electrostatic interactions, respectively, at the grid
point r. Visualization of the regression analysis is facilitated by
colouring each grid point according to the magnitude of the
coefficients. Figure 6.11 shows results of a 3D QSAR analysis of
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the binding of steroids, molecules with the carbon skeleton shown,
to human corticosteroid-binding globulin (CBG). Indeed, we see
that the technique lives up to the promise of opening a window
into the chemical nature of the binding site even when its struc-
ture is not known.

The QSAR and 3D QSAR methods, though powerful, have
limited power: the predictions are only as good as the data used
in the correlations are both reliable and abundant. However, the
techniques have been used successfully to identify compounds
that deserve further synthetic elaboration, such as addition or
removal of functional groups, and testing.

Checklist of key ideas

1. A spinorbital is the product of a molecular orbital and a spin
function.

2. The Hartree–Fock (HF) method uses a single Slater
determinant, built from molecular orbitals that satisfy the
HF equations, to represent the ground-state electronic
wavefunction.

3. The Hartree–Fock equations involve the Fock operator,
which consists of the core hamiltonian and terms
representing the average Coulomb repulsion ( J) and average
correction due to spin correlation (K). The equations must
be solved self-consistently.

4. The Hartree–Fock method neglects electron correlation, the
tendency of electrons to avoid one another to minimize
repulsion.

5. The Roothaan equations are a set of simultaneous equations,
written in matrix form, that result from using a basis set of
functions to expand the molecular orbitals.

6. In a minimal basis set, one basis set function represents each
of the valence orbitals of the molecule.

7. Slater-type orbitals (STO) and Gaussian-type orbitals
(GTO) centred on each of the atomic nuclei are commonly
used as basis set functions; the product of two Gaussians on
different centres is a single Gaussian function located
between the centres.

8. In semiempirical methods, the two-electron integrals are 
set to zero or to empirical parameters; ab initio methods
attempt to evaluate the integrals numerically.

9. The Hückel method is a simple semiempirical method for
conjugated π systems.

10. In the complete neglect of differential overlap (CNDO)
approximation, two-electron integrals are set to zero unless
the two basis set functions for electron 1 are the same and
the two basis functions for electron 2 are the same.

11. Other semiempirical methods include INDO (intermediate
neglect of differential overlap), NDDO (neglect of diatomic
differential overlap), MINDO (modified intermediate

neglect of differential overlap), MNDO (modified neglect of
differential overlap), AM1, and PM3.

12. Virtual orbitals are molecular orbitals that are unoccupied
in the HF ground-state electronic wavefunction.

13. A singly excited determinant is formed by transferring an
electron from an occupied orbital to a virtual orbital, a
doubly excited determinant by transferring two electrons,
and so on. Each of these Slater determinants (including the
HF wavefunction) is a configuration state function (CSF).

14. Configuration interaction (CI) expresses the exact electronic
wavefunction as a linear combination of configuration state
functions.

15. Configuration interaction and Møller–Plesset perturbation
theory are two popular ab initio methods that accommodate
electron correlation.

16. Full CI uses molecular orbitals built from a finite basis set
and allows for all possible excited determinants.

17. Many-body perturbation theory is the application of
perturbation theory to a molecular system of interacting
electrons and nuclei.

18. Møller–Plesset perturbation theory (MPPT) uses the sum 
of the Fock operators from the HF method as the simple,
model hamiltonian @ (0).

19. According to Brillouin’s theorem, only doubly excited
determinants contribute to the second-order energy
correction.

20. In density functional theory (DFT), the electronic energy is
written as a functional of the electron probability density.

21. The exchange–correlation energy takes into account
nonclassical electron–electron effects.

22. The electron density is computed from the Kohn–Sham
orbitals, the solutions to the Kohn–Sham (KS) equations.
The latter equations are solved self-consistently.

23. The exchange–correlation potential is the functional
derivative of the exchange–correlation energy.
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24. One commonly used but approximate form for the
exchange–correlation energy is based on the model of an
electron gas, a hypothetical system in which electrons move
in a uniform distribution of positive charge.

25. Both the chemical accuracy and the computational cost of a
particular method should be considered when deciding

which electronic structure method to use in a given
application.

26. The Hartree–Fock limit refers to an infinite basis set or, in
practical terms, a finite basis set for which the energy and
equilibrium geometry of the molecule do not vary as the size
of the basis set is increased.

Discussion questions

6.1 Describe the physical significance of each of the terms that appears in
the Fock operator.

6.2 Explain why the Hartree–Fock formalism does not account for
electron correlation but the methods of configuration interaction and
many-body perturbation theory do.

6.3 Outline the computational steps used in the Hartree–Fock 
self-consistent field approach to electronic structure calculations.

6.4 Explain how the Roothaan equations arise in the Hartree–
Fock method. What additional approximations do they 
represent?

6.5 Discuss the role of basis set functions in electronic structure
calculations. What are some commonly used basis sets? Why are
polarization functions often included?

6.6 Explain why the use of Gaussian-type orbitals is generally preferred
over the use of Slater-type orbitals in basis sets.

6.7 Distinguish between semiempirical, ab initio, and density functional
theory methods of electronic structure determination.

6.8 Discuss how virtual orbitals are useful in CI and MPPT electronic
structure calculations.

6.9 Is DFT a semiempirical method? Justify your answer.

Exercises

6.1(a) Write down the electronic hamiltonian for the helium atom.

6.1(b) Write down the electronic hamiltonian for the lithium atom.

6.2(a) Write the expression for the potential energy contribution to the
electronic hamiltonian for LiH.

6.2(b) Write the expression for the potential energy contribution to the
electronic hamiltonian for BeH2.

6.3(a) Write down the electronic hamiltonian for HeH+.

6.3(b) Write down the electronic hamiltonian for LiH2+.

6.4(a) Write down the Slater determinant for the ground state of 
HeH+.

6.4(b) Write down the Slater determinant for the ground state of LiH2+.

6.5(a) Write down the Hartree–Fock equation for HeH+.

6.5(b) Write down the Hartree–Fock equation for LiH2+.

6.6(a) Set up the Roothaan equations for HeH+ and establish the
simultaneous equations corresponding to the Roothaan equations.
Adopt a basis set of two real normalized functions, one centred on H 
and one on He; denote the molecular orbitals ψa and ψb.

6.6(b) Set up the Roothaan equations for LiH2+ and establish the
simultaneous equations corresponding to the Roothaan equations.
Adopt a basis set of two real normalized functions, one centred on H 
and one on Li; denote the molecular orbitals ψa and ψb.

6.7(a) Construct the elements FAA and FAB for the species HeH+ and
express them in terms of the notation in eqn 6.14.

6.7(b) Construct the elements FAA and FAB for the species LiH2+ and
express them in terms of the notation in eqn 6.14.

6.8(a) Using the integral notation in eqn 6.14, identify all of the 
four-centre two-electron integrals that are equal to (AA |AB).

6.8(b) Using the integral notation in eqn 6.14, identify all of the 
four-centre two-electron integrals that are equal to (BB |BA).

6.9(a) How many basis functions are needed in an electronic structure
calculation on CH3Cl using a (a) minimal basis set, (b) split-valence
basis set, (c) double-zeta basis set?

6.9(a) How many basis functions are needed in an electronic structure
calculation on CH2Cl2 using a (a) minimal basis set, (b) split-valence
basis set, (c) double-zeta basis set?

6.10(a) What is the general mathematical form of a p-type Gaussian?

6.10(b) What is the general mathematical form of a d-type Gaussian?

6.11(a) A one-dimensional Gaussian (in x) has the form e−α x2
or xne−αx2

;
one-dimensional Gaussians in y and z have similar forms. Show that the
s-type Gaussian (eqn 6.17) can be written as a product of three one-
dimensional Gaussians.

6.11(b) A one-dimensional Gaussian (in x) has the form e−αx2
or xne−αx2

;
one-dimensional Gaussians in y and z have similar forms. Show that a 
p-type Gaussian (eqn 6.17) can be written as a product of three one-
dimensional Gaussians.

6.12(a) Show that the product of s-type Gaussians on He and H in HeH+

is a Gaussian at an intermediate position. Note that the Gaussians have
different exponents.

6.12(b) Show that the product of s-type Gaussians on Li and H in LiH2+

is a Gaussian at an intermediate position. Note that the Gaussians have
different exponents.



6.13(a) How many basis functions are needed in an electronic structure
calculation on CH3Cl using a (a) 6-31G* basis set, (b) 6-311G** basis set,
(c) 6-311++G basis set?

6.13(b) How many basis functions are needed in an electronic structure
calculation on CH2Cl2 using a (a) 6-31G* basis set, (b) 6-311G** basis
set, (c) 6-311++G basis set?

6.14(a) Identify the quadratic equation for the coefficient of the basis
function centred on H in HeH+ starting from the Fock matrix and
making the Hückel approximations.

6.14(b) Identify the quadratic equation for the coefficient of the basis
function centred on H in LiH2+ starting from the Fock matrix and
making the Hückel approximations.

6.15(a) Identify the two-electron integrals that are set to zero in the
semiempirical method known as (a) CNDO, (b) INDO.

6.15(b) Identify the two-electron integrals that are set to zero in the
semiempirical method known as NDDO.

6.16(a) In a Hartree–Fock calculation on the silicon atom using 20 basis
set functions, how many of the molecular orbitals generated would be
unoccupied and could be used as virtual orbitals in a configuration
interaction calculation?

6.16(b) In a Hartree–Fock calculation on the sulfur atom using 20 basis
set functions, how many of the molecular orbitals generated would be
unoccupied and could be used as virtual orbitals in a configuration
interaction calculation?

6.17(a) Give an example of a singly excited determinant in a CI
calculation of H2.

6.17(b) Give an example of a doubly excited determinant in a CI
calculation of H2.

6.18(a) Using eqn 6.18, write down the expression for the ground-state
wavefunction in a CI calculation on HeH+ involving the ground-state
determinant and a singly excited determinant.

6.18(b) Using eqn 6.18, write down the expression for the ground-state
wavefunction in a CI calculation on LiH2+ involving the ground-state
determinant and a doubly excited determinant.

6.19(a) The second-order energy correction (eqn 6.21) in MPPT arises
from the doubly excited determinant (the M = 2 term). Derive an
expression for the integral that appears in the numerator of eqn 6.21 in
terms of the integrals (AB |CD) for HeH+.

6.19(b) The second-order energy correction (eqn 6.21) in MPPT arises
from the doubly excited determinant (the M = 2 term). Derive an
expression for the integral that appears in the numerator of eqn 6.21 in
terms of the integrals (AB |CD) for LiH2+.

6.20(a) Which of the following are functionals: (a) d(x3)/dx, (b) d(x3)/dx
evaluated at x = 1, (c) ∫x3dx, (d) ∫3

1x3dx?

6.20(b) Which of the following are functionals: (a) d(3x2)/dx, 
(b) d(3x3)/dx evaluated at x = 4, (c) ∫3x2dx, (d) ∫ 3

1
3x2dx?

6.21(a) Using eqn 6.23, write the expression for the electron density in
terms of the Kohn–Sham orbitals in a DFT calculation on LiH.

6.21(b) Using eqn 6.23, write the expression for the electron density in
terms of the Kohn–Sham orbitals in a DFT calculation on BeH2.

6.22(a) Write the two Kohn–Sham equations for the Kohn–Sham
orbitals in a DFT calculation on HeH+. Use the exchange–correlation
potential of eqn 6.26.

6.22(b) Write the two Kohn–Sham equations for the Kohn–Sham
orbitals in a DFT calculation on LiH2+. Use the exchange–correlation
potential of eqn 6.26.

6.23(a) Which of the following basis sets should give a result closer to the
Hartree–Fock limit in an electronic structure calculation on ethanol,
C2H5OH: (a) double-zeta, (b) split-valence, (c) triple zeta?

6.23(b) Which of the following basis sets should give a result closer to the
Hartree–Fock limit in an electronic structure calculation on methanol
CH3OH: (a) 4-31G, (b) 6-311+G**, (c) 6-31G*?

Problems*

Many of the following problems call on the use of commercially available
software. Use versions that are available with this text or the software
recommended by your instructor.

Numerical problems

6.1 Using appropriate electronic structure software, perform
Hartree–Fock self-consistent field calculations for the ground 
electronic states of H2 and F2 using (a) 6-31G* and (b) 6-311+G** 
basis sets. Determine ground-state energies and equilibrium 
geometries. Compare computed equilibrium bond lengths to
experimental values.

6.2 Using approprite electronic structure software and a basis set of your
choice or on the advice of your instructor, perform calculations for: 
(a) the ground electronic state of H2; (b) the ground electronic state of
F2; (c) the first electronic state of H2; (d) the first electronic state of F2.
Determine energies and equilibrium geometries and compare to
experimental values where possible.

6.3 Use the AM1 and PM3 semiempirical methods to compute the
equilibrium bond lengths and standard enthalpies of formation of (a)
ethanol, C2H5OH, (b) 1,4-dichlorobenzene, C6H4Cl2. Compare with
experimental values and suggest reasons for any discrepancies.

6.4 Molecular orbital calculations based on semiempirical (Section 6.5),
ab initio, and DFT methods describe the spectroscopic properties of
conjugated molecules better than simple Hückel theory (Section 6.4). 
(a) Using the computational method of your choice (semiempirical, ab
initio, or density functional methods), calculate the energy separation
between the HOMO and LUMO of ethene, butadiene, hexatriene, and
octatetraene. (b) Plot the HOMO–LUMO energy separations against the
experimental frequencies for π*←π ultraviolet absorptions for these
molecules (61 500, 46 080, 39 750, and 32 900 cm−1, respectively). Use
mathematical software to find the polynomial equation that best fits 
the data. (c) Use your polynomial fit from part (b) to estimate the
wavenumber and wavelength of the π*←π ultraviolet absorption of
decapentaene from the calculated HOMO–LUMO energy separation.
(d) Discuss why the calibration procedure of part (b) is necessary.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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6.5 Molecular electronic structure methods may be used to estimate 
the standard enthalpy of formation of molecules in the gas phase. 
(a) Using a semiempirical method of your choice, calculate the 
standard enthalpy of formation of ethene, butadiene, hexatriene, and
octatetraene in the gas phase. (b) Consult a database of thermochemical
data, and, for each molecule in part (a), calculate the difference between
the calculated and experimental values of the standard enthalpy of
formation. (c) A good thermochemical database will also report the
uncertainty in the experimental value of the standard enthalpy of
formation. Compare experimental uncertainties with the relative 
errors calculated in part (b) and discuss the reliability of your chosen
semiempirical method for the estimation of thermochemical properties
of linear polyenes.

6.6‡ Luo et al. (J. Chem. Phys. 98, 3564 (1993)) reported experimental
observation of He2, a species that had escaped detection for a long 
time. The observation required temperatures in the neighbourhood 
of 1 mK. Perform configuration interaction and MPPT electronic
structure calculations and compute the equilibrium bond length Re
of the dimer as well as the energy of the dimer at Re relative to the
separated He + He atomic limit. (High level, accurate computational
studies suggest that the well depth for He2 is about 0.0151 zJ at a 
distance Re of about 297 pm.)

6.7 An important quantity in nuclear magnetic resonance spectroscopy
(Chapter 12), which should be familiar from 13C-NMR spectra of
organic molecules, is the chemical shift; this experimentally determined
quantity is influenced by the details of the electronic structure near the
13C nucleus of interest. Consider the following series of molecules:
benzene, methylbenzene, trifluoromethylbenzene, benzonitrile, and
nitrobenzene in which the substituents para to the C atom of interest are
H, CH3, CF3, CN, and NO2, respectively. (a) Using the computational
method of your choice, calculate the net charge at the C atom para
to these substituents in the series of organic molecules given above. 
(b) It is found empirically that the 13C chemical shift of the para C atom
increases in the order: methylbenzene, benzene, trifluoromethylbenzene,
benzonitrile, nitrobenzene. Is there a correlation between the behaviour
of the 13C chemical shift and the computed net charge on the 13C atom?
(This problem is revisited in Problem 12.17.)

Theoretical problems

6.8 Show that the Slater determinant in eqn 6.5a is normalized assuming
that the spinorbitals from which it is constructed are orthogonal and
normalized.

6.9 In a configuration interaction calculation on the ground 2S state of
Li, which of the following Slater determinants can contribute to the
ground-state wavefunction?

(a) |ψ1s
αψ1s

βψ2s
α | (b) |ψ1s

αψ1s
βψ2s

β | (c) |ψ1s
αψ1s

βψ 2p
α |

(d) |ψ1s
αψ2p

αψ2p
β | (e) |ψ1s

αψ3d
αψ3d

β | (f ) |ψ1s
αψ2s

αψ3s
α |

6.10 In a configuration interaction calculation on the excited 3∑u
+

electronic state of H2, which of the following Slater determinants can
contribute to the excited-state wavefunction?

(a) |1σg
α1σu

α | (b) |1σg
α1πu

α | (c) |1σu
α1πg

β |
(d) |1σg

β2σu
β | (e) |1πu

α1πg
α | (f) |1πu

β2πu
β |

6.11 Use MPPT to obtain an expression for the ground-state
wavefunction corrected to first order in the perturbation.

6.12 It is often necessary during the course of an electronic structure
calculation to take derivatives of the basis functions with respect to
nuclear coordinates. Show that the derivative of an s-type Gaussian with
respect to x yields a p-type Gaussian and that the derivative of a p-type

Gaussian (i = 1, j = k = 0 in eqn 6.17) yields a sum of s- and d-type
Gaussians.

6.13 (a) In a continuation of Exercise 6.6a for HeH+, proceed to
determine the energies of the two molecular orbitals as well as the
relation between the two coefficients for ψa and the relation between 
the two coefficients for ψb. (b) Repeat for LiH2+ (in a continuation of
Exercise 6.6b).

6.14 (a) Continuing the Hartree–Fock calculation on HeH+ in 
Problem 6.13(a), give the expressions for all four of the elements of the
Fock matrix in terms of four-centre, two-electron integrals; the latter are
defined in eqn 6.14. (b) Repeat for LiH2+ (in a continuation of Problem
6.13(b)).

6.15 (a) In a continuation of Problem 6.14(a) for HeH+, use Hückel
molecular orbital theory to express the energies of the molecular orbitals
in terms of α and β. (b) Repeat for LiH2+ (in a continuation of Problem
6.14(b)).

6.16 (a) Using the expressions for the four elements of the Fock matrix
for HeH+ determined in Problem 6.14(a), show how these expressions
simplify if the CNDO semiempirical method is used. (b) Repeat for
LiH2+, beginning with the expressions determined in Problem 6.14(b).

6.17 Consider a four-centre integral in an electronic structure
calculation on NH3 involving s-type Gaussian functions centred on each
atomic nucleus. Show that the four-centre, two-electron integral reduces
to an integral over two different centres.

6.18 (a) Show why configuration interaction gives an improved 
ground-state wavefunction for HeH+ compared to the Hartree–Fock
ground-state wavefunction. Use a minimal basis set and ignore 
overlap. Follow along the lines of the argument presented in the first
illustration in Section 6.6 but recognize the complication introduced 
by the fact that HeH+ does not have inversion symmetry. (b) Repeat 
for LiH2+.

6.19 In the second illustration of Section 6.6, the secular equation for a
CI calculation on molecular hydrogen using the ground-state Slater
determinant and the doubly excited determinant was presented as well as
the expression for one of the hamiltonian matrix elements. Develop
similar expressions for the remaining hamiltonian matrix elements.

6.20 Show that in MPPT first-order energy corrections do not
contribute to the correlation energy.

6.21 Prove Brillouin’s theorem, which states that the hamiltonian matrix
elements between the ground-state Hartree–Fock Slater determinant and
singly excited determinants are zero.

6.22 Derive an expression for the second-order estimate of the
correlation energy for H2 if, in a CI calculation using a minimal basis set,
the overlap between the two basis set functions is not ignored but set
equal to a constant S.

6.23 Find the DFT exchange–correlation potential if the
exchange–correlation energy is given by ∫Cρ5/3dr.

Applications: to biology

6.24 Molecular orbital calculations may be used to predict trends in 
the standard potentials of conjugated molecules, such as the quinones
and flavins, that are involved in biological electron transfer reactions
(Section 20.8). It is commonly assumed that decreasing the energy of the
LUMO enhances the ability of a molecule to accept an electron into the
LUMO, with an accompanying increase in the value of the molecule’s
standard potential. Furthermore, a number of studies indicate that there
is a linear correlation between the LUMO energy and the reduction



potential of aromatic hydrocarbons. (a) The standard potentials at pH 7
for the one-electron reduction of methyl-substituted 1,4-benzoquinones
(3) to their respective semiquinone radical anions are:

R2 R3 R5 R6 E 7/V

H H H H 0.078

CH3 H H H 0.023

CH3 H CH3 H −0.067

CH3 CH3 CH3 H −0.165

CH3 CH3 CH3 CH3 −0.260

Using the computational method of your choice (semiempirical, ab
initio, or density functional theory methods), calculate ELUMO, the 
energy of the LUMO of each substituted 1,4-benzoquinone, and plot
ELUMO against E 7. Do your calculations support a linear relation between
ELUMO and E 7? (b) The 1,4-benzoquinone for which R2 = R3 = CH3 and
R5 = R6 = OCH3 is a suitable model of ubiquinone, a component of the
respiratory electron transport chain (Impact I17.3). Determine ELUMO of
this quinone and then use your results from part (a) to estimate its
standard potential. (c) The 1,4-benzoquinone for which R2 = R3 = R5 =
CH3 and R6 = H is a suitable model of plastoquinone, a component of

the photosynthetic electron transport chain (Impact I19.1). Determine
ELUMO of this quinone and then use your results from part (a) to estimate
its standard potential. Is plastoquinone expected to be a better or worse
oxidizing agent than ubiquinone? (d) Based on your predictions and on
basic concepts of biological electron transport (Section 20.8), suggest a
reason why ubiquinone is used in respiration and plastoquinone is used
in photosynthesis.

6.25 This problem gives a simple example of a quantitative
structure–activity relation (QSAR), Impact I6.2, showing how to 
predict the affinity of non-polar groups for hydrophobic sites in the
interior of proteins. (a) Consider a family of hydrocarbons R-H. The
hydrophobicity constants, π, for R = CH3, CH2CH3, (CH2)2CH3,
(CH2)3CH3, and (CH2)4CH3 are, respectively, 0.5, 1.0, 1.5, 2.0, and 2.5.
Use these data to predict the π value for (CH2)6CH3. (b) The equilibrium
constants KI for the dissociation of inhibitors (4) from the enzyme
chymotrypsin were measured for different substituents R:

R CH3CO CN NO2 CH3 Cl

π −0.20 −0.025 0.33 0.5 0.9

log KI −1.73 −1.90 −2.43 −2.55 −3.40

Plot log KI against π. Does the plot suggest a linear relationship? If so,
what are the slope and intercept to the log KI axis of the line that best fits
the data? (c) Predict the value of KI for the case R = H.
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Molecular symmetry

In this chapter we sharpen the concept of ‘shape’ into a precise definition of ‘symmetry’,
and show that symmetry may be discussed systematically. We see how to classify any
molecule according to its symmetry and how to use this classification to discuss molecular
properties. After describing the symmetry properties of molecules themselves, we turn to 
a consideration of the effect of symmetry transformations on orbitals and see that their
transformation properties can be used to set up a labelling scheme. These symmetry labels
are used to identify integrals that necessarily vanish. One important integral is the overlap 
integral between two orbitals. By knowing which atomic orbitals may have nonzero overlap,
we can decide which ones can contribute to molecular orbitals. We also see how to select
linear combinations of atomic orbitals that match the symmetry of the nuclear framework.
Finally, by considering the symmetry properties of integrals, we see that it is possible to 
derive the selection rules that govern spectroscopic transitions.

The systematic discussion of symmetry is called group theory. Much of group theory
is a summary of common sense about the symmetries of objects. However, because
group theory is systematic, its rules can be applied in a straightforward, mechanical
way. In most cases the theory gives a simple, direct method for arriving at useful con-
clusions with the minimum of calculation, and this is the aspect we stress here. In
some cases, though, they lead to unexpected results.

A group in mathematics is a collection of transformations that satisfy four criteria.
Thus, if we write the transformations as R, R′, . . . , (which we can think of as reflec-
tions, rotations, and so on), then they form a group if:

1. One of the transformations is the identity (that is: ‘do nothing’).

2. For every transformation R, the inverse transformation R−1 is included in the
collection so that the combination RR−1 (the transformation R−1 followed by R) is
equivalent to the identity.

3. The combination RR′ (the transformation R′ followed by R) is equivalent to a
single member of the collection of transformations.

4. The combination R(R′R″), the transformation (R′R″) followed by R, is equi-
valent to (RR′)R″, the transformation R″ followed by (RR′).

These criteria will be made more concrete in the following section. We are aware that
not everyone will use this chapter, and have written the following chapters so that
group theory, though often included (for it is so powerful), can easily be stepped
around.

7
The symmetry elements of
objects

7.1 Operations and symmetry
elements

7.2 The symmetry classification 
of molecules

7.3 Some immediate consequences
of symmetry

Applications

7.4 Character tables 
and symmetry labels

7.5 Vanishing integrals 
and orbital overlap

7.6 Vanishing integrals 
and selection rules

Checklist of key ideas

Discussion questions

Exercises

Problems
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The symmetry elements of objects

Some objects are ‘more symmetrical’ than others. A sphere is
more symmetrical than a cube because it looks the same after 
it has been rotated through any angle about any diameter. A
cube looks the same only if it is rotated through certain angles
about specific axes, such as 90°, 180°, or 270° about an axis pass-
ing through the centres of any of its opposite faces (Fig. 7.1), or
by 120° or 240° about an axis passing through any of its opposite
corners. Similarly, an NH3 molecule is ‘more symmetrical’ than
an H2O molecule because NH3 looks the same after rotations of
120° or 240° about the axis shown in Fig. 7.2, whereas H2O looks
the same only after a rotation of 180°.

An action that leaves an object looking the same after it has
been carried out is called a symmetry operation. Typical sym-
metry operations include rotations, reflections, and inversions.
There is a corresponding symmetry element for each symmetry
operation, which is the point, line, or plane with respect to which
the symmetry operation is performed. For instance, a rotation 
(a symmetry operation) is carried out around an axis (the corres-
ponding symmetry element). We shall see that we can classify
molecules by identifying all their symmetry elements, and group-
ing together molecules that possess the same set of symmetry 
elements. This procedure, for example, puts the trigonal pyra-
midal species NH3 and SO3

2− into one group and the angular
species H2O and SO2 into another group.

7.1 Operations and symmetry elements

The classification of objects according to symmetry elements
corresponding to operations that leave at least one common
point unchanged gives rise to the point groups. There are five
kinds of symmetry operation (and five kinds of symmetry ele-
ment) of this kind. When we consider crystals (Chapter 9), we
shall meet symmetries arising from translation through space.
These more extensive groups are called space groups.

An n-fold rotation (the operation) about an n-fold axis of
symmetry, Cn (the corresponding element), is a rotation through
360°/n. An H2O molecule has one twofold axis, C2. An NH3

molecule has one threefold axis, C3, with which is associated two
symmetry operations, one being 120° rotation in a clockwise
sense and the other 120° rotation in a counter-clockwise sense.
There is only one twofold rotation associated with a C2 axis
because clockwise and counter-clockwise 180° rotations are
identical. A pentagon has a C5 axis, with two rotations (one
clockwise, the other counter-clockwise) through 72° associated
with it. It also has an axis denoted C5

2, corresponding to two 
successive C5 rotations; there are two such operations, one
through 144° in a clockwise sense and the other through 144° in
a counter-clockwise sense. A cube has three C4 axes, four C3 axes,
and six C2 axes. However, even this high symmetry is exceeded
by a sphere, which possesses an infinite number of symmetry
axes (along any diameter) of all possible integral values of n. If a
molecule possesses several rotation axes, then the one (or more)
with the greatest value of n is called the principal axis. The prin-
cipal axis of a benzene molecule is the sixfold axis perpendicular
to the hexagonal ring (1).

C2

C3

C4

Fig. 7.1 Some of the symmetry elements of a cube. The twofold,
threefold, and fourfold axes are labelled with the conventional
symbols.

C2

C3

N
H

O

H

(a)

(b)

Fig. 7.2 (a) An NH3 molecule has a threefold (C3) axis and (b) an
H2O molecule has a twofold (C2) axis. Both have other
symmetry elements too.
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A reflection (the operation) in a mirror plane, σ (the element),
may contain the principal axis of a molecule or be perpendicular
to it. If the plane contains the principal axis, it is called ‘vertical’
and denoted σv. An H2O molecule has two vertical planes of
symmetry (Fig. 7.3) and an NH3 molecule has three. A vertical
mirror plane that bisects the angle between two C2 axes is called
a ‘dihedral plane’ and is denoted σd (Fig. 7.4). When the plane 
of symmetry is perpendicular to the principal axis it is called
‘horizontal’ and denoted σh. A C6H6 molecule has a C6 principal
axis and a horizontal mirror plane (as well as several other 
symmetry elements).

In an inversion (the operation) through a centre of symmetry,
i (the element), we imagine taking each point in a molecule,
moving it to the centre of the molecule, and then moving it out
the same distance on the other side; that is, the point (x, y, z)
is taken into the point (−x, −y, −z). Neither an H2O molecule 
nor an NH3 molecule has a centre of inversion, but a sphere and
a cube do have one. A C6H6 molecule does have a centre of 
inversion and so does a regular octahedron (Fig. 7.5); a regular
tetrahedron and a CH4 molecule do not.

An n-fold improper rotation (the operation) about an n-fold
axis of improper rotation or an n-fold improper rotation axis,

Sn (the symmetry element), is composed of two successive trans-
formations. The first component is a rotation through 360°/n,
and the second is a reflection through a plane perpendicular to
the axis of that rotation; neither operation alone needs to be a
symmetry operation. A CH4 molecule has three S4 axes (Fig. 7.6).

The identity, E, consists of doing nothing; the corresponding
symmetry element is the entire object. Because every molecule 
is indistinguishable from itself if nothing is done to it, every 
object possesses at least the identity element. One reason for 
including the identity is that some molecules have only this 

v
v́T T

Fig. 7.3 An H2O molecule has two mirror planes. They are both
vertical (that is, contain the principal axis), so are denoted σv

and σ v′ .

Centre of
inversion, i

Fig. 7.5 A regular octahedron has a centre of inversion (i).

h

h

C4

S4

C6

S6

(a)

(b)

T

T

Fig. 7.6 (a) A CH4 molecule has a fourfold improper rotation 
axis (S4): the molecule is indistinguishable after a 90° rotation
followed by a reflection across the horizontal plane, but neither
operation alone is a symmetry operation. (b) The staggered form
of ethane has an S6 axis composed of a 60° rotation followed by a
reflection.

d

d
d

T
T T

Fig. 7.4 Dihedral mirror planes (σd) bisect the C2 axes
perpendicular to the principal axis.
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symmetry element (2); another reason is to ensure that the 
symmetry elements fulfil the criteria for forming a group.

l A BRIEF ILLUSTRATION

To identify the point group to which a ruthenocene molecule
(3) belongs we use the flow diagram in Fig. 7.7. The path to
trace is shown by a blue line; it ends at Dnh. Because the
molecule has a fivefold axis, it belongs to the group D5h. If 
the rings were staggered, as they are in an excited state of 
ferrocene that lies 4 kJ mol−1 above the ground state (4), the
horizontal reflection plane would be absent, but dihedral
planes would be present. l

Table 7.1 The notation for point groups

Ci ⁄
Cs m

C1 1 C2 2 C3 3 C4 4 C6 6

C2v 2mm C3v 3m C4v 4mm C6v 6mm

C2h 2m C3h fl C4h 4/m C6h 6/m

D2 222 D3 32 D4 422 D6 622

D2h mmm D3h fl2m D4h 4/mmm D6h 6/mmm

D2d ›2m D3d ‹m S4 › /m S6 ‹

T 23 Td ›3m Th m3

O 432 Oh m3m

In the International system (or Hermann–Mauguin system) for point groups, a
number n denotes the presence of an n-fold axis and m denotes a mirror plane. 
A slash (/) indicates that the mirror plane is perpendicular to the symmetry axis. 
It is important to distinguish symmetry elements of the same type but of different
classes, as in 4/mmm, in which there are three classes of mirror plane. A bar over a
number indicates that the element is combined with an inversion. The only groups
listed here are the so-called ‘crystallographic point groups’.

7.2 The symmetry classification of molecules

To classify molecules according to their symmetries, we list their
symmetry elements and collect together molecules with the same
list of elements. This procedure puts CH4 and CCl4, which both
possess the same symmetry elements as a regular tetrahedron,
into the same group, and H2O into another group.

The name of the group to which a molecule belongs is 
determined by the symmetry elements it possesses. There are
two systems of notation (Table 7.1). The Schoenflies system (in
which a name looks like C4v) is more common for the discussion
of individual molecules, and the Hermann–Mauguin system,
or International system (in which a name looks like 4mm), is
used almost exclusively in the discussion of crystal symmetry.
The identification of a molecule’s point group according to the
Schoenflies system is simplified by referring to the flow diagram
in Fig. 7.7 and the shapes shown in Fig. 7.8. Cnv

S2n
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Linear?Y N

Y N Y

N

Two
or more

, > 2?C nn

Y N

C5?
Y NIh
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D�h C�v
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C1

T

T

T

T
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i ?

i?

Fig. 7.7 A flow diagram for determining the point group of a
molecule. Start at the top and answer the question posed in each
diamond (Y = yes, N = no).
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Self-test 7.1 Classify the pentagonal antiprismatic excited
state of ferrocene (4). [D5d]

(a) The groups C1, Ci, and Cs

A molecule belongs to the group C1 if it has no element other
than the identity, as in (2). It belongs to Ci if it has the identity
and the inversion alone (5), and to Cs if it has the identity and a
mirror plane alone (6).

Cone

2 3 4 5 6 �

Cn

Dn

Cnv

Dnh

Dnd

Cnh

S2n

(plane or bipyramid)

(pyramid)

n =

Fig. 7.8 A summary of the shapes corresponding to different
point groups. The group to which a molecule belongs can often
be identified from this diagram without going through the
formal procedure in Fig. 7.7.

(b) The groups Cn, Cnv, and Cnh

A molecule belongs to the group Cn if it possesses an n-fold axis.
Note that the symbol Cn is now playing a triple role: as the label
of a symmetry element, a symmetry operation, and a group. For
example, an H2O2 molecule has the elements E and C2 (7), so it
belongs to the group C2.

If, in addition to the identity and a Cn axis, a molecule has n
vertical mirror planes σv, then it belongs to the group Cnv. An
H2O molecule, for example, has the symmetry elements E, C2,
and 2σv, so it belongs to the group C2v. An NH3 molecule has 
the elements E, C3, and 3σv, so it belongs to the group C3v. A 
heteronuclear diatomic molecule such as HCl belongs to the
group C∞v because rotations around the axis by any angle and
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reflections in all the infinite number of planes that contain the
axis are symmetry operations. Other members of the group C∞v

include the linear OCS molecule and a cone.
Objects that, in addition to the identity and an n-fold principal

axis, also have a horizontal mirror plane σh belong to the groups
Cnh. An example is trans-CHCl=CHCl (8), which has the ele-
ments E, C2, and σh, so belongs to the group C2h; the molecule
B(OH)3 in the conformation shown in (9) belongs to the group
C3h. The presence of certain symmetry elements may be implied
by the presence of others: thus, in C2h the operations C2 and σh

jointly imply the presence of a centre of inversion (Fig. 7.9).

as N2, belong to the group D∞h because all rotations around the
axis are symmetry operations, as are end-to-end rotation and
end-to-end reflection; D∞h is also the group of the linear OCO
and HCCH molecules and of a uniform cylinder. Other examples
of Dnh molecules are shown in (11), (12), and (13).

h

C2

i
T

Fig. 7.9 The presence of a twofold axis and a horizontal mirror
plane jointly imply the presence of a centre of inversion in the
molecule.

(c) The groups Dn, Dnh, and Dnd

We see from Fig. 7.7 that a molecule that has an n-fold principal
axis and n twofold axes perpendicular to Cn belongs to the group
Dn. A molecule belongs to Dnh if it also possesses a horizontal
mirror plane. The planar trigonal BF3 molecule has the elements
E, C3, 3C2, and σh (with one C2 axis along each B-F bond), so
belongs to D3h (10). The C6H6 molecule has the elements E, C6,
3C2, 3C 2′, and σh together with some others that these elements
imply, so it belongs to D6h. Three of the C2 axes bisect C-C
bonds and the other three pass through vertices of the hexagon
formed by the carbon framework of the molecule and the prime
on 3C 2′ indicates that the three C2 axes are different from the
other three C2 axes. All homonuclear diatomic molecules, such

A molecule belongs to the group Dnd if in addition to the 
elements of Dn it possesses n dihedral mirror planes σd. The
twisted, 90° allene (14) belongs to D2d, and the staggered con-
formation of ethane (15) belongs to D3d.
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(d) The groups Sn

Molecules that have not been classified into one of the groups
mentioned so far, but which possess one Sn axis, belong to the
group Sn. An example is tetraphenylmethane, which belongs to
the point group S4 (16). Molecules belonging to Sn with n > 4 are
rare. Note that the group S2 is the same as Ci, so such a molecule
will already have been classified as Ci.

The groups Td and Oh are the groups of the regular tetrahedron
(for instance, CH4) and the regular octahedron (for instance,
SF6), respectively. If the object possesses the rotational sym-
metry of the tetrahedron or the octahedron, but none of their
planes of reflection, then it belongs to the simpler groups T or O
(Fig. 7.11). The group Th is based on T but also contains a centre
of inversion (Fig. 7.12).

(f ) The full rotation group

The full rotation group, R3 (the 3 refers to rotation in three 
dimensions), consists of an infinite number of rotation axes
with all possible values of n. A sphere and an atom belong to 
R3, but no molecule does. Exploring the consequences of R3 is a
very important way of applying symmetry arguments to atoms, 
and is an alternative approach to the theory of orbital angular 
momentum.

(e) The cubic groups

A number of very important molecules (for example, CH4 and
SF6) possess more than one principal axis. Most belong to the
cubic groups, and in particular to the tetrahedral groups T,
Td, and Th (Fig. 7.10a) or to the octahedral groups O and Oh

(Fig. 7.10b). A few icosahedral (20-faced) molecules belonging
to the icosahedral group, I (Fig. 7.10c), are also known: they 
include some of the boranes and buckminsterfullerene, C60 (17).

(a)

(b)

(c)

Fig. 7.10 (a) Tetrahedral, (b) octahedral, and (c) icosahedral
molecules are drawn in a way that shows their relation to a cube:
they belong to the cubic groups Td, Oh, and Ih, respectively.
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7.3 Some immediate consequences of symmetry

Some statements about the properties of a molecule can be
made as soon as its point group has been identified.

(a) Polarity

A polar molecule is one with a permanent electric dipole 
moment (HCl, O3, and NH3 are examples). If the molecule 
belongs to the group Cn with n > 1, it cannot possess a charge
distribution with a dipole moment perpendicular to the sym-
metry axis because the symmetry of the molecule implies that
any dipole that exists in one direction perpendicular to the axis

is cancelled by an opposing dipole (Fig. 7.13a). For example, 
the perpendicular component of the dipole associated with one 
O-H bond in H2O is cancelled by an equal but opposite com-
ponent of the dipole of the second O-H bond, so any dipole
that the molecule has must be parallel to the twofold symmetry
axis. However, as the group makes no reference to operations re-
lating the two ends of the molecule, a charge distribution may
exist that results in a dipole along the axis (Fig. 7.13b), and H2O
has a dipole moment parallel to its twofold symmetry axis. The
same remarks apply generally to the group Cnv, so molecules 
belonging to any of the Cnv groups may be polar. In all the other
groups, such as C3h, D, etc., there are symmetry operations that
take one end of the molecule into the other. Therefore, as well as
having no dipole perpendicular to the axis, such molecules can
have none along the axis, for otherwise these additional opera-
tions would not be symmetry operations. We can conclude that
only molecules belonging to the groups Cn, Cnv, and Cs may have a 
permanent electric dipole moment.

For Cn and Cnv, that dipole moment must lie along the sym-
metry axis. Thus ozone, O3, which is angular and belongs to 
the group C2v, may be polar (and is), but carbon dioxide, CO2,
which is linear and belongs to the group D∞h, is not.

(b) Chirality

A chiral molecule (from the Greek word for ‘hand’) is a molecule
that cannot be superimposed on its mirror image. An achiral
molecule is a molecule that can be superimposed on its mirror
image. Chiral molecules are optically active in the sense that
they rotate the plane of polarized light (a property discussed in
more detail in Section 11.4). A chiral molecule and its mirror-
image partner constitute an enantiomeric pair of isomers and
rotate the plane of polarization in equal but opposite directions.

(a) T

(b) O

Fig. 7.11 Shapes corresponding to the point groups (a) T and
(b) O. The presence of the decorated slabs reduces the symmetry
of the object from Td and Oh, respectively.

Fig. 7.12 The shape of an object belonging to the group Th.

(a) (b)

Fig. 7.13 (a) A molecule with a Cn axis cannot have a dipole
perpendicular to the axis, but (b) it may have one parallel to 
the axis. The arrows represent local contributions to the overall
electric dipole, such as may arise from bonds between pairs of
neighbouring atoms with different electronegativities.



204 7 MOLECULAR SYMMETRY

A molecule may be chiral, and therefore optically active, only if
it does not possess an axis of improper rotation, Sn. We need to be
aware that an Sn improper rotation axis may be present under a
different name, and be implied by other symmetry elements that
are present. For example, molecules belonging to the groups Cnh

possess an Sn axis implicitly because they possess both Cn and σh,
which are the two components of an improper rotation axis.
Any molecule containing a centre of inversion, i, also possesses
an S2 axis, because i is equivalent to C2 in conjunction with σh,
and that combination of elements is S2 (Fig. 7.14). It follows that
all molecules with centres of inversion are achiral and hence 
optically inactive. Similarly, because S1 = σ, it follows that any
molecule with a mirror plane is achiral.

A molecule may be chiral if it does not have a centre of 
inversion or a mirror plane, which is the case with the amino
acid alanine (18), but not with glycine (19). However, a molecule
may be achiral even though it does not have a centre of inver-
sion. For example, the S4 species (20) is achiral and optically 
inactive: though it lacks i (that is, S2) it does have an S4 axis.

Applications

We shall now turn our attention away from the symmetries 
of molecules themselves and direct it towards the symmetry
characteristics of orbitals that belong to the various atoms in a
molecule. This material will enable us to discuss the formula-
tion and labelling of molecular orbitals and selection rules in
spectroscopy.

7.4 Character tables and symmetry labels

We saw in Chapter 5 that molecular orbitals of diatomic and 
linear polyatomic molecules are labelled σ, π, etc. These labels
refer to the symmetries of the orbitals with respect to rotations
around the principal symmetry axis of the molecule. Thus, a 
σ orbital does not change sign under a rotation through any
angle, a π orbital changes sign when rotated by 180°, and so on
(Fig. 7.15). The symmetry classifications σ and π can also be 
assigned to individual atomic orbitals in a linear molecule. For

i

S2

Fig. 7.14 Some symmetry elements are implied by the other
symmetry elements in a group. Any molecule containing an
inversion also possesses at least an S2 element because i and S2

are equivalent.

T '

+

+

–

Fig. 7.15 A rotation through 180° about the internuclear axis
(perpendicular to the page) leaves the sign of a σ orbital
unchanged but the sign of a π orbital is changed. In the language
introduced in this chapter, the characters of the C2 rotation are
+1 and −1 for the σ and π orbitals, respectively.
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example, we can speak of an individual pz orbital as having 
σ symmetry if the z-axis lies along the bond, because pz is cylin-
drically symmetrical about the bond. This labelling of orbitals 
according to their behaviour under rotations can be generalized
and extended to non-linear polyatomic molecules, where there
may be reflections and inversions to take into account as well 
as rotations.

(a) Representations and characters

Labels analogous to σ and π are used to denote the symmetries
of orbitals in polyatomic molecules. These labels look like a, a1,
e, eg, and we first encountered them in Fig. 5.38 in connection
with the molecular orbitals of benzene. As we shall see, they 
indicate the behaviour of the orbitals under the symmetry 
operations of the relevant point group of the molecule.

A label is assigned to an orbital by referring to the character
table of the group, a table that characterizes the different sym-
metry types possible in the point group. Thus, to assign the 
labels σ and π, we use the following table:

C2

σ +1
π −1

This table is a fragment of the full character table for a linear
molecule. The entry +1 shows that the orbital remains the same
and the entry −1 shows that the orbital changes sign under the
operation C2 at the head of the column (as illustrated in Fig. 7.15).
So, to assign the label σ or π to a particular orbital, we compare
the orbital’s behaviour with the information in the character table.
Exactly the same procedure is used to assign labels to orbitals of
molecules that belong to more elaborate point groups.

The entries in a complete character table are derived by using
the formal techniques of group theory and are called characters,
χ (chi). These numbers characterize the essential features of
each symmetry type in a way that we can illustrate by considering
the C2v molecule SO2 and the valence px orbitals on each atom,
which we shall denote pS, pA, and pB (Fig. 7.16). To understand
their origin and significance, we need to introduce a hugely 
important new topic.

Under σv, the change (pS, pB, pA) ← (pS, pA, pB) takes place.
We can express this transformation by using matrix multiplica-
tion (Mathematical background 5):

(pS, pB, pA) = (pS, pA, pB) = (pS, pA, pB)D(σv) (7.1a)

The matrix D(σv) is called a representative of the operation σv.
Representatives take different forms according to the basis, the
set of orbitals, that has been adopted.

We can use the same technique to find matrices that reproduce
the other symmetry operations. For instance, C2 has the effect
(−pS, −pB, −pA) ← (pS, pA, pB), and its representative is

D(C2) = (7.1b)

The effect of σ v′ is (−pS, −pA, −pB) ← (pS, pA, pB), and its 
representative is

D(σ v′) = (7.1c)

The identity operation has no effect on the basis, so its representa-
tive is the 3 × 3 unit matrix:

D(E) = (7.1d)

The set of matrices that represents all the operations of the
group is called a matrix representation, Γ (upper-case gamma),
of the group for the basis that has been chosen. We denote this
three-dimensional representation by Γ (3). The matrices of a rep-
resentation multiply together in the same way as the operations
they represent. Thus, if for any two operations R and R′ we know
that RR′ = R″, then D(R)D(R′) = D(R″) for a given basis.

l A BRIEF ILLUSTRATION

In the group C2v, a twofold rotation followed by a reflection
in a mirror plane is equivalent to a reflection in the second
mirror plane: specifically, σ v′C2 = σv. When we use the repre-
sentatives specified above, we find
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Fig. 7.16 The three px orbitals that are used to illustrate the
construction of a matrix representation in a C2v molecule (SO2).
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This multiplication reproduces the group multiplication.
The same is true of all pairs of representative multiplications,
so the four matrices form a representation of the group. l

The discovery of a matrix representation of the group means
that we have found a link between symbolic manipulations of
operations and algebraic manipulations of numbers.

The character of an operation in a particular matrix represen-
tation is the sum of the diagonal elements of the representative
of that operation. Thus, in the basis we are illustrating, the char-
acters of the representatives are

D(E) D(C2) D(σv) D(σ v′)
3 −1 1 −3

The character of an operation depends on the basis.
Inspection of the representatives shows that they are all of

block-diagonal form:

D = (7.2)

The block-diagonal form of the representatives shows us that
the symmetry operations of C2v never mix pS with the other 
two functions. Consequently, the basis can be cut into two parts,
one consisting of pS alone and the other of (pA, pB). It is readily
verified that the pS orbital itself is a basis for the one-dimensional
representation

D(E) = 1 D(C2) = −1 D(σv) = 1 D(σ v′) = −1

which we shall call Γ (1). The remaining two basis functions are a
basis for the two-dimensional representation Γ (2):

D(E) = D(C2) =

D(σv) = D(σ v′) =

These matrices are the same as those of the original three-
dimensional representation, except for the loss of the first row and
column. We say that the original three-dimensional representa-
tion has been reduced to the ‘direct sum’ of a one-dimensional
representation ‘spanned’ by pS, and a two-dimensional repre-
sentation spanned by (pA, pB). This reduction is consistent 
with the common sense view that the central orbital plays a role
different from the other two. We denote the reduction symboli-
cally by writing

Γ (3) = Γ (1) + Γ (2) (7.3)

The one-dimensional representation Γ (1) cannot be reduced
any further, and is called an irreducible representation of the
group (an ‘irrep’). We can demonstrate that the two-dimensional
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⎟⎟ representation Γ (2) is reducible (for this basis in this group) by

switching attention to the linear combinations p1 = pA + pB and
p2 = pA − pB. These combinations are sketched in Fig. 7.17. The
representatives in the new basis can be constructed from the old
by noting, for example, that under σv, (pB, pA) ← (pA, pB). In this
way we find the following representation in the new basis:

D(E) = D(C2) =

D(σv) = D(σ v′) =

The new representatives are all in block-diagonal form, and 
the two combinations are not mixed with each other by any 
operation of the group. We have therefore achieved the reduc-
tion of Γ (2) to the sum of two one-dimensional representations.
Thus, p1 spans

D(E) = 1 D(C2) = −1 D(σv) = 1 D(σ v′) = −1

which is the same one-dimensional representation as that
spanned by pS, and p2 spans

D(E) = 1 D(C2) = 1 D(σv) = −1 D(σ v′) = −1

which is a different one-dimensional representation; we shall
denote it Γ (1)′.

At this point we have found two irreducible representations
of the group C2v (Table 7.2). The two irreducible representations
are normally labelled B1 and A2, respectively. The label used to
specify an irreducible representation is called the symmetry
species of that representation. An A or a B is used to denote a
one-dimensional representation; A is used if the character under
the principal rotation is +1, and B is used if the character is −1.
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Fig. 7.17 Two symmetry-adapted linear combinations of the basis
orbitals shown in Fig. 7.16. The two combinations each span a
one-dimensional irreducible representation, and their symmetry
species are different.
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Subscripts are used to distinguish the irreducible representa-
tions if there is more than one of the same type: A1 is reserved 
for the representation with character 1 for all operations. When
higher dimensional irreducible representations are permitted, 
E denotes a two-dimensional irreducible representation and T a
three-dimensional irreducible representation; all the irreducible
representations of C2v are one-dimensional.

There are in fact only two more species of irreducible repre-
sentations of this group, for a surprising theorem of group theory
states that

Number of symmetry species = number of classes (7.4)

Symmetry operations fall into the same class if they are of the
same type (for example, rotations) and can be transformed into
one another by a symmetry operation of the group. In C2v, for
instance, there are four classes (four columns in the character
table), so there are only four species of irreducible representa-
tion. The character table in Table 7.2 therefore shows the char-
acters of all the irreducible representations of this group. The
two threefold rotations in C3v belong to the same class because
one can be converted into the other by a reflection (Fig. 7.18);
the three reflections all belong to the same class because each 
can be rotated into another by a threefold rotation. The formal

definition of a class is that two operations R and R′ belong to the
same class if there is a member S of the group such that

R′ = S−1RS (7.5)

where S−1 is the inverse of S.

l A BRIEF ILLUSTRATION

To show that C 3
+ and C3

− belong to the same class in C3v

(which intuitively we know to be the case), take S = σv. The
reciprocal of a reflection is the reflection itself, so σ v

−1 = σv.
It follows that

σ v
−1C 3

+σv = σvC 3
+σv = σvσ v′ = C3

−

Therefore, C 3
+ and C 3

− are related by an equation of the form
of eqn 7.5 and hence belong to the same class. l

Self-test 7.2 Show that the two reflections of the group C2v

fall into different classes.

(b) The structure of character tables

In general, the columns in a character table are labelled with the
symmetry operations of the group. For instance, for the group
C3v the columns are headed E, C3, and σv (Table 7.3). The num-
bers multiplying each operation are the numbers of members of
each class. The total number of operations in a group is called
the order, h, of the group. The order of the group C3v, for instance,
is 6. The rows under the labels for the operations summarize the
symmetry properties of the orbitals. They are labelled with the
symmetry species (the analogues of the labels σ and π).

(c) Character tables and orbital degeneracy

The character of the identity operation E tells us the degeneracy
of the orbitals. Thus, in a C3v molecule, any orbital with a sym-
metry label A1 or A2 is non-degenerate. Any doubly degenerate
pair of orbitals in C3v must be labelled E because, in this group,
only E symmetry species have characters greater than 1. (Take
care to distinguish the identity element E (italic, a column head-
ing) from the symmetry label E (roman, a row label).)

C3
–C3

+

v

vevf

T

T T

Fig. 7.18 Symmetry operations in the same class are related to 
one another by the symmetry operations of the group. Thus, 
the three mirror frames shown here are related by threefold
rotations, and the two rotations shown here are related by
reflection in σv.

Table 7.2 The C2v character table*

C2v, 2mm E C2 σv σv′ h = 4

A1 1 1 1 1 z z2, y2, x2

A2 1 1 −1 −1 xy

B1 1 −1 1 −1 x zx

B2 1 −1 −1 1 y yz

* More character tables are given in the Resource section.

Table 7.3 The C3v character table*

C3v, 3m E 2C3 3σv h = 6

A1 1 1 1 z z2, x2 + y2

A2 1 1 −1

E 2 −1 0 (x, y) (xy, x2 − y2), (yz, zx)

* More character tables are given in the Resource section.
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l A BRIEF ILLUSTRATION

Consider the O2px orbital in H2O (the x-axis is perpendicular
to the molecular plane; the y-axis is parallel to the H-H
direction; the z-axis bisects the HOH angle). Because H2O
belongs to the point group C2v, we know by referring to the
C2v character table (Table 7.2) that the labels available for the
orbitals are a1, a2, b1, and b2. We can decide the appropriate
label for O2px by noting that under a 180° rotation (C2) the
orbital changes sign (Fig. 7.20), so it must be either B1 or B2,
as only these two symmetry types have character −1 under C2.
The O2px orbital also changes sign under the reflection σ v′ ,
which identifies it as B1. As we shall see, any molecular orbital
built from this atomic orbital will also be a b1 orbital. Sim-
ilarly, O2py changes sign under C2 but not under σ v′ ; there-
fore, it can contribute to b2 orbitals. l

Because there are no characters greater than 2 in the column
headed E in C3v, we know that there can be no triply degenerate
orbitals in a C3v molecule. This last point is a powerful result of
group theory, for it means that, with a glance at the character
table of a molecule, we can state the maximum possible degen-
eracy of its orbitals.

Example 7.1 Using a character table to judge degeneracy

Can a trigonal planar molecule such as BF3 have triply 
degenerate orbitals? What is the minimum number of atoms
from which a molecule can be built that does display triple
degeneracy?

Method First, identify the point group, and then refer to the
corresponding character table in the Resource section. The
maximum number in the column headed by the identity E
is the maximum orbital degeneracy possible in a molecule 
of that point group. For the second part, consider the shapes
that can be built from two, three, etc. atoms, and decide
which number can be used to form a molecule that can have
orbitals of symmetry species T.

Answer Trigonal planar molecules belong to the point group
D3h. Reference to the character table for this group shows that
the maximum degeneracy is 2, as no character exceeds 2 in
the column headed E. Therefore, the orbitals cannot be triply
degenerate. A tetrahedral molecule (symmetry group T) has
an irreducible representation with a T symmetry species. The
minimum number of atoms needed to build such a molecule
is four (as in P4, for instance).

Self-test 7.3 A buckminsterfullerene molecule, C60 (17),
belongs to the icosahedral point group. What is the maximum
possible degree of degeneracy of its orbitals? [5]

(d) Characters and operations

The characters in the rows labelled A and B and in the columns
headed by symmetry operations other than the identity E indicate
the behaviour of an orbital under the corresponding operations:
a +1 indicates that an orbital is unchanged, and a −1 indicates
that it changes sign. It follows that we can identify the symmetry
label of the orbital by comparing the changes that occur to an 
orbital under each operation, and then comparing the resulting
+1 or −1 with the entries in a row of the character table for the
point group concerned. By convention, irreducible representa-
tions are labelled with upper-case roman letters (such as A1 and
E) and the orbitals to which they apply are labelled with the
lower-case equivalents (so an orbital of symmetry species A1 is
called an a1 orbital). Examples of each type of orbital for mole-
cules belonging to the C3v point group are shown in Fig. 7.19.

a1

a2

e

e

Fig. 7.19 Typical linear combinations of orbitals in a C3v

molecule.
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For the rows labelled E or T (which refer to the behaviour 
of sets of doubly and triply degenerate orbitals, respectively), 
the characters in a row of the table are the sums of the characters
summarizing the behaviour of the individual orbitals in the
basis. Thus, if one member of a doubly degenerate pair remains
unchanged under a symmetry operation but the other changes
sign (Fig. 7.21), then the entry is reported as χ = 1 − 1 = 0. Care
must be exercised with these characters because the transforma-
tions of orbitals can be quite complicated; nevertheless, the sums
of the individual characters are integers.

The behaviour of s, p, and d orbitals on a central atom under
the symmetry operations of the molecule is so important that
the symmetry species of these orbitals are generally indicated in
a character table. To make these allocations, we look at the sym-
metry species of x, y, and z, which appear on the right-hand side
of the character table. Thus, the position of z in Table 7.3 shows
that pz (which is proportional to zf(r)), has symmetry species A1

in C3v, whereas px and py (which are proportional to xf(r) and
yf(r), respectively) are jointly of E symmetry. In technical terms,
we say that px and py jointly span an irreducible representation
of symmetry species E. An s orbital on the central atom always
spans the fully symmetrical irreducible representation (typically

+

–

+

–
–1–1

+1

Fig. 7.21 The two orbitals shown here have different properties
under reflection through the mirror plane: one changes sign
(character −1), the other does not (character +1).

v

v́

C2

+
–

T

T

Fig. 7.20 A px orbital on the central atom of a C2v molecule and
the symmetry elements of the group.

sA

sB

sC

Fig. 7.22 The three H1s orbitals used to construct linear
combinations in a C3v molecule such as NH3.

labelled A1 but sometimes A1′) of a group as it is unchanged
under all symmetry operations.

The five d orbitals of a shell are represented by xy for dxy, etc.
and are also listed on the right of the character table. We can see
at a glance that, in C3v, dxy and dx2−y2 on a central atom jointly 
belong to E and hence form a doubly degenerate pair.

(e) The classification of linear combinations of orbitals

So far, we have dealt with the symmetry classification of indi-
vidual orbitals. The same technique may be applied to linear
combinations of orbitals on atoms that are related by symmetry
transformations of the molecule, such as the combination ψ1 =
ψA + ψB + ψC of the three H1s orbitals in the C3v molecule NH3

(Fig. 7.22). This combination remains unchanged under a C3

rotation and under any of the three vertical reflections of the
group, so its characters are

χ(E) = 1 χ(C3) = 1 χ(σv) = 1

Comparison with the C3v character table shows that ψ1 is of
symmetry species A1, and therefore that it contributes to a1

molecular orbitals in NH3.

Example 7.2 Identifying the symmetry species of orbitals

Identify the symmetry species of the orbital ψ = ψA − ψB in a
C2v NO2 molecule, where ψA is an O2px orbital on one O
atom and ψB that on the other O atom.

Method The negative sign in ψ indicates that the sign of ψB is
opposite to that of ψA. We need to consider how the com-
bination changes under each operation of the group, and
then write the character as +1, −1, or 0 as specified above.
Then we compare the resulting characters with each row in
the character table for the point group, and hence identify the
symmetry species.
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Answer The combination is shown in Fig. 7.23. Under C2, ψ
changes into itself, implying a character of +1. Under the
reflection σv, both orbitals change sign, so ψ → −ψ, implying
a character of −1. Under σ v′ , ψ → −ψ, so the character for this
operation is also −1. The characters are therefore

χ(E) = 1 χ(C2) = 1 χ(σv) = −1 χ(σ v′) = −1

These values match the characters of the A2 symmetry
species, so ψ can contribute to an a2 orbital.

Self-test 7.4 Consider PtCl4
−, in which the Cl ligands form 

a square planar array of point group D4h (21). Identify the
symmetry type of the combination ψA − ψB + ψC − ψD where
ψ is a chlorine s orbital. [B2g]

7.5 Vanishing integrals and orbital overlap

Suppose we had to evaluate the integral

I = �f1 f2 dτ (7.6)

where f1 and f2 are functions. For example, f1 might be an atomic
orbital A on one atom and f2 an atomic orbital B on another
atom, in which case I would be their overlap integral. If we knew
that the integral is zero, we could say at once that a molecular 
orbital does not result from (A, B) overlap in that molecule. 
We shall now see that character tables provide a quick way of
judging whether an integral is necessarily zero.

N

+

–
O

+

O
–

Fig. 7.23 One linear combination of O2px orbitals in the 
C2v NO2 molecule.

x

y

y

x

(a)

(b)

Fig. 7.24 The value of an integral I (for example, an area) is
independent of the coordinate system used to evaluate it. 
That is, I is a basis of a representation of symmetry species A1

(or its equivalent).

(a) The criteria for vanishing integrals

The key point in dealing with the integral I is that the value 
of any integral, and of an overlap integral in particular, is inde-
pendent of the orientation of the molecule (Fig. 7.24). In group
theory we express this point by saying that I is invariant under
any symmetry operation of the molecule, and that each operation
brings about the trivial transformation I → I. Because the vol-
ume element dτ is invariant under any symmetry operation, it
follows that the integral is nonzero only if the integrand itself,
the product f1 f2, is unchanged by any symmetry operation of the
molecular point group. If the integrand changed sign under a
symmetry operation, the integral would be the sum of equal and
opposite contributions, and hence would be zero. It follows that
the only contribution to a nonzero integral comes from func-
tions for which under any symmetry operation of the molecular
point group f1 f2 → f1 f2, and hence for which the characters of the
operations are all equal to +1. Therefore, for I not to be zero, the
integrand f1 f2 must have symmetry species A1 (or its equivalent in
the specific molecular point group).

We use the following procedure to deduce the symmetry
species spanned by the product f1 f2 and hence to see whether it
does indeed span A1.
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1. Decide on the symmetry species of the individual func-
tions f1 and f2 by reference to the character table, and write their
characters in two rows in the same order as in the table.

2. Multiply the numbers in each column, writing the results
in the same order.

3. Inspect the row so produced, and see if it can be expressed
as a sum of characters from each column of the group. The integ-
ral must be zero if this sum does not contain A1.

l A BRIEF ILLUSTRATION

If f1 is the sN orbital in NH3 and f2 is the linear combination 
s3 = sB − sC (Fig. 7.25) then, because sN spans A1 and s3 is a
member of the basis spanning E, we write

f1: 1 1 1

f2: 2 −1 0

f1 f2: 2 −1 0

The characters 2, −1, 0 are those of E alone, so the integrand
does not span A1. It follows that the integral must be zero.
Inspection of the form of the functions (see Fig. 7.25) shows
why this is so: s3 has a node running through sN. l

Self-test 7.5 Show that s1 (the combination sA + sB + sC shown
in Fig. 7.22) and sN may have nonzero overlap.

A short cut that works when f1 and f2 are bases for irreducible
representations of a group is to note their symmetry species: if
they are different, then the integral of their product must vanish;
if they are the same, then the integral may be nonzero.

It is important to note that group theory is specific about
when an integral must be zero, but integrals that it allows to 
be nonzero may be zero for reasons unrelated to symmetry. For
example, the N-H distance in ammonia may be so great that the

sBsC

+–

Fig. 7.25 A symmetry-adapted linear combination that belongs 
to the symmetry species E in a C3v molecule such as NH3. This
combination can form a molecular orbital by overlapping with
the px orbital on the central atom (the orbital with its axis
parallel to the width of the page; see Fig. 7.28c).

(s1,sN) overlap integral is zero simply because the orbitals are so
far apart.

Example 7.3 Deciding if an integral must be zero (1)

May the integral of the function f = xy be nonzero when 
evaluated over a region the shape of an equilateral triangle
centred on the origin (Fig. 7.26)?

Method First, note that an integral over a single function f is
included in the previous discussion if we take f1 = f and f2 = 1
in eqn 7.6. Therefore, we need to judge whether f alone belongs
to the symmetry species A1 (or its equivalent) in the point
group of the system. To decide that, we identify the point
group and then examine the character table to see whether f
belongs to A1 (or its equivalent).

Answer An equilateral triangle has the point-group sym-
metry D3h. If we refer to the character table of the group, we
see that xy is a member of a basis that spans the irreducible
representation E′. Therefore, its integral must be zero, because
the integrand has no component that spans A1′.

Self-test 7.6 Can the function x2 + y2 have a nonzero integral
when integrated over a regular pentagon centred on the 
origin? [Yes, Fig. 7.27]

x

y

+

+

–

–

Fig. 7.26 The integral of the function f = xy over the tinted region 
is zero. In this case, the result is obvious by inspection, but 
group theory can be used to establish similar results in less 
obvious cases. The insert shows the shape of the function in 
three dimensions.
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We implement this expression as follows:

1. Write down a table with columns headed by the symmetry
operations, R, of the group. Include a column for every element,
not just the classes.

2. In the first row write down the characters of the represen-
tation we want to analyse; these are the χ(R).

3. In the second row, write down the characters of the irre-
ducible representation Γ we are interested in; these are the
χ(Γ )(R).

4. Multiply the two rows together, add the products together,
and divide by the order of the group, h.

The resulting number, n(Γ ) is the number of times Γ occurs in
the decomposition.

l A BRIEF ILLUSTRATION

To find whether A1 does indeed occur in the product with
characters 8, −2, −6, 4 in C2v, we draw up the following table:

E C2v sv s v′ h = 4 (the order of the group)

f1 f2 8 −2 −6 4 (the characters of the product)

A1 1 1 1 1 (the symmetry species we are 
interested in)

8 −2 −6 4 (the product of the two sets of
characters)

The sum of the numbers in the last line is 4; when that num-
ber is divided by the order of the group, we get 1, so A1 occurs
once in the decomposition. When the procedure is repeated
for all four symmetry species, we find that f1 f2 spans A1 + 2A2

+ 5B2. l

Self-test 7.7 Does A2 occur among the symmetry species of
the irreducible representations spanned by a product with
characters 7, −3, −1, 5 in the group C2v? [No]

(b) Orbitals with nonzero overlap

The rules just given let us decide which atomic orbitals may have
nonzero overlap in a molecule. We have seen that sN may have
nonzero overlap with s1 (the combination sA + sB + sC), so bond-
ing and antibonding molecular orbitals can form from (sN, s1)
overlap (Fig. 7.28). The general rule is that only orbitals of the
same symmetry species may have nonzero overlap, so only orbitals
of the same symmetry species form bonding and antibond-
ing combinations. It should be recalled from Chapter 5 that the
selection of atomic orbitals that had mutual nonzero overlap is
the central and initial step in the construction of molecular 
orbitals by the LCAO procedure. We are therefore at the point of
contact between group theory and the material introduced in

x

y

+

Fig. 7.27 The integration of a function over a pentagonal region. 
The insert shows the shape of the function in three dimensions.

In many cases, the product of functions f1 and f2 spans a sum
of irreducible representations. For instance, in C2v we may find
the characters 2, 0, 0, −2 when we multiply the characters of f1

and f2 together. In this case, we note that these characters are the
sum of the characters for A2 and B1:

E C2v sv s v′
A2 1 1 −1 −1

B1 1 −1 1 −1

A2 + B1 2 0 0 −2

To summarize this result we write the symbolic expression 
A2 × B1 = A2 + B1, which is called the decomposition of a 
direct product. This expression is symbolic. The × and + signs
in this expression are not ordinary multiplication and addition
signs: formally, they denote technical procedures with matrices
called a ‘direct product’ and a ‘direct sum’. Because the sum 
on the right does not include a component that is a basis for 
an irreducible representation of symmetry species A1, we can
conclude that the integral of f1 f2 over all space is zero in a C2v

molecule.
Whereas the decomposition of the characters 2, 0, 0, −2 can be

done by inspection in this simple case, in other cases and more
complex groups the decomposition is often far from obvious.
For example, if we found the characters 8, −2, −6, 4, it might not
be obvious that the sum contains A1. Group theory, however,
provides a systematic way of using the characters of the repre-
sentation spanned by a product to find the symmetry species of
the irreducible representations. The formal recipe is

(7.7)n
h

R R
R

( ) ( ) ( )( )Γ Γ= ∑1
χ χ
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that chapter. The molecular orbitals formed from a particular
set of atomic orbitals with nonzero overlap are labelled with the
lower-case letter corresponding to the symmetry species. Thus,
the (sN, s1)-overlap orbitals are called a1 orbitals (or a1*, if we
wish to emphasize that they are antibonding).

The linear combinations s2 = 2sA − sB − sC and s3 = sB − sC

have symmetry species E. Does the N atom have orbitals that
have nonzero overlap with them (and give rise to e molecular 
orbitals)? Intuition (as supported by Figs. 7.28b and c) suggests
that N2px and N2py should be suitable. We can confirm this
conclusion by noting that the character table shows that, in C3v,
the functions x and y jointly belong to the symmetry species 
E. Therefore, N2px and N2py also belong to E, so may have
nonzero overlap with s2 and s3. This conclusion can be verified
by multiplying the characters and finding that the product of
characters can be expressed as the decomposition E × E = A1 + A2

+ E. The two e orbitals that result are shown in Fig. 7.28 (there
are also two antibonding e orbitals).

We can see the power of the method by exploring whether 
any d orbitals on the central atom can take part in bonding. As

(a)

(b)

(c)

Fig. 7.28 Orbitals of the same symmetry species may have non-
vanishing overlap. This diagram illustrates the three bonding
orbitals that may be constructed from (N2s, H1s) and (N2p,
H1s) overlap in a C3v molecule. (a) a1; (b) and (c) the two
components of the doubly degenerate e orbitals. (There are 
also three antibonding orbitals of the same species.)

explained earlier, reference to the C3v character table shows that
dz2 has A1 symmetry and that the pairs (dx2−y2, dxy) and (dyz, dzx)
each transform as E. It follows that molecular orbitals may be
formed by (s1, dz2) overlap and by overlap of the s2, s3 combina-
tions with the E d orbitals. Whether or not the d orbitals are 
in fact important is a question group theory cannot answer 
because the extent of their involvement depends on energy con-
siderations, not symmetry.

Example 7.4 Determining which orbitals can contribute to bonding

The four H1s orbitals of methane span A1 + T2. With which of
the C atom orbitals can they overlap? What bonding pattern
would be possible if the C atom had d orbitals available?

Method Refer to the Td character table (in the Resource
section) and look for s, p, and d orbitals spanning A1 or T2.

Answer An s orbital spans A1, so it may have nonzero overlap
with the A1 combination of H1s orbitals. The C2p orbitals
span T2, so they may have nonzero overlap with the T2 com-
bination. The dxy, dyz, and dzx orbitals span T2, so they may
overlap the same combination. Neither of the other two d 
orbitals span A1 (they span E), so they remain nonbonding
orbitals. It follows that in methane there are (C2s, H1s)-
overlap a1 orbitals and (C2p, H1s)-overlap t2 orbitals. The C3d
orbitals might contribute to the latter. The lowest energy con-
figuration is probably a1

2t2
6, with all bonding orbitals occupied.

Self-test 7.8 Consider the octahedral SF6 molecule, with the
bonding arising from overlap of S orbitals and a 2p orbital on
each F directed towards the central S atom. The latter span
A1g + Eg + T1u. What S orbitals have nonzero overlap? Suggest
what the ground-state configuration is likely to be.

[3s(A1g), 3p(T1u), 3d(Eg); a2
1gt

6
1ueg

4]

(c) Symmetry-adapted linear combinations

So far, we have only asserted the forms of the linear combina-
tions (such as s1, etc.) that have a particular symmetry. Group
theory also provides machinery that takes an arbitrary basis, or
set of atomic orbitals (sA, etc.), as input and generates combina-
tions of the specified symmetry. Because these combinations 
are adapted to the symmetry of the molecule, they are called
symmetry-adapted linear combinations (SALC). Symmetry-
adapted linear combinations are the building blocks of LCAO
molecular orbitals, for they include combinations such as those
used to construct molecular orbitals in benzene. The construc-
tion of SALCs is the first step in any molecular orbital treatment
of molecules.

The technique for building SALCs is derived by using the 
full power of group theory and involves the use of a projection
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operator, P(Γ ), an operator that takes one of the basis orbitals
and generates from it—projects from it—a SALC of the symme-
try species Γ :

(7.8)

To implement this rule, do the following:

1. Write each basis orbital at the head of a column and in suc-
cessive rows show the effect of each operation R on each orbital.
Treat each operation individually.

2. Multiply each member of the column by the character,
χ(Γ )(R), of the corresponding operation.

3. Add together all the orbitals in each column with the 
factors as determined in (2).

4. Divide the sum by the order of the group, h.

l A BRIEF ILLUSTRATION

From the (sN, sA, sB, sC) basis in NH3 we form the following table:

sN sA sB sC

E sN sA sB sC

C 3
+ sN sB sC sA

C 3
− sN sC sA sB

σv sN sA sC sB

σ v′ sN sB sA sC

σ v″ sN sC sB sA

To generate the A1 combination, we take the characters for A1

(1, 1, 1, 1, 1, 1); then rules 2 and 3 lead to ψ ∝ sN + sN + . . . =
6sN. The order of the group (the number of elements) is 6, so
the combination of A1 symmetry that can be generated from
sN is sN itself. Applying the same technique to the column
under sA gives

ψ = 1–6(sA + sB + sC + sA + sB + sC) = 1–3(sA + sB + sC)

The same combination is built from the other two columns,
so they give no further information. The combination we
have just formed is the s1 combination we used before (apart
from the numerical factor). l

We now form the overall molecular orbital by forming a 
linear combination of all the SALCs of the specified symmetry
species. In this case, therefore, the a1 molecular orbital is

ψ = cNsN + c1s1

This is as far as group theory can take us. The coefficients are
found by solving the Schrödinger equation; they do not come
directly from the symmetry of the system.

We run into a problem when we try to generate an SALC of
symmetry species E, because, for representations of dimension 2

P
h

R R
R

( ) ( )( )Γ Γ= ∑1
χ

or more, the rules generate sums of SALCs. This problem can be
illustrated as follows. In C3v, the E characters are 2, −1, −1, 0, 0,
0, so the column under sN gives

ψ = 1–6(2sN − sN − sN + 0 + 0 + 0) = 0

The other columns give
1–6(2sA − sB − sC) 1–6(2sB − sA − sC) 1–6(2sC − sB − sA)

However, any one of these three expressions can be expressed as
a sum of the other two (they are not ‘linearly independent’). The
difference of the second and third gives 1–2(sB − sC), and this com-
bination and the first, 1–6(2sA − sB − sC) are the two (now linearly
independent) SALCs we have used in the discussion of e orbitals.

7.6 Vanishing integrals and selection rules

Integrals of the form

I = �f1 f2 f3dτ (7.9)

are also common in quantum mechanics for they include matrix
elements of operators (Section 2.7, for instance), and it is im-
portant to know when they are necessarily zero. For the integral
to be nonzero, the product f1 f2 f3 must span A1 (or its equivalent)
or contain a component that spans A1. To test whether this is so
the characters of all three functions are multiplied together in
the same way as in the rules set out above.

Example 7.5 Deciding if an integral must be zero (2)

Does the integral ∫(3dz2)x(3dxy)dτ vanish in a C2v molecule?

Method We must refer to the C2v character table (Table 7.2)
and the characters of the irreducible representations spanned
by 3z2 − r2 (the form of the dz2 orbital), x, and xy; then we 
can use the procedure set out above (with one more row of
multiplication).

Answer We draw up the following table:

E C2 sv s v′

f3 = dxy 1 1 −1 −1 A2

f2 = x 1 −1 1 −1 B1

f1 = dz2 1 1 1 1 A1

f1 f2 f3 1 −1 −1 1

The characters are those of B2. Therefore, the integral is neces-
sarily zero.

Self-test 7.9 Does the integral ∫(2px)(2py)(2pz)dτ necessarily
vanish in an octahedral environment? [Yes]
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Example 7.6 Deducing a selection rule

Is px → py an allowed transition in a tetrahedral environment?

Method We must decide whether the product pyqpx, with 
q = x, y, or z, spans A1 by using the Td character table.

Answer The procedure works out as follows:

E 8C3 3C2 6σd 6S4

f3(py) 3 0 −1 −1 1 T2

f2(q) 3 0 −1 1 −1 T2

f1(px) 3 0 −1 −1 1 T2

f1f2 f3 27 0 −1 −1 1

We can use the decomposition procedure described in Section
7.5a to deduce that A1 occurs (once) in this set of characters, so
px → py is allowed.

A more detailed analysis (using the matrix representatives
rather than the characters) shows that only q = z gives an inte-
gral that may be nonzero, so the transition is z-polarized. That
is, the electromagnetic radiation involved in the transition has
a component of its electric vector in the z-direction.

Self-test 7.10 What are the allowed transitions, and their polar-
izations, of an electron in a b1 orbital in a C4v molecule?

[b1 → b1(z); b1 → e(x,y)]

Checklist of key ideas

1. A symmetry operation is an action that leaves an object
looking the same after it has been carried out.

2. A symmetry element is a point, line, or plane with respect to
which a symmetry operation is performed.

3. A point group is a group of symmetry operations that leaves
at least one common point unchanged. A space group is a
group of symmetry operations that includes translation
through space.

4. The notation for point groups commonly used for
molecules and solids is summarized in Table 7.1.

5. To be polar, a molecule must belong to Cn, Cnv, or Cs
(and have no higher symmetry).

6. A molecule may be chiral only if it does not possess an axis
of improper rotation, Sn.

7. A representative D(X) is a matrix that brings about 
the transformation of the basis under the operation 
X. The basis is the set of functions on which the
representative acts.

8. A character, χ, is the sum of the diagonal elements of a
matrix representative.

9. A character table characterizes the different symmetry types
possible in the point group.

10. In a reduced representation all the matrices have block-
diagonal form. An irreducible representation cannot be
reduced further.

11. Symmetry species are the labels for the irreducible
representations of a group.

12. Decomposition of the direct product is the reduction of a
product of symmetry species to a sum of symmetry species,
Γ × Γ ′ = Γ (1) + Γ (2) + . . .

13. For an integral ∫ f1 f2 dτ to be nonzero, the integrand f1 f2
must have the symmetry species A1 (or its equivalent in the
specific molecular point group).

14. A symmetry-adapted linear combination (SALC) is a
combination of atomic orbitals adapted to the symmetry 
of the molecule and used as the building blocks for LCAO
molecular orbitals.

15. Allowed and forbidden spectroscopic transitions can be
identified by considering the symmetry criteria for the 
non-vanishing of the transition moment between the 
initial and final states.

We saw in Chapter 4, and will see in more detail in Chapters
10 and 11, that the intensity of a spectral line arising from a
molecular transition between some initial state with wavefunc-
tion ψi and a final state with wavefunction ψf depends on the
(electric) transition dipole moment, mfi. The z-component of
this vector is defined through

μz,fi = −e�ψ f*zψidτ [7.10]

where −e is the charge of the electron. The transition moment
has the form of the integral in eqn 7.9 so, once we know the sym-
metry species of the states, we can use group theory to formulate
the selection rules for the transitions.

The following chapters will show many more examples of the
systematic use of symmetry, including the analysis of molecular
vibrations. We shall see that the techniques of group theory greatly
simplify the analysis of molecular structure and spectra.
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Discussion questions

7.1 Explain how a molecule is assigned to a point group.

7.2 List the symmetry operations and the corresponding symmetry
elements of the point groups.

7.3 Explain what is meant by a ‘group’.

7.4 State and explain the symmetry criteria that allow a molecule 
to be polar.

7.5 State the symmetry criteria that allow a molecule to be optically
active.

7.6 Explain what is meant by (a) a representative and (b) a
representation in the context of group theory.

7.7 Explain the construction and content of a character table.

7.8 Explain what is meant by the reduction of a representation to a
direct sum of representations.

7.9 Discuss the significance of the letters and subscripts used to denote
the symmetry species of a representation.

7.10 Identify and list four applications of character tables.

Exercises

7.1(a) The CH3Cl molecule belongs to the point group C3v. List the
symmetry elements of the group and locate them in a drawing of the
molecule.

7.1(b) The CCl4 molecule belongs to the point group Td. List the
symmetry elements of the group and locate them in a drawing of the
molecule.

7.2(a) Identify the group to which the naphthalene molecule belongs 
and locate the symmetry elements in a drawing of the molecule.

7.2(b) Identify the group to which the anthracene molecule belongs and
locate the symmetry elements in a drawing of the molecule.

7.3(a) Identify the point groups to which the following objects belong:
(a) a sphere, (b) an isosceles triangle, (c) an equilateral triangle, (d) an
unsharpened cylindrical pencil.

7.3(b) Identify the point groups to which the following objects belong:
(a) a sharpened cylindrical pencil, (b) a three-bladed propellor, (c) a
four-legged table, (d) yourself (approximately).

7.4(a) List the symmetry elements of the following molecules and name
the point groups to which they belong: (a) NO2, (b) N2O, (c) CHCl3,
(d) CH2=CH2.

7.4(b) List the symmetry elements of the following molecules and name
the point groups to which they belong: (a) furan (22), (b) γ-pyran (23),
(c) 1,2,5-trichlorobenzene.

7.6(a) Which of the following molecules may be polar: (a) pyridine, 
(b) nitroethane, (c) gas-phase HgBr2, (d) B3N3H6?

7.6(b) Which of the following molecules may be polar: (a) CH3Cl,
(b) HW2(CO)10, (c) SnCl4?

7.7(a) Identify the point groups to which all isomers of
dichloronaphthalene belong.

7.7(b) Identify the point groups to which all isomers of
dichloroanthracene belong.

7.8(a) Use as a basis the valence pz orbitals on each atom in BF3 to find
the representative of the operation σh. Take z as perpendicular to the
molecular plane.

7.8(b) Use as a basis the valence pz orbitals on each atom in BF3 to find
the representative of the operation C3. Take z as perpendicular to the
molecular plane.

7. 9(a) Use the matrix representatives of the operations σh and C3 in a
basis of valence pz orbitals on each atom in BF3 to find the operation and
its representative resulting from σhC3. Take z as perpendicular to the
molecular plane.

7.9(b) Use the matrix representatives of the operations σh and C3 in a
basis of valence pz orbitals on each atom in BF3 to find the operation and
its representative resulting from C3σh. Take z as perpendicular to the
molecular plane.

7.10(a) Show that all three C2 operations in the group D3h belong to the
same class.

7.10(b) Show that all three σv operations in the group D3h belong to the
same class.

7.5(a) Assign (a) cis-dichloroethene and (b) trans-dichloroethene to
point groups.

7.5(b) Assign the following molecules to point groups: (a) HF, 
(b) IF7 (pentagonal bipyramid), (c) XeO2F2 (see-saw), (d) Fe2(CO)9
(24), (e) cubane, C8H8, (f) tetrafluorocubane, C8H4F4 (25).
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7.11(a) Use symmetry properties to determine whether or not the
integral ∫px zpzdτ is necessarily zero in a molecule with symmetry C2v.

7.11(b) Use symmetry properties to determine whether or not the
integral ∫px zpzdτ is necessarily zero in a molecule with symmetry D3h.

7.12(a) Is the transition A1 → A2 forbidden for electric dipole transitions
in a C3v molecule?

7.12(b) Is the transition A1g → E2u forbidden for electric dipole
transitions in a D6h molecule?

7.13(a) Show that the function xy has symmetry species B2 in the group C4v.

7.13(b) Show that the function xyz has symmetry species A1 in the group D2.

7.14(a) Can molecules belonging to the point groups D2h or C3h be
chiral? Explain your answer.

7.14(b) Can molecules belonging to the point groups Th or Td be chiral?
Explain your answer.

7.15(a) What is the maximum degeneracy of a particle confined to 
the interior of an octahedral hole in a crystal?

7.15(b) What is the maximum degeneracy of a particle confined to 
the interior of an icosahedral nanoparticle?

7.16(a) What is the maximum possible degree of degeneracy of 
the orbitals in benzene?

7.16(b) What is the maximum possible degree of degeneracy of 
the orbitals in 1,4-dichlorobenzene?

7.17(a) Consider the C2v molecule NO2. The combination px(A) − px(B)
of the two O atoms (with x perpendicular to the plane) spans A2. Is there
any orbital of the central N atom that can have a nonzero overlap with
that combination of O orbitals? What would be the case in SO2, where 3d
orbitals might be available?

7.17(b) Consider the C3v ion NO3
−. Is there any orbital of the central N

atom that can have a nonzero overlap with the combination 2pz(A) −
pz(B) − pz(C) of the three O atoms (with z perpendicular to the plane).
What would be the case in SO3, where 3d orbitals might be available?

7.18(a) The ground state of NO2 is A1 in the group C2v. To what excited
states may it be excited by electric dipole transitions, and what
polarization of light is it necessary to use?

7.18(b) The ClO2 molecule (which belongs to the group C2v) was trapped
in a solid. Its ground state is known to be B1. Light polarized parallel to
the y-axis (parallel to the OO separation) excited the molecule to an
upper state. What is the symmetry species of that state?

7.19(a) A set of basis functions is found to span a reducible
representation of the group C4v with characters 4, 1, 1, 3, 1 (in the order
of operations in the character table in the Resource section). What
irreducible representations does it span?

7.19(b) A set of basis functions is found to span a reducible
representation of the group D2 with characters 6, −2, 0, 0 (in the order 
of operations in the character table in the Resource section). What
irreducible representations does it span?

7.20(a) What states of (a) benzene, (b) naphthalene may be reached 
by electric dipole transitions from their (totally symmetrical) ground
states?

7.20(b) What states of (a) anthracene, (b) coronene (26) may be reached
by electric dipole transitions from their (totally symmetrical) ground
states?

Problems*

7.1 List the symmetry elements of the following molecules and name the
point groups to which they belong: (a) staggered CH3CH3, (b) chair and
boat cyclohexane, (c) B2H6, (d) [Co(en)3]3+, where en is
ethylenediamine (1,2-diaminoethane; ignore its detailed structure), (e)
crown-shaped S8. Which of these molecules can be (i) polar, (ii) chiral?

7.2‡ In the square-planar complex anion [trans-Ag(CF3)2(CN)2]−,
the Ag-CN groups are collinear. (a) Assume free rotation of the CF3
groups (that is, disregarding the AgCF and AgCH angles) and name 
the point group of this complex ion. (b) Now suppose the CF3 groups
cannot rotate freely (because the ion was in a solid, for example).
Structure (27) shows a plane that bisects the NC-Ag-CN axis and is

perpendicular to it. Name the point group of the complex if each CF3 group
has a CF bond in that plane (so the CF3 groups do not point to either CN
group preferentially) and the CF3 groups are (i) staggered, (ii) eclipsed.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp and Carmen Giunta.

CN

CF3

CF3

CN

Ag

27

7.21(a) Write f1 = sin θ and f2 = cos θ, and show by symmetry arguments
using the group Cs that the integral of their product over a symmetrical
range around θ = 0 is zero.

7.21(b) Write f1 = x and f2 = 3x2 − 1, and show by symmetry arguments
using the group Cs that the integral of their product over a symmetrical
range around x = 0 is zero.
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7.3 The group C2h consists of the elements E, C2, σh, i. Construct the
group multiplication table and find an example of a molecule that
belongs to the group.

7.4 The group D2h has a C2 axis perpendicular to the principal axis and a
horizontal mirror plane. Show that the group must therefore have a
centre of inversion.

7.5 Consider the H2O molecule, which belongs to the group C2v.
Take as a basis the two H1s orbitals and the four valence orbitals of the O
atom and set up the 6 × 6 matrices that represent the group in this basis.
Confirm by explicit matrix multiplication that the group multiplications
(a) C2σv = σ v′ and (b) σvσ v′ = C2. Confirm, by calculating the traces of 
the matrices: (a) that symmetry elements in the same class have the same
character, (b) that the representation is reducible, and (c) that the basis
spans 3A1 + B1 + 2B2.

7.6 Confirm that the z-component of orbital angular momentum is a
basis for an irreducible representation of A2 symmetry in C3v.

7.7 Find the representatives of the operations of the group Td in a 
basis of four H1s orbitals, one at each apex of a regular tetrahedron 
(as in CH4).

7.8 Confirm that the representatives constructed in Problem 7.7
reproduce the group multiplications C 3

+C 3
− = E, S4C3 = S4′ , and 

S4C3 = σd.

7.9 The (one-dimensional) matrices D(C3) = 1 and D(C2) = 1, and
D(C3) = 1 and D(C2) = −1 both represent the group multiplication 
C3C2 = C6 in the group C6v with D(C6) = +1 and −1, respectively. 
Use the character table to confirm these remarks. What are the
representatives of σv and σd in each case?

7.10 Construct the multiplication table of the Pauli spin matrices, s,
and the 2 × 2 unit matrix:

Do the four matrices form a group under multiplication?

7.11 What irreducible representations do the four H1s orbitals of CH4
span? Are there s and p orbitals of the central C atom that may form
molecular orbitals with them? Could d orbitals, even if they were present
on the C atom, play a role in orbital formation in CH4?

7.12 Suppose that a methane molecule became distorted to (a) C3v
symmetry by the lengthening of one bond, (b) C2v symmetry, by a kind
of scissors action in which one bond angle opened and another closed
slightly. Would more d orbitals become available for bonding?

7.13‡ B.A. Bovenzi and G.A. Pearse, Jr. (J. Chem. Soc. Dalton Trans. 
2763 (1997)) synthesized coordination compounds of the tridentate
ligand pyridine-2,6-diamidoxime (C7H9N5O2, 28). Reaction with NiSO4
produced a complex in which two of the essentially planar ligands are
bonded at right angles to a single Ni atom. Name the point group and
the symmetry operations of the resulting [Ni(C7H9N5O2)2]2+ complex
cation.

σ σ σ σx y z=
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⎞
⎠⎟

= −⎛
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⎞
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= −
⎛
⎝⎜

⎞
⎠⎟

0 1
1 0

0
0

1 0
0 1 0

i
i

==
⎛
⎝⎜

⎞
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1 0
0 1

7.14‡ A computational study by C.J. Marsden (Chem. Phys. Letts. 245,
475 (1995)) of AMx compounds, where A is in Group 14 of the periodic
table and M is an alkali metal, shows several deviations from the most
symmetric structures for each formula. For example, most of the AM4
structures were not tetrahedral but had two distinct values for MAM
bond angles. They could be derived from a tetrahedron by a distortion
shown in (29). (a) What is the point group of the distorted tetrahedron?
(b) What is the symmetry species of the distortion considered as a
vibration in the new, less symmetric group? Some AM6 structures are 
not octahedral, but could be derived from an octahedron by translating 
a C-M-C axis as in (30). (c) What is the point group of the distorted
octahedron? (d) What is the symmetry species of the distortion
considered as a vibration in the new, less symmetric group?

7.15 The algebraic forms of the f orbitals are a radial function 
multiplied by one of the factors (a) z(5z2 − 3r2), (b) y(5y2 − 3r2),
(c) x(5x2 − 3r2), (d) z(x2 − y2), (e) y(x2 − z2), (f) x(z2 − y2), (g) xyz.
Identify the irreducible representations spanned by these orbitals in 
(a) C2v, (b) C3v, (c) Td, (d) Oh. Consider a lanthanoid ion at the centre 
of (a) a tetrahedral complex, (b) an octahedral complex. What sets of
orbitals do the seven f orbitals split into?

7.16 Does the product 3x2 − 1 necessarily vanish when integrated over
(a) a cube, (b) a tetrahedron, (c) a hexagonal prism, each centred on the
origin?

7.17 The NO2 molecule belongs to the group C2v, with the C2 axis
bisecting the ONO angle. Taking as a basis the N2s, N2p, and O2p
orbitals, identify the irreducible representations they span, and 
construct the symmetry-adapted linear combinations.

7.18 Construct the symmetry-adapted linear combinations of C2pz
orbitals for benzene, and use them to calculate the Hückel secular
determinant. This procedure leads to equations that are much easier to
solve than using the original orbitals, and show that the Hückel orbitals
are those specified in Section 5.9.

7.19 The phenanthrene molecule (31) belongs to the group C2v with
the C2 axis in the plane of the molecule. (a) Classify the irreducible
representations spanned by the carbon 2pz orbitals and find their
symmetry-adapted linear combinations. (b) Use your results from 
part (a) to calculate the Hückel secular determinant. (c) What states 
of phenanthrene may be reached by electric dipole transitions from 
its (totally symmetrical) ground state?
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7.20‡ In a spectroscopic study of C60, Negri et al. ( J. Phys. Chem. 100,
10849 (1996)) assigned peaks in the fluorescence spectrum. The
molecule has icosahedral symmetry (Ih). The ground electronic 
state is A1g, and the lowest-lying excited states are T1g and Gg.
(a) Are photon-induced transitions allowed from the ground state 
to either of these excited states? Explain your answer. (b) What if the
molecule is distorted slightly so as to remove its centre of inversion?

7.21 In the square-planar XeF4 molecule, consider the symmetry-
adapted linear combination p1 = pA − pB + pC − pD where pA, pB, pC,
and pD are 2pz atomic orbitals on the fluorine atoms (clockwise labelling
of the F atoms). Using the reduced point group D4 rather than the full
symmetry point group of the molecule, determine which of the various 
s, p, and d atomic orbitals on the central Xe atom can form molecular
orbitals with p1.

Applications: to astrophysics and biology

7.21‡ The H3
+ molecular ion, which plays an important role in chemical

reactions occurring in interstellar clouds, is known to be equilateral
triangular. (a) Identify the symmetry elements and determine the point
group of this molecule. (b) Take as a basis for a representation of this
molecule the three H1s orbitals and set up the matrices that group in this
basis. (c) Obtain the group multiplication table by explicit multiplication
of the matrices. (d) Determine if the representation is reducible and, 
if so, give the irreducible representations obtained.

7.22 Some linear polyenes, of which β-carotene is an example, are
important biological co-factors that participate in processes as diverse 
as the absorption of solar energy in photosynthesis (Impact I19.2) and
protection against harmful biological oxidations. Use as a model of 

β-carotene a linear polyene containing 22 conjugated C atoms. (a) To
what point group does this model of β-carotene belong? (b) Classify the
irreducible representations spanned by the carbon 2pz orbitals and find
their symmetry-adapted linear combinations. (c) Use your results from
part (b) to calculate the Hückel secular determinant. (d) What states of
this model of β-carotene may be reached by electric dipole transitions
from its (totally symmetrical) ground state?

7.23 The chlorophylls that participate in photosynthesis (Impact I19.2)
and the haem groups of cytochromes are derived from the porphine
dianion group (32), which belongs to the D4h point group. The ground
electronic state is A1g and the lowest-lying excited state is Eu. Is a 
photon-induced transition allowed from the ground state to the 
excited state? Explain your answer.



Molecular assemblies

Atoms, small molecules, and macromolecules can form large assemblies that are held 
together by interactions between their constituents. We begin this chapter with an examina-
tion of these molecular interactions, interpreting them in terms of electric properties of
molecules, such as electric dipole moments and polarizabilities. Then we describe inter-
actions in gases and liquids.

Molecular interactions are responsible for the unique properties of substances, espe-
cially in condensed phases. We shall see that small and sometimes fleeting imbalances
of charge distributions in molecules allow them to interact with one another and with
externally applied fields. One result of this interaction is the cohesion of molecules to
form the bulk phases of matter. The interaction between ions is treated in Chapter 9
(for solids) and Chapter 16 (for solutions).

Interactions between molecules

A van der Waals interaction is an attractive interaction between closed-shell molecules
that depends on the distance r between the molecules as 1/r6. In addition, there are 
interactions between ions and the partial charges of polar molecules and repulsive 
interactions that prevent the complete collapse of matter to nuclear densities. The 
repulsive interactions arise from Coulombic repulsions and, indirectly, from the Pauli
principle and the exclusion of electrons from regions of space where the orbitals of
neighbouring species overlap.

8.1 Interactions between partial charges

Atoms in molecules in general have partial charges. If these charges were separated by
a vacuum, they would attract or repel each other in accord with Coulomb’s law (see
Fundamentals F.6), and we would write

(8.1a)

where Q1 and Q2 are the partial charges and r is their separation. However, we should
take into account the possibility that other parts of the molecule, or other molecules,
lie between the charges, and decrease the strength of the interaction. We therefore write

(8.1b)
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where ε is the permittivity of the medium lying between the
charges. As explained in Fundamentals F.6, the permittivity 
is usually expressed as a multiple of the vacuum permittivity 
by writing ε = εrε0, where εr is the relative permittivity. The 
effect of the medium can be very large: for water εr = 78, so 
the potential energy of two charges separated by bulk water is 
reduced by nearly two orders of magnitude compared to the
value it would have if the charges were separated by a vacuum
(Fig. 8.1).

l A BRIEF ILLUSTRATION

The energy of interaction between a partial charge of −0.36
(that is, Q1 = −0.36e) on the N atom of an amide group (1)
and the partial charge of −0.38
(Q2 = −0.38e) on the carbonyl
O atom at a distance of 3.0 nm
on the assumption that the
medium between them is a
vacuum is

= 1.1 × 10−20 J

This energy (after multiplication by Avogadro’s constant)
corresponds to 6.3 kJ mol−1. However, if the medium has 
a ‘typical’ relative permittivity of 3.5, then the interaction 
energy is reduced to 1.8 kJ mol−1. For bulk water as the
medium, with the H2O molecules able to rotate in response
to a field, the energy of interaction would be reduced by a 
factor of 78, to only 0.081 kJ mol−1. l
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8.2 Electric dipole moments

An electric dipole consists of two electric charges +Q and −Q
separated by a distance R. This arrangement of charges is repre-
sented by a vector m (2). The magnitude of m is μ = QR and, 
although the SI unit of dipole moment is coulomb metre (C m),
it is still commonly reported in the non-SI
unit debye, D, named after Peter Debye, a
pioneer in the study of dipole moments of
molecules, where

1 D = 3.335 64 × 10−30 C m

The dipole moment of a pair of charges +e and −e separated 
by 100 pm is 1.6 × 10−29 C m, corresponding to 4.8 D. Dipole
moments of small molecules are typically about 1 D.

A polar molecule is a molecule with a permanent electric
dipole moment. The permanent dipole moment stems from the
partial charges on the atoms in the molecule that arise from
differences in electronegativity or other features of bonding
(Section 5.5). Nonpolar molecules acquire an induced dipole
moment in an electric field on account of the distortion the field
causes in their electronic distributions and nuclear positions;
however, this induced moment is only temporary and disappears
as soon as the perturbing field is removed. Polar molecules also
have their existing dipole moments temporarily modified by an
applied field.

All heteronuclear diatomic molecules are polar, and typical
values of μ include 1.08 D for HCl and 0.42 D for HI (Table 8.1).
Molecular symmetry is of the greatest importance in deciding
whether a polyatomic molecule is polar or not. Indeed, molecu-
lar symmetry is more important than the question of whether or
not the atoms in the molecule belong to the same element.
Homonuclear polyatomic molecules may be polar if they 
have low symmetry and the atoms are in
inequivalent positions. For instance, the
angular molecule ozone, O3 (3), is homo-
nuclear; however, it is polar because the
central O atom is different from the outer
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Fig. 8.1 The Coulomb potential for two opposite charges and its
dependence on their separation. The two curves correspond 
to different relative permittivities (εr = 1 for a vacuum, 3 for 
a fluid).
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Synoptic table 8.1* Dipole
moments (μ) and polarizability
volumes (α′)

m/D a′/(10−30 m3)

CCl4 0 10.3

H2 0 0.819

H2O 1.85 1.48

HCl 1.08 2.63

HI 0.42 5.45

* More values are given in the Data section.
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two (it is bonded to two atoms; they are bonded only to one);
moreover, the dipole moments associated with each bond make
an angle to each other and do not cancel. Heteronuclear poly-
atomic molecules may be nonpolar if they have high symmetry,
because individual bond dipoles may then cancel. The hetero-
nuclear linear triatomic molecule CO2, for example, is nonpolar
because, although there are partial charges on all three atoms,
the dipole moment associated with
the OC bond points in the opposite
direction to the dipole moment as-
sociated with the CO bond, and the
two cancel (4).

To a first approximation, it is possible to resolve the dipole
moment of a polyatomic molecule into contributions from 
various groups of atoms in the molecule and the directions 
in which these individual contributions lie (Fig. 8.2). Thus, 1,4-
dichlorobenzene is nonpolar by symmetry on account of the
cancellation of two equal but opposing C-Cl moments (exactly
as in carbon dioxide). 1,2-Dichlorobenzene, however, has a
dipole moment which is approximately the resultant of two
chlorobenzene dipole moments arranged at 60° to each other.
This technique of ‘vector addition’ (see Mathematical background
4) can be applied with fair success to other series of related
molecules, and the resultant μres of two dipole moments μ1 and
μ2 that make an angle θ to each other (5) is approximately

μres ≈ (μ1
2 + μ2

2 + 2μ1μ2 cos θ)1/2 (8.2a)
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Fig. 8.2 The resultant dipole moments (yellow) of the
dichlorobenzene isomers (b to d) can be obtained approximately
by vectorial addition of two chlorobenzene dipole moments
(1.57 D).

When the two dipole moments have the same magnitude (as in
the dichlorobenzenes), this equation simplifies to

μres ≈ 2μ1 cos 1–2θ (8.2b)

Self-test 8.1 Estimate the ratio of the electric dipole moments
of ortho (1,2-) and meta (1,3-) disubstituted benzenes.

[μ(ortho)/μ(meta) = 1.7]

A better approach to the calculation of dipole moments is 
to take into account the locations and magnitudes of the partial
charges on all the atoms. These partial charges are included in
the output of many molecular structure software packages
(Chapter 6). To calculate the x-component, for instance, we
need to know the partial charge on each atom and the atom’s 
x-coordinate relative to a point in the molecule and form the
sum

μx = ∑
J

QJxJ (8.3a)

Here QJ is the partial charge of atom J, xJ is the x-coordinate of
atom J, and the sum is over all the atoms in the molecule.
Analogous expressions are used for the y- and z-components.
For an electrically neutral molecule, the origin of the coordin-
ates is arbitrary, so it is best chosen to simplify the measure-
ments. In common with all vectors, the magnitude of m is related
to the three components μx, μy, and μz by

μ = (μx
2 + μy

2 + μz
2)1/2 (8.3b)

Example 8.1 Calculating a molecular dipole moment

Estimate the electric dipole moment of the amide group
shown in (6) by using the partial charges (as multiples of e)
and the locations (x, y, z) of the atoms shown in pm.

N

H
C

O

(182,–87,0)

(132,0,0) (0,0,0)

(–62,107,0)

+0.18

–0.36

+0.45

–0.38
6

$

R+ R+R– R–

4 Carbon dioxide, CO2
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Method We use eqn 8.3a to calculate each of the components
of the dipole moment and then eqn 8.3b to assemble the
three components into the magnitude of the dipole moment.
Note that the partial charges are multiples of the fundamental
charge, e = 1.602 × 10−19 C.

Answer The expression for μx is

μx = (−0.36e) × (132 pm) + (0.45e) × (0 pm)  
+ (0.18e) × (182 pm) + (−0.38e) × (−62.0 pm)

= 8.8e pm
= 8.8 × (1.602 × 10−19 C) × (10−12 m) 
= 1.4 × 10−30 C m

corresponding to μx = +0.42 D. The expression for μy is:

μy = (−0.36e) × (0 pm) + (0.45e) × (0 pm) 
+ (0.18e) × (−87 pm) + (−0.38e) × (107 pm)

= −56e pm = −9.0 × 10−30 C m

It follows that μy = −2.7 D. Therefore, because μz = 0,

μ = {(0.42 D)2 + (−2.7 D)2}1/2 = 2.7 D

We can find the orientation of the dipole moment by arrang-
ing an arrow of length 2.7 units of length to have x, y, and 
z components of 0.42, −2.7, and 0 units; the orientation is 
superimposed on (6).

Self-test 8.2 Calculate the electric dipole moment of form-
aldehyde, using the information in (7). [2.3 D]

Fig. 8.3 There are two contributions to the diminishing field 
of an electric dipole with distance (here seen from the side). 
The potential of the charges decreases (shown here by a fading
intensity) and the two charges appear to merge, so their combined
effect approaches zero more rapidly than by the distance 
effect alone.

+Q1 –Q1

l

r
Q2

8

8.3 Interactions between dipoles

Most of the discussion in this section is based on the Coulombic
potential energy of interaction between two charges (eqn 8.1a).
We can easily adapt this expression to find the potential energy
of a point charge and a dipole and to extend it to the interaction
between two dipoles.

(a) The potential energy of interaction

We show in the following Justification that the potential energy
of interaction between a point dipole μ1 = Q1l and the point
charge Q2 in the arrangement shown in (8) is

(8.4)
 
V

Q

r
= −

μ
ε
1 2

0
24π

Table 8.2 Partial charges in polypeptides

Atom Partial charge/e

C(=O) +0.45

C(-CO) +0.06

H(-C) +0.02

H(-N) +0.18

H(-O) +0.42

N −0.36

O −0.38

C

H H

O
–0.38

+0.02 +0.02
(0,0,0)

(0,118,0)

(94,–61,0)(–94,–61,0)
7

+0.45

With μ in coulomb metres, Q2 in coulombs, and r in metres, V
is obtained in joules. A point dipole is a dipole in which the 
separation between the charges is much smaller than the dis-
tance at which the dipole is being observed: l << r. The potential
energy rises towards zero (the value at infinite separation of 
the charge and the dipole) more rapidly (as 1/r2) than that 
between two point charges (which varies as 1/r) because, from
the viewpoint of the point charge, the partial charges of the
dipole seem to merge and cancel as the distance r increases 
(Fig. 8.3).
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Justification 8.1 The interaction between a point charge and
a point dipole

The sum of the potential energies of repulsion between like
charges and attraction between opposite charges in the orien-
tation shown in (8) is

where x = l/2r. Because l << r for a point dipole, this expres-
sion can be simplified by expanding the terms in x and
retaining only the leading term:

(Expansions are treated in Mathematical background 1.) With
μ1 = Q1l, this expression becomes eqn 8.4. This expression
should be multiplied by cos θ when the point charge lies at an
angle θ to the axis of the dipole.

Example 8.2 Calculating the interaction energy of two dipoles

Calculate the potential energy of interaction of two dipoles in
the arrangement shown in (9) when their separation is r.
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Table 8.3 Multipole interaction potential energies

Interaction Distance Typical Comment
type dependence energy/

of potential (kJ mol−1)
energy

Ion–ion 1/r 250 Only between ions*

Ion–dipole 1/r2 15

Dipole– 1/r3 2 Between stationary polar molecules
dipole

1/r6 0.6 Between rotating polar molecules

London 1/r6 2 Between all types of molecules
(dispersion)

The energy of a hydrogen bond A-HîB is typically 20 kJ mol−l and occurs on
contact for A, B = O, N, or F.
* Electrolyte solutions are treated in Chapter 16, ionic solids in Chapter 19.

+Q1 –Q1

l

r

9

+Q2 –Q2

l

Method We proceed in exactly the same way as in Justification
8.1, but now the total interaction energy is the sum of four
pairwise terms, two attractions between opposite charges, which
contribute negative terms to the potential energy, and two re-
pulsions between like charges, which contribute positive terms.

Answer The sum of the four contributions is

with x = l/r. As before, provided l << r we can expand the two
terms in x and retain only the first surviving term, which is
equal to 2x2. This step results in the expression

V
x Q Q
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Therefore, because μ1 = Q1l and μ2 = Q2l, the potential energy
of interaction in the alignment shown in (9) is

This interaction energy approaches zero more rapidly (as
1/r3) than for the previous case: now both interacting entities
appear neutral to each other at large separations. See Further
information 8.1 for the general expression.

Self-test 8.3 Derive an expression for the potential energy
when the dipoles are in the arrangement shown in (10).

[V = μ1μ2/4πε0r3]

V
r

= −
μ μ

ε
1 2

0
32π

+Q1 –Q1

l

r

10

+Q2 –Q2
l

Table 8.3 summarizes the various expressions for the inter-
action of charges and dipoles. It is quite easy to extend the formulas
given there to obtain expressions for the energy of interaction of
higher multipoles, or arrays of point charges (Fig. 8.4). Specifically,
an n-pole is an array of point charges with an n-pole moment
but no lower moment. Thus, a monopole (n = 1) is a point charge,
and the monopole moment is what we normally call the overall
charge. A dipole (n = 2), as we have seen, is an array of charges
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that has no monopole moment (no net charge). A quadrupole
(n = 3) consists of an array of point charges that has neither 
net charge nor dipole moment (as for CO2 molecules, 11). An 
octupole (n = 4) consists of an array of point charges that sum to
zero and which has neither a dipole moment nor a quadrupole
moment (as for CH4 molecules, 12). The feature to remember 
is that the interaction energy falls off more rapidly the higher 
the order of the multipole. For the interaction of an n-pole with
an m-pole, the potential energy varies with distance as

(8.5)
 
V

rn m
∝ + −

1
1

dependence of the strength of the electric field generated by 
a dipole. We shall need this expression when we calculate the
dipole moment induced in one molecule by another.

The starting point for the calculation is the strength of the
electric field generated by a point electric charge (see Funda-
mentals F.6):

(8.6)

The electric field is actually a vector, and we cannot simply add
and subtract magnitudes without taking into account the direc-
tions of the fields. In the cases we consider, this will not be 
a complication because the two charges of the dipoles will be
collinear and give rise to fields in the same direction. For the
point-dipole arrangement shown in Fig. 8.5, the same procedure
that was used to derive the potential energy gives

(8.7)

The electric field of a multipole (in this case a dipole) decreases
more rapidly with distance (as 1/r3 for a dipole) than a mono-
pole (a point charge).

(c) Dipole–dipole interactions

The potential energy of interaction between two polar molecules
is a complicated function of their relative orientation. When the
two dipoles are parallel (as in 13), the potential energy is simply
(see Further information 8.1)

f(θ) = 1 − 3 cos2θ (8.8)

This expression applies to polar molecules in a fixed, parallel,
orientation in a solid.
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Fig. 8.4 Typical charge arrays corresponding to electric
multipoles. The field arising from an arbitrary finite charge
distribution can be expressed as the superposition of the fields
arising from a superposition of multipoles.

Resultant

$

Fig. 8.5 The electric field of a dipole is the sum of the opposing
fields from the positive and negative charges, each of which is
proportional to 1/r2. The difference, the net field, is proportional
to 1/r3.

R–

11 Carbon dioxide, CO2

2 +RR–

4 –R
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R+

12 Methane, CH4

r
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I1

2$

$

The reason for the even steeper decrease with distance is the
same as before: the array of charges appears to blend together
into neutrality more rapidly with distance the higher the num-
ber of individual charges that contribute to the multipole. Note
that a given molecule may have a charge distribution that corres-
ponds to a superposition of several different multipoles.

(b) The electric field

The same kind of argument as that used to derive expressions 
for the potential energy can be used to establish the distance 
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In a fluid of freely rotating molecules, the interaction between
dipoles averages to zero because f(θ) changes sign as the orien-
tation changes, and its average value is zero. Physically, the like
partial charges of two freely rotating molecules are close together
as much as the two opposite charges, and the repulsion of the
former is cancelled by the attraction of the latter.

A brief comment The average (or mean value) of a function
f(x) over the range from x = a to x = b is

The volume element in spherical polar coordinates (see
Table 3.1) is proportional to sin θ dθ, and θ ranges from 
0 to π. Therefore the average value of (1 − 3 cos2θ) is (1/π) 

�
0

π

(1 − 3 cos2θ) sin θ dθ = 0. 

The interaction energy of two freely rotating dipoles is zero.
However, because their mutual potential energy depends on
their relative orientation, the molecules do not in fact rotate
completely freely, even in a gas. In fact, the lower energy orien-
tations are marginally favoured, so there is a nonzero average 
interaction between polar molecules. We show in the following
Justification that the average potential energy of two rotating
molecules that are separated by a distance r is

(8.9)

This expression describes the Keesom interaction, and is the
first of the contributions to the van der Waals interaction.

Justification 8.2 The Keesom interaction

The detailed calculation of the Keesom interaction energy 
is quite complicated, but the form of the final answer can 
be constructed quite simply. First, we note that the average 
interaction energy of two polar molecules rotating at a fixed
separation r is given by

where 〈 f 〉 now includes a weighting factor in the averaging
that is equal to the probability that a particular orientation
will be adopted. This probability is given by p ∝ e−E/kT, with E
interpreted as the potential energy of interaction of the two
dipoles in that orientation. That is,

p ∝ e−V/kT
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This expression for the probability is a form of the Boltzmann
distribution (Fundamentals F.5) which describes the spread
of molecules over the available energy levels at T > 0.

When the potential energy of interaction of the two dipoles
is very small compared with the energy of thermal motion,
we can use V << kT, expand the exponential function in p, and
retain only the first two terms:

p ∝ 1 − V/kT + . . .

The weighted average of f is therefore

where 〈 . . . 〉0 denotes an unweighted spherical average. The
spherical average of f is zero, so the first term vanishes. However,
the average value of f 2 is nonzero because f 2 is positive at all
orientations, so we can write

The average value 〈 f 2〉0 turns out to be 2–3 when the calculation
is carried through in detail. The final result is that quoted in
eqn 8.9.

The important features of eqn 8.9 are its negative sign (the 
average interaction is attractive), the dependence of the average
interaction energy on the inverse sixth power of the separation
(which identifies it as a van der Waals interaction), and its 
inverse dependence on the temperature. The last feature reflects
the way that the greater thermal motion overcomes the mutual
orientating effects of the dipoles at higher temperatures. The 
inverse sixth power arises from the inverse third power of the 
interaction potential energy that is weighted by the energy in 
the Boltzmann term, which is also proportional to the inverse
third power of the separation.

At 25°C the average interaction energy for pairs of molecules
with μ = 1 D is about −0.06 kJ mol−1 when the separation is 
0.5 nm. This energy should be compared with the average molar
kinetic energy of 3–2RT = 3.7 kJ mol−1 at the same temperature,
given by the equipartition theorem (see Fundamentals F.5). 
The interaction energy is also much smaller than the energies 
involved in the making and breaking of chemical bonds.

8.4 Induced dipole moments

An applied electric field can distort a molecule as well as align 
its permanent electric dipole moment. The induced dipole 
moment, μ*, is generally proportional to the field strength, E ,
and we write

μ* = αE (8.10)

(See Section 11.7 for exceptions to eqn 8.10.) The constant 
of proportionality α is the polarizability of the molecule. The
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greater the polarizability, the larger is the induced dipole 
moment for a given applied field. In a formal treatment, we
should use vector quantities and allow for the possibility that 
the induced dipole moment might not lie parallel to the applied
field, but for simplicity we discuss polarizabilities in terms of
(scalar) magnitudes.

(a) Polarizability volumes

Polarizability has the units (coulomb metre)2 per joule (C2 m2

J−1). That collection of units is awkward, so α is often expressed
as a polarizability volume, α′, by using the relation

[8.11]

where ε0 is the vacuum permittivity. Because the units of 
4πε0 are coulomb-squared per joule per metre (C2 J−1 m−1), 
it follows that α′ has the dimensions of volume (hence its 
name). Polarizability volumes are similar in magnitude to actual
molecular volumes (of the order of 10−30 m3, 10−3 nm3, 1 Å3).
When using older compilations of data, it is useful to note 
that polarizability volumes have the same numerical values as
the ‘polarizabilities’ reported using c.g.s. electrical units, so the 
tabulated values previously called ‘polarizabilities’ can be used
directly.

Some experimental polarizability volumes of molecules are
given in Table 8.1. As shown in the following Justification, polar-
izability volumes correlate with the HOMO–LUMO separations
in atoms and molecules. The electron distribution can be dis-
torted readily if the LUMO lies close to the HOMO in energy, so
the polarizability is then large. If the LUMO lies high above the
HOMO, an applied field cannot perturb the electron distribu-
tion significantly, and the polarizability is low. Molecules with
small HOMO–LUMO gaps are typically large, with numerous
electrons.

Justification 8.3 Polarizabilities and molecular structures

When an electric field is increased by dE, the energy of a
molecule changes by −μdE and, if the molecule is polariz-
able, we interpret μ as the induced moment μ* (eqn 8.10).
Therefore, the change in energy when the field is increased
from 0 to E is

ΔE = −�
E

0

μ*dE = −�
E

0

αEdE = − 1–2αE2

The contribution to the hamiltonian when a dipole moment
is exposed to an electric field E in the z-direction is

@ (1) = −NzE

Comparison of these two expressions suggests that we should
use second-order perturbation theory to calculate the energy
of the system in the presence of the field, because then we
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shall obtain an expression proportional to E 2. According to
eqn 2.35, the second-order contribution to the energy is

where μz,0n is the transition electric dipole moment in the z-
direction (eqn 4.24) and where ψi and E i

(0) are the wavefunc-
tions and energies, respectively, in the absence of the electric
field. By comparing the two expressions for the energy, we con-
clude that the polarizablity of the molecule in the z-direction is

(8.12)

The content of eqn 8.12 can be appreciated by approx-
imating the excitation energies by a mean value ΔE (an indi-
cation of the HOMO–LUMO separation), and supposing
that the most important transition dipole moment is approx-
imately equal to the charge of an electron multiplied by the
radius, R, of the molecule. Then

This expression shows that α increases with the size of the
molecule and with the ease with which it can be excited (the
smaller the value of ΔE).

If the excitation energy is approximated by the energy
needed to remove an electron to infinity from a distance R
from a single positive charge, we can write ΔE ≈ e2/4πε0R.
When this expression is substituted into the equation above,
both sides are divided by 4πε0, and the factor of 2 ignored in
this approximation, we obtain α′ ≈ R3, which is of the same
order of magnitude as the molecular volume.

(b) Dipole–induced-dipole interactions

A polar molecule with dipole moment μ1 can induce a dipole μ2*
in a neighbouring polarizable molecule (Fig. 8.6). The induced
dipole interacts with the permanent dipole of the first molecule,
and the two are attracted together. The average interaction energy
when the separation of the molecules is r is

(8.13)

where α2′ is the polarizability volume of molecule 2 and μ1 is the
permanent dipole moment of molecule 1. Note that the C in this
expression is different from the C in eqn 8.9 and other expres-
sions below: we are using the same symbol in C/r6 to emphasize
the similarity of form of each expression.

The dipole–induced-dipole interaction energy is independent
of the temperature because thermal motion has no effect on the
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averaging process. Moreover, like the dipole–dipole interaction,
the potential energy depends on 1/r6: this distance dependence
stems from the 1/r3 dependence of the field (and hence the 
magnitude of the induced dipole) and the 1/r3 dependence of
the potential energy of interaction between the permanent and
induced dipoles. For a molecule with μ = 1 D (such as HCl) near
a molecule of polarizability volume α′ = 10 × 10−30 m3 (such 
as benzene, Table 8.1), the average interaction energy is about 
−0.8 kJ mol−1 when the separation is 0.3 nm.

(c) Induced-dipole–induced-dipole interactions

Nonpolar molecules (including closed-shell atoms, such as Ar)
attract one another even though neither has a permanent dipole
moment. The abundant evidence for the existence of inter-
actions between them is the formation of condensed phases of
nonpolar substances, such as the condensation of hydrogen or
argon to a liquid at low temperatures and the fact that benzene is
a liquid at normal temperatures.

The interaction between nonpolar molecules arises from the
transient dipoles that all molecules possess as a result of fluctu-
ations in the instantaneous positions of electrons. To appreciate
the origin of the interaction, suppose that the electrons in one
molecule flicker into an arrangement that gives the molecule an
instantaneous dipole moment μ1*. This dipole generates an elec-
tric field that polarizes the other molecule, and induces in that
molecule an instantaneous dipole moment μ2*. The two dipoles
attract each other and the potential energy of the pair is lowered.
Although the first molecule will go on to change the size and 
direction of its instantaneous dipole, the electron distribution 
of the second molecule will follow, that is, the two dipoles are
correlated in direction (Fig. 8.7). Because of this correlation, 
the attraction between the two instantaneous dipoles does not
average to zero, and gives rise to an induced-dipole–induced-
dipole interaction. This interaction is called either the dispersion
interaction or the London interaction (for Fritz London, who
first described it).

Polar molecules also interact by a dispersion interaction: such
molecules also possess instantaneous dipoles, the only differ-
ence being that the time average of each fluctuating dipole does
not vanish, but corresponds to the permanent dipole. Such
molecules therefore interact both through their permanent
dipoles and through the correlated, instantaneous fluctuations
in these dipoles.

The strength of the dispersion interaction depends on the 
polarizability of the first molecule because the instantaneous
dipole moment μ1* depends on the looseness of the control 
that the nuclear charge exercises over the outer electrons. The
strength of the interaction also depends on the polarizability of
the second molecule, for that polarizability determines how
readily a dipole can be induced by another molecule. The actual
calculation of the dispersion interaction is quite involved, but a
reasonable approximation to the interaction energy is given by
the London formula:

(8.14)

where I1 and I2 are the ionization energies of the two molecules
(Table 4.3). This interaction energy is also proportional to the
inverse sixth power of the separation of the molecules, which
identifies it as a third contribution to the van der Waals inter-
action. The dispersion interaction generally dominates all the
interactions between molecules other than hydrogen bonds.

l A BRIEF ILLUSTRATION

For two CH4 molecules, we can substitute α′ = 2.6 × 10−30 m3

and I ≈ 700 kJ mol−1 to obtain V = −5 kJ mol−1 for r = 0.3 nm.
A very rough check on this figure is the enthalpy of vaporiza-
tion of methane, which is 8.2 kJ mol−1. However, this 
comparison is insecure, partly because the enthalpy of 
vaporization is a many-body quantity and partly because 
the long-distance assumption breaks down. l
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Fig. 8.6 (a) A polar molecule (full arrow) can induce a dipole
(outline arrow) in a nonpolar molecule, and (b) the orientation
of the latter follows that of the former, so the interaction does
not average to zero.

(a)

(b)

Fig. 8.7 (a) In the dispersion interaction, an instantaneous dipole
on one molecule induces a dipole on another molecule, and 
the two dipoles then interact to lower the energy. (b) The two
instantaneous dipoles are correlated and, although they occur in
different orientations at different instants, the interaction does
not average to zero.
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8.5 Hydrogen bonding

The interactions described so far are universal in the sense that
they are possessed by all molecules independent of their specific
identity. However, there is a type of interaction possessed by
molecules that have a particular constitution. A hydrogen bond
is an attractive interaction between two species that arises from
a link of the form A-HîB, where A and B are highly electro-
negative elements and B possesses a lone pair of electrons.
Hydrogen bonding is conventionally regarded as being limited
to N, O, and F but, if B is an anionic species (such as Cl−), it may
also participate in hydrogen bonding. There is no strict cutoff

for an ability to participate in hydrogen bonding, but N, O, and
F participate most effectively.

The formation of a hydrogen bond can be regarded either as
the approach between a partial positive charge of H and a partial
negative charge of B or as a particular example of delocalized
molecular orbital formation in which A, H, and B each supply
one atomic orbital from which three molecular orbitals are 
constructed (Fig. 8.8). Experimental evidence and theoretical
arguments have been presented in favour of both views and the
matter has not yet been resolved. The electrostatic interaction
model can be understood readily in terms of the discussion in
Section 8.3. Here we develop the molecular orbital model.

If the A-H bond is regarded as formed from the overlap of an
orbital on A, ψA, and a hydrogen 1s orbital, ψH, and the lone pair
on B occupies an orbital on B, ψB, then when the two molecules
are close together, we can build three molecular orbitals from
the three basis orbitals:

ψ = cAψA + cHψH + cBψB

One of the molecular orbitals is bonding, one almost non-
bonding, and the third antibonding. These three orbitals need to
accommodate four electrons (two from the original A-H bond
and two from the lone pair of B), so two enter the bonding 
orbital and two enter the non-bonding orbital. Because the 
antibonding orbital remains empty, the net effect—depending
on the precise location of the almost non-bonding orbital—may
be a lowering of energy.

In practice, the strength of the bond is found to be about 
20 kJ mol−1. Because the bonding depends on orbital overlap, it
is virtually a contact-like interaction that is turned on when the 
H of AH touches B and is zero as soon as the contact is broken.
If hydrogen bonding is present, it dominates the other inter-
molecular interactions. The properties of liquid and solid water,
for example, are dominated by the hydrogen bonding between
H2O molecules. The structure of DNA and hence the trans-
mission of genetic information is crucially dependent on the
strength and number of hydrogen bonds between base pairs.
The structural evidence for hydrogen bonding comes from 
noting that the internuclear distance between formally non-
bonded atoms is less than their van der Waals contact distance,
which suggests that a dominating attractive interaction is pre-
sent. For example, the O-O distance in O-HîO is expected to
be 280 pm on the basis of van der Waals radii, but is found to be 
270 pm in typical compounds. Moreover, the HîO distance is
expected to be 260 pm but is found to be only 170 pm.

Hydrogen bonds may be either symmetric or unsymmetric.
In a symmetric hydrogen bond, the H atom lies midway between
the two other atoms. This arrangement is rare, but occurs in 
F-HîF−, where both bond lengths are 120 pm. More common
is the unsymmetrical arrangement, where the A-H bond is
shorter than the HîB bond. Electrostatic arguments, treating
A-HîB as an array of point charges (partial negative charges
on A and B, partial positive on H), suggest that the lowest energy
is achieved when the bond is linear, because then the two partial
negative charges are furthest apart (see Problem 8.11). The 
experimental evidence from structural studies supports a linear
or near-linear arrangement.

IMPACT ON BIOCHEMISTRY

I8.1 Proteins and nucleic acids

Polymers are macromolecules synthesized by stringing together
and (in some cases) cross-linking smaller units known as mono-
mers. There are macromolecules everywhere, inside us and out-
side us. Some are natural: they include cellulose, proteins, and
deoxyribonucleic acid (DNA). Others are synthetic: they include
polymers such as nylon and polystyrene. Here we describe the
important role that hydrogen bonding plays in determining the
shapes adopted by proteins and nucleic acids.

The concept of the ‘structure’ of a macromolecule takes on
different meanings at the different levels at which we think about
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Fig. 8.8 The molecular orbital interpretation of the formation 
of an A-HîB hydrogen bond. From the three A, H, and B
orbitals, three molecular orbitals can be formed (their relative
contributions are represented by the sizes of the spheres). Only
the two lower energy orbitals are occupied, and there may
therefore be a net lowering of energy compared with the 
separate AH and B species.
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the arrangement of the chain or network of monomers. The
term configuration refers to the structural features that can be
changed only by breaking chemical bonds and forming new
ones. Thus, the chains -A-B-C- and -A-C-B- have differ-
ent configurations. The term conformation refers to the spatial
arrangement of the different parts of a chain, and one con-
formation can be changed into another by rotating one part of 
a chain around a bond.

The primary structure of a macromolecule is the sequence of
small molecular residues making up the polymer. For example,
a protein is a polypeptide composed of linked α-amino acids,
NH2CHRCOOH, where R is one of about 20 groups. The
monomers are strung together by the peptide link, -CONH-.

The secondary structure of a macromolecule is the (often
local) spatial arrangement of a chain. The secondary structure of
an isolated molecule of polyethylene is a random coil, whereas
that of a protein is a highly organized arrangement determined
largely by hydrogen bonds, and taking the form of random coils,
helices (Fig. 8.9a), or sheets in various segments of the molecule.

The tertiary structure is the overall three-dimensional struc-
ture of a macromolecule. For instance, the hypothetical protein
shown in Fig. 8.9b has helical regions connected by short random-
coil sections. The helices interact to form a compact tertiary
structure.

The quaternary structure of a macromolecule is the manner
in which large molecules are formed by the aggregation of others.
Figure 8.10 shows how four molecular subunits, each with a spe-
cific tertiary structure, aggregate together. Quaternary structure
can be very important in biology. For example, the oxygen-
transport protein haemoglobin consists of four subunits that
work together to take up and release O2.

For a protein to function correctly, it needs to have a well
defined conformation. For example, an enzyme has its greatest
catalytic efficiency only when it is in a specific conformation.
The amino acid sequence of a protein contains the necessary 
information to create the active conformation of the protein

from a newly synthesized random coil. However, the prediction
of the conformation from the primary structure, the so-called
protein folding problem, is extraordinarily difficult and is still the
focus of much research.

The origin of the secondary structures of proteins is found in
the rules formulated by Linus Pauling and Robert Corey in 1951.
The essential feature is the stabilization of structures by hydro-
gen bonds involving the peptide link. The latter can act both 
as a donor of the H atom (the NH part of the link) and as an 
acceptor (the CO part). The Corey–Pauling rules are as follows
(Fig. 8.11):

1. The four atoms of the peptide link lie in a relatively rigid
plane, which arises from delocalization of π electrons over the
O, C, and N atoms and the maintenance of maximum overlap of
their p orbitals (see Problem 8.30).

=

(a) (b)

Fig. 8.9 (a) A polymer adopts a highly organized helical
conformation, an example of a secondary structure. The helix is
represented as a cylinder. (b) Several helical segments connected
by short random coils pack together, providing an example of
tertiary structure.
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Fig. 8.11 The dimensions that characterize the peptide link. The
C-NH-CO-C atoms define a plane (the C-N bond has partial
double-bond character), but there is rotational freedom around
the C-CO and N-C bonds.

Fig. 8.10 Several subunits with specific tertiary structures pack
together, providing an example of quaternary structure.
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2. The N, H, and O atoms of a hydrogen bond lie in a straight
line (with displacements of H tolerated up to not more than 30°
from the N-O vector).

3. All NH and CO groups are engaged in hydrogen bonding.

The rules are satisfied by two structures. One, in which hydro-
gen bonding between peptide links leads to a helical structure, is
a helix, which can be arranged as either a right- or a left-handed
screw. The other, in which hydrogen bonding between peptide
links leads to a planar structure, is a sheet; this form is the sec-
ondary structure of the protein fibroin, the constituent of silk.

There is a barrier to internal rotation of one bond relative to
another (just like the barrier to internal rotation in ethane).
Because the planar peptide link is relatively rigid, the geometry
of a polypeptide chain can be specified by the two angles that
two neighbouring planar peptide links make to each other.
Figure 8.12 shows the two angles φ and ψ commonly used to
specify this relative orientation. The sign convention is that a
positive angle means that the front atom must be rotated clock-
wise to bring it into an eclipsed position relative to the rear
atom. For an all-trans form of the chain, all φ and ψ are 180°. 
A helix is obtained when all the φ are equal and when all the ψ
are equal. For a right-handed helix, all φ = −57° and all ψ = −47°.
For a left-handed helix, both angles are positive. The torsional
contribution to the total potential energy of the molecule is

Vtorsion = A(1 + cos 3φ) + B(1 + cos 3ψ) (8.15)

in which A and B are constants of the order of 1 kJ mol−1.
Because only two angles are needed to specify the conforma-
tion of a helix, and they range from −180° to +180°, the torsional
potential energy of the entire molecule can be represented on 
a Ramachandran plot, a contour diagram in which one axis 
represents φ and the other represents ψ.

A right-handed a-helix is illustrated in Fig. 8.13. Each turn of
the helix contains 3.6 amino acid residues, so the period of the
helix corresponds to 5 turns (18 residues). The pitch of a single
turn (the distance between points separated by 360°) is 544 pm.

The N-HîO bonds lie parallel to the axis and link every fourth
group (so residue i is linked to residues i − 4 and i + 4). All the R
groups point away from the major axis of the helix.

Figure 8.14 shows the Ramachandran plots for the helical
form of polypeptide chains formed from the nonchiral amino
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Fig. 8.12 The definition of the torsional angles ψ and φ between
two peptide units. In α-l-polypeptide the chain is in its all-trans
form, with ψ = φ = 180°.

Fig. 8.13 The polypeptide α helix, with poly-l-glycine as an
example. There are 3.6 residues per turn, and a translation along
the helix of 150 pm per residue, giving a pitch of 540 pm. The
diameter (ignoring side chains) is about 600 pm.
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Fig. 8.14 Contour plots of potential energy against the torsional
angles ψ and φ, also known as Ramachandran plots, for (a) a
glycyl residue of a polypeptide chain and (b) an alanyl residue.
The darker the shading is, the lower the potential energy. 
The glycyl diagram is symmetrical, but regions I and II in the
alanyl diagram correspond to right- and left-handed helices, 
are unsymmetrical, and the minimum in region I lies lower than
that in region II. (After D.A. Brant and P.J. Flory, J. Mol. Biol. 23,
47 (1967).)
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acid glycine (R = H) and the chiral amino acid l-alanine (R =
CH3). The glycine map is symmetrical, with minima of equal
depth at φ = −80°, ψ = +90° and at φ = +80°, ψ = −90°. In contrast,
the map for l-alanine is unsymmetrical, and there are three dis-
tinct low-energy conformations (marked I, II, III). The minima
of regions I and II lie close to the angles typical of right- and 
left-handed helices, but the former has a lower minimum. This
result is consistent with the observation that polypeptides of the
naturally occurring l-amino acids tend to form right-handed
helices.

A b-sheet (also called the b-pleated sheet) is formed by 
hydrogen bonding between two extended polypeptide chains
(large absolute values of the torsion angles φ and ψ). Some of 
the R groups point above and some point below the sheet. Two
types of structures can be distinguished from the pattern of 
hydrogen bonding between the constituent chains.

In an antiparallel b-sheet (Fig. 8.15a), φ = −139°, ψ = 113°,
and the N-H-O atoms of the hydrogen bonds form a straight
line. This arrangement is a consequence of the antiparallel 
arrangement of the chains: every N-H bond on one chain is
aligned with a C-O bond from another chain. Antiparallel 
β-sheets are very common in proteins. In a parallel b-sheet
(Fig. 8.15b), φ = −119°, ψ = 113°, and the N-H-O atoms of the 
hydrogen bonds are not perfectly aligned. This arrangement is a
result of the parallel arrangement of the chains: each N-H bond
on one chain is aligned with a N-H bond of another chain and,
as a result, each C-O bond of one chain is aligned with a C-O
bond of another chain. These structures are not common in
proteins.

Although we do not know all the rules that govern protein
folding, a few general conclusions may be drawn from X-ray
diffraction studies of water-soluble natural proteins and syn-
thetic polypeptides. In an aqueous environment, the chains fold
in such a way as to place nonpolar R groups in the interior
(which is often not very accessible to solvent) and charged R

groups on the surface (in direct contact with the polar solvent).
Other factors that promote the folding of proteins include cova-
lent disulfide (-S-S-) links, Coulombic interactions between
ions (which depend on the degree of protonation of groups and
therefore on the pH), hydrogen bonding, van der Waals inter-
actions, and solvent effects.

Nucleic acids are key components of the mechanism of 
storage and transfer of genetic information in biological cells.
Deoxyribonucleic acid contains the instructions for protein syn-
thesis, which is carried out by different forms of ribonucleic acid
(RNA). In this section, we discuss the main structural features of
DNA and RNA.

Both DNA and RNA are polynucleotides (14), in which
base–sugar–phosphate units are linked by phosphodiester
bonds. In RNA the sugar is β-d-ribose and in DNA it is β-d-2-
deoxyribose (as shown in 15). The most common bases are ade-
nine (A, 16), cytosine (C, 17), guanine (G, 18), thymine (T,
found in DNA only, 19), and uracil (U, found in RNA only, 20).
At physiological pH, each phosphate group of the chain carries a
negative charge and the bases are deprotonated and neutral.
This charge distribution leads to two important properties. One
is that the polynucleotide chain is a polyelectrolyte, a macro-
molecule with many different charged sites, with a large and
negative overall surface charge. The second is that the bases can
interact by hydrogen bonding, as shown for A-T (21) and C-G
base pairs (22). The secondary and tertiary structures of DNA
and RNA arise primarily from the pattern of this hydrogen
bonding between bases of one or more chains.

(a) (b)

Fig. 8.15 The two types of β-sheets: (a) antiparallel (φ = −139°, 
ψ = 113°), in which the N-H-O atoms of the hydrogen bonds
form a straight line; (b) parallel (φ = −119°, ψ = 113° in which
the N-H-O atoms of the hydrogen bonds are not perfectly
aligned.
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In DNA, two polynucleotide chains wind around each other
to form a double helix (Fig. 8.16). The chains are held together 
by links involving A-T and C-G base pairs that lie parallel to
each other and perpendicular to the major axis of the helix. The
structure is stabilized further by base-stacking, in which disper-
sion interactions bring together the planar π systems of bases. In
B-DNA, the most common form of DNA found in biological
cells, the helix is right-handed with a diameter of 2.0 nm and a
pitch of 3.4 nm. Long stretches of DNA can fold further into 
a variety of tertiary structures. Two examples are shown in 
Fig. 8.17. Supercoiled DNA is found in the chromosome and can
be visualized as the twisting of closed circular DNA (ccDNA),
much like the twisting of a rubber band.

The extra -OH group in β-d-ribose imparts enough steric
strain to a polynucleotide chain so that stable double helices
cannot form in RNA. Therefore, RNA exists primarily as single
chains that can fold into complex structures by formation of 
A-U and G-C base pairs. One example of this is the structure
of transfer RNA (tRNA), shown schematically in Fig. 8.18, in
which base-paired regions are connected by loops and coils.
Transfer RNAs help assemble polypeptide chains during protein
synthesis in the cell.

8.6 The total interaction

We shall consider molecules that are unable to participate in 
hydrogen bond formation. The total attractive interaction energy
between rotating molecules is then the sum of the three van der
Waals contributions discussed above. (Only the dispersion inter-
action contributes if both molecules are nonpolar.) In a fluid
phase, all three contributions to the potential energy vary as the

T A

C G

T A

G C

Fig. 8.16 DNA double helix, in which two polynucleotide chains
are linked together by hydrogen bonds between adenine (A) and
thymine (T) and between cytosine (C) and guanine (G).

Closed
circular DNA

Supercoiled DNA

=

Fig. 8.17 A long section of DNA may form closed circular DNA
(ccDNA) by covalent linkage of the two ends of the chain.
Twisting of ccDNA leads to the formation of supercoiled DNA.
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inverse sixth power of the separation of the molecules, so we
may write

(8.16)

where C6 is a coefficient that depends on the identity of the
molecules.

Although attractive interactions between molecules are often
expressed as in eqn 8.16, we must remember that this equation
has only limited validity. First, we have taken into account only
dipolar interactions of various kinds, for they have the longest
range and are dominant if the average separation of the molecules
is large. However, in a complete treatment we should also con-
sider quadrupolar and higher-order multipole interactions, par-
ticularly if the molecules do not have permanent electric dipole
moments. Secondly, the expressions have been derived by assum-
ing that the molecules can rotate reasonably freely. That is not
the case in most solids, and in rigid media the dipole–dipole inter-
action is proportional to 1/r3 because the Boltzmann averaging
procedure is irrelevant when the molecules are trapped into a
fixed orientation.

A different kind of limitation is that eqn 8.16 relates to the 
interactions of pairs of molecules. There is no reason to suppose
that the energy of interaction of three (or more) molecules is 
the sum of the pairwise interaction energies alone. The total dis-
persion energy of three closed-shell atoms, for instance, is given
approximately by the Axilrod–Teller formula:
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where

C ′ = a(3 cos θA cos θB cos θC + 1) (8.17b)

The parameter a is approximately equal to 3–4α′C6; the angles θ
are the internal angles of the triangle formed by the three atoms
(23). The term in C ′ (which represents the non-additivity of 
the pairwise interactions) is negative for a linear arrangement 
of atoms (so that arrangement is stabilized) and positive for an
equilateral triangular cluster. It is found that the three-body
term contributes about 10 per cent of the total interaction energy
in liquid argon.

Fig. 8.18 Structure of a transfer RNA (tRNA).
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Fig. 8.19 The general form of an intermolecular potential energy
curve. At long range the interaction is attractive, but at close
range the repulsions dominate.

A

B

C

rAB

rBC

rCA

A

B

C

23

I
I

I

When molecules are squeezed together, the nuclear and elec-
tronic repulsions and the rising electronic kinetic energy begin
to dominate the attractive forces. The repulsions increase steeply
with decreasing separation in a way that can be deduced only by
very extensive, complicated molecular structure calculations of
the kind described in Chapter 6 (Fig. 8.19).

In many cases, however, progress can be made by using a
greatly simplified representation of the potential energy, where
the details are ignored and the general features expressed by a
few adjustable parameters. One such approximation is the hard-
sphere potential, in which it is assumed that the potential energy
rises abruptly to infinity as soon as the particles come within a
separation d:

V = ∞ for r ≤ d V = 0 for r > d (8.18a)
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This very simple potential is surprisingly useful for assessing a
number of properties. Another widely used approximation is
the Mie potential:

(8.18b)

with n > m. The first term represents repulsions and the second
term attractions. The Lennard-Jones potential is a special case
of the Mie potential with n = 12 and m = 6 (Fig. 8.20); it is often
written in the form

(8.18c)

The two parameters are ε, the depth of the well (not to be con-
fused with the symbol of the permittivity of a medium used in
Section 8.1), and r0, the separation at which V = 0 (Table 8.4).
The well minimum occurs at re = 21/6r0 (see Problem 8.8). Although
the Lennard-Jones potential has been used in many calculations,
there is plenty of evidence to show that 1/r12 is a very poor rep-
resentation of the repulsive potential, and that an exponential
form, e−r/r0, is greatly superior. An exponential function is more
faithful to the exponential decay of atomic wavefunctions at
large distances, and hence to the overlap that is responsible for
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repulsion. The potential with an exponential repulsive term and
a 1/r6 attractive term is known as an exp-6 potential.

With the advent of atomic force microscopy (AFM), in 
which the force between a molecular sized probe and a surface is
monitored (see Impact I2.1), it has become possible to measure
directly the forces acting between molecules. The force, F, is the
negative slope of potential, so for a Lennard-Jones potential 
between individual molecules we write

(8.19)

The net attractive force is greatest (from dF/dr = 0) at r = (26––7 )1/6r0,
or 1.244r0, and at that distance is equal to −144( 7––26)7/6ε/13r0, or 
−2.396ε/r0. For typical parameters, the magnitude of this force is
about 10 pN.

IMPACT ON NANOSCIENCE

I8.2 Colloidal nanoparticles

Much of the material discussed in this chapter applies to aggreg-
ates of particles that form by self-assembly, the spontaneous 
formation of complex structures of molecules held together by
molecular interactions. A colloid, or disperse phase, is a disper-
sion of small particles of one material in another. In this context,
‘small’ means something less than about 500 nm in diameter
(about the wavelength of visible light). In general, colloidal par-
ticles are aggregates of numerous atoms or molecules, but are
too small to be seen with an ordinary optical microscope.

The name given to the colloid depends on the two phases in-
volved. A sol is a dispersion of a solid in a liquid (such as clusters
of gold atoms in water) or of a solid in a solid (such as ruby 
glass, which is a gold-in-glass sol, and achieves its colour by light
scattering). An aerosol is a dispersion of a liquid in a gas (like 
fog and many sprays) or a solid in a gas (such as smoke): the 
particles are often large enough to be seen with a microscope. An
emulsion is a dispersion of a liquid in a liquid (such as milk).

A further classification of colloids is as lyophilic, or solvent-
attracting, and lyophobic, solvent-repelling. If the solvent is
water, the terms hydrophilic and hydrophobic, respectively, are
used instead. Lyophobic colloids include the metal sols. Lyophilic
colloids generally have some chemical similarity to the solvent,
such as -OH groups on the surface able to form hydrogen bonds.
A gel is a semirigid mass of a lyophilic sol in which all the dis-
persion medium has penetrated into the sol particles.

The preparation of aerosols can be as simple as sneezing (which
produces an imperfect aerosol). Laboratory and commercial
methods make use of several techniques. Material (for example,
quartz) may be ground in the presence of the dispersion me-
dium. Passing a heavy electric current through a cell may lead to
the sputtering (crumbling) of an electrode into colloidal particles.
Arcing between electrodes immersed in the support medium
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Fig. 8.20 The Lennard-Jones potential, and the relation of the
parameters to the features of the curve. The light lines are the
two contributions.

Synoptic table 8.4* Lennard-
Jones (12,6) parameters

(e/k)/K r0/pm

Ar 111.84 362.3

CCl4 378.86 624.1

N2 91.85 391.9

Xe 213.96 426.0

* More values are given in the Data section.
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also produces a colloid. Chemical precipitation sometimes results
in a colloid. A precipitate (for example, silver iodide) already
formed may be dispersed by the addition of a peptizing agent
(for example, potassium iodide). Clays may be peptized by 
alkalis, the OH− ion being the active agent.

Emulsions are normally prepared by shaking the two com-
ponents together vigorously, although some kind of emulsifying
agent usually has to be added to stabilize the product. This
emulsifying agent may be a soap (the salt of a long-chain car-
boxylic acid) or other surfactant (surface active) species, or a
lyophilic sol that forms a protective film around the dispersed
phase. In milk, which is an emulsion of fats in water, the emulsi-
fying agent is casein, a protein containing phosphate groups. 
It is clear from the formation of cream on the surface of milk
that casein is not completely successful in stabilizing milk: the
dispersed fats coalesce into oily droplets that float to the sur-
face. This coagulation may be prevented by ensuring that the
emulsion is dispersed very finely initially: intense agitation with
ultrasonics brings this dispersion about, the product being 
‘homogenized’ milk.

One way to form an aerosol is to tear apart a spray of liquid
with a jet of gas. The dispersal is aided if a charge is applied to the
liquid, for then electrostatic repulsions help to blast it apart into
droplets. This procedure may also be used to produce emul-
sions, for the charged liquid phase may be directed into another
liquid.

Colloidal particles attract one another over large distances by
the dispersion interaction, so there is a long-range force tending
to collapse them down into a single blob. Several factors oppose
the long-range dispersion attraction. There may be a protective
film at the surface of the colloid particles that stabilizes the 
interface and cannot be penetrated when two particles touch.
For example, the surface atoms of a platinum sol in water 
react chemically and are turned into -(OH)3H3, and this layer
encases the particle like a shell. A fat can be emulsified by a soap
because the long hydrocarbon tails of the soap molecules 
penetrate the oil droplet but the -CO2

− head groups (or other
hydrophilic groups in detergents) surround the surface, form
hydrogen bonds with water, and give rise to a shell of negative
charge that repels a possible approach from another similarly
charged particle.

Apart from the physical stabilization of disperse systems, 
certain factors slow down their collapse. Chief among them is
the existence of an electric charge on the surfaces of the colloidal
particles. On account of this charge, ions of opposite charge tend
to cluster nearby.

Two regions of charge must be distinguished. First, there is 
a fairly immobile layer of ions that stick tightly to the surface of
the colloidal particle, and which may include water molecules 
(if that is the support medium). The radius of the sphere that
captures this rigid layer is called the radius of shear, and is the
major factor determining the mobility of the particles (Fig. 8.21).

The electric potential at the radius of shear relative to its value in
the distant, bulk medium is called the electrokinetic potential, 
ζ (zeta). The charged unit attracts an oppositely charged ionic 
atmosphere. The inner shell of charge and the outer atmosphere
jointly constitute the electric double layer.

At high concentrations of ions of high charge number, the 
atmosphere is dense and the potential falls to its bulk value within
a short distance. In this case there is little electrostatic repulsion
to hinder the close approach of two colloid particles. As a result,
flocculation, the aggregation of the colloidal particles, occurs as
a consequence of the van der Waals forces. Flocculation is often
reversible, and should be distinguished from coagulation, which
is the irreversible collapse of the colloid into a bulk phase. When
river water containing colloidal clay flows into the sea, the brine
induces coagulation and is a major cause of silting in estuaries.

Metal oxide and sulfide sols have charges that depend on the
pH; sulfur and the noble metals tend to be negatively charged.
Naturally occurring macromolecules also acquire a charge when
dispersed in water, and an important feature of proteins and
other natural macromolecules is that their overall charge depends
on the pH of the medium. For instance, in acid environments
protons attach to basic groups and the net charge of the macro-
molecule is positive; in basic media the net charge is negative as
a result of proton loss. At the isoelectric point, the pH is such
that there is no net charge on the macromolecule.

The primary role of the electric double layer is to slow down
the collapse into a bulk phase. Colliding colloidal particles break
through the double layer and coalesce only if the collision is
sufficiently energetic to disrupt the layers of ions and solvating
molecules, or if thermal motion has stirred away the surface 
accumulation of charge. This kind of disruption of the double
layer may occur at high temperatures, which is one reason why
sols precipitate when they are heated. The protective role of the
double layer is the reason why it is important not to remove all
the ions (other than those needed to ensure overall electrical

Ions
Colloid
particle

Radius
of shear

Fig. 8.21 The definition of the radius of shear for a colloidal
particle. The spheres are ions attached to the surface of the
particle.
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neutrality) when a colloid is being purified, and why proteins
coagulate most readily at their isoelectric point.

Surfactant molecules or ions can cluster together as micelles,
which are colloid-sized clusters of molecules, for their hydro-
phobic tails tend to congregate, and their hydrophilic heads 
provide protection (Fig. 8.22).

Micelles form only above the critical micelle concentration
(CMC) and above the Krafft temperature. The CMC is detected
by noting a pronounced change in physical properties of the 
solution, particularly the molar conductivity (Fig. 8.23). There
is no abrupt change in properties at the CMC; rather, there is a
transition region corresponding to a range of concentrations
around the CMC where physical properties vary smoothly but
non-linearly with the concentration. The hydrocarbon interior
of a micelle is like a droplet of oil. Nuclear magnetic resonance
shows that the hydrocarbon tails are mobile, but slightly more
restricted than in the bulk. Micelles are important in industry
and biology on account of their solubilizing function: matter
can be transported by water after it has been dissolved in their
hydrocarbon interiors. For this reason, micellar systems are

used as detergents, for organic synthesis, froth flotation, and
petroleum recovery.

Non-ionic surfactant molecules may cluster together in
clumps of 1000 or more, but ionic species tend to be disrupted
by the electrostatic repulsions between head groups and are 
normally limited to groups of less than about 100. The micelle
population is often polydisperse, and the shapes of the indi-
vidual micelles vary with concentration. Spherical micelles do
occur, but micelles are more commonly flattened spheres close
to the CMC.

Under certain experimental conditions, a liposome may form,
with an inward pointing inner surface of molecules surrounded
by an outward pointing outer layer (Fig. 8.24). Liposomes may
be used to carry nonpolar drug molecules in blood. In concen-
trated solutions micelles formed from surfactant molecules may
take the form of long cylinders and stack together in reasonably
close-packed (hexagonal) arrays. These orderly arrangements 
of micelles are called lyotropic mesomorphs and, more collo-
quially, ‘liquid crystalline phases’.

Some micelles at concentrations well above the CMC form
extended parallel sheets, called lamellar micelles, two molecules
thick. The individual molecules lie perpendicular to the sheets,
with hydrophilic groups on the outside in aqueous solution and
on the inside in nonpolar media. Such lamellar micelles show 
a close resemblance to biological membranes, and are often 
a useful model on which to base investigations of biological
structures. We discuss biological membranes more fully in
Impact I16.1.

Gases and liquids

The form of matter with the least order is a gas. In a perfect 
gas there are no intermolecular interactions and the distribution
of molecules is completely random. In a real gas there are weak
attractions and repulsions that have minimal effect on the rela-
tive locations of the molecules but that cause deviations from the
perfect gas law for the dependence of pressure on the volume,
temperature, and amount (see Fundamentals F.3).

Fig. 8.22 A schematic version of a spherical micelle. The
hydrophilic groups are represented by spheres and the
hydrophobic hydrocarbon chains are represented by the 
stalks; these stalks are mobile.

Fig. 8.24 The cross-sectional structure of a spherical liposome.
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Fig. 8.23 The typical variation of some physical properties of an
aqueous solution of sodium dodecylsulfate close to the critical
micelle concentration (CMC).
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The attractions between molecules are responsible for the
condensation of gases into liquids at low temperatures. At low
enough temperatures the molecules of a gas have insufficient 
kinetic energy to escape from each other’s attraction and they
stick together. Second, although molecules attract each other
when they are a few diameters apart, as soon as they come into
contact they repel each other. This repulsion is responsible for
the fact that liquids and solids have a definite bulk and do not
collapse to an infinitesimal point.

In the following sections we build on the concepts just out-
lined. First, we describe molecular interactions in gases and see
how the perfect gas equation of state is modified to take these 
interactions into account. Then, we explore liquids and see that
it is possible to speak of a ‘structure’ for this state of matter.

8.7 Molecular interactions in gases

Real gases do not obey the perfect gas law exactly. Deviations
from the law are particularly important at high pressures and
low temperatures, especially when a gas is on the point of con-
densing to liquid.

Real gases show deviations from the perfect gas law because
molecules interact with one another. Repulsive forces between
molecules assist expansion and attractive forces assist compres-
sion. Repulsive forces are significant only when molecules are
almost in contact: they are short-range interactions, even on a
scale measured in molecular diameters (Fig. 8.25). Because they
are short-range interactions, repulsions can be expected to be
important only when the average separation of the molecules 
is small. This is the case at high pressure, when many molecules

occupy a small volume. On the other hand, attractive inter-
molecular forces have a relatively long range and are effective
over several molecular diameters. They are important when the
molecules are fairly close together but not necessarily touching
(at the intermediate separations in Fig. 8.25). Attractive forces
are ineffective when the molecules are far apart (well to the right
in Fig. 8.25). Intermolecular forces are also important when the
temperature is so low that the molecules travel with such low
mean speeds that they can be captured by one another.

At low pressures, when the sample occupies a large volume,
the molecules are so far apart for most of the time that the inter-
molecular forces play no significant role, and the gas behaves
virtually perfectly. At moderate pressures, when the average 
separation of the molecules is only a few molecular diameters,
the attractive forces dominate the repulsive forces. In this case,
the gas can be expected to be more compressible than a perfect
gas because the forces help to draw the molecules together. At
high pressures, when the average separation of the molecules is
small, the repulsive forces dominate and the gas can be expected
to be less compressible because now the forces help to drive the
molecules apart.

(a) The virial equation of state

The physical state of a sample of a substance is defined by its
physical properties. The state of a pure gas, for example, is
specified by giving its volume, V, amount of substance, n, pres-
sure, p, and temperature, T. However, it has been established 
experimentally that it is sufficient to specify only three of these
variables, for then the fourth variable is fixed. That is, it is an 
experimental fact that each substance is described by an equa-
tion of state, an equation that interrelates these four variables.

The general form of an equation of state is

p = f(T, V, n)

This equation tells us that, if we know the values of n, T, and V
for a particular substance, then the pressure has a fixed value.
Each substance is described by its own equation of state, but we
know the explicit form of the equation in only a few special
cases. One very important example is the equation of state of a
perfect gas, which has the form p = nRT/V, where R is a constant
(see Fundamentals F.3).

We can construct the general form of the equation of state 
of a gas from measurements of pressure, temperature, volume,
and amount that show deviations from perfect behaviour. It is
convenient to begin by defining the compression factor, Z, of a
gas as the ratio of its measured molar volume, Vm = V/n, to the
molar volume of a perfect gas, V°m, at the same pressure and
temperature:

[8.20]
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Fig. 8.25 The variation of the potential energy of two molecules
on their separation. High positive potential energy (at very 
small separations) indicates that the interactions between 
them are strongly repulsive at these distances. At intermediate
separations, where the potential energy is negative, the attractive
interactions dominate. At large separations (on the right) the
potential energy is zero and there is no interaction between the
molecules.
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Because the molar volume of a perfect gas is equal to RT/p, an
equivalent expression is Z = pVm/RT, which we can write as

pVm = RTZ (8.21)

For a perfect gas Z = 1 under all conditions, so it follows that 
deviation of Z from 1 is a measure of departure from perfect 
behaviour.

Some experimental values of Z are plotted in Fig. 8.26. At very
low pressures, all the gases shown have Z ≈ 1 and behave nearly
perfectly. At high pressures, all the gases have Z > 1, signifying
that they have a larger molar volume than a perfect gas. Repulsive
forces are now dominant. At intermediate pressures, most gases
have Z < 1, indicating that the attractive forces are reducing the
molar volume relative to that of a perfect gas.

Figure 8.27 shows the experimental isotherms, plots of data
(in this case pressure and volume data) obtained at constant
temperature, for carbon dioxide. At large molar volumes and
high temperatures the real-gas isotherms do not differ greatly
from perfect-gas isotherms. The small differences suggest that
the perfect gas law is in fact the first term in an expression of the
form

pVm = RT(1 + B′p + C ′p2 + . . .) (8.22a)

This expression is an example of a common procedure in phys-
ical chemistry, in which a simple law that is known to be a good
first approximation (in this case pVm = RT) is treated as the first
term in a series in powers of a variable (in this case p). A more
convenient expansion for many applications is

(8.22b)
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These two expressions are two versions of the virial equation of
state (the name virial comes from the Latin word for force). By
comparing the expression with eqn 8.21 we see that the term in
parentheses can be identified with the compression factor, Z.

The coefficients B, C, . . . (sometimes denoted B2, B3, . . .) depend
on the temperature and are the second, third, . . . virial coeffi-

cients (Table 8.5); the first virial coefficient is 1. The third virial
coefficient, C, is usually less important than the second coefficient,
B, in the sense that at typical molar volumes C/V2

m << B/Vm.
We can use the virial equation to demonstrate the import-

ant point that, although the equation of state of a real gas may
coincide with the perfect gas law as p → 0, not all its properties
necessarily coincide with those of a perfect gas in that limit.
Consider, for example, the value of dZ/dp, the slope of the 
graph of compression factor against pressure. For a perfect gas
dZ/dp = 0 (because Z = 1 at all pressures), but for a real gas from
eqns 8.21 and 8.22a we obtain

(8.23a)
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Fig. 8.27 Experimental isotherms of carbon dioxide at several
temperatures. The ‘critical isotherm’, the isotherm at the critical
temperature, is at 31.04°C. The critical point is marked with a star.
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Synoptic table 8.5* Second
virial coefficients, B/(cm3 mol−1)

Temperature

273 K 600 K

Ar −21.7 11.9

CO2 −142 −12.4

N2 −10.5 21.7

Xe −153.7 −19.6

* More values are given in the Data section.
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However, B′ is not necessarily zero, so the slope of Z with respect
to p does not necessarily approach 0 (the perfect gas value), as we
can see in Fig. 8.26. By a similar argument,

(8.23b)

Because the virial coefficients depend on the temperature,
there may be a temperature at which Z → 1 with zero slope at
low pressure or high molar volume (Fig. 8.28). At this tempera-
ture, which is called the Boyle temperature, TB, the properties of
the real gas do coincide with those of a perfect gas as p → 0.
According to eqn 8.23b, Z has zero slope as p → 0 if B = 0, so we
can conclude that B = 0 at the Boyle temperature. It then follows
from eqn 8.21 that pVm ≈ RTB over a more extended range of
pressures than at other temperatures because the first term after
1 (that is, B/Vm) in the virial equation is zero and C/V 2

m and
higher terms are negligibly small. For helium TB = 22.64 K; for
air TB = 346.8 K; more values are given in Table 8.6.
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(b) The van der Waals equation

We can draw conclusions from the virial equations of state only
by inserting specific values of the coefficients. It is often useful 
to have a broader, if less precise, view of all gases. Therefore, we 
introduce the approximate equation of state suggested by J.D.
van der Waals in 1873. This equation is an excellent example 
of an expression that can be obtained by thinking scientifically
about a mathematically complicated but physically simple prob-
lem, that is, it is a good example of ‘model building’.

The van der Waals equation is

(8.24a)

and a derivation is given in the following Justification. The equa-
tion is often written in terms of the molar volume Vm = V/n as

(8.24b)

The (positive) constants a and b are called the van der Waals
coefficients. They are characteristic of each gas but independent
of the temperature (Table 8.7).

Justification 8.4 The van der Waals equation of state

The repulsive interactions between molecules are taken into
account by supposing that they cause the molecules to be-
have as small but impenetrable spheres. The nonzero volume
of the molecules implies that instead of moving in a volume
V they are restricted to a smaller volume V − nb, where nb is
approximately the total volume taken up by the molecules
themselves. This argument suggests that the perfect gas law 
p = nRT/V should be replaced by

when repulsions are significant. The closest distance of two
hard-sphere molecules of radius r, and volume Vmolecule =
4–3πr3, is 2r, so the volume excluded is 4–3π(2r)3, or 8Vmolecule.
The volume excluded per molecule is one-half this volume,
or 4Vmolecule, so b ≈ 4VmoleculeNA.
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Fig. 8.28 The compression factor, Z, approaches 1 at low
pressures, but does so with different slopes. For a perfect gas, the
slope is zero, but real gases may have either positive or negative
slopes, and the slope may vary with temperature. At the Boyle
temperature, the slope is zero and the gas behaves perfectly over
a wider range of conditions than at other temperatures.

Synoptic table 8.6* Boyle
temperatures of gases

TB/K

Ar 411.5

CO2 714.8

He 22.64

O2 405.9

* More values are given in the Data section.

Synoptic table 8.7* van der Waals coefficients

a/(atm dm6 mol−2) b/(10−2 dm3 mol−1)

Ar 1.337 3.20

CO2 3.610 4.29

He 0.0341 2.38

Xe 4.137 5.16

* More values are given in the Data section.
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x3 − 0.453x2 + (3.61 × 10−2)x − (1.55 × 10−3) = 0

The acceptable root is x = 0.366, which implies that Vm =
0.366 dm3 mol−1. For a perfect gas under these conditions,
the molar volume is 0.410 dm3 mol−1.

Self-test 8.4 Calculate the molar volume of argon at 100°C
and 100 atm on the assumption that it is a van der Waals gas.

[0.298 dm3 mol−1]

It is too optimistic to expect a single, simple expression to be
the true equation of state of all substances, and accurate work on
gases must resort to the virial equation, use tabulated values of
the coefficients at various temperatures, and analyse the systems
numerically. The advantage of the van der Waals equation, how-
ever, is that it is analytical (that is, expressed symbolically) and
allows us to draw some general conclusions about real gases.
When the equation fails we must use one of the other equations
of state that have been proposed (some are listed in Table 8.8),
invent a new one, or go back to the virial equation.

That having been said, we can begin to judge the reliability 
of the equation by comparing the isotherms it predicts with the
experimental isotherms in Fig. 8.27. Some calculated isotherms
are shown in Figs. 8.29 and 8.30. Apart from the oscillations they
do resemble experimental isotherms quite well. The oscillations,
the van der Waals’ loops, are unrealistic because they suggest
that under some conditions an increase of pressure results in an
increase of volume. Therefore they are replaced by horizontal
lines drawn so the loops define equal areas above and below the
lines: this procedure is called the Maxwell construction (24). The
van der Waals coefficients, such as those in Table 8.7, are found
by fitting the calculated curves to the experimental curves.

Table 8.8 Selected equations of state
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The pressure depends on both the frequency of collisions
with the walls and the force of each collision. Both the fre-
quency of the collisions and their force are reduced by the 
attractive forces, which act with a strength proportional to
the molar concentration, n/V, of molecules in the sample.
Therefore, because both the frequency and the force of the
collisions are reduced by the attractive forces, the pressure is
reduced in proportion to the square of this concentration. If
the reduction of pressure is written as −a(n/V)2, where a is a
positive constant characteristic of each gas, the combined
effect of the repulsive and attractive forces is the van der
Waals equation of state as expressed in eqn 8.24.

In this Justification we have built the van der Waals equa-
tion using vague arguments about the volumes of molecules
and the effects of forces. The equation can be derived in other
ways, but the present method has the advantage that it shows
how to derive the form of an equation out of general ideas.
The derivation also has the advantage of keeping imprecise
the significance of the coefficients a and b: they are much 
better regarded as empirical parameters than as precisely
defined molecular properties (but see Section 14.10 for a pre-
cise thermodynamic interpretation of a).

Example 8.3 Using the van der Waals equation to estimate a
molar volume

Estimate the molar volume of CO2 at 500 K and 100 atm by
treating it as a van der Waals gas.

Method To express eqn 8.24b as an equation for the molar
volume, we multiply both sides by (Vm − b)V 2

m , to obtain

(Vm − b)V 2
m p = RTV 2

m − (Vm − b)a

and, after division by p, collect powers of Vm to obtain

Although closed expressions for the roots of a cubic equation
can be given, they are very complicated. Unless analytical so-
lutions are essential, it is usually more expedient to solve such
equations with commercial software.

Answer According to Table 8.7, a = 3.610 dm6 atm mol−2 and
b = 4.29 × 10−2 dm3 mol−1. Under the stated conditions, 
RT/p = 0.410 dm3 mol−1. The coefficients in the equation for
Vm are therefore

b + RT/p = 0.453 dm3 mol−1

a/p = 3.61 × 10−2 (dm3 mol−1)2

ab/p = 1.55 × 10−3 (dm3 mol−1)3

Therefore, on writing x = Vm/(dm3 mol−1), the equation to
solve is
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The principal features of the van der Waals equation can be
summarized as follows.

1. Perfect gas isotherms are obtained at high temperatures
and large molar volumes.

When the temperature is high, RT may be so large that the first
term in eqn 8.24b greatly exceeds the second. Furthermore, if
the molar volume is large in the sense Vm >> b, then the denom-
inator Vm − b ≈ Vm. Under these conditions, the equation re-
duces to p = RT/Vm, the perfect gas equation.

2. Liquids and gases coexist when cohesive and dispersing
effects are in balance.

The van der Waals loops occur when both terms in eqn 8.24b
have similar magnitudes. The first term arises from the kinetic
energy of the molecules and their repulsive interactions; the sec-
ond represents the effect of the attractive interactions.

(c) Experimental studies of molecular interactions in gases

Molecular interactions in the gas phase can be studied in mole-
cular beams, which consist of a collimated, narrow stream of
molecules travelling though an evacuated vessel. The beam is 
directed towards other molecules, and the scattering that occurs
on impact is related to the intermolecular interactions.

The primary experimental information from a molecular
beam experiment is the fraction of the molecules in the incident
beam that is scattered into a particular direction; we limit dis-
cussion here to non-reactive scattering. The fraction is normally
expressed in terms of dI, the rate at which molecules are scat-
tered into a cone that represents the area covered by the ‘eye’ of
the detector (Fig. 8.31). This rate is reported as the differential
scattering cross-section, σ, the constant of proportionality 
between the value of dI and the intensity, I, of the incident beam,
the number density of target molecules, N , and the infinitesimal
path length dx through the sample:

dI = σIN dx (8.25)

The value of σ (which has the dimensions of area) depends on
the impact parameter, b, the initial perpendicular separation of
the paths of the colliding molecules (Fig. 8.32), and the details 
of the intermolecular potential. The role of the impact para-
meter is most easily seen by considering the impact of two hard
spheres (Fig. 8.33). If b = 0, the lighter projectile is on a trajectory
that leads to a head-on collision, so the only scattering intensity is
detected when the detector is at θ = π. When the impact parameter
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Fig. 8.29 The surface of possible states allowed by the van der
Waals equation. The curves are labelled with the reduced
temperature, Tr = T/Tc.

I

dh

Fig. 8.31 The definition of the solid angle, dΩ, for scattering.
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Fig. 8.30 Isotherms calculated by using the van der Waals
equation of state. The axes are labelled with the ‘reduced
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and Vc = 3b. The individual isotherms are labelled with the
‘reduced temperature’, T/Tc, where Tc = 8a/27Rb. The van der
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interActivity Calculate the molar volume of chlorine gas on 
the basis of the van der Waals equation of state at 250 K 

and 150 kPa and calculate the percentage difference from the
value predicted by the perfect gas equation.
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is so great that the spheres do not make contact (b > RA + RB),
there is no scattering and the scattering cross-section is zero at
all angles except θ = 0. Glancing blows, with 0 < b ≤ RA + RB, lead
to scattering intensity in cones around the forward direction.

The scattering pattern of real molecules, which are not hard
spheres, depends on the details of the intermolecular potential,
including the anisotropy that is present when the molecules are
non-spherical. The scattering also depends on the relative speed
of approach of the two particles: a very fast particle might pass
through the interaction region without much deflection, whereas
a slower one on the same path might be temporarily captured
and undergo considerable deflection (Fig. 8.34). The variation
of the scattering cross-section with the relative speed of approach
should therefore give information about the strength and range
of the intermolecular potential.

A further point is that the outcome of collisions is determined
by quantum, not classical, mechanics. The wave nature of the

particles can be taken into account, at least to some extent, by
drawing all classical trajectories that take the projectile particle
from source to detector, and then considering the effects of 
interference between them.

Two quantum mechanical effects are of great importance. A
particle with a certain impact parameter might approach the 
attractive region of the potential in such a way that the particle 
is deflected towards the repulsive core (Fig. 8.35), which then 
repels it out through the attractive region to continue its flight 
in the forward direction. Some molecules, however, also travel
in the forward direction because they have impact parameters 
so large that they are undeflected. The wavefunctions of the par-
ticles that take the two types of path interfere, and the intensity
in the forward direction is modified. The effect is called quan-
tum oscillation. The same phenomenon accounts for the optical
‘glory effect’, in which a bright halo can sometimes be seen sur-
rounding an illuminated object. (The coloured rings around the
shadow of an aircraft cast on clouds by the Sun, and often seen
in flight, are an example of an optical glory.)

b

Fig. 8.32 The definition of the impact parameter, b, as the
perpendicular separation of the initial paths of the particles.

0 < +b R RA             Bi

b R R> +A             B

b = 0

(a) (b)

(c)

RA RB

Fig. 8.33 Three typical cases for the collisions of two hard spheres:
(a) b = 0, giving backward scattering; (b) b > RA + RB, giving
forward scattering; (c) 0 < b ≤ RA + RB, leading to scattering into
one direction on a ring of possibilities. (The target molecule is
taken to be so heavy that it remains virtually stationary.)

Slow
molecule

Fast
molecule

Fig. 8.34 The extent of scattering may depend on the relative
speed of approach as well as the impact parameter. The dark
central zone represents the repulsive core; the fuzzy outer zone
represents the long-range attractive potential.

Interfering
paths

Fig. 8.35 Two paths leading to the same destination will interfere
quantum mechanically; in this case they give rise to quantum
oscillations in the forward direction.
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The second quantum effect we need consider is the observa-
tion of a strongly enhanced scattering in a nonforward direc-
tion. This effect is called rainbow scattering because the same
mechanism accounts for the appearance of an optical rainbow.
The origin of the phenomenon is illustrated in Fig. 8.36. As the
impact parameter decreases, there comes a stage at which the
scattering angle passes through a maximum and the interference
between the paths results in a strongly scattered beam. The rain-
bow angle, θr, is the angle for which dθ/db = 0 and the scattering
is strong.

Another phenomenon that can occur in certain beams is the
capturing of one species by another. The vibrational tempera-
ture in supersonic beams is so low that van der Waals molecules
may be formed, which are complexes of the form AB in which A
and B are held together by van der Waals forces or hydrogen
bonds. Large numbers of such molecules have been studied
spectroscopically, including ArHCl, (HCl)2, ArCO2, and (H2O)2.
More recently, van der Waals clusters of water molecules have
been pursued as far as (H2O)6. The study of their spectroscopic
properties gives detailed information about the intermolecular
potentials involved.

8.8 Molecular interactions in liquids

The starting point for the discussion of solids is the well ordered
structure of a perfect crystal, which will be discussed in Chapter
9. The starting point for the discussion of gases is the completely
disordered distribution of the molecules of a perfect gas. Liquids
lie between these two extremes, and their structural properties
depend on the nature of intermolecular interactions.

The average relative locations of the particles of a liquid are
expressed in terms of the radial distribution function, g(r). 
This function is defined so that g(r)r2dr is the probability that 
a molecule will be found in the range dr at a distance r from 
another molecule. In a perfect crystal, g(r) is a periodic array 
of sharp spikes, representing the certainty (in the absence of 
defects and thermal motion) that molecules (or ions) lie at

definite locations. This regularity continues out to the edges of
the crystal, so we say that crystals have long-range order. When
the crystal melts, the long-range order is lost and, wherever 
we look at long distances from a given molecule, there is equal
probability of finding a second molecule. Close to the first
molecule, though, the nearest neighbours might still adopt 
approximately their original relative positions and, even if they
are displaced by newcomers, the new particles might adopt their
vacated positions. It is still possible to detect a sphere of nearest
neighbours at a distance r1, and perhaps beyond them a sphere
of next-nearest neighbours at r2. The existence of this short-
range order means that the radial distribution function can be
expected to oscillate at short distances, with a peak at r1, a smaller
peak at r2, and perhaps some more structure beyond that.

The radial distribution function of the oxygen atoms in liquid
water is shown in Fig. 8.37. Closer analysis shows that any given
H2O molecule is surrounded by other molecules at the corners
of a tetrahedron. The form of g(r) at 100°C shows that the inter-
molecular interactions (in this case, principally by hydrogen
bonds) are strong enough to affect the local structure right up to
the boiling point. Spectroscopic studies indicate that in liquid
water most molecules participate in either three or four hydro-
gen bonds. It is also observed that about 90 per cent of hydrogen
bonds are intact at the melting point of ice, falling to about 
20 per cent at the boiling point.

The formal expression for the radial distribution function for
molecules 1 and 2 in a fluid consisting of N particles is the some-
what fearsome relation

(8.26)

where β = 1/kT and VN is the N-particle potential energy, which
depends on intermolecular interactions. There are several ways
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Fig. 8.36 The interference of paths leading to rainbow scattering.
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Fig. 8.37 The radial distribution function of the oxygen atoms in
liquid water at three temperatures. Note the expansion as the
temperature is raised. (A.H. Narten et al., Discuss. Faraday. Soc.
43, 97 (1967).)



8 MOLECULAR ASSEMBLIES 245

of building the intermolecular potential into the calculation of
g(r). Numerical methods take a box of about 103 particles (the
number increases as computers grow more powerful), and 
the rest of the liquid is simulated by surrounding the box with 
replications of the original box (Fig. 8.38). Then, whenever a
particle leaves the box through one of its faces, its image arrives
through the opposite face. When calculating the interactions of
a molecule in a box, it interacts with all the molecules in the box
and all the periodic replications of those molecules and itself in
the other boxes.

In the Monte Carlo method, the particles in the box are
moved through small but otherwise random distances, and the
change in total potential energy of the N particles in the box,
ΔVN, is calculated using one of the intermolecular potentials 
discussed in this chapter. Whether or not this new configuration
is accepted is then judged from the following rules:

1. If the potential energy is not greater than before the
change, then the configuration is accepted.

If the potential energy is greater than before the change, then it
is necessary to check if the new configuration is reasonable and
can exist in equilibrium with configurations of lower potential
energy at a given temperature. To make progress, we use the 
result that, at equilibrium, the ratio of populations of two states
with energy separation ΔVN is given by the Boltzmann distribu-
tion, here written as e−ΔVN/kT. Because we are testing the viability
of a configuration with a higher potential energy than the previ-
ous configuration in the calculation, ΔVN > 0 and the exponen-
tial factor varies between 0 and 1. In the Monte Carlo method,
the second rule, therefore, is:

2. The exponential factor is compared with a random number
between 0 and 1; if the factor is larger than the random number,
then the configuration is accepted; if the factor is not larger, the
configuration is rejected.

The configurations generated with Monte Carlo calculations
can be used to construct g(r) simply by counting the number of
pairs of particles with a separation r and averaging the result
over the whole collection of configurations.

In the molecular dynamics approach, the history of an initial
arrangement is followed by calculating the trajectories of all the
particles under the influence of the intermolecular potentials.
To appreciate what is involved, we consider the motion of a 
particle in one dimension. We show in the following Justification
that after a time interval Δt the position of a particle changes
from xi−1 to a new value xi given by

xi = xi−1 + vi−1Δt (8.27a)

where vi−1 is the velocity of the atom when it was at xi−1, its loca-
tion at the start of the interval. The velocity at xi is related to vi−1,
the velocity at the start of the interval, by

(8.27b)

where the derivative of the potential energy VN (x) is evaluated 
at xi−1. The time interval Δt is approximately 1 fs (10−15 s), which
is shorter than the average time between collisions. The calcula-
tion of xi and vi is then repeated for tens of thousands of such
steps. The time–consuming part of the calculation is the evalu-
ation of the net force on the molecule arising from all the other
molecules present in the system.

Justification 8.5 Particle trajectories according to molecular
dynamics

Consider a particle of mass m moving along the x direction
with an initial velocity v1 given by

If the initial and new positions of the atom are x1 and x2, then
Δx = x2 − x1 and

x2 = x1 + v1Δt

The particle moves under the influence of a force arising
from interactions with other atoms in the molecule. From
Newton’s second law of motion, we write the force F1 at x1 as

F1 = ma1

where the acceleration a1 at x1 is given by a1 = Δv/Δt. If 
the initial and new velocities are v1 and v2, then Δv = v2 − v1

and

Because F = −dV/dx, the force acting on the atom is related to
the potential energy of interaction with other nearby atoms,
the potential energy VN (x), by
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Fig. 8.38 In a two-dimensional simulation of a liquid that uses
periodic boundary conditions, when one particle leaves the cell
its mirror image enters through the opposite face.
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where the derivative is evaluated at x1. It follows that

This expression generalizes to eqn 8.27b for the calculation of
a velocity vi from a previous velocity vi−1.

Self-test 8.5 Consider a particle of mass m connected to a
stationary wall with a spring of force constant k. Write an 
expression for the velocity of this particle once it is set into
motion in the x direction from an equilibrium position x0.

[vi = vi−1 + (k/m)(xi−1 − x0)Δt]

A molecular dynamics calculation gives a series of snapshots
of the liquid, and g(r) can be calculated as before. The tempera-
ture of the system is inferred by computing the mean kinetic 
energy of the particles and using the equipartition result that

〈1–2mv 2
q〉 = 1–2kT (8.28)

for each coordinate q.

IMPACT ON MATERIALS SCIENCE

I8.3 Liquid crystals

A mesophase is a phase intermediate between solid and liquid. 
A mesophase may arise when molecules are markedly non-
spherical, such as being long and thin (25) or disc-like (26).
When the solid melts, some aspects of the long-range order
characteristic of the solid may be retained, and the new phase
may be a liquid crystal, a substance having liquid-like imperfect
long-range order in at least one direction in space but positional
or orientational order in at least one other direction. Calamitic
liquid crystals (from the Greek word for reed) are made from
long and thin molecules whereas discotic liquid crystals are made
from disc-like molecules. A thermotropic liquid crystal displays 
a transition to the liquid crystalline phase as the temperature is
changed. A lyotropic liquid crystal is a solution that undergoes 
a transition to the liquid crystalline phase as the composition is
changed.

One type of retained long-range order gives rise to a smectic
phase (from the Greek word for soapy) in which the molecules

  

v v2 1
1

1

= − −m
V x

x
tN

x

d

d

( )
Δ

 

F
V x

x
N

x
1

1

= −
d

d

( )

align themselves in layers (Fig. 8.39). Other materials, and some
smectic liquid crystals at higher temperatures, lack the layered
structure but retain a parallel alignment; this mesophase is
called a nematic phase (from the Greek for thread, which refers
to the observed defect structure of the phase). In the cholesteric
phase (from the Greek for bile solid) the molecules lie in sheets
at angles that change slightly between each sheet. That is, they
form helical structures with a pitch that depends on the temper-
ature. As a result, cholesteric liquid crystals diffract light and
have colours that depend on the temperature. Disc-like molecules
such as (26) can form nematic and columnar mesophases. In the
latter, the aromatic rings stack one on top of the other and are
separated by very small distances (less than 0.5 nm).

The optical properties of nematic liquid crystals are aniso-
tropic, meaning that they depend on the relative orientation of
the molecular assemblies with respect to the polarization of the
incident beam of light. Nematic liquid crystals also respond in
special ways to electric fields. Together, these unique optical and

(a) (b) (c)

Fig. 8.39 The arrangement of molecules in (a) the nematic phase,
(b) the smectic phase, and (c) the cholesteric phase of liquid
crystals. In the cholesteric phase, the stacking of layers continues
to give a helical arrangement of molecules.
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electrical properties form the basis of operation of liquid crystal
displays (LCDs). In a ‘twisted nematic’ LCD, the liquid crystal 
is held between two flat plates about 10 μm apart. The inner 
surface of each plate is coated with a transparent conducting
material, such as indium–tin oxide. The plates also have a surface
that causes the liquid crystal to adopt a particular orientation at
its interface and are typically set at 90° to each other but 270° in
a ‘supertwist’ arrangement. The entire assembly is set between

two polarizers, optical filters that allow light of one specific
plane of polarization to pass. The incident light passes through
the outer polarizer; then its plane of polarization is rotated as 
it passes through the twisted nematic and, depending on the 
setting of the second polarizer, the light will pass through. 
When a potential difference is applied across the cell, the helical
arrangement is lost and the plane of the light is no longer rotated
and will be blocked by the second polarizer.

Checklist of key ideas

1. A van der Waals interaction between closed-shell molecules
is inversely proportional to the sixth power of their
separation.

2. The permittivity is the quantity ε in the Coulomb potential
energy, V = Q1Q2/4πεr.

3. A polar molecule is a molecule with a permanent electric
dipole moment; the magnitude of a dipole moment is the
product of the partial charge and the separation.

4. The potential energy of the dipole–dipole interaction
between two fixed (non-rotating) molecules is proportional
to μ1μ2/r3 and that between molecules that are free to rotate
is proportional to μ1

2μ2
2/kTr6.

5. The polarizability is a measure of the ability of an electric
field to induce a dipole moment in a molecule (μ = αE).

6. The dipole–induced-dipole interaction between two
molecules is proportional to μ1

2α2/r6, where α is the
polarizability.

7. The potential energy of the dispersion (or London)
interaction is proportional to α1α2/r6.

8. A hydrogen bond is an interaction of the form A-HîB,
where A and B are N, O, or F.

9. The Lennard-Jones (12,6) potential, V = 4ε{(r0/r)12 − (r0/r)6},
is a model of the total intermolecular potential energy.

10. In real gases, molecular interactions affect the equation of
state; the true equation of state is expressed in terms of virial
coefficients B, C, . . . : pVm = RT(1 + B/Vm + C/V 2

m + . . .).

11. The van der Waals equation of state is an approximation to
the true equation of state in which attractions are
represented by a parameter a and repulsions are represented
by a parameter b: p = nRT/(V − nb) − a(n/V)2.

12. A molecular beam is a collimated, narrow stream of
molecules travelling though an evacuated vessel. Molecular
beam techniques are used to investigate molecular
interactions in gases.

13. The radial distribution function, g(r), is defined so that
g(r)r2dr is the probability that a molecule will be found in
the range dr at a distance r from another molecule in a
liquid.

Further information

Further information 8.1 The dipole–dipole interaction

An important problem in physical chemistry is the calculation of the
potential energy of interaction between two point dipoles with moments
m1 and m2, separated by a vector r. From classical electromagnetic theory,
the potential energy of m2 in the electric field /1 generated by m1 is given
by the dot (scalar) product

V = −/1 · m2 (8.29)

To calculate /1, we consider a distribution of point charges Qi located 
at xi, yi, and zi from the origin, that is, at the location ri. The Coulomb
potential φ due to this distribution at a point r with coordinates x, y, 
and z is:

(8.30)
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electrically neutral, the first term disappears because ∑
i
Qi = 0. Next we

note that ∑
i
Qi xi = μx, and likewise for the y- and z-components. That is,

(8.32)

The electric field strength is / = ∇φ, so

(8.33)

It follows from eqns 8.29 and 8.33 that

(8.34)

For the arrangement shown in (13), in which m1 · r = μ1r cos θ and m2 · r
= μ2r cos θ, eqn 8.34 becomes:

f(θ) = 1 − 3 cos2θ (8.35)

which is eqn 8.8.

Further information 8.2 The basic principles of molecular beams

The basic arrangement for a molecular beam experiment is shown in 
Fig. 8.40. If the pressure of vapour in the source is increased so that 
the mean free path of the molecules in the emerging beam is much
shorter than the diameter of the pinhole, many collisions take place even
outside the source. The net effect of these collisions, which give rise to
hydrodynamic flow, is to transfer momentum into the direction of the
beam. The molecules in the beam then travel with very similar speeds, 
so further downstream few collisions take place between them. This
condition is called molecular flow. Because the spread in speeds is so
small, the molecules are effectively in a state of very low translational
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temperature (Fig. 8.41). The translational temperature may reach as 
low as 1 K. Such jets are called supersonic because the average speed of
the molecules in the jet is much greater than the speed of sound for the
molecules that are not part of the jet.

A supersonic jet can be converted into a more parallel supersonic
beam if it is ‘skimmed’ in the region of hydrodynamic flow and the
excess gas pumped away. A skimmer consists of a conical nozzle shaped
to avoid any supersonic shock waves spreading back into the gas and 
so increasing the translational temperature (Fig. 8.42). A jet or beam
may also be formed by using helium or neon as the principal gas, and
injecting molecules of interest into it in the hydrodynamic region of
flow.

The low translational temperature of the molecules is reflected 
in the low rotational and vibrational temperatures of the molecules. 
In this context, a rotational or vibrational temperature means the
temperature that should be used in the Boltzmann distribution to
reproduce the observed populations of the states. However, as rotational
modes equilibrate more slowly, and vibrational modes equilibrate even
more slowly, the rotational and vibrational populations of the species
correspond to somewhat higher temperatures, of the order of 10 K for
rotation and 100 K for vibrations.

The target gas may be either a bulk sample or another molecular
beam. The latter crossed beam technique gives a lot of information
because the states of both the target and projectile molecules may be
controlled. The intensity of the incident beam is measured by theSolid
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h

Fig. 8.40 The basic arrangement of a molecular beam apparatus.
The atoms or molecules emerge from a heated source, and 
pass through the velocity selector, a rotating slotted cylinder.
Molecules emanating from the source travel in a beam towards
the rotating channels. Only if the speed of a molecule is such as to
carry it along the channel that rotates into its path will it collide
with the target gas. The scattering occurs from the target gas
(which might take the form of another beam), and the flux of
particles entering the detector set at some angle is recorded.
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Fig. 8.42 A supersonic nozzle skims off some of the molecules of
the beam and leads to a beam with well defined velocity.
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Fig. 8.41 The shift in the mean speed and the width of the
distribution brought about by use of a supersonic nozzle.
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incident beam flux, I, which is the number of particles passing through a
given area in a given interval divided by the area and the duration of the
interval.

The detectors may consist of a chamber fitted with a sensitive pressure
gauge, a bolometer (a detector that responds to the incident energy by

making use of the temperature-dependence of resistance) or an
ionization detector, in which the incoming molecule is first ionized 
and then detected electronically. The state of the scattered molecules
may also be determined spectroscopically, and is of interest when the
collisions change their vibrational or rotational states.

Discussion questions

8.1 Explain how the permanent dipole moment and the polarizability of
a molecule arise.

8.2 Identify the terms in and limit the generality of the following
expressions: (a) V = −Q2μ1/4πε0r2, (b) V = −Q2μ1cos θ/4πε0r2, and 
(c) V = μ2μ1(1 − 3 cos2θ)/4πε0r3.

8.3 Draw examples of the arrangement of electrical charges that
correspond to a monopole, dipole, quadrupole, and octupole and
suggest a reason for the different distance dependencies of their 
electric fields.

8.4 Account for the theoretical conclusion that many attractive
interactions between molecules vary with their separation as 1/r6.

8.5 Describe the formation of a hydrogen bond in terms of (a)
electrostatic interactions and (b) molecular orbitals. How would you
identify the better model?

8.6 Account for the formation of colloidal particles in terms of the
balance between attractive and repulsive interactions between
constituent atoms or molecules.

8.7 Explain why the critical micelle concentration of sodium 
dodecyl sulfate in aqueous solution decreases when sodium chloride 
is added.

8.8 Explain how the compression factor of a real gas varies with pressure
and temperature and describe how it reveals information about
intermolecular interactions in real gases.

8.9 Describe and criticize the formulation of the van der Waals equation.

8.10 Describe how molecular beams are used to investigate
intermolecular potentials.

8.11 Compare and contrast the general features of the radial distribution
function for a perfect crystal and a liquid (such as water).

8.12 Distinguish between the smectic, nematic, cholesteric, and
columnar phases of a liquid crystal.

8.13 Some polymers have unusual properties. For example, Kevlar (27)
is strong enough to be the material of choice for bulletproof vests and is
stable at temperatures up to 600 K. What molecular interactions
contribute to the formation and thermal stability of this polymer?

Exercises

8.1(a) Which of the following molecules may be polar: CIF3, O3, H2O2?

8.1(b) Which of the following molecules may be polar: SO3, XeF4, SF4?

8.2(a) Calculate the resultant of two dipole moments of magnitude 1.5 D
and 0.80 D that make an angle of 109.5° to each other.

8.2(b) Calculate the resultant of two dipole moments of magnitude 2.5 D
and 0.50 D that make an angle of 120° to each other.

8.3(a) Calculate the magnitude and direction of the dipole moment of
the following arrangement of charges in the xy-plane: 3e at (0, 0), −e at
(0.32 nm, 0), and −2e at an angle of 20° from the x-axis and a distance of
0.23 nm from the origin.

8.3(b) Calculate the magnitude and direction of the dipole moment of
the following arrangement of charges in the xy-plane: 4e at (0, 0), −2e at
(162 pm, 0), and −2e at an angle of 300° from the x-axis and a distance of
143 pm from the origin.

8.4(a) Calculate the molar energy required to reverse the direction of an
H2O molecule located 100 pm from a Li+ ion. Take the dipole moment
of water as 1.85 D.

8.4(b) Calculate the molar energy required to reverse the direction of an
HCl molecule located 300 pm from a Mg2+ ion. Take the dipole moment
of HCl as 1.08 D.

8.5(a) Calculate the potential energy of the interaction between two
linear quadrupoles when they are collinear and their centres are
separated by a distance r.

8.5(b) Calculate the potential energy of the interaction between two
linear quadrupoles when they are parallel and separated by a distance r.

8.6(a) The polarizability volume of H2O is 1.48 × 10−30 m3; calculate the
dipole moment of the molecule (in addition to the permanent dipole
moment) induced by an applied electric field of strength 1.0 kV cm−1.

8.6(b) The polarizability volume of NH3 is 2.22 × 10−30 m3; calculate the
dipole moment of the molecule (in addition to the permanent dipole
moment) induced by an applied electric field of strength 15.0 kV m−1.

8.7(a) Estimate the energy of the dispersion interaction (use the London
formula) for two He atoms separated by 1.0 nm. Relevant data can be
found in the Data section.
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8.7(b) Estimate the energy of the dispersion interaction (use the London
formula) for two Ar atoms separated by 1.0 nm. Relevant data can be
found in the Data section.

8.8(a) How much energy (in kJ mol−1) is required to break the hydrogen
bond in a vacuum (εr = 1)? Use the electrostatic model of the hydrogen
bond.

8.8(b) How much energy (in kJ mol−1) is required to break the hydrogen
bond in water (εr ≈ 80.0)? Use the electrostatic model of the hydrogen
bond.

8.9(a) What pressure would 3.15 g of nitrogen gas in a vessel of volume
2.05 dm3 exert at 273 K if it obeyed the virial equation of state (8.22b)?
What would be the pressure if it were a perfect gas?

8.9(b) What pressure would 4.56 g of carbon dioxide gas in a vessel of
volume 2.25 dm3 exert at 273 K if it obeyed the virial equation of state
(8.22b)? What would be the pressure if it were a perfect gas?

8.10(a) What pressure would 4.56 g of carbon dioxide gas in a vessel of
volume 2.25 dm3 exert at its Boyle temperature?

8.10(b) What pressure would 3.01 g of oxygen gas in a vessel of volume
2.20 dm3 exert at its Boyle temperature?

8.11(a) (a) What pressure would 131 g of xenon gas in a vessel of volume
1.0 dm3 exert at 25°C if it behaved as a perfect gas? (b) What pressure
would it exert if it behaved as a van der Waals gas?

8.11(b) (a) What pressure would 25 g of argon gas in a vessel of volume
1.5 dm3 exert at 30°C if it behaved as a perfect gas? (b) What pressure
would it exert if it behaved as a van der Waals gas?

8.12(a) Express the van der Waals parameters a = 0.751 atm dm6 mol−2

and b = 0.0226 dm3 mol−1 in SI base units.

8.12(b) Express the van der Waals parameters a = 1.32 atm dm6 mol−2

and b = 0.0436 dm3 mol−1 in SI base units.

8.13(a) A gas at 250 K and 12 atm has a molar volume 8.0 per cent
smaller than that calculated from the perfect gas law. Calculate (a) the
compression factor under these conditions and (b) the molar volume 
of the gas. Which are dominating in the sample, the attractive or the
repulsive forces?

8.13(b) A gas at 350 K and 15 atm has a molar volume 15 per cent 
larger than that calculated from the perfect gas law. Calculate (a) the
compression factor under these conditions and (b) the molar volume 
of the gas. Which are dominating in the sample, the attractive or the
repulsive forces?

8.14(a) In an industrial process, nitrogen is heated to 500 K at a 
constant volume of 1.000 m3. The gas enters the container at 300 K 
and 100 atm. The mass of the gas is 92.4 kg. Use the van der Waals
equation to determine the approximate pressure of the gas at its 
working temperature of 500 K. For nitrogen, a = 1.39 dm6 atm mol−2, 
b = 0.0391 dm3 mol−1.

8.14(b) Cylinders of compressed gas are typically filled to a pressure 
of 200 bar. For oxygen, what would be the molar volume at this 
pressure and 25°C based on (a) the perfect gas equation, (b) the 
van der Waals equation? For oxygen, a = 1.360 dm6 atm mol−2, 
b = 3.183 × 10−2 dm3 mol−1.

8.15(a) Use the van der Waals parameters for chlorine to estimate its
Boyle temperature.

8.15(b) Use the van der Waals parameters for hydrogen sulfide to
estimate its Boyle temperature.

8.16(a) Use the van der Waals parameters for chlorine to estimate the
radius of a Cl2 molecule regarded as a sphere.

8.16(b) Use the van der Waals parameters for hydrogen sulfide to
estimate the radius of a H2S molecule regarded as a sphere.

8.17(a) A certain gas obeys the van der Waals equation with a = 0.50 m6

Pa mol−2. Its volume is found to be 5.00 × 10−4 m3 mol−1 at 273 K and 
3.0 MPa. From this information calculate the van der Waals constant b.

8.17(b) A certain gas obeys the van der Waals equation with a = 0.76 m6

Pa mol−2. Its volume is found to be 4.00 × 10−4 m3 mol−1 at 288 K and 
4.0 MPa. From this information calculate the van der Waals constant b.

8.18(a) What is the compression factor for the gas described in 
Exercise 8.17a at the prevailing temperature and pressure?

8.18(b) What is the compression factor for the gas described in 
Exercise 8.17b at the prevailing temperature and pressure?

Problems*

Numerical problems

8.1 Suppose an H2O molecule (μ = 1.85 D) approaches an anion. What
is the favourable orientation of the molecule? Calculate the electric field
(in volts per metre) experienced by the anion when the water dipole is
(a) 1.0 nm, (b) 0.3 nm, (c) 30 nm from the ion.

8.2 The electric dipole moment of toluene (methylbenzene) is 0.4 D.
Estimate the dipole moments of the three xylenes (dimethylbenzene).
Which answer can you be sure about?

8.3 Plot the magnitude of the electric dipole moment of hydrogen
peroxide as the H-O-O-H (azimuthal) angle φ changes from 0 to 2π.
Use the dimensions shown in (28).

8.4 Acetic acid vapour contains a proportion of planar, hydrogen-
bonded dimers (29). The apparent dipole moment of molecules in pure
gaseous acetic acid increases with increasing temperature. Suggest an
interpretation of this observation.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp and Carmen Giunta.

H

O O
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8.5 An H2O molecule is aligned by an external electric field of strength
1.0 kV m−1 and an Ar atom (α′ = 1.66 × 10−30 m3) is brought up slowly
from one side. At what separation is it energetically favourable for the
H2O molecule to flip over and point towards the approaching Ar atom?

8.6 The relative permittivity of a substance is large if its molecules are
polar or highly polarizable. The quantitative relation between the relative
permittivity, the polarizability, and the permanent dipole moment of the
molecule is expressed by the Debye equation

where ρ is the mass density of the sample, and M is the molar mass of the
molecules. The relative permittivity of camphor (30) was measured at a
series of temperatures with the results given below.
Determine the dipole moment and the polarizability
volume of the molecule. Hint. Plot the data in such a
way that a fit to a straight line yields the permanent
dipole moment and polarizability from the slope
and y-intercept, respectively

θ/°C 0 20 40 60 80 100 120 140 160 200

ρ/(g cm−3) 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.96 0.95 0.91

εr 12.5 11.4 10.8 10.0 9.50 8.90 8.10 7.60 7.11 6.21

8.7 The magnitude of the electric field at a distance r from a point charge
Q is equal to Q/4πε0r2. How close to a water molecule (of polarizability
volume 1.48 × 10−30 m3) must a proton approach before the dipole
moment it induces is equal to the permanent dipole moment of the
molecule (1.85 D)?

8.8 Show that the minimum in the Lennard-Jones potential well occurs
at the separation re = 21/6 r0.

8.9‡ Nelson et al. (Science 238, 1670 (1987)) examined several weakly
bound gas-phase complexes of ammonia in search of examples in which
the H atoms in NH3 formed hydrogen bonds, but found none. For
example, they found that the complex of NH3 and CO2 has the carbon
atom nearest the nitrogen (299 pm away): the CO2 molecule is at right
angles to the C–N ‘bond’, and the H atoms of NH3 are pointing away
from the CO2. The permanent dipole moment of this complex is
reported as 1.77 D. If the N and C atoms are the centres of the negative
and positive charge distributions, respectively, what is the magnitude of
those partial charges (as multiples of e)?

8.10 Given that F = −dV/dr, calculate the distance dependence of the
force acting between two non-bonded groups of atoms in a polymer
chain that have a London dispersion interaction with each other.

8.11 Consider the arrangement shown in 31 for a system consisting 
of an O-H group and an O atom, and then use the electrostatic model
of the hydrogen bond to calculate the dependence of the molar potential
energy of interaction on the angle θ.
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8.12 The theory of the stability of lyophobic dispersions was developed
by B. Derjaguin and L. Landau and independently by E. Verwey and 
J. T. G. Overbeek, and is known as the DLVO theory. It assumes that
there is a balance between the repulsive interaction between the charges
of the electric double layers on neighbouring particles and the attractive
interactions arising from van der Waals interactions between the
molecules in the particles. The potential energy arising from the
repulsion of double layers on particles of radius a has the form

where A is a constant, ζ is the electrokinetic potential, R is the separation
of centres, s is the separation of the surfaces of the two particles, and rD
is the thickness of the double layer. This expression is valid for small
particles with a thick double layer (a << rD). When the double layer is
thin (rD << a), the expression is replaced by

Vrepulsion = 1–2 Aaζ2 ln(1 + e−s/rD)

The potential energy arising from the attractive interaction has the form

where B is another constant. (a) Plot Vtotal = Vrepulsion + Vattraction against s
for the case a << rD, with A = 5.0 × 10−7 J m−1 V−2, a = 1.0 × 10−9 m, 
rD = 1.0 × 10−7 m, ζ = 0.050 V, and B = 1.0 × 10−28 J m. Coagulation is
signalled by a sharp dip in this plot. Identify the portion of the plot that
may be ascribed to the onset of coagulation. (b) Generate a series of plots
of Vtotal against s for cases where rD << a. Flocculation is signalled by
secondary minima in these plots. Find the ratio rD/a below which both
coagulation and flocculation occur.

8.13 Suppose that 10.0 mol C2H6(g) is confined to 4.860 dm3 at 27°C.
Use the perfect gas and van der Waals equations of state to calculate 
the compression factor based on these calculations. For ethane, 
a = 5.489 dm6 atm mol−2, b = 0.06380 dm3 mol−1.

8.14 At 300 K and 20 atm, the compression factor of a gas is 0.86.
Calculate (a) the volume occupied by 8.2 mmol of the gas under these
conditions and (b) an approximate value of the second virial coefficient
B at 300 K.

8.15 At 273 K measurements on argon gave B = −21.7 cm3 mol−1 and 
C = 1200 cm6 mol−2, where B and C are the second and third virial
coefficients in the expansion of Z in powers of 1/Vm. Assuming that the
perfect gas law holds sufficiently well for the estimation of the second
and third terms of the expansion, calculate the compression factor of
argon at 100 atm and 273 K. From your result, estimate the molar
volume of argon under these conditions.

8.16‡ The second virial coefficient of methane can be approximated 
by the empirical equation B′(T) = a + be−c/T2

, where a = −0.1993 bar−1, 
b = 0.2002 bar−1, and c = 1131 K2 with 300 K < T < 600 K. What is the
Boyle temperature of methane?

8.17‡ A substance as elementary and well known as argon still receives
research attention. A review of thermodynamic properties of argon has
been published (R.B. Stewart and R.T. Jacobsen, J. Phys. Chem. Ref. Data
18, 639 (1989)) which included the following 300 K isotherm.

p/MPa 0.4000 0.5000 0.6000 0.8000 1.000

Vm/(dm3 mol−1) 6.2208 4.9736 4.1423 3.1031 2.4795

p/MPa 1.500 2.000 2.500 3.000 4.000

Vm/(dm3 mol−1) 1.6483 1.2328 0.98357 0.81746 0.60998

(a) Compute the second virial coefficient, B, at this temperature. (b) Use
non-linear curve-fitting software to compute the third virial coefficient,
C, at this temperature.
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Theoretical problems

8.18 The potential energy of a CH3 group in ethane
as it is rotated around the C-C bond can be written
V = 1–2V0(1 + cos 3φ), where φ is the azimuthal angle
(32) and V0 = 11.6 kJ mol−1. (a) What is the change
in potential energy between the trans and fully
eclipsed conformations? (b) Show that for small
variations in angle, the torsional (twisting) motion
around the C-C bond can be expected to be that of
a harmonic oscillator. (c) Estimate the vibrational
frequency of this torsional oscillation.

8.19 Use eqn 8.12 to calculate the polarizability of a one-dimensional
harmonic oscillator in its ground state when the field is applied (a)
perpendicular to, (b) parallel to the oscillator. You will need the
following matrix elements:

All other matrix elements are zero. Suggest a reason why the
polarizability is independent of the mass of the oscillator.

8.20 Use eqn 8.12 to compute the polarizibility of a hydrogen atom. For
simplicity, confine the sum in eqn 8.12 to the npz orbitals and use the
following matrix element between the npz and 1s orbitals:

8.21 Show that the mean interaction energy of N atoms of diameter 
d interacting with a potential energy of the form C6 /R6 is given by 
U = −2N 2C6 /3Vd3, where V is the volume in which the molecules 
are confined and all effects of clustering are ignored. Hence, find 
a connection between the van der Waals parameter a and C6, from
n2alV 2 = (∂U/∂V)T.

8.22 Suppose you distrusted the Lennard-Jones (12,6) potential for
assessing a particular polypeptide conformation, and replaced the
repulsive term by an exponential function of the form e−r/σ. (a) Sketch
the form of the potential energy and locate the distance at which it is a
minimum. (b) Identify the distance at which the exponential-6 potential
is a minimum.

8.23 Show that the van der Waals equation leads to values of Z < 1 and 
Z > 1, and identify the conditions for which these values are obtained.

8.24 Express the van der Waals equation of state as a virial expansion 
in powers of 1/Vm and obtain expressions for B and C in terms of 
the parameters a and b. The expansion you will need is (1 − x)−1 =
1 + x + x2 + . . . . Measurements on argon gave B = −21.7 cm3 mol−1 and
C = 1200 cm6 mol−2 for the virial coefficients at 273 K. What are the
values of a and b in the corresponding van der Waals equation of state?

8.25 The second virial coefficient B′ can be obtained from measurements
of the density ρ of a gas at a series of pressures. Show that the graph of
p/ρ against p should be a straight line with slope proportional to B′.

8.26 Derive an expression for the compression factor of a gas that obeys
the equation of state p(V − nb) = nRT, where b and R are constants. If the
pressure and temperature are such that Vm = 10b, what is the numerical
value of the compression factor?

8.27 Consider the collision between a hard-sphere molecule of radius R1
and mass m, and an infinitely massive impenetrable sphere of radius R2.
Plot the scattering angle θ as a function of the impact parameter b. Carry
out the calculation using simple geometrical considerations.
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8.28 The dependence of the scattering characteristics of atoms on the
energy of the collision can be modelled as follows. We suppose that the
two colliding atoms behave as impenetrable spheres, as in Problem 8.27,
but that the effective radius of the heavy atoms depends on the speed v
of the light atom. Suppose its effective radius depends on v as R2e−v/v*,
where v* is a constant. Take R1 = 1–2R2 for simplicity and an impact
parameter b = 1–2 R2, and plot the scattering angle as a function of (a)
speed, (b) kinetic energy of approach.

8.29 The cohesive energy density, U, is defined as U/V, where U is the
mean potential energy of attraction within the sample and V its volume.
Show that U = 1–2N ∫V(R)dτ, where N is the number density of the
molecules and V(R) is their attractive potential energy and where the
integration ranges from d to infinity and over all angles. Go on to show
that the cohesive energy density of a uniform distribution of molecules
that interact by a van der Waals attraction of the form −C6/R6 is equal to
(2π/3)(NA

2 /d3M2)ρ2C6, where ρ is the mass density of the solid sample
and M is the molar mass of the molecules.

Applications: to biochemistry

8.30 Here we develop a molecular orbital theory treatment of the
peptide link. (a) Use VB theory to explain why the peptide link is planar.
(b) Taking a hint from VB theory, we can suspect that delocalization 
of the π bond between the oxygen, carbon, and nitrogen atoms can be
modelled by making LCAO-MOs from 2p orbitals perpendicular to the
plane defined by the atoms. The three combinations have the form:

ψ1 = aψO + bψC + cψN ψ2 = dψO − eψN ψ3 = fψO − gψC + hψN

where the coefficients a through h are all positive. Sketch the orbitals 
ψ1, ψ2, and ψ3 and characterize them as bonding, non-bonding, or
antibonding molecular orbitals. (i) Show that this treatment is consistent
only with a planar conformation of the peptide link. (ii) Draw a diagram
showing the relative energies of these molecular orbitals and determine
the occupancy of the orbitals. Hint. Convince yourself that there are 
four electrons to be distributed among the molecular orbitals. (iii) Now
consider a non-planar conformation of the peptide link, in which the
O2p and C2p orbitals are perpendicular to the plane defined by the 
O, C, and N atoms, but the N2p orbital lies on that plane. The 
LCAO-MOs are given by

ψ4 = aψO + bψC ψ5 = eψN ψ6 = fψO − gψC

Just as before, sketch these molecular orbitals and characterize them 
as bonding, non-bonding, or antibonding. Also, draw an energy level
diagram and determine the occupancy of the orbitals. (iv) Why is this
arrangement of atomic orbitals consistent with a non-planar
conformation for the peptide link? (v) Does the bonding MO 
associated with the planar conformation have the same energy as 
the bonding MO associated with the non-planar conformation? If 
not, which bonding MO is lower in energy? Repeat the analysis for the
non-bonding and antibonding molecular orbitals. (vi) Use your results
from parts (i)–(v) to construct arguments that support the planar model
for the peptide link.

8.31 Phenylalanine (Phe, 33) is a naturally
occurring amino acid. What is the energy of
interaction between its phenyl group and the
electric dipole moment of a neighbouring
peptide group? Take the distance between
the groups as 4.0 nm and treat the phenyl
group as a benzene molecule. The dipole
moment of the peptide group is μ = 2.7 D
and the polarizability volume of benzene is
α′ = 1.04 × 10−29 m3.
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8.32 Now consider the London interaction between the phenyl groups 
of two Phe residues (see Problem 8.31). (a) Estimate the potential energy
of interaction between two such rings (treated as benzene molecules)
separated by 4.0 nm. For the ionization energy, use I = 5.0 eV. (b) Given
that force is the negative slope of the potential, calculate the distance
dependence of the force acting between two non-bonded groups of
atoms, such as the phenyl groups of Phe, in a polypeptide chain that 
can have a London dispersion interaction with each other. What is the
separation at which the force between the phenyl groups (treated as
benzene molecules) of two Phe residues is zero? (Hint. Calculate the
slope by considering the potential energy at r and r + δr, with δr << r, 
and evaluating {V(r + δr) − V(r)}/δr. At the end of the calculation, 
let δr become vanishingly small).

8.33 Molecular orbital calculations may be used
to predict structures of intermolecular
complexes. Hydrogen bonds between purine and
pyrimidine bases are responsible for the double
helix structure of DNA. Consider methyladenine
(34, with R = CH3) and methylthymine (35, with
R = CH3) as models of two bases that can form
hydrogen bonds in DNA. (a) Using molecular
modelling software and the computational
method of your choice, calculate the atomic
charges of all atoms in methyladenine and
methylthymine. (b) Based on your tabulation 
of atomic charges, identify the atoms in
methyladenine and methylthymine that are likely
to participate in hydrogen bonds. (c) Draw all
possible adenine–thymine pairs that can be linked
by hydrogen bonds, keeping in mind that linear
arrangements of the A-HîB fragments are
preferred in DNA. For this step, you may want to use your molecular
modelling software to align the molecules properly. (d) Which of the
pairs that you drew in part (c) occur naturally in DNA molecules? (e)
Repeat parts (a)–(d) for cytosine and guanine, which also form base
pairs in DNA.

8.34 Molecular orbital calculations may be used to predict the dipole
moments of molecules. (a) Using molecular modelling software and 

the computational method of your choice, calculate the dipole moment
of the peptide link, modelled as a trans-N-methylacetamide (36). Plot
the energy of interaction between these dipoles against the angle θ
for r = 3.0 nm. (b) Compare the maximum value of the dipole–dipole
interaction energy from part (a) to 20 kJ mol−1, a typical value for the
energy of a hydrogen-bonding interaction in biological systems.

8.35 In this problem you will use
molecular modelling software to gain
some appreciation for the complexity of
the calculations that lead to plots such
as those in Fig. 8.14. A model for the
protein is the dipeptide (37) in which
the terminal methyl groups replace the
rest of the polypeptide chain. (a) Draw
three initial conformers of the dipeptide
with R = H: one with φ = +75°, ψ = −65°, a second with 
φ = ψ = +180°, and a third with φ = +65°, ψ = +35°. Use molecular
modelling software to optimize the geometry of each conformer and
measure the total potential energy and the final φ and ψ angles in 
each case. Did all of the initial conformers converge to the same final
conformation? If not, what do these final conformers represent?
Rationalize any observed differences in total potential energy of the 
final conformers. (b) Use the approach in part (a) to investigate the 
case R = CH3, with the same three initial conformers as starting points
for the calculations. Rationalize any similarities and differences between
the final conformers of the dipeptides with R = H and R = CH3. Hint.
Although any molecular mechanics routine will work satisfactorily, 
one based on the AMBER force field is strongly recommended, as it is
optimized for calculations on biopolymers.



Solids

First, we see how to describe the regular arrangement of atoms in crystals and the sym-
metry of their arrangement. Then we consider the basic principles of X-ray diffraction and
see how the diffraction pattern can be interpreted in terms of the distribution of electron
density in a unit cell. X-ray diffraction leads to information about the structures of metallic,
ionic, and molecular solids, and we review some typical results and their rationalization in
terms of atomic and ionic radii. With structures established, we move on to the properties
of solids, and see how their mechanical, electrical, optical, and magnetic properties stem
from the properties of their constituent atoms and molecules.

The solid state includes most of the materials that make modern technology pos-
sible. It includes the many varieties of steel used in architecture and engineering, the
semiconductors and metallic conductors that are used in information technology 
and power distribution, the ceramics that increasingly are replacing metals, and the
synthetic and natural polymers that are used in the textile industry and in the fabrica-
tion of many of the common objects of the modern world. The properties of solids
stem, of course, from the arrangement and properties of the constituent atoms, and
one of the challenges of this chapter is to see how a wide range of bulk properties, 
including rigidity, electrical conductivity, and optical and magnetic properties, stems
from the properties of atoms. One crucial aspect of this link is the pattern in which the
atoms (and molecules) are stacked together, and we start this chapter with an exam-
ination of how the structures of solids are described and determined.

Crystal lattices

Early in the history of modern science it was suggested that the regular external form
of crystals implied an internal regularity of their constituents. In this section we see
how to describe the arrangement of atoms inside crystals.

9.1 Lattices and unit cells

A crystal is built up from regularly repeating ‘structural motifs’, which may be atoms,
molecules, or groups of atoms, molecules, or ions. A space lattice is the pattern formed
by points representing the locations of these motifs (Fig. 9.1). The space lattice is, in
effect, an abstract scaffolding for the crystal structure. More formally, a space lattice 
is a three-dimensional, infinite array of points, each of which is surrounded in an
identical way by its neighbours, and which defines the basic structure of the crystal. 

9
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In some cases there may be a structural motif centred on each
lattice point, but that is not necessary. The crystal structure itself
is obtained by associating with each lattice point an identical
structural motif.

The unit cell is an imaginary parallelepiped (parallel-sided
figure) that contains one unit of the translationally repeating
pattern (Fig. 9.2). A unit cell can be thought of as the funda-
mental region from which the entire crystal may be constructed
by purely translational displacements (like bricks in a wall). A
unit cell is commonly formed by joining neighbouring lattice
points by straight lines (Fig. 9.3). Such unit cells are called prim-
itive. It is sometimes more convenient to draw larger non-
primitive unit cells that also have lattice points at their centres
or on pairs of opposite faces. An infinite number of different unit
cells can describe the same lattice, but the one with sides that

have the shortest lengths and that are most nearly perpendicular
to one another is normally chosen. The lengths of the sides of a
unit cell are denoted a, b, and c, and the angles between them are
denoted α, β, and γ (Fig. 9.4).

A brief comment A symmetry operation is an action (such 
as a rotation, reflection, or inversion) that leaves an object 
looking the same after it has been carried out. There is a 
corresponding symmetry element for each symmetry opera-
tion, which is the point, line, or plane with respect to which
the symmetry operation is performed. For instance, an n-fold
rotation (the symmetry operation) about an n-fold axis of
symmetry (the corresponding symmetry element) is a rota-
tion through 360°/n. See Chapter 7 for a more detailed 
discussion of symmetry.

Structural motif

Lattice point

Fig. 9.1 Each lattice point specifies the location of a structural
motif (for example, a molecule or a group of molecules). The
crystal lattice is the array of lattice points; the crystal structure 
is the collection of structural motifs arranged according to 
the lattice.

Fig. 9.2 A unit cell is a parallel-sided (but not necessarily
rectangular) figure from which the entire crystal structure can be
constructed by using only translations (not reflections, rotations,
or inversions).

Fig. 9.3 A unit cell can be chosen in a variety of ways, as shown
here. It is conventional to choose the cell that represents the full
symmetry of the lattice. In this rectangular lattice, the
rectangular unit cell would normally be adopted.

Q

P
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b

a

c
a

b

Fig. 9.4 The notation for the sides and angles of a unit cell. Note
that the angle α lies in the plane (b,c) and perpendicular to the
axis a.
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Unit cells are classified into seven crystal systems by not-
ing the rotational symmetry elements they possess. A cubic unit 
cell, for example, has four threefold axes in a tetrahedral array 
(Fig. 9.5). A monoclinic unit cell has one twofold axis; the unique
axis is by convention the b axis (Fig. 9.6). A triclinic unit cell has
no rotational symmetry, and typically all three sides and angles
are different (Fig. 9.7). Table 9.1 lists the essential symmetries,
the elements that must be present for the unit cell to belong to a
particular crystal system.

There are only 14 distinct space lattices in three dimensions.
These Bravais lattices are illustrated in Fig. 9.8. It is conven-
tional to portray these lattices by primitive unit cells in some
cases and by non-primitive unit cells in others. A primitive unit
cell (with lattice points only at the corners) is denoted P. A
body-centred unit cell (I) also has a lattice point at its centre. A
face-centred unit cell (F) has lattice points at its corners and also
at the centres of its six faces. A side-centred unit cell (A, B, or C)
has lattice points at its corners and at the centres of two opposite

faces. For simple structures, it is often convenient to choose
an atom belonging to the structural motif, or the centre of a
molecule, as the location of a lattice point or the vertex of a unit
cell, but that is not a necessary requirement.

9.2 The identification of lattice planes

The spacing of the planes of lattice points in a crystal is an im-
portant quantitative aspect of its structure. However, there are
many different sets of planes (Fig. 9.9), and we need to be able to
label them. Two-dimensional lattices are easier to visualize than
three-dimensional lattices, so we shall introduce the concepts
involved by referring to two dimensions initially, and then ex-
tend the conclusions by analogy to three dimensions.

(a) The Miller indices

Consider a two-dimensional rectangular lattice formed from 
a unit cell of sides a, b (as in Fig. 9.9). Each plane in the illustra-
tion (except the plane passing through the origin) can be dis-
tinguished by the distances at which it intersects the a and b
axes. One way to label a plane would therefore be to quote the 
smallest intersection distances. For example, we could denote a
representative plane of each type in the illustration as (1a,1b),

C3

Fig. 9.5 A unit cell belonging to the cubic system has four
threefold axes, denoted C3, arranged tetrahedrally. The insert
shows the threefold symmetry.

C2

Fig. 9.6 A unit cell belonging to the monoclinic system has 
a twofold axis (denoted C2 and shown in more detail in the
insert).

Fig. 9.7 A triclinic unit cell has no axes of rotational symmetry.

Table 9.1 The seven crystal systems

System Essential symmetries

Triclinic None

Monoclinic One C2 axis

Orthorhombic Three perpendicular C2 axes

Rhombohedral One C3 axis

Tetragonal One C4 axis

Hexagonal One C6 axis

Cubic Four C3 axes in a tetrahedral arrangement
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(1–2a, 1–3 b), (−1a, 1b), and (∞a, 1b). However, if we agree to quote
distances along the axes as multiples of the lengths of the unit
cell, then we can label the planes more simply as (1, 1), (1–2, 1–3),
(−1, 1), and (∞, 1). If the lattice in Fig. 9.9 is the top view of a
three-dimensional orthorhombic lattice in which the unit cell
has a length c in the z-direction, all four sets of planes intersect
the z-axis at infinity. Therefore, the full labels are (1, 1, ∞), 
(1–2, 1–3, ∞), (−1, 1, ∞), and (∞, 1, ∞).

The presence of fractions and infinity in the labels is incon-
venient. They can be eliminated by taking the reciprocals of 
the labels. As we shall see, taking reciprocals turns out to have
further advantages. The Miller indices, (hkl), are the reciprocals 
of intersection distances (with fractions cleared by multiplying
through by an appropriate factor, if taking the reciprocal results
in a fraction). For example, the (1, 1, ∞) planes in Fig. 9.9a are the
(110) planes in the Miller notation. Similarly, the (1–2, 1–3, ∞) planes
are denoted (230). Negative indices are written with a bar over
the number, and Fig. 9.9c shows the (⁄10) planes. The Miller 
indices for the four types of plane in Fig. 9.9 are therefore (110),
(230), (⁄10), and (010). Figure 9.10 shows a three-dimensional
representation of a selection of planes, including one in a lattice
with non-orthogonal axes.

The notation (hkl) denotes an individual plane. To specify a
set of parallel planes we use the notation {hkl}. Thus, we speak 
of the (110) plane in a lattice, and the set of all {110} planes that
lie parallel to the (110) plane. A helpful feature to remember is
that, the smaller the absolute value of h in {hkl}, the more nearly
parallel the set of planes is to the a axis (the {h00} planes are an
exception). The same is true of k and the b axis and l and the c
axis. When h = 0, the planes intersect the a axis at infinity, so the
{0kl} planes are parallel to the a axis. Similarly, the {h0l} planes
are parallel to b and the {hk0} planes are parallel to c.

Cubic P Cubic I Cubic F

Tetragonal P Tetragonal I

Orthorhombic P Orthorhombic C

Orthorhombic I Orthorhombic F

Monoclinic P Monoclinic C

Triclinic Hexagonal Trigonal R

a

a a

a
a

a

c

a b

c

a

a

%

b

b

c

c
Q

P

P

a a a a

ac

120°

Fig. 9.8 The fourteen Bravais lattices. The points are lattice
points, and are not necessarily occupied by atoms. P denotes 
a primitive unit cell (R is used for a trigonal lattice), I a body-
centred unit cell, F a face-centred unit cell, and C (or A or B) 
a cell with lattice points on two opposite faces.

(a)

(b)

(c)

(d)

Fig. 9.9 Some of the planes that can be drawn through the points
of a rectangular space lattice and their corresponding Miller
indices (hkl): (a) (110), (b) (230), (c) (⁄10), and (d) (010).
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(b) The separation of planes

The Miller indices are very useful for expressing the separation
of planes. The separation of the {hk0} planes in the square lattice
shown in Fig. 9.11 is given by

(9.1a)

By extension to three dimensions, the separation of the {hkl}
planes of a cubic lattice is given by

(9.1b)

The corresponding expression for a general orthorhombic lattice
is the generalization of this expression:

(9.1c)
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Fig. 9.11 The dimensions of a unit cell and their relation to the
plane passing through the lattice points.

a

b

c

(110) (111)

(100)

(111)

c

b

a

Fig. 9.10 Some representative planes in three dimensions and
their Miller indices. Note that a 0 indicates that a plane is parallel
to the corresponding axis, and that the indexing may also be
used for unit cells with non-orthogonal axes.

Example 9.1 Using the Miller indices

Calculate the separation of (a) the {123} planes and (b) the
{246} planes of an orthorhombic unit cell with a = 0.82 nm, 
b = 0.94 nm, and c = 0.75 nm.

Method For the first part, simply substitute the information
into eqn 9.1c. For the second part, instead of repeating the
calculation, note that, if all three Miller indices are multi-
plied by n, then their separation is reduced by that factor 
(Fig. 9.12):
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Fig. 9.12 The separation of the {220} planes is half that of 
the {110} planes. In general, the separation of the planes {nh,nk,nl}
is n times smaller than the separation of the {hkl} planes.

which implies that

Answer Substituting the indices into eqn 9.1c gives

Hence, d123 = 0.21 nm. It then follows immediately that d246 is
one-half this value, or 0.11 nm.

A note on good practice It is always sensible to look for ana-
lytical relations between quantities rather than to evaluate
expressions numerically each time, for that emphasizes the
relations between quantities (and avoids unnecessary work).

Self-test 9.1 Calculate the separation of (a) the {133} planes
and (b) the {399} planes in the same lattice.

[0.19 nm, 0.063 nm]

1 1

0 82

2

0 94

3

0 75123
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9.3 The investigation of structure

A characteristic property of waves is that they interfere with one
another, giving a greater displacement where peaks or troughs
coincide and a smaller displacement where peaks coincide 
with troughs (Fig. 9.13). According to classical electromagnetic
theory, the intensity of electromagnetic radiation is propor-
tional to the square of the amplitude of the waves. Therefore, 
the regions of constructive or destructive interference show up
as regions of enhanced or diminished intensities. The pheno-
menon of diffraction is the interference caused by an object 
in the path of waves, and the pattern of varying intensity that 
results is called the diffraction pattern. Diffraction occurs when
the dimensions of the diffracting object are comparable to the
wavelength of the radiation.

(a) X-ray diffraction

Wilhelm Röntgen discovered X-rays in 1895. Seventeen years
later, Max von Laue suggested that they might be diffracted
when passed through a crystal, for by then he had realized that
their wavelengths are comparable to the separation of lattice
planes. This suggestion was confirmed almost immediately 
by Walter Friedrich and Paul Knipping and has grown since
then into a technique of extraordinary power. The bulk of this
section will deal with the determination of structures using 
X-ray diffraction. The mathematical procedures necessary for
the determination of structure from X-ray diffraction data are
enormously complex, but such is the degree of integration of
computers into the experimental apparatus that the technique is
almost fully automated, even for large molecules and complex
solids. The analysis is aided by molecular modelling techniques,
which can guide the investigation towards a plausible structure.

X-rays are electromagnetic radiation with wavelengths of the
order of 10−10 m. They are typically generated by bombarding

a metal with high-energy electrons (Fig. 9.14). The electrons 
decelerate as they plunge into the metal and generate radiation
with a continuous range of wavelengths called Bremsstrahlung
(Bremse is German for deceleration, Strahlung for ray). Super-
imposed on the continuum are a few high-intensity, sharp peaks
(Fig. 9.15). These peaks arise from collisions of the incoming
electrons with the electrons in the inner shells of the atoms. A
collision expels an electron from an inner shell, and an electron
of higher energy drops into the vacancy, emitting the excess 
energy as an X-ray photon (Fig. 9.16). If the electron falls into 
a K shell (a shell with n = 1), the X-rays are classified as K-
radiation, and similarly for transitions into the L (n = 2) and 
M (n = 3) shells. Strong, distinct lines are labelled Kα, Kβ, and so
on. Increasingly, X-ray diffraction makes use of the radiation
available from synchrotron sources, for its high intensity greatly
enhances the sensitivity of the technique.

von Laue’s original method consisted of passing a broad-band
beam of X-rays into a single crystal, and recording the diffrac-
tion pattern photographically. The idea behind the approach

(a)

(b)

Fig. 9.13 When two waves are in the same region of space they
interfere. Depending on their relative phase, they may interfere
(a) constructively, to give an enhanced amplitude, or (b)
destructively, to give a smaller amplitude. The component 
waves are shown in green and blue and the resultant in purple.

Cooling
water

X-rays
Beryllium
window

Electron beam

Metal
target

Fig. 9.14 X-rays are generated by directing an electron beam 
on to a cooled metal target. Beryllium is transparent to X-rays
(on account of the small number of electrons in each atom) and
is used for the windows.
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Fig. 9.15 The X-ray emission from a metal consists of a broad,
featureless Bremsstrahlung background, with sharp transitions
superimposed on it. The label K indicates that the radiation
comes from a transition in which an electron falls into a vacancy
in the K shell of the atom.
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was that a crystal might not be suitably orientated to act as 
a diffraction grating for a single wavelength but, whatever its 
orientation, diffraction would be achieved for at least one of 
the wavelengths if a range of wavelengths were used. There is
currently a resurgence of interest in this approach because syn-
chrotron radiation spans a range of X-ray wavelengths.

An alternative technique was developed by Peter Debye and
Paul Scherrer and independently by Albert Hull. They used
monochromatic radiation and a powdered sample. When the
sample is a powder, at least some of the crystallites will be 
orientated so as to give rise to diffraction. In modern powder
diffractometers the intensities of the reflections are monitored
electronically as the detector is rotated around the sample in a
plane containing the incident ray (Fig. 9.17). Powder diffraction
is used to identify a sample of a solid substance by comparison of
the positions of the diffraction lines and their intensities with a

data bank. Powder diffraction is also used to determine phase
diagrams, for different solid phases result in different diffraction
patterns, and to determine the relative amounts of each phase
present in a mixture. The technique is also used for the initial 
determination of the dimensions and symmetries of unit cells.

The method developed by the Braggs (William and his son
Lawrence, who later jointly won the Nobel Prize) is the founda-
tion of almost all modern work in X-ray crystallography. They
used a single crystal and a monochromatic beam of X-rays, and
rotated the crystal until a reflection was detected. There are many
different sets of planes in a crystal, so there are many angles at
which a reflection occurs. The raw data consist of the angles at
which reflections are observed and their intensities.

Single-crystal diffraction patterns are measured by using a
four-circle diffractometer (Fig. 9.18). An integrated computer
determines the unit cell dimensions and the angular settings 
of the diffractometer’s four circles that are needed to observe
any particular intensity peak in the diffraction pattern. At each
setting, the diffraction intensity is measured, and background
intensities are assessed by making measurements at slightly dif-
ferent settings. Computing techniques are now available that lead
not only to automatic indexing but also to the automated deter-
mination of the shape, symmetry, and size of the unit cell. More-
over, several techniques are now available for sampling large
amounts of data, including area detectors and image plates, which
sample whole regions of diffraction patterns simultaneously.

(b) Bragg’s law

An early approach to the analysis of diffraction patterns 
produced by crystals was to regard a lattice plane as a semi-
transparent mirror and to model a crystal as a stack of reflecting
lattice planes of separation d (Fig. 9.19). The model makes it easy
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Ejected
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Fig. 9.16 The processes that contribute to the generation of 
X-rays. An incoming electron collides with an electron (in the K
shell), and ejects it. Another electron (from the L shell in this
illustration) falls into the vacancy and emits its excess energy as
an X-ray photon.
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Fig. 9.18 A four-circle diffractometer. The settings of the
orientations (φ, χ, θ, and Ω) of the components are controlled
by computer; each (hkl) reflection is monitored in turn, and
their intensities are recorded.
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Fig. 9.17 X-ray powder photographs of (a) NaCl, (b) KCl and 
the indexed reflections. The smaller number of lines in (b) is a
consequence of the similarity of the K+ and Cl− scattering factors,
as discussed later in the chapter.
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to calculate the angle the crystal must make to the incoming
beam of X-rays for constructive interference to occur. It has also
given rise to the name reflection to denote an intense beam 
arising from constructive interference.

Consider the reflection of two parallel rays of the same wave-
length by two adjacent planes of a lattice, as shown in Fig. 9.19.
One ray strikes a point on the upper plane but the other ray 
must travel an additional distance AB before striking the plane
immediately below. Similarly, the reflected rays will differ in
path length by a distance BC. The net path length difference of
the two rays is then

AB + BC = 2d sinθ

where θ is the glancing angle. For many glancing angles the
path-length difference is not an integer number of wavelengths,
and the waves interfere largely destructively. However, when 
the path-length difference is an integer number of wavelengths
(AB + BC = nλ), the reflected waves are in phase and interfere
constructively. It follows that a reflection should be observed
when the glancing angle satisfies Bragg’s law:

nλ = 2d sinθ (9.2a)

Reflections with n = 2, 3, . . . are called second order, third order,
and so on; they correspond to path-length differences of 2, 3,
. . . wavelengths. In modern work it is normal to absorb the n
into d, to write Bragg’s law as

λ = 2d sinθ (9.2b)

and to regard the nth-order reflection as arising from the
{nh,nk,nl} planes (see Example 9.1).

The primary use of Bragg’s law is in the determination of the
spacing between the layers in the lattice for, once the angle θ cor-
responding to a reflection has been determined, d may readily be
calculated.

l A BRIEF ILLUSTRATION

A first-order reflection from the {111} planes of a cubic crystal
was observed at a glancing angle of 11.2° when Cu(Kα) X-rays
of wavelength 154 pm were used. According to eqn 9.2, the
{111} planes responsible for the diffraction have separation
d111 = λ/2 sin θ. The separation of the {111} planes of a cubic
lattice of side a is given by eqn 9.1 as d111 = a/31/2. Therefore,

l

Self-test 9.2 Calculate the angle at which the same crystal
will give a reflection from the {123} planes. [24.8°]

Some types of unit cell give characteristic and easily recogniz-
able patterns of lines. For example, in a cubic lattice of unit cell
dimension a the spacing is given by eqn 9.1b, so the angles at
which the {hkl} planes give first-order reflections are given by

The reflections are then predicted by substituting the values of h,
k, and l:

{hkl} {100} {110} {111} {200} {210}

h2+k2+l2 1 2 3 4 5

{hkl} {211} {220} {300} {221} {310} . . .

h2+k2+l2 6 8 9 9 10 . . .

Notice that 7 (and 15, . . .) is missing because the sum of the
squares of three integers cannot equal 7 (or 15, . . .). Therefore
the pattern has absences that are characteristic of the cubic P 
lattice.

Self-test 9.3 Normally, experimental procedures measure 2θ
rather than θ itself. A diffraction examination of the element
polonium gave lines at the following values of 2θ (in degrees)
when 71.0 pm Mo X-rays were used: 12.1, 17.1, 21.0, 24.3,
27.2, 29.9, 34.7, 36.9, 38.9, 40.9, 42.8. Identify the unit cell
and determine its dimensions. [cubic P; a = 337 pm.]

(c) Scattering factors

To prepare the way to discussing modern methods of structural
analysis we need to note that the scattering of X-rays is caused by
the oscillations an incoming electromagnetic wave generates in
the electrons of atoms, and heavy atoms give rise to stronger
scattering than light atoms. This dependence on the number of
electrons is expressed in terms of the scattering factor, f, of the
element. If the scattering factor is large, then the atoms scatter
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Fig. 9.19 The conventional derivation of Bragg’s law treats each
lattice plane as a plane reflecting the incident radiation. The path
lengths differ by AB + BC, which depends on the glancing angle,
θ. Constructive interference (a ‘reflection’) occurs when AB + BC
is equal to an integer number of wavelengths.
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X-rays strongly. The scattering factor of an atom is related to the
electron density distribution in the atom, ρ(r), by

(9.3)

The value of f is greatest in the forward direction and smaller 
for directions away from the forward direction (Fig. 9.20). The
detailed analysis of the intensities of reflections must take this
dependence on direction into account (in single crystal studies
as well as for powders). We show in the following Justification
that, in the forward direction (for θ = 0), f is equal to the total
number of electrons in the atom.

Justification 9.1 The forward scattering factor

As θ → 0, so k → 0. Because sin x = x − 1–6 x3 + . . .,

The factor (sin kr)/kr is therefore equal to 1 for forward scat-
tering. It follows that in the forward direction

The integral over the electron density ρ (the number of elec-
trons in an infinitesimal region divided by the volume of the
region) multiplied by the volume element 4πr2dr is the total
number of electrons, Ne, in the atom. Hence, in the forward
direction, f = Ne. For example, the scattering factors of Na+,
K+, and Cl− are 10, 18, and 18, respectively. The scattering fac-
tor is smaller in nonforward directions because (sin kr)/kr <
1 for θ > 0.
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(d) The electron density

The problem we now address is how to interpret the data from a
diffractometer in terms of the detailed structure of a crystal. To
do so, we must go beyond Bragg’s law.

If a unit cell contains several atoms with scattering factors fj

and coordinates (xja, yjb, zjc), then we show in the following
Justification that the overall amplitude of a wave diffracted by the
{hkl} planes is given by

where φhkl( j) = 2π(hxj + kyj + lzj) (9.4)

The sum is over all the atoms in the unit cell. The quantity Fhkl is
called the structure factor.

Justification 9.2 The structure factor

We begin by showing that, if in the unit cell there is an A atom
at the origin and a B atom at the coordinates (xa, yb, zc),
where x, y, and z lie in the range 0 to 1, then the phase
difference, φhkl, between the (hkl) reflections of the A and B
atoms is equal to 2π(hx + ky + lz).

Consider the crystal shown schematically in Fig. 9.21. The
reflection corresponds to two waves from adjacent A planes;
for the wavelength and angle of incidence shown, there is
constructive interference and hence a strong (100) reflection
when the phase difference of the waves is 2π. If there is a B
atom at a fraction x of the distance between the two A planes,
then it gives rise to a wave with a phase difference 2πx relative
to an A reflection. To see this conclusion note that, if x = 0,
there is no phase difference; if x = 1–2 the phase difference is π;
if x = 1, the B atom lies where the lower A atom is and the
phase difference is 2π. Now consider a (200) reflection. There
is now a 2 × 2π difference between the waves from the two A
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Fig. 9.20 The variation of the scattering factor of atoms and ions
with atomic number and angle. The scattering factor in the
forward direction (at θ = 0, and hence at (sin θ)/λ = 0) is equal 
to the number of electrons present in the species.
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Fig. 9.21 Diffraction from a crystal containing two kinds of
atoms. (a) For a (100) reflection from the A planes, there is a
phase difference of 2π between waves reflected by neighbouring
planes. (b) For a (200) reflection, the phase difference is 4π. The
reflection from a B plane at a fractional distance xa from an A
plane has a phase that is x times these phase differences.
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layers and, if B were to lie at x = 0.5, it would give rise to a
wave that differed in phase by 2π from the wave from the
upper A layer. Thus, for a general fractional position x, the
phase difference for a (200) reflection is 2 × 2πx. For a general
(h00) reflection, the phase difference is therefore h × 2πx. For
three dimensions, this result generalizes to eqn 9.4.

The A and B reflections interfere destructively when 
the phase difference is π, and the total intensity is zero if the
atoms have the same scattering power. For example, if the
unit cells are cubic I with a B atom at x = y = z = 1–2, then the A,B
phase difference is (h + k + l)π. Therefore, all reflections for
odd values of h + k + l vanish because the waves are displaced
in phase by π. Hence the diffraction pattern for a cubic I 
lattice can be constructed from that for the cubic P lattice (a
cubic lattice without points at the centre of its unit cells) by
striking out all reflections with odd values of h + k + l.
Recognition of these systematic absences in a powder spec-
trum immediately indicates a cubic I lattice (Fig. 9.22).

If the amplitude of the waves scattered from A is fA at the
detector, that of the waves scattered from B is fBeiφhkl , with φhkl

the phase difference given in eqn 9.4. The total amplitude at
the detector is therefore

Fhkl = fA + fBeiφhkl

Because the intensity is proportional to the square modulus
of the amplitude of the wave, the intensity, Ihkl, at the detec-
tor is

Ihkl ∝ F*hklFhkl = ( fA + fBe−iφhkl)( fA + fBeiφhkl)

This expression expands to

Ihkl ∝ f A
2 + f B

2 + fA fB(eiφhkl + e−iφhkl) = f A
2 + f B

2 + 2fA fB cos φhkl

The cosine term either adds to or subtracts from f A
2 + f B

2

depending on the value of φhkl, which in turn depends on h, k,
and l and x, y, and z. Hence, there is a variation in the inten-
sities of the lines with different hkl.
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Fig. 9.22 The powder diffraction patterns and the systematic absences of three versions of a cubic cell. Comparison of the observed pattern
with patterns like these enables the unit cell to be identified. The locations of the lines give the cell dimensions.

Example 9.2 Calculating a structure factor

Calculate the structure factors for the unit cell in Fig. 9.23.

Method The structure factor is defined by eqn 9.4. To use
this equation, consider the ions at the locations specified in
Fig. 9.23. Write f + for the Na+ scattering factor and f − for 
the Cl− scattering factor. Note that ions in the body of the 
cell contribute to the scattering with a strength f. However,
ions on faces are shared between two cells (use 1–2 f ), those on
edges by four cells (use 1–4 f ), and those at corners by eight cells
(use 1–8 f ). Two useful relations are

eiπ = −1 cos φ = 1–2(eiφ + e−iφ)

Cl Na(0,0,1)

(1,1,0)(1,0,0)

(1,1,1)

(0,0,0)

(–,0,0)1
2

(–, –.0)1 1
2 2

Fig. 9.23 The location of the atoms for the structure factor
calculation in Example 9.2. The purple circles are Na+; the blue
circles are Cl−.
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Answer From eqn 9.4, and summing over the coordinates of
all 27 atoms in the figure:

Fhkl = f +( 1–8 + 1–8 e2πil + . . . + 1–2 e2πi(1–
2
h+ 1–

2
k+l))

+ f −(e2πi(1–
2
h+ 1–

2
k+ 1–

2
l) + 1–4e2πi(1–

2
h) + . . .

+ 1–4e2πi(1–
2
h+l))

To simplify this 27-term expression, we use e2πih = e2πik = e2πil

= 1 because h, k, and l are all integers:

Fhkl = f +{1 + cos(h + k)π + cos(h + l)π + cos(k + l)π}

+ f −{(−1)h+k+l + cos kπ + cos lπ + cos hπ}

Then, because cos hπ = (−1)h,

Fhkl = f +{1 + (−1)h+k + (−1)h+l + (−1)l+k} 

+ f −{(−1)h+k+l + (−1)h + (−1)k + (−1)l}

Now note that:

if h, k, and l are all even, Fhkl = f +{1 + 1 + 1 + 1} 
+ f −{1 + 1 + 1 + 1} = 4(f + + f −)

if h, k, and l are all odd, Fhkl = 4( f + − f −)

if one index is odd and two are even, or vice versa, Fhkl = 0

The hkl all-odd reflections are less intense than the hkl
all-even. For f + = f −, which is the case for identical atoms in 
a cubic P arrangement, the hkl all-odd have zero intensity,
corresponding to the ‘systematic absences’ of cubic P unit
cells.

Self-test 9.4 Which reflections cannot be observed for a
cubic I lattice? [for h + k + l odd, Fhkl = 0]

The intensity of the (hkl) reflection is proportional to |Fhkl |2,
so in principle we can determine the structure factors experiment-
ally by taking the square root of the corresponding intensities
(but see below). Then, once we know all the structure factors
Fhkl, we can calculate the electron density distribution, ρ(r), in
the unit cell by using the expression

(9.5)

where V is the volume of the unit cell. Equation 9.5 is called 
a Fourier synthesis of the electron density. Fourier transforms
occur throughout chemistry in a variety of guises, and are 
described in more detail in Mathematical background 6.

ρ( ) ( )r = − + +∑1 2

V
Fhkl

hx ky lz

hkl

e iπ

Example 9.3 Calculating an electron density by Fourier synthesis

Consider the {h00} planes of a crystal. In an X-ray analysis the
structure factors were found as follows:

h: 0 1 2 3 4 5 6 7 8 9

Fh 16 −10 2 −1 7 −10 8 −3 2 −3

h: 10 11 12 13 14 15

Fh 6 −5 3 −2 2 −3

(and F−h = Fh). Construct a plot of the electron density pro-
jected on to the x-axis of the unit cell.

Method Because F−h = Fh, it follows from eqn 9.5 that

and we evaluate the sum (truncated at h = 15) for points 
0 ≤ x ≤ 1 by using mathematical software.

Answer The results are plotted in Fig. 9.24 (blue line). The
positions of three atoms can be discerned very readily. The
more terms there are included, the more accurate the density
plot. Terms corresponding to high values of h (short wavelength
cosine terms in the sum) account for the finer details of the
electron density; low values of h account for the broad features.

Self-test 9.5 Use mathematical software to experiment with 
different structure factors (including changing signs as well
as amplitudes). For example, use the same values of Fh as above,
but with positive signs for all values of h.

[Fig. 9.24 (purple line)]
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Fig. 9.24 The plot of the electron density calculated in Example 9.3
(blue) and Self-test 9.5 (purple).

interActivity If you do not have access to mathematical 
software, perform the calculations suggested in Self-test 9.5

by using the interactive applets found in the text’s web site.
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(e) The phase problem

A problem with the procedure outlined above is that the ob-
served intensity Ihkl is proportional to the square modulus |Fhkl |2,
so we do not know whether to use +|Fhkl | or −|Fhkl | in the sum in
eqn 9.5. In fact, the difficulty is more severe for non-centrosym-
metric unit cells, because if we write Fhkl as the complex number
|Fhkl |eiα, where α is the phase of Fhkl and |Fhkl | is its magnitude,
then the intensity lets us determine |Fhkl | but tells us nothing of
its phase, which may lie anywhere from 0 to 2π. This ambiguity
is called the phase problem; its consequences are illustrated by
comparing the two plots in Fig. 9.24. Some way must be found
to assign phases to the structure factors, for otherwise the sum
for ρ cannot be evaluated and the method would be useless.

The phase problem can be overcome to some extent by a vari-
ety of methods. One procedure that is widely used for inorganic
materials with a reasonably small number of atoms in a unit cell
and for organic molecules with a small number of heavy atoms
is the Patterson synthesis. Instead of the structure factors Fhkl,
the values of |Fhkl |2, which can be obtained without ambiguity
from the intensities, are used in an expression that resembles
eqn 9.5:

(9.6)

The outcome of a Patterson synthesis is a map of the vector 
separations of the atoms (the distances and directions between
atoms) in the unit cell. Thus, if atom A is at the coordinates 
(xA, yA, zA) and atom B is at (xB, yB, zB), then there will be a peak
at (xA − xB, yA − yB, zA − zB) in the Patterson map. There will also
be a peak at the negative of these coordinates, because there is a
vector from B to A as well as a vector from A to B. The height of
the peak in the map is proportional to the product of the atomic
numbers of the two atoms, ZAZB. For example, if the unit cell has
the structure shown in Fig. 9.25a, the Patterson synthesis would

P
V

Fhkl
hx ky lz

hkl

( ) ( )r = − + +∑1 2 2| | πe i

be the map shown in Fig. 9.25b, where the location of each spot
relative to the origin gives the separation and relative orienta-
tion of each pair of atoms in the original structure.

Heavy atoms dominate the scattering because their scattering
factors are large, of the order of their atomic numbers, and their
locations may be deduced quite readily. The sign of Fhkl can now
be calculated from the locations of the heavy atoms in the unit
cell, and to a high probability the phase calculated for them 
will be the same as the phase for the entire unit cell. To see why
this is so, we have to note that a structure factor of a centrosym-
metric cell has the form

F = (±)fheavy + (±)flight + (±)flight + . . . (9.7)

where fheavy is the scattering factor of the heavy atom and flight

the scattering factors of the light atoms. The flight are all much
smaller than fheavy, and their phases are more or less random if
the atoms are distributed throughout the unit cell. Therefore,
the net effect of the flight is to change F only slightly from fheavy,
and we can be reasonably confident that F will have the same
sign as that calculated from the location of the heavy atom. This
phase can then be combined with the observed |F | (from the
reflection intensity) to perform a Fourier synthesis of the full
electron density in the unit cell, and hence to locate the light
atoms as well as the heavy atoms.

Modern structural analyses make extensive use of direct
methods. Direct methods are based on the possibility of treating
the atoms in a unit cell as being virtually randomly distributed
(from the radiation’s point of view), and then to use statistical
techniques to compute the probabilities that the phases have a
particular value. It is possible to deduce relations between some
structure factors and sums (and sums of squares) of others,
which have the effect of constraining the phases to particular
values (with high probability, so long as the structure factors are
large). For example, the Sayre probability relation has the form

sign of Fh+h′,k+k′,l+l′ is probably equal to (sign of Fhkl) 
× (sign of Fh′k′l′) (9.8)

For example, if F122 and F232 are both large and negative, then it
is highly likely that F354, provided it is large, will be positive.

(f ) Structure refinement

In the final stages of the determination of a crystal structure, the
parameters describing the structure (atom positions, for in-
stance) are adjusted systematically to give the best fit between
the observed intensities and those calculated from the model of
the structure deduced from the diffraction pattern. This process
is called structure refinement. Not only does the procedure give
accurate positions for all the atoms in the unit cell, but it also
gives an estimate of the errors in those positions and in the bond
lengths and angles derived from them. The procedure also pro-
vides information on the vibrational amplitudes of the atoms.

R1

R1

R2

R2
R2

R3

R3(a)

(b)

Fig. 9.25 The Patterson synthesis corresponding to the pattern 
in (a) is the pattern in (b). The distance and orientation of each
spot from the origin gives the orientation and separation of one
atom–atom separation in (a). Some of the typical distances and
their contribution to (b) are shown as R1, etc.
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IMPACT ON BIOCHEMISTRY

I9.1 X-ray crystallography of biological 
macromolecules

X-ray crystallography is the deployment of X-ray diffraction
techniques for the determination of the location of all the atoms
in molecules as complicated as biopolymers. Bragg’s law helps
us understand the features of one of the most seminal X-ray 
images of all time, the characteristic X-shaped pattern obtained
by Rosalind Franklin and Maurice Wilkins from strands of DNA
and used by James Watson and Francis Crick in their construc-
tion of the double-helix model of DNA (Fig. 9.26). To interpret
this image by using the Bragg law we have to be aware that it was
obtained by using a fibre consisting of many DNA molecules
oriented with their axes parallel to the axis of the fibre, with 
X-rays incident from a perpendicular direction. All the mole-
cules in the fibre are parallel (or nearly so), but are randomly
distributed in the perpendicular directions; as a result, the dif-
fraction pattern exhibits the periodic structure parallel to the fibre
axis superimposed on a general background of scattering from
the distribution of molecules in the perpendicular directions.

There are two principal features in Fig. 9.26: the strong
‘meridional’ scattering upward and downward by the fibre and
the X-shaped distribution at smaller scattering angles. Because
scattering through large angles occurs for closely spaced features
(from λ = 2d sin θ, if d is small, then θ must be large to preserve
the equality), we can infer that the meridional scattering arises
from closely spaced components and that the inner X-shaped
pattern arises from features with a longer periodicity. Because
the meridional pattern occurs at a distance of about 10 times
that of the innermost spots of the X-pattern, the large-scale
structure is about 10 times bigger than the small-scale structure.
From the geometry of the instrument, the wavelength of the 
radiation, and Bragg’s law, we can infer that the periodicity of

the small-scale feature is 340 pm whereas that of the large-scale
feature is 3400 pm (that is, 3.4 nm).

To see that the cross is characteristic of a helix, look at 
Fig. 9.27. Each turn of the helix defines two planes, one orient-
ated at an angle α to the horizontal and the other at −α. As a 
result, to a first approximation, a helix can be thought of as con-
sisting of an array of planes at an angle α together with an array
of planes at an angle −α with a separation within each set deter-
mined by the pitch of the helix. Thus, a DNA molecule is like
two arrays of planes, each set corresponding to those treated in
the derivation of Bragg’s law, with a perpendicular separation 
d = p cos α, where p is the pitch of the helix, each canted at the
angles ±α to the horizontal. The diffraction spots from one set of
planes therefore occur at an angle α to the vertical, giving one leg
of the X, and those of the other set occur at an angle −α, giving
rise to the other leg of the X. The experimental arrangement has
up-down symmetry, so the diffraction pattern repeats to pro-
duce the lower half of the X. The sequence of spots outward
along a leg corresponds to first-, second-, . . . order diffraction
(n = 1, 2, . . . in eqn 9.2a). Therefore, from the X-ray pattern, 
we see at once that the molecule is helical and we can measure
the angle α directly, and find α = 40°. Finally, with the angle 
α and the pitch p determined, we can determine the radius 
r of the helix from tan α = p/r, from which it follows that 
r = (3.4 nm)/tan 40° = 4.1 nm.

To derive the relation between the helix and the cross-like
pattern we have ignored the detailed structure of the helix, 

Fig. 9.26 The X-ray diffraction pattern obtained from a fibre 
of B-DNA. The black dots are the reflections, the points of
maximum constructive interference, that are used to determine
the structure of the molecule. (Adapted from an illustration that
appears in J.P. Glusker and K.N. Trueblood, Crystal structure
analysis: a primer. Oxford University Press (1972).)

(a)

(b)

(c)

Q

Q

Fig. 9.27 The origin of the X pattern characteristic of diffraction
by a helix. (a) A helix can be thought of as consisting of an array
of planes at an angle α together with an array of planes at an
angle −α. (b) The diffraction spots from one set of planes appear
at an angle α to the vertical, giving one leg of the X, and those of
the other set appear at an angle −α, giving rise to the other leg of
the X. The lower half of the X appears because the helix has up-
down symmetry in this arrangement. (c) The sequence of spots
outward along a leg of the X corresponds to first-, second-, . . .
order diffraction (n = 1, 2, . . .).
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the fact that it is a periodic array of nucleotide bases, not a
smooth wire. In Fig. 9.28 we represent the bases by points, and
see that there is an additional periodicity of separation h, form-
ing planes that are perpendicular to the axis of the molecule 
(and the fibre). These planes give rise to the strong meridional
diffraction with an angle that allows us to determine the layer
spacing from Bragg’s law in the form λ = 2h sin θ as h = 340 pm.

The success of modern biochemistry in explaining such
processes as DNA replication, protein biosynthesis, and enzyme
catalysis is a direct result of developments in preparatory, 
instrumental, and computational procedures that have led to 
the determination of large numbers of structures of biological
macromolecules by techniques based on X-ray diffraction. Most
work is now done not on fibres but on crystals, in which the large
molecules lie in orderly ranks. A technique that works well for
charged proteins consists of adding large amounts of a salt, such
as (NH4)2SO4, to a buffer solution containing the biopolymer.
The increase in the ionic strength of the solution decreases the
solubility of the protein to such an extent that the protein pre-
cipitates, sometimes as crystals that are amenable to analysis by
X-ray diffraction. A common strategy for inducing crystalliza-
tion involves the gradual removal of solvent from a biopolymer
solution by vapour diffusion. In one implementation of the
method, a single drop of biopolymer solution hangs above an
aqueous solution (the reservoir), as shown in Fig. 9.29. If the
reservoir solution is more concentrated in a non-volatile solute
(for example, a salt) than is the biopolymer solution, then 
solvent will evaporate slowly from the drop. At the same time,
the concentration of biopolymer in the drop increases gradually
until crystals begin to form.

Special techniques are used to crystallize hydrophobic pro-
teins, such as those spanning the bilayer of a cell membrane. 
In such cases, surfactant molecules, which like phospholipids
contain polar head groups and hydrophobic tails, are used to 

encase the protein molecules and make them soluble in aqueous
buffer solutions. Vapour diffusion may then be used to induce
crystallization.

After suitable crystals are obtained, X-ray diffraction data are
collected and analysed as described in the previous sections. 
The three-dimensional structures of a very large number of bio-
logical polymers have been determined in this way. However,
the techniques discussed so far give only static pictures and are
not useful in studies of dynamics and reactivity. This limitation
stems from the fact that the Bragg rotation method requires 
stable crystals that do not change structure during the lengthy
data acquisition times required. However, special time-resolved
X-ray diffraction techniques have become available in recent
years and it is now possible to make exquisitely detailed meas-
urements of atomic motions during chemical and biochemical
reactions.

Time-resolved X-ray diffraction techniques make use of 
synchrotron sources, which can emit intense polychromatic
pulses of X-ray radiation with pulse widths varying from 100 ps
to 200 ps (1 ps = 10−12 s). Instead of the Bragg method, the 
Laue method is used because many reflections can be collected
simultaneously, rotation of the sample is not required, and data
acquisition times are short. However, good diffraction data can-
not be obtained from a single X-ray pulse and reflections from
several pulses must be averaged together. In practice, this aver-
aging dictates the time resolution of the experiment, which is
commonly tens of microseconds or less.

9.4 Neutron and electron diffraction

According to the de Broglie relation (eqn 1.3, λ = h/p), par-
ticles have wavelengths and may therefore undergo diffraction.

h

(a) (b) (c)

Fig. 9.28 The effect of the internal structure of the helix on the 
X-ray diffraction pattern. (a) The residues of the macromolecule
are represented by points. (b) Parallel planes passing through 
the residues are perpendicular to the axis of the molecule. 
(c) The planes give rise to strong diffraction with an angle that
allows us to determine the layer spacing h from λ = 2h sin θ.

Drop of
biopolymer
solution

Reservoir
solution

Fig. 9.29 In a common implementation of the vapour diffusion
method of biopolymer crystallization, a single drop of
biopolymer solution hangs above a reservoir solution that is very
concentrated in a non-volatile solute. Solvent evaporates from
the more dilute drop until the vapour pressure of water in the
closed container reaches a constant equilibrium value. In the
course of evaporation (denoted by the downward arrows), the
biopolymer solution becomes more concentrated and, at some
point, crystals may form.
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the intensity with which neutrons are scattered is independent
of the number of electrons and neighbouring elements in the
periodic table may scatter neutrons with markedly different 
intensities. Neutron diffraction can be used to distinguish atoms
of elements such as Ni and Co that are present in the same com-
pound and to study order–disorder phase transitions in FeCo. A
second difference is that neutrons possess a magnetic moment
due to their spin. This magnetic moment can couple to the mag-
netic fields of atoms or ions in a crystal (if the ions have unpaired
electrons) and modify the diffraction pattern. One consequence
is that neutron diffraction is well suited to the investigation of
magnetically ordered lattices in which neighbouring atoms may
be of the same element but have different orientations of their
electronic spin (Fig. 9.30).

Electrons accelerated through a potential difference of 40 kV
have wavelengths of about 6 pm, and so are also suitable for
diffraction studies. However, their main application is to the study
of surfaces, and we postpone their discussion until Chapter 21.

Crystal structure

The bonding within a solid may be of various kinds. Simplest 
of all (in principle) are elemental metals, where electrons are 
delocalized over arrays of identical cations and bind them 
together into a rigid but ductile and malleable whole.

9.5 Metallic solids

Most metallic elements crystallize in one of three simple forms,
two of which can be explained in terms of hard spheres packing
together in the closest possible arrangement.

(a) Close packing

Figure 9.31 shows a close-packed layer of identical spheres, 
one with maximum utilization of space. A close-packed three-

Neutrons generated in a nuclear reactor and then slowed to
thermal velocities have wavelengths similar to those of X-rays
and may also be used for diffraction studies. For instance, a neu-
tron generated in a reactor and slowed to thermal velocities by
repeated collisions with a moderator (such as graphite) until it is
travelling at about 4 km s−1 has a wavelength of about 100 pm. 
In practice, a range of wavelengths occurs in a neutron beam,
but a monochromatic beam can be selected by diffraction from
a crystal, such as a single crystal of germanium.

Example 9.4 Calculating the typical wavelength of thermal
neutrons

Calculate the typical wavelength of neutrons that have 
reached thermal equilibrium with their surroundings at 373 K.

Method We need to relate the wavelength to the tempera-
ture. There are two linking steps. First, the de Broglie relation
expresses the wavelength in terms of the linear momentum.
Then the linear momentum can be expressed in terms of the
kinetic energy, the mean value of which is given in terms of the
temperature by the equipartition theorem (Fundamentals F.5).

Answer From the equipartition principle, we know that the
mean translational kinetic energy of a neutron at a tempera-
ture T travelling in the x-direction is Ek = 1–2kT. The kinetic 
energy is also equal to p2/2m, where p is the momentum of
the neutron and m is its mass. Hence, p = (mkT)1/2. It follows
from the de Broglie relation λ = h/p that the neutron’s wave-
length is

Therefore, at 373 K,

= 2.26 × 10−10 m = 226 pm

where we have used 1 J = 1 kg m2 s−2.

Self-test 9.6 Calculate the temperature needed for the aver-
age wavelength of the neutrons to be 100 pm. [1.90 × 103 K]

Neutron diffraction differs from X-ray diffraction in two
main respects. First, the scattering of neutrons is a nuclear phe-
nomenon. Neutrons pass through the extranuclear electrons of
atoms and interact with the nuclei through the ‘strong force’
that is responsible for binding nucleons together. As a result, 
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Fig. 9.30 If the spins of atoms at lattice points are orderly, as in
this material, where the spins of one set of atoms are aligned
antiparallel to those of the other set, neutron diffraction detects
two interpenetrating simple cubic lattices on account of the
magnetic interaction of the neutron with the atoms, but X-ray
diffraction would see only a single bcc lattice (see Section 9.5b).
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dimensional structure is obtained by stacking such close-packed
layers on top of one another. However, this stacking can be 
done in different ways, which result in close-packed polytypes,
or structures that are identical in two dimensions (the close-
packed layers) but differ in the third dimension.

In all polytypes, the spheres of the second close-packed layer
lie in the depressions of the first layer (Fig. 9.32). The third layer
may be added in either of two ways. In one, the spheres are
placed so that they reproduce the first layer (Fig. 9.33a), to give
an ABA pattern of layers. Alternatively, the spheres may be
placed over the gaps in the first layer (Fig. 9.33b), so giving an
ABC pattern. Two polytypes are formed if the two stacking 
patterns are repeated in the vertical direction. If the ABA pattern
is repeated, to give the sequence of layers ABABAB . . . , the
spheres are hexagonally close-packed (hcp). Alternatively, if 
the ABC pattern is repeated, to give the sequence ABCABC . . . ,
the spheres are cubic close-packed (ccp). We can see the origins
of these names by referring to Fig. 9.34. The ccp structure gives
rise to a face-centred unit cell, so may also be denoted cubic F
(or fcc, for face-centred cubic). It is also possible to have random 
sequences of layers; however, the hcp and ccp polytypes are the
most important. Table 9.2 lists some elements possessing these
structures.

Fig. 9.31 The first layer of close-packed spheres used to build a
three-dimensional close-packed structure.

Fig. 9.32 The second layer of close-packed spheres occupies the
dips of the first layer. The two layers are the AB component of
the close-packed structure.

(a)

(b)

Fig. 9.33 (a) The third layer of close-packed spheres might 
occupy the dips lying directly above the spheres in the first layer,
resulting in an ABA structure, which corresponds to hexagonal
close packing. (b) Alternatively, the third layer might lie in the
dips that are not above the spheres in the first layer, resulting in
an ABC structure, which corresponds to cubic close packing.

(a)

(b)

Fig. 9.34 A fragment of the structure shown in Fig. 9.33 revealing
the (a) hexagonal (b) cubic symmetry. The tints on the spheres
are the same as for the layers in Fig. 9.33.
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A note on good practice Strictly speaking, ccp refers to a
close-packed arrangement whereas fcc refers to the lattice
type of the common representation of ccp. However, this dis-
tinction is rarely made.

The compactness of close-packed structures is indicated by
their coordination number, the number of atoms immediately
surrounding any selected atom, which is 12 in all cases. Another
measure of their compactness is the packing fraction, the frac-
tion of space occupied by the spheres, which is 0.740 (see the 
following Justification). That is, in a close-packed solid of iden-
tical hard spheres, only 26.0 per cent of the volume is empty
space. The fact that many metals are close-packed accounts for
their high densities.

Justification 9.3 The packing fraction

To calculate a packing fraction of a ccp structure, we first cal-
culate the volume of a unit cell, and then calculate the total
volume of the spheres that fully or partially occupy it. The
first part of the calculation is a straightforward exercise in
geometry. The second part involves counting the fraction of
spheres that occupy the cell.

Refer to Fig. 9.35. Because a diagonal of any face passes
completely through one sphere and halfway through two

other spheres, its length is 4R. The length of a side is there-
fore 81/2R and the volume of the unit cell is 83/2R3. Because
each cell contains the equivalent of 6 × 1–2 + 8 × 1–8 = 4 spheres,
and the volume of each sphere is 4–3 πR3, the total occupied
volume is 16––3 πR3. The fraction of space occupied is therefore
16––3 πR3/83/2R3 = 16––3 π/83/2, or 0.740. Because an hcp structure has
the same coordination number, its packing fraction is the
same. The packing fractions of structures that are not close-
packed are calculated similarly (see Exercise 9.20).

(b) Less closely packed structures

As shown in Table 9.2, a number of common metals adopt struc-
tures that are less than close-packed. The departure from close
packing suggests that factors such as specific covalent bonding
between neighbouring atoms are beginning to influence the
structure and impose a specific geometrical arrangement. One
such arrangement results in a cubic I (bcc, for body-centred
cubic) structure, with one sphere at the centre of a cube formed
by eight others. The coordination number of a bcc structure is
only 8, but there are six more atoms not much further away than
the eight nearest neighbours. The packing fraction of 0.68 is not
much smaller than the value for a close-packed structure (0.74),
and shows that about two-thirds of the available space is actually
occupied.

9.6 Ionic solids

Two questions arise when we consider ionic solids: the relative
locations adopted by the ions and the energetics of the resulting
structure.

(a) Structure

When crystals of compounds of monatomic ions (such as NaCl
and MgO) are modelled by stacks of hard spheres it is essential
to allow for the different ionic radii (typically with the cations
smaller than the anions) and different charges. The coordina-
tion number of an ion is the number of nearest neighbours of
opposite charge; the structure itself is characterized as having
(N+, N−) coordination, where N+ is the coordination number of
the cation and N− that of the anion.

Even if, by chance, the ions have the same size, the problems
of ensuring that the unit cells are electrically neutral makes it 
impossible to achieve 12-coordinate close-packed ionic struc-
tures. As a result, ionic solids are generally less dense than metals.
The best packing that can be achieved is the (8,8)-coordinate
caesium-chloride structure in which each cation is surrounded
by eight anions and each anion is surrounded by eight cations
(Fig. 9.36). In this structure, an ion of one charge occupies the
centre of a cubic unit cell with eight counter ions at its corners.
The structure is adopted by CsCl itself and also by CaS, CsCN
(with some distortion), and CuZn.

Table 9.2 The crystal structures of some elements

Structure Element

hcp* Be, Cd, Co, He, Mg, Sc, Ti, Zn

fcc* (ccp, cubic F) Ag, Al, Ar, Au, Ca, Cu, Kr, Ne, Ni, Pd, Pb, Pt, Rh, Rn,
Sr, Xe

bcc (cubic I) Ba, Cs, Cr, Fe, K, Li, Mn, Mo, Rb, Na, Ta, W, V

cubic P Po

* Close-packed structures.

4R

81/2R

81/2R

Fig. 9.35 The calculation of the packing fraction of a ccp unit cell.
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When the radii of the ions differ more than in CsCl, even
eight-coordinate packing cannot be achieved. One common
structure adopted is the (6,6)-coordinate rock-salt structure
typified by NaCl (Fig. 9.37). In this structure, each cation is sur-
rounded by six anions and each anion is surrounded by six
cations. The rock-salt structure can be pictured as consisting of
two interpenetrating slightly expanded cubic F (fcc) arrays, one
composed of cations and the other of anions. This structure is
adopted by NaCl itself and also by several other MX compounds,
including KBr, AgCl, MgO, and ScN.

The switch from the caesium-chloride structure to the rock-
salt structure is related to the value of the radius ratio, γ :

[9.9]

The two radii are those of the larger and smaller ions in the 
crystal. The radius-ratio rule, which is derived by considering
the geometrical problem of packing the maximum number of

γ =
r

r
smaller

larger

hard spheres of one radius around a hard sphere of a different
radius, can be summarized as follows:

Radius ratio Structural type

γ < 21/2 − 1 = 0.414 Sphalerite (or zinc blende, 
Fig. 9.38)

21/2 − 1 = 0.414 < γ < 0.732 Rock-salt

γ > 31/2 − 1 = 0.732 Caesium-chloride

The deviation of a structure from that expected on the basis 
of this rule is often taken to be an indication of a shift from
ionic towards covalent bonding; a major source of unreliability,
though, is the arbitrariness of ionic radii and their variation with
coordination number.

Ionic radii are derived from the distance between centres of
adjacent ions in a crystal. However, we need to apportion the
total distance between the two ions by defining the radius of one
ion and then inferring the radius of the other ion. One scale that
is widely used is based on the value 140 pm for the radius of the
O2− ion (Table 9.3). Other scales are also available (such as one
based on F− for discussing halides), and it is essential not to mix
values from different scales. Because ionic radii are so arbitrary,
predictions based on them must be viewed cautiously.

Cs

Cl

Fig. 9.36 The caesium-chloride structure consists of two
interpenetrating simple cubic arrays of ions, one of cations and
the other of anions, so that each cube of ions of one kind has a
counter ion at its centre.

S

Zn

Fig. 9.38 The structure of the sphalerite form of ZnS showing 
the location of the Zn atoms in the tetrahedral holes formed by
the array of S atoms. (Not shown is an S atom at the centre of the
cube inside the tetrahedron of Zn atoms.)

Cl

Na

Fig. 9.37 The rock-salt (NaCl) structure consists of two mutually
interpenetrating slightly expanded face-centred cubic arrays of
ions. The entire assembly shown here is the unit cell.

Synoptic table 9.3* Ionic radii, r/pm

Na+ 102(6†), 116(8)

K+ 138(6), 151(8)

F− 128(2), 131(4)

Cl− 181 (close packing)

* More values are given in the Data section.
† Coordination number.
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(b) Energetics

The lattice energy of a solid is the difference in potential energy
of the ions packed together in a solid and widely separated as a
gas. The lattice energy is always positive; a high lattice energy 
indicates that the ions interact strongly with one another to give
a tightly bonded solid. The lattice enthalpy, ΔHL, is the change
in standard molar enthalpy (see Fundamentals F.4 for a review of
enthalpy, which is treated in more detail in Chapter 14) for the
process

MX(s) → M+(g) + X−(g)

and its equivalent for other charge types and stoichiometries.
The lattice enthalpy is equal to the lattice energy at T = 0; at
normal temperatures they differ by only a few kilojoules per
mole, and the difference is normally neglected.

Each ion in a solid experiences electrostatic attractions from
all the other oppositely charged ions and repulsions from all the
other like-charged ions. The total Coulombic potential energy
is the sum of all the electrostatic contributions. Each cation is
surrounded by anions, and there is a large negative contribution
from the attraction of the opposite charges. Beyond those near-
est neighbours, there are cations that contribute a positive term
to the total potential energy of the central cation. There is also a
negative contribution from the anions beyond those cations, 
a positive contribution from the cations beyond them, and so 
on to the edge of the solid. These repulsions and attractions 
become progressively weaker as the distance from the central
ion increases, but the net outcome of all these contributions is a 
lowering of energy.

First, consider a simple one-dimensional model of a solid
consisting of a long line of uniformly spaced alternating cations
and anions, with d the distance between their centres, the sum of
the ionic radii (Fig. 9.39). If the charge numbers of the ions have
the same absolute value (+1 and −1, or +2 and −2, for instance),
then z1 = +z, z2 = −z, and z1z2 = −z2. The potential energy of the
central ion is calculated by summing all the terms, with negative
terms representing attractions to oppositely charged ions and
positive terms representing repulsions from like-charged ions.
For the interaction with ions extending in a line to the right of
the central ion, the lattice energy is

We have used the relation 1 − 1–2 + 1–3 − 1–4 + . . . = ln 2. Finally, we
multiply EP by 2 to obtain the total energy arising from inter-

= − ×
z e

d

2 2

04
2

πε
ln

 
= − − + − +

⎛

⎝
⎜

⎞

⎠
⎟

z e

d

2 2

04
1

1

2

1

3

1

4πε

 

E
z e

d

z e

d

z e

d

z e

dP = × − + − + −
⎛

⎝
⎜⎜

⎞1

4 2 3 40

2 2 2 2 2 2 2 2

πε ⎠⎠
⎟⎟

actions on each side of the ion and then multiply by Avogadro’s
constant, NA, to obtain an expression for the lattice energy per
mole of ions. The outcome is

with d = rcation + ranion. This energy is negative, corresponding 
to a net attraction. The calculation we have just performed can
be extended to three-dimensional arrays of ions with different
charges:

(9.10)

The factor A is a positive numerical constant called the
Madelung constant; its value depends on how the ions are
arranged about one another. For ions arranged in the same 
way as in sodium chloride, A = 1.748. Table 9.4 lists Madelung
constants for other common structures.

There are also repulsions arising from the overlap of the
atomic orbitals of the ions and the role of the Pauli principle.
These repulsions are taken into account by supposing that, 
because wavefunctions decay exponentially with distance at
large distances from the nucleus, and repulsive interactions 
depend on the overlap of orbitals, the repulsive contribution to
the potential energy has the form

EP* = NAC ′e−d/d* (9.11)

with C ′ and d* constants; the latter is commonly taken to be 
34.5 pm. The total potential energy is the sum of EP and E P*, and
passes through a minimum when d(EP + EP*)/dd = 0 (Fig. 9.40).
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Fig. 9.39 A line of alternating cations and ions used in the
calculation of the Madelung constant in one dimension.

Table 9.4 Madelung constants
for a selection of structural types

Structural type A

Caesium chloride 1.763

Fluorite 2.519

Rock salt 1.748

Rutile 2.408

Sphalerite 1.638

Wurtzite 1.641
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A short calculation leads to the following expression for the
minimum total potential energy (see Problem 9.24):

(9.12)

This expression is called the Born–Mayer equation. Provided
we ignore zero-point contributions to the energy, we can iden-
tify the negative of this potential energy with the lattice energy.
We see that large lattice energies are expected when the ions are
highly charged (so |zAzB| is large) and small (so d is small).

9.7 Molecular solids and covalent networks

X-ray diffraction studies of solids reveal a huge amount of
information, including interatomic distances, bond angles,
stereochemistry, and vibrational parameters. In this section 
we can do no more than hint at the diversity of types of solids
found when molecules pack together or atoms link together in
extended networks.

In covalent network solids, covalent bonds in a definite 
spatial orientation link the atoms in a network extending through
the crystal. The demands of directional bonding, which have
only a small effect on the structures of many metals, now over-
ride the geometrical problem of packing spheres together, and
elaborate and extensive structures may be formed. Examples
include silicon, red phosphorus, boron nitride, and—very 
importantly—diamond, graphite, and carbon nanotubes, which
we discuss in detail.

Diamond and graphite are two allotropes of carbon. In 
diamond each sp3-hybridized carbon is bonded tetrahedrally 
to its four neighbours (Fig. 9.41). The network of strong C-C
bonds is repeated throughout the crystal and, as a result, dia-
mond is very hard (in fact, the hardest known substance). In
graphite, σ bonds between sp2-hybridized carbon atoms form
hexagonal rings that, when repeated throughout a plane, give
rise to ‘graphene’ sheets (Fig. 9.42). Because the sheets can slide
against each other when impurities are present, graphite is used
widely as a lubricant.
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Carbon nanotubes are narrow cylinders of carbon atoms that
have high tensile strength and electrical conductivity. They may
be synthesized by condensing a carbon plasma either in the pres-
ence or absence of a catalyst. The simplest structural motif is
called a single-walled nanotube (SWNT) and is shown in Fig. 9.43.
In an SWNT, sp2-hybridized carbon atoms form hexagonal
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Fig. 9.40 The contributions to the total potential energy of an
ionic crystal.

Fig. 9.41 A fragment of the structure of diamond. Each C atom is
tetrahedrally bonded to four neighbours. This framework-like
structure results in a rigid crystal.

(a) (b)

Fig. 9.42 Graphite consists of flat planes of hexagons of carbon
atoms lying above one another. (a) The arrangement of carbon
atoms in a sheet; (b) the relative arrangement of neighbouring
sheets. When impurities are present, the planes can slide over
one another easily.

Fig. 9.43 In a single-walled nanotube (SWNT), sp2-hybridized
carbon atoms form hexagonal rings that grow as tubes with
diameters between 1 and 2 nm and lengths of several
micrometres.
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rings reminiscent of those in graphene sheets. The tubes have 
diameters between 1 and 2 nm and lengths of several micrometres.
The features shown in Fig. 9.43 have been confirmed by direct
visualization with scanning tunnelling microscopy (Impact I2.1).
A multi-walled nanotube (MWNT) consists of several concentric
SWNTs and its diameter varies between 2 and 25 nm.

Molecular solids, which are the subject of the overwhelming
majority of modern structural determinations, are held together
by van der Waals interactions (Chapter 8). The observed crystal
structure is nature’s solution to the problem of condensing 
objects of various shapes into an aggregate of minimum energy
(actually, for T > 0, of minimum Gibbs energy). The prediction
of the structure is difficult, but software specifically designed to
explore interaction energies can now make reasonably reliable
predictions. The problem is made more complicated by the role
of hydrogen bonds, which in some cases dominate the crystal
structure, as in ice (Fig. 9.44), but in others (for example, in phe-
nol) distort a structure that is determined largely by the van der
Waals interactions.

The properties of solids

In this section we consider how the bulk properties of solids,
particularly their mechanical, electrical, optical, and magnetic
properties, stem from the properties of their constituent atoms.
The rational fabrication of modern materials depends crucially
on an understanding of this link.

Synthetic polymers, which have greatly extended the types of
material that are available, are classified broadly as elastomers,

fibres, and plastics, depending on their crystallinity, the degree of
three-dimensional long-range order attained in the solid state.
An elastomer is a flexible polymer that can expand or contract
easily upon application of an external force. Elastomers are
polymers with numerous crosslinks that pull them back into
their original shape when a stress is removed. A perfect elastomer,
a polymer in which the internal energy is independent of the
extension of its typical ‘random coil’ conformation, can be
modelled as a freely jointed chain. A fibre is a polymeric material
that owes its strength to interactions between chains. One ex-
ample is nylon-66 (1). Under certain conditions, nylon-66 can
be prepared in a state of high crystallinity, in which hydrogen
bonding between the amide links of neighbouring chains results
in an ordered array. A plastic is a polymer that can attain only a
limited degree of crystallinity and as a result is neither as strong
as a fibre nor as flexible as an elastomer. Certain materials, such
as nylon-66, can be prepared either as a fibre or as a plastic. A
sample of plastic nylon-66 may be visualized as consisting of
crystalline hydrogen-bonded regions of varying size interspersed
amongst amorphous, random coil regions. A single type of poly-
mer may exhibit more than one characteristic for, to display
fibrous character, the polymers need to be aligned; if the chains
are not aligned, then the substance may be plastic. That is the
case with nylon, poly(vinyl chloride), and the siloxanes.

Fig. 9.44 A fragment of the crystal structure of ice (ice-I). 
Each O atom is at the centre of a tetrahedron of four O atoms 
at a distance of 276 pm. The central O atom is attached by two
short O-H bonds to two H atoms and by two long hydrogen
bonds to the H atoms of two of the neighbouring molecules.
Overall, the structure consists of planes of hexagonal puckered
rings of H2O molecules (like the chair form of cyclohexane).

9.8 Mechanical properties

The fundamental concepts for the discussion of the mechanical
properties of solids are stress and strain. The stress on an object
is the applied force divided by the area to which it is applied. The
strain is the resulting distortion of the sample. The general field
of the relations between stress and strain is called rheology.

Stress may be applied in a number of different ways. Thus,
uniaxial stress is a simple compression or extension in one dir-
ection (Fig. 9.45); hydrostatic stress is a stress applied simultan-
eously in all directions, as in a body immersed in a fluid. A pure
shear is a stress that tends to push opposite faces of the sample in
opposite directions. A sample subjected to a small stress typic-
ally undergoes elastic deformation in the sense that it recovers
its original shape when the stress is removed. For low stresses,
the strain is linearly proportional to the stress. The response 
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becomes non-linear at high stresses but may remain elastic. Above
a certain threshold, the strain becomes plastic in the sense that
recovery does not occur when the stress is removed. Plastic 
deformation occurs when bond breaking takes place and, in pure
metals, typically takes place through the agency of dislocations.
Brittle solids, such as ionic solids, exhibit sudden fracture as the
stress focused by cracks causes them to spread catastrophically.

The response of a solid to an applied stress is commonly sum-
marized by a number of coefficients of proportionality known as
‘moduli’:

Young’s modulus: [9.13a]

Bulk modulus: [9.13b]

Shear modulus: [9.13c]

where ‘normal stress’ refers to stretching and compression of the
material, as shown in Fig 9.46a and ‘shear stress’ refers to the
stress depicted in Fig 9.46b. The bulk modulus is the inverse of
the isothermal compressibility, κ,

 
G =

shear stress

shear strain

K =
pressure

fractional change in volume

 
E =

normal stress

normal strain

[9.14]

A third ratio indicates how the sample changes its shape:

Poisson’s ratio: [9.15]

The moduli are interrelated:

(9.16)

If neighbouring molecules interact by a Lennard-Jones potential
(Section 8.6), then we show in the following Justification that the
bulk modulus and the compressibility of the solid are related to
the Lennard-Jones parameter ε (the depth of the potential well)
by

(9.17)

We see that the bulk modulus is large (the solid stiff) if the 
potential well represented by the Lennard-Jones potential is
deep and the solid is dense (its molar volume small).

Justification 9.4 The bulk modulus

At T = 0, the thermodynamic relation between the internal
energy U and the entropy S and volume V, dU = TdS − pdV
(see Section 15.7), becomes dU = −pdV, so p = −(∂U/∂V)T

and

The volume of a sample is proportional to r3, where r is the
interatomic separation, so we write V = ar3 with a a constant.
Hence dV/dr = 3ar2. Since, at constant temperature,

we find

and since, at the equilibrium volume of the sample (that is, at
the equilibrium interatomic separation), (∂U/∂r) = 0,
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Fig. 9.45 Types of stress applied to a body. (a) Uniaxial stress; 
(b) shear stress; (c) hydrostatic pressure.
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Fig. 9.46 (a) Normal stress and the resulting strain. (b) Shear
stress. Poisson’s ratio indicates the extent to which a body
changes shape when subjected to a uniaxial stress.
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Therefore, the bulk modulus at equilibrium volume is

The internal energy at T = 0 can be expressed in terms of the
Lennard-Jones potential as

with r = 21/6r0 at the equilibrium interatomic separation
(when dU/dr = 0). Therefore, at this separation

It follows that the bulk modulus at the equilibrium separa-
tion (r = 21/6r0) is

Finally, we recognize that ar0
3 = ar3/21/2 = V/21/2, and obtain

where Vmol = V/N is the molecular volume. Multiplication 
of the numerator and denominator by Avogadro’s constant
and noting that NAVmol = Vm, the molar volume, then gives
eqn 9.17.

The typical behaviour of a solid under stress is illustrated in
Fig. 9.47. For small strains, the stress–strain relation is a Hooke’s
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law of force, with the strain directly proportional to the stress.
For larger strains, though, dislocations begin to play a major role
and the strain becomes plastic in the sense that the sample does
not recover its original shape when the stress is removed.

The differing rheological characteristics of metals can be
traced to the presence of slip planes, which are planes of atoms
that under stress may slip or slide relative to one another. The
slip planes of a ccp structure are the close-packed planes, and
careful inspection of a unit cell shows that there are eight sets of
slip planes in different directions. As a result, metals with cubic
close-packed structures, like copper, are malleable: they can
easily be bent, flattened, or pounded into shape. In contrast, a
hexagonal close-packed structure has only one set of slip planes;
therefore metals with hexagonal close packing, like zinc or 
cadmium, tend to be brittle.

9.9 Electrical properties

We shall confine attention to electronic conductivity, but note
that some ionic solids display ionic conductivity. Two types of
solid are distinguished by the temperature dependence of their
electrical conductivity (Fig. 9.48):

A metallic conductor is a substance with a conductivity that
decreases as the temperature is raised.

A semiconductor is a substance with a conductivity that 
increases as the temperature is raised.

A semiconductor generally has a lower conductivity than that
typical of metals, but the magnitude of the conductivity is not
the criterion of the distinction. It is conventional to classify
semiconductors with very low electrical conductivities, such as
most synthetic polymers, as insulators. We shall use this term,
but it should be appreciated that it is one of convenience rather
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Fig. 9.47 At small strains, a body obeys Hooke’s law (stress
proportional to strain) and is elastic (recovers its shape when the
stress is removed). At high strains, the body is no longer elastic
and may yield and become plastic. At even higher strains, the
solid fails (at its limiting tensile strength) and finally fractures.
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Fig. 9.48 The variation of the electrical conductivity of a
substance with temperature is the basis of its classification as 
a metallic conductor, a semiconductor, or a superconductor.
Conductivity is expressed in siemens per metre (S m−1 or, as
here, S cm−1), where 1 S = 1 Ω−1 (the resistance is expressed in
ohms, Ω).
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than one of fundamental significance. A superconductor is a
solid that conducts electricity without resistance.

(a) The formation of bands

The central aspect of solids that determines their electrical 
properties is the distribution of their electrons. There are two
models of this distribution. In one, the nearly free-electron 
approximation, the valence electrons are assumed to be trapped
in a box with a periodic potential, with low energy correspond-
ing to the locations of cations. In the tight-binding approxima-
tion, the valence electrons are assumed to occupy molecular
orbitals delocalized throughout the solid. The latter model is
more in accord with the discussion in the foregoing chapters,
and we confine our attention to it.

We shall consider a one-dimensional solid, which consists of
a single, infinitely long line of atoms. At first sight, this model
may seem too restrictive and unrealistic. However, not only
does it give us the concepts we need to understand conductivity
in three-dimensional, macroscopic samples of metals and semi-
conductors, it is also the starting point for the description of
long and thin structures, such as the carbon nanotubes discussed
earlier in the chapter.

Suppose that each atom has one s orbital available for forming
molecular orbitals. We can construct the LCAO-MOs of the
solid by adding N atoms in succession to a line, and then infer
the electronic structure by using the building-up principle. One
atom contributes one s orbital at a certain energy (Fig. 9.49).
When a second atom is brought up it overlaps the first and
forms bonding and antibonding orbitals. The third atom over-
laps its nearest neighbour (and only slightly the next-nearest)
and, from these three atomic orbitals, three molecular orbitals
are formed: one is fully bonding, one fully antibonding, and 
the intermediate orbital is non-bonding between neighbours. 
The fourth atom leads to the formation of a fourth molecular

orbital. At this stage, we can begin to see that the general effect of
bringing up successive atoms is to spread the range of energies
covered by the molecular orbitals, and also to fill in the range of
energies with more and more orbitals (one more for each atom).
When N atoms have been added to the line, there are N mole-
cular orbitals covering a band of energies of finite width, and the
Hückel secular determinant (Section 5.7) is

where β is now the (s,s) resonance integral. The theory of 
determinants applied to such a symmetrical example as this
(technically a ‘tridiagonal determinant’) leads to the following
expression for the roots:

k = 1, 2, . . . , N (9.18)

When N is infinitely large, the difference between neighbouring
energy levels (the energies corresponding to k and k + 1) is
infinitely small, but, as we show in the following Justification, the
band still has finite width overall:

EN − E1 → 4β as N → ∞ (9.19)

We can think of this band as consisting of N different molecular
orbitals, the lowest-energy orbital (k = 1) being fully bonding,
and the highest-energy orbital (k = N) being fully antibonding
between adjacent atoms (Fig. 9.50). Similar bands form in three-
dimensional solids.
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Fig. 9.49 The formation of a band of N molecular orbitals by
successive addition of N atoms to a line. Note that the band
remains of finite width as N becomes infinite and, although it
looks continuous, it consists of N different orbitals.
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Fig. 9.50 The overlap of s orbitals gives rise to an s band and the
overlap of p orbitals gives rise to a p band. In this case, the s and
p orbitals of the atoms are so widely spaced that there is a band
gap. In many cases the separation is less and the bands overlap.
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Justification 9.5 The width of a band

The energy of the level with k = 1 is

As N becomes infinite, the cosine term becomes cos 0 = 1.
Therefore, in this limit E1 = α + 2β. When k has its maximum
value of N,

As N approaches infinity, we can ignore the 1 in the denomin-
ator, and the cosine term becomes cos π = −1. Therefore, in
this limit EN = α − 2β. The difference between the upper and
lower energies of the band is therefore 4β.

The band formed from overlap of s orbitals is called the s
band. If the atoms have p orbitals available, the same procedure
leads to a p band (as shown in the upper half of Fig. 9.50). If the
atomic p orbitals lie higher in energy than the s orbitals, then the
p band lies higher than the s band, and there may be a band gap,
a range of energies to which no orbital corresponds. However,
the s and p bands may also be contiguous or even overlap (as is
the case for the 3s and 3p bands in magnesium).

(b) The occupation of orbitals

Now consider the electronic structure of a solid formed from
atoms each able to contribute one electron (for example, the 
alkali metals). There are N atomic orbitals and therefore N
molecular orbitals packed into an apparently continuous band.
There are N electrons to accommodate.

At T = 0, only the lowest 1–2 N molecular orbitals are occupied
(Fig. 9.51), and the HOMO is called the Fermi level. However,
unlike in molecules, there are empty orbitals very close in energy
to the Fermi level, so it requires hardly any energy to excite the
uppermost electrons. Some of the electrons are therefore very
mobile and give rise to electrical conductivity.
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At temperatures above absolute zero, electrons can be excited
by the thermal motion of the atoms. The population, P, of the
orbitals is given by the Fermi–Dirac distribution, a version of
the Boltzmann distribution that takes into account the effect of
the Pauli principle:

(9.20)

The quantity μ is the chemical potential, which in this 
context is the energy of the level for which P = 1–2 (note that the
chemical potential decreases as the temperature increases, see
Problem 9.32).

The shape of the Fermi–Dirac distribution is shown in 
Fig. 9.52. For energies well above μ, the 1 in the denominator
can be neglected, and then

P ≈ e−(E − μ)/kT (9.21)

The population now resembles a Boltzmann distribution, 
decaying exponentially with increasing energy. The higher the
temperature, the longer the exponential tail.

The electrical conductivity of a metallic solid decreases with
increasing temperature even though more electrons are excited
into empty orbitals. This apparent paradox is resolved by noting
that the increase in temperature causes more vigorous thermal
motion of the atoms, so collisions between the moving electrons
and an atom are more likely. That is, the electrons are scattered
out of their paths through the solid, and are less efficient at
transporting charge.

(c) Insulators and semiconductors

When each atom provides two electrons, the 2N electrons fill the
N orbitals of the s band. The Fermi level now lies at the top of the
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Fig. 9.51 When N electrons occupy a band of N orbitals, it is only
half full and the electrons near the Fermi level (the top of the
occupied levels) are mobile.
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Fig. 9.52 The Fermi–Dirac distribution, which gives the
population of the levels at a temperature T. The high-energy tail
decays exponentially towards zero. The curves are labelled with
the value of μ/kT. The tinted green region shows the occupation
of levels at T = 0.

interActivity Express the population P as a function of the 
variables (E − μ)/μ and μ/kT and then display the set of 

curves shown in Fig. 9.52 as a single surface.
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band (at T = 0), and there is a gap before the next band begins
(Fig. 9.53). As the temperature is increased, the tail of the
Fermi–Dirac distribution extends across the gap, and electrons
leave the lower band, which is called the valence band, and popu-
late the empty orbitals of the upper band, which is called the
conduction band. As a consequence of electron promotion,
positively charged ‘holes’ are left in the valence band. The 
holes and promoted electrons are now mobile, and the solid is
an electrical conductor. In fact, it is a semiconductor, because
the electrical conductivity depends on the number of electrons
that are promoted across the gap, and that number increases as
the temperature is raised. If the gap is large, though, very few
electrons will be promoted at ordinary temperatures and the
conductivity will remain close to zero, resulting in an insulator.
Thus, the conventional distinction between an insulator and a
semiconductor is related to the size of the band gap and is not an
absolute distinction like that between a metal (incomplete bands
at T = 0) and a semiconductor (full bands at T = 0).

Figure 9.53 depicts conduction in an intrinsic semiconductor,
in which semiconduction is a property of the band structure 
of the pure material. Examples of intrinsic semiconductors 
include silicon and germanium. A compound semiconductor is
an intrinsic semiconductor that is a combination of different ele-
ments, such as GaN, CdS, and many d-metal oxides. An extrin-
sic semiconductor is one in which charge carriers are present as
a result of the replacement of some atoms (to the extent of about
1 in 109) by dopant atoms, the atoms of another element. If the
dopants can trap electrons, they withdraw electrons from the
filled band, leaving holes which allow the remaining electrons 
to move (Fig. 9.54a). This procedure gives rise to p-type semi-
conductivity, the p indicating that the holes are positive relative 
to the electrons in the band. An example is silicon doped with
indium. We can picture the semiconduction as arising from the
transfer of an electron from a Si atom to a neighbouring In
atom. The electrons at the top of the silicon valence band are

now mobile, and carry current through the solid. Alternatively,
a dopant might carry excess electrons (for example, phosphorus
atoms introduced into germanium), and these additional elec-
trons occupy otherwise empty bands, giving n-type semicon-
ductivity, where n denotes the negative charge of the carriers
(Fig. 9.54b).

Now we consider the properties of a p–n junction, the inter-
face of a p-type and n-type semiconductor. Consider the appli-
cation of a ‘reverse bias’ to the junction, in the sense that a
negative electrode is attached to the p-type semiconductor and 
a positive electrode is attached to the n-type semiconductor
(Fig. 9.55a). Under these conditions, the positively charged
holes in the p-type semiconductor are attracted to the negative
electrode and the negatively charged electrons in the n-type
semiconductor are attracted to the positive electrode. As a con-
sequence, charge does not flow across the junction. Now con-
sider the application of a ‘forward bias’ to the junction, in the
sense that the positive electrode is attached to the p-type semi-
conductor and the negative electrode is attached to the n-type
semiconductor (Fig. 9.55b). Now charge flows across the junc-
tion, with electrons in the n-type semiconductor moving toward
the positive electrode and holes moving in the opposite direc-
tion. It follows that a p–n junction affords a great deal of control
over the magnitude and direction of current through a material.
This control is essential for the operation of transistors and
diodes, which are key components of modern electronic devices.

As electrons and holes move across a p–n junction under for-
ward bias, they recombine and release energy. However, as long
as the forward bias continues to be applied, the flow of charge
from the electrodes to the semiconductors will replenish them
with electrons and holes, so the junction will sustain a current.
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Fig. 9.53 (a) When 2N electrons are present, the band is full and
the material is an insulator at T = 0. (b) At temperatures above 
T = 0, electrons populate the levels of the upper conduction band
and the solid is a semiconductor.
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Fig. 9.54 (a) A dopant with fewer electrons than its host can form
a narrow band that accepts electrons from the valence band. 
The holes in the band are mobile and the substance is a p-type
semiconductor. (b) A dopant with more electrons than its host
forms a narrow band that can supply electrons to the conduction
band. The electrons it supplies are mobile and the substance is
an n-type semiconductor.
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In some solids, the energy of electron–hole recombination is 
released as heat and the device becomes warm. This is the case
for silicon semiconductors, and is one reason why computers
need efficient cooling systems.

IMPACT ON TECHNOLOGY

I9.2 Conducting polymers

A variety of newly developed macromolecular materials have
electrical conductivities that rival those of silicon-based semi-
conductors. Here we shall examine conducting polymers, in
which extensively conjugated double bonds facilitate electron
conduction along the polymer chain.

One example of a conducting polymer is polyacetylene 
(Fig. 9.56). Whereas the delocalized π bonds do suggest that
electrons can move up and down the chain, the electrical con-
ductivity of polyacetylene increases significantly when it is 
partially oxidized by I2 and other strong oxidants. Oxidation
leads to the formation of a polaron, a partially localized cation
radical that travels through the chain, as shown in the illustra-
tion. Further oxidation of the polymer forms either bipolarons,
a di-cation that moves as a unit through the chain, or two 
separate cation radicals that move independently.

Conducting polymers are currently used in a number of 
devices, such as electrodes in batteries, electrolytic capacitors,
and sensors. Recent studies of photon emission by conducting
polymers may lead to new technologies for light-emitting diodes
and flat-panel displays. Conducting polymers also show promise

as molecular wires that can be incorporated into nanometre-
sized electronic devices.

IMPACT ON NANOSCIENCE

I9.3 Nanowires

We have remarked (Impact I2.1) that research on nanometre-
sized materials is motivated by the possibility that they will form
the basis for cheaper and smaller electronic devices. The syn-
thesis of nanowires, nanometre-sized atomic assemblies that con-
duct electricity, is a major step in the fabrication of nanodevices.
An important type of nanowire is based on carbon nanotubes,
which, like graphite, can conduct electrons through delocalized
π molecular orbitals that form from unhydridized 2p orbitals on
carbon. Recent studies have shown a correlation between struc-
ture and conductivity in single-walled nanotubes (SWNTs) that
does not occur in graphite. The SWNT in Fig. 9.43 is a semi-
conductor. If the hexagons are rotated by 90° about their sixfold
axis, the resulting SWNT is a metallic conductor.

Carbon nanotubes are promising building blocks not only
because they have useful electrical properties but also because
they have unusual mechanical properties. For example, an
SWNT has a Young’s modulus that is approximately five times
larger and a tensile strength that is approximately 375 times
larger than that of steel.

Silicon nanowires can be made by focusing a pulsed laser
beam on to a solid target composed of silicon and iron. The
beam ejects Fe and Si atoms from the surface of the target, form-
ing a vapour that can condense into liquid FeSin nanoclusters at
sufficiently low temperatures. Solid silicon and liquid FeSin

coexist at temperatures higher than 1473 K. Hence, it is possible
to precipitate solid silicon from the mixture if the experimental
conditions are controlled to maintain the FeSin nanoclusters in a
liquid state that is supersaturated with silicon. The silicon pre-
cipitate consists of nanowires with diameters of about 10 nm
and lengths greater than 1 μm.

Nanowires are also fabricated by molecular beam epitaxy
(MBE), in which gaseous atoms or molecules are sprayed on to
a crystalline surface in an ultra-high vacuum chamber. The result
is the formation of highly ordered structures. Through careful
control of the chamber temperature and of the spraying process,
it is possible to deposit thin films on to a surface or to create
nanometre-sized assemblies with specific shapes. Germanium
nanowires can be made by this method (see Fig. 2.15).

9.10 Optical properties

From the discussion in earlier chapters, we are already familiar
with the factors that determine the energy and intensity of light
absorbed by atoms and molecules in the gas phase and in solu-
tion. Now we consider the effects on the electronic absorption
spectrum of bringing atoms or molecules together into a solid.
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Fig. 9.55 A p–n junction under (a) reverse bias, (b) forward bias.
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Fig. 9.56 The mechanism of migration of a partially localized
cation radical, or polaron, in polyacetylene.
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Consider an electronic excitation of a molecule (or an ion)
in a crystal. If the excitation corresponds to the removal of an
electron from one orbital of a molecule and its elevation to an
orbital of higher energy, then the excited state of the molecule
can be envisaged as the coexistence of an electron and a hole.
This electron–hole pair, a particle-like exciton, migrates from
molecule to molecule in the crystal (Fig. 9.57). Exciton forma-
tion causes spectral lines to shift, split, and change intensity.

The electron and the hole jump together from molecule to
molecule as they migrate. A migrating excitation of this kind is
called a Frenkel exciton. The electron and hole can also be on
different molecules, but in each other’s vicinity. A migrating ex-
citation of this kind, which is now spread over several molecules
(more usually ions), is a Wannier exciton.

Frenkel excitons are more common in molecular solids. Their
migration implies that there is an interaction between the species
that constitute the crystal, for otherwise the excitation on one
unit could not move to another. This interaction affects the 
energy levels of the system. The strength of the interaction gov-
erns the rate at which an exciton moves through the crystal: 
a strong interaction results in fast migration, and a vanishingly
small interaction leaves the exciton localized on its original
molecule. The specific mechanism of interaction that leads to
exciton migration is the interaction between the transition dipole
moments of the excitation. Thus, an electric dipole transition in
a molecule is accompanied by a shift of charge, and the trans-
ition dipole exerts a force on an adjacent molecule. The latter 
responds by shifting its charge. This process continues and the
excitation migrates through the crystal.

The energy shift arising from the interaction between 
transition dipoles can be understood in terms of their elec-
trostatic interaction. An all-parallel arrangement of the dipoles
(Fig. 9.58a) is energetically unfavourable, so the absorption occurs
at a higher frequency than in the isolated molecule, correspond-
ing to a blue shift in the absorption. Conversely, a head-to-tail
alignment of transition dipoles (Fig. 9.58b) is energetically
favourable, and the transition occurs at a lower frequency than
in the isolated molecules, corresponding to a red shift.

If there are N molecules per unit cell, there are N exciton
bands in the spectrum (if all of them are allowed). The splitting
between the bands is the Davydov splitting. To understand the
origin of the splitting, consider the case N = 2 with the molecules
arranged as in Fig. 9.59. Let the transition dipoles be along the
length of the molecules. The radiation stimulates the collective
excitation of the transition dipoles that are in-phase between
neighbouring unit cells. Within each unit cell the transition
dipoles may be arrayed in the two different ways shown in the
figure. Since the two orientations correspond to different inter-
action energies, with interaction being repulsive in one and 
attractive in the other, the two transitions appear in the spec-
trum at two bands of different frequencies. The magnitude of

Fig. 9.57 The electron–hole pair shown on the left can migrate
through a solid lattice as the excitation hops from molecule to
molecule. The mobile excitation is called an exciton.

	

	

(a)

(b)

Fig. 9.58 (a) The alignment of transition dipoles (the yellow
arrows) is energetically unfavourable, and the exciton
absorption is shifted to higher energy (higher frequency). 
(b) The alignment is energetically favourable for a transition 
in this orientation, and the exciton band occurs at a lower
frequency than in the isolated molecules.

(b)

(a) 	

(a)(b)

Davydov
splitting

Fig. 9.59 When the transition moments within a unit cell may lie
in different relative directions, as depicted in (a) and (b), the
energies of the transitions are shifted and give rise to the two
bands labelled (a) and (b) in the spectrum. The separation of the
bands is the Davydov splitting.
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the Davydov splitting is determined by the energy of interaction
between the transition dipoles within the unit cell.

Now we turn our attention to metallic conductors and semi-
conductors. Again we need to consider the consequences of 
interactions between particles, in this case atoms, which are now
so strong that we need to abandon arguments based primarily
on van der Waals interactions in favour of a full molecular 
orbital treatment, the band model of Section 9.9.

Consider Fig. 9.51, which shows bands in an idealized metallic
conductor. The absorption of light can excite electrons from the
occupied levels to the unoccupied levels. There is a near con-
tinuum of unoccupied energy levels above the Fermi level, so we
expect to observe absorption over a wide range of frequencies.
In metals, the bands are sufficiently wide that radiation from 
the radiofrequency to the middle of the ultraviolet region of the
electromagnetic spectrum is absorbed (metals are transparent 
to very high-frequency radiation, such as X-rays and γ-rays).
Because this range of absorbed frequencies includes the entire
visible spectrum, we expect that all metals should appear black.
However, we know that metals are lustrous (that is, they reflect
light) and some are coloured (that is, they absorb light of only
certain wavelengths), so we need to extend our model.

To explain the lustrous appearance of a smooth metal surface,
we need to realize that the absorbed energy can be re-emitted
very efficiently as light, with only a small fraction of the energy
being released to the surroundings as heat. Because the atoms
near the surface of the material absorb most of the radiation,
emission also occurs primarily from the surface. In essence, 
if the sample is excited with visible light, then visible light will 
be reflected from the surface, accounting for the lustre of the
material.

The perceived colour of a metal depends on the frequency
range of reflected light which, in turn, depends on the frequency
range of light that can be absorbed and, by extension, on the
band structure. Silver reflects light with nearly equal efficiency
across the visible spectrum because its band structure has many
unoccupied energy levels that can be populated by absorption
of, and depopulated by emission of, visible light. On the other
hand, copper has its characteristic colour because it has relat-
ively fewer unoccupied energy levels that can be excited with 
violet, blue, and green light. The material reflects at all wave-
lengths, but more light is emitted at lower frequencies (corres-
ponding to yellow, orange, and red). Similar arguments account
for the colours of other metals, such as the yellow of gold.

Finally, consider semiconductors. We have already seen that
promotion of electrons from the conduction to the valence band
of a semiconductor can be the result of thermal excitation, if the
band gap Eg is comparable to the energy that can be supplied 
by heating. In some materials, the band gap is very large and
electron promotion can occur only by excitation with electro-
magnetic radiation. However, we see from Fig. 9.53 that there is
a frequency νmin = Eg/h below which light absorption cannot

occur. Above this frequency threshold, a wide range of frequen-
cies can be absorbed by the material, as in a metal.

l A BRIEF ILLUSTRATION

The semiconductor cadmium sulfide (CdS) has a band gap
energy of 2.4 eV (equivalent to 3.8 × 10−19 J). It follows that
the minimum electronic absorption frequency is

This frequency, of 5.8 × 1014 Hz, corresponds to a wavelength
of 517 nm (green light). Lower frequencies, corresponding to
yellow, orange, and red, are not absorbed and consequently
CdS appears yellow-orange. l

Self-test 9.7 Predict the colours of the following mater-
ials, given their band-gap energies (in parentheses): GaAs
(1.43 eV), HgS (2.1 eV), and ZnS (3.6 eV).

[Black, red, and colourless]

9.11 Magnetic properties

The magnetic properties of metallic solids and semiconductors
depend strongly on the band structures of the material. Here we
confine our attention largely to magnetic properties that stem
from collections of individual molecules or ions such as d-metal
complexes. Much of the discussion applies to liquid and gas
phase samples as well as to solids.

(a) Magnetic susceptibility

The magnetic and electric properties of molecules and solids are
analogous. For instance, some molecules possess permanent
magnetic dipole moments, and an applied magnetic field can 
induce a magnetic moment, with the result that the entire solid
sample becomes magnetized. The analogue of the electric polar-
ization, P, is the magnetization, M , the average molecular mag-
netic dipole moment multiplied by the number density of
molecules in the sample. The magnetization induced by a field
of strength H is proportional to H , and we write

M = χH [9.22]

where χ is the dimensionless volume magnetic susceptibility. A
closely related quantity is the molar magnetic susceptibility, χm:

χm = χVm [9.23]

where Vm is the molar volume of the substance (we shall soon
see why it is sensible to introduce this quantity). The magnetic
induction, B, is related to the applied field strength and the mag-
netization by

B = μ0(H + M ) = μ0(1 + χ)H [9.24]
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where μ0 is the vacuum permeability, a fundamental constant
with the defined value μ0 = 4π × 10−7 J C−2 m−1 s2. The magnetic
induction, which is also called the magnetic flux density, can be
thought of as the density of magnetic lines of force permeating
the medium. This density is increased if M adds to H (when 
χ > 0), but the density is decreased if M opposes H (when 
χ < 0). Materials for which χ > 0 are called paramagnetic. Those 
for which χ < 0 are called diamagnetic. As we shall see, a para-
magnetic material consists of ions or molecules with unpaired
electrons, such as radicals and many d-metal complexes; a dia-
magnetic substance (a far more common property) is one with
no unpaired electrons.

Just as polar molecules in fluid phases contribute a term
proportional to μ2/3kT to the electric polarization of a medium
(the Debye equation, Problem 8.6), so molecules with a per-
manent magnetic dipole moment of magnitude m contribute to
the magnetization an amount proportional to m2/3kT. However,
unlike for polar molecules, this contribution to the magnetiza-
tion is obtained even for paramagnetic species trapped in solids,
because the direction of the spin of the electrons is typically not
coupled to the orientation of the molecular framework and so
contributes even when the nuclei are stationary. An applied field
can also induce a magnetic moment by stirring up currents in
the electron distribution like those responsible for the chemical
shift in NMR (Section 12.5). The constant of proportionality 
between the induced moment and the applied field is called the
magnetizability, ξ (xi), and the magnetic analogue of the Debye
equation is

(9.25a)

We can now see why it is convenient to introduce χm, because
the product of the number density N and the molar volume is
Avogadro’s constant, NA:

Hence

(9.25b)

and the density dependence of the susceptibility (which occurs
in eqn 9.25a via N = NAρ/M) has been eliminated. The expres-
sion for χm is in agreement with the empirical Curie law:

(9.26)

with A = NAμ0ξ and C = NAμ0m2/3k. As indicated above and in
contrast to electric moments, this expression applies to solids as
well as fluid phases.
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The magnetic susceptibility is traditionally measured with a
Gouy balance. This instrument consists of a sensitive balance
from which the sample hangs in the form of a narrow cylinder
and lies between the poles of a magnet. If the sample is para-
magnetic, it is drawn into the field, and its apparent weight is
greater than when the field is off. A diamagnetic sample tends 
to be expelled from the field and appears to weigh less when the
field is turned on. The balance is normally calibrated against 
a sample of known susceptibility. The modern version of the 
determination makes use of a superconducting quantum inter-
ference device (SQUID, Fig. 9.60). A SQUID takes advantage 
of the quantization of magnetic flux and the property of current
loops in superconductors that, as part of the circuit, include a
weakly conducting link through which electrons must tunnel.
The current that flows in the loop in a magnetic field depends on
the value of the magnetic flux, and a SQUID can be exploited as
a very sensitive magnetometer.

Table 9.5 lists some experimental values. A typical paramag-
netic volume susceptibility is about 10−3, and a typical diamag-
netic volume susceptibility is about (−)10−5. The permanent
magnetic moment can be extracted from susceptibility meas-
urements by plotting χ against 1/T.

SQUID

Superconducting
wire

Current

Current

Magnetic
field

Sample

Fig. 9.60 The arrangement used to measure magnetic
susceptibility with a SQUID. The sample is moved upwards in
small increments and the potential difference across the SQUID
is measured.

Synoptic table 9.5* Magnetic susceptibilities at 
298 K

c/10−6 cm/(10−10 m3 mol−1)

H2O(l) −9.02 −1.63

NaCl(s) −16 −3.8

Cu(s) −9.7 −0.69

CuSO4·5H2O(s) +167 +183

* More values are given in the Data section.
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(b) The permanent magnetic moment

The permanent magnetic moment of a molecule arises from any
unpaired electron spins in the molecule. The magnitude of the
magnetic moment of an electron is proportional to the magni-
tude of the spin angular momentum, {s(s + 1)}1/2$.

m = ge{s(s + 1)}1/2μB (9.27)

where ge = 2.0023. If there are several electron spins in each
molecule, they combine to a total spin S, and then s(s + 1) should
be replaced by S(S + 1). It follows that the spin contribution to
the molar magnetic susceptibility is

(9.28)

This expression shows that the susceptibility is positive, so the
spin magnetic moments contribute to the paramagnetic suscep-
tibilities of materials. The contribution decreases with increasing
temperature because the thermal motion randomizes the spin
orientations. In practice, a contribution to the paramagnetism
also arises from the orbital angular momenta of electrons: we
have discussed the spin-only contribution.

l A BRIEF ILLUSTRATION

Consider a complex salt with three unpaired electrons per
complex cation at 298 K, of mass density 3.24 g cm−3, and
molar mass 200 g mol−1. First note that

Consequently,

Substitution of the data with S = 3–2 gives χm = 7.9 × 10−8 m3

mol−1. Note that the density is not needed at this stage. To
obtain the volume magnetic susceptibility, the molar sus-
ceptibility is divided by the molar volume Vm = M/ρ, where ρ
is the mass density. In this illustration, Vm = 61.7 cm3 mol−1,
so χ = 1.3 × 10−3. l

At low temperatures, some paramagnetic solids make a phase
transition to a state in which large domains of spins align with
parallel orientations due to the exchange interactions between
them. This cooperative alignment gives rise to a very strong
magnetization and is called ferromagnetism (Fig. 9.61). In other
cases, exchange interactions lead to alternating spin orienta-
tions: the spins are locked into a low-magnetization arrange-
ment to give an antiferromagnetic phase. The ferromagnetic
phase has a nonzero magnetization in the absence of an applied
field, but the antiferromagnetic phase has a zero magnetization
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because the spin magnetic moments cancel. The ferromagnetic
transition occurs at the Curie temperature, and the antiferro-
magnetic transition occurs at the Néel temperature. Which type
of cooperative behaviour occurs depends on the details of the
band structure of the solid.

(c) Induced magnetic moments

An applied magnetic field induces the circulation of electronic
currents. These currents give rise to a magnetic field that usually
opposes the applied field, so the substance is diamagnetic. In a
few cases the induced field augments the applied field, and the
substance is then paramagnetic.

The great majority of molecules with no unpaired electron
spins are diamagnetic. In these cases, the induced electron cur-
rents occur within the orbitals of the molecule that are occupied
in its ground state. In the few cases in which molecules are para-
magnetic despite having no unpaired electrons, the induced
electron currents flow in the opposite direction because they 
can make use of unoccupied orbitals that lie close to the HOMO
in energy. This orbital paramagnetism can be distinguished
from spin paramagnetism by the fact that it is temperature inde-
pendent: this is why it is called temperature-independent para-
magnetism (TIP).

We can summarize these remarks as follows. All molecules
have a diamagnetic component to their susceptibility, but it 
is dominated by spin paramagnetism if the molecules have 
unpaired electrons. In a few cases (where there are low-lying 
excited states) TIP is strong enough to make the molecules para-
magnetic even though their electrons are paired.

9.12 Superconductors

The resistance to flow of electrical current of a normal metallic
conductor decreases smoothly with temperature but never 
vanishes. However, certain solids known as superconductors

(a)

(b)

(c)

Fig 9.61 (a) In a paramagnetic material, the electron spins 
are aligned at random in the absence of an applied magnetic
field. (b) In a ferromagnetic material, the electron spins are
locked into a parallel alignment over large domains. (c) In an
antiferromagnetic material, the electron spins are locked into an
antiparallel arrangement. The latter two arrangements survive
even in the absence of an applied field.
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conduct electricity without resistance below a critical tempera-
ture, Tc. Following the discovery in 1911 that mercury is a super-
conductor below 4.2 K, the normal boiling point of liquid 
helium, physicists and chemists made slow but steady progress 
in the discovery of superconductors with higher values of Tc.
Metals, such as tungsten, mercury, and lead, tend to have Tc

values below about 10 K. Intermetallic compounds, such as
Nb3X (X = Sn, Al, or Ge), and alloys, such as Nb/Ti and Nb/Zr,
have intermediate Tc values ranging between 10 K and 23 K. 
In 1986, high-temperature superconductors (HTSC) were dis-
covered. Several ceramics, inorganic powders that have been
fused and hardened by heating to a high temperature, contain-
ing oxocuprate motifs, CumOn, are now known with Tc values
well above 77 K, the boiling point of the inexpensive refrigerant
liquid nitrogen. For example, HgBa2Ca2Cu2O8 has Tc = 153 K.

Superconductors have unique magnetic properties. Some 
superconductors, classed as type I, show abrupt loss of super-
conductivity when an applied magnetic field exceeds a critical
value H c characteristic of the material. It is observed that the
value of H c depends on temperature and Tc as

(9.29)

where H c(0) is the value of H c as T → 0. Type I superconductors
are also completely diamagnetic below H c, meaning that the
magnetic field does not penetrate into the material. This com-
plete exclusion of a magnetic field from a material is known 
as the Meissner effect, which can be visualized by the levitation 
of a superconductor above a magnet. Type II superconductors,
which include the HTSCs, show a gradual loss of superconduc-
tivity and diamagnetism with increasing magnetic field.

There is a degree of periodicity in the elements that exhibit 
superconductivity. The metals iron, cobalt, nickel, copper, silver,
and gold do not display superconductivity, nor do the alkali
metals. It is observed that, for simple metals, ferromagnetism and
superconductivity never coexist, but in some of the oxocuprate
superconductors ferromagnetism and superconductivity can
coexist. One of the most widely studied oxocuprate supercon-
ductors YBa2Cu3O7 (informally known as ‘123’ on account of
the proportions of the metal atoms in the compound) has the
structure shown in Fig. 9.62. The square-pyramidal CuO5 units
arranged as two-dimensional layers and the square-planar CuO4

units arranged in sheets are common structural features of 
oxocuprate HTSCs.

The mechanism of superconduction is well understood for
low-temperature materials but there is as yet no settled explana-
tion of high-temperature superconductivity. The central con-
cept of low-temperature superconduction is the existence of 
a Cooper pair, a pair of electrons that exists on account of the 
indirect electron–electron interactions fostered by the nuclei of
the atoms in the lattice. Thus, if one electron is in a particular 
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region of a solid, the nuclei there move toward it to give a dis-
torted local structure (Fig. 9.63). Because that local distortion is
rich in positive charge, it is favourable for a second electron to
join the first. Hence, there is a virtual attraction between the two
electrons, and they move together as a pair. The local distortion
can be easily disrupted by thermal motion of the ions in the
solid, so the virtual attraction occurs only at very low tempera-
tures. A Cooper pair undergoes less scattering than an individual
electron as it travels through the solid because the distortion
caused by one electron can attract back the other electron should
it be scattered out of its path in a collision. Because the Cooper
pair is stable against scattering, it can carry charge freely through
the solid, and hence give rise to superconduction.

The Cooper pairs responsible for low-temperature supercon-
ductivity are likely to be important in HTSCs, but the mechan-
ism for pairing is hotly debated. There is evidence implicating

Cu
Ba

Y O

(a) (b)

e–

Fig. 9.62 Structure of the YBa2Cu3O7 superconductor. (a) Metal
atom positions. (b) The polyhedra show the positions of oxygen
atoms and indicate that the metal ions are in square-planar and
square-pyramidal coordination environments.

Fig. 9.63 The formation of a Cooper pair. One electron distorts
the crystal lattice and the second electron has a lower energy if it
goes to that region. These electron–lattice interactions effectively
bind the two electrons into a pair.
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the arrangement of CuO5 layers and CuO4 sheets in the mechan-
ism of high-temperature superconduction. It is believed that
movement of electrons along the linked CuO4 units accounts for
superconductivity, whereas the linked CuO5 units act as ‘charge
reservoirs’ that maintain an appropriate number of electrons in
the superconducting layers.

Superconductors can sustain large currents and, consequently,
are excellent materials for the high-field magnets used in modern

NMR spectroscopy (Chapter 12). However, the potential uses 
of superconducting materials are not limited to the field of
chemical instrumentation. For example, HTSCs with Tc values
near ambient temperature would be very efficient components
of an electrical power transmission system, in which energy loss
due to electrical resistance would be minimized. The appropri-
ate technology is not yet available, but research in this area of
materials science is active.

Checklist of key ideas

1. Solids are classified as metallic, ionic, covalent, and
molecular.

2. A space lattice is the pattern formed by points representing
the locations of structural motifs (atoms, molecules, or
groups of atoms, molecules, or ions). The Bravais lattices 
are the 14 distinct space lattices in three dimensions 
(Fig. 9.8).

3. A unit cell is an imaginary parellelepiped that contains one
unit of a translationally repeating pattern. Unit cells are
classified into seven crystal systems according to their
rotational symmetries.

4. Crystal planes are specified by a set of Miller indices (hkl)
and the separation of neighbouring planes in a rectangular
lattice is given by 1/d 2

hkl = h2/a2 + k2/b2 + l2/c2 .

5. Bragg’s law relating the glancing angle θ to the separation of
lattice planes is λ = 2d sin θ, where λ is the wavelength of the
radiation.

6. The scattering factor is a measure of the ability of an atom to
diffract radiation (eqn 9.3).

7. The structure factor is the overall amplitude of a wave
diffracted by the {hkl} planes (eqn 9.4). Fourier synthesis is
the construction of the electron density distribution from
structure factors (eqn 9.5).

8. A Patterson synthesis is a map of interatomic vectors
obtained by Fourier analysis of diffraction intensities 
(eqn 9.6).

9. Structure refinement is the adjustment of structural
parameters to give the best fit between the observed
intensities and those calculated from the model of the
structure deduced from the diffraction pattern.

10. Many elemental metals have close-packed structures with
coordination number 12; close-packed structures may be
either cubic (ccp) or hexagonal (hcp).

11. Representative ionic structures include the 
caesium-chloride, rock-salt, and zinc-blende 
structures.

12. The radius-ratio rule may be used cautiously to 
predict which of these three structures is likely 
(eqn 9.9 and Section 9.6a).

13. The lattice enthalpy is the change in enthalpy (per mole 
of formula units) accompanying the complete separation 
of the components of the solid. The electrostatic
contribution to the lattice enthalpy is expressed by the
Born–Mayer equation (eqn 9.12).

14. A covalent network solid is a solid in which covalent bonds
in a definite spatial orientation link the atoms in a network
extending through the crystal. A molecular solid is a solid
consisting of discrete molecules held together by van der
Waals interactions.

15. The mechanical properties of a solid are discussed in terms
of the relationship between stress, the applied force divided
by the area to which it is applied, and strain, the distortion of
a sample resulting from an applied stress.

16. The response of a solid to an applied stress is summarized 
by the Young’s modulus (eqn 9.13a), the bulk modulus 
(eqn 9.13b), the shear modulus (eqn 9.13c), and Poisson’s
ratio (eqn 9.15).

17. Electronic conductors are classified as metallic conductors
or semiconductors according to the temperature
dependence of their conductivities. An insulator is a
semiconductor with a very low electrical conductivity.

18. According to the band theory, electrons occupy molecular
orbitals formed from the overlap of atomic orbitals: full
bands are called valence bands and empty bands are called
conduction bands. The occupation of the orbitals in a solid
is given by the Fermi–Dirac distribution (eqn 9.20).

19. Semiconductors are classified as p-type or n-type according
to whether conduction is due to holes in the valence band or
electrons in the conduction band.

20. The spectroscopic properties of molecular solids can be
understood in terms of the formation and migration of
excitons, electron–hole pairs, from molecule to molecule.

21. The spectroscopic properties of metallic conductors and
semiconductors can be understood in terms of the light-
induced promotion of electrons from valence bands to
conduction bands.

22. A bulk sample exposed to a magnetic field of strength 
H acquires a magnetization, M = χH, where χ is the
dimensionless volume magnetic susceptibility. When
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χ < 0, the material is diamagnetic and moves out of a
magnetic field. When χ > 0, the material is paramagnetic
and moves into a magnetic field.

23. The temperature dependence of χm is given by the Curie law
χm = A + C/T, where A = NAμ0ξ, C = NAμ0m2/3k, and ξ is
the magnetizability, a measure of the extent to which a
magnetic dipole moment may be induced in a molecule.

24. Ferromagnetism is the cooperative alignment of electron
spins in a material and gives rise to strong magnetization.
Antiferromagnetism results from alternating spin
orientations in a material and leads to weak magnetization.

25. Temperature-independent paramagnetism arises from
induced electron currents within the orbitals of a molecule
that are occupied in its ground state.

26. Superconductors conduct electricity without resistance
below a critical temperature Tc. Type I superconductors
show abrupt loss of superconductivity when an applied
magnetic field exceeds a critical value H c characteristic 
of the material. They are also completely diamagnetic 
below H c. Type II superconductors show a gradual loss 
of superconductivity and diamagnetism with increasing
magnetic field.

Discussion questions

9.1 Describe the relationship between the space lattice and unit cell.

9.2 Explain how planes of lattice points are labelled.

9.3 Describe the procedure for identifying the type and size of a cubic
unit cell.

9.4 What is meant by a systematic absence? How do they arise?

9.5 Explain the general features of the X-ray diffraction pattern of a
helical molecule. How would the pattern change as the pitch of the 
helix is increased?

9.6 Discuss what is meant by ‘scattering factor’. How is it related to the
number of electrons in the atoms scattering X-rays?

9.7 Describe the consequences of the phase problem in determining
structure factors and how the problem is overcome.

9.8 To what extent is the hard-sphere model of metallic solids inaccurate?

9.9 Describe the caesium-chloride and rock-salt structures in terms of
the occupation of holes in expanded close-packed lattices.

9.10 Describe the distinguishing characteristics of elastomers, fibres, 
and plastics.

9.11 Explain the origin of Davydov splitting in the exciton bands of a
crystal.

9.12 Describe the characteristics of the Fermi–Dirac distribution.

Exercises

9.1(a) Equivalent lattice points within the unit cell of a Bravais lattice
have identical surroundings. What points within a body-centred cubic
unit cell are equivalent to the point (0, 1–2 , 0)?

9.1(b) Equivalent lattice points within the unit cell of a Bravais lattice
have identical surroundings. What points within a face-centred cubic
unit cell are equivalent to the point ( 1–2 , 0, 1–2 )?

9.2(a) Show that the volume of a monoclinic unit cell is V = abc sin β.

9.2(b) Derive an expression for the volume of a hexagonal unit cell.

9.3(a) Find the Miller indices of the planes that intersect the
crystallographic axes at the distances (3a, 2b, c) and (2a, ∞b, ∞c).

9.3(b) Find the Miller indices of the planes that intersect the
crystallographic axes at the distances (−a, 2b, −c) and (a, 4b, −4c).

9.4(a) Calculate the separations of the planes {112}, {110}, and {224} 
in a crystal in which the cubic unit cell has side 562 pm.

9.4(b) Calculate the separations of the planes {123}, {222}, and {246} 
in a crystal in which the cubic unit cell has side 712 pm.

9.5(a) What are the values of the glancing angle (θ) of the first three
diffraction lines of bcc iron (atomic radius 126 pm) when the X-ray
wavelength is 72 pm?

9.5(b) What are the values of the glancing angle (θ) of the first three
diffraction lines of fcc gold {atomic radius 144 pm) when the X-ray
wavelength is 129 pm?

9.6(a) Copper Kα radiation consists of two components of wavelengths
154.433 pm and 154.051 pm. Calculate the difference in glancing angles
(θ) of the diffraction lines arising from the two components in a powder
diffraction pattern from planes of separation 77.8 pm.

9.6(b) A synchrotron source produces X-radiation at a range of
wavelengths. Consider two components of wavelengths 93.222 and
95.123 pm. Calculate the separation of the glancing angles (θ) arising
from the two components in a powder diffraction pattern from planes of
separation 82.3 pm.

9.7(a) What is the value of the scattering factor in the forward direction
for Br−?

9.7(b) What is the value of the scattering factor in the forward direction
for Mg2+?

9.8(a) The orthorhombic unit cell of NiSO4 has the dimensions a = 634 pm,
b = 784 pm, and c = 516 pm, and the density of the solid is estimated as
3.9 g cm−3. Determine the number of formula units per unit cell and
calculate a more precise value of the density.
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9.8(b) An orthorhombic unit cell of a compound of molar mass 135.01 g
mol−1 has the dimensions a = 589 pm, b = 822 pm, and c = 798 pm. The
density of the solid is estimated as 2.9 g cm−3. Determine the number of
formula units per unit cell and calculate a more precise value of the
density.

9.9(a) The unit cells of SbCl3 are orthorhombic with dimensions 
a = 812 pm, b = 947 pm, and c = 637 pm. Calculate the spacing, d,
of the (321) planes.

9.9(b) An orthorhombic unit cell has dimensions a = 769 pm, 
b = 891 pm, and c = 690 pm. Calculate the spacing, d, of the (312) 
planes.

9.10(a) Potassium nitrate crystals have orthorhombic unit cells of
dimensions a = 542 pm, b = 917 pm, and c = 645 pm. Calculate the
glancing angles for the (100), (010), and (111) reflections using Cu Kα
radiation (154 pm).

9.10(b) Calcium carbonate crystals in the form of aragonite have
orthorhombic unit cells of dimensions a = 574.1 pm, b = 796.8 pm, and 
c = 495.9 pm. Calculate the glancing angles for the (100), (010), and (111)
reflections using radiation of wavelength 83.42 pm (from aluminium).

9.11(a) Copper(I) chloride forms cubic crystals with four formula units
per unit cell. The only reflections present in a powder photograph are
those with either all even indices or all odd indices. What is the (Bravais)
lattice type of the unit cell?

9.11(b) A powder diffraction photograph from tungsten shows lines that
index as (110), (200), (211), (220), (310), (222), (321), (400), . . .
Identify the (Bravais) lattice type of the unit cell.

9.12(a) The coordinates, in units of a, of the atoms in a primitive cubic
unit cell are (0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0), 
(1, 0, 1), and (1, 1, 1). Calculate the structure factors Fhkl when all the
atoms are identical.

9.12(b) The coordinates, in units of a, of the atoms in a body-centred
cubic unit cell are (0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0),
(1, 0, 1), (1, 1, 1), and (1–2 , 1–2 , 1–2 ). Calculate the structure factors Fhkl when
all the atoms are identical.

9.13(a) Calculate the structure factors for a face-centred cubic structure
(C) in which the scattering factors of the ions on the two faces are twice
that of the ions at the corners of the cube.

9.13(b) Calculate the structure factors for a body-centred cubic structure
in which the scattering factor of the central ion is twice that of the ions at
the corners of the cube.

9.14(a) In an X-ray investigation, the following structure factors were
determined (with F−h00 = Fh00):

h 0 1 2 3 4 5 6 7 8 9

Fh00 10 −10 8 −8 6 −6 4 −4 2 −2

Construct the electron density along the corresponding direction.

9.14(b) In an X-ray investigation, the following structure factors were
determined (with F−h00 = Fh00):

h 0 1 2 3 4 5 6 7 8 9

Fh00 10 10 4 4 6 6 8 8 10 10

Construct the electron density along the corresponding direction.

9.15(a) Construct the Patterson synthesis from the information in
Exercise 9.14a.

9.15(b) Construct the Patterson synthesis from the information in
Exercise 9.14b.

9.16(a) In a Patterson synthesis, the spots correspond to the lengths and
directions of the vectors joining the atoms in a unit cell. Sketch the
pattern that would be obtained for a planar, triangular isolated BF3
molecule.

9.16(b) In a Patterson synthesis, the spots correspond to the lengths and
directions of the vectors joining the atoms in a unit cell. Sketch the
pattern that would be obtained from the C atoms in an isolated benzene
molecule.

9.17(a) What velocity should neutrons have if they are to have
wavelength 65 pm?

9.17(b) What velocity should electrons have if they are to have
wavelength 105 pm?

9.18(a) Calculate the wavelength of neutrons that have reached thermal
equilibrium by collision with a moderator at 350 K.

9.18(b) Calculate the wavelength of electrons that have reached thermal
equilibrium by collision with a moderator at 380 K.

9.19(a) Calculate the packing fraction for close-packed cylinders. (For a
generalization of this Exercise, see Problem 9.21.)

9.19(b) Calculate the packing fraction for equilateral triangular rods
stacked as shown in (2).

2

9.20(a) Calculate the packing fractions of (a) a primitive cubic unit cell,
(b) a bcc unit cell, (c) an fcc unit cell composed of identical hard spheres.

9.20(b) Calculate the atomic packing factor for a side-centred (C) cubic
unit cell.

9.21(a) From the data in Table 9.3 determine the radius of the smallest
cation that can have (a) sixfold and (b) eightfold coordination with the
Cl− ion.

9.21(b) From the data in Table 9.3 determine the radius of the smallest
cation that can have (a) sixfold and (b) eightfold coordination with the
Rb+ ion.

9.22(a) Does titanium expand or contract as it transforms from hcp to
body-centred cubic? The atomic radius of titanium is 145.8 pm in hcp
but 142.5 pm in bcc.

9.22(b) Does iron expand or contract as it transforms from hcp to bcc?
The atomic radius of iron is 126 in hcp but 122 pm in bcc.

9.23(a) Calculate the lattice enthalpy of CaO from the following data:

ΔH/(kJ mol−1)

Sublimation of Ca(s) +178

Ionization of Ca(g) to Ca2+(g) +1735

Dissociation of O2(g) +249

Electron attachment to O(g) −141

Electron attachment to O−(g) +844

Formation of CaO(s) from Ca(s) and O2(g) −635



9 SOLIDS 289

9.23(b) Calculate the lattice enthalpy of MgBr2 from the following data:

ΔH/(kJ mol−1)

Sublimation of Mg(s) +148

Ionization of Mg(g) to Mg2+(g) +2187

Vaporization of Br2(l) +31

Dissociation of Br2(g) +193

Electron attachment to Br(g) −331

Formation of MgBr2(s) from Mg(s) and Br2(l) −524

9.24(a) Young’s modulus for polyethylene at room temperature is 
1.2 GPa. What strain will be produced when a mass of 1.5 kg is
suspended from a polyethylene thread of diameter 2.0 mm?

9.24(b) Young’s modulus for iron at room temperature is 215 GPa. What
strain will be produced when a mass of 15.0 kg is suspended from an iron
wire of diameter 0.15 mm?

9.25(a) Poisson’s ratio for polyethylene is 0.45. What change in volume
takes place when a cube of polyethylene of volume 1.0 cm3 is subjected to
a uniaxial stress that produces a strain of 2.0 per cent?

9.25(b) Poisson’s ratio for lead is 0.41. What change in volume takes
place when a cube of lead of volume 100 cm3 is subjected to a uniaxial
stress that produces a strain of 1.5 per cent?

9.26(a) Is arsenic-doped germanium a p-type or n-type semiconductor?

9.26(b) Is gallium-doped germanium a p-type or n-type semiconductor?

9.27(a) The promotion of an electron from the valence band into the
conduction band in pure TIO2 by light absorption requires a wavelength
of less than 350 nm. Calculate the energy gap in electronvolts between
the valence and conduction bands.

9.27(b) The band gap in silicon is 1.12 eV. Calculate the maximum
wavelength of electromagnetic radiation that results in promotion of
electrons from the valence to the conduction band.

9.28(a) The magnetic moment of CrCl3 is 3.81μB. How many unpaired
electrons does the Cr possess?

9.28(b) The magnetic moment of Mn2+ in its complexes is typically
5.3μB. How many unpaired electrons does the ion possess?

9.29(a) Calculate the molar susceptibility of benzene given that its
volume susceptibility is −8.8 × 10−6 and its density 0.879 g cm−3

at 25°C.

9.29(b) Calculate the molar susceptibility of cyclohexane given that its
volume susceptibility is −7.9 × 10−7 and its density 811 kg m−3 at 25°C.

9.30(a) Data on a single crystal of MnF2 give χm = 0.1463 cm3 mol−1 at
294.53 K. Determine the effective number of unpaired electrons in this
compound and compare your result with the theoretical value.

9.30(b) Data on a single crystal of NiSO4·7H2O give χm = 5.03 × 10−8 m3

mol−1 at 298 K. Determine the effective number of unpaired electrons in
this compound and compare your result with the theoretical value.

9.31(a) Estimate the spin-only molar susceptibility of CuSO4·5H2O at
25°C.

9.31(b) Estimate the spin-only molar susceptibility of MnSO4·4H2O at
298 K.

9.32(a) Lead has Tc = 7.19 K and Hc = 63.9 kA m−1. At what temperature
does lead become superconducting in a magnetic field of 20 kA m−1?

9.32(b) Tin has Tc = 3.72 K and Hc = 25 kA m−1. At what temperature
does lead become superconducting in a magnetic field of 15 kA m−1?

Problems*

Numerical problems

9.1 In the early days of X-ray crystallography there was an urgent need
to know the wavelengths of X-rays. One technique was to measure the
diffraction angle from a mechanically ruled grating. Another method
was to estimate the separation of lattice planes from the measured
density of a crystal. The density of NaCl is 2.17 g cm−3 and the (100)
reflection using Pd Kα radiation occurred at 6.0°. Calculate the
wavelength of the X-rays.

9.2 The element polonium crystallizes in a cubic system. Bragg
reflections, with X-rays of wavelength 154 pm, occur at sin θ = 0.225,
0.316, and 0.388 from the (100), (110), and (111) sets of planes. The
separation between the sixth and seventh lines observed in the powder
diffraction pattern is larger than that between the fifth and sixth lines. 
Is the unit cell simple, body-centred, or face-centred? Calculate the unit
cell dimension.

9.3 Elemental silver reflects X-rays of wavelength 154.18 pm at 
angles of 19.076°, 22.171°, and 32.256°. However, there are no 
other reflections at angles of less than 33°. Assuming a cubic 
unit cell, determine its type and dimension. Calculate the mass 
density of silver.

9.4 In their book X-rays and crystal structures (which begins ‘It is now
two years since Dr. Laue conceived the idea . . .’) the Braggs give a
number of simple examples of X-ray analysis. For instance, they report
that the reflection from (100) planes in KCl occurs at 5° 23′, but for 
NaCl it occurs at 6° 0′ for X-rays of the same wavelength. If the side of
the NaCl unit cell is 564 pm, what is the side of the KCl unit cell? The
densities of KCl and NaCl are 1.99 g cm−3 and 2.17 g cm−3 respectively.
Do these values support the X-ray analysis?

9.5 Calculate the thermal expansion coefficient, α = (∂V/∂T)p/V, 
of diamond given that the (111) reflection shifts from 22.0403° to
21.9664° on heating a crystal from 100 K to 300 K and 154.0562 pm 
X-rays are used.

9.6 The carbon–carbon bond length in diamond is 154.45 pm. If
diamond were considered to be a close-packed structure of hard spheres
with radii equal to half the bond length, what would be its expected
density? The diamond lattice is face-centred cubic and its actual density
is 3.516 g cm−3. Can you explain the discrepancy?

9.7 The volume of a monoclinic unit cell is abc sin β (see Exercise 9.2a).
Naphthalene has a monoclinic unit cell with two molecules per cell and
sides in the ratio 1.377:1:1.436. The angle β is 122° 49′ and the density of
the solid is 1.152 g cm−3. Calculate the dimensions of the cell.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp and Carmen Giunta.
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9.8 Fully crystalline polyethylene has its chains aligned in an
orthorhombic unit cell of dimensions 740 pm × 493 pm × 253 pm. There
are two repeating CH2CH2 units per unit cell. Calculate the theoretical
mass density of fully crystalline polyethylene. The actual density ranges
from 0.92 to 0.95 g cm−3.

9.9‡ B.A. Bovenzi and G.A. Pearse, Jr. ( J. Chem. Soc. Dalton Trans. 2793
(1997)) synthesized coordination compounds of the tridentate ligand
pyridine-2,6-diamidoxime (3, C7H7N3O4). The compound that they
isolated from the reaction of the ligand with CuSO4(aq) did not 
contain a [Cu(C7H7N3O4)2]2+ complex cation as expected. Instead, 
X-ray diffraction analysis revealed a linear polymer of formula
[Cu(Cu(C7H7N3O4)(SO4)·2H2O]n, which features bridging sulfate
groups. The unit cell was primitive monoclinic with a = 1.0427 nm, 
b = 0.8876 nm, c = 1.3777 nm, and β = 93.254°. The mass density of 
the crystals is 2.024 g cm−3. How many monomer units are there in 
the unit cell?

9.13‡ J.J. Dannenberg et al. (J. Phys. Chem. 100, 9631 (1996)) carried 
out theoretical studies of organic molecules consisting of chains of
unsaturated four-membered rings. The calculations suggest that such
compounds have large numbers of unpaired spins, and that they should
therefore have unusual magnetic properties. For example, the lowest-
energy state of the compound shown as (5) is computed to have 
S = 3, but the energies of S = 2 and S = 4 structures are each predicted 
to be 50 kJ mol−1 higher in energy. Compute the molar magnetic
susceptibility of these three low-lying levels at 298 K. Estimate the 
molar susceptibility at 298 K if each level is present in proportion 
to its Boltzmann factor (effectively assuming that the degeneracy 
is the same for all three of these levels).

9.10‡ D. Sellmann et al., Inorg. Chem. 36, 1397 (1997)) describe 
the synthesis and reactivity of the ruthenium nitrido compound
[N(C4H9)4][Ru(N)(S2C6H4)2]. The ruthenium complex anion has 
the two 1,2-benzenedithiolate ligands (4) at the base of a rectangular
pyramid and the nitrido ligand at the apex. Compute the mass density 
of the compound given that it crystallizes into an orthorhombic unit 
cell with a = 3.6881 nm, b = 0.9402 nm, and c = 1.7652 nm and eight
formula units per cell. Replacing the ruthenium with osmium results 
in a compound with the same crystal structure and a unit cell with a
volume less than 1 per cent larger. Estimate the mass density of the
osmium analogue.

9.11 Use the Born–Mayer equation for the lattice enthalpy and a
Born–Haber cycle to show that formation of CaCl is an exothermic
process (the sublimation enthalpy of Ca(s) is 176 kJ mol−1). Show that 
an explanation for the nonexistence of CaCl can be found in the reaction
enthalpy for the reaction 2 CaCl(s) → Ca(s) + CaCl2(s).

9.12 In an intrinsic semiconductor, the band gap is so small that 
the Fermi–Dirac distribution results in some electrons populating 
the conduction band. It follows from the exponential form of the
Fermi–Dirac distribution that the conductance G, the inverse of 
the resistance (with units of siemens, 1 S = 1 Ω−1), of an intrinsic
semiconductor should have an Arrhenius-like temperature dependence,
shown in practice to have the form G = G0e−Eg /2kT, where Eg is the band
gap. The conductance of a sample of germanium varied with
temperature as indicated below. Estimate the value of Eg.

T/K 312 354 420

G/S 0.0847 0.429 2.86

9.14‡ P.G. Radaelli et al. (Science 265, 380 (1994)) reported the 
synthesis and structure of a material that becomes superconducting 
at temperatures below 45 K. The compound is based on a layered
compound Hg2Ba2YCu2O8-δ, which has a tetragonal unit cell with 
a = 0.386 06 nm and c = 2.8915 nm; each unit cell contains two 
formula units. The compound is made superconducting by partially
replacing Y by Ca, accompanied by a change in unit cell volume by 
less than 1 per cent. Estimate the Ca content x in superconducting 
Hg2Ba2Y1−xCaxCu2O7.55 given that the mass density of the 
compound is 7.651 g cm−3.

Theoretical problems

9.15 Show that the separation of the (hkl) planes in an orthorhombic
crystal with sides a, b, and c is given by eqn 9.1.

9.16 Show that the volume of a triclinic unit cell of sides a, b, and c and
angles α, β, and γ is

V = abc(1 − cos2α − cos2β − cos2γ + 2 cos α cos β cos γ)1/2

Use this expression to derive expressions for monoclinic and
orthorhombic unit cells. For the derivation, it may be helpful to use the
result from vector analysis that V = a · b × c and to calculate V2 initially.
The compound Rb3TlF6 has a tetragonal unit cell with dimensions 
a = 651 pm and c = 934 pm. Calculate the volume of the unit cell.

9.17 Use mathematical software to draw a graph of the scattering 
factor f against (sin θ)/λ for an atom of atomic number Z for which 
ρ(r) = 3Z/4πR3 for 0 ≤ r ≤ R and ρ(r) = 0 for r > R, with R a parameter
that represents the radius of the atom. Explore how f varies with Z
and R.

9.18 Calculate the scattering factor for a hydrogenic atom of atomic
number Z in which the single electron occupies (a) the 1s orbital, 
(b) the 2s orbital. Radial wavefunctions are given in Table 4.1. Plot f as a
function of (sin θ)/λ. Hint. Interpret 4πρ(r)r 2 as the radial distribution
function P(r) of eqn 4.15.

9.19 Explore how the scattering factor of Problem 9.18 changes when
the actual 1s wavefunction of a hydrogenic atom is replaced by a
Gaussian function.

9.20 Calculate the atomic packing factor for diamond.

9.21 Rods of elliptical cross-section with semi-major and -minor axes a
and b are close-packed as shown in (6). What is the packing fraction?
Draw a graph of the packing fraction against the eccentricity ε of the
ellipse. For an ellipse with semi-major axis a and semi-minor axis b, 
ε = (1 − b2/a2)1/2.
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9.22 The coordinates of the four I atoms in the unit cell of KIO4 are 
(0, 0, 0), (0, 1–2 , 1–2 ), (1–2 , 1–2 , 1–2 ), (1–2 , 0, 3–4). By calculating the phase of the I
reflection in the structure factor, show that the I atoms contribute no 
net intensity to the (114) reflection.

9.23 The coordinates, in units of a, of the A atoms, with scattering factor
fA, in a cubic lattice are (0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), 
(1, 1, 0), (1, 0, 1), and (1, 1, 1). There is also a B atom, with scattering
factor fB, at (1–2 , 1–2 , 1–2 ). Calculate the structure factors Fhkl and predict the
form of the powder diffraction pattern when (a) fA = f, fB = 0, (b) fB = 1–2 fA,
and (c) fA = fB = f.

9.24 Derive the Born–Mayer equation (eqn 9.12) by calculating the
energy at which d(EP + E*P)/dd = 0, with EP and E*P given by eqns 9.10 and
9.11, respectively.

9.25 Suppose that ions are arranged in a (somewhat artificial) two-
dimensional lattice like the fragment shown in (7). Calculate the
Madelung constant for this array.

where k, N, α, and β have the meanings described in Section 9.9. 
(b) Use this expression to show that ρ(E) becomes infinite as E
approaches α ± 2β. That is, show that the density of states increases
towards the edges of the bands in a one-dimensional metallic conductor.

9.29 The treatment in Problem 9.28 applies only to one-dimensional
solids. In three dimensions, the variation of density of states is more like
that shown in (8). Account for the fact that in a three-dimensional solid
the greatest density of states is near the centre of the band and the lowest
density is at the edges.
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9.26 For an isotropic substance, the moduli and Poisson’s ratio may be
expressed in terms of two parameters λ and μ called the Lamé constants:

Use the Lamé constants to confirm the relations between G, K, and E
given in eqn 9.16.

9.27 Justification 9.4 showed how to relate the bulk modulus of a 
solid to the parameters that appear in a Lennard-Jones potential. What
relation can be deduced for (a) a general Mie potential (eqn 8.18b) 
and (b) an exp-6 potential? Hint. For an exp-6 potential, rmin = 1.63r0.

9.28 When energy levels in a band form a continuum, the density of
states ρ(E), the number of levels in an energy range divided by the width
of the range, may be written as ρ(E) = dk/dE, where dk is the change in
the quantum number k and dE is the energy change. (a) Use eqn 9.18 
to show that
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9.30 The energy levels of N atoms in the tight-binding Hückel
approximation (Section 9.9) are the roots of a tridiagonal determinant
(eqn 9.18):

If the atoms are arranged in a ring, the solutions are the roots of a ‘cyclic’
determinant:

(for N even). Discuss the consequences, if any, of joining the ends of an
initially straight length of material.

9.31 In this and the following problem we explore some of the properties
of the Fermi–Dirac distribution, eqn 9.20. First, we need to be aware that
the distribution gives the probability of occupation of a given energy
state, and to calculate the number of electrons in an energy range E to 
E + dE we need to multiply P(E) by the number of states in that range,
ρ(E)dE, where ρ(E) is the density of states at the energy E. Therefore, 
the total number of electrons, Ne, in the sample is

For a three-dimensional solid of volume V, it turns out that ρ(E) = CE1/2,
with C = 4πV(2me /h2)3/2. Show that at T = 0,

P(E) = 1 for E < μ P(E) = 0 for E > μ

and deduce that μ(0) = (3N /8π)2/3(h2/2me), where N = Ne /V, the
number density of electrons in the solid. Evaluate μ(0) for sodium
(where each atom contributes one electron).

9.32 By inspection of eqn 9.20 and the expression for Ne in Problem 9.31
(and without attempting to evaluate the integral explicitly), show that, in
order for Ne to remain constant as the temperature is raised, the
chemical potential must decrease in value from μ(0).

9.33 Show that if a substance responds non-linearly to two sources of
radiation, one of frequency ω1 and the other of frequency ω2, then it may
give rise to radiation of the sum and difference of the two frequencies.
This non-linear optical phenomenon is known as frequency mixing and is
used to expand the wavelength range of lasers in laboratory applications,
such as spectroscopy and photochemistry.
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9.34 In the following sequence of problems we investigate quantitatively
the spectra of molecular solids. We begin by considering a dimer, with
each monomer having a single transition with transition dipole 
moment μmon and wavenumber #mon. We assume that the ground-
state wavefunctions are not perturbed as a result of dimerization.
We then write the dimer excited state wavefunctions Ψi as linear
combinations of the excited state wavefunctions ψ1 and ψ2 of the
monomer: Ψi = cjψ1 + ckψ2. Now we write the hamiltonian matrix 
with diagonal elements set to the energy between the excited and 
ground state of the monomer (which,
expressed as a wavenumber, is simply
#mon), and off-diagonal elements
corresponding to the energy of
interaction between the transition
dipoles. Using the arrangement 
in (9), write this interaction energy 
(as a wavenumber) as:

It follows that the hamiltonian matrix is

The eigenvalues of the matrix are the dimer transition wavenumbers #1
and #2. The eigenvectors are the wavefunctions for the excited states of 

the dimer and have the form . The intensity of absorption of 

incident radiation is proportional to the square of the transition 
dipole moment (Section 4.3). The monomer transition dipole moment
is μmon = ∫ψ1*Nψ0dτ = ∫ψ2*Nψ0dτ, where ψ0 is the wavefunction of the
monomer ground state. Assume that the dimer ground state may also be
described by ψ0 and show that the transition dipole moment μi of each
dimer transition is given by μi = μmon(cj + ck).

9.35 (a) Consider a dimer of monomers with μmon = 4.00 D, 
#mon = 25 000 cm−1, and r = 0.5 nm. How do the transition 
wavenumbers #1 and #2 vary with the angle θ? The relative intensities 
of the dimer transitions may be estimated by calculating the ratio μ2

2 /μ2
1.

How does this ratio vary with the angle θ? (b) Now expand the treatment
given above to a chain of N monomers (N = 5, 10, 15, and 20), with μmon
= 4.00 D, #mon = 25 000 cm−1, and r = 0.5 nm. For simplicity, assume that
θ = 0 and that only nearest neighbours interact with interaction energy
V. For example, the hamiltonian matrix for the case N = 4 is

How does the wavenumber of the lowest energy transition vary with size
of the chain? How does the transition dipole moment of the lowest
energy transition vary with the size of the chain?
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9.36 The magnetizability, ξ, and the volume and molar magnetic
susceptibilities can be calculated from the wavefunctions of molecules.
For instance, the magnetizability of a hydrogenic atom is given by the
expression ξ = −(e2/6me)〈r2〉, where 〈r2〉 is the (expectation) mean 
value of r2 in the atom. Calculate ξ and χm for the ground state of a
hydrogenic atom.

9.37 Nitrogen dioxide, a paramagnetic compound, is in equilibrium
with its dimer, dinitrogen tetroxide, a diamagnetic compound. Derive an
expression in terms of the equilibrium constant, K, for the dimerization
to show how the molar susceptibility varies with the pressure of the
sample. Suggest how the susceptibility might be expected to vary as 
the temperature is changed at constant pressure.

9.38 An NO molecule has thermally accessible electronically excited
states. It also has an unpaired electron, and so may be expected to be
paramagnetic. However, its ground state is not paramagnetic because 
the magnetic moment of the orbital motion of the unpaired electron
almost exactly cancels the spin magnetic moment. The first excited state
(at 121 cm−1) is paramagnetic because the orbital magnetic moment
adds to, rather than cancels, the spin magnetic moment. The upper state
has a magnetic moment of 2μB. Because the upper state is thermally
accessible, the paramagnetic susceptibility of NO shows a pronounced
temperature dependence even near room temperature. Calculate the
molar paramagnetic susceptibility of NO and plot it as a function of
temperature.

Applications to: biochemistry and nanoscience

9.39 Although the crystallization of large biological molecules may 
not be as readily accomplished as that of small molecules, their crystal
lattices are no different. Tobacco seed globulin forms face-centred 
cubic crystals with unit cell dimension of 12.3 nm and a density of 
1.287 g cm−3. Determine its molar mass.

9.40 What features in an X-ray diffraction pattern suggest a helical
conformation for a biological macromolecule? Use Fig. 9.26 to deduce
as much quantitative information as you can about the shape and size 
of a DNA molecule.

9.41 A transistor is a semiconducting device that is commonly 
used either as a switch or an amplifier of electrical signals. Prepare 
a brief report on the design of a nanometre-sized transistor that 
uses a carbon nanotube as a component. A useful starting point 
is the work summarized by Tans et al. (Nature 393, 49 (1998)).

9.42 The tip of a scanning tunnelling microscope can be used 
to move atoms on a surface. The movement of atoms and ions 
depends on their ability to leave one position and stick to another, 
and therefore on the energy changes that occur. As an illustration,
consider a two-dimensional square lattice of univalent positive 
and negative ions separated by 200 pm, and consider a cation 
on top of this array. Calculate, by direct summation, its Coulombic
interaction when it is in an empty lattice point directly above 
an anion.
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MATHEMATICAL BACKGROUND 6

Fourier series and Fourier
transforms

Some of the most versatile mathematical functions are the
trigonometric functions sine and cosine. As a result, it is often
very helpful to express a general function as a linear combina-
tion of these functions and then to carry out manipulations on
the resulting series. Because sines and cosines have the form of
waves, the linear combinations often have a straightforward
physical interpretation. Throughout this discussion, the func-
tion f(x) is real.

MB6.1 Fourier series

A Fourier series is a linear combination of sines and cosines that
replicates a periodic function:

(MB6.1)

A periodic function is one that repeats periodically, such that 
f (x + 2L) = f(x), where 2L is the repeat length. Although it is 
perhaps not surprising that sines and cosines can be used to
replicate continuous functions, it turns out that—with certain
limitations—they can also be used to replicate discontinuous
functions too. The coefficients in eqn MB6.1 are found by mak-
ing use of the orthogonality of the sine and cosine functions

(MB6.2a)

and the integrals

(MB6.2b)

where δmn = 1 if m = n and 0 if m ≠ n. Thus, multiplication of
both sides of eqn MB6.1 by cos(kπx/L) and integration from 
−L to L gives an expression for the coefficient ak, and multiplica-
tion by sin(kπx/L) and integration likewise gives an expression
for bk:

(MB6.3)
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l A BRIEF ILLUSTRATION

Figure MB6.1 shows a graph of a square wave of amplitude A
that is periodic between −L and L. The mathematical form of
the wave is

The coefficients a are all zero because f(x) is antisymmetric
( f(−x) = −f(x)) whereas all the cosine functions are symmetric
(cos(−x) = cos(x)) and so cosine waves make no contribution
to the sum. The coefficients b are obtained from

The final expression has been formulated to acknowledge
that the two integrals cancel when k is even but add together
when k is odd. Therefore,

with N → ∞. The sum over n is the same as the sum over k; in
the latter, terms with k even are all zero. This function is plotted
in Fig. MB6.1 for two values of N to show how the series be-
comes more faithful to the original function as N increases. l

Self-test MB6.1 Repeat the analysis for a saw-tooth wave,
f(x) = Ax in the range −L ≤ x < L and f(x + 2L) = f(x) else-
where. Use graphing software to depict the result.
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Fig. MB6.1 A square wave and two successive approximations by
Fourier series (N = 5 and N = 100). The inset shows a magnification 
of the N = 100 approximation.
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MB6.2 Finite approximations and Parseval’s
theorem

Close inspection of Fig. MB6.1 (a region has been magnified)
shows that the Fourier series has artefacts where the original
wave is discontinuous; these artefacts persist even as N → ∞.
They disappear in regions where the function f(x) is piecewise
continuous (in regions where f(x) does not jump from one 
value to another, as in the horizontal parts of the square wave 
as distinct from the end-points of each horizontal section). 
For these well behaved regions a useful result is obtained by 
considering how closely a finite sum (like the successive appro-
ximations depicted in Fig. MB6.1 to the square wave) appro-
aches the original function. Thus, in place of eqn MB6.1, we
write

(MB6.4)

and examine the mean square error in this approximation to
f(x) for a finite value of N:

Because the integral on the left is non-negative (that is, greater
than or equal to zero), the sum of the three integrals on the right
is also non-negative. However, we may use the orthogonality
relations in eqn MB6.2 to write
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The final sum terminates at N because the integrals over the
cosine and sine terms in the infinite sum that have no matching
terms in the finite sum are all zero. The integral over fN(x)2

therefore has the same value, and so we can conclude that

(MB6.5a)

If now we allow N to become infinite, the inequality is replaced
by the equality and we arrive at Parseval’s theorem:

(MB6.5b)

This theorem is useful in reverse: because it relates a sum to an
integral, it is sometimes possible to evaluate a sum by evaluating
the corresponding integral. Note that it is essential that the range
of integration does not include any discontinuities of the func-
tion f(x).

l A BRIEF ILLUSTRATION

In Self-test MB6.1 we derived the Fourier series for the func-
tion f(x) = x, which is piecewise continuous in the range −L ≤
x < L. The integral of the square of this function in this range is

The coefficients in the Fourier series for x are an = 0 and 
bn = 2(−1)n+1L/nπ. Therefore, from Parseval’s theorem,

from which we can conclude that

l

Self-test MB6.2 Evaluate the sum of inverse fourth powers of 
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MB6.3 Fourier transforms

The Fourier series in eqn MB6.1 can be expressed in a more suc-
cinct manner if we allow the coefficients to be complex numbers
and make use of de Moivre’s relation

(MB6.6)

for then we may write

(MB6.7)

This complex formalism is well suited to the extension of this
discussion to functions with periods that become infinite. If a
period is infinite, we are effectively dealing with a non-periodic
function, such as e−x.

We write δk = π/L and consider the limit as L → ∞ and there-
fore δk → 0: that is, eqn MB6.7 becomes

(MB6.8)

In the last line we have anticipated that the limits of the integral
will become infinite. At this point we should recognize that a
formal definition of an integral is the sum of the value of a func-
tion at a series of infinitely spaced points multiplied by the 
separation of each point (Fig. MB6.3):
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(MB6.9)

Exactly this form appears on the right-hand side of eqn MB6.8,
so we can write that equation as

(MB6.10)

We call the function á(k) the Fourier transform of f(x); the ori-
ginal function f(x) is the inverse Fourier transform of á(k).

l A BRIEF ILLUSTRATION

The Fourier transform of the symmetrical exponential func-
tion f(x) = e−a|x| is

The original function and its Fourier transform are drawn in
Fig. MB6.4. l
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Fig. MB6.3 The formal definition of an integral as the sum of the value
of a function at a series of infinitely spaced points multiplied by the
separation of each point.
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richer in short-wavelength (high k) components.
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Self-test MB6.3 Evaluate the Fourier transform of the
Gaussian function e−a2x2

. [ á(k) = (π/a2)1/2e−k2/4a2
]

The physical interpretation of eqn MB6.10 is that f(x) is 
expressed as a superposition of harmonic (sine and cosine)
functions of wavelength λ = 2π/k, and that the weight of each
constituent function is given by the Fourier transform at the
corresponding value of k. This interpretation is consistent with
the calculation in the illustration. As we see from Fig. MB6.4,
when the exponential function falls away rapidly, the Fourier
transform is extended to high values of k, corresponding to a
significant contribution from short-wavelength waves. When the
exponential function decays only slowly, the most significant
contributions to the superposition come from long-wavelength
components, which is reflected in the Fourier transform, with its
predominance of small-k contributions in this case. In general, a
slowly varying function has a Fourier transform with significant
contributions from small-k components.

MB6.4 The convolution theorem

A final point concerning the properties of Fourier transforms is
the convolution theorem, which states that, if a function is the
‘convolution’ of two other functions, that is, if

(MB6.11a)

then the Fourier transform of F(x) is the product of the Fourier
transforms of its component functions:

Ü(k) = á1(k)á2(k) (MB6.11b)

l A BRIEF ILLUSTRATION

If F(x) is the convolution of two Gaussian functions,

then from Self-test MB6.3 we can immediately write its trans-
form as

lÜ( )
/

/

/

/k
a b

k a k=
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟− −π π

2

1 2

4
2

1 2

42 2 2
e e bb k a b

ab

2 2 2 24 1 1= − +π
e ( / )( / / )

  
F x xa x b x x( ) ( )= ′

−∞

∞
− ′ − − ′� e e

2 2 2 2
d

  
F x f x f x x x( ) ( ) ( )= ′ − ′ ′

−∞

∞

� 1 2 d



PART 3
Molecular
spectroscopy

We now begin our study of molecular spectroscopy, the analysis of the

electromagnetic radiation emitted, absorbed, or scattered by molecules. 

The starting point for the discussion in the next three chapters is the observation

summarized in Parts 1 and 2 that photons of radiation ranging from the infrared

to the ultraviolet bring information to us about molecules as a result of their

electronic, vibrational, and rotational transitions. In Chapters 10 and 11 we

describe techniques used to study these transitions and see how electronic

transitions prepare atoms and molecules for such important light-induced

processes as those associated with laser action. In Chapter 12 we see that 

the combined effect of an external magnetic field and molecular excitation 

with photons in the radiofrequency or microwave ranges leads to important

spectroscopic techniques, collectively known as magnetic resonance

spectroscopy, that are now common in chemistry, biochemistry, and 

medicine. In short, molecular spectra are complicated but contain a great 

deal of information, including bond lengths, bond angles, and bond strengths,

that can be used to analyse systems ranging in size from diatomic molecules 

to living organisms. Along the way, we also see how spectra complement

information on molecular structure obtained from the diffraction techniques

discussed in Chapter 9.

Another outcome of spectroscopy is the determination of the energy levels

available to electrons, atoms, and molecules. These energy levels will turn out to

be crucial to understanding and predicting the thermodynamic properties of bulk

matter that we treat in later chapters of the text.

10 Rotational and vibrational
spectra

11 Electronic spectroscopy

12 Magnetic resonance
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Rotational and
vibrational spectra

The general strategy we adopt in the chapter is to set up expressions for the energy levels
of molecules and then apply selection rules and considerations of populations to infer the
form of spectra. Rotational energy levels are considered first, and we see how to derive 
expressions for their values and how to interpret rotational spectra in terms of molecular 
dimensions. Not all molecules can occupy all rotational states: we see the experimental 
evidence for this restriction and its explanation in terms of nuclear spin and the Pauli prin-
ciple. Next, we consider the vibrational energy levels of diatomic molecules, and see that we
can use the properties of harmonic oscillators developed in Chapter 2. Then we consider
polyatomic molecules and find that their vibrations may be discussed as though they con-
sisted of a set of independent harmonic oscillators, so the same approach as employed 
for diatomic molecules may be used. We also see that the symmetry properties of the 
vibrations of polyatomic molecules are helpful for deciding which modes of vibration can be
studied spectroscopically.

The origin of spectral lines in molecular spectroscopy is the absorption, emission, or
scattering of a photon when the energy of a molecule changes. The difference from
atomic spectroscopy is that the energy of a molecule can change not only as a result 
of electronic transitions but also because it can undergo changes of rotational and 
vibrational state. Molecular spectra are therefore more complex than atomic spectra.
However, they also contain information relating to more properties, and their ana-
lysis leads to values of bond strengths, lengths, and angles. They also provide a way of
determining a variety of molecular properties, particularly molecular dimensions,
shapes, and dipole moments.

Pure rotational spectra, in which only the rotational state of a molecule changes,
can be observed in the gas phase. Although vibrational spectra from condensed-phase
samples do not display a structure due to accompanying rotational transitions, the
spectra of gaseous samples do show such structure. Electronic spectra, which are 
described in Chapter 11, show features arising from simultaneous vibrational and, 
in the gas phase, rotational transitions (Fig. 10.1). The simplest way of dealing with
these complexities is to tackle each type of transition in turn, and then to see how 
simultaneous changes affect the appearance of spectra.

Pure rotational spectra

The general strategy we adopt for discussing molecular spectra and the information
they contain is to find expressions for the energy levels of molecules and then to 

10
Pure rotational spectra

10.1 Moments of inertia

10.2 Rotational energy levels

10.3 Rotational transitions

10.4 Rotational Raman spectra

10.5 Nuclear statistics and
rotational states

I10.1 Impact on astrophysics:
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of interstellar molecules

The vibrations of diatomic
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10.6 Techniques

10.7 Molecular vibrations
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calculate the transition frequencies by applying the selection
rules. We then predict the appearance of the spectrum by taking
into account the transition moments and the populations of the
states. In this section we illustrate the strategy by considering the
rotational states of molecules.

10.1 Moments of inertia

The key molecular parameter we shall need is the moment of 
inertia, I, of the molecule (Section 3.3). The moment of inertia
of a molecule is defined as the mass of each atom multiplied by
the square of its perpendicular distance from the rotational axis
through the centre of mass of the molecule (Fig. 10.2):

I = ∑
i

mi x2
i [10.1]

where xi is the perpendicular distance of the atom i from the 
selected axis of rotation. The moment of inertia depends on the
masses of the atoms present and the molecular geometry, so 
we can suspect (and later shall see explicitly) that rotational
spectroscopy will give information about bond lengths and
bond angles.

In general, the rotational properties of any molecule can 
be expressed in terms of the principal moments of inertia, the 
moments of inertia about three perpendicular axes set in the
molecule (Fig. 10.3). The convention is to label these moments
of inertia Ia, Ib, and Ic, with the axes chosen so that Ic ≥ Ib ≥ Ia. For
linear molecules, the moment of inertia around the internuclear
axis is effectively zero. The explicit expressions for the principal
moments of inertia of some symmetrical molecules are given in
Table 10.1.

Fig. 10.1 A molecular spectrum displays transitions due to
electronic excitation, vibrational excitation, and rotational
excitation. This figure gives an indication of the magnitudes 
of each type of transition for HCl. The features illustrated here
are developed in this and the following chapter.

mC

mD
mD

mD

rD

mA

mA

mA

mB

rA

I m r m r= 3 + 3A A D D
2 2

Fig. 10.2 The definition of moment of inertia. In this molecule
there are three identical atoms attached to the B atom and three
different but mutually identical atoms attached to the C atom. In
this example, the centre of mass lies on an axis passing through
the B and C atoms, and the perpendicular distances are
measured from this axis.

Ia

Ib

Ic

Fig. 10.3 An asymmetric rotor has three different moments of
inertia; all three rotation axes coincide at the centre of mass of
the molecule.
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Table 10.1 Moments of inertia*

1. Diatomic molecules

I = μR2 μ =

2. Triatomic linear rotors

I = mAR2 + mCR′2 −

I = 2mAR2

3. Symmetric rotors

I|| = 2mA(1 − cosθ)R2

I⊥ = mA(1 − cosθ)R2 + (mB + mC)(1 + 2 cosθ)R2

+ {(3mA + mB)R′+ 6mAR[1–
3 (1 + 2 cosθ)]1/2}R′

I|| = 2mA(1 − cosθ)R2

I⊥ = mA(1 − cosθ)R2 + (1 + 2cosθ)R2

I|| = 4mAR2

I⊥ = 2mAR2 + 2mCR′2

4. Spherical rotors

I = 8–
3 mAR2

I = 4mAR2

* In each case, m is the total mass of the molecule.

mAmB

m

mC

m

mA

m

(mAR − mCR′)2

m

mAmB

m



302 10 ROTATIONAL AND VIBRATIONAL SPECTRA

Symmetric rotors have two equal moments of inertia (ex-
amples: NH3, CH3Cl, and CH3CN).

Linear rotors have one moment of inertia (the one about the
molecular axis) equal to zero (examples: CO2, HCl, OCS, and
HC.CH).

Asymmetric rotors have three different moments of inertia
(examples: H2O, H2CO, and CH3OH).

Asymmetric rotors are very difficult to treat and we shall not
deal with them here.

10.2 Rotational energy levels

The rotational energy levels of a rigid rotor may be obtained 
by solving the appropriate Schrödinger equation. Fortunately,
however, there is a much less onerous short cut to the exact 
expressions. This simpler route, which is described below, 
depends on noting the classical expression for the energy of a 
rotating body, expressing it in terms of the angular momentum,
and then importing the quantum mechanical properties of 
angular momentum into the equations.

The classical expression for the energy of a body rotating
about an axis a is

Ea = 1–2Iaωa
2 (10.2)

where ωa is the angular velocity (in radians per second, rad s−1)
about that axis and Ia is the corresponding moment of inertia.
The energy of a body free to rotate about three axes is

E = 1–2Iaω a
2 + 1–2Ibω b

2 + 1–2Icω c
2

I

I I

II

Ia

Ic

Ib

0Linear

Spherical
rotor

Symmetric
rotor

I

I I

Asymmetric
rotor

Fig. 10.4 A schematic illustration of the classification of rigid
rotors. (Note that the moment of inertia around the axis of a
linear rotor is zero.)

Example 10.1 Calculating the moment of inertia of a molecule

Calculate the moment of inertia of an H2O molecule around
the axis defined by the bisector of the HOH angle (1). The
HOH bond angle is 104.5° and the bond length is 95.7 pm.

&
R

xH

1

Method According to eqn 10.1, the moment of inertia is the
sum of the masses multiplied by the squares of their distances
from the axis of rotation. The latter can be expressed by using
trigonometry and the bond angle and bond length.

Answer From eqn 10.1,

I = mHx2
H + mOx2

O + mHx2
H = mHx2

H + 0 + mHx2
H = 2mHx2

H

If the bond angle of the molecule is denoted 2φ and the 
bond length is R, trigonometry gives xH = R sin φ. It follows
that

I = 2mHR2 sin2φ

Substitution of the data gives

I = 2 × (1.67 × 10−27 kg) × (9.57 × 10−11 m)2 × sin252.3°
= 1.91 × 10− 47 kg m2

Note that the mass of the O atom makes no contribution to
the moment of inertia for this mode of rotation as the atom is
immobile while the H atoms circulate around it.

A note on good practice The mass to use in the calculation 
of the moment of inertia is the actual atomic mass (in kilo-
grams, noting the precise nuclide present), not the element’s
molar mass, which is an average over a typical isotopic 
composition.

Self-test 10.1 Calculate the moment of inertia of a CH35Cl3
molecule around a rotational axis that contains the C-H
bond. The C-Cl bond length is 177 pm and the HCCl angle
is 107°; m(35Cl) = 34.97mu. [4.99 × 10−45 kg m2]

We shall suppose initially that molecules are rigid rotors,
bodies that do not distort under the stress of rotation. Rigid 
rotors can be classified into four types (Fig. 10.4):

Spherical rotors have three equal moments of inertia (ex-
amples: CH4, SiH4, and SF6).
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Because the classical angular momentum about the axis a is Ja =
Iaωa, with similar expressions for the other axes, it follows that

(10.3)

This is the key equation. We described the quantum mechanical
properties of angular momentum in Section 3.4, and can now
make use of them in conjunction with this equation to obtain
the rotational energy levels.

(a) Spherical rotors

When all three moments of inertia are equal to some value I, as
in CH4 and SF6, the classical expression for the energy is

where J 2 = Ja
2 + Jb

2 + Jc
2 is the square of the magnitude of the 

angular momentum. We can immediately find the correspond-
ing quantum expression by making the replacement

J 2 → J( J + 1)$2 J = 0, 1, 2, . . .

Therefore, the energy of a spherical rotor is confined to the 
values

J = 0, 1, 2, . . . (10.4)

The resulting ladder of energy levels is illustrated in Fig. 10.5.
Note that the rotor may have zero energy because J = 0 is allowed:
the cyclic boundary conditions on the wavefunction permit 
a solution that has a constant value at all angles (specifically
Y0,0(θ,φ) = 1/2π1/2) and hence corresponds to zero rotational 
kinetic energy. The energy is normally expressed in terms of the
rotational constant, è, of the molecule, where

[10.5]
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The expression for the energy is then

EJ = hcèJ(J + 1) J = 0, 1, 2, . . . (10.6)

The rotational constant as defined by eqn 10.5 is a wavenumber
(as indicated by the tilde). The energy of a rotational state is 
normally reported as the rotational term, Ü( J), a wavenumber,
by division by hc:

Ü( J) = EJ /hc = èJ( J + 1) (10.7)

The definition of è as a wavenumber is convenient for the 
discussion of vibration–rotation spectra. However, for pure 
rotational spectroscopy it is more common to define it as a 
frequency and to remove the tilde. Then B = $/4πI, the energy is 
E = hBJ( J + 1), and the rotational term is BJ( J + 1).

The separation of adjacent levels is

Ü( J + 1) − Ü( J) = è( J + 1)( J + 2) − èJ( J + 1)
= 2è( J + 1) (10.8)

Because the rotational constant decreases as I increases, we see
that large, heavy molecules have closely spaced rotational energy
levels. We can estimate the magnitude of the separation by con-
sidering CCl4: from the bond lengths and masses of the atoms
we find I = 4.85 × 10−45 kg m2, and hence è = 0.0577 cm−1.

The angular momentum of the molecule has a component on
an external, laboratory-fixed axis. This component is quantized,
and its permitted values are MJ $, with MJ = 0, ±1, . . . , ±J, giving
2J + 1 values in all (Fig. 10.6). The quantum number MJ does not
appear in the expression for the energy because the orientation
of the rotating molecule in space does not affect its energy, but 
it is necessary for a complete specification of the state of the
rotor. An additional feature is that the angular momentum has 
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Fig. 10.5 The rotational energy levels of a linear or spherical rotor.
Note that the energy separation between neighbouring levels
increases as J increases.

J MJ

M 0J =

z

(a) (b) (c)

Fig. 10.6 The significance of the quantum number MJ. (a) When
MJ is close to its maximum value, J, most of the molecular
rotation is around the laboratory z-axis. (b) An intermediate
value of MJ. (c) When MJ = 0 the molecule has no angular
momentum about the z-axis. All three diagrams correspond to a
state with K = 0; there are corresponding diagrams for different
values of K, in which the angular momentum makes a different
angle to the molecule’s principal axis.
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a component of angular momentum on an arbitrary axis set 
in the molecule (such as any of the C-H bonds of CH4). This
component is also quantized, and has the values K$ with K = J, 
J − 1, . . . , −J. The energy is independent of which of those values
it takes. Therefore, as well as having a (2J + 1)-fold degeneracy
arising from its orientation in space, the rotor also has a (2J + 1)-
fold degeneracy arising from its orientation with respect to 
an arbitrary axis in the molecule. The overall degeneracy of a
spherical rotor with quantum number J is therefore (2J + 1)2.
This degeneracy increases very rapidly: when J = 10, for instance,
there are 441 states of the same energy.

(b) Symmetric rotors

In symmetric rotors, two moments of inertia are equal but
different from the third (as in CH3Cl, NH3, and C6H6); the
unique axis of the molecule is its principal axis (or figure axis).
We shall write the unique moment of inertia (that about the
principal axis) as I|| and the other two as I⊥. If I|| > I⊥, the rotor is
classified as oblate (2, like a pancake, and C6H6); if I|| < I⊥ it is
classified as prolate (3, like a cigar, and CH3Cl). The classical 
expression for the energy, eqn 10.3, becomes

E
J J

I

J

I
b c a=

+
+

2 2 2

2 2⊥ ||

with

[10.11]

Equation 10.10 matches what we should expect for the depend-
ence of the energy levels on the two distinct moments of inertia
of the molecule. When K = 0, there is no component of angular
momentum about the principal axis, and the energy levels 
depend only on I⊥ (Fig. 10.7). When K = ±J, almost all the 
angular momentum arises from rotation around the principal
axis, and the energy levels are determined largely by I||. The sign
of K does not affect the energy because opposite values of K
correspond to opposite senses of rotation, and the energy does
not depend on the sense of rotation.

l A BRIEF ILLUSTRATION

A 14NH3 molecule is a symmetric rotor with bond length
101.2 pm and HNH bond angle 106.7°. Substitution of mA =
1.0078mu, mB = 14.0031mu, R = 101.2 pm, and θ = 106.7° into
the second of the symmetric rotor expressions in Table 10.1
gives I|| = 4.4128 × 10−47 kg m2 and I⊥ = 2.8059 × 10−47 kg m2.
Hence, é = 6.344 cm−1 and è = 9.977 cm−1. It follows from
eqn 10.10 that

Ü( J,K)/cm−1 = 9.977J( J + 1) − 3.633K2

Upon multiplication by c, F( J,K) = cÜ( J,K) acquires units of
frequency:

F( J,K)/GHz = 299.1J(J + 1) − 108.9K2

For J = 1, the energy needed for the molecule to rotate mainly
about its figure axis (K = ±J) is equivalent to 16.32 cm−1

(489.3 GHz), but end-over-end rotation (K = 0) corresponds
to 19.95 cm−1 (598.1 GHz). l

é
$

è
$

= =
4 4π π|| ⊥cI cI

2 Oblate 3 Prolate

Again, this expression can be written in terms of J 2 = Ja
2 + Jb

2 + J c
2

by writing Jb
2 + Jc

2 = J 2 − Ja
2:

(10.9)

Now we generate the quantum expression by replacing J 2 by 
J( J + 1)$2, where J is the angular momentum quantum number.
We also know from the quantum theory of angular momentum
(Section 3.4) that the component of angular momentum about
any axis is restricted to the values K$, with K = 0, ±1, . . . , ±J.
(Recall from above that K is the quantum number used to sig-
nify a component on a molecular axis; MJ is reserved for a com-
ponent on an externally defined axis.) Therefore, we also replace
Ja

2 by K2$2. It follows that the rotational terms are

Ü( J, K) = èJ(J + 1) + (é − è)K2 J = 0, 1, 2, . . . (10.10)
K = 0, ±1, . . . , ±J
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Fig. 10.7 The significance of the quantum number K. (a) 
When |K | is close to its maximum value, J, most of the molecular
rotation is around the figure axis. (b) When K = 0 the molecule
has no angular momentum about its principal axis: it is
undergoing end-over-end rotation.
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Self-test 10.2 A CH3
35Cl molecule has a C-Cl bond length

of 178 pm, a C-H bond length of 111 pm, and an HCH angle
of 110.5°. Calculate its rotational energy terms.

[Ü( J,K)/cm−1 = 0.472J( J + 1) + 4.56K2;
also F( J,K)/GHz = 14.1J( J + 1) + 137K2]

The energy of a symmetric rotor depends on J and K, and each
level except those with K = 0 is doubly degenerate: the states with
K and −K have the same energy because the direction of rotation
about the internal figure axis does not affect the energy. The 
angular momentum continues to have any of 2J + 1 components
MJ$ on an external axis, representing the different orientations
that the rotation of the molecule may have in space, but as its 
energy is independent of that orientation all 2J + 1 values of MJ

correspond to the same energy. It follows that a symmetric rotor
level is 2(2J + 1)-fold degenerate for K ≠ 0 and (2J + 1)-fold
degenerate for K = 0.

(c) Linear rotors

For a linear rotor (such as CO2, HCl, and C2H2), in which the
nuclei are regarded as mass points, the rotation occurs only
about an axis perpendicular to the line of atoms and there is zero
angular momentum around the line. Therefore, the component
of angular momentum around the figure axis of a linear rotor is
identically zero, and K ≡ 0 in eqn 10.10. The rotational terms of
a linear molecule are therefore

Ü( J) = èJ(J + 1) J = 0, 1, 2, . . . (10.12)

This expression is the same as eqn 10.7 but we have arrived at 
it in a significantly different way: here K ≡ 0 but for a spherical
rotor é = è. Although a linear rotor has K fixed at 0, the angular
momentum may still have 2J + 1 components on the laboratory
axis, so the degeneracy of a level with quantum number J is
2J + 1.

(d) Centrifugal distortion

We have treated molecules as rigid rotors. However, the atoms
of rotating molecules are subject to centrifugal forces that tend
to distort the molecular geometry and change the moments 
of inertia (Fig. 10.8). The effect of centrifugal distortion on a 
diatomic molecule is to stretch the bond and hence to increase
the moment of inertia. As a result, centrifugal distortion reduces
the rotational constant and consequently the energy levels are
slightly closer than the rigid-rotor expressions predict. The effect
is usually taken into account by subtracting a term from the 
energy and writing

Ü( J) = èJ(J + 1) − ëJ J
2( J + 1)2 (10.13)

The parameter ëJ (a wavenumber) is the centrifugal distortion
constant. It is large when the bond is easily stretched. In most

cases, ë < 10−4è (for HCl, for instance, ë = 0.0004 cm−1) and
most molecules can be treated as rigid rotors.

The centrifugal distortion constant of a diatomic molecule 
is related to the vibrational wavenumber of the bond, # (which,
as we shall see later, is a measure of its stiffness), through the 
approximate relation (see Problem 10.26)

(10.14)

Hence the observation of the convergence of the rotational 
levels as J increases can be interpreted in terms of the rigidity of
the bond. A similar parameter, of the form −DKK4, is used to
represent the effect of centrifugal distortion arising from the
axial rotation of symmetric rotors.

10.3 Rotational transitions

Typical values of è for small molecules are in the region of 
0.1 to 10 cm−1 (for example, 0.356 cm−1 for NF3 and 10.59 cm−1

for HCl), so rotational transitions lie in the microwave region of
the spectrum and the observation of pure rotational transitions
in the gas phase is a branch of microwave spectroscopy.

(a) Techniques

Microwave radiation is generated in a klystron or a Gunn diode.
A klystron makes use of electrons that are accelerated back and
forth across a gap in a resonant cavity. A Gunn diode is a device
that makes use of electron transitions between the partly filled
bands of a semiconductor in the presence of an electric field. 
The microwaves are detected by a crystal diode consisting of a
tungsten tip in contact with a semiconductor. Modulation of the
transmitted intensity—which results in signals that are easier 
to detect and process—can be achieved by varying the energy
levels with an oscillating electric field. In this Stark modulation,
an electric field of about 105 V m−1 and a frequency of between
10 and 100 kHz is applied to the sample.

 
ë

è
#J =

4 3

2

Centrifugal
force

Fig. 10.8 The effect of rotation on a molecule. The centrifugal
force arising from rotation distorts the molecule, opening out
bond angles and stretching bonds slightly. The effect is to
increase the moment of inertia of the molecule and hence 
to decrease its rotational constant.
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The application of an electric field has a further use. The Stark
effect is the partial removal of the degeneracy associated with the
quantum number MJ (the orientation of the rotation in space)
when an electric field is applied to a polar molecule (Fig. 10.9).
For a linear rotor in an electric field E , the energy of the state 
| J,MJ〉 is given by

E( J,MJ) = hcèJ( J + 1) + a( J,MJ)μ2E2 (10.15a)

where (after a lengthy calculation involving perturbation theory,
which we do not reproduce here)

(10.15b)

with MJ = 0, ±1, . . . , ±J. One application of the Stark effect is
therefore to note the number of lines into which a transition is
split and then to infer from that number the value of J. Another
application is to determine the permanent electric dipole moment,
μ. The technique is limited to molecules that are sufficiently
volatile to be studied by rotational spectroscopy. However, as
spectra can be recorded for samples at pressures of only about 
1 Pa and special techniques (such as using an intense laser beam
or an electrical discharge) can be used to vaporize even some
quite non-volatile substances, a wide variety of samples may 
be studied. Sodium chloride, for example, can be studied as 
diatomic NaCl molecules at high temperatures.

On the assumption that all instrumental factors have been
optimized, the highest resolution is obtained when the sample 
is gaseous and at such low pressure that collisions between the
molecules are infrequent. We saw in Section 4.3 that collisions
between atoms reduce the lifetimes of excited states and there-
fore broaden their emission and absorption lines: the same is
true of collisions between molecules. That low pressures must 
be used has the implication that path lengths through the sam-
ple must be long in order for the absorption intensities to be
significant.

a J M
J J M

hc J J J JJ
J( , )

( )

( )( )( )
=

+ −
+ − +

1 3

2 1 2 1 2 3

2

è

A microwave spectrum displays the net rate of absorption 
between rotational states, the difference between the absorption
that the incident radiation stimulates between rotational states,
such as J + 1 ← J, and the emission that the same radiation stimu-
lates from excited states that are already occupied, in this case 
J + 1 → J. For a given intensity and frequency of incident radi-
ation, a single stimulated absorption J + 1 ← J and a single stimu-
lated emission J + 1 → J have the same rate but as states of low
energy are more highly populated than those of higher energy
(at thermal equilibrium), the rate of upward transitions exceeds
that of downward transitions and there is a net absorption of 
energy. Excited states may also make spontaneous transitions 
to lower states even in the absence of stimulating radiation, but
the rate of these transitions is negligible for rotations. The quan-
titative relation between the rates of stimulated absorption and
emission and spontaneous emission and their frequency depend-
ence was established by Einstein; his conclusions are summar-
ized in Further information 10.1.

(b) Selection rules

A gross selection rule specifies the general features a molecule
must have if it is to have a spectrum of a given kind. A detailed
study of the transition moment leads to the specific selection
rules that express the allowed transitions in terms of the changes
in quantum numbers. We have already encountered examples of
specific selection rules when discussing atomic spectra (Section 4.3),
such as the rule Δl = ±1 for the orbital angular momentum quan-
tum number.

The gross selection rule for rotational transitions is that a
molecule must have a permanent electric dipole moment. That
is, for a molecule to give a pure rotational spectrum, it must be polar.
The classical basis of this rule is that a polar molecule appears 
to possess a fluctuating dipole when rotating, but a nonpolar
molecule does not (Fig. 10.10). That fluctuating dipole drives 
the electromagnetic field into oscillation and energy is emitted
into the surroundings; conversely, for absorption, the oscillating
electromagnetic field drives the dipole moment into rotation.
Homonuclear diatomic molecules and symmetrical linear mole-
cules such as CO2 are nonpolar and hence rotationally inactive.

0
±1
±2
±3

±4

±5

±6

±7

MJ

Field
on

Field
off

Fig. 10.9 The effect of an electric field on the energy levels of a
polar linear rotor. All levels are doubly degenerate except that
with MJ = 0.

$ $

Fig. 10.10 To a stationary observer, a rotating polar molecule
looks like an oscillating dipole that can stir the electromagnetic
field into oscillation (and vice versa for absorption). This picture
is the classical origin of the gross selection rule for rotational
transitions.
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Spherical rotors cannot have electric dipole moments unless
they become distorted by rotation, so they are also inactive 
except in special cases. An example of a spherical rotor that does
become sufficiently distorted for it to acquire a dipole moment
is SiH4, which has a dipole moment of about 8.3 mD by virtue of
its rotation when J ≈ 10 (for comparison, HCl has a permanent
dipole moment of 1.1 D; molecular dipole moments and their
units are discussed in Section 8.2). The pure rotational spectrum
of SiH4 has been detected by using long path lengths (10 m)
through high-pressure (4 atm) samples.

l A BRIEF ILLUSTRATION

Of the molecules N2, CO2, OCS, H2O, CH2=CH2, C6H6, only
OCS and H2O are polar, so only these two molecules have
microwave spectra. l

Self-test 10.3 Which of the molecules H2, NO, N2O, CH4 can
have a pure rotational spectrum? [NO, N2O]

The specific rotational selection rules are found by evaluating
the transition dipole moment between rotational states. We show
in Further information 10.2 that, for a linear molecule, the trans-
ition moment vanishes unless the following conditions are fulfilled:

ΔJ = ±1 ΔMJ = 0, ±1

The transition ΔJ = +1 corresponds to absorption and the tran-
sition ΔJ = −1 corresponds to emission. The allowed change in J
in each case arises from the conservation of angular momentum
when a photon, a spin-1 particle, is emitted or absorbed (Fig.
10.11). For symmetric rotors, an additional selection rule states
that ΔK = 0. To understand this rule, consider the symmetric
rotor NH3, where the electric dipole moment lies parallel to the
figure axis. Such a molecule cannot be accelerated into different
states of rotation around the figure axis by the absorption of 
radiation, so ΔK = 0.

When the transition moment is evaluated for all possible 
relative orientations of the molecule to the line of flight of the
photon, it is found that the net J + 1 ↔ J transition intensity is
proportional to

for J >> 1 (10.16)

where μ0 is the permanent electric dipole moment of the
molecule. The intensity is proportional to the square of μ0, 
so strongly polar molecules give rise to much more intense 
rotational lines than less polar molecules: they interact with 
the incident radiation more strongly.

(c) The appearance of rotational spectra

When these selection rules are applied to the expressions for the
energy levels of a rigid symmetric or linear rotor, it follows that
the wavenumbers of the allowed J + 1 ← J absorptions are

#( J + 1 ← J) = Ü( J + 1) − Ü( J)
= è( J + 1)( J + 2) − èJ( J + 1) (10.17a)
= 2è( J + 1)

with J = 0, 1, 2, . . . When centrifugal distortion is taken into 
account, the corresponding expression is

#( J + 1 ← J) = 2è(J + 1) − 4ëJ ( J + 1)3 (10.17b)

However, because the second term is typically very small com-
pared with the first, the appearance of the spectrum closely 
resembles that predicted from eqn 10.17a.

l A BRIEF ILLUSTRATION

The 14NH3 molecule is a polar symmetric rotor, so the selec-
tion rules ΔJ = ±1 and ΔK = 0 apply. For absorption, ΔJ = +1
and we can use eqn 10.17a. For 14NH3 we have already calcu-
lated è = 9.977 cm−1. We can therefore draw up the following
table for the J + 1 ← J transitions.

J 0 1 2 3 . . .

#/cm−1 19.95 39.91 59.86 79.82 . . .

ν/GHz 598.1 1197 1795 2393 . . .

The line spacing is 19.95 cm−1 (598.1 GHz). l

Self-test 10.4 Repeat the problem for C35ClH3 (see Self-test
10.2 for details).

[Lines of separation 0.944 cm−1 (28.3 GHz)]

A note on good practice For the discussion of spectroscopic
transitions, the upper state is written first. So X → Y is an
emission and X ← Y is an absorption, where X and Y specify
the states in some way (such as by giving the value of the 
rotational quantum number J, as we have done above).

| |  2μ μ μJ J
J

J+ =
+
+

⎛

⎝
⎜

⎞

⎠
⎟ →1 0

2 1
2 0

21

2 1,

h	

Fig. 10.11 When a photon is absorbed by a molecule, the angular
momentum of the combined system is conserved. If the
molecule is rotating in the same sense as the spin of the
incoming photon, then J increases by 1.
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The form of the spectrum predicted by eqn 10.17a is shown 
in Fig. 10.12. The most significant feature is that it consists of a
series of lines with wavenumbers 2è, 4è, 6è, . . . and of separa-
tion 2è. The measurement of the line spacing gives è, and hence
the moment of inertia perpendicular to the principal axis of 
the molecule. Because the masses of the atoms are known, it is a
simple matter to deduce the bond length of a diatomic molecule.
However, in the case of a polyatomic molecule such as OCS or
NH3, the analysis gives only a single quantity, I, and it is not pos-
sible to infer both bond lengths (in OCS) or the bond length and
bond angle (in NH3). This difficulty can be overcome by using
isotopomers (isotopically substituted molecules), such as ABC
and A′BC; then, by assuming that R(A-B) = R(A′-B), both 
A-B and B-C bond lengths can be extracted from the two 
measured moments of inertia. A famous example of this pro-
cedure is the study of OCS; the actual calculation is worked
through in Problem 10.7. The assumption that bond lengths are
unchanged by isotopic substitution is only an approximation,
but it is a good approximation in most cases.

The intensities of spectral lines increase with increasing J and
pass through a maximum before tailing off as J becomes large.
The most important reason for the maximum in intensity is the
existence of a maximum in the population of rotational levels.
The Boltzmann distribution (Fundamentals F.5) implies that the
population of each state decays exponentially with increasing J,
but the degeneracy of the levels increases. Specifically, the popu-
lation of a rotational energy level J is given by the Boltzmann 
expression

NJ ∝ NgJ e
−EJ/kT (10.18)

where N is the total number of molecules and gJ is the degeneracy
of the level J. The value of J corresponding to a maximum of this

expression is found by treating J as a continuous variable,
differentiating with respect to J, and then setting the result equal
to zero. The result is (see Problem 10.29)

(10.19)

For a typical molecule (for example, OCS, with è = 0.2 cm−1) at
room temperature, kT ≈ 1000hcè, so Jmax ≈ 30. However, it must
be recalled that the intensity of each transition also depends 
on the value of J (eqn 10.16) and on the population difference
between the two states involved in the transition. Hence the
value of J corresponding to the most intense line is not quite the
same as the value of J for the most highly populated level.

10.4 Rotational Raman spectra

In Raman spectroscopy molecular energy levels are explored 
by examining the frequencies present in inelastically scattered
radiation. ‘Inelastic’ in this context means with the acquisition
or loss of energy. About 1 in 107 of the incident photons collide
with the molecules, give up some of their energy, and emerge
with a lower energy. These scattered photons constitute the
lower-frequency Stokes radiation from the sample (Fig. 10.13).
Other incident photons may collect energy from the molecules
(if they are already excited), and emerge as higher-frequency
anti-Stokes radiation. The component of radiation scattered
without change of frequency is called Rayleigh radiation.

(a) Techniques

In a typical Raman spectroscopy experiment, a monochromatic
incident laser beam is passed through the sample and the radiation
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Fig. 10.12 The rotational energy levels of a linear rotor, the
transitions allowed by the selection rule ΔJ = ±1, and a typical
pure rotational absorption spectrum (displayed here in terms of
the radiation transmitted through the sample). The intensities
reflect the populations of the initial level in each case and the
strengths of the transition dipole moments.
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Fig. 10.13 In Raman spectroscopy, an incident photon is scattered
from a molecule with either an increase in frequency (if the
radiation collects energy from the molecule) or—as shown 
here for the case of scattered Stokes radiation—with a lower
frequency if it loses energy to the molecule. The process can be
regarded as taking place by an excitation of the molecule to a
wide range of states (represented by the shaded band) and the
subsequent return of the molecule to a lower state; the net
energy change is then carried away by the photon.
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scattered from the sample is monitored (Fig. 10.14). Lasers are
used as the source of the incident radiation because an intense
beam increases the intensity of scattered radiation. The mono-
chromaticity of laser radiation is also a great advantage, for it
makes possible the observation of frequencies of scattered light
that differs only slightly from that of the incident radiation. Such
high resolution is particularly useful for observing the rotational
structure of Raman lines. The monochromaticity of laser radi-
ation also allows observations to be made very close to absorption
frequencies.

The use of a non-divergent incident beam also implies that
the detector can be designed to collect only the radiation that has
been scattered by the sample and can be screened much more
effectively against stray light, which can obscure the Raman signal.
The availability of non-divergent beams also makes possible a
qualitatively different kind of spectroscopy in which Raman
transitions are observed very close to the direction of propaga-
tion of the incident beam. This configuration is employed in the
technique called stimulated Raman spectroscopy. In this form
of spectroscopy, the Stokes and anti-Stokes radiation in the for-
ward direction are powerful enough to undergo more scattering
and hence give up or acquire more quanta of energy from the
molecules in the sample. This multiple scattering results in lines
of frequency νi ± 2νM, νi ± 3νM, . . . , where νi is the frequency 
of the incident radiation and νM the frequency of a molecular
excitation.

(b) Selection rules

The gross selection rule for rotational Raman transitions is 
that the molecule must be anisotropically polarizable. We begin by
explaining what this means; a formal derivation of the rule is
given in Further information 10.2.

The distortion of a molecule in an electric field is determined
by its polarizability, α (Section 8.4). More precisely, if the strength
of the field is E, then the molecule acquires an induced dipole

moment of magnitude μ = αE in addition to any permanent
dipole moment it may already have. An atom is isotropically
polarizable. That is, the same distortion is induced whatever the
direction of the applied field. The polarizability of a spherical
rotor is also isotropic. However, nonspherical rotors have polar-
izabilities that do depend on the direction of the field relative to
the molecule, so these molecules are anisotropically polarizable
(Fig. 10.15). The electron distribution in H2, for example, is more
distorted when the field is applied parallel to the bond than
when it is applied perpendicular to it, and we write α|| > α⊥.

All linear molecules and diatomic molecules (whether homo-
nuclear or heteronuclear) have anisotropic polarizabilities, and
so are rotationally Raman active. This activity is one reason 
for the importance of rotational Raman spectroscopy, for the
technique can be used to study many of the molecules that are
inaccessible to microwave spectroscopy. Spherical rotors such as
CH4 and SF6, however, are rotationally Raman inactive as well 
as microwave inactive. This inactivity does not mean that such
molecules are never found in rotationally excited states. Molecular
collisions do not have to obey such restrictive selection rules,
and hence collisions between molecules can result in the popu-
lation of any rotational state.

We show in Further information 10.2 that the specific rota-
tional Raman selection rules are

Linear rotors: ΔJ = 0, ±2
Symmetric rotors: ΔJ = 0, ±1, ±2; ΔK = 0

The ΔJ = 0 transitions do not lead to a shift of the scattered 
photon’s frequency in pure rotational Raman spectroscopy, and
contribute to the unshifted Rayleigh radiation.

To predict the form of the Raman spectrum of a linear rotor
we apply the selection rule ΔJ = ±2 to the rotational energy levels
(Fig. 10.16). When the molecule makes a transition with ΔJ = +2,
the scattered radiation leaves the molecule in a higher rotational
state, so the wavenumber of the incident radiation, initially #i, is

Laser
Sample

cell

Monochromator
or interferometer

Detector

Fig. 10.14 A common arrangement adopted in Raman
spectroscopy. A laser beam first passes through a lens and then
through a small hole in a mirror with a curved reflecting surface.
The focused beam strikes the sample and scattered light is both
deflected and focused by the mirror. The spectrum is analysed by
a monochromator or an interferometer.

E

E

(a) (b)

Distortion

Fig. 10.15 An electric field applied to a molecule results in its
distortion, and the distorted molecule acquires a contribution 
to its dipole moment (even if it is nonpolar initially). The
polarizability may be different when the field is applied 
(a) parallel or (b) perpendicular to the molecular axis (or, 
in general, in different directions relative to the molecule); 
if that is so, then the molecule has an anisotropic polarizability.
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Fig. 10.16 The rotational energy levels of a linear rotor and the
transitions allowed by the ΔJ = ±2 Raman selection rules. The
form of a typical rotational Raman spectrum is also shown. The
Rayleigh line is much stronger than depicted in the figure; it is
shown as a weaker line to improve visualization of the Raman lines.

decreased. These transitions account for the Stokes lines in the
spectrum:

#( J + 2 ← J) = #i − {Ü(J + 2) − Ü( J)} = #i − 2è(2J + 3)
(10.20a)

The Stokes lines appear at lower frequency than the incident 
radiation and at displacements 6è, 10è, 14è, . . . from #i for 
J = 0, 1, 2, . . . . When the molecule makes a transition with ΔJ =
−2, the scattered photon emerges with increased energy. These
transitions account for the anti-Stokes lines of the spectrum:

#( J − 2 ← J) = #i + {Ü( J) − Ü( J − 2)} = #i + 2è(2J − 1)
(10.20b)

The anti-Stokes lines occur at displacements of 6è, 10è, 14è,
. . . (for J = 2, 3, 4, . . . ; J = 2 is the lowest state that can contribute
under the selection rule ΔJ = −2) at higher frequency than the 
incident radiation. The separation of adjacent lines in both the
Stokes and the anti-Stokes regions is 4è, so from its measure-
ment I⊥ can be determined and then used to find the bond
lengths exactly as in the case of microwave spectroscopy.

Example 10.2 Predicting the form of a Raman spectrum

Predict the form of the rotational Raman spectrum of 14N2,
for which è = 1.99 cm−1, when it is exposed to monochro-
matic 336.732 nm laser radiation.

Method The molecule is rotationally Raman active because
end-over-end rotation modulates its polarizability as viewed
by a stationary observer. The Stokes and anti-Stokes lines are
given by eqn 10.20.

Answer Because λ i = 336.732 nm corresponds to #i =
29 697.2 cm−1, eqns 10.20a and 10.20b give the following line
positions:

J 2¨0 3¨1 4¨2 5¨3

Stokes lines

#/cm−1 29 685.3 29 677.3 29 669.3 29 661.4

λ/nm 336.867 336.958 337.048 337.139

Anti-Stokes lines 2Æ0 3Æ1

#/cm−1 29 709.1 29 717.1

λ/nm 336.597 336.507

There will be a strong central line at 336.732 nm accompan-
ied on either side by lines of increasing and then decreasing
intensity (as a result of transition moment and population
effects). The spread of the entire spectrum is very small, so
the incident light must be highly monochromatic.

Self-test 10.5 Repeat the calculation for the rotational Raman
spectrum of NH3 (è = 9.977 cm−1).

[Stokes lines at 29 637.3, 29 597.4, 29 557.5, 29 517.6 cm−1,
anti-Stokes lines at 29 757.1, 29 797.0 cm−1]

10.5 Nuclear statistics and rotational states

If eqn 10.20 is used in conjunction with the rotational Raman
spectrum of CO2, the rotational constant that is calculated is 
inconsistent with other measurements of C-O bond lengths.
The results are consistent if it is supposed that the molecule can
exist only in states with even values of J, so the Stokes lines are 
2 ← 0, 4 ← 2, . . . and not 2 ← 0, 3 ← 1, . . . .

The explanation of the missing lines is the Pauli principle and
the fact that O nuclei are spin-0 bosons (bosons, recall from
Section 4.4, are particles with integer spin quantum numbers):
just as the Pauli principle excludes certain electronic states, so
too does it exclude certain molecular rotational states. The form
of the Pauli principle given in Section 4.4 states that, when two
identical bosons are exchanged, the overall wavefunction must
remain unchanged in every respect, including sign. In particular,
when a CO2 molecule rotates through 180°, two identical O 
nuclei are interchanged, so the overall wavefunction of the
molecule must remain unchanged. However, inspection of the
form of the rotational wavefunctions (which have the same 
angular form as the s, p, etc. orbitals of atoms, because in each
case they correspond to angular momentum states) shows that
they change sign by (−1)J under such a rotation (Fig. 10.17).
Therefore, only even values of J are permissible for CO2, and
hence the Raman spectrum shows only alternate lines.

The selective existence of rotational states that stems from the
Pauli principle is a manifestation of nuclear statistics. Nuclear
statistics must be taken into account whenever a rotation 
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interchanges equivalent nuclei. However, the consequences are
not always as simple as for CO2 because there are complicating 
features when the nuclei have nonzero spin: there may be several
different relative nuclear spin orientations consistent with even
values of J and a different number of spin orientations consistent
with odd values of J. For molecular hydrogen and fluorine, for
instance, with their two identical spin- 1–2 nuclei, we show in the
following Justification that there are three times as many ways 
of achieving a state with odd J than with even J, and there is a
corresponding 3:1 alternation in intensity in their rotational
Raman spectra (Fig. 10.18). In general, for a homonuclear 
diatomic molecule with nuclei of spin I, the numbers of ways 
of achieving states of odd and even J are in the ratio

(10.21)
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For hydrogen, I = 1–2, and the ratio is 3:1. For N2, with I = 1, the
ratio is 1:2.

Justification 10.1 The effect of nuclear statistics on rotational
spectra

Hydrogen nuclei are fermions (particles with half-integer
spin quantum number; in their case I = 1–2), so the Pauli 
principle requires the overall wavefunction to change sign
under particle interchange. However, the rotation of an H2

molecule through 180° has a more complicated effect than
merely relabelling the nuclei, because it interchanges their
spin states too if the nuclear spins are paired (↑ ↓) but not if
they are parallel (↑ ↑).

For the overall wavefunction of the molecule to change
sign when the spins are parallel, the rotational wavefunction
must change sign. Hence, only odd values of J are allowed. In
contrast, if the nuclear spins are paired, their wavefunction 
is α(A)β(B) − α(B)β(A), which changes sign when α and β
are exchanged in order to bring about a simple A↔B inter-
change overall (Fig. 10.19). Therefore, for the overall wave-
function to change sign in this case requires the rotational
wavefunction not to change sign. Hence, only even values of J
are allowed if the nuclear spins are paired.

As there are three nuclear spin states with parallel spins
(just like the triplet state of two parallel electrons, as in 
Fig. 4.25), but only one state with paired spins (the analogue
of the singlet state of two electrons, see Fig. 4.19), it follows
that the populations of the odd J and even J states should be
in the ratio of 3:1, and hence the intensities of transitions
originating in these levels will be in the same ratio.

Different relative nuclear spin orientations change into one
another only very slowly, so an H2 molecule with parallel nuclear
spins remains distinct from one with paired nuclear spins for
long periods. The two forms of hydrogen can be separated by

J = 2

J = 1

J=0

Fig. 10.17 The symmetries of rotational wavefunctions (shown
here, for simplicity as a two-dimensional rotor) under a rotation
through 180°. Wavefunctions with J even do not change sign;
those with J odd do change sign.

Frequency

Fig. 10.18 The rotational Raman spectrum of a diatomic molecule
with two identical spin- 1–2 nuclei shows an alternation in intensity
as a result of nuclear statistics. The Rayleigh line is much
stronger than depicted in the figure; it is shown as a weaker 
line to improve visualization of the Raman lines.

A A
(–1)J

Change
sign if
antiparallel

Change sign

BBBA

Fig. 10.19 The interchange of two identical fermion nuclei results
in the change in sign of the overall wavefunction. The relabelling
can be thought of as occurring in two steps: the first is a rotation
of the molecule; the second is the interchange of unlike spins
(represented by the different colours of the nuclei). The
wavefunction changes sign in the second step if the nuclei 
have antiparallel spins.
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physical techniques, and stored. The form with parallel nuclear
spins is called ortho-hydrogen and the form with paired nuclear
spins is called para-hydrogen. Because ortho-hydrogen cannot
exist in a state with J = 0, it continues to rotate at very low 
temperatures and has an effective rotational zero-point energy
(Fig. 10.20). This energy is of some concern to manufacturers 
of liquid hydrogen, for the slow conversion of ortho-hydrogen
into para-hydrogen (which can exist with J = 0) as nuclear spins
slowly realign releases rotational energy, which vaporizes the
liquid. Techniques are used to accelerate the conversion of
ortho-hydrogen to para-hydrogen to avoid this problem. One
such technique is to pass hydrogen over a metal surface: the
molecules adsorb on the surface as atoms, which then recom-
bine in the lower energy para-hydrogen form.

IMPACT ON ASTROPHYSICS 

I10.1 Rotational spectroscopy of interstellar
molecules

Observations by the Cosmic Background Explorer (COBE)
satellite support the view that the distribution of radiation in the
current Universe is characteristic of that emitted by a body at
2.726 ± 0.001 K, the bulk of the radiation spanning the micro-
wave region of the spectrum. This cosmic microwave background
radiation is the residue of energy released during the Big Bang,
the event that brought the Universe into existence. Very small
fluctuations in the spatial distribution of the radiation are 
believed to account for the large-scale structure of the Universe.

The interstellar space in our galaxy is a little warmer than the
cosmic background and consists largely of dust grains and gas
clouds. The dust grains are carbon-based compounds and silicates
of aluminium, magnesium, and iron, in which are embedded
trace amounts of methane, water, and ammonia. Interstellar
clouds are significant because it is from them that new stars, and
consequently new planets, are formed. The hottest clouds are

plasmas with temperatures of up to 106 K and densities of only
about 3 × 103 particles m−3. Colder clouds range from 0.1 to
1000 solar masses (1 solar mass = 2 × 1030 kg), have a density of
about 5 × 105 particles m−3, consist largely of hydrogen atoms,
and have a temperature of about 80 K. There are also colder and
denser clouds, some with masses greater than 500 000 solar
masses, densities greater than 109 particles m−3, and tempera-
tures that can be lower than 10 K. They are also called molecular
clouds, because they are composed primarily of H2 and CO gas in
a proportion of about 105 to 1. There are also trace amounts of
larger molecules. To place the densities in context, the particle
density of liquid water at 298 K and 1 bar is about 3 × 1028 m−3.

It follows from the Boltzmann distribution and the low tem-
perature of a molecular cloud that the vast majority of a cloud’s
molecules are in their vibrational and electronic ground states.
However, rotational excited states are populated at 10–100 K
and decay by spontaneous emission. As a result, the spectrum 
of the cloud in the radiofrequency and microwave regions 
consists of sharp lines corresponding to rotational transitions
(Fig. 10.21). The emitted light is collected by Earth-bound 
or space-borne radiotelescopes, telescopes with antennas and 
detectors optimized for the collection and analysis of radiation in
the microwave–radiowave range of the spectrum. Earth-bound
radiotelescopes are often located at the tops of high mountains,
as atmospheric water vapour can reabsorb microwave radiation
from space and hence interfere with the measurement.

Over 100 interstellar molecules have been identified by their
rotational spectra, often by comparing radiotelescope data with
spectra obtained in the laboratory or calculated by computa-
tional methods. The experiments have revealed the presence of
trace amounts (with abundances of less than 10−8 relative to 
hydrogen) of neutral molecules, ions, and radicals. Examples of
neutral molecules include hydrides, oxides (including water),
sulfides, halogenated compounds, nitriles, hydrocarbons, alde-
hydes, alcohols, ethers, ketones, and amides. The largest molecule
detected so far by rotational spectroscopy is the nitrile HC11N.

J=1

J=0

Lowest
rotational
state of

-hydrogenpara

Lowest
rotational
state of

-hydrogenortho

Fig. 10.20 When hydrogen is cooled, the molecules with parallel
nuclear spins accumulate in their lowest available rotational
state, the one with J = 1. They can enter the lowest rotational
state (J = 0) only if the spins change their relative orientation 
and become antiparallel. This is a slow process under normal
circumstances, so energy is slowly released.

Fig. 10.21 Rotational spectrum of the Orion nebula, showing
spectral fingerprints of diatomic and polyatomic molecules
present in the interstellar cloud. Adapted from G.A. Blake et al.
Astrophys. J. 315, 621 (1987).
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The vibrations of diatomic
molecules

The vibrations of molecules are responsible for the absorption
in the infrared regions of the electromagnetic spectrum, so 
infrared spectroscopy is the detection of vibrational transitions.
After a discussion of the experimental techniques used in this 
region, we adopt the same strategy as for microwave spectra: 
we find expressions for the energy levels, establish the selection
rules, and then discuss the appearance of the spectra. We shall
also see how the simultaneous excitation of rotation modifies
the appearance of a vibrational spectrum.

10.6 Techniques

For far infrared radiation with 35 cm−1 < # < 200 cm−1, a typical
source is a mercury arc inside a quartz envelope, most of the 
radiation being generated by the hot quartz. Either a Nernst
filament or a globar is used as a source of mid-infrared radiation
with 200 cm−1 < # < 4000 cm−1. The Nernst filament consists of a
ceramic filament of lanthanoid oxides that is heated to temper-
atures ranging from 1200 to 2000 K. The globar consists of a rod
of silicon carbide, which is heated electrically to about 1500 K.

The dispersing element, which selects particular wavelengths
of radiation from the source, is typically a diffraction grating
consisting of a glass or ceramic plate into which fine grooves
have been cut and covered with a reflective aluminium coating.
The grating causes interference between waves reflected from its
surface, and constructive interference occurs when

nλ = d(sin θ − sin φ) (10.22)

where n = 1, 2, . . . is the diffraction order, λ is the wavelength of
the diffracted radiation, d is the distance between grooves, θ is
the angle of incidence of the beam, and φ is the angle of emer-
gence of the beam (Fig. 10.22). In a monochromator, a narrow

exit slit allows only a narrow range of wavelengths to reach the
detector (Fig. 10.23). Turning the grating around an axis per-
pendicular to the incident and diffracted beams allows different
wavelengths to be analysed; in this way, the absorption spectrum
is built up one narrow wavelength range at a time. Typically, the
grating is swept through an angle that investigates only the first
order of diffraction (n = 1).

In a Fourier transform spectrometer, the diffraction grating
is replaced by a Michelson interferometer, which works by split-
ting the beam from the sample into two and introducing a vary-
ing path length, p, into one of them (Fig. 10.24). When the two
components recombine, there is a phase difference between
them, and they interfere either constructively or destructively
depending on the difference in path lengths. The detected signal
oscillates as the two components alternately come into and out

I
&

Incident
beam

Scattered
beam

Diffraction
grating

Fig. 10.22 One common dispersing element is a diffraction
grating, which separates wavelengths spatially as a result of the
scattering of light by fine grooves cut into a coated piece of glass.
When a polychromatic light beam strikes the surface at an angle
θ, several light beams of different wavelengths emerge at
different angles φ.

Incident
beam

1

2

3

Slit
To
detector

Diffraction
grating

"
"

"

Fig. 10.23 A polychromatic beam is dispersed by a diffraction
grating into three component wavelengths λ1, λ2, and λ3. In the
configuration shown, only radiation with λ2 passes through a
narrow slit and reaches the detector. Rotating the diffraction
grating as shown by the double arrows allows λ1 or λ3 to reach
the detector.

Beam
splitter

Compensator

Mirror, M2

Movable
mirror, M1

Fig. 10.24 A Michelson interferometer. The beam-splitting
element divides the incident beam into two beams with a path
difference that depends on the location of the mirror M1. The
compensator ensures that both beams pass through the same
thickness of material.
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of phase as the path difference is changed (Fig. 10.25). If the 
radiation has wavenumber #, the intensity of the detected signal
due to radiation in the range of wavenumbers # to # + d#, which
we denote I(p,#)d#, varies with both path length p and wave-
number # as

I(p,#)d# = I(#)(1 + cos 2π#p)d# (10.23)

where I(#) is the variation of intensity solely with wavenumber.
Hence, the interferometer converts the presence of a particular
wavenumber component in the signal into a variation in inten-
sity of the radiation reaching the detector. An actual signal consists
of radiation spanning a wide range of wavenumbers, and the
total intensity at the detector, I(p), is the sum of contributions
from all the wavenumbers present in the signal (Fig. 10.26):

(10.24)

The problem is to find I(#), which is the spectrum we require,
from the record of values of I(p). This step is a standard tech-
nique of mathematics (see Mathematical background 6), and is
the ‘Fourier transformation’ step from which this form of spec-
troscopy takes its name. Specifically:

(10.25)

   
I I p I p p( ) { ( ) ( )}cos# #= −

∞

4 0 2
0

1
2� π d

   
I p I p I p( ) ( , ) ( )( cos )= = +

∞ ∞

� �
0 0

1 2# # # # #d dπ

where I(0) is given by eqn 10.23 with p = 0. This integration is
carried out numerically in a computer connected to the spec-
trometer, and the output, I(#), is the transmission spectrum of
the sample (Fig. 10.27).

A major advantage of the Fourier transform procedure is that
all the radiation emitted by the source is monitored continu-
ously. This is in contrast to a spectrometer in which a mono-
chromator discards most of the generated radiation. As a result,
Fourier transform spectrometers have a higher sensitivity than
conventional spectrometers. The resolution of Fourier transform
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Fig. 10.25 An interferogram produced as the path length p is
changed in the interferometer shown in Fig. 10.24. Only a single
frequency component is present in the signal, so the graph is a
plot of the function I(p) = I0(1 + cos 2π#p), where I0 is the
intensity of the radiation.

interActivity Referring to Fig. 10.24, the mirror M1 moves 
in finite distance increments, so the path difference p

is also incremented in finite steps. Explore the effect of
increasing the step size on the shape of the interferogram for a
monochromatic beam of wavenumber # and intensity I0. That is,
draw plots of I(p)/I0 against #p, each with a different number of
data points spanning the same total distance path taken by the
movable mirror M1.
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Fig. 10.26 An interferogram obtained when several (in this case,
three) frequencies are present in the radiation.

interActivity For a signal consisting of only a few 
monochromatic beams, the integral in eqn 10.24 can be 

replaced by a sum over the finite number of wavenumbers. Use
this information to draw your own version of Fig. 10.26. Then,
go on to explore the effect of varying the wavenumbers and
intensities of the three components of the radiation on the shape
of the interferogram.
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Fig. 10.27 The three frequency components and their 
intensities that account for the appearance of the interferogram
in Fig. 10.26. This spectrum is the Fourier transform of the
interferogram, and is a depiction of the contributing frequencies.

interActivity Calculate the Fourier transforms of the 
functions you generated in the previous interActivity.
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spectrometers is determined by the maximum path length dif-
ference, pmax, of the interferometer:

(10.26)

To achieve a resolution of 0.1 cm−1 requires a maximum path
length difference of 5 cm.

Detectors may consist of a single radiation sensing element or
of several small elements arranged in one- or two-dimensional
arrays. The most common detectors found in commercial infra-
red spectrometers are sensitive in the mid-infrared region. In 
a photovoltaic device the potential difference across a semi-
conductor changes upon its exposure to infrared radiation. In a 
pyroelectric device the capacitance is sensitive to temperature
and hence the presence of infrared radiation.

10.7 Molecular vibrations

We base our discussion on Fig. 10.28, which shows a typical 
potential energy curve (as in Fig. 5.1) of a diatomic molecule. In
regions close to Re (at the minimum of the curve) the potential
energy can be approximated by a parabola, so we can write

V = 1–2kx2 x = R − Re (10.27)

where k is the force constant of the bond. The steeper the walls of
the potential (the stiffer the bond), the greater the force constant.

To see the connection between the shape of the molecular 
potential energy curve and the value of k, note that we can 
expand the potential energy around its minimum by using a
Taylor series (Mathematical background 1):
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The term V(0) can be set arbitrarily to zero. The first derivative
of V is 0 at the minimum. Therefore, the first surviving term is
proportional to the square of the displacement. For small dis-
placements we can ignore all the higher terms, and so write

(10.28b)

Therefore, the first approximation to a molecular potential 
energy curve is a parabolic potential, and by comparison with
eqn 10.27 we can identify the force constant as

[10.29]

We see that, if the potential energy curve is sharply curved close
to its minimum, then k will be large. Conversely, if the potential
energy curve is wide and shallow, then k will be small (Fig. 10.29).
Molecular force constants are readily calculated by using one 
of the computational techniques described in Chapter 6 either
directly or by computing molecular energies at a series of bond
lengths close to equilibrium and fitting a parabola to the values
(Fig. 10.30).

The Schrödinger equation for the relative motion of two
atoms of masses m1 and m2 with a parabolic potential energy is

(10.30)

where meff is the effective mass:

[10.31]

These equations are derived in the same way as in Further
information 4.1, but here the separation of variables procedure 
is used to separate the relative motion of the atoms from the 
motion of the molecule as a whole.

m
m m

m meff =
+
1 2

1 2

− + =
$2 2

2
1
2

2

2m x
kx E

eff

d

d

ψ
ψ ψ

k
V

x
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

d

d

2

2
0

V x
V

x
x( ) ≈

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
2

2

2
0

2d

d

Parabola

M
o

le
cu

la
r

p
o

te
n

ti
al

en
er

g
y

Internuclear separation

Re

Fig. 10.28 A molecular potential energy curve can be
approximated by a parabola near the bottom of the well. 
The parabolic potential leads to harmonic oscillations. At 
high excitation energies the parabolic approximation is poor
(the true potential is less confining) and it is totally wrong near
the dissociation limit.
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Fig. 10.29 The force constant is a measure of the curvature of the
potential energy close to the equilibrium extension of the bond.
A strongly confining well (one with steep sides, a stiff bond)
corresponds to high values of k.
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A note on good practice Distinguish ‘effective mass’ from
‘reduced mass’. The former is a measure of the amount of
matter that moves during a vibration; the latter is the quan-
tity that appears in the separation of internal and overall 
motion. For a diatomic molecule the effective mass is given
by the same mathematical expression as for the reduced mass
(eqn 10.31), but that is not true in general and each vibra-
tional mode of a polyatomic molecule has a different effective
mass. However, many people do not make this distinction,
and you will often find the effective mass referred to as the 
reduced mass.

The Schrödinger equation in eqn 10.30 is the same as eqn 2.20
for a particle of mass m undergoing harmonic motion. There-
fore, we can use the results of Section 2.4 to write down the 
permitted vibrational energy levels:

Ev = (v + 1–2)hν v = 0, 1, 2, . . . (10.32)

The vibrational terms of a molecule, the energies of its vibra-
tional states expressed in wavenumbers, are denoted í(v), with
í(v) = Ev /hc, so

í(v) = (v + 1–2)# (10.33)

The vibrational wavefunctions are the same as those discussed in
Section 2.5.

It is important to note that the vibrational terms depend on
the effective mass of the molecule, not directly on its total mass.
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This dependence is physically reasonable for, if atom 1 were as
heavy as a brick wall, then we would find meff ≈ m2, the mass of
the lighter atom. The vibration would then be that of a light
atom relative to that of a stationary wall (this is approximately
the case in HI, for example, where the I atom barely moves and
meff ≈ mH). For a homonuclear diatomic molecule m1 = m2, and
the effective mass is half the total mass: meff = 1–2m.

l A BRIEF ILLUSTRATION

An HCl molecule has a force constant of 516 N m−1, a 
reasonably typical value for a single bond. The effective mass
of 1H35Cl is 1.63 × 10−27 kg (note that this mass is very close 
to the mass of the hydrogen atom, 1.67 × 10−27 kg, so the 
Cl atom is acting like a brick wall). These values imply ω =
5.63 × 1014 s−1, ν = 89.5 THz (1 THz = 1012 Hz), # = 2987 cm−1,
λ = 3.35 μm. These characteristics correspond to electromag-
netic radiation in the infrared region. l

10.8 Selection rules

The gross selection rule for a change in vibrational state brought
about by absorption or emission of radiation is that the electric
dipole moment of the molecule must change when the atoms are
displaced relative to one another. Such vibrations are said to 
be infrared active. The classical basis of this rule is that the
molecule can drive the electromagnetic field into oscillation if 
its dipole changes as it vibrates, and vice versa (Fig. 10.31); its
formal basis is given in Further information 10.2. Note that the
molecule need not have a permanent dipole: the rule requires
only a change in dipole moment, possibly from zero. Some 
vibrations do not affect the molecule’s dipole moment (e.g. the
stretching motion of a homonuclear diatomic molecule), so
they neither absorb nor generate radiation: such vibrations are
said to be infrared inactive. Homonuclear diatomic molecules
are infrared inactive because their dipole moments remain zero
however long the bond; heteronuclear diatomic molecules are
infrared active.

Fig. 10.30 A pointwise calculation of the energy of an HCl
molecule in the Hartree–Fock approximation gives the shape of
the molecular potential energy curve close to the equilibrium
bond length (126 pm). The force constant of the bond is
obtained by evaluating the second derivative of the curve 
at the equilibrium bond length.

interActivity Use molecular software to construct similar 
curves for the other hydrogen halides and identify the 

order of the stiffness of the H-Hal bonds.

Fig. 10.31 The oscillation of a molecule, even if it is nonpolar,
may result in an oscillating dipole that can interact with the
electromagnetic field.
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l A BRIEF ILLUSTRATION

Of the molecules N2, CO2, OCS, H2O, CH2=CH2, and C6H6,
all except N2 possess at least one vibrational mode that results
in a change of dipole moment, so all except N2 can show a 
vibrational absorption spectrum. Not all the modes of com-
plex molecules are vibrationally active. For example, the
symmetric stretch of CO2, in which the O-C-O bonds
stretch and contract symmetrically, is inactive because it
leaves the dipole moment unchanged (at zero). l

Self-test 10.6 Which of the molecules H2, NO, N2O, and CH4

have infrared active vibrations? [NO, N2O, CH4]

The specific selection rule, which is obtained from an analysis
of the expression for the transition moment and the properties
of integrals over harmonic oscillator wavefunctions (as shown
in Further information 10.2), is

Δv = ±1

Transitions for which Δv = +1 correspond to absorption and
those with Δv = −1 correspond to emission.

It follows from eqn 10.33 and the specific selection rules that
the wavenumbers of allowed vibrational transitions, which are
denoted Δí(v) for the transition v + 1 ← v, are

Δí(v) = í(v + 1) − í(v) = # (10.34)

As we have seen, # lies in the infrared region of the electromag-
netic spectrum, so vibrational transitions absorb and generate
infrared radiation.

At room temperature kT/hc ≈ 200 cm−1, and most vibrational
wavenumbers are significantly greater than 200 cm−1. It follows
from the Boltzmann distribution that almost all the molecules
will be in their vibrational ground states initially. Hence, the
dominant spectral transition will be the fundamental transition,
1 ← 0. As a result, the spectrum is expected to consist of a single
absorption line. If the molecules are formed in a vibrationally
excited state, such as when vibrationally excited HF molecules
are formed in the reaction H2 + F2 → 2 HF*, the transitions 5 → 4,
4 → 3, . . . may also appear (in emission). In the harmonic 
approximation, all these lines lie at the same frequency, and the
spectrum is also a single line. However, as we shall now show,
the breakdown of the harmonic approximation causes the tran-
sitions to lie at slightly different frequencies, so several lines are
observed.

10.9 Anharmonicity

The vibrational terms in eqn 10.33 are only approximate 
because they are based on a parabolic approximation to the 
actual potential energy curve. A parabola cannot be correct at 
all extensions because it does not allow a bond to dissociate, 

nor can it be correct at short extensions where the molecular 
potential energy curve rises very steeply as the nuclei come close 
together. At high vibrational excitations the swing of the atoms
(more precisely, the spread of the vibrational wavefunction) 
allows the molecule to explore regions of the potential energy
curve where the parabolic approximation is poor and addi-
tional terms in the Taylor expansion of V (eqn 10.28a) must be
retained. The motion then becomes anharmonic, in the sense
that the restoring force is no longer proportional to the displace-
ment. Because the actual curve is less confining than a parabola,
we can anticipate that the energy levels become less widely
spaced at high excitations.

One approach to the calculation of the energy levels in the pre-
sence of anharmonicity is to use a function that resembles the
true potential energy more closely. The Morse potential energy is

(10.35)

where ëe is the depth of the potential minimum (Fig. 10.32).
Near the well minimum the variation of V with displacement 
resembles a parabola (as can be checked by expanding the expon-
ential as far as the first term) but, unlike a parabola, eqn 10.35 
allows for dissociation at large displacements. The Schrödinger
equation can be solved for the Morse potential and the per-
mitted terms are

(10.36)

The dimensionless parameter xe is called the anharmonicity
constant. The number of vibrational levels of a Morse oscillator
is finite, and v = 0, 1, 2, . . . , vmax, as shown in Fig. 10.33 (see also
Problem 10.31). The second term in the expression for í sub-
tracts from the first with increasing effect as v increases, and
hence gives rise to the convergence of the levels at high quantum
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Fig. 10.32 The dissociation energy of a molecule, ë0, differs from
the depth of the potential well, ëe, on account of the zero-point
energy of the vibrations of the bond.
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numbers as a result of the energy levels getting closer together as
v increases.

Although the Morse oscillator is quite useful theoretically, in
practice the more general expression

í(v) = (v + 1–2)# − (v + 1–2)2 xe# + (v + 1–2)3ye# + . . . (10.37)

where xe, ye, . . . are empirical dimensionless constants charac-
teristic of the molecule, is used to fit the experimental data and
to find the dissociation energy of the molecule. When anhar-
monicities are present, the wavenumbers of transitions with 
Δv = +1 are

Δí(v) = # − 2(v + 1)xe# + . . . (10.38)

Equation 10.38 shows that, when xe > 0, the transitions move to
lower wavenumbers as v increases.

Anharmonicity also accounts for the appearance of addi-
tional weak absorption lines corresponding to the transitions 
2 ← 0, 3 ← 0, . . . , even though these first, second, . . . overtones
are forbidden by the selection rule Δv = ±1. The first overtone,
for example, gives rise to an absorption at

í(v + 2) − í(v) = 2# − 2(2v + 3)xe# + . . . (10.39)

The reason for the appearance of overtones is that the selection
rule is derived from the properties of harmonic oscillator wave-
functions, which are only approximately valid when anhar-
monicity is present. Therefore, the selection rule is also only an
approximation. For an anharmonic oscillator, all values of Δv
are allowed, but transitions with Δv > 1 are allowed only weakly
if the anharmonicity is slight.

10.10 Vibration–rotation spectra

Each line of the high resolution vibrational spectrum of a gas-
phase heteronuclear diatomic molecule is found to consist of a

large number of closely spaced components (Fig. 10.34). Hence,
molecular spectra are often called band spectra. The separation
between the components is less than 10 cm−1, which suggests
that the structure is due to rotational transitions accompanying
the vibrational transition. A rotational change should be expected
because classically we can think of the transition as leading to 
a sudden increase or decrease in the instantaneous bond length.
Just as ice-skaters rotate more rapidly when they bring their
arms in, and more slowly when they throw them out, so the
molecular rotation is either accelerated or retarded by a vibra-
tional transition.

(a) Spectral branches

A detailed analysis of the quantum mechanics of simultaneous
vibrational and rotational changes shows that the rotational
quantum number J changes by ±1 during the vibrational trans-
ition of a diatomic molecule. If the molecule also possesses 
angular momentum about its axis, as in the case of the electronic 
orbital angular momentum of the paramagnetic molecule NO
in its ground-state configuration . . . π1, then the selection rules
also allow ΔJ = 0.

The appearance of the vibration–rotation spectrum of a 
diatomic molecule can be discussed in terms of the combined 
vibration–rotation terms, ì:

ì(v,J) = í(v) + Ü( J) (10.40)

If we ignore anharmonicity and centrifugal distortion,

ì(v,J) = (v + 1–2)# + èJ( J + 1) (10.41)

In a more detailed treatment, è is allowed to depend on the 
vibrational state because as v increases the bond length increases
slightly and the moment of inertia changes. We shall continue
with the simple expression initially.

When the vibrational transition v + 1 ← v occurs, J changes 
by ±1 and in some cases by 0 (when ΔJ = 0 is allowed). The 
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Fig. 10.33 The Morse potential energy curve reproduces the
general shape of a molecular potential energy curve. The
corresponding Schrödinger equation can be solved, and 
the values of the energies obtained. The number of bound 
levels is finite.
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Fig. 10.34 A high-resolution vibration–rotation spectrum of HCl.
The lines appear in pairs because H35Cl and H37Cl both contribute
(the 35Cl isotope is more abundant than the 37Cl isotope). There
is no Q branch, because ΔJ = 0 is forbidden for this molecule.
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absorptions then fall into three groups called branches of the
spectrum. The P branch consists of all transitions with ΔJ = −1:

#P( J) = ì(v + 1, J − 1) − ì(v,J)
= {(v + 3–2)# + è( J − 1)J} − {(v + 1–2)# + èJ(J + 1)}
= # − 2èJ (10.42a)

This branch consists of lines at # − 2è, # − 4è, . . . with an inten-
sity distribution reflecting both the populations of the rotational
levels and the magnitude of the J − 1 ← J transition moment
(Fig. 10.35). Even though the rotational quantum number 
decreases in the transition, the transition still corresponds to 
absorption because the change in vibrational energy is so large.
The Q branch consists of all lines with ΔJ = 0, and its wavenum-
bers are all

#Q( J) = ì(v + 1, J) − ì(v,J) = # (10.42b)

for all values of J. This branch, when it is allowed (as in NO), 
appears at the vibrational transition wavenumber. In Fig. 10.35
there is a gap at the expected location of the Q branch because it
is forbidden in HCl. The R branch consists of lines with ΔJ = +1:

#R( J) = ì(v + 1, J + 1) − ì(v,J) = # + 2è(J + 1) (10.42c)

This branch consists of lines displaced from # to high wavenum-
ber by 2è, 4è, . . . .

The separation between the lines in the P and R branches of a
vibrational transition gives the value of è. Therefore, the bond
length can be deduced without needing to take a pure rotational
microwave spectrum. However, the latter is more precise.

(b) Combination differences

The rotational constant of the vibrationally excited state, è1 (in
general, èv), is in fact slightly smaller than that of the ground 

vibrational state, because the anharmonicity of the vibration 
results in a slightly extended bond in the upper state. As a result,
the Q branch (if it exists) consists of a series of closely spaced
lines. The lines of the R branch converge slightly as J increases;
and those of the P branch diverge:

#Q( J) = # + (è1 − è0)J(J + 1) (10.43)
#R( J) = # + (è1 + è0)( J + 1) + (è1 − è0)( J + 1)2

To determine the two rotational constants individually, 
we use the method of combination differences. This procedure
is used widely in spectroscopy to extract information about 
a particular state and involves setting up expressions for the
difference in the wavenumbers of transitions to a common 
state. As can be seen from Fig. 10.36, the transitions #R( J − 1)
and #P( J + 1) have a common upper state, and from eqn 10.43 
it follows that

#R( J − 1) − #P( J + 1) = {# + (è1 + è0)J + (è1 − è0)J2} −
{# − (è1 + è0)( J + 1) + (è1 − è0)( J + 1)2}

= 4è0( J + 1–2) (10.44a)

Therefore, a plot of the combination difference against J + 1–2
should be a straight line of slope 4è0, so the rotational constant
of the molecule in the state v = 0 can be determined. (Any 
deviation from a straight line is a consequence of centrifugal dis-
tortion, so that effect can be investigated too.) Similarly, #R( J)
and #P( J) have a common lower state, and hence their combina-
tion difference gives information about the upper state:

#R( J) − #P( J) = 4è1( J + 1–2) (10.44b)

The two rotational constants of 1H35Cl found in this way are 
è0 = 10.440 cm−1 and è1 = 10.136 cm−1.

10.11 Vibrational Raman spectra 
of diatomic molecules

The gross selection rule for vibrational Raman transitions is 
that the polarizability should change as the molecule vibrates. As
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Fig. 10.35 The formation of P, Q, and R branches in a
vibration–rotation spectrum. The intensities reflect the
populations of the initial rotational levels.
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homonuclear and heteronuclear diatomic molecules expand
and contract during a vibration, the strength of the electrostatic
interaction of the nuclei with the electrons varies, and hence 
the molecular polarizability changes. Both types of diatomic
molecule are therefore vibrationally Raman active. The specific
selection rule for vibrational Raman transitions in the harmonic
approximation is Δv = ±1. The formal basis for the gross and
specific selection rules is given in Further information 10.2.

The lines at higher frequency than the incident radiation, the
anti-Stokes lines, are those for which Δv = −1. The lines at lower
frequency, the Stokes lines, correspond to Δv = +1. The intensit-
ies of the anti-Stokes and Stokes lines are governed largely by 
the Boltzmann populations of the vibrational states involved in
the transition. It follows that anti-Stokes lines are usually weak
because very few molecules are in an excited vibrational state
initially.

In gas-phase spectra, the Stokes and anti-Stokes lines have a
branch structure arising from the simultaneous rotational trans-
itions that accompany the vibrational excitation (Fig. 10.37).
The selection rules are ΔJ = 0, ±2 (as in pure rotational Raman
spectroscopy), and give rise to the O branch (ΔJ = −2), the Q
branch (ΔJ = 0), and the S branch (ΔJ = +2):

#O( J) = #i − # − 2è + 4èJ
#Q( J) = #i − # (10.45)
#S( J) = #i − # − 6è − 4èJ

where #i is the wavenumber of the incident radiation. Note that,
unlike in infrared spectroscopy, a Q branch is obtained for all
linear molecules. The spectrum of CO, for instance, is shown 

in Fig. 10.38: the structure of the Q branch arises from the
differences in rotational constants of the upper and lower vibra-
tional states.

The information available from vibrational Raman spectra
adds to that from infrared spectroscopy because homonuclear
diatomics can also be studied. The spectra can be interpreted 
in terms of the force constants, dissociation energies, and bond
lengths, and some of the information obtained is included in
Table 10.2.

The vibrations of polyatomic
molecules

There is only one mode of vibration for a diatomic molecule, the
bond stretch. In polyatomic molecules there are several modes
of vibration because all the bond lengths and angles may change
and the vibrational spectra are very complex. Nonetheless, we
shall see that infrared and Raman spectroscopy can be used 
to obtain information about the structure of systems as large as
animal and plant tissues. Interstellar space can also be investig-
ated with vibrational spectroscopy by using a combination of
telescopes and infrared detectors. The experiments are con-
ducted primarily in space-borne telescopes because the Earth’s
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Fig. 10.37 The formation of O, Q, and S branches in a
vibration–rotation Raman spectrum of a linear rotor. Note 
that the frequency scale runs in the opposite direction to that in
Fig. 10.35, because the higher energy transitions (on the right)
extract more energy from the incident beam and leave it at lower
frequency.
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Fig. 10.38 The structure of a vibrational line in the vibrational
Raman spectrum of carbon monoxide, showing the O, Q, and S
branches.

Synoptic table 10.2* Properties of diatomic molecules

§/cm−1 Re/pm ú/cm−1 k /(N m−1) Do/(kJ mol−1)

1H2 4400 74 60.86 575 432
1H35Cl 2991 127 10.59 516 428
1H127I 2308 161 6.51 314 295
35Cl2 560 199 0.244 323 239

* More values are given in the Data section.
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atmosphere absorbs a great deal of infrared radiation (see
Impact I10.2). In most cases, absorption by an interstellar
species is detected against the background of infrared radiation
emitted by a nearby star. The data can detect the presence 
of gaseous and solid water, CO, and CO2 in molecular clouds. 
In certain cases, infrared emission can be detected, but these
events are rare because interstellar space is too cold and does 
not provide enough energy to promote a significant number 
of molecules to vibrational excited states. However, infrared
emissions can be observed if molecules are occasionally excited
by high-energy photons emitted by hot stars in the vicinity 
of the cloud. For example, the polycyclic aromatic hydro-
carbons hexabenzocoronene (C42H18, 4) and circumcoronene
(C54H18, 5) have been identified from characteristic infrared
emissions.

10.12 Normal modes

As shown in the Justification below, for a non-linear molecule
that consists of N atoms, there are 3N − 6 modes of vibration. 
If the molecule is linear, there are 3N − 5 vibrational modes.

l A BRIEF ILLUSTRATION

Water, H2O, is a non-linear triatomic molecule, so N = 3. The
total number of degrees of freedom is 3N = 9. It follows that
Nvib = 9 − 6 = 3, so it has three modes of vibration (and three
modes of rotation); CO2 is a linear triatomic molecule, so
Nvib = 9 − 5 = 4, so it has four modes of vibration (and only
two modes of rotation). Even a middle-sized molecule such
as naphthalene (C10H8, N = 18) has 3 × 18 − 6 = 48 distinct
modes of vibration. l

Justification 10.2 The number of vibrational modes

The total number of coordinates needed to specify the loca-
tions of N atoms is 3N. Each atom may change its location by
varying one of its three coordinates (x, y, and z), so the total
number of displacements available—the number of ‘degrees
of freedom’—is 3N. These displacements can be grouped 
together in a physically sensible way. For example, three co-
ordinates are needed to specify the location of the centre of
mass of the molecule, so three of the 3N displacements corres-
pond to the translational motion of the molecule as a whole.
The remaining 3N − 3 are non-translational ‘internal’ modes
of the molecule.

Two angles are needed to specify the orientation of a linear
molecule in space: in effect, we need to give only the latitude
and longitude of the direction in which the molecular axis is
pointing (Fig. 10.39a). However, three angles are needed for
a non-linear molecule because we also need to specify the ori-
entation of the molecule around the direction defined by the
latitude and longitude (Fig. 10.39b). Therefore, two (linear)
or three (non-linear) of the 3N − 3 internal displacements are

I I

& &

A

(a) (b)

Fig. 10.39 (a) The orientation of a linear molecule requires the
specification of two angles. (b) The orientation of a non-linear
molecule requires the specification of three angles.
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rotational. This leaves 3N − 5 (linear) or 3N − 6 (non-linear)
displacements of the atoms relative to one another: these are
the vibrational modes. It follows that the number of modes of
vibration Nvib is 3N − 5 for linear molecules and 3N − 6 for
non-linear molecules.

One choice for two of the four modes of CO2 might be the
ones in Fig. 10.40a. This illustration shows the stretching of 
one bond (the mode νL) and the stretching of the other (νR). The
description has a disadvantage: when one CO bond vibration is
excited, the motion of the C atom sets the other CO bond in 
motion, so energy flows backwards and forwards between νL

and νR and the modes are not independent.
The description of the vibrational motion is much simpler 

if linear combinations of νL and νR are taken. For example, one
combination is ν1 in Fig. 10.40b: this mode is the symmetric
stretch. In this mode, the C atom is buffeted simultaneously
from each side and the motion continues indefinitely. Another
mode is ν3, the antisymmetric stretch, in which the two O atoms
always move in the same direction and opposite to that of the 
C atom. Both modes are independent in the sense that, if one 
is excited, then it does not excite the other. They are two of 
the ‘normal modes’ of the molecule, its independent, collective 
vibrational displacements. The two other normal modes are the
bending modes ν2 (there are two independent bending modes,
in perpendicular planes, but they have the same frequency and
are given the same label). In general, a normal mode is an inde-
pendent, synchronous motion of atoms or groups of atoms that
may be excited without leading to the excitation of any other
normal mode and without involving translation or rotation of
the molecule as a whole.

The four normal modes of CO2, and the Nvib normal modes of
polyatomics in general, are the key to the description of molecular
vibrations. Each normal mode, q, behaves like an independent
harmonic oscillator (if anharmonicities are neglected), so each
has a series of terms

(10.46)

where #q is the wavenumber of mode q and depends on the force
constant kq for the mode and on the effective mass mq of the mode.
The effective mass of the mode is a measure of the mass that is
swung about by the vibration and in general is a complicated
function of the masses of the atoms. For example, in the sym-
metric stretch of CO2, the C atom is stationary, and the effective
mass depends on the masses of only the O atoms. In the anti-
symmetric stretch and in the bends, all three atoms move, so all
contribute to the effective mass. The three normal modes of
H2O are shown in Fig. 10.41: note that the predominantly bend-
ing mode (ν2) has a lower frequency than the others, which are
predominantly stretching modes. It is generally the case that the
frequencies of bending motions are lower than those of stretch-
ing modes because the potential energy changes more slowly
with angle than with the stretching of a bond, so the force con-
stant is lower. One point that must be appreciated is that only in
special cases (such as the CO2 molecule) are the normal modes
purely stretches or purely bends. In general, a normal mode is a
composite motion of simultaneous stretching and bending of
bonds. Another point in this connection is that heavy atoms
generally move less than light atoms in normal modes.

10.13 Infrared absorption spectra 
of polyatomic molecules

The gross selection rule for infrared activity is that the motion
corresponding to a normal mode should be accompanied by a
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Fig. 10.40 Alternative descriptions of the vibrations of CO2. 
(a) The stretching modes are not independent, and if one C-O
group is excited the other begins to vibrate. They are not normal
modes of vibration of the molecule. (b) The symmetric and
antisymmetric stretches are independent, and one can be excited
without affecting the other: they are normal modes. (c) The 
two perpendicular bending motions are also normal modes.
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Fig. 10.41 The three normal modes of H2O. The mode ν2 is
predominantly bending, and occurs at lower wavenumber than
the other two.
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change of dipole moment. Deciding whether this is so can some-
times be done by inspection. For example, the symmetric stretch
of CO2 leaves the dipole moment unchanged (at zero, see 
Fig. 10.40b), so this mode is infrared inactive. The antisym-
metric stretch, however, changes the dipole moment because
the molecule becomes unsymmetrical as it vibrates, so this mode
is infrared active. Because the dipole moment change is parallel
to the principal axis, the transitions arising from this mode are
classified as parallel bands in the spectrum. Both bending modes
are infrared active: they are accompanied by a changing dipole
perpendicular to the principal axis, so transitions involving
them lead to a perpendicular band in the spectrum. The latter
bands eliminate the linearity of the molecule, and as a result a Q
branch is observed; the parallel band of a linear molecule does
not have a Q branch.

The active modes are subject to the specific selection rule 
Δνq = ±1 in the harmonic approximation, so the wavenumber of
the fundamental transition (the ‘first harmonic’) of each active
mode is #q. From the analysis of the spectrum, a picture may 
be constructed of the stiffness of various parts of the molecule:
that is, we can establish its force field, the set of force constants
corresponding to all the displacements of the atoms. The force
field may also be estimated by using the semiempirical, ab initio,
and DFT computational techniques described in Chapter 6. Super-
imposed on the simple force-field scheme are the complications
arising from anharmonicities and the effects of molecular rotation.
Very often the sample is a liquid or a solid, and the molecules are
unable to rotate freely. In a liquid, for example, a molecule may
be able to rotate through only a few degrees before it is struck by
another, so it changes its rotational state frequently.

The lifetimes of rotational states in liquids are very short, so 
in most cases the rotational energies are ill-defined. Collisions
occur at a rate of about 1013 s−1 and, even allowing for only a 
10 per cent success rate in knocking the molecule into another
rotational state, a lifetime broadening of more than 1 cm−1 can
easily result. The rotational structure of the vibrational spectrum
is blurred by this effect, so the infrared spectra of molecules in
condensed phases usually consist of broad lines spanning the
entire range of the resolved gas-phase spectrum, and showing no
branch structure.

One very important application of infrared spectroscopy 
to condensed phase samples, and for which the blurring of the
rotational structure by random collisions is a welcome simpli-
fication, is to chemical analysis. The vibrational spectra of differ-
ent groups in a molecule give rise to absorptions at characteristic
frequencies because a normal mode of even a very large molecule
is often dominated by the motion of a small group of atoms. 
The intensities of the vibrational bands that can be identified
with the motions of small groups are also transferable between
molecules. Consequently, the molecules in a sample can often be
identified by examining its infrared spectrum and referring to a
table of characteristic frequencies and intensities (Table 10.3).

IMPACT ON ENVIRONMENTAL SCIENCE 

I10.2 Climate change1

Solar energy strikes the top of the Earth’s atmosphere at a rate 
of 343 W m−2. About 30 per cent of this energy is reflected back
into space by the Earth or the atmosphere. The Earth–atmosphere
system absorbs the remaining energy and re-emits it into space
as black-body radiation, with most of the intensity being carried
by infrared radiation in the range 200–2500 cm−1 (4–50 μm). The
Earth’s average temperature is maintained by an energy balance
between solar radiation absorbed by the Earth and black-body
radiation emitted by the Earth.

The trapping of infrared radiation by certain gases in the 
atmosphere is known as the greenhouse effect, so called because it
warms the Earth as if the planet were enclosed in a huge green-
house. The result is that the natural greenhouse effect raises the
average surface temperature well above the freezing point of
water and creates an environment in which life is possible. The
major constituents to the Earth’s atmosphere, O2 and N2, do 
not contribute to the greenhouse effect because homonuclear 
diatomic molecules cannot absorb infrared radiation. However,
the minor atmospheric gases water vapour and CO2 do absorb
infrared radiation and hence are responsible for the greenhouse
effect (Fig. 10.42). Water vapour absorbs strongly in the ranges
1300–1900 cm−1 (5.3–7.7 μm; the bending mode, ν2) and 3550–
3900 cm−1 (2.6–2.8 μm; the mainly stretching modes, ν1 and ν3),
whereas CO2 shows strong absorption in the ranges 500–725 cm−1

(14–20 μm; the bending mode, ν2) and 2250–2400 cm−1 (4.2–
4.4 μm; the antisymmetric stretch, ν3).

Increases in the levels of greenhouse gases, which also include
methane, dinitrogen oxide, ozone, and certain chlorofluorocar-
bons, as a result of human activity have the potential to enhance
the natural greenhouse effect, leading to significant warming of
the planet and other consequences for the environment. This
problem is referred to as climate change, which we now explore
in some detail.

Synoptic table 10.3* Typical
vibrational wavenumbers

Vibration type §/cm−1

C-H stretch 2850–2960

C-H bend 1340–1465

C-C stretch, bend 700–1250

C=C stretch 1620–1680

* More values are given in the Data section.

1 This section is based on a similar contribution initially prepared by Loretta
Jones and appearing in Chemical principles, Peter Atkins and Loretta Jones,
W.H. Freeman and Co., New York (2005).
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The concentration of water vapour in the atmosphere has 
remained steady over time on account of its equilibration with
the oceans, but concentrations of some other greenhouse gases
are rising. From about the year 1000 until about 1750, the CO2

concentration remained fairly stable, but, since then, it has in-
creased by 28 per cent. The concentration of methane, CH4, has
more than doubled during this time and is now at its highest
level for 160 000 years (160 ka; a is the SI unit denoting 1 year).
Studies of air pockets in ice cores taken from Antarctica show
that increases in the concentration of both atmospheric CO2

and CH4 over the past 160 ka correlate well with increases in the
global surface temperature.

Human activities are primarily responsible for the rising 
concentrations of atmospheric CO2 and CH4. Most of the atmo-
spheric CO2 comes from the burning of hydrocarbon fuels,
which began on a large scale with the Industrial Revolution in
the middle of the nineteenth century. The additional methane
comes mainly from the petroleum industry and from agriculture.

The temperature of the surface of the Earth has increased 
by about 0.5 K since the late nineteenth century (Fig. 10.43). 
If we continue to rely on hydrocarbon fuels and current trends
in population growth and energy are not reversed then, by the
middle of the twenty-first century, the concentration of CO2

in the atmosphere will be about twice its value prior to the
Industrial Revolution. The Intergovernmental Panel on Climate
Change (IPCC) has estimated that by the year 2100 the Earth
will undergo an increase in temperature of 3 K. Furthermore,
the rate of temperature change is likely to be greater than at any
time in the last 10 ka. To place a temperature rise of 3 K in per-
spective, it is useful to consider that the average temperature 
of the Earth during the last ice age was only 6 K colder than at
present. Just as cooling the planet (for example, during an ice
age) can lead to detrimental effects on ecosystems, so too can a
dramatic warming of the globe. One example of a significant

change in the environment caused by a temperature increase of
3 K is a rise in sea level by about 0.5 m, which is sufficient to alter
weather patterns and submerge currently coastal ecosystems.

Computer projections for the next 200 years predict further
increases in atmospheric CO2 levels and suggest that, to main-
tain CO2 at its current concentration, we would have to reduce
hydrocarbon fuel consumption immediately by about 50 per
cent. Clearly, in order to reverse global warming trends, we 
need to develop alternatives to fossil fuels, such as hydrogen
(which can be used in fuel cells, Impact I17.2) and solar energy
technologies.

10.14 Vibrational Raman spectra 
of polyatomic molecules

The normal modes of vibration of molecules are Raman active if
they are accompanied by a changing polarizability. Specifically,
a mode is Raman active if (∂α /∂Q)0 is nonzero, where Q is the
displacement corresponding to the normal mode. It is some-
times quite difficult to judge by inspection when this is so. The
symmetric stretch of CO2, for example, alternately expands and
contracts the molecule: this motion changes the polarizability 
of the molecule, so the mode is Raman active. The polarizability
of CO2 does change as the molecule bends but, as the variation 
is symmetrical with respect to the angle changing from 180°, 
(∂α /∂Q)0 = 0 and the mode is inactive.

A more exact treatment of infrared and Raman activity of
normal modes leads to the exclusion rule:

If the molecule has a centre of symmetry (that is, is centro-
symmetric), then no modes can be both infrared and Raman
active.

(A mode may be inactive in both.) Because it is often possible 
to judge intuitively if a mode changes the molecular dipole 
moment, we can use this rule to identify modes that are not
Raman active. The rule applies to CO2 but to neither H2O nor
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Fig. 10.42 The intensity of infrared radiation that would be lost
from Earth in the absence of greenhouse gases is shown by the
blue line. The brown line is the intensity of the radiation actually
emitted. The maximum wavelength of radiation absorbed by
each greenhouse gas is indicated.
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CH4 because they have no centre of symmetry. In general, it 
is necessary to use group theory to predict whether a mode is 
infrared or Raman active (Section 10.15).

(a) Depolarization

The assignment of Raman lines to particular vibrational modes
is aided by using plane-polarized incident radiation and noting
the state of polarization of the scattered radiation. The depolar-
ization ratio, ρ, of a line is the ratio of the intensities, I, of the
scattered radiation with polarizations perpendicular and parallel
to the plane of polarization of the incident radiation:

[10.47]

To measure ρ, the intensity of a Raman line is measured with 
a polarizing filter (a ‘half-wave plate’) first parallel and then 
perpendicular to the polarization of the incident beam. If the
emergent radiation is not polarized, then both intensities are 
the same and ρ is close to 1; if the radiation retains its initial 
polarization, then I⊥ = 0, so ρ = 0 (Fig. 10.44). A line is classified
as depolarized if it has ρ close to or greater than 0.75 and as 
polarized if ρ < 0.75. Only totally symmetrical vibrations give
rise to polarized lines in which the incident polarization is
largely preserved. Vibrations that are not totally symmetrical
give rise to depolarized lines because the incident radiation can
give rise to radiation in the perpendicular direction too.

(b) Resonance Raman spectra

A modification of the basic Raman effect involves using incident
radiation that nearly coincides with the frequency of an elec-
tronic transition of the sample (Fig. 10.45). The technique is
then called resonance Raman spectroscopy. It is characterized
by a much greater intensity in the scattered radiation. Further-
more, because it is often the case that only a few vibrational
modes contribute to the more intense scattering, the spectrum 
is greatly simplified.

ρ = ⊥I

I||

Resonance Raman spectroscopy is used to study biological
molecules that absorb strongly in the ultraviolet and visible 
regions of the spectrum. Examples include the pigments β-
carotene and chlorophyll, which capture solar energy during
plant photosynthesis (see Impact I19.2). The resonance Raman
spectra of Fig. 10.46 show vibrational transitions from only the
few pigment molecules that are bound to very large proteins 
dissolved in an aqueous buffer solution. This selectivity arises
from the fact that water (the solvent), amino acid residues, and
the peptide group do not have electronic transitions at the laser
wavelengths used in the experiment, so their conventional Raman
spectra are weak compared to the enhanced spectra of the pig-
ments. Comparison of the spectra in Figs. 10.46a and 10.46b
also shows that, with proper choice of excitation wavelength, 
it is possible to examine individual classes of pigments bound 
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Fig. 10.44 The definition of the planes used for the specification of
the depolarization ratio, ρ, in Raman scattering.
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of the molecule. A photon is emitted when the excited state
returns to a state close to the ground state.
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Fig. 10.46 The resonance Raman spectra of a protein complex
that is responsible for some of the initial electron transfer events
in plant photosynthesis. (a) Laser excitation of the sample at 
407 nm shows Raman bands due to both chlorophyll a and 
β-carotene bound to the protein because both pigments absorb
light at this wavelength. (b) Laser excitation at 488 nm shows
Raman bands from β-carotene only because chlorophyll a does
not absorb light very strongly at this wavelength. (Adapted from
D.F. Ghanotakis et al. Biochim. Biophys. Acta 974, 44 (1989).)
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to the same protein: excitation at 488 nm, where β-carotene 
absorbs strongly, shows vibrational bands from β-carotene
only, whereas excitation at 407 nm, where chlorophyll a and β-
carotene absorb, reveals features from both types of pigments.

(c) Coherent anti-Stokes Raman spectroscopy

The intensity of Raman transitions may be enhanced by coher-
ent anti-Stokes Raman spectroscopy (CARS, Fig. 10.47). The
technique relies on the fact that, if two laser beams of frequen-
cies ν1 and ν2 pass through a sample, then they may mix together
and give rise to coherent radiation of several different frequen-
cies, one of which is ν′ = 2ν1 − ν2. Suppose that ν2 is varied 
until it matches any Stokes line from the sample, such as the 
one with frequency ν1 − Δν ; then the coherent emission will
have frequency

ν′ = 2ν1 − (ν1 − Δν) = ν1 + Δν (10.48)

which is the frequency of the corresponding anti-Stokes line.
This coherent radiation forms a narrow beam of high intensity.

An advantage of CARS is that it can be used to study Raman
transitions in the presence of competing incoherent background
radiation, and so it can be used to observe the Raman spectra of
species in flames. One example is the vibration–rotation CARS
spectrum of N2 gas in a methane–air flame shown in Fig. 10.48.

IMPACT ON BIOCHEMISTRY

I10.3 Vibrational microscopy

Optical microscopes can now be combined with infrared and
Raman spectrometers and the vibrational spectra of specimens
as small as single biological cells obtained. The techniques of 
vibrational microscopy provide details of cellular events that can-
not be observed with traditional light or electron microscopy.

The principles behind the operation of infrared and Raman
microscopes are simple: radiation illuminates a small area of the
sample, and the transmitted, reflected, or scattered light is first
collected by a microscope and then analysed by a spectrometer.

The sample is then moved by very small increments along a
plane perpendicular to the direction of illumination and the
process is repeated until vibrational spectra for all sections of 
the sample are obtained. The size of a sample that can be studied
by vibrational microscopy depends on a number of factors, such 
as the area of illumination and the intensity and wavelength of
the incident radiation. Up to a point, the smaller the area that is
illuminated, the smaller the area from which a spectrum can be
obtained. High intensity is required to increase the rate of arrival
of photons at the detector from small illuminated areas. For 
this reason, lasers and synchrotron radiation are the preferred
radiation sources.

In a conventional light microscope, an image is constructed
from a pattern of diffracted light waves that emanate from the 
illuminated object. As a result, some information about the
specimen is lost by destructive interference of scattered light
waves. Ultimately, this diffraction limit prevents the study of
samples that are much smaller than the wavelength of light used
as a probe. In practice, two objects will appear as distinct images
under a microscope if the distance between their centres is
greater than the Airy radius, rAiry = 0.61λ /a, where λ is the wave-
length of the incident beam of radiation and a is the numerical
aperture of the objective lens, the lens that collects light scattered
by the object. The numerical aperture of the objective lens is
defined as a = nr sin α, where nr is the refractive index of the lens
material and the angle α is the half-angle of the widest cone of
scattered light that can collected by the lens (so the lens collects
light beams sweeping a cone with angle 2α). Use of the best
equipment makes it possible to probe areas as small as 10 μm2 by
vibrational microscopy.

Figure 10.49 shows the infrared spectra of a single mouse 
cell, living and dying. Both spectra have features at 1545 cm−1

and 1650 cm−1 that are due to the peptide carbonyl groups of
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Fig. 10.47 The experimental arrangement for the CARS
experiment.
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Fig. 10.48 CARS spectrum of a methane–air flame at 2104 K. 
The peaks correspond to the Q branch of the vibration–rotation
spectrum of N2 gas. (Adapted from J.F. Verdieck et al. J. Chem.
Ed. 59, 495 (1982)).
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Fig. 10.49 Infrared absorption spectra of a single mouse cell:
(purple) living cell, (blue) dying cell. (Adapted from N. Jamin 
et al. Proc. Natl. Acad. Sci.USA 95, 4837 (1998).)

by counting 1 if the displacement is unchanged under a sym-
metry operation, −1 if it changes sign, and 0 if it is changed
into some other displacement. Next, subtract the symmetry
species of the translations. Translational displacements span
the same symmetry species as x, y, and z, so they can be 
obtained from the right-most column of the character table.
Finally, subtract the symmetry species of the rotations, which
are also given in the character table (and denoted there by 
Rx, Ry, or Rz).

Answer There are 3 × 5 = 15 degrees of freedom, of which 
(3 × 5) − 6 = 9 are vibrations. Refer to Fig. 10.50. Under E, no
displacement coordinates are changed, so the character is 15.
Under C3, no displacements are left unchanged, so the char-
acter is 0. Under the C2 indicated, the z-displacement of the
central  atom is left unchanged, whereas its x- and y-components
both change sign. Therefore χ(C2) = 1 − 1 − 1 + 0 + 0 + . . .

= −1. Under the S4 indicated, the z-displacement of the 
central atom is reversed, so χ(S4) = −1. Under σd, the x- and
z-displacements of C, H3, and H4 are left unchanged and
their y-displacements are reversed; hence χ(σd) = (1 + 1 − 1)
+ (1 + 1 − 1) + (1 + 1 − 1) = 3. The characters are therefore 15,
0, −1, −1, 3. By decomposing the direct product (Section 7.5),
we find that this representation spans A1 + E + T1 + 3T2. The
translations span T2; the rotations span T1. Hence, the nine
vibrations span A1 + E + 2T2. The A1 mode is non-degenerate,
the E mode is doubly degenerate, and each T2 mode is triply
degenerate, so accounting for 1 + 2 + 6 = 9 modes in all. The
modes themselves are shown in Fig. 10.51. We shall see that
symmetry analysis gives a quick way of deciding which
modes are active.

Self-test 10.7 Establish the symmetry species of the normal
modes of H2O. [2A1 + B2]

x

y

zC  S2 4,

d

1

4

C3

2

3

T

Fig. 10.50 The atomic displacements of CH4 and the symmetry
elements used to calculate the characters.

proteins and a feature at 1240 cm−1 that is due to the phospho-
diester (PO2

−) groups of lipids. The dying cell shows an additional 
absorption at 1730 cm−1, which is due to the ester carbonyl
group from an unidentified compound. From a plot of the 
intensities of individual absorption features as a function of 
position in the cell, it has been possible to map the distribution
of proteins and lipids during cell division and cell death.

Vibrational microscopy has also been used in biomedical and
pharmaceutical laboratories. Examples include the determina-
tion of the size and distribution of a drug in a tablet, the obser-
vation of conformational changes in proteins of cancerous cells
upon administration of anti-tumour drugs, and the measure-
ment of differences between diseased and normal tissue, such as
diseased arteries and the white matter from brains of multiple
sclerosis patients.

10.15 Symmetry aspects of molecular vibrations

One of the most powerful ways of dealing with normal modes,
especially of complex molecules, is to classify them according to
their symmetries. Each normal mode must belong to one of the
symmetry species of the molecular point group, as discussed in
Chapter 7.

Example 10.3 Identifying the symmetry species 
of a normal mode

Establish the symmetry species of the normal mode vibra-
tions of CH4, which belongs to the group Td.

Method The first step in the procedure is to identify the sym-
metry species of the irreducible representations spanned by
all the 3N displacement coordinates of the atoms, using the
characters of the molecular point group. Find these characters
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Justification 10.3 Using group theory to identify infrared
active normal modes

The rule hinges on the form of the transition dipole moment
between the ground-state vibrational wavefunction, ψ0, and
that of the first excited state, ψ1. The x-component is

μx,10 = −e∫ψ1*xψ0dτ (10.49)

with similar expressions for the two other components of the
transition moment. The ground-state vibrational wavefunc-
tion is a Gaussian function of the form e−x2

, so it is symmetri-
cal in x. The wavefunction for the first excited state gives a
non-vanishing integral only if it is proportional to x, for then
the integrand is proportional to x2 rather than to xy or xz.
Consequently, the excited-state wavefunction must have the
same symmetry as the displacement x.

(b) Raman activity of normal modes

Group theory provides an explicit recipe for judging the Raman
activity of a normal mode. In this case, the symmetry species of
the quadratic forms (x2, xy, etc.) listed in the character table are
noted (they transform in the same way as the polarizability), and
then we use the following rule:

If the symmetry species of a normal mode is the same as 
the symmetry species of a quadratic form, then the mode is
Raman active.

l A BRIEF ILLUSTRATION

We established in Example 10.3 that the symmetry species 
of the normal modes of CH4 are A1 + E + 2T2. Because the
quadratic forms span A1 + E + T2 in the group Td, all the 
normal modes are Raman active. Only the T2 modes are both
infrared and Raman active. This leaves the A1 and E modes to
be assigned in the Raman spectrum. The A1 can be identified
by noting that it is fully depolarized. Hence, all three modes
can be identified. l

Self-test 10.9 Which of the vibrational modes of H2O are
Raman active? [All three]

Checklist of key ideas

1. A rigid rotor is a body that does not distort under the stress
of rotation.

2. The principal axis (figure axis) is the unique axis of a
symmetric top. In an oblate top, I|| > I⊥. In a prolate top, 
I|| < I⊥.

3. The centrifugal distortion constant, DJ, takes into account
centrifugal distortion.

4. For a molecule to give a pure rotational spectrum, it must 
be polar. The specific rotational selection rules are ΔJ = ±1,
ΔMJ = 0, ±1, ΔK = 0.

1 1(A )

2 (E)

3 2(T )

4 2(T )		

	 	

Fig. 10.51 Typical normal modes of vibration of a tetrahedral
molecule. There are in fact two modes of symmetry species E and
three modes of each T2 symmetry species.

(a) Infrared activity of normal modes

It is best to use group theory to judge the activities of more com-
plex modes of vibration. This is easily done by checking the
character table of the molecular point group for the symmetry
species of the irreducible representations spanned by x, y, and z,
for their species are also the symmetry species of the compon-
ents of the electric dipole moment. Then apply the following
rule, which is developed in the following Justification:

If the symmetry species of a normal mode is the same as any of
the symmetry species of x, y, or z, then the mode is infrared active.

l A BRIEF ILLUSTRATION

We found in Example 10.3 that the symmetry species of the
normal modes of CH4 are A1 + E + 2T2. The displacements x,
y, and z span T2 in the group Td. Therefore, only the T2 modes
are infrared active. The distortions accompanying these modes
lead to a changing dipole moment. The A1 mode, which is in-
active, is the symmetrical ‘breathing’ mode of the molecule. l

Self-test 10.8 Which of the normal modes of H2O are infrared
active? [All three]
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5. For a molecule to give a rotational Raman spectra it must be
anisotropically polarizable. The specific selection rules are:
(i) linear rotors, ΔJ = 0, ±2; (ii) symmetric rotors, ΔJ = 0, 
±1, ±2; ΔK = 0.

6. The appearance of rotational spectra is affected by nuclear
statistics, the selective occupation of rotational states that
stems from the Pauli principle.

7. For a molecule to be infrared active its electric dipole
moment must change when the atoms are displaced relative
to one another. The specific selection rule for a harmonic
oscillator is: Δv = ±1.

8. Morse potential energy is a model for the discussion of
anharmonic motion, oscillatory motion in which the
restoring force is not proportional to the displacement.

9. The P branch of a vibrational transition consists of
vibration–rotation infrared transitions with ΔJ = −1; 
the Q branch has transitions with ΔJ = 0; the R branch 
has transitions with ΔJ = +1.

10. For a molecule to be vibrationally Raman active, its
polarizability must change as it vibrates. The specific
selection rule for a harmonic oscillator is Δv = ±1.

11. A normal mode is an independent, synchronous motion 
of atoms or groups of atoms that may be excited without
leading (in the harmonic approximation) to the excitation
of any other normal mode. The number of normal modes 
is 3N − 6 (for non-linear molecules) or 3N − 5 (linear
molecules).

12. The exclusion rule states that if the molecule has a centre of
symmetry, then no modes can be both infrared and Raman
active.

13. The depolarization ratio, ρ, is the ratio of the intensities, I,
of the scattered light with polarizations perpendicular and
parallel to the plane of polarization of the incident radiation,
ρ = I⊥/I||.

14. Resonance Raman spectroscopy is a Raman technique 
in which the frequency of the incident radiation nearly
coincides with the frequency of an electronic transition 
of the sample.

15. A normal mode is infrared active if its symmetry species 
is the same as any of the symmetry species of x, y, or z. A
normal mode is Raman active if its symmetry species is the
same as the symmetry species of a quadratic form.

Further information

Further information 10.1 The Einstein coefficients

Stimulated absorption is the transition from a low energy state to one 
of higher energy that is driven by the electromagnetic field oscillating 
at the transition frequency. The rate of transition, w, is proportional to
E2, and therefore to the intensity of the incident radiation (because the
intensity is proportional to E2). Therefore, the more intense the incident
radiation, the stronger the absorption by the sample (Fig. 10.52).
Einstein wrote this transition rate as

w = Bρ (10.50)

The constant B (which should not be confused with the rotational
constant) is the Einstein coefficient of stimulated absorption and ρ dν is
the energy density of radiation in the frequency range ν to ν + dν, where

ν is the frequency of the transition. When the molecule is exposed to
black-body radiation from a source of temperature T, ρ is given by the
Planck distribution:

(10.51)

For the time being, we can treat B as an empirical parameter that
characterizes the transition: if B is large, then a given intensity of 
incident radiation will induce transitions strongly and the sample will 
be strongly absorbing. The total rate of absorption, W, the number of
molecules excited during an interval divided by the duration of the
interval, is the transition rate of a single molecule multiplied by the
number of molecules N in the lower state: W = Nw.

Einstein considered that the radiation was also able to induce the
molecule in the upper state to undergo a transition to the lower state,
and hence to generate a photon of frequency ν. Thus, he wrote the rate
of this stimulated emission as

w′ = B′ρ (10.52)

where B′ is the Einstein coefficient of stimulated emission. Note that
only radiation of the same frequency as the transition can stimulate an
excited state to fall to a lower state. However, he realized that stimulated
emission was not the only means by which the excited state could
generate radiation and return to the lower state, and suggested that an
excited state could undergo spontaneous emission at a rate that was
independent of the intensity of the radiation (of any frequency) that 
is already present. Einstein therefore wrote the total rate of transition
from the upper to the lower state as

w′ = A + B′ρ (10.53)
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Fig. 10.52 The transitions treated by Einstein in his theory of
stimulated and spontaneous processes.
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The constant A is the Einstein coefficient of spontaneous emission. 
The overall rate of emission is

W ′ = N ′(A + B′ρ) (10.54)

where N ′ is the population of the upper state.
At thermal equilibrium, N and N ′ do not change over time. This

condition is reached when the total rates of emission and absorption 
are equal, so

NBρ = N ′(A + B ′ρ)

This expression rearranges into

We have used the Boltzmann expression (Fundamentals F.5) for the ratio
of populations of states of energies E and E ′ in the last step:

hν = E ′ − E

This result has the same form as the Planck distribution, which describes
the radiation density at thermal equilibrium. Indeed, when we compare
the two expressions for ρ, we can conclude that B′ = B and that A is
related to B by

(10.55)

Spontaneous emission can be largely ignored at the relatively low
frequencies of rotational and vibrational transitions, and the intensities
of these transitions can be discussed in terms of stimulated emission and
absorption.

Further information 10.2 Selection rules for rotational and
vibrational spectroscopy

The Born–Oppenheimer approximation allows us to write the internal
wavefunction of a molecule as the product of an electronic part, with 
the label ε, a vibrational part, with quantum number v, and a rotational
part, which for a diatomic molecule can be represented by the spherical
harmonics YJ,MJ

(θ,φ) (Section 3.4). To simplify the form of the integrals
that will soon follow, we are using the Dirac bracket notation introduced
in Further information 1.1. The transition dipole moment for a
spectroscopic transition is

mfi = 〈εf vf Jf,MJ,f | ¢ | εivi Ji,MJ,i〉 (10.56)

and our task is to explore conditions for which this integral vanishes or
has a nonzero value.

(a) Microwave spectra

During a pure rotational transition the molecule does not change
electronic or vibrational states, so that 〈εf vf | = 〈εivi | = 〈εv| and we 
identify mεv = 〈εv|¢ | εv〉 with the permanent electric dipole moment 
of the molecule in the state εv. Equation 10.56 becomes

mfi = 〈 Jf MJ,f |¢εv| JiMJ,i〉 (10.57)

The electric dipole moment has components μεv,x, μεv,y, and μεv,z, which,
in spherical polar coordinates, are written in terms of μ0, the magnitude
of the permanent electric dipole moment vector of the molecule, and the
angles θ and φ as

μεv,x = μ0 sin θ cos φ μεv,y = μ0 sin θ sin φ μεv,z = μ0 cos θ (10.58)
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Here, we have taken the z-axis to be coincident with the figure axis. The
transition dipole moment has three components, given by:

μfi,x = μ0〈Jf MJ,f |sin θ cos φ| JiMJ,i〉
μfi,y = μ0〈Jf MJ,f |sin θ sin φ| JiMJ,i〉 (10.59)
μfi,z = μ0〈Jf MJ,f |cos θ| JiMJ,i〉

We see immediately that the molecule must have a permanent dipole
moment in order to have a microwave spectrum. This is the gross
selection rule for microwave spectroscopy.

For the specific selection rules we need to examine the conditions 
for which the integrals do not vanish, and we must consider each
component. For the z-component, we simplify the integral by using 
cos θ ∝ Y1,0 (Table 3.2). It follows that

μfi,z ∝ 〈 Jf MJ,f |Y1,0 | JiMJ,i〉 (10.60)

As pointed out in Justification 4.4, an important ‘triple integral’ involving
the spherical harmonics is

(10.61)

unless ml″ = ml′ + ml and lines of length l″, l′, and l can form a triangle.
Therefore, the transition moment vanishes unless Jf − Ji = ±1 and 
MJ,f − MJ,i = 0. These are two of the selection rules stated in Section 10.3.

For the x- and y-components, we use cos φ = 1–2 (eiφ + e−iφ) and 
sin φ = − 1–2 i(eiφ − e−iφ) to write sin θ cos φ ∝ Y1,1 + Y1,−1 and 
sin θ sin φ ∝ Y1,1 − Y1,−1. It follows that

μfi,x ∝ 〈 Jf MJ,f |Y1,1 + Y1,−1| JiMJ,i〉 μfi,y ∝ 〈 Jf MJ,f |Y1,1 − Y1,−1| JiMJ,i〉
(10.62)

According to the properties of the spherical harmonics, these integrals
vanish unless Jf − Ji = ±1 and MJ,f − MJ,i = ±1. This completes the selection
rules of Section 10.3.

(b) Rotational Raman spectra

We shall develop the origin of the gross and specific selection rules 
for rotational Raman spectroscopy by using a diatomic molecule as 
an example. The incident electric field of a wave of electromagnetic
radiation of frequency ω i induces a molecular dipole moment that is
given by

μind = αE(t) = αE cos ω it (10.63)

If the molecule is rotating at a circular frequency ωR, to an external
observer its polarizability is also time dependent (if it is anisotropic), 
and we can write

α = α0 + Δα cos 2ωRt (10.64)

where Δα = α|| − α⊥and α ranges from α0 + Δα to α0 − Δα as the
molecule rotates. The 2 appears because the polarizability returns to 
its initial value twice each revolution (Fig 10.53). Substituting this
expression into the expression for the induced dipole moment gives

μind = (α0 + Δα cos 2ωRt) × (E cos ω it)
= α0E cos ω it + EΔα cos 2ωRt cos ω it
= α0E cos ω it + 1–2 EΔα{cos(ω i + 2ωR)t + cos(ω i − 2ωR)t} (10.65)

This calculation shows that the induced dipole has a component
oscillating at the incident frequency (which generates Rayleigh
radiation), and that it also has two components at ω i ± 2ωR, which 

� �
0 0

2π π

Y Y Yl m l m l ml l l′′ ′′ ′ ′, , ,( , )* ( , ) ( ,θ φ θ φ θ φ))sinθ θ φd d = 0
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give rise to the shifted Raman lines. These lines appear only if Δα ≠ 0;
hence the polarizability must be anisotropic for there to be Raman lines.
This is the gross selection rule for rotational Raman spectroscopy. 
We also see that the distortion induced in the molecule by the incident
electric field returns to its initial value after a rotation of 180° (that is,
twice a revolution). This is the origin of the specific selection rule 
ΔJ = ±2.

We now use a quantum mechanical formalism to understand the
selection rules. First, we write the x-, y-, and z-components of the
induced dipole moment as

μind,x = μx sin θ cos φ μind,y = μy sin θ sin φ μind,z = μz cos θ (10.66a)

where μx, μy, and μz are the components of the electric dipole moment 
of the molecule and the z-axis is coincident with the molecular figure
axis. The incident electric field also has components along the x-, y-, 
and z-axes:

Ex = E sin θ cos φ Ey = E sin θ sin φ Ez = E cos θ (10.66b)

From eqn 10.65 and the preceding equations, it follows that

μind = α⊥Ex sin θ cos φ + α⊥Ey sin θ sin φ + α||Ez cos θ
= α⊥E sin2θ + α||E cos2θ (10.67)

By using the spherical harmonic Y2,0(θ,φ) = (5/16π)1/2 (3 cos2θ − 1) and 
the relation sin2θ = 1 − cos2θ, it follows that:

(10.68)

For a transition between two rotational states, we calculate the integral
〈 Jf MJ,f |μind | JiMJ,i〉, which has two components:

and

According to the integral in eqn 10.61, the first integral vanishes unless 
Jf − Ji = 0 and the second integral vanishes unless Jf − Ji = ±2 and Δα ≠ 0.
These are the gross and specific selection rules for linear rotors.

(c) Infrared spectra

The gross selection rule for infrared spectroscopy is based on an analysis
of the transition dipole moment 〈vf |¢ |v i〉, which arises from eqn 10.56
when the molecule does not change electronic or rotational states. 
For simplicity, we shall consider a one-dimensional oscillator (like a
diatomic molecule). The electric dipole moment operator depends on
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the location of all the electrons and all the nuclei in the molecule, so it
varies as the internuclear separation changes (Fig 10.54). If we think of
the dipole moment as arising from two partial charges ±δq separated by a
distance R = Re + x, we can write its variation with displacement from the
equilibrium separation, x, as

N = Rδq = Reδq + xδq = μ0 + xδq (10.69)

where μ0 is the electric dipole moment operator when the nuclei have
their equilibrium separation. It then follows that, with f ≠ i,

〈vf |N|vi 〉 = μ0〈vf |vi 〉 + δq〈vf |x |vi 〉 (10.70a)

The term proportional to μ0 is zero because the states with different
values of v are orthogonal. It follows that the transition dipole moment
is

〈vf |N|vi 〉 = 〈vf |x |vi 〉δq (10.70b)

Because (from eqn 10.69)

we can write the transition dipole moment more generally as

(10.71)

and we see that the right-hand side is zero unless the dipole moment
varies with displacement (so that dμ /dx is nonzero). This is the gross
selection rule for infrared spectroscopy.

The specific selection rule is determined by considering the value 
of 〈vf |x |vi 〉. We need to write out the wavefunctions in terms of the
Hermite polynomials given in Section 2.5 and then to use their
properties (Example 2.6 should be reviewed, for it gives further details 
of the calculation). We note that x = αy with α = ($2/meff k)1/4 (eqn 2.24;
note that in this context α is not the polarizability). Then we write

(10.72)
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Fig. 10.53 The distortion induced in a molecule by an applied
electric field returns to its initial value after a rotation of only 180°
(that is, twice a revolution). This is the origin of the ΔJ = ±2
selection rule in rotational Raman spectroscopy.
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Fig. 10.54 The electric dipole moment of a heteronuclear 
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To evaluate the integral we use the recursion relation (Table 2.1)

yHv = vHv−1 + 1–2 Hv+1

which turns the matrix element into

(10.73)

An important integral involving Hermite polynomials is (Table 2.1)

It follows that the first integral is zero unless vf = vi − 1 and the second is
zero unless vf = vi + 1. It follows that the transition dipole moment is
zero unless Δv = ±1.

(d) Vibrational Raman spectra

The gross selection rule for vibrational Raman spectroscopy is based on
an analysis of the transition dipole moment 〈εvf |¢ | εvi〉, which is written
from eqn 10.56 by using the Born–Oppenheimer approximation and
neglecting the effect of rotation and electron spin. For simplicity, we
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consider a one-dimensional harmonic oscillator (like a diatomic
molecule).

First, we use eqn 10.63 to write the transition dipole moment as

μfi = 〈εvf |N| εvi〉 = 〈εvf |α |εvi〉E = 〈vf |α(x)|vi〉E (10.74)

where α(x) = 〈ε|α|ε〉 is the polarizability of the molecule, which we
expect to be a function of small displacements x from the equilibrium
bond length of the molecule. Next, we expand α(x) as a Taylor series, so
the transition dipole moment becomes

(10.75)

The term containing 〈vf |vi〉 vanishes for f ≠ i because the harmonic
oscillator wavefunctions are orthogonal. Therefore, the vibration 
is Raman active if (dα /dx)0 ≠ 0 and 〈vf |x |vi〉 ≠ 0. Therefore, the
polarizability of the molecule must change during the vibration; 
this is the gross selection rule of Raman spectroscopy. Also, we 
already know that 〈vf |x |vi〉 ≠ 0 if vf − vi = ±1; this is the specific 
selection rule of Raman spectroscopy.
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Discussion questions

10.1 Account for the rotational degeneracy of the various types of rigid
rotor. Would their lack of rigidity affect your conclusions?

10.2 Discuss the differences between an oblate and a prolate symmetric
rotor and give several examples of each.

10.3 Discuss the origin of the Stark effect. What are some applications of
the Stark effect?

10.4 Discuss the physical origins of the gross selection rules for
microwave and infrared spectroscopy.

10.5 Discuss the physical origins of the gross selection rules for
rotational and vibrational Raman spectroscopy.

10.6 Account for the existence of rotational zero-point energy in
molecular hydrogen.

10.7 Discuss the role of nuclear statistics in the occupation of energy
levels in 1H12C.12C1H, 1H13C.13C1H, and 2H12C.12C2H. For nuclear
spin data, see Table 12.2.

10.8 Discuss the strengths and limitations of the parabolic and Morse
functions as descriptors of the potential energy curve of a diatomic
molecule.

10.9 Discuss the effect of vibrational excitation on the rotational
constant of a diatomic molecule.

10.10 How is the method of combination differences used in
rotation–vibration spectroscopy to determine rotational constants?

10.11 Suppose that you wish to characterize the normal modes of
benzene in the gas phase. Why is it important to obtain both infrared
absorption and Raman spectra of your sample?

Exercises

The masses of nuclides are listed in the tables at the start of the Data
section.

10.1(a) Calculate the moment of inertia around the C2 axis (the bisector
of the OOO angle) and the corresponding rotational constant of a 16O3
molecule (bond angle 117°; OO bond length 128 pm).

10.1(b) Calculate the moment of inertia around the C3 axis 
(the threefold symmetry axis) and the corresponding rotational 
constant of a 31P1H3 molecule (bond angle 93.5°; PH bond length 
142 pm).

10.2(a) Plot the expressions for the two moments of inertia of a
symmetric top version of an AB4 molecule (Table 10.1) with equal bond
lengths but with the angle θ increasing from 90° to the tetrahedral angle.

10.2(b) Plot the expressions for the two moments of inertia of a
symmetric top version of an AB4 molecule (Table 10.1) with θ equal 
to the tetrahedral angle but with one A-B bond varying. Hint. Write 
ρ = R′AB/RAB, and allow ρ to vary from 2 to 1.

10.3(a) Classify the following rotors: (a) O3, (b) CH3CH3, (c) XeO4, 
(d) FeCp2 (Cp denotes the cyclopentadienyl group, C5H5).
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10.3(b) Classify the following rotors: (a) CH2=CH2, (b) SO3, 
(c) ClF3, (d) N2O.

10.4(a) Calculate the frequency and wavenumber of the J = 3 ← 2
transition in the pure rotational spectrum of 14N16O. The equilibrium
bond length is 115 pm. Does the frequency increase or decrease if
centrifugal distortion is considered?

10.4(b) Calculate the frequency and wavenumber of the J = 2 ← 1
transition in the pure rotational spectrum of 12C16O. The equilibrium
bond length is 112.81 pm. Does the frequency increase or decrease if
centrifugal distortion is considered?

10.5(a) The wavenumber of the J = 3 ← 2 rotational transition 
of 1H35Cl considered as a rigid rotor is 63.56 cm−1; what is the 
H-Cl bond length?

10.5(b) The wavenumber of the J = 1 ← 0 rotational transition 
of 1H81Br considered as a rigid rotor is 16.93 cm−1; what is the 
H-Br bond length?

10.6(a) The spacing of lines in the microwave spectrum of 27Al1H is
12.604 cm−1; calculate the moment of inertia and bond length of the
molecule.

10.6(b) The spacing of lines in the microwave spectrum of 35Cl19F is
1.033 cm−1; calculate the moment of inertia and bond length of the
molecule.

10.7(a) Determine the HC and CN bond lengths in HCN from the
rotational constants B(1H12C14N) = 44.316 GHz and B(2H12C14N) =
36.208 GHz.

10.7(b) Determine the CO and CS bond lengths in OCS from 
the rotational constants B(16O12C32S) = 6081.5 MHz, B(16O12C34S) =
5932.8 MHz.

10.8(a) The wavenumber of the incident radiation in a Raman
spectrometer is 20 487 cm−1. What is the wavenumber of the scattered
Stokes radiation for the J = 2 ← 0 transition of 14N2?

10.8(b) The wavenumber of the incident radiation in a Raman
spectrometer is 20 623 cm−1. What is the wavenumber of the scattered
Stokes radiation for the J = 4 ← 2 transition of 16O2?

10.9(a) The rotational Raman spectrum of 35Cl2 shows a series of Stokes
lines separated by 0.9752 cm−1 and a similar series of anti-Stokes lines.
Calculate the bond length of the molecule.

10.9(b) The rotational Raman spectrum of 19F2 shows a series of Stokes
lines separated by 3.5312 cm−1 and a similar series of anti-Stokes lines.
Calculate the bond length of the molecule.

10.10(a) Which of the following molecules may show a pure rotational
microwave absorption spectrum: (a) H2, (b) HCl, (c) CH4, (d) CH3Cl,
(e) CH2Cl2?

10.10(b) Which of the following molecules may show a pure rotational
microwave absorption spectrum: (a) H2O, (b) H2O2, (c) NH3, (d) N2O?

10.11(a) Which of the following molecules may show a pure rotational
Raman spectrum: (a) H2, (b) HCl, (c) CH4, (d) CH3Cl?

10.11(b) Which of the following molecules may show a pure rotational
Raman spectrum: (a) CH2Cl2, (b) CH3CH3, (c) SF6, (d) N2O?

10.12(a) What is the ratio of weights of populations due to the effects of
nuclear statistics for 35Cl2?

10.12(b) What is the ratio of weights of populations due to the effects of
nuclear statistics for 12C32S2? What effect would be observed when 12C is
replaced by 13C? For nuclear spin data, see Table 12.2.

10.13(a) An object of mass 100 g suspended from the end of a rubber
band has a vibrational frequency of 2.0 Hz. Calculate the force constant
of the rubber band.

10.13(b) An object of mass 1.0 g suspended from the end of a spring 
has a vibrational frequency of 10.0 Hz. Calculate the force constant of
the spring.

10.14(a) Calculate the percentage difference in the fundamental
vibrational wavenumbers of 23Na35Cl and 23Na37Cl on the assumption
that their force constants are the same.

10.14(b) Calculate the percentage difference in the fundamental
vibrational wavenumbers of 1H35Cl and 2H37Cl on the assumption that
their force constants are the same.

10.15(a) The wavenumber of the fundamental vibrational transition of
35Cl2 is 564.9 cm−1. Calculate the force constant of the bond.

10.15(b) The wavenumber of the fundamental vibrational transition of
79Br81Br is 323.2 cm−1. Calculate the force constant of the bond.

10.16(a) The hydrogen halides have the following fundamental
vibrational wavenumbers: 4141.3 cm−1 (1H19F); 2988.9 cm−1 (1H35Cl);
2649.7 cm−1 (1H81Br); 2309.5 cm−1 (1H127I). Calculate the force
constants of the hydrogen–halogen bonds.

10.16(b) From the data in Exercise 10.16a, predict the fundamental
vibrational wavenumbers of the deuterium halides.

10.17(a) For 16O2, Δí values for the transitions v = 1 ← 0, 2 ← 0, and 
3 ← 0 are, respectively, 1556.22, 3088.28, and 4596.21 cm−1. Calculate 
# and xe. Assume ye to be zero.

10.17(b) For 14N2, Δí values for the transitions v = 1 ← 0, 2 ← 0, and 
3 ← 0 are, respectively, 2345.15, 4661.40, and 6983.73 cm−1. Calculate
# and xe. Assume ye to be zero.

10.18(a) Infrared absorption by 1H81Br gives rise to an R branch from 
v = 0. What is the wavenumber of the line originating from the rotational
state with J = 2? Use the information in Table 10.2.

10.18(b) Infrared absorption by 1H127I gives rise to an R branch from 
v = 0. What is the wavenumber of the line originating from the rotational
state with J = 2? Use the information in Table 10.2.

10.19(a) Which of the following molecules may show infrared
absorption spectra: (a) H2, (b) HCl, (c) CO2, (d) H2O?

10.19(b) Which of the following molecules may show infrared
absorption spectra: (a) CH3CH3, (b) CH4, (c) CH3Cl, (d) N2?

10.20(a) How many normal modes of vibration are there for the
following molecules: (a) H2O, (b) H2O2, (c) C2H4?

10.20(b) How many normal modes of vibration are there for the
following molecules: (a) C6H6, (b) C6H5CH3, (c) HC.C-C.C-H?

10.21(a) How many vibrational modes are there for the molecule 
NC-(C.C-C.C-)10CN detected in an interstellar cloud?

10.21(b) How many vibrational modes are there for the molecule 
NC-(C.C-C.C-)8CN detected in an interstellar cloud?

10.22(a) Write an expression for the vibrational term for the ground
vibrational state of H2O in terms of the wavenumbers of the normal
modes. Neglect anharmonicities as in eqn 10.46.

10.22(b) Write an expression for the vibrational term for the ground
vibrational state of SO2 in terms of the wavenumbers of the normal
modes. Neglect anharmonicities as in eqn 10.46.

10.23(a) Which of the three vibrations of an AB2 molecule are infrared 
or Raman active when it is (a) angular, (b) linear?
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10.23(b) Which of the vibrations of an AB3 molecule are infrared or
Raman active when it is (a) trigonal planar, (b) trigonal pyramidal?

10.24(a) Consider the vibrational mode that corresponds to the uniform
expansion of the benzene ring. Is it (a) Raman, (b) infrared active?

10.24(b) Consider the vibrational mode that corresponds to the boat-like
bending of a benzene ring. Is it (a) Raman, (b) infrared active?

10.25(a) The molecule CH2Cl2 belongs to the point group C2v. The
displacements of the atoms span 5A1 + 2A2 + 4B1 + 4B2. What are the
symmetries of the normal modes of vibration?

10.25(b) A carbon disulfide molecule belongs to the point group D∞h.
The nine displacements of the three atoms span A1g + A1u + A2g + 2E1u +
E1g. What are the symmetries of the normal modes of vibration?

10.26(a) Which of the normal modes of CH2Cl2 (Exercise 10.25a) are
infrared active? Which are Raman active?

10.26(b) Which of the normal modes of carbon disulfide (Exercise 10.25b)
are infrared active? Which are Raman active?

10.27(a) Calculate the ratio of the Einstein coefficients of spontaneous
and stimulated emission, A and B, for transitions with the following
characteristics: (a) 70.8 pm X-rays, (b) 500 nm visible light, 
(c) 3000 cm−1 infrared radiation.

10.27(b) Calculate the ratio of the Einstein coefficients of spontaneous
and stimulated emission, A and B, for transitions with the following
characteristics: (a) 500 MHz radiofrequency radiation, (e) 3.0 cm
microwave radiation.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.

Problems*

Numerical problems

10.1 The rotational constant of NH3 is 298 GHz. Compute the
separation of the pure rotational spectrum lines in GHz, cm−1, and mm,
and show that the value of B is consistent with an N-H bond length of
101.4 pm and a bond angle of 106.78°.

10.2 The rotational constant for CO is 1.9314 cm−1 and 1.6116 cm−1 in
the ground and first excited vibrational states, respectively. By how much
does the internuclear distance change as a result of this transition?

10.3 Pure rotational Raman spectra of gaseous C6H6 and C6D6
yield the following rotational constants: è (C6H6) = 0.18960 cm−1, 
è (C6D6) = 0.15681 cm−1. The moments of inertia of the molecules 
about any axis perpendicular to the C6 axis were calculated from these
data as I(C6H6) = 1.4759 × 10−45 kg m2, I(C6D6) = 1.7845 × 10−45 kg m2.
Calculate the CC, CH, and CD bond lengths.

10.4 Rotational absorption lines from 1H35Cl gas were found at the
following wavenumbers (R.L. Hausler and R.A. Oetjen, J. Chem. Phys.
21, 1340 (1953)): 83.32, 104.13, 124.73, 145.37, 165.89, 186.23, 206.60,
226.86 cm−1. Calculate the moment of inertia and the bond length of the
molecule. Predict the positions of the corresponding lines in 2H35Cl.

10.5 Is the bond length in HCl the same as that in DCl? The
wavenumbers of the J = 1 ← 0 rotational transitions for H35Cl and
2H35Cl are 20.8784 and 10.7840 cm−1, respectively. Accurate atomic
masses are 1.007 825mu and 2.0140mu for 1H and 2H, respectively. The
mass of 35Cl is 34.96885mu. Based on this information alone, can you
conclude that the bond lengths are the same or different in the two
molecules?

10.6 Thermodynamic considerations suggest that the copper
monohalides CuX should exist mainly as polymers in the gas phase, 
and indeed it proved difficult to obtain the monomers in sufficient
abundance to detect spectroscopically. This problem was overcome by
flowing the halogen gas over copper heated to 1100 K (Manson et al. 
J. Chem. Phys. 63, 2724 (1975)). For CuBr the J = 13–14, 14–15, and
15–16 transitions occurred at 84 421.34, 90 449.25, and 96 476.72 MHz,
respectively. Calculate the rotational constant and bond length of CuBr.

10.7 The microwave spectrum of 16O12CS gave absorption lines 
(in GHz) as follows:

J 1 2 3 4
32S 24.325 92 36.488 82 48.651 64 60.814 08
34S 23.732 33 47.46240

Using the expressions for moments of inertia in Table 10.1 and assuming
that the bond lengths are unchanged by substitution, 
calculate the CO and CS bond lengths in OCS.

10.8 The average spacing between the rotational lines of the P and R
branches of 12C2

1H2 and 12C2
2H2 is 2.352 cm−1 and 1.696 cm−1,

respectively. Estimate the CC and CH bond lengths.

10.9 Absorptions in the v = 1 ← 0 vibration–rotation spectrum of 
1H35Cl were observed at the following wavenumbers (in cm−1):

2998.05 2981.05 2963.35 2944.99 2925.92

2906.25 2865.14 2843.63 2821.59 2799.00

Assign the rotational quantum numbers and use the method of
combination differences to determine the rotational constants of the 
two vibrational levels.

10.10 Equation 10.17b may be rearranged into

#( J + 1 ← J) / 2( J + 1) = è − 2ëJ( J + 1)2

which is the equation of a straight line when the left-hand side is plotted
against (J + 1)2. The following wavenumbers of transitions (in cm−1)
were observed for 12C16O:

J: 0 1 2 3 4

3.845 033 7.689 919 11.534 510 15.378 662 19.222 223

Determine è, ëJ, and the equilibrium bond length of CO.

10.11‡ In a study of the rotational spectrum of the linear FeCO radical,
Tanaka et al. (J. Chem. Phys. 106, 6820 (1997)) report the following 
J + 1 ← J transitions:

J 24 25 26 27 28 29

#/m−1 214 777.7 223 379.0 231 981.2 240 584.4 249 188.5 257 793.5

Evaluate the rotational constant of the molecule. Also, estimate the value
of J for the most highly populated rotational energy level at 298 K and at
100 K.
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10.12 The vibrational levels of NaI lie at the wavenumbers 142.81,
427.31, 710.31, and 991.81 cm−1. Show that they fit the expression 
(v + 1–2 )# − (v + 1–2 )2xe#, and deduce the force constant, zero-point 
energy, and dissociation energy of the molecule.

10.13 The rotational constant for a diatomic molecule in the 
vibrational state v typically fits the expression èv = èe − a(v + 1–2 ). 
For the interhalogen molecule IF it is found that èe = 0.279 71 cm−1

and a = 0.187 m−1 (note the change of units). Calculate è0 and è1 and 
use these values to calculate the wavenumbers of the J ′ → 3 transitions 
of the P and R branches. You will need the following additional
information: # = 610.258 cm−1 and xe# = 3.141 cm−1. Estimate the
dissociation energy of the IF molecule.

10.14 Predict the shape of the nitronium ion, NO+
2 , from its Lewis

structure and the VSEPR model. It has one Raman active vibrational
mode at 1400 cm−1, two strong IR active modes at 2360 and 540 cm−1,
and one weak IR mode at 3735 cm−1. Are these data consistent with the
predicted shape of the molecule? Assign the vibrational wavenumbers to
the modes from which they arise.

10.15 Provided higher order terms are neglected, eqn 10.38 
for the vibrational wavenumbers of an anharmonic oscillator, 
Δí(v) = # − 2(v + 1)xe#, is the equation of a straight line when the 
left-hand side is plotted against v + 1. Use the following data on CO to
determine the values of # and xe# for CO:

v 0 1 2 3 4

Δí(v) / cm−1 2143.1 2116.1 2088.9 2061.3 2033.5

10.16 At low resolution, the strongest absorption band in the infrared
absorption spectrum of 12C16O is centred at 2150 cm−1. Upon closer
examination at higher resolution, this band is observed to be split 
into two sets of closely spaced peaks, one on each side of the centre 
of the spectrum at 2143.26 cm−1. The separation between the peaks
immediately to the right and left of the centre is 7.655 cm−1. Make 
the harmonic oscillator and rigid rotor approximations and calculate
from these data: (a) the vibrational wavenumber of a CO molecule, 
(b) its molar zero-point vibrational energy, (c) the force constant 
of the CO bond, (d) the rotational constant è, and (e) the bond 
length of CO.

10.17 The HCl molecule is quite well described by the Morse potential
with De = 5.33 eV, # = 2989.7 cm−1, and xe# = 52.05 cm−1. Assuming that
the potential is unchanged on deuteration, predict the dissociation
energies (D0) of (a) HCl, (b) DCl.

10.18 The Morse potential (eqn 10.35) is very useful as a simple
representation of the actual molecular potential energy. When RbH 
was studied, it was found that # = 936.8 cm−1 and x# = 14.15 cm−1. Plot
the potential energy curve from 50 pm to 800 pm around Re = 236.7 pm.
Then go on to explore how the rotation of a molecule may weaken its
bond by allowing for the kinetic energy of rotation of a molecule and
plotting V* = V + hcèJ(J + 1) with è = $ / 4πcμR2. Plot these curves 
on the same diagram for J = 40, 80, and 100, and observe how the
dissociation energy is affected by the rotation. (Taking è = 3.020 cm−1

at the equilibrium bond length will greatly simplify the calculation.)

10.19‡ Luo et al. ( J. Chem. Phys. 98, 3564 (1993)) reported experimental
observation of the He2 complex, a species that had escaped detection 
for a long time. The fact that the observation required temperatures in
the neighbourhood of 1 mK is consistent with computational studies
that suggest that hcëe for He2 is about 1.51 × 10−23 J, hcë0 ≈ 2 × 10−26 J,
and Re about 297 pm. (See Problem 6.6.) (a) Estimate the fundamental
vibrational wavenumber, force constant, moment of inertia, and
rotational constant based on the harmonic oscillator and rigid-rotor
approximations. (b) Such a weakly bound complex is hardly likely to 

be rigid. Estimate the vibrational wavenumber and anharmonicity
constant based on the Morse potential.

10.20 Use appropriate electronic structure software to perform MP2 
and DFT calculations on H2O and CO2 using (a) 6-31G and (b) 6-31G
basis sets in each case. (a) Compute ground-state energies, equilibrium
geometries, and vibrational frequencies for each molecule. (b) Compute
the dipole moment of H2O; the experimental value is 1.854 D. (c)
Compare computed values to experiment and suggest reasons for 
any discrepancies.

10.21 As mentioned in Section 10.13, the semiempirical, ab initio, 
and DFT methods discussed in Chapter 6 can be used to estimate the
force field of a molecule. The molecule’s vibrational spectrum can be
simulated, and it is then possible to determine the correspondence
between a vibrational frequency and the atomic displacements that 
give rise to a normal mode. (a) Using molecular modelling software 
and the computational method of your choice (semiempirical, ab initio,
or DFT methods), calculate the fundamental vibrational wavenumbers
and visualize the vibrational normal modes of SO2 in the gas phase. (b)
The experimental values of the fundamental vibrational wavenumbers of
SO2 in the gas phase are 525 cm−1, 1151 cm−1, and 1336 cm−1. Compare
the calculated and experimental values. Even if agreement is poor, is it
possible to establish a correlation between an experimental value of the
vibrational wavenumber and a specific vibrational normal mode?

10.22 Consider the molecule CH3Cl. (a) To what point group does the
molecule belong? (b) How many normal modes of vibration does the
molecule have? (c) What are the symmetries of the normal modes of
vibration for this molecule? (d) Which of the vibrational modes of this
molecule are infrared active? (e) Which of the vibrational modes of this
molecule are Raman active?

10.23 Suppose that three conformations are proposed for the non-
linear molecule H2O2 (6, 7, and 8). The infrared absorption spectrum 
of gaseous H2O2 has bands at 870, 1370, 2869, and 3417 cm−1. The
Raman spectrum of the same sample has bands at 877, 1408, 1435, 
and 3407 cm−1. All bands correspond to fundamental vibrational
wavenumbers and you may assume that: (i) the 870 and 877 cm−1 bands
arise from the same normal mode, and (ii) the 3417 and 3407 cm−1

bands arise from the same normal mode. (a) If H2O2 were linear, 
how many normal modes of vibration would it have? (b) Give the
symmetry point group of each of the three proposed conformations of
non-linear H2O2. (c) Determine which of the proposed conformations 
is inconsistent with the spectroscopic data. Explain your reasoning.

6 87

Theoretical problems

10.24 Show that the moment of inertia of a diatomic molecule
composed of atoms of masses mA and mB and bond length R is 
equal to meffR2, where meff = mAmB/(mA + mB).

10.25 Confirm the expression given in Table 10.1 for the moment of
inertia of a linear ABC molecule. Hint. Begin by locating the centre of
mass.

10.26 Derive eqn 10.14 for the centrifugal distortion constant DJ of a
diatomic molecule of effective mass meff. Treat the bond as an elastic
spring with force constant k and equilibrium length re that is subjected 
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to a centrifugal distortion to a new length rc. Begin the derivation by
letting the particles experience a restoring force of magnitude k(rc − re)
that is countered perfectly by a centrifugal force meffω2rc, where ω is the
angular velocity of the rotating molecule. Then introduce quantum
mechanical effects by writing the angular momentum as {J(J + 1)}1/2$.
Finally, write an expression for the energy of the rotating molecule,
compare it with eqn 10.13, and infer an expression for ëJ.

10.27 The rotational terms of a symmetric top, allowing for centrifugal
distortion, are commonly written

Ü(J,K) = èJ(J + 1) + (é − è)K2 − ëJ J
2(J + 1)2 − ëJKJ(J + 1)K2 − ëKK4

Derive an expression for the wavenumbers of the allowed rotational
transitions. The following transition frequencies (in gigahertz, GHz)
were observed for CH3F:

51.0718 102.1426 102.1408 153.2103 153.2076

Determine the values of as many constants in the expression for the
rotational terms as these values permit.

10.28 In the group theoretical language developed in Chapter 7, a
spherical rotor is a molecule that belongs to a cubic or icosahedral point
group, a symmetric rotor is a molecule with at least a threefold axis of
symmetry, and an asymmetric rotor is a molecule without a threefold 
(or higher) axis. Linear molecules are linear rotors. Classify each of the
following molecules as a spherical, symmetric, linear, or asymmetric
rotor and justify your answers with group theoretical arguments: 
(a) CH4, (b) CH3CN, (c) CO2, (d) CH3OH, (e) benzene, (f) pyridine.

10.29 Derive an expression for the value of J corresponding to the 
most highly populated rotational energy level of a diatomic rotor at a
temperature T remembering that the degeneracy of each level is 2J + 1.
Evaluate the expression for ICl (for which è = 0.1142 cm−1) at 25°C.
Repeat the problem for the most highly populated level of a spherical
rotor, taking note of the fact that each level is (2J + 1)2-fold degenerate.
Evaluate the expression for CH4 (for which è = 5.24 cm−1) at 25°C.

10.30 The moments of inertia of the linear mercury(II) halides are very
large, so the O and S branches of their vibrational Raman spectra show
little rotational structure. Nevertheless, the peaks of both branches can
be identified and have been used to measure the rotational constants 
of the molecules (R.J.H. Clark and D.M. Rippon, J. Chem. Soc. Faraday
Trans. II, 69, 1496 (1973)). Show, from a knowledge of the value of J
corresponding to the intensity maximum, that the separation of the
peaks of the O and S branches is given by the Placzek–Teller relation 
δ# = (32BkT/hc)1/2. The following widths were obtained at the
temperatures stated:

HgCl2 HgBr2 HgI2

θ/°C 282 292 292

δ#/cm−1 23.8 15.2 11.4

Calculate the bond lengths in the three molecules.

10.31 Confirm that a Morse oscillator has a finite number of bound
states, the states with V < hcëe. Determine the value of vmax for the
highest bound state.

10.32 Suppose that the out-of-plane distortion of a planar 
molecule AXn is described by a potential energy V(h) = V0(1 − e−bh4

), 
where h is the distance by which the central atom is displaced. 
Sketch this potential energy as a function of h (allow h to be both
negative and positive). What could be said about (a) the force constant,
(b) the vibrations? Sketch the form of the ground-state wavefunction.

10.33 The analysis of combination differences summarized in Section
10.10 considered the R and P branches. Extend the analysis to the O and
S branches of a Raman spectrum.

Applications: to biology, environmental science, 
and astrophysics

10.34 The protein haemerythrin is responsible for binding and carrying
O2 in some invertebrates. Each protein molecule has two Fe2+ ions that
are in very close proximity and work together to bind one molecule of
O2. The Fe2O2 group of oxygenated haemerythrin is coloured and has an
electronic absorption band at 500 nm. The resonance Raman spectrum
of oxygenated haemerythrin obtained with laser excitation at 500 nm has
a band at 844 cm−1 that has been attributed to the O-O stretching mode
of bound 16O2. (a) Why is resonance Raman spectroscopy and not
infrared spectroscopy the method of choice for the study of the binding
of O2 to haemerythrin? (b) Proof that the 844 cm−1 band arises from 
a bound O2 species may be obtained by conducting experiments on
samples of haemerythrin that have been mixed with 18O2, instead of 16O2.
Predict the fundamental vibrational wavenumber of the 18O-18O
stretching mode in a sample of haemerythrin that has been treated with
18O2. (c) The fundamental vibrational wavenumbers for the O-O
stretching modes of O2, O2

− (superoxide anion), and O2
2− (peroxide

anion) are 1555, 1107, and 878 cm−1, respectively. Explain this trend 
in terms of the electronic structures of O2, O2

−, and O2
2−. Hint. Review

Section 5.4. What are the bond orders of O2, O2
−, and O2

2−? (d) Based on
the data given above, which of the following species best describes the
Fe2O2 group of haemerythrin: Fe2

2+O2, Fe2+Fe3+O2
−, or Fe2

3+O2
2−? Explain

your reasoning. (e) The resonance Raman spectrum of haemerythrin
mixed with 16O18O has two bands that can be attributed to the O-O
stretching mode of bound oxygen. Discuss how this observation may be
used to exclude one or more of the four proposed schemes (9–12) for
binding of O2 to the Fe2 site of haemerythrin.

9

10

11 12

10.35 In confocal Raman microscopy, light must pass through several
holes of very small diameter before reaching the detector. In this way
light that is out of focus does not interfere with an image that is in focus.
Consult monographs, journal articles, and reliable internet resources,
such as those listed in the web site for this text, and write a brief report
(similar in length and depth of coverage to one of the many Impact
sections in this text) on the advantages and disadvantages of confocal
Raman microscopy over conventional Raman microscopy in the study 
of biological systems. Hint. A good place to start is: P. Colarusso et al., 
in Encyclopedia of spectroscopy and spectrometry (ed. J.C. Lindon, G.E.
Tranter, and J.L. Holmes), 3, 1945 Academic Press, San Diego (2000).

10.36‡ A mixture of carbon dioxide (2.1 per cent) and helium at 1.00 bar
and 298 K in a gas cell of length 10 cm has an infrared absorption band
centred at 2349 cm−1 with absorbances, A(#), described by:

  
A

a

a a

a

a a
( )

( ) ( )
#

# #
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+ −
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where the coefficients are a1 = 0.932, a2 = 0.005050 cm2, a3 = 2333 cm−1,
a4 = 1.504, a5 = 0.01521 cm2, a6 = 2362 cm−1. (a) Draw graphs of A(#)
and ε(#). What is the origin of both the band and the band width? What
are the allowed and forbidden transitions of this band? (b) Calculate 
the transition wavenumbers and absorbances of the band with a simple
harmonic oscillator–rigid rotor model and compare the result with the
experimental spectra. The CO bond length is 116.2 pm. (c) Within what
height, h, is basically all the infrared emission from the Earth in this band
absorbed by atmospheric carbon dioxide? The mole fraction of CO2 in
the atmosphere is 3.3 × 10−4 and T/K = 288 − 0.0065(h/m) below 10 km.
Draw a surface plot of the atmospheric transmittance of the band as a
function of both height and wavenumber.

10.37 A. Dalgarno, in Chemistry in the interstellar medium, 
Frontiers of Astrophysics, E.H. Avrett (ed.), Harvard University Press,
Cambridge (1976), notes that, although both CH and CN spectra show
up strongly in the interstellar medium in the constellation Ophiuchus,
the CN spectrum has become the standard for the determination 
of the temperature of the cosmic microwave background radiation.
Demonstrate through a calculation why CH would not be as useful 
for this purpose as CN. The rotational constant è0 for CH is 
14.190 cm−1.

10.38‡ There is a gaseous interstellar cloud in the constellation
Ophiuchus that is illuminated from behind by the star ζ-Ophiuci.
Analysis of the electronic–vibrational–rotational absorption lines 
shows the presence of CN molecules in the interstellar medium. A 
strong absorption line in the ultraviolet region at λ = 387.5 nm was
observed corresponding to the transition J = 0–1. Unexpectedly, a
second strong absorption line with 25 per cent of the intensity of 
the first was found at a slightly longer wavelength (Δλ = 0.061 nm)
corresponding to the transition J = 1–1 (here allowed). Calculate the
temperature of the CN molecules. Gerhard Herzberg, who was later to

receive the Nobel Prize for his contributions to spectroscopy, calculated
the temperature as 2.3 K. Although puzzled by this result, he did not
realize its full significance. If he had, his prize might have been for the
discovery of the cosmic microwave background radiation.

10.39‡ The H3
+ ion has recently been found in the interstellar medium

and in the atmospheres of Jupiter, Saturn, and Uranus. The rotational
energy levels of H3

+, an oblate symmetric rotor, are given by eqn 10.10,
with ê replacing é, when centrifugal distortion and other complications
are ignored. Experimental values for vibrational–rotational constants 
are #(E′) = 2521.6 cm−1, è = 43.55 cm−1, and ê = 20.71 cm−1. (a) Show
that for a non-linear planar molecule (such as H3

+) that IC = 2IB. The
rather large discrepancy with the experimental values is due to factors
ignored in eqn 10.10. (b) Calculate an approximate value of the H-H
bond length in H3

+. (c) The value of Re obtained from the best quantum
mechanical calculations by J.B. Anderson ( J. Chem. Phys. 96, 3702
(1991)) is 87.32 pm. Use this result to calculate the values of the
rotational constants è and ê. (d) Assuming that the geometry and 
force constants are the same in D3

+ and H3
+, calculate the spectroscopic

constants of D3
+. The molecular ion D3

+ was first produced by Shy et al.
(Phys. Rev. Lett. 45, 535 (1980)) who observed the ν2(E′) band in the
infrared.

10.40 The space immediately surrounding stars, the circumstellar space,
is significantly warmer because stars are very intense black-body emitters
with temperatures of several thousand kelvin. Discuss how such factors
as cloud temperature, particle density, and particle velocity may affect
the rotational spectrum of CO in an interstellar cloud. What new
features in the spectrum of CO can be observed in gas ejected from and
still near a star with temperatures of about 1000 K, relative to gas in a
cloud with temperatures of about 10 K? Explain how these features may
be used to distinguish between circumstellar and interstellar material on
the basis of the rotational spectrum of CO.



Electronic
spectroscopy

Simple analytical expressions for the electronic energy levels of molecules cannot be given,
so this chapter concentrates on the qualitative features of electronic transitions. A common
theme throughout the chapter is that electronic transitions occur within a stationary nuclear
framework. We pay particular attention to spontaneous radiative decay processes, which
include fluorescence and phosphorescence. A specially important example of stimulated
radiative decay is that responsible for the action of lasers, and we see how this stimulated
emission may be achieved and employed.

The energies needed to change the electron distributions of molecules are of the 
order of several electronvolts (1 eV is equivalent to about 8000 cm−1 or 100 kJ mol−1).
Consequently, the photons emitted or absorbed when such changes occur lie in the
visible and ultraviolet regions of the electromagnetic spectrum (Table 11.1).

We begin our study of electronic spectroscopy with a brief survey of common ex-
perimental techniques. Then, with help from quantum theory, we write the selection
rules for molecular electronic spectroscopy. After describing absorption and emission
processes, we turn our attention to lasers, which have revolutionized physical chem-
istry in recent years. As we have already seen in Chapter 10, lasers have brought 
unprecedented precision to molecular spectroscopy. They have also made it possible
to study chemical reactions on a femtosecond timescale. We shall see the principles of
their action in this chapter and will encounter their applications throughout the rest
of the book.

Experimental techniques

Molecular electronic spectroscopy is commonly conducted by monitoring the absorp-
tion of electromagnetic radiation by molecules in their electronic ground states, for
no other electronic states are occupied at normal temperatures. Emission is observed
in certain cases, such as in chemiluminescence, when the products of a reaction are
created in electronically excited states, and in the monitoring of fluorescence and
phosphorescence (Section 11.5).

11.1 Spectrometers

Figure 11.1 shows the general layouts of an absorption spectrometer operating in the
ultraviolet and visible ranges. Radiation from an appropriate source is directed toward
a sample. In most spectrometers, the radiation transmitted by the sample is collected
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by mirrors or lenses and strikes a dispersing element that separ-
ates it into different wavelengths. The intensity of the radiation
at each wavelength is then analysed by a suitable detector.

The source may be a quartz–tungsten–halogen lamp consisting
of a tungsten filament that, when heated to about 3000 K, emits
radiation in the range 320 nm < λ < 2500 nm. A gas discharge
lamp is a common source of ultraviolet and visible radiation. In
a xenon discharge lamp, an electrical discharge excites xenon
atoms to excited states, which then emit ultraviolet radiation. 
At pressures exceeding 1 kPa, the output consists of sharp lines 
superimposed on a broad, intense background due to emission
from a mixture of ions formed by the electrical discharge. These
high-pressure xenon lamps have emission profiles similar to that
of a black body heated to 6000 K. In a deuterium lamp, excited D2

molecules emit intense radiation in the range 160–400 nm.
After passing through a monochromator, the intensity of

light at each wavelength can be measured by a detector suitable
for work in the ultraviolet and visible ranges. A common device

is a photomultiplier tube (PMT), in which the photoelectric effect
(Section 1.2) is used to generate an electrical signal proportional
to the intensity of radiation that strikes the detector. A less 
sensitive alternative to the PMT is the photodiode, a solid-state
device that conducts electricity when struck by photons because
light-induced electron transfer reactions in the detector mater-
ial create mobile charge carriers (negatively charged electrons
and positively charged ‘holes’). In an avalanche photodiode, the
photo-generated electrons are accelerated through a very large
electrical potential difference. The high-energy electrons then
collide with other atoms in the solid and ionize them, thus cre-
ating an avalanche of secondary charge carriers and increasing
the sensitivity of the device to incident photons.

A charge-coupled device (CCD) is a two-dimensional array 
of several million small photodiode detectors. With a CCD, 
a wide range of wavelengths that emerge from the sample are 
detected simultaneously, thus eliminating the need to measure
light intensity one narrow wavelength range at a time. CCD 
detectors are the imaging devices in digital cameras, but are also
used widely in spectroscopy to monitor absorption, emission,
and Raman scattering.

11.2 The Beer–Lambert law

The ratio of the transmitted intensity, I, to the incident intensity,
I0, at a given frequency is called the transmittance, T, of the 
sample at that frequency:

[11.1]

It is found empirically that the transmitted intensity varies with
the length, l, of the sample and the molar concentration, [J], 
of the absorbing species J in accord with the Beer–Lambert law
(see the following Justification):

I = I010−ε[J]l (11.2)

The quantity ε is called the molar absorption coefficient (for-
merly, and still widely, the ‘extinction coefficient’). The molar
absorption coefficient depends on the frequency of the incident
radiation and is greatest where the absorption is most intense.
Its dimensions are 1/(concentration × length), and it is normally
convenient to express it in cubic decimetres per mole per centi-
metre (dm3 mol−1 cm−1). Alternative units are square centimetres
per mole (cm2 mol−1). This change of units demonstrates that ε
may be regarded as a molar cross-section for absorption, and the
greater the cross-sectional area of the molecule for absorption, the
greater its ability to block the passage of the incident radiation.

To simplify eqn 11.2, we introduce the absorbance, A, of the
sample at a given wavenumber as

or A = −log T [11.3]
 
A

I

I
= log 0

 
T

I

I
=

0

Synoptic table 11.1* Colour, frequency, and
energy of light

Colour l/nm n/(1014 Hz) E/(kJ mol−1)

Infrared >1000 <3.0 <120

Red 700 4.3 170

Yellow 580 5.2 210

Blue 470 6.4 250

Ultraviolet <300 >10 >400

* More values are given in the Data section.

Sample

Reference

Source

Detector

Grating

Beam
combiner

Source

Detector

Sample

Scattered
radiation

(a) (b)

Fig. 11.1 Two examples of spectrometers: (a) the layout of 
an absorption spectrometer, used primarily for studies in the
ultraviolet and visible ranges, in which the exciting beams of
radiation pass alternately through a sample and a reference 
cell, and the detector is synchronized with them so that the
relative absorption can be determined, and (b) a simple emission
spectrometer, where light emitted or scattered by the sample is
detected at right angles to the direction of propagation of an
incident beam of radiation.
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Then the Beer–Lambert law becomes

A = ε[J]l (11.4)

The product ε[J]l was known formerly as the optical density of
the sample. Equation 11.4 suggests that, to achieve sufficient 
absorption, path lengths through gaseous samples must be very
long, of the order of metres, because concentrations are low.
Long path lengths are achieved by multiple passage of the beam
between parallel mirrors at each end of the sample cavity. Con-
versely, path lengths through liquid samples can be significantly
shorter, of the order of millimetres or centimetres.

Example 11.1 The molar absorption coefficient of tryptophan

Radiation of wavelength 280 nm passed through 1.0 mm of 
a solution that contained an aqueous solution of the amino
acid tryptophan at a concentration of 0.50 mmol dm−3. The
light intensity is reduced to 54 per cent of its initial value (so 
T = 0.54). Calculate the absorbance and the molar absorption
coefficient of tryptophan at 280 nm. What would be the
transmittance through a cell of thickness 2.0 mm?

Method From eqns 11.3 and 11.4 we write

A = −log T = ε[J]l

so it follows that

For the transmittance through the thicker cell, we use T = 10−A

and the value of ε calculated here.

Answer The molar absorption coefficient is

= 5.4 × 102 dm3 mol−1 mm−1

These units are convenient for the rest of the calculation, so
we do not combine the units dm3 and mm−1. The absorbance is

A = −log 0.54 = 0.27

The absorbance of a sample of length 2.0 mm is

A = (5.4 × 102 dm3 mol−1 mm−1) × (5.0 × 10−4 mol dm−3) 
× (2.0 mm) = 0.54

It follows that the transmittance is now

T = 10−A = 10−0.54 = 0.29

That is, the emergent light is reduced to 29 per cent of its 
incident intensity.
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Self-test 11.1 The transmittance of an aqueous solution that
contained the amino acid tyrosine at a molar concentration
of 0.10 mmol dm−3 was measured as 0.14 at 240 nm in a cell
of length 5.0 mm. Calculate the molar absorption coefficient 
of tyrosine at that wavelength, and the absorbance of the so-
lution. What would be the transmittance through a cell of
length 1.0 mm?

[1.7 × 103 dm3 mol−1 cm−1, A = 0.85, T = 0.72]

Justification 11.1 The Beer–Lambert law

The Beer–Lambert law is an empirical result. However, it is
simple to account for its form. The reduction in intensity, dI,
that occurs when light passes through a layer of thickness dl
containing an absorbing species J at a molar concentration
[J] is proportional to the thickness of the layer, the concen-
tration of J, and the intensity, I, incident on the layer (because
the rate of absorption is proportional to the intensity, see
below). We can therefore write

dI = −κ[J]Idl

where κ (kappa) is the proportionality coefficient, or 
equivalently

This expression applies to each successive layer into which
the sample can be regarded as being divided. Therefore, to
obtain the intensity that emerges from a sample of thickness l
when the intensity incident on one face of the sample is I0, we
sum all the successive changes:

If the concentration is uniform, [J] is independent of loca-
tion, and the expression integrates to

This expression gives the Beer–Lambert law when the loga-
rithm is converted to base 10 by using ln x = (ln 10)log x and
replacing κ by ε ln 10.

The maximum value of the molar absorption coefficient,
εmax, is an indication of the intensity of a transition. However, as
absorption bands generally spread over a range of wavenum-
bers, quoting the absorption coefficient at a single wavenumber
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might not give a true indication of the intensity of a transition.
The integrated absorption coefficient, A , is the sum of the 
absorption coefficients over the entire band (Fig. 11.2), and 
corresponds to the area under the plot of the molar absorption
coefficient against wavenumber:

A = �
band

ε(#)d# [11.5]

For lines of similar widths, the integrated absorption coefficients
are proportional to the heights of the lines.

The characteristics of electronic
transitions
In the ground state of a molecule the nuclei are at equilibrium in
the sense that they experience no net force from the electrons
and other nuclei in the molecule. Immediately after an electronic
transition they are subjected to different forces and the molecule
may respond by starting to vibrate. The resulting vibrational
structure of electronic transitions can be resolved for gaseous
samples, but in a liquid or solid the lines usually merge together
and result in a broad, almost featureless band (Fig. 11.3). Super-
imposed on the vibrational transitions that accompany the elec-
tronic transition of a molecule in the gas phase is an additional
branch structure that arises from rotational transitions. The
electronic spectra of gaseous samples are therefore very com-
plicated but rich in information.

11.3 The electronic spectra of diatomic molecules
We examine some general features of electronic transitions by
using diatomic molecules as examples. We begin by assigning
term symbols to ground and excited electronic states. Then 

we use the symmetry designations to formulate selection rules.
Finally, we examine the origin of vibrational structure in elec-
tronic spectra.

(a) Term symbols

The term symbols of linear molecules (the analogues of the sym-
bols 2P, etc. for atoms) are constructed in a similar way to those
for atoms, but now we must pay attention to the component of
total orbital angular momentum about the internuclear axis,
Λ$. The value of |Λ | is denoted by the symbols Σ, Π, Δ, . . . for
|Λ | = 0, 1, 2 . . . , respectively. These labels are the analogues of S,
P, D, . . . for atoms. The value of Λ is the sum of the values of λ,
the quantum number for the component λ$ of orbital angular
momentum of an individual electron around the internuclear
axis. A single electron in a σ orbital has λ = 0: the orbital is cylin-
drically symmetrical and has no angular nodes when viewed
along the internuclear axis. Therefore, if that is the only elec-
tron present, Λ = 0. The term symbol for ground-state H2

+ is
therefore Σ.

As in atoms, we use a left superscript with the value of 2S + 1
to denote the multiplicity of the term. The component of total
spin angular momentum about the internuclear axis is denoted
Σ, where Σ = S, S − 1, S − 2, . . . , −S. For H2

+, because there is only
one electron, S = s = 1–2 (Σ = ± 1–2) and the term symbol is 2Σ, a 
doublet term. The overall parity of the term is added as a right
subscript. For H2

+, the parity of the only occupied orbital is g
(Section 5.3), so the term itself is also g, and in full dress is 2Σg. 
If there are several electrons, the overall parity is calculated by
using

g × g = g u × u = g u × g = u (11.6)

These rules are generated by interpreting g as +1 and u as −1. The
term symbol for the ground state of any closed-shell homonu-
clear diatomic molecule is 1Σg because the spin is zero (a singlet
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Fig. 11.2 The integrated absorption coefficient of a transition is
the area under a plot of the molar absorption coefficient against
the wavenumber of the incident radiation.
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Fig. 11.3 The absorption spectrum of chlorophyll in the visible
region. Note that it absorbs in the red and blue regions, and that
green light is not absorbed.
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term in which all electrons paired), there is no orbital angular
momentum from a closed shell, and the overall parity is g.

A note on good practice Distinguish between the (upright)
term symbol Σ and the (sloping) quantum number Σ. All
quantum numbers, including those represented by Greek 
letters, are sloping. All labels are upright.

A π electron in a diatomic molecule has one unit of orbital 
angular momentum about the internuclear axis (λ = ±1) and, if
it is the only electron outside a closed shell, gives rise to a Π term.
If there are two π electrons (as in the ground state of O2, with
configuration 1πu

41πg
2) then the term symbol may be either Σ

(if the electrons are travelling in opposite directions, which is 
the case if they occupy different π orbitals, one with λ = +1 and
the other with λ = −1) or Δ (if they are travelling in the same 
direction, which is the case if they occupy the same π orbital,
both λ = +1, for instance). For O2, the two π electrons occupy
different orbitals with parallel spins (a triplet term), so the ground
term is 3Σ. The overall parity of the molecule is

(closed shell) × g × g = g

The term symbol is therefore 3Σg.
For Σ terms, a ± superscript denotes the behaviour of the

molecular wavefunction under reflection in a plane containing
the nuclei (Fig. 11.4). If, for convenience, we think of O2 as hav-
ing one electron in 1πg,x, which changes sign under reflection in
the yz-plane (with z as the internuclear axis), and the other elec-
tron in 1πg,y, which does not change sign under reflection in the
same plane, then the overall reflection symmetry is

(closed shell) × (+) × (−) = (−)

and the full term symbol of the ground electronic state of O2

is 3Σg
−. Table 11.2 and Fig. 11.5 summarize the configurations,

term symbols, and energies of the ground and some excited
states of O2.

l A BRIEF ILLUSTRATION

The term symbol for the excited state of O2 formed by plac-
ing two electrons in a 1πg,x (or in a 1πg,y) orbital is 1Δg because
|Λ | = 2 (two electrons in the same π orbital), the spin is zero
(all electrons are paired), and the overall parity is (closed
shell) × g × g = g. l

(b) Selection rules

A number of selection rules govern which transitions will be 
observed in the electronic spectrum of a molecule. The selection
rules concerned with changes in angular momentum are

ΔΛ = 0, ±1 ΔS = 0 ΔΣ = 0 ΔΩ = 0, ±1

where Ω = Λ + Σ is the quantum number for the component of
total angular momentum (orbital and spin) around the inter-
nuclear axis (Fig. 11.6). As in atoms (Section 4.3), the origins of
these rules are conservation of angular momentum during a
transition and the fact that a photon has a spin of 1.

There are two selection rules concerned with changes in sym-
metry. First, for Σ terms, only Σ+ ↔ Σ+ and Σ− ↔ Σ− transitions

-

+

Fig. 11.4 The + or − on a term symbol refers to the overall
symmetry of a configuration under reflection in a plane
containing the two nuclei.
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Fig. 11.5 The electronic states of dioxygen.

Table 11.2 Properties of O2 in its lower electronic states*

Configuration† Term Relative energy/cm−1 §/cm−1 Re/pm

πu
2πu

2πg
1πg

1 3Σg
− 0 1580 120.74

πu
2πu

2πg
2πg

0 1Δg 7882.39 1509 121.55

πu
2πu

2πg
1πg

1 1Σg
+ 13 120.9 1433 122.68

πu
2πu

1πg
2πg

1 3Σu
+ 35 713 819 142

πu
2πu

1π g
2πg

1 3Σu
− 49 363 700 160

* Adapted from G. Herzberg, Spectra of diatomic molecules, van Nostrand, New
York (1950) and D.C. Harris and M.D. Bertolucci, Symmetry and spectroscopy: 
an introduction to vibrational and electronic spectroscopy, Dover, New York (1989).
† The configuration πu

2πu
1πg

2πg
1 should also give rise to a 3Δu term, but electronic

transitions to or from this state have not been observed.



are allowed. Second, the Laporte selection rule for centrosym-
metric molecules (those with a centre of inversion) and atoms
states that:

The only allowed transitions are transitions that are accom-
panied by a change of parity.

That is, u → g and g → u transitions are allowed, but g → g and
u → u transitions are forbidden.

Justification 11.2 The Laporte selection rule

The last two selection rules result from the fact that the 
electric-dipole transition moment

mfi = �ψf*mψidτ

vanishes unless the integrand is invariant under all symmetry
operations of the molecule. The three components of the
dipole moment operator transform like x, y, and z, and are all
u. Therefore, for a g → g transition, the overall parity of the
transition dipole moment is g × u × g = u, so it must be zero.
Likewise, for a u → u transition, the overall parity is u × u × u
= u, so the transition dipole moment must also vanish.
Hence, transitions without a change of parity are forbidden.
The z-component of the dipole moment operator, the only
component of m responsible for Σ ↔ Σ transitions, has (+)
symmetry. Therefore, for a (+) ↔ (−) transition, the overall
symmetry of the transition dipole moment is (+) × (+) × (−)
= (−), so it must be zero. Therefore, for Σ terms, Σ+ ↔ Σ−

transitions are not allowed.

A forbidden g → g transition can become allowed if the 
centre of symmetry is eliminated by an asymmetrical vibration,
such as the one shown in Fig. 11.7. When the centre of sym-
metry is lost, g → g and u → u transitions are no longer parity-
forbidden and become weakly allowed. A transition that derives
its intensity from an asymmetrical vibration of a molecule is
called a vibronic transition.

Self-test 11.2 Which of the following electronic transitions
are allowed in O2: 3Σg

− ↔ 1Δg, 
3Σg

− ↔ 1Σg
+, 3Σg

− ↔ 3Δu, 3Σg
−

↔ 3Σu
+, 3Σg

− ↔ 3Σu
−? [3Σg

− ↔ 3Σu
−]

(c) Vibrational structure

To account for the vibrational structure in electronic spectra of
molecules (Fig. 11.8), we apply the Franck–Condon principle:

Because the nuclei are so much more massive than the elec-
trons, an electronic transition takes place very much faster
than the nuclei can respond.

L

S

y x

h

Fig. 11.6 The coupling of spin and orbital angular momenta in a
linear molecule: only the components along the internuclear axis
are conserved.

Fig. 11.7 A d–d transition is parity-forbidden because it
corresponds to a g–g transition. However, a vibration of the
molecule can destroy the inversion symmetry of the molecule
and the g,u classification no longer applies. The removal of the
centre of symmetry gives rise to a vibronically allowed transition.
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Fig. 11.8 The electronic spectra of some molecules show
significant vibrational structure. Shown here is the ultraviolet
spectrum of gaseous SO2 at 298 K. As explained in the text, the
sharp lines in this spectrum are due to transitions from a lower
electronic state to different vibrational levels of a higher
electronic state.
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As a result of the transition, electron density is rapidly built up 
in new regions of the molecule and removed from others. The
initially stationary nuclei suddenly experience a new force field,
to which they respond by beginning to vibrate, and (in classical
terms) swing backwards and forwards from their original separa-
tion (which was maintained during the rapid electronic excitation).
The stationary equilibrium separation of the nuclei in the initial
electronic state therefore becomes a stationary turning point in
the final electronic state (Fig. 11.9).

The quantum mechanical version of the Franck–Condon
principle refines this picture. Before the absorption, the molecule
is in the lowest vibrational state of its lowest electronic state 
(Fig. 11.10); the most probable location of the nuclei is at their
equilibrium separation, Re. The electronic transition is most likely

to take place when the nuclei have this separation. When the
transition occurs, the molecule is excited to the state represented
by the upper curve. According to the Franck–Condon principle,
the nuclear framework remains constant during this excitation,
so we may imagine the transition as being up the vertical line in
Fig. 11.10. The vertical line is the origin of the expression vertical
transition, which is used to denote an electronic transition that
occurs without change of nuclear geometry.

The vertical transition cuts through several vibrational levels
of the upper electronic state. The level marked * is the one in
which the nuclei are most probably at the same initial separation
Re (because the vibrational wavefunction has maximum ampli-
tude there), so this vibrational state is the most probable state for
the termination of the transition. However, it is not the only 
accessible vibrational state because several nearby states have an
appreciable probability of the nuclei being at the separation Re.
Therefore, transitions occur to all the vibrational states in this
region, but most intensely to the state with a vibrational wave-
function that peaks most strongly near Re.

The vibrational structure of the spectrum depends on the 
relative horizontal position of the two potential energy curves,
and a long vibrational progression, a lot of vibrational structure,
is stimulated if the upper potential energy curve is appreciably
displaced horizontally from the lower. The upper curve is usually
displaced to greater equilibrium bond lengths because electron-
ically excited states usually have more antibonding character than
electronic ground states.

The separation of the vibrational lines of an electronic absorp-
tion spectrum depends on the vibrational energies of the upper
electronic state. Hence, electronic absorption spectra may be
used to assess the force fields and dissociation energies of elec-
tronically excited molecules.

(d) Franck–Condon factors

The quantitative form of the Franck–Condon principle is 
derived from the expression for the transition dipole moment,
mfi = 〈f |m |i〉, written in the notation introduced in Further infor-
mation 1.1. The dipole moment operator is a sum over all nuclei
and electrons in the molecule:

(11.7)

where the vectors are the distances from the centre of charge of
the molecule. The intensity of the transition is proportional to
the square modulus, |mfi |2, of the magnitude of the transition
dipole moment (eqn 4.24), and we show in the following Justi-
fication that this intensity is proportional to the square modulus
of the overlap integral, S(vf,vi), between the vibrational states of
the initial and final electronic states. This overlap integral is a
measure of the match between the vibrational wavefunctions in
the upper and lower electronic states: S = 1 for a perfect match
and S = 0 when there is no similarity.
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Fig. 11.9 According to the Franck–Condon principle, the most
intense vibronic transition is from the ground vibrational state
to the vibrational state lying vertically above it. Transitions to
other vibrational levels also occur, but with lower intensity.
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Fig. 11.10 In the quantum mechanical version of the
Franck–Condon principle, the molecule undergoes a transition
to the upper vibrational state that most closely resembles the
vibrational wavefunction of the vibrational ground state of the
lower electronic state. The two wavefunctions shown here have
the greatest overlap integral of all the vibrational states of the
upper electronic state and hence are most closely similar.



Justification 11.3 The Franck–Condon approximation

The transition dipole moment is written as mfi = 〈f |m |i〉. The
overall state of the molecule consists of an electronic part, |ε〉,
and a vibrational (and real) part, |v〉. Therefore, within the
Born–Oppenheimer approximation in which the electronic
part does not explicitly depend on nuclear positions, the
transition dipole moment factorizes as follows:

The second term on the right of the second row is zero, 
because 〈εf |εi〉 = 0 for two different electronic states (they are
orthogonal). Therefore,

(11.8a)

where

(11.8b)

The matrix element mfi is the electric-dipole transition moment
arising from the redistribution of electrons (and a measure of
the ‘kick’ this redistribution gives to the electromagnetic
field, and vice versa for absorption). The factor S(vf,vi), is the
overlap integral between the vibrational state |vi〉 in the initial
electronic state of the molecule, and the vibrational state |vf〉
in the final electronic state of the molecule.

Because the transition intensity is proportional to the square
of the magnitude of the transition dipole moment, the intensity
of an absorption is proportional to |S(vf ,vi) |2, which is known 
as the Franck–Condon factor for the transition. It follows that,
the greater the overlap of the vibrational state wavefunction in
the upper electronic state with the vibrational wavefunction in the
lower electronic state, the greater the absorption intensity of that
particular simultaneous electronic and vibrational transition.
This conclusion is the basis of the illustration in Fig. 11.10, where
we see that the vibrational wavefunction of the ground state has
the greatest overlap with the vibrational states that have peaks at
similar bond lengths in the upper electronic state.

Example 11.2 Calculating a Franck–Condon factor

Consider the transition from one electronic state to another,
their bond lengths being Re and Re′ and their force constants
equal. Calculate the Franck–Condon factor for the 0–0 trans-
ition and show that the transition is most intense when the
bond lengths are equal.
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Method We need to calculate S(0,0), the overlap integral of
the two ground-state vibrational wavefunctions, and then
take its square. The difference between harmonic and anhar-
monic vibrational wavefunctions is negligible for v = 0, so
harmonic oscillator wavefunctions can be used (Table 2.1).

Answer We use the (real) wavefunctions

where x = R − Re and x′ = R − Re′, with α = ($2/mk)1/4 (Section
2.5a). The overlap integral is

We now write αz = R − 1–2(Re + Re′), and manipulate this ex-
pression into

The value of the integral is π1/2. Therefore, the overlap integ-
ral is

S(0,0) = e−(Re−Re′)2/4α2

and the Franck–Condon factor is

S(0,0)2 = e−(Re−Re′)2/2α2

This factor is equal to 1 when Re′ = Re and decreases as the
equilibrium bond lengths diverge from each other (Fig. 11.11).

For Br2, Re = 228 pm and there is an upper state with Re′ =
266 pm. Taking the vibrational wavenumber as 250 cm−1

gives S(0, 0)2 = 5.1 × 10−10, so the intensity of the 0–0 trans-
ition is only 5.1 × 10−10 what it would have been if the potential
curves had been directly above each other.
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Fig. 11.11 The Franck–Condon factor for the arrangement
discussed in Example 11.2.
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è′ > è and è′ − è is positive. In this case, the lines of the P branch
begin to converge and go through a head when J is such that 
|è′ − è | J > è′ + è (Fig. 11.13b).

11.4 The electronic spectra 
of polyatomic molecules

The absorption of a photon can often be traced to the excitation
of specific types of electrons or to electrons that belong to a 
small group of atoms in a polyatomic molecule. For example,
when a carbonyl group (>C=O) is present, an absorption at
about 290 nm is normally observed, although its precise location
depends on the nature of the rest of the molecule. Groups with
characteristic optical absorptions are called chromophores (from
the Greek for ‘colour bringer’), and their presence often accounts
for the colours of substances (Table 11.3).

(a) d–d transitions

In a free atom, all five d orbitals of a given shell are degenerate.
In a d-metal complex, where the immediate environment of the
atom is no longer spherical, the d orbitals are not all degenerate,
and electrons can absorb energy by making transitions between

Self-test 11.3 Suppose the vibrational wavefunctions can be
approximated by rectangular functions of width W and W ′,
centred on the equilibrium bond lengths (Fig. 11.12). Find
the corresponding Franck–Condon factors when the centres
are coincident and W ′ < W. [S2 = W ′/W]

(e) Rotational structure

Just as in vibrational spectroscopy, where a vibrational transition
is accompanied by rotational excitation, so rotational transitions
accompany the vibrational excitation that accompanies elec-
tronic excitation. We therefore see P, Q, and R branches for each
vibrational transition, and the electronic transition has a very
rich structure. However, the principal difference is that electronic
excitation can result in much larger changes in bond length than
vibrational excitation causes alone, and the rotational branches
have a more complex structure than in vibration–rotation spectra.

We suppose that the rotational constants of the electronic
ground and excited states are è and è′, respectively. The rota-
tional energy levels of the initial and final states are

E( J) = hcèJ( J + 1) E(J′) = hcè′J′( J′ + 1)

and the rotational transitions occur at the following positions
relative to the vibrational transition of wavenumber # that they
accompany:

P branch (ΔJ = −1): #P( J) = # − (è′ + è)J + (è′ − è)J 2 (11.9a)

Q branch (ΔJ = 0): #Q( J) = # + (è′ − è)J( J + 1) (11.9b)

R branch (ΔJ = +1): #R( J) = # + (è′ + è)( J + 1) 
+ (è′ − è)(J + 1)2 (11.9c)

First, suppose that the bond length in the electronically excited
state is greater than that in the ground state; then è′ < è and è′ −
è is negative. In this case the lines of the R branch converge with
increasing J and, when J is such that |è′ − è |(J + 1) > è′ + è, the
lines start to appear at successively decreasing wavenumbers.
That is, the R branch has a band head (Fig. 11.13a). When the
bond is shorter in the excited state than in the ground state, 
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Fig. 11.12 The model wavefunctions used in Self-test 11.3.
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Fig. 11.13 When the rotational constants of a diatomic molecule
differ significantly in the initial and final states of an electronic
transition, the P and R branches show a head. (a) The formation
of a head in the R branch when è′ < è; (b) the formation of a
head in the P branch when è′ > è.

Synoptic table 11.3* Absorption characteristics of some groups
and molecules

Group §/cm−1 lmax/nm e/(dm3 mol−1 cm−1)

C=C (π*←π) 61 000 163 15 000

57 300 174 5500

C=O (π*←n) 35 000–37 000 270–290 10 –20

H2O (π*←n) 60 000 167 7000

* More values are given in the Data section.



them. We show in the following Justification that in an octahedral
complex, such as [Ti(OH2)6]3+ (1), the five d orbitals of the 
central atom are split into two sets (2), a triply degenerate set 
labelled t2g and a doubly degenerate set labelled eg. The three t2g

orbitals lie below the two eg orbitals; the difference in energy is
denoted ΔO and called the ligand-field splitting parameter (the
O denoting octahedral symmetry).

The d orbitals also divide into two sets in a tetrahedral com-
plex, but in this case the e orbitals lie below the t2 orbitals and
their separation is written ΔT. Neither ΔO nor ΔT is large, so 
transitions between the two sets of orbitals typically occur in the
visible region of the spectrum. The transitions are responsible
for many of the colours that are so characteristic of d-metal
complexes. As an example, the spectrum of [Ti(OH2)6]3+ near
20 000 cm−1 (500 nm) is shown in Fig. 11.15, and can be ascribed
to the promotion of its single d electron from a t2g orbital to an
eg orbital. The wavenumber of the absorption maximum sug-
gests that ΔO ≈ 20 000 cm−1 for this complex, which corresponds
to about 2.5 eV.

According to the Laporte rule (Section 11.3), d–d transitions
are parity-forbidden in octahedral complexes because they are 
g → g transitions (more specifically eg–t2g transitions). However,
d–d transitions become weakly allowed as vibronic transitions
as a result of coupling to asymmetrical vibrations such as that
shown in Fig. 11.7.

(b) Charge-transfer transitions

A complex may absorb radiation as a result of the transfer of an
electron from the ligands into the d orbitals of the central atom,
or vice versa. In such charge-transfer transitions the electron
moves through a considerable distance, which means that the
transition dipole moment may be large and the absorption is
correspondingly intense. This mode of chromophore activity 
is shown by the permanganate ion, MnO4

−, and accounts for 
its intense violet colour (which arises from strong absorption
within the range 420–700 nm). In this oxoanion, the electron
migrates from an orbital that is largely confined to the O atom
ligands to an orbital that is largely confined to the Mn atom. It 
is therefore an example of a ligand-to-metal charge-transfer
transition (LMCT). The reverse migration, a metal-to-ligand
charge-transfer transition (MLCT), can also occur. An example
is the transfer of a d electron into the antibonding π orbitals of
an aromatic ligand. The resulting excited state may have a very
long lifetime if the electron is extensively delocalized over several

H O2
Ti

3+

1 [Ti(OH ) ]2 6
3+

d

eg

t2g

sO
3–5 Os
2–5 Os

2

Justification 11.4 The splitting of d-orbitals in an octahedral
d-metal complex

In an octahedral d-metal complex, six identical ions or
molecules, the ligands, are at the vertices of a regular octahe-
dron, with the metal ion at its centre. The ligands can be 
regarded as point negative charges that are repelled by the 
d electrons of the central ion. Figure 11.14 shows the con-
sequence of this arrangement: the five d orbitals fall into 
two groups, with dx2−y2 and dz2 pointing directly towards the 
ligand positions, and dxy, dyz, and dzx pointing between them.
An electron occupying an orbital of the former group has a
less favourable potential energy than when it occupies any of
the three orbitals of the other group, and so the d orbitals
split into the two sets shown in (2) with an energy difference
ΔO: a triply degenerate set comprising the dxy, dyz, and dzx

orbitals and labelled t2g, and a doubly degenerate set com-
prising the dx2−y2 and dz2 orbitals and labelled eg.

dz 2
dx y2 2–

dzx dyz dxy

x y
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t2g

Fig. 11.14 The classification of d orbitals in an octahedral
environment.
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Fig. 11.15 The electronic absorption spectrum of [Ti(OH2)6]3+ in
aqueous solution.
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aromatic rings, and such species can participate in photochemic-
ally induced redox reactions (Chapter 19).

The intensities of charge-transfer transitions are proportional
to the square of the transition dipole moment, in the usual way.
We can think of the transition moment as a measure of the dis-
tance moved by the electron as it migrates from metal to ligand
or vice versa, with a large distance of migration corresponding to
a large transition dipole moment and therefore a high intensity
of absorption. However, because the integrand in the transition
dipole is proportional to the product of the initial and final
wavefunctions, it is zero unless the two wavefunctions have
nonzero values in the same region of space. Therefore, although
large distances of migration favour high intensities, the dimin-
ished overlap of the initial and final wavefunctions for large 
separations of metal and ligands favours low intensities (see
Problem 11.22). We encounter similar considerations when we
examine electron transfer reactions (Impact I20.1), which can be
regarded as a special type of charge-transfer transition.

(c) π*←π and π*←n transitions

Absorption by a C=C double bond results in the excitation of 
a π electron into an antibonding π* orbital (Fig. 11.16). The
chromophore activity is therefore due to a π*←π transition
(which is normally read ‘π to π-star transition’). Its energy is
about 7 eV for an unconjugated double bond, which corres-
ponds to an absorption at 180 nm (in the ultraviolet). When the
double bond is part of a conjugated chain, the energies of the
molecular orbitals lie closer together and the π*←π transition
moves to longer wavelength; it may even lie in the visible region
if the conjugated system is long enough. An important example
of a π*←π transition is provided by the photochemical mech-
anism of vision (Impact I11.1).

The transition responsible for absorption in carbonyl com-
pounds can be traced to the lone pairs of electrons on the O
atom. The Lewis concept of a ‘lone pair’ of electrons is repre-
sented in molecular orbital theory by a pair of electrons in an 
orbital confined largely to one atom and not appreciably in-
volved in bond formation. One of these electrons may be excited

into an empty π* orbital of the carbonyl group (Fig. 11.17),
which gives rise to a π*←n transition (an ‘n to π-star trans-
ition’). Typical absorption energies are about 4 eV (290 nm).
Because π*←n transitions in carbonyls are symmetry forbidden,
the absorptions are weak.

(d) Multiphoton processes

The large number of photons in an incident beam generated 
by a laser gives rise to a qualitatively different branch of spec-
troscopy, for the photon density is so high that more than one
photon may be absorbed by a single molecule and give rise to
multiphoton processes. One application of multiphoton pro-
cesses is that states inaccessible by conventional one-photon
spectroscopy become observable because the overall transition
occurs with no change of parity. For example, in one-photon
spectroscopy, only g ↔ u transitions are observable; in two-
photon spectroscopy, however, the overall outcome of absorb-
ing two photons is a g → g or a u → u transition.

(e) Circular dichroism spectroscopy

Electronic spectra can reveal additional details of molecular
structure when experiments are conducted with polarized light,
electromagnetic radiation with electric and magnetic fields that
oscillate only in certain directions. Light is plane polarized when
the electric and magnetic fields each oscillate in a single plane
(Fig. 11.18). The plane of polarization may be oriented in any
direction around the direction of propagation (the x-direction
in Fig. 11.18), with the electric and magnetic fields perpendicu-
lar to that direction (and perpendicular to each other). An alter-
native mode of polarization is circular polarization, in which
the electric and magnetic fields rotate around the direction of
propagation in either a clockwise or a counter-clockwise sense
but remain perpendicular to it and each other.

When plane-polarized radiation passes through samples of
certain kinds of matter, the plane of polarization is rotated around
the direction of propagation. This rotation is the familiar phe-
nomenon of optical activity, observed when the molecules in the

''z

Fig. 11.16 A C=C double bond acts as a chromophore. One 
of its important transitions is the π*←π transition illustrated
here, in which an electron is promoted from a π orbital to the
corresponding antibonding orbital.

'z
n

Fig. 11.17 A carbonyl group (C=O) acts as a chromophore
primarily on account of the excitation of a nonbonding O 
lone-pair electron to an antibonding CO π* orbital.



sample are chiral (Section 7.3). Chiral molecules have a second
characteristic: they absorb left and right circularly polarized
light to different extents. In a circularly polarized ray of light, the
electric field describes a helical path as the wave travels through
space (Fig. 11.19), and the rotation may be either clockwise 
or counter-clockwise. The differential absorption of left- and
right-circularly polarized light is called circular dichroism. In
terms of the absorbances for the two components, AL and AR,
the circular dichroism of a sample of molar concentration [J] is
reported as

(11.10)

where l is the path length of the sample.
Circular dichroism (CD) spectroscopy provides a great deal

of information about the secondary structure of a biological
polymer, with the spectrum of the polymer chain arising from
the chirality of individual monomer units and, in addition, a
contribution from the three-dimensional structure of the polymer
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itself. Consider a helical polypeptide. Not only are the individual
monomer units chiral, but so is the helix. Therefore, we expect
the α-helix to have a unique CD spectrum. Because β-sheets 
and random coils also have distinguishable spectral features
(Fig. 11.20), circular dichroism is a very important technique for
the study of protein conformation.

IMPACT ON BIOCHEMISTRY

I11.1 Vision

The eye is an exquisite photochemical organ that acts as a trans-
ducer, converting radiant energy into electrical signals that
travel along neurons. Here we concentrate on the events taking
place in the human eye, but similar processes occur in all ani-
mals. Indeed, a single type of protein, rhodopsin, is the primary
receptor for light throughout the animal kingdom, which indi-
cates that vision emerged very early in evolutionary history, no
doubt because of its enormous value for survival.

Photons enter the eye through the cornea, pass through the
ocular fluid that fills the eye, and fall on the retina. The ocular
fluid is principally water, and passage of light through this
medium is largely responsible for the chromatic aberration of the
eye, the blurring of the image as a result of different frequencies
being brought to slightly different focuses. The chromatic aber-
ration is reduced to some extent by the tinted region called the
macular pigment that covers part of the retina. The pigments in
this region are the carotene-like xanthophylls (3), which absorb
some of the blue light and hence help to sharpen the image. They
also protect the photoreceptor molecules from too great a flux of
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Magnetic field

Electric field

z

Propagation

Fig. 11.18 Electromagnetic radiation consists of a wave of 
electric and magnetic fields perpendicular to the direction 
of propagation (in this case the x-direction), and mutually
perpendicular to each other. This illustration shows a plane-
polarized wave, with the electric and magnetic fields oscillating
in the xy- and xz-planes, respectively.
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Fig. 11.20 Representative CD spectra of polypeptides. Random
coils, α-helices, and β-sheets have different CD features in the
spectral region where the peptide link absorbs.
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(a) (b)

Fig. 11.19 In circularly polarized light, the electric field at
different points along the direction of propagation rotates. 
The arrays of arrows in these illustrations show the view of 
the electric field when looking toward the oncoming ray: (a)
right-circularly polarized, (b) left-circularly polarized light.
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potentially dangerous high energy photons. The xanthophylls
have delocalized electrons that spread along the chain of conju-
gated double bonds, and the π*←π transition lies in the visible.

About 57 per cent of the photons that enter the eye reach the
retina; the rest are scattered or absorbed by the ocular fluid.
Here the primary act of vision takes place, in which the chro-
mophore of a rhodopsin molecule absorbs a photon in another
π*←π transition. A rhodopsin molecule consists of an opsin
protein molecule to which is attached a 11-cis-retinal molecule.
The latter resembles half a carotene molecule, showing Nature’s
economy in its use of available materials. The attachment is by
the formation of a protonated Schiff ’s base, utilizing the -CHO
group of the chromophore and the terminal NH2 group of the
sidechain of a lysine residue from opsin (4). The free 11-cis-
retinal molecule absorbs in the ultraviolet, but attachment to 
the opsin protein molecule shifts the absorption into the visible
region. The rhodopsin molecules are situated in the membranes
of special cells (the ‘rods’ and the ‘cones’) that cover the retina.
The opsin molecule is anchored into the cell membrane by two
hydrophobic groups and largely surrounds the chromophore
(Fig. 11.21).

its torsional rigidity is lost, and one part of the molecule swings
round into its new position. At that point, the molecule returns
to its ground state, but is now trapped in its new conformation.
The straightened tail of all-trans-retinal results in the molecule
taking up more space than 11-cis-retinal did, so the molecule
presses against the coils of the opsin molecule that surrounds it.
In about 0.25–0.50 ms from the initial absorption event, the
rhodopsin molecule is activated both by the isomerization of
retinal and deprotonation of its Schiff ’s base tether to opsin,
forming an intermediate known as metarhodopsin II.

In a sequence of biochemical events known as the biochemical
cascade, metarhodopsin II activates the protein transducin, which
in turn activates a phosphodiesterase enzyme that hydrolyses
cyclic guanine monophosphate (cGMP) to GMP. The reduction
in the concentration of cGMP causes ion channels, proteins that
mediate the movement of ions across biological membranes, to
close and the result is a sizeable change in the transmembrane
potential (see Impact I17.1 for a discussion of transmembrane
potentials). The pulse of electric potential travels through the
optical nerve and into the optical cortex, where it is interpreted
as a signal and incorporated into the web of events we call ‘vision’.

The resting state of the rhodopsin molecule is restored by a 
series of nonradiative chemical events powered by ATP. The
process involves the escape of all-trans-retinal as all-trans-retinol
(in which -CHO has been reduced to -CH2OH) from the
opsin molecule by a process catalysed by the enzyme rhodopsin
kinase and the attachment of another protein molecule, arrestin.
The free all-trans-retinol molecule now undergoes enzyme-
catalysed isomerization into 11-cis-retinol followed by dehydro-
genation to form 11-cis-retinal, which is then delivered back
into an opsin molecule. At this point, the cycle of excitation,
photoisomerization, and regeneration is ready to begin again.

The fates of electronically 
excited states

A radiative decay process is a process in which a molecule dis-
cards its excitation energy as a photon. A more common fate is
nonradiative decay, in which the excess energy is transferred
into the vibration, rotation, and translation of the molecule 
and those surrounding it. This thermal degradation converts 
the excitation energy completely into thermal motion of the 
environment (that is, to ‘heat’). An excited molecule may also
take part in a chemical reaction, as we discuss in Chapter 19.

Immediately after the absorption of a photon, the 11-cis-retinal
molecule undergoes photoisomerization into all-trans-retinal
(5). Photoisomerization takes about 200 fs and about 67 pigment
molecules isomerize for every 100 photons that are absorbed.
The process occurs because the π*←π excitation of an electron
loosens one of the π bonds (the one indicated by the arrow in 5),

Fig. 11.21 The structure of the rhodopsin molecule, consisting of
an opsin protein to which is attached a 11-cis-retinal molecule
embedded in the space surrounded by the helical regions.



11.5 Fluorescence and phosphorescence

In fluorescence, spontaneous emission of radiation occurs within
a few nanoseconds after the exciting radiation is extinguished
(Fig. 11.22). In phosphorescence, the spontaneous emission
may persist for long periods (even hours, but characteristically
seconds or fractions of seconds). The difference suggests that
fluorescence is a fast conversion of absorbed radiation into re-
emitted energy, and that phosphorescence involves the storage
of energy in a reservoir from which it slowly leaks.

(a) Fluorescence

Figure 11.23 shows the sequence of steps involved in fluores-
cence. The initial absorption takes the molecule to an excited
electronic state, and if the absorption spectrum were monitored

it would look like the one shown in Fig. 11.24a. The excited
molecule can redistribute its energy and also is subjected to 
collisions with the surrounding molecules. As it gives up energy
nonradiatively the molecule steps down the ladder of vibrational
levels to the lowest vibrational level of the electronically excited
molecular state. The surrounding molecules, however, might
now be unable to accept the larger energy difference needed 
to lower the molecule to the ground electronic state. It might
therefore survive long enough to undergo spontaneous emis-
sion, and emit the remaining excess energy as radiation. The
downward electronic transition is vertical (in accord with the
Franck–Condon principle) and the fluorescence spectrum has a
vibrational structure characteristic of the lower electronic state
(Fig. 11.24b).

Provided they can be seen, the 0–0 absorption and fluores-
cence transitions can be expected to be coincident. The absorp-
tion spectrum arises from 1–0, 2–0, . . . transitions that occur at
progressively higher wavenumber and with intensities governed
by the Franck–Condon principle. The fluorescence spectrum
arises from 0–0, 0–1, . . . downward transitions that hence occur
with decreasing wavenumbers. The 0–0 absorption and fluores-
cence peaks are not always exactly coincident, however, because
the solvent may interact differently with the solute in the ground
and excited states (for instance, the hydrogen bonding pattern
might differ). Because the solvent molecules do not have time 
to rearrange during the transition, the absorption occurs in an
environment characteristic of the solvated ground state; how-
ever, the fluorescence occurs in an environment characteristic of
the solvated excited state (Fig. 11.25).

Fluorescence occurs at lower frequencies (longer wavelengths)
than the incident radiation because the emissive transition occurs
after some vibrational energy has been discarded into the sur-
roundings. The vivid oranges and greens of fluorescent dyes are
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Fig. 11.22 The empirical (observation-based) distinction 
between fluorescence and phosphorescence is that the former is
extinguished very quickly after the exciting source is removed,
whereas the latter continues with relatively slowly diminishing
intensity.

(a) (b)Absorption Fluorescence

Wavelength
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Characteristic
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(0,0)

Fig. 11.24 An absorption spectrum (a) shows a vibrational
structure characteristic of the upper state. A fluorescence
spectrum (b) shows a structure characteristic of the lower state;
it is also displaced to lower frequencies (but the 0–0 transitions
are coincident) and resembles a mirror image of the absorption.
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Fig. 11.23 The sequence of steps leading to fluorescence. After 
the initial absorption, the upper vibrational states undergo
radiationless decay by giving up energy to the surroundings. 
A radiative transition then occurs from the vibrational ground
state of the upper electronic state.
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an everyday manifestation of this effect: they absorb in the ultra-
violet and blue, and fluoresce in the visible. The mechanism also
suggests that the intensity of the fluorescence ought to depend
on the ability of the solvent molecules to accept the electronic
and vibrational quanta. It is indeed found that a solvent com-
posed of molecules with widely spaced vibrational levels (such 
as water) can in some cases accept the large quantum of elec-
tronic energy and so extinguish, or ‘quench’, the fluorescence.
We examine the mechanisms of fluorescence quenching in
Section 19.9.

(b) Phosphorescence

Figure 11.26 shows the sequence of events leading to phospho-
rescence for a molecule with a singlet ground state. The first
steps are the same as in fluorescence, but the presence of a triplet
excited state plays a decisive role. The singlet and triplet excited
states share a common geometry at the point where their poten-
tial energy curves intersect. Hence, if there is a mechanism for
unpairing two electron spins (and achieving the conversion of
↑↓ to ↑↑), the molecule may undergo intersystem crossing, a
nonradiative transition between states of different multiplicity,
and become a triplet state. We saw in the discussion of atomic
spectra (Section 4.5) that singlet–triplet transitions may occur 
in the presence of spin–orbit coupling, and the same is true in
molecules. We can expect intersystem crossing to be important
when a molecule contains a moderately heavy atom (such as S),
because then the spin–orbit coupling is large.

If an excited molecule crosses into a triplet state, it continues
to deposit energy into the surroundings. However, it is now
stepping down the triplet’s vibrational ladder, and at the lowest

energy level it is trapped because the triplet state is at a lower 
energy than the corresponding singlet (recall Hund’s rule,
Section 4.4). The solvent cannot absorb the final, large quantum
of electronic excitation energy, and the molecule cannot radiate
its energy because return to the ground state is spin-forbidden.
The radiative transition, however, is not totally forbidden because
the spin–orbit coupling that was responsible for the intersystem
crossing also breaks the selection rule. The molecules are there-
fore able to emit weakly, and the emission may continue long
after the original excited state was formed.

The mechanism accounts for the observation that the excita-
tion energy seems to get trapped in a slowly leaking reservoir. It
also suggests (as is confirmed experimentally) that phosphores-
cence should be most intense from solid samples: energy transfer
is then less efficient and intersystem crossing has time to occur
as the singlet excited state steps slowly past the intersection
point. The mechanism also suggests that the phosphorescence
efficiency should depend on the presence of a moderately heavy
atom (with strong spin–orbit coupling), which is in fact the case.
The confirmation of the mechanism is the experimental observa-
tion (using the sensitive magnetic resonance techniques described
in Chapter 12) that the sample is paramagnetic while the reservoir
state, with its unpaired electron spins, is populated.

The various types of nonradiative and radiative transitions
that can occur in molecules are often represented on a schematic
Jablonski diagram of the type shown in Fig. 11.27.

IMPACT ON NANOSCIENCE

I11.2 Single-molecule spectroscopy

There is great interest in the development of new experimental
probes of very small specimens. On the one hand, our under-
standing of biochemical processes, such as enzymatic catalysis,
protein folding, and the insertion of DNA into a cell’s nucleus,
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Relaxation

Relaxation

Fig. 11.25 The solvent can shift the fluorescence spectrum 
relative to the absorption spectrum. On the left we see that 
the absorption occurs with the solvent (the ellipses) in the
arrangement characteristic of the ground electronic state of 
the molecule (the sphere). However, before fluorescence occurs,
the solvent molecules relax into a new arrangement, and that
arrangement is preserved during the subsequent radiative
transition.
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Fig. 11.26 The sequence of steps leading to phosphorescence. 
The important step is the intersystem crossing, the switch from 
a singlet state to a triplet state brought about by spin–orbit
coupling. The triplet state acts as a slowly radiating reservoir
because the return to the ground state is spin-forbidden.



will be enhanced if it is possible to visualize individual biopoly-
mers at work in cells. On the other hand, techniques that can
probe the structure, dynamics, and reactivity of single molecules
are needed to advance research on nanometre-sized materials.
We saw in Impact I10.3 that it is possible to obtain the vibra-
tional spectrum of samples with areas of more than 10 μm2.
Fluorescence microscopy, in which the distribution of fluores-
cence intensity within an illuminated area is detected with a 
microscope, has also been used for many years to image small
specimens, such as biological cells, but the diffraction limit
prevents the visualization of samples that are smaller than the
wavelength of light used as a probe. Most molecules—including
biological polymers—have dimensions that are much smaller
than visible wavelengths, so special techniques had to be devel-
oped to increase the resolution of light microscopy techniques
so that even single molecules can be observed.

Apart from a small number of co-factors, such as the chloro-
phylls and flavins, the majority of the building blocks of proteins
and nucleic acids do not fluoresce strongly. Four notable excep-
tions are the amino acids tryptophan (λabs ≈ 280 nm and λfluor ≈
348 nm in water), tyrosine (λabs ≈ 274 nm and λfluor ≈ 303 nm in
water), and phenylalanine (λabs ≈ 257 nm and λfluor ≈ 282 nm in
water), and the oxidized form of the sequence serine–tyrosine–
glycine (6) found in the green fluorescent protein (GFP) of 
certain jellyfish. The wild type of GFP from Aequora victoria
absorbs strongly at 395 nm and emits maximally at 509 nm. The
visualization of biological cells with fluorescence microscopy 
is achieved by detecting light emitted by a large number of
fluorescent molecules attached to proteins, nucleic acids, and
membranes. A common fluorescent label is GFP. With proper

filtering to remove light due to Rayleigh scattering of the inci-
dent beam, it is possible to collect light from the sample that
contains only fluorescence from the label. However, great care is
required to eliminate fluorescent impurities from the sample.

The bulk of the work done in the field of single-molecule
spectroscopy is based on fluorescence microscopy with laser 
excitation. The laser is the radiation source of choice because 
it provides the high excitance required to increase the rate of 
arrival of photons on to the detector from small illuminated
areas. Two techniques are commonly used to circumvent the
diffraction limit. First, the concentration of the sample is kept so
low that, on average, only one fluorescent molecule is in the illu-
minated area. Second, special strategies are used to illuminate
very small volumes. In near-field scanning optical microscopy
(NSOM), a very thin metal-coated optical fibre is used to deliver
light to a small area. It is possible to construct fibres with tip 
diameters in the range of 50 to 100 nm, which are indeed smaller
than visible wavelengths. The fibre tip is placed very close to the
sample, in a region known as the near field, where, according to
classical physics, photons do not diffract. Figure 11.28 shows the
image of a 4.5 μm × 4.5 μm sample of oxazine 720 dye molecules
embedded in a polymer film and obtained with NSOM by meas-
uring the fluorescence intensity as the tip is scanned over the
film surface. Each peak corresponds to a single dye molecule.
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Fig. 11.27 A Jablonski diagram (here, for naphthalene) is a
simplified portrayal of the relative positions of the electronic
energy levels of a molecule. Vibrational levels of states of a given
electronic state lie above each other, but the relative horizontal
locations of the columns bear no relation to the nuclear
separations in the states. The ground vibrational states of each
electronic state are correctly located vertically but the other
vibrational states are shown only schematically. (IC: internal
conversion, Section 11.6; ISC: intersystem crossing.)

Fig. 11.28 Image of a 4.5 μm × 4.5 μm sample of oxazine-720 dye
molecules embedded in a polymer film and obtained with
NSOM. Each peak corresponds to a single dye molecule.
(Reproduced with permission from X.S. Xie, Acc. Chem. Res.
1996, 29, 598.)
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In far-field confocal microscopy, laser light focused by an 
objective lens is used to illuminate about 1 μm3 of a very dilute
sample placed beyond the near field. This illumination scheme
is limited by diffraction and, as a result, data from far-field 
microscopy have less structural detail than data from NSOM.
However, far-field microscopes are very easy to construct and
the technique can be used to probe single molecules as long as
there is one molecule, on average, in the illuminated area.

In the wide-field epifluorescence method, a two-dimensional
array detector (Section 11.1) detects fluorescence excited by a
laser and scattered back from the sample (Fig. 11.29a). If the
fluorescing molecules are well separated in the specimen, then it
is possible to obtain a map of the distribution of fluorescent
molecules in the illuminated area. For example, Fig. 11.29b
shows how epifluorescence microscopy can be used to observe
single molecules of the major histocompatibility (MHC) protein
on the surface of a cell.

Though still a relatively new technique, single-molecule spec-
troscopy has already been used to address important problems
in chemistry and biology. Nearly all of the techniques discussed
in this text measure the average value of a property in a large 
ensemble of molecules. Single-molecule methods allow a chemist
to study the nature of distributions of physical and chemical prop-
erties in an ensemble of molecules. For example, it is possible 
to measure the fluorescence lifetime of a molecule by moving
the laser focus to a location on the sample that contains a
molecule and then measuring the fluorescence intensity after
excitation with a pulsed laser. Such studies have shown that not

every molecule in a sample has the same fluorescence lifetime,
probably because each molecule interacts with its immediate 
environment in a slightly different way. These details are not 
apparent from conventional measurements of fluorescence life-
times, in which many molecules are excited electronically and
only an average lifetime for the ensemble can be measured.

11.6 Dissociation and predissociation

Another fate for an electronically excited molecule is dissociation,
the breaking of bonds (Fig. 11.30). The onset of dissociation 
can be detected in an absorption spectrum by seeing that the 
vibrational structure of a band terminates at a certain energy.
Absorption occurs in a continuous band above this dissociation
limit because the final state is an unquantized translational 
motion of the fragments. Locating the dissociation limit is a
valuable way of determining the bond dissociation energy.

In some cases, the vibrational structure disappears but re-
sumes at higher photon energies. This predissociation can be 
interpreted in terms of the molecular potential energy curves
shown in Fig. 11.31. When a molecule is excited to a vibrational
level, its electrons may undergo a redistribution that results in it
undergoing an internal conversion, a radiationless conversion
to another state of the same multiplicity. An internal conversion
occurs most readily at the point of intersection of the two
molecular potential energy curves, because there the nuclear 
geometries of the two states are the same. The state into which
the molecule converts may be dissociative, so the states near the
intersection have a finite lifetime, and hence their energies are
imprecisely defined (see Section 4.3). As a result, the absorption
spectrum is blurred in the vicinity of the intersection. When the
incoming photon brings enough energy to excite the molecule
to a vibrational level high above the intersection, the internal
conversion does not occur (the nuclei are unlikely to have the

Lens

(a) (b)

CCD

From
laser

Optical
filter

Fig. 11.29 (a) Layout of an epifluorescence microscope. Laser
radiation is diverted to a sample by a special optical filter that
reflects radiation with a specified wavelength (in this case the
laser excitation wavelength) but transmits radiation with other
wavelengths (in this case, wavelengths at which the fluorescent
label emits). A CCD detector analyses the spatial distribution 
of the fluorescence signal from the illuminated area. (b)
Observation of fluorescence from single MHC proteins that 
have been labelled with a fluorescent marker and are bound 
to the surface of a cell (the area shown has dimensions of 
12 μm × 12 μm). (Image provided by Professor W.E. 
Moerner, Stanford University, USA.)
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Fig. 11.30 When absorption occurs to unbound states of 
the upper electronic state, the molecule dissociates and the
absorption is a continuum. Below the dissociation limit the
electronic spectrum shows a normal vibrational structure.



same geometry). Consequently, the levels resume their well-
defined, vibrational character with correspondingly well-defined
energies, and the line structure resumes on the high-frequency
side of the blurred region.

11.7 General principles of laser action

Lasers have transformed chemistry as much as they have trans-
formed the everyday world. They lie very much on the frontier
of physics and chemistry, for their operation depends on details
of optics and, in some cases, of solid-state processes. In this 
section, we discuss the mechanisms of laser action, and then 
explore their applications in chemistry.

The word laser is an acronym formed from light amplifica-
tion by stimulated emission of radiation. In stimulated emission,
an excited state is stimulated to emit a photon by radiation of the
same frequency; the more photons that are present, the greater
the probability of the emission. The essential feature of laser 
action is positive-feedback: the more photons present of the 
appropriate frequency, the more photons of that frequency that
will be stimulated to form.

(a) Population inversion

One requirement of laser action is the existence of a metastable
excited state, an excited state with a long enough lifetime for it
to participate in stimulated emission. Another requirement is
the existence of a greater population in the metastable state than
in the lower state where the transition terminates, for then there
will be a net emission of radiation. Because at thermal equilib-
rium the opposite is true, it is necessary to achieve a population
inversion in which there are more molecules in the upper state
than in the lower.

One way of achieving population inversion is illustrated in
Fig. 11.32. The molecule is excited to an intermediate state I,
which then gives up some of its energy nonradiatively and
changes into a lower state A; the laser transition is the return of
A to the ground state X. Because three energy levels are involved
overall, this arrangement leads to a three-level laser. In practice,
I consists of many states, all of which can convert to the upper of
the two laser states A. The I←X transition is stimulated with an
intense flash of light in the process called pumping. The pump-
ing is often achieved with an electric discharge through xenon or
with the light of another laser. The conversion of I to A should
be rapid, and the laser transitions from A to X should be rela-
tively slow.

The disadvantage of this three-level arrangement is that it 
is difficult to achieve population inversion, because so many
ground-state molecules must be converted to the excited state
by the pumping action. The arrangement adopted in a four-level
laser simplifies this task by having the laser transition terminate
in a state A′ other than the ground state (Fig. 11.33). Because A′
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Fig. 11.31 When a dissociative state crosses a bound state, as in
the upper part of the figure, molecules excited to levels near the
crossing may dissociate. This process is called predissociation,
and is detected in the spectrum as a loss of vibrational structure
that resumes at higher frequencies.
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Fig. 11.32 The transitions involved in one kind of three-level
laser. The pumping pulse populates the intermediate state I,
which in turn populates the laser state A. The laser transition is
the stimulated emission A←X.
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Fig. 11.33 The transitions involved in a four-level laser. 
Because the laser transition terminates in an excited state 
(A′), the population inversion between A and A′ is much 
easier to achieve.
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is unpopulated initially, any population in A corresponds to 
a population inversion, and we can expect laser action if A is
sufficiently metastable. Moreover, this population inversion 
can be maintained if the A′→X transitions are rapid, for these
transitions will deplete any population in A′ that stems from the
laser transition, and keep the state A′ relatively empty.

(b) Cavity and mode characteristics

The laser medium is confined to a cavity that ensures that only
certain photons of a particular frequency, direction of travel,
and state of polarization are generated abundantly. The cavity is
essentially a region between two mirrors, which reflect the light
back and forth. This arrangement can be regarded as a version of
the particle in a box, with the particle now being a photon. As in
the treatment of a particle in a box (Section 2.2), the only wave-
lengths that can be sustained satisfy

n × 1–2λ = L (11.11)

where n is an integer and L is the length of the cavity. That is,
only an integral number of half-wavelengths fit into the cavity;
all other waves undergo destructive interference with them-
selves. In addition, not all wavelengths that can be sustained by
the cavity are amplified by the laser medium (many fall outside
the range of frequencies of the laser transitions), so only a few
contribute to the laser radiation. These wavelengths are the 
resonant modes of the laser.

Photons with the correct wavelength for the resonant modes
of the cavity and the correct frequency to stimulate the laser
transition are highly amplified. One photon might be generated
spontaneously, and travel through the medium. It stimulates 
the emission of another photon, which in turn stimulates more
(Fig. 11.34). The cascade of energy builds up rapidly, and soon
the cavity is an intense reservoir of radiation at all the resonant
modes it can sustain. Some of this radiation can escape if one of
the mirrors is partially transmitting.

The resonant modes of the cavity have various natural char-
acteristics and to some extent may be selected. Only photons
that are travelling strictly parallel to the axis of the cavity undergo
more than a couple of reflections, so only they are amplified, all
others simply vanishing into the surroundings. Hence, laser
light generally forms a beam with very low divergence. It may
also be polarized, with its electric vector in a particular plane (or
in some other state of polarization), by including a polarizing
filter into the cavity or by making use of polarized transitions in
a solid medium.

Laser radiation is coherent in the sense that the electromag-
netic waves are all in step. In spatial coherence the waves are in
step across the cross-section of the beam emerging from the cav-
ity. In temporal coherence the waves remain in step along the
beam. The latter is normally expressed in terms of a coherence
length, lC, the distance over which the waves remain coherent,

and is related to the range of wavelengths, Δλ, present in the
beam:

(11.12)

If the beam were perfectly monochromatic, with strictly one
wavelength present, Δλ would be zero and the waves would 
remain in step for an infinite distance. When many wavelengths
are present, the waves get out of step in a short distance and the
coherence length is small. A typical light bulb gives out light with
a coherence length of only about 400 nm; a He–Ne laser with 
Δλ ≈ 2 pm has a coherence length of about 10 cm.

(c) Q-switching

A laser can generate radiation for as long as the population 
inversion is maintained. A laser can operate continuously when
heat is easily dissipated, for then the population of the upper
level can be replenished by pumping. When overheating is a
problem, the laser can be operated only in pulses, perhaps of 
microsecond or millisecond duration, so that the medium has 
a chance to cool or the lower state discard its population.
However, it is sometimes desirable to have pulses of radiation
rather than a continuous output, with a lot of power concen-
trated into a brief pulse. One way of achieving pulses is by 
Q-switching, the modification of the resonance characteristics
of the laser cavity. The name comes from the ‘Q-factor’ used as 
a measure of the quality of a resonance cavity in microwave 
engineering.
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Fig. 11.34 A schematic illustration of the steps leading to laser
action. (a) The Boltzmann population of states with more 
atoms in the ground state. (b) When the initial state absorbs, 
the populations are inverted (the atoms are pumped to the
excited state). (c) A cascade of radiation then occurs, as one
emitted photon stimulates another atom to emit, and so on. 
The radiation is coherent (phases in step).



reflected light does not stimulate more emission. However, if the
cell is suddenly turned off, the polarization effect is extinguished
and all the energy stored in the cavity can emerge as an intense
pulse of stimulated emission. An alternative technique is to use
a saturable absorber, typically a solution of a dye that loses its
ability to absorb when many of its molecules have been excited
by intense radiation. The dye then suddenly becomes transpar-
ent and the cavity becomes resonant. In practice, Q-switching
can give pulses of about 5 ns duration.

(d) Mode locking

The technique of mode locking can produce pulses of picosec-
ond duration and less. A laser radiates at a number of different

Example 11.3 Relating the power and energy of a laser

A laser rated at 0.10 J can generate radiation in 3.0 ns pulses
at a pulse repetition rate of 10 Hz. Assuming that the pulses
are rectangular, calculate the peak power output and the 
average power output of this laser.

Method The power output is the energy released in an inter-
val divided by the duration of the interval, and is expressed in
watts (1 W = 1 J s−1). To calculate the peak power output,
Ppeak, we divide the energy released during the pulse by the
duration of the pulse. The average power output, Paverage, is
the total energy released by a large number of pulses divided
by the duration of the time interval over which the total energy
was measured. So, the average power is simply the energy re-
leased by one pulse multiplied by the pulse repetition rate.

Answer From the data,

That is, the peak power output is 33 MW. The pulse repeti-
tion rate is 10 Hz, so ten pulses are emitted by the laser for
every second of operation. It follows that the average power
output is

Paverage = 0.10 J × 10 s−1 = 1.0 J s−1 = 1.0 W

The peak power is much higher than the average power 
because this laser emits light for only 30 ns during each 
second of operation.

Self-test 11.4 Calculate the peak power and average power
output of a laser with a pulse energy of 2.0 mJ, a pulse dura-
tion of 30 ps, and a pulse repetition rate of 38 MHz.

[Ppeak = 67 MW, Paverage = 76 kW]

The aim of Q-switching is to achieve a healthy population 
inversion in the absence of the resonant cavity, then to plunge
the population-inverted medium into a cavity, and hence to 
obtain a sudden pulse of radiation. The switching may be achieved
by impairing the resonance characteristics of the cavity in some
way while the pumping pulse is active, and then suddenly to 
improve them (Fig. 11.35). One technique is to use a Pockels
cell, which is an electro-optical device based on the ability of
some crystals, such as those of potassium dihydrogenphosphate
(KH2PO4), to convert plane-polarized light to circularly polar-
ized light when an electrical potential difference is applied. If a
Pockels cell is made part of a laser cavity, then its action and the
change in polarization that occurs when light is reflected from a
mirror convert light polarized in one plane into reflected light
polarized in the perpendicular plane (Fig. 11.36). As a result, the
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Fig. 11.35 The principle of Q-switching. (a) The excited state 
is populated while the cavity is nonresonant. (b) Then the
resonance characteristics are suddenly restored, and the
stimulated emission emerges in a giant pulse.
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Fig. 11.36 The principle of a Pockels cell. When light passes
through a cell that is ‘on’, its plane of polarization is rotated and
so the laser cavity is nonresonant (its Q-factor is reduced). In
this sequence, (a) the plane-polarized ray becomes circularly
polarized, (b) is reflected, and (c) emerges from the Pockels cell
with perpendicular plane polarization. When the cell is turned off,
no change of polarization occurs, and the cavity becomes resonant.
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frequencies, depending on the precise details of the resonance
characteristics of the cavity and in particular on the number of
half-wavelengths of radiation that can be trapped between the
mirrors (the cavity modes). The resonant modes differ in fre-
quency by multiples of c/2L (as can be inferred from eqn 11.11
with ν = c/λ). Normally, these modes have random phases 
relative to each other. However, it is possible to lock their phases
together. Then interference occurs to give a series of sharp
peaks, and the energy of the laser is obtained in picosecond
bursts (Fig. 11.37). The sharpness of the peaks depends on the
range of modes superimposed, and the wider the range, the nar-
rower the pulses. In a laser with a cavity of length 30 cm, the
peaks are separated by 2 ns. If 1000 modes contribute, the width
of the pulses is 4 ps.

Justification 11.5 The origin of mode locking

The general expression for a (complex) wave of amplitude E0

and frequency ω is E0eiωt. Therefore, each wave that can be
supported by a cavity of length L has the form

En(t) = E0e2πi(ν+nc/2L)t

where ν is the lowest frequency. A wave formed by super-
imposing N modes with n = 0, 1, . . . , N − 1 has the form

E(t) = ΣnEn(t) = E0e2πiνt

The sum is a geometrical progression:

The intensity, I, of the radiation is proportional to the square
modulus of the total amplitude, so

I ∝ E*E = E0
2
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This function is shown in Fig. 11.38. We see that it is a series
of peaks with maxima separated by t = 2L/c, the round-trip
transit time of the light in the cavity, and that the peaks 
become sharper as N is increased.

Mode locking is achieved by varying the Q-factor of the cavity
periodically at the frequency c/2L. The modulation can be pictured
as the opening of a shutter in synchrony with the round-trip
travel time of the photons in the cavity, so only photons making
the journey in that time are amplified. The modulation can be
achieved by linking a prism in the cavity to a transducer driven
by a radiofrequency source at a frequency c/2L. The transducer
sets up standing-wave vibrations in the prism and modulates the
loss it introduces into the cavity. We also see below that the
unique optical properties of some materials can be exploited to
bring about mode locking.

(e) Non-linear optical phenomena

Non-linear optical phenomena arise from changes in the optical
properties of a material in the presence of an intense electric
field from electromagnetic radiation. Here we explore two phe-
nomena that not only can be studied conveniently with intense
laser beams but are commonly used in the laboratory to modify
the output of lasers for specific experiments.

In frequency doubling, or second harmonic generation, an
intense laser beam is converted to radiation with twice (and in
general a multiple) of its initial frequency as it passes though a
suitable material. It follows that frequency doubling and tripling
of a Nd-YAG laser, which emits radiation at 1064 nm, produce
green light at 532 nm and ultraviolet radiation at 355 nm, 
respectively.

We can account for frequency doubling by examining how 
a substance responds non-linearly to incident radiation of fre-
quency ω = 2πν. Radiation of a particular frequency arises from
oscillations of an electric dipole at that frequency and the inci-
dent electric field E induces an electric dipole of magnitude μ in
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Fig. 11.37 The output of a mode-locked laser consists of a stream
of very narrow pulses separated by an interval equal to the time
it takes for light to make a round trip inside the cavity.
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Fig. 11.38 The function derived in Justification 11.5 showing in
more detail the structure of the pulses generated by a mode-
locked laser.



the substance. At low light intensity, most materials respond 
linearly, in the sense that μ = αE, where α is the polarizability
(see Section 8.4). To allow for non-linear response by some 
materials at high light intensity, we can write

μ = αE + 1–2βE2 + . . . (11.13)

where the coefficient β is the hyperpolarizability of the material.
The non-linear term βE2 can be expanded as follows if we sup-
pose that the incident electric field is E0 cos ωt :

βE2 = βE0
2 cos2ωt = 1–2βE0

2(1 + cos 2ωt) (11.14)

Hence, the non-linear term contributes an induced electric
dipole that oscillates at the frequency 2ω and which can act 
as a source of radiation of that frequency. Common materials 
that can be used for frequency doubling in laser systems include 
crystals of potassium dihydrogenphosphate (KH2PO4), lithium
niobate (LiNbO3), and β-barium borate (β-BaB2O4).

Another important non-linear optical phenomenon is the
optical Kerr effect, which arises from a change in refractive index
of a well chosen medium, the Kerr medium, when it is exposed
to intense laser pulses. Because a beam of light changes direction
when it passes from a region of one refractive index to a region
with a different refractive index, changes in refractive index 
result in the self-focusing of an intense laser pulse as it travels
through the Kerr medium (Fig. 11.39).

The optical Kerr effect is used as a mechanism of mode-
locking lasers. A Kerr medium is included in the cavity and next
to it is a small aperture. The procedure makes use of the fact that
the gain, the growth in intensity, of a frequency component of
the radiation in the cavity is very sensitive to amplification and,
once a particular frequency begins to grow, it can quickly domin-
ate. When the power inside the cavity is low, a portion of the
photons will be blocked by the aperture, creating a significant
loss. A spontaneous fluctuation in intensity—a bunching of
photons—may begin to turn on the optical Kerr effect and the
changes in the refractive index of the Kerr medium will result in
a Kerr lens, which is the self-focusing of the laser beam. The

bunch of photons can pass through and travel to the far end 
of the cavity, amplifying as it goes. The Kerr lens immediately
disappears (if the medium is well chosen), but is re-created
when the intense pulse returns from the mirror at the far end. 
In this way, that particular bunch of photons may grow to con-
siderable intensity because it alone is stimulating emission in the
cavity. Sapphire is an example of a Kerr medium that facilitates
the mode locking of titanium sapphire lasers, resulting in very
short laser pulses of duration in the femtosecond range.

In addition to being useful laboratory tools, non-linear optical
materials are also finding many applications in the telecom-
munications industry, which is becoming ever more reliant on 
optical signals transmitted through optical fibres to carry voice
and data. Judicious use of non-linear phenomena leads to more
ways in which the properties of optical signals, and hence the 
information they carry, can be manipulated.

(f ) Time-resolved spectroscopy

The ability of lasers to produce pulses of very short duration is
particularly useful in chemistry when we want to monitor pro-
cesses in time. Q-switched lasers produce nanosecond pulses,
which are generally fast enough to study reactions with rates
controlled by the speed with which reactants can move through
a fluid medium. However, when we want to study the rates at
which energy is converted from one mode to another within a
molecule, we need femtosecond and picosecond pulses. These
timescales are available from mode-locked lasers.

In time-resolved spectroscopy, laser pulses are used to obtain
the absorption, emission, or Raman spectrum of reactants, 
intermediates, products, and even transition states of reactions. 
It is also possible to study energy transfer, molecular rotations,
vibrations, and conversion from one mode of motion to another.
We shall see some of the information obtained from time-resolved
spectroscopy in Chapters 19 and 20. Here, we describe some of
the experimental techniques that employ pulsed lasers.

The arrangement shown in Fig. 11.40 is often used to study
ultrafast chemical reactions that can be initiated by light, such as
the initial events of vision (Impact I11.1). A strong and short
laser pulse, the pump, promotes a molecule A to an excited elec-
tronic state A* that can either emit a photon (as fluorescence 
or phosphorescence) or react with another species B to yield a
product C:

A + hν → A* (absorption)

A* → A (emission)

A* + B → [AB] → C (reaction)

Here [AB] denotes either an intermediate or an activated com-
plex. The rates of appearance and disappearance of the various
species are determined by observing time-dependent changes in
the absorption spectrum of the sample during the course of the
reaction. This monitoring is done by passing a weak pulse of

Kerr
medium

Laser
beam

Aperture

Fig. 11.39 An illustration of the Kerr effect. An intense laser beam
is focused inside a Kerr medium and passes through a small
aperture in the laser cavity. This effect may be used to mode-lock
a laser, as explained in the text.
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white light, the probe, through the sample at different times after
the laser pulse. Pulsed ‘white’ light can be generated directly from
the laser pulse by the phenomenon of continuum generation, in
which focusing an ultrafast laser pulse on a vessel containing
water, carbon tetrachloride, or sapphire results in an outgoing
beam with a wide distribution of frequencies. A time delay 
between the strong laser pulse and the ‘white’ light pulse can be
introduced by allowing one of the beams to travel a longer dis-
tance before reaching the sample. For example, a difference in
travel distance of Δd = 3 mm corresponds to a time delay Δt =
Δd/c ≈ 10 ps between two beams, where c is the speed of light.
The relative distances travelled by the two beams in Fig. 11.40
are controlled by directing the ‘white’ light beam to a motorized
stage carrying a pair of mirrors.

Variations of the arrangement in Fig. 11.40 allow for the ob-
servation of fluorescence decay kinetics of A* and time-resolved
Raman spectra during the course of the reaction. The fluores-
cence lifetime of A* can be determined by exciting A as before
and measuring the decay of the fluorescence intensity after the
pulse with a fast photodetector system. In this case, continuum
generation is not necessary. Time-resolved resonance Raman
spectra of A, A*, B, [AB], or C can be obtained by initiating the
reaction with a strong laser pulse of a certain wavelength and
then, some time later, irradiating the sample with another laser
pulse that can excite the resonance Raman spectrum of the 
desired species. Also in this case continuum generation is not
necessary. Instead, the Raman excitation beam may be gener-
ated in a dye laser (Section 11.8).

11.8 Examples of practical lasers

Figure 11.41 summarizes the requirements for an efficient laser.
In practice, the requirements can be satisfied by using a variety

of different systems, and this section reviews some that are com-
monly available. We also include some lasers that operate by
using other than electronic transitions.

(a) Gas lasers

Because gas lasers can be cooled by a rapid flow of the gas
through the cavity, they can be used to generate high powers.
The pumping is normally achieved using a gas that is different
from the gas responsible for the laser emission itself.

In the helium–neon laser the active medium is a mixture of
helium and neon in a mole ratio of about 5:1 (Fig. 11.42). The
initial step is the excitation of an He atom to the metastable
1s12s1 configuration by using an electric discharge (the collisions
of electrons and ions cause transitions that are not restricted by
electric-dipole selection rules). The excitation energy of this
transition happens to match an excitation energy of neon, and
during an He–Ne collision efficient transfer of energy may occur,
leading to the production of highly excited, metastable Ne atoms
with unpopulated intermediate states. Laser action generating
633 nm radiation (among about 100 much weaker other lines)
then occurs.

Laser
Sample
cell

MonochromatorDetector

Prisms on
motorized stage

Continuum
generation

Beamsplitter

Lens
Lens

Fig. 11.40 A configuration used for time-resolved absorption
spectroscopy, in which the same pulsed laser is used to generate 
a monochromatic pump pulse and, after continuum generation
in a suitable liquid, a ‘white’ light probe pulse. The time delay
between the pump and probe pulses may be varied by moving
the motorized stage in the direction shown by the double arrow.
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Fig. 11.41 A summary of the features needed for efficient laser action.
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Fig. 11.42 The transitions involved in a helium–neon laser. The
pumping (of the neon) depends on a coincidental matching of
the helium and neon energy separations, so excited He atoms
can transfer their excess energy to Ne atoms during a collision.



The argon-ion laser (Fig. 11.43), one of a number of ‘ion lasers’,
consists of argon at about 1 Torr, through which is passed an
electric discharge. The discharge results in the formation of Ar+

and Ar2+ ions in excited states, which undergo a laser transition
to a lower state. These ions then revert to their ground states 
by emitting hard ultraviolet radiation (at 72 nm), and are then
neutralized by a series of electrodes in the laser cavity. One of the
design problems is to find materials that can withstand this
damaging residual radiation. There are many lines in the laser
transition because the excited ions may make transitions to
many lower states, but two strong emissions from Ar+ are at 
488 nm (blue) and 514 nm (green); other transitions occur 
elsewhere in the visible region, in the infrared, and in the ultra-
violet. The krypton-ion laser works similarly. It is less efficient,
but gives a wider range of wavelengths, the most intense being at
647 nm (red), but it can also generate yellow, green, and violet
lines. Both lasers are widely used in laser light shows (for this 
application argon and krypton are often used simultaneously 
in the same cavity) as well as laboratory sources of high-power
radiation.

The carbon dioxide laser works on a slightly different principle
(Fig. 11.44), for its radiation (between 9.2 μm and 10.8 μm, with
the strongest emission at 10.6 μm, in the infrared) arises from
vibrational transitions. Most of the working gas is nitrogen,
which becomes vibrationally excited by electronic and ionic 
collisions in an electric discharge. The vibrational levels happen
to coincide with the ladder of antisymmetric stretch (ν3, see 
Fig. 10.44) energy levels of CO2, which pick up the energy dur-
ing a collision. Laser action then occurs from the lowest excited
level of ν3 to the lowest excited level of the symmetric stretch
(ν1), which has remained unpopulated during the collisions.
This transition is allowed by anharmonicities in the molecular
potential energy. Some helium is included in the gas to help 
remove energy from this state and maintain the population 
inversion.

In a nitrogen laser, the efficiency of the stimulated transition
(at 337 nm, in the ultraviolet, the transition C3Πu → B3Πg) is so

great that a single passage of a pulse of radiation is enough to
generate laser radiation and mirrors are unnecessary: such lasers
are said to be superradiant.

(b) Chemical and exciplex lasers

Chemical reactions may also be used to generate molecules with
nonequilibrium, inverted populations. For example, the photo-
lysis of Cl2 leads to the formation of Cl atoms, which attack H2

molecules in the mixture and produce HCl and H. The latter
then attacks Cl2 to produce vibrationally excited (‘hot’) HCl
molecules. Because the newly formed HCl molecules have non-
equilibrium vibrational populations, laser action can result as
they return to lower states. Such processes are remarkable exam-
ples of the direct conversion of chemical energy into coherent
electromagnetic radiation.

The population inversion needed for laser action is achieved
in a more underhand way in exciplex lasers, for in these (as we
shall see) the lower state does not effectively exist. This odd situ-
ation is achieved by forming an exciplex, a combination of two
atoms that survives only in an excited state and that dissociates
as soon as the excitation energy has been discarded. (The term
‘excimer laser’ is also widely encountered and used loosely when
‘exciplex laser’ is more appropriate. An exciplex has the form
AB* whereas an excimer, an excited dimer, is AA*.) An exciplex
can be formed in a mixture of xenon, chlorine, and neon (which
acts as a buffer gas). An electric discharge through the mixture
produces excited Cl atoms, which attach to the Xe atoms to give
the exciplex XeCl*. The exciplex survives for about 10 ns, which
is time for it to participate in laser action at 308 nm (in the 
ultraviolet). As soon as XeCl* has discarded a photon, the atoms
separate because the molecular potential energy curve of the
ground state is dissociative, and the ground state of the exciplex

454 nm
to

514 nmAr+

Ar+

Ar+

Radiative,
72 nm

Ar

Fig. 11.43 The transitions involved in an argon-ion laser.
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Fig. 11.44 The transitions involved in a carbon dioxide laser. The
pumping also depends on the coincidental matching of energy
separations; in this case the vibrationally excited N2 molecules
have excess energies that correspond to a vibrational excitation
of the antisymmetric stretch of CO2. The laser transition is from
v3 = 1 to v1 = 1.
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cannot become populated (Fig. 11.45). The KrF* exciplex laser
is another example: it produces radiation at 249 nm.

(c) Dye lasers

Gas lasers and most solid state lasers operate at discrete fre-
quencies and, although the frequency required may be selected
by suitable optics, the laser cannot be tuned continuously. The
tuning problem is overcome by using a titanium sapphire laser
(see below) or a dye laser, which has broad spectral character-
istics because the solvent broadens the vibrational structure 
of the transitions into bands. Hence, it is possible to scan the 
wavelength continuously (by rotating the diffraction grating in
the cavity) and achieve laser action at any chosen wavelength
within the fluorescence spectrum of the dye. A commonly used
dye is rhodamine 6G in methanol (Fig. 11.46). As the gain is 
very high, only a short length of the optical path need be through
the dye. The excited states of the active medium, the dye, are 

sustained by another laser or a flash lamp, and the dye solution
is flowed through the laser cavity to avoid thermal degradation
(Fig. 11.47).

(d) Light emission by solid-state lasers and 
light-emitting diodes

In Section 9.10 we explored light emission in solids. Here we
focus our attention on ionic crystals and semiconductors used
in the design of lasers and light-emitting diodes.

The neodymium laser is an example of a four-level laser, in
which the laser transition terminates in a state other than the
ground state of the laser material (Fig. 11.48). In one form it
consists of Nd3+ ions at low concentration in yttrium alumi-
nium garnet (YAG, specifically Y3Al5O12), and is then known as
a Nd-YAG laser. The population inversion results from pump-
ing a majority of the Nd3+ ions into an excited state by using an 
intense flash from another source, followed by a radiationless
transition to another excited state. The pumping flash need not
be monochromatic because the upper level actually consists of
several states spanning a band of frequencies. A neodymium laser
operates at a number of wavelengths in the infrared, the band at
1064 nm being most common. The transition at 1064 nm is very

Exciplex, AB*

Dissociative
state, AB

Laser
transition

M
o

le
cu

la
r

p
o

te
n

ti
al

en
er

g
y

A–B distance

Fig. 11.45 The molecular potential energy curves for an exciplex.
The species can survive only as an excited state, because on
discarding its energy it enters the lower, dissociative state.
Because only the upper state can exist, there is never any
population in the lower state.
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Fig. 11.47 The configuration used for a dye laser. The dye is
flowed through the cell inside the laser cavity. The flow helps 
to keep it cool and prevents degradation.
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Fig. 11.46 The optical absorption spectrum of the dye rhodamine
6G and the region used for laser action.
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Fig. 11.48 The transitions involved in a neodymium laser. The
laser action takes place between the 4F and 4I excited states.



efficient and the laser is capable of substantial power output, 
either in continuous or pulsed (by Q-switching or mode locking
as discussed in Section 11.7) modes of operation.

The titanium sapphire laser consists of Ti3+ ions at low 
concentration in a crystal of sapphire (Al2O3). The electronic
absorption spectrum of Ti3+ ion in sapphire is very similar to
that shown in Fig. 11.15, with a broad absorption band centred
at around 500 nm that arises from vibronically allowed d–d
transitions of the Ti3+ ion in an octahedral environment pro-
vided by oxygen atoms of the host lattice. As a result, the emis-
sion spectrum of Ti3+ in sapphire is also broad and laser action
occurs over a wide range of wavelengths (Fig. 11.49). Therefore,
the titanium sapphire laser is an example of a vibronic laser, in
which the laser transitions originate from vibronic transitions in
the laser medium. The titanium sapphire laser is usually pumped

by another laser, such as a Nd-YAG laser or an argon-ion laser,
and can be operated in either a continuous or pulsed fashion.
Mode-locked titanium sapphire lasers produce energetic (20 mJ
to 1 J) and very short (20–100 fs, 1 fs = 10−15 s) pulses. When
considered together with broad wavelength tunability (700–
1000 nm), these features of the titanium sapphire laser justify its
wide use in modern spectroscopy and photochemistry.

The unique electrical properties of p–n junctions between
semiconductors (Section 9.9) can be put to good use in optical
devices. In some materials, most notably gallium arsenide,
GaAs, energy from electron–hole recombination is released not
as heat but is carried away by photons as electrons move across
the junction under forward bias. Practical light-emitting diodes
of this kind are widely used in electronic displays. The wave-
length of emitted light depends on the band gap of the semicon-
ductor. Gallium arsenide itself emits infrared light, but the band
gap is widened by incorporating phosphorus, and a material 
of composition approximately GaAs0.6P0.4 emits light in the red
region of the spectrum.

A light-emitting diode is not a laser, because no resonance
cavity and stimulated emission are involved. In diode lasers,
light emission due to electron–hole recombination is employed
as the basis of laser action. The population inversion can be sus-
tained by sweeping away the electrons that fall into the holes of
the p-type semiconductor, and a resonant cavity can be formed
by using the high refractive index of the semiconducting material
and cleaving single crystals so that the light is trapped by the
abrupt variation of refractive index. One widely used material is
Ga1−xAlxAs, which produces infrared laser radiation and is widely
used in compact-disc (CD) players.

High-power diode lasers are also used to pump other lasers.
One example is the pumping of Nd:YAG lasers by Ga0.91Al0.09As/
Ga0.7Al0.3As diode lasers. The Nd:YAG laser is often used to
pump yet another laser, such as a Ti:sapphire laser. As a result, it
is now possible to construct a laser system for steady-state or
time-resolved spectroscopy entirely out of solid-state components.

2T2

2E

Pu
m

p

Fig. 11.49 The transitions involved in a titanium sapphire laser.
The laser medium consists of sapphire (Al2O3) doped with 
Ti3+ ions. Monochromatic light from a pump laser induces 
a 2E ← 2T2 transition in a Ti3+ ion that resides in a site with
octahedral symmetry. After radiationless vibrational excitation
in the 2E state, laser emission occurs from a very large number 
of closely spaced vibronic states of the medium. As a result, the
titanium sapphire laser emits radiation over a broad spectrum
that spans from about 700 nm to about 1000 nm.

Checklist of key ideas

1. Emission spectroscopy is based on the detection of a
transition from a state of high energy to a state of lower
energy; absorption spectroscopy is based on the detection 
of the net absorption of nearly monochromatic incident
radiation as the radiation is swept over a range of
frequencies.

2. The Beer–Lambert law is I(#) = I0(#)10−ε(#)[J]l, where I(#) is
the transmitted intensity, I0(#) is the incident intensity, and
ε(#) is the molar absorption coefficient.

3. The transmittance, T = I/I0, and the absorbance, A, of a
sample at a given wavenumber are related by A = −log T.

4. The integrated absorption coefficient, A, is the sum 
of the absorption coefficients over the entire band, 
A = ∫band ε(#)d#.

5. The selection rules for electronic transitions that are
concerned with changes in angular momentum are: 
ΔΛ = 0, ±1, ΔS = 0, ΔΣ = 0, ΔΩ = 0, ±1.

6. The Laporte selection rule (for centrosymmetric molecules)
states that the only allowed transitions are transitions that
are accompanied by a change of parity.

7. The Franck–Condon principle states that, because the nuclei
are so much more massive than the electrons, an electronic
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transition takes place very much faster than the nuclei can
respond.

8. The intensity of an electronic transition is proportional to
the Franck–Condon factor, the quantity |S(vf,vi)|2, with
S(vf,vi) = 〈vf |vi〉.

9. Examples of electronic transitions include d–d transitions in
d-metal complexes, charge-transfer transitions (a transition
in which an electron moves from metal to ligand or from
ligand to metal in a complex), π* ← π, and π* ← n
transitions.

10. A Jablonski diagram is a schematic diagram of the various
types of nonradiative and radiative transitions that can
occur in molecules.

11. Fluorescence is the spontaneous emission of radiation
arising from a transition between states of the same
multiplicity.

12. Phosphorescence is the spontaneous emission of radiation
arising from a transition between states of different
multiplicity.

13. Intersystem crossing is a nonradiative transition between
states of different multiplicity.

14. Internal conversion is a nonradiative transition between
states of the same multiplicity.

15. Laser action depends on the achievement of population
inversion, an arrangement in which there are more
molecules in an upper state than in a lower state, and 
the stimulated emission of radiation.

16. Resonant modes are the wavelengths that can be sustained
by an optical cavity and contribute to the laser action. 
Q-switching is the modification of the resonance
characteristics of the laser cavity and, consequently, 
of the laser output.

17. Mode locking is a technique for producing pulses of
picosecond duration and less by matching the phases of
many resonant cavity modes.

18. Non-linear optical phenomena arise from changes in the
optical properties of a material in the presence of an intense
field from electromagnetic radiation. Examples include
second harmonic generation and the optical Kerr effect.

19. Practical lasers include gas, dye, chemical, exciplex, and
solid-state lasers.

20. Applications of lasers in chemistry include laser 
light scattering, multiphoton spectroscopy, Raman
spectroscopy, precision-specified transitions, 
time-resolved spectroscopy, and single-molecule
spectroscopy.

Discussion questions

11.1 Explain the origin of the term symbol 3Σg
− for the ground state of

dioxygen.

11.2 Explain the basis of the Franck–Condon principle and how it leads
to the formation of a vibrational progression.

11.3 How do the band heads in P and R branches arise? Could the Q
branch show a head?

11.4 Explain how colour can arise from molecules.

11.5 Suppose that you are a colour chemist and had been asked to
intensify the colour of a dye without changing the type of compound,
and that the dye in question was a polyene. (a) Would you choose to
lengthen or to shorten the chain? (b) Would the modification to 

the length shift the apparent colour of the dye towards the red or the
blue?

11.6 Describe the mechanism of fluorescence. In what respects is a
fluorescence spectrum not the exact mirror image of the corresponding
absorption spectrum?

11.7 What is the evidence for the correctness of the mechanism of
fluorescence?

11.8 Describe the principles of (a) continuous-wave, and (b) pulsed 
laser action.

11.9 What features of laser radiation are applied in chemistry? Discuss
two applications of lasers in chemistry.

Exercises

11.1(a) The molar absorption coefficient of a substance dissolved in
hexane is known to be 723 dm3 mol−1 cm−1 at 260 nm. Calculate the
percentage reduction in intensity when light of that wavelength passes
through 2.50 mm of a solution of concentration 4.25 mmol dm−3.

11.1(b) The molar absorption coefficient of a substance dissolved in
hexane is known to be 227 dm3 mol−1 cm−1 at 290 nm. Calculate the
percentage reduction in intensity when light of that wavelength passes
through 2.00 mm of a solution of concentration 2.52 mmol dm−3.

11.2(a) A solution of an unknown component of a biological sample
when placed in an absorption cell of path length 1.00 cm transmits 
18.1 per cent of light of 320 nm incident upon it. If the concentration 
of the component is 0.139 mmol dm−3, what is the molar absorption
coefficient?

11.2(b) When light of wavelength 400 nm passes through 2.5 mm 
of a solution of an absorbing substance at a concentration 0.717 mmol
dm−3, the transmission is 61.5 per cent. Calculate the molar absorption



coefficient of the solute at this wavelength and express the answer in 
cm2 mol−1.

11.3(a) The molar absorption coefficient of a solute at 540 nm is 
386 dm3 mol−1 cm−1. When light of that wavelength passes through 
a 5.00 mm cell containing a solution of the solute, 38.5 per cent of 
the light was absorbed. What is the concentration of the solution?

11.3(b) The molar absorption coefficient of a solute at 440 nm is 
423 dm3 mol−1 cm−1. When light of that wavelength passes through 
a 6.50 mm cell containing a solution of the solute, 48.3 per cent of the
light was absorbed. What is the concentration of the solution?

11.4(a) The absorption associated with a particular transition begins at
220 nm, peaks sharply at 270 nm, and ends at 300 nm. The maximum
value of the molar absorption coefficient is 2.21 × 104 dm3 mol−1 cm−1.
Estimate the integrated absorption coefficient of the transition assuming
a triangular lineshape (see eqn 11.5).

11.4(b) The absorption associated with a certain transition begins 
at 156 nm and ends at 275 nm. The maximum value of the molar
absorption coefficient is 3.35 × 104 dm3 mol−1 cm−1. Estimate the
integrated absorption coefficient of the transition assuming an inverted
parabolic lineshape (Fig. 11.50; use eqn 11.5).

transmission was 29 per cent. What will the transmittance be in a 
2.50-mm cell at the same wavelength?

11.7(a) A swimmer enters a gloomier world (in one sense) on diving to
greater depths. Given that the mean molar absorption coefficient of sea
water in the visible region is 6.2 × 10−5 dm3 mol−1 cm−1, calculate the
depth at which a diver will experience (a) half the surface intensity of
light, (b) one-tenth the surface intensity.

11.7(b) Given that the maximum molar absorption coefficient 
of a molecule containing a carbonyl group is 30 dm3 mol−1 cm−1

near 280 nm, calculate the thickness of a sample that will result 
in (a) half the initial intensity of radiation, (b) one-tenth the initial
intensity.

11.8(a) The term symbol for one of the excited states of H2 is 3Πu. 
Use the building-up principle to find the excited-state configuration
to which this term symbol corresponds.

11.8(b) The term symbol for the ground state of N2
+ is 2Πg. Use the

building-up principle to find the excited-state configuration to which
this term symbol corresponds.

11.9(a) One of the excited states of the C2 molecule has the valence
electron configuration 1σg

21σu
21πu

31πg
1. Give the multiplicity and parity 

of the term.

11.9(b) One of the excited states of the C2 molecule has the valence
electron configuration 1σg

21σu
21πu

21πg
2. Give the multiplicity and parity 

of the term.

11.10(a) Which of the following transitions are electric-dipole allowed:
(a) 2Π ↔ 2Π, (b) 1Σ ↔ 1Σ, (c) Σ ↔ Δ, (d) Σ+ ↔ Σ−, (e) Σ+ ↔ Σ+?

11.10(b) Which of the following transitions are electric-dipole allowed:
(a) 1Σg

+ ↔ 1Σu
+, (b) 3Σg

+ ↔ 3Σu
+, (c) t2g ↔ eg, (d) π* ↔ n?

11.11(a) The ground-state wavefunction of a certain molecule is
described by the vibrational wavefunction ψ0 = N0e−ax2

. Calculate the
Franck–Condon factor for a transition to a vibrational state described 
by the wavefunction ψv = Nve−b(x−x0)2

, with b = a/2.

11.11(b) The ground-state wavefunction of a certain molecule is
described by the vibrational wavefunction ψ0 = N0e−ax2

. Calculate the
Franck–Condon factor for a transition to a vibrational state described 
by the wavefunction ψv = Nvxe−b(x−x0)2

, with b = a/2.

11.12(a) Suppose that the ground vibrational state of a molecule 
is modelled by using the particle-in-a-box wavefunction ψ0 = (2/L)1/2

sin(πx/L) for 0 ≤ x ≤ L and 0 elsewhere. Calculate the Franck–Condon
factor for a transition to a vibrational state described by the
wavefunction ψv = (2/L)1/2 sin{π(x − L/4)/L} for L/4 ≤ x ≤ 5L/4
and 0 elsewhere.

11.12(b) Suppose that the ground vibrational state of a molecule is
modelled by using the particle-in-a-box wavefunction ψ0 = (2/L)1/2

sin(πx/L) for 0 ≤ x ≤ L and 0 elsewhere. Calculate the Franck–Condon
factor for a transition to a vibrational state described by the
wavefunction ψv = (2/L)1/2 sin{π(x − L/4)/L} for L/2 ≤ x ≤ 3L/2
and 0 elsewhere.

11.13(a) Use eqn 11.9a to infer the value of J corresponding to the
location of the band head of the P branch of a transition.

11.13(b) Use eqn 11.9c to infer the value of J corresponding to the
location of the band head of the R branch of a transition.

11.14(a) The following parameters describe the electronic ground state
and an excited electronic state of SnO: è = 0.3540 cm−1, è′ = 0.3101 cm−1.
Which branch of the transition between them shows a head? At what
value of J will it occur?
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Fig. 11.50 A model parabolic absorption lineshape.
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11.5(a) The following data were obtained for the absorption by Br2
in carbon tetrachloride using a 2.0 mm cell. Calculate the molar
absorption coefficient of bromine at the wavelength employed:

[Br2]/(mol dm−3) 0.0010 0.0050 0.0100 0.0500

T/(per cent) 81.4 35.6 12.7 3.0 × 10−3

11.5(b) The following data were obtained for the absorption by a dye
dissolved in methylbenzene using a 2.50 mm cell. Calculate the molar
absorption coefficient of the dye at the wavelength employed:

[dye]/(mol dm−3) 0.0010 0.0050 0.0100 0.0500

T/(per cent) 68 18 3.7 1.03 × 10−5

11.6(a) A 2.0-mm cell was filled with a solution of benzene in a 
non-absorbing solvent. The concentration of the benzene was 
0.010 mol dm−3 and the wavelength of the radiation was 256 nm 
(where there is a maximum in the absorption). Calculate the molar
absorption coefficient of benzene at this wavelength given that the
transmission was 48 per cent. What will the transmittance be in a 
4.0-mm cell at the same wavelength?

11.6(b) A 5.00-mm cell was filled with a solution of a dye. The
concentration of the dye was 18.5 mmol dm−3. Calculate the molar
absorption coefficient of the dye at this wavelength given that the
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11.14(b) The following parameters describe the electronic ground 
state and an excited electronic state of BeH: è = 10.308 cm−1,
è′ = 10.470 cm−1. Which branch of the transition between them 
shows a head? At what value of J will it occur?

11.15(a) The R branch of the 1Πu ← 1Σg
+ transition of H2 shows a band

head at the very low value of J = 1. The rotational constant of the ground
state is 60.80 cm−1. What is the rotational constant of the upper state?
Has the bond length increased or decreased in the transition?

11.15(b) The P branch of the 2Π ← 2Σ+ transition of CdH shows a band
head at J = 25. The rotational constant of the ground state is 5.437 cm−1.
What is the rotational constant of the upper state? Has the bond length
increased or decreased in the transition?

11.16(a) The complex ion [Fe(H2O)6]3+ has an electronic absorption
spectrum with a maximum at 700 nm. Estimate a value of ΔO for the
complex.

11.16(b) The complex ion [Fe(CN)6]3− has an electronic absorption
spectrum with a maximum at 305 nm. Estimate a value of ΔO for the
complex.

11.17(a) Suppose that we can model a charge-transfer transition 
in a one-dimensional system as a process in which a rectangular
wavefunction that is nonzero in the range 0 ≤ x ≤ a makes a transition 
to another rectangular wavefunction that is nonzero in the range
1–2 a ≤ x ≤ b. Evaluate the transition moment ∫ψf xψidx.

11.17(b) Suppose that we can model a charge-transfer transition in a
one-dimensional system as a process in which an electron described by a
rectangular wavefunction that is nonzero in the range 0 ≤ x ≤ a makes a
transition to another rectangular wavefunction that is nonzero in the
range ca ≤ x ≤ a where 0 ≤ c < 1. Evaluate the transition moment
∫ψfxψidx and explore its dependence on c.

11.18(a) Suppose that we can model a charge-transfer transition in a
one-dimensional system as a process in which a Gaussian wavefunction
centred on x = 0 and width a makes a transition to another Gaussian
wavefunction of the same width centred on x = 1–2 a. Evaluate the
transition moment ∫ψf xψidx.

11.18(b) Suppose that we can model a charge-transfer transition in a
one-dimensional system as a process in which an electron described by a
Gaussian wavefunction centred on x = 0 and width a makes a transition
to another Gaussian wavefunction of width a/2 and centred on x = 0.
Evaluate the transition moment ∫ψf xψidx.

11.19(a) The compound CH3CH=CHCHO has a strong absorption 
in the ultraviolet at 46 950 cm−1 and a weak absorption at 30 000 cm−1.
Justify these features in terms of the structure of the molecule.

11.19(b) The two compounds 2,3-dimethyl-2-butene (7) and 
2,5-dimethyl-2,4-hexadiene (8) are to be distinguished by their

ultraviolet absorption spectra. The maximum absorption in one
compound occurs at 192 nm and in the other at 243 nm. Match the
maxima to the compounds and justify the assignment.

11.20(a) Propanone (acetone, (CH3)2CO), has a strong absorption at 
189 nm and a weaker absorption at 280 nm. Justify these features and
assign the ultraviolet absorption transitions.

11.20(b) 3-Buten-2-one (9) has a strong absorption at 213 nm and a
weaker absorption at 320 nm. Justify these features and assign the
ultraviolet absorption transitions.

11.21(a) Suppose a molecule responds to the square of the electric field
intensity that is incident upon it, and that the field is proportional to
cos ωt. Show that the effect is equivalent to an incident field that is
oscillating at 2ω.

11.21(b) Suppose a molecule responds to the third power of the electric
field intensity that is incident upon it, and that the field is proportional
to cos ωt. What frequency components are effectively present in the
incident radiation?

11.22(a) The line marked A in Fig. 11.51 is the fluorescence spectrum of
benzophenone in solid solution in ethanol at low temperatures observed
when the sample is illuminated with 360 nm light. What can be said
about the vibrational energy levels of the carbonyl group in (a) its
ground electronic state and (b) its excited electronic state?
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Fig. 11.51 The fluorescence and phosphorescence spectra 
of two solutions.

11.22(b) When naphthalene is illuminated with 360 nm light it does 
not absorb, but the line marked B in Fig. 11.51 is the phosphorescence
spectrum of a solid solution of a mixture of naphthalene and
benzophenone in ethanol. Now a component of fluorescence 
from naphthalene can be detected. Account for this observation.

11.23(a) The oxygen molecule absorbs ultraviolet radiation in a
transition from its 3Σg

− ground electronic state to an excited state that is
energetically close to a dissociative 5Πu state. The absorption band has a
relatively large experimental linewidth. Account for this observation.

11.23(b) The hydrogen molecule absorbs ultraviolet radiation in a
transition from its 1Σg

+ ground electronic state to an excited state that is



energetically close to a dissociative 1Σu
+ state. The absorption band has a

relatively large experimental linewidth. Account for this observation.

11.24(a) Consider a laser cavity of length 30 cm. What are the allowed
wavelengths and frequencies of the resonant modes?

11.24(b) Consider a laser cavity of length 1.0 m. What are the allowed
wavelengths and frequencies of the resonant modes?

11.25(a) A pulsed laser rated at 0.10 mJ can generate radiation with peak
power output of 5.0 MW and average power output of 7.0 kW. What are
the pulse duration and repetition rate?

11.25(b) A pulsed laser rated at 20.0 μJ can generate radiation with peak
power output of 100 kW and average power output of 0.40 mW. What
are the pulse duration and repetition rate?

11.26(a) Use mathematical software or an electronic spreadsheet to
simulate the output of a mode-locked laser (that is, plots such as that
shown in Fig. 11.38) for L = 30 cm and N = 100 and 1000.

11.26(b) Use mathematical software or an electronic spreadsheet to
simulate the output of a mode-locked laser (that is, plots such as that
shown in Fig. 11.38) for L = 1.0 cm and N = 50 and 500.

11.27(a) How might you use a Q-switched Nd:YAG laser in the study 
of a very fast chemical reaction that can be initiated by absorption of
light with λ = 266 nm?

11.27(b) How might you use a mode-locked titanium sapphire laser 
in the study of a very fast chemical reaction that can be initiated by
absorption of light with λ = 400 nm?

Problems*

Numerical problems

11.1 A Dubosq colorimeter consists of a cell of fixed path length and a 
cell of variable path length. By adjusting the length of the latter until 
the transmission through the two cells is the same, the concentration 
of the second solution can be inferred from that of the former. Suppose
that a plant dye of concentration 25 μg dm−3 is added to the fixed cell,
the length of which is 1.55 cm. Then a solution of the same dye, but of
unknown concentration, is added to the second cell. It is found that the
same transmittance is obtained when the length of the second cell is
adjusted to 1.18 cm. What is the concentration of the second solution?

11.2 In many cases it is possible to assume that an absorption band 
has a Gaussian lineshape (one proportional to e−x2

) centred on the 
band maximum. Assume such a lineshape, and show that A = ∫ε(#)d# ≈
1.0645εmaxΔ#1/2, where Δ#1/2 is the width at half-height. The absorption
spectrum of azoethane (CH3CH2N2) between 24 000 cm−1 and 34 000 cm−1

is shown in Fig. 11.52. First, estimate A for the band by assuming that it
is Gaussian. Then use mathematical software to fit a polynomial to the
absorption band (or a Gaussian), and integrate the result analytically.

11.3‡ Dojahn et al. ( J. Phys. Chem. 100, 9649 (1996)) characterized 
the potential energy curves of the ground and electronic states of

homonuclear diatomic halogen anions. These anions have a 2Σu
+ ground

state and 2Πg, 
2Πu, and 2Σg

+ excited states. To which of the excited states
are electric-dipole transitions allowed? Explain your conclusion.

11.4 The vibrational wavenumber of the oxygen molecule in its
electronic ground state is 1580 cm−1, whereas that in the excited state 
(B 3Σu

−), to which there is an allowed electronic transition, is 700 cm−1.
Given that the separation in energy between the minima in their
respective potential energy curves of these two electronic states is 
6.175 eV, what is the wavenumber of the lowest energy transition 
in the band of transitions originating from the v = 0 vibrational state 
of the electronic ground state to this excited state? Ignore any rotational
structure or anharmonicity.

11.5 We are now ready to understand more deeply the features 
of photoelectron spectra (Section 5.4). Figure 11.53 shows the
photoelectron spectrum of HBr. Disregarding for now the fine structure,
the HBr lines fall into two main groups. The least tightly bound electrons
(with the lowest ionization energies and hence highest kinetic energies
when ejected) are those in the lone pairs of the Br atom. The next
ionization energy lies at 15.2 eV, and corresponds to the removal of an
electron from the HBr σ bond. (a) The spectrum shows that ejection 
of a σ electron is accompanied by a considerable amount of vibrational
excitation. Use the Franck–Condon principle to account for this

Wavenumber, cm~ –1~
22 000 26 000 30 000 34 000

10

8

6

4

2

0

/(d
m

m
o

l
cm

)
3

–1
–1

H

	

Fig. 11.52 The absorption spectrum of azoethane.
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Fig. 11.53 The photoelectron spectrum of HBr.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp and Carmen Giunta.
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observation. (b) Go on to explain why the lack of much vibrational
structure in the other band is consistent with the nonbonding role 
of the Br4px and Br4py lone-pair electrons.

11.6 The highest kinetic energy electrons in the photoelectron spectrum
of H2O using 21.22 eV radiation are at about 9 eV and show a large
vibrational spacing of 0.41 eV. The symmetric stretching mode of the
neutral H2O molecule lies at 3652 cm−1. (a) What conclusions can be
drawn from the nature of the orbital from which the electron is ejected?
(b) In the same spectrum of H2O, the band near 14.0 eV shows a long
vibrational series with spacing 0.125 eV. The bending mode of H2O lies
at 1596 cm−1. What conclusions can you draw about the characteristics
of the orbital occupied by the photoelectron?

11.7 A lot of information about the energy levels and wavefunctions 
of small inorganic molecules can be obtained from their ultraviolet
spectra. An example of a spectrum with considerable vibrational
structure, that of gaseous SO2 at 25°C, is shown in Fig. 11.8. Estimate 
the integrated absorption coefficient for the transition. What electronic
states are accessible from the A1 ground state of this C2v molecule by
electric-dipole transitions?

11.8 Aromatic hydrocarbons and I2 form complexes from which charge-
transfer electronic transitions are observed. The hydrocarbon acts an
electron donor and I2 as an electron acceptor. The energies hνmax of the
charge transfer transitions for a number of hydrocarbon–I2 complexes
are given below:

Hydrocarbon Benzene Biphenyl Naphthalene Phenanthrene Pyrene Anthracene

hνmax/eV 4.184 3.654 3.452 3.288 2.989 2.890

Investigate the hypothesis that there is a correlation between the energy
of the HOMO of the hydrocarbon (from which the electron comes in 
the charge-transfer transition) and hνmax. Use one of the molecular
electronic structure methods discussed in Chapter 6 to determine 
the energy of the HOMO of each hydrocarbon in the data set.†

11.9 The fluorescence spectrum of anthracene vapour shows a series 
of peaks of increasing intensity with individual maxima at 440 nm, 
410 nm, 390 nm, and 370 nm followed by a sharp cutoff at shorter
wavelengths. The absorption spectrum rises sharply from zero to a
maximum at 360 nm with a trail of peaks of lessening intensity at 
345 nm, 330 nm, and 305 nm. Account for these observations.

11.10 A certain molecule fluoresces at a wavelength of 400 nm with 
a half-life of 1.0 ns. It phosphoresces at 500 nm. If the ratio of the
transition probabilities for stimulated emission for the S* → S to 
the T → S transitions is 1.0 × 105, what is the half-life of the
phosphorescent state?

11.11 Consider some of the precautions that must be taken when
conducting single-molecule spectroscopy experiments. (a) What is 
the molar concentration of a solution in which there is, on average, 
one solute molecule in 1.0 μm3 (1.0 f L) of solution? (b) It is important
to use pure solvents in single-molecule spectroscopy because optical
signals from fluorescent impurities in the solvent may mask optical
signals from the solute. Suppose that water containing a fluorescent
impurity of molar mass 100 g mol−1 is used as solvent and that analysis
indicates the presence of 0.10 mg of impurity per 1.0 kg of solvent. On
average, how many impurity molecules will be present in 1.0 μm3 of
solution? You may take the density of water as 1.0 g cm−3. Comment 
on the suitability of this solvent for single-molecule spectroscopy
experiments.

11.12 Light-induced degradation of molecules, also called
photobleaching, is a serious problem in single-molecule spectroscopy. 
A molecule of a fluorescent dye commonly used to label biopolymers 
can withstand about 106 excitations by photons before light-induced
reactions destroy its π system and the molecule no longer fluoresces. 
For how long will a single dye molecule fluoresce while being excited by
1.0 mW of 488 nm radiation from a continuous-wave argon ion laser?
You may assume that the dye has an absorption spectrum that peaks at
488 nm and that every photon delivered by the laser is absorbed by the
molecule.

11.13 Laser light scattering is a technique that uses the fact that the
intensity of light scattered—by Rayleigh scattering—by a particle 
is proportional to the molar mass of the particle and to λ−4, so shorter
wavelength radiation is scattered more intensely than longer wavelengths.
Consider the experimental arrangement shown in Fig. 11.54 for the
measurement of light scattering from solutions of macromolecules.
Typically, the sample is irradiated with monochromatic light from a
laser. The intensity of scattered light is then measured as a function of
the angle θ that the line of propagation of the laser beam makes with a
line from the sample to the detector. For dilute solutions of a spherical
macromolecule with a diameter much smaller than the wavelength of
incident radiation, the intensity, Iθ, of light scattered by a sample of mass
concentration cM (units: kg m−3) is given by

where I0 is the intensity of the incident laser radiation, M is the molar
mass, R is the radius of the particle, and K is a parameter that depends 
on the refractive index of the solution, the incident wavelength, and the
distance between the detector and the sample, which is held constant
during the experiment. It follows that structural properties, such as 
size and the molar mass of a macromolecule, can be obtained from
measurements of light scattering by a sample at several angles θ relative
to the direction of propagation of an incident beam. The following data
for an aqueous solution of a macromolecule with cM = 2.0 kg m−3 were
obtained at 20°C with laser light at λ = 532 nm. In a separate experiment,
it was determined that K = 2.40 × 10−2 mol m3 kg−2. From this
information, calculate R and M for the macromolecule.

θ/° 15.0 45.0 70.0 85.0 90.0

102 × I0/Iθ 4.20 4.37 4.63 4.83 4.90
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† The web site contains links to molecular modelling freeware and to other sites where you may perform molecular orbital calculations directly from your web
browser.
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Fig. 11.54 A typical experimental arrangement of a laser light
scattering measurement.



11.21 Use a group theoretical argument to decide which of the 
following transitions are electric-dipole allowed: (a) the π* ← π
transition in ethene, (b) the π* ← n transition in a carbonyl group 
in a C2v environment.

11.22 Estimate the transition dipole moment of a charge-transfer
transition modelled as the migration of an electron from a H1s orbital
on one atom to another H1s orbital on an atom a distance R away.
Approximate the transition moment by −eRS where S is the overlap
integral of the two orbitals. Sketch the transition moment as a function
of R using the curve for S given in Fig. 5.27. Why does the intensity of a
charge-transfer transition fall to zero as R approaches 0 and infinity?

11.23 Show that the intensity of fluorescence emission from a sample 
of J is proportional to [J] and l. To do so, consider a sample of J that is
illuminated with a beam of intensity I0(#) at the wavenumber #. Before
fluorescence can occur, a fraction of I0(# ) must be absorbed and an
intensity I(#) will be transmitted. However, not all of the absorbed
intensity is emitted and the intensity of fluorescence depends on the
fluorescence quantum yield, φf, the efficiency of photon emission. The
fluorescence quantum yield ranges from 0 to 1 and is proportional to the
ratio of the integral of the fluorescence spectrum over the integrated
absorption coefficient. Because of a Stokes shift of magnitude Δ#Stokes,
fluorescence occurs at a wavenumber #f, with #f + Δ#Stokes = #. It follows
that the fluorescence intensity at #f , If(#f), is proportional to φf and to the
intensity of exciting radiation that is absorbed by J, Iabs(#) = I0(#) − I(#).
(a) Use the Beer–Lambert law (eqn 11.2) to express Iabs(#) in terms 
of I0(#), [J], l, and ε(#), the molar absorption coefficient of J at #. 
(b) Use your result from part (a) to show that If(#f) ∝ I0(#)ε(#)φf[J]l.

Applications: to biochemistry, environmental 
science, and astrophysics

11.24 Figure 11.55 shows the UV-visible absorption spectra of a
selection of amino acids. Suggest reasons for their different appearances
in terms of the structures of the molecules.

11.25 The flux of visible photons reaching Earth from the North Star is
about 4 × 103 mm−2 s−1. Of these photons, 30 per cent are absorbed or
scattered by the atmosphere and 25 per cent of the surviving photons 
are scattered by the surface of the cornea of the eye. A further 9 per cent
are absorbed inside the cornea. The area of the pupil at night is about 
40 mm2 and the response time of the eye is about 0.1 s. Of the photons
passing through the pupil, about 43 per cent are absorbed in the ocular
medium. How many photons from the North Star are focused on to 
the retina in 0.1 s? For a continuation of this story, see R.W. Rodieck,
The first steps in seeing, Sinauer, Sunderland (1998).
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Fig.11.55 Electronic absorption spectra of selected amino acids.
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11.14 Matrix-assisted laser desorption/ionization (MALDI) is a type 
of mass spectrometry, a technique in which the sample is first ionized 
in the gas phase and then the mass-to-charge number ratios (m/z) 
of all ions are measured. MALDI-TOF mass spectrometry, so called
because the MALDI technique is coupled to a time-of-flight (TOF) 
ion detector, is used widely in the determination of the molar masses 
of macromolecules. In a MALDI-TOF mass spectrometer, the
macromolecule is first embedded in a solid matrix that often consists 
of an organic acid such as 2,5-dihydroxybenzoic acid, nicotinic acid, 
or α-cyanocarboxylic acid. This sample is then irradiated with a laser
pulse. The pulse of electromagnetic energy ejects matrix ions, cations,
and neutral macromolecules, thus creating a dense gas plume above 
the sample surface. The macromolecule is ionized by collisions and
complexation with H+ cations, resulting in molecular ions of varying
charges. The spectrum of a mixture of polymers consists of multiple
peaks arising from molecules with different molar masses. A MALDI-
TOF mass spectrum consists of two intense features at m/z = 9912 and
4554 g mol−1. Does the sample contain one or two distinct biopolymers?
Explain your answer.

Theoretical problems

11.15 The Beer–Lambert law is derived on the basis that the
concentration of absorbing species is uniform. Suppose, instead, 
that the concentration falls exponentially as [J] = [J]0e−x/λ. Derive an
expression for the variation of I with sample length; suppose that l >> λ.

11.16 It is common to make measurements of absorbance at two
wavelengths and use them to find the individual concentrations of two
components A and B in a mixture. Show that the molar concentrations
of A and B are

where A1 and A2 are absorbances of the mixture at wavelengths λ1
and λ2, and the molar extinction coefficients of A (and B) at these
wavelengths are εA1 and εA2 (and εB1 and εB2).

11.17 When pyridine is added to a solution of iodine in carbon
tetrachloride the 520 nm band of absorption shifts toward 450 nm.
However, the absorbance of the solution at 490 nm remains constant:
this feature is called an isosbestic point. Show that an isosbestic point
should occur when two absorbing species are in equilibrium.

11.18 Spin angular momentum is conserved when a molecule 
dissociates into atoms. What atom multiplicities are permitted when 
(a) an O2 molecule, (b) an N2 molecule dissociates into atoms?

11.19 Assume that the electronic states of the π electrons of a 
conjugated molecule can be approximated by the wavefunctions of a
particle in a one-dimensional box, and that the dipole moment can be
related to the displacement along this length by μ = −ex. Show that the
transition probability for the transition n = 1 → n = 2 is nonzero,
whereas that for n = 1 → n = 3 is zero. Hint. The following relations 
will be useful:

sin x sin y = 1–2 cos(x − y) − 1–2 cos(x + y)

11.20 1,3,5-hexatriene (a kind of ‘linear’ benzene) was converted into
benzene itself. On the basis of a free-electron molecular orbital model (in
which hexatriene is treated as a linear box and benzene as a ring), would
you expect the lowest energy absorption to rise or fall in energy?
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11.26 Use molecule (10) as a model of the trans conformation of 
the chromophore found in rhodopsin. In this model, the methyl 
group bound to the nitrogen atom of the protonated Schiff’s base
replaces the protein. (a) Using molecular modelling software and the
computational method of your instructor’s choice, calculate the energy
separation between the HOMO and LUMO of (10). (b) Repeat the
calculation for the 11-cis form of (10). (c) Based on your results from
parts (a) and (b), do you expect the experimental frequency for the 
π* ← π visible absorption of the trans form of (10) to be higher or 
lower than that for the 11-cis form of (10)?

in connection with stratospheric ozone chemistry. They found the
integrated absorption coefficient to be dependent on temperature and
pressure to an extent inconsistent with internal structural changes 
in isolated CH3I molecules; they explained the changes as due to
dimerization of a substantial fraction of the CH3I, a process that would
naturally be pressure and temperature dependent. (a) Compute the
integrated absorption coefficient over a triangular lineshape in the range
31 250 to 34 483 cm−1 and a maximal molar absorption coefficient of 
150 dm3 mol−1 cm−1 at 31 250 cm−1. (b) Suppose 1 per cent of the CH3I
units in a sample at 2.4 Torr and 373 K exists as dimers. Compute the
absorbance expected at 31 250 cm−1 in a sample cell of length 12.0 cm.
(c) Suppose 18 per cent of the CH3I units in a sample at 100 Torr and
373 K exists as dimers. Compute the absorbance expected at 31 250 cm−1

in a sample cell of length 12.0 cm; compute the molar absorption
coefficient that would be inferred from this absorbance if dimerization
was not considered.

11.29‡ One of the principal methods for obtaining the electronic spectra
of unstable radicals is to study the spectra of comets, which are almost
entirely due to radicals. Many radical spectra have been found in comets,
including that due to CN. These radicals are produced in comets by the
absorption of far ultraviolet solar radiation by their parent compounds.
Subsequently, their fluorescence is excited by sunlight of longer
wavelength. The spectra of comet Hale–Bopp (C/1995 O1) have been the
subject of many recent studies. One such study is that of the fluorescence
spectrum of CN in the comet at large heliocentric distances by R.M.
Wagner and D.G. Schleicher (Science 275, 1918 (1997)), in which the
authors determine the spatial distribution and rate of production of CN
in the coma. The (0–0) vibrational band is centred on 387.6 nm and the
weaker (1–1) band with relative intensity 0.1 is centred on 386.4 nm. 
The band heads for (0–0) and (0–1) are known to be 388.3 and 421.6
nm, respectively. From these data, calculate the energy of the excited S1
state relative to the ground S0 state, the vibrational wavenumbers and 
the difference in the vibrational wavenumbers of the two states, and the
relative populations of the v = 0 and v = 1 vibrational levels of the S1
state. Also estimate the effective temperature of the molecule in the
excited S1 state. Only eight rotational levels of the S1 state are thought 
to be populated. Is that observation consistent with the effective
temperature of the S1 state?

11.27‡ Ozone absorbs ultraviolet radiation in a part of the
electromagnetic spectrum energetic enough to disrupt DNA in 
biological organisms and that is absorbed by no other abundant
atmospheric constituent. This spectral range, denoted UV-B, spans 
the wavelengths of about 290 nm to 320 nm. The molar extinction
coefficient of ozone over this range is given in the table below 
(W.B. DeMore et al., Chemical kinetics and photochemical data for 
use in stratospheric modeling: Evaluation Number 11, JPL Publication
94–26 (1994)).

λ /nm 292.0 296.3 300.8 305.4 310.1 315.0 320.0

ε/(dm3 mol−1 cm−1) 1512 865 477 257 135.9 69.5 34.5

Compute the integrated absorption coefficient of ozone over the
wavelength range 290–320 nm. (Hint. ε(#) can be fitted to an
exponential function quite well.)

11.28‡ G.C.G. Wachewsky et al. ( J. Phys. Chem. 100, 11559 (1996))
examined the UV absorption spectrum of CH3I, a species of interest 



Magnetic resonance

The chapter begins with an account of conventional nuclear magnetic resonance that
shows how the resonance frequency of a magnetic nucleus is affected by its own electronic
environment and the presence of other magnetic nuclei in its vicinity. Then we turn to the
modern versions of NMR, which are based on the use of pulses of electromagnetic radi-
ation and the processing of the resulting signal by Fourier transform techniques. The experi-
mental techniques for electron paramagnetic resonance resemble those used in the early
days of NMR. The information obtained is very useful for the determination of the properties
of species with unpaired electrons.

When two pendulums share a slightly flexible support and one is set in motion, the
other is forced into oscillation by the motion of the common axle. As a result, energy
flows between the two pendulums. The energy transfer occurs most efficiently when
the frequencies of the two pendulums are identical. The condition of strong effective
coupling when the frequencies of two oscillators are identical is called resonance.
Resonance is the basis of a number of everyday phenomena, including the response 
of radios to the weak oscillations of the electromagnetic field generated by a distant
transmitter. Resonance also provides a way of explaining spectroscopic transitions 
of any type, for they depend on matching the oscillations of an electromagnetic field
to a set of energy levels and observing the strong absorption that occurs at resonance.
Historically, spectroscopic techniques that measure transitions between nuclear or
electron spin states and that, for historical reasons, have carried the term ‘resonance’
in their names share a common feature: in the original formulation of the technique,
the energy levels themselves are brought into resonance with a fixed-frequency elec-
tromagnetic field rather than vice versa.

The effect of magnetic fields on electrons
and nuclei

The Stern–Gerlach experiment (Section 3.5) provided evidence for electron spin. 
It turns out that many nuclei also possess spin angular momentum. Orbital and spin 
angular momenta give rise to magnetic moments, and to say that electrons and nuclei
have magnetic moments means that, to some extent, they behave like small magnets.
First, we establish how the energies of electrons and nuclei depend on the strength of
an external field. Then we see how to use this dependence to study the structure and
dynamics of complex molecules.
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12.1 The energies of electrons in magnetic fields

Classically, the energy of a magnetic moment m in a magnetic
field ; is equal to the scalar product

E = −m · ; (12.1)

A brief comment More formally, ; is the magnetic induction
and is measured in tesla, T; 1 T = 1 kg s−2 A−1. The (non-SI)
unit gauss, G, is also occasionally still used: 1 T = 104 G.

Quantum mechanically, we write the hamiltonian as

@ = −¢ · ; (12.2)

To write an expression for ¢, we recall from Section 4.5 that the
magnetic moment is proportional to the angular momentum.
For an electron possessing orbital angular momentum we write

¢ = γe™ and @ = −γe; · ™ (12.3)

where ™ is the orbital angular momentum operator and

[12.4]

γe is called the magnetogyric ratio of the electron. The negative
sign (arising from the sign of the electron’s charge) shows that
the orbital moment is antiparallel to its orbital angular momen-
tum (as was depicted in Fig 4.26).

For a magnetic field B0 along the z-direction, eqn 12.3 
becomes

Nz = γeZz and @ = −γeB0Zz = −NzB0 (12.5a)

Because the eigenvalues of the operator Zz are ml$, the z-
component of the orbital magnetic moment and the energy of
interaction are, respectively,

μz = γeml$ and E = −γeml$B0 = mlμBB0 (12.5b)

where the Bohr magneton, μB, is

[12.6]

The Bohr magneton is often regarded as the fundamental quan-
tum of magnetic moment.

The spin magnetic moment of an electron, which has a spin
quantum number s = 1–2 (Section 3.5), is also proportional to its
spin angular momentum. However, instead of eqn 12.3, the spin
magnetic moment and hamiltonian operators are, respectively,

¢ = geγe£ and @ = −geγe; · £ (12.7)

where £ is the spin angular momentum operator and the extra
factor ge is called the g-value of the electron: ge = 2.002 319. . . .
The g-value arises from relativistic effects and from interactions
of the electron with the electromagnetic fluctuations of the 

μ γB e
e

1JT= − = = × − −$
$e

m2
9 724 10 24.

γe
e

= −
e

m2

vacuum that surrounds the electron. For a magnetic field B0 in
the z-direction,

Nz = geγeSz and @ = −geγeB0Sz (12.8a)

Because the eigenvalues of the operator Sz are ms$ with ms = + 1–2
(α) and ms = − 1–2 (β), it follows that the energies of an electron
spin in a magnetic field are

μz = geγems$ and Ems
= −geγems$B0 = geμBmsB0 (12.8b)

with ms = ± 1–2.
In the absence of a magnetic field, the states with different 

values of ml and ms are degenerate. When a field is present, the
degeneracy is removed: the state with ms = + 1–2 moves up in 
energy by 1–2geμBB0 and the state with ms = − 1–2 moves down by
1–2geμBB0. The different energies arising from an interaction with
an external field are sometimes represented on the vector model
by picturing the vectors as precessing, or sweeping round their
cones (Fig. 12.1), with the rate of precession equal to the Larmor
frequency, νL:

(12.9)

Equation 12.9 shows that the Larmor frequency increases with
the strength of the magnetic field. For a field of 1 T, the Larmor
frequency is 30 GHz.

12.2 The energies of nuclei in magnetic fields

The spin quantum number, I, of a nucleus is a fixed characteristic
property of a nucleus and is either an integer or a half-integer
(Table 12.1). A nucleus with spin quantum number I has the 
following properties:

1. An angular momentum of magnitude {I(I + 1)}1/2$.

2. A component of angular momentum mI$ on a specified
axis (‘the z-axis’), where mI = I, I − 1, . . . , −I.

ν
γ

L
e=
B0

2π

ms = +–12

ms = ––12

z

Fig. 12.1 The interactions between the ms states of an electron and
an external magnetic field may be visualized as the precession of
the vectors representing the angular momentum.
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3. If I > 0, a magnetic moment with a constant magnitude
and an orientation that is determined by the value of mI.

According to the second property, the spin, and hence the mag-
netic moment, of the nucleus may lie in 2I + 1 different orienta-
tions relative to an axis. A proton has I = 1–2 and its spin may
adopt either of two orientations; a 14N nucleus has I = 1 and its
spin may adopt any of three orientations; both 12C and 16O have
I = 0 and hence zero magnetic moment.

The energy of interaction between a nucleus with a magnetic
moment m and an external magnetic field ; may be calculated by
using operators analogous to those of eqn 12.3:

¢ = γÎ and @ = −γ; · Î (12.10a)

where γ is the magnetogyric ratio of the specified nucleus, an
empirically determined characteristic arising from the internal
structure of the nucleus (Table 12.2). The corresponding ener-
gies are

EmI
= −μzB0 = −γ $B0mI (12.10b)

As for electrons, the nuclear spin may be pictured as precessing
around the direction of the applied field at a rate proportional 
to the applied field. For protons, a field of 1 T corresponds to 
a Larmor frequency (eqn 12.9, with γe replaced by γ ) of about 
40 MHz.

The magnetic moment of a nucleus is sometimes expressed in
terms of the nuclear g-factor, gI, a characteristic of the nucleus,
and the nuclear magneton, μN, a quantity independent of the
nucleus, by using

γ $ = gIμN [12.11]

where mp is the mass of the proton. Nuclear g-factors vary 
between −6 and +6 (see Table 12.2): positive values of gI and γ
denote a magnetic moment that is parallel to the spin; negative
values indicate that the magnetic moment and spin are anti-
parallel. For the remainder of this chapter we shall assume that γ
is positive, as is the case for the majority of nuclei. In such cases,
the states with negative values of mI lie above states with positive
values of mI. The nuclear magneton is about 2000 times smaller
than the Bohr magneton, so nuclear magnetic moments—and
consequently the energies of interaction with magnetic fields—
are about 2000 times weaker than the electron spin magnetic
moment.

12.3 Magnetic resonance spectroscopy

In its original form, the magnetic resonance experiment is the
resonant absorption of radiation by nuclei or unpaired electrons
in a magnetic field. From eqn 12.8, the separation between the
ms = − 1–2 and ms = + 1–2 levels of an electron spin in a magnetic field
B0 is

ΔE = Eα − Eβ = geμBB0 (12.12a)

If the sample is exposed to radiation of frequency ν, the energy
separations come into resonance with the radiation when the
frequency satisfies the resonance condition (Fig. 12.2):

hν = geμBB0 (12.12b)

At resonance there is strong coupling between the electron spins
and the radiation, and strong absorption occurs as the spins
make the transition β → α. Electron paramagnetic resonance
(EPR), or electron spin resonance (ESR), is the study of molecules

μN
p

JT= = × − −e

m

$
2

5 051 10 27 1.

Synoptic table 12.2* Nuclear spin properties

Nuclide Natural  Spin I g-factor, Magnetogyric NMR frequency 
abundance/% gI ratio, g /(107 T−1 s−1) at 1 T, n/MHz

1n 1–2 −3.826 −18.32 29.164
1H 99.98 1–2 5.586 26.75 42.576
2H 0.02 1 0.857 4.11 6.536
13C 1.11 1–2 1.405 6.73 10.708
14N 99.64 1 0.404 1.93 3.078

* More values are given in the Data section.

Table 12.1 Nuclear constitution and the nuclear spin quantum
number*

Number of protons Number of neutrons I

even even 0

odd odd integer (1, 2, 3, . . .)

even odd half-integer (1–2, 3–2, 5–2, . . .)

odd even half-integer (1–2, 3–2, 5–2, . . .)

* The spin of a nucleus may be different if it is in an excited state; throughout this
chapter we deal only with the ground state of nuclei.
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and ions containing unpaired electrons by observing the mag-
netic fields at which they come into resonance with monochro-
matic radiation. Magnetic fields of about 0.3 T (the value used in
most commercial EPR spectrometers) correspond to resonance
with an electromagnetic field of frequency 10 GHz (1010 Hz) and
wavelength 3 cm. Because 3 cm radiation falls in the microwave
region of the electromagnetic spectrum, EPR is a microwave
technique.

The energy separation between the mI = + 1–2 (↑ or α) and the
mI = − 1–2 (↓ or β) states of spin- 1–2 nuclei, which are nuclei with 
I = 1–2, is

ΔE = Eβ − Eα = 1–2γ $B0 − (− 1–2γ $B0) = γ $B0 (12.13a)

and resonant absorption occurs when the resonance condition
(Fig. 12.3)

hν = γ $B0 (12.13b)

is fulfilled. Because γ $B0/h is the Larmor frequency of the nucleus,
this resonance occurs when the frequency of the electromagnetic
field matches the Larmor frequency (ν = νL). In its simplest
form, nuclear magnetic resonance (NMR) is the study of the
properties of molecules containing magnetic nuclei by applying
a magnetic field and observing the frequency of the resonant
electromagnetic field. Larmor frequencies of nuclei at the fields
normally employed (about 12 T) typically lie in the radiofrequency
region of the electromagnetic spectrum (close to 500 MHz), so
NMR is a radiofrequency technique.

For much of this chapter we consider spin- 1–2 nuclei, but 
NMR is applicable to nuclei with any non-zero spin. As well as 
protons, which are the most common nuclei studied by NMR,
spin- 1–2 nuclei include 13C, 19F, and 31P.

Nuclear magnetic resonance

Although the NMR technique is simple in concept, NMR spectra
can be highly complex. However, they have proved invaluable 
in chemistry, for they reveal so much structural information. A
magnetic nucleus is a very sensitive, non-invasive probe of the
surrounding electronic structure.

12.4 The NMR spectrometer

An NMR spectrometer consists of the appropriate sources of 
radiofrequency electromagnetic radiation and a magnet that can
produce a uniform, intense field. Most instruments feature a 
superconducting magnet capable of producing fields of the
order of 10 T and more (Fig. 12.4). The sample is placed in the
cylindrically wound magnet. In some cases the sample is rotated
rapidly to average out magnetic inhomogeneities. However,
sample spinning can lead to irreproducible results, and is often
avoided. Although a superconducting magnet operates at the

P

Q

ms = ––12

ms = +–12

Magnetic
field off

Magnetic
field on

ge B 0$

Fig. 12.2 Electron spin levels in a magnetic field. Note that 
the β state is lower in energy than the α state (because the
magnetogyric ratio of an electron is negative). Resonance is
achieved when the frequency of the incident radiation matches
the frequency corresponding to the energy separation.

P

Q

mI = ––12

mI = +–12

Magnetic
field off

Magnetic
field on

%hB0

Fig. 12.3 The nuclear spin energy levels of a spin-1–2 nucleus 
with positive magnetogyric ratio (for example, 1H or 13C) in a
magnetic field. Resonance occurs when the energy separation 
of the levels matches the energy of the photons in the
electromagnetic field.

Superconducting
magnet

Probe

Preamplifier Receiver Detector

Computer

Transmitter

Fig. 12.4 The layout of a typical NMR spectrometer. The link
from the transmitter to the detector indicates that the high
frequency of the transmitter is subtracted from the high
frequency received signal to give a low frequency signal for
processing.
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temperature of liquid helium (4 K), the sample itself is normally
at room temperature.

The intensity of an NMR transition depends on a number of
factors. We show in the following Justification that

Intensity ∝ (Nα − Nβ)B0 (12.14a)

where Nα and Nβ are, respectively, the numbers of α and β spins,
and

(12.14b)

with N the total number of spins (N = Nα + Nβ). It follows that
decreasing the temperature increases the intensity by increasing
the population difference. By combining these two equations we
see that the intensity is proportional to B2

0, so NMR transitions
can be enhanced significantly by increasing the strength of the
applied magnetic field. We shall also see (Section 12.6) that the
use of high magnetic fields simplifies the appearance of spectra
and so allows them to be interpreted more readily. We also con-
clude that absorptions of nuclei with large magnetogyric ratios
(1H, for instance) are more intense than those with small mag-
netogyric ratios (13C, for instance)

Justification 12.1 Intensities in NMR spectra

From the general considerations of transition intensities in
Further information 10.1, we know that the rate of absorption
of electromagnetic radiation is proportional to the population
of the lower energy state (Nα in the case of a proton NMR
transition) and the rate of stimulated emission is propor-
tional to the population of the upper state (Nβ). At the low
frequencies typical of magnetic resonance, we can neglect
spontaneous emission as it is very slow. Therefore, the net
rate of absorption is proportional to the difference in popu-
lations, and we can write

Net rate of absorption ∝ Nα − Nβ

The intensity of absorption, the rate at which energy is absorbed,
is proportional to the product of the rate of absorption (the
rate at which photons are absorbed) and the energy of each
photon, and the latter is proportional to the frequency ν
of the incident radiation (through E = hν). At resonance, 
this frequency is proportional to the applied magnetic field
(through ν = νL = γ B0/2π), so we can write

Intensity of absorption ∝ (Nα − Nβ)B0

as in eqn 12.14a. To write an expression for the population
difference, we use the Boltzmann distribution (Fundamentals
F.5 and Chapter 13) to write the ratio of populations as

N

N

E

kT kT
E kTβ

α
= ≈ − = −−e 0Δ Δ/ 1 1

γ $B

   
N N

N

kTα β− ≈
γ $B0

2

A brief comment The expansion of an exponential
function used here is e−x = 1 − x + 1–2x2 − . . . . If x << 1,
then e−x ≈ 1 − x.

where ΔE = Eβ − Eα. The expansion of the exponential term is
appropriate for ΔE << kT, a condition usually met for nuclear
spins. It follows after rearrangement that

Then, with Nα + Nβ = N, the total number of spins, we obtain
eqn 12.14b.

12.5 The chemical shift

Nuclear magnetic moments interact with the local magnetic
field. The local field may differ from the applied field because 
the latter induces electronic orbital angular momentum (that is,
the circulation of electronic currents) which gives rise to a 
small additional magnetic field δB at the nuclei. This additional
field is proportional to the applied field, and it is conventional 
to write

δB = −σB0 [12.15]

where the dimensionless quantity σ is called the shielding con-
stant of the nucleus (σ is usually positive but may be negative).
The ability of the applied field to induce an electronic current 
in the molecule, and hence affect the strength of the resulting
local magnetic field experienced by the nucleus, depends on 
the details of the electronic structure near the magnetic nucleus
of interest, so nuclei in different chemical groups have differ-
ent shielding constants. The calculation of reliable values of the
shielding constant is very difficult, but trends in it are quite well
understood and we concentrate on them.

(a) The δ scale of chemical shifts

Because the total local field is

B loc = B0 + δB = (1 − σ)B0 (12.16)

the nuclear Larmor frequency is

(12.17)

This frequency is different for nuclei in different environments.
Hence, different nuclei, even of the same element, come into
resonance at different frequencies.
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It is conventional to express the resonance frequencies in
terms of an empirical quantity called the chemical shift, which is
related to the difference between the resonance frequency, ν, of
the nucleus in question and that of a reference standard, ν°:

[12.18]

The standard for protons is the proton resonance in tetra-
methylsilane (Si(CH3)4, commonly referred to as TMS), which
bristles with protons and dissolves without reaction in many 
liquids. Other references are used for other nuclei. For 13C, the
reference frequency is the 13C resonance in TMS; for 31P it is 
the 31P resonance in 85 per cent H3PO4(aq). The advantage of
the δ-scale is that shifts reported on it are independent of the 
applied field (because both numerator and denominator are
proportional to the applied field).

l A BRIEF ILLUSTRATION

From eqn 12.18,

ν − ν° = ν°δ × 10−6

A nucleus with δ = 1.00 in a spectrometer operating at 
500 MHz will have a shift relative to the reference equal to

ν − ν° = (500 MHz) × 1.00 × 10−6 = 500 Hz

In a spectrometer operating at 100 MHz, the shift relative to
the reference would be only 100 Hz. l

A note on good practice In much of the literature, chemical
shifts are reported in ‘parts per million’, ppm, in recognition
of the factor of 106 in the definition. This practice is unneces-
sary and can be confusing.

The relation between δ and σ is obtained by substituting 
eqn 12.16 into eqn 12.18:

(12.19)

where σ° is the shielding constant for the reference standard. We
see that as the shielding, σ, gets smaller, δ increases. Therefore,
we speak of nuclei with large chemical shift as being strongly
deshielded. Some typical chemical shifts are given in Fig. 12.5.
As can be seen from the figure, the nuclei of different elements
have very different ranges of chemical shifts. The ranges exhibit
the variety of electronic environments of the nuclei in mole-
cules: the more massive the element, the greater the number of
electrons around the nucleus and hence the greater the range of
shieldings.
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By convention, NMR spectra are plotted with δ increasing
from right to left. Consequently, in a given applied magnetic
field the Larmor frequency also increases from right to left. In
the original continuous wave (CW) spectrometers, in which the
radiofrequency was held constant and the magnetic field varied
(a ‘field sweep experiment’), the spectrum was displayed with
the applied magnetic field increasing from left to right: a nucleus 
with a small chemical shift experiences a relatively low local
magnetic field, so it needs a higher applied magnetic field to bring
it into resonance with the radiofrequency field. Consequently,
the right-hand (low chemical shift) end of the spectrum became
known as the ‘high field end’ of the spectrum.

(b) Resonance of different groups of nuclei

The existence of a chemical shift explains the general features of
the spectrum of ethanol shown in Fig.12.6. The CH3 protons
form one group of nuclei with δ ≈ 1. The two CH2 protons are in
a different part of the molecule, experience a different local mag-
netic field, and resonate at δ ≈ 3.6. Finally, the OH proton is 
in another environment, and has a chemical shift of δ ≈ 4. The
increasing value of δ (that is, the decrease in shielding) is con-
sistent with the electron-withdrawing power of the O atom: it
reduces the electron density of the OH proton most, and that
proton is strongly deshielded. It reduces the electron density 
of the distant methyl protons least, and those nuclei are least
deshielded.

The relative intensities of the signals (the areas under the 
absorption lines) can be used to help distinguish which group 
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Fig. 12.5 The range of typical chemical shifts for (a) 1H
resonances and (b) 13C resonances.
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of lines corresponds to which chemical group. The determina-
tion of the area under an absorption line is referred to as the 
integration of the signal (just as any area under a curve may be
determined by mathematical integration). Data analysis software
performs this integration and the values are typically displayed
as the height of step-like curves drawn on the spectrum, as shown
in Fig. 12.6. In ethanol the group intensities are in the ratio 3:2:1
because there are three CH3 protons, two CH2 protons, and one
OH proton in each molecule. Counting the number of magnetic
nuclei as well as noting their chemical shifts helps to identify a
compound present in a sample.

(c) The origin of shielding constants

The calculation of shielding constants is difficult, even for small
molecules, for it requires detailed information about the dis-
tribution of electron density in the ground and excited states
and the excitation energies of the molecule. Nevertheless, con-
siderable success has been achieved with the calculation for 
diatomic molecules and small molecules such as H2O and CH4

and even large molecules, such as proteins, are within the scope
of some types of calculation. Nevertheless, it is easier to under-
stand the different contributions to chemical shifts by studying
the large body of empirical information now available for large
molecules.

The empirical approach supposes that the observed shielding
constant is the sum of three contributions:

σ = σ(local) + σ(neighbour) + σ(solvent) (12.20)

The local contribution, σ(local), is essentially the contribution
of the electrons of the atom that contains the nucleus in ques-
tion. The neighbouring group contribution, σ(neighbour), is
the contribution from the groups of atoms that form the rest 
of the molecule. The solvent contribution, σ(solvent), is the
contribution from the solvent molecules.

(d) The local contribution

It is convenient to regard the local contribution to the shielding
constant as the sum of a diamagnetic contribution, σd, and a
paramagnetic contribution, σp:

σ(local) = σd + σp (12.21)

A diamagnetic contribution to σ(local) opposes the applied
magnetic field and shields the nucleus in question. A paramag-
netic contribution to σ(local) reinforces the applied magnetic
field and deshields the nucleus in question. Therefore, σd > 0
and σp < 0. The total local contribution is positive if the diamag-
netic contribution dominates, and is negative if the paramag-
netic contribution dominates.

The diamagnetic contribution arises from the ability of the
applied field to generate a circulation of charge in the ground-
state electron distribution of the atom. The circulation gener-
ates a magnetic field that opposes the applied field and hence
shields the nucleus. The magnitude of σd depends on the elec-
tron density close to the nucleus and can be calculated from the
Lamb formula:

(12.22)

where μ0 is the vacuum permeability (a fundamental constant,
see inside the front cover) and r is the electron–nucleus distance.

l A BRIEF ILLUSTRATION

To calculate σd for the proton in a free H atom, we need to
calculate the expectation value of 1/r for a hydrogen 1s 
orbital. Wavefunctions are given in Table 4.1, and a useful 
integral is given in Example 4.4. Because dτ = r2dr sin θ dθdφ,
we can write

Therefore,

With the values of the fundamental constants inside the front
cover, this expression evaluates to 1.78 × 10−5. l

The diamagnetic contribution is the only contribution in
closed-shell free atoms. It is also the only contribution to the
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Fig. 12.6 The 1H-NMR spectrum of ethanol. The bold letters
denote the protons giving rise to the resonance peak, and the
step-like curve is the integrated signal.
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local shielding for electron distributions that have spherical 
or cylindrical symmetry. Thus, it is the only contribution to the
local shielding from inner cores of atoms, for cores remain
spherical even though the atom may be a component of a
molecule and its valence electron distribution highly distorted.
The diamagnetic contribution is broadly proportional to the
electron density of the atom containing the nucleus of interest.
It follows that the shielding is decreased if the electron density
on the atom is reduced by the influence of an electronegative
atom nearby. That reduction in shielding translates into an 
increase in deshielding, and hence to an increase in the chemical
shift δ as the electronegativity of a neighbouring atom increases
(Fig. 12.7).

The local paramagnetic contribution, σp, arises from the 
ability of the applied field to force electrons to circulate through
the molecule by making use of orbitals that are unoccupied in
the ground state. It is zero in free atoms and around the axes of
linear molecules (such as ethyne, HC.CH) where the electrons
can circulate freely and a field applied along the internuclear axis
is unable to force them into other orbitals. We can expect large
paramagnetic contributions from small atoms in molecules with
low-lying excited states. In fact, the paramagnetic contribution
is the dominant local contribution for atoms other than hydrogen.

(e) Neighbouring group contributions

The neighbouring group contribution arises from the currents
induced in nearby groups of atoms. Consider the influence of
the neighbouring group X on the proton H in a molecule such 
as H-X. The applied field generates currents in the electron dis-

tribution of X and gives rise to an induced magnetic moment
proportional to the applied field; the constant of proportionality
is the magnetic susceptibility, χ (chi), of the group X. The pro-
ton H is affected by this induced magnetic moment in two ways.
First, the strength of the additional magnetic field the proton 
experiences is inversely proportional to the cube of the distance
r between H and X. Second, the field at H depends on the aniso-
tropy of the magnetic susceptibility of X, the variation of χ with
the angle that X makes to the applied field. We
assume that the magnetic susceptibility of X
has two components, χ|| and χ⊥ that are parallel
and perpendicular to the axis of symmetry 
of X, respectively. The axis of symmetry of X
makes an angle θ to the vector connecting X to
H (1, where X is represented by the ellipse and
H is represented by the circle).

To examine the effect of anisotropy of the magnetic suscept-
ibility of X on the shielding constant, consider the case θ = 0 for
a molecule H-X that is free to tumble (2 and 3). Some of the
time the H-X axis will be perpendicular to the applied field and
then only χ⊥ will contribute to the induced magnetic moment
that shields X from the applied field. The result is deshielding of
the proton H, or σ(neighbour) < 0 (2). When the applied field is
parallel to the H-X axis, only χ|| contributes to the induced
magnetic moment at X. The result is shielding of the proton H
(3). We conclude that, as the molecule tumbles and the H-X
axis takes all possible angles with respect to the applied field, the
effects of anisotropic magnetic susceptibility do not average to
zero because χ|| ≠ χ⊥.
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Fig. 12.7 The variation of chemical shielding with
electronegativity. The shifts for the methylene protons 
agree with the trend expected with increasing electronegativity.
However, to emphasize that chemical shifts are subtle
phenomena, notice that the trend for the methyl protons 
is opposite to that expected. For these protons another
contribution (the magnetic anisotropy of C-H and 
C-X bonds) is dominant.
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Self-test 12.1 For a tumbling H-X molecule, show that
when θ = 90°: (a) contributions from the χ⊥ component lead
to shielding of H, or σ(neighbour) > 0, and (b) contribu-
tions from the χ|| component lead to deshielding of H, or
σ(neighbour) < 0. Comparison between the θ = 0 and θ = 90°
cases shows that the patterns of shielding and deshielding 
by neighbouring groups depend not only on differences 
between χ|| and χ⊥, but also the angle θ.

[Draw diagrams similar to 2 and 3 where 
the χ⊥ component is parallel to the H-X axis 

and then analyse the problem as above.]



12 MAGNETIC RESONANCE 379

To a good approximation, the shielding constant σ(neigh-
bour) depends on the distance r, the difference χ|| − χ⊥, as

(12.23)

where χ|| and χ⊥ are both negative for a diamagnetic group X.
Equation 12.23 shows that the neighbouring group contribution
may be positive or negative according to the relative magnitudes
of the two magnetic susceptibilities and the relative orientation
of the nucleus with respect to X. The latter effect is easy to anti-
cipate: if 54.7° < θ < 125.3°, then 1 − 3 cos2θ is positive, but it is
negative otherwise (Fig. 12.8).

A special case of a neighbouring group effect is found in 
aromatic compounds. The strong anisotropy of the magnetic
susceptibility of the benzene ring is ascribed to the ability of the
field to induce a ring current, a circulation of electrons around
the ring, when it is applied perpendicular to the molecular
plane. Protons in the plane are deshielded (Fig. 12.9), but any
that happen to lie above or below the plane (as members of sub-
stituents of the ring) are shielded.

 

σ χ χ
θ

(neighbour) ∝ −
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟⊥( )

cos
||

1 3 2

3r

(f ) The solvent contribution

A solvent can influence the local magnetic field experienced by 
a nucleus in a variety of ways. Some of these effects arise from
specific interactions between the solute and the solvent (such as
hydrogen-bond formation and other forms of Lewis acid–base
complex formation). The anisotropy of the magnetic suscept-
ibility of the solvent molecules, especially if they are aromatic,
can also be the source of a local magnetic field. Moreover, if
there are steric interactions that result in a loose but specific 
interaction between a solute molecule and a solvent molecule,
then protons in the solute molecule may experience shielding 
or deshielding effects according to their location relative to the
solvent molecule (Fig. 12.10). We shall see that the NMR spectra
of species that contain protons with widely different chemical
shifts are easier to interpret than those in which the shifts are
similar, so the appropriate choice of solvent may help to simplify
the appearance and interpretation of a spectrum.

12.6 The fine structure

The splitting of resonances into individual lines in Fig. 12.6 is
called the fine structure of the spectrum. It arises because each
magnetic nucleus may contribute to the local field experienced
by the other nuclei and so modify their resonance frequencies.
The strength of the interaction is expressed in terms of the scalar
coupling constant, J, and reported in hertz (Hz). The scalar 
coupling constant is so called because the energy of interaction
it describes is proportional to the scalar product of the two 
interacting spins: E ∝ I1 · I2. The constant of proportionality in
this expression is hJ/$2, because each angular momentum is pro-
portional to $.

Spin coupling constants are independent of the strength of
the applied field because they do not depend on the latter for
their ability to generate local fields. If the resonance line of a par-
ticular nucleus is split by a certain amount by a second nucleus,
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Fig. 12.8 The variation of the function 1 − 3 cos2θ with the 
angle θ.

Ring
current Magnetic

field

Fig. 12.9 The shielding and deshielding effects of the ring 
current induced in the benzene ring by the applied field. 
Protons attached to the ring are deshielded but a proton
attached to a substituent that projects above the ring is shielded.

H

Fig. 12.10 An aromatic solvent (benzene here) can give rise to
local currents that shield or deshield a proton in a solute
molecule. In this relative orientation of the solvent and solute,
the proton on the solute molecule is shielded.
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then the resonance line of the second nucleus is split by the first
to the same extent.

(a) The energy levels of coupled systems

It will be useful for later discussions to consider an NMR spec-
trum in terms of the energy levels of the nuclei and the trans-
itions between them. In NMR, letters far apart in the alphabet
(typically A and X) are used to indicate nuclei with very different
chemical shifts; letters close together (such as A and B) are used
for nuclei with similar chemical shifts. We shall consider first an
AX system, a molecule that contains two spin- 1–2 nuclei A and X
with very different chemical shifts in the sense that the difference
in chemical shift corresponds to a frequency that is large com-
pared to their spin–spin coupling. We consider AB systems in
Section 12.6(f).

The energy level diagram for a single spin- 1–2 nucleus and its
single transition were shown in Fig. 12.3, and nothing more needs
to be said. For a spin- 1–2 AX system there are four spin states:

αAαX αAβX βAαX βAβX

The energy depends on the orientation of the spins in the exter-
nal magnetic field, and if spin–spin coupling is neglected

E = −γ $(1 − σA)BmA − γ $(1 − σX)BmX

= −hνAmA − hνXmX (12.24)

where νA and νX are the Larmor frequencies of A and X and mA

and mX are their quantum numbers. Recall that ms = + 1–2 and − 1–2
for α and β spins, respectively. This expression gives the four
lines on the left of Fig. 12.11. The spin–spin coupling depends
on the relative orientation of the two nuclear spins, so it is 
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Fig. 12.11 The energy levels of an AX system. The four levels on
the left are those of the two spins in the absence of spin–spin
coupling. The four levels on the right show how a positive
spin–spin coupling constant affects the energies. The transitions
shown are for β ← α of A or X, the other nucleus (X or A,
respectively) remaining unchanged. We have exaggerated the
effect for clarity in practice, the splitting caused by spin–spin
coupling is much smaller than that caused by the applied field.
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P QA X
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Fig. 12.12 An alternative depiction of the energy levels and
transitions shown in Fig. 12.11. Once again, we have exaggerated
the effect of spin–spin coupling.
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Fig. 12.13 The effect of spin–spin coupling on an AX spectrum.
Each resonance is split into two lines separated by J. The pairs of
resonances are centred on the chemical shifts of the protons in
the absence of spin–spin coupling.

proportional to the product mAmX. Therefore, the energy includ-
ing spin–spin coupling is

E = −hνAmA − hνXmX + hJmAmX (12.25)

If J > 0, a lower energy is obtained when mAmX < 0, which is the
case if one spin is α and the other is β. A higher energy is obtained
if both spins are α or both spins are β. The opposite is true if 
J < 0. The resulting energy level diagram (for J > 0) is shown on
the right of Fig. 12.11. We see that the αα and ββ states are both
raised by 1–4hJ and that the αβ and βα states are both lowered 
by 1–4hJ.

When a transition of nucleus A occurs, nucleus X remains 
unchanged. Therefore, the A resonance is a transition for which
ΔmA = +1 and ΔmX = 0. There are two such transitions, one in
which βA ← αA occurs when the X nucleus is αX, and the other
in which βA ← αA occurs when the X nucleus is βX. They are
shown in Fig. 12.11 and in a slightly different form in Fig. 12.12.
The energies of the transitions are

ΔE = hνA ± 1–2hJ (12.26a)

Therefore, the A resonance consists of a doublet of separation J
centred on the chemical shift of A (Fig. 12.13). Similar remarks
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apply to the X resonance, which consists of two transitions accord-
ing to whether the A nucleus is α or β (as shown in Fig. 12.12).
The transition energies are

ΔE = hνX ± 1–2hJ (12.26b)

It follows that the X resonance also consists of two lines of 
separation J, but they are centred on the chemical shift of X (as
shown in Fig. 12.13).

(b) Patterns of coupling

We have seen that, in an AX system, spin–spin coupling will 
result in four lines in the NMR spectrum. Instead of a single line
from A, we get a doublet of lines separated by J and centred on
the chemical shift characteristic of A. The same splitting occurs
in the X resonance: instead of a single line, the resonance is a
doublet with splitting J (the same value as for the splitting of A)
centred on the chemical shift characteristic of X. These features
are summarized in Fig. 12.13.

A subtle point is that the X resonance in an AXn species (such
as an AX2 or AX3 species) is also a doublet with splitting J. As we
shall explain below, a group of equivalent nuclei resonates like a
single nucleus. The only difference for the X resonance of an AXn

species is that the intensity is n times as great as that of an AX
species (Fig. 12.14). The A resonance in an AXn species, though,
is quite different from the A resonance in an AX species. For 
example, consider an AX2 species with two equivalent X nuclei.
The resonance of A is split into a doublet of separation J by one
X, and each line of that doublet is split again by the same amount
by the second X (Fig. 12.15). This splitting results in three lines
in the intensity ratio 1:2:1 (because the central frequency can be
obtained in two ways). The A resonance of an AnX2 species
would also be a 1:2:1 triplet of splitting J, the only difference
being that the intensity of the A resonance would be n times as
great as that of AX2.

Three equivalent X nuclei (an AX3 species) split the resonance
of A into four lines of intensity ratio 1:3:3:1 and separation 
J (Fig. 12.16). The X resonance, though, is still a doublet of 
separation J. In general, n equivalent spin- 1–2 nuclei split the 
resonance of a nearby spin or group of equivalent spins into 
n + 1 lines with an intensity distribution given by ‘Pascal’s 
triangle’ in which each entry is the sum of the two entries imme-
diately above (4). The easiest way of constructing the pattern 

X resonance
inAX

X resonance
inAX2

X

J

R

Fig. 12.14 The X resonance of an AX2 species is also a doublet,
because the two equivalent X nuclei behave like a single nucleus;
however, the overall absorption is twice as intense as that of an
AX species.

AR

Fig. 12.15 The origin of the 1:2:1 triplet in the A resonance of an
AX2 species. The resonance of A is split into two by coupling
with one X nucleus (as shown in the inset), and then each of
those two lines is split into two by coupling to the second X
nucleus. Because each X nucleus causes the same splitting, 
the two central transitions are coincident and give rise to an
absorption line of double the intensity of the outer lines.

AR

Fig. 12.16 The origin of the 1:3:3:1 quartet in the A resonance 
of an AX3 species. The third X nucleus splits each of the lines
shown in Fig. 12.15 for an AX2 species into a doublet, and the
intensity distribution reflects the number of transitions that have
the same energy.

1
1 1

21 1
1 3 3 1

4 6 41 1
5 10 10 51 1

4



382 12 MAGNETIC RESONANCE

(c) The magnitudes of coupling constants

The scalar coupling constant of two nuclei separated by N bonds
is denoted NJ, with subscripts for the types of nuclei involved.
Thus, 1JCH is the coupling constant for a proton joined directly
to a 13C atom, and 2JCH is the coupling constant when the same
two nuclei are separated by two bonds (as in 13C-C-H). A 
typical value of 1JCH is in the range 120 to 250 Hz; 2JCH is between
−10 and +20 Hz. Both 3J and 4J can give detectable effects in 
a spectrum, but couplings over larger numbers of bonds can
generally be ignored. One of the longest range couplings that 
has been detected is 9JHH = 0.4 Hz between the CH3 and CH2

protons in CH3C.CC.CC.CCH2OH.
The sign of JXY indicates whether the energy of two spins is

lower when they are parallel (J < 0) or when
they are antiparallel (J > 0). It is found that 1JCH

is often positive, 2JHH is often negative, 3JHH is
often positive, and so on. An additional point
is that J varies with the angle between the
bonds (Fig. 12.20). Thus, a 3JHH coupling con-
stant is often found to depend on the dihedral
angle φ (5) according to the Karplus equation:

J = A + B cos φ + C cos 2φ (12.27)

0

1

2

3

4
1 4 6 4 1

Fig. 12.17 The intensity distribution of the A resonance of an AXn

resonance can be constructed by considering the splitting caused
by 1,2, . . . n protons, as in Figs. 12.15 and 12.16. The resulting
intensity distribution has a binomial distribution and is given by
the integers in the corresponding row of Pascal’s triangle. Note
that, although the lines have been drawn side-by-side for clarity,
the members of each group are coincident. Four protons, in AX4,
split the A resonance into a 1:4:6:4:1 quintet.

1

2

1 2 3 2 1

0

Fig. 12.18 The intensity distribution arising from spin–spin
interaction with nuclei with I = 1 can be constructed similarly,
but each successive nucleus splits the lines into three equal
intensity components. Two equivalent spin-1 nuclei give rise 
to a 1:2:3:2:1 quintet.

Fig. 12.19 A diagrammatic representation of the 1H-NMR
spectrum of ethanol.

of fine structure is to draw a diagram in which successive rows
show the splitting of a subsequent proton. The procedure is 
illustrated in Fig. 12.17 and was used in Figs. 12.15 and 12.16. 
It is easily extended to molecules containing nuclei with I > 1–2
(Fig. 12.18).

Example 12.1 Accounting for the fine structure in a spectrum

Account for the fine structure in the NMR spectrum of the
C-H protons of ethanol.

Method Consider how each group of equivalent protons (for
instance, three methyl protons) splits the resonances of the
other groups of protons. There is no splitting within groups
of equivalent protons. Each splitting pattern can be decided
by referring to Pascal’s triangle.

Answer Figure 12.19 shows that the three protons of the CH3

group split the resonance of the CH2 protons into a 1:3:3:1
quartet with a splitting J. Likewise, the two protons of the
CH2 group split the resonance of the CH3 protons into a 1:2:1
triplet with the same splitting J. The OH resonance is not split
because the OH protons migrate rapidly from molecule to
molecule (including molecules from impurities in the sam-
ple) and their effect averages to zero. In gaseous ethanol the
OH resonance appears as a triplet, showing that the CH2 pro-
tons interact with the OH proton.

Self-test 12.2 What fine structure can be expected for the
protons in 14NH+

4 ? The spin quantum number of nitrogen-14
is 1. [1:1:1 triplet from N]

H

H
&

5
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with A, B, and C empirical constants with values close to +7 Hz,
−1 Hz, and +5 Hz, respectively, for an HCCH fragment. It 
follows that the measurement of 3JHH in a series of related 
compounds can be used to determine their conformations. The 
coupling constant 1JCH also depends on the hybridization of the
C atom, as the following values indicate:

sp sp2 sp3

1JCH/Hz: 250 160 125

(d) The origin of spin–spin coupling

Spin–spin coupling is a very subtle phenomenon, and it is better
to treat J as an empirical parameter than to use calculated values.
However, we can get some insight into its origins, if not its pre-
cise magnitude—or always reliably its sign—by considering the
magnetic interactions within molecules.

A nucleus with spin projection mI gives rise to a magnetic 
field with z-component Bnuc at a distance R, with, to a good 
approximation,

(12.28)

The angle θ is defined in (6). The magnitude of
this field is about 0.1 mT when R = 0.3 nm, cor-
responding to a splitting of resonance signal of
about 104 Hz, and is of the order of magnitude 
of the splitting observed in solid samples.

In a liquid, the angle θ sweeps over all values as
the molecule tumbles, and 1 − 3 cos2θ averages to

   
Bnuc = − −

γ μ
θ

$ 0
3

2

4
1 3

πR
mI( cos )

zero. Hence the direct dipolar interaction between spins cannot
account for the fine structure of the spectra of rapidly tumbling
molecules. The direct interaction does make an important con-
tribution to the spectra of solid samples and is a very useful indi-
rect source of structure information through its involvement in
spin relaxation (Section 12.9).

A brief comment The average (or mean value) of a func-
tion f(x) over the range x = a to x = b is ∫ b

a f(x)dx/(b − a). The 
volume element in polar coordinates is proportional to 
sin θ dθ, and θ ranges from 0 to π. Therefore the average
value of (1 − 3 cos2θ) is ∫ π

0 (1 − 3 cos2θ) sin θ dθ/π = 0.

Spin–spin coupling in molecules in solution can be explained
in terms of the polarization mechanism, in which the interaction
is transmitted through the bonds. The simplest case to consider
is that of 1JXY where X and Y are spin- 1–2 nuclei joined by an electron-
pair bond (Fig. 12.21). The coupling mechanism depends on the
fact that in some atoms it is favourable for the nucleus and a
nearby electron spin to be parallel (both α or both β), but in 
others it is favourable for them to be antiparallel (one α and the
other β). The electron–nucleus coupling is magnetic in origin,
and may be either a dipolar interaction between the magnetic
moments of the electron and nuclear spins or a Fermi contact
interaction. A pictorial description of the Fermi contact inter-
action is as follows. First, we regard the magnetic moment of the
nucleus as arising from the circulation of a current in a tiny loop
with a radius similar to that of the nucleus (Fig. 12.22). Far from
the nucleus the field generated by this loop is indistinguishable
from the field generated by a point magnetic dipole. Close to 
the loop, however, the field differs from that of a point dipole.
The magnetic interaction between this non-dipolar field and the
electron’s magnetic moment is the contact interaction. The lines
of force depicted in Fig. 12.22 correspond to those for a proton
with α spin. The lower energy state of an electron spin in such 
a field is the β state. In conclusion, the contact interaction 
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Fig. 12.20 The variation of the spin–spin coupling constant with
angle predicted by the Karplus equation for an HCCH group
and an HNCH group.

interActivity Draw a family of curves showing the variation 
of 3JHH with φ for which A = +7.0 Hz, B = −1.0 Hz, and C

varies slightly from a typical value of +5.0 Hz. What is the effect
of changing the value of the parameter C on the shape of the
curve? In a similar fashion, explore the effect of the values of A
and B on the shape of the curve.

X Y

X Y

Fermi FermiPauli

Fig. 12.21 The polarization mechanism for spin–spin coupling
(1JHH). The two arrangements have slightly different energies. 
In this case, J is positive, corresponding to a lower energy when
the nuclear spins are antiparallel.
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depends on the very close approach of an electron to the nucleus
and hence can occur only if the electron occupies an s orbital
(which is the reason why 1JCH depends on the hybridization
ratio). We shall suppose that it is energetically favourable for an
electron spin and a nuclear spin to be antiparallel (as is the case
for a proton and an electron in a hydrogen atom).

If the X nucleus is α, a β electron of the bonding pair will tend
to be found nearby (because that is energetically favourable for
it). The second electron in the bond, which must have α spin if
the other is β, will be found mainly at the far end of the bond
(because electrons tend to stay apart to reduce their mutual 
repulsion). Because it is energetically favourable for the spin of 
Y to be antiparallel to an electron spin, a Y nucleus with β spin
has a lower energy, and hence a lower Larmor frequency, than a
Y nucleus with α spin. The opposite is true when X is β, for now
the α spin of Y has the lower energy. In other words, the anti-
parallel arrangement of nuclear spins lies lower in energy than
the parallel arrangement as a result of their magnetic coupling
with the bond electrons. That is, 1JCH is positive.

To account for the value of 2JXY, as in H-C-H, we need 
a mechanism that can transmit the spin alignments through 
the central C atom (which may be 12C, with no nuclear spin of
its own). In this case (Fig. 12.23), an X nucleus with α spin 
polarizes the electrons in its bond, and the α electron is likely to
be found closer to the C nucleus. The more favourable arrange-
ment of two electrons on the same atom is with their spins 
parallel (Hund’s rule, Section 4.4), so the more favourable 
arrangement is for the α electron of the neighbouring bond to
be close to the C nucleus. Consequently, the β electron of that
bond is more likely to be found close to the Y nucleus, and there-
fore that nucleus will have a lower energy if it is α. Hence,
according to this mechanism, the lower Larmor frequency of 

Y will be obtained if its spin is parallel to that of X. That is, 2JHH

is negative.
The coupling of nuclear spin to electron spin by the Fermi

contact interaction is most important for proton spins, but it is
not necessarily the most important mechanism for other nuclei.
These nuclei may also interact by a dipolar mechanism with the
electron magnetic moments and with their orbital motion, and
there is no simple way of specifying whether J will be positive or
negative.

(e) Equivalent nuclei

A group of nuclei are chemically equivalent if they are related by
a symmetry operation of the molecule and have the same chem-
ical shifts. Chemically equivalent nuclei are nuclei that would be
regarded as ‘equivalent’ according to ordinary chemical criteria.
Nuclei are magnetically equivalent if, as well as being chemically
equivalent, they also have identical spin–spin interactions with
any other magnetic nuclei in the molecule.

The difference between chemical and magnetic equivalence
is illustrated by CH2F2 and H2C=CF2. In each of these mole-
cules the protons are chemically equivalent: they are related by 
symmetry and undergo the same chemical reactions. However,
although the protons in CH2F2 are magnetically equivalent, those
in CH2=CF2 are not. One proton in the latter has a cis spin-
coupling interaction with a given F nucleus, whereas the other
proton has a trans interaction with that F nucleus. In constrast,
in CH2F2 both protons are connected to a given F nucleus by
identical bonds, so there is no distinction between them. Strictly
speaking, the CH3 protons in ethanol (and other compounds)
are magnetically inequivalent on account of their different inter-
actions with the CH2 protons in the next group. However, they
are in practice made magnetically equivalent by the rapid rotation
of the CH3 group, which averages out any differences. Magnetic-
ally inequivalent species can give very complicated spectra (for

Fig. 12.22 The origin of the Fermi contact interaction. From far
away, the magnetic field pattern arising from a ring of current
(representing the rotating charge of the nucleus, the green
sphere) is that of a point dipole. However, if an electron can
sample the field close to the region indicated by the sphere, the
field distribution differs significantly from that of a point dipole.
For example, if the electron can penetrate the sphere, then the
spherical average of the field it experiences is not zero.

X

Fermi Fermi

Pauli Pauli

Hund
Y

C

Fig. 12.23 The polarization mechanism for 2JHH spin–spin
coupling. The spin information is transmitted from one bond 
to the next by a version of the mechanism that accounts for the
lower energy of electrons with parallel spins in different atomic
orbitals (Hund’s rule of maximum multiplicity). In this case, 
J < 0, corresponding to a lower energy when the nuclear spins 
are parallel.
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instance, the proton and 19F spectra of H2C=CF2 each consist of
12 lines), and we shall not consider them further.

An important feature of chemically equivalent magnetic 
nuclei is that, although they do couple together, the coupling has
no effect on the appearance of the spectrum. The reason for the
invisibility of the coupling is set out in the following Justification,
but qualitatively it is that all allowed nuclear spin transitions are
collective reorientations of groups of equivalent nuclear spins
that do not change the relative orientations of the spins within
the group (Fig. 12.24). Then, because the relative orientations of
nuclear spins are not changed in any transition, the magnitude
of the coupling between them is undetectable. Hence, an isolated
CH3 group gives a single, unsplit line because all the allowed
transitions of the group of three protons occur without change
of their relative orientations.

Justification 12.2 The energy levels of an A2 system

Consider an A2 system of two chemically equivalent spin- 1–2
nuclei. First, consider the energy levels in the absence of
spin–spin coupling. There are four spin states, which (just as
for two electrons) can be classified according to their total
spin I (the analogue of S for two electrons) and their total
projection MI on the z-axis. The states are analogous to those
we developed for two electrons in singlet and triplet states:

Spins parallel, I = 1: MI = +1 αα
MI = 0 (1/21/2){αβ + βα}
MI = −1 ββ

Spins paired, I = 0: MI = 0 (1/21/2){αβ − βα}

The effect of a magnetic field on these four states is shown 
in Fig. 12.25: the energies of the two states with MI = 0 are 
unchanged by the field because they are composed of equal
proportions of α and β spins.

A brief comment As in Section 4.4, the states specified
here have a definite resultant, and hence a well defined
value of I. The + sign in αβ + βα signifies an in-phase
alignment of spins and I = 1; the − sign in αβ − βα
signifies an alignment out of phase by π, and hence 
I = 0.

As remarked in Section 12.6a, the spin–spin coupling 
energy is proportional to the scalar product of the vectors rep-
resenting the spins, E = (hJ/$2)I1 · I2. The scalar product can
be expressed in terms of the total nuclear spin by noting that

I2 = (I1 + I2) · (I1 + I2) = I1
2 + I 2

2 + 2I1 · I2

rearranging this expression to

I1 · I2 = 1–2{I2 − I1
2 − I 2

2}

and replacing the magnitudes by their quantum mechanical
values:

I1 · I2 = 1–2{I(I + 1) − I1(I1 + 1) − I2(I2 + 1)}$2

Then, because I1 = I2 = 1–2, it follows that

E = 1–2hJ{I(I + 1) − 3–2}

For parallel spins, I = 1 and E = + 1–4hJ; for antiparallel spins 
I = 0 and E = − 3–4 hJ, as in Fig. 12.25. We see that three of the
states move in energy in one direction and the fourth (the
one with antiparallel spins) moves three times as much in 
the opposite direction. The resulting energy levels are shown
on the right in Fig. 12.25.
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Fig. 12.24 (a) A group of two equivalent nuclei realigns as a
group, without change of angle between the spins, when a
resonant absorption occurs. Hence it behaves like a single
nucleus and the spin–spin coupling between the individual spins
of the group is undetectable. (b) Three equivalent nuclei also
realign as a group without change of their relative orientations.
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Fig. 12.25 The energy levels of an A2 system in the absence of
spin–spin coupling are shown on the left. When spin–spin
coupling is taken into account, the energy levels on the right are
obtained. Note that the three states with total nuclear spin I = 1
correspond to parallel spins and give rise to the same increase in
energy (J is positive); the one state with I = 0 (antiparallel nuclear
spins) has a lower energy in the presence of spin–spin coupling.
The only allowed transitions are those that preserve the angle
between the spins, and so take place between the three states
with I = 1. They occur at the same resonance frequency as they
would have in the absence of spin–spin coupling.
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The NMR spectrum of the A2 species arises from transitions
between the levels. However, the radiofrequency field affects the
two equivalent protons equally, so it cannot change the orienta-
tion of one proton relative to the other; therefore, the transitions
take place within the set of states that correspond to parallel spin
(those labelled I = 1), and no spin-parallel state can change to a
spin-antiparallel state (the state with I = 0). Put another way, the
allowed transitions are subject to the selection rule ΔI = 0. This
selection rule is in addition to the rule ΔMI = ±1 that arises from
the conservation of angular momentum and the unit spin of the
photon. The allowed transitions are shown in Fig. 12.25: we see
that there are only two transitions, and that they occur at the
same resonance frequency that the nuclei would have in the 
absence of spin–spin coupling. Hence, the spin–spin coupling
interaction does not affect the appearance of the spectrum.

(f ) Strongly coupled nuclei

NMR spectra are usually much more complex than the forego-
ing simple analysis suggests. We have described the extreme case
in which the differences in chemical shifts are much greater than
the spin–spin coupling constants. In such cases it is simple to
identify groups of magnetically equivalent nuclei and to think 
of the groups of nuclear spins as reorientating relative to each
other. The spectra that result are called first-order spectra.

Transitions cannot be allocated to definite groups when the
differences in their chemical shifts are comparable to their spin–
spin coupling interactions. The complicated spectra that are then
obtained are called strongly coupled spectra (or ‘second-order
spectra’) and are much more difficult to analyse (Fig. 12.26).

Because the difference in resonance frequencies increases with
field, but spin–spin coupling constants are independent of it, a
second-order spectrum may become simpler (and first-order) at
high fields and individual groups of nuclei become identifiable
again.

A clue to the type of analysis that is appropriate is given by 
the notation for the types of spins involved. Thus, an AX spin
system (which consists of two nuclei with a large chemical shift
difference) has a first-order spectrum. An AB system, on the
other hand (with two nuclei of similar chemical shifts), gives a
spectrum typical of a strongly coupled system. An AX system
may have widely different Larmor frequencies because A and X
are nuclei of different elements (such as 13C and 1H), in which
case they form a heteronuclear spin system. AX may also denote
a homonuclear spin system in which the nuclei are of the same
element but in markedly different environments.

12.7 Conformational conversion and exchange
processes

The appearance of an NMR spectrum is changed if magnetic 
nuclei can jump rapidly between different environments. Consider
a molecule, such as N,N-dimethylformamide, that can jump 
between conformations; in its case, the methyl shifts depend on
whether they are cis or trans to the carbonyl group (Fig. 12.27).
When the jumping rate is low, the spectrum shows two sets of
lines, one each from molecules in each conformation. When the
interconversion is fast, the spectrum shows a single line at the
mean of the two chemical shifts. At intermediate inversion rates,
the line is very broad. This maximum broadening occurs when
the lifetime, τ, of a conformation gives rise to a linewidth that 
is comparable to the difference of resonance frequencies, δν,
and both broadened lines blend together into a very broad line.
Coalescence of the two lines occurs when

(12.29)
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Fig. 12.26 The NMR spectra of an A2 system (top) and an AX
system (bottom) are simple ‘first-order’ spectra. At intermediate
relative values of the chemical shift difference and the spin–spin
coupling, complex ‘strongly coupled’ spectra are obtained. Note
how the inner two lines of the bottom spectrum move together,
grow in intensity, and form the single central line of the top
spectrum. The two outer lines diminish in intensity and are
absent in the top spectrum.
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Fig. 12.27 When a molecule changes from one conformation to
another, the positions of its protons are interchanged and jump
between magnetically distinct environments.
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l A BRIEF ILLUSTRATION

The NO group in N,N-dimethylnitrosamine, (CH3)2N-NO,
rotates about the N-N bond and, as a result, the magnetic
environments of the two CH3 groups are interchanged. The
two CH3 resonances are separated by 390 Hz in a 600 MHz
spectrometer. With δν = 390 Hz,

It follows that the signal will collapse to a single line when the
interconversion rate exceeds about 830 s−1. You should recall
from introductory chemistry that the rate constant kr of a
chemical process depends on temperature according to the
Arrhenius equation, kr = Ae−Ea/RT, with Ea as the activation 
energy, or energy barrier (see also Chapter 20). It follows that
the dependence of the rate of exchange on the temperature can
be used to determine the energy barrier to interconversion. l

Self-test 12.3 What would you deduce from the observa-
tion of a single line from the same molecule in a 300 MHz 
spectrometer? [Conformation lifetime less than 2.3 ms]

A similar explanation accounts for the loss of fine structure in
solvents able to exchange protons with the sample. For example,
hydroxyl protons are able to exchange with water protons.
When this chemical exchange occurs, a molecule ROH with an
α-spin proton (we write this ROHα) rapidly converts to ROHβ
and then perhaps to ROHα again because the protons provided
by the solvent molecules in successive exchanges have random
spin orientations. Therefore, instead of seeing a spectrum com-
posed of contributions from both ROHα and ROHβ molecules
(that is, a spectrum showing a doublet structure due to the OH
proton), we see a spectrum that shows no splitting caused 
by coupling of the OH proton (as in Fig. 12.6). The effect is 
observed when the lifetime of a molecule due to this chemical
exchange is so short that the lifetime broadening is greater than
the doublet splitting. Because this splitting is often very small (a
few hertz), a proton must remain attached to the same molecule
for longer than about 0.1 s for the splitting to be observable. In
water, the exchange rate is much faster than that, so alcohols
show no splitting from the OH protons. In dry dimethylsulfoxide
(DMSO), the exchange rate may be slow enough for the splitting
to be detected.

Pulse techniques in NMR

The common method of detecting the energy separation between
nuclear spin states is more sophisticated than simply looking 

 
τ =

×
=−

2

π (390 s
1.2 ms

1)

for the frequency at which resonance occurs. One of the best
analogies that has been suggested to illustrate the preferred way
of observing an NMR spectrum is that of detecting the spectrum
of vibrations of a bell. We could stimulate the bell with a gentle
vibration at a gradually increasing frequency, and note the 
frequencies at which it resonated with the stimulation. A lot of
time would be spent getting zero response when the stimulating
frequency was between the bell’s vibrational modes. However, if
we were simply to hit the bell with a hammer, we would immedi-
ately obtain a clang composed of all the frequencies that the bell
can produce. The equivalent in NMR is to monitor the radiation
nuclear spins emit as they return to equilibrium after the appro-
priate stimulation. The resulting Fourier-transform NMR gives
greatly increased sensitivity, opening up much of the periodic
table to the technique. Moreover, multiple-pulse FT-NMR gives
chemists unparalleled control over the information content and
display of spectra. We need to understand how the equivalent of
the hammer blow is delivered and how the signal is monitored
and interpreted. These features are generally expressed in terms
of the vector model of angular momentum introduced in
Section 3.4.

12.8 The magnetization vector

Consider a sample composed of many identical spin- 1–2 nuclei.
As we saw in Section 3.4, an angular momentum can be repres-
ented by a vector of length {I(I + 1)}1/2 units with a component of
length mI units along the z-axis. As the uncertainty principle does
not allow us to specify the x- and y-components of the angular
momentum, all we know is that the vector lies somewhere on a
cone around the z-axis. For I = 1–2, the length of the vector is  1–2 3
and it makes an angle of 55° to the z-axis (Fig. 12.28).

In the absence of a magnetic field, the sample consists of equal
numbers of α and β nuclear spins with their vectors lying at
random angles on the cones. These angles are unpredictable,
and at this stage we picture the spin vectors as stationary. The
magnetization, M, of the sample, its net nuclear magnetic 
moment, is zero (Fig. 12.29a).

Y 1–2

1– 32 �

z

Fig. 12.28 The vector model of angular momentum for a single
spin- 1–2 nucleus. The angle around the z-axis is indeterminate.



388 12 MAGNETIC RESONANCE

(a) The effect of the static field

Two changes occur in the magnetization when a magnetic field
is present. First, the energies of the two orientations change, the
α spins moving to low energy and the β spins to high energy
(provided γ > 0). At 10 T, the Larmor frequency for protons 
is 427 MHz, and in the vector model the individual vectors are
pictured as precessing at this rate. This motion is a pictorial 
representation of the difference in energy of the spin states, not
an actual representation of reality. As the field is increased, the
Larmor frequency increases and the precession becomes faster.
Therefore, states of high energy are represented by precession 
at higher Larmor frequencies. Secondly, the populations of the 
two spin states (the numbers of α and β spins) at thermal equi-
librium change, and there will be more α spins than β spins.
Because hνL/kT ≈ 7 × 10−5 for protons at 300 K and 10 T, it 
follows from the Boltzmann distribution that Nβ/Nα = e−hνL/kT is
only slightly less than 1. That is, there is only a tiny imbalance of
populations, and it is even smaller for other nuclei with their
smaller magnetogyric ratios. However, despite its smallness, the
imbalance means that there is a net magnetization that we can
represent by a vector M pointing in the z-direction and with a
length proportional to the population difference (Fig. 12.29b).

(b) The effect of the radiofrequency field

We now consider the effect of a radiofrequency field circularly
polarized in the xy-plane, so that the magnetic component of the
electromagnetic field (the only component we need to consider)
is rotating around the z-direction, the direction of the applied

field B0, in the same sense as the Larmor precession. The strength
of the rotating magnetic field is B1. Suppose we choose the 
frequency of this field to be equal to the Larmor frequency of 
the spins, νL = (γ /2π)B0; this choice is equivalent to selecting the 
resonance condition in the conventional experiment. The nuclei
now experience a steady B1 field because the rotating magnetic
field is in step with the precessing spins (Fig. 12.30a). Just as the
spins precess about the strong static field B0 at a frequency
γ B0/2π, so under the influence of the field B1 they precess about
B1 at a frequency γ B1/2π.

To interpret the effects of radiofrequency pulses on the mag-
netization, it is often useful to look at the spin system from 
a different perspective. If we were to imagine stepping on to a
platform, a so-called rotating frame, that rotates around the 
direction of the applied field at the radiofrequency, then the 
nuclear magnetization appears stationary if the radiofrequency
is the same as the Larmor frequency (Fig. 12.30b). If the B1 field
is applied in a pulse of duration π/2γ B1, the magnetization tips
through 90° in the rotating frame and we say that we have 
applied a 90° pulse, or a ‘π/2 pulse’ (Fig. 12.31a). The duration
of the pulse depends on the strength of the B1 field, but is typic-
ally of the order of microseconds.

Now imagine stepping out of the rotating frame. To an
external observer (the role played by a radiofrequency coil) in
this stationary frame, the magnetization vector is now rotating
at the Larmor frequency in the xy-plane (Fig. 12.31b). The 
rotating magnetization induces in the coil a signal that oscillates
at the Larmor frequency and that can be amplified and pro-
cessed. In practice, the processing takes place after subtraction
of a constant high frequency component (the radiofrequency
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Fig. 12.29 The magnetization of a sample of spin- 1–2 nuclei is the
resultant of all their magnetic moments. (a) In the absence of an
externally applied field, there are equal numbers of α and β spins
at random angles around the z-axis (the field direction) and the
magnetization is zero. (b) In the presence of a field, the spins
precess around their cones (that is, there is an energy difference
between the α and β states) and there are slightly more α spins
than β spins. As a result, there is a net magnetization along the 
z-axis.
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Fig. 12.30 (a) In a resonance experiment, a circularly polarized
radiofrequency magnetic field B1 is applied in the xy-plane (the
magnetization vector lies along the z-axis). (b) If we step into a
frame rotating at the radiofrequency, B1 appears to be stationary,
as does the magnetization M if the Larmor frequency is equal to
the radiofrequency. When the two frequencies coincide, the
magnetization vector of the sample rotates around the direction
of the B1 field.
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used for B1), so that all the signal manipulation takes place at 
frequencies of a few kilohertz.

As time passes, the individual spins move out of step (partly
because they are precessing at slightly different rates, as we shall
explain later), so the magnetization vector shrinks exponentially
with a time constant T2 and induces an ever weaker signal in the
detector coil. The form of the signal that we can expect is there-
fore the oscillating-decaying free-induction decay (FID) shown
in Fig. 12.32. The y-component of the magnetization varies as

My(t) = M0 cos(2πνLt) e−t/T2 (12.30)

We have considered the effect of a pulse applied at exactly the
Larmor frequency. However, virtually the same effect is obtained
off resonance, provided that the pulse is short and built from a
range of frequencies close to νL. A short pulse will certainly con-
tain the resonance frequency of the nuclei in the sample and will
effect the rotation of the magnetization into the xy-plane. Note
that we do not need to know the Larmor frequency beforehand:
the short pulse is the analogue of the hammer blow on the bell,
exciting a range of frequencies. The detected signal shows that a
particular resonance frequency is present.

(c) Time- and frequency-domain signals

We can think of the magnetization vector of a homonuclear 
AX spin system with J = 0 as consisting of two parts, one formed
by the A spins and the other by the X spins. When the 90° pulse
is applied, both magnetization vectors are rotated into the 
xy-plane. However, because the A and X nuclei precess at dif-
ferent frequencies, they induce two signals in the detector coils,
and the overall FID curve may resemble that in Fig. 12.33a. The
composite FID curve is the analogue of the struck bell emitting 
a rich tone composed of all the frequencies at which it can 
vibrate.

The problem we must address is how to recover the resonance
frequencies present in a free-induction decay. We know that the
FID curve is a sum of oscillating functions, so the problem is 
to analyse it into its component frequencies by carrying out a
Fourier transformation, as shown in Justification 12.3. When 
the signal in Fig. 12.33a is transformed in this way, we get the 
frequency-domain spectrum shown in Fig. 12.33b. One line 
represents the Larmor frequency of the A nuclei and the other
that of the X nuclei.

Justification 12.3 Fourier transformation of the FID curve

The analysis of the FID curve is achieved by the standard
mathematical technique of Fourier transformation, which
we explored in Mathematical background 6. We start by 
noting that the signal S(t) in the time domain, the total FID
curve, is the sum (more precisely, the integral) over all the
contributing frequencies
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Fig. 12.31 (a) If the radiofrequency field is applied for a certain
time, the magnetization vector is rotated into the xy-plane. (b)
To an external stationary observer (the coil), the magnetization
vector is rotating at the Larmor frequency, and can induce a
signal in the coil.
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Fig. 12.32 A simple free-induction decay of a sample of spins with
a single resonance frequency.
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Fig. 12.33 (a) A free induction decay signal of a sample of AX
species and (b) its analysis into its frequency components.

interActivity The Living graphs section of the text’s web site 
has an applet that allows you to calculate and display the 

FID curve from an AX system. Explore the effect on the shape of
the FID curve of changing the chemical shifts (and therefore the
Larmor frequencies) of the A and X nuclei.
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(12.31)

Because e2πiνt = cos(2πνt) + i sin(2πνt), the expression above
is a sum over harmonically oscillating functions, with each
one weighted by the intensity I(ν).

We need I(ν), the spectrum in the frequency domain; it is
obtained by evaluating the integral

(12.32)

where Re means take the real part of the following expres-
sion. This integral is very much like an overlap integral: it
gives a nonzero value if S(t) contains a component that
matches the oscillating function e2πiνt. The integration is car-
ried out at a series of frequencies ν on a computer that is built
into the spectrometer.

The FID curve in Fig. 12.34 is obtained from a sample of
ethanol. The frequency-domain spectrum obtained from it by
Fourier transformation is the one that we have already discussed
(Fig. 12.6). We can now see why the FID curve in Fig. 12.34 is so
complex: it arises from the precession of a magnetization vector
that is composed of eight components, each with a characteristic
frequency.

12.9 Spin relaxation

There are two reasons why the component of the magnetiza-
tion vector in the xy-plane shrinks. Both reflect the fact that the
nuclear spins are not in thermal equilibrium with their surround-
ings (for then M lies parallel to z). The return to equilibrium is
the process called spin relaxation.

(a) Longitudinal and transverse relaxation

At thermal equilibrium the spins have a Boltzmann distribution,
with more α spins than β spins; however, a magnetization
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vector in the xy-plane immediately after a 90° pulse has equal
numbers of α and β spins.

Now consider the effect of a 180° pulse, which may be visual-
ized in the rotating frame as a flip of the net magnetization 
vector from one direction along the z-axis to the opposite direc-
tion. That is, the 180° pulse leads to population inversion of the
spin system, which now has more β spins than α spins. After the
pulse, the populations revert to their thermal equilibrium values
exponentially. As they do so, the z-component of magnetization
reverts to its equilibrium value M0 with a time constant called
the longitudinal relaxation time, T1 (Fig. 12.35):

Mz(t) − M0 ∝ e−t/T1 (12.33)

Because this relaxation process involves giving up energy to 
the surroundings (the ‘lattice’) as β spins revert to α spins, the
time constant T1 is also called the spin–lattice relaxation time.
Spin–lattice relaxation is caused by local magnetic fields that
fluctuate at a frequency close to the resonance frequency of
the α → β transition. Such fields can arise from the tumbling 
motion of molecules in a fluid sample. If molecular tumbling is
too slow or too fast compared to the resonance frequency, it will
give rise to a fluctuating magnetic field with a frequency that is
either too low or too high to stimulate a spin change from β to α,
so T1 will be long. Only if the molecule tumbles at about the 
resonance frequency will the fluctuating magnetic field be able
to induce spin changes effectively, and only then will T1 be short.
The rate of molecular tumbling increases with temperature and
with reducing viscosity of the solvent, so we can expect a depend-
ence like that shown in Fig. 12.36.
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Fig. 12.34 A free-induction decay signal of a sample of ethanol. Its
Fourier transform is the frequency-domain spectrum shown in
Fig. 12.6. The total length of the image corresponds to about 1 s.
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Fig. 12.35 In longitudinal relaxation the spins relax back towards
their thermal equilibrium populations. On the left we see the
precessional cones representing spin- 1–2 angular momenta, 
and they do not have their thermal equilibrium populations
(there are more β-spins than α-spins). On the right, which
represents the sample a long time after a time T1 has elapsed, 
the populations are those characteristic of a Boltzmann
distribution. In actuality, T1 is the time constant for relaxation 
to the arrangement on the right and T1 ln 2 is the half-life of the
arrangement on the left.
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A second aspect of spin relaxation is the fanning-out of the
spins in the xy-plane if they precess at different rates (Fig. 12.37).
The magnetization vector is large when all the spins are bunched
together immediately after a 90° pulse. However, this orderly
bunching of spins is not at equilibrium and, even if there were
no spin–lattice relaxation, we would expect the individual spins
to spread out until they were uniformly distributed with all pos-
sible angles around the z-axis. At that stage, the component of
the magnetization vector in the plane would be zero. The ran-
domization of the spin directions occurs exponentially with a
time constant called the transverse relaxation time, T2:

My(t) ∝ e−t/T2 (12.34)

Because the relaxation involves the relative orientation of the
spins, T2 is also known as the spin–spin relaxation time. Any 
relaxation process that changes the balance between α and β
spins will also contribute to this randomization, so the time con-
stant T2 is almost always less than or equal to T1.

Local magnetic fields also affect spin–spin relaxation. When
the fluctuations are slow, each molecule lingers in its local mag-
netic environment and the spin orientations randomize quickly
around the applied field direction. If the molecules move rapidly
from one magnetic environment to another, the effects of
differences in local magnetic field average to zero: individual
spins do not precess at very different rates, they can remain
bunched for longer, and spin–spin relaxation does not take
place as quickly. In other words, slow molecular motion corres-
ponds to short T2 and fast motion corresponds to long T2 (as
shown in Fig. 12.36). Calculations show that, when the motion
is fast, T2 ≈ T1.

If the y-component of magnetization decays with a time con-
stant T2, the spectral line is broadened (Fig. 12.38), and its width
at half-height becomes

(12.35)

Typical values of T2 in proton NMR are of the order of seconds,
so linewidths of around 0.1 Hz can be anticipated, in broad
agreement with observation.

So far, we have assumed that the equipment, and in particular
the magnet, is perfect, and that the differences in Larmor fre-
quencies arise solely from interactions within the sample. In
practice, the magnet is not perfect, and the field is different at
different locations in the sample. The inhomogeneity broadens
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Fig. 12.36 The variation of the two relaxation times with the rate
at which the molecules move (either by tumbling or migrating
through the solution). The horizontal axis can be interpreted as
representing temperature or viscosity. Note that at rapid rates of
motion, the two relaxation times coincide.
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Fig. 12.37 The transverse relaxation time, T2, is the time constant
for the phases of the spins to become randomized (another
condition for equilibrium) and to change from the orderly
arrangement shown on the left to the disorderly arrangement 
on the right (long after a time T2 has elapsed). Note that the
populations of the states remain the same; only the relative 
phase of the spins relaxes. In actuality, T2 is the time constant 
for relaxation to the arrangement on the right and T2 ln 2 is 
the half-life of the arrangement on the left.
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Fig. 12.38 A Lorentzian absorption line. The width at half-height
is inversely proportional to the parameter T2 and the longer the
transverse relaxation time, the narrower the line.

interActivity The Living graphs section of the text’s web site 
has an applet that allows you to calculate and display 

Lorenztian absorption lines. Explore the effect of the parameter
T2 on the width and the maximal intensity of a Lorentzian line.
Rationalize your observations.
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the resonance, and in most cases this inhomogeneous broaden-
ing dominates the broadening we have discussed so far. It is
common to express the extent of inhomogeneous broadening in
terms of an effective transverse relaxation time, T*2, by using a
relation like eqn 12.35, but writing

[12.36]

where Δν1/2 is the observed width at half-height of a line with a
Lorenztian shape of the form I ∝ 1/(1 + x2). For instance, a width
of 10 Hz corresponds to T*2 = 32 ms.

(b) The measurement of T1

The longitudinal relaxation time T1 can be measured by the
inversion recovery technique. The first step is to apply a 180°
pulse to the sample. A 180° pulse is achieved by applying the B1

field for twice as long as for a 90° pulse, so the magnetization
vector precesses through 180° and points in the −z direction
(Fig. 12.39). No signal can be seen at this stage because there is
no component of magnetization in the xy-plane (where the coil
can detect it). The β spins begin to relax back into α spins, and the
magnetization vector first shrinks exponentially, falling through
zero to its thermal equilibrium value, Mz. After an interval τ, a
90° pulse is applied that rotates the magnetization into the xy-
plane, where it generates an FID signal. The frequency-domain
spectrum is then obtained by Fourier transformation.

The intensity of the spectrum obtained in this way depends
on the length of the magnetization vector that is rotated into the
xy-plane. The length of that vector changes exponentially as the
interval between the two pulses is increased, so the intensity of
the spectrum also changes exponentially with increasing τ. We
can therefore measure T1 by fitting an exponential curve to the
series of spectra obtained with different values of τ.

T 2
1 2

1
*

/

=
Δν

(c) Spin echoes

The measurement of T2 (as distinct from T 2*) depends on being
able to eliminate the effects of inhomogeneous broadening. The
cunning required is at the root of some of the most important
advances that have been made in NMR since its introduction.

A spin echo is the magnetic analogue of an audible echo:
transverse magnetization is created by a radiofrequency pulse,
decays away, is reflected by a second pulse, and grows back to
form an echo. The sequence of events is shown in Fig. 12.40. We
can consider the overall magnetization as being made up of a
number of different magnetizations, each of which arises from a
spin packet of nuclei with very similar precession frequencies.
The spread in these frequencies arises because the applied field
B0 is inhomogeneous, so different parts of the sample experience
different fields. The precession frequencies also differ if there 
is more than one chemical shift present. As will be seen, the 
importance of a spin echo is that it can suppress the effects of
both field inhomogeneities and chemical shifts.

First, a 90° pulse is applied to the sample. We follow events by
using the rotating frame, in which B1 is stationary along the x-
axis and causes the magnetization to be into the xy-plane. The
spin packets now begin to fan out because they have different
Larmor frequencies, with some above the radiofrequency and
some below. The detected signal depends on the resultant of 
the spin-packet magnetization vectors, and decays with a time-
constant T2* because of the combined effects of field inhomo-
geneity and spin–spin relaxation.

After an evolution period τ, a 180° pulse is applied to the 
sample; this time, about the y-axis of the rotating frame (the axis
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Fig. 12.39 The result of applying a 180° pulse to the magnetization
in the rotating frame and the effect of a subsequent 90° pulse.
The amplitude of the frequency-domain spectrum varies with
the interval between the two pulses because spin–lattice
relaxation has time to occur.
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Fig. 12.40 The sequence of pulses leading to the observation of a
spin echo.
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of the pulse is changed from x to y by a 90° phase shift of the
radiofrequency radiation). The pulse rotates the magnetization
vectors of the faster spin packets into the positions previously
occupied by the slower spin packets, and vice versa. Thus, as
the vectors continue to precess, the fast vectors are now behind
the slow; the fan begins to close up again, and the resultant signal
begins to grow back into an echo. At time 2τ, all the vectors will
once more be aligned along the y-axis, and the fanning out caused
by the field inhomogeneity is said to have been refocused: the
spin echo has reached its maximum. Because the effects of field
inhomogeneities have been suppressed by the refocusing, the
echo signal will have been attenuated by the factor e−2τ /T2 caused
by spin–spin relaxation alone. After the time 2τ, the magnetiza-
tion will continue to precess, fanning out once again, giving a 
resultant that decays with time constant T*2.

The important feature of the technique is that the size of the
echo is independent of any local fields that remain constant dur-
ing the two τ intervals. If a spin packet is ‘fast’ because it happens
to be composed of spins in a region of the sample that experi-
ences higher than average fields, then it remains fast throughout
both intervals, and what it gains on the first interval it loses on
the second interval. Hence, the size of the echo is independent of
inhomogeneities in the magnetic field, for these remain constant.
The true transverse relaxation arises from fields that vary on a
molecular distance scale, and there is no guarantee that an indi-
vidual ‘fast’ spin will remain ‘fast’ in the refocusing phase: the
spins within the packets therefore spread with a time constant T2.
Hence, the effects of the true relaxation are not refocused, and
the size of the echo decays with the time constant T2 (Fig. 12.41).

IMPACT ON MEDICINE

I12.1 Magnetic resonance imaging

One of the most striking applications of nuclear magnetic re-
sonance is in medicine. Magnetic resonance imaging (MRI) is a 
portrayal of the concentrations of protons in a solid object. The
technique relies on the application of specific pulse sequences to
an object in an inhomogeneous magnetic field.

If an object containing hydrogen nuclei (a tube of water or a
human body) is placed in an NMR spectrometer and exposed to
a homogeneous magnetic field, then a single resonance signal will
be detected. Now consider a flask of water in a magnetic field that
varies linearly in the z-direction according to B0 + Gzz, where 
Gz = (∂B0/∂z)0 is the field gradient along the z-direction (Fig. 12.42).
Then the water protons will be resonant at the frequencies

(12.37)

(Similar equations may be written for gradients along the x- and
y-directions.) Application of a 90° radiofrequency pulse with 
ν = νL(z) will result in a signal with an intensity that is propor-
tional to the numbers of protons at the position z. This is an 
example of slice selection, the application of a selective 90° pulse
that excites nuclei in a specific region, or slice, of the sample. It
follows that the intensity of the NMR signal will be a projection
of the numbers of protons on a line parallel to the field gradient.
The image of a three-dimensional object such as a flask of water can
be obtained if the slice selection technique is applied at different
orientations (as shown in Fig.12.42). In projection reconstruction,
the projections can be analysed on a computer to reconstruct the
three-dimensional distribution of protons in the object.

In practice, the NMR signal is not obtained by direct analysis
of the FID curve after application of a single 90° pulse. Instead,
spin echoes are often detected with several variations of the
90°–τ–180° pulse sequence (Section 12.9c). In phase encoding,
field gradients are applied during the evolution period and the
detection period of a spin-echo pulse sequence. The first step
consists of a 90° pulse that results in slice selection along the 
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Fig. 12.41 The exponential decay of spin echoes can be used to
determine the transverse relaxation time.
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Fig. 12.42 In a magnetic field that varies linearly over a sample, 
all the protons within a given slice (that is, at a given field value)
come into resonance and give a signal of the corresponding
intensity. The resulting intensity pattern is a map of the 
numbers in all the slices, and portrays the shape of the sample.
Changing the orientation of the field shows the shape along the
corresponding direction, and computer manipulation can be
used to build up the three-dimensional shape of the sample.
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z-direction. The second step consists of application of a phase
gradient, a field gradient along the y-direction, during the evolu-
tion period. At each position along the gradient, a spin packet
will precess at a different Larmor frequency due to chemical shift
effects and the field inhomogeneity, so each packet will dephase
to a different extent by the end of the evolution period. We can
control the extent of dephasing by changing the duration of the
evolution period, so Fourier transformation on τ gives informa-
tion about the location of a proton along the y-direction. (For
technical reasons, it is more common to vary the magnitude 
of the phase gradient.) For each value of τ, the next steps are 
application of the 180° pulse and then of a read gradient, a field
gradient along the x-direction, during detection of the echo.
Protons at different positions along x experience different fields
and will resonate at different frequencies. Therefore Fourier
transformation of the FID gives different signals for protons at
different positions along x.

A common problem with the techniques described above 
is image contrast, which must be optimized in order to show
spatial variations in water content in the sample. One strategy
for solving this problem takes advantage of the fact that the 
relaxation times of water protons are shorter for water in bio-
logical tissues than for the pure liquid. Furthermore, relaxation
times from water protons are also different in healthy and dis-
eased tissues. A T1-weighted image is obtained by repeating the
spin echo sequence before spin–lattice relaxation can return 
the spins in the sample to equilibrium. Under these conditions,
differences in signal intensities are directly related to differences
in T1. A T2-weighted image is obtained by using an evolution 
period τ that is relatively long. Each point on the image is an
echo signal that behaves in the manner shown in Fig. 12.41, so
signal intensities are strongly dependent on variations in T2.
However, allowing so much of the decay to occur leads to weak
signals even for those protons with long spin–spin relaxation
times. Another strategy involves the use of contrast agents, para-
magnetic compounds that shorten the relaxation times of nearby
protons. The technique is particularly useful in enhancing image
contrast and in diagnosing disease if the contrast agent is dis-
tributed differently in healthy and diseased tissues.

The MRI technique is used widely to detect physiological 
abnormalities and to observe metabolic processes. With func-
tional MRI, blood flow in different regions of the brain can be
studied and related to the mental activities of the subject. The
technique is based on differences in the magnetic properties of
deoxygenated and oxygenated haemoglobin, the iron-containing
protein that transports O2 in red blood cells. The more para-
magnetic deoxygenated haemoglobin affects the proton reson-
ances of tissue differently from the oxygenated protein. Because
there is greater blood flow in active regions of the brain than in
inactive regions, changes in the intensities of proton resonances
due to changes in levels of oxygenated haemoglobin can be related
to brain activity.

The special advantage of MRI is that it can image soft tissues
(Fig. 12.43), whereas X-rays are largely used for imaging hard,
bony structures and abnormally dense regions, such as tumours.
In fact, the invisibility of hard structures in MRI is an advantage,
as it allows the imaging of structures encased by bone, such as
the brain and the spinal cord. X-rays are known to be dangerous
on account of the ionization they cause; the high magnetic fields
used in MRI may also be dangerous but, apart from anecdotes
about the extraction of loose fillings from teeth, there is no 
convincing evidence of their harmfulness and the technique is
considered safe.

12.10 Spin decoupling

Carbon-13 is a dilute-spin species in the sense that it is unlikely
that more than one 13C nucleus will be found in any given small
molecule (provided the sample has not been enriched with that
isotope; the natural abundance of 13C is only 1.1 per cent). Even
in large molecules, although more than one 13C nucleus may 
be present, it is unlikely that they will be close enough to give an
observable splitting. Hence, it is not normally necessary to take
into account 13C–13C spin–spin coupling within a molecule.

Protons are abundant-spin species in the sense that a mole-
cule is likely to contain many of them. If we were observing a
13C-NMR spectrum, we would obtain a very complex spectrum
on account of the coupling of the one 13C nucleus with many of
the protons that are present. To avoid this difficulty, 13C-NMR
spectra are normally observed using the technique of proton
decoupling. Thus, if the CH3 protons of ethanol are irradiated
with a second, strong, resonant radiofrequency pulse, they 
undergo rapid spin reorientations and the 13C nucleus senses 
an average orientation. As a result, its resonance is a single line
and not a 1:3:3:1 quartet. Proton decoupling has the additional 
advantage of enhancing sensitivity, because the intensity is con-
centrated into a single transition frequency instead of being
spread over several transition frequencies (see Section 12.11). If

Fig. 12.43 The great advantage of MRI is that it can display soft
tissue, such as in this cross-section through a patient’s head.
(Courtesy of the University of Manitoba.)
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care is taken to ensure that the other parameters on which the
strength of the signal depends are kept constant, the intensities
of proton-decoupled spectra are proportional to the number of
13C nuclei present. The technique is widely used to characterize
synthetic polymers.

12.11 The nuclear Overhauser effect

We have seen already that one advantage of protons in NMR is
their high magnetogyric ratio, which results in relatively large
Boltzmann population differences and hence greater resonance
intensities than for most other nuclei. In the steady-state nuclear
Overhauser effect (NOE), spin relaxation processes involv-
ing internuclear dipole–dipole interactions are used to transfer 
this population advantage to another nucleus (such as 13C or 
another proton), so that the latter’s resonances are modified. In
a dipole–dipole interaction between two nuclei, one nucleus
influences the behaviour of another nucleus in much the same
way that the orientation of a bar magnet is influenced by the
presence of another bar magnet nearby.

To understand the effect, we consider the populations of the
four levels of a homonuclear (for instance, proton) AX system;
these were shown in Fig. 12.12. At thermal equilibrium, the 
population of the αAαX level is the greatest, and that of the βAβX

level is the least; the other two levels have the same energy and an 
intermediate population. The thermal equilibrium absorption 
intensities reflect these populations as shown in Fig. 12.44. Now
consider the combined effect of spin relaxation and keeping 
the X spins saturated. When we saturate the X transition, the
populations of the X levels are equalized (NαX = NβX) and all
transitions involving αX ↔ βX spin flips are no longer observed.
At this stage there is no change in the populations of the A levels.
If that were all that was to happen, all we would see would be the
loss of the X resonance and no effect on the A resonance.

Now consider the effect of spin relaxation. Relaxation can
occur in a variety of ways if there is a dipolar interaction between

the A and X spins. One possibility is for the magnetic field acting
between the two spins to cause them both to flop from β to α, 
so the αAαX and βAβX states regain their thermal equilibrium 
populations. However, the populations of the αAβX and βAαX

levels remain unchanged at the values characteristic of satura-
tion. As we see from Fig. 12.45, the population difference be-
tween the states joined by transitions of A is now greater than at
equilibrium, so the resonance absorption is enhanced. Another
possibility is for the dipolar interaction between the two spins to
cause α to flip to β and β to flop to α. This transition equilibrates
the populations of αAβX and βAαX but leaves the αAαX and βAβX

populations unchanged. Now we see from the figure that the
population differences in the states involved in the A transitions
are decreased, so the resonance absorption is diminished.

Which effect wins? Does the NOE enhance the A absorption
or does it diminish it? As in the discussion of relaxation times in
Section 12.9, the efficiency of the intensity-enhancing βAβX ↔
αAαX relaxation is high if the dipole field oscillates at a frequency
close to the transition frequency, which in this case is about 2ν;
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Fig. 12.44 The energy levels of an AX system and an indication 
of their relative populations. Each grey square above the line
represents an excess population and each white square below 
the line represents a population deficit. The transitions of A 
and X are marked.
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are enhanced compared with those shown in Fig. 12.44.



396 12 MAGNETIC RESONANCE

likewise, the efficiency of the intensity-diminishing αAβX ↔
βAαX relaxation is high if the dipole field is stationary (as there 
is no frequency difference between the initial and final states). A
large molecule rotates so slowly that there is very little motion 
at 2ν, so we expect an intensity decrease (Fig. 12.46). A small
molecule rotating rapidly can be expected to have substantial
motion at 2ν, and a consequent enhancement of the signal. 
In practice, the enhancement lies somewhere between the two 
extremes and is reported in terms of the parameter η (eta),
where

[12.38]

Here I°A and IA are the intensities of the NMR signals due to 
nucleus A before and after application of the long (> T1) 
radiofrequency pulse that saturates transitions due to the X 
nucleus. When A and X are nuclei of the same species, such as
protons, η lies between −1 (diminution) and + 1–2 (enhancement).
However, η also depends on the values of the magnetogyric 
ratios of A and X. In the case of maximal enhancement it is 
possible to show that

(12.39)

where γA and γX are the magnetogyric ratios of nuclei A and X,
respectively. For 13C close to a saturated proton, the ratio evalu-
ates to 1.99, which shows that an enhancement of about a factor
of 2 can be achieved.

The NOE is also used to determine interproton distances. The
Overhauser enhancement of a proton A generated by saturating
a spin X depends on the fraction of A’s spin–lattice relaxation
that is caused by its dipolar interaction with X. Because the 
dipolar field is proportional to r−3, where r is the internuclear
distance, and the relaxation effect is proportional to the square
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of the field, and therefore to r−6, the NOE may be used to deter-
mine the geometries of molecules in solution. The determina-
tion of the structure of a small protein in solution involves the
use of several hundred NOE measurements, effectively casting a
net over the protons present. The enormous importance of this
procedure is that we can determine the conformation of bio-
logical macromolecules in an aqueous environment and do not
need to try to make the single crystals that are essential for an
X-ray diffraction investigation (Chapter 9).

12.12 Two-dimensional NMR

An NMR spectrum contains a great deal of information and, if
many protons are present, is very complex. Even a first-order
spectrum is complex, for the fine structure of different groups 
of lines can overlap. The complexity would be reduced if we
could use two axes to display the data, with resonances belong-
ing to different groups lying at different locations on the second
axis. This separation is essentially what is achieved in two-
dimensional NMR.

Much modern NMR work makes use of correlation spec-
troscopy (COSY) in which a clever choice of pulses and Fourier
transformation techniques makes it possible to determine all
spin–spin couplings in a molecule. A typical outcome for an AX
system is shown in Fig. 12.47. The diagram shows peaks of 
equal signal intensity on a plot of intensity against the frequency
coordinates ν1 and ν2. The diagonal peaks are signals centred on
(δA,δA) and (δX,δX) and lie along the diagonal where ν1 = ν2.
That is, the spectrum along the diagonal is equivalent to the one-
dimensional spectrum obtained with the conventional NMR
technique (Fig. 12.13). The cross-peaks (or off-diagonal peaks)
are signals centred on (δA,δX) and (δX,δA) and owe their exist-
ence to the coupling between the A and X nuclei.

Although information from two-dimensional NMR spectro-
scopy is trivial in an AX system, it can be of enormous help in the
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compared with those shown in Fig. 12.44.



12 MAGNETIC RESONANCE 397

interpretation of more complex spectra, leading to a map of 
the couplings between spins and to the determination of the
bonding network in complex molecules. Indeed, the spectrum
of a synthetic or biological polymer that would be impossible 
to interpret in one-dimensional NMR can often be interpreted
reasonably rapidly by two-dimensional NMR.

l A BRIEF ILLUSTRATION

Figure 12.48 is a portion of the COSY spectrum of the amino
acid isoleucine (7), showing the resonances associated with
the protons bound to the carbon atoms. We begin the assign-

ment process by considering which protons should be inter-
acting by spin–spin coupling. From the known molecular
structure, we conclude that: (i) the Ca-H proton is coupled
only to the Cb-H proton, (ii) the Cb-H protons are coupled
to the Ca-H, Cc-H, and Cd-H protons, and (iii) the 
inequivalent Cd-H protons are coupled to the Cb-H and 
Ce-H protons. We now note that:

• The resonance with δ = 3.6 shares a cross-peak with 
only one other resonance at δ = 1.9, which in turn shares
cross-peaks with resonances at δ = 1.4, 1.2, and 0.9. This
identification is consistent with the resonances at δ = 3.6 
and 1.9 corresponding to the Ca-H and Cb-H protons,
respectively.

• The proton with resonance at δ = 0.8 is not coupled to
the Cb-H protons, so we assign the resonance at δ = 0.8 to
the Ce-H protons.

• The resonances at δ = 1.4 and 1.2 do not share cross-
peaks with the resonance at δ = 0.9.

In the light of the expected couplings, we assign the reson-
ance at δ = 0.9 to the Cc-H protons and the resonances at 
δ = 1.4 and 1.2 to the inequivalent Cd-H protons. l

We have seen that the nuclear Overhauser effect can provide
information about internuclear distances through analysis of
enhancement patterns in the NMR spectrum before and after
saturation of selected resonances. In nuclear Overhauser effect
spectroscopy (NOESY) a map of all possible NOE interactions 
is obtained by again using a proper choice of radiofrequency
pulses and Fourier transformation techniques. Like a COSY
spectrum, a NOESY spectrum consists of a series of diagonal
peaks that correspond to the one-dimensional NMR spectrum
of the sample. The off-diagonal peaks indicate which nuclei are
close enough to each other to give rise to a nuclear Overhauser
effect. NOESY data reveal internuclear distances up to about 
0.5 nm.

12.13 Solid-state NMR

The principal difficulty with the application of NMR to solids is
the low resolution characteristic of solid samples. Nevertheless,
there are good reasons for seeking to overcome these difficulties.
They include the possibility that a compound of interest is un-
stable in solution or that it is insoluble, so conventional solution
NMR cannot be employed. Moreover, many species are intrins-
ically interesting as solids, and it is important to determine their
structures and dynamics. Synthetic polymers are particularly 
interesting in this regard, and information can be obtained about
the arrangement of molecules, their conformations, and the
motion of different parts of the chain. This kind of information
is crucial to an interpretation of the bulk properties of the polymer
in terms of its molecular characteristics. Similarly, inorganic
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Fig. 12.48 Proton COSY spectrum of isoleucine. (The illustration
and corresponding spectrum are adapted from K.E. van Holde 
et al. Principles of physical biochemistry, Prentice Hall, Upper
Saddle River (1998).)
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Fig. 12.47 The COSY spectrum of an AX spin system.



398 12 MAGNETIC RESONANCE

substances, such as the zeolites that are used as molecular sieves
and shape-selective catalysts, can be studied using solid-state
NMR, and structural problems can be resolved that cannot be
tackled by X-ray diffraction.

Problems of resolution and linewidth are not the only 
features that plague NMR studies of solids, but the rewards are
so great that considerable efforts have been made to overcome
them and have achieved notable success. Because molecular 
rotation has almost ceased (except in special cases, including
‘plastic crystals’ in which the molecules continue to tumble),
spin–lattice relaxation times are very long but spin–spin relaxa-
tion times are very short. Hence, in a pulse experiment, there is
a need for lengthy delays—of several seconds—between successive
pulses so that the spin system has time to revert to equilibrium.
Even gathering the murky information may therefore be a
lengthy process. Moreover, because lines are so broad, very high
powers of radiofrequency radiation may be required to achieve
saturation. Whereas solution pulse NMR uses transmitters of a
few tens of watts, solid-state NMR may require transmitters
rated at several hundreds of watts.

(a) The origins of linewidths in solids

There are two principal contributions to the linewidths of solids.
One is the direct magnetic dipolar interaction between nuclear
spins. As we saw in the discussion of spin–spin coupling, a 
nuclear magnetic moment will give rise to a local magnetic field,
which points in different directions at different locations around
the nucleus. If we are interested only in the component parallel
to the direction of the applied magnetic field (because only this
component has a significant effect), then we can use a classical
expression to write the magnitude of the local magnetic field as

(12.40)

Unlike in solution, this field is not motionally averaged to zero.
Many nuclei may contribute to the total local field experienced
by a nucleus of interest, and different nuclei in a sample may 
experience a wide range of fields. Typical dipole fields are of the
order of 10−3 T, which corresponds to splittings and linewidths
of the order of 104 Hz.

A second source of linewidth is the anisotropy of the chemical
shift. We have seen that chemical shifts arise from the ability of
the applied field to generate electron currents in molecules. In
general, this ability depends on the orientation of the molecule
relative to the applied field. In solution, when the molecule is
tumbling rapidly, only the average value of the chemical shift 
is relevant. However, the anisotropy is not averaged to zero for
stationary molecules in a solid, and molecules in different orien-
tations have resonances at different frequencies. The chemical
shift anisotropy also varies with the angle between the applied
field and the principal axis of the molecule as 1 − 3 cos2θ.
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(b) The reduction of linewidths

Fortunately, there are techniques available for reducing the
linewidths of solid samples. One technique, magic-angle spin-
ning (MAS), takes note of the 1 − 3 cos2θ dependence of both the
dipole–dipole interaction and the chemical shift anisotropy.
The ‘magic angle’ is the angle at which 1 − 3 cos2θ = 0, and cor-
responds to 54.74°. In the technique, the sample is spun at high
speed at the magic angle to the applied field (Fig. 12.49). All the
dipolar interactions and the anisotropies average to the value
they would have at the magic angle, but at that angle they are
zero. The difficulty with MAS is that the spinning frequency
must not be less than the width of the spectrum, which is of the
order of kilohertz. However, gas-driven sample spinners that
can be rotated at up to 25 kHz are now routinely available, and a
considerable body of work has been done.

Pulsed techniques similar to those described in the previous
section may also be used to reduce linewidths. The dipolar field
of protons, for instance, may be reduced by a decoupling pro-
cedure. However, because the range of coupling strengths is so
large, radiofrequency power of the order of 1 kW is required.
Elaborate pulse sequences have also been devised that reduce
linewidths by averaging procedures that make use of twisting the
magnetization vector through an elaborate series of angles.

Electron paramagnetic resonance

Electron paramagnetic resonance (EPR) is less widely applicable
than NMR because it cannot be detected in normal, spin-paired
molecules and the sample must possess unpaired electron spins.
It is used to study radicals formed during chemical reactions or
by radiation, radicals that act as probes of biological structure,
many d-metal complexes, and molecules in triplet states (such
as those involved in phosphorescence, Section 11.5). The sample
may be a gas, a liquid, or a solid, but the free rotation of molecules
in the gas phase gives rise to complications.

54.74°

Magnetic field

54.74°

Fig. 12.49 In magic angle spinning, the sample spins at 54.74°
(that is, arccos (1/3)1/2) to the applied magnetic field. Rapid
motion at this angle averages dipole–dipole interactions and
chemical shift anisotropies to zero.
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12.14 The EPR spectrometer

Both Fourier-transform (FT) and continuous wave (CW) EPR
spectrometers are available. The FT-EPR instrument is based 
on the concepts developed in Section 12.8, except that pulses of
microwaves are used to excite electron spins in the sample. The
layout of the more common CW-EPR spectrometer is shown 
in Fig. 12.50. It consists of a microwave source (a klystron or a
Gunn oscillator), a cavity in which the sample is inserted in a
glass or quartz container, a microwave detector, and an electro-
magnet with a field that can be varied in the region of 0.3 T. 
The EPR spectrum is obtained by monitoring the microwave 
absorption as the field is changed, and a typical spectrum (of 
the benzene radical anion, C6H−

6) is shown in Fig. 12.51. The 
peculiar appearance of the spectrum, which is in fact the first-
derivative of the absorption, arises from the detection technique,
which is sensitive to the slope of the absorption curve (Fig. 12.52).

12.15 The g-value

Equation 12.12 gives the resonance frequency for a transition
between the ms = − 1–2 and the ms = + 1–2 levels of a ‘free’ electron 

in terms of the g-value ge ≈ 2.0023. The magnetic moment of 
an unpaired electron in a radical also interacts with an external
field, but the g-value is different from that for a free electron 
because of local magnetic fields induced by the molecular
framework of the radical. Consequently, the resonance condi-
tion is normally written as

hν = gμBB0 (12.41)

where g is the g-value of the radical.

l A BRIEF ILLUSTRATION

The centre of the EPR spectrum of the methyl radical occur-
red at 329.40 mT in a spectrometer operating at 9.2330 GHz
(radiation belonging to the X band of the microwave region).
Its g-value is therefore

l

Self-test 12.4 At what magnetic field would the methyl 
radical come into resonance in a spectrometer operating 
at 34.000 GHz (radiation belonging to the Q band of the 
microwave region)? [1.213 T]

The g-value in a molecular environment (a radical or a d-
metal complex) is related to the ease with which the applied field
can stir up currents through the molecular framework and the
strength of the magnetic field the currents generate. Therefore,
the g-value gives some information about electronic structure
and plays a similar role in EPR to that played by shielding con-
stants in NMR.

Electrons can migrate through the molecular framework by
making use of excited states (Fig. 12.53). This additional path
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Fig. 12.50 The layout of a continuous-wave EPR spectrometer. 
A typical magnetic field is 0.3 T, which requires 9 GHz (3 cm)
microwaves for resonance.
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a

Fig. 12.51 The EPR spectrum of the benzene radical anion, C6H−
6,

in fluid solution. a is the hyperfine splitting of the spectrum
(Section 12.16); the centre of the spectrum is determined by the
g-value of the radical.
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Fig. 12.52 When phase-sensitive detection is used, the signal is the
first derivative of the absorption intensity. Note that the peak of
the absorption corresponds to the point where the derivative
passes through zero.
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for circulation of electrons gives rise to a local magnetic field that
adds to the applied field. Therefore, we expect the ease of stirring
up currents to be inversely proportional to the separation of 
energy levels, ΔE, in the molecule. As we saw in Section 4.5, 
the strength of the field generated by electronic currents in
atoms (and analogously in molecules) is related to the extent of
coupling between spin and orbital angular momenta. That is, the
local field strength is proportional to the molecular spin–orbit
coupling constant, ξ.

We can conclude from the discussion above that the g-value
of a radical or d-metal complex differs from ge, the ‘free-electron’
g-value, by an amount that is proportional to ξ/ΔE. This pro-
portionality is widely observed. Many organic radicals have 
g-values close to 2.0027 and inorganic radicals have g-values
typically in the range 1.9 to 2.1. The g-values of paramagnetic 
d-metal complexes often differ considerably from ge, varying
from 0 to 6, because in them ΔE is small (on account of the split-
ting of d orbitals brought about by interactions with ligands, 
as we saw in Section 11.4).

Just as in the case of the chemical shift in NMR spectroscopy,
the g-value is anisotropic, that is, its magnitude depends on the
orientation of the radical with respect to the applied field. In 
solution, when the molecule is tumbling rapidly, only the aver-
age value of the g-value is observed. Therefore, anisotropy of the
g-value is observed only for radicals trapped in solids.

12.16 Hyperfine structure

The most important feature of EPR spectra is their hyperfine
structure, the splitting of individual resonance lines into com-
ponents. In general in spectroscopy, the term ‘hyperfine struc-
ture’ means the structure of a spectrum that can be traced to
interactions of the electrons with nuclei other than as a result 
of the latter’s point electric charge. The source of the hyper-
fine structure in EPR is the magnetic interaction between the
electron spin and the magnetic dipole moments of the nuclei
present in the radical.

(a) The effects of nuclear spin

Consider the effect on the EPR spectrum of a single H nucleus
located somewhere in a radical. The proton spin is a source of
magnetic field, and depending on the orientation of the nuclear
spin, the field it generates adds to or subtracts from the applied
field. The total local field is therefore

B loc = B + amI mI = ±1–2 (12.42)

where a is the hyperfine coupling constant. Half the radicals in 
a sample have mI = + 1–2, so half resonate when the applied field
satisfies the condition

hν = gμB(B + 1–2a), or (12.43a)

The other half (which have mI = − 1–2) resonate when

hν = gμB(B − 1–2a), or (12.43b)

Therefore, instead of a single line, the spectrum shows two lines
of half the original intensity separated by a and centred on the
field determined by g (Fig. 12.54).

If the radical contains an 14N atom (I = 1), its EPR spectrum
consists of three lines of equal intensity, because the 14N nucleus
has three possible spin orientations, and each spin orientation 
is possessed by one-third of all the radicals in the sample. In gen-
eral, a spin-I nucleus splits the spectrum into 2I + 1 hyperfine
lines of equal intensity.

When there are several magnetic nuclei present in the radical,
each one contributes to the hyperfine structure. In the case of
equivalent protons (for example, the two CH2 protons in the
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Fig. 12.54 The hyperfine interaction between an electron and 
a spin- 1–2 nucleus results in four energy levels in place of the
original two. As a result, the spectrum consists of two lines 
(of equal intensity) instead of one. The intensity distribution 
can be summarized by a simple stick diagram. The diagonal lines
show the energies of the states as the applied field is increased,
and resonance occurs when the separation of states matches the
fixed energy of the microwave photon.

Fig. 12.53 An applied magnetic field can induce circulation of
electrons that makes use of excited state orbitals (shown with a
blue outline).
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radical CH3CH2) some of the hyperfine lines are coincident. It is
not hard to show that, if the radical contains N equivalent protons,
then there are N + 1 hyperfine lines with a binomial intensity dis-
tribution (the intensity distribution given by Pascal’s triangle).
The spectrum of the benzene radical anion in Fig. 12.51, which
has seven lines with intensity ratio 1:6:15:20:15:6:1, is consistent
with a radical containing six equivalent protons. More generally,
if the radical contains N equivalent nuclei with spin quantum
number I, then there are 2NI + 1 hyperfine lines with an inten-
sity distribution based on a modified version of Pascal’s triangle
as shown in the following Example.

Example 12.2 Predicting the hyperfine structure of an EPR spectrum

A radical contains one 14N nucleus (I = 1) with hyperfine con-
stant 1.61 mT and two equivalent protons (I = 1–2) with hyperfine
constant 0.35 mT. Predict the form of the EPR spectrum.

Method We should consider the hyperfine structure that arises
from each type of nucleus or group of equivalent nuclei in
succession. So, split a line with one nucleus; then each of those
lines is split by a second nucleus (or group of nuclei), and so
on. It is best to start with the nucleus with the largest hyperfine
splitting; however, any choice could be made, and the order
in which nuclei are considered does not affect the conclusion.

Answer The 14N nucleus gives three hyperfine lines of equal 
intensity separated by 1.61 mT. Each line is split into 
doublets of spacing 0.35 mT by the first proton, and each line
of these doublets is split into doublets with the same 0.35 mT
splitting (Fig. 12.55). The central lines of each split doublet
coincide, so the proton splitting gives 1:2:1 triplets of internal
splitting 0.35 mT. Therefore, the spectrum consists of three
equivalent 1:2:1 triplets.

Self-test 12.5 Predict the form of the EPR spectrum of a radi-
cal containing three equivalent 14N nuclei. [Fig. 12.56]

1:2:1 1:2:1 1:2:1

1.61 mT

0.35 mT

Fig. 12.55 The analysis of the hyperfine structure of radicals
containing one 14N nucleus (I = 1) and two equivalent protons.

1 3 6 7 6 3 1

Fig. 12.56 The analysis of the hyperfine structure of radicals
containing three equivalent 14N nuclei.

The hyperfine structure of an EPR spectrum is a kind of
fingerprint that helps to identify the radicals present in a sample.
Moreover, because the magnitude of the splitting depends on
the distribution of the unpaired electron near the magnetic 
nuclei present, the spectrum can be used to map the molecular
orbital occupied by the unpaired electron. For example, because
the hyperfine splitting in C6H−

6 is 0.375 mT, and one proton
is close to a C atom with one-sixth the unpaired electron spin
density (because the electron is spread uniformly around the
ring), the hyperfine splitting caused by a proton in the electron
spin entirely confined to a single adjacent C atom should be 
6 × 0.375 mT = 2.25 mT. If in another aromatic radical we find 
a hyperfine splitting constant a, then the spin density, ρ, the
probability that an unpaired electron is on the atom, can be 
calculated from the McConnell equation:

a = Qρ (12.44)

with Q = 2.25 mT. In this equation, ρ is the spin density on a C
atom and a is the hyperfine splitting observed for the H atom to
which it is attached.

l A BRIEF ILLUSTRATION

The hyperfine structure of the EPR spectrum of the radical
anion (naphthalene)− can be interpreted as arising from two
groups of four equivalent protons. Those at the 1, 4, 5, and 
8 positions in the ring have a = 0.490 mT and those in 
the 2, 3, 6, and 7 positions have a = 0.183 mT. The densities 
obtained by using the McConnell equation are 0.22 and 0.08,
respectively (8). l
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p character. The analysis of hyperfine structure therefore gives
information about the composition of the orbital, and especially
the hybridization of the atomic orbitals (see Problem 12.13).

We still have the source of the hyperfine structure of the 
C6H−

6 anion and other aromatic radical anions to explain. The
sample is fluid, and as the radicals are tumbling the hyperfine
structure cannot be due to the dipole–dipole interaction. More-
over, the protons lie in the nodal plane of the π orbital occupied
by the unpaired electron, so the structure cannot be due to a
Fermi contact interaction. The explanation lies in a polarization
mechanism similar to the one responsible for spin–spin coupling
in NMR. There is a magnetic interaction between a proton (the
H nucleus) and one of the electrons in the C-H bond, which 
results in that electron tending to be found with a greater prob-
ability near the proton (Fig. 12.57). The electron with opposite
spin is therefore more likely to be close to the C atom at the other
end of the bond. The unpaired electron on the C atom has a
lower energy if it is parallel to that electron (Hund’s rule favours
parallel electrons on atoms), so the unpaired electron can detect
the spin of the proton indirectly. Calculation using this model
leads to a hyperfine interaction in agreement with the observed
value of 2.25 mT.

Synoptic table 12.3* Hyperfine coupling constants for atoms,
a/mT

Nuclide Isotropic coupling Anisotropic coupling

1H 50.8 (1s)
2H 7.8 (1s)
14N 55.2 (2s) 4.8 (2p)
19F 1720 (2s) 108.4 (2p)

* More values are given in the Data section.

Hund

FermiPauli

C

H

(b) High energy(a) Low energy

Fig. 12.57 The polarization mechanism for the hyperfine
interaction in π-electron radicals. The arrangement in (a) is
lower in energy than that in (b), so there is an effective coupling
between the unpaired electron and the proton.

Self-test 12.6 The spin density in (anthracene)− is shown in
(9). Predict the form of its EPR spectrum.

[A 1:2:1 triplet of splitting 0.43 mT split into a
1:4:6:4:1 quintet of splitting 0.22 mT, split into a 1:4:6:4:1

quintet of splitting 0.11 mT, 3 × 5 × 5 = 75 lines in all]

(b) The origin of the hyperfine interaction

The hyperfine interaction is an interaction between the mag-
netic moments of the unpaired electron and the nuclei. There
are two contributions to the interaction.

An electron in a p orbital does not approach the nucleus very
closely, so it experiences a field that appears to arise from a point
magnetic dipole. The resulting interaction is called the dipole–
dipole interaction. The contribution of a magnetic nucleus to
the local field experienced by the unpaired electron is given by
an expression like that in eqn 12.40. A characteristic of this type
of interaction is that it is anisotropic. Furthermore, just as in 
the case of NMR, the dipole–dipole interaction averages to zero
when the radical is free to tumble. Therefore, hyperfine struc-
ture due to the dipole–dipole interaction is observed only for
radicals trapped in solids.

An s electron is spherically distributed around a nucleus and
so has zero average dipole–dipole interaction with the nucleus
even in a solid sample. However, because an s electron has a
nonzero probability of being at the nucleus, it is incorrect to
treat the interaction as one between two point dipoles. An s elec-
tron has a Fermi contact interaction with the nucleus, which 
as we saw in Section 12.6d is a magnetic interaction that occurs
when the point dipole approximation fails. The contact interac-
tion is isotropic (that is, independent of the radical’s orientation),
and consequently is shown even by rapidly tumbling molecules
in fluids (provided the spin density has some s character).

The dipole–dipole interactions of p electrons and the Fermi
contact interaction of s electrons can be quite large. For example,
a 2p electron in a nitrogen atom experiences an average field of
about 3.4 mT from the 14N nucleus. A 1s electron in a hydrogen
atom experiences a field of about 50 mT as a result of its Fermi
contact interaction with the central proton. More values are
listed in Table 12.3. The magnitudes of the contact interactions
in radicals can be interpreted in terms of the s orbital character
of the molecular orbital occupied by the unpaired electron, and
the dipole–dipole interaction can be interpreted in terms of the
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IMPACT ON BIOCHEMISTRY

I12.2 Spin probes

We saw in Sections 12.15 and 12.16 that anisotropy of the g-
value and of the nuclear hyperfine interactions can be observed
when a radical is immobilized in a solid. Figure
12.58 shows the variation of the lineshape of the
EPR spectrum of the di-tert-butyl nitroxide rad-
ical (10) with temperature. At 292 K, the radical
tumbles freely and isotropic hyperfine coupling
to the 14N nucleus gives rise to three sharp

peaks. At 77 K, motion of the radical is restricted. Both isotropic
and anisotropic hyperfine couplings determine the appearance
of the spectrum, which now consists of three broad peaks.

A spin probe (or spin label) is a radical that interacts with 
a biopolymer and with an EPR spectrum that reports on the 
dynamical properties of the biopolymer. The ideal spin probe is
one with a spectrum that broadens significantly as its motion is
restricted to a relatively small extent. Nitroxide spin probes have
been used to show that the hydrophobic interiors of biological
membranes, once thought to be rigid, are in fact very fluid and
individual lipid molecules move laterally through the sheet-like
structure of the membrane.

Just as chemical exchange can broaden proton NMR spectra
(Section 12.7), electron exchange between two radicals can
broaden EPR spectra. Therefore, the distance between two spin
probe molecules may be measured from the linewidths of 
their EPR spectra. The effect can be used in a number of bio-
chemical studies. For example, the kinetics of association of 
two polypeptides labelled with the synthetic
amino acid 2,2,6,6,-tetramethylpiperidine-
1-oxyl-4-amino-4-carboxylic acid (11) may
be studied by measuring the change in line-
width of the label with time. Alternatively,
the thermodynamics of association may be
studied by examining the temperature depend-
ence of the linewidth.

T = 77 K

T = 292 K

Field strength

Fig. 12.58 ESR spectra of the di-tert-butyl nitroxide radical at 
292 K (top) and 77 K (bottom). (Adapted from J.R. Bolton, in
Biological applications of electron spin resonance, H.M. Swartz,
J.R. Bolton, and D.C. Borg (ed.), Wiley, New York (1972).)

Checklist of key ideas

1. The energy of an electron in a magnetic field B0 is 
Ems

= −geγe$B0ms, where γe is the magnetogyric ratio 
of the electron. The energy of a nucleus in a magnetic 
field B0 is EmI

= −γ $B0mI, where γ is the nuclear
magnetogyric ratio.

2. The resonance condition for an electron in a magnetic field
is hν = geμBB0. The resonance condition for a nucleus in a
magnetic field is hν = γ $B0.

3. The intensity of an NMR or EPR transition increases 
with the difference in population of α and β states and 
the strength of the applied magnetic field (as B 2

0).

4. The chemical shift of a nucleus is the difference between 
its resonance frequency and that of a reference standard;
chemical shifts are reported on the δ scale, in which 
δ = (ν − ν° ) × 106/ν°.

5. The fine structure of an NMR spectrum is the splitting of 
the groups of resonances into individual lines; the strength
of the interaction is expressed in terms of the spin–spin
coupling constant, J.

6. N equivalent spin- 1–2 nuclei split the resonance of a nearby
spin or group of equivalent spins into N + 1 lines with an
intensity distribution given by Pascal’s triangle.

7. Spin–spin coupling in molecules in solution can be
explained in terms of the polarization mechanism, in 
which the interaction is transmitted through the bonds.

8. The Fermi contact interaction is a magnetic interaction that
depends on the very close approach of an electron to the
nucleus and can occur only if the electron occupies an s
orbital.

9. Coalescence of the two lines occurs in conformational
interchange or chemical exchange when the lifetime, τ, of
the states is related to their resonance frequency difference,
δν, by τ = 21/2/πδν.

10. In Fourier-transform NMR, the spectrum is obtained 
by mathematical analysis of the free-induction decay of
magnetization, the response of nuclear spins in a sample to
the application of one or more pulses of radiofrequency
radiation.

11. Spin relaxation is the nonradiative return of a spin 
system to an equilibrium distribution of populations in
which the transverse spin orientations are random; the
system returns exponentially to the equilibrium population
distribution with a time constant called the spin–lattice
relaxation time, T1.
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12. The spin–spin relaxation time, T2, is the time constant for
the exponential return of the system to random transverse
spin orientations.

13. In proton decoupling of 13C-NMR spectra, protons 
are made to undergo rapid spin reorientations and 
the 13C nucleus senses an average orientation. As a 
result, its resonance is a single line and not a group 
of lines.

14. The nuclear Overhauser effect (NOE) is the modification 
of one resonance by the saturation of another.

15. In two-dimensional NMR, spectra are displayed in two 
axes, with resonances belonging to different groups lying 
at different locations on the second axis.

16. Magic-angle spinning (MAS) is a technique in which the
NMR linewidths in a solid sample are reduced by spinning
at an angle of 54.74° to the applied magnetic field.

17. The EPR resonance condition is written hν = gμBB, 
where g is the g-value of the radical; the deviation of g from
ge = 2.0023 depends on the ability of the applied field to
induce local electron currents in the radical.

18. The hyperfine structure of an EPR spectrum is its splitting 
of individual resonance lines into components by the
magnetic interaction between the electron and nuclei 
with spin.

19. If a radical contains N equivalent nuclei with spin quantum
number I, then there are 2NI + 1 hyperfine lines with an
intensity distribution given by a modified version of 
Pascal’s triangle.

20. The hyperfine structure due to a hydrogen attached to 
an aromatic ring is converted to spin density, ρ, on the
neighbouring carbon atom by using the McConnell
equation: a = Qρ with Q = 2.25 mT.

Discussion questions

12.1 To determine the structures of macromolecules by NMR
spectroscopy, chemists use spectrometers that operate at the highest
available fields and frequencies. Justify this choice.

12.2 Discuss in detail the origins of the local, neighbouring group, and
solvent contributions to the shielding constant.

12.3 Discuss in detail the effects of a 90° pulse and of a 180° pulse on a
system of spin- 1–2 nuclei in a static magnetic field.

12.4 Suggest a reason why the relaxation times of 13C nuclei are typically
much longer than those of 1H nuclei.

12.5 Suggest a reason why the spin–lattice relaxation time of a 
small molecule (like benzene) in a mobile, deuterated hydrocarbon

solvent increases whereas that of a large molecule (like a polymer)
decreases.

12.6 Discuss the origin of the nuclear Overhauser effect and how it 
can be used to measure distances between protons in a biopolymer.

12.7 Discuss the origins of diagonal and cross-peaks in the COSY
spectrum of an AX system.

12.8 Discuss how the Fermi contact interaction and the polarization
mechanism contribute to spin–spin couplings in NMR and hyperfine
interactions in EPR.

12.9 Explain how the EPR spectrum of an organic radical can be used 
to identify and map the molecular orbital occupied by the unpaired
electron.

Exercises

12.1(a) Given that g is a dimensionless number, what are the units of γ
expressed in tesla and hertz?

12.1(b) Given that g is a dimensionless number, what are the units of γ
expressed in SI base units?

12.2(a) For a proton, what are the magnitudes of the spin angular
momentum and its allowed components along the z-axis? What are the
possible orientations of the angular momentum in terms of the angle it
makes with the z-axis?

12.2(b) For a 14N nucleus, what are the magnitudes of the spin angular
momentum and its allowed components along the z-axis? What are the
possible orientations of the angular momentum in terms of the angle it
makes with the z-axis?

12.3(a) What is the resonance frequency of a proton in a magnetic field
of 13.5 T?

12.3(b) What is the resonance frequency of a 19F nucleus in a magnetic
field of 17.1 T?

12.4(a) 33S has a nuclear spin of 3–2 and a nuclear g-factor of 0.4289.
Calculate the energies of the nuclear spin states in a magnetic field of
6.800 T.

12.4(b) 14N has a nuclear spin of 1 and a nuclear g-factor of 0.404.
Calculate the energies of the nuclear spin states in a magnetic field of
10.50 T.

12.5(a) Calculate the frequency separation of the nuclear spin levels of a
13C nucleus in a magnetic field of 15.4 T given that the magnetogyric
ratio is 6.73 × 10−7 T−1 s−1.

12.5(b) Calculate the frequency separation of the nuclear spin levels of a
14N nucleus in a magnetic field of 14.4 T given that the magnetogyric
ratio is 1.93 × 10−7 T−1 s−1.
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12.6(a) In which of the following systems is the energy level separation
larger: (a) a proton in a 600 MHz NMR spectrometer, (b) a deuteron in
the same spectrometer?

12.6(b) In which of the following systems is the energy level separation
larger: (a) a 14N nucleus in (for protons) a 600 MHz NMR spectrometer,
(b) an electron in a radical in a field of 0.300 T?

12.7(a) Calculate the magnetic field needed to satisfy the resonance
condition for unshielded 11B nuclei in a 90.0 MHz radiofrequency 
field.

12.7(b) Calculate the magnetic field needed to satisfy the resonance
condition for unshielded protons in a 400.0 MHz radiofrequency field.

12.8(a) Use the information in Table 12.2 to predict the magnetic fields
at which (a) 1H, (b) 2H, (c) 13C come into resonance at (i) 500 MHz, 
(ii) 800 MHz.

12.8(b) Use the information in Table 12.2 to predict the magnetic 
fields at which (a) 14N, (b) 19F, and (c) 31P come into resonance at 
(i) 400 MHz, (ii) 750 MHz.

12.9(a) Calculate the relative population differences (δN/N, where δN
denotes a small difference Nα − Nβ) for protons in fields of (a) 0.30 T, 
(b) 1.5 T, and (c) 10 T at 25°C.

12.9(b) Calculate the relative population differences (δN/N, where δN
denotes a small difference Nα − Nβ) for 13C nuclei in fields of (a) 0.50 T,
(b) 2.5 T, and (c) 15.5 T at 25°C.

12.10(a) The first generally available NMR spectrometers operated at a
frequency of 60 MHz; today it is not uncommon to use a spectrometer
that operates at 800 MHz. What are the relative population differences 
of 13C spin states in these two spectrometers at 25°C?

12.10(b) What are the relative population differences of 19F spin states in
spectrometers operating at 60 MHz and 450 MHz at 25°C?

12.11(a) What are the relative values of the chemical shifts observed for
nuclei in the spectrometers mentioned in Exercise 12.10a in terms of 
(a) δ values, (b) frequencies?

12.11(b) What are the relative values of the chemical shifts observed for
nuclei in the spectrometers mentioned in Exercise 12.10b in terms of 
(a) δ values, (b) frequencies?

12.12(a) The chemical shift of the CH3 protons in acetaldehyde (ethanal)
is δ = 2.20 and that of the CHO proton is 9.80. What is the difference in
local magnetic field between the two regions of the molecule when the
applied field is (a) 1.5 T, (b) 15 T?

12.12(b) The chemical shift of the CH3 protons in diethyl ether is 
δ = 1.16 and that of the CH2 protons is 3.36. What is the difference in
local magnetic field between the two regions of the molecule when the
applied field is (a) 1.9 T, (b) 16.5 T?

12.13(a) Sketch the appearance of the 1H-NMR spectrum of
acetaldehyde (ethanal) using J = 2.90 Hz and the data in Exercise 12.12a
in a spectrometer operating at (a) 250 MHz, (b) 800 MHz.

12.13(b) Sketch the appearance of the 1H-NMR spectrum of diethyl ether
using J = 6.97 Hz and the data in Exercise 12.12b in a spectrometer
operating at (a) 400 MHz, (b) 650 MHz.

12.14(a) A proton jumps between two sites with δ = 2.7 and δ = 4.8. At
what rate of interconversion will the two signals collapse to a single line
in a spectrometer operating at 550 MHz?

12.14(b) A proton jumps between two sites with δ = 4.2 and δ = 5.5. At
what rate of interconversion will the two signals collapse to a single line
in a spectrometer operating at 350 MHz?

12.15(a) Sketch the form of the 19F-NMR spectra of a natural sample of
10BF4

− and 11BF4
−.

12.15(b) Sketch the form of the 31P-NMR spectra of a sample of 31PF−
6 .

12.16(a) From the data in Table 12.2, predict the frequency needed 
for 19F-NMR in an NMR spectrometer designed to observe proton
resonance at 800 MHz. Sketch the proton and 19F resonances in the
NMR spectrum of FH+

2.

12.16(b) From the data in Table 12.2, predict the frequency needed 
for 31P-NMR in an NMR spectrometer designed to observe proton
resonance at 500 MHz. Sketch the proton and 31P resonances in the
NMR spectrum of PH+

4.

12.17(a) Sketch the form of an A3M2X4 spectrum, where A, M, and X are
protons with distinctly different chemical shifts and JAM > JAX > JMX.

12.17(b) Sketch the form of an A2M2X5 spectrum, where A, M, and X are
protons with distinctly different chemical shifts and JAM > JAX > JMX.

12.18(a) Which of the following molecules have sets of nuclei that are
chemically but not magnetically equivalent: (a) CH3CH3, (b) CH2=CH2?

12.18(b) Which of the following molecules have sets of nuclei that 
are chemically but not magnetically equivalent: (a) CH2=C=CF2, 
(b) cis- and trans-[Mo(CO)4(PH3)2]?

12.19(a) The duration of a 90° or 180° pulse depends on the strength of
the B1 field. If a 90° pulse requires 10 μs, what is the strength of the B1
field? How long would the corresponding 180° pulse require?

12.19(b) The duration of a 90° or 180° pulse depends on the strength of
the B1 field. If a 180° pulse requires 12.5 μs, what is the strength of the B1
field? How long would the corresponding 90° pulse require?

12.20(a) What magnetic field would be required in order to use an EPR
X-band spectrometer (9 GHz) to observe 1H-NMR and a 300 MHz
spectrometer to observe EPR?

12.20(b) Some commercial EPR spectrometers use 8 mm microwave
radiation (the Q band). What magnetic field is needed to satisfy the
resonance condition?

12.21(a) The centre of the EPR spectrum of atomic hydrogen lies at
329.12 mT in a spectrometer operating at 9.2231 GHz. What is the 
g-value of the electron in the atom?

12.21(b) The centre of the EPR spectrum of atomic deuterium lies at
330.02 mT in a spectrometer operating at 9.2482 GHz. What is the 
g-value of the electron in the atom?

12.22(a) A radical containing two equivalent protons shows a three-
line spectrum with an intensity distribution 1:2:1. The lines occur at
330.2 mT, 332.5 mT, and 334.8 mT. What is the hyperfine coupling
constant for each proton? What is the g-value of the radical given that
the spectrometer is operating at 9.319 GHz?

12.22(b) A radical containing three equivalent protons shows a four-
line spectrum with an intensity distribution 1:3:3:1. The lines occur at
331.4 mT, 333.6 mT, 335.8 mT, and 338.0 mT. What is the hyperfine
coupling constant for each proton? What is the g-value of the radical
given that the spectrometer is operating at 9.332 GHz?

12.23(a) A radical containing two inequivalent protons with hyperfine
constants 2.0 mT and 2.6 mT gives a spectrum centred on 332.5 mT. 
At what fields do the hyperfine lines occur and what are their relative
intensities?

12.23(b) A radical containing three inequivalent protons with hyperfine
constants 2.11 mT, 2.87 mT, and 2.89 mT gives a spectrum centred on
332.8 mT. At what fields do the hyperfine lines occur and what are their
relative intensities?
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12.24(a) Predict the intensity distribution in the hyperfine lines of the
EPR spectra of (a) ·CH3, (b) ·CD3.

12.24(b) Predict the intensity distribution in the hyperfine lines of the
EPR spectra of (a) ·CH2H3, (b) ·CD2CD3.

12.25(a) The benzene radical anion has g = 2.0025. At what field should
you search for resonance in a spectrometer operating at (a) 9.313 GHz,
(b) 33.80 GHz?

12.25(b) The naphthalene radical anion has g = 2.0024. At what field
should you search for resonance in a spectrometer operating at 
(a) 9.501 GHz, (b) 34.77 GHz?

12.26(a) The EPR spectrum of a radical with a single magnetic nucleus 
is split into four lines of equal intensity. What is the nuclear spin of the
nucleus?

12.26(b) The EPR spectrum of a radical with two equivalent nuclei of a
particular kind is split into five lines of intensity ratio 1:2:3:2:1. What is
the spin of the nuclei?

12.27(a) Sketch the form of the hyperfine structures of radicals XH2
and XD2, where the nucleus X has I = 5–2 .

12.27(b) Sketch the form of the hyperfine structures of radicals XH3
and XD3, where the nucleus X has I = 3–2 .

Problems*

Numerical problems

12.1‡ The relative sensitivity of NMR lines for equal numbers 
of different nuclei at constant temperature for a given frequency 
is Rν ∝ (I + 1)μ3 whereas for a given field is RB ∝ {(I + 1)/I2}μ3.
(a) From the data in Table 12.2, calculate these sensitivities for the
deuteron, 13C, 14N, 19F, and 31P relative to the proton. (b) Derive the
equation for RB from the equation for Rν .

12.2 Two groups of protons have δ = 4.0 and δ = 5.2 and are
interconverted by a conformational change of a fluxional molecule. 
In a 60 MHz spectrometer the spectrum collapsed into a single line at
280 K but at 300 MHz the collapse did not occur until the temperature
had been raised to 300 K. What is the activation energy of the
interconversion?

12.3‡ Suppose that the FID in Fig. 12.32 was recorded in a 400 MHz
spectrometer, and that the interval between maxima in the oscillations 
in the FID is 0.12 s. What are the Larmor frequency of the nuclei and the
spin–spin relaxation time?

12.4 To gain some appreciation for the numerical work done by
computers interfaced to NMR spectrometers, perform the following
calculations. (a) The total FID F(t) of a signal containing many
frequencies, each corresponding to a different nucleus, is given by

where, for each nucleus j, S0j is the maximum intensity of the signal, 
νLj is the Larmor frequency, and T2j is the spin–spin relaxation time. 
Plot the FID for the case

S01 = 1.0 νL1 = 50 MHz T21 = 0.50 μs

S02 = 3.0 νL2 = 10 MHz T22 = 1.0 μs

(b) Explore how the shape of the FID curve changes with changes 
in the Larmor frequency and the spin–spin relaxation time. (c) Use
mathematical software to calculate and plot the Fourier transforms of
the FID curves you calculated in parts (a) and (b). How do spectral
linewidths vary with the value of T2? Hint. This operation can be
performed with the ‘fast Fourier transform’ routine available in most
mathematical software packages. Please consult the package’s user
manual for details.

F t S tj
j

j
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12.5 (a) In many instances it is possible to approximate the NMR
lineshape by using a Lorenztian function of the form

where I(ω) is the intensity as a function of the angular frequency 
ω = 2πν, ω0 is the resonance frequency, S0 is a constant, and T2 is the
spin–spin relaxation time. Confirm that for this lineshape the full-width
at half-height is 2/T2. (b) Under certain circumstances, NMR lines are
Gaussian functions of the frequency, given by

IGaussian(ω) = S0T2e−T2
2(ω −ω0)2

Confirm that for the Gaussian lineshape the full-width at half-height is
equal to 2(ln 2)1/2/T2. (c) Compare and contrast the shapes of Lorenztian
and Gaussian lines by plotting two lines with the same values of S0, T2,
and ω0.

12.6‡ Various versions of the Karplus equation (eqn 12.27) have been used
to correlate data on vicinal proton coupling constants in systems of the
type R1R2CHCHR3R4. The original version, (M. Karplus, J. Am. Chem.
Soc. 85, 2870 (1963)), is 3JHH = A cos2φHH + B. When R3 = R4 = H, 3JHH =
7.3 Hz; when R3 = CH3 and R4 = H, 3JHH = 8.0 Hz; when R3 = R4 = CH3,
3JHH = 11.2 Hz. Assume that only staggered conformations are important
and determine which version of the Karplus equation fits the data better.

12.7‡ It might be unexpected that the Karplus equation, which was 
first derived for 3JHH coupling constants, should also apply to vicinal
coupling between the nuclei of metals such as tin. T.N. Mitchell and B.
Kowall (Magn. Reson. Chem. 33, 325 (1995)) have studied the relation
between 3JHH and 3JSnSn in compounds of the type Me3SnCH2CHRSnMe3
and find that 3JSnSn = 78.86 3JHH + 27.84 Hz. (a) Does this result support 
a Karplus type equation for tin? Explain your reasoning. (b) Obtain the
Karplus equation for 3JSnSn and plot it as a function of the dihedral angle.
(c) Draw the preferred conformation.

12.8 Figure 12.59 shows the proton COSY spectrum of 1-nitropropane.
Account for the appearance of off-diagonal peaks in the spectrum.

12.9 It is possible to produce very high magnetic fields over small
volumes by special techniques. What would be the resonance frequency
of an electron spin in an organic radical in a field of 1.0 kT? How does
this frequency compare to typical molecular rotational, vibrational, and
electronic energy-level separations?
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* Problems denoted with the symbol ‡ were supplied by Charles Trapp and Carmen Giunta.
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12.10 The angular NO2 molecule has a single unpaired electron and 
can be trapped in a solid matrix or prepared inside a nitrite crystal by
radiation damage of NO−

2 ions. When the applied field is parallel to 
the OO direction the centre of the spectrum lies at 333.64 mT in a
spectrometer operating at 9.302 GHz. When the field lies along the
bisector of the ONO angle, the resonance lies at 331.94 mT. What 
are the g-values in the two orientations?

12.11 The hyperfine coupling constant in ·CH3 is 2.3 mT. Use the
information in Table 12.3 to predict the splitting between the hyperfine
lines of the spectrum of ·CD3. What are the overall widths of the
hyperfine spectra in each case?

12.12 The p-dinitrobenzene radical anion can be prepared by reduction
of p-dinitrobenzene. The radical anion has two equivalent N nuclei 
(I = 1) and four equivalent protons. Predict the form of the EPR
spectrum using a(N) = 0.148 mT and a(H) = 0.112 mT.

12.13 When an electron occupies a 2s orbital on an N atom it has a
hyperfine interaction of 55.2 mT with the nucleus. The spectrum of 
NO2 shows an isotropic hyperfine interaction of 5.7 mT. For what
proportion of its time is the unpaired electron of NO2 occupying a 2s
orbital? The hyperfine coupling constant for an electron in a 2p orbital 
of an N atom is 3.4 mT. In NO2 the anisotropic part of the hyperfine
coupling is 1.3 mT. What proportion of its time does the unpaired
electron spend in the 2p orbital of the N atom in NO2? What is the 
total probability that the electron will be found on (a) the N atoms, 
(b) the O atoms? What is the hybridization ratio of the N atom? Does 
the hybridization support the view that NO2 is angular?

12.14 The hyperfine coupling constants observed in the radical anions
(12), (13), and (14) are shown (in millitesla, mT). Use the value for the
benzene radical anion to map the probability of finding the unpaired
electron in the π orbital on each C atom.
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Fig. 12.59 The COSY spectrum of 1-nitropropane
(NO2CH2CH2CH3). The circles show enhanced views of the
spectral features. (Spectrum provided by Prof. G. Morris.)

12.15 Sketch the EPR spectra of the di-tert-butyl nitroxide radical (15) 
at 292 K in the limits of very low concentration (at which electron
exchange is negligible), moderate concentration (at which electron
exchange effects begin to be observed), and high concentration (at 
which electron exchange effects predominate).

Theoretical problems

12.16 Calculate σd for a hydrogenic atom with atomic number Z.

12.17 In Problem 6.7 you were asked to use molecular electronic
structure methods to investigate the hypothesis that the magnitude 
of the 13C chemical shift correlates with the net charge on a 13C atom 
by calculating the net charge at the C atom para to the substituents 
in the following series of molecules: methylbenzene, benzene,
trifluoromethylbenzene, benzonitrile, nitrobenzene. The 13C 
chemical shifts of the para C atoms in each of the molecules that 
you examined are given below:

Substituent CH3 H CF3 CN NO2

δ 128.4 128.5 128.9 129.1 129.4

(a) Is there a linear correlation between net charge and 13C chemical 
shift of the para C atom in this series of molecules? (b) If you did find 
a correlation in part (a), use the concepts developed in Chapter 12 to
explain the physical origins of the correlation.

12.18 The z-component of the magnetic field at a distance R from a
magnetic moment parallel to the z-axis is given by eqn 12.28. In a solid, 
a proton at a distance R from another can experience such a field and 
the measurement of the splitting it causes in the spectrum can be used to
calculate R. In gypsum, for instance, the splitting in the H2O resonance
can be interpreted in terms of a magnetic field of 0.715 mT generated by
one proton and experienced by the other. What is the separation of the
protons in the H2O molecule?

12.19 In a liquid, the dipolar magnetic field averages to zero: show this
result by evaluating the average of the field given in eqn 12.28. Hint.
The surface area element is sin θ dθdφ in polar coordinates.

12.20 In a liquid crystal (Impact I8.3) a molecule might not rotate freely
in all directions and the dipolar interaction might not average to zero.
Suppose a molecule is trapped so that, although the vector separating
two protons may rotate freely around the z-axis, the colatitude may 
vary only between 0 and θ′. Use mathematical software to average 
the dipolar field over this restricted range of orientation and confirm
that the average vanishes when θ′ is equal to π (corresponding to free
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νEI for bound I. When chemical exchange is fast, the NMR spectrum of
the same proton in I consists of a single peak with a resonance frequency
ν given by ν = fIνI + fEIνEI, where fI = [I]/([I] + [EI]) and fEI = [EI]/([I] +
[EI]) are, respectively, the fractions of free I and bound I. For the
purposes of analysing the data, it is also useful to define the frequency
differences δν = ν − νI and Δν = νEI − νI. Show that when the initial
concentration of I, [I]0, is much greater than the initial concentration 
of E, [E]0, a plot of [I]0 against δν−1 is a straight line with slope [E]0Δν
and y-intercept −KI.

12.27 The proton chemical shifts for the NH, CαH, and CβH groups 
of alanine are 8.25 ppm, 4.35 ppm, and 1.39 ppm, respectively. Sketch
the COSY spectrum of alanine between 1.00 and 8.50 ppm.

12.28 You are designing an MRI spectrometer. What field gradient 
(in microtesla per metre, μT m−1) is required to produce a separation of
100 Hz between two protons separated by the long diameter of a human
kidney (taken as 8 cm) given that they are in environments with δ = 3.4?
The radiofrequency field of the spectrometer is at 400 MHz and the
applied field is 9.4 T.

12.29 Suppose a uniform disc-shaped organ is in a linear field gradient,
and that the MRI signal is proportional to the number of protons in a
slice of width δx at each horizontal distance x from the centre of the disc.
Sketch the shape of the absorption intensity for the MRI image of the
disc before any computer manipulation has been carried out.

12.30 The computational techniques described in Chapter 6 may be used
to predict the spin density distribution in a radical. Recent EPR studies
have shown that the amino acid tyrosine participates in a number of
biological electron transfer reactions, including the processes of water
oxidation to O2 in plant photosystem II and of O2 reduction to water in
cytochrome c oxidase (Impact I17.3). During the course of these electron
transfer reactions, a tyrosine radical forms, with spin density delocalized
over the side chain of the amino acid. (a) The phenoxy radical shown 
in (16) is a suitable model of the tyrosine radical. Using molecular
modelling software and the computational method of your choice
(semiempirical or ab initio methods), calculate the spin densities 
at the O atom and at all of the C atoms in (16). (b) Predict the form 
of the EPR spectrum of (16).

rotation over a sphere). What is the average value of the local dipolar
field for the H2O molecule in Problem 12.18 if it is dissolved in a liquid
crystal that enables it to rotate up to θ′ = 30°?

12.21 The shape of a spectral line, I(ω), is related to the free induction
decay signal G(t) by

where a is a constant and ‘Re’ means take the real part of what follows.
Calculate the lineshape corresponding to an oscillating, decaying
function G(t) = cos ωt e−t/τ.

12.22 In the language of Problem 12.21, show that, if G(t) =
(a cos ω1t + b cos ω2t)e−t/τ, then the spectrum consists of two lines 
with intensities proportional to a and b and located at ω = ω1 and ω2,
respectively.

12.23 Show that the coupling constant as expressed by the Karplus
equation passes through a minimum when cos φ = B/4C.

12.24 EPR spectra are commonly discussed in terms of the parameters
that occur in the spin-hamiltonian, a hamiltonian operator that
incorporates various effects involving spatial operators (like the orbital
angular momentum) into operators that depend on the spin alone. Show
that if you use @ = −geγeB0Sz − γeB0Zz as the true hamiltonian, then, from
second-order perturbation theory, the eigenvalues of the spin are the
same as those of the spin-hamiltonian @spin = −gγeB0Sz (note the g in
place of ge) and find an expression for g.

Applications: to biochemistry and medicine

12.25 Interpret the following features of the NMR spectra of hen
lysozyme: (a) saturation of a proton resonance assigned to the side chain
of methionine-105 changes the intensities of proton resonances assigned
to the side chains of tryptophan-28 and tyrosine-23; (b) saturation of
proton resonances assigned to tryptophan-28 does not affect the
spectrum of tyrosine-23.

12.26 NMR spectroscopy may be used to determine the equilibrium
constant for dissociation of a complex between a small molecule, such 
as an enzyme inhibitor I, and a protein, such as an enzyme E:

EI 5 E + I KI = [E][I]/[EI]

In the limit of slow chemical exchange, the NMR spectrum of a proton
in I would consist of two resonances: one at νI for free I and another at
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PART 4
Molecular
thermodynamics

One great river of physical chemistry consists of the concepts and 

applications of quantum theory that we have been considering in the preceding

chapters. Another great river consists of the concepts and applications of

thermodynamics, the theory of the transformation of energy into its different

forms. Thermodynamics was originally formulated by considering the bulk

properties of matter and finding relations—some of them unexpected—between

various bulk properties. Thus, it was discovered, as we shall see in this part of

the book, that observations on the heat output or requirements of chemical

reactions could be used to predict their spontaneous direction and be used to

calculate their equilibrium constants. However, although thermodynamics can

be presented solely in terms of bulk properties, it is immeasurably enriched 

by drawing on what we have learned about the energy levels of atoms and

molecules. That is the approach we adopt here, where we see how the 

quantum mechanical properties of matter presented so far, and in particular 

the energy levels available to molecules, underlie its thermodynamic properties.

The key concept in this account is the Boltzmann distribution, which we 

derive and describe in Chapter 13. This very simple, universal concept applies 

to all kinds of matter and all kinds of energy levels, and is the foundation both of

structure (as we see in this part) and change (as we see in the following part).

With the Boltzmann distribution established, we turn to the First Law of

thermodynamics (essentially the conservation of energy) and then to the 

Second Law (essentially the increase in entropy), and include a short discussion

of the Third Law, which is the concept that makes it possible to use calorimetric

measurements to calculate equilibrium constants. In all three cases, we show

how these phenomenological laws (laws based on observation) are illuminated

by considering the distribution of molecules over their available energy levels.

With the laws established, we apply them to two principal problems. The first

is physical equilibrium, where matter retains its identity but undergoes changes

of state. The second, the culmination of this part, is chemical equilibrium and

electrochemistry, where matter changes from one form to another.

13 The Boltzmann distribution
Mathematical background 7:
Probability theory

14 The First Law of thermodynamics
Mathematical background 8:
Multivariate calculus

15 The Second Law of
thermodynamics

16 Physical equilibria

17 Chemical equilibrium
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The Boltzmann
distribution

The material in this chapter provides the link between the microscopic properties of matter
and its bulk properties. Two key ideas are introduced. The first is the Boltzmann distribution,
which is used to predict the populations of states in systems at thermal equilibrium. In this
chapter we see its derivation in terms of the distribution of particles over available states.
The derivation leads naturally to the introduction of the partition function. We see how to 
interpret the partition function and how to calculate it in a number of simple cases and use
it to calculate the mean energy of each mode of motion of a molecule. In the final part of the
chapter, we generalize the discussion to include systems that are composed of assemblies
of interacting particles. Very similar equations are developed to those in the first part of the
chapter, but they are much more widely applicable.

The crucial step in going from the quantum mechanics of individual molecules to the
properties of bulk samples, the province of statistical thermodynamics, is to recog-
nize that the latter deals with the average behaviour of large numbers of molecules.
For example, the pressure of a gas depends on the average force exerted by its
molecules and there is no need to specify which molecules happen to be striking the
wall at any instant. Nor is it necessary to consider the fluctuations in the pressure 
as different numbers of molecules collide with the wall at different moments. The
fluctuations in pressure are very small compared with the steady pressure: it is highly
improbable that there will be a sudden lull in the number of collisions, or a sudden
surge. Fluctuations in other bulk properties also occur, but for large numbers of 
particles they are very much smaller than the mean values.

It will be helpful to keep in mind the analogies between the material of this chapter
and that in the preceding chapters. In earlier chapters we have seen that the wave-
function contains all the dynamical information about an atom or molecule. In this
chapter we introduce its analogue, the ‘partition function’, which contains all the
thermodynamic information about a bulk sample of matter. In preceding chapters we
have seen how observables are related to expectation values and calculated from
wavefunctions; here we shall see how the thermodynamic properties introduced in
the following chapters are related to average values and calculated from partition
functions.

A brief comment This chapter introduces a lot of symbols, often with subtly
different meanings. For your convenience, they are collected together in the table
at the end of the chapter.

13
The distribution of molecular
states

13.1 Configurations and weights

13.2 The molecular partition
function

13.3 Contributions to the molecular
partition function

I13.1 Impact on biochemistry: 
The helix–coil transition in
polypeptides

13.4 The mean energy

The canonical partition function

13.5 The canonical ensemble

13.6 The mean energy of a system

13.7 Independent molecules

Checklist of key ideas

Further information 13.1: The
derivation of the Boltzmann
distribution

Further information 13.2: The partition
functions of polyatomic rotors

Discussion questions

Exercises

Problems
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The distribution of molecular states

We consider a system composed of N molecules. Although the
total energy is constant at E, it is not possible to be definite about
how that energy is shared between the molecules. Collisions res-
ult in the ceaseless redistribution of energy not only between the
molecules but also between the quantum states that each mole-
cule occupies. The closest we can come to a description of the
distribution of energy is to report the population of a state, the
average number of molecules that occupy it, and to say that on
average there are Ni molecules in a state of energy εi. The popula-
tions of the states remain almost constant, but the precise iden-
tities of the molecules in each state may change at every collision.

The problem we address in this section is the calculation of
the populations of states for any type of molecule in any mode 
of motion at any temperature. The only restriction is that the
molecules should be independent, in the sense that the total 
energy of the system is a sum of their individual energies. We are
discounting (at this stage) the possibility that in a real system 
a contribution to the total energy may arise from interactions
between molecules. We also adopt the principle of equal a priori
probabilities, the assumption that all possibilities for the dis-
tribution of energy are equally probable. ‘A priori’ means in this
context loosely ‘as far as one knows’. We have no reason to 
presume otherwise than that, for a collection of molecules at
thermal equilibrium, vibrational states of a certain energy, for
instance, are as likely to be populated as rotational states of the
same energy.

One very important conclusion that will emerge from the 
following analysis is that the overwhelmingly most probable
populations of the available states depend on a single parameter,
the ‘temperature’. That is, the work we do here provides a mole-
cular justification for the concept of temperature and some 
insight into this crucially important quantity.

13.1 Configurations and weights

Any individual molecule may exist in states with energies ε0, ε1,
. . . . For reasons that will become clear, we shall always take the
lowest available state as the zero of energy (that is, we set ε0 = 0),
and measure all other energies relative to that state. To obtain
the actual energy of the system we may have to add a constant 
to the energy calculated on this basis. For example, if we are con-
sidering the vibrational contribution to the energy, then we must
add the total zero-point energy of any oscillators in the system.

(a) Instantaneous configurations

At any instant there will be N0 molecules in the state with energy
ε0, N1 with ε1, and so on, with N0 + N1 + . . . = N, the total num-
ber of molecules in the system. The specification of the set of
populations N0, N1, . . . in the form {N0, N1, . . .} is a statement

of the instantaneous configuration of the system. The instan-
taneous configuration fluctuates with time because the popu-
lations change. We can picture a large number of different
instantaneous configurations. One, for example, might be {N,
0, 0, . . .}, corresponding to every molecule being in the ground
state. Another might be {N − 2, 2, 0, 0, . . .}, in which two
molecules are in the first excited state. The latter configuration is
intrinsically more likely to be found than the former because it
can be achieved in more ways: {N, 0, 0, . . .} can be achieved in
only one way, but {N − 2, 2, 0, . . .} can be achieved in 1–2N(N − 1)
different ways (Fig. 13.1; see Justification 13.1). At this stage 
in the argument, we are ignoring the requirement that the total
energy of the system should be constant (the second configura-
tion has a higher energy than the first). The constraint of total
energy is imposed later in this section.

If, as a result of collisions, the system were to fluctuate 
between the configurations {N, 0, 0, . . .} and {N − 2, 2, 0, . . .}, 
it would almost always be found in the second, more likely
configuration (especially if N were large). In other words, a sys-
tem free to switch between the two configurations would show
properties characteristic almost exclusively of the second con-
figuration. A general configuration {N0, N1, . . .} can be achieved
in W different ways, where W is called the weight of the configura-
tion. The weight of the configuration {N0, N1, . . .} is given by the
expression

(13.1)

with x! = x(x − 1) . . . 1 and by definition 0! = 1. Equation 13.1 is
a generalization of the formula W = 1–2N(N − 1), and reduces to 
it for the configuration {N − 2, 2, 0, . . .}.

l A BRIEF ILLUSTRATION

To calculate the number of ways of distributing 20 identical
objects with the arrangement 1, 0, 3, 5, 10, 1, we note that the
configuration is {1, 0, 3, 5, 10, 1} with N = 20; therefore the
weight is

l
 
W = = ×

20

1 0 3 5 10 1
9 31 108!

! ! ! ! ! !
.

 
W =

N

N N N

!

! ! !0 1 2

Fig. 13.1 Whereas a configuration {5, 0, 0, . . .} can be achieved in
only one way, a configuration {3, 2, 0, . . .} can be achieved in the
ten different ways shown here, where the tinted blocks represent
different molecules.
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Self-test 13.1 Calculate the weight of the configuration in
which 20 objects are distributed in the arrangement 0, 1, 5, 0,
8, 0, 3, 2, 0, 1. [4.19 × 1010]

Justification 13.1 The weight of a configuration

First, consider the weight of the configuration {N − 2, 2, 0, 
0, . . .}. One candidate for promotion to an upper state can be
selected in N ways. There are N − 1 candidates for the second
choice, so the total number of choices is N(N − 1). However,
we should not distinguish the choice (Jack, Jill) from the
choice (Jill, Jack) because they lead to the same configura-
tions. Therefore, only half the choices lead to distinguishable
configurations, and the total number of distinguishable choices
is 1–2N(N − 1).

Now we generalize this remark. Consider the number 
of ways of distributing N balls into bins. The first ball can be
selected in N different ways, the next ball in N − 1 different
ways for the balls remaining, and so on. Therefore, there are
N(N − 1) . . . 1 = N! ways of selecting the balls for distribution
over the bins. However, if there are N0 balls in the bin labelled
ε0, there would be N0! different ways in which the same balls
could have been chosen (Fig. 13.2). Similarly, there are N1!
ways in which the N1 balls in the bin labelled ε1 can be chosen,
and so on. Therefore, the total number of distinguishable
ways of distributing the balls so that there are N0 in bin ε0, N1

in bin ε1, etc. regardless of the order in which the balls were
chosen is N!/N0!N1! . . . , which is the content of eqn 13.1.

It will turn out to be more convenient to deal with the natural
logarithm of the weight, ln W, rather than with the weight itself.
We shall therefore need the expression

where in the first line we have used ln(x/y) = ln x − ln y and in the
second ln xy = ln x + ln y. One reason for introducing ln W is that
it is easier to make approximations. In particular, we can sim-
plify the factorials by using Stirling’s approximation in the form

ln x! ≈ x ln x − x (13.2)

Then the approximate expression for the weight is

(13.3)
= − ∑N N N Ni i

i

ln ln

ln ( ln ) ( ln )W = − − −∑N N N N N Ni i i
i

= − ∑ln ! ln !N Ni
i

 = − + + +ln ! (ln ! ln ! ln ! )N N N N0 1 2
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0 1 2
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The final form of eqn 13.3 is derived by noting that the sum of Ni

is equal to N, so the second and fourth terms on the right in the
first line cancel.

A brief comment A more accurate form of Stirling’s approx-
imation is

x! ≈ (2π)1/2xx+ 1–
2e−x

and is in error by less than 1 per cent when x is greater than
about 10. We deal with far larger values of x, and the sim-
plified version in eqn 13.2 is adequate.

(b) The most probable distribution

We have seen that the configuration {N − 2, 2, 0, . . .} dominates
{N, 0, 0, . . .}, and it should be easy to believe that there may be
other configurations that have a much greater weight than both.
We shall see, in fact, that there is a configuration with so great a
weight that it overwhelms all the rest in importance to such an
extent that the system will almost always be found in it. The
properties of the system will therefore be characteristic of that
particular dominating configuration. This dominating configura-
tion can be found by looking for the values of Ni that lead to a
maximum value of W. Because W is a function of all the Ni, we
can do this search by varying the Ni and looking for the values
that correspond to dW = 0 ( just as in the search for the max-
imum of any function), or equivalently a maximum value of 
ln W. However, there are two difficulties with this procedure.

The first difficulty is that the only permitted configurations
are those corresponding to the specified, constant, total energy
of the system. This requirement rules out many configurations;
{N, 0, 0, . . .} and {N − 2, 2, 0, . . .}, for instance, have different
energies (unless ε0 and ε1 are degenerate), so both cannot occur
in the same isolated system. It follows that, in looking for the
configuration with the greatest weight, we must ensure that the
configuration also satisfies the condition

3! 6! 5! 4!

N = 18

Fig. 13.2 The 18 molecules shown here can be distributed into
four receptacles (distinguished by the three vertical lines) in 
18! different ways. However, 3! of the selections that put three
molecules in the first receptacle are equivalent, 6! that put six
molecules into the second receptacle are equivalent, and so on.
Hence the number of distinguishable arrangements is
18!/3!6!5!4!.
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Constant total energy: (13.4)

where E is the total energy of the system.
The second constraint is that, because the total number of

molecules present is also fixed (at N), we cannot arbitrarily vary
all the populations simultaneously. Thus, increasing the popula-
tion of one state by 1 demands that the population of another
state must be reduced by 1. Therefore, the search for the maximum
value of W is also subject to the condition

Constant total number of molecules: (13.5)

We show in Further information 13.1 that the populations in the
configuration of greatest weight, subject to the two constraints
in eqns 13.4 and 13.5, depend on the energy of the state accord-
ing to the Boltzmann distribution:

(13.6a)

Equation 13.6a is the justification of the remark that a single 
parameter, here denoted β, determines the most probable popu-
lations of the states of the system. We shall confirm in Section
15.9 (but see the comment below) and anticipate throughout
this chapter that

(13.6b)

where T is the thermodynamic temperature and k is Boltzmann’s
constant. In other words, the temperature is the unique parameter
that governs the most probable populations of states of a system at
thermal equilibrium.

If we are interested only in the relative populations of states,
the sum in the denominator of the Boltzmann distribution need
not be evaluated, because it cancels when the ratio is taken:

(13.7)

This simple expression is enormously important for understand-
ing a wide range of chemical phenomena and is the form in which
the Boltzmann distribution is commonly employed (we saw one
application of it in the discussion of the intensities of spectral
transitions in Section 10.5). It tells us that the relative population
of two states falls off exponentially with their difference in energy.

A brief comment Two chapters might seem a long time to
take on trust the fact that β = 1/kT. That β ∝ 1/T is plausible
is demonstrated by noting from eqn 13.7 that for a given 
energy separation the ratio of populations N1/N0 decreases 
as β increases, which is what is expected as the temperature
decreases. At T = 0 (β = ∞) all the population is in the ground
state and the ratio is zero.
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ε =∑ Example 13.1 Calculating the relative populations of rotational
states

Calculate the relative populations of the J = 1 and J = 0 
rotational states of HCl at 25°C.

Method There is a trap for the unwary here: although the
ground state is non-degenerate, the level with J = 1 is triply
degenerate (MJ = 0, ±1) and, because eqn 13.7 gives the rela-
tive populations of states, to get the relative populations of
levels, as distinct from states, we need to multiply the ratio by
3 when three states are equally occupied. The energy of a state
with quantum number J is hcèJ(J + 1). Use è = 10.591 cm−1.
A useful relation is kT/hc = 207.224 cm−1 at 298.15 K.

Answer The energy separation of states with J = 1 and J = 0 is

ε1 − ε0 = 2hcè

The ratio of the population of a state with J = 1 and any one 
of its three states MJ to the population of the single state with
J = 0 is therefore

and the relative populations of the levels is

because there are three states with J = 1. Insertion of hcèβ =
0.05111 then gives

We see that, because the J = 1 level is degenerate, it has a
higher population than the level with J = 0, despite being of
higher energy.

Self-test 13.2 What is the ratio of the populations of the 
levels with J = 2 and J = 1 at the same temperature? [1.359]

A note on good practice As the example illustrates, it is 
very important to take note of whether you are asked for 
the relative populations of individual states or of a (possibly
degenerate) energy level.

13.2 The molecular partition function

The Boltzmann distribution contains a much richer variety of
information than the relative populations of states. We can start
to extract this information by writing the distribution as
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(13.8)

where pi is the fraction of molecules in the state i, pi = Ni/N, and
q is the molecular partition function:

[13.9a]

As we have already indicated, it may happen that several states
have the same energy, and so give the same contribution to this
sum. If, for example, gi states have the same energy εi (so the
level is gi-fold degenerate), we could write

(13.9b)

where the sum is now over energy levels (sets of states with the
same energy), not individual states.

Example 13.2 Writing a partition function

Write an expression for the partition function of a linear
molecule (such as HCl) treated as a rigid rotor.

Method To use eqn 13.9 we need to know (a) the energies of
the levels, (b) the degeneracies, the number of states that be-
long to each level. Whenever calculating a partition function,
we express the energies of the levels relative to 0 for the state
of lowest energy. The energy levels of a rigid linear rotor were
derived in Section 10.2.

Answer The energy levels of a linear rotor are hcèJ(J + 1),
with J = 0, 1, 2, . . . . The state of lowest energy has zero 
energy, so no adjustment need be made to the energies given
by this expression. Each level consists of 2J + 1 degenerate
states. Therefore,

The sum can be evaluated numerically by supplying the value
of è (from spectroscopy or calculation) and the temperature:
see Example 13.5 below for an explicit illustration. For rea-
sons explained in Section 13.3, this expression applies only to
unsymmetrical linear rotors (for instance, HCl, not CO2).

Self-test 13.3 Write the partition function for a two-level
system, the lower state (at energy 0) being non-degenerate,
and the upper state (at an energy ε) doubly degenerate.

[q = 1 + 2e−βε]

Some insight into the significance of a partition function can
be obtained by considering how q depends on the temperature.

q = + − +( ) ( )2 1 1J

g
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βε

q = −∑e
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βεi

i

  
p

qi

i

=
−e βε When T is close to zero, the parameter β = 1/kT is close to

infinity. Then every term except one in the sum defining q is zero
because each one has the form e−x with x → ∞. The exception is
the term with ε0 ≡ 0 (or the g0 terms at zero energy if the ground
state is g0-fold degenerate), because then ε0 /kT ≡ 0 whatever the
temperature, including zero. As there is only one surviving term
when T = 0, and its value is g0, it follows that

That is, at T = 0, the partition function is equal to the degeneracy
of the ground state.

Now consider the case when T is so high that for each term in
the sum εj /kT ≈ 0. Because e−x = 1 when x = 0, each term in the
sum now contributes 1. It follows that the sum is equal to the
number of molecular states, which in general is infinite:

In some idealized cases, the molecule may have only a finite
number of states; then the upper limit of q is equal to the num-
ber of states. For example, if we were considering only the spin
energy levels of a radical in a magnetic field, then there would be
only two states (ms = ± 1–2). The partition function for such a sys-
tem can therefore be expected to rise towards 2 as T is increased
towards infinity.

We see that the molecular partition function gives an indication
of the number of states that are thermally accessible to a molecule 
at the temperature of the system. At T = 0, only the ground level 
is accessible and q = g0. At very high temperatures, virtually all
states are accessible, and q is correspondingly large.

Example 13.3 Evaluating the partition function for a harmonic
oscillator

Evaluate the partition function for a harmonic oscillator.

Method As we saw in Section 2.4, a harmonic oscillator has
an infinite number of equally spaced non-degenerate energy
levels (Fig. 13.3). Therefore, we expect the partition function
to increase from 1 at T = 0 and approach infinity as T goes to
∞. Take the separation of energy levels to be ε = hν, so the 
individual levels lie at 0, ε, 2ε, . . . relative to the ground state.
To evaluate eqn 13.9 explicitly, note that

A brief comment The sum of the infinite series S = 1 + x + x2

+ . . . is obtained by multiplying both sides by x, which gives
xS = x + x2 + x3 + . . . = S − 1 and hence S = 1/(1 − x).
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It follows from eqn 13.9 and the expression for q derived 
in Example 13.3 for the uniform ladder of states of spacing ε
characteristic of a harmonic oscillator that

(13.10)

We can conclude that the fraction of molecules in the state with
energy εi is

(13.11)

Figure 13.6 shows how pi varies with temperature. At very 
low temperatures, where q is close to 1, only the lowest state is
significantly populated. As the temperature is raised, the popu-
lation breaks out of the lowest state, and the upper states become
progressively more highly populated. At the same time, the 
partition function rises from 1 and its value gives an indication
of the range of states populated. The name ‘partition function’
reflects the sense in which q measures how the total number 
of molecules is distributed—partitioned—over the available
states.

The corresponding expressions for a two-level system derived
in Self-test 13.4 are

(13.12)

These functions are plotted in Fig. 13.7. Notice how the popula-
tions tend towards equality (p0 = 1–2, p1 = 1–2) as T → ∞. A common
error is to suppose that when T = ∞ all the molecules in the 
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Fig. 13.3 The equally spaced infinite array of energy levels used in
the calculation of the partition function. A harmonic oscillator has
the same spectrum of levels.

0 5 10

10

5

0

kT/H

Fig. 13.4 The partition function for the system shown in Fig.13.3 
(a harmonic oscillator) as a function of temperature.

interActivity Plot the partition function of a harmonic
oscillator against temperature for several values of the

energy separation ε. How does q vary with temperature when 
T is high, in the sense that kT >> ε (or βε << 1)?

2

10 5 10

1.5

1.4

1.2

1
0 0.5 1

kT/ kT/H H

Fig. 13.5 The partition function for a two-level system as a 
function of temperature. The two graphs differ in the scale of the
temperature axis to show the approach to 1 as T → 0 and the slow
approach to 2 as T → ∞.

interActivity Consider a three-level system with levels 0, ε,
and 2ε. Plot the partition function against kT/ε.

Answer The partition function is

q = 1 + e−βε + e−2βε + . . .

= 1 + e−βε + (e−βε)2 + . . .

=

This expression is plotted in Fig. 13.4: notice that, as anti-
cipated, q rises from 1 to infinity as the temperature is 
raised.

Self-test 13.4 Find and plot an expression for the partition
function of a system with one state at zero energy and 
another state at the energy ε. [q = 1 + e−βε, Fig. 13.5]
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Low
temperature

High
temperature

� 3.0 1.0 0.7 0.3
: 1.05 1.58 1.99 3.86

PH

Fig. 13.6 The populations of the energy levels of the system
shown in Fig. 13.3 at different temperatures, and the
corresponding values of the partition function calculated 
in Example 13.3. Note that β = 1/kT.

interActivity To visualize the content of Fig. 13.6 in a 
different way, plot the functions p0, p1, p2, and p3

against kT/ε.

0
0 0.5

0.5

1

1
0

p1

0 5 10

0

p1

kT/ kT/

0

0.5

1

H H

Fig. 13.7 The fraction of populations of the two states of a 
two-level system as a function of temperature (eqn 13.12). 
Note that as the temperature approaches infinity, the
populations of the two states become equal (and the 
fractions both approach 0.5).

interActivity Consider a three-level system with levels 0, ε, 
and 2ε. Plot the functions p0, p1, and p2 against kT/ε.

system will be found in the upper energy state; however, we see
from eqn 13.12 that, as T → ∞, the populations of states become
equal. The same conclusion is true of multilevel systems too: as
T → ∞, all states become equally populated.

Example 13.4 Using the partition function to calculate 
a population

Calculate the proportion of I2 molecules in their ground, first
excited, and second excited vibrational states at 25°C. The 
vibrational wavenumber is 214.6 cm−1.

Method Vibrational energy levels have a constant separation
(in the harmonic approximation, Section 2.4), so the parti-
tion function is given by eqn 13.10 and the populations by
eqn 13.11. To use the latter equation, we identify the index i
with the quantum number v, and calculate pv for v = 0, 1, and
2. At 298.15 K, kT/hc = 207.224 cm−1.

Answer First, we note that

Then it follows from eqn 13.11 that the populations are

pv = (1 − e−βε)e−vβε = 0.645e−1.036v

Therefore, p0 = 0.645, p1 = 0.229, p2 = 0.081. The I-I bond is
not stiff and the atoms are heavy: as a result, the vibrational
energy separations are small and at room temperature several
vibrational levels are significantly populated, as may be seen
in the electronic absorption spectrum, where transitions are
observed that originate from several vibrational levels. The
value of the partition function, q = 1.55, reflects this small but
significant spread of populations.

Self-test 13.5 At what temperature would the v = 1 level of I2

have (a) half the population of the ground state, (b) the same
population as the ground state? [(a) 445 K, (b) infinite]

13.3 Contributions to the molecular 
partition function

The energy of a molecule is the sum of contributions from its
different modes of motion:

εi = ε i
T + ε i

R + εi
V + ε i

E (13.13)

where T denotes translation, R rotation, V vibration, and E 
the electronic contribution. The electronic contribution is not
actually a ‘mode of motion’, but it is convenient to include it
here. The separation of terms in eqn 13.13 is only approximate
(except for translation) because the modes are not completely
independent, but in most cases it is satisfactory. The separation
of the electronic and vibrational motions is justified provided
only the ground electronic state is occupied (for otherwise the
vibrational characteristics depend on the electronic state) and,
for the electronic ground state, that the Born–Oppenheimer 
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approximation is valid (Chapter 5). The separation of the vibra-
tional and rotational modes is justified to the extent that the 
rotational constant is independent of the vibrational state.

Given that the energy is a sum of independent contributions,
the partition function factorizes into a product of contributions:

(13.14)

= qTqRqVqE

This factorization means that we can investigate each contri-
bution separately. In general, exact analytical expressions for
partition functions cannot be obtained. However, closed appro-
ximate expressions can often be found and prove to be very 
important for understanding chemical phenomena; they are 
derived in the following sections and collected in Table 13.1.

(a) The translational contribution

The translational partition function for a particle of mass m
free to move in a one-dimensional container of length X can be
evaluated by making use of the fact that the separation of energy
levels is very small and that large numbers of states are accessible
at normal temperatures. As shown in the Justification below, in
this case
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(13.15a)

It will prove convenient to anticipate once again that β = 1/kT
and to write this expression as

(13.15b)

The quantity Λ (upper-case lambda) has the dimensions of
length and is called the thermal wavelength (sometimes the
thermal de Broglie wavelength) of the molecule. The thermal
wavelength decreases with increasing mass and temperature.
This expression shows that the partition function for transla-
tional motion increases with the length of the box and the mass
of the particle, for in each case the separation of the energy 
levels becomes smaller and more levels become thermally acces-
sible. For a given mass and length of the box, the partition func-
tion also increases with increasing temperature (decreasing β),
because more states become accessible.

Justification 13.2 The partition function for a particle in a
one-dimensional box

The energy levels of a molecule of mass m in a container of
length X are given by eqn 2.5 with L = X:

The lowest level (n = 1) has energy h2/8mX2, so the energies
relative to that level are

εn = (n2 − 1)ε ε = h2/8mX2
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Table 13.1 Contributions to the molecular partition function

Mode Expression Value

Translation

Rotation

Linear molecules

Non-linear molecules

Vibration

For T >> θV,

Electronic q E = g0 [+ higher terms] 
where g0 is the degeneracy of the electronic ground state

Note that β = 1/kT.
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The sum to evaluate is therefore

The translational energy levels are very close together in a
container the size of a typical laboratory vessel; therefore, the
sum can be approximated by an integral:

The extension of the lower limit to n = 0 and the replacement
of n2 − 1 by n2 introduces negligible error but turns the integ-
ral into standard form. We make the substitution x2 = n2βε,
implying dn = dx/(βε)1/2, and therefore that

The total energy of a molecule free to move in three dimensions
is the sum of its translational energies in all three directions:

εn1n2n3
= ε(X)

n1
+ ε(Y)

n2
+ ε(Z)

n3
(13.16)

where n1, n2, and n3 are the quantum numbers for motion in the
x-, y-, and z-directions, respectively. Therefore, because ea+b+c =
eaebec, the partition function factorizes as follows:

(13.17)

= q T
X q T

Y q T
Z

Equation 13.15 gives the partition function for translational
motion in the x-direction. The only change for the other two 
directions is to replace the length X by the length Y or Z. Hence
the partition function for motion in three dimensions is

(13.18a)

The product of lengths XYZ is the volume, V, of the container,
so we can write

(13.18b)

with Λ as defined in eqn 13.15b. As in the one-dimensional case,
the partition function increases with the mass of the particle (as
m3/2) and the volume of the container (as V); for a given mass
and volume, the partition function increases with temperature
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(as T 3/2). As in one dimension, q T → ∞ as T → ∞ because an
infinite number of states becomes accessible as the temperature
is raised. Even at room temperature q T ≈ 2 × 1028 for an O2

molecule in a vessel of volume 100 cm3.

l A BRIEF ILLUSTRATION

To calculate the translational partition function of an H2

molecule confined to a 100 cm3 vessel at 25°C we use m =
2.016mu; then

= 7.12 × 10−11 m

where we have used 1 J = 1 kg m2 s−2. Therefore,

About 1026 quantum states are thermally accessible, even at
room temperature and for this light molecule. Many states
are occupied if the thermal wavelength (which in this case is
71.2 pm) is small compared with the linear dimensions of the
container. l

Self-test 13.6 Calculate the translational partition function
for a D2 molecule under the same conditions.

[q = 7.8 × 1026, 23/2 times larger]

The validity of the approximations that led to eqn 13.18 can
be expressed in terms of the average separation, d, of the par-
ticles in the container. Because q is the total number of accessible
states, the average number of states per molecule is q /N. For this
quantity to be large, we require V/NΛ3 >> 1. However, V/N is the
volume occupied by a single particle, and therefore the average
separation of the particles is d = (V/N)1/3. The condition for
there being many states available per molecule is therefore d3/Λ3

>> 1, and therefore d >> Λ. That is, for eqn 13.18 to be valid, the
average separation of the particles must be much greater than their
thermal wavelength. For H2 molecules at 1 bar and 298 K, the 
average separation is 3 nm, which is significantly larger than
their thermal wavelength (71.2 pm).

The validity of eqn 13.18 can be expressed in a different way
by noting that the approximations that led to it are valid if many
states are occupied, which requires V/Λ3 to be large. That will be
so if Λ is small compared with the linear dimensions of the con-
tainer. For H2 at 25°C, Λ = 71 pm, which is far smaller than any
conventional container is likely to be (but comparable to pores
in zeolites or cavities in clathrates). For O2, a heavier molecule,
Λ = 18 pm.
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(b) The rotational contribution

The partition function of a nonsymmetrical (AB) linear rotor is

(13.19)

The direct method of calculating q R is to substitute the experi-
mental values of the rotational energy levels into this expression
and to sum the series numerically.

Example 13.5 Evaluating the rotational partition function explicitly

Evaluate the rotational partition function of 1H35Cl at 25°C,
given that è = 10.591 cm−1.

Method We use eqn 13.19 and evaluate it term by term. Once
again, we use kT/hc = 207.224 cm−1 at 298.15 K. The sum is
readily evaluated by using mathematical software.

Answer To show how successive terms contribute, we draw
up the following table by using hcè/kT = 0.051 11 (Fig. 13.8):

J 0 1 2 3 4 . . . 10

(2J + 1)e−0.05111J(J+1) 1 2.71 3.68 3.79 3.24 . . . 0.08

The sum required by eqn 13.19 (the sum of the numbers in the
second row of the table) is 19.9, hence q R = 19.9 at this tem-
perature. Taking J up to 50 gives qR = 19.902. Notice that about
ten J-levels are significantly populated but the number of popu-
lated states is larger on account of the (2J + 1)-fold degeneracy
of each level. We shall shortly encounter the approximation
that q R ≈ kT/hcè, which in the present case gives q R = 19.6, in
good agreement with the exact value and with much less work.

Self-test 13.7 Evaluate the rotational partition function for
HCl at 0°C. [18.26]

q R e= + − +∑( ) ( )2 1 1J hc J J

J

β è

1 2 3 4 5 6 7 8 9 100
0

1

2

3

4

J

C
o

n
tr

ib
u

ti
o

n

Fig. 13.8 The contributions to the rotational partition function
of an HCl molecule at 25°C. The vertical axis is the value of 
(2J + 1)e−βhcèJ(J+1). Successive terms (which are proportional to
the populations of the levels) pass through a maximum because
the population of individual states decreases exponentially, 
but the degeneracy of the levels increases with J.

At room temperature kT/hc ≈ 200 cm−1. The rotational con-
stants of many molecules are close to 1 cm−1 (Tables 10.2 and
13.2) and often smaller (though the very light H2 molecule, for
which è = 60.9 cm−1, is one exception). It follows that many 
rotational levels are populated at normal temperatures. When
this is the case, the partition function may be approximated by

Linear rotors: (13.20a)

Non-linear rotors: (13.20b)

where é, è, and ê are the rotational constants of the molecule
expressed as wavenumbers. However, before using these expres-
sions, read on (to eqns 13.21 and 13.22).

Justification 13.3 The rotational contribution to the molecular
partition function

When many rotational states are occupied and kT is much
larger than the separation between neighbouring states, the
sum in the partition function can be approximated by an 
integral, much as we did for translational motion:

This integral can be evaluated without much effort by 
making the substitution x = βhcèJ( J + 1), so that dx/dJ =
βhcè(2J + 1) and therefore (2J + 1)dJ = dx/βhcè. Then

which (because β = 1/kT) is eqn 13.20. The calculation for 
a non-linear molecule is along the same lines, but slightly
trickier. It, and the origin of the factor π1/2 in eqn 13.20b, is
described in Further information 13.2.
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Synoptic table 13.2* Rotational and
vibrational temperatures

Molecule Mode θV/K θR/K

H2 6330 88

HCl 4300 15.2

I2 39 0.053

CO2 ν1 1997 0.561

ν2 3380

ν3 960

* For more values, see Table 10.2 in the Data section
and use hc/k = 1.439 K cm.
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A useful way of expressing the temperature above which the
rotational approximation is valid is to introduce the characteristic
rotational temperature, θR = hcè/k. Then ‘high temperature’
means T >> θR and under these conditions the rotational parti-
tion function of a linear molecule is simply T/θR. Some typical
values of θR are shown in Table 13.2. The value for H2 is abnor-
mally high and we must be careful with the approximation for
this molecule.

The general conclusion at this stage is that molecules with
large moments of inertia (and hence small rotational constants
and low characteristic rotational temperatures) have large rota-
tional partition functions. The large value of qR reflects the close-
ness in energy (compared with kT) of the rotational levels in
large, heavy molecules, and the large number of rotational states
that are accessible at normal temperatures.

We must take care, however, not to include too many rota-
tional states in the sum. For a homonuclear diatomic molecule
or a symmetrical linear molecule (such as CO2 or HC.CH), 
a rotation through 180° results in an indistinguishable state of
the molecule. Hence, the number of thermally accessible states 
is only half the number that can be occupied by a heteronuclear
diatomic molecule, where rotation through 180° does result in a
distinguishable state. Therefore, for a symmetrical linear molecule,

(13.21a)

The equations for symmetrical and nonsymmetrical molecules
can be combined into a single expression by introducing the
symmetry number, σ, which is the number of indistinguishable
orientations of the molecule. Then

(13.21b)

For a heteronuclear diatomic molecule σ = 1; for a homonuclear
diatomic molecule or a symmetrical linear molecule, σ = 2.

Justification 13.4 The origin of the symmetry number

The quantum mechanical origin of the symmetry number is
the Pauli principle, which forbids the occupation of certain
states. We saw in Section 10.5, for example, that H2 may 
occupy rotational states with even J only if its nuclear spins
are paired (para-hydrogen), and odd J states only if its 
nuclear spins are parallel (ortho-hydrogen). There are three
states of ortho-H2 to each value of J (because there are three
parallel spin states of the two nuclei).

To set up the rotational partition function we note that
‘ordinary’ molecular hydrogen is a mixture of one part para-
H2 (with only its even-J rotational states occupied) and three
parts ortho-H2 (with only its odd-J rotational states occupied).
Therefore, the average partition function per molecule is
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The odd-J states are more heavily weighted than the even-J
states (Fig. 13.9). From the figure we see that we would obtain
approximately the same answer for the partition function
(the sum of all the populations) if each J term contributed
half its normal value to the sum. That is, the last equation can
be approximated as

and this approximation is very good when many terms con-
tribute (at high temperatures, T >> 88 K).

The same type of argument may be used for linear 
symmetrical molecules in which identical bosons are inter-
changed by rotation (such as CO2). As pointed out in Section
10.5, if the nuclear spin of the bosons is 0, then only even-J
states are admissible. Because only half the rotational states
are occupied, the rotational partition function is only half 
the value of the sum obtained by allowing all values of J to
contribute (Fig. 13.10).
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2

12 1( ) ( )J hc J J
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0   1 J

Fig. 13.9 The values of the individual terms (2J + 1)e−βhcèJ(J+1)

contributing to the mean partition function of a 3:1 mixture of
ortho- and para-H2. The partition function is the sum of all these
terms. At high temperatures, the sum is approximately equal to
the sum of the terms over all values of J, each with a weight of 1–2.
This is the sum of the contributions indicated by the curve.

0      2 J

Fig. 13.10 The relative populations of the rotational energy levels
of CO2. Only states with even J values are occupied. The full line
shows the smoothed, averaged population of levels.



422 13 THE BOLTZMANN DISTRIBUTION

The same care must be exercised for other types of symmetrical
molecule, and for a non-linear molecule we write

(13.22)

Some typical values of the symmetry
numbers are given in Table 13.3. The
value σ(H2O) = 2 reflects the fact that 
a 180° rotation about the bisector of 
the H-O-H angle interchanges two 
indistinguishable atoms. In NH3, there
are three indistinguishable orientations
around the axis shown in (1). For CH4,
any of three 120° rotations about any 
of its four C-H bonds leaves the mole-
cule in an indistinguishable state (2), so
the symmetry number is 3 × 4 = 12. For
benzene, any of six orientations around
the axis perpendicular to the plane of the
molecule leaves it apparently unchanged 
(Fig. 13.11), as does a rotation of 180° around any of six axes in
the plane of the molecule (three of which pass along each C-H
bond and the remaining three pass through each C-C bond in
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the plane of the molecule). For the way that group theory is used
to identify the value of the symmetry number, see Problem 13.18.

(c) The vibrational contribution

The vibrational partition function of a molecule is calculated 
by substituting the measured vibrational energy levels into the
exponentials appearing in the definition of qV, and summing
them numerically. In a polyatomic molecule each normal mode
(Section 10.12) has its own partition function (provided the 
anharmonicities are so small that the modes are independent).
The overall vibrational partition function is the product of the
individual partition functions, and we can write qV = qV(1)qV(2)
. . ., where qV(K) is the partition function for the Kth normal
mode and is calculated by direct summation of the observed
spectroscopic levels.

If the vibrational excitation is not too great, the harmonic 
approximation may be made, and the vibrational energy levels
written as

Ev = (v + 1–2)hc# v = 0, 1, 2, . . . (13.23)

If, as usual, we measure energies from the zero-point level, then
the permitted values are εv = vhc# and the partition function is

(because eax = (ex)a). We evaluated an essentially identical sum
in Example 13.3 and in this case can write:

(13.24)

This function is plotted in Fig. 13.12. In a polyatomic molecule,
each normal mode gives rise to a partition function of this form.
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Synoptic table 13.3* Symmetry numbers

Molecule σ

H2O 2

NH3 3

CH4 12

C6H6 12

* For more values, see Table 10.2 in the Data section.
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Fig. 13.11 The 12 equivalent orientations of a benzene molecule
that can be reached by pure rotations, and give rise to a
symmetry number of 12.

0 5 10

10

5

0

V

kT hc/ ~

1

	

Fig. 13.12 The vibrational partition function of a molecule in the
harmonic approximation. Note that the partition function is
linearly proportional to the temperature when the temperature
is high (T >> θV).

interActivity Plot the temperature dependence of the 
vibrational contribution to the molecular partition function 

for several values of the vibrational wavenumber. Estimate from
your plots the temperature above which the harmonic oscillator
is in the ‘high temperature’ limit.
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That is, for weak bonds at high temperatures,

(13.25)

The temperatures for which eqn 13.25 is valid can be expressed
in terms of the characteristic vibrational temperature, θV =
hc#/k (Table 13.2). The value for H2 is abnormally high because
the atoms are so light and the vibrational frequency is corres-
pondingly high. In terms of the vibrational temperature, ‘high
temperature’ means T >> θV and, when this condition is satisfied,
qV = T/θV (the analogue of the rotational expression).

(d) The electronic contribution

Electronic energy separations from the ground state are usually
very large, so for most cases q E = 1. An important exception
arises in the case of atoms and molecules having electronically
degenerate ground states, in which case q E = g E, where g E is the
degeneracy of the electronic ground state. Alkali metal atoms, for
example, have doubly degenerate ground states (corresponding
to the two orientations of their electron spin), so q E = 2.

Some atoms and molecules have low-lying electronically 
excited states. (At high enough temperatures, all atoms and
molecules have thermally accessible excited states.) An example
is NO, which has a configuration of the form . . . π1 (see Impact
I5.1). The orbital angular momentum may take two orientations
with respect to the molecular axis (corresponding to circulation
clockwise or counter-clockwise around the axis), and the spin
angular momentum may also take two orientations, giving four
states in all (Fig. 13.13). The energy of the two states in which the
orbital and spin momenta are parallel (giving the 2Π3/2 term) is

  
q V = =

1

βhc

kT

hc# #

  
q V =

− − +
1

1 1( )βhc#
Example 13.6 Calculating a vibrational partition function

The wavenumbers of the three normal modes of H2O are
3656.7 cm−1, 1594.8 cm−1, and 3755.8 cm−1. Evaluate the 
vibrational partition function at 1500 K.

Method Use eqn 13.24 for each mode, and then form 
the product of the three contributions. At 1500 K, kT/hc =
1042.6 cm−1.

Answer We draw up the following table displaying the con-
tributions of each mode:

Mode: 1 2 3

#/cm−1 3656.7 1594.8 3755.8

hc#/kT 3.507 1.530 3.602

qV 1.031 1.276 1.028

The overall vibrational partition function is therefore

qV = 1.031 × 1.276 × 1.028 = 1.352

The three normal modes of H2O are at such high wavenum-
bers that even at 1500 K most of the molecules are in their 
vibrational ground state. However, there may be so many
normal modes in a large molecule that their excitation may
be significant even though each mode is not appreciably 
excited. For example, a non-linear molecule containing 10
atoms has 3N − 6 = 24 normal modes (Section 10.12). If we
assume a value of about 1.1 for the vibrational partition func-
tion of one normal mode, the overall vibrational partition
function is about qV ≈ (1.1)24 = 9.8, which indicates signi-
ficant vibrational excitation relative to a smaller molecule,
such as H2O.

Self-test 13.8 Repeat the calculation for CO2, where the 
vibrational wavenumbers are 1388 cm−1, 667.4 cm−1, and
2349 cm−1, the second being the doubly degenerate bending
mode. [6.79]

In many molecules the vibrational wavenumbers are so great
that βhc# > 1. For example, the lowest vibrational wavenumber
of CH4 is 1306 cm−1, so βhc# = 6.3 at room temperature. Most
C-H stretches normally lie in the range 2850 to 2960 cm−1,
so for them βhc# ≈ 14. In these cases, e−βhc# in the denominator
of qV is very close to zero (for example, e−6.3 = 0.002), and the 
vibrational partition function for a single mode is very close to 1
(qV = 1.002 when βhc# = 6.3), implying that only the zero-point
level is significantly occupied.

Now consider the case of bonds with such low vibrational 
frequencies that βhc# << 1. When this condition is satisfied, 
the partition function may be approximated by expanding the
exponential (ex = 1 + x + . . .):
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Fig. 13.13 The doubly degenerate ground electronic level of NO
(with the spin and orbital angular momenta around the axis in
opposite directions) and the doubly degenerate first excited level
(with the spin and orbital momenta parallel). The upper level is
thermally accessible at room temperature.
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slightly greater than that of the two other states in which they are
antiparallel (giving the 2Π1/2 term). The separation, which arises
from spin–orbit coupling, is only 121 cm−1. Hence, at normal
temperatures, all four states are thermally accessible. If we 
denote the energies of the two levels as E1/2 = 0 and E3/2 = ε, the
partition function is

(13.26)

Figure 13.14 shows the variation of this function with tempera-
ture. At T = 0, q E = 2, because only the doubly degenerate ground
state is accessible. At high temperatures, q E approaches 4 because
all four states are accessible. At 25°C, q E = 3.1.

IMPACT ON BIOCHEMISTRY

I13.1 The helix–coil transition in polypeptides

The hydrogen bonds between amino acids of a polypeptide give
rise to stable helical or sheet structures, which may collapse into
a random coil when certain conditions are changed. The un-
winding of a helix into a random coil is a cooperative transition,
in which the polymer becomes increasingly more susceptible to
structural changes once the process has begun. We examine here
a model based on the principles of statistical thermodynamics
that accounts for the cooperativity of the helix–coil transition in
polypeptides.

To calculate the fraction of polypeptide molecules present as
helix or coil we need to set up the partition function for the vari-
ous states of the molecule. To illustrate the approach, consider 

  

q E

energy levels

e e= = +− −∑ g j
j

jβε βε2 2

a short polypeptide with four amino acid residues, each labelled
h if it contributes to a helical region and c if it contributes to 
a random coil region. We suppose that conformations hhhh
and cccc contribute terms q0 and q4, respectively, to the partition
function q. Then we assume that each of the four conformations
with one c amino acid (such as hchh) contributes q1. Similarly,
each of the six states with two c amino acids contributes a term
q2, and each of the four states with three c amino acids con-
tributes a term q3. The partition function is then

We shall now suppose that each partition function differs from
q0 only by the energy of each conformation relative to hhhh, and
write

Next, we suppose that the conformational transformations are
non-cooperative, in the sense that the energy associated with
changing one h amino acid into one c amino acid has the same
value regardless of how many h or c amino acid residues are in
the reactant or product state and regardless of where in the chain
the conversion occurs. That is, we suppose that the difference in
energy between cih4−i and ci+1h3−i has the same value γ for all i.
This assumption implies that εi − ε0 = iγ and therefore that

q = q0(1 + 4s + 6s2 + 4s3 + s4) s = e−γ /kT = e−Γ/RT (13.27)

where Γ = NAγ and s is called the stability parameter. The term in
parentheses has the form of the binomial expansion of (1 + s)4.

with (13.28)

which we interpret as the number of ways in which a state with i
c amino acids can be formed. The extension of this treatment to
take into account a longer chain of residues is now straightfor-
ward: we simply replace the upper limit of 4 in the sum by n:

(13.29)

A cooperative transformation is more difficult to accom-
modate, and depends on building a model of how neighbours
facilitate each other’s conformational change. In the simple zipper
model, conversion from h to c is allowed only if a residue adja-
cent to the one undergoing the conversion is already a c residue.
Thus, the zipper model allows a transition of the type . . . hhhch
. . . → . . . hhhcc . . . , but not a transition of the type . . . hhhch
. . . → . . . hchch. . . . The only exception to this rule is, of course,
the very first conversion from h to c in a fully helical chain.
Cooperativity is included in the zipper model by assuming that
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Fig. 13.14 The variation with temperature of the electronic
partition function of an NO molecule. Note that the curve
resembles that for a two-level system (Fig. 13.5), but rises from 2
(the degeneracy of the lower level) and approaches 4 (the total
number of states) at high temperatures.
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your plots, estimate the temperature at which the population of
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the first conversion from h to c, called the nucleation step, is less
favourable than the remaining conversions and replacing s for
that step by σs, where σ << 1. Each subsequent step is called a
propagation step and has a stability parameter s. In this case it is
found that

(13.30)

The fraction pi = qi /q of molecules that has a number i of c amino
acids is pi = [(n − i + 1)σsi]/(q/q0) for i > 0 and the mean value of
i is then 〈i 〉 = ∑i ipi. Figure 13.15 shows the distribution of pi for
various values of s with σ = 5.0 × 10−3. We see that most of the
polypeptide chains remain largely helical when s < 1 and that
most of the chains exist largely as random coils when s > 1. When
s = 1, there is a more widespread distribution of length of random
coil segments.

A more sophisticated model for the helix–coil transition must
allow for helical segments to form in different regions of a long
polypeptide chain, with the nascent helices being separated by
shrinking coil segments. Calculations based on this more com-
plete Zimm–Bragg model give

(13.31)

Figure 13.16 shows plots of θ against s for several values of σ.
The curves show the sigmoidal shape characteristic of coopera-
tive behaviour. There is a sudden surge of transition to a random
coil as s passes through 1 and, the smaller the parameter σ, the
greater the sharpness and hence the greater the cooperativity 
of the transition. That is, the harder it is to get coil formation
started, the sharper the transition from helix to coil.

13.4 The mean energy
The importance of the molecular partition function is that it
contains all the information needed to calculate the bulk prop-
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erties of a system of independent particles. In this respect, as we
remarked in the introduction, q plays a role for bulk matter very
similar to that played by the wavefunction in quantum mechan-
ics for individual molecules: q is a kind of thermal wavefunction.

We shall begin to unfold the importance of q by showing how
to derive an expression for the mean energy of a molecule in a
system of independent particles. The mean energy of a molecule,
〈ε〉, relative to its energy in its ground state, is the total energy of
the system divided by the total number of molecules:

(13.32)

Because the most probable configuration is so strongly domin-
ating, we can use the Boltzmann distribution for the ratio Ni/N
and write

(13.33)

To manipulate this expression into a form involving only q we
note that

It follows that

(13.34)

l A BRIEF ILLUSTRATION

From the two-level partition function q = 1 + e−βε, we can 
deduce that the mean energy at a temperature T is
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Fig. 13.15 The distribution of pi, the fraction of molecules that has
a number i of c amino acids for s = 0.8 (〈i 〉 = 1.1), 1.0 (〈i 〉 = 3.8),
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of cooperative behaviour.
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This function is plotted in Fig. 13.17. Notice how the mean
energy is zero at T = 0, when only the lower state (at the zero
of energy) is occupied, and rises to 1–2ε as T → ∞, when the two
levels become equally populated. l

A brief comment To reinforce the analogy between statistical
thermodynamics and quantum mechanics, note the resemb-
lance of eqn 13.34 written as

to the time-dependent Schrödinger equation written as

There are several points in relation to eqn 13.34 that need to
be made. Because ε0 = 0, (remember that we measure all energies
from the lowest available level), 〈ε〉 should be interpreted as the
value of the mean energy relative to its ground-state (zero-
point) energy. If the lowest energy of the molecule is in fact εgs

rather than 0, then the true mean energy is εgs + 〈ε〉. For instance,
for an harmonic oscillator, we would set εgs equal to the zero-
point energy, 1–2hc#. Secondly, because the partition function
may depend on variables other than the temperature (for exam-
ple, the volume), the derivative with respect to β in eqn 13.34 is
actually a partial derivative with these other variables held con-
stant. The complete expression relating the molecular partition
function to the mean energy of a molecule is therefore
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(13.35a)

An equivalent form is obtained by noting that dx/x = d ln x:

(13.35b)

These two equations confirm that we need know only the parti-
tion function (as a function of temperature) to calculate the mean
energy.

We shall now show how to use the partition functions calcu-
lated in Section 13.3 to calculate the mean energy of each mode
of motion of independent, non-interacting molecules.

(a) The translational contribution

For a one-dimensional system of length X, for which q T = X/Λ,
with Λ = h(β/2πm)1/2, we note that Λ is a constant multiplied by
β1/2, and obtain

(13.36a)

For a molecule free to move in three dimensions, the analogous
calculation leads to

〈εT〉 = 3–2kT (13.36b)

The equipartition theorem of classical mechanics is con-
sistent with this result and provides a useful short cut. First, we
need to know that a ‘quadratic contribution’ to the energy
means a contribution that can be expressed as the square of a
variable, such as the position or the velocity. For example, the 
kinetic energy of an atom of mass m as it moves through three-
dimensional space is

Ek = 1–2mvx
2 + 1–2mvy

2 + 1–2mvz
2

and there are three quadratic contributions to its energy. The
equipartition theorem then states that for a collection of parti-
cles at thermal equilibrium at a temperature T, the average value
of each quadratic contribution to the energy is the same and equal
to 1–2kT, where k is Boltzmann’s constant. (For the molar energy,
we multiply by Avogadro’s constant and use NAk = R.) The
equipartition theorem is a conclusion from classical mechanics
and is applicable only when the effects of quantization can be 
ignored. In practice, it can be used for molecular translation and
rotation but not vibration.
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Fig. 13.17 The total energy of a two-level system (expressed 
as a multiple of Nε) as a function of temperature, on two
temperature scales. The graph on the left shows the slow rise
away from zero energy at low temperatures; the slope of the
graph at T = 0 is 0 (that is, the heat capacity is zero at T = 0). 
The graph on the right shows the slow rise to 0.5 as T → ∞
as both states become equally populated (see Fig. 13.7).

interActivity Draw graphs similar to those in Fig. 13.17 for 
a three-level system with levels 0, ε, and 2ε.
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A note on good practice You will commonly see the equipar-
tition theorem expressed in terms of the ‘degrees of freedom’
rather than quadratic contributions. That can be misleading
and is best avoided, for a single vibrational degree of freedom
has two quadratic contributions (the kinetic energy and the
potential energy).

According to the equipartition theorem, the average energy 
of each term in the expression above is 1–2kT. Therefore, the 
mean energy of the atoms is 3–2kT and their molar energy is 3–2RT
(because NAk = R). At 25°C, 3–2RT = 3.7 kJ mol−1, so translational
motion contributes about 4 kJ mol−1 to the molar internal 
energy of a gaseous sample of atoms or molecules (the remain-
ing contribution arises from the internal structure of the atoms
and molecules).

(b) The rotational contribution

The mean rotational energy of a linear molecule is obtained
from the partition function given in eqn 13.19. When the tem-
perature is low (T < θR), the series must be summed term by
term, which for a heteronuclear diatomic molecule or other
nonsymmetrical linear molecule gives

q R = 1 + 3e−2βhcè + 5e−6βhcè + . . .

Hence, because

we find

(13.37a)

This function is plotted in Fig. 13.18. At high temperatures (T >>
θR), q R is given by eqn 13.21a and

(13.37b)

(q R is independent of V, so the partial derivatives have been re-
placed by complete derivatives.) The high-temperature result,
which is valid when many rotational states are occupied, is also
in agreement with the equipartition theorem, for the classical
expression for the energy of a linear rotor is Ek = 1–2I⊥ω a

2 + 1–2I⊥ω b
2

and therefore has two quadratic contributions. (There is no 
rotation around the line of atoms.) It follows from the equipar-
tition theorem that the mean rotational energy is 2 × 1–2kT = kT.
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(c) The vibrational contribution

The vibrational partition function in the harmonic approxima-
tion is given in eqn 13.24. Because qV is independent of the volume,
it follows that

(13.38)

and hence from

that

(13.39)

The zero-point energy, 1–2hc#, can be added to the right-hand side
if the mean energy is to be measured from 0 rather than the low-
est attainable level (the zero-point level). The variation of the
mean energy with temperature is illustrated in Fig. 13.19. At
high temperatures, when T >> θV, or βhc# << 1, the exponential
function can be expanded (ex = 1 + x + . . .) and all but the lead-
ing terms discarded. This approximation leads to

(13.40)
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Fig. 13.18 The mean rotational energy of a nonsymmetrical 
linear rotor as a function of temperature. At high temperatures
(T >> θR), the energy is linearly proportional to the temperature,
in accord with the equipartition theorem.

interActivity Plot the temperature dependence of the mean 
rotational energy for several values of the rotational 

constant (for reasonable values of the rotational constant, 
see the Data resource section). From your plots, estimate the
temperature at which the mean rotational energy begins to
increase sharply.
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This result is in agreement with the value predicted by the 
classical equipartition theorem, because the energy of a one-
dimensional oscillator is E = 1–2mvx

2 + 1–2kx2 and the mean energy
of each quadratic term is 1–2kT.

(d) The overall contribution

Atoms without low-lying excited states have only translational
degrees of freedom, so their mean energy is given by eqn 13.36b.
When a gas consists of polyatomic molecules, we need to take
into account the effect of rotation and vibration. A linear
molecule, such as N2 and CO2, can rotate around two axes 
perpendicular to the line of the atoms, so it has two rotational
modes of motion, each contributing a term 1–2kT to the mean 
energy. Therefore, the mean rotational energy is kT. By adding
the translational and rotational contributions, we obtain

〈ε〉 = εgs + 5–2kT (linear molecule, translation 
and rotation only)

(13.41a)

where εgs is the vibrational ground-state energy, typically the
only state significantly populated at normal temperatures. A
non-linear molecule, such as CH4 or water, can rotate around
three axes and, again, each mode of motion contributes a term
1–2kT to the mean energy. Therefore, the mean rotational energy
is 3–2kT. That is,

〈ε〉 = εgs + 3kT (non-linear molecule, 
translation and rotation only)

(13.41b)

The mean energy now increases twice as rapidly with tempera-
ture compared with the monatomic gas.

The energy of interacting molecules in condensed phases also
has a contribution from the potential energy of their interaction.
However, no simple expressions can be written down in general.
Nevertheless, the crucial molecular point is that, as the temper-
ature of a system is raised, the mean energy increases as the 
various modes of motion become more highly excited.

The canonical partition function

In this section we see how to generalize our conclusions to 
include systems composed of interacting molecules. We shall
also see how to obtain the molecular partition function from the
more general form of the partition function developed here.
This section just sets up the general approach: we shall show
how it is applied when we deal with real gases (Section 14.10).

13.5 The canonical ensemble

The crucial new concept we need when treating systems of inter-
acting particles is the ‘ensemble’. Like so many scientific terms,
the term has basically its normal meaning of ‘collection’, but it
has been sharpened and refined into a precise significance.

(a) The concept of ensemble

To set up an ensemble, we take a closed system of specified 
volume, composition, and temperature, and think of it as 
replicated Ñ times (Fig. 13.20). All the identical closed systems
are regarded as being in thermal contact with one another, so
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Fig. 13.19 The mean vibrational energy of a molecule in the
harmonic approximation as a function of temperature. At high
temperatures (T >> θV), the energy is linearly proportional to the
temperature, in accord with the equipartition theorem.

interActivity Plot the temperature dependence of the mean 
vibrational energy for several values of the vibrational 

wavenumber (for reasonable values of the vibrational
wavenumber, see the Data section). From your plots, estimate
the temperature at which the mean vibrational energy begins 
to increase sharply.
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Fig. 13.20 A representation of the canonical ensemble, in this case
for Ñ = 20. The individual replications of the actual system all
have the same composition and volume. They are all in mutual
thermal contact, and so all have the same temperature. Energy
may be transferred between them as heat, and so they do not all
have the same energy. The total energy L of all 20 replications is a
constant because the ensemble is isolated overall.
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they can exchange energy. The total energy of all the systems is L
and, because they are in thermal equilibrium with one another,
they all have the same temperature, T. The volume of each
member of the ensemble is the same, so the energy levels avail-
able to the molecules are the same in each system, and each
member contains the same number of molecules, so there is a
fixed number of molecules to distribute within each system.
This imaginary collection of replications of the actual system
with a common temperature is called the canonical ensemble.

The word ‘canon’ means ‘according to a rule’. There are two
other important ensembles. In the microcanonical ensemble the
condition of constant temperature is replaced by the require-
ment that all the systems should have exactly the same energy:
each system is individually isolated. In the grand canonical en-
semble the volume and temperature of each system is the same,
but they are open, which means that matter can be imagined as
able to pass between the systems; the composition of each one may
fluctuate, but now the property known as the chemical potential
(which is described in Section 16.3) is the same in each system:

Microcanonical ensemble: N, V, E common
Canonical ensemble: N, V, T common
Grand canonical ensemble: μ, V, T common

The microcanonical ensemble was silently the basis of the dis-
cussion earlier in this chapter; we shall not consider the grand
canonical ensemble explicitly.

The important point about an ensemble is that it is a collec-
tion of imaginary replications of the system, so we are free to let
the number of members be as large as we like; when appropriate,
we can let Ñ become infinite. The number of members of the 
ensemble in a state with energy Ei is denoted Ñi, and we can speak
of the configuration of the ensemble (by analogy with the con-
figuration of the system used in Section 13.1) and its weight,ò.
Note that Ñ is unrelated to N, the number of molecules in the 
actual system; Ñ is the number of imaginary replications of that
system.

(b) Dominating configurations

Just as in Section 13.1, some of the configurations of the canon-
ical ensemble will be very much more probable than others. For
instance, it is very unlikely that the whole of the total energy, 
L, will accumulate in one system. By analogy with the earlier 
discussion, we can anticipate that there will be a dominating
configuration, and that we can evaluate the thermodynamic
properties by taking the average over the ensemble using that
single, most probable, configuration. In the thermodynamic
limit of Ñ → ∞, this dominating configuration is overwhelm-
ingly the most probable, and it dominates the properties of the
system virtually completely.

The quantitative discussion follows the argument in Section
13.1 with the modification that N and Ni are replaced by Ñ and
Ñi. The weight of a configuration {Ñ0, Ñ1, . . .} is

(13.42)

The configuration of greatest weight, subject to the constraints
that the total energy of the ensemble is constant at L and that the
total number of members is fixed at Ñ, is given by the canonical
distribution:

(13.43)

where the sum is over all members of the ensemble, each one
having an energy Ei. The quantity Q , which is a function of the
temperature, is called the canonical partition function.

(c) Fluctuations from the most probable distribution

The canonical distribution in eqn 13.43 is only apparently an 
exponentially decreasing function of the energy of the system.
We must appreciate that the equation gives the probability of
occurrence of members in a single state i of the entire system 
of energy Ei. There may in fact be numerous states with almost
identical energies. For example, in a gas the identities of the
molecules moving slowly or quickly can change without neces-
sarily affecting the total energy. The density of states, the num-
ber of states in an energy range divided by the width of the range
(Fig. 13.21), is a very sharply increasing function of energy. It
follows that the probability of a member of an ensemble having
a specified energy (as distinct from being in a specified state) is
given by eqn 13.43, a sharply decreasing function, multiplied by
a sharply increasing function (Fig. 13.22). Therefore, the overall
distribution is a sharply peaked function. We conclude that
most members of the ensemble have an energy very close to the
mean value.

13.6 The mean energy of a system

Just as the molecular partition function can be used to calculate
the mean value of a molecular property, so the canonical parti-
tion function can be used to calculate the mean energy of an 
entire system composed of molecules (that might or might 
not be interacting with one another). Thus, Q is more general
than q because it does not assume that the molecules are 
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Fig. 13.21 The energy density of states is the number of states in
an energy range divided by the width of the range.
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independent. We can therefore use Q to discuss the properties of
condensed phases and real gases where molecular interactions
are important.

If the total energy of the ensemble is L, and there are Ñ mem-
bers, the average energy of a member is 〈E〉 = L/Ñ. Because the
fraction, ói, of members of the ensemble in a state i with energy
Ei is given by the analogue of eqn 13.8 as

(13.44)

it follows that

(13.45)

By the same argument that led to eqn 13.34,

(13.46)

As in the case of the mean molecular energy, we must add to this
expression the ground-state energy of the entire system if that is
not zero.

13.7 Independent molecules

We shall now see how to recover the molecular partition func-
tion from the more general canonical partition function when
the molecules are independent. When the molecules are inde-
pendent and distinguishable (in the sense to be described), the
relation between Q and q is

Q = q N (13.47)
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Justification 13.5 The relation between Q and q

The total energy of a collection of N independent molecules
is the sum of the energies of the molecules. Therefore, we can
write the total energy of a state i of the system as

Ei = εi(1) + εi(2) + . . . + εi(N)

In this expression, εi(1) is the energy of molecule 1 when the
system is in the state i, εi(2) the energy of molecule 2 when the
system is in the same state i, and so on. The canonical parti-
tion function is then

The sum over the states of the system can be reproduced 
by letting each molecule enter all its own individual states 
(although we meet an important proviso shortly). Therefore,
instead of summing over the states i of the system, we can
sum over all the individual states j of molecule 1, all the states
j of molecule 2, and so on. This rewriting of the original 
expression leads to

If all the molecules are identical and free to move through
space, we cannot distinguish them and the relation Q = q N is not
valid. Suppose that molecule 1 is in some state a, molecule 2 is in
b, and molecule 3 is in c, then one member of the ensemble has
an energy E = εa + εb + εc. This member, however, is indistin-
guishable from one formed by putting molecule 1 in state b,
molecule 2 in state c, and molecule 3 in state a, or some other
permutation. There are six such permutations in all, and N! in
general. In the case of indistinguishable molecules, it follows
that we have counted too many states in going from the sum
over system states to the sum over molecular states, so writing 
Q = q N overestimates the value of Q . The detailed argument is
quite involved, but at all except very low temperatures it turns
out that the correction factor is 1/N!. Therefore:

• For distinguishable independent molecules: Q = q N (13.48a)
• For indistinguishable independent molecules: Q = q N/N!

(13.48b)

For molecules to be indistinguishable, they must be of the same
kind: an Ar atom is never indistinguishable from a Ne atom.
Their identity, however, is not the only criterion. Each identical
molecule in a crystal lattice, for instance, can be ‘named’ with a
set of coordinates. Identical molecules in a lattice can therefore
be treated as distinguishable because their sites are distinguishable,
and we use eqn 13.48a. On the other hand, identical molecules
in a gas are free to move to different locations, and there is no
way of keeping track of the identity of a given molecule; we
therefore use eqn 13.48b.
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Fig. 13.22 To construct the form of the distribution of members
of the canonical ensemble in terms of their energies, we multiply
the probability that any one is in a state of given energy, eqn
13.43, by the number of states corresponding to that energy 
(a steeply rising function). The product is a sharply peaked
function at the mean energy, which shows that almost all the
members of the ensemble have that energy.
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Checklist of key ideas

1. The instantaneous configuration of a system of N molecules
is the specification of the set of populations N0, N1, . . . of the
energy levels ε0, ε1, . . . . The weight W of a configuration is
given by W = N!/N0!N1! . . . .

2. The Boltzmann distribution gives the numbers of 
molecules in each state of a system at any temperature: 
Ni = Ne−βεi/q, β = 1/kT.

3. The molecular partition function is defined as 

and is an indication of the number of thermally accessible
states at the temperature of interest.

4. If the energy of a molecule is given by the sum of
translational, rotational, vibrational, and electronic
contributions, then the molecular partition function 
is a product of contributions from the different modes.

5. The translational partition function of a molecule freely
moving in a volume V is given by q T = V/Λ3 where Λ is the
thermal wavelength defined in eqn 13.15b.

6. The rotational partition function for a nonsymmetrical
linear rotor is given by eqn 13.19. When T >> θR, where 
θR is the characteristic rotational temperature hcè/k, the
rotational partition function for a linear rotor is q R = T/σθR,
where σ is the symmetry number.

7. The vibrational partition function for a harmonic oscillator
is given by eqn 13.24.

8. Since electronic energy separations from the ground state
are usually very big, in most cases q E is the degeneracy of 
the electronic ground state.

9. The mean energy of a molecule can be expressed in terms of
the molecular partition function as given in eqn 13.35b.

10. The mean translational energy of a molecule free to move 
in three dimensions is 3–2kT.

11. The canonical ensemble is an imaginary collection of
replications of the actual system with a common temperature.

q = −∑e βεi

i

12. The canonical distribution is given by Ñi /Ñ = e−βEi/Q

where is the canonical partition function.

13. The mean energy of the system is Egs − (∂ ln Q /∂β)V where 
Egs is the ground-state energy of the entire system.

14. For distinguishable independent molecules we write 
Q = q N. For indistinguishable independent molecules 
we write Q = q N/N !.

Q = −∑e βE

i

i

Further information

Further information 13.1 The derivation of the 
Boltzmann distribution

We remarked in Section 13.1 that ln W is easier to handle than W.
Therefore, to find the form of the Boltzmann distribution, we look for
the condition for ln W being a maximum rather than dealing directly
with W. Because ln W depends on all the Ni, when a configuration
changes and the Ni change to Ni + dNi, the function ln W changes to 
ln W + d ln W, where
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All this expression states is that a change in ln W is the sum of
contributions arising from changes in each value of Ni. At a maximum, 
d ln W = 0. However, when the Ni change, they do so subject to the two
constraints

(13.49)

The first constraint recognizes that the total energy must not change, 
and the second recognizes that the total number of molecules must 
not change. These two constraints prevent us from solving d ln W = 0
simply by setting all (∂ ln W/∂Ni) = 0 because the dNi are not all
independent.
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Table 13.4 List of symbols

Symbol Meaning

Microcanonical ensemble (N, V, E common); think: molecule

Ni Number of molecules in the state of energy εi

εi Relative energy of the state i (ε0 = 0)

N Total number of molecules in a system

E Total energy of a system

q Molecular partition function

〈ε〉 Mean energy of molecules, relative to ε0 = 0, 〈ε〉 = E/N

W Weight of a configuration of the system

Canonical ensemble (N, V, T common); think: entire system

Ñi Number of members of the ensemble in a state with energy Ei

Ei Energy of the state of a system

Ñ Total number of replications of the system

L Total energy of the ensemble

Q Canonical partition function

〈E〉 Mean energy of a system, 〈E 〉 = L/Ñ, relative to E0 = 0

W Weight of a configuration of the ensemble
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The way to take constraints into account was devised by the French
mathematician Lagrange, and is called the method of undetermined
multipliers.1 All we need here is the rule that a constraint should be
multiplied by a constant and then added to the main variation equation.
The variables are then treated as though they were all independent, and
the constants are evaluated at the end of the calculation.

We employ the technique as follows. The two constraints in eqn 13.49
are multiplied by the constants −β and α, respectively (the minus sign in
−β has been included for future convenience), and then added to the
expression for d ln W :

All the dNi are now treated as independent. Hence the only way of
satisfying d ln W = 0 is to require that, for each i,

(13.50)

when the Ni have their most probable values.
Equation 13.3 for W is

There is a small housekeeping step to take before differentiating ln W
with respect to Ni: this equation is identical to

because all we have done is to change the ‘name’ of the states from i to j.
This step makes sure that we do not confuse the i in the differentiation
variable (Ni) with the i in the summation. Now differentiation of this
expression gives

(13.51)

The derivative of the first term is obtained as follows:

(13.52)

The ln N in the first term on the right in the second line arises because 
N = N1 + N2 + . . . and so the derivative of N with respect to any of the 
Ni is 1: that is, ∂N/∂Ni = 1. The second term on the right in the second
line arises because ∂(ln N)/∂Ni = (1/N)∂N/∂Ni. The final 1 is then
obtained in the same way as in the preceding remark, by using 
∂N/∂Ni = 1.
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For the derivative of the second term we first note that
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Morever, if i ≠ j, Nj is independent of Ni, so ∂Nj /∂Ni = 0. However, if i = j,

(13.54)

Therefore,

(13.55)

with δij the Kronecker delta (δij = 1 if i = j, δij = 0 otherwise). Then

and therefore
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It follows from eqn 13.50 that

and therefore that

(13.57)

At this stage we note that

Because the N cancels on each side of this equality, it follows that

(13.58)

and

which is eqn 13.6a.
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1 For a detailed account, see our Physical chemistry (2007).
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Further information 13.2 The partition functions of polyatomic rotors

The energies of a symmetric rotor are

EJ,K,MJ
= hcèJ(J + 1) + hc(é − è)K2

with J = 0, 1, 2, . . . , K = J, J − 1, . . . , −J, and MJ = J, J − 1, . . . , −J. Instead
of considering these ranges, we can cover the same values by allowing K
to range from −∞ to ∞, with J confined to |K |, |K | + 1, . . . , ∞ for each
value of K (Fig. 13.23). Because the energy is independent of MJ, and
there are 2J + 1 values of MJ for each value of J, each value of J is (2J + 1)-
fold degenerate. It follows that the partition function

can be written equivalently as

(13.59)
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Now we assume that the temperature is so high that numerous states are
occupied and that the sums may be approximated by integrals. Then

(13.60)

As before, the integral over J can be recognized as the integral of the
derivative of a function, which is the function itself, so

(13.61)

In the last line we have supposed that |K | >> 1 for most contributions.
Now we can write

(13.62)

For an asymmetric rotor, one of the ès is replaced by ê, to give 
eqn 13.20b.
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Discussion questions

13.1 Describe the physical significance of the partition function.

13.2 Describe how the internal energy of a system composed of two
levels varies with temperature.

13.3 Discuss the relationship between ‘population’, ‘configuration’, 
and ‘weight’. What is the significance of the most probable
configuration?

13.4 What are the significance and importance of the principle of equal 
a priori probabilities?

13.5 What is temperature?

13.6 What is the difference between a ‘state’ and an ‘energy level’? 
Why is it important to make this distinction?

13.7 Discuss the conditions under which energies predicted from the
equipartition theorem coincide with energies computed by using
partition functions.

13.8 Explain what is meant by an ensemble and why it is useful in
statistical thermodynamics.

13.9 Under what circumstances may identical particles be regarded as
distinguishable?

13.10 Discuss the role of the Boltzmann distribution in chemistry.
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Fig. 13.23 (a) The sum over J = 0, 1, 2, . . . and K = J, J − 1, . . . , 
−J (depicted by the circles) can be covered (b) by allowing K to
range from −∞ to ∞, with J confined to |K |, |K | + 1, . . . , ∞ for
each value of K.
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Exercises

13.1(a) Calculate the weight of the configuration in which 16 objects are
distributed in the arrangement 0, 1, 2, 3, 8, 0, 0, 0, 0, 2.

13.1(b) Calculate the weight of the configuration in which 21 objects are
distributed in the arrangement 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 0, 1.

13.2(a) Evaluate 8! by using (a) the exact formula, (b) Stirling’s
approximation, (c) the improved version of Stirling’s approximation.

13.2(b) Evaluate 10! by using (a) the exact formula, (b) Stirling’s
approximation, (c) the improved version of Stirling’s approximation.

13.3(a) What are the relative populations of the states of a two-level
system when the temperature is infinite?

13.3(b) What are the relative populations of the states of a two-level
system as the temperature approaches zero?

13.4(a) What is the temperature of a two-level system of energy
separation equivalent to 400 cm−1 when the population of the upper
state is one-third that of the lower state?

13.4(b) What is the temperature of a two-level system of energy
separation equivalent to 300 cm−1 when the population of the upper
state is one-half that of the lower state?

13.5(a) Calculate the relative populations of a linear rotor in the levels
with J = 0 and J = 5, given that è = 2.71 cm−1 and a temperature of 298 K.

13.5(b) Calculate the relative populations of a spherical rotor in the levels
with J = 0 and J = 5, given that è = 2.71 cm−1 and a temperature of 298 K.

13.6(a) A certain molecule has a non-degenerate excited state lying at 
540 cm−1 above the non-degenerate ground state. At what temperature
will 10 per cent of the molecules be in the upper state?

13.6(b) A certain molecule has a doubly degenerate excited state lying at
360 cm−1 above the non-degenerate ground state. At what temperature
will 15 per cent of the molecules be in the upper level?

13.7(a) Calculate (a) the thermal wavelength, (b) the translational
partition function at (i) 300 K and (ii) 3000 K of a molecule of molar
mass 150 g mol−1 in a container of volume 1.00 cm3.

13.7(b) Calculate (a) the thermal wavelength, (b) the translational
partition function of a Ne atom in a cubic box of side 1.00 cm at 
(i) 300 K and (ii) 3000 K.

13.8(a) Calculate the ratio of the translational partition functions of H2
and He at the same temperature and volume.

13.8(b) Calculate the ratio of the translational partition functions of Ar
and Ne at the same temperature and volume.

13.9(a) The bond length of O2 is 120.75 pm. Use the high-temperature
approximation to calculate the rotational partition function of the
molecule at 300 K.

13.9(b) The bond length of N2 is 109.75 pm. Use the high-temperature
approximation to calculate the rotational partition function of the
molecule at 300 K.

13.10(a) The NOF molecule is an asymmetric rotor with rotational
constants 3.1752 cm−1, 0.3951 cm−1, and 0.3505 cm−1. Calculate the
rotational partition function of the molecule at (a) 25°C, (b) 100°C.

13.10(b) The H2O molecule is an asymmetric rotor with rotational
constants 27.877 cm−1, 14.512 cm−1, and 9.285 cm−1. Calculate the
rotational partition function of the molecule at (a) 25°C, (b) 100°C.

13.11(a) The rotational constant of CO is 1.931 cm−1. Evaluate the
rotational partition function explicitly (without approximation) and
plot its value as a function of temperature. At what temperature is the
value within 5 per cent of the value calculated from the approximate
formula?

13.11(b) The rotational constant of HI is 6.511 cm−1. Evaluate the
rotational partition function explicitly (without approximation) and
plot its value as a function of temperature. At what temperature is the
value within 5 per cent of the value calculated from the approximate
formula?

13.12(a) The rotational constant of CH4 is 5.241 cm−1. Evaluate the
rotational partition function explicitly (without approximation but
ignoring the role of nuclear statistics) and plot its value as a function 
of temperature. At what temperature is the value within 5 per cent of the
value calculated from the approximate formula?

13.12(b) The rotational constant of CCl4 is 0.0572 cm−1. Evaluate the
rotational partition function explicitly (without approximation but
ignoring the role of nuclear statistics) and plot its value as a function of
temperature. At what temperature is the value within 5 per cent of the
value calculated from the approximate formula?

13.13(a) The rotational constants of CH3Cl are é = 5.097 cm−1 and 
è = 0.443 cm−1. Evaluate the rotational partition function explicitly
(without approximation but ignoring the role of nuclear statistics) and
plot its value as a function of temperature. At what temperature is the
value within 5 per cent of the value calculated from the approximate
formula?

13.13(b) The rotational constants of NH3 are é = 6.196 cm−1 and 
è = 9.444 cm−1. Evaluate the rotational partition function explicitly
(without approximation but ignoring the role of nuclear statistics) and
plot its value as a function of temperature. At what temperature is the
value within 5 per cent of the value calculated from the approximate
formula?

13.14(a) Give the symmetry number for each of the following molecules:
(a) CO, (b) O2, (c) H2S, (d) SiH4, and (e) CHCl3.

13.14(b) Give the symmetry number for each of the following molecules:
(a) CO2, (b) O3, (c) SO3, (d) SF6, and (e) Al2Cl6.

13.15(a) Estimate the rotational partition function of ethene at 25°C
given that é = 4.828 cm−1, è = 1.0012 cm−1, and ê = 0.8282 cm−1. 
Take the symmetry number into account.

13.15 (b) Evaluate the rotational partition function of pyridine, 
C5H5N, at room temperature given that é = 0.2014 cm−1, 
è = 0.1936 cm−1, ê = 0.0987 cm−1. Take the symmetry number 
into account.

13.16(a) The vibrational wavenumber of Br2 is 323.2 cm−1. Evaluate 
the vibrational partition function (without approximation) and plot
its value as a function of temperature. At what temperature is the 
value within 5 per cent of the value calculated from the approximate
formula?

13.16(b) The vibrational wavenumber of I2 is 214.5 cm−1. Evaluate 
the vibrational partition function (without approximation) and 
plot its value as a function of temperature. At what temperature is the
value within 5 per cent of the value calculated from the approximate
formula?
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13.17(a) Calculate the vibrational partition function of CS2 at 500 K
given the wavenumbers 658 cm−1 (symmetric stretch), 397 cm−1

(bend; two modes), 1535 cm−1 (asymmetric stretch).

13.17(b) Calculate the vibrational partition function of HCN at 900 K
given the wavenumbers 3311 cm−1 (symmetric stretch), 712 cm−1

(bend; two modes), 2097 cm−1 (asymmetric stretch).

13.18(a) Calculate the vibrational partition function of CCl4 at 
500 K given the wavenumbers 459 cm−1 (symmetric stretch, A), 
217 cm−1 (deformation, E), 776 cm−1 (deformation, T), 314 cm−1

(deformation, T).

13.18(b) Calculate the vibrational partition function of CI4 at 
500 K given the wavenumbers 178 cm−1 (symmetric stretch, A), 
90 cm−1 (deformation, E), 555 cm−1 (deformation, T), 125 cm−1

(deformation, T).

13.19(a) A certain atom has a fourfold degenerate ground level, a 
non-degenerate electronically excited level at 2500 cm−1, and a twofold
degenerate level at 3500 cm−1. Calculate the partition function of these
electronic states at 1900 K. What is the relative population of each level
at 1900 K?

13.19(b) A certain atom has a triply degenerate ground level, a 
non-degenerate electronically excited level at 850 cm−1, and a fivefold
degenerate level at 1100 cm−1. Calculate the partition function of these
electronic states at 2000 K. What is the relative population of each level
at 2000 K?

13.20(a) Compute the mean energy at 298 K of a two-level system of
energy separation equivalent to 500 cm−1.

13.20(b) Compute the mean energy at 400 K of a two-level system of
energy separation equivalent to 600 cm−1.

13.21(a) Evaluate, by explicit summation, the mean rotational energy 
of CO and plot its value as a function of temperature. Use the data in
Exercise 13.11a. At what temperature is the equipartition value within 
5 per cent of the accurate value?

13.21(b) Evaluate, by explicit summation, the mean rotational energy 
of HI and plot its value as a function of temperature. Use the data in
Exercise 13.11b. At what temperature is the equipartition value within 
5 per cent of the accurate value?

13.22(a) Evaluate, by explicit summation, the mean rotational energy 
of CH4 and plot its value as a function of temperature. Use the data in
Exercise 13.12a. At what temperature is the equipartition value within 
5 per cent of the accurate value?

13.22(b) Evaluate, by explicit summation, the mean rotational energy 
of CCl4 and plot its value as a function of temperature. Use the data in
Exercise 13.12b. At what temperature is the equipartition value within 
5 per cent of the accurate value?

13.23(a) Evaluate, by explicit summation, the mean rotational energy 
of CH3Cl and plot its value as a function of temperature. Use the data 
in Exercise 13.13a. At what temperature is the equipartition value within
5 per cent of the accurate value?

13.23(b) Evaluate, by explicit summation, the mean rotational energy 
of NH3 and plot its value as a function of temperature. Use the data in

Exercise 13.13b. At what temperature is the equipartition value within 
5 per cent of the accurate value?

13.24(a) Evaluate, by explicit summation, the mean vibrational energy 
of Br2 and plot its value as a function of temperature. Use the data in
Exercise 13.16a. At what temperature is the equipartition value within 
5 per cent of the accurate value?

13.24(b) Evaluate, by explicit summation, the mean vibrational energy 
of I2 and plot its value as a function of temperature. Use the data in
Exercise 13.16b. At what temperature is the equipartition value within 
5 per cent of the accurate value?

13.25(a) Evaluate, by explicit summation, the mean vibrational energy 
of CS2 and plot its value as a function of temperature. Use the data in
Exercise 13.17a. At what temperature is the equipartition value within 
5 per cent of the accurate value?

13.25(b) Evaluate, by explicit summation, the mean vibrational energy 
of HCN and plot its value as a function of temperature. Use the data in
Exercise 13.17b. At what temperature is the equipartition value within 
5 per cent of the accurate value?

13.26(a) Evaluate, by explicit summation, the mean vibrational energy 
of CCl4 and plot its value as a function of temperature. Use the data in
Exercise 13.18a. At what temperature is the equipartition value within 
5 per cent of the accurate value?

13.26(b) Evaluate, by explicit summation, the mean vibrational energy 
of CI4 and plot its value as a function of temperature. Use the data in
Exercise 13.18b. At what temperature is the equipartition value within 
5 per cent of the accurate value?

13.27(a) Calculate the mean contribution to the electronic energy at 
1900 K for a sample composed of the atoms specified in Exercise 13.19a.

13.27(b) Calculate the mean contribution to the electronic energy 
at 2000 K for a sample composed of the atoms specified in 
Exercise 13.19b.

13.28(a) An electron spin can adopt either of two orientations in 
a magnetic field, and its energies are ±μBB, where μB is the Bohr
magneton. Deduce an expression for the partition function and mean
energy of the electron and sketch the variation of the functions with B.
Calculate the relative populations of the spin states at (a) 4.0 K, 
(b) 298 K when B = 1.0 T.

13.28(b) A nitrogen nuclear spin can adopt any of three orientations in a
magnetic field, and its energies are 0, ±γ $B, where γN is the magnetogyric
ratio of the nucleus. Deduce an expression for the partition function and
mean energy of the nucleus and sketch the variation of the functions
with B. Calculate the relative populations of the spin states at (a) 1.0 K,
(b) 298 K when B = 20.0 T.

13.29(a) Identify the systems for which it is essential to include a factor 
of 1/N! on going from Q to q : (a) a sample of helium gas, (b) a sample of
carbon monoxide gas, (c) a solid sample of carbon monoxide, (d) water
vapour.

13.29(b) Identify the systems for which it is essential to include a factor 
of 1/N! on going from Q to q : (a) a sample of carbon dioxide gas, 
(b) a sample of graphite, (c) a sample of diamond, (d) ice.
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Problems*

Numerical problems
13.1 A sample consisting of five molecules has a total energy 5ε. Each
molecule is able to occupy states of energy jε, with j = 0, 1, 2,. . . . (a)
Calculate the weight of the configuration in which the energy is
distributed evenly over the available molecules. (b) Draw up a table with
columns headed by the energy of the states and write beneath them all
configurations that are consistent with the total energy. Calculate the
weights of each configuration and identify the most probable
configurations.

13.2 A sample of nine molecules is numerically tractable but on the
verge of being thermodynamically significant. Draw up a table of
configurations for N = 9, total energy 9ε in a system with energy levels jε
(as in Problem 13.1). Before evaluating the weights of the configurations,
guess (by looking for the most ‘exponential’ distribution of populations)
which of the configurations will turn out to be the most probable. Go on
to calculate the weights and identify the most probable configuration.

13.3 Use mathematical software to evaluate W for N = 20 for a series of
distributions over a uniform ladder of energy levels, ensuring that the
total energy is constant. Identify the configuration of greatest weight and
compare it to the distribution predicted by the Boltzmann expression.
Explore what happens as the value of the total energy is changed.

13.4 This problem is also best done using mathematical software.
Equation 13.10 is the partition function for a harmonic oscillator.
Consider a Morse oscillator (Section 10.9) in which the energy levels 
are given by eqn 10.36.

Ev = (v + 1–2 )hc# − (v + 1–2 )2hcxe#
Evaluate the partition function for this oscillator, remembering (1) to
measure energies from the lowest level and (2) to note that there is only a
finite number of levels. Plot the partition function against temperature
for a variety of values of xe and—on the same graph—compare your
results with those for a harmonic oscillator.

13.5 Explore the conditions under which the ‘integral’ approximation
for the translational partition function is not valid by considering the
translational partition function of an H atom in a one-dimensional box
of side comparable to that of a typical nanoparticle, 100 nm. Estimate the
temperature at which, according to the integral approximation, q = 10
and evaluate the exact partition function at that temperature.

13.6 An electron trapped in an infinitely deep spherical well of radius R,
such as may be encountered in the investigation of nanoparticles, has
energies given by the expression Enl = $2X 2

nl /2meR
2, with Xnl the value

obtained by searching for the zeroes of the spherical Bessel functions.
The first six values (with a degeneracy of the corresponding energy level
equal to 2l + 1) are as follows:

n l Xnl

1 0 3.142

1 1 4.493

1 2 5.763

2 0 6.283

1 3 6.988

2 1 7.725

Evaluate the partition function and mean energy of an electron as a
function of temperature. Choose the temperature range and radius 
to be so low that only these six energy levels need be considered. 
Hint. Remember to measure energies from the lowest level.

13.7 A certain atom has a doubly degenerate ground level pair and an
upper level of four degenerate states at 450 cm−1 above the ground level.
In an atomic beam study of the atoms it was observed that 30 per cent of
the atoms were in the upper level, and the translational temperature of
the beam was 300 K. Are the electronic states of the atoms in thermal
equilibrium with the translational states?

13.8 (a) Calculate the electronic partition function of a tellurium atom
at (i) 298 K, (ii) 5000 K by direct summation using the following data:

Term Degeneracy Wavenumber/cm−1

Ground 5 0

1 1 4707

2 3 4751

3 5 10 559

(b) What proportion of the Te atoms are in the ground term and in the
term labelled 2 at the two temperatures?

13.9 The four lowest electronic levels of a Ti atom are: 3F2, 3F3, 3F4, and
5F1, at 0, 170, 387, and 6557 cm−1, respectively. There are many other
electronic states at higher energies. The boiling point of titanium is
3287°C. What are the relative populations of these levels at the boiling
point? Hint. The degeneracies of the levels are 2J + 1.

13.10 The NO molecule has a doubly degenerate excited electronic 
level 121.1 cm−1 above the doubly degenerate electronic ground term.
Calculate and plot the electronic partition function of NO from T = 0 to
1000 K. Evaluate (a) the term populations and (b) the mean electronic
energy at 300 K.

13.11‡ J. Sugar and A. Musgrove (J. Phys. Chem. Ref. Data 22, 1213
(1993)) have published tables of energy levels for germanium atoms and
cations from Ge+ to Ge+31. The lowest-lying energy levels in neutral Ge
are as follows:

3P0
3P1

3P2
1D2

1S0

(E/hc)/cm−1 0 557.1 1410.0 7125.3 16367.3

Calculate the electronic partition function at 298 K and 1000 K by direct
summation. Hint. The degeneracy of a level J is 2J + 1.

13.12 The pure rotational microwave spectrum of HCl has absorption
lines at the following wavenumbers (in cm−1): 21.19, 42.37, 63.56, 84.75,
105.93, 127.12, 148.31, 169.49, 190.68, 211.87, 233.06, 254.24, 275.43,
296.62, 317.80, 338.99, 360.18, 381.36, 402.55, 423.74, 444.92, 466.11,
487.30, 508.48. Calculate the rotational partition function at 25°C by
direct summation.

13.13 Calculate, by explicit summation, the vibrational partition
function and the vibrational contribution to the energy of I2 molecules 
at (a) 100 K, (b) 298 K given that its vibrational energy levels lie at the
following wavenumbers above the zero-point energy level: 0, 213.30,
425.39, 636.27, 845.93 cm−1. What proportion of I2 molecules are in the
ground and first two excited levels at the two temperatures?

* Problems denoted with the symbol ‡ were supplied by Charles Trapp and Carmen Giunta.
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Theoretical problems

13.14 Explore the consequences of using the full version of Stirling’s
approximation, x! ≈ (2π)1/2xx+1/2e−x, in the development of the
expression for the configuration of greatest weight. Does the more
accurate approximation have a significant effect on the form of the
Boltzmann distribution?

13.15 The most probable configuration is characterized by a parameter
we know as the ‘temperature’. The temperatures of the system specified
in Problems 13.1 and 13.2 must be such as to give a mean value of ε
for the energy of each molecule and a total energy Nε for the system. 
(a) Show that the temperature can be obtained by plotting pj against j,
where pj is the (most probable) fraction of molecules in the state 
with energy jε. Apply the procedure to the system in Problem 13.2. 
What is the temperature of the system when ε corresponds to 50 cm−1?
(b) Choose configurations other than the most probable, and show 
that the same procedure gives a worse straight line, indicating that a
temperature is not well-defined for them.

13.16 Consider a system with energy levels εj = jε and N molecules. 
(a) Show that if the mean energy per molecule is aε, then the
temperature is given by

Evaluate the temperature for a system in which the mean energy is ε,
taking ε equivalent to 50 cm−1. (b) Calculate the molecular partition
function q for the system when its mean energy is aε.

13.17 Deduce an expression for the root mean square energy, 〈ε2〉1/2, 
in terms of the partition function and hence an expression for the root
mean square deviation from the mean, Δε = (〈ε2〉 − 〈ε〉2)1/2. Evaluate 
the resulting expression for a harmonic oscillator.

13.18 A formal way of arriving at the value of the symmetry number 
is to note that σ is the order (the number of elements) of the rotational
subgroup of the molecule, the point group of the molecule with all but
the identity and the rotations removed. Identify the symmetry number
of (a) H2O, (b) NH3, (c) CH4, (d) benzene. In each case, specify the
elements of the subgroup.

13.19‡ For gases, the canonical partition function, Q , is related to the
molecular partition function q by Q = q N/N!. Use the expression for 
q and general thermodynamic relations to derive the perfect gas law 
pV = nRT.

Applications: to atmospheric science, astrophysics, and
biochemistry

13.20‡ The variation of the atmospheric pressure p with altitude h
is predicted by the barometric formula to be p = p0 e

−h/H where p0 is the
pressure at sea level and H = RT/Mg with M the average molar mass of
air and T the average temperature. Obtain the barometric formula from
the Boltzmann distribution. Recall that the potential energy of a particle
at height h above the surface of the Earth is mgh. Convert the barometric
formula from pressure to number density, N . Compare the relative
number densities, N (h)/N (0), for O2 and H2O at h = 8.0 km, a typical
cruising altitude for commercial aircraft.

13.21‡ Planets lose their atmospheres over time unless they are
replenished. A complete analysis of the overall process is very
complicated and depends upon the radius of the planet, temperature,

β
ε

= +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
1

1
ln

a

atmospheric composition, and other factors. Prove that the atmosphere
of planets cannot be in an equilibrium state by demonstrating that the
Boltzmann distribution leads to a uniform finite number density as 
r → ∞. Hint. Recall that in a gravitational field the potential energy is
V(r) = −GMm/r, where G is the gravitational constant, M is the mass 
of the planet, and m the mass of the particle.

13.22‡ Consider the electronic partition function of a perfect atomic
hydrogen gas at a density of 1.99 × 10−4 kg m−3 and 5780 K. These are 
the mean conditions within the Sun’s photosphere, the surface layer of
the Sun that is about 190 km thick. (a) Show that this partition function,
which involves a sum over an infinite number of quantum states that are
solutions to the Schrödinger equation for an isolated atomic hydrogen
atom, is infinite. (b) Develop a theoretical argument for truncating the
sum and estimate the maximum number of quantum states that
contribute to the sum. (c) Calculate the equilibrium probability that an
atomic hydrogen electron is in each quantum state. Are there any general
implications concerning electronic states that will be observed for other
atoms and molecules? Is it wise to apply these calculations in the study of
the Sun’s photosphere?

13.23 Consider a protein P with four distinct sites, with each site 
capable of binding one ligand L. Show that the possible varieties
(‘configurations’) of the species PLi (with PL0 denoting P) are given 
by the binomial coefficients C(4,i).

13.24 Complete some of the derivations in the discussion of the
helix–coil transition in polypeptides (Impact I13.1). (a) Show that,
within the tenets of the zipper model,

and that (n − i + 1) is the number of ways in which an allowed state with
a number i of c amino acids can be formed. (b) Go on to show that

(c) Use the relations

to show that

which is eqn 13.30. (d) Using the zipper model, show that 
θ = (1/n)d(ln q)/d(ln s). Hint. As a first step, show that 
∑i i(n − i + 1)σsi = s(dq /ds).

13.25 Here you will use the zipper model discussed in Impact I13.1 to
explore the helix–coil transition in polypeptides. (a) Investigate the 
effect of the parameter s on the distribution of random coil segments in a
polypeptide with n = 20 by plotting pi, the fraction of molecules with a
number i of amino acids in a coil region, against i for s = 0.8, 1.0, and 1.5,
with σ = 5.0 × 10−2. Compare your results with those shown in Fig. 13.15
and discuss the significance of any effects you discover. (b) The average
value of i given by 〈i〉 = ∑i ipi. Use the results of the zipper model to
calculate 〈i〉 for all the combinations of s and σ used in Fig. 13.16 and
part (a).
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MATHEMATICAL BACKGROUND 7

Probability theory

Probability theory deals with quantities and events that are 
distributed randomly and shows how to calculate average values
of various kinds. We shall consider variables that take discrete
values (as in a one-dimensional random walk with a fixed step
length) and continuous values (as in the diffusion of a particle
through a fluid).

MB7.1 Discrete distributions

We denote a variable X and the discrete values that it may take xi,
i = 1, 2, . . . , N. If the probability that xi occurs is pi, then the
mean value (or expectation value) of X is

(MB7.1a)

The mean values of higher powers of X may be computed 
similarly:

(MB7.1b)

Although the mean is a useful measure, it is important to know
the width in the scatter of outcomes around the mean. There are
two related measures: one is the variance, V(X), and the other is
the standard deviation, σ(X), the square-root of the variance:

V(X) = 〈X2〉 − 〈X〉2 (MB7.2a)

σ(X) = {V(X)}1/2 = {〈X2〉 − 〈X〉2}1/2 (MB7.2b)

In certain cases, the probabilities can be expressed in a simple
way, depending on the nature of the events being considered.

(a) The binomial distribution

In a Bernoulli trial, the outcome of an observation is one of a
mutually exclusive pair (such as heads or tails in a coin toss) and
successive trials are independent (so that getting ‘heads’ on one
toss does not influence the following toss). Suppose the prob-
ability of outcome 1 is p and that of the alternative outcome 2 
is q, with p + q = 1. For a fair coin, p = q = 1–2. Then one series of 
N = 12 trials might be

thhtththttht Probability of occurrence = p5q7, and in
general pnqN−n

However, if the order in which heads come up is unimportant,
there are 12!/5!7! ways of achieving 5 heads in 12 tosses, and in
general N!/n!(N − n)! ways of achieving n ‘heads’ in N trials. The

〈 〉 =X x pn
i
n

i

N

i
=
∑

1

〈 〉 =X x pi
i

N

i
=
∑

1

probability of getting exactly n ‘heads’ is therefore the product 
of pnqN−n and the number of ways of distributing n ‘heads’ over
N trials:

(MB7.3)

The symbol is the binomial coefficient, as it occurs in the

binomial expansion (Mathematical background 1):

(MB7.4)

As a result, the expression P(n) is called the binomial distribu-
tion (Fig. MB7.1).

l A BRIEF ILLUSTRATION

We can use the binomial distribution to determine the mean
number of times that heads will be obtained in a series of N
trials (this is the average value of n, denoted 〈n〉):

A useful procedure for evaluating sums in which n is a factor
is to:

1. Introduce a dummy variable a.
2. Express the sum as a derivative with respect to a, using 

nan = adan/da to eliminate the factor n; if a power of n
occurs, apply d/da the appropriate number of times.

3. Express the resulting sum, perhaps by using eqn MB7.4.
4. Evaluate the derivative.
5. Finally, set a = 1.
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Fig. MB7.1 The binomial distribution for different values of N and 
p = q = 1–2.
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Application of this procedure to the expression for 〈n〉 above
gives:

For example the mean number of times heads is obtained for
a fair coin (p = 1–2) in 10 trials is 5. l

Self-test MB7.1 Evaluate the standard deviation σ(n).
[σ(n) = {Np(1 − p)}1/2]

Note that, although the width of the distribution increases 
(as N1/2), its value relative to the mean decreases (as N1/2/N =
1/N1/2). For tosses of a fair coin, when p = 1–2, 〈n〉 = 1–2N (half the
tosses turn up heads), and σ(n) = 1–2N1/2.

(b) The Poisson distribution

In another important type of trial, an event either takes place or
does not, such as an excited molecule dissociating into fragments
or (more mundanely) a bus arriving. At first sight it appears that
we cannot assign a meaning to the number of times an event
does not occur (how many times did the bus not arrive in an 
interval?). However, we can still assign a probability that an
event occurs by imagining an interval of time Δt that is divided
into N regions, each of duration Δt/N (or, similarly, regions 
of space Δx/N) that are so small that the probability that two 
or more events occurs in it is negligible and we have a ‘heads’ 
for the event occurring in that brief interval or tiny region and a
‘tails’ if it does not.

If the events occur at random, the probability of an event 
occurring within this tiny interval is proportional to the length
of the interval, and we can write p = Δt/Nτ, where 1/τ is a con-
stant of proportionality (we give it a physical meaning later). It
then follows that in a set of Bernoulli trials (where ‘heads’ now
corresponds to ‘did occur’ and ‘tails’ to ‘did not occur’) the total
probability that n events occur in the interval Δt = N(Δt/N) is
just the probability of getting n ‘heads’ in a total interval that
spans N of the tiny intervals:
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If then we suppose that N is very large and make use of the relation

(MB7.5)

then in a slightly involved but straightforward calculation (which
we do not reproduce here) we arrive at the Poisson distribution:

(MB7.6)

for the probability that n events will occur in the interval Δt
(Fig. MB7.2). As shown in the following brief illustration, the
mean number of events in the interval Δt is just Δt/τ, so τ can be
interpreted as the average time between events.

l A BRIEF ILLUSTRATION

To calculate the average number of events that occur in an 
interval Δt, we need to evaluate

= (Δt/τ)e−Δt/τeΔt/τ = Δt /τ

where we have used the Taylor series expansion (eqn MB1.7b)
of ex. l

Self-test MB7.2 Deduce an expression for the standard devi-
ation of n. [σ(n) = (Δt/τ)1/2]

(c) The Gaussian distribution

Suppose that a variable can take positive and negative integer
values centred on zero and that to reach a certain value n the 
system jumps to the left or right by taking steps of length λ
at random for a total of N steps. The number of ways of taking
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Fig. MB7.2 The Poisson distribution for different values of Δt/τ.
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NR steps to the right and NL to the left (with N = NR + NL) in any
one such trial of N steps is

(MB7.7)

Then, because there are 2N possible choices of direction in the
course of N steps, the probability of being n steps from the 
origin with n = NR − NL in a trial of N steps, is

(MB7.8)

A point of some subtlety and which we draw on later is that, if N
is even, then n must be even (you cannot end up an odd number
of steps from the origin if you take an even number of steps;
think about N = 4); similarly, if N is odd, then n must be odd too
(you cannot end up an even number of steps from the origin if
you take an odd number of steps; think about N = 5). Because it
then follows that N + n and N − n are both even numbers, the
factorials we have to evaluate in P(n) are of whole numbers.

To develop this expression in the case of large numbers of
steps, we take logarithms and use Stirling’s approximation

ln x! ≈ ln(2π)1/2 + (x + 1–2) ln x − x (MB7.9)

This approximation leads, after a fair amount of algebra, to

(MB7.10)

Now, we allow N to become very large and use ln(1 + x) ≈ x − 1–2x2,
and obtain

and thence obtain the Gaussian distribution

(MB7.11)

with, remember, n even if N is even and n odd if N is odd. This
bell-shaped curve is illustrated in Fig. MB7.3 for N even and 
N odd. The manipulation of the Gaussian distribution is to use 
it to discuss a continuous function, as we demonstrate in the 
following section.

MB7.2 Continuous distributions

A continuous distribution is a distribution in which the variable
can take on a continuum of values. One of the most important
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examples can be developed from the Gaussian distribution of
the preceding section as follows.

When N is very large and the xi values are so closely spaced
that the observable X can be regarded as varying continuously, 
it is useful to express the probability that X can have a value 
between x and x + dx as

dP(X) = ρ(x)dx (MB7.12)

where the function ρ(x) is the probability density, a measure of
the distribution of the probability values over x, and dx is an
infinitesimally small interval of x values. It follows that the prob-
ability that X has a value between x = a and x = b is the integral of
the expression above evaluated between a and b:

P(X; a ≤ X ≤ b) = (MB7.13)

The mean value of X continuously varying between −∞ and ∞ is
given by

(MB7.14)

with analogous expressions for the variance and standard devi-
ation. This expression is similar to that written for the case of 
discrete values of X, with ρ(x)dx as the probability term and 

〈 〉 =X x x x�
−∞

+∞

ρ( )d

  
�

a

b

x xρ( )d

0

0.05

0.1

0.15

0 2 4 6 8 10 20–2–4–6–8–10–20
n

P
n(

)

0

0.05

0.1

0.15

0 2 4 6 8 10 20–2–4–6–8–10–20
n

P
n(

)

(a)

(b)

Fig. MB7.3 The Gaussian distribution for (a) N = 40 and (b) N = 41. 
In each case the outer wings of the distribution have been trimmed at
n = ±20. The bell-shaped curve is the average of the distribution, and
corresponds to the Gaussian distribution function for a continuous
variable.
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integration over the closely spaced x values replacing summa-
tion over widely spaced xi. The mean value of a function g(X)
can be calculated with a formula similar to that for 〈X〉:

(MB7.15)

To derive the Gaussian version of the probability density we
use the random walk model in Section MB7.1 and write x = nλ,
allowing λ to be very small and n to be very large and effectively
continuous. If the width of dx spreads over a sufficiently wide
range of points then, instead of dealing with a distribution like
that in Fig. MB7.3a or like that in Fig. MB7.3b, we can deal with
the average of the two, as shown by the curves superimposed on
the distribution. That is, for a continuous distribution we use

(MB7.16)

The total probability of being in the range dx = λdn at x = nλ is
therefore

It follows that

(MB7.17a)

This expression is commonly expressed as the Gaussian distri-
bution function (or normal distribution function)

(MB7.17b)
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where σ = N1/2λ turns out to be the standard deviation of the
distribution (see below).

l A BRIEF ILLUSTRATION

If the bell-shaped curve of the Gaussian distribution function
is centred on 〈x〉, the distribution becomes

To evaluate the mean square value of x we write

We make the substitution z = (x − 〈x〉)/(2σ2)1/2, so dx =
(2σ2)1/2dz and x2 = 2σ2 z2 + 2(2σ2)1/2z〈x〉 + 〈x〉2, and obtain

l

Self-test MB7.3 Determine the standard deviation of the
normal distribution. [Equal to the width parameter σ]
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The First Law of
thermodynamics

This chapter introduces some of the basic concepts of thermodynamics. It concentrates 
on the conservation of energy—the experimental observation that energy can be neither
created nor destroyed—and shows how the principle of the conservation of energy can be
used to assess the energy changes that accompany physical and chemical processes.
Much of this chapter examines the means by which a system can exchange energy with 
its surroundings in terms of the work it may do or the heat that it may produce, and shows
how these concepts can be understood at a molecular level. Another target concept of 
the chapter is enthalpy, which is a very useful bookkeeping property for keeping track of the
heat output or requirements of physical processes and chemical reactions taking place 
at constant pressure. We also begin to unfold some of the power of thermodynamics and
statistical thermodynamics by showing how to establish relations between different prop-
erties of a system. We shall see that one very useful aspect of thermodynamics is that a
property can be measured indirectly by measuring others and then combining their values.

The discussion of the Boltzmann distribution in Chapter 13 allows us to discuss the
mean energy of a collection of molecules. That energy can be used to bring about a 
variety of processes, such as heating the surroundings or causing an electric current to
flow through a circuit. In other words, the energy stored by a collection of molecules
may be transformed into a variety of forms. Thermodynamics is the study of these
transformations of energy. The historical development of thermodynamics was in
terms of observations on the properties of bulk samples. It can still be explained in
that way, but we shall see that our understanding of its concepts is greatly enriched by
drawing on molecular concepts, and in particular the Boltzmann distribution.

The internal energy

For the purposes of thermodynamics, the universe is divided into two parts, the 
system and its surroundings. The system is the part of the world in which we have a
special interest. It may be a reaction vessel, an engine, an electrochemical cell, a bio-
logical cell, and so on. The surroundings comprise the region outside the system and
are where we make our measurements. The type of system depends on the character-
istics of the boundary that divides it from the surroundings (Fig. 14.1). If matter can
be transferred through the boundary between the system and its surroundings the 
system is classified as open. If matter cannot pass through the boundary the system 
is classified as closed. Both open and closed systems can exchange energy with their
surroundings. For example, a closed system can expand and thereby raise a weight in
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the surroundings; it may also transfer energy to them if they are
at a lower temperature. An isolated system can exchange neither
energy nor matter with its surroundings.

14.1 Work, heat, and energy

A fundamental concept in thermodynamics is work: work is
done when motion takes place against an opposing force. Doing
work is equivalent to raising a weight somewhere in the sur-
roundings. An example of doing work is the expansion of a gas
that pushes out a piston and raises a weight. A chemical reaction
that drives an electric current through a resistance also does
work, because the same current could be driven through a
motor and used to raise a weight.

In molecular terms, work is the transfer of energy that makes
use of organized motion (Fig. 14.2). When a weight is raised or
lowered, its atoms move in an organized way (up or down). The
atoms in a spring move in an orderly way when it is wound; 
the electrons in an electric current move in an orderly direction
when it flows. When a system does work it causes atoms or elec-
trons in its surroundings to move in an organized way. Likewise,
when work is done on a system, molecules in the surroundings
are used to transfer energy to it in an organized way, as the atoms
in a weight are lowered or a current of electrons is passed.

The energy of a system is its capacity to do work. When work
is done on an otherwise isolated system (for instance, by com-
pressing a gas or winding a spring), the capacity of the system to
do work is increased; in other words, the energy of the system is
increased. When the system does work (when the piston moves
out or the spring unwinds), the energy of the system is reduced
and it can do less work than before.

Experiments have shown that the energy of a system may be
changed by means other than work itself. When the energy of 
a system changes as a result of a temperature difference between
the system and its surroundings we say that energy has been
transferred as heat. When a heater is immersed in a beaker of
water (the system), the capacity of the system to do work 
increases because hot water can be used to do more work than
the same amount of cold water.

An exothermic process is one that releases energy as heat. All
combustion reactions are exothermic. An endothermic process
is one in which energy is acquired as heat. An example of an 
endothermic process is the vaporization of water. To avoid a lot
of awkward language, we say that in an exothermic process ‘heat
is released’ and in an endothermic process ‘heat is absorbed’.
However, it must never be forgotten that heat is a process (the
transfer of energy as a result of a temperature difference), not a
thing. When an endothermic process takes place in a diathermic
(thermally conducting) container, heat flows into the system
from the surroundings. When an exothermic process takes place
in a diathermic container, heat flows into the surroundings. When
an endothermic process takes place in an adiabatic (thermally
insulating) container, it results in a lowering of temperature of
the system; an exothermic process results in a rise of tempera-
ture. These features are summarized in Fig. 14.3.

In molecular terms, heating is the transfer of energy that
makes use of random molecular motion. The random motion 
of molecules is called thermal motion. The thermal motion of
the molecules in the hot surroundings stimulates the molecules
in the cooler system to move more vigorously and, as a result,
the energy of the system is increased. When a system heats its
surroundings, molecules of the system stimulate the thermal
motion of the molecules in the surroundings (Fig. 14.4).

SurroundingsSystem

Matter

Energy

(a) Open

(b) Closed (c) Isolated

Fig. 14.1 (a) An open system can exchange matter and energy
with its surroundings. (b) A closed system can exchange energy
with its surroundings, but it cannot exchange matter. (c) An
isolated system can exchange neither energy nor matter with its
surroundings.
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Fig. 14.2 When a system does work, it stimulates orderly motion
in the surroundings. For instance, the atoms shown here may be
part of a weight that is being raised. The ordered motion of the
atoms in a falling weight does work on the system.
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14.2 The First Law

In thermodynamics, the total energy of a system is called its 
internal energy, U. The internal energy is the total kinetic and
potential energy of the molecules in the system. It is ‘internal’ in
the sense that it does not include the kinetic energy arising from
the motion of the system as a whole, such as its kinetic energy as
it accompanies the Earth on its orbit round the Sun.

For a system composed of N independent molecules, the 
internal energy at a temperature T is

U(T) = U(0) + N〈ε〉 (14.1a)

where U(0) is the internal energy at T = 0 and 〈ε〉 is the mean
molecular energy (as calculated from the molecular partition func-
tion in Section 13.4) at the temperature T. For the more general
case of a system composed of interacting molecules, we write

U(T) = U(0) + 〈E 〉 (14.1b)

where 〈E 〉 is the mean energy of the system (as calculated from
the canonical partition function, Section 13.6) at the temperature
T. More formally, and as explained in Section 13.6, 〈E〉 is the mean
value of the energy of the members of a canonical ensemble in
the thermodynamic limit of Ñ → ∞.

l A BRIEF ILLUSTRATION

The molar internal energy is obtained by setting N = nNA,
where NA is Avogadro’s constant, and dividing the total 
internal energy by the amount of molecules, n, in the sample:

Um(T) = Um(0) + NA〈ε〉

We saw in Section 13.4, that the mean energy of a molecule
due to its translational motion is 3–2kT; therefore

Um(T) = Um(0) + 3–2NAkT = Um(0) + 3–2RT

At 25°C, RT = 2.48 kJ mol−1, so the translational motion con-
tributes 3.72 kJ mol−1 to the molar internal energy of gases. l

Self-test 14.1 Calculate the molar internal energy of carbon
dioxide at 25°C, taking into account its translational and 
rotational degrees of freedom. [Um(T) = Um(0) + 5–2RT]

We denote by ΔU the change in internal energy when a system
changes from an initial state i with internal energy Ui to a final
state f of internal energy Uf :

ΔU = Uf − Ui [14.2]

The internal energy of a closed system may be changed either 
by doing work on the system or by heating it. Whereas we may
know how the energy transfer has occurred (because we can 
see if a weight has been raised or lowered in the surroundings,
indicating transfer of energy by doing work, or if ice has melted
in the surroundings, indicating transfer of energy as heat), the
system is blind to the mode employed. Heat and work are equi-
valent ways of changing a system’s internal energy. A system is like 
a bank: it accepts deposits in either currency, but stores its 
reserves as internal energy. If we write w for the work done on a
system, q for the energy transferred as heat to a system, and ΔU
for the resulting change in internal energy, then

ΔU = q + w (14.3)

(b)(a)

(c) (d)

Isothermal

Heat Heat

Endothermic Exothermic

Fig. 14.3 (a) When an endothermic process occurs in an adiabatic
system, the temperature falls; (b) if the process is exothermic,
then the temperature rises. (c) When an endothermic process
occurs in a diathermic container, energy enters as heat from the
surroundings, and the system remains at the same temperature.
(d) If the process is exothermic, then energy leaves as heat, and
the process is isothermal.
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Fig. 14.4 When energy is transferred to the surroundings as heat,
the transfer stimulates random motion of the atoms in the
surroundings. Transfer of energy from the surroundings to the
system makes use of random motion (thermal motion) in the
surroundings.
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This equation employs the ‘acquisitive convention’, in which 
w > 0 or q > 0 if energy is transferred to the system as work or
heat and w < 0 or q < 0 if energy is lost from the system as work
or heat. In other words, we view the flow of energy as work or
heat from the system’s perspective.

A brief comment Be careful to distinguish q, the symbol for
energy transferred as heat, from q, the symbol for the parti-
tion function. Later you will also need to distinguish p, for
pressure, from p, for population. We use script symbols for
statistical properties.

It is an experimental fact that we cannot use a system to do
work, leave it isolated for a while, and then return to it to find 
its internal energy restored to its original value and ready to 
provide the same amount of work again. Despite the great
amount of effort that has been spent trying to build a ‘perpetual
motion machine’, a device that would be an exception to this
rule by producing work without using fuel, no one has ever suc-
ceeded in building one. In other words, eqn 14.3 is a complete
statement of how changes in internal energy may be achieved in
a closed system: the only way to change the internal energy of 
a closed system is to transfer energy into it as heat or as work. 
If the system is isolated, then even that ability is eliminated, 
and the internal energy cannot change at all. This conclusion is
known as the First Law of thermodynamics, which states:

The internal energy of an isolated system is constant.

Equation 14.3 is the mathematical statement of this law, for it
implies the equivalence of heat and work as modes of transfer 
of energy and the fact that the internal energy is constant in an
isolated system (for which q = 0 and w = 0). The First Law is
closely related to the conservation of energy (Fundamentals F.6)
but goes beyond it: the concept of heat does not apply to the 
single particles treated in classical mechanics.

l A BRIEF ILLUSTRATION

If an electric motor produced 15 kJ of energy each second as
mechanical work and lost 2 kJ as heat to the surroundings,
then the change in the internal energy of the motor each 
second is

ΔU = −2 kJ − 15 kJ = −17 kJ

Suppose that, when a spring was wound, 100 J of work was
done on it but 15 J escaped to the surroundings as heat. The
change in internal energy of the spring is

ΔU = +100 kJ − 15 kJ = +85 kJ l

According to the First Law, if an isolated system has a certain
internal energy at one instant and is inspected again later, then it
will be found to have exactly the same internal energy. Therefore,

if a second system consisting of exactly the same amount of sub-
stance in exactly the same state as the first (and therefore in-
distinguishable from the first system) is inspected, it too would
have the same internal energy as the first system. We summarize
this conclusion by saying that the internal energy is a state
function, a property that depends only on the current state of
the system and is independent of how that state was prepared.
The pressure, volume, temperature, and density of a system are
also state functions.

14.3 Expansion work

The way can now be opened to powerful methods of calculation
by switching attention to infinitesimal changes of state (such as
an infinitesimal change in temperature) and infinitesimal changes
in the internal energy dU. Then, if the work done on a system is
dw and the energy supplied to it as heat is dq, in place of eqn 14.3
we write

dU = dq + dw (14.4)

To use this expression we must be able to relate dq and dw to
events taking place in the surroundings.

We begin by discussing the important case of expansion work,
the work arising from a change in volume. This type of work 
includes the work done by a gas as it expands and drives back the
atmosphere. Many chemical reactions result in the generation
or consumption of gases (for instance, the thermal decomposi-
tion of calcium carbonate or the combustion of octane), and the
thermodynamic characteristics of a reaction depend on the work
it can do. The term ‘expansion work’ also includes work associ-
ated with negative changes of volume, that is, compression.

(a) The general expression for work

The calculation of expansion work (Fundamentals F.6) starts
from the definition used in physics, which states that the work
required to move an object a distance dz against an opposing
force of magnitude F is

dw = −Fdz [14.5]

The negative sign tells us that when the system moves an object
against an opposing force, the internal energy of the system
doing the work will decrease. Now consider the arrangement
shown in Fig. 14.5, in which one wall of a system is a massless,
frictionless, rigid, perfectly fitting piston of area A. If the exter-
nal pressure is pex, the magnitude of the force acting on the outer
face of the piston is F = pexA. When the system expands through
a distance dz against an external pressure pex, it follows that the
work done is dw = −pexAdz. But Adz is the change in volume, dV,
in the course of the expansion. Therefore, the work done when
the system expands by dV against a pressure pex is

dw = −pexdV (14.6)
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To obtain the total work done when the volume changes from Vi

to Vf we integrate this expression between the initial and final
volumes:

(14.7)

The force acting on the piston, pexA, is equivalent to a weight
that is raised as the system expands.

If the system is compressed instead, then the same weight is
lowered in the surroundings and eqn 14.7 can still be used, but
now Vf < Vi. It is important to note that it is still the external
pressure that determines the magnitude of the work. This some-
what perplexing conclusion seems to be inconsistent with the
fact that the gas inside the container is opposing the compression.
However, when a gas is compressed, the ability of the surround-
ings to do work is diminished by an amount determined by the
weight that is lowered, and it is this energy that is transferred
into the system.

Other types of work (for example, electrical work), which we
shall call non-expansion work, have analogous expressions, with
each one the product of an intensive factor (the pressure, for 
instance) and an extensive factor (the change in volume). Some
are collected in Table 14.1. For the present we continue with the
work associated with changing the volume, the expansion work,
and see what we can extract from eqns 14.6 and 14.7.

(b) Expansion against constant pressure

Now suppose that the external pressure is constant throughout
the expansion. For example, the piston may be pressed on by the
atmosphere, which exerts the same pressure throughout the ex-
pansion. A chemical example of this condition is the expansion
of a gas formed in a chemical reaction. We can evaluate eqn 14.7
by taking the constant pex outside the integral:

  
w p V

V

V

= −�
i

f

ex d Therefore, if we write the change in volume as ΔV = Vf − Vi,

w = −pexΔV (14.8)

This result is illustrated graphically in Fig. 14.6, which makes 
use of the fact that an integral can be interpreted as an area. 
The magnitude of w, denoted |w |, is equal to the area beneath
the horizontal line at p = pex lying between the initial and final 
volumes.

When the external pressure is zero (as for expansion into a
vacuum), the system undergoes free expansion. When pex = 0,
eqn 14.8 implies that the expansion work is zero, that is,

Free expansion: w = 0 (14.9)
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d = dV A z

Fig. 14.5 When a piston of area A moves out through a distance
dz, it sweeps out a volume dV = Adz. The external pressure pex

is equivalent to a weight pressing on the piston, and the force
opposing expansion is F = pexA.

Table 14.1 Varieties of work*

Type of work dw Comment Units†

Expansion −pexdV pex is the external pressure Pa

dV is the change in volume m3

Surface expansion γdσ γ is the surface tension N m−1

dσ is the change in area m2

Extension fdl f is the tension N

dl is the change in length m

Electrical φdQ φ is the electric potential V

dQ is the change in charge C

* In general, the work done on a system can be expressed in the form dw = −Fdz,
where F is a ‘generalized force’ and dz is a ‘generalized displacement’.
† For work in joules. Note that 1 N m = 1 J and 1 V C = 1 J.
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Fig. 14.6 The work done by a gas when it expands against a
constant external pressure, pex, is equal to the shaded area in this
example of an indicator diagram.
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(c) Reversible expansion

A reversible change in thermodynamics is a change that can be
reversed by an infinitesimal modification of a variable. The key
word ‘infinitesimal’ sharpens the everyday meaning of the word
‘reversible’ as something that can change direction. We say that
a system is in equilibrium with its surroundings if an infinit-
esimal change in the conditions in opposite directions results in
opposite changes in its state. One example of reversibility is the
thermal equilibrium of two systems with the same temperature.
The transfer of energy as heat between the two is reversible 
because, if the temperature of either system is lowered infinit-
esimally, then energy flows into the system with the lower temper-
ature. If the temperature of either system at thermal equilibrium
is raised infinitesimally, then energy flows out of the hotter
(higher temperature) system.

Suppose a gas is confined by a piston and that the external
pressure, pex, is set equal to the pressure, p, of the confined gas.
Such a system is in mechanical equilibrium with its surround-
ings because an infinitesimal change in the external pressure in
either direction causes changes in volume in opposite directions.
If the external pressure is reduced infinitesimally, then the gas
expands slightly. If the external pressure is increased infinit-
esimally, then the gas contracts slightly. In either case the change is
reversible in the thermodynamic sense. If, on the other hand, the
external pressure differs measurably from the internal pressure,
then changing pex infinitesimally will not decrease it below the
pressure of the gas, so will not change the direction of the process.
Such a system is not in mechanical equilibrium with its surround-
ings and the expansion is thermodynamically irreversible.

To achieve reversible expansion we set pex equal to p at each
stage of the expansion. In practice, this equalization could be
achieved by gradually removing weights from the piston so that
the downward force due to the weights always matched the
changing upward force due to the pressure of the gas. When we
set pex = p, eqn 14.6 becomes

dw = −pexdV = −pdV (14.10)rev

(Equations valid only for reversible processes are labelled with a
subscript rev.) Although the pressure inside the system appears
in this expression for the work, it does so only because pex has
been set equal to p to ensure reversibility. The total work of 
reversible expansion is therefore

(14.11)rev

We can evaluate the integral once we know how the pressure of
the confined gas depends on its volume. Equation 14.11 is the
link with the material covered in Chapter 8 for, if we know the
equation of state of the gas, then we can express p in terms of V
and evaluate the integral.
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(d) Isothermal reversible expansion

Consider the isothermal (constant temperature) reversible ex-
pansion of a perfect gas. The expansion is made isothermal by
keeping the system in thermal contact with its surroundings
(which may be a constant-temperature bath). Because the equa-
tion of state is pV = nRT, we know that at each stage p = nRT/V,
with V the volume at that stage of the expansion. The tempera-
ture T is constant in an isothermal expansion, so (together with
n and R) it may be taken outside the integral. It follows that the
work of reversible isothermal expansion of a perfect gas from Vi

to Vf at a temperature T is

(14.12)°rev

where we have used the standard integral

Expressions that are valid only for perfect gases will be labelled,
as here, with a ° sign.

When the final volume is greater than the initial volume, as in
an expansion, the logarithm in eqn 14.12 is positive and hence 
w < 0. In this case, the system has done work on the surroundings
and the internal energy of the system has decreased as a result.
We shall see later that there is a compensating influx of energy as
heat, so overall the internal energy is constant for the isothermal
expansion of a perfect gas. The equations also show that more
work is done for a given change of volume when the tempera-
ture is increased. The greater pressure of the confined gas then
needs a higher opposing pressure to ensure reversibility. We
cannot obtain more work than for the reversible process because
increasing the external pressure even infinitesimally at any stage
results in compression. We may infer from this discussion that,
because some pushing power is wasted when p > pex, the max-
imum work available from a system operating between specified
initial and final states and passing along a specified path is 
obtained when the change takes place reversibly. As in the case
of constant external pressure, the work done is equal to the 
area under the isotherm, in this case representing the balanced
internal and external pressures (Fig. 14.7).

The logarithmic term in eqn 14.12 can be explained in molecu-
lar terms by noting that, in general, an infinitesimal change in
the total energy (N〈ε〉 = ∑i εi Ni) of a collection of independent
molecules arises from a change in the energy levels εi they occupy
and a change in the populations Ni of those levels:

(14.13)

We cannot in general identify one of the terms on the right with
the work done by the system, except in the case of a reversible
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change, when the external force exerted against the system as it
expands is matched to the force exerted by the molecules inside
the system. In that case we can use the properties of the system
to calculate the external opposing force (just as we replaced pex

by p). When the volume of the system remains the same, the
only change in internal energy arises from heating and from the
consequent redistribution of populations of the unchanging 
energy levels. Therefore, the first term in eqn 14.13 can be
identified with dq. When the volume is allowed to change 
reversibly, work is done and the translational energy levels
change. Therefore, the work done by the system in the course 
of a reversible, isothermal expansion can be identified with the
second term on the right:

(14.14)rev,isothermal

We show in the following Justification that, when this expression
is applied to a collection of independent molecules in a box, we
obtain the logarithmic term in eqn 14.12.

Justification 14.1 The molecular expression for the work of
isothermal, reversible expansion

We know from Section 2.2 that the energy levels of a particle
in a box relative to its ground state are

(14.15)

The change in the energy of a level with quantum number i
when the length of a one-dimensional box changes by dL is

ε
γ

γi
i

iL
i

h

m
i= = − =

2
2

2

1
8

1 2( ) , ,…

d dw Ni i
i

= ∑ ε

(14.16)

Equation 14.14 is therefore

Provided the temperature is constant (so that 〈ε〉 = 1–2kT is
constant), we can integrate this expression between the initial
and final lengths of the box:

However, for this one-dimensional system, 〈ε〉 = 1–2kT, so

We have used N = nNA and NAk = R. In three dimensions, the
ratio of lengths is replaced by the ratio of volumes, as in the
classical calculation, and we recover eqn 14.12.

14.4 Heat transactions

In general, the change in internal energy of a closed system is

dU = dq + dw = dq + dwexp + dwe (14.17)

where, as usual, dq is the energy transferred as heat and dw the
energy transferred as work: dwe is non-expansion work, that is,
work in addition (e for ‘extra’) to the expansion work, dwexp. For
instance, dwe might be the electrical work of driving a current
through a circuit. A system kept at constant volume can do no
expansion work, so dwexp = 0. If the system is also incapable 
of doing any other kind of work (if it is not, for instance, an elec-
trochemical cell connected to an electric motor), then dwe = 0
too. Under these circumstances:

dU = dq (at constant volume, no additional work) (14.18a)

We express this relation by writing dU = dqV, where the subscript
implies a change at constant volume. For a measurable change,

ΔU = qV (at constant volume, no additional work) (14.18b)

It follows that by measuring the energy supplied to a constant-
volume system as heat (q > 0) or obtained from it as heat (q < 0)
when it undergoes a change of state, we are in fact measuring the
change in its internal energy.

In molecular terms, the influx of energy as heat does not
change the energy levels of a system, but does modify their 
populations. That is, eqn 14.13 becomes

(at constant volume, no 
additional work) (14.19a)

and for a measurable change

(at constant volume, no 
additional work)
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Fig. 14.7 The work done by a perfect gas when it expands
reversibly and isothermally is equal to the area under the
isotherm p = nRT/V. The work done during the irreversible
expansion against the same final pressure is equal to the
rectangular area shown slightly darker. Note that the reversible
work is greater than the irreversible work.

interActivity Calculate the work of isothermal reversible 
expansion of 1.0 mol CO2(g) at 298 K from 1.0 m3 to 

3.0 m3 on the basis that it obeys the van der Waals equation 
of state.
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The change in populations is due to a change in temperature,
which redistributes the molecules over the fixed energy levels.

(a) Calorimetry

Equation 14.18 is more general than at first it might look, for it
applies to a chemical reaction as well as to a system composed of
a single species. To interpret it in terms of the reaction A → B,
we imagine the energy levels of the molecules A and B as form-
ing a single ladder of levels (Fig. 14.8). It should be recalled from
Chapter 13 that the principle of equal a priori probabilities, on
which the Boltzmann distribution is based, ignores the specific
types of energy levels, treating all kinds equally: that blindness
applies to the energy levels of different species too. At the start 
of the reaction, only the levels belonging to A are occupied; 
at the end of a complete reaction, only the levels belonging to B
are occupied (later we see that equilibrium corresponds to a
Boltzmann distribution over both sets of levels.) The redistribu-
tion of populations corresponds to the ΔNi in eqn 14.19b:

(14.20)

Calorimetry is the study of heat transfer during physical and
chemical processes. A calorimeter is a device for measuring 
energy transferred as heat. The most common device for meas-
uring ΔU is an adiabatic bomb calorimeter (Fig. 14.9). The 
process we wish to study—which may be a chemical reaction—
is initiated inside a constant-volume container, the ‘bomb’. The
bomb is immersed in a stirred water bath, and the whole device
is the calorimeter. The calorimeter is also immersed in an outer
water bath. The water in the calorimeter and of the outer bath
are both monitored and adjusted to the same temperature. This
arrangement ensures that there is no net loss of heat from the
calorimeter to the surroundings (the bath) and hence that the
calorimeter is adiabatic.

Δ ΔU N N Ni i
i

i i
i

i i
i

= = −∑ ∑ ∑ε ε ε
, ,products reactants

The change in temperature, ΔT, of the calorimeter is propor-
tional to the heat that the reaction releases or absorbs. There-
fore, by measuring ΔT we can determine qV and hence find ΔU.
The conversion of ΔT to qV is best achieved by calibrating the
calorimeter using a process of known heat output, observing the
temperature rise it produces, and determining the calorimeter
constant, the constant C in the relation

q = CΔT (14.21)

The calorimeter constant may also be measured electrically by
passing a constant current, I, from a source of known potential
difference, V, through a heater for a known period of time, t, for
then

q = IV t (14.22)

A brief comment Electrical charge is measured in coulombs,
C. The motion of charge gives rise to an electric current, I,
measured in coulombs per second, or amperes, A, where 
1 A = 1 C s−1. If a constant current I flows through a potential
difference V (measured in volts, V), the total energy supplied
in an interval t is

Energy supplied = IV t

Because 1 A V s = 1 (C s−1) V s = 1 C V = 1 J, the energy is 
obtained in joules with the current in amperes, the potential
difference in volts, and the time in seconds.
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Fig. 14.8 The change in internal energy when a chemical reaction
takes place is equal to the change in mean energy between
products and reactants taking into account the Boltzmann
distribution of populations. The blue lines are the distributions,
and correspond to the same temperature.

Resistance
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Water

Oxygen
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Fig. 14.9 A constant-volume bomb calorimeter. The ‘bomb’ 
is the central vessel, which is strong enough to withstand 
high pressures. The calorimeter (for which the heat capacity
must be known) is the entire assembly shown here. To ensure
adiabaticity, the calorimeter is immersed in a water bath with a
temperature continuously readjusted to that of the calorimeter
at each stage of the combustion.
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l A BRIEF ILLUSTRATION

If we pass a current of 10.0 A from a 12 V supply for 300 s,
then from eqn 14.22 the energy supplied as heat is

q = (10.0 A) × (12 V) × (300 s) = 3.6 × 104 A V s = 36 kJ

because 1 A V s = 1 J. If the observed rise in temperature is 
5.5 K, then the calorimeter constant is C = (36 kJ)/(5.5 K) =
6.5 kJ K−1. l

Alternatively, C may be determined by burning a known mass of
substance (benzoic acid is often used) that has a known heat
output. With C known, it is simple to interpret an observed tem-
perature rise as a release of heat.

(b) Heat capacity

The internal energy of a substance increases when its tempera-
ture is raised and the Boltzmann distribution populates higher
energy levels. The increase depends on the conditions under
which the heating takes place and for the present we suppose
that the sample is confined to a constant volume. For example,
the sample may be a gas in a container of fixed volume. If the 
internal energy is plotted against temperature, then a curve like
that in Fig. 14.10 may be obtained. The slope of the tangent to
the curve at any temperature is called the heat capacity of the
system at that temperature. The heat capacity at constant volume
is denoted CV and is defined formally as

[14.23]

l A BRIEF ILLUSTRATION

The heat capacity of a monatomic perfect gas can be calcu-
lated by inserting the expression for the internal energy, 

C
U

TV
V

=
⎛

⎝
⎜

⎞

⎠
⎟

∂
∂

Um = Um(0) + 3–2RT (see the brief illustration following 
eqn 14.1), so from eqn 14.23

The numerical value is 12.47 J K−1 mol−1. l

The heat capacity is used to relate a change in internal energy
to a change in temperature of a constant-volume system. It fol-
lows from eqn 14.23 that

dU = CV dT (at constant volume) (14.24a)

That is, at constant volume, an infinitesimal change in tempera-
ture brings about an infinitesimal change in internal energy, 
and the constant of proportionality is CV. If the heat capacity is
independent of temperature over the range of temperatures of
interest, a measurable change of temperature, ΔT, brings about
a measurable increase in internal energy, ΔU, where

ΔU = CVΔT (at constant volume) (14.24b)

Because a change in internal energy can be identified with the
heat supplied at constant volume (eqn 14.18), the last equation
can also be written

qV = CVΔT (14.24c)

This relation provides a simple way of measuring the heat capa-
city of a sample: a measured quantity of energy is transferred as
heat to the sample (electrically, for example), and the resulting
increase in temperature is monitored. The ratio of the energy
transferred as heat to the temperature rise it causes (qV /ΔT) is
the constant-volume heat capacity of the sample.

The molecular basis of heat capacities provides considerable
insight into this important property. We proceed in two steps:
first we show in the Justification below that eqn 14.19 for the 
relation between the change in internal energy and the change 
in level populations can be used to deduce that the heat capacity
is proportional to the spread of occupied energy levels in the
sense that

Δε2 = 〈ε2〉 − 〈ε〉2 (14.25)

Then we show how the heat capacity may be calculated from a
knowledge of the structure of molecules.

Justification 14.2 The heat capacity and the width of a
population distribution

We start with eqn 13.6a (Ni = Ne−βεi/q) and calculate dNi /dT,
or—what is equivalent and easier—dNi /dβ:
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Fig. 14.10 The internal energy of a system increases as the
temperature is raised; this graph shows its variation as the system
is heated at constant volume. The slope of the tangent to the
curve at any temperature is the heat capacity at constant volume
at that temperature. Note that, for the system illustrated, the heat
capacity is greater at B than at A.
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where q denotes the partition function. Because e−βεi/q = Ni /N
and −(1/q)(dq/dβ) = 〈ε〉,

= −Niεi + Ni〈ε〉

Therefore, with use of eqn 13.32,

= −N{〈ε2〉 − 〈ε〉2}

That is, provided the volume is constant and the system is
closed (so that there is no change in its composition), the
change in its internal energy with temperature is

It follows that we can identify the constant-volume heat 
capacity with the ‘variance’ of the energy, the mean-square
deviation of the energy from its mean value, as expressed in
eqn 14.25.

Equation 14.25 shows that the heat capacity rises as the spread
in occupied energy levels increases. When all the molecules 
occupy the ground state, there is no difference between the
mean of the square of the energies and the square of the mean
energy, so the heat capacity is then zero. As the system is heated,
this equality no longer holds and, provided the numerator in
eqn 14.25 increases more rapidly than the denominator, the heat
capacity rises. In certain cases, the numerator increases as T 2, 
in which case CV is independent of temperature (provided 
T > 0).

Example 14.1 Calculating the mean square deviation of energies
of a perfect gas

Calculate the value of 〈ε2〉 for a one-dimensional perfect 
monatomic gas and then show that its heat capacity is inde-
pendent of temperature.

Method For a one-dimensional system, we know that 〈ε〉 =
1–2kT, and can evaluate the mean square energy by using the
same approximations used to derive the translational parti-
tion function in Section 13.3.

Answer To evaluate the mean square energy, we write
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As in Justification 13.2, we have replaced i2 − 1 by i2 in the 
expression for the energy, because most occupied levels have
i >> 1. We now make the substitution

and use the standard integral

and the translational partition function

to obtain

The mean energy is 1–2kT, so

where once again we have used N = nNA and NAk = R.

Self-test 14.2 Use eqn 14.25 to show that the heat capacity of
a two-level system is zero at infinite temperature.

[CV ∝ 1/T 2 as T → ∞]

Although eqn 14.25 gives some insight into the origin of 
heat capacities, it is not the easiest route to their calculation. To
calculate the heat capacity at constant volume, all we need do is
to evaluate the internal energy as a function of temperature and
then form the derivative. In most cases it is easier to evaluate the
derivative with respect to β, and therefore to evaluate

(14.26)

We have used dβ/dT = −1/kT2, dU = Nd〈ε〉, and 〈ε〉 = −(∂ ln q /
∂β)V. In Problem 14.23 you are invited to confirm that this 
expression can be converted into eqn 14.25. Once we know the
partition function, all we need to do is to evaluate its second
derivative with respect to β.
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and the spread increases quadratically. That dependence is
cancelled by the T 2 in the denominator of eqn 14.25, and the
heat capacity approaches a constant value (of Nk) at high
temperatures.

Self-test 14.3 Repeat the analysis for a two-level system.
[CV = Nkf → 0, Δε2 = (kT)2f → 1–4ε2; 

f = (ε/kT)2 eε/kT/(1 + eε/kT )2, Fig. 14.13]

Example 14.2 The vibrational contribution to the heat capacity

Derive an expression for the heat capacity of a harmonic oscil-
lator. At the same time derive an expression for the spread of
populations (Δε2) and plot both functions against temperature.

Method The partition function is given in eqn 13.24 and the
expression derived for the mean energy is given in eqn 13.39.
It is simplest to differentiate the latter expression with respect
to β, and express the resulting expression as a function of T.
Compare that expression with eqn 14.25 to identify Δε2.

Answer The mean energy of a harmonic oscillator (relative
to its ground state, eqn 13.39) is

Therefore,

and consequently, by using eqn 14.26 in the form CV =
−Nk(1/kT)2(∂〈ε〉/∂β)V,

This function is plotted in Fig. 14.11. Comparison with 
eqn 14.25 lets us infer that

This function is also plotted in Fig. 14.12. Note that, at high
temperatures (T >> hc#/k), the spread is
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Fig. 14.11 The heat capacity of a harmonic oscillator as a
function of temperature.
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Fig. 14.12 The mean square fluctuations in the energy of 
a collection of harmonic oscillators as a function of temperature.
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Fig. 14.13 The heat capacity of a collection of two-level systems as a
function of temperature.

When the temperature is high enough for the rotations of the
molecules to be highly excited (when T >> θR, where the rota-
tional temperature θR is defined in Section 13.3 as θR = hcè/k),
we can use the equipartition value kT for the mean rotational
energy (for a linear rotor) and NAk = R to obtain CV,m = R. For
non-linear molecules, the mean rotational energy rises to 3–2kT,
so the molar rotational heat capacity rises to 3–2R when T >> θR.
Only the lowest rotational state is occupied when the tempera-
ture is very low, and then rotation does not contribute to the
heat capacity. We can calculate the rotational heat capacity at 
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intermediate temperatures by differentiating the equation for
the mean rotational energy (eqn 13.37a). The resulting (untidy)
expression, which is plotted in Fig. 14.14, shows that the contri-
bution rises from zero (when T = 0) to the equipartition value
(when T >> θR). Because the translational contribution is always
present, we can expect the molar heat capacity of a gas of diatomic
molecules (CT

V,m + CR
V,m) to rise from 3–2R to 5–2R as the temperature

is increased above θR. Problem 14.32 explores how the overall
shape of the curve can be traced to the sum of thermal excitations
between all the available rotational energy levels (Fig. 14.15).

Molecular vibrations contribute to the heat capacity, but only
when the temperature is high enough for them to be signific-
antly excited. The equipartition mean energy is kT for each

mode, so the maximum contribution to the molar heat capacity
is R. However, it is very unusual for the vibrations to be so highly
excited that equipartition is valid, and it is more appropriate to
use the full expression for the vibrational heat capacity, which
was derived in Example 14.2. The curve in Fig. 14.16 shows 
how the vibrational heat capacity depends on temperature. Note
that, even when the temperature is only slightly above the char-
acteristic vibrational temperature θV = hc#/k of the normal mode,
the heat capacity is close to its equipartition value.

The total heat capacity of a molecular substance is the sum 
of each contribution (Fig. 14.17). When equipartition is valid

1

0

C
R

V
,m

/

T/ R
0 2I

Fig. 14.14 The temperature dependence of the rotational
contribution to the heat capacity of a linear molecule.

interActivity The Living graphs section of the text’s web  
site has applets for the calculation of the temperature 

dependence of the rotational contribution to the heat capacity.
Explore the effect of the rotational constant on the plot of 
C R

V,m against T.
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Fig. 14.16 The temperature dependence of the vibrational 
heat capacity of a molecule in the harmonic approximation
calculated by using the full expression derived in Example 14.2.
Note that the heat capacity is within 10 per cent of its classical
value for temperatures greater than θV.

interActivity The Living graphs section of the text’s web 
site has applets for the calculation of the temperature 

dependence of the vibrational contribution to the heat capacity.
Explore the effect of the vibrational wavenumber on the plot of
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V,m against T.
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Fig. 14.17 The general features of the temperature dependence 
of the heat capacity of diatomic molecules are as shown here.
Each mode becomes active when its characteristic temperature 
is exceeded. The heat capacity becomes very large when the
molecule dissociates because the energy is used to cause
dissociation and not to raise the temperature. Then it falls 
back to the translation-only value of the atoms.
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Fig. 14.15 The rotational heat capacity of a linear molecule can 
be regarded as the sum of contributions from a collection of
two-level systems, in which the rise in temperature stimulates
transitions between J levels, some of which are shown here. 
The calculation on which this illustration is based is sketched 
in Problem 14.32.
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(a) The definition of enthalpy

The enthalpy, H, is defined as

H = U + pV [14.28]

where p is the pressure of the system and V is its volume. Because
U, p, and V are all state functions, the enthalpy is a state function
too. As is true of any state function, the change in enthalpy, ΔH,
between any pair of initial and final states is independent of the
path between them.

We show in the following Justification that eqn 14.28 implies
that the change in enthalpy is equal to the energy supplied as heat
at constant pressure (provided the system does no additional
work):

dH = dq (at constant pressure, no 
additional work) (14.29a)

For a measurable change,

ΔH = qp (14.29b)

where the subscript p denotes constant pressure.

Justification 14.3 The relation ΔH = qp

For a general infinitesimal change in the state of the system,
U changes to U + dU, p changes to p + dp, and V changes to 
V + dV so, from the definition in eqn 14.28, H changes from
U + pV to

H + dH = (U + dU) + (p + dp)(V + dV)
= U + dU + pV + pdV + Vdp + dpdV

The last term is the product of two infinitesimally small
quantities and can therefore be neglected. As a result, after
recognizing U + pV = H on the right, we find that H changes
to

H + dH = H + dU + pdV + Vdp

Energy
as heat

Energy
as work

sU q<

Fig. 14.18 When a system is subjected to constant pressure and is
free to change its volume, some of the energy supplied as heat
may escape back into the surroundings as work. In such a case,
the change in internal energy is smaller than the energy supplied
as heat.

(when the temperature is well above the characteristic tempera-
ture of the mode M = T, R, or V; that is, T >> θM) we can estimate
the heat capacity by counting the numbers of modes that are 
active. In gases, all three translational modes are always active
and contribute 3–2R to the molar heat capacity. If we denote the
number of active rotational modes by νR* (so for most molecules
at normal temperatures νR* = 2 for linear molecules, and νR* = 3
for non-linear molecules), then the rotational contribution is
1–2νR*R. If the temperature is high enough for νV* vibrational
modes to be active, the vibrational contribution to the molar
heat capacity is νV*R. In most cases ν*V ≈ 0. It follows that the total
molar heat capacity is

CV,m = 1–2(3 + νR* + 2νV*)R (14.27)

Example 14.3 Estimating the molar heat capacity of a gas

Estimate the molar constant-volume heat capacity of water
vapour at 100°C. The vibrational wavenumbers of H2O are
3656.7 cm−1, 1594.8 cm−1, and 3755.8 cm−1 and the rotational
constants are 27.9, 14.5, and 9.3 cm−1.

Method We need to assess whether the rotational and vibra-
tional modes are active by computing their characteristic
temperatures from the data (to do so, use hc/k = 1.439 cm K).

Answer The characteristic temperatures (in round numbers)
of the vibrations are 5300 K, 2300 K, and 5400 K; the vibrations
are therefore not significantly excited at 373 K. The three 
rotational modes have characteristic temperatures 40 K, 21 K,
and 13 K, so they are fully excited, like the three translational
modes. The translational contribution is 3–2R = 12.5 J K−1 mol−1.
Fully excited rotations (νR* = 3) contribute a further 3–2R =
12.5 J K−1 mol−1. Therefore, a value close to 25 J K−1 mol−1 is
predicted. The experimental value is 26.1 J K−1 mol−1. The
discrepancy is probably due to deviations from perfect gas
behaviour.

Self-test 14.4 Estimate the molar constant-volume heat 
capacity of gaseous I2 at 25°C (è = 0.037 cm−1 and # = 
214.5 cm−1). [29 J K−1 mol−1]

14.5 Enthalpy

When the system is free to change its volume, some of the energy
supplied as heat to the system is returned to the surroundings as
expansion work (Fig. 14.18), so dU is less than dq. However, we
shall now show that in this case the energy supplied as heat at
constant pressure is equal to the change in another thermody-
namic property of the system, the enthalpy.
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and hence that

dH = dU + pdV + Vdp

If we now substitute dU = dq + dw into this expression, we get

dH = dq + dw + pdV + Vdp

If the system is in mechanical equilibrium with its surround-
ings at a pressure p and does only expansion work, we can
write dw = −pdV and obtain

dH = dq + Vdp

Now we impose the condition that the heating occurs at con-
stant pressure by writing dp = 0. Then

dH = dq (at constant pressure, no additional work)

as in eqn 14.29a.

The result expressed in eqn 14.29 states that, when a system is
subjected to a constant pressure, and only expansion work can
occur, the change in enthalpy is equal to the energy supplied as
heat. For example, if we supply 36 kJ of energy through an elec-
tric heater immersed in an open beaker of water, then the en-
thalpy of the water increases by 36 kJ and we write ΔH = +36 kJ.

(b) The measurement of an enthalpy change

A calorimeter for studying processes at constant pressure is
called an isobaric calorimeter. A simple example is a thermally
insulated vessel open to the atmosphere: the heat released in the
reaction is monitored by measuring the change in temperature
of the contents. For a combustion reaction an adiabatic flame
calorimeter may be used to measure ΔT when a given amount of
substance burns in a supply of oxygen (Fig. 14.19). Another
route to ΔH is to measure the internal energy change by using a
bomb calorimeter, and then to convert ΔU to ΔH. Because solids
and liquids have small molar volumes, for them pVm is so small
that the molar enthalpy and molar internal energy are almost

Gas, vapour
Oxygen
Products

Fig. 14.19 A constant-pressure flame calorimeter consists of this
component immersed in a stirred water bath. Combustion
occurs as a known amount of reactant is passed through to 
fuel the flame, and the rise of temperature is monitored.

identical (Hm = Um + pVm ≈ Um). Consequently, if a process in-
volves only solids or liquids, the values of ΔH and ΔU are almost
identical. Physically, such processes are accompanied by a very
small change in volume, the system does negligible work on the
surroundings when the process occurs, so the energy supplied as
heat stays entirely within the system. The most sophisticated
way, however, is to use a differential scanning calorimeter
(DSC), as explained in Impact I14.1 at the end of this section.
Changes in enthalpy and internal energy may also be measured
by noncalorimetric methods (Chapter 17).

Equation 14.28 is a definition and applies to all substances. 
In the special case of a perfect gas we can write pV = nRT in the
definition of H and then with U = U(0) + N〈ε〉 obtain

H = U + pV = U + nRT (14.30)°
= U(0) + N{〈ε〉 + kT}

The first line of this relation implies that the change of enthalpy
in a reaction that produces or consumes gas is

ΔH = ΔU + ΔngRT (14.31)°

where Δng is the change in the amount of gas molecules in the 
reaction.

l A BRIEF ILLUSTRATION

In the reaction 2 H2(g) + O2(g) → 2 H2O(l), 3 mol of 
gas-phase molecules is replaced by 2 mol of liquid-phase
molecules, so Δng = −3 mol. Therefore, at 298 K, when RT =
2.5 kJ mol−1, the enthalpy and internal energy changes taking
place in the system are related by

ΔH − ΔU = (−3 mol) × RT ≈ −7.5 kJ l

Example 14.4 Calculating a change in enthalpy

Water is heated to boiling under a pressure of 1.0 atm. When
an electric current of 0.50 A from a 12 V supply is passed for
300 s through a resistance in thermal contact with it, it is
found that 0.798 g of water is vaporized. Calculate the molar
internal energy and enthalpy changes at the boiling point
(373.15 K).

Method Because the vaporization occurs at constant pressure,
the enthalpy change is equal to the heat supplied by the heater.
Therefore, the strategy is to calculate the energy supplied as
heat (from q = IV t), express that as an enthalpy change, and
then convert the result to a molar enthalpy change by division
by the amount of H2O molecules vaporized. To convert from
enthalpy change to internal energy change, we assume that the
vapour is a perfect gas and use eqn 14.31.

Answer The enthalpy change is

ΔH = qp = (0.50 A) × (12 V) × (300 s) = +(0.50 × 12 × 300) J
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[14.32]

The heat capacity at constant pressure is the analogue of the 
heat capacity at constant volume, and is an extensive property.
As in the case of CV, if the system can change its composition 
it is necessary to distinguish between equilibrium and fixed-
composition values. All applications in this chapter refer to pure
substances, so this complication can be ignored. The molar heat
capacity at constant pressure, Cp,m, is the heat capacity per mole
of material; it is an intensive property.

The heat capacity at constant pressure is used to relate the
change in enthalpy to a change in temperature. For infinitesimal
changes of temperature,

dH = CpdT (at constant pressure) (14.33a)

If the heat capacity is constant over the range of temperatures of
interest, then for a measurable increase in temperature

ΔH = CpΔT (at constant pressure) (14.33b)

Because an increase in enthalpy can be equated to the energy
supplied as heat at constant pressure, the practical form of the
latter equation is

qp = CpΔT (14.33c)

This expression shows us how to measure the heat capacity of a
sample: a measured quantity of energy is supplied as heat under
conditions of constant pressure (as in a sample exposed to the
atmosphere and free to expand), and the temperature rise is
monitored.

The variation of heat capacity with temperature can sometimes
be ignored if the temperature range is small; this approximation
is highly accurate for a monatomic perfect gas (for instance, one
of the noble gases at low pressure). However, when it is necessary
to take the variation into account, a convenient approximate
empirical expression is

(14.34)

The empirical parameters a, b, and c are independent of temper-
ature (Table 14.2).
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is (0.798 g)/(18.02 g mol−1) = (0.798/18.02) mol H2O, the 
enthalpy of vaporization per mole of H2O is

In the process H2O(l) → H2O(g) the change in the amount of
gas molecules is Δng = +1 mol, so

ΔUm = ΔHm − RT = +38 kJ mol−1

Notice that the internal energy change is smaller than the 
enthalpy change because energy has been used to drive back
the surrounding atmosphere to make room for the vapour.

Self-test 14.5 The molar enthalpy of vaporization of benzene
at its boiling point (353.25 K) is 30.8 kJ mol−1. What is the
molar internal energy change? For how long would the same
12 V source need to supply a 0.50 A current in order to 
vaporize a sample of mass 10.0 g? [+27.9 kJ mol−1, 660 s]

(c) The variation of enthalpy with temperature

The enthalpy of a substance increases as its temperature is raised.
The relation between the increase in enthalpy and the increase in
temperature depends on the conditions (for example, constant
pressure or constant volume). The most important condition 
is constant pressure, and the slope of the tangent to a plot of 
enthalpy against temperature at constant pressure is called the
heat capacity at constant pressure, Cp, at a given temperature
(Fig. 14.20). More formally:
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Fig. 14.20 The slope of the tangent to a curve of the enthalpy 
of a system subjected to a constant pressure plotted against
temperature is the constant-pressure heat capacity. The slope
may change with temperature, in which case the heat capacity
varies with temperature. Thus, the heat capacities at A and B are
different. For gases, at a given temperature the slope of enthalpy
versus temperature is steeper than that of internal energy versus
temperature, and Cp,m is larger than CV,m.

Synoptic table 14.2* Temperature variation of molar heat
capacities, Cp,m/(J K−1 mol−1) = a + bT + c/T2

a b/(10−3 K−1) c/(105 K2)

C(s, graphite) 16.86 4.77 −8.54

CO2(g) 44.22 8.79 −8.62

H2O(l) 75.29 0 0

N2(g) 28.58 3.77 −0.50

* More values are given in the Data section.
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Cp − CV = nR (14.35)°

It follows that the molar heat capacity of a perfect gas is about 
8 J K−1 mol−1 larger at constant pressure than at constant volume.
Because the heat capacity at constant volume of a monatomic
gas is about 12 J K−1 mol−1, the difference is highly significant
and must be taken into account. However, the molecular origin
of Cp is essentially the same as that of CV, the additional term
being due to the energy lost by expansion. For substances other
than perfect gases, the forces between atoms play a role in deter-
mining the magnitude of the work of expansion and the expres-
sion for the difference between Cp and CV is more complicated.1

IMPACT ON BIOCHEMISTRY 

I14.1 Differential scanning calorimetry

A differential scanning calorimeter (DSC) measures the energy
transferred as heat to or from a sample at constant pressure dur-
ing a physical or chemical change. The term ‘differential’ refers
to the fact that the behaviour of the sample is compared to that
of a reference material which does not undergo a physical or
chemical change during the analysis. The term ‘scanning’ refers
to the fact that the temperatures of the sample and reference 
material are increased, or scanned, during the analysis.

A DSC consists of two small compartments that are heated
electrically at a constant rate. The temperature, T, at time t dur-
ing a linear scan is T = T0 + αt, where T0 is the initial temperature
and α is the temperature scan rate (in kelvin per second, K s−1).
A computer controls the electrical power output in order to
maintain the same temperature in the sample and reference
compartments throughout the analysis (Fig. 14.21).

The temperature of the sample changes significantly relative
to that of the reference material if a chemical or physical process
involving the transfer of energy as heat occurs in the sample 

1 For details, see our Physical chemistry (2007).

Example 14.5 Evaluating an increase in enthalpy 
with temperature

What is the change in molar enthalpy of N2 when it is heated
from 25°C to 100°C? Use the heat capacity information in
Table 14.2.

Method The heat capacity of N2 changes with temperature,
so we cannot use eqn 14.33b (which assumes that the heat 
capacity of the substance is constant). Therefore, we must 
use eqn 14.33a, substitute eqn 14.34 for the temperature 
dependence of the heat capacity, and integrate the resulting
expression from 25°C to 100°C.

Answer For convenience, we denote the two temperatures
T1 (298 K) and T2 (373 K). The integral we require is

Now we use the integral

to obtain

Substitution of the numerical data results in

Hm(373 K) = Hm(298 K) + 2.20 kJ mol−1

If we had assumed a constant heat capacity of 29.14 J K−1

mol−1 (the value given by eqn 14.34 at 25°C), we would have
found that the two enthalpies differed by 2.19 kJ mol−1.

Self-test 14.6 At very low temperatures the heat capacity of a
solid is proportional to T 3, and we can write Cp = aT 3. What
is the change in enthalpy of such a substance when it is heated
from 0 to a temperature T (with T close to 0)?

[ΔH = 1–4aT 4]

Most systems expand when heated at constant pressure. Such
systems do work on the surroundings and therefore some of the
energy supplied to them as heat escapes back to the surround-
ings as work. As a result, the temperature of the system rises 
less than when the heating occurs at constant volume. A smaller
increase in temperature implies a larger heat capacity, so we
conclude that in most cases the heat capacity at constant pres-
sure of a system is larger than its heat capacity at constant 
volume. We show later (Section 14.10) that there is a simple 
relation between the two heat capacities of a perfect gas:
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Fig. 14.21 A differential scanning calorimeter. The sample and a
reference material are heated in separate but identical metal heat
sinks. The output is the difference in power needed to maintain
the heat sinks at equal temperatures as the temperature rises.
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during the scan. To maintain the same temperature in both com-
partments, excess energy is transferred as heat to or from the
sample during the process. For example, an endothermic process
lowers the temperature of the sample relative to that of the ref-
erence and, as a result, the sample must be heated more strongly
than the reference in order to maintain equal temperatures.

If no physical or chemical change occurs in the sample at 
temperature T, we use eqn 14.33c to write the heat transferred 
to the sample as qp = CpΔT, where ΔT = T − T0 and we have 
assumed that Cp is independent of temperature. The chemical 
or physical process requires the transfer of qp + qp,ex, where qp,ex

is excess energy transferred as heat, to attain the same change 
in temperature of the sample. We interpret qp,ex in terms of an
apparent change in the heat capacity at constant pressure of the
sample, Cp, during the temperature scan. Then we write the heat
capacity of the sample as Cp + Cp,ex, and

qp + qp,ex = (Cp + Cp,ex)ΔT

It follows that

where Pex = qp,ex/t is the excess electrical power necessary 
to equalize the temperature of the sample and reference 
compartments.

A DSC trace, a thermogram, consists of a plot of Pex or Cp,ex

against T (Fig. 14.22). Broad peaks in the thermogram indicate
processes requiring transfer of energy as heat. From eqn 14.33a,
the enthalpy change associated with the process is
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where T1 and T2 are, respectively, the temperatures at which the
process begins and ends. This relation shows that the enthalpy
change is the area under the curve of Cp,ex versus T. With a DSC,
enthalpy changes may be determined in samples of masses as
low as 0.5 mg, which is a significant advantage over bomb or
flame calorimeters, which require several grams of material.

Differential scanning calorimetry is used in the chemical 
industry to characterize polymers and in the biochemistry 
laboratory to assess the stability of proteins, nucleic acids, and
membranes. Large molecules, such as synthetic or biological
polymers, attain complex three-dimensional structures due to
intra- and intermolecular interactions, such as hydrogen bond-
ing and hydrophobic interactions (Section 8.5). Disruption of
these interactions is an endothermic process that can be studied
with a DSC. For example, the thermogram shown in Fig. 14.22
indicates that the protein ubiquitin retains its native structure
up to about 45°C. At higher temperatures, the protein under-
goes an endothermic conformational change that results in the
loss of its three-dimensional structure. The same principles also
apply to the study of structural integrity and stability of synthetic
polymers, such as plastics.

14.6 Adiabatic changes

Work is done when a perfect gas expands adiabatically (without
a transfer of energy as heat) but, because no heat enters the 
system, the internal energy falls and therefore the temperature
of the working gas also falls. In molecular terms, the kinetic 
energy of the molecules falls as work is done, so their average
speed decreases, and hence the temperature falls.

The change in internal energy of a perfect gas when the 
temperature is changed from Ti to Tf and the volume is changed
from Vi to Vf can be expressed as the sum of two steps (Fig. 14.23).
In the first step, only the volume changes and the temperature 
is held constant at its initial value. However, because the internal
energy of a perfect gas is independent of the volume the mole-
cules occupy, the overall change in internal energy arises solely
from the second step, the change in temperature at constant vol-
ume. Provided the heat capacity is independent of temperature,
this change is

ΔU = CV (Tf − Ti) = CVΔT

Because the expansion is adiabatic, we know that q = 0; because
ΔU = q + w, it then follows that ΔU = wad. The subscript ‘ad’ 
denotes an adiabatic process. Therefore, by equating the two
values we have derived for ΔU, we obtain

wad = CVΔT (14.36)

That is, the work done during an adiabatic expansion of a perfect
gas is proportional to the temperature difference between the
initial and final states. That is exactly what we expect on mole-
cular grounds, because the mean kinetic energy is proportional
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Fig. 14.22 A thermogram for the protein ubiquitin at pH = 2.45.
The protein retains its native structure up to about 45°C and
then undergoes an endothermic conformational change.
(Adapted from B. Chowdhry and S. LeHarne, J. Chem. Educ. 74,
236 (1997).)
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to T, so a change in internal energy arising from temperature
alone is also expected to be proportional to ΔT. In Further
information 14.1 we show that the initial and final temperatures
of a perfect gas that undergoes reversible adiabatic expansion
(reversible expansion in a thermally insulated container) can be
calculated from

(14.37a)°rev

where c = CV,m/R, or equivalently

ViT i
c = VfT f

c (14.37b)°rev

This result is often summarized in the form VT c = constant.

l A BRIEF ILLUSTRATION

Consider the adiabatic, reversible expansion of 0.020 mol Ar,
initially at 25°C, from 0.50 dm3 to 1.00 dm3. The molar heat
capacity of argon at constant volume is 12.48 J K−1 mol−1, so
c = 1.501. Therefore, from eqn 14.37a,

It follows that ΔT = −110 K, and therefore, from eqn 14.36,
that

w = {(0.020 mol) × (12.48 J K−1 mol−1)} × (−110 K) = −27 J

Note that temperature change is independent of the amount
of gas but the work is not. l
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Self-test 14.7 Calculate the final temperature, the work done,
and the change of internal energy when ammonia is used in 
a reversible adiabatic expansion from 0.50 dm3 to 2.00 dm3,
the other initial conditions being the same.

[194 K, −56 J, −56 J]

We can get some insight into the origin of the temperature
dependence expressed by eqn 14.37 and understand adiabatic
changes at a molecular level, by considering the reversible, adia-
batic expansion of particles in a one-dimensional box. In quan-
tum mechanics, an adiabatic process is one that occurs so slowly
that the system follows a single changing state of a system and, 
in contrast to an impulsive change, does not jump into a linear
combination of other states. We can explore the consequence 
of this model in statistical mechanics, by supposing that the
molecules that occupy a given level of the box all remain in that
level as the box expands reversibly and adiabatically (Fig. 14.24).
That is, we suppose that all the Ni remain constant even though
the energy levels are changing. For the populations to remain the
same even though the energy levels are getting closer together,
the temperature must fall, so our task is to see how that chang-
ing temperature must vary with the length of the box. In other
words, we must look for a solution of

(14.38)

with β and εi, and therefore q too, functions of L. Because 
βεi = γi /kL2T (in the notation used in Justification 14.1), the 
population Ni is independent of the length if at all stages of 
the expansion

LT1/2 = constant (14.39)

However, for a one-dimensional system, the molar heat capa-
city is 1–2R, so this solution is the one-dimensional version of 
eqn 14.37b.
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Fig. 14.23 To achieve a change of state from one temperature and
volume to another temperature and volume, we may consider
the overall change as composed of two steps. In the first step, 
the system expands at constant temperature; there is no change
in internal energy if the system consists of a perfect gas. In the
second step, the temperature of the system is reduced at constant
volume. The overall change in internal energy is the sum of the
changes for the two steps.
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Fig. 14.24 In a reversible adiabatic expansion, the populations 
of the quantum states remain constant, which corresponds to 
a lowering of the temperature if the Boltzmann distribution is 
to continue to match the same distribution but now over the
changed energy levels.
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The result we have obtained shows what to imagine is hap-
pening at a molecular level during a reversible adiabatic expan-
sion of a perfect gas. As shown in Fig. 14.24, the populations of
each level remain constant as the levels fall in energy. However,
for that to be the case the temperature must fall. The precise 
dependence of the temperature that guarantees this constancy 
is exactly the condition expressed in eqn 14.37.

We can now develop eqn 14.37. We show in Further informa-
tion 14.1 that the pressure of a perfect gas that undergoes re-
versible adiabatic expansion from a volume Vi to a volume Vf is
related to its initial pressure by

pfV f
γ = piV i

γ (14.40)°rev

where γ = Cp,m/CV,m. This result is summarized in the form 
pV γ = constant. For a monatomic perfect gas, CV,m =

3–2R, and
from eqn 14.35 Cp,m = 5–2R; so γ = 5–3. For a gas of non-linear 
polyatomic molecules (which can rotate as well as translate),
CV,m = 3R, so γ = 4–3.

The curves of pressure versus volume for adiabatic change are
known as adiabats, and one for a reversible path is illustrated in
Fig. 14.25. Because γ > 1, an adiabat falls more steeply (p ∝ 1/V γ )
than the corresponding isotherm (p ∝ 1/V). The physical reason
for the difference is that, in an isothermal expansion, energy
flows into the system as heat and maintains the temperature; 
as a result, the pressure does not fall as much as in an adiabatic
expansion.

l A BRIEF ILLUSTRATION

When a sample of argon (for which γ = 5–3) at 100 kPa expands
reversibly and adiabatically to twice its initial volume the
final pressure will be

For an isothermal doubling of volume, the final pressure
would be 50 kPa. l

Thermochemistry

The study of the energy transferred as heat during the course of
chemical reactions is called thermochemistry. Thermochem-
istry is a branch of thermodynamics because a reaction vessel
and its contents form a system, and chemical reactions result in
the exchange of energy between the system and the surroundings.
Thus we can use calorimetry to measure the energy supplied 
or discarded as heat by a reaction, and can identify q with a
change in internal energy (if the reaction occurs at constant 
volume) or a change in enthalpy (if the reaction occurs at 
constant pressure). Conversely, if we know the ΔU or ΔH for 
a reaction, we can predict the energy (transferred as heat) the 
reaction can produce.

We have already remarked that a process that releases heat is
classified as exothermic and one that absorbs heat is classified as
endothermic. Because the release of energy into the surround-
ings signifies a decrease in the enthalpy of a system (at constant
pressure), we can now see that an exothermic process at con-
stant pressure is one for which ΔH < 0. Conversely, because the
absorption of energy as heat from the surroundings results in an
increase in enthalpy, an endothermic process at constant pres-
sure has ΔH > 0.

14.7 Standard enthalpy changes

Changes in enthalpy are normally reported for processes taking
place under a set of standard conditions. In most of our discus-
sions we shall consider the standard enthalpy change, ΔH 7, the
change in enthalpy for a process in which the initial and final
substances are in their standard states:

The standard state of a substance is its pure form at 1 bar.

(The standard state of substances in solution is described in
Section 16.6.) Standard enthalpy changes may be reported for
any temperature. However, the conventional temperature for
reporting thermodynamic data is 298.15 K (corresponding to
25.00°C). Unless otherwise mentioned, all thermodynamic data
in this text are for this conventional temperature.
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Fig. 14.25 An adiabat depicts the variation of pressure with
volume when a gas expands adiabatically. (a) An adiabat for a
perfect gas undergoing reversible expansion. (b) Note that the
pressure declines more steeply for an adiabat than it does for 
an isotherm because the temperature decreases in the former.

interActivity Explore how the parameter γ affects the 
dependence of the pressure on the relative volume. 

Does the pressure–volume dependence become stronger or
weaker with increasing volume?
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(a) Enthalpies of physical change

The standard enthalpy change that accompanies a change of
physical state is called the standard enthalpy of transition and 
is denoted ΔtrsH

7 (Table 14.3). The standard enthalpy of vapor-
ization, ΔvapH 7, is one example. Another is the standard enthalpy
of fusion, ΔfusH

7, the standard enthalpy change accompanying
the conversion of a solid to a liquid, as in

H2O(s) → H2O(l) ΔfusH
7(273 K) = +6.01 kJ mol−1

As in this case, it is sometimes convenient to know the standard
enthalpy change at the transition temperature as well as at the
conventional temperature. The different types of enthalpy changes
encountered in thermochemistry are summarized in Table 14.4.

We shall meet them again in various locations throughout 
the text.

A note on good practice The attachment of the name of the
transition to the symbol Δ, as in ΔtrsH, is the modern conven-
tion. However, the older convention, ΔHtrs, is still widely used.
The new convention is more logical because the subscript
identifies the type of change, not the physical observable 
related to the change.

Because enthalpy is a state function, a change in enthalpy is
independent of the path between the specified initial and final
states of the system. There are two immediate consequences of
this path-independence. One is that
the enthalpy of an overall transition,
such as sublimation (the direct con-
version from solid to vapour) may be
expressed as the sum of the enthalpies
of fusion and vaporization (at the same
temperature, 1).

ΔsubH 7 = ΔfusH
7 + ΔvapH 7 (14.41)

An immediate conclusion is that, because almost all enthalpies
of fusion are positive (helium is the exception), apart from 
helium the enthalpy of sublimation of 
a substance is always greater than its 
enthalpy of vaporization (at a given
temperature). The second consequence
is that the standard enthalpy changes of
a forward process and its reverse differ
only in sign (2):

ΔH 7(A → B) = −ΔH 7(B → A) (14.42)

For instance, because the enthalpy of vaporization of water is
+44 kJ mol−1 at 298 K, its enthalpy of condensation at that tem-
perature is −44 kJ mol−1.

(b) Enthalpies of chemical change

The standard enthalpy of reaction, ΔrH
7, is the difference 

in standard molar enthalpies of the products and reactants
weighted by their stoichiometric coefficients in the chemical
equation. Thus, for the reaction

2 A + B → 3 C + D

the standard reaction enthalpy is

ΔrH
7 = {3H 7

m(C) + H 7
m(D)} − {2H 7

m(A) + H 7
m(B)}

and in general

(14.43a)Δr m
Products

m
Reactants

H H H7 7 7= −∑ ∑ν ν

Synoptic table 14.3* Standard enthalpies of fusion and
vaporization at the transition temperature, ΔtrsH

7/(kJ mol−1)

Tf /K Fusion Tb/K Vaporization

Ar 83.8 1.188 87.29 6.506

C6H6 278.61 10.59 353.2 30.8

H2O 273.15 6.008 373.15 40.656

44.016 at 298 K

He 3.5 0.021 4.22 0.084

* More values are given in the Data section.

Table 14.4 Enthalpies of transition

Transition Process Symbol*

Transition Phase α → phase β ΔtrsH

Fusion s → l ΔfusH

Vaporization l → g ΔvapH

Sublimation s → g ΔsubH

Mixing Pure → mixture ΔmixH

Solution Solute → solution ΔsolH

Hydration X±(g) → X±(aq) ΔhydH

Atomization Species(s, l, g) → atoms(g) ΔatH

Ionization X(g) → X+(g) + e−(g) ΔionH

Electron gain X(g) + e−(g) → X−(g) ΔegH

Reaction Reactants → products ΔrH

Combustion Compounds(s, l, g) + O2(g) → CO2(g), ΔcH
H2O(l, g)

Formation Elements → compound ΔfH

Activation Reactants → activated complex Δ‡H

* IUPAC recommendations. In common usage, the transition subscript is often
attached to ΔH, as in ΔHtrs.
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corresponding to the process

Reactants in their standard states → products in their stand-
ard states

Except in the case of ionic reactions in solution, the enthalpy
changes accompanying mixing of the pure reactants and separa-
tion of the products into their pure form (as implied by ‘standard
state’) are insignificant in comparison with the contribution
from the reaction itself.

A note on good practice The units of the standard reaction
enthalpy ΔrH

7 are kilojoules per mole. The ‘per mole’ refers
to ‘per mole of reaction events’ of the reaction as written,
such as per 2 mol A or per mol B that are consumed, or per 
3 mol C or per mol D that are formed.

Equation 14.43a may be written in a more compact manner
by adopting the convention that the stoichiometric coefficients
of products are positive and those of reactants are negative. For
instance, in the reaction 2 A + B → 3 C + D, the coefficients are
νA = −2, νB = −1, νC = 3, and νD = 1. Then eqn 14.43a becomes

(14.43b)

It will be familiar from introductory
chemistry that, just as standard en-
thalpies of transition may be combined,
standard enthalpies of reactions can also
be combined to obtain the enthalpy of
another reaction. This application of the
First Law is called Hess’s law (3):

The standard enthalpy of an overall reaction is the sum of the
standard enthalpies of the individual reactions into which a
reaction may be divided.

The individual steps need not be realizable in practice: they may
be hypothetical reactions, the only requirement being that their
chemical equations should balance and that all numerical values
should refer to the same temperature. Review exercises will be
found at the end of the chapter.

14.8 Standard enthalpies of formation

The standard enthalpy of formation, Δf H
7, of a substance is the

standard reaction enthalpy for the formation of the compound
from its elements in their reference states. The reference state of
an element is its most stable state at the specified temperature
and 1 bar. For example, at 298 K the reference state of nitrogen
is a gas of N2 molecules, that of mercury is liquid mercury, that
of carbon is graphite, and that of tin is the white (metallic) form.
There is one exception to this general prescription: the reference
state of phosphorus is taken to be white phosphorus despite this

Δr J m
J

JH H7 7= ∑ν ( )

allotrope not being the most stable form but simply the most 
reproducible form of the element. Standard enthalpies of for-
mation are expressed as enthalpies per mole of molecules or (for
ionic substances) formula units of the compound. The standard
enthalpy of formation of liquid benzene at 298 K, for example,
refers to the reaction

6 C(s, graphite) + 3 H2(g) → C6H6(l)

and is +49.0 kJ mol−1. The standard enthalpies of formation of
elements in their reference states are zero at all temperatures 
because they are the enthalpies of such ‘null’ reactions as N2(g)
→ N2(g). Some enthalpies of formation are listed in Tables 14.5
and 14.6.

The standard enthalpy of formation of ions in solution poses
a special problem because it is impossible to prepare a solution
of cations alone or of anions alone. This problem is solved by
defining one ion, conventionally the hydrogen ion, to have zero
standard enthalpy of formation at all temperatures:

Δf H
7(H+, aq) = 0 [14.44]

Thus, if the enthalpy of formation of HBr(aq) is found to be 
−122 kJ mol−1, then the whole of that value is ascribed to the 
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Synoptic table 14.5* Standard enthalpies of formation and
combustion of organic compounds at 298 K

ΔfH
7/(kJ mol−1) ΔcH 7/(kJ mol−1)

Benzene, C6H6(l) +49.0 −3268

Ethane, C2H6(g) −84.7 −1560

Glucose, C6H12O6(s) −1274 −2808

Methane, CH4(g) −74.8 −890

Methanol, CH3OH(l) −238.7 −726

* More values are given in the Data section.

Synoptic table 14.6* Standard enthalpies
of formation of inorganic compounds at 298 K

Δf H 7/(kJ mol−1)

H2O(l) −285.83

H2O(g) −241.82

NH3(g) −46.11

N2H4(l) +50.63

NO2(g) 33.18

N2O4(g) +9.16

NaCl(s) −411.15

KCl(s) −436.75

* More values are given in the Data section.



14 THE FIRST LAW OF THERMODYNAMICS 463

formation of Br−(aq), and we write Δf H
7(Br−, aq) = −122 kJ

mol−1. That value may then be combined with, for instance, 
the enthalpy of formation of AgBr(aq) to determine the value of
Δf H

7(Ag+, aq), and so on. In essence, this definition adjusts the
actual values of the enthalpies of formation of ions by a fixed
amount, which is chosen so that the standard value for one of
them, H+(aq), has the value zero. Tabulated values are based on
a set of experimental values and adjusted to give the best fit to
the entire set rather than just isolated pairs of measurements.

(a) The reaction enthalpy in terms of enthalpies of
formation

Conceptually, we can regard a reaction as proceeding by decom-
posing the reactants into their elements and then forming those
elements into the products. The value of ΔrH

7 for the overall 
reaction is the sum of these ‘unforming’ and forming enthalpies.
Because ‘unforming’ is the reverse of
forming, the enthalpy of an unforming
step is the negative of the enthalpy of
formation (4). Hence, in the enthalpies
of formation of substances, we have
enough information to calculate the 
enthalpy of any reaction by using

(14.45)

l A BRIEF ILLUSTRATION

The standard reaction enthalpy of 2 HN3(l) + 2 NO(g) →
H2O2(l) + 4 N2(g) is calculated as follows:

ΔrH
7 = Δf H

7(H2O2,l) + 4Δf H
7(N2,g) − 2Δf H

7(HN3,l) 
− 2ΔfH

7(NO,g)
= {−187.78 + 4(0) − 2(264.0) − 2(90.25)} kJ mol−1

= −896.3 kJ mol−1

Therefore, 896.3 kJ of energy is transferred to the surround-
ings as heat at constant pressure per mole of reaction events;
that is per 2 mol HN3 or per 2 mol NO that are consumed or
per mol H2O2 or per 4 mol N2 that are formed. l

(b) Enthalpies of formation and molecular modelling

We have seen how to construct standard reaction enthalpies by
combining standard enthalpies of formation. The question that
now arises is whether we can construct standard enthalpies of
formation from a knowledge of the chemical constitution of the
species. The short answer is that there is no thermodynamically
exact way of expressing enthalpies of formation in terms of con-
tributions from individual atoms and bonds. In the past, approx-
imate procedures based on mean bond enthalpies, ΔH(A-B),
the average molar enthalpy change associated with the breaking
of a specific A-B bond,

Δ Δr J f
J

JH H7 7= ∑ν ( )

A-B(g) → A(g) + B(g)

have been used. However, this procedure is notoriously un-
reliable, in part because the ΔH(A-B) are average values for a
series of related compounds. Nor does the approach distinguish
between geometrical isomers, where the same atoms and bonds
may be present but experimentally the enthalpies of formation
might be significantly different.

Computer-aided molecular modelling has largely displaced
this more primitive approach. Commercial software packages use
the principles developed in Chapter 6 to calculate the standard
enthalpy of formation of a molecule drawn on the computer
screen. As pointed out there, the parameters used in a variety 
of semiempirical approaches are optimized for the computation
of enthalpies of formation. The techniques can be applied to
different conformations of the same molecule. In the case of
methylcyclohexane, for instance, the calculated conformational
energy difference ranges from 5.9 to 7.9 kJ mol−1, with the equa-
torial conformer having the lower standard enthalpy of forma-
tion. These estimates compare favourably with the experimental
value of 7.5 kJ mol−1. However, good agreement between calcu-
lated and experimental values is relatively rare. Computational
methods almost always predict correctly which conformer is more
stable but do not always predict the correct magnitude of the
conformational energy difference.

14.9 The temperature dependence of reaction
enthalpies

The standard enthalpies of many important reactions have been
measured at different temperatures. However, in the absence of
this information, standard reaction enthalpies at different tem-
peratures may be calculated from heat capacities and the reac-
tion enthalpy at some other temperature (Fig. 14.26). In many
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Fig. 14.26 When the temperature is increased, the enthalpies of
the products and the reactants both increase, but may do so to
different extents. In each case, the change in enthalpy depends
on the heat capacities of the substances. The change in reaction
enthalpy reflects the difference in the changes of the enthalpies.
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cases heat capacity data are more accurate than reaction enthalpies
so, providing the information is available, the procedure we are
about to describe is more accurate than a direct measurement of
a reaction enthalpy at an elevated temperature.

It follows from eqn 14.33a that, when a substance is heated
from T1 to T2, its enthalpy changes from H(T1) to

(14.46)

(We have assumed that no phase transition takes place in the
temperature range of interest.) Because this equation applies to
each substance in the reaction, the standard reaction enthalpy
changes from ΔrH

7(T1) to

(14.47)

where ΔrC
7
p is the difference of the molar heat capacities of prod-

ucts and reactants under standard conditions weighted by the
stoichiometric coefficients that appear in the chemical equation:

[14.48]

Equation 14.47 is known as Kirchhoff ’s law. It is normally a
good approximation to assume that ΔrCp is independent of the
temperature, at least over reasonably limited ranges, as illus-
trated in the following example. Although the individual heat
capacities may vary, their difference varies less significantly. 
In some cases the temperature dependence of heat capacities is
taken into account by using eqn 14.34.

Example 14.6 Using Kirchhoff ’s law

The standard enthalpy of formation of gaseous H2O at 298 K
is −241.82 kJ mol−1. Estimate its value at 100°C given the fol-
lowing values of the molar heat capacities at constant pres-
sure: H2O(g): 33.58 J K−1 mol−1; H2(g): 28.82 J K−1 mol−1;
O2(g): 29.36 J K−1 mol−1. Assume that the heat capacities are
independent of temperature.

Method When ΔrC
7
p is independent of temperature in the range

T1 to T2, the integral in eqn 14.47 evaluates to (T2 − T1)ΔrC
7
p.

Therefore,

ΔrH
7(T2) = ΔrH

7(T1) + (T2 − T1)ΔrC
7
p

To proceed, write the chemical equation, identify the stoi-
chiometric coefficients, and calculate ΔrC

7
p from the data.

Answer The reaction is H2(g) + 1–2 O2(g) → H2O(g), so

ΔrC
7
p = C 7

p,m(H2O,g) − C 7
p,m(H2,g) − 1–2C 7

p,m(O2,g) 

= −9.92 J K−1 mol−1

  
Δr J m

J

JC Cp p
7 7= ∑ν , ( )

Δ Δ Δr r r dH T H T C T
T

T

p
7 7 7( ) ( )2 1

1

2

= +�

H T H T C T
T

T

p( ) ( )2 1

1

2

= +� d

(Notice: joules not kilojoules.) It then follows that

ΔfH
7(373 K) = −241.82 kJ mol−1 + (75 K) × (−9.94 J K−1 mol−1)

= −242.6 kJ mol−1

Self-test 14.8 Estimate the standard enthalpy of formation of
cyclohexane at 400 K from the data in Table 14.6.

[−163 kJ mol−1]

Properties of the internal energy
and the enthalpy

Thermodynamic considerations extend far beyond the relatively
elementary applications in thermochemistry. In particular, the
mathematical properties of state functions can be used to draw
far-reaching conclusions about the relations between physical
properties and establish connections that might be completely
unexpected. The practical importance of these results is that we
can combine measurements of different properties to obtain the
value of a property we require.

The crucial point we build on in the following sections is 
that the fact that a property X is a state function (as is the case for
U and H) implies that dX is an exact differential, in the sense 
described in Mathematical background 8.

14.10 Changes in internal energy

The internal energy U is a state function, so dU is an exact
differential. We begin to unfold the consequences by exploring a
closed system of constant composition (the only type of system
considered in the rest of this chapter). The internal energy U can
be regarded as a function of V, T, and p but, because there is an
equation of state, stating the values of two of the variables fixes
the value of the third (for instance, p = nRT/V for a perfect gas).
Therefore, it is possible to write U in terms of just two independ-
ent variables: V and T, p and T, or p and V. Expressing U as 
a function of volume and temperature fits the purpose of our 
discussion.

(a) Changes in internal energy at constant temperature

When V changes by dV and T changes by dT, the internal energy
changes by

(14.49)

We have already met (∂U/∂T)V in eqn 14.23 where we saw that it
is the constant-volume heat capacity, CV. The other coefficient,
(∂U/∂V)T, plays a major role in thermodynamics because it is a
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measure of the variation of the internal energy of a substance as
its volume is changed at constant temperature (Fig. 14.27). We
shall denote it πT and, because it has the same dimensions as
pressure, call it the internal pressure:

[14.50]

In terms of the notation CV and πT , eqn 14.49 becomes

dU = πT dV + CV dT (14.51)

When there are no interactions between the molecules, the
internal energy is independent of their separation and hence 
independent of the volume of the sample. Therefore, for a per-
fect gas we can write πT = 0. The statement πT = 0 (that is, the 
internal energy is independent of the volume occupied by the
sample) can be taken to be the definition of a perfect gas, for
later we shall see that it implies the equation of state pV = nRT. If
the internal energy increases (dU > 0) as the volume of the sam-
ple expands isothermally (dV > 0), which is the case when there
are attractive forces between the particles, then a plot of internal
energy against volume slopes upwards and πT > 0 (Fig. 14.28).

To make contact with the statistical thermodynamic dis-
cussion in Chapter 13 we need to use the canonical partition
function Q to calculate the internal pressure because only that
formulation allows us to include the effects of intermolecular 
interactions. From the expression for U in terms of Q (〈E〉 =
−(∂ lnQ /∂β)V and U = U(0) + 〈E〉), we can write

(14.52)

To develop this expression, we need to find a way to build an 
intermolecular potential energy into the expression for Q . The
total kinetic energy of a gas is the sum of the kinetic energies 
of the individual molecules. Therefore, even in a real gas the
canonical partition function factorizes into a part arising from
the kinetic energy, which is the same as for the perfect gas 
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(Q = VN/Λ3NN !, where Λ is the thermal wavelength, eqn 13.18),
and a factor called the configuration integral, Z, which depends
on the intermolecular potentials. We therefore write

(14.53)

with Z replacing VN/N !. It then follows that

(14.54)

In the second line, although the derivative of Λ with respect 
to temperature and hence β is nonzero, Λ is independent of 
volume, so the derivative with respect to volume is zero.

For a real gas of atoms (for which the intermolecular inter-
actions are isotropic), Z is related to the total potential energy EP

of interaction of all the particles by

(14.55)

where dτi is the volume element for atom i. The physical origin
of this term is that the probability of occurrence of each arrange-
ment of molecules possible in the sample is given by a Boltzmann
distribution in which the exponent is given by the potential 
energy corresponding to that arrangement.
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Fig. 14.27 The internal pressure, πT , is the slope of U with respect
to V with the temperature T held constant.
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Fig. 14.28 For a perfect gas, the internal energy is independent 
of the volume (at constant temperature). If attractions are
dominant in a real gas, the internal energy increases with volume
because the molecules become farther apart on average. If
repulsions are dominant, the internal energy decreases as the 
gas expands.



466 14 THE FIRST LAW OF THERMODYNAMICS

Equation 14.55 is very difficult to manipulate in practice, even
for quite simple intermolecular potentials, except for a perfect
gas for which EP = 0 and hence

(14.56)°

Because V is held constant in the evaluation of πT , it follows
from eqn 14.54 that for a perfect gas πT = 0.

If, however, the potential has the form of a central hard sphere
surrounded by a shallow attractive well (Fig. 14.29), then detailed
calculation, which is too involved to reproduce here, leads to

(14.57)

where a is a constant that is proportional to the area under the
attractive part of the potential. In Section 15.8 we shall see that
exactly the same expression is implied by the van der Waals
equation of state. At this point we can conclude that, if there are
attractive interactions between molecules in a gas, then its inter-
nal energy increases as it expands isothermally (because πT > 0,
and the slope of U with respect to V is positive). The energy rises
because, at greater average separations, the molecules spend less
time in regions where they interact favourably.

(b) Changes in internal energy at constant pressure

Partial derivatives have many useful properties and some that
we shall draw on frequently are reviewed in Mathematics back-
ground 8. Skilful use of them can often turn some unfamiliar
quantity into a quantity that can be recognized, interpreted, and
measured.

As an example, suppose we want to find out how the internal
energy varies with temperature when the pressure of the system
is kept constant. If we divide both sides of eqn 14.51 by dT and
impose the condition of constant pressure on the resulting dif-
ferentials, so dU/dT on the left becomes (∂U/∂T)p, we obtain
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Fig. 14.29 The van der Waals equation of state can be derived on
the basis that the intermolecular potential energy has a hard core
surrounded by a long-range, shallow attractive well.

Synoptic table 14.7* Expansion coefficients
(α) and isothermal compressibilities (κT) at 298 K

a/(10−4 K−1) kT /(10−6 atm−1)

Benzene 12.4 92.1

Diamond 0.030 0.187

Lead 0.861 2.21

Water 2.1 49.6

* More values are given in the Data section.

It is usually sensible in thermodynamics to inspect the output of
a manipulation like this to see if it contains any recognizable
physical quantity. The partial derivative on the right in this ex-
pression is the slope of the plot of volume against temperature
(at constant pressure). This property is normally tabulated as
the expansion coefficient, α, of a substance, which is defined as

[14.58]

and physically is the fractional change in volume that accom-
panies a rise in temperature. A large value of α means that the 
volume of the sample responds strongly to changes in tempera-
ture. Table 14.7 lists some experimental values of α and of the
isothermal compressibility, κT (kappa), which is defined as

[14.59]

The isothermal compressibility is a measure of the fractional
change in volume when the pressure is increased by a small
amount; the negative sign in the definition ensures that the com-
pressibility is a positive quantity, because an increase of pres-
sure, implying a positive dp, brings about a reduction of volume,
a negative dV.

Example 14.7 Calculating the expansion coefficient of a gas

Derive an expression for the expansion coefficient of a perfect
gas.

Method The expansion coefficient is defined in eqn 14.58.
To use this expression, substitute the expression for V in
terms of T obtained from the equation of state for the gas. As
implied by the subscript in eqn 14.58, the pressure, p, is
treated as a constant.
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ential. It turns out that H is a useful thermodynamic function
when the pressure is under our control: we saw a sign of that in
the relation ΔH = qp (eqn 14.29b). We shall therefore regard H as
a function of p and T, and adapt the argument in Section 14.10
to find an expression for the variation of H with temperature at
constant volume. As set out in the following Justification, we find
that, for a closed system of constant composition,

dH = −μCpdp + CpdT (14.64)

where the Joule–Thomson coefficient, μ (mu), is defined as

[14.65]

This relation will prove useful for relating the heat capacities at
constant pressure and volume and for a discussion of the lique-
faction of gases.

Justification 14.4 The variation of enthalpy with pressure and
temperature

By the same argument that led to eqn 14.49 but with H
regarded as a function of p and T we can write

(14.66)

The second partial derivative is Cp; our task here is to express
(∂H/∂p)T in terms of recognizable quantities. The chain rela-
tion (see Mathematics background 8) lets us write

and both partial derivatives can be brought into the numerator
by using the reciprocal identity twice:

(14.67)

We have used the definitions of the constant-pressure heat
capacity, Cp, and the Joule–Thomson coefficient, μ (eqn 14.65).
Equation 14.64 now follows directly.

The analysis of the Joule–Thomson coefficient is central to
the technological problems associated with the liquefaction of
gases. We need to be able to interpret it physically and to meas-
ure it. As shown in the Justification below, the cunning required
to impose the constraint of constant enthalpy, so that the pro-
cess is isenthalpic, was supplied by Joule and William Thomson
(later Lord Kelvin). They let a gas expand through a porous 
barrier from one constant pressure to another, and monitored
the difference of temperature that arose from the expansion
(Fig. 14.30). The whole apparatus was insulated so that the 
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Answer Because pV = nRT, we can write

The higher the temperature, the less responsive is the volume
of a perfect gas to a change in temperature.

Self-test 14.9 Derive an expression for the isothermal com-
pressibility of a perfect gas. [κT = 1/p]

When we introduce the definition of α into the equation for
(∂U/∂T)p, we obtain

(14.60)

This equation is entirely general (provided the system is closed
and its composition is constant). It expresses the dependence of
the internal energy on the temperature at constant pressure in
terms of CV, which can be measured in one experiment, in terms
of α, which can be measured in another, and in terms of the
quantity πT. For a perfect gas, πT = 0, so then

(14.61)°

That is, although the constant-volume heat capacity of a perfect
gas is defined as the slope of a plot of internal energy against
temperature at constant volume, for a perfect gas CV is also the
slope at constant pressure.

Equation 14.61 provides an easy way to derive the relation 
between Cp and CV for a perfect gas expressed in eqn 14.35.
Thus, we can use it to express both heat capacities in terms of
derivatives at constant pressure:

(14.62)°

Then we introduce H = U + pV = U + nRT into the first term,
which results in

(14.63)°

which is eqn 14.35.

14.11 The Joule–Thomson effect

We can carry out a similar set of operations on the enthalpy, 
H = U + pV. The quantities U, p, and V are all state functions;
therefore H is also a state function and dH is an exact differ-
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process was adiabatic. They observed a lower temperature on the
low pressure side, the difference in temperature being propor-
tional to the pressure difference they maintained. This cooling
by isenthalpic expansion is now called the Joule–Thomson effect.

Justification 14.5 The Joule–Thomson effect

Here we show that the experimental arrangement results in
expansion at constant enthalpy. Because all changes to the
gas occur adiabatically,

q = 0, which implies ΔU = w

Consider the work done as the gas passes through the barrier.
We focus on the passage of a fixed amount of gas from the
high pressure side, where the pressure is pi, the temperature
Ti, and the gas occupies a volume Vi (Fig. 14.31). The gas
emerges on the low pressure side, where the same amount of
gas has a pressure pf , a temperature Tf , and occupies a volume
Vf . The gas on the left is compressed isothermally by the 
upstream gas acting as a piston. The relevant pressure is pi

and the volume changes from Vi to 0; therefore, the work
done on the gas is

w1 = −pi(0 − Vi) = piVi

The gas expands isothermally on the right of the barrier (but
possibly at a different constant temperature) against the pres-
sure pf provided by the downstream gas acting as a piston to
be driven out. The volume changes from 0 to Vf , so the work
done on the gas in this stage is

w2 = −pf (Vf − 0) = −pfVf

The total work done on the gas is the sum of these two quan-
tities, or

w = w1 + w2 = piVi − pfVf

It follows that the change of internal energy of the gas as it
moves adiabatically from one side of the barrier to the other is

Uf − Ui = w = piVi − pfVf

Reorganization of this expression gives

Uf + pfVf = Ui + piVi, or Hf = Hi

Therefore, the expansion occurs without change of enthalpy.

The property measured in the experiment is the ratio of the
temperature change to the change of pressure, ΔT/Δp. Adding
the constraint of constant enthalpy and taking the limit of small
Δp implies that the thermodynamic quantity measured is (∂T/∂p)H,
which is the Joule–Thomson coefficient, μ. In other words, the
physical interpretation of μ is that it is the ratio of the change in
temperature to the change in pressure when a gas expands under
conditions that ensure there is no change in enthalpy.

The modern method of measuring μ is indirect, and in-
volves measuring the isothermal Joule–Thomson coefficient,
the quantity

[14.68]

which is the slope of a plot of enthalpy against pressure at con-
stant temperature (Fig. 14.32). Comparing eqns 14.67 and 14.68,
we see that the two coefficients are related by:

μT = −Cpμ (14.69)

μT
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∂
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Thermocouples

Gas at
high pressure

Gas at
low pressure

Porous
barrier

Insulation

Fig. 14.30 The apparatus used for measuring the Joule–Thomson
effect. The gas expands through the porous barrier, which acts 
as a throttle, and the whole apparatus is thermally insulated. 
As explained in the text, this arrangement corresponds to 
an isenthalpic expansion (expansion at constant enthalpy).
Whether the expansion results in a heating or a cooling of 
the gas depends on the conditions.

Downstream
pressure

Upstream
pressure

Throttle
p ,V ,Ti i i

p ,V ,Tf f f

pi

pi

pi

pf

pf

pf

Fig. 14.31 The thermodynamic basis of Joule–Thomson
expansion. The pistons represent the upstream and downstream
gases, which maintain constant pressures either side of the
throttle. The transition from the top diagram to the bottom
diagram, which represents the passage of a given amount of gas
through the throttle, occurs without change of enthalpy.
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To measure μT , the gas is pumped continuously at a steady pres-
sure through a heat exchanger (which brings it to the required
temperature) and then through a porous plug inside a thermally
insulated container. The steep pressure drop is measured, and
the cooling effect is exactly offset by an electric heater placed 
immediately after the plug (Fig. 14.33). The energy provided 
by the heater is monitored. Because the energy transferred as
heat can be identified with the value of ΔH for the gas (because
ΔH = qp), and the pressure change Δp is known, we can find μT

from the limiting value of ΔH/Δp as Δp → 0, and then convert it
to μ. Table 14.8 lists some values obtained in this way.

Real gases have nonzero Joule–Thomson coefficients. Depend-
ing on the identity of the gas, the pressure, the relative magnitudes
of the attractive and repulsive intermolecular forces, and the
temperature, the sign of the coefficient may be either positive or
negative (Fig. 14.34). A positive sign implies that dT is negative
when dp is negative, in which case the gas cools on expansion.
Gases that show a heating effect (μ < 0) at one temperature show
a cooling effect (μ > 0) when the temperature passes through an
inversion temperature, TI (Table 14.8, Fig. 14.35). As indicated

in Fig. 14.35, a gas typically has two inversion temperatures at a
given pressure, one at high temperature and the other at low.

The ‘Linde refrigerator’ makes use of Joule–Thompson ex-
pansion to liquefy gases (Fig. 14.36). The gas at high pressure is
allowed to expand through a throttle, it cools, and is circulated
past the incoming gas. That gas is cooled, and its subsequent 
expansion cools it still further. There comes a stage when the 
circulating gas becomes so cold that it condenses to a liquid.

For a perfect gas, μ = 0; hence, the temperature of a perfect gas
is unchanged by Joule–Thomson expansion. This characteristic
points clearly to the involvement of intermolecular forces in 
determining the size of the effect. However, the Joule–Thomson
coefficient of a real gas does not necessarily approach zero as the

Enthalpy, H

Pressure, p

Temperature, T

T T= (d /d )H p$

Fig. 14.32 The isothermal Joule–Thomson coefficient is the 
slope of the enthalpy with respect to changing pressure, the
temperature being held constant.

Pressure, p
Te

m
p

er
at

u
re

,
T

Cooling

Heating

Isenthalps

> 0

< 0

$

$

Fig. 14.34 The sign of the Joule–Thomson coefficient, μ, 
depends on the conditions. Inside the boundary, the shaded
area, it is positive and outside it is negative. The temperature
corresponding to the boundary at a given pressure is the
‘inversion temperature’ of the gas at that pressure. For a given
pressure, the temperature must be below a certain value if
cooling is required, but if it becomes too low, the boundary 
is crossed again and heating occurs. Reduction of pressure 
under adiabatic conditions moves the system along one of 
the isenthalps, or curves of constant enthalpy. The inversion
temperature curve runs through the points of the isenthalps
where their slope changes from negative to positive.

Porous
plug

Heater
Gas flow

Thermometer

Fig. 14.33 A schematic diagram of the apparatus used for
measuring the isothermal Joule–Thomson coefficient. The
electrical heating required to offset the cooling arising from
expansion is interpreted as ΔH and used to calculate (∂H/∂p)T,
which is then converted to μ as explained in the text.

Synoptic table 14.8* Inversion temperatures,
normal freezing and boiling points, and
Joule–Thomson coefficients at 1 atm and 298 K

TI/K Tf /K Tb/K m/(K atm−1)

Ar 723 83.8 87.3

CO2 1500 194.7s +1.11 at 300 K

He 40 4.2 −0.062

N2 621 63.3 77.4 +0.27

* More values are given in the Data section.
s: sublimes
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pressure is reduced even though the equation of state of the gas
approaches that of a perfect gas. The coefficient behaves like the
properties discussed in Section 8.7 in the sense that it depends
on derivatives and not on p, V, and T themselves.

The kinetic model of gases and the equipartition theorem
imply that the mean kinetic energy of molecules in a gas is pro-
portional to the temperature. It follows that reducing the aver-
age speed of the molecules is equivalent to cooling the gas. If 
the speed of the molecules can be reduced to the point that
neighbours can capture each other by their intermolecular 
attractions, then the cooled gas will condense to a liquid. To slow
the gas molecules, we make use of an effect similar to that seen
when a ball is thrown into the air: as it rises it slows in response
to the gravitational attraction of the Earth and its kinetic energy
is converted into potential energy. Molecules in a real gas attract
each other (the attraction is not gravitational, but the effect is the
same). It follows that, if we can cause the molecules to move
apart from each other, like a ball rising from a planet, then they
should slow. It is very easy to move molecules apart from each
other: we simply allow the gas to expand, which increases the 
average separation of the molecules. To cool a gas, therefore, we
allow it to expand without allowing any energy to enter from
outside as heat. As the gas expands, the molecules move apart to
fill the available volume, struggling as they do so against the 
attraction of their neighbours. Because some kinetic energy must
be converted into potential energy to reach greater separations,
the molecules travel more slowly as their separation increases.
This sequence of molecular events explains the Joule–Thomson
effect: the cooling of a real gas by adiabatic expansion. The 
cooling effect, which corresponds to μ > 0, is observed under 
conditions when attractive interactions are dominant, because
the molecules have to climb apart against the attractive force 
in order for them to travel more slowly. For molecules under
conditions when repulsions are dominant, the Joule–Thomson
effect results in the gas becoming warmer, or μ < 0.
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< 0
(heating)
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Fig. 14.35 The inversion temperatures for three real gases,
nitrogen, hydrogen, and helium.

Heat
exchanger

Compressor

Liquid

Cold
gas

Fig. 14.36 The principle of the Linde refrigerator is shown in 
this diagram. The gas is recirculated, and so long as it is beneath
its inversion temperature it cools on expansion through the
throttle. The cooled gas cools the high-pressure gas, which 
cools still further as it expands. Eventually liquefied gas drips
from the throttle.

Checklist of key ideas

1. Thermodynamics is the study of the transformations of
energy.

2. The system is the part of the world in which we have a
special interest. The surroundings is the region outside 
the system where we make our measurements.

3. An open system has a boundary through which matter can
be transferred. A closed system has a boundary through
which matter cannot be transferred. An isolated system has 
a boundary through which neither matter nor energy can be
transferred.

4. Energy is the capacity to do work. The internal energy is the
total energy of a system.

5. Work is the transfer of energy by motion against an
opposing force, dw = −Fdz. Heat is the transfer of energy as 
a result of a temperature difference between the system and
the surroundings. In molecular terms, heating makes use of
thermal motion, that is, disorderly molecular motion.

6. An exothermic process releases energy as heat; an
endothermic process absorbs energy as heat.

7. A state function is a property that depends only on the
current state of the system and is independent of how that
state has been prepared.

8. The First Law of thermodynamics states that the internal
energy of an isolated system is constant, ΔU = q + w.
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9. Expansion work is the work of expansion (or compression)
of a system, dw = −pexdV. The work of free expansion is 
w = 0. The work of expansion against a constant external
pressure is w = −pexΔV. The work of isothermal reversible
expansion of a perfect gas is w = −nRT ln(Vf /Vi).

10. A reversible change is a change that can be reversed by 
an infinitesimal modification of a variable. A system is 
in equilibrium with its surroundings if an infinitesimal
change in conditions in an opposite direction results in 
an opposite change in state.

11. Maximum work is achieved in a reversible change.

12. In a reversible isothermal expansion, the work done is due 
to a change in the energy levels occupied by the molecules 
of the system.

13. Calorimetry is the study of heat transfers during physical
and chemical processes.

14. At constant volume, with no additional work, ΔU = qV
= ∑iεiΔni.

15. The heat capacity at constant volume is defined as 
CV = (∂U/∂T)V. The heat capacity at constant pressure, 
Cp = (∂H/∂T)p. For a perfect gas, the heat capacities are
related by Cp − CV = nR.

16. The total molar heat capacity at constant volume is 
CV,m = 1–2(3 + νR* + 2νV*)R where νR* and νV* are the 
numbers of active rotational and vibrational modes,
respectively.

17. The enthalpy is defined as H = U + pV. The enthalpy 
change is the energy transferred as heat at constant 
pressure, ΔH = qp.

18. Thermochemistry is the study of the energy transferred as
heat during chemical reactions.

19. The standard enthalpy change is the change in enthalpy for a
process in which the initial and final substances are in their
standard states. The standard state is the pure substance at 
1 bar.

20. Hess’s law states that the standard enthalpy of an overall
reaction is the sum of the standard enthalpies of the
individual reactions into which a reaction may be divided.

21. The standard enthalpy of formation (ΔfH
7) is the standard

reaction enthalpy for the formation of the compound from
its elements in their reference states. The reference state is
the most stable state of an element at the specified
temperature and 1 bar.

22. The standard reaction enthalpy may be estimated by
combining enthalpies of formation, ΔrH

7 = ∑ProductsνΔf H
7

− ∑ReactantsνΔf H
7.

23. The temperature dependence of the reaction enthalpy 
is given by Kirchhoff ’s law, ΔrH

7(T2) = ΔrH
7(T1) +

∫T2
T1

ΔrC
7
p dT.

24. The internal pressure is defined as πT = (∂U/∂V)T . For a
perfect gas, πT = 0. For a real gas, πT can be expressed in
terms of the volume- and temperature-dependencies of 
the configuration integral Z.

25. For a perfect gas, the expansion coefficient α = 1/T and 
the isothermal compressibility κT = 1/p.

26. The Joule–Thomson effect is the cooling of a gas by
isenthalpic expansion.

27. The Joule–Thomson coefficient is defined as μ = (∂T/∂p)H.
The isothermal Joule–Thomson coefficient is defined as 
μT = (∂H/∂p)T = −Cpμ. For a perfect gas, μ = 0.

28. The inversion temperature is the temperature at which the
Joule–Thomson coefficient changes sign.

Further information

Further information 14.1 Adiabatic processes

Consider a stage in a reversible adiabatic expansion when the pressure
inside and out is p. The work done when the gas expands by dV is 
dw = −pdV; however, for a perfect gas, dU = CV dT since πT = 0 in 
eqn 14.51 for a perfect gas. Therefore, because for an adiabatic change
(dq = 0) dU = dw + dq = dw, we can equate these two expressions for 
dU and write

CV dT = −pdV

We are dealing with a perfect gas, so we can replace p by nRT/V and
obtain

To integrate this expression we note that T is equal to Ti when V is equal
to Vi, and is equal to Tf when V is equal to Vf at the end of the expansion.
Therefore,

C T

T

nR V

V
V d d

= −

(We are taking CV to be independent of temperature.) Then, because

∫dx/x = ln x + constant, we obtain

Because ln(x/y) = −ln(y/x), this expression rearranges to

With c = CV /nR we obtain (because ln xa = a ln x)

which implies that (Tf /Ti)
c = (Vi /Vf) and, upon rearrangement, eqn 14.37.
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The initial and final states of a perfect gas satisfy the perfect gas law
regardless of how the change of state takes place, so we can use pV = nRT
to write

However, we have just shown that

T

T

V

V

V

V

c

i

f

f

i

f

i

1

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1/ γ

p V

p V

T

T
i i

f f

i

f

=

where we use the definition of the heat capacity ratio γ = Cp,m/CV,m

and the fact that, for a perfect gas, Cp,m − CV,m = R (the molar version 
of eqn 14.35). Then we combine the two expressions, to obtain

which rearranges to piV i
γ = pfV f

γ, which is eqn 14.40.
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Discussion questions

14.1 Describe and distinguish the various uses of the words ‘system’ and
‘state’ in physical chemistry.

14.2 Describe the distinction between heat and work in thermodynamic
and molecular terms, the latter in terms of populations and energy 
levels.

14.3 Give examples of state functions and discuss why they play a critical
role in thermodynamics.

14.4 Explain the difference between the change in internal energy and
the change in enthalpy accompanying a chemical or physical process.

14.5 Describe two calorimetric methods for the determination of
enthalpy changes that accompany chemical processes.

14.6 Distinguish between ‘standard state’ and ‘reference state’, and
indicate their applications.

14.7 Suggest (with explanation) how the internal energy of a van der
Waals gas should vary with volume at constant temperature.

14.8 Use concepts of statistical thermodynamics to describe the
molecular features that determine the magnitude of the constant-
volume molar heat capacity of a molecular substance.

14.9 Use concepts of statistical thermodynamics to describe the
molecular features that lead to the equations of state of perfect and 
real gases.

14.10 Explain why a perfect gas does not have an inversion temperature.

Exercises

Assume all gases are perfect unless stated otherwise. Unless otherwise
stated, thermochemical data are for 298.15 K.

14.1(a) Use the equipartition theorem to estimate the molar internal
energy of (a) I2, (b) CH4, (c) C6H6 in the gas phase at 25°C.

14.1(b) Use the equipartition theorem to estimate the molar internal
energy of (a) O3, (b) C2H6, (c) SO2 in the gas phase at 25°C.

14.2(a) Which of (a) pressure, (b) temperature, (c) work, (d) enthalpy
are state functions?

14.2(b) Which of (a) volume, (b) heat, (c) internal energy, (d) density are
state functions?

14.3(a) Calculate the work needed for a 60 kg person to climb through
6.0 m (a) on the surface of the Earth and (b) the Moon (g = 1.60 m s−2).

14.3(b) Calculate the work needed for a bird of mass 150 g to fly to a
height of 75 m from the surface of the Earth.

14.4(a) A chemical reaction takes place in a container of cross-sectional
area 50 cm2. As a result of the reaction, a piston is pushed out through 
15 cm against an external pressure of 1.0 atm. Calculate the work done
by the system.

14.4(b) A chemical reaction takes place in a container of cross-sectional
area 75.0 cm2. As a result of the reaction, a piston is pushed out through
25.0 cm against an external pressure of 150 kPa. Calculate the work done
by the system.

14.5(a) A sample consisting of 1.00 mol Ar is expanded isothermally at
20°C from 10.0 dm3 to 30.0 dm3 (a) reversibly, (b) against a constant
external pressure equal to the final pressure of the gas, and (c) freely
(against zero external pressure). For the three processes calculate q, w,
and ΔU.

14.5(b) A sample consisting of 2.00 mol He is expanded isothermally 
at 0°C from 5.0 dm3 to 20.0 dm3 (a) reversibly, (b) against a constant
external pressure equal to the final pressure of the gas, and (c) freely
(against zero external pressure). For the three processes calculate q, w,
and ΔU.

14.6(a) When 229 J of energy is supplied as heat to 3.0 mol Ar(g), the
temperature of the sample increases by 2.55 K. Calculate the molar heat
capacities at constant volume and constant pressure of the gas.

14.6(b) When 178 J of energy is supplied as heat to 1.9 mol of gas
molecules, the temperature of the sample increases by 1.78 K. Calculate
the molar heat capacities at constant volume and constant pressure of
the gas.

14.7(a) A sample consisting of 1.00 mol of perfect gas atoms, for which
CV,m = 3–2 R, initially at p1 = 1.00 atm and T1 = 300 K, is heated reversibly
to 400 K at constant volume. Calculate the final pressure, ΔU, q, and w.

14.7(b) A sample consisting of 2.00 mol of perfect gas molecules, 
for which CV,m = 5–2 R, initially at p1 = 111 kPa and T1 = 277 K, is heated
reversibly to 356 K at constant volume. Calculate the final pressure, 
ΔU, q, and w.
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14.8(a) The constant-pressure heat capacity of a sample of a perfect 
gas was found to vary with temperature according to the expression
Cp /(J K−1) = 20.17 + 0.3665(T/K). Calculate q, w, and ΔU when the
temperature is raised from 25°C to 100°C for 1.00 mol gas molecules 
(a) at constant pressure, (b) at constant volume.

14.8(b) The constant-pressure heat capacity of a sample of a perfect 
gas was found to vary with temperature according to the expression
Cp /(J K−1) = 20.17 + 0.4001(T/K). Calculate q, w, and ΔU when the
temperature is raised from 0°C to 200°C for 1.00 mol gas molecules 
(a) at constant pressure, (b) at constant volume.

14.9(a) When 3.0 mol O2 is heated at a constant pressure of 3.25 atm, its
temperature increases from 260 K to 285 K. Given that the molar heat
capacity of O2 at constant pressure is 29.4 J K−1 mol−1, calculate q, ΔH,
and ΔU.

14.9(b) When 2.0 mol CO2 is heated at a constant pressure of 1.25 atm,
its temperature increases from 250 K to 277 K. Given that the molar heat
capacity of CO2 at constant pressure is 37.11 J K−1 mol−1, calculate q, ΔH,
and ΔU.

14.10(a) The ground level of Cl is 2P3/2 and a 2P1/2 level lies 881 cm−1

above it. Calculate the electronic contribution to the molar constant-
volume heat capacity of Cl atoms at (a) 500 K and (b) 900 K.

14.10(b) The first electronically excited state of O2 is 1Δg and lies 
7918.1 cm−1 above the ground state, which is 3Σg

−. Calculate the electronic
contribution to the molar constant-volume heat capacity of O2 at 400 K.

14.11(a) Use the equipartition principle to estimate the values of 
γ = Cp /CV for gaseous ammonia and methane. Do this calculation with
and without the vibrational contribution to the energy. Which is closer
to the expected experimental value at 25°C?

14.11(b) Use the equipartition principle to estimate the value of 
γ = Cp /CV for carbon dioxide. Do this calculation with and without the
vibrational contribution to the energy. Which is closer to the expected
experimental value at 25°C?

14.12(a) What is the root mean square deviation of the molecular energy
of argon atoms at 298 K?

14.12(b) What is the root mean square deviation of the molecular energy
of carbon dioxide molecules at 298 K?

14.13(a) Calculate the final temperature of a sample of argon of mass
12.0 g that is expanded reversibly and adiabatically from 1.0 dm3 at
273.15 K to 3.0 dm3.

14.13(b) Calculate the final temperature of a sample of carbon dioxide of
mass 16.0 g that is expanded reversibly and adiabatically from 500 cm3 at
298.15 K to 2.00 dm3.

14.14(a) A sample consisting of 1.0 mol of perfect gas molecules with 
CV = 20.8 J K−1 is initially at 4.25 atm and 300 K. It undergoes reversible
adiabatic expansion until its pressure reaches 2.50 atm. Calculate the
final volume and temperature and the work done.

14.14(b) A sample consisting of 2.5 mol of perfect gas molecules with
Cp,m = 20.8 J K−1 mol−1 is initially at 240 kPa and 325 K. It undergoes
reversible adiabatic expansion until its pressure reaches 150 kPa.
Calculate the final volume and temperature and the work done.

14.15(a) A sample of carbon dioxide of mass 2.45 g at 27.0°C is allowed
to expand reversibly and adiabatically from 500 cm3 to 3.00 dm3. What 
is the work done by the gas?

14.15(b) A sample of nitrogen of mass 3.12 g at 23.0°C is allowed to
expand reversibly and adiabatically from 400 cm3 to 2.00 dm3. What is
the work done by the gas?

14.16(a) Calculate the final pressure of a sample of carbon dioxide that
expands reversibly and adiabatically from 67.4 kPa and 0.50 dm3 to a
final volume of 2.00 dm3. Take γ = 1.4.

14.16(b) Calculate the final pressure of a sample of water vapour that
expands reversibly and adiabatically from 97.3 Torr and 400 cm3 to a
final volume of 5.0 dm3. Take γ = 1.3.

14.17(a) For tetrachloromethane, ΔvapH 7 = 30.0 kJ mol−1. Calculate q, w,
ΔH, and ΔU when 0.75 mol CCl4(l) is vaporized at 250 K and 750 Torr.

14.17(b) For ethanol, ΔvapH 7 = 43.5 kJ mol−1. Calculate q, w, ΔH, and ΔU
when 1.75 mol C2H5OH(l) is vaporized at 260 K and 765 Torr.

14.18(a) The standard enthalpy of formation of ethylbenzene is 
−12.5 kJ mol−1. Calculate its standard enthalpy of combustion.

14.18(b) The standard enthalpy of formation of phenol is −165.0 kJ mol−1.
Calculate its standard enthalpy of combustion.

14.19(a) The standard enthalpy of combustion of cyclopropane is 
−2091 kJ mol−1 at 25°C. From this information and enthalpy of
formation data for CO2(g) and H2O(g), calculate the enthalpy of
formation of cyclopropane. The enthalpy of formation of propene is
+20.42 kJ mol−1. Calculate the enthalpy of isomerization of cyclopropane
to propene.

14.19(b) From the following data, determine ΔfH
7 for diborane,

B2H6(g), at 298 K:

(1) B2H6(g) + 3 O2(g) → B2O3(s) + 3 H2O(g) ΔrH
7 = −1941 kJ mol−1

(2) 2 B(s) + 3–2 O2(g) → B2O3(s) ΔrH
7 = −2368 kJ mol−1

(3) H2(g) + 1–2 O2(g) → H2O(g) ΔrH
7 = −241.8 kJ mol−1

14.20(a) Given that the standard enthalpy of formation of HCl(aq) 
is −167 kJ mol−1, what is the value of ΔfH

7(Cl−, aq)?

14.20(b) Given that the standard enthalpy of formation of HI(aq) 
is −55 kJ mol−1, what is the value of ΔfH

7(I−, aq)?

14.21(a) When 120 mg of naphthalene, C10H8(s), was burned in a bomb
calorimeter the temperature rose by 3.05 K. Calculate the calorimeter
constant. By how much will the temperature rise when 150 mg of
phenol, C6H5OH(s), is burned in the calorimeter under the same
conditions?

14.21(b) When 2.25 mg of anthracene, C14H10(s), was burned in a bomb
calorimeter the temperature rose by 1.75 K. Calculate the calorimeter
constant. By how much will the temperature rise when 125 mg of
phenol, C6H5OH(s), is burned in the calorimeter under the same
conditions? (ΔcH

7(C14H10, s) = −7061 kJ mol−1.)

14.22(a) Given the reactions (1) and (2) below, determine (a) ΔrH
7 and

ΔrU
7 for reaction (3), (b) ΔfH

7 for both HCl(g) and H2O(g) all at 298 K.

(1) H2(g) + Cl2(g) → 2 HCl(g) ΔrH
7 = −184.62 kJ mol−1

(2) 2 H2(g) + O2(g) → 2 H2O(g) ΔrH
7 = −483.64 kJ mol−1

(3) 4 HCl(g) + O2(g) → 2 Cl2(g) + 2 H2O(g)

14.22(b) Given the reactions (1) and (2) below, determine (a) ΔrH
7 and

ΔrU
7 for reaction (3), (b) ΔfH

7 for both HI(g) and H2O(g) all at 298 K.

(1) H2(g) + I2(s) → 2 HI(g) ΔrH
7 = +52.96 kJ mol−1

(2) 2 H2(g) + O2(g) → 2 H2O(g) ΔrH
7 = −483.64 kJ mol−1

(3) 4 HI(g) + O2(g) → 2 I2(s) + 2 H2O(g)

14.23(a) For the reaction C2H5OH(l) + 3 O2(g) → 2 CO2(g) + 3 H2O(g),
ΔrU

7 = −1373 kJ mol−1 at 298 K. Calculate ΔrH
7.

14.23(b) For the reaction 2 C6H5COOH(s) + 15 O2(g) → 14 CO2(g) 
+ 6 H2O(g), ΔrU

7 = −772.7 kJ mol−1 at 298 K. Calculate ΔrH
7.
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14.24(a) From the data in Tables 14.5 and 14.6, calculate ΔrH
7 and 

ΔrU
7 at (a) 298 K, (b) 478 K for the reaction C(graphite) + H2O(g) →

CO(g) + H2(g). Assume all heat capacities to be constant over the
temperature range of interest.

14.24(b) Calculate ΔrH
7 and ΔrU

7 at 298 K and ΔrH
7 at 427 K for the

hydrogenation of ethyne (acetylene) to ethene (ethylene) from the
enthalpy of combustion and heat capacity data in Tables 14.5 and 14.6.
Assume the heat capacities to be constant over the temperature range
involved.

14.25(a) Estimate ΔrH
7(500 K) for the combustion of methane, 

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g) by using the data on the
temperature dependence of heat capacities in Table 14.2.

14.25(b) Estimate ΔrH
7(478 K) for the combustion of naphthalene,

C10H8(g) + 12 O2(g) → 10 CO2(g) + 4 H2O(g) by using the data on the
temperature dependence of heat capacities in Table 14.2.

14.26(a) Set up a thermodynamic cycle for determining the enthalpy 
of hydration of Mg2+ ions using the following data: enthalpy of
sublimation of Mg(s), +167.2 kJ mol−1; first and second ionization
enthalpies of Mg(g), 7.646 eV and 15.035 eV; dissociation enthalpy 
of Cl2(g), +241.6 kJ mol−1; electron gain enthalpy of Cl(g), −3.78 eV;
enthalpy of solution of MgCl2(s), −150.5 kJ mol−1; enthalpy of hydration
of Cl−(g), −383.7 kJ mol−1.

14.26(b) Set up a thermodynamic cycle for determining the enthalpy 
of hydration of Ca2+ ions using the following data: enthalpy of
sublimation of Ca(s), +178.2 kJ mol−1; first and second ionization
enthalpies of Ca(g), 589.7 kJ mol−1 and 1145 kJ mol−1; enthalpy of
vaporization of bromine, +30.91 kJ mol−1; dissociation enthalpy of
Br2(g), +192.9 kJ mol−1; electron gain enthalpy of Br(g), −331.0 kJ mol−1;
enthalpy of solution of CaBr2(s), −103.1 kJ mol−1; enthalpy of hydration
of Br−(g), +97.5 kJ mol−1.

14.27(a) When a certain freon used in refrigeration was expanded
adiabatically from an initial pressure of 32 atm and 0°C to a final
pressure of 1.00 atm, the temperature fell by 22 K. Calculate the
Joule–Thomson coefficient, μ, at 0°C, assuming it remains constant 
over this temperature range.

14.27(b) When a vapour at 22 atm and 5°C was allowed to expand
adiabatically to a final pressure of 1.00 atm, the temperature fell by 10 K.
Calculate the Joule–Thomson coefficient, μ, at 5°C, assuming it remains
constant over this temperature range.

14.28(a) Estimate the internal pressure, πT, of water vapour at 1.00 bar
and 298 , treating it as a van der Waals gas. Hint. Simplify the approach
by estimating the molar volume by treating the gas as perfect.

14.28(b) Estimate the internal pressure, πT, of sulfur dioxide at 
1.00 bar and 298 K, treating it as a van der Waals gas. Hint. Simplify 
the approach by estimating the molar volume by treating the gas as
perfect.

14.29(a) For a van der Waals gas, πT = a/V m
2 . Calculate ΔUm for the

isothermal expansion of nitrogen gas from an initial volume of 1.00 dm3

to 20.00 dm3 at 298 K. What are the values of q and w?

14.29(b) Repeat Exercise 14.29a for argon, from an initial volume of 
1.00 dm3 to 30.00 dm3 at 298 K.

14.30(a) The volume of a certain liquid varies with temperature as

V = V ′{0.75 + 3.9 × 10−4(T/K) + 1.48 × 10−6(T/K)2}

where V ′ is its volume at 300 K. Calculate its expansion coefficient, α, 
at 320 K.

14.30(b) The volume of a certain liquid varies with temperature as

V = V ′{0.77 + 3.7 × 10−4(T/K) + 1.52 × 10−6(T/K)2}

where V ′ is its volume at 298 K. Calculate its expansion coefficient, α, 
at 310 K.

14.31(a) The isothermal compressibility of water at 293 K is 4.96 × 10−5

atm−1. Calculate the pressure that must be applied in order to increase its
density by 0.10 per cent.

14.31(b) The isothermal compressibility of lead at 293 K is 2.21 × 10−6

atm−1. Calculate the pressure that must be applied in order to increase its
density by 0.10 per cent.

14.32(a) Given that μ = 0.25 K atm−1 for nitrogen, calculate the value of
its isothermal Joule–Thomson coefficient. Calculate the energy that must
be supplied as heat to maintain constant temperature when 10.0 mol N2
flows through a throttle in an isothermal Joule–Thomson experiment
and the pressure drop is 85 atm.

14.32(b) Given that μ = 1.11 K atm−1 for carbon dioxide, calculate the
value of its isothermal Joule–Thomson coefficient. Calculate the energy
that must be supplied as heat to maintain constant temperature when
10.0 mol CO2 flows through a throttle in an isothermal Joule–Thomson
experiment and the pressure drop is 75 atm.

Problems*

Numerical problems

14.1‡ In 2006, the Intergovernmental Panel on Climate Change 
(IPCC) considered a global average temperature rise of 1.0–3.5°C likely
by the year 2100, with 2.0°C its best estimate. Predict the average rise in
sea level due to thermal expansion of sea water based on temperature
rises of 1.0°C, 2.0°C, and 3.5°C given that the volume of the Earth’s
oceans is 1.37 × 109 km3 and their surface area is 361 × 106 km2, and 
state the approximations that go into the estimates.

14.2 The following data show how the standard molar constant-pressure
heat capacity of sulfur dioxide varies with temperature. By how much

does the standard molar enthalpy of SO2(g) increase when the
temperature is raised from 298.15 K to 1500 K?

T/K 300 500 700 900 1100 1300 1500

C 7
p,m/(J K−1 mol−1) 39.909 46.490 50.829 53.407 54.993 56.033 56.759

14.3 The following data show how the standard molar constant-
pressure heat capacity of ammonia depends on the temperature. Use
mathematical software to fit an expression of the form of eqn 14.34 to
the data and determine the values of a, b, and c. Explore whether it
would be better to express the data as Cp,m = α + βT + γT 2, and
determine the values of these coefficients.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.



14 THE FIRST LAW OF THERMODYNAMICS 475

T/K 300 400 500 600 700 800 900 1000

C 7
p,m/(J K−1 mol−1) 35.678 38.674 41.994 45.229 48.269 51.112 53.769 56.244

14.4 The constant-volume heat capacity of a gas can be measured by
observing the decrease in temperature when it expands adiabatically 
and reversibly. The value of γ = Cp /CV can be inferred if the decrease 
in pressure is also measured and the constant-pressure heat capacity
deduced by combining the two values. A fluorocarbon gas was allowed
to expand reversibly and adiabatically to twice its volume; as a result, 
the temperature fell from 298.15 K to 248.44 K and its pressure fell from
202.94 kPa to 81.840 kPa. Evaluate Cp.

14.5 The NO molecule has a doubly degenerate electronic ground state
and a doubly degenerate excited state at 121.1 cm−1. Calculate the
electronic contribution to the molar heat capacity of the molecule 
at (a) 100 K, (b) 298 K, and (c) 600 K.

14.6 Explore whether a magnetic field can influence the heat capacity of
a paramagnetic molecule by calculating the electronic contribution to
the heat capacity of an NO2 molecule in a magnetic field. Estimate the
total constant-volume heat capacity by using equipartition, and calculate
the percentage change in heat capacity brought about by a 10.0 T
magnetic field at (a) 100 K, (b) 298 K.

14.7 The energy levels of a CH3 group attached to a larger fragment are
given by the expression for a particle on a ring, provided the group is
rotating freely. What is the high-temperature contribution to the heat
capacity of such a freely rotating group at 25°C? The moment of inertia
of CH3 about its threefold rotation axis (the axis that passes through the
C atom and the centre of the equilateral triangle formed by the H atoms)
is 5.341 × 10−47 kg m2.

14.8 Calculate the temperature dependence of the heat capacity of p-H2
(in which only rotational states with even values of J are populated) at
low temperatures on the basis that its rotational levels J = 0 and J = 2
constitute a system that resembles a two-level system except for the
degeneracy of the upper level. Use è = 60.864 cm−1 and sketch the heat
capacity curve. The experimental heat capacity of p-H2 does in fact show
a peak at low temperatures.

14.9‡ In a spectroscopic study of buckminsterfullerene C60, F. Negri 
et al. (J. Phys. Chem. 100, 10849 (1996)) reviewed the wavenumbers of 
all the vibrational modes of the molecule. The wavenumber for the single
Au mode is 976 cm−1; wavenumbers for the four threefold degenerate 
T1u modes are 525, 578, 1180, and 1430 cm−1; wavenumbers for the five
threefold degenerate T2u modes are 354, 715, 1037, 1190, and 1540 cm−1;
wavenumbers for the six fourfold degenerate Gu modes are 345, 757,
776, 963, 1315, and 1410 cm−1; and wavenumbers for the seven fivefold
degenerate Hu modes are 403, 525, 667, 738, 1215, 1342, and 1566 cm−1.
How many modes have a vibrational temperature θV below 1000 K?
Estimate the molar constant-volume heat capacity of C60 at 1000 K,
counting as active all modes with θV below this temperature.

14.10 A sample consisting of 2.0 mol CO2 occupies a fixed volume of
15.0 dm3 at 300 K. When it is supplied with 2.35 kJ of energy as heat its
temperature increases to 341 K. Assume that CO2 is described by the van
der Waals equation of state, and calculate w, ΔU, and ΔH.

14.11 Calculate the work done during the isothermal reversible
expansion of a van der Waals gas. Account physically for the way in
which the coefficients a and b appear in the final expression. Plot on the
same graph the indicator diagrams (graphs of pressure against volume)
for the isothermal reversible expansion of (a) a perfect gas, (b) a van 
der Waals gas in which a = 0 and b = 5.11 × 10−2 dm3 mol−1, and 
(c) a = 4.2 dm6 atm mol−2 and b = 0. The values selected exaggerate 
the imperfections but give rise to significant effects on the indicator
diagrams. Take Vi = 1.0 dm3, n = 1.0 mol, and T = 298 K.

14.12 A sample of the sugar d-ribose (C5H10O5) of mass 0.727 g was
placed in a calorimeter and then ignited in the presence of excess oxygen.
The temperature rose by 0.910 K. In a separate experiment in the same
calorimeter, the combustion of 0.825 g of benzoic acid, for which the
internal energy of combustion is −3251 kJ mol−1, gave a temperature rise
of 1.940 K. Calculate the enthalpy of formation of d-ribose.

14.13 The standard enthalpy of formation of bis(benzene)chromium
was measured in a calorimeter. It was found for the reaction
Cr(C6H6)2(s) → Cr(s) + 2 C6H6(g) that ΔrU

7(583 K) = +8.0 kJ mol−1.
Find the corresponding reaction enthalpy and estimate the standard
enthalpy of formation of the compound at 583 K. The constant-pressure
molar heat capacity of benzene is 136.1 J K−1 mol−1 in its liquid range and
81.67 J K−1 mol−1 as a gas.

14.14‡ From the enthalpy of combustion data in Table 14.5 for the
alkanes methane through octane, test the extent to which the relation
ΔcH 7 = k{(M/(g mol−1)}n holds and find the numerical values for k and
n. Predict ΔcH 7 for decane and compare to the known value.

14.15 As described in Chapter 6, the thermochemical properties of
hydrocarbons are commonly investigated by using molecular modelling
methods. (a) Use software to predict ΔcH

7 values for the alkanes
methane through pentane. To calculate ΔcH

7 values, estimate the
standard enthalpy of formation of CnH2n+2(g) by performing
semiempirical calculations (for example, AM1 or PM3 methods) and 
use experimental standard enthalpy of formation values for CO2(g) 
and H2O(l). (b) Compare your estimated values with the experimental
values of ΔcH 7 (Table 14.5) and comment on the reliability of the
molecular modelling method. (c) Test the extent to which the relation
ΔcH 7 = k{(M/(g mol−1)}n holds (Problem 14.14) and determine the
numerical values of k and n.

14.16‡ Kolesov et al. reported the standard enthalpy of combustion and
of formation of crystalline C60 based on calorimetric measurements
(V.P. Kolesov et al., J. Chem. Thermodynamics 28, 1121 (1996)). In 
one of their runs, they found the standard specific internal energy of
combustion to be −36.0334 kJ g−1 at 298.15 K. Compute ΔcH 7 and 
Δf H

7 of C60.

14.17‡ A thermodynamic study of DyCl3 (E.H.P. Cordfunke et al., J.
Chem. Thermodynamics 28, 1387 (1996)) determined its standard
enthalpy of formation from the following information

(1) DyCl3(s) → DyCl3(aq, in 4.0 m HCl) ΔrH
7 = −180.06 kJ mol−1

(2) Dy(s) + 3 HCl(aq, 4.0 m) →
DyCl3(aq, in 4.0 m HCl(aq)) + 3–2 H2(g) ΔrH

7 = −699.43 kJ mol−1

(3) 1–2 H2(g) + 1–2 Cl2(g) → HCl(aq, 4.0 m) ΔrH
7 = −158.31 kJ mol−1

Determine Δf H
7(DyCl3, s) from these data.

14.18‡ Silylene (SiH2) is a key intermediate in the thermal
decomposition of silicon hydrides such as silane (SiH4) and disilane
(Si2H6). H.K. Moffat et al. ( J. Phys. Chem. 95, 145 (1991)) report
ΔfH

7(SiH2) = +274 kJ mol−1. If ΔfH
7(SiH4) = +34.3 kJ mol−1 and

ΔfH
7(Si2H6) = +80.3 kJ mol−1, compute the standard enthalpies of the

following reactions:

(a) SiH4 (g) → SiH2 (g) + H2 (g)

(b) Si2H6 (g) → SiH2 (g) + SiH4 (g)

14.19‡ Treat carbon monoxide as a perfect gas and apply equilibrium
statistical thermodynamics to the study of its properties, as specified
below, in the temperature range 100–1000 K at 1 bar. # = 2169.8 cm−1, 
è = 1.931 cm−1, and hcD0 = 11.09 eV; neglect anharmonicity and
centrifugal distortion. (a) Examine the probability distribution of
molecules over available rotational and vibrational states. (b) Explore
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numerically the differences, if any, between the rotational molecular
partition function as calculated with the discrete energy distribution 
and that calculated with the classical, continuous energy distribution. 
(c) Calculate the individual contributions to Um(T) − Um(100 K) and
CV,m(T) made by the translational, rotational, and vibrational degrees 
of freedom.

14.20 As remarked in Problem 14.3, it is sometimes appropriate to
express the temperature dependence of the heat capacity by the
empirical expression Cp,m = α + βT + γT2. Use this expression to estimate
the standard enthalpy of combustion of methane at 350 K. Use the
following data:

a /(J K−1 mol−1) b /(mJ K−2 mol−1) g /(mJ K −3 mol−1)

CH4(g) 14.16 75.5 −17.99

CO2(g) 26.86 6.97 −0.82

O2(g) 25.72 12.98 −3.862

H2O(g) 30.36 9.61 1.184

14.21 Figure 14.37 shows the experimental DSC scan of hen white
lysozyme (G. Privalov et al., Anal. Biochem. 79, 232 (1995)) converted 
to joules (from calories). Determine the enthalpy of unfolding of this
protein by integration of the curve and the change in heat capacity
accompanying the transition.

Theoretical problems

14.22 In the realm of nanotechnology, even translational quantization
may have significant consequences. Suppose an electron is trapped in 
a tiny one-dimensional well, where only about 10 states are thermally
accessible. Derive an expression for (a) the heat capacity, (b) the 
root-mean square spread in energies (Δε), at such low temperatures
(without making the ‘continuum’ approximation), and plot the heat
capacity as a function of temperature. Can you identify a ‘characteristic
temperature’ for the system?

14.23 Show that eqn. 14.26 can be converted into eqn 14.25.

14.24 The energies of the first six levels of a particle in a spherical cavity
are specified in Problem 13.6. Suppose that these levels are the only ones
that are thermally accessible, and derive an expression for (a) the heat
capacity, (b) the root-mean square spread in energies (Δε), and plot the
former as a function of temperature.

14.25 Derive an expression for the rotational contribution to the heat
capacity of a linear rotor without making the high-temperature
approximation, and plot CV,m against T/θR, where the ‘rotational
temperature’ is θR = hcè/k. Ignore the role of nuclear statistics.

14.26 Are there thermal consequences of nuclear statistics that even the
Victorians might have noticed? Explore the consequences, by direct
summation of energy levels, of nuclear statistics for the molar heat
capacities of ortho- and para-hydrogen (see Section 10.5).

14.27 In one of the earliest applications of quantum theory, Einstein
sought to account for the decrease in heat capacity with decreasing
temperature that had been observed. He supposed that each of the atoms
in a monatomic solid could vibrate in three dimensions with a frequency
ν. Deduce the Einstein formula and plot CV,m against T/θE, where the
‘Einstein temperature’ is θE = hν/k.

14.28 Debye improved on Einstein’s model by considering the collective
modes of the atoms in the solid. Why would that lead to a higher heat
capacity at all temperatures? He took the Einstein formula (Problem
14.27), multiplied it by a factor that represents the number of vibrational
modes in the range ν to ν + dν, and then integrated the resulting
expression from ν = 0 up to a maximum value νmax. The result is

where the ‘Debye temperature’ is θD = hνmax/k. Use mathematical
software to plot CV,m against T/θD. Show that, when T << θD, the heat
capacity follows the ‘Debye T 3 law’ (see Self-test 14.6). You will need the
standard integral

14.29‡ For H2 at very low temperatures, only translational motion
contributes to the heat capacity. At temperatures above θR = hcè/k, the
rotational contribution to the heat capacity becomes significant. At still
higher temperatures, above θV = hν/k, the vibrations contribute. But at
this latter temperature, dissociation of the molecule into the atoms must
be considered. (a) Explain the origin of the expressions for θR and θV,
and calculate their values for hydrogen. (b) Obtain an expression for the
molar constant-pressure heat capacity of hydrogen at all temperatures
taking into account the dissociation of hydrogen. (c) Make a plot of the
molar constant-pressure heat capacity as a function of temperature in the
high temperature region where dissociation of the molecule is significant.

14.30 Although expressions like ε = −d ln q /dβ are useful for formal
manipulations in statistical thermodynamics, and for expressing
thermodynamic functions in neat formulas, they are sometimes more
trouble than they are worth in practical applications. When presented
with a table of energy levels, it is often much more convenient to evaluate
the following sums directly:

whereÂ andÊ represent the first and second derivatives of q with respect
to β. (a) Derive expressions for the internal energy and heat capacity in
terms of these three functions. (b) Apply the technique to the calculation
of the electronic contribution to the constant-volume molar heat
capacity of magnesium vapour at 5000 K using the following data:

Term 1S 3P0
3P1

3P2
1P1

3S

Degeneracy 1 1 3 5 3 3

#/cm−1 0 21850 21870 21911 35051 41197
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Fig. 14.37 Experimental DSC scan of hen white lysozyme.
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14.31 Calculate the values of q, Â, and Ê (Problem 14.30) for the
rotational states of (a) HCl, è = 10.593 cm−1 and (b) CCl4, è = 5.797 m−1

(be alert to the units!).

14.32 Show how the heat capacity of a linear rotor is related to the
following sum:

by

C = 1–2 kβ2ζ(β)

where the ε( J) are the rotational energy levels and g( J ) their
degeneracies. Then go on to show graphically that the total contribution
to the heat capacity of a linear rotor can be regarded as a sum of
contributions due to transitions 0→1, 0→2, 1→2, 1→3, etc. In this 
way, construct Fig. 14.15 for the rotational heat capacities of a linear
molecule.

14.33 The ‘bump’ in the low temperature variation of the heat capacity
with temperature seen in Fig. 14.15 is more pronounced in the case of
para-hydrogen, where only even values of J are allowed. Adapt the
expression derived in Problem 14.32 to the cases of ortho- and 
para-hydrogen, and construct graphs of their heat capacities.

14.34 Set up a calculation like that in Problem 14.32 to analyse the
vibrational contribution to the heat capacity in terms of excitations
between levels and illustrate your results graphically in terms of a
diagram like that in Fig. 14.15.

14.35 Equation 14.38 in the form

is a differential equation for β (and therefore T ) as a function of L, but
we solved it there by inspection. Solve the equation formally and confirm
that eqn 14.39 is a solution.

14.36 The heat capacity ratio of a gas determines the speed of sound in 
it through the formula cs = (γRT/M)1/2, where γ = Cp /CV and M is the
molar mass of the gas. Deduce an expression for the speed of sound in a
perfect gas of (a) diatomic, (b) linear triatomic, (c) non-linear triatomic
molecules at high temperatures (with translation and rotation active).
Estimate the speed of sound in air at 25°C.

14.37 (a) Express (∂CV /∂V)T as a second derivative of U and find its
relation to (∂U/∂V)T and (∂Cp /∂p)T as a second derivative of H and 
find its relation to (∂H/∂p)T. (b) From these relations show that
(∂CV /∂V)T = 0 and (∂Cp /∂p)T = 0 for a perfect gas.

14.38 (a) Derive the relation CV = −(∂U/∂V)T(∂V/∂T)U from the
expression for the total differential of U(T,V) and (b) starting from the
expression for the total differential of H(T,p), express (∂H/∂p)T in terms
of Cp and the Joule–Thomson coefficient, μ.

14.39 Starting from the expression Cp − CV = T(∂p/∂T)V(∂V/∂T)p, use
the appropriate relations between partial derivatives to show that

Evaluate Cp − CV for a perfect gas.

14.40 (a) By direct differentiation of H = U + pV, obtain a relation
between (∂H/∂U)p and (∂U/∂V)p. (b) Confirm that (∂H/∂U)p =
1 + p(∂V/∂U)p by expressing (∂H/∂U)p as the ratio of two derivatives
with respect to volume and then using the definition of enthalpy.
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14.41 (a) Write expressions for dV and dp given that V is a function 
of p and T and p is a function of V and T. (b) Deduce expressions for 
d ln V and d ln p in terms of the expansion coefficient and the isothermal
compressibility.

14.42‡ A gas obeying the equation of state p(V − nb) = nRT is subjected
to a Joule–Thomson expansion. Will the temperature increase, decrease,
or remain the same?

14.43 Use the fact that (∂U/∂V)T = a/V m
2 for a van der Waals gas to show

that μCp,m ≈ (2a/RT) − b by using the definition of μ and appropriate
relations between partial derivatives. Hint. Use the approximation 
pVm ≈ RT when it is justifiable to do so.

14.44 Rearrange the van der Waals equation of state to give an
expression for T as a function of p and V (with n constant). Calculate
(∂T/∂p)V and confirm that (∂T/∂p)V = 1/(∂p/∂T)V. Go on to confirm
Euler’s chain relation (Mathematical background 8).

14.45 Calculate the isothermal compressibility and the expansion
coefficient of a van der Waals gas. Show, using Euler’s chain relation
(Mathematical background 8), that κTR = α(Vm − b).

14.46 The speed of sound, cs, in a gas of molar mass M is related to the
ratio of heat capacities γ by cs = (γRT/M)1/2. Show that cs = (γ p/ρ)1/2,
where ρ is the mass density of the gas. Calculate the speed of sound in
argon at 25°C.

14.47‡ A gas obeys the equation of state Vm = RT /p + aT 2 and its
constant-pressure heat capacity is given by Cp,m = A + BT + Cp, where a,
A, B, and C are constants independent of T and p. Obtain expressions for
(a) the Joule–Thomson coefficient and (b) its constant-volume heat
capacity.

14.48 The statistical properties of a two-level system enable us to give
formal significance to negative thermodynamic temperatures. From the
Boltzmann distribution for such a system, show that the temperature
may be defined as

where ε is the energy separation and N+ and N− are the populations 
of the upper and lower states, respectively. Find the corresponding
expression for β = 1/kT. It follows that, if the system can be contrived 
to have N− < N+, then T < 0. Go on to plot graphs of the partition
function, internal energy, and heat capacity of the system in the range 
−∞ < kT/ε < ∞. Observe that there are discontinuities in the graphs.
These discontinuities are eliminated by plotting the properties against 
β in the range −∞ < εβ < ∞: do so. For further investigations of negative
temperatures, see Problem 15.27.

Applications: to biology and environmental science

14.49 It is possible to see with the aid of a powerful microscope that a
long piece of double-stranded DNA is flexible, with the distance between
the ends of the chain adopting a wide range of values. This flexibility is
important because it allows DNA to adopt very compact conformations
as it is packaged in a chromosome. It is convenient to visualize a long
piece of DNA as a freely jointed chain, a chain of N small, rigid units of
length l that are free to make any angle with respect to each other. The
length l, the persistence length, is approximately 45 nm, corresponding 
to approximately 130 base pairs. You will now explore the work
associated with extending a DNA molecule. (a) Suppose that a DNA
molecule resists being extended from an equilibrium, more compact
conformation with a restoring force F = −kFx, where x is the difference in
the end-to-end distance of the chain from an equilibrium value and kF is

 

T
k

N N
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ε/
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the force constant. Use this model to write an expression for the work
that must be done to extend a DNA molecule by a distance x. Draw a
graph of your conclusion. (b) A better model of a DNA molecule is the
one-dimensional freely jointed chain, in which a rigid unit of length l can
only make an angle of 0° or 180° with an adjacent unit. In this case, the
restoring force of a chain extended by x = nl is given by

ν = n/N

where k is Boltzmann’s constant. (i) What is the magnitude of the force
that must be applied to extend a DNA molecule with N = 200 by 90 nm?
(ii) Plot the restoring force against ν, noting that ν can be either positive
or negative. How is the variation of the restoring force with end-to-end
distance different from that predicted by Hooke’s law? (iii) Keep in mind
that the difference in end-to-end distance from an equilibrium value is 
x = nl and, consequently, dx = ldn = Nldν, and write an expression for
the work of extending a DNA molecule. (iv) Calculate the work of
extending a DNA molecule from ν = 0 to ν = 1.0. Hint. You must
integrate the expression for w. The task can be accomplished easily 
with mathematical software. (c) Show that for small extensions of 
the chain, when ν << 1, the restoring force is given by

(d) Is the variation of the restoring force with extension of the chain
given in part (c) different from that predicted by Hooke’s law? Explain
your answer.

14.50 An average human produces about 10 MJ of heat each day 
through metabolic activity. If a human body were an isolated system of
mass 65 kg with the heat capacity of water, what temperature rise would
the body experience? Human bodies are actually open systems, and the
main mechanism of heat loss is through the evaporation of water. What
mass of water should be evaporated each day to maintain constant
temperature?

14.51 Glucose and fructose are simple sugars with the molecular formula
C6H12O6. Sucrose, or table sugar, is a complex sugar with molecular
formula C12H22O11 that consists of a glucose unit covalently bound to a
fructose unit (a water molecule is eliminated as a result of the reaction
between glucose and fructose to form sucrose). (a) Calculate the energy
released as heat when a typical table sugar cube of mass 1.5 g is burned in
air. (b) To what height could you climb on the energy a table sugar cube
provides assuming 25 per cent of the energy is available for work? (c)
The mass of a typical glucose tablet is 2.5 g. Calculate the energy released
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as heat when a glucose tablet is burned in air. (d) To what height could
you climb on the energy a cube provides assuming 25 per cent of the
energy is available for work?

14.52 In biological cells that have a plentiful supply of oxygen, glucose 
is oxidized completely to CO2 and H2O by a process called aerobic
oxidation. Muscle cells may be deprived of O2 during vigorous exercise
and, in that case, one molecule of glucose is converted to two molecules
of lactic acid (CH3CH (OH)COOH) by a process called anaerobic
glycolysis. (a) When 0.3212 g of glucose was burned in a bomb
calorimeter of calorimeter constant 641 J K−1, the temperature rose 
by 7.793 K. Calculate (i) the standard molar enthalpy of combustion, 
(ii) the standard internal energy of combustion, and (iii) the standard
enthalpy of formation of glucose. (b) What is the biological advantage
(in kilojoules per mole of energy released as heat) of complete aerobic
oxidation compared with anaerobic glycolysis to lactic acid?

14.53‡ Concerns over the harmful effects of chlorofluorocarbons on
stratospheric ozone have motivated a search for new refrigerants. One
such alternative is 2,2-dichloro-1,1,1-trifluoroethane (refrigerant 123).
Younglove and McLinden published a compendium of thermophysical
properties of this substance (B.A. Younglove and M. McLinden, J. Phys.
Chem. Ref. Data 23, 7 (1994)), from which properties such as the
Joule–Thomson coefficient μ can be computed. (a) Compute μ at 
1.00 bar and 50°C given that (∂H/∂p)T = −3.29 × 103 J MPa−1 mol−1

and Cp,m = 110.0 J K−1 mol−1. (b) Compute the temperature change that
would accompany adiabatic expansion of 2.0 mol of this refrigerant from
1.5 bar to 0.5 bar at 50°C.

14.54‡ Another alternative refrigerant (see preceding problem) is
1,1,1,2-tetrafluoroethane (refrigerant HFC-134a). A compendium 
of thermophysical properties of this substance has been published 
(R. Tillner-Roth and H.D. Baehr, J. Phys. Chem. Ref. Data 23, 657
(1994)) from which properties such as the Joule–Thomson coefficient 
μ can be computed. (a) Compute μ at 0.100 MPa and 300 K from the
following data (all referring to 300 K):

p/MPa 0.080 0.100 0.12

Specific enthalpy/(kJ kg−1) 426.48 426.12 425.76

(The specific constant-pressure heat capacity is 0.7649 kJ K−1 kg−1.) 
(b) Compute μ at 1.00 MPa and 350 K from the following data (all
referring to 350 K):

p/MPa 0.80 1.00 1.2

Specific enthalpy/(kJ kg−1) 461.93 459.12 456.15

(The specific constant-pressure heat capacity is 1.0392 kJ K−1 kg−1.)
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MATHEMATICAL BACKGROUND 8

Multivariate calculus

A property of a system typically depends on a number of vari-
ables, such as the pressure depending on the amount, volume,
and temperature according to an equation of state, p = f(n,T,V).
To understand how these properties vary with the conditions we
need to understand how to manipulate their derivatives. This is
the field of multivariate calculus, the calculus of several variables.

MB8.1 Partial derivatives
A partial derivative of a function of more than one variable, such
as f(x,y), is the slope of the function with respect to one of the
variables, all the other variables being held constant (Fig. MB8.1).
Although a partial derivative shows how a function changes
when one variable changes, it may be used to determine how the
function changes when more than one variable changes by an
infinitesimal amount. Thus, if f is a function of x and y then,
when x and y change by dx and dy, respectively, f changes by

(MB8.1)

where the symbol ∂ is used (instead of d) to denote a partial
derivative and the subscript on the parentheses indicates which
variable is being held constant. The quantity df is also called the
differential of f. Successive partial derivatives may be taken in
any order:
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l A BRIEF ILLUSTRATION

Suppose that f(x,y) = ax3y + by2 (the function plotted in 
Fig. MB8.1), then

Then, when x and y undergo infinitesimal changes, f changes
by

df = 3ax2y dx + (ax3 + 2by)dy

To verify that the order of taking the second partial derivative
is irrelevant, we form

l

Self test MB8.1 Evaluate df for f(x,y) = 2x2 sin 3y and 
verify that the order of taking the second partial derivative 
is irrelevant. [df = 4x sin 3y dx + 6x2 cos 3y dy]

In the following, z is a variable on which x and y depend (for
example, x, y, and z might correspond to p, V, and T).

Relation 1. When x is changed at constant z:

(MB8.3a)

Relation 2

(MB8.3b)

Relation 3

(MB8.3c)

By combining this relation and Relation 2 we obtain the Euler
chain relation:

(MB8.4)

MB8.2 Exact differentials

The relation in eqn MB8.2 is the basis of a test for an exact
differential, that is, the test of whether

df = g(x,y)dx + h(x,y)dy (MB8.5)
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Fig. MB8.1 A function of two variables, f(x,y), as depicted by the
coloured surface and the two partial derivatives, (∂f /∂x)y and (∂f /∂y)x,
the slope of the function parallel to the x- and y-axes, respectively. The
function plotted here is f(x,y) = ax3y + by2 with a = 1 and b = −2.
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has the form in eqn MB8.1. If it has that form, then g can be
identified with (∂f /∂x)y and h can be identified with (∂f/∂y)x, and
therefore eqn MB8.2 becomes

(MB8.6)

l A BRIEF ILLUSTRATION

Suppose, instead of the form df = 3ax2ydx + (ax3 + 2by)dy
in the previous brief illustration we were presented with the 
expression

with ax2 in place of ax3. To test whether this is an exact differ-
ential, we form

These two expressions are not equal, so this form of df is 
not an exact differential and there is not a corresponding 
integrated function of the form f(x,y). l

Self-test MB8.2 Determine whether the expression df =
(2y − x3)dx + xdy is an exact differential. [No]

If df is exact, then we can do two things: (1) from a knowledge
of the functions g and h we can reconstruct the function f; (2) be
confident that the integral of df between specified limits is inde-
pendent of the path between those limits. The first conclusion is
best demonstrated with a specific example.

l A BRIEF ILLUSTRATION

We consider the differential df = 3ax2ydx + (ax3 + 2by)dy,
which we know to be exact. Because (∂f/∂x)y = 3ax2y, we can
integrate with respect to x with y held constant, to obtain

f = ∫df = ∫3ax2 ydx = 3ay ∫x2 dx = ax3y + k

where the ‘constant’ of integration k may depend on y (which
has been treated as a constant in the integration), but not 
on x. To find k(y), we note that (∂f/∂y)x = ax3 + 2by, and
therefore
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from which it follows that k = by2 + constant. We have found,
therefore, that

f(x,y) = ax3y + by2 + constant

which, apart from the constant, is the original function in the
first brief illustration. The value of the constant is pinned
down by stating the boundary conditions; thus, if it is known
that f(0,0) = 0, then the constant is zero. l

Self-test MB8.3 Confirm that df = 3x2 cos y dx − x3 sin y dy is
exact and find the function f(x,y). [ f = x3 cos y]

To demonstrate that the integral of df is independent of 
the path is now straightforward. Because df is a differential, its
integral between the limits a and b is

The value of the integral depends only on the values at the end-
points and is independent of the path between them. If df is 
not an exact differential, the function f does not exist, and this
argument no longer holds. In such cases, the integral of df does
depend on the path.

l A BRIEF ILLUSTRATION

Consider the inexact differential (the expression with ax2 in
place of ax3):

df = 3ax2ydx + (ax2 + 2by)dy

Suppose we integrate df from (0,0) to (2,2) along the two
paths shown in Fig. MB8.2. Along Path 1,

whereas along Path 2,

The two integrals are not the same. l
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Self-test MB8.4 Confirm that the two paths do give the same
value for the exact differential in the first brief illustration.

[Both paths: 16a + 4b]

An inexact differential may sometimes be converted into 
an exact differential by multiplication by a factor known as an
integrating factor. A physical example is the integrating factor
1/T that converts the inexact differential dqrev into the exact dif-
ferential dS in thermodynamics (Chapter 15).

l A BRIEF ILLUSTRATION

We have seen that the differential df = 3ax2ydx + ax2dy is in-
exact. Suppose we multiply df by xmyn and write xmyndf = df ′;
then we obtain

We evaluate the following two partial derivatives:

For the new differential to be exact, these two partial deriva-
tives must be equal, so we write

3a(n + 1)xm+2yn = a(m + 2)xm+1yn

which simplifies to

3(n + 1)x = m + 2

The only solution that is independent of x is n = −1 and m = −2.
It follows that

df ′ = 3adx + (a/y)dy

is an exact differential. By the procedure already illustrated,
its integrated form is f ′(x,y) = 3ax + a ln y + constant. l

Self-test MB8.5 Find an integrating factor of the form xmyn

for the inexact differential df = (2y − x3)dx + xdy and the 
integrated form of f ′. [df ′ = xdf, f ′ = yx2 − 1–5x5 + constant]
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Fig. MB8.2 The two integration paths referred to in the brief illustration.



The Second Law of
thermodynamics

The purpose of this chapter is to explain the origin of the spontaneity of physical and chem-
ical change. To do so, we introduce the property known as the entropy and show how it is
related to the distribution of molecules over the available states and can be calculated from
the partition function. Then we show that the entropy may be defined in terms of the heat
transferred to a system, and hence may be calculated from calorimetric information. These
two approaches to the definition and calculation of the entropy are brought together by the
Third Law of thermodynamics, which is also introduced in this chapter. The chapter also 
introduces and shows how to calculate from thermodynamic and spectroscopic data a
major subsidiary thermodynamic property, the Gibbs energy. This property lets us express
the spontaneity of a process in terms of the properties of the system alone. The Gibbs 
energy also enables us to predict the maximum non-expansion work that a process can do.
The chapter concludes with an analysis of how the Gibbs energy changes with temperature
and pressure, two dependencies that play a central role in the following chapters.

Some things happen naturally; some things don’t. A gas expands to fill the available
volume, a hot body cools to the temperature of its surroundings, and a chemical reac-
tion runs in one direction rather than another. Some aspect of the world determines
the spontaneous direction of change, the direction of change that does not require
work to be done to bring it about. A gas can be confined to a smaller volume, an object
can be cooled by using a refrigerator, and some reactions can be driven in reverse (as
in the electrolysis of water). However, none of these processes is spontaneous; each
one must be brought about by doing work. An important point, though, is that
throughout this text ‘spontaneous’ must be interpreted as a natural tendency that may
or may not be realized in practice. Thermodynamics is silent on the rate at which 
a spontaneous change in fact occurs, and some spontaneous processes (such as the
conversion of diamond to graphite) may be so slow that the tendency is never realized
in practice, whereas others (such as the expansion of a gas into a vacuum) are almost
instantaneous.

The recognition of two classes of process, spontaneous and nonspontaneous, is
summarized by the Second Law of thermodynamics. This law may be expressed in a
variety of equivalent ways. One statement was formulated by Kelvin:

No process is possible in which the sole result is the absorption of heat from a reser-
voir and its complete conversion into work.

For example, it has proved impossible to construct an engine like that shown in 
Fig. 15.1, in which heat is drawn from a hot reservoir and completely converted into
work. All real heat engines have both a hot source and a cold sink; some energy is 
always discarded into the cold sink as heat and not converted into work. The Kelvin
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statement is a generalization of another everyday observation,
that a ball at rest on a surface has never been observed to leap
spontaneously upwards. An upward leap of the ball would be
equivalent to the conversion of heat from the surface into work.

The direction of spontaneous
change

What determines the direction of spontaneous change? It is not
the total energy of the isolated system. The First Law of thermo-
dynamics states that energy is conserved in any process, and we
cannot disregard that law now and say that everything tends 
towards a state of lower energy: the total energy of an isolated
system is constant.

Is it perhaps the energy of the system that tends towards a
minimum? Two arguments show that this cannot be so. First, 
a perfect gas expands spontaneously into a vacuum, yet its 
internal energy remains constant as it does so. Secondly, if the
energy of a system does happen to decrease during a spontan-
eous change, the energy of its surroundings must increase by the
same amount (by the First Law). The increase in energy of the
surroundings is just as spontaneous a process as the decrease in
energy of the system.

When a change occurs, the total energy of an isolated system
remains constant but it is parcelled out in different ways. Can it
be, therefore, that the direction of change is related to the dis-
tribution of energy? We shall see that this idea is the key, and that
spontaneous changes are always accompanied by the random
dispersal of energy.

15.1 The dispersal of energy

We can begin to understand the role of the distribution of 
energy by thinking about a ball (the system) bouncing on a floor

(the surroundings). The ball does not rise as high after each
bounce because there are inelastic losses in the materials of the
ball and floor. The kinetic energy of the ball’s overall motion 
is spread out into the energy of thermal motion of its particles
and those of the floor that it hits. The direction of spontaneous
change is towards a state in which the ball is at rest with all its 
energy dispersed as the disorderly thermal motion of molecules
in the air and spread over the atoms of the virtually infinite floor
(Fig. 15.2).

A ball resting on a warm floor has never been observed to start
bouncing. For bouncing to begin, something rather special
would need to happen. In the first place, some of the thermal
motion of the atoms in the floor would have to accumulate in a
single small object, the ball. This accumulation requires a spon-
taneous localization of energy from the myriad vibrations of the
atoms of the floor into the much smaller number of atoms that
constitute the ball (Fig. 15.3). Furthermore, whereas the thermal
motion is random, for the ball to move upwards its atoms must
all move in the same direction. The localization of random, dis-
orderly motion as concerted, ordered motion is so unlikely that
we can dismiss it as virtually impossible except on the very small
scale characteristic of ‘Brownian motion’, the jittering motion of
small particles suspended in water.

We appear to have found the signpost of spontaneous change:
we look for the direction of change that leads to the random dispersal
of the total energy of the isolated system. This principle accounts
for the direction of change of the bouncing ball, because its 
energy is spread out as thermal motion of the atoms of the floor.
The reverse process is not spontaneous because it is highly 
improbable that energy will become not only localized but also
localized as uniform motion of the ball’s atoms. A gas does not
contract spontaneously because to do so the random motion of
its molecules, which distributes their kinetic energy throughout
the container, would have to take them all into the same region
of the container, thereby localizing the energy. The opposite

Hot source

Flow of
energy

Engine

Heat

Work

Fig. 15.1 The Kelvin statement of the Second Law denies the
possibility of the process illustrated here, in which heat is
changed completely into work, there being no other change. 
The process is not in conflict with the First Law because energy 
is conserved.

Fig. 15.2 The direction of spontaneous change for a ball bouncing
on a floor. On each bounce some of its energy is degraded into
the thermal motion of the atoms of the floor, and that energy
disperses. The reverse has never been observed to take place 
on a macroscopic scale.
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change, spontaneous expansion, is a natural consequence of 
energy becoming more widely dispersed as the gas molecules 
occupy a larger volume. An object does not spontaneously become
warmer than its surroundings because it is highly improbable
that the jostling of randomly vibrating atoms in the surround-
ings will lead to the localization of thermal motion in the object.
The opposite change, the spreading of the object’s energy into
the surroundings as thermal motion, is natural.

It may seem very puzzling that the spreading out of energy
and matter, the collapse into disorder, can lead to the formation
of such ordered structures as crystals or proteins. Neverthe-
less, in due course, we shall see that the tendency of energy 
and matter to disperse in disorder accounts for change in all 
its forms.

15.2 Entropy

The First Law of thermodynamics led to the introduction of the
internal energy, U. The internal energy is a state function that
lets us assess whether a change is permissible: only those changes
may occur for which the internal energy of an isolated system 
remains constant. The law that is used to identify the signpost of
spontaneous change, the Second Law of thermodynamics, may
also be expressed in terms of another state function, the entropy,
S. We shall see that the entropy (which we shall define shortly,
but is a measure of the extent to which energy is distributed in a
disorderly manner) lets us assess whether one state is accessible
from another by a spontaneous change. The First Law uses the
internal energy to identify permissible changes; the Second Law
uses the entropy to identify the spontaneous changes among those
permissible changes.

The Second Law of thermodynamics can be expressed in
terms of the entropy:

The entropy of an isolated system increases in the course of a
spontaneous change: ΔStot > 0

where Stot is the total entropy of the isolated system, which itself
may consist of a smaller system (for example, a beaker of hot
water) and its surroundings. Thermodynamically irreversible
processes (like cooling to the temperature of the surroundings
and the free expansion of gases) are spontaneous processes, and
hence must be accompanied by an increase in total entropy.

(a) The statistical definition of entropy

If it is true, as we claimed in Chapter 13, that a partition function
contains all the thermodynamic information about a system,
then it must be possible to use it to calculate the entropy as well
as the internal energy. Because entropy is related to the dispersal
of energy and the partition function is a measure of the number
of thermally accessible states, we can be confident that the two
are indeed related.

Ludwig Boltzmann looked for a definition of entropy that 
was a measure of the dispersal of energy and was a state function,
extensive, and increased in the course of a spontaneous change.
He suggested that an appropriate definition is what we now call
the Boltzmann formula for the entropy:

S = k ln W [15.1]

where k is Boltzmann’s constant and W is the weight of the most
probable configuration of the system. The quantity S as defined
in eqn 15.1 is clearly a state function, as the weight of the most
probable configuration is independent of how the system was
prepared. That S is extensive can be seen by considering a system
as being composed of two parts with entropies S1 = k ln W1 and
S2 = k ln W2, respectively. The total weight of the entire system
(the total number of ways of achieving a configuration) is the
product of the weights of the two component parts, W = W1W2,
and so the total entropy of the system is

S = k ln W1W2 = k ln W1 + k ln W2 = S1 + S2

Because the total entropy is the sum of the entropies of its com-
ponent parts, the entropy is extensive.

That S is the signpost of spontaneous change is plausible 
because an isolated system in an arbitrary initial configuration
tends to collapse into the distribution with the greatest weight,
so the entropy as defined in eqn 15.1 increases in a spontaneous
change. Informally, we can imagine the system as exploring all
the distributions available to it, with certain distributions achieved
far more often than others. To an external observer, the system
migrates into a configuration corresponding to the overwhelm-
ingly dominant distribution.

To express this conclusion more formally, we first suppose
that the two parts of an entire system are not in equilibrium with

(a) (b)

Fig. 15.3 The molecular interpretation of the irreversibility
expressed by the Second Law. (a) A ball resting on a warm
surface; the atoms are undergoing thermal motion (vibration, in
this instance), as indicated by the arrows. (b) For the ball to fly
upwards, some of the random vibrational motion would have to
change into coordinated, directed motion. Such a conversion is
highly improbable.
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each other. Each part of the system is in internal equilibrium,
and so W1 and W2 have their respective maximum values, the
combined weight is Wi = W1W2, and the initial entropy is

Si = k ln Wi = k ln W1W2 = k ln W1 + k ln W2 = S1 + S2

When the two parts are allowed to interact, the weight becomes
Wf , which—if any change occurs at all—will become larger than
Wi as the total system explores all the available configurations
and settles into a configuration of greatest weight. The entropy
becomes

Sf = k ln Wf > k ln Wi = Si

That is, because ln Wf is greater than ln Wi, the entropy of the
final state is greater than that of the initial state, as we sought to
demonstrate.

A note on good practice Equation 15.1 shows that the units
of entropy are the same as those of Boltzmann’s constant
(joules per kelvin, J K−1). The molar entropy, Sm = S/n, there-
fore has the units joules per kelvin per mole (J K−1 mol−1), the
same as the gas constant. The standard molar entropy, Sm

7, is
the molar entropy under standard conditions (pure, 1 bar).

For eqn 15.1 to be a useful route to the calculation of the 
entropy, we need to express it in terms of the partition function.
To do so, we substitute the expression for ln W given in Section
13.1 into eqn 15.1 and, as shown in the following Justification,
for distinguishable particles obtain

(15.2a)

and for indistinguishable particles

(15.2b)

(The presence of the exponential e in the logarithm is explained
in the Justification.) Apart from changes of detail, we see that the
entropy increases as the number of thermally accessible states
(as measured by q) increases, just as we should expect.

Justification 15.1 The statistical entropy

For a system composed of N distinguishable molecules, 
eqn 13.3 is

Then, because N = ∑iNi, we can write eqn 15.1 (S = k ln W ) as
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The value of Ni/N for the most probable distribution is given
by the Boltzmann distribution:

Therefore,

Finally, because N〈ε〉 = U − U(0) and β = 1/kT, we obtain 
eqn 15.2a.

To treat a system composed of N indistinguishable mole-
cules, we need to reduce the weight W by a factor of 1/N!, 
because the N! permutations of the molecules among the
states result in the same state of the system. Then, because 
ln(W /N!) = ln W − ln N !, the equation in the first line of this
Justification becomes

where we have used Stirling’s approximation in the second
line to write ln N ! = N ln N − N. Then the same calculation 
as above leads to eqn 15.2b if we note that Nk can be written
Nk ln e and Nk ln q + Nk ln e = Nk ln qe.

Equation 15.2 is in terms of the molecular partition func-
tion and is too restrictive to accommodate interactions between
molecules. As in Chapter 13, to accommodate interacting par-
ticles we have to use the canonical partition function Q and the
weight W of the most probable configuration of the canonical
ensemble, M. However, because M = W Ñ (each member of the
ensemble is independent of the others, so we can multiply 
together their weights to get the overall weight of the ensemble)
we can use W = M1/Ñ in the Boltzmann formula and obtain

(15.3)

The number of members of the ensemble, Ñ, goes to infinity (to
achieve the thermodynamic limit). The entropy can be expressed
in terms of Q by the same argument as in Justification 15.1, and
we obtain

(15.4)

This expression reduces to eqn 15.2 when we write Q = q N for 
distinguishable non-interacting particles and Q = q N/N! for 
indistinguishable non-interacting particles.
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The expressions we have derived for the entropy accord with
what we should expect for entropy if it is a measure of the spread
of the populations of molecules over the available states. For 
instance, we show in the following Justification that the Sackur–
Tetrode equation for the molar entropy of a monatomic gas is

(15.5a)

where Λ is the thermal wavelength introduced in eqn 13.15b 
(Λ = h/(2πmkT)1/2). To calculate the standard molar entropy,
we note that Vm = RT/p, and set p = p7:

(15.5b)

We have used R/NA = k. These expressions are based on the
high-temperature approximation of the partition functions,
which assumes that many levels are occupied; therefore, they do
not apply when T is equal to or very close to zero.

l A BRIEF ILLUSTRATION

To calculate the standard molar entropy of gaseous argon at
25°C, we use eqn 15.5b with Λ = h/(2πmkT)1/2. The mass of
an Ar atom is m = 39.95mu. At 25°C, its thermal wavelength is
16.0 pm (by the same kind of calculation as the brief illustra-
tion in Section 13.3) and kT = 4.12 × 10−21 J. Therefore,

= 18.6R = 155 J K−1 mol−1

We can anticipate, on the basis of the number of accessible
states for a lighter molecule, that the standard molar entropy
of Ne is likely to be smaller than for Ar; its actual value is
17.60R at 298 K. l

Self-test 15.1 Calculate the translational contribution to the
standard molar entropy of H2 at 25°C. [14.2R]

The implications of these equations are as follows:

• Because the molecular mass appears in the numerator 
(because it appears in the denominator of Λ), the molar entropy
of a perfect gas of heavy molecules is greater than that of a 
perfect gas of light molecules under the same conditions.

We can understand this feature in terms of the energy levels of a
particle in a box being closer together for heavy particles than for
light particles, so more states are thermally accessible.

• Because the molar volume appears in the numerator, the
molar entropy increases with the molar volume of the gas.
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The reason is similar: large containers have more closely spaced
energy levels than small containers, so once again more states
are thermally accessible.

• Because the temperature appears in the numerator (because,
like m, it appears in the denominator of Λ), the molar entropy
increases with increasing temperature.

The reason for this behaviour is that more energy levels become
accessible as the temperature is raised.

Justification 15.2 The Sackur–Tetrode equation

We start with eqn 15.2b for a collection of indistinguishable
particles and write N = nNA, where NA is Avogadro’s constant.
The only mode of motion for a gas of atoms is translation,
and we saw in the brief illustration in Section 14.2 that U −
U(0) = 3–2nRT. The partition function is q = V/Λ3 (eqn 13.18),
where Λ is the thermal wavelength. Therefore,

where Vm = V/n is the molar volume of the gas and we have
used 3–2 = ln e3/2. Division of both sides by n then results in 
eqn 15.5a.

The Sackur–Tetrode equation implies that, when a monatomic
perfect gas expands isothermally from Vi to Vf , its molar entropy
changes by

(15.6)°

where aV is the collection of quantities inside the logarithm of
eqn 15.5a. This expression, which is plotted in Fig. 15.4, shows
that the molar entropy of a perfect gas increases logarithmically
with volume (because more energy levels become accessible 
as they become less widely spaced), and that the increase is 
independent of the identity of the gas (because the factor a has
cancelled).

We can get more insight into the properties of the entropy by
using eqn 15.2 to calculate its value for types of motion other
than translation. For instance, the vibrational contribution to the
molar entropy, Sm

V , is obtained by combining the expression for
the molecular partition function (eqn 13.24, q = 1/(1 − e−βε), with
ε = hc#) with the expression for the mean energy (eqn 13.39, 
〈ε〉 = ε /(eβε − 1)), to obtain

(15.7)
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This function is plotted in Fig. 15.5. As usual, it is helpful to 
interpret it, with the graph in mind:

• Both terms multiplying R become zero as β becomes
infinite, so the entropy is zero at T = 0.

• The molar entropy rises as the temperature is increased as
more vibrational states become accessible.

• The molar entropy is higher at a given temperature for
molecules with heavy atoms or low force constant than one with
light atoms or high force constant.

The vibrational energy levels are closer together in the former
case than in the latter, so more are thermally accessible. For 
I2 at 25°C, for instance, βε = 1.036 (Self-test 14.4), so Sm

V =
8.38 J K−1 mol−1.

Self-test 15.2 Evaluate the molar entropy of N two-level sys-
tems and plot the resulting expression. What is the entropy
when the two states are equally thermally accessible?
[S/Nk = βε/(1 + eβε) + ln(1 + e−βε); see Fig. 15.6; S = Nk ln 2]

The rotational contribution to the molar entropy, Sm
R, can also

be calculated once we know the molecular partition function.
For a linear molecule, the high-temperature limit of q is kT/σhcè
(eqn 13.21b) and the equipartition theorem gives the rotational
contribution to the molar internal energy as RT; therefore, from
eqn 15.2a, the contribution at high temperatures is

(15.8)

This function is plotted in Fig. 15.7. We see that:

• The rotational contribution to the entropy increases with
temperature because more rotational states become accessible.

• The rotational contribution is large when è is small, 
because then the rotational energy levels are close together.

Thus, large, heavy molecules have a large rotational contribu-
tion to their entropy. The rotational contribution for Cl2 at
25°C, for instance, is 58.6 J K−1 mol−1 whereas that for H2 is only
12.7 J K−1 mol−1. We can regard Cl2 as a more rotationally dis-
ordered gas than H2, in the sense that at a given temperature Cl2
occupies a greater number of rotational states than H2 does.
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Fig. 15.4 The logarithmic increase in entropy of a perfect gas as it
expands isothermally.

interActivity Evaluate the change in entropy that 
accompanies the expansion of 1.00 mol CO2(g) from 

0.001 m3 to 0.010 m3 at 298 K, treated as a van der Waals gas.
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Fig. 15.6 The temperature variation of the entropy of a two-level
system (expressed as a multiple of Nk). As T → ∞, the two states
become equally populated and S approaches Nk ln 2.

interActivity Draw graphs similar to those in Fig. 15.6 for a 
three-level system with levels 0, ε, and 2ε.
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Fig. 15.5 The temperature variation of the entropy of a collection
of harmonic oscillators (expressed here as a multiple of Nk). The
entropy approaches zero as T → 0, and increases without limit as
T → ∞.

interActivity Plot the function dS/dT, the temperature 
coefficient of the entropy, against kT/ε. Is there 

a temperature at which this coefficient passes through a
maximum? If you find a maximum, explain its physical origins.
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Equation 15.8 is valid at high temperatures (T >> θR); to track
the rotational contribution down to low temperatures it would
be necessary to use the full form of the rotational partition func-
tion (Section 13.3; see Problem 15.1); the resulting curve has the
form shown in Fig. 15.7. We see, in fact, that the approximate
curve matches the exact curve very well for T/θR greater than
about 1.

(b) The thermodynamic definition of entropy

We shall now use the Boltzmann formula for the entropy to 
motivate a thermodynamic definition. First, we note that, 
according to eqn 15.1, a change in entropy arises from a change
in populations of the available states:

We established in eqn 13.50 that for the most probable 
distribution

and therefore it follows that

The second sum, over changes in populations, is zero for a 
system with a fixed number of particles, and so

However, for a system that is heated, there is no change in the
energy levels themselves and the change in energy of the system
is due only to the change in populations of those unchanging 
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Fig. 15.7 The variation of the rotational contribution to the
entropy of a linear molecule (σ =1) using the high-temperature
approximation and the exact expression (the latter evaluated up
to J = 20).

energy levels. Moreover, if the heating is reversible, the popula-
tions retain their most probable values at all stages. It follows
that the sum on the right in this expression can be identified
with the energy transferred reversibly as heat. That is,

[15.9]

For a measurable change between two states i and f it integrates to

(15.10)

That is, to calculate the difference in entropy between any two
states of a system from thermodynamic data as distinct from 
the spectroscopic data used to calculate changes in the statistical
entropy, we find a reversible path between them, and integrate
the energy supplied as heat at each stage of the path divided by
the temperature at which the heating occurs.

In classical thermodynamics, eqn 15.9 is taken as the thermo-
dynamic definition of entropy and has a straightforward physical
interpretation. The change in entropy is proportional to the 
energy transferred as heat, for that stimulates greater thermal
disorder in the system. However, the change brought about by a
given transfer is greater at low temperatures than at high. In a
sense, the temperature at which the transfer occurs is a measure
of the thermal disorder already present, and a given transfer of
energy has a greater impact at low temperature (when the dis-
order is small) than at high (when the disorder is already great).

Example 15.1 Calculating the entropy change for the isothermal
expansion of a perfect gas

Calculate the entropy change of a sample of perfect gas when
it expands isothermally from a volume Vi to a volume Vf.

Method Equation 15.10 instructs us to find the energy sup-
plied as heat for a reversible path between the stated initial
and final states regardless of the actual manner in which the
process in fact takes place. A simplification is that the expan-
sion is isothermal, so the temperature is a constant and may
be taken outside the integral. The energy absorbed as heat
during a reversible isothermal expansion of a perfect gas can
be calculated from ΔU = q + w and ΔU = 0, which implies that
q = −w in general and therefore that qrev = −wrev for a re-
versible change. The work of reversible isothermal expansion
was calculated in Section 14.3.

Answer Because the temperature is constant, eqn 15.10 
becomes
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This expression is true however the change takes place, revers-
ibly or irreversibly.

l A BRIEF ILLUSTRATION

To calculate the entropy change in the surroundings when
1.00 mol H2O(l) is formed from its elements under standard
conditions at 298 K, we use ΔH 7 = −286 kJ from Table 14.6.
The energy released as heat is supplied to the surroundings,
so qsur = +286 kJ. Therefore,

This strongly exothermic reaction results in an increase in 
the entropy of the surroundings as energy is released into
them as heat. l

Self-test 15.4 Calculate the entropy change in the surround-
ings when 1.00 mol N2O4(g) is formed from 2.00 mol NO2(g)
under standard conditions at 298 K. [−192 J K−1]

(c) The entropy as a state function

Entropy is a state function. That is evident from the statistical
definition, but is it true of the thermodynamic definition? 
To prove that it is, we need to show that the integral of dS is 
independent of path. To do so, it is sufficient to prove that the
integral of eqn 15.10 around an arbitrary cycle is zero, for that
guarantees that the entropy is the same at the initial and final
states of the system regardless of the path taken between them
(Fig. 15.8). That is, we need to show that

(15.13)

where the symbol � denotes integration around a closed path.
There are three steps in the argument:

• First, to show that eqn 15.13 is true for a special cycle 
(a ‘Carnot cycle’) involving a perfect gas.

  
�d revq

T
= 0

 
ΔSsur

J

298 K
J K=

×
= + −2 86 10

960
5

1.

Volume, V

Pr
es

su
re

,
p

Initial
state

Final
state

Fig. 15.8 In a thermodynamic cycle, the overall change in a state
function (from the initial state to the final state and then back to
the initial state again) is zero.

From eqn 14.12 and qrev = −wrev, we know that

It follows that

exactly as obtained by statistical arguments (eqn 15.6). As an
illustration of this formula, when the volume occupied by
1.00 mol of any perfect gas molecules is doubled at any con-
stant temperature, Vf /Vi = 2 and

ΔS = (1.00 mol) × (8.3145 J K−1 mol−1) × ln 2 = +5.76 J K−1

Self-test 15.3 Calculate the change in entropy when the pres-
sure of a perfect gas is changed isothermally from pi to pf.

[ΔS = nR ln(pi /pf)]

We can use the definition in eqn 15.9 to formulate an expres-
sion for the change in entropy of the surroundings, ΔSsur, which
would be very difficult to do statistically. Consider an infinit-
esimal transfer of heat dqsur to the surroundings. The surround-
ings consist of a reservoir of constant pressure and temperature,
so the energy supplied to them as heat can be identified with the
change in their enthalpy, dHsur. The enthalpy is a state function
and dHsur is an exact differential. As we have seen, these pro-
perties imply that dHsur is independent of how the change is
brought about and in particular is independent of whether the
process is reversible or irreversible. The same remarks therefore
apply to dqsur, to which dHsur is equal. Therefore, we can adapt
the definition in eqn 15.9 to write

(15.11a)

Furthermore, because the temperature of the surroundings is
constant however much heat enters them (they have infinite
heat capacity), for a measurable change

(15.11b)

That is, regardless of how the change is brought about in the 
system, reversibly or irreversibly, we can calculate the change of
entropy of the surroundings by dividing the heat transferred by
the temperature at which the transfer takes place.

Equation 15.11 makes it very simple to calculate the changes
in entropy of the surroundings that accompany any process. For
instance, for any adiabatic change, qsur = 0, so

For an adiabatic change: ΔSsur = 0 (15.12)
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• Then to show that the result is true whatever the working
substance.

• Finally, to show that the result is true for any cycle.

A Carnot cycle, which is named after the French engineer Sadi
Carnot, consists of four reversible stages (Fig. 15.9):

1. Reversible isothermal expansion from A to B at Th; the 
entropy change is qh/Th, where qh is the heat supplied from the
hot source.

2. Reversible adiabatic expansion from B to C. No energy
leaves the system as heat, so the change in entropy is zero. In the
course of this expansion, the temperature falls from Th to Tc, the
temperature of the cold sink.

3. Reversible isothermal compression from C to D at Tc.
Energy is released as heat to the cold sink; the corresponding
change in entropy is qc/Tc; in this expression qc is negative.

4. Reversible adiabatic compression from D to A. No energy
enters the system as heat, so the change in entropy is zero. The
temperature rises from Tc to Th.

The total change in entropy around the cycle is

However, we show in the Justification below that for a perfect gas

(15.14)rev

Substitution of this relation into the preceding equation gives
zero on the right, which is what we wanted to prove.
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Justification 15.3 Heating accompanying reversible
adiabatic expansion

This Justification is based on the fact that the two tempera-
tures in eqn 15.14 lie on the same adiabat in Fig. 15.9. As 
explained in Example 15.1, for a perfect gas:

From the relations between temperature and volume for 
reversible adiabatic processes (eqn 14.37, summarized as 
VT c = constant with c = CV,m/R):

VAT h
c = VDTc

c VCTc
c = VBT h

c

Multiplication of the first of these expressions by the second
gives

VAVCTh
cTc

c = VDVBTh
cTc

c

which simplifies to

Consequently,

and therefore

as in eqn 15.14.

In the second step we need to show that eqn 15.14 applies to
any material, not just a perfect gas (which is why, in anticipation,
we have not labelled it with a °). We begin this step of the argu-
ment by introducing the efficiency, η (eta), of a heat engine:

[15.15]

The definition implies that, the greater the work output for a
given supply of heat from the hot reservoir, the greater is the
efficiency of the engine. We can express the definition in terms
of the heat transactions alone, because (as shown in Fig. 15.10)
the energy supplied as work by the engine is the difference 
between the energy supplied as heat by the hot reservoir and 
returned to the cold reservoir:

(15.16)

We have used absolute values because keeping track of signs can
be tricky. It then follows from eqn 15.14 in the form |qc |/|qh | =
Tc/Th that
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Fig. 15.9 The basic structure of a Carnot cycle. In step 1, there is
isothermal reversible expansion at the temperature Th. Step 2 is 
a reversible adiabatic expansion in which the temperature 
falls from Th to Tc. In Step 3 there is an isothermal reversible
compression at Tc, and that isothermal step is followed by 
an adiabatic reversible compression, which restores the system 
to its initial state.
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(15.17)rev

Now we are ready to generalize this conclusion. The Second
Law of thermodynamics implies that all reversible engines have
the same efficiency regardless of their construction. To see the truth 
of this statement, suppose two reversible engines are coupled 
together and run between the same two reservoirs (Fig. 15.11).
The working substances and details of construction of the two
engines are entirely arbitrary. Initially, suppose that engine A is
more efficient than engine B, and that we choose a setting of the
controls that causes engine B to take energy as heat from the cold
reservoir and to release a certain quantity of energy as heat into
the hot reservoir. However, because engine A is more efficient

 
ηrev

c

h

= −1
T

T than engine B, not all the work that A produces is needed for 
this process, and the difference can be used to do work. The net
result is that the cold reservoir is unchanged, work has been
done, and the hot reservoir has lost a certain amount of energy.
This outcome is contrary to the Kelvin statement of the Second
Law, because some heat has been converted directly into work,
and so the initial assumption that engines A and B can have
different efficiencies must be false. It follows that the relation 
between the heat transfers and the temperatures must also be 
independent of the working material, and therefore that eqn 15.17
is true for any substance involved in a Carnot cycle.

For the final step in the argument, we note that any reversible
cycle can be approximated as a collection of Carnot cycles and
the cyclic integral around an arbitrary path is the sum of the 
integrals around each of the Carnot cycles (Fig. 15.12). This 
approximation becomes exact as the individual cycles are allowed
to become infinitesimal. The entropy change around each indi-
vidual cycle is zero, so the sum of entropy changes for all the 
cycles is zero. However, in the sum, the entropy change along
any individual path is cancelled by the entropy change along 
the path it shares with the neighbouring cycle. Therefore, all the
entropy changes cancel except for those along the perimeter of
the overall cycle. That is,

In the limit of infinitesimal cycles, the non-cancelling edges of
the Carnot cycles match the overall cycle exactly, and the sum
becomes an integral. Equation 15.13 then follows immediately.
This result implies that dS is an exact differential and therefore
that S is a state function.
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Fig. 15.10 Suppose an energy qh (for example, 20 kJ) is supplied to
the engine and qc is lost from the engine (for example, qc = −15 kJ)
and discarded into the cold reservoir. The work done by the
engine is equal to qh + qc (for example, 20 kJ + (−15 kJ) = 5 kJ).
The efficiency is the work done divided by the energy supplied 
as heat from the hot source.
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Fig. 15.11 (a) The demonstration of the equivalence of the
efficiencies of all reversible engines working between the same
thermal reservoirs is based on the flow of energy represented in
this diagram. (b) The net effect of the processes is the conversion
of heat into work without there being a need for a cold sink: this
is contrary to the Kelvin statement of the Second Law.
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Fig. 15.12 A general cycle can be divided into small Carnot cycles.
The match is exact in the limit of infinitesimally small cycles.
Paths cancel in the interior of the collection, and only the
perimeter, an increasingly good approximation to the true cycle
as the number of cycles increases, survives. Because the entropy
change around every individual cycle is zero, the integral of the
entropy around the perimeter is zero too.
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(d) The thermodynamic temperature

Suppose we have an engine that is working reversibly between a
hot source at a temperature Th and a cold sink at a temperature
T; then we know from eqn 15.17 that

T = (1 − η)Th (15.18)

This expression enabled Kelvin to define the thermodynamic
temperature scale in terms of the efficiency of a heat engine. The
zero of the scale occurs for a Carnot efficiency of 1. The size of
the unit is entirely arbitrary, but on the Kelvin scale is defined by
setting the temperature of the triple point of water as 273.16 K
exactly (Section 16.1). Then, if the heat engine has a hot source
at the triple point of water, the temperature of the cold sink (the
object we want to measure) is found by measuring the efficiency
of the engine.

(e) The Clausius inequality

We now show that the thermodynamic definition of entropy,
like the statistical definition, is consistent with the Second Law.
To begin, we recall that more energy flows as work under re-
versible conditions than under irreversible conditions. That is 
−dwrev ≥ −dw, or dw − dwrev ≥ 0. Because the internal energy is 
a state function, its change is the same for irreversible and re-
versible paths between the same two states, so we can also write:

dU = dq + dw = dqrev + dwrev

It follows that dqrev − dq = dw − dwrev ≥ 0, or dqrev ≥ dq, and
therefore that dqrev /T ≥ dq/T. Now we use the thermodynamic
definition of the entropy (eqn 15.9; dS = dqrev /T) to write

(15.19)

This expression is the Clausius inequality. It will prove to be of
great importance for the discussion of the spontaneity of chem-
ical reactions, as we shall see in Section 15.5.

l A BRIEF ILLUSTRATION

Consider the transfer of energy as heat from one system—the
hot source—at a temperature Th to another system—the cold
sink—at a temperature Tc (Fig. 15.13). When |dq | leaves the
hot source (so dqh < 0), the Clausius inequality implies that
dS ≥ dqh/Th. When |dq | enters the cold sink the Clausius inequal-
ity implies that dS ≥ dqc/Tc (with dqc > 0). Overall, therefore,

However, dqh = −dqc, so

which is positive (because dqc > 0 and Th ≥ Tc). Hence, cool-
ing (the transfer of heat from hot to cold) is spontaneous, as
we know from experience. l
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We now suppose that the system is isolated from its sur-
roundings, so that dq = 0. The Clausius inequality implies that

dS ≥ 0 (15.20)

and we conclude that in an isolated system the entropy cannot 
decrease when a spontaneous change occurs. This statement captures
the content of the Second Law and is the thermodynamic version
of the statistical argument at the beginning of Section 15.1.

IMPACT ON TECHNOLOGY

I15.1 Refrigeration

Our discussion so far is the basis of the thermodynamic assess-
ment of the power needed to cool objects in refrigerators. First,
we consider the work required to cool an object, and refer to 
Fig. 15.14.

When heat |qc | is removed from a cool source at a tempera-
ture Tc and then deposited in a warmer sink at a temperature Th

as in a typical refrigerator, the change in entropy is

The process is not spontaneous because not enough entropy is
generated in the warm sink to overcome the entropy reduction
of the cold source. To generate more entropy, energy must be
added to the stream that enters the warm sink. Our task is to find
the minimum energy that needs to be supplied. The outcome is
expressed as the coefficient of performance, c:

[15.21]

The less the work that is required to achieve a given transfer, the
greater the coefficient of performance and the more efficient is
the refrigerator.

Because |qc | is removed from the cold source, and the work
|w | is added to the energy stream, the energy deposited as heat in
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Fig. 15.13 When energy leaves a hot reservoir as heat, the entropy
of the reservoir decreases. When the same quantity of energy
enters a cooler reservoir, the entropy increases by a larger
amount. Hence, overall there is an increase in entropy and the
process is spontaneous. Relative changes in entropy are indicated
by the sizes of the arrows.
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the hot sink is |qh | = |qc | + |w |, so |w | = |qh | − |qc |. The next step
is easier to take if we consider 1/c rather than c itself:

We can now use eqn 15.14 in the form |qh | / |qc | = Th/Tc to 
express this result in terms of the temperatures alone, which is
possible if the transfer is performed reversibly. This substitution
leads to

and therefore to

(15.22)

for the thermodynamically optimum coefficient of perform-
ance. For a refrigerator withdrawing heat from ice-cold water
(Tc = 273 K) in a typical environment (Th = 293 K), c = 14, so to
remove 10 kJ (enough to freeze 30 g of water) requires transfer
of at least 0.71 kJ as work. Practical refrigerators, of course, have
a lower coefficient of performance.

The work to maintain a low temperature is also relevant to 
the design of refrigerators. No thermal insulation is perfect, so
there is always a flow of energy as heat into the sample at a rate
proportional to the temperature difference. If the rate at which
energy leaks in is written A(Th − Tc), where A is a constant that
depends on the size of the sample and the details of the insula-
tion, then the minimum power, P, required to maintain the
original temperature difference by pumping out that energy by
heating the surroundings is

(15.23)

We see that the power increases as the square of the temper-
ature difference we are trying to maintain. For this reason, 
air-conditioners are much more expensive to run on hot days
than on mild days.
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15.3 Entropy changes accompanying specific
processes

We now see how to calculate the entropy changes that accom-
pany a variety of basic processes. In each case we develop the 
argument using classical thermodynamics, but relate each result
to the statistical definition. You should always keep in mind that
the entropy of a system increases as more states become access-
ible, either through a rise in temperature (which extends the tail
of the Boltzmann distribution) or because there is a change in
the energy levels that brings more of them into reach.

(a) Expansion

We have already established (Example 15.1 and eqn 15.6) that
the change in entropy of a perfect gas that expands isothermally
from Vi to Vf is

(15.24)°

This increase is due to the decreasing separation of energy levels
as the container expands, which makes more states accessible.
Because S is a state function, the value of ΔS of the system is inde-
pendent of the path between the initial and final states, so this
expression applies whether the change of state occurs reversibly
or irreversibly. The logarithmic dependence of entropy on volume
was illustrated in Fig. 15.4.

The total change in entropy, the sum of the changes in the 
system and the surroundings, however, does depend on how 
the expansion takes place. For any process dqsur = −dq, and for 
a reversible change we use the expression in Example 15.1; con-
sequently, from eqn 15.11b

(15.25)°rev

This change is the negative of the change in the system, so we 
can conclude that ΔStot = 0, which is what we should expect 
for a reversible process. If the isothermal expansion occurs 
freely (w = 0) and irreversibly, then q = 0 (because ΔU = 0). Con-
sequently, ΔSsur = 0, and the total entropy change is given by 
eqn 15.24 itself:

(15.26)°

In this case, ΔStot > 0, as we expect for an irreversible process.

(b) Phase transition

The entropy of a substance changes when a substance freezes 
or boils as a result of changes in the orderliness with which the
molecules pack together and the extent to which the energy is 
localized or dispersed. For example, when a substance vaporizes,
a compact condensed phase changes into a widely dispersed 
gas and we can expect the entropy of the substance to increase
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considerably. The entropy of a solid also increases when it melts
to a liquid and when that liquid turns into a gas. Although we
can understand the changes of entropy in these statistical, mole-
cular terms, it is far easier to use classical thermodynamics to
calculate numerical values, and we shall do that here.

Consider a system and its surroundings at the normal trans-
ition temperature, Ttrs, the temperature at which two phases are
in equilibrium at 1 atm. This temperature is 0°C (273 K) for ice
in equilibrium with liquid water at 1 atm, and 100°C (373 K) for
water in equilibrium with its vapour at 1 atm. At the transition
temperature, any transfer of energy as heat between the system
and its surroundings is reversible because the two phases in the
system are in equilibrium. Because at constant pressure q = ΔtrsH,
the change in molar entropy of the system is

(15.27)

Recall from Section 14.7 that ΔtrsH is an enthalpy change per
mole of substance; so ΔtrsS is also a molar quantity with units
joules per kelvin per mole (J K−1 mol−1). If the phase transition is
exothermic (ΔtrsH < 0, as in freezing or condensing), then the
entropy change is negative. This decrease in entropy is consis-
tent with localization of matter and energy that accompanies the
formation of a solid from a liquid or a liquid from a gas. If the
transition is endothermic (ΔtrsH > 0, as in melting and vaporiza-
tion), then the entropy change is positive, which is consistent
with dispersal of energy and matter in the system.

Table 15.1 lists some experimental entropies of transition.
Table 15.2 lists in more detail the standard entropies of vapor-
ization of several liquids at their normal boiling points. An 
interesting feature of the data is that a wide range of liquids 
gives approximately the same standard entropy of vaporization
(about 85 J K−1 mol−1): this empirical observation is called
Trouton’s rule. The explanation of Trouton’s rule is that a sim-
ilar change in volume occurs (with an accompanying change in
the number of accessible microstates) when any liquid evaporates
and becomes a gas at 1 bar. Hence, all liquids can be expected to
have similar standard entropies of vaporization.

Liquids that show significant deviations from Trouton’s rule
do so on account of strong molecular interactions that result in
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T
= a partial ordering of their molecules. As a result, there is a greater

change in disorder when the liquid turns into a vapour than for
a fully disordered liquid. An example is water, where the large
entropy of vaporization reflects the presence of structure arising
from hydrogen bonding in the liquid. Hydrogen bonds tend to
organize the molecules in the liquid so that they are less random
than, for example, the molecules in liquid hydrogen sulfide (in
which there is no hydrogen bonding).

Methane has an unusually low entropy of vaporization. A part
of the reason is that the entropy of the gas itself is slightly low
(186 J K−1 mol−1 at 298 K); the entropy of N2 under the same
conditions is 192 J K−1 mol−1. As we have seen (Section 15.2),
small, light molecules have a low rotational contribution to their
entropy because the rotational levels are far apart.

l A BRIEF ILLUSTRATION

There is no hydrogen bonding in liquid bromine and Br2 is a
heavy molecule that is unlikely to display unusual behaviour
in the gas phase, so it is safe to use Trouton’s rule. To predict
the standard molar enthalpy of vaporization of bromine
given that it boils at 59.2°C, we use the rule in the form

ΔvapH 7 = Tb × (85 J K−1 mol−1)

Substitution of the data then gives

ΔvapH 7 = (332.4 K) × (85 J K−1 mol−1) = +2.8 × 104 J mol−1

= +28 kJ mol−1

The experimental value is +29.45 kJ mol−1. l

Self-test 15.5 Predict the enthalpy of vaporization of ethane
from its normal boiling point, −88.6°C [16 kJ mol−1]

(c) Heating

We have already seen how the translational, vibrational, and 
rotational contributions to the statistical entropy increase with

Synoptic table 15.1* Standard entropies (and temperatures) of
phase transitions, ΔtrsS

7/(J K−1 mol−1)

Fusion (at Tf) Vaporization (at Tb)

Argon, Ar 14.17 (at 83.8 K) 74.53 (at 87.3 K)

Benzene, C6H6 38.00 (at 279 K) 87.19 (at 353 K)

Water, H2O 22.00 (at 273.15 K) 109.1 (at 373.15 K)

Helium, He 4.8 (at 1.8 K and 30 bar) 19.9 (at 4.22K)

* More values are given in the Data section.

Synoptic table 15.2* Standard enthalpies and entropies of
vaporization of liquids at their normal boiling point

DvapH 7/(kJ mol−1) qb/°C DvapS 7/(J K−1 mol−1)

Benzene 30.8 80.1 87.2

Carbon tetrachloride 30 76.7 85.8

Cyclohexane 30.1 80.7 85.1

Hydrogen sulfide 18.7 −60.4 87.9

Methane 8.18 −161.5 73.2

Water 40.7 100.0 109.1

* More values are given in the Data section.



15 THE SECOND LAW OF THERMODYNAMICS 495

temperature as more states become accessible. However, we can
use the thermodynamic expression (eqn 15.10) in the form

(15.28)

to calculate the entropy of a system at a temperature Tf from 
a knowledge of its entropy at a temperature Ti and the heat 
supplied to change its temperature from one value to the other.
We shall be particularly interested in the entropy change when
the system is subjected to constant pressure (such as from the 
atmosphere) during the heating. Then, from the definition of
constant-pressure heat capacity (eqns 14.32 and 14.33), dqrev =
CpdT provided the system is doing no non-expansion work.
Consequently, at constant pressure:

(15.29)

The same expression applies at constant volume, but with Cp

replaced by CV. When Cp is independent of temperature in the
temperature range of interest, it can be taken outside the integral
and we obtain

(15.30)

with a similar expression for heating at constant volume. The
logarithmic dependence of entropy on temperature is illustrated
in Fig. 15.15 and stems from the logarithmic dependence of the
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entropy on the partition function (eqn 15.2) and hence on the
number of accessible levels.

Example 15.2 Calculating the entropy change

Calculate the entropy change when argon at 25°C and 1.00
bar in a container of volume 0.500 dm3 is allowed to expand
to 1.000 dm3 and is simultaneously heated to 100°C.

Method Because S is a state function, we are free to choose
the most convenient path from the initial state. One such
path is reversible isothermal expansion to the final volume,
followed by reversible heating at constant volume to the final
temperature. The entropy change in the first step is given by
eqn 15.24 and that of the second step, provided CV is inde-
pendent of temperature, by eqn 15.30 (with CV in place of
Cp). In each case we need to know n, the amount of gas
molecules, and can calculate it from the perfect gas equation
and the data for the initial state from n = piVi/RTi. The heat
capacity at constant volume is given by the equipartition 
theorem as 3–2R. (The equipartition theorem is reliable for
monatomic gases: for others and in general use experimental
data like that in Tables 14.5 and 14.6. If necessary, convert
Cp,m to CV,m by using the relation Cp,m − CV,m = R.)

Answer Because n = piVi /RTi, from eqn 15.24

The entropy change in the second step, from 298 K to 373 K
at constant volume, from eqn 15.30 with CV replacing Cp, is

The overall entropy change, the sum of these two changes, is

At this point we substitute the data and obtain (by using 
1 Pa m3 = 1 J)

= +0.173 J K−1

A note on good practice It is sensible to proceed as generally
as possible before inserting numerical data so that, if required,
the formula can be used for other data; the procedure also
minimizes rounding errors.
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Fig. 15.15 The logarithmic increase in entropy of a substance as 
it is heated at constant volume. Different curves correspond to
different values of the constant-volume heat capacity (which is
assumed constant over the temperature range) expressed as CV,m/R.

interActivity Plot the change in entropy of a perfect gas of 
(a) atoms, (b) linear rotors, (c) non-linear rotors as the 

sample is heated over the same range under conditions of (i)
constant volume, (ii) constant pressure.
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Self-test 15.6 Calculate the entropy change when the same
initial sample is compressed to 50.0 cm3 and cooled to −25°C.

[−0.433 J K−1]

(d) The calorimetric measurement of entropy

We have seen how to calculate the entropy of a substance from
spectroscopic data. Now we see how it may be measured calori-
metrically. The entropy of a system at a temperature T is related
to its entropy at T = 0 by measuring its heat capacity Cp at
different temperatures and evaluating the integral in eqn 15.29,
taking care to add the entropy of transition (ΔtrsH/Ttrs) for each
phase transition between T = 0 and the temperature of interest.
For example, if a substance melts at Tf and boils at Tb, then its
entropy above its boiling temperature is given by

(15.31)

where we have indicated the phases for the heat capacities. All
the properties required, except S(0), can be measured calori-
metrically, and the integrals can be evaluated either graphically
or, as is now more usual, by fitting a polynomial to the data 
and integrating the polynomial analytically or numerically. 
The former procedure is illustrated in Fig. 15.16: the area under 
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Fig. 15.16 The calculation of the entropy from heat capacity data.
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of each phase transition passed.

interActivity Allow for the temperature dependence of the 
heat capacity by writing C = a + bT + c/T 2, and plot the 

change in entropy for different values of the three coefficients
(including negative values of c).

the curve of Cp/T against T is the integral required. Because 
dT/T = d ln T, an alternative procedure is to evaluate the area
under a plot of Cp against ln T.

Example 15.3 Evaluating a change in entropy

Over a small range in temperature the molar constant-pressure
heat capacity of carbon dioxide gas varies with temperature
as Cp,m = a + bT + c/T 2 with the parameters a = 44.22 J K−1

mol−1, b = 8.79 mJ K−2 mol−1, and c = 862 kJ K mol−1. What is
the change in molar entropy when carbon dioxide is heated
from 0°C to 100°C?

Method The general expression for the change in entropy
with temperature is eqn 15.29, so we begin by substituting 
the polynomial expression for Cp,m into that equation and
simplifying the resulting expression as far as possible. Then
there are two routes forward. One is to evaluate the resulting
integrals analytically. The other is to feed the integral into
mathematical software, and let it do the hard work. We
demonstrate the latter approach here. For the numerical
evaluation, take Ti = 273 K (0°C) and Tf = 373 K (100°C).

Solution We substitute Cp,m = a + bT + c/T 2 into eqn 15.29
and obtain

Insertion of the values of the coefficients and the initial and
final temperatures and the use of mathematical software to
evaluate the integral numerically gives ΔSm = +11.99 J K−1 mol−1.

Self-test 15.7 Evaluate the change in molar entropy analytic-
ally for the same data. [+11.99 J K−1 mol−1]

One problem with the determination of entropy is the diffi-

culty of measuring heat capacities near T = 0. There are good
theoretical grounds for assuming that the heat capacity is pro-
portional to T3 when T is low (see Self-test 14.6), and this de-
pendence is the basis of the Debye extrapolation. In this method,
Cp is measured down to as low a temperature as possible, and a
curve of the form aT3 is fitted to the data. That fit determines the
value of a, and the expression Cp = aT3 is assumed valid down to
T = 0.
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(a) The Nernst heat theorem

The experimental observation that turns out to be consistent
with the view that the entropy of a regular array of molecules is
zero at T = 0 is summarized by the Nernst heat theorem:

The entropy change accompanying any physical or chem-
ical transformation approaches zero as the temperature 
approaches zero: ΔS → 0 as T → 0 provided all the substances
involved are perfectly ordered.

l A BRIEF ILLUSTRATION

Consider the entropy of the transition between orthorhombic
sulfur, S(α), and monoclinic sulfur, S(β), which can be cal-
culated from the transition enthalpy (−402 J mol−1) at the
transition temperature (369 K):

The two individual entropies can also be determined by 
measuring the heat capacities from T = 0 up to T = 369 K. It 
is found that Sm(α) = Sm(α,0) + 37 J K−1 mol−1 and Sm(β) =
Sm(β,0) + 38 J K−1 mol−1. These two values imply that at the
transition temperature

ΔtrsS = Sm(α,0) − Sm(β,0) − 1 J K−1 mol−1

On comparing this value with the one above, we conclude
that Sm(α,0) − Sm(β,0) ≈ 0, in accord with the theorem. l

It follows from the Nernst theorem that, if we arbitrarily 
ascribe the value zero to the entropies of elements in their 
perfect crystalline form at T = 0, then all perfect crystalline com-
pounds also have zero entropy at T = 0 (because the change 
in entropy that accompanies the formation of the compounds,
like the entropy of all transformations at that temperature, 
is zero). This conclusion is summarized by the Third Law of
thermodynamics:

The entropy of all perfect crystalline substances is zero at 
T = 0.

As far as thermodynamics is concerned, choosing this common
value as zero is then a matter of convenience. The molecular 
interpretation of entropy, however, justifies the value S = 0 at 
T = 0.

In most cases, W = 1 at T = 0 because there is only one way 
of achieving the lowest total energy: put all the molecules into
the same, lowest state. Therefore, S = 0 at T = 0, in accord with
the Third Law of thermodynamics. In certain cases, though, W
may differ from 1 at T = 0. This is the case if there is no energy
advantage in adopting a particular orientation even at absolute
zero. For instance, for a diatomic molecule AB there may be 
almost no energy difference between the arrangements . . . AB AB
AB . . . and . . . BA AB BA . . . , so W > 1 even at T = 0. If S > 0 at

 
Δ trs m m

402 J mol

369 K
S S S= − =

−
= −

−
( ) ( )

( )
.α β

1

1 09 J K mol− −1 1

Example 15.4 Calculating the entropy at low temperatures

The molar constant-pressure heat capacity of a certain solid
at 4.2 K is 0.43 J K−1 mol−1. What is its molar entropy at that
temperature?

Method Because the temperature is so low, we can assume
that the heat capacity varies with temperature as aT3, in
which case we can use eqn 15.29 to calculate the entropy at a
temperature T in terms of the entropy at T = 0 and the con-
stant a. When the integration is carried out, it turns out that
the result can be expressed in terms of the heat capacity at the
temperature T, so the data can be used directly to calculate
the entropy.

Answer The integration required is

However, because aT3 is the heat capacity at the temperature
T,

S(T) = S(0) + 1–3Cp(T)

from which it follows that

Sm(4.2 K) = Sm(0) + 0.14 J K−1 mol−1

Self-test 15.8 For metals, there is also a contribution to the
heat capacity from the electrons, which is linearly propor-
tional to T when the temperature is low. Find its contribution
to the entropy at low temperatures.

[S(T) = S(0) + Cp(T)]

15.4 The Third Law of thermodynamics

At T = 0, all thermal motion has been quenched, and in a perfect
crystal all the atoms or ions are in a regular, uniform array. The
localization of matter and the absence of thermal motion sug-
gest that such materials also have zero entropy. This conclusion
is consistent with the statistical definition of entropy, because 
S = 0 if there is only one way of arranging the molecules and only
one state is accessible (the ground state) and W = 1. However,
because the argument that we used to relate the statistical defini-
tion to the thermodynamic definition was in terms of changes
of entropy, there remains the possibility that the definition in
eqn 15.9 differs from the statistical entropy by a constant that
might be different for each substance. That it does not is the 
domain of the Third Law and an experimental observation
known as the ‘Nernst heat theorem’.
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T = 0 we say that the substance has a residual entropy. Ice has a
residual entropy of 3.4 J K−1 mol−1. It stems from the arrange-
ment of the hydrogen bonds between neighbouring water
molecules: a given O atom has two short O-H bonds and 
two long OîH bonds to its neighbours, but there is a degree 
of randomness as to which two bonds are short and which two
are long.

(b) Third Law entropies

Entropies reported on the basis that S(0) = 0 are called Third
Law entropies (and often just ‘entropies’). When the substance
is in its standard state at the temperature T, the standard (Third
Law) entropy is denoted S 7(T). A list of molar values at 298 K is
given in Table 15.3.

The standard reaction entropy, ΔrS
7, is defined, like the 

standard reaction enthalpy, as the difference between the molar
entropies of the pure, separated products and the pure, separ-
ated reactants, all substances being in their standard states at 
the specified temperature:

(15.32)

where we have used the notation introduced in Section 14.7.
Standard reaction entropies are likely to be positive if there is a
net formation of gas in a reaction, and are likely to be negative if
there is a net consumption of gas.

Δr J m
J

JS S7 7= ∑ν ( )

l A BRIEF ILLUSTRATION

To calculate the standard reaction entropy of H2(g) + 1–2 O2(g)
→ H2O(l) at 25°C, we use the data in Table 14.6 of the Data
section to write

ΔrS
7 = Sm

7 (H2O, l) − Sm
7 (H2, g) − 1–2Sm

7 (O2, g)
= 69.9 J K−1 mol−1 − 130.7 J K−1 mol−1

− 1–2(205.1) J K−1 mol−1

= −163.4 J K−1 mol−1

The negative value is consistent with the conversion of two
gases to a compact liquid. l

A note on good practice Do not make the mistake of set-
ting the standard molar entropies of elements equal to zero:
they have nonzero values (provided T > 0), as we have already 
discussed.

Self-test 15.9 Calculate the standard reaction entropy for the
combustion of methane to carbon dioxide and liquid water at
25°C. [−243 J K−1 mol−1]

Just as in the discussion of enthalpies in Section 14.8, where
we acknowledged that solutions of cations cannot be prepared
in the absence of anions, the standard molar entropies of ions in
solution are reported on a scale in which the standard entropy of
the H+ ions in water is taken as zero at all temperatures:

S 7(H+, aq) = 0 [15.33]

The values based on this choice are included in Table 14.6 in the
Data section. Because the entropies of ions in water are values
relative to the hydrogen ion in water, they may be either positive
or negative. A positive entropy means that an ion has a higher
molar entropy than H+ in water and a negative entropy means
that the ion has a lower molar entropy than H+ in water. For 
instance, the standard molar entropy of Cl−(aq) is +57 J K−1 mol−1

and that of Mg2+(aq) is −138 J K−1 mol−1. In terms of the lan-
guage of ‘partial molar’ quantities to be introduced in Chapter
16, the entropies of ions in solution are actually partial molar 
entropies, for their values include the consequences of their 
presence on the organization of the solvent molecules around
them. Thus, the entropies vary as expected on the basis that they
are related to the degree to which the ions order the water
molecules around them in the solution. Small, highly charged
ions induce local structure in the surrounding water, and the
disorder of the solution is decreased more than in the case of
large, singly charged ions. The absolute, Third Law standard
molar entropy of the proton in water can be estimated by pro-
posing a model of the structure it induces, and there is some
agreement on the value −21 J K−1 mol−1. The negative value 
indicates that the proton induces order in the solvent.

Synoptic table 15.3* Standard Third
Law entropies at 298 K

Sm
7 /(J K−1 mol−1)

Solids:

Graphite, C(s) 5.7

Diamond, C(s) 2.4

Sucrose, C12H22O11(s) 360.2

Iodine, I2(s) 116.1

Liquids:

Benzene, C6H6(l) 173.3

Water, H2O(l) 69.9

Mercury, Hg(l) 76.0

Gases:

Methane, CH4(g) 186.3

Carbon dioxide, CO2(g) 213.7

Hydrogen, H2(g) 130.7

Helium, He 126.2

Ammonia, NH3(g) 192.4

* More values are given in the Data section.
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Concentrating on the system

Entropy is the basic concept for discussing the direction of 
natural change, but to use it we have to analyse changes in both
the system and its surroundings. We have seen that it is always
very simple to calculate the entropy change in the surroundings,
and we shall now see that it is possible to devise a simple method
for taking that contribution into account automatically. This
approach focuses our attention on the system and simplifies dis-
cussions. Moreover, it is the foundation of all the applications of
chemical thermodynamics that follow.

15.5 The Helmholtz and Gibbs energies

Consider a system in thermal equilibrium with its surroundings
at a temperature T. When a change in the system occurs and
there is a transfer of energy as heat between the system and the
surroundings, the Clausius inequality (eqn 15.19, dS ≥ dq/T)
reads

(15.34)

We can develop this inequality in two ways according to the
conditions (of constant volume or constant pressure) under
which the process occurs.

(a) Criteria for spontaneity

First, consider heating at constant volume. Then, in the absence
of non-expansion work, we can write dqV = dU; consequently

(15.35a)

The importance of the inequality in this form is that it expresses
the criterion for spontaneous change solely in terms of the state
functions of the system. The inequality is easily rearranged to

TdS ≥ dU (constant V, no additional work) (15.35b)

(Recall that ‘additional work’ is work other than expansion
work.) At either constant internal energy (dU = 0) or constant
entropy (dS = 0), this expression becomes, respectively,

dSU,V ≥ 0 dUS,V ≤ 0 (15.35c)

where the subscripts indicate the constant conditions.
Equation 15.35(c) expresses the criteria for spontaneous change

in terms of properties relating to the system. The first inequality
states that, in a system at constant volume and constant internal
energy (such as an isolated system), the entropy increases in a
spontaneous change. That statement is essentially the content of
the Second Law and corresponds to the tendency of an isolated
system to collapse into its most probable distribution and never
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into a less probable one. The second inequality is less obvious,
for it says that, if the entropy and volume of the system are con-
stant, then the internal energy must decrease in a spontaneous
change. Do not interpret this criterion as a tendency of the 
system to sink to lower energy. It is a disguised statement about
entropy, and should be interpreted as implying that, if the en-
tropy of the system is unchanged, then there must be an increase
in entropy of the surroundings, which can be achieved only if
the energy of the system decreases as energy flows out as heat.

When energy is transferred as heat at constant pressure, 
and there is no work other than expansion work, we can write
dqp = dH and obtain

TdS ≥ dH (constant p, no additional work) (15.36a)

At either constant enthalpy or constant entropy this inequality
becomes, respectively,

dSH,p ≥ 0 dHS,p ≤ 0 (15.36b)

The interpretations of these inequalities are similar to those of
eqn 15.35(c). The entropy of the system at constant pressure
must increase if its enthalpy remains constant (for there can
then be no change in entropy of the surroundings). Alternatively,
the enthalpy must decrease if the entropy of the system is con-
stant, for then it is essential to have an increase in entropy of the 
surroundings.

Because eqns 15.35b and 15.36a have the forms dU − TdS ≤ 0
and dH − TdS ≤ 0, respectively, they can be expressed more sim-
ply by introducing two more thermodynamic quantities. One is
the Helmholtz energy, A, which is defined as

A = U − TS [15.37]

This relation implies that A(0) = U(0), so substitution for U and
S by using eqn 15.4 (S = {U − U(0)}/T + k ln Q ) leads to the very
simple expression

A − A(0) = −kT ln Q (15.38a)

For a system composed of independent, indistinguishable mole-
cules (as in a perfect gas), we may replace Q by q N/N! and obtain

Then, by using Stirling’s approximation and expressing NkT as
NkT ln e,

A − A(0) = −NkT ln q + kT(N ln N − N)

= −NkT ln q + NkT ln N − NkT ln e (15.38b)

= −NkT ln

We see that A − A(0) is essentially proportional to the logarithm
of the molecular partition function, and therefore that it is (neg-
atively) large when many energy levels are thermally accessible.
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The other function we introduce is the Gibbs energy, G:

G = H − TS [15.39]

Because H = U + pV and A = U − TS, we can write G = A + pV and
from eqn 15.38a the statistical thermodynamic expression for
the Gibbs energy is

G − G(0) = −kT ln Q + pV

For a gas of independent particles, pV can be replaced by nRT
and Q by q N/N! It follows that

G − G(0) = −NkT ln q + kT ln N! + nRT

= −nRT ln q + kT(N ln N − N) + nRT (15.40)

= −nRT ln

where we have used Stirling’s approximation to write ln N ! as 
N ln N − N and noted that −NkT cancels nRT because Nk = nNAk
= nR. All the symbols in these definitions refer to the system.

As we shall see, it is easier to give precise molecular interpreta-
tions of the Helmholtz energy than of the Gibbs energy, just as it
is easier to give precise molecular interpretations of the internal
energy than the enthalpy. However, it will also turn out that the
Gibbs energy is more important than the Helmholtz energy in
chemistry, just as enthalpy is more important than the internal
energy. Fortunately, because (like H and U) G differs from A by
the addition of the term pV, we may use—with caution in some
cases—the molecular interpretation of A to interpret most of
the properties of G.

When the state of the system changes at constant tempera-
ture, the two properties change as follows:

(a) dA = dU − TdS (b) dG = dH − TdS (15.41)

When we introduce eqns 15.35b and 15.36a, respectively, we 
obtain the criteria of spontaneous change as

(a) dAT,V ≤ 0 (b) dGT,p ≤ 0 (15.42)

These inequalities are the most important conclusions from
thermodynamics for chemistry. They are developed in sub-
sequent sections and chapters.

(b) Some remarks on the Helmholtz energy

According to eqn 15.42, a change in a system at constant tem-
perature and volume is spontaneous if dAT,V < 0. That is, a
change under these conditions is spontaneous if it corresponds
to a decrease in the Helmholtz energy. Such systems move spon-
taneously towards states of lower A if a path is available. The 
criterion of equilibrium, when neither the forward nor reverse
process has a tendency to occur, is

dAT,V = 0 (15.43)

 

q

N

The expressions dA = dU − TdS and dA < 0 are sometimes inter-
preted as follows. A negative value of dA is favoured by a negative
value of dU and a positive value of TdS. This observation sug-
gests that the tendency of a system to move to lower A is due to
its tendency to move towards states of lower internal energy and
higher entropy. However, this interpretation is false (even though
it is a good rule of thumb for remembering the expression for
dA) because the tendency to lower A is solely a tendency towards
states of greater overall entropy. Systems change spontaneously
if in doing so the total entropy of the system and its surround-
ings increases, not because they tend to lower internal energy.
The form of dA may give the impression that systems favour
lower energy, but that is misleading: dS is the entropy change of
the system, −dU/T is the entropy change of the surroundings
(when the volume of the system is constant), and their total
tends to a maximum.

(c) Maximum work

It turns out that A carries a greater significance than being 
simply a signpost of spontaneous change: the change in the
Helmholtz function is equal to the maximum work accompanying
a process:

dwmax = dA (15.44)

As a result, A is sometimes called the ‘maximum work function’,
or the ‘work function’. (Arbeit is the German word for work;
hence the symbol A.)

Justification 15.4 Maximum work

To demonstrate that maximum work can be expressed in
terms of the changes in Helmholtz energy, we combine the
Clausius inequality dS ≥ dq/T in the form TdS ≥ dq with the
First Law, dU = dq + dw, and obtain

dU ≤ TdS + dw

(dU is smaller than the term of the right because we are re-
placing dq by TdS, which in general is larger.) This expression
rearranges to dU − TdS ≤ dw and therefore to

dw ≥ dU − TdS

Now recall that a large negative w means that a lot of 
energy has been transferred from the system as work—the
system has done a lot of work. It follows that the most nega-
tive value of dw, and therefore the maximum energy that 
can be obtained from the system as work, must correspond 
to the equals sign in this expression because a higher (less
negative) value of dw implies that less work has been done.
Therefore,

dwmax = dU − TdS
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This maximum work is done only when the path is traversed
reversibly (because then the equality applies). Because at
constant temperature dA = dU − TdS, we conclude that
dwmax = dA.

The relation between A and maximum work can be under-
stood by noting that, in terms of the molecular partition func-
tion and eqn 15.38b (A = A(0) − NkT ln(eq /N)),

(15.45)

However, because q for translational motion is proportional to
V (recall that q = V/Λ3) we immediately find that

(15.46)

which is the same expression as we found for the reversible,
isothermal expansion of a perfect gas. We can now see that 
reversible expansion produces maximum work because it cor-
responds to the progressive change of the distribution of molecules
through a sequence of equilibrium states, all corresponding to
the same temperature.

When a macroscopic isothermal change takes place in the 
system, eqn 15.44 becomes

wmax = ΔA (15.47)

with

ΔA = ΔU − TΔS (15.48)

This expression shows that in some cases, depending on the 
sign of TΔS, not all the change in internal energy may be avail-
able for doing work. If the change occurs with a decrease in 
entropy (of the system), in which case TΔS < 0, then the right-
hand side of this equation is not as negative as ΔU itself, 
and consequently the maximum work is less than ΔU. For the
change to be spontaneous, some of the energy must escape 
as heat in order to generate enough entropy in the surroundings
to overcome the reduction in entropy in the system (Fig. 15.17).
In this case, Nature is demanding a tax on the internal energy 
as it is converted into work. This is the origin of the alternative
name ‘Helmholtz free energy’ for A, because ΔA is that part of
the change in internal energy that we are free to use to do work.

Further insight into the relation between the work that a 
system can do and the Helmholtz energy is to recall that work is
energy transferred to the surroundings as the uniform motion of
atoms. We can interpret the expression A = U − TS as showing
that A is the total internal energy of the system, U, less a contri-
bution that is stored as energy of thermal motion (the quantity
TS). Because energy stored in random thermal motion cannot
be used to achieve uniform motion in the surroundings, only
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the part of U that is not stored in that way, the quantity U − TS,
is available for conversion into work.

If the change occurs with an increase of entropy of the system
(in which case TΔS > 0), the right-hand side of the equation is
more negative than ΔU. In this case, the maximum work that
can be obtained from the system is greater than ΔU. The expla-
nation of this apparent paradox is that the system is not isolated
and energy may flow in as heat as work is done. Because the 
entropy of the system increases, we can afford a reduction of the
entropy of the surroundings yet still have, overall, a spontaneous
process. Therefore, some energy (no more than the value of
TΔS) may leave the surroundings as heat and contribute to the
work the change is generating (Fig. 15.18). Nature is now pro-
viding a tax refund.

Surroundings

System

q

w U< s
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S

< 0
< 0

sSsur > 0

Fig. 15.17 In a system not isolated from its surroundings, the
work done may be different from the change in internal energy.
Moreover, the process is spontaneous if overall the entropy of
the global, isolated system increases. In the process depicted
here, the entropy of the system decreases, so that of the
surroundings must increase in order for the process to be
spontaneous, which means that energy must pass from the
system to the surroundings as heat. Therefore, less work 
than ΔU can be obtained.
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Fig. 15.18 In this process, the entropy of the system increases;
hence we can afford to lose some entropy of the surroundings.
That is, some of their energy may be lost as heat to the system.
This energy can be returned to them as work. Hence the work
done can exceed ΔU.
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dH > 0. Because the reaction is spontaneous we know that dG < 0
despite dH > 0; it follows that the entropy of the system increases
so much that TdS outweighs dH in dG = dH − TdS. Endothermic
reactions are therefore driven by the increase of entropy of the
system, and this entropy change overcomes the reduction of 
entropy brought about in the surroundings by the inflow of heat
into the system (dSsur = −dH/T at constant pressure).

(e) Maximum non-expansion work

The analogue of the maximum work interpretation of ΔA, and
the origin of the name ‘free energy’, can be found for ΔG. In the
following Justification we show that, at constant temperature
and pressure, the maximum additional (non-expansion) work,
wadd,max, is given by the change in Gibbs energy:

dwadd,max = dG (15.49a)

The corresponding expression for a measurable change is

wadd,max = ΔG (15.49b)

This expression is particularly useful for assessing the electrical
work that may be produced by fuel cells and electrochemical
cells, and we shall see many applications of it.

Justification 15.5 Maximum non-expansion work

Because H = U + pV, for a general change in conditions, the
change in enthalpy is

dH = dq + dw + d(pV)

The corresponding change in Gibbs energy (G = H − TS) is

dG = dH − TdS − SdT = dq + dw + d(pV) − TdS − SdT

When the change is isothermal we can set dT = 0; then

dG = dq + dw + d(pV) − TdS

When the change is reversible, dw = dwrev and dq = dqrev =
TdS, so for a reversible, isothermal process

dG = TdS + dwrev + d(pV) − TdS = dwrev + d(pV)

The work consists of expansion work, which for a reversible
change is given by −pdV, and possibly some other kind of
work (for instance, the electrical work of pushing electrons
through a circuit or of raising a column of liquid); this 
additional work we denote dwadd. Therefore, with d(pV) =
pdV + Vdp,

dG = (−pdV + dwadd,rev) + pdV + Vdp = dwadd,rev + Vdp

If the change occurs at constant pressure (as well as constant
temperature), we can set dp = 0 and obtain dG = dwadd,rev.
Therefore, at constant temperature and pressure, dwadd,rev =
dG. However, because the process is reversible, the work
done must now have its maximum value, so eqn 15.49 
follows.

Example 15.5 Calculating the maximum available work

When 1.000 mol C6H12O6 (glucose) is oxidized to carbon
dioxide and water at 25°C according to the equation
C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(l) calorimetric
measurements give ΔrU

7 = −2808 kJ mol−1 and ΔrS
7 =

+259.1 J K−1 mol−1 at 25°C. How much of this energy change
can be extracted as (a) heat at constant pressure, (b) work?

Method We know that the heat released at constant pressure
is equal to the value of ΔH, so we need to relate ΔrH

7 to ΔrU
7,

which is given. To do so, we suppose that all the gases 
involved are perfect, and use eqn 14.31 (ΔH = ΔU + ΔngRT).
For the maximum work available from the process we use
eqn 15.47.

Answer (a) Because Δng = 0, we know that ΔrH
7 = ΔrU

7 =
−2808 kJ mol−1. Therefore, at constant pressure, the energy
available as heat is 2808 kJ mol−1. (b) Because T = 298 K, the
value of ΔrA

7 is

ΔrA
7 = ΔrU

7 − TΔrS
7 = −2885 kJ mol−1

Therefore, the combustion of 1.000 mol C6H12O6 can be used
to produce up to 2885 kJ of work. The maximum work avail-
able is greater than the change in internal energy on account
of the positive entropy of reaction (which is partly due to the
generation of a large number of small molecules from one big
one). The system can therefore draw in energy from the sur-
roundings (so reducing their entropy) and make it available
for doing work.

Self-test 15.10 Repeat the calculation for the combustion of
1.000 mol CH4(g) under the same conditions, using data
from Tables 14.5 and 14.6. [|qp | = 890 kJ, |wmax | = 813 kJ]

(d) Some remarks on the Gibbs energy

The Gibbs energy (the ‘free energy’) is more common in chem-
istry than the Helmholtz energy because, at least in laboratory
chemistry, we are usually more interested in changes occurring at
constant pressure than at constant volume. The criterion dGT,p < 0
carries over into chemistry as the observation that at constant
temperature and pressure, chemical reactions are spontaneous in
the direction of decreasing Gibbs energy. Therefore, if we want to
know whether a reaction is spontaneous, the pressure and temper-
ature being constant, we assess the change in the Gibbs energy. 
If G decreases as the reaction proceeds, then the reaction has a
spontaneous tendency to convert the reactants into products. If
G increases, then the reverse reaction is spontaneous.

The existence of spontaneous endothermic reactions provides
an illustration of the role of G. In such reactions, H increases, 
the system rises spontaneously to states of higher enthalpy, and
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‘null’ reaction. A selection of values for compounds is given in
Table 15.4. From the values there, it is a simple matter to obtain
the standard Gibbs energy of reaction by taking the appropriate
combination:

(15.51)

l A BRIEF ILLUSTRATION

To calculate the standard Gibbs energy of the reaction CO(g)
+ 1–2 O2(g) → CO2(g) at 25°C, we write

ΔrG
7 = ΔfG

7(CO2, g) − Δf G
7(CO, g) − 1–2 Δf G

7(O2, g)
= −394.4 kJ mol−1 − (−137.2) kJ mol−1 − 1–2(0)
= −257.2 kJ mol−1 l

Self-test 15.12 Calculate the standard reaction Gibbs energy
for the combustion of CH4(g) at 298 K.

[−818 kJ mol−1]

Just as we did in Section 14.8, where we acknowledged that
solutions of cations cannot be prepared without their accom-
panying anions, we define one ion, conventionally the hydrogen
ion, to have zero standard Gibbs energy of formation at all 
temperatures:

Δf G
7(H+, aq) = 0 [15.52]

In essence, this definition adjusts the actual values of the Gibbs
energies of formation of ions by a fixed amount, which is chosen
so that the standard value for one of them, H+(aq), has the value
zero. Then for the reaction

1–2 H2(g) + 1–2 Cl2(g) → H+(aq) + Cl−(aq)

  
Δ Δr J f

J

JG G7 7= ∑ν ( )

Example 15.6 Calculating the maximum non-expansion work of
a reaction

How much energy is available for sustaining muscular and
nervous activity from the combustion of 1.00 mol of glucose
molecules under standard conditions at 37°C (blood tem-
perature)? The standard entropy of reaction is +295.1 J K−1

mol−1.

Method The non-expansion work available from the reac-
tion is equal to the change in standard Gibbs energy for 
the reaction (ΔrG

7, a quantity defined more fully below). To
calculate this quantity, it is legitimate to ignore the tempera-
ture-dependence of the reaction enthalpy, to obtain ΔrH

7

from Tables 14.5 and 14.6, and to substitute the data into
ΔrG

7 = ΔrH
7 − TΔrS

7.

Answer Because the standard reaction enthalpy is −2808 kJ
mol−1, it follows that the standard reaction Gibbs energy is

ΔrG
7 = −2808 kJ mol−1 − (310 K) × (259.1 J K−1 mol−1) 

= −2888 kJ mol−1

Therefore, wadd,max = −2888 kJ for the combustion of 1 mol
glucose molecules, and the reaction can be used to do up 
to 2888 kJ of non-expansion work. To place this result in 
perspective, consider that a person of mass 70 kg needs to do
2.1 kJ of work to climb vertically through 3.0 m; therefore, at
least 0.13 g of glucose is needed to complete the task (and in
practice significantly more).

Self-test 15.11 How much non-expansion work can be 
obtained from the combustion of 1.00 mol CH4(g) under
standard conditions at 298 K? Use ΔrS

7 = −243 J K−1 mol−1.
[818 kJ]

15.6 Standard molar Gibbs energies

Standard entropies and enthalpies of reaction can be combined
to obtain the standard Gibbs energy of reaction (or ‘standard
reaction Gibbs energy’), ΔrG

7:

ΔrG
7 = ΔrH

7 − TΔrS
7 [15.50]

The standard Gibbs energy of reaction is the difference in stand-
ard molar Gibbs energies of the products and reactants in their
standard states at the temperature specified for the reaction as
written. As in the case of standard reaction enthalpies, it is con-
venient to define the standard Gibbs energies of formation,
Δf G

7, the standard reaction Gibbs energy for the formation of 
a compound from its elements in their reference states (Sec-
tion 14.8). Standard Gibbs energies of formation of the elements
in their reference states are zero, because their formation is a

Synoptic table 15.4* Standard Gibbs
energies of formation (at 298 K)

Df G 7/(kJ mol−1)

Diamond, C(s) +2.9

Benzene, C6H6(l) +124.3

Methane, CH4(g) −50.7

Carbon dioxide, CO2(g) −394.4

Water, H2O(l) −237.1

Ammonia, NH3(g) −16.5

Sodium chloride, NaCl(s) −384.1

* More values are given in the Data section.
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for which ΔrG
7 = −131.23 kJ mol−1 we can write

ΔrG
7 = Δf G

7(H+, aq) + Δf G
7(Cl−, aq) = Δf G

7(Cl−, aq)

and hence identify Δf G
7(Cl−, aq) as −131.23 kJ mol−1. All the

Gibbs energies of formation of ions tabulated in the Data section
were calculated in the same way.

l A BRIEF ILLUSTRATION

With the value of Δf G
7(Cl−, aq) established, we can find the

value of Δf G
7(Ag+, aq) from

Ag(s) + 1–2 Cl2(g) → Ag+(aq) + Cl−(aq)

for which ΔrG
7 = −54.12 kJ mol−1. It follows that ΔfG

7(Ag+, aq)
= +77.11 kJ mol−1. l

The factors responsible for the magnitude of the Gibbs 
energy of formation of an ion in solution can be identified by
analysing it in terms of a thermodynamic cycle. As an illustra-
tion, we consider the standard Gibbs energies of formation of
Cl− in water, which is −131 kJ mol−1. We do so by treating the
formation reaction

1–2 H2(g) + 1–2 X2(g) → H+(aq) + X−(aq)

as the outcome of the sequence of steps shown in Fig. 15.19
(with values taken from the Data section). The sum of the Gibbs
energies for all the steps around a closed cycle is zero, so

Δf G
7(Cl−, aq) = 1287 kJ mol−1 + ΔsolvG 7(H+) + ΔsolvG

7(Cl−)

A brief comment The standard Gibbs energies of formation
of the gas-phase ions are unknown. We have therefore used
ionization energies and electron affinities and have assumed
that any differences from the Gibbs energies arising from
conversion to enthalpy and the inclusion of entropies to 
obtain Gibbs energies in the formation of H+ are cancelled by
the corresponding terms in the electron gain of X. The con-
clusions from the cycles are therefore only approximate.

An important point to note is that the value of Δf G
7 of an ion 

X is not determined by the properties of X alone but includes
contributions from the dissociation, ionization, and hydration
of hydrogen.

Gibbs energies of solvation of individual ions may be estimated
from an equation derived by Max Born, who identified ΔsolvG 7

with the electrical work of transferring an ion from a vacuum
into the solvent treated as a continuous dielectric of relative per-
mittivity εr. The resulting Born equation, which is derived in
Further information 15.1, is

(15.53a)

where zi is the charge number of the ion and ri its radius (NA is
Avogadro’s constant). Note that ΔsolvG 7 < 0, and that ΔsolvG 7 is
strongly negative for small, highly charged ions in media of high
relative permittivity. For water at 25°C,

(15.53b)
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Fig. 15.19 The thermodynamic cycles for the discussion of the Gibbs energies of solvation (hydration) and formation of (a) chloride ions, 
(b) iodide ions in aqueous solution. The sum of the changes in Gibbs energies around the cycle sum to zero because G is a state function. 
All values are in kilojoules per mole.
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l A BRIEF ILLUSTRATION

To see how closely the Born equation reproduces the experi-
mental data, we calculate the difference in the values of Δf G

7

for Cl− and I− in water, for which εr = 78.54 at 25°C, given
their radii as 181 pm and 220 pm (Table 9.3), respectively; the
difference is

This estimated difference is in good agreement with the 
experimental difference, which is −61 kJ mol−1. l

Self-test 15.13 Estimate the value of ΔsolvG
7(Cl−, aq) −

ΔsolvG
7(Br−, aq) from experimental data and from the Born

equation.
[−26 kJ mol−1 experimental; −29 kJ mol−1 calculated]

Calorimetry (for ΔH directly, and for S via heat capacities) is
only one of the ways of determining Gibbs energies. They may
also be obtained from equilibrium constants and electrochemical
measurements (Chapter 17), and for gases they may be calculated
using data from spectroscopic observations to evaluate the mole-
cular partition function and then using eqn 15.40. Indeed, many
of the Gibbs energies of formation are calculated in this way.

Combining the First and 
Second Laws

The First and Second Laws of thermodynamics are both relevant
to the behaviour of matter, and we can bring the whole force of
thermodynamics to bear on a problem by setting up a formula-
tion that combines them.

15.7 The fundamental equation

We have seen that the First Law of thermodynamics may be
written dU = dq + dw. For a reversible change in a closed system
of constant composition, and in the absence of any additional
(non-expansion) work, we may set dwrev = −pdV and (from the
definition of entropy) dqrev = TdS, where p is the pressure of the
system and T its temperature. Therefore, for a reversible change
in a closed system,

dU = TdS − pdV (15.54)

However, because dU is an exact differential, its value is inde-
pendent of path. Therefore, the same value of dU is obtained
whether the change is brought about irreversibly or reversibly.
Consequently, eqn 15.54 applies to any change—reversible or 
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irreversible—of a closed system that does no additional (non-
expansion) work. We shall call this combination of the First and
Second Laws the fundamental equation of thermodynamics.

The fact that the fundamental equation applies to both re-
versible and irreversible changes may be puzzling at first sight.
The reason is that only in the case of a reversible change may TdS
be identified with dq and −pdV with dw. When the change is 
irreversible, TdS > dq (the Clausius inequality) and −pdV > dw.
The sum of dw and dq remains equal to the sum of TdS and 
−pdV, provided the composition is constant.

15.8 Properties of the internal energy

Equation 15.54 shows that the internal energy of a closed system
changes in a simple way when either S or V is changed (dU ∝ dS
and dU ∝ dV). These simple proportionalities suggest that U
should be regarded as a function of S and V. We could regard 
U as a function of other variables, such as S and p or T and V, 
because they are all interrelated, but the simplicity of the funda-
mental equation suggests that U(S,V) is the best choice.

The mathematical consequence of U being a function of S and
V is that we can express an infinitesimal change dU in terms of
changes dS and dV by

(15.55)

The two partial derivatives are the slopes of the plots of U against
S and V, respectively. When this mathematical expression is
compared to the thermodynamic relation, eqn 15.54, we see that,
for systems of constant composition,

(15.56)

The first of these two equations is a purely thermodynamic
definition of temperature as the ratio of the changes in the 
internal energy (a First Law concept) and entropy (a Second Law
concept) of a constant-volume, closed, constant-composition
system. We are beginning to generate relations between the
properties of a system and to discover the power of thermo-
dynamics for establishing unexpected relations.

Because the fundamental equation, eqn 15.54, is an expres-
sion for an exact differential, the functions multiplying dS and
dV (namely T and −p) must pass the test for exact differentials
set out in Mathematical background 8 (that df = gdx + hdy is exact
if (∂g/∂y)x = (∂h/∂x)y). That is, it must be the case that

(15.57)

We have generated a relation between quantities that, at first
sight, would not seem to be related and which is certainly very
difficult to justify on a molecular basis.
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Equation 15.57 is an example of a Maxwell relation. However,
apart from being unexpected, it does not look particularly inter-
esting. Nevertheless, it does suggest that there may be other 
similar relations that are more useful. Indeed, we can use the fact
that H, G, and A are all state functions to derive three more
Maxwell relations. The argument to obtain them runs in the
same way in each case: because H, G, and A are state functions,
the expressions for dH, dG, and dA satisfy relations that yield 
expressions like eqn 15.57. All four relations are listed in 
Table 15.5. As an example of their use, we show in the following
Justification that the internal pressure πT = (∂U/∂V)T introduced
in Section 14.10 may be converted into

(15.58)

This relation is called a thermodynamic equation of state 
because it is an expression for pressure in terms of a variety of
thermodynamic properties of the system.

Justification 15.6 The thermodynamic equation of state

We obtain an expression for the coefficient πT by dividing
both sides of eqn 15.55 by dV, imposing the constraint of
constant temperature, which gives

Next, we introduce the two relations in eqn 15.56 and the
definition of πT to obtain

The third Maxwell relation in Table 15.5 turns (∂S/∂V)T into
(∂p/∂T)V, which completes the proof of eqn 15.58.
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Example 15.7 Deriving a thermodynamic relation

Show thermodynamically that πT = 0 for a perfect gas, and
derive its value for a van der Waals gas.

Method Proving a result ‘thermodynamically’ means basing
it entirely on general thermodynamic relations and equations
of state, without drawing on molecular arguments (such as
the existence of intermolecular forces). We know that for 
a perfect gas, p = nRT/V, so this relation should be used in 
eqn 15.58. Similarly, the van der Waals equation, eqn 8.24,
should be used instead for the second part of the question.

Answer For a perfect gas we write

Then, eqn 15.58 becomes

The equation of state of a van der Waals gas is

Because a and b are independent of temperature,

Therefore, from eqn 15.58,

exactly as we obtained in Section 14.10 on the basis of 
molecular arguments and the formulation of a model inter-
molecular potential with an attractive region proportional 
to a.

Self-test 15.14 Calculate πT for a gas that obeys the virial
equation of state (eqn 8.22).

[πT = RT 2(∂B/∂T)V /V m
2 + . . .]

15.9 Properties of the Gibbs energy

The same arguments that we have used for U can be used for the
Gibbs energy G = H − TS. They lead to expressions showing how
G varies with pressure and temperature that are important for
discussing phase transitions and chemical reactions.
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(a) General considerations

When the system undergoes a change of state, G may change 
because H, T, and S all change. As in Justification 15.5, we write
for infinitesimal changes in each property

dG = dH − d(TS) = dH − TdS − SdT

Because H = U + pV, we know that

dH = dU + d(pV) = dU + pdV + Vdp

and therefore

dG = dU + pdV + Vdp − TdS − SdT

For a closed system doing no non-expansion work, we can 
replace dU by the fundamental equation dU = TdS − pdV and
obtain

dG = TdS − pdV + pdV + Vdp − TdS − SdT

Four terms now cancel on the right, and we conclude that for 
a closed system in the absence of non-expansion work and at
constant composition

dG = Vdp − SdT (15.59)

This expression, which shows that a change in G is proportional
to a change in p or T, suggests that G may be best regarded as a
function of p and T. It confirms that G is an important quantity
in chemistry because the pressure and temperature are usually
the variables under our control. In other words, G carries
around the combined consequences of the First and Second
Laws in a way that makes it particularly suitable for chemical 
applications.

The same argument that led to eqn 15.56, when applied to the
exact differential dG = Vdp − SdT, now gives

(15.60)

These relations show how the Gibbs energy varies with temper-
ature and pressure (Fig. 15.20). The first implies that:

• Because S > 0 for all substances, G always decreases when the
temperature is raised (at constant pressure and composition).

Insofar as G is the negative logarithm of the molecular partition
function (eqn 15.40), we can understand this behaviour on the
basis that q increases with temperature as more states become
thermally accessible, and therefore −ln q becomes more negative.

• Because (∂G/∂T)p becomes more negative as S increases, G
decreases most sharply when the entropy of the system is large.

A large entropy implies that many states are occupied, and
therefore that many are thermally accessible. Such a system is
more sensitive to changes in temperature than one in which only
a small number of states are accessible. In macroscopic terms,
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the Gibbs energy of the gaseous phase of a substance, which has
a high molar entropy, is more sensitive to temperature than its
liquid and solid phases (Fig. 15.21). Similarly, the second rela-
tion implies that:

• Because V > 0 for all substances, G always increases when the
pressure of the system is increased (at constant temperature and
composition).

We can understand this behaviour on the basis that q decreases
with decreasing volume as states move apart and become less
thermally accessible, and therefore −ln q becomes less negative.

• Because (∂G/∂p)T increases with V, G is more sensitive to
pressure when the volume of the system is large.

Once again, a large volume implies closely spaced translational
energy levels, and therefore a responsiveness to change. Because
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Fig. 15.20 The variation of the Gibbs energy of a system with
temperature and pressure. The slope of the former is equal to the
negative of the entropy of the system and that of the latter is
equal to the volume.

Temperature, T

G
ib

b
s

en
er

g
y,

G

Gas

Liquid

Solid

Fig. 15.21 The variation of the Gibbs energy with the temperature
is determined by the entropy. Because the entropy of the gaseous
phase of a substance is greater than that of the liquid phase, and
the entropy of the solid phase is smallest, the Gibbs energy
changes most steeply for the gas phase, followed by the liquid
phase, and then the solid phase of the substance.
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the molar volume of the gaseous phase of a substance is greater
than that of its condensed phases, the molar Gibbs energy of a
gas is more sensitive to pressure than its liquid and solid phases
(Fig. 15.22).

(b) The pressure from the partition function

By exactly the same kind of argument that led to eqn 15.56, 
we can compare the two equations for the variation of A with
temperature and volume. From the definition of A,

dA = −pdV − SdT

and from the general mathematical form

it follows that

The second of these relations gives us a valuable route to the 
calculation of the pressure from the partition function, for we
already know how to calculate A. Thus, when eqn 15.38a is sub-
stituted into this expression, we obtain the simple relation

(15.61)
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l A BRIEF ILLUSTRATION

To show that eqn 15.61 reduces to the perfect gas equation 
of state in the case of a gas of independent particles, we write
Q = q N/N !, to obtain

because only q (and not N) depends on V. Moreover, because
ln q = ln qTq RqV = ln qT + ln q RqV, and both q R and qV are inde-
pendent of volume, we need consider only the translational
partition function. Thus we use q = V/Λ3 to obtain

When this relation is substituted into the preceding one and
we use N = nNA and NAk = R, we find p = NkT/V = nRT/V, the
equation of state of a perfect gas. l

Self-test 15.15 Obtain the corresponding expression for a
real gas in terms of the configuration integral Z introduced in
eqn 14.53. [p = kT(∂ ln Z/∂V)T]

At long last we are at the point where we can confirm 
that β = 1/kT, which we have asked you to accept since the
Lagrangian multiplier −β was first introduced in Chapter 13.
Thus, if we had not made the identification β = 1/kT earlier, we
would have found

in place of eqn 15.61. The work in the preceding brief illustration
would have led to

which requires us to identify β as 1/kT in order to recover the
perfect gas law.

(c) The variation of the Gibbs energy with temperature

Although eqn 15.60 expresses the variation of G in terms of the
entropy, we can express it in terms of the enthalpy by using the
definition of G to write S = (H − G)/T. Then

(15.62a)

In the following Justification we show that an alternative form of
this equation is the Gibbs–Helmholtz equation:
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Fig. 15.22 The variation of the Gibbs energy with the pressure 
is determined by the volume of the sample. Because the volume
of the gaseous phase of a substance is greater than that of the
same amount of liquid phase, and the entropy of the solid phase
is smallest (for most substances), the Gibbs energy changes most
steeply for the gas phase, followed by the liquid phase, and then
the solid phase of the substance. Because the volumes of the 
solid and liquid phases of a substance are similar, their molar
Gibbs energies vary by similar amounts as the pressure is
changed.
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(15.62b)

This expression shows that, if we know the enthalpy of the 
system, then we know how G/T varies with temperature.

Justification 15.7 The Gibbs–Helmholtz equation

First, we reorganize eqn 15.62a into

Then we combine the two terms on the left by noting that

When we substitute eqn 15.60, that (∂G/∂T)p = −S, into this
expression, we obtain

which is eqn 15.62b.

The Gibbs–Helmholtz equation is most useful when it is 
applied to changes, including changes of physical state and
chemical reactions at constant pressure. Then, because ΔG =
Gf − Gi for the change of Gibbs energy between the final and 
initial states and because the equation applies to both Gf and Gi,
we can write

(15.63)

This equation shows that, if we know the change in enthalpy of
a system that is undergoing some kind of transformation (such
as vaporization or reaction), then we know how the correspond-
ing change in Gibbs energy varies with temperature. As we shall
see, this is a crucial piece of information in chemistry.

(d) The variation of the Gibbs energy with pressure

To find the Gibbs energy at one pressure in terms of its value at
another pressure, the temperature being constant, we set dT = 0
in eqn 15.59, which gives dG = Vdp, and integrate:

(15.64a)
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For molar quantities,

(15.64b)

This expression is applicable to any phase of matter, but to 
evaluate it we need to know how the molar volume, Vm, depends
on the pressure.

The molar volume of a condensed phase changes only slightly
as the pressure changes (Fig. 15.23), so we can treat Vm as a con-
stant and take it outside the integral:

(15.65)

Under normal laboratory conditions (pf − pi)Vm is very small
and may be neglected. Hence, we may usually suppose that the
Gibbs energies of solids and liquids are independent of pressure.

Self-test 15.16 Calculate the change in Gm for ice at −10°C,
with density 917 kg m−3, when the pressure is increased from
1.0 bar to 2.0 bar. [+2.0 J mol−1]

The molar volumes of gases are large, so the Gibbs energy of a
gas depends strongly on the pressure: the closeness of its transla-
tional energy levels makes the partition function highly respon-
sive to external influences. Furthermore, because the volume
also varies markedly with the pressure, we cannot treat it as a
constant in the integral in eqn 15.64b (Fig. 15.24). For a perfect
gas we substitute Vm = RT/p into the integral, treat RT as a con-
stant, and find

(15.66)°
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Fig. 15.23 The difference in Gibbs energy of a solid or liquid at
two pressures is equal to the rectangular area shown. We have
assumed that the variation of volume with pressure is negligible.
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This expression shows that, when the pressure is increased ten-
fold at room temperature, the molar Gibbs energy increases by
RT ln 10 ≈ 6 kJ mol−1. It also follows from this equation that if we
set pi = p7 (the standard pressure of 1 bar), then the molar Gibbs
energy of a perfect gas at a pressure p (set pf = p) is related to its
standard value by

(15.67)°

The logarithmic dependence of the molar Gibbs energy on the
pressure predicted by eqn 15.67 is illustrated in Fig. 15.25.

  
G p G RT
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pm m( ) ln= +7
7

Self-test 15.17 Calculate the change in the molar Gibbs 
energy of water vapour (treated as a perfect gas) when the
pressure is increased isothermally from 1.0 bar to 2.0 bar at
298 K. Note that, whereas the change in molar Gibbs energy
for a condensed phase (Self-test 15.16) is a few joules per
mole, this change is of the order of kilojoules per mole.

[+1.7 kJ mol−1]
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Fig. 15.24 The difference in Gibbs energy for a perfect gas at two
pressures is equal to the area shown below the perfect-gas
isotherm.
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Fig. 15.25 The molar Gibbs energy of a perfect gas is proportional
to ln p, and the standard state is reached at p7. Note that as 
p → 0, the molar Gibbs energy becomes negatively infinite.

interActivity Show how the first derivative of G, (∂G/∂p)T, 
varies with pressure, and plot the resulting expression 

over a pressure range. What is the physical significance of (∂G/∂p)T?

Checklist of key ideas

1. The Second Law in terms of entropy: The entropy of an
isolated system increases in the course of a spontaneous
change: ΔStot > 0.

2. The thermodynamic definition of entropy is dS = dqrev/T.
The statistical definition of entropy is given by the
Boltzmann formula, S = k ln W.

3. The Clausius inequality is dS ≥ dq/T.

4. The entropy of transition at the transition temperature, 
ΔtrsS = ΔtrsH/Ttrs.

5. Trouton’s rule states that many normal liquids have
approximately the same standard entropy of vaporization
(about 85 J K−1 mol−1) at their normal boiling point.

6. The variation of entropy with temperature is given by 
eqn 15.29.

7. Third Law of thermodynamics: The entropy of all perfect
crystalline substances is zero at T = 0.

8. The Helmholtz energy is A = U − TS; the Gibbs energy is 
G = H − TS.

9. The criteria of spontaneity are: (a) dSU,V > 0 and dUS,V < 0,
or (b) dAT,V < 0 and dGT,p < 0.

10. The criterion of equilibrium at constant temperature and
volume, dAT,V = 0. The criterion of equilibrium at constant
temperature and pressure, dGT,p = 0.

11. The standard Gibbs energy of reaction is ΔrG
7 = ΔrH

7 − TΔrS
7.

12. The maximum work and the Helmholtz energy are related
by wmax = ΔA. The maximum additional (non-expansion)
work and the Gibbs energy are related by wadd,max = ΔG.

13. The standard Gibbs energy of formation (ΔfG
7) is the

standard reaction Gibbs energy for the formation of a
compound from its elements in their reference states.

14. The fundamental equation of thermodynamics is 
dU = TdS − pdV.

15. The Gibbs energy is best described as a function of pressure
and temperature, dG = Vdp − SdT, so the variation of Gibbs
energy with pressure and that with temperature are,
respectively, (∂G/∂p)T = V and (∂G/∂T)p = −S.

16. The temperature dependence of the Gibbs energy is given by
the Gibbs–Helmholtz equation, eqn 15.62.

17. For a perfect gas, the variation of the Gibbs energy with
pressure is given by eqn 15.66.
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Discussion questions

15.1 The evolution of life requires the organization of a very large
number of molecules into biological cells. Does the formation of living
organisms violate the Second Law of thermodynamics? State your
conclusion clearly and present detailed arguments to support it.

15.2 The following expressions have been used to establish criteria for
spontaneous change: dAT,V < 0 and dGT,p < 0. Discuss the origin,
significance, and applicability of each criterion.

15.3 Discuss the significance of the terms ‘dispersal’ and ‘disorder’ 
in the context of the Second Law.

15.4 Discuss the relationship between the thermodynamic and statistical
definitions of entropy.

15.5 Justify the differences between the partition-function expression 
for the entropy for distinguishable particles and the expression for
indistinguishable particles.

15.6 Discuss the relationships between the various formulations of the
Second Law of thermodynamics.

15.7 Account for the temperature and volume dependence of the
entropy of a perfect gas in terms of the Boltzmann distribution.

15.8 Account for deviations from Trouton’s rule for liquids such as
water and ethanol. Is their entropy of vaporization larger or smaller 
than 85 J K−1 mol−1? Why?

15.9 Discuss why the standard entropies of ions in solution may be
positive, negative, or zero.

15.10 Suggest a physical interpretation of the dependence of the Gibbs
energy on the temperature.

15.11 Under what circumstances, and why, can the spontaneity of a
process be discussed in terms of the properties of the system alone?

Further information

Further information 15.1 The Born equation

The electrical concepts required in this derivation are reviewed in
Fundamentals F.6. The strategy of the calculation is to identify the Gibbs
energy of solvation with the work of transferring an ion from a vacuum
into the solvent. That work is calculated by taking the difference of the
work of charging an ion when it is in the solution and the work of
charging the same ion when it is in a vacuum.

The Coulomb interaction between two charges Q1 and Q2 separated
by a distance r is described by the Coulombic potential energy:

where ε is the medium’s permittivity. The permittivity of a vacuum is 
ε0 = 8.854 × 10−12 J−1 C2 m−1. The relative permittivity (formerly called
the ‘dielectric constant’) of a substance is defined as εr = ε/ε0. Ions do 
not interact as strongly in a solvent of high relative permittivity (such 
as water, with εr = 80 at 293 K) as they do in a solvent of lower relative
permittivity (such as ethanol, with εr = 25 at 293 K). The potential energy
of a charge Q1 in the presence of a charge Q2 can be expressed in terms of
the Coulomb potential, φ:

V = Q1φ

We model an ion as a sphere of radius ri immersed in a medium of
permittivity ε. It turns out that, if the charge of the sphere is Q, the
electric potential, φ, at its surface is the same as the potential due to a
point charge at its centre, so we can use the last expression and write
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The work of bringing up a charge dQ to the sphere is φdQ. Therefore, the
total work of charging the sphere from 0 to zie is

This electrical work of charging, when multiplied by Avogadro’s
constant, is the molar Gibbs energy for charging the ions.

The work of charging an ion in a vacuum is obtained by setting ε = ε0,
the vacuum permittivity. The corresponding value for charging the ion
in a medium is obtained by setting ε = εrε0, where εr is the relative
permittivity of the medium. It follows that the change in molar Gibbs
energy that accompanies the transfer of ions from a vacuum to a solvent
is the difference of these two quantities:

which is eqn 15.53.
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Exercises

Assume that all gases are perfect and that data refer to 298.15 K unless
otherwise stated.

15.1(a) During a hypothetical process, the entropy of a system 
increases by 125 J K−1 while the entropy of the surroundings decreases 
by 125 J K−1. Is the process spontaneous?

15.1(b) During a hypothetical process, the entropy of a system increases
by 105 J K−1 while the entropy of the surroundings decreases by 95 J K−1 .
Is the process spontaneous?

15.2(a) Which of F2(g) and I2(g) is likely to have the higher standard
molar entropy at 298 K?

15.2(b) Which of H2O(g) and CO2(g) is likely to have the higher
standard molar entropy at 298 K?

15.3(a) Calculate the standard molar entropy at 298 K of (a) gaseous
helium, (b) gaseous xenon.

15.3(b) Calculate the translational contribution to the standard molar
entropy at 298 K of (a) H2O(g), (b) CO2(g).

15.4(a) At what temperature is the standard molar entropy of helium
equal to that of xenon at 298 K?

15.4(b) At what temperature is the translational contribution to the
standard molar entropy of CO2(g) equal to that of H2O(g) at 298 K?

15.5(a) Calculate the rotational partition function of H2O at 298 K from
its rotational constants 27.878 cm−1, 14.509 cm−1, and 9.287 cm−1 and
use your result to calculate the rotational contribution to the molar
entropy of gaseous water at 25°C.

15.5(b) Calculate the rotational partition function of SO2 at 298 K from
its rotational constants 2.02736 cm−1, 0.34417 cm−1, and 0.293535 cm−1

and use your result to calculate the rotational contribution to the molar
entropy of sulfur dioxide at 25°C.

15.6(a) The ground state of the Co2+ ion in CoSO4·7H2O may be
regarded as 4T9/2. The entropy of the solid at temperatures below 1 K 
is derived almost entirely from the electron spin. Estimate the molar
entropy of the solid at these temperatures.

15.6(b) Estimate the contribution of the spin to the molar entropy of a
solid sample of a d-metal complex with S = 5–2 .

15.7(a) Calculate the change in entropy when 15 g of carbon dioxide gas
is allowed to expand from 1.0 dm3 to 3.0 dm3 at 300 K.

15.7(b) Calculate the change in entropy when 4.00 g of nitrogen is
allowed to expand from 500 cm3 to 750 cm3 at 300 K.

15.8(a) Predict the standard molar entropy of methanoic acid 
(formic acid, HCOOH) at (a) 298 K, (b) 500 K. The normal modes 
occur at wavenumbers 3570, 2943, 1770, 1387, 1229, 1105, 625, 1033,
638 cm−1.

15.8(b) Predict the standard molar entropy of ethyne at (a) 298 K, 
(b) 500 K. The normal modes (and their degeneracies in parentheses)
occur at wavenumbers 612(2), 729(2), 1974, 3287, and 3374 cm−1.

15.9(a) Calculate the rotational contribution to the molar entropy of (a)
H2, (b) Cl2 at 298 K. Use è(H2) = 60.864 cm−1 and è(Cl2) = 0.2441 cm−1.

15.9(b) Calculate the rotational contribution to the molar entropy 
of (a) CO2, (b) CS2 at 298 K. Use è(CO2) = 0.3902 cm−1 and 
è(CS2) = 0.1091 cm−1.

15.10(a) A certain ideal heat engine uses water at the triple point as the
hot source and an organic liquid as the cold sink. It withdraws 10.00 kJ
of heat from the hot source and generates 3.00 kJ of work. What is the
temperature of the organic liquid?

15.10(b) A certain ideal heat engine uses water at the triple point as the
hot source and an organic liquid as the cold sink. It withdraws 2.71 kJ 
of heat from the hot source and generates 0.71 kJ of work. What is the
temperature of the organic liquid?

15.11(a) Calculate the change in entropy when 100 kJ of energy is
transferred reversibly and isothermally as heat to a large block of copper
at (a) 0°C, (b) 50°C.

15.11(b) Calculate the change in entropy when 250 kJ of energy is
transferred reversibly and isothermally as heat to a large block of lead at
(a) 20°C, (b) 100°C.

15.12(a) Predict the enthalpy of vaporization of benzene from its normal
boiling point, 80.1°C.

15.12(b) Predict the enthalpy of vaporization of cyclohexane from its
normal boiling point, 80.7°C.

15.13(a) Calculate the molar entropy of a constant-volume sample of
neon at 500 K given that it is 146.22 J K−1 mol−1 at 298 K.

15.13(b) Calculate the molar entropy of a constant-volume sample of
argon at 250 K given that it is 154.84 J K−1 mol−1 at 298 K.

15.14(a) Calculate ΔS (for the system) when the state of 3.00 mol of
perfect gas atoms, for which Cp,m = 5–2 R, is changed from 25°C and 
1.00 atm to 125°C and 5.00 atm. How do you rationalize the sign of ΔS?

15.14(b) Calculate ΔS (for the system) when the state of 2.00 mol
diatomic perfect gas molecules, for which Cp,m = 7–2 R, is changed from
25°C and 1.50 atm to 135°C and 7.00 atm. How do you rationalize the
sign of ΔS?

15.15(a) A sample consisting of 3.00 mol of diatomic perfect gas
molecules at 200 K is compressed reversibly and adiabatically until 
its temperature reaches 250 K. Given that CV,m = 27.5 J K−1 mol−1,
calculate ΔS.

15.15(b) A sample consisting of 2.00 mol of diatomic perfect gas
molecules at 250 K is compressed reversibly and adiabatically until 
its temperature reaches 300 K. Given that CV,m = 27.5 J K−1 mol−1,
calculate ΔS.

15.16(a) Calculate ΔStot when two copper blocks, each of mass 1.00 kg ,
one at 50°C and the other at 0°C, are placed in contact in an isolated
container. The specific heat capacity of copper is 0.385 J K−1 g−1 and may
be assumed constant over the temperature range involved.

15.16(b) Calculate ΔStot when two iron blocks, each of mass 10.0 kg , 
one at 100°C and the other at 25°C, are placed in contact in an isolated
container. The specific heat capacity of iron is 0.449 J K−1 g−1 and may 
be assumed constant over the temperature range involved.

15.17(a) Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when a sample of
nitrogen gas of mass 14 g at 298 K and 1.00 bar doubles its volume in 
(a) an isothermal reversible expansion, (b) an isothermal irreversible
expansion against pex = 0, and (c) an adiabatic reversible expansion.

15.17(b) Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when the volume of a
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sample of argon gas of mass 21 g at 298 K and 1.50 bar increases from
1.20 dm3 to 4.60 dm3 in (a) an isothermal reversible expansion, (b) an
isothermal irreversible expansion against pex = 0, and (c) an adiabatic
reversible expansion.

15.18(a) The enthalpy of vaporization of chloroform (CHCl3) is 29.4 kJ
mol−1 at its normal boiling point of 334.88 K. Calculate (a) the entropy
of vaporization of chloroform at this temperature and (b) the entropy
change of the surroundings.

15.18(b) The enthalpy of vaporization of methanol is 35.27 kJ mol−1 at its
normal boiling point of 64.1°C. Calculate (a) the entropy of vaporization
of methanol at this temperature and (b) the entropy change of the
surroundings.

15.19(a) Calculate the change in entropy of the system when 10.0 g 
of ice at −10.0°C is converted into water vapour at 115.0°C and at a
constant pressure of 1 bar. The constant-pressure molar heat capacity 
of H2O(s) and H2O(l) is 75.291 J K−1 mol−1 and that of H2O(g) is 
33.58 J K−1 mol−1. Enthalpies of phase transitions are given in 
Table 14.3.

15.19(b) Calculate the change in entropy of the system when 15.0 g of ice
at −12.0°C is converted to water vapour at 105.0°C at a constant pressure
of 1 bar. For data, see the preceding exercise.

15.20(a) Calculate the residual molar entropy of a solid in which the
molecules can adopt (a) three, (b) five, (c) six orientations of equal
energy at T = 0.

15.20(b) Suppose that the hexagonal molecule C6HnF6−n has a residual
entropy on account of the similarity of the H and F atoms. Calculate the
residual entropy for each value of n.

15.21(a) Calculate the standard reaction entropy at 298 K of

(a) 2 CH3CHO(g) + O2(g) → 2 CH3COOH(l)

(b) 2 AgCl(s) + Br2(l) → 2 AgBr(s) + Cl2(g)

(c) Hg(l) + Cl2(g) → HgCl2(s)

15.21(b) Calculate the standard reaction entropy at 298 K of

(a) Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)

(b) C12H22O11(s) + 12 O2(g) → 12 CO2(g) + 11 H2O(l)

15.22(a) Combine the reaction entropies calculated in Exercise 15.21a
with the reaction enthalpies, and calculate the standard reaction Gibbs
energies at 298 K.

15.22(b) Combine the reaction entropies calculated in Exercise 15.21b
with the reaction enthalpies, and calculate the standard reaction Gibbs
energies at 298 K.

15.23(a) Use standard Gibbs energies of formation to calculate the
standard reaction Gibbs energies at 298 K of the reactions in Exercise
15.21a.

15.23(b) Use standard Gibbs energies of formation to calculate the
standard reaction Gibbs energies at 298 K of the reactions in Exercise
15.21b.

15.24(a) Calculate the standard Gibbs energy of the reaction 4 HI(g) +
O2(g) → 2 I2(s) + 2 H2O(l) at 298 K from the standard entropies and
enthalpies of formation given in the Data section.

15.24(b) Calculate the standard Gibbs energy of the reaction CO(g) +
CH3CH2OH(l) → CH3CH2COOH(l) at 298 K from the standard
entropies and enthalpies of formation given in the Data section.

15.25(a) The standard enthalpy of combustion of ethyl acetate
(CH3COOC2H5) is −2231 kJ mol−1 at 298 K and its standard molar

entropy is 259.4 J K−1 mol−1. Calculate the standard Gibbs energy of
formation of the compound at 298 K.

15.25(b) The standard enthalpy of combustion of the amino acid glycine
(NH2CH2COOH) is −969 kJ mol−1 at 298 K and its standard molar
entropy is 103.5 J K−1 mol−1. Calculate the standard Gibbs energy of
formation of glycine at 298 K.

15.26(a) Calculate the maximum non-expansion work per mole that may
be obtained from a fuel cell in which the chemical reaction is the
combustion of methane at 298 K.

15.26(b) Calculate the maximum non-expansion work per mole that
may be obtained from a fuel cell in which the chemical reaction is the
combustion of propane at 298 K.

15.27(a) Suppose that 2.5 mmol N2(g) occupies 42 cm3 at 300 K and
expands isothermally to 600 cm3. Calculate ΔG for the process.

15.27(b) Suppose that 6.0 mmol Ar(g) occupies 52 cm3 at 298 K and
expands isothermally to 122 cm3. Calculate ΔG for the process.

15.28(a) The change in the Gibbs energy of a certain constant-pressure
process was found to fit the expression ΔG/J = −85.40 + 36.5(T/K).
Calculate the value of ΔS for the process.

15.28(b) The change in the Gibbs energy of a certain constant-pressure
process was found to fit the expression ΔG/J = −73.1 + 42.8(T/K).
Calculate the value of ΔS for the process.

15.29(a) Calculate the change in Gibbs energy of 35 g of ethanol (mass
density 0.789 g cm−3) when the pressure is increased isothermally from 
1 atm to 3000 atm.

15.29(b) Calculate the change in Gibbs energy of 25 g of methanol (mass
density 0.791 g cm−3) when the pressure is increased isothermally from
100 kPa to 100 MPa.

15.30(a) Estimate the change in the Gibbs energy of 1.0 dm3 of octane
when the pressure acting on it is increased from 1.0 atm to 100 atm. 
The mass density of octane is 0.703 g cm−3.

15.30(b) Estimate the change in the Gibbs energy of 100 cm3 of water
when the pressure acting on it is increased from 100 kPa to 500 kPa. 
The mass density of water is 0.997 g cm−3.

15.31(a) Calculate the change in the molar Gibbs energy of hydrogen 
gas when its pressure is increased isothermally from 1.0 atm to 100.0 atm
at 298 K.

15.31(b) Calculate the change in the molar Gibbs energy of oxygen when
its pressure is increased isothermally from 50.0 kPa to 100.0 kPa at 500 K.

15.32(a) A CO2 molecule is linear, and its vibrational wavenumbers 
are 1388.2 cm−1, 667.4 cm−1, and 2349.2 cm−1, the last being doubly
degenerate and the others non-degenerate. The rotational constant of
the molecule is 0.3902 cm−1. Calculate the rotational and vibrational
contributions to the molar Gibbs energy at 298 K.

15.32(b) An O3 molecule is angular, and its vibrational wavenumbers 
are 1110 cm−1, 705 cm−1, and 1042 cm−1. The rotational constants of the
molecule are 3.553 cm−1, 0.4452 cm−1, and 0.3948 cm−1. Calculate the
rotational and vibrational contributions to the molar Gibbs energy at
298 K.

15.33(a) The ground level of Cl is 2P3/2 and a 2P1/2 level lies 881 cm−1

above it. Calculate the electronic contribution to the molar Gibbs 
energy of Cl atoms at (a) 500 K and (b) 900 K.

15.33(b) The first electronically excited state of O2 is 1Δg and lies 
7918.1 cm−1 above the ground state, which is 3Σg

−. Calculate the
electronic contribution to the molar Gibbs energy of O2 at 500 K.
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Problems*

Assume that all gases are perfect and that data refer to 298 K unless
otherwise stated.

Numerical problems

15.1 Use the accurate expression for the rotational partition function
calculated in Problem 13.12 for HCl(g) to calculate the rotational
contribution to the molar entropy over a range of temperature and 
plot the contribution as a function of temperature.

15.2 Calculate the difference in molar entropy (a) between liquid 
water and ice at −5°C, (b) between liquid water and its vapour at 95°C
and 1.00 atm. The differences in heat capacities on melting and on
vaporization are 37.3 J K−1 mol−1 and −41.9 J K−1 mol−1, respectively.
Distinguish between the entropy changes of the sample, the
surroundings, and the total system, and discuss the spontaneity 
of the transitions at the two temperatures.

15.3 The molar heat capacity of chloroform (trichloromethane, 
CHCl3) in the range 240 K to 330 K is given by Cp,m/(J K−1 mol−1) 
= 91.47 + 7.5 × 10−2 (T/K). In a particular experiment, 1.00 mol CHCl3
is heated from 273 K to 300 K. Calculate the change in molar entropy 
of the sample.

15.4 A block of copper of mass 2.00 kg (Cp,m = 24.44 J K−1 mol−1) and
temperature 0°C is introduced into an insulated container in which there
is 1.00 mol H2O(g) at 100°C and 1.00 atm. (a) Assuming all the steam 
is condensed to water, what will be the final temperature of the system, 
the heat transferred from water to copper, and the entropy change of 
the water, copper, and the total system? (b) In fact, some water vapour 
is present at equilibrium. From the vapour pressure of water at the
temperature calculated in (a), and assuming that the heat capacities of
both gaseous and liquid water are constant and given by their values at
that temperature, obtain an improved value of the final temperature, the
heat transferred, and the various entropies. (Hint. You will need to make
plausible approximations.)

15.5 Consider a perfect gas contained in a cylinder and separated by 
a frictionless adiabatic piston into two sections A and B. All changes 
in B are isothermal, that is, a thermostat surrounds B to keep its
temperature constant. There is 2.00 mol of the gas in each section.
Initially TA = TB = 300 K, VA = VB = 2.00 dm3. Energy is supplied as heat
to section A and the piston moves to the right reversibly until the final
volume of section B is 1.00 L. Calculate (a) ΔSA and ΔSB, (b) ΔAA and
ΔAB, (c) ΔGA and ΔGB, (d) ΔS of the total system and its surroundings. 
If numerical values cannot be obtained, indicate whether the values
should be positive, negative, or zero or are indeterminate from the
information given. (Assume CV,m = 20 J K−1 mol−1.)

15.6 A Carnot cycle uses 1.00 mol of a monatomic perfect gas as the
working substance from an initial state of 10.0 atm and 600 K. It expands
isothermally to a pressure of 1.00 atm (step 1), and then adiabatically 
to a temperature of 300 K (step 2). This expansion is followed by an
isothermal compression (step 3), and then an adiabatic compression
(step 4) back to the initial state. Determine the values of q, w, ΔU, ΔH,
ΔS, ΔStot, and ΔG for each stage of the cycle and for the cycle as a whole.
Express your answer as a table of values.

15.7 A sample consisting of 1.00 mol of perfect gas molecules at 27°C 
is expanded isothermally from an initial pressure of 3.00 atm to a final
pressure of 1.00 atm in two ways: (a) reversibly, and (b) against a
constant external pressure of 1.00 atm. Determine the values of 
q, w, ΔU, ΔH, ΔS, ΔSsur, ΔStot for each path.

15.8 The standard molar entropy of NH3(g) is 192.45 J K−1 mol−1 at 
298 K, and its heat capacity is given by eqn 14.34 with the coefficients
given in Table 14.2. Calculate the standard molar entropy at (a) 100°C
and (b) 500°C.

15.9 A block of copper of mass 500 g and initially at 293 K is in thermal
contact with an electric heater of resistance 1.00 kΩ and negligible mass.
A current of 1.00 A is passed for 15.0 s. Calculate the change in entropy
of the copper, taking Cp,m = 24.4 J K−1 mol−1. The experiment is then
repeated with the copper immersed in a stream of water that maintains
its temperature at 293 K. Calculate the change in entropy of the copper
and the water in this case.

15.10 Find an expression for the change in entropy when two blocks 
of the same substance and of equal mass, one at the temperature Th and
the other at Tc, are brought into thermal contact and allowed to reach
equilibrium. Evaluate the change for two blocks of copper, each of mass
500 g, with Cp,m = 24.4 J K−1 mol−1, taking Th = 500 K and Tc = 250 K.

15.11 A gaseous sample consisting of 1.00 mol molecules is described 
by the equation of state pVm = RT(1 + Bp). Initially at 373 K, it undergoes
Joule–Thomson expansion from 100 atm to 1.00 atm. Given that 
Cp,m = 5–2 R, μ = 0.21 K atm−1, B = −0.525(K/T) atm−1 and that these 
are constant over the temperature range involved, calculate ΔT and 
ΔS for the gas.

15.12 The expressions that apply to the treatment of refrigerators also
describe the behaviour of heat pumps, where warmth is obtained from
the back of a refrigerator while its front is being used to cool the outside
world. Heat pumps are popular home heating devices because they are
very efficient. Compare heating of a room at 295 K by each of two
methods: (a) direct conversion of 1.00 kJ of electrical energy in an
electrical heater, and (b) use of 1.00 kJ of electrical energy to run a
reversible heat pump with the outside at 260 K. Discuss the origin 
of the difference in the energy delivered to the interior of the house 
by the two methods.

15.13 The molar heat capacity of lead varies with temperature as follows:

T/K 10 15 20 25 30 50

Cp,m/(J K−1 mol−1) 2.8 7.0 10.8 14.1 16.5 21.4

T/K 70 100 150 200 250 298

Cp,m/(J K−1 mol−1) 23.3 24.5 25.3 25.8 26.2 26.6

Calculate the standard Third Law entropy of lead at (a) 0°C and 
(b) 25°C.

15.14 From standard enthalpies of formation, standard entropies, 
and standard heat capacities available from tables in the Data section,
calculate: (a) the standard enthalpies and entropies at 298 K and 398 K
for the reaction CO2(g) + H2(g) → CO(g) + H2O(g). Assume that the
heat capacities are constant over the temperature range involved.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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15.15 The molar heat capacity of anhydrous potassium
hexacyanoferrate(II) varies with temperature as follows:

T/K Cp,m/(J K−1 mol−1) T/K Cp,m/(J K−1 mol−1)

10 2.09 100 179.6

20 14.43 110 192.8

30 36.44 150 237.6

40 62.55 160 247.3

50 87.03 170 256.5

60 111.0 180 265.1

70 131.4 190 273.0

80 149.4 200 280.3

90 165.3

Calculate the molar enthalpy relative to its value at T = 0 and the Third
Law entropy at each of these temperatures.

15.16 The compound 1,3,5-trichloro-2,4,6-trifluorobenzene 
is an intermediate in the conversion of hexachlorobenzene to
hexafluorobenzene, and its thermodynamic properties have been
examined by measuring its heat capacity over a wide temperature 
range (R.L. Andon and J.F. Martin, J. Chem. Soc. Faraday Trans. I, 
871 (1973)). Some of the data are as follows:

T/K 14.14 16.33 20.03 31.15 44.08 64.81

Cp,m/(J K−1 mol−1) 9.492 12.70 18.18 32.54 46.86 66.36

T/K 100.90 140.86 183.59 225.10 262.99 298.06

Cp,m/(J K−1 mol−1) 95.05 121.3 144.4 163.7 180.2 196.4

Calculate the molar enthalpy relative to its value at T = 0 and the Third
Law molar entropy of the compound at these temperatures.

15.17‡ Given that Sm
7 = 29.79 J K−1 mol−1 for bismuth at 100 K and the

following tabulated heat capacity data (D.G. Archer, J. Chem. Eng. Data
40, 1015 (1995)), compute the standard molar entropy of bismuth at 
200 K.

T/K 100 120 140 150 160 180 200

Cp,m/(J K−1 mol−1 ) 23.00 23.74 24.25 24.44 24.61 24.89 25.11

Compare the value to the value that would be obtained by taking the
heat capacity to be constant at 24.44 J K−1 mol−1 over this range.

15.18 Calculate ΔrG
7(375 K) for the reaction 2 CO(g) + O2(g) →

2 CO2(g) from the value of ΔrG
7(298 K), ΔrH

7(298 K), and the
Gibbs–Helmholtz equation.

15.19 Estimate the standard reaction Gibbs energy of N2(g) + 3 H2(g) →
2 NH3(g) at (a) 500 K, (b) 1000 K from its value at 298 K.

15.20 Calculate the standard molar entropy of N2(g) at 298 K from its
rotational constant è = 1.9987 cm−1 and its vibrational wavenumber 
# = 2358 cm−1. The thermochemical value is 192.1 J K−1 mol−1. What
does this suggest about the solid at T = 0?

15.21‡ J.G. Dojahn et al. ( J. Phys. Chem. 100, 9649 (1996)) characterized
the potential energy curves of the ground and electronic states of
homonuclear diatomic halogen anions. The ground state of F2

− is 
2Σu

+ with a fundamental vibrational wavenumber of 450.0 cm−1 and
equilibrium internuclear distance of 190.0 pm. The first two excited
states are at 1.609 and 1.702 eV above the ground state. Compute the
standard molar entropy of F2

− at 298 K.

15.22‡ Treat carbon monoxide as a perfect gas and apply equilibrium
statistical thermodynamics to the study of its properties, as specified
below, in the temperature range 100–1000 K at 1 bar. # = 2169.8 cm−1,

è = 1.931 cm−1, and D0 = 11.09 eV; neglect anharmonicity and
centrifugal distortion. (a) Examine the probability distribution of
molecules over available rotational and vibrational states. (b) Explore
numerically the differences, if any, between the rotational molecular
partition function as calculated with the discrete energy distribution
with that calculated with the classical, continuous energy distribution.
(c) Calculate the individual contributions to Um(T) − Um(100 K),
CV,m(T), and Sm(T) − Sm(100 K) made by the translational, rotational,
and vibrational degrees of freedom.

15.23 At 298 K the standard enthalpy of combustion of sucrose is 
−5797 kJ mol−1 and the standard Gibbs energy of the reaction is 
−6333 kJ mol−1. Estimate the additional non-expansion work that may
be obtained by raising the temperature to blood temperature, 37°C.

15.24‡ R. Viswanathan et al. ( J. Phys. Chem. 100, 10784 (1996)) 
studied the thermodynamic properties of several boron–silicon 
gas-phase species experimentally and theoretically. These species can
occur in the high-temperature chemical vapour deposition (CVD) of
silicon-based semiconductors. Among the computations they reported
was computation of the Gibbs energy of BSi(g) at several temperatures
based on a 4Σ− ground state with equilibrium internuclear distance of
190.5 pm and fundamental vibrational wavenumber of 772 cm−1 and a
2P0 first excited level 8000 cm−1 above the ground level. Compute the
standard molar Gibbs energy Gm

7(2000 K) − Gm
7(0).

15.25 Suppose that an internal combustion engine runs on octane, for
which the enthalpy of combustion is −5512 kJ mol−1 and take the mass 
of 1 gallon of fuel as 3 kg. What is the maximum height, neglecting all
forms of friction, to which a car of mass 1000 kg can be driven on 1.00
gallon of fuel given that the engine cylinder temperature is 2000°C and
the exit temperature is 800°C?

Theoretical problems

15.26 The energy levels of a Morse oscillator are given in eqn 10.36. 
Set up the expression for the molar entropy of a collection of Morse
oscillators and plot it as a function of temperature for a series of
anharmonicities. Take into account only the finite number of bound
states. On the same graph plot the entropy of an harmonic oscillator 
and investigate how the two diverge.

15.27 Explore how the entropy of a collection of two-level systems
behaves when the temperature is formally allowed to become negative
(recall Problem 14.48). You should also construct a graph in which the
temperature is replaced by the variable β = 1/kT. Account for the
appearance of the graphs physically.

15.28 Deduce the result (∂U/∂S)V = T and then use the calculation on
which Problem 15.27 is based to draw a graph of U against S (or vice
versa) to identify the temperature. Hint. Use mathematical software to
construct the graph.

15.29 According to Newton’s law of cooling, the rate of change of
temperature is proportional to the temperature difference between 
the system and its surroundings. Given that S(T) − S(Ti) = C ln(T/Ti),
where Ti is the initial temperature and C the heat capacity, deduce an
expression for the rate of change of entropy of the system as it cools.

15.30 Represent the Carnot cycle on a temperature–entropy diagram
and show that the area enclosed by the cycle is equal to the work done.

15.31 The cycle involved in the operation of an internal combustion
engine is called the Otto cycle. Air can be considered to be the working
substance and can be assumed to be a perfect gas. The cycle consists of
the following steps: (1) Reversible adiabatic compression from A to B,
(2) reversible constant-volume pressure increase from B to C due to the
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combustion of a small amount of fuel, (3) reversible adiabatic expansion
from C to D, and (4) reversible and constant-volume pressure decrease
back to state A. Determine the change in entropy (of the system and 
of the surroundings) for each step of the cycle and determine an
expression for the efficiency of the cycle, assuming that the heat is
supplied in step 2. Evaluate the efficiency for a compression ratio of 
10:1. Assume that in state A, V = 4.00 L, p = 1.00 atm, and T = 300 K, 
that VA = 10VB, pC/pB = 5, and that Cp,m = 7–2 R.

15.32 Prove that two reversible adiabatic paths can never cross. 
Assume that the energy of the system under consideration is a function
of temperature only. (Hint. Suppose that two such paths can intersect,
and complete a cycle with the two paths plus one isothermal path.
Consider the changes accompanying each stage of the cycle and show
that they conflict with the Kelvin statement of the Second Law.)

15.33 Derive an expression for the molar entropy of a monatomic 
solid on the basis of the Einstein and Debye models and plot the molar
entropy against the temperature (use T/θ in each case, with θ the
Einstein or Debye temperature). Use the following expressions for 
the temperature dependence of the heat capacities:

Use mathematical software to evaluate the appropriate expressions.

15.34 Two empirical equations of state of a real gas are as follows:

Evaluate (∂S/∂V)T for each gas. For an isothermal expansion, for which
kind of gas (also consider a perfect gas) will ΔS be greatest? Explain your
conclusion.

15.35 Two of the four Maxwell relations were derived in the text, 
but two were not. Complete their derivation by showing that 
(∂S/∂V)T = (∂p/∂T)V and (∂T/∂p)S = (∂V/∂S)p.

15.36 (a) Use the Maxwell relations to express the derivatives 
(∂S/∂V)T , (∂V/∂S)p, (∂p/∂S)V, and (∂V/∂S)p in terms of the heat
capacities, the expansion coefficient α = (1/V)(∂V/∂T)p, and the
isothermal compressibility, κT = −(1/V)(∂V/∂p)T. (b) The Joule
coefficient, μJ, is defined as μJ = (∂T/∂V)U. Show that μJCV = p − αT/κT.

15.37 Suppose that S is regarded as a function of p and T. Show that 
TdS = CpdT − αTVdp. Hence, show that the energy transferred as heat
when the pressure on an incompressible liquid or solid is increased by 
Δp is equal to −αTVΔp, where α = (1/V)(∂V/∂T)p. Evaluate q when the
pressure acting on 100 cm3 of mercury at 0°C is increased by 1.0 kbar. 
(α = 1.82 × 10−4 K−1.)

15.38 Derive the Sackur–Tetrode equation for a monatomic gas
confined to a two-dimensional surface, and hence derive an expression
for the standard molar entropy of condensation to form a mobile surface
film.

15.39 In Problem 14.30 you were invited to consider the expressions
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in the context of the First Law. To see that these expressions are also
relevant to the Second Law, derive an expression for the entropy 
in terms of these three functions. (b) Apply the technique to the
calculation of the electronic contribution to the standard molar 
entropy of magnesium vapour at 5000 K using the following data:

Term 1S 3P0
3P1

3P2
1P1

3S

Degeneracy 1 1 3 5 3 3

#/cm−1 0 21850 21870 21911 35051 41197

15.40 To calculate the work required to lower the temperature of 
an object, we need to consider how the coefficient of performance c
changes with the temperature of the object. (a) Find an expression for
the work of cooling an object from Ti to Tf when the refrigerator is in 
a room at a temperature Th. Hint. Write dw = dq/c(T), relate dq to dT
through the heat capacity Cp, and integrate the resulting expression.
Assume that the heat capacity is independent of temperature in the range
of interest. (b) Use the result in part (a) to calculate the work needed to
freeze 250 g of water in a refrigerator at 293 K. How long 
will it take when the refrigerator operates at 100 W?

15.41 Calculate the molar internal energy, molar entropy, and molar
Helmholtz energy of a collection of harmonic oscillators and plot your
expressions as a function of T/θV, where θV = h#/k.

15.42 Equation 15.58 expresses the internal pressure πT in terms of the
pressure and its derivative with respect to temperature. Express πT in
terms of the molecular partition function.

15.43 Identify as many arguments as you can that confirm the relation 
β = 1/kT. Present arguments that show that β is a more appropriate
parameter for expressing the temperature than T itself. What is the status
of k as a fundamental constant?

15.44 Explore the consequences of replacing the equation of state 
of a perfect gas by the van der Waals equation of state for the pressure
dependence of the molar Gibbs energy (eqn 15.64). Proceed in three
steps. First, consider the case when a = 0 and only repulsions are
significant. Then consider the case when b = 0 and only attractions 
are significant. For the latter, you should consider making the
approximation that the attractions are weak. Finally, explore the 
full expression by using mathematical software. In each case plot 
your results graphically and account physically for the deviations 
from the perfect gas expression.

Applications: to biology and environmental science

15.45 An average human DNA molecule has 5 × 108 binucleotides
(rungs on the DNA ladder) of four different kinds. If each rung 
were a random choice of one of these four possibilities, what 
would be the residual entropy associated with this typical DNA
molecule?

15.46 The protein lysozyme unfolds at a transition temperature of
75.5°C and the standard enthalpy of transition is 509 kJ mol−1. Calculate
the entropy of unfolding of lysozyme at 25.0°C, given that the difference
in the constant-pressure heat capacities upon unfolding is 6.28 kJ K−1

mol−1 and can be assumed to be independent of temperature. Hint.
Imagine that the transition at 25.0°C occurs in three steps: (i) heating 
of the folded protein from 25.0°C to the transition temperature, 
(ii) unfolding at the transition temperature, and (iii) cooling of the
unfolded protein to 25.0°C. Because the entropy is a state function, 
the entropy change at 25.0°C is equal to the sum of the entropy 
changes of the steps.

15.47 In biological cells, the energy released by the oxidation of foods is
stored in adenosine triphosphate (ATP or ATP4−). The essence of ATP’s
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action is its ability to lose its terminal phosphate group by hydrolysis and
to form adenosine diphosphate (ADP or ADP3−):

ATP4−(aq) + H2O(l) → ADP3−(aq) + HPO4
2− (aq) + H3O+(aq)

At pH = 7.0 and 37°C (310 K, blood temperature) the enthalpy and
Gibbs energy of hydrolysis are ΔrH = −20 kJ mol−1 and ΔrG = −31 kJ mol−1,
respectively. Under these conditions, the hydrolysis of 1 mol ATP4−(aq)
results in the extraction of up to 31 kJ of energy that can be used to do
non-expansion work, such as the synthesis of proteins from amino acids,
muscular contraction, and the activation of neuronal circuits in our
brains. (a) Calculate and account for the sign of the entropy of hydrolysis
of ATP at pH = 7.0 and 310 K. (b) Suppose that the radius of a typical
biological cell is 10 μm and that inside it 106 ATP molecules are
hydrolysed each second. What is the power density of the cell in watts
per cubic metre (1 W = 1 J s−1)? A computer battery delivers about 15 W
and has a volume of 100 cm3. Which has the greater power density, the
cell or the battery? (c) The formation of glutamine from glutamate and
ammonium ions requires 14.2 kJ mol−1 of energy input. It is driven by
the hydrolysis of ATP to ADP mediated by the enzyme glutamine
synthetase. How many moles of ATP must be hydrolysed to form 1 mol
glutamine?

15.48‡ The molecule Cl2O2, which is believed to participate in the
seasonal depletion of ozone over Antarctica, has been studied by several
means. Birk et al. ( J. Chem. Phys. 91, 6588 (1989)) report its rotational
constants as A = 13109.4, B = 2409.8, and C = 2139.7 MHz. They also
report that its rotational spectrum indicates a molecule with a symmetry
number of 2.19. J. Jacobs et al. (J. Amer. Chem. Soc. 1106 (1994)) report
its vibrational wavenumbers as 753, 542, 310, 127, 646, and 419 cm−1.
Compute Gm

7 (200 K) − Gm
7 (0) of Cl2O2.

15.49‡ Nitric acid hydrates have received much attention as possible
catalysts for heterogeneous reactions that bring about the Antarctic
ozone hole. Worsnop et al. (Science 259, 71 (1993)) investigated the
thermodynamic stability of these hydrates under conditions typical 
of the polar winter stratosphere. They report thermodynamic data for
the sublimation of mono-, di-, and trihydrates to nitric acid and water
vapours, HNO3·nH2O (s) → HNO3 (g) + nH2O (g), for n = 1, 2, and 3.
Given ΔrG

7 and ΔrH
7 for these reactions at 220 K, use the Gibbs–Helmholtz

equation to compute ΔrG
7 at 190 K.

n 1 2 3

ΔrG
7/(kJ mol−1) 46.2 69.4 93.2

ΔrH
7/(kJ mol−1) 127 188 237



Physical equilibria

The discussion of the phase transitions of pure substances is among the simplest applica-
tions of thermodynamics to chemistry. We shall see that a phase diagram is a map of the
pressures and temperatures at which each phase of a substance is the most stable. First,
we describe the interpretation of empirically determined phase diagrams for a selection 
of one- and two-component systems. Then we turn to a consideration of the factors that
determine the positions and shapes of the boundaries between the regions on a phase 
diagram. This chapter also introduces the chemical potential, a property that is at the 
centre of discussions of phase transitions and chemical reactions. The underlying principle
to keep in mind is that at equilibrium the chemical potential of a species is the same in every
phase. We see, by making use of the experimental observations known as Raoult’s and
Henry’s laws, how to express the chemical potential of a substance in terms of the composi-
tion of a mixture and calculate the effect of a solute on certain thermodynamic properties 
of a solution. Finally, we see how to express the chemical potential of a substance in a real
mixture in terms of the activity, and effective concentration, and see how to express the 
activity in terms of various models of molecular and ionic interaction.

Vaporization, melting, and the conversion of graphite to diamond are all examples of
changes of phase without change of chemical composition. In this chapter we describe
such processes thermodynamically, using as the guiding principle the tendency of 
systems at constant temperature and pressure to minimize their Gibbs energy. We
also describe a systematic way of discussing the physical changes mixtures undergo
when they are heated or cooled and when their compositions are changed and see 
how to use phase diagrams. To set the scene for this discussion, we first review how
empirical information about phase equilibria is summarized graphically. Then we 
examine how these phase diagrams may be interpreted and in some cases modelled 
in terms of thermodynamic quantities.

Phase diagrams

A phase of a substance is a form of matter that is uniform throughout in chemical
composition and physical state. Thus, we speak of solid, liquid, and gas phases of a
substance, and of its various solid phases, such as the white and black allotropes 
of phosphorus. A phase transition, the spontaneous conversion of one phase into 
another phase, occurs at a characteristic temperature for a given pressure. Thus, at 
1 atm, ice is the stable phase of water below 0°C, but above 0°C liquid water is more
stable. This difference indicates that below 0°C the Gibbs energy decreases as liquid
water changes into ice and that above 0°C the Gibbs energy decreases as ice changes
into liquid water. An empirically constructed phase diagram of a substance shows 
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the regions of pressure and temperature at which its various
phases are thermodynamically stable (Fig. 16.1). The lines separ-
ating the regions, which are called phase boundaries, show the
values of p and T at which two phases coexist in equilibrium.
Similar diagrams can be constructed for mixtures, where the 
regions summarize, for instance, the compositions and temper-
atures at which the various phases are stable and the boundaries
summarize the conditions under which these phases are in equi-
librium with one another (Fig. 16.2).

All the properties we describe in this chapter can be traced to
the intermolecular interactions that bind the molecules together.
Which particular phase is the most stable at a given pressure and
at T = 0, where entropy plays no role, corresponds to the lowest
energy that can be achieved as the molecules pack together. At
higher temperatures entropy does play a role, and the substance
adopts the molecular arrangement that corresponds to lowest
Gibbs energy at the prevailing pressure. Although it is difficult 

to extend the computational techniques of Chapter 6 to solids
and liquids, that can be done, and phase transitions can in some
cases be predicted. However, that is beyond the scope of this
text: here for the most part we shall simply refer to the qualita-
tive features of intermolecular forces.

There are two further preliminary points. One is that one of
the most celebrated results in chemical thermodynamics, the
phase rule, can be used as a basis for discussing the implications
of phase diagrams, but it is not essential. It is described in Further
information 16.1. The second is that it is sometimes useful to
classify phase transitions into different types. The Ehrenfest classi-
fication is described in Further information 16.2.

16.1 One-component systems

We begin by considering a liquid sample of a pure substance in
a closed vessel. The pressure of a vapour in equilibrium with the
liquid is called the vapour pressure of the substance (Fig. 16.3).
Therefore, the liquid–vapour phase boundary in a phase dia-
gram shows how the vapour pressure of the liquid varies with
temperature. Similarly, the solid–vapour phase boundary shows
the temperature variation of the sublimation vapour pressure,
the vapour pressure of the solid phase. The vapour pressure of 
a substance increases with temperature because at higher tem-
peratures more molecules have sufficient energy to escape from
their neighbours.

(a) Phase characteristics

When a liquid is heated in an open vessel, the liquid vaporizes
from its surface as molecules acquire enough kinetic energy to
escape from their neighbours. At the temperature at which its
vapour pressure would be equal to the external pressure, vapour
can form throughout the bulk of the liquid and can expand
freely into the surroundings. The condition of free vaporization
throughout the liquid is called boiling. The temperature at
which the vapour pressure of a liquid is equal to the external
pressure is called the boiling temperature at that pressure. 
For the special case of an external pressure of 1 atm, the boiling 
temperature is called the normal boiling point, Tb. With the 
replacement of 1 atm by 1 bar as standard pressure, there is some
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Fig. 16.1 The general regions of pressure and temperature where
solid, liquid, or gas is stable (that is, has minimum molar Gibbs
energy) are shown on this phase diagram. For example, the solid
phase is the most stable phase at low temperatures and high
pressures. In the following paragraphs we locate the precise
boundaries between the regions.
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Fig. 16.2 A typical phase diagram for a mixture, in this case of two
liquid crystalline materials showing the conditions under which
various phases are the most stable. The two components are 4,4′-
dimethoxyazobenzene (A) and 4,4′-diethoxyazobenzene (B).
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Fig. 16.3 The vapour pressure of a liquid or solid is the pressure
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advantage in using the standard boiling point instead: this is 
the temperature at which the vapour pressure reaches 1 bar.
Because 1 bar is slightly less than 1 atm (1.00 bar = 0.987 atm),
the standard boiling point of a liquid is slightly lower than its
normal boiling point. The normal boiling point of water is
100.0°C; its standard boiling point is 99.6°C.

Boiling does not occur when a liquid is heated in a partly
filled, rigid, closed vessel. Instead, the vapour pressure, and
hence the density of the vapour, rise as the temperature is raised
(Fig. 16.4). At the same time, the density of the liquid decreases
slightly as a result of its expansion. There comes a stage when 
the density of the vapour is equal to that of the remaining liquid
and the surface between the two phases disappears. The temper-
ature at which the surface disappears is the critical temperature,
Tc, of the substance. The vapour pressure at the critical temper-
ature is called the critical pressure, pc. At and above the critical
temperature, a single uniform phase called a supercritical fluid
fills the container and an interface no longer exists. That is, above
the critical temperature, the liquid phase of the substance does
not exist.

The temperature at which, under a specified pressure, the 
liquid and solid phases of a substance coexist in equilibrium 
is called the melting temperature. Because a substance melts at
exactly the same temperature as it freezes, the melting temper-
ature of a substance is the same as its freezing temperature. The
freezing temperature when the pressure is 1 atm is called the
normal freezing point, Tf, and its freezing point when the pres-
sure is 1 bar is called the standard freezing point. The normal
and standard freezing points are negligibly different for most
purposes. The normal freezing point is also called the normal
melting point.

There is a set of conditions (and, in general, several sets) under
which three different phases of a single substance (such as solid,
liquid, and vapour) all simultaneously coexist in equilibrium.

These conditions are represented by the triple point, a point at
which the three phase boundaries meet. The temperature at the
triple point is denoted T3. The triple point of a pure substance
depends on the details of the intermolecular interactions and is
outside our control: it occurs at a single definite pressure and
temperature characteristic of the substance. The triple point of
water lies at 273.16 K and 611 Pa (6.11 mbar, 4.58 Torr), and 
the three phases of water (ice, liquid water, and water vapour)
coexist in equilibrium at no other combination of pressure 
and temperature. This invariance of the triple point is the basis
of its use in the definition of the Kelvin scale of temperature
(Section 15.2).

As we can see from Fig. 16.1, the triple point marks the lowest
pressure at which a liquid phase of a substance can exist. If (as 
is common) the slope of the solid–liquid phase boundary is 
as shown in the diagram, then the triple point also marks the
lowest temperature at which the liquid can exist; the critical
temperature is the upper limit.

(b) Three typical phase diagrams

The phase diagram for carbon dioxide is shown in Fig. 16.5. The
features to notice include the positive slope of the solid–liquid
boundary (the direction of this line is characteristic of most sub-
stances), which indicates that the melting temperature of solid
carbon dioxide rises as the pressure is increased. Notice also
that, as the triple point lies above 1 atm, the liquid cannot exist
at normal atmospheric pressures whatever the temperature, and
the solid sublimes when left in the open (hence the name ‘dry
ice’). To obtain the liquid, it is necessary to exert a pressure of at
least 5.11 atm. Cylinders of carbon dioxide generally contain the
liquid or compressed gas; at 25°C that implies a vapour pressure
of 67 atm if both gas and liquid are present in equilibrium.
When the gas squirts through the throttle it cools by the Joule–

(a) (b) (c)

Fig. 16.4 (a) A liquid in equilibrium with its vapour. (b) When a
liquid is heated in a sealed container, the density of the vapour
phase increases and that of the liquid decreases slightly. There
comes a stage, (c), at which the two densities are equal and the
interface between the fluids disappears. This disappearance
occurs at the critical temperature. The container needs to be
strong: the critical temperature of water is 374°C and the 
vapour pressure is then 218 atm.
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Fig. 16.5 The experimental phase diagram for carbon dioxide.
Note that, as the triple point lies at pressures well above
atmospheric, liquid carbon dioxide does not exist under normal
conditions (a pressure of at least 5.1 atm must be applied).
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Thomson effect (Section 14.11) so, when it emerges into a region
where the pressure is only 1 atm, it condenses into a finely divided
snow-like solid.

Figure 16.6 is the phase diagram for water. The liquid–vapour
boundary in the phase diagram summarizes how the vapour
pressure of liquid water varies with temperature. It also sum-
marizes how the boiling temperature varies with pressure: we 
simply read off the temperature at which the vapour pressure is
equal to the prevailing atmospheric pressure. The solid–liquid
boundary shows how the melting temperature varies with the
pressure. Its very steep slope indicates that enormous pressures
are needed to bring about significant changes. Notice that the
line has a negative slope up to 2 kbar, which means that the 
melting temperature falls as the pressure is raised. The reason
for this almost unique behaviour can be traced to the decrease 
in volume that occurs on melting, and hence it being more
favourable for the solid to transform into the liquid as the 
pressure is raised. The decrease in volume is a result of the very
open molecular structure of ice: the water molecules are held
apart, as well as together, by the hydrogen bonds between them
but the structure partially collapses on melting and the liquid is
denser than the solid.

Figure 16.6 shows that water has one liquid phase but many
different polymorphs, or different solid phases, other than ordin-
ary ice (‘ice I’). This polymorphic richness is due in large 
measure to the adaptability of the directional characteristics of
hydrogen-bonding interactions, which allow the oxygen atoms
to adopt slightly different arrangements throughout the solid in
response to changes in pressure and temperature. Some of the

phases melt at high temperatures. Ice VII, for instance, melts at
100°C but exists only above 25 kbar. Note that many more triple
points occur in the diagram other than the one where vapour,
liquid, and ice I coexist. Each one occurs at a definite pressure
and temperature that cannot be changed. The polymorphs of 
ice differ in the arrangement of the water molecules: under the
influence of very high pressures, hydrogen bonds buckle and 
the H2O molecules adopt different arrangements. They may be
responsible for the advance of glaciers, for ice at the bottom of
glaciers experiences very high pressures where it rests on jagged
rocks.

Figure 16.7 shows the phase diagram of helium. Helium 
behaves unusually at low temperatures. For instance, the solid
and gas phases of helium are never in equilibrium however low
the temperature: the atoms are so light that they vibrate with a
large-amplitude motion even at very low temperatures and the
solid simply shakes itself apart. Solid helium can be obtained,
but only by holding the atoms together by applying pressure.
Pure helium-4 has two liquid phases. The phase marked He-I in
the diagram behaves like a normal liquid; the other phase, He-II,
is a superfluid; it is so called because it flows without viscosity.
Provided we discount the liquid crystalline substances discussed
in Impact I8.3, helium is the only known substance with a liquid–
liquid boundary, shown as the l-line (lambda line) in Fig. 16.7.
The phase diagram of helium-3 differs from the phase diagram
of helium-4, but it also possesses a superfluid phase. Helium-3 is
unusual in that the entropy of the liquid is lower than that of the
solid, and melting is exothermic.

The existence of superfluid helium is a quantum phenomenon
that manifests itself on a macroscopic scale. Because the interatomic
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forces in helium are so weak, as a first approximation we can
treat the liquid as a collection of non-interacting particles in a
box. You should recall from Section 13.3 that many transla-
tional states of a particle in a box are occupied provided that the
separation of particles, d = (V/N)1/3 is much larger than their
thermal wavelength, Λ = h/(2πmkT)1/2. Given the mass density,
ρ, of liquid helium of 0.15 g cm−3 and noting that N/V = ρ/m,
this condition requires T >> 6 K (as you should verify). But the
normal boiling point of helium is 4.2 K, so it is not true that
many translational states of He atoms are occupied in the liquid
and we have to treat the phase as a quantum system. The second
important point is that helium-4 atoms are bosons, so that an
unrestricted number of them can occupy a single quantum state
(Section 4.4). The current view is that helium-II consists of two
components. In this two-fluid model, below 2.17 K the liquid
consists of a normal liquid component and a superfluid com-
ponent, with the proportions changing as the temperature is
lowered and becoming entirely superfluid at T = 0. Although it
is tempting to think of the superfluid phase as consisting of all
the atoms in the lowest energy state (corresponding to n = 1 for
a particle in a box) and zero linear momentum, that is not quite
right, for neutron scattering experiments have shown that only
about 10 per cent of the atoms have zero linear momentum at 
T = 0, despite the phase then being entirely superfluid. The ground
state is in fact much more complicated, with correlated pairs of
atoms with zero overall linear momentum. Helium-3 forms a
superfluid phase despite being a spin- 1–2 fermion. In its case, pairs
of atoms act jointly (like pairs of electrons in superconductivity,
Section 9.12), and each pair behaves like a single spin-0 boson.

16.2 Two-component systems

If two components are present in a mixture, there are three 
variables to consider: the pressure, the temperature, and the
composition. Hence, one form of the phase diagram is a map 
of pressures and compositions at which each phase is stable.
Alternatively, the pressure could be held constant and the phase
diagram depicted in terms of temperature and composition.

(a) Liquid–vapour systems

Figure 16.8 is a typical pressure–composition diagram at a fixed
temperature. All the points above the diagonal line in the graph
correspond to a system under such high pressure that it contains
only a liquid phase (the applied pressure is higher than the
vapour pressure). All points below the lower curve correspond
to a system under such low pressure that it contains only a
vapour phase (the applied pressure is lower than the vapour
pressure). Points that lie between the two lines correspond to a
system in which there are two phases present, one a liquid and
the other a vapour. To see this interpretation, consider the effect
of lowering the pressure on a liquid mixture of overall composi-
tion a in Fig. 16.8. The changes to the system do not affect the

overall composition, so the state of the system moves down the
vertical line that passes through a. This vertical line is called an
isopleth (from the Greek words for ‘equal abundance’). Until
the point a1 is reached (when the pressure has been reduced to
p1), the sample consists of a single liquid phase. At a1 the liquid
can exist in equilibrium with its vapour of composition a1′. A line
joining two points representing phases in equilibrium is called 
a tie line. The composition of the liquid is the same as initially
(a1 lies on the isopleth through a), so we have to conclude that at
this pressure there is virtually no vapour present; however, the
tiny amount of vapour that is present has the composition a1′.

To use a phase diagram to find the relative amounts of two
phases α and β that are in equilibrium when the system is in a
two-phase region, we measure the distances lα and lβ along the
horizontal tie line, and then use the lever rule (Fig. 16.9):

nαlα = nβlβ (16.1)
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Fig. 16.8 A typical phase diagram for a mixture of two volatile
liquids. A point between the two lines corresponds to both liquid
and vapour being present; outside that region there is only one
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Here nα is the amount of phase α and nβ the amount of phase β.
In the case illustrated in Fig. 16.9, because lβ ≈ 2lα, the amount of
phase α is about twice the amount of phase β.

l A BRIEF ILLUSTRATION

At p1 in Fig. 16.8, the ratio lvap/lliq is almost infinite for this tie
line, so nliq/nvap is also almost infinite, and there is only a trace
of vapour present. When the pressure is reduced to p2, the
value of lvap/lliq is about 0.3, so nliq/nvap ≈ 0.3 and the amount
of liquid is about 0.3 times the amount of vapour. When the
pressure has been reduced to p3, the sample is almost com-
pletely gaseous and because lvap/lliq ≈ 0 we conclude that there
is only a trace of liquid present. l

Justification 16.1 The lever rule

To prove the lever rule we write n = nα + nβ and the overall
amount of A as nxA, where xA is the mole fraction of A in the
mixture. The amount of A is also the sum of its amounts in
the two phases:

nxA = nαxA,α + nβxA,β

where xA,α is the mole fraction of A in phase α and xA,β is its
mole fraction in phase β. Since also

nxA = (nα + nβ)xA = nαxA + nβxA

by equating these two expressions it follows that

nα(xA,α − xA) = nβ(xA − xA,β)

which corresponds to eqn 16.1.

A temperature–composition diagram is a phase diagram in
which the boundaries show the composition of the phases that
are in equilibrium at various temperatures (and at a fixed pres-
sure, typically 1 atm). An example is shown in Fig. 16.10. Note
that the liquid phase now lies in the lower part of the diagram.
The region between the lines in Fig. 16.10 is a two-phase region;
the regions outside the phase lines correspond to a single phase.

Consider what happens when a liquid of composition a1 is
heated. It boils when the temperature reaches T2. Then the 
liquid has composition a2 (the same as a1) and the vapour (which
is present only as a trace) has composition a2′. The vapour is
richer in the more volatile component A (the component with
the lower boiling point). From the location of a2′, we can state 
the vapour’s composition at the boiling point, and from the loca-
tion of the tie line joining a2 and a2′ we can read off the boiling
temperature (T2) of the original liquid mixture.

In a simple distillation, the vapour is withdrawn and con-
densed. This technique is used to separate a volatile liquid from
a non-volatile solute or solid. In fractional distillation, the boiling
and condensation cycle is repeated successively. This technique
is used to separate volatile liquids. We can follow the changes

that occur by seeing what happens when the first condensate 
of composition a3 is reheated. The phase diagram shows that
this mixture boils at T3 and yields a vapour of composition a3′ ,
which is even richer in the more volatile component. That
vapour is drawn off, and the first drop condenses to a liquid of
composition a4. The cycle can then be repeated until in due
course almost pure A is obtained.

Although many liquids have temperature–composition phase
diagrams resembling the ideal version in Fig. 16.10, in a number
of important cases there are marked deviations. A maximum in
the phase diagram (Fig. 16.11) may occur when the favourable
interactions between A and B molecules reduce the vapour 
pressure of the mixture below the ideal value: in effect, the A–B
interactions stabilize the liquid. Examples of this behaviour 
include trichloromethane/propanone and nitric acid/water mix-
tures. Phase diagrams showing a minimum (Fig. 16.12) indicate
that the mixture is destabilized relative to the ideal solution, the
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A–B interactions then being unfavourable. Examples include
dioxane/water and ethanol/water mixtures.

Deviations from ideality are not always so strong as to lead 
to a maximum or minimum in the phase diagram, but when
they do there are important consequences for distillation. Con-
sider a liquid of composition a on the right of the maximum in
Fig. 16.11. The vapour (at a2′) of the boiling mixture (at a2) is
richer in A. If that vapour is removed (and condensed else-
where), then the remaining liquid will move to a composition
that is richer in B, such as that represented by a3, and the vapour
in equilibrium with this mixture will have composition a3′ . As
that vapour is removed, the composition of the boiling liquid
shifts to a point such as a4, and the composition of the vapour
shifts to a4′. Hence, as evaporation proceeds, the composition 
of the remaining liquid shifts towards B as A is drawn off. The
boiling point of the liquid rises, and the vapour becomes richer
in B. When so much A has been evaporated that the liquid has
reached the composition b, the vapour has the same composi-
tion as the liquid. Evaporation then occurs without change of
composition. The mixture is said to form an azeotrope (from
the Greek words for ‘boiling without changing’). When the
azeotropic composition has been reached, distillation cannot
separate the two liquids because the condensate has the same
composition as the azeotropic liquid. One example of azeotrope
formation is hydrochloric acid/water, which is azeotropic at 
80 per cent by mass of water and boils unchanged at 108.6°C.

The system shown in Fig. 16.12 is also azeotropic, but shows
its azeotropy in a different way. Suppose we start with a mixture
of composition a1, and follow the changes in the composition of
the vapour that rises through a fractionating column (essentially
a vertical glass tube packed with glass rings to give a large surface
area). The mixture boils at a2 to give a vapour of composition a2′.
This vapour condenses in the column to a liquid of the same
composition (now marked a3). That liquid reaches equilibrium
with its vapour at a3′, which condenses higher up the tube to give

a liquid of the same composition, which we now call a4. The
fractionation therefore shifts the vapour towards the azeotropic
composition at b, but not beyond, and the azeotropic vapour
emerges from the top of the column. An example is ethanol/
water, which boils unchanged when the water content is 4 per
cent by mass and the temperature is 78°C.

(b) Liquid–liquid systems

Now we consider temperature–composition diagrams for sys-
tems that consist of pairs of partially miscible liquids, which are
liquids that do not mix in all proportions at all temperatures. An
example is hexane and nitrobenzene.

Suppose a small amount of a liquid B is added to a sample of
another liquid A at a temperature T′. It dissolves completely, and
the binary system remains a single phase. As more B is added, 
a stage comes at which no more dissolves. The sample now 
consists of two phases in equilibrium with each other, the most
abundant one consisting of A saturated with B, the minor one 
a trace of B saturated with A. In the temperature–composition
diagram drawn in Fig. 16.13, the composition of the former is
represented by the point a′ and that of the latter by the point a″.
The relative abundances of the two phases are given by the lever
rule. When more B is added, A dissolves in it slightly. However,
the amount of one phase increases at the expense of the other. A
stage is reached when so much B is present that it can dissolve 
all the A, and the system reverts to a single phase. The addition
of more B now simply dilutes the solution, and from then on it
remains a single phase.

The composition of the two phases at equilibrium varies 
with the temperature. For hexane and nitrobenzene, raising the
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Fig. 16.12 A low-boiling azeotrope. When the mixture at a
is fractionally distilled, the vapour in equilibrium in the
fractionating column moves towards b and then remains
unchanged.
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Fig. 16.13 The temperature–composition diagram for a system
composed of two partially miscible liquids. The region below 
the curve corresponds to the compositions and temperatures 
at which the liquids are partially miscible. The upper critical
temperature, Tuc, is the temperature above which the two liquids
are miscible in all proportions. In this and subsequent phase
diagrams P is the number of phases. This phase diagram is for 
A = hexane and B = nitrobenzene, for which Tuc = 294 K.
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temperature increases their miscibility. The two-phase system
therefore becomes less extensive, because each phase in equilib-
rium is richer in its minor component: the A-rich phase is richer
in B and the B-rich phase is richer in A. The phase diagram is
constructed by repeating the observations at different tempera-
tures and drawing the envelope of the two-phase region.

The upper critical solution temperature (or upper consolute
temperature), Tuc, is the highest temperature at which phase 
separation occurs. Above the upper critical temperature the two
components are fully miscible. This temperature exists because
the greater thermal motion overcomes any potential energy 
advantage in molecules of one type being close together. One 
example is the nitrobenzene/hexane system shown in Fig. 16.13.
Some systems show a lower critical solution temperature (or
lower consolute temperature), Tlc, below which they mix in all
proportions and above which they form two phases. An example
is water and triethylamine (Fig. 16.14). In this case, at low tem-
peratures the two components are more miscible because they
form a weak complex; at higher temperatures the complexes
break up and the two components are less miscible.

(c) Liquid–solid systems

Finally, we consider a simple example of a two-component mix-
ture that forms both liquid and solid phases. The interpretation
of the phase diagram follows the same principles as before. Thus,
consider the two-component liquid of composition a1 in Fig. 16.15.
The changes that occur may be expressed as follows.

1. a1 → a2. The system enters the two-phase region labelled
‘Liquid + B’. Pure solid B begins to come out of solution and the
remaining liquid becomes richer in A.

2. a2 → a3. More of the solid forms, and the relative amounts
of the solid and liquid (which are in equilibrium) are given by
the lever rule. At this stage there are roughly equal amounts of
each. The liquid phase is richer in A than before (its composition
is given by b3) because some B has been deposited.

3. a3 → a4. At the end of this step, there is less liquid than at
a3, and its composition is given by e. This liquid now freezes to
give a two-phase system of pure B and pure A.

The isopleth at e in Fig. 16.15 corresponds to the eutectic com-
position, the mixture with the lowest melting point (the name
comes from the Greek words for ‘easily melted’). A liquid with
the eutectic composition freezes at a single temperature, with-
out previously depositing solid A or B. A solid with the eutectic
composition melts, without change of composition, at the low-
est temperature of any mixture. Solutions of composition to 
the right of e deposit B as they cool, and solutions to the left 
deposit A: only the eutectic mixture (apart from pure A or pure
B) solidifies at a single definite temperature without gradually
unloading one or other of the components from the liquid.

IMPACT ON BIOCHEMISTRY

I16.1 Biological membranes

At this stage of your study of physical chemistry we are ready to
use several concepts explored earlier in the text to understand
rather complex processes. In Chapter 8 we encountered molecu-
lar aggregates, such as colloids and micelles, with special struc-
tural and physical properties. We also encountered mesophases,
which are intermediate between liquids and solids. Now that 
we understand the molecular basis of phase transitions between
liquids and solids, we can expand the discussion to include the
phases in which molecular aggregates exist. We shall focus on 
biological membranes, which are special forms of micelles.

As we saw in Impact I8.2, lamellar micelles, extended parallel
sheets two molecules thick, are convenient models of mem-
branes of biological cells, but actual membranes are highly 
sophisticated structures. The basic structural element of a mem-
brane is a phospholipid, such as phosphatidyl choline (1), which
contains long hydrocarbon chains (typically in the range C14–
C24) and a variety of polar groups, such as -CH2CH2N(CH3)3

+.
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Fig. 16.14 The temperature–composition diagram for water and
triethylamine. This system shows a lower critical temperature at
292 K. The labels indicate the interpretation of the boundaries.
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The hydrophobic chains stack together to form an extensive 
bilayer about 5 nm across. The lipid molecules form layers 
instead of micelles because the hydrocarbon chains are too
bulky to allow packing into nearly spherical clusters.

Interspersed among the phospholipids of biological membranes
are sterols, such as cholesterol (2), which is largely hydrophobic
but does contain a hydrophilic -OH group. Sterols, which are
present in different proportions in different types of cells, pre-
vent the hydrophobic chains of lipids from ‘freezing’ into a gel
and, by disrupting the packing of the chains, spread the melting
point of the membrane over a range of temperatures.

hydrophobic residues that sit comfortably within the hydrocar-
bon region of the bilayer.

Before we can discuss the phases of biological membranes 
and the transitions between them, we need to understand why
hydrophobic chains come together to form a micelle or mem-
brane. To make progress, we explore the behaviour of nonpolar
solutes in polar solvents. Nonpolar molecules do dissolve
slightly in polar solvents, but strong interactions between solute
and solvent are not possible and as a result it is found that 
each individual solute molecule is surrounded by a solvent cage 
(Fig. 16.16). Experiments indicate that the transfer of a non-
polar hydrocarbon solute from a nonpolar solvent to water, a
polar solvent, has ΔtransferG > 0, as expected on the basis of the 
increase in polarity of the solvent, but exothermic (ΔtransferH <
0). Therefore, it is a large decrease in the entropy of the system
(ΔtransferS < 0) that accounts for the positive Gibbs energy of
transfer. For example, the process CH4(in CCl4) → CH4(aq) has
ΔtransferG = +12 kJ mol−1, ΔtransferH = −10 kJ mol−1, and ΔtransferS
= −75 J K−1 mol−1 at 298 K. Hydrophobic substances are charac-
terized by a positive Gibbs energy of transfer from a nonpolar to
a polar solvent.

At the molecular level, formation of a solvent cage around a
hydrophobic molecule involves the formation of new hydrogen
bonds among solvent molecules. This is an exothermic process
and accounts for the negative values of ΔtransferH. On the other
hand, the increase in order associated with formation of a very
large number of small solvent cages decreases the entropy of 
the system and accounts for the negative values of ΔtransferS.
However, when many solute molecules cluster together, fewer
(though larger) cages are required and more solvent molecules
are free to move. The net effect of formation of large clusters of
hydrophobic molecules is then a decrease in the organization of
the solvent and therefore a net increase in entropy of the system.
This increase in entropy of the solvent is large enough to render
spontaneous the association of hydrophobic molecules in a polar
solvent.

Peripheral proteins are proteins attached to the bilayer. Integral
proteins are proteins immersed in the mobile but viscous bilayer.
These proteins may span the depth of the bilayer and consist of
tightly packed α-helices or, in some cases, β-sheets containing

Fig. 16.16 When a hydrocarbon molecule is surrounded by water,
the H2O molecules form a clathrate cage. As a result of this
acquisition of structure, the entropy of the water decreases, 
so the dispersal of the hydrocarbon into the water is entropy-
opposed; its coalescence is entropy-favoured.
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The increase in entropy that results from fewer structural 
demands on the solvent placed by the clustering of nonpolar
molecules is the origin of the hydrophobic interaction, which
tends to stabilize groupings of hydrophobic groups in micelles
and biopolymers. The hydrophobic interaction is an example 
of an ordering process that is stabilized by a tendency toward
greater disorder of the solvent.

The bilayer of a biological membrane is a highly mobile struc-
ture, as shown by EPR studies with spin-labelled phospholipids
(Impact I12.2). Not only are the hydrocarbon chains ceaselessly
twisting and turning in the region between the polar groups, 
but the phospholipid and cholesterol molecules migrate over
the surface. It is better to think of the membrane as a viscous
fluid rather than a permanent structure, with a viscosity about
100 times that of water. In common with diffusional behaviour
in general (see Section 18.8), the average distance a phospholipid
molecule diffuses is propotional to the square-root of the time;
more precisely, for a molecule confined to a two-dimensional
plane, the average distance travelled in a time t is equal to (4Dt)1/2.
Typically, a phospholipid molecule migrates through about 1 μm
(the diameter of a cell) in about 1 min.

Integral proteins also move in the bilayer. In the fluid mosaic
model shown in Fig. 16.17 the proteins are mobile, but their dif-
fusion coefficients are much smaller than those of the lipids. In
the lipid raft model, a number of lipid and cholesterol molecules
form ordered structures, or ‘rafts’, that envelope proteins and
help carry them to specific parts of the cell.

The mobility of the bilayer enables it to flow round a molecule
close to the outer surface, to engulf it, and incorporate it into the
cell by the process of endocytosis. Alternatively, material from
the cell interior wrapped in cell membrane may coalesce with
the cell membrane itself, which then withdraws and ejects the
material in the process of exocytosis. The function of the proteins
embedded in the bilayer, though, is to act as devices for trans-

porting matter into and out of the cell in a more subtle manner.
By providing hydrophilic channels through an otherwise alien
hydrophobic environment, some proteins act as ion channels
and ion pumps (Impact I18.2).

All lipid bilayers undergo a transition from a state of high to
low chain mobility at a temperature that depends on the struc-
ture of the lipid. To visualize the transition, we consider what
happens to a membrane as we lower its temperature (Fig. 16.18).
There is sufficient energy available at normal temperatures for
limited bond rotation to occur and the flexible chains writhe.
However, the membrane is still highly organized in the sense
that the bilayer structure does not come apart and the system is
best described as a liquid crystal (Fig. 16.18a). At lower temper-
atures, the amplitudes of the writhing motion decrease until a
specific temperature is reached at which motion is largely frozen.
The membrane is said to exist as a gel (Fig. 16.18b). Biological
membranes exist as liquid crystals at physiological temperatures.

Phase transitions in membranes are often observed as ‘melting’
from gel to liquid crystal by differential scanning calorimetry
(Impact I14.1). The data show relations between the structure of
the lipid and the melting temperature. For example, the melting
temperature increases with the length of the hydrophobic chain
of the lipid. This correlation is reasonable, as we expect longer
chains to be held together more strongly by hydrophobic inter-
actions than shorter chains. It follows that stabilization of the 
gel phase in membranes of lipids with long chains results in 
relatively high melting temperatures. On the other hand, any
structural elements that prevent alignment of the hydrophobic
chains in the gel phase lead to low melting temperatures. Indeed,
lipids containing unsaturated chains, those containing some
C=C bonds, form membranes with lower melting temperatures
than those formed from lipids with fully saturated chains, those
consisting of C-C bonds only.

Bilayer Le
af

le
t

Le
af

le
t

Complex sugar
chain (for recognition)

Peripheral
protein

Integral
protein

Exterior

Interior

Fig. 16.17 In the fluid mosaic model of a biological cell
membrane, integral proteins diffuse through the lipid bilayer. In
the alternative lipid raft model, a number of lipid and cholesterol
molecules envelop and transport the protein around the
membrane.

(b)(a)

Fig. 16.18 A depiction of the variation with temperature of 
the flexibility of hydrocarbon chains in a lipid bilayer. (a) At
physiological temperature, the bilayer exists as a liquid crystal, 
in which some order exists but the chains writhe. (b) At a
specific temperature, the chains are largely frozen and the 
bilayer is said to exist as a gel.
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Thermodynamic interpretation

We shall now see how thermodynamic considerations can account
for the features of the phase diagrams we have described. All our
considerations will be based on the Gibbs energy of the system.
At constant temperature and pressure, a system tends towards
lowest Gibbs energy: that is, the greatest total entropy of the 
system and its surroundings and, in statistical terms, the overall
configuration with the greatest weight.

To discuss the Gibbs energy of a system that in general con-
sists of several components J, each of which contributes to the
total Gibbs energy, we introduce the chemical potential, μ (mu):

[16.2]

The n′ signifies that the abundances of all the other species in the
mixture are held constant; the units of a chemical potential are
joules (from G) per mole (from n). For a one-component sys-
tem, G = nGm, and the chemical potential is simply the molar
Gibbs energy of the substance because

(16.3)

In general, the chemical potential of a substance in a mixture
varies with the composition of the mixture because the environ-
ment of each type of molecule changes as the composition
changes. When the composition of a binary (two-component)
mixture of A and B molecules is nearly pure A, each A molecule
is surrounded almost entirely by A molecules and μA has a value
characteristic of this environment. When the mixture is almost
pure B, each A molecule is surrounded almost entirely by B
molecules and now μA has a different value, one characteristic of
this environment. At intermediate compositions, the environment
of A lies between these two extremes, and μA has the correspond-
ing value.

The name ‘chemical potential’ is instructive and should be
borne in mind. As we develop the concept, we shall see that μ
is a measure of the potential—the capacity—that a substance
has for producing change in a system. In this chapter, it reflects
the potential of a substance to bring about physical change. 
In Chapter 17 we shall go on to see that μ is also the potential of
a substance to bring about chemical change.

16.3 Properties of the chemical potential

We show in the following Justification that, with the chemical
potential defined in eqn 16.2, the total Gibbs energy of a mixture
is simply

(16.4)
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with the chemical potential of each component measured at 
the composition of the mixture. According to this equation, the
chemical potential of a substance in a mixture is the contribu-
tion of that substance to the total Gibbs energy of the mixture.

Justification 16.2 The total Gibbs energy of a mixture

For simplicity, we shall consider a binary mixture of A and B.
The definition in eqn 16.2 implies that, when the composi-
tion of the mixture at constant temperature and pressure is
changed by the addition of dnA of A and dnB of B, then the
total Gibbs energy of the mixture changes by

Provided the relative proportions of A and B are held con-
stant as they are added, the mixture has the same composi-
tion and the two chemical potentials are therefore constant.
Therefore, to calculate the total Gibbs function, we integrate
dG as nA and nB are raised simultaneously from 0 to their final
values with the μJ treated as constants:

= μAnA + μBnB

This expression generalizes to eqn 16.4. Although we have
envisaged the two integrations as being linked (in order to
preserve constant composition), because G is a state function
the final result in eqn 16.4 is valid however the solution is in
fact prepared.

(a) Changes in the Gibbs energy

Because chemical potentials depend on composition (and the
pressure and temperature), the Gibbs energy of a mixture may
change when these variables change, and for a system of several
components eqn 15.59 (dG = Vdp − SdT) becomes

(16.5)

This expression is the fundamental equation of chemical ther-
modynamics. Its implications and consequences are explored
and developed in this and the next chapter.

At constant pressure and temperature, eqn 16.5 simplifies to

(16.6)

It follows that when the composition is changed infinitesimally
we might expect (from eqn 16.4) G to change by
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However, we have seen that at constant pressure and temperature
a change in Gibbs energy is in fact given by eqn 16.6. Because 
G is a state function, these two equations must be equal, which
implies that, at constant temperature and pressure, changes in
the chemical potentials of the components of a mixture at equi-
librium must satisfy the Gibbs–Duhem equation:

(16.7)

The significance of this equation is that the chemical potential 
of one component of a mixture cannot change independently 
of the chemical potentials of the other components. In a binary
mixture, if the chemical potential of one component increases,
then the other must decrease, with the two changes related by
nAdμA + nBdμB = 0, and therefore by

(16.8)

Thus, if the composition of the mixture is such that nA = 2nB,
and a small change in composition results in μA increasing by 
1 J mol−1, μB will decrease by 2 J mol−1.

(b) The thermodynamic criterion of equilibrium

The importance of the chemical potential for the discussion of
phase equilibria is that, at equilibrium, the chemical potential of a
substance is the same throughout a sample, regardless of how many
phases are present. When the liquid and solid phases of a single
substance are in equilibrium, the chemical potential of the sub-
stance is the same in both phases and throughout each phase
(Fig. 16.19). When two phases of a many-component mixture
are in equilibrium the chemical potential of each component is
the same in every phase.

To see the validity of this remark, consider a system in which
the chemical potential of any one component is μ1 at one location
and μ2 at another location. The locations may be in the same 
or in different phases. When an amount dn of the substance is
transferred from one location to the other, the Gibbs energy of
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the system changes by −μ1dn when material is removed from 
location 1, and it changes by +μ2dn when that material is added
to location 2. The overall change is therefore dG = (μ2 − μ1)dn. 
If the chemical potential at location 1 is higher than that at loca-
tion 2, the transfer is accompanied by a decrease in G, and so has
a spontaneous tendency to occur. The spontaneous direction is
from high to low chemical potential and the most stable phase 
is the one of lowest chemical potential under the prevailing con-
ditions. Only if μ1 = μ2 is there no change in G, and only then is
the system at equilibrium.

(c) The response of the chemical potential to the
conditions

The temperature dependence of the Gibbs energy is expressed in
terms of the entropy of the system by eqn 15.60 ((∂G/∂T)p = −S).
Because, as we have seen, the chemical potential of a pure sub-
stance is just another name for its molar Gibbs energy, it follows
that

(16.9)

This relation shows that, as the temperature is raised, the chemical
potential of a pure substance decreases: Sm > 0 for all substances,
so the slope of a plot of μ against T is negative. At first sight it
might seem odd that the chemical potential, the capacity to bring
about change, decreases as the temperature is raised. However, 
it should be recalled from Section 15.5 that an interpretation 
of the Gibbs energy is that it is the difference between the total
energy and the energy stored chaotically: the latter increases with
temperature, so the energy ‘free’ to do work decreases.

Equation 16.9 implies that the slope of a plot of μ against
temperature is steeper for gases than for liquids, because Sm(g) >
Sm(l). The slope is also steeper for a liquid than the correspond-
ing solid, because Sm(l) > Sm(s) almost always. These features are
illustrated in Fig. 16.20. The steep negative slope of μ(l) results
in its falling below μ(s) when the temperature is high enough,
and then the liquid becomes the stable phase: the solid melts.
The chemical potential of the gas phase plunges steeply down-
wards as the temperature is raised (because the molar entropy of
the vapour is so high), and there comes a temperature at which
it lies lowest. Then the gas is the stable phase and vaporization is
spontaneous.

As summarized in the phase diagrams shown earlier in the
chapter, most substances melt at a higher temperature when
subjected to pressure. It is as though the pressure is preventing
the formation of the less dense liquid phase. Exceptions to this
behaviour include water, for which the liquid is denser than the
solid. Application of pressure to water encourages the formation
of the liquid phase. That is, water freezes at a lower temperature
when it is under pressure (see Fig. 16.6).

We can rationalize the response of melting temperatures to
pressure as follows. The variation of the chemical potential of a
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Fig. 16.19 When two or more phases are in equilibrium, 
the chemical potential of a substance (and, in a mixture, a
component) is the same in each phase and is the same at all
points in each phase.
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pure substance with pressure is expressed (from the second of
eqn 15.60, (∂G/∂p)T = V) by

(16.10)

This equation shows that the slope of a plot of chemical poten-
tial against pressure is equal to the molar volume of the sub-
stance. An increase in pressure raises the chemical potential of
any pure substance (because Vm > 0). In most cases, Vm(l) >
Vm(s) and the equation predicts that an increase in pressure 
increases the chemical potential of the liquid more than that of
the solid. As shown in Fig. 16.21a, the effect of pressure in such a
case is to raise the melting temperature slightly, as we saw for
carbon dioxide in Fig. 16.5. For water, however, Vm(l) < Vm(s),
and an increase in pressure increases the chemical potential of
the solid more than that of the liquid. In this case, the melting
temperature is lowered slightly (Fig. 16.21b), as we saw for water
in Fig. 16.6.

16.4 The structure of one-component phase
diagrams

We can find the precise locations of the phase boundaries in a
one-component phase diagram—the pressures and temperatures
at which any two of its phases can coexist—by making use of 
the fact that, when two phases are in equilibrium, their chemical
potentials must be equal. Therefore, where the phases α and β
are in equilibrium,

μα(p,T) = μβ(p,T) (16.11)
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By solving this equation for p in terms of T, we get an equation
for the phase boundary.

It turns out to be simplest to discuss the phase boundaries in
terms of their slopes, dp/dT. Let p and T be changed infinitesim-
ally, but in such a way that the two phases α and β remain in
equilibrium. The chemical potentials of the phases are initially
equal (the two phases are in equilibrium). They remain equal
when the conditions are changed to another point on the phase
boundary, where the two phases continue to be in equilibrium
(Fig. 16.22). Therefore, the changes in the chemical potentials 
of the two phases must be equal and we can write dμα = dμβ.
Because, dG = Vdp − SdT, we know that dμ = −SmdT + Vmdp for
each phase; it follows that

−Sα,mdT + Vα,mdp = −Sβ,mdT + Vβ,mdp

where Sα,m and Sβ,m are the molar entropies of the phases and
Vα,m and Vβ,m are their molar volumes. Hence

(Vβ,m − Vα,m)dp = (Sβ,m − Sα,m)dT

which rearranges into the Clapeyron equation:

(16.12)

In this expression ΔtrsS = Sβ,m − Sα,m and ΔtrsV = Vβ,m − Vα,m are
the entropy and volume of transition. The Clapeyron equation
is an exact expression for the slope of the phase boundary and
applies to any phase equilibrium of any pure substance. It implies
that we can use thermodynamic data to predict the appearance
of phase diagrams and to understand their form.
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Fig. 16.20 The schematic temperature dependence of the
chemical potential of the solid, liquid, and gas phases of a
substance (in practice, the lines are curved). The phase with the
lowest chemical potential at a specified temperature is the most
stable one at that temperature. The transition temperatures, the
melting and boiling temperatures (Tf and Tb, respectively), are
the temperatures at which the chemical potentials of the two
phases are equal.
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Fig. 16.21 The pressure dependence of the chemical potential 
of a substance depends on the molar volume of the phase. The
lines show schematically the effect of increasing pressure on the
chemical potential of the solid and liquid phases (in practice, the
lines are curved), and the corresponding effects on the freezing
temperatures. (a) In this case the molar volume of the solid is
smaller than that of the liquid and μ(s) increases less than μ(l).
As a result, the freezing temperature rises. (b) Here the molar
volume is greater for the solid than the liquid (as for water), 
μ(s) increases more strongly than μ(l), and the freezing
temperature is lowered.
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Fig. 16.22 When pressure is applied to a system in which two
phases are in equilibrium (at a), the equilibrium is disturbed. It
can be restored by changing the temperature, so moving the state
of the system to b. It follows that there is a relation between dp
and dT that ensures that the system remains in equilibrium as
either variable is changed.

constant (Section 15.3). Because the molar volume of a gas 
is so much greater than the molar volume of a liquid, we can
write

ΔvapV = Vm(g) − Vm(l) ≈ Vm(g)

and take for Vm(g) the molar volume of a perfect gas (at low
pressures, at least).

Answer Trouton’s constant has the value 85 J K−1 mol−1. The
molar volume of a perfect gas is about 25 dm3 mol−1 at 1 atm
and near but above room temperature. Therefore,

We have used 1 J = 1 Pa m3. This value corresponds to 
0.034 atm K−1, and hence to dT/dp = 29 K atm−1. Therefore, 
a change of pressure of +0.1 atm can be expected to change a
boiling temperature by about +3 K.

Self-test 16.1 Estimate dT/dp for water at its normal boiling
point using the information in Table 15.2 and Vm(g) = RT/p.

[28 K atm−1]

Because the molar volume of a gas is so much greater than 
the molar volume of a liquid, we can write ΔvapV ≈ Vm(g) (as in
Example 16.1). Moreover, if the gas behaves perfectly, Vm(g) =
RT/p. These two approximations turn the exact Clapeyron
equation into

Because dp/p = d ln p, this expression rearranges into the
Clausius–Clapeyron equation for the variation of vapour pres-
sure with temperature:

(16.14)°

Like the Clapeyron equation, the Clausius–Clapeyron equation
is used to understand the location and shape of the liquid–vapour
and solid–vapour phase boundaries shown in the one-component
phase diagrams earlier in the chapter. The only difference between
the solid–vapour boundary and liquid–vapour boundary is the
replacement of the enthalpy of vaporization by the enthalpy 
of sublimation, ΔsubH. Because the enthalpy of sublimation is
greater than the enthalpy of vaporization (ΔsubH = ΔfusH + ΔvapH
at a given temperature), the equation predicts a steeper slope for
the sublimation curve than for the vaporization curve at similar
temperatures, which is near where they meet at the triple point.
This behaviour can be seen in Figs. 16.5 and 16.6.

 

d

d
vapln p

T

H

RT
=

Δ
2

d

d
vap vapp

T

H

T RT p

p H

RT
= =

Δ Δ
( / ) 2

 

d

d

J K mol

m mol3

p

T
≈

×
= ×

− −

− −
85

2 5 10
3 4 10

1 1

2 1.
. 33 1Pa K−

Melting (fusion) is accompanied by a molar enthalpy change
ΔfusH and occurs at a temperature T. The molar entropy of melt-
ing at T is therefore ΔfusH/T (Section 15.3), and the Clapeyron
equation becomes

(16.13a)

where ΔfusV is the change in molar volume that occurs on melt-
ing. The enthalpy of melting is positive (the only exception is 
helium-3) and the volume change is usually positive (water being
an exception) and always small. Consequently, the slope dp/dT
is steep and usually positive, as we saw in Fig. 16.5. The entropy
of vaporization at a temperature T is equal to ΔvapH/T; the
Clapeyron equation for the liquid–vapour boundary is therefore

(16.13b)

The enthalpy of vaporization is positive; ΔvapV is large and posi-
tive. Therefore, dp/dT is positive, but it is much smaller than for
the solid–liquid boundary. It follows that dT/dp, the inverse of
dp/dT, is large, and hence that the boiling temperature is more
responsive to pressure than the freezing temperature, as shown
in Figs. 16.5 and 16.6.

Example 16.1 Estimating the effect of pressure on the boiling
temperature

Estimate the typical size of the effect of increasing pressure on
the boiling point of a liquid.

Method To use eqn 16.13b we need to estimate the right-
hand side. At the boiling point, the term ΔvapH/T is Trouton’s
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16.5 The structure of two-component phase
diagrams

To start our investigation of the thermodynamics of mixtures,
we consider the act of mixing itself, and begin with the simplest
possible case, the mixing of two perfect gases.

(a) The mixing of perfect gases

Let the amounts of two perfect gases in the two containers be nA

and nB; both are at a temperature T and a pressure p (Fig. 16.23).
At this stage, the chemical potentials of the two gases have their
‘pure’ values. It then follows from eqn 15.67 (Gm(p) = Gm

7 +
RT ln(p/p7)) with μJ = Gm(J) that for each gas J

(16.15a)°

where μ J
7 is the standard chemical potential, the chemical 

potential of the pure gas J at 1 bar (that is, its standard molar
Gibbs energy). It will be much simpler notationally if we agree to
let p denote the pressure relative to p7, that is, to replace p/p7 by
p, for then we can write

μJ = μ J
7 + RT ln p {16.15b}°

Equations for which this convention is used will be labelled {1},
{2}, . . . ; to use the equations, we have to remember to replace p
by p/p7 again. In practice, that simply means using the numer-
ical value of p in bars. The initial Gibbs energy of the total system
is then given by eqn 16.4 as

Gi = nAμA + nBμB = nA(μA
7 + RT ln p) + nB(μB

7 + RT ln p)

After mixing, the partial pressures of the gases are pA and pB,
with pA + pB = p. The total Gibbs energy changes to

Gf = nA(μA
7 + RT ln pA) + nB(μB

7 + RT ln pB)

The difference Gf − Gi, the Gibbs energy of mixing, ΔmixG, is
therefore

(16.16)°Δmix A
A

B
BG n RT

p

p
n RT

p

p
= +ln ln

μ μJ J= +7
7RT

p

p
ln

At this point we may replace nJ by xJn, where n is the total
amount of A and B and xJ = nJ/n is the mole fraction of J, and use
the definition of partial pressure in terms of the mole fraction

pJ = xJp [16.17]

to write pJ /p = xJ for each component, which gives

ΔmixG = nRT(xA ln xA + xB ln xB) (16.18)°

Because mole fractions are never greater than 1, the logarithms
in this equation are negative, and ΔmixG < 0 (Fig. 16.24). The
conclusion that ΔmixG is negative for all compositions confirms
that perfect gases mix spontaneously in all proportions. How-
ever, the equation extends common sense by allowing us to 
discuss the process quantitatively.

Example 16.2 Calculating a Gibbs energy of mixing

A container is divided into two equal compartments 
(Fig. 16.25). One contains 3.0 mol H2(g) at 25°C; the other
contains 1.0 mol N2(g) at 25°C. Calculate the Gibbs energy 
of mixing when the partition is removed. Assume perfect 
behaviour.

Method Equation 16.18 cannot be used directly because the
two gases are initially at different pressures. We proceed by
calculating the initial Gibbs energy from the chemical poten-
tials. To do so, we need the pressure of each gas. Write the
pressure of nitrogen as p; then the pressure of hydrogen as a
multiple of p can be found from the gas laws. Next, calculate
the Gibbs energy for the system when the partition is removed.

n T  pA, , n T  pB, ,

T  p p p p p, , with + =A B A B

Fig. 16.23 The arrangement for calculating the thermodynamic
functions of mixing of two perfect gases.
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Fig. 16.24 The Gibbs energy of mixing of two perfect gases and 
(as discussed later) of two liquids that form an ideal solution.
The Gibbs energy of mixing is negative for all compositions 
and temperatures, so perfect gases mix spontaneously in all
proportions.

interActivity Draw graphs of ΔmixG against xA at different 
temperatures in the range 298 K to 500 K. For what 

value of xA does ΔmixG depend on temperature most strongly?
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We can understand the spontaneity of mixing of perfect gases
as the molecular tendency to populate the new energy levels that
become available when the volume accessible to the molecules
of each becomes larger (Fig. 16.26). In a sense, the mixing of 
perfect gases is simply their expansion into the available volume,
since each one is blind to the presence of the other. This statist-
ical picture can be expressed quantitatively by using the relation
between the Gibbs energy and the molecular partition function
in eqn 15.40 (G = G(0) − nRT ln(q /N)). Thus, initially, when the
partition function of gas J is qJ = VJ/ΛJ

3, where ΛJ is the thermal
wavelength of J (eqn 13.15b, ΛJ = h/(2πmJkT)1/2), the total Gibbs
energy is

Gi = GA + GB

(16.19a)

In the second line we have used VJ/NJ = kT/p. In the final state of
the system, each type of molecule has access to the total volume,
VA + VB, and the partial pressures are pJ, so

Gf = GA + GB (16.19b)

We have used (VA + VB)/NJ = kT/pJ in the second line. The
difference of these two equations is eqn 16.16, and therefore 
eqn 16.18. This result confirms that spontaneous mixing is just
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Fig. 16.25 The initial and final states considered in the calculation 
of the Gibbs energy of mixing of gases at different initial 
pressures.

The volume occupied by each gas doubles, so its initial partial
pressure is halved.

Answer Given that the pressure of nitrogen is p, the pressure
of hydrogen is 3p; therefore, the initial Gibbs energy is

Gi = (3.0 mol){μ7(H2) + RT ln 3p} 
+ (1.0 mol){μ7(N2) + RT ln p}

When the partition is removed and each gas occupies twice
the original volume, the partial pressure of nitrogen falls 
to 1–2p and that of hydrogen falls to 3–2 p. Therefore, the Gibbs
energy changes to

Gf = (3.0 mol){μ7(H2) + RT ln 3–2 p} 
+ (1.0 mol){μ7(N2) + RT ln 1–2p}

The Gibbs energy of mixing is the difference of these two
quantities:

= −(3.0 mol)RT ln 2 − (1.0 mol) RT ln2

= −(4.0 mol)RT ln 2 = −6.9 kJ

In this example, the value of ΔmixG is the sum of two contri-
butions: the mixing itself, and the changes in pressure of the
two gases to their final total pressure, 2p. When 3.0 mol H2

mixes with 1.0 mol N2 at the same pressure, with the volumes
of the vessels adjusted accordingly, the change of Gibbs 
energy is −5.6 kJ.

Self-test 16.2 Suppose that 2.0 mol H2 at 2.0 atm and 25°C
and 4.0 mol N2 at 3.0 atm and 25°C are mixed at constant vol-
ume. Calculate ΔmixG. What would be the value of ΔmixG had
the pressures been identical initially? [−9.7 kJ, −9.5 kJ]

Δmix (3.0 mol) (1.0 mol)G RT
p

p
R=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +ln

3
2

3
TT

p

p
ln

1
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Before mixing After mixing

Fig. 16.26 The molecular interpretation of the entropy of mixing.
Before mixing, each collection of gas molecules occupies the
available energy levels with a Boltzmann distribution of
populations. After mixing, more levels are accessible to the
molecules as they occupy a greater volume (with the same
temperature).
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the hunt of the molecules for the configuration of the greatest
weight, their most probable distribution in the system.

Once we have an expression for the Gibbs energy of mixing
we can find expressions for other mixing functions. Thus, because
(∂G/∂T)p,n = −S, it follows immediately from eqn 16.18 that, 
for a mixture of perfect gases initially at the same pressure, the
entropy of mixing, ΔmixS, is

(16.20)°

Because ln x < 0, it follows that ΔmixS > 0 for all compositions
(Fig. 16.27). For equal amounts of gas, for instance, we set 
xA = xB = 1–2, and obtain ΔmixS = nR ln 2, with n the total amount
of gas molecules. This increase in entropy is what we expect
when one gas disperses into the other and the disorder increases.

We can calculate enthalpy of mixing, ΔmixH, the enthalpy
change accompanying mixing, of two perfect gases from ΔG =
ΔH − TΔS. It follows from eqns 16.18 and 16.20 that

ΔmixH = 0 (16.21)°

The enthalpy of mixing is zero, as we should expect for a system
in which there are no interactions between the molecules form-
ing the gaseous mixture. It follows that the whole of the driving
force for mixing comes from the increase in entropy of the 
system, because the entropy of the surroundings is unchanged.

(b) The mixing of liquids

To discuss the equilibrium properties of liquid mixtures we need
to know how the Gibbs energy of a liquid varies with composi-
tion. To calculate its value, we use the fact that, at equilibrium,
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the chemical potential of a substance present as a vapour must
be equal to its chemical potential in the liquid.

We shall denote quantities relating to pure substances by a 
superscript *, so the chemical potential of pure A is written μA*,
and as μA*(l) when we need to emphasize that A is a liquid. Because
the vapour pressure of the pure liquid is pA*, it follows from eqn
16.15 that the chemical potential of A in the vapour (treated as 
a perfect gas) is μA

7 + RT ln pA* (with pA to be interpreted as the
relative pressure pA/p7). These two chemical potentials are equal
at equilibrium (Fig. 16.28), so we can write

μA* = μA
7 + RT ln pA* {16.22a}

If another substance, a solute, is also present in the liquid, the
chemical potential of A in the liquid is changed to μA, its vapour
pressure is changed to pA, and the chemical potential of the
vapour becomes μA

7 + RT ln pA. The vapour and solvent are still
in equilibrium, so we can write

μA = μA
7 + RT ln pA {16.22b}

Next, we combine these two equations to eliminate the standard
chemical potential of the gas. To do so, we write eqn 16.22a as 
μA

7 = μA* − RT ln pA* and substitute this expression into eqn 16.22b 
to obtain

μA = μA* − RT ln pA* + RT ln pA

(16.23)

In the final step we draw on additional experimental informa-
tion about the relation between the ratio of vapour pressures
and the composition of the liquid. In a series of experiments on
mixtures of closely related liquids (such as benzene and methyl-
benzene), the French chemist François Raoult found that the
ratio of the partial vapour pressure of each component to its
vapour pressure as a pure liquid, pA/pA*, is approximately equal
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Fig. 16.27 The entropy of mixing of two perfect gases and 
(as discussed later) of two liquids that form an ideal solution.
The entropy increases for all compositions and temperatures, 
so perfect gases mix spontaneously in all proportions. Because
there is no transfer of heat to the surroundings when perfect
gases mix, the entropy of the surroundings is unchanged. Hence,
the graph also shows the total entropy change of the system plus
the surroundings when perfect gases mix.

A(g) + B(g)
A(g, )p

A(l)

A(l) + B(l)
Equal at
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$

$

Fig. 16.28 At equilibrium, the chemical potential of the gaseous
form of a substance A is equal to the chemical potential of its
condensed phase. The equality is preserved if a solute is also
present. Because the chemical potential of A in the vapour
depends on its partial vapour pressure, it follows that the
chemical potential of liquid A can be related to its partial 
vapour pressure.
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to the mole fraction of A in the liquid mixture. That is, he estab-
lished what we now call Raoult’s law:

pA = xA pA* (16.24)°

This law is illustrated in Fig. 16.29. Some mixtures obey Raoult’s
law very well, especially when the components are structurally
similar. Mixtures that obey the law throughout the composition
range from pure A to pure B are called ideal solutions. When we
write equations that are valid only for ideal solutions, we shall
label them with a superscript °, as in eqn 16.24. Some solutions
depart significantly from Raoult’s law. Nevertheless, even in these
cases the law is obeyed increasingly closely for the component in
excess (the solvent) as it approaches purity. The law is therefore
a good approximation for the properties of the solvent if the 
solution is dilute.

For an ideal solution, it follows from eqns 16.23 and 16.24 that

μA = μA* + RT ln xA (16.25)°

This important equation can be used as the definition of an ideal
solution (so that it implies Raoult’s law rather than stemming
from it). It is in fact a better definition than eqn 16.24 because it
does not assume that the vapour is a perfect gas.

In ideal solutions the solute, as well as the solvent, obeys
Raoult’s law. However, the English chemist William Henry
found experimentally that for real solutions at low concentra-
tions, although the vapour pressure of the solute is proportional
to its mole fraction, the constant of proportionality is not the
vapour pressure of the pure substance (Fig. 16.30). Henry’s law is:

pB = xBKB (16.26a)°

In this expression xB is the mole fraction of the solute and KB is
an empirical constant (with the dimensions of pressure) chosen
so that the plot of the vapour pressure of B against its mole frac-
tion is tangent to the experimental curve at xB = 0. In practice, 
a polynomial is fitted to the vapour pressure data, and the slope
of the curve at xB = 0 is determined by differentiation or equi-

valently by identifying the coefficient of the term that is propor-
tional to xB. In practical applications of Henry’s law it is often
more convenient to express it in terms of the molality, b, of the
solute, in which case we write

pB = bBKB (16.26b)°

Table 16.1 gives a selection of values of the Henry’s law constant
for this convention.

Mixtures for which the solute obeys Henry’s law and the 
solvent obeys Raoult’s law are called ideal-dilute solutions. We
shall also label equations with a superscript ° when they have
been derived from Henry’s law. The difference in behaviour of
the solute and solvent at low concentrations (as expressed by
Henry’s and Raoult’s laws, respectively) arises from the fact that
in a dilute solution the solvent molecules are in an environment
very much like the one they have in the pure liquid (Fig. 16.31).
In contrast, the solute molecules are surrounded by solvent
molecules, which is entirely different from their environment
when pure. Thus, the solvent behaves like a slightly modified
pure liquid, but the solute behaves entirely differently from its
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Fig. 16.29 The total vapour pressure and the two partial vapour
pressures of an ideal binary mixture are proportional to the mole
fractions of the components.
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Fig. 16.30 When a component (the solvent) is nearly pure, it 
has a vapour pressure that is proportional to mole fraction with
a slope pB* (Raoult’s law). When it is the minor component 
(the solute) its vapour pressure is still proportional to the 
mole fraction, but the constant of proportionality is now KB

(Henry’s law).

Synoptic table 16.1* Henry’s law
constants for gases in water at 298 K

K/(kPa kg mol−1)

CO2 3.01 × 103

H2 1.28 × 105

N2 1.56 × 105

O2 7.92 × 104

* More values are given in the Data section.
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pure state unless the solvent and solute molecules happen to be
very similar. In the latter case, the solute also obeys Raoult’s law.

The Gibbs energy of mixing of two liquids to form an ideal 
solution is calculated in exactly the same way as for two gases.
The total Gibbs energy before liquids are mixed is

Gi = nAμA* + nBμB*

When they are mixed, the individual chemical potentials are
given by eqn 16.25 and the total Gibbs energy is

Gf = nA{μA* + RT ln xA} + nB{μB* + RT ln xB}

Consequently, the Gibbs energy of mixing is

ΔmixG = nRT{xA ln xA + xB ln xB} (16.27a)°

where n = nA + nB. As for gases, it follows that the ideal entropy
of mixing of two liquids is

ΔmixS = −nR{xA ln xA + xB ln xB} (16.27b)°

and, because ΔmixH = ΔmixG + TΔmixS = 0, the ideal enthalpy of
mixing is zero. The ideal volume of mixing, the change in vol-
ume on mixing, is also zero because it follows from eqn 15.60
((∂G/∂p)T = V) that ΔmixV = (∂ΔmixG /∂p)T, but ΔmixG in eqn
16.27a is independent of pressure, so the derivative with respect
to pressure is zero.

Equation 16.27 is the same as that for two perfect gases and all
the conclusions drawn there are valid here: the driving force for
mixing is the increasing entropy of the system as the molecules
mingle and the enthalpy of mixing is zero. The variation of the
Gibbs energy and entropy of mixing with composition is the
same as that already depicted for gases in Figs. 16.24 and 16.27.
It should be noted, however, that solution ideality means some-
thing different from gas perfection. In a perfect gas there are 
no forces acting between molecules. In ideal solutions there are
interactions, but the average energy of A–B interactions in the

mixture is the same as the average energy of A–A and B–B inter-
actions in the pure liquids.

A note on good practice It is on the basis of this difference
that the term ‘perfect gas’ is preferable to the more common
‘ideal gas’. However, it must be admitted that the battle is 
almost lost, for almost everyone uses the inferior term ‘ideal
gas’ and thus obscures a subtle but in our view important 
distinction.

(c) Colligative properties

The presence of a solute modifies the physical properties of the
solvent, such as its vapour pressure, boiling point, and freezing
point. It also introduces a new property, the ‘osmotic pressure’.
In dilute solutions these properties depend only on the number
of solute particles present, not their identity. For this reason,
they are called colligative properties (denoting ‘depending on
the collection’).

All the colligative properties stem from the reduction of the
chemical potential of the liquid solvent as a result of the pres-
ence of solute. For an ideal-dilute solution, the reduction is from
μA* for the pure solvent to μA* + RT ln xA when a solute is present
(ln xA is negative because xA < 1). There is no direct influence of
the solute on the chemical potential of the solvent vapour and
the solid solvent because the solute, which is assumed to be non-
volatile and insoluble in the solid solvent, appears in neither the
vapour nor the solid. As can be seen from Fig. 16.32, the reduction
in chemical potential of the solvent implies that the liquid–
vapour equilibrium occurs at a higher temperature (the boiling
point is raised) and the solid–liquid equilibrium occurs at a
lower temperature (the freezing point is lowered).

The molecular origin of the lowering of the chemical poten-
tial is the effect of the solute on the entropy of the solution. The

Fig. 16.31 In a dilute solution, the solvent molecules (the purple
spheres) are in an environment that differs only slightly from
that of the pure solvent. The solute particles (the blue spheres),
however, are in an environment totally unlike that of the pure
solute.
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Fig. 16.32 The chemical potential of a solvent in the presence 
of a solute. The lowering of the liquid’s chemical potential has 
a greater effect on the freezing point than on the boiling point
because of the angles at which the lines intersect.
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pure liquid solvent has a characteristic entropy and its vapour
pressure reflects the tendency of the system towards greater 
entropy, which can be achieved if the liquid vaporizes to form a
gas. When a solute is present, there is an additional contribution
to the entropy of the liquid, even in an ideal solution, because in
a blind selection of molecules we cannot predict with certainty
that we will draw a solvent or a solute molecule. Because the 
entropy of the liquid is already higher than that of the pure liquid,
there is a weaker tendency to form the gas in the sense that less
has to vaporize to maximize the total entropy (Fig. 16.33). As a
result, the vapour pressure of the solvent is lowered and hence
its boiling point is raised. Similarly, the enhanced molecular
randomness of the solution opposes the tendency to freeze. Con-
sequently, a lower temperature must be reached before equilib-
rium between solid and solution is achieved. Hence, the freezing
point is lowered.

A brief comment It is commonly stated that the depression of
freezing point is an important colligative property because,
for instance, it accounts for the use of antifreeze in engines.
Antifreeze, however, is used in much higher concentration
than can justify its effect as a colligative property; its effect is
to interfere with the solidification of water molecules. The
use of salt on highways is also at concentrations far outside
the range of this discussion. The effect of impurities on the
melting points of organic compounds is more complex, as
the impurity is dissolved in the solid, a situation excluded in
the treatment of colligative properties. Boiling point eleva-
tion is too small to be of any practical significance. No one,
except perhaps as a laboratory exercise, any longer uses the
depression of freezing point or elevation of boiling point to
determine molar mass.

The only colligative property of real importance is osmosis
(from the Greek word for ‘push’), the spontaneous passage of a
pure solvent into a solution separated from it by a semiperme-
able membrane, a membrane permeable to the solvent but not
to the solute (Fig. 16.34). The osmotic pressure, Π, is the pres-
sure that must be applied to the solution to stop the influx of 
solvent. Important examples of osmosis include transport of
fluids through cell membranes, dialysis, and osmometry, the 
determination of molar mass by the measurement of osmotic
pressure. Osmometry is widely used to determine the molar
masses of macromolecules.

In the simple arrangement shown in Fig. 16.35, the opposing
pressure arises from the head of solution that the osmosis itself
produces. Equilibrium is reached when the hydrostatic pressure
of the column of solution matches the osmotic pressure. The
complicating feature of this arrangement is that the entry of 
solvent into the solution results in its dilution, and so it is more
difficult to treat than the arrangement in Fig. 16.34, in which
there is no flow and the concentrations remain unchanged.

pA* pA

(b)(a)

Fig. 16.33 The vapour pressure of a pure liquid represents 
a balance between the increase in disorder arising from
vaporization and the decrease in disorder of the surroundings.
(a) Here the structure of the liquid is represented highly
schematically by the grid of squares. (b) When solute (the 
dark squares) is present, the disorder of the condensed phase 
is higher than that of the pure liquid, and there is a decreased
tendency to acquire the disorder characteristic of the vapour.

p p +

$A*( )p $A( + )p

Equal at
equilibrium

Pure solvent Solution

�

�

Fig. 16.34 The equilibrium involved in the calculation of osmotic
pressure, Π, is between pure solvent A at a pressure p on one side
of the semipermeable membrane and A as a component of the
mixture on the other side of the membrane, where the pressure
is p + Π.

Solution

Solvent

Semipermeable
membrane

Height
proportional to

osmotic pressure

Fig. 16.35 In a simple version of the osmotic pressure experiment,
A is at equilibrium on each side of the membrane when enough
has passed into the solution to cause a hydrostatic pressure
difference.
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The thermodynamic treatment of osmosis depends on noting
that, at equilibrium, the chemical potential of the solvent must
be the same on each side of the membrane. The chemical poten-
tial of the solvent is lowered by the solute, but is restored to its
‘pure’ value by the application of pressure. As shown in the fol-
lowing Justification, this equality implies that for dilute solutions
the osmotic pressure is given by the van ’t Hoff equation:

Π = [B]RT (16.28)°

where [B] = nB/V is the molar concentration of the solute.

Justification 16.3 The van’t Hoff equation

On the pure solvent side the chemical potential of the 
solvent, which is at a pressure p, is μA*(p). On the solution
side, the chemical potential is lowered by the presence of 
the solute, which reduces the mole fraction of the solvent
from 1 to xA. However, the chemical potential of A is raised
on account of the greater pressure, p + Π, that the solution 
experiences. At equilibrium the chemical potential of A is the
same in both compartments, and we can write

μA*(p) = μA(xA, p + Π)

The presence of solute is taken into account in the normal way:

μA(xA, p + Π ) = μA*(p + Π ) + RT ln xA

We saw in Section 15.9 (specifically eqn 15.64) how to take
the effect of pressure into account. Thus, because (∂μA/∂p)T =
VA,m, for pure A

μA*(p + Π ) = μA*(p) + Vmdp

where Vm is the molar volume of the pure solvent A. When
these three equations are combined we get

−RT ln xA = Vmdp

This expression enables us to calculate the additional pres-
sure Π that must be applied to the solution to restore the
chemical potential of the solvent to its ‘pure’ value and thus
to restore equilibrium across the semipermeable membrane.
For dilute solutions, ln xA may be replaced by ln(1 − xB) 
≈ −xB, and the left-hand side of this expression becomes 
simply RTxB. We may also assume that the pressure range 
in the integration is so small that the molar volume of the 
almost incompressible solvent is a constant. That being so,
Vm may be taken outside the integral, giving

RTxB = ΠVm

When the solution is dilute, xB ≈ nB/nA. Moreover, because
nAVm = V, the total volume of the solvent, the equation sim-
plifies to eqn 16.28.

 
�

p

p+Π

 
�

p

p+Π

Because the effect of osmotic pressure is so readily measurable
and large, one of the most common applications of osmometry
is to the measurement of molar masses of macromolecules, such
as proteins and synthetic polymers. As these huge molecules dis-
solve to produce solutions that are far from ideal, it is assumed
that the van’t Hoff equation is only the first term of a virial-like
expansion:

Π = [J]RT{1 + B[J] + . . .} (16.29)

where we have denoted the solute by J to avoid too many
different Bs in this expression. The additional terms take the
non-ideality into account; the empirical constant B is called the
osmotic virial coefficient.

Example 16.3 Using osmometry to determine the molar mass of
a macromolecule

The osmotic pressures of solutions of poly(vinyl chloride),
PVC, in cyclohexanone at 298 K are given below. The pressures
are expressed in terms of the heights of solution (of mass 
density ρ = 0.980 g cm−3) in balance with the osmotic pressure.
Determine the molar mass of the polymer.

c/(g dm−3) 1.00 2.00 4.00 7.00 9.00

h/cm 0.28 0.71 2.01 5.10 8.00

Method The osmotic pressure is measured at a series of mass
concentrations, c, and a plot of Π/c against c is used to deter-
mine the molar mass of the polymer. We use eqn 16.29 with
[J] = c/M where c is the mass concentration of the polymer
and M is its molar mass. The osmotic pressure is related to
the hydrostatic pressure by Π = ρgh with g = 9.81 m s−2. With
these substitutions, eqn 16.29 becomes

Therefore, to find M, plot h/c against c, and expect a straight
line with intercept RT/ρgM at c = 0.

Answer The data give the following values for the quantities
to plot:

c/(g dm−3) 1.00 2.00 4.00 7.00 9.00

(h/c)/(cm g−1 dm3) 0.28 0.36 0.503 0.729 0.889

The points are plotted in Fig. 16.36. The intercept from a
least-squares analysis is at 0.21. Therefore,
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where we have used 1 kg m2 s−2 = 1 J. Molar masses of macro-
molecules are often reported in daltons (Da), with 1 Da = 1 g
mol−1. The macromolecule in this example has a molar mass
of about 120 kDa. Modern osmometers give readings of 
osmotic pressure in pascals, so the analysis of the data is more
straightforward and eqn 16.29 can be used directly.

Self-test 16.3 The osmotic pressures of solutions of poly-
styrene in methylbenzene at 293 K are given below. Deter-
mine the molar mass of the polymer.

c/(g dm−3) 1.00 2.00 4.00 7.00 9.00

Π/Pa 17.7 35.5 70.8 125.0 162.0

[140 kDa]

Care must be taken in the interpretation of molar masses 
determined by osmosis. Thus, although a pure protein is almost
monodisperse, meaning that it has a single, definite molar mass
(although there may be small variations, such as one amino acid
replacing another, depending on the source of the sample), a
synthetic polymer is polydisperse, in the sense that a sample is 
a mixture of molecules with various chain lengths and molar
masses. The number-average molar mass, Jn, is the value 
obtained by weighting each molar mass by the number of
molecules of that mass present in the sample:

[16.30a]

where Ni is the number of molecules with molar mass Mi and
there are N molecules in all. The weight-average molar mass,

J n = ∑1

N
N Mi i

i
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Fig. 16.36 The plot involved in the determination of molar mass 
by osmometry. The molar mass is calculated from the intercept 
at c = 0.

interActivity Determine the value of the osmotic virial 
coefficient B from these data.

Jw is the average calculated by weighting the molar masses of
the molecules by the mass of each one present in the sample:

[16.30b]

In this expression, mi is the total mass of molecules of molar
mass Mi and m is the total mass of the sample. Because mi =
Ni Mi /NA, we can also express this average as

[16.30c]

This expression shows that the weight-average molar mass is
proportional to the mean square molar mass. In practice, osmo-
metry gives the number-average molar mass and light scattering
experiments give the weight-average molar mass.

Example 16.4 Calculating number- and weight-average molar
masses

Determine the number-average and the weight-average
molar masses for a sample of poly(vinyl chloride) from the
following data:

Molar mass Average molar mass Mass of   
interval/ within interval/ sample within 
(kg mol−1) (kg mol−1) interval/g

5–10 7.5 9.6

10–15 12.5 8.7

15–20 17.5 8.9

20–25 22.5 5.6

25–30 27.5 3.1

30–35 32.5 1.7

Method The relevant equations are eqns 16.30a and 16.30b.
Calculate the two averages by weighting the molar mass
within each interval by the number and mass, respectively, of
the molecule in each interval. Obtain the numbers in each 
interval by dividing the mass of the sample in each interval 
by the average molar mass for that interval. Because number
of molecules is proportional to amount of substance (the
number of moles), the number-weighted average can be 
obtained directly from the amounts in each interval.

Answer The amounts in each interval are as follows:

Interval 5–10 10–15 15–20 20–25 25–30 30–35
Molar mass/(kg mol−1) 7.5 12.5 17.5 22.5 27.5 32.5
Amount/(10−3 mol) 1.3 0.7 0.51 0.25 0.11 0.052

Total: 2.92
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cules, and hydrated ions to pass, while blocking the passage 
of biopolymers synthesized inside the cell. The difference in
concentrations of solutes inside and outside the cell gives rise to
an osmotic pressure, and water passes into the more concen-
trated solution in the interior of the cell, carrying small nutrient
molecules. The influx of water also keeps the cell swollen, whereas
dehydration causes the cell to shrink. These effects are import-
ant in everyday medical practice. To maintain the integrity of
blood cells, solutions that are injected into the bloodstream for
blood transfusions and intravenous feeding must be isotonic
with the blood, meaning that they must have the same osmotic
pressure as blood. If the injected solution is too dilute, or hypo-
tonic, the flow of solvent into the cells, required to equalize the
osmotic pressure, causes the cells to burst and die by a process
called haemolysis. If the solution is too concentrated, or hypertonic,
equalization of the osmotic pressure requires flow of solvent out
of the cells, which shrink and die.

16.6 Real solutions

Real solutions are composed of particles for which A–A, A–B,
and B–B interactions are all different. Not only may there be 
enthalpy and volume changes when liquids mix, but there 
may also be an additional contribution to the entropy arising
from the way in which the molecules of one type might cluster
together instead of mingling freely with the others. If the enthalpy
change is large and positive or if the entropy change is adverse
(because of a reorganization of the molecules that results in an
orderly mixture), then the Gibbs energy might be positive for
mixing. In that case, separation is spontaneous and the liquids
may be immiscible. Alternatively, the liquids might be partially
miscible, which means that they are miscible only over a certain
range of compositions.

The thermodynamic properties of real solutions are expressed
in terms of the excess functions, XE, the difference between the
observed thermodynamic function of mixing and the function
for an ideal solution. The excess entropy, SE, for example, is
defined as

SE = ΔmixS − ΔmixSideal [16.31]

where ΔmixSideal is given by eqn 16.20. The excess enthalpy and
volume are both equal to the observed enthalpy and volume of
mixing, because the ideal values are zero in each case. Figure
16.37 shows two examples of the composition dependence of
molar excess functions.

(a) A model system: the regular solution

Deviations of the excess energies from zero indicate the extent 
to which the solutions are non-ideal. In this connection a use-
ful model system is the regular solution, a solution for which 
HE ≠ 0 but SE = 0. We can think of a regular solution as one in
which the two kinds of molecules are distributed randomly (as

The number-average molar mass is therefore

= 13

where the factor 10−3 cancels. The weight-average molar
mass is calculated directly from the data after noting that the
total mass of the sample is 37.6 g:

= 16

Note the significantly different values of the two averages. In
this instance, Jw /Jn = 1.2.

Self-test 16.4 The Z-average molar mass is defined as

[16.30d]

and can be interpreted in terms of the mean cubic molar
mass. Evaluate the Z-average molar mass of the sample 
described in the Example. [19 kg mol−1]

The ratio Jw /Jn is called the heterogeneity index (or ‘poly-
dispersity index’). In the determination of protein molar masses
we expect the various averages to be the same because the 
sample is monodisperse (unless there has been degradation). A
synthetic polymer normally spans a range of molar masses and 
the different averages yield different values. Typical synthetic
materials have Jw /Jn ≈ 4. The term ‘monodisperse’ is conven-
tionally applied to synthetic polymers in which this index is 
less than 1.1; commercial polyethylene samples might be much
more heterogeneous, with a ratio close to 30. One consequence
of a narrow molar mass distribution for synthetic polymers is
often a higher degree of three-dimensional long-range order 
in the solid and therefore higher density and melting point. 
The spread of values is controlled by the choice of catalyst and
reaction conditions. In practice, it is found that long-range
order is determined more by structural factors (branching, for
instance) than by molar mass.

IMPACT ON BIOCHEMISTRY

I16.2 Osmosis and the structure of biological cells

Osmosis helps biological cells maintain their structure. Cell
membranes are semipermeable and allow water, small mole-
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∑
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in an ideal solution) but have different energies of interactions
with each other.

To express this model quantitatively, we suppose that the 
excess enthalpy depends on composition as

H E = nξRTxAxB (16.32)

where ξ (xi) is a dimensionless parameter that is a measure of
the energy of AB interactions relative to that of the AA and BB
interactions; for an ideal solution, ξ = 0. The function given by
eqn 16.32 is plotted in Fig. 16.38, and we see it resembles the 
experimental curve in Fig. 16.37. If ξ < 0, mixing is exothermic
and the solute–solvent interactions are more favourable than

the solvent–solvent and solute–solute interactions. If ξ > 0, then
the mixing is endothermic. Because for a regular solution the
entropy of mixing has its ideal value, the excess Gibbs energy is
equal to the excess enthalpy, and the Gibbs energy of mixing is

ΔmixG = nRT{xA ln xA + xB ln xB + ξxAxB} (16.33)

with xB = 1 − xA.
Figure 16.39 shows how ΔmixG varies with composition for

different values of ξ. The important feature is that for ξ > 2 
the graph shows two minima separated by a maximum. The 
implication of this observation is that, provided ξ > 2, the system
will separate spontaneously into two phases with compositions
corresponding to the two minima, for that separation corres-
ponds to a reduction in Gibbs energy. This behaviour is what is
summarized by the experimentally determined two-component
liquid mixture in Fig. 16.37.

We can take this analysis further and identify the upper 
critical solution temperature. The compositions corresponding
to the two minima in Fig. 16.39 are obtained by looking for the
conditions at which ∂ΔmixG/∂xA = 0, and a simple manipulation
of eqn 16.33 shows that we have to solve

A brief comment This expression is an example of a transcen-
dental equation, an equation that does not have a solution
that can be expressed in a closed form. The solutions can be
found numerically by using mathematical software or by
plotting the first term against the second and identifying the
points of intersection as ξ is changed.
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Fig. 16.37 Experimental excess functions at 25°C. (a) H E for
benzene/cyclohexane; this graph shows that the mixing is
endothermic (because ΔmixH = 0 for an ideal solution). (b) 
The excess volume, V E, for tetrachloroethene/cyclopentane; this
graph shows that there is a contraction at low tetrachloroethene
mole fractions, but an expansion at high mole fractions (because
ΔmixV = 0 for an ideal mixture).
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Fig. 16.39 The Gibbs energy of mixing for different values of the
parameter ξ.

interActivity Using the graph above, fix ξ at 1.5 and vary 
the temperature. Is there a range of temperatures over 

which you observe phase separation?
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Fig. 16.38 The excess enthalpy according to a model in which it is
proportional to ξxAxB for different values of the parameter ξ.

interActivity Using the graph above, fix ξ and vary the 
temperature. For what value of xA does the excess 

enthalpy depend on temperature most strongly?
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The solutions are plotted in Fig. 16.40. We see that the two min-
ima move together as ξ decreases and merge when ξ = 2. Because
H E ∝ ξRT, for constant excess enthalpy (corresponding to the
effect of intermolecular forces being constant as the temperature
is raised) a decrease in ξ can be interpreted as an increase in 
temperature, so the vertical axis in Fig. 16.40 can be interpreted 
as indicating the temperature, and so the topmost point of the
curve corresponds to the upper critical solution temperature, as
in Fig. 16.37. This model is developed further in Section 16.6d.

(b) The solvent activity

As we have seen, real solutions differ from ideal solutions as a 
result of differences in intermolecular interactions between their
components and the manner in which the molecules aggregate.
These differences are taken into account by replacing the con-
centrations in expressions for the chemical potential by effective
concentrations known as ‘activities’.

The general form of the chemical potential of a real or ideal
solvent is given by a straightforward modification of eqn 16.23
(that μA = μA* + RT ln(pA/pA*)), where pA* is the vapour pressure 
of pure A and pA is the vapour pressure of A when it is a com-
ponent of a solution. For an ideal solution, as we have seen, 
the solvent obeys Raoult’s law at all concentrations and we can 
express this relation as eqn 16.25 (that is, as μA = μA* + RT ln xA).
The form of this relation can be preserved when the solution
does not obey Raoult’s law by writing

μA = μA* + RT ln aA [16.34]

The quantity aA is the activity of A, a kind of ‘effective’ mole
fraction.

Because eqn 16.23 is true for both real and ideal solutions, we
can conclude by comparing it with eqn 16.34 that

(16.35)

Note—and this is a very important point—that it follows that
the activity of a pure substance (when pA = pA*) is 1. We see that
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A
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there is nothing mysterious about the activity of a solvent: it can
be determined experimentally simply by measuring the vapour
pressure and then using eqn 16.35.

l A BRIEF ILLUSTRATION

The vapour pressure of 0.500 M KNO3(aq) at 100°C is 
99.95 kPa, so the activity of water in the solution at this 
temperature is

l

Because all solvents obey Raoult’s law (that pA/pA* = xA) 
increasingly closely as the concentration of solute approaches
zero, the activity of the solvent approaches the mole fraction as
xA → 1:

aA → xA as xA → 1 (16.36)

A convenient way of expressing this convergence is to introduce
the activity coefficient, γ, by the definition

aA = γAxA γA → 1 as xA → 1 [16.37]

at all temperatures and pressures. The chemical potential of the
solvent is then

μA = μA* + RT ln xA + RT ln γA (16.38)

and all the deviation from ideal behaviour is expressed by 
RT ln γA. The standard state of the solvent, the pure liquid solvent
at 1 bar, is established when xA = 1.

(c) The solute activity

The problem with defining activity coefficients and standard
states for solutes is that they approach ideal-dilute (Henry’s 
law) behaviour as xB → 0, not as xB → 1 (corresponding to pure
solute). We shall show how to set up the definitions for a solute
that obeys Henry’s law exactly, and then show how to allow for
deviations.

A solute B that satisfies Henry’s law has a vapour pressure
given by pB = KBxB, where KB is an empirical constant. In this
case, it follows from eqn 16.23 that the chemical potential of B is

Both KB and pB* are characteristics of the solute, so the second
term may be combined with the first to give a new standard
chemical potential:

[16.39]

It then follows that the chemical potential of a solute in an ideal-
dilute solution is related to its mole fraction by

μB = μB
7 + RT ln xB (16.40)°
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Fig. 16.40 The location of the phase boundary as computed on
the basis of the ξ-parameter model.
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data for the partial pressures pC of chloroform and pA of 
acetone as a function of chloroform mole fraction xC.

xC 0 0.20 0.40 0.60 0.80 1

pC/kPa 0 4.7 11 18.9 26.7 36.4

pA/kPa 46.3 33.3 23.3 12.3 4.9 0

The Henry’s law constant KC is 22.0 kPa for chloroform.

Method For the activity of chloroform as a solvent (the
Raoult’s law activity), form aC = pC/pC* and γC = aC/xC. For its
activity as a solute (the Henry’s law activity), form aC = pC/KC

and γC = aC/xC.

Answer Because pC* = 36.4 kPa and KC = 22.0 kPa, we can
construct the following tables. For instance, at xC = 0.20, in
the Raoult’s law case we find aC = (4.7 kPa)/(36.4 kPa) = 0.13
and γC = 0.13/0.20 = 0.65; likewise, in the Henry’s law case, 
aC = (4.7 kPa)/(22.0 kPa) = 0.21 and γC = 0.21/0.20 = 1.05.

From Raoult’s law (chloroform regarded as the solvent):

aC 0 0.13 0.30 0.52 0.73 1.00

γC 0.65 0.75 0.87 0.91 1.00

From Henry’s law (chloroform regarded as the solute):

aC 0 0.21 0.50 0.86 1.21 1.65

γC 1 1.05 1.25 1.43 1.51 1.65

These values are plotted in Fig. 16.41. Notice that γC → 1 as 
xC → 1 in the Raoult’s law case, but that γC → 1 as xC → 0 in
the Henry’s law case.

Self-test 16.5 Calculate the activities and activity coefficients
(KA = 23.3 kPa) for acetone according to the two conventions.

[At xA = 0.60, for instance, aR = 0.50; γR = 0.83; 
aH = 1.00, γH = 1.67]

Table 16.2 Activities and standard states

Component

Solid or 
liquid

Solvent

Solute

In each case, μ = μ7 + RT ln a.

Basis

Raoult

Henry

Standard state

Pure

Pure solvent

(1) A hypothetical
state of the pure
solute

(2) A hypothetical
state of the solute
at molality b7 =
1 mol kg−1

Limits

γ → 1 as x → 1
(pure solvent)

γ → 1 as x → 0

γ → 1 as b → 0

Activity

a = 1

a = p/p*,
a = γx

a = p/K,
a = γ x

a = γb/b7

0 0
0 0

0.2

0.4

0.4
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Fig. 16.41 The variation of activity and activity coefficient of
chloroform (trichloromethane) and acetone (propanone) with
composition according to (a) Raoult’s law, (b) Henry’s law.

If the solution is ideal, KB = pB* and eqn 16.39 reduces to μB
7 = μB*,

as we should expect.
We now permit deviations from ideal-dilute, Henry’s law 

behaviour. For the solute, we introduce aB in place of xB in 
eqn 16.40, and obtain

μB = μB
7 + RT ln aB [16.41]

The standard state remains unchanged in this last stage, and all
the deviations from ideality are captured in the activity aB. The
value of the activity at any concentration can be obtained in the
same way as for the solvent, but in place of eqn 16.35 we use

(16.42)

As for the solvent, it is sensible to introduce an activity
coefficient through

aB = γBxB [16.43]

Now all the deviations from ideality are captured in the activity
coefficient γB. Because the solute obeys Henry’s law as its con-
centration goes to zero, it follows that

aB → xB and γB → 1 as xB → 0 (16.44)

at all temperatures and pressures. Deviations of the solute from
ideality disappear as zero concentration is approached.

The conventions for activities, activity coefficients, and stand-
ard states are summarized in Table 16.2.

Example 16.5 Measuring activity

Calculate the activity and activity coefficient of chloroform
(trichloromethane) in acetone (propanone) at 25°C, treating
it first as a solvent and then as a solute, given the following

a
p

KB
B

B

=



544 16 PHYSICAL EQUILIBRIA

(d) A model system: activities in a regular solution

The material on regular solutions presented in Section 16.6a
gives further insight into the origin of deviations from Raoult’s
law and its relation to activity coefficients. We show in the fol-
lowing Justification that for a regular solution modelled by the
parameter ξ the activity coefficients are given by the Margules
equations:

ln γA = ξxB
2 ln γB = ξxA

2 (16.45)

Justification 16.4 The Margules equations

The Gibbs energy of mixing to form a non-ideal solution is

ΔmixG = nRT{xA ln aA + xB ln aB}

This relation follows from the derivation of eqn 16.27a 
for ideal solutions with activities in place of mole fractions.
When each activity is replaced by γJ xJ, this expression 
becomes

ΔmixG = nRT{xA ln xA + xB ln xB + xA ln γA + xB ln γB}

Now we introduce the two expressions in eqn 16.45, and use
xA + xB = 1, which gives

ΔmixG = nRT{xA ln xA + xB ln xB + ξxAxB
2 + ξxBxA

2}

= nRT{xA ln xA + xB ln xB + ξxAxB(xA + xB)}

= nRT{xA ln xA + xB ln xB + ξxAxB}

as required by eqn 16.33. Note, moreover, that the activity
coefficients behave correctly for dilute solutions: γA → 1 as 
xB → 0 and γB → 1 as xA → 0.

At this point we can use the Margules equations to write the
activity of A as

aA = γAxA = xAeξxB
2 = xAeξ(1−xA)2

(16.46)

with a similar expression for aB. The activity of A, though, is 
just the ratio of the vapour pressure of A in the solution to the
vapour pressure of pure A (eqn 16.35, aA = pA/pA*), so we can
write

pA = {xAeξ(1−xA)2
}p*A (16.47)

This function is plotted in Fig. 16.42. We see that ξ = 0, corres-
ponding to an ideal solution, gives a straight line, in accord with
Raoult’s law (indeed, when ξ = 0, eqn 16.47 becomes pA = xA pA*,
which is Raoult’s law). Positive values of ξ (endothermic mix-
ing, unfavourable solute–solvent interactions) give vapour pres-
sures higher than ideal. Negative values of ξ (exothermic mixing,
favourable solute–solvent interactions) give a lower vapour
pressure. All the curves approach linearity and coincide with 
the Raoult’s law line as xA → 1 and the exponential function in
eqn 16.47 approaches 1. When xA << 1, eqn 16.47 approaches

pA = xAeξpA* (16.48)

This expression has the form of Henry’s law once we identify K
with eξpA*, which is different for each solute–solvent system.

(e) A model system: activities in an ionic solution

Solutions of ionic compounds are central to much of chemistry
and we need to be able to discuss them thermodynamically.
However, the Coulombic interactions between ions are so
strong that the approximation of replacing activities by mole
fractions or molalities is valid only in very dilute solutions (less
than 10−3 mol kg−1 in total ion concentration) and in precise
work activities themselves must be used. We need, therefore, 
to pay special attention to the activities of ions in solution, 
especially in preparation for the discussion of electrochemical
phenomena.

If the chemical potential of a univalent cation M+ is denoted
μ+ and that of a univalent anion X− is denoted μ−, the total molar
Gibbs energy of the ions in the electrically neutral solution is the
sum of these two quantities. The molar Gibbs energy of an ideal
solution is

Gm
ideal = μ+

ideal + μ−
ideal (16.49a)°

However, for a real solution of M+ and X− of the same molality,

Gm = μ+ + μ− = μ+
ideal + μ−

ideal + RT ln γ+ + RT ln γ−

= Gm
ideal + RT ln γ+γ− (16.49b)

All the deviations from ideality are contained in the last term.
There is no experimental way of separating the product γ+γ−

into contributions from the cations and the anions. The best we
can do experimentally is to assign responsibility for the nonideal-
ity equally to both kinds of ion. Therefore, for a 1,1-electrolyte,

0
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Fig. 16.42 The vapour pressure of a mixture based on a model in
which the excess enthalpy is proportional to ξxAxB. An ideal
solution corresponds to ξ = 0 and gives a straight line, in accord
with Raoult’s law. Positive values of ξ give vapour pressures
higher than ideal. Negative values of ξ give a lower vapour
pressure.

interActivity Plot pA/pA* against xA with ξ = 2.5 by using 
eqn 16.24 and then eqn 16.47. Above what value of xA

do the values of pA/pA* given by these equations differ by more
than 10 per cent?
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we introduce the mean activity coefficient as the geometric
mean of the individual coefficients:

γ± = (γ+γ−)1/2 [16.50]

and express the individual chemical potentials of the ions as

μ+ = μ+
ideal + RT ln γ± μ− = μ−

ideal + RT ln γ± (16.51)

The sum of these two chemical potentials is the same as before,
eqn 16.49b, but now the non-ideality is shared equally.

A brief comment The geometric mean of x p and y q is
(x py q)1/(p+q). For example, the geometric mean of x2 and y−3

is (x2y−3)−1.

We can generalize this approach to the case of a compound
MpXq that dissolves to give a solution of p cations and q anions
from each formula unit. The molar Gibbs energy of the ions is
the sum of their partial molar Gibbs energies:

Gm = pμ+ + qμ− = Gm
ideal + pRT ln γ+ + qRT ln γ− (16.52)

If we introduce the mean activity coefficient

γ± = (γ +
pγ −

q)1/s s = p + q [16.53]

and write the chemical potential of each ion as

μi = μi
ideal + RT ln γ± (16.54)

we get the same expression as in eqn 16.52 for Gm when we write

Gm = pμ+ + qμ− (16.55)

However, both types of ion now share equal responsibility for
the non-ideality.

The long range and strength of the Coulombic interaction 
between ions means that it is likely to be primarily responsible
for the departures from ideality in ionic solutions and to dominate
all the other contributions to non-ideality. This domination is
the basis of the Debye–Hückel theory of ionic solutions, which
was devised by Peter Debye and Erich Hückel in 1923. We give
here a qualitative account of the theory and its principal con-
clusions. The calculation itself, which is a profound example of
how a seemingly intractable problem can be formulated and
then resolved by drawing on physical insight, is described in
Further information 16.3.

Oppositely charged ions attract one another. As a result, 
anions are more likely to be found near cations in solution, and
vice versa (Fig. 16.43). Overall the solution is electrically neutral,
but near any given ion there is an excess of counter ions (ions 
of opposite charge). Averaged over time, counter ions are more
likely to be found near any given ion. This time-averaged, spher-
ical haze around the central ion, in which counter ions outnumber
ions of the same charge as the central ion, has a net charge equal
in magnitude but opposite in sign to that on the central ion, and
is called its ionic atmosphere. The energy, and therefore the

chemical potential, of any given central ion is lowered as a result
of its electrostatic interaction with its ionic atmosphere. This
lowering of energy appears as the difference between the molar
Gibbs energy Gm and the ideal value Gm

ideal of the solute, and
hence can be identified with RT ln γ±. (That the Gibbs energy is
involved rather than the internal energy is clarified in the formal
derivation of the theory, where we see that we need to consider
the electrical work of charging the ion, and we have seen that
non-expansion work is equal to the change in Gibbs energy.)
The stabilization of ions by their interaction with their ionic 
atmospheres is part of the explanation why chemists commonly
use dilute solutions, in which the stabilization is less important,
to achieve precipitation of ions from electrolyte solutions.

The model leads to the result that at very low concentrations
the activity coefficient can be calculated from the Debye–Hückel
limiting law

log γ± = −|z+z− |AI1/2 (16.56)

where A = 0.509 for an aqueous solution at 25°C and I is the 
dimensionless ionic strength of the solution:

[16.57]

In this expression zi is the charge number of an ion i (positive 
for cations and negative for anions) and bi is its molality with 
b7 = 1 mol kg−1. The ionic strength occurs widely wherever ionic
solutions are discussed, as we shall see. The sum extends over all
the ions present in the solution. For solutions consisting of two
types of ion at molalities b+ and b−,

I = 1–2(b+z+
2 + b−z−

2)/b7 (16.58)

The ionic strength emphasizes the charges of the ions because the
charge numbers occur as their squares. Table 16.3 summarizes
the relation of ionic strength and molality in an easily usable form.

I z b bi i
i

= ∑1
2

2( / 7 )

Fig. 16.43 The picture underlying the Debye–Hückel theory is of a
tendency for anions to be found around cations, and of cations
to be found around anions (one such local clustering region is
shown by the circle). The ions are in ceaseless motion, and the
diagram represents a snapshot of their motion. The solutions to
which the theory applies are far less concentrated than shown here.
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l A BRIEF ILLUSTRATION

The mean activity coefficient of 5.0 mmol kg−1 KCl(aq) at
25°C is calculated by writing

I = 1–2(b+ + b−)/b7 = b/b7

where b is the molality of the solution (and b+ = b− = b). Then,
from eqn 16.56,

log γ± = −0.509 × (5.0 × 10−3)1/2 = −0.036

Hence, γ± = 0.92. The experimental value is 0.927. l

Self-test 16.6 Calculate the ionic strength and the mean 
activity coefficient of 1.00 mmol kg−1 CaCl2(aq) at 25°C.

[3.00 × 10−3, 0.880]

The name ‘limiting law’ is applied to eqn 16.56 because ionic
solutions of moderate molalities may have activity coefficients
that differ from the values given by this expression, yet all solu-
tions are expected to conform as b → 0. Table 16.4 lists some 
experimental values of activity coefficients for salts of various
valence types. Figure 16.44 shows some of these values plotted
against I1/2, and compares them with the theoretical straight
lines calculated from the limiting law. The agreement at very low
molalities (less than about 1 mmol kg−1, depending on charge
type) is impressive, and provides convincing evidence in support
of the model. Nevertheless, the departures from the theoretical
curves above these molalities are large, and show that the 
approximations are valid only at very low concentrations.

When the ionic strength of the solution is too high for the
limiting law to be valid, the activity coefficient may be estimated
from the extended Debye–Hückel law:

(16.59)

where B and C are dimensionless constants. Although B can be
interpreted as a measure of the closest approach of the ions, it
(like C) is best regarded as an adjustable empirical parameter. 
A curve drawn in this way is shown in Fig. 16.45. It is clear that
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Table 16.3 Ionic strength and
molality, I = kb/b7

k X− X2− X3− X4−

M+ 1 3 6 10

M2+ 3 4 15 12

M3+ 6 15 9 42

M4+ 10 12 42 16

For example, the ionic strength of an M2X3

solution of molality b, which is understood to
give M3+ and X2− ions in solution, is 15b/b7.

Synoptic table 16.4* Mean
activity coefficients in water at 298 K

b/b7 KCl CaCl2

0.001 0.966 0.888

0.01 0.902 0.732

0.1 0.770 0.524

1.0 0.607 0.725

* More values are given in the Data section.
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Fig. 16.44 An experimental test of the Debye–Hückel limiting 
law. Although there are marked deviations for moderate ionic
strengths, the limiting slopes as I → 0 are in good agreement
with the theory, so the law can be used for extrapolating data to
very low molalities.
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Fig. 16.45 The extended Debye–Hückel law gives agreement with
experiment over a wider range of molalities (as shown here for a
1,1-electrolyte), but it fails at higher molalities.

interActivity Consider the plot of log γ± against I1/2 with 
B = 1.50 and C = 0 as a representation of experimental 

data for a certain 1,1 electrolyte. Over what range of ionic
strengths does the application of the limiting law lead to an 
error in the value of the activity coefficient of less than 10 per
cent of the value predicted by the extended law?
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Checklist of key ideas

1. A phase is a form of matter that is uniform throughout in
chemical composition and physical state.

2. A transition temperature is the temperature at which the
two phases are in equilibrium.

3. A phase diagram is a diagram showing the regions of
pressure and temperature at which its various phases 
are thermodynamically stable.

4. The vapour pressure is the pressure of a vapour in
equilibrium with the condensed phase.

5. The boiling temperature is the temperature at which 
the vapour pressure of a liquid is equal to the external
pressure.

6. The critical temperature is the temperature at which a liquid
surface disappears and above which a liquid does not exist
whatever the pressure. The critical pressure is the vapour
pressure at the critical temperature.

7. The melting temperature (or freezing temperature) is the
temperature at which, under a specified pressure, the liquid
and solid phases of a substance coexist in equilibrium.

8. The triple point is a point on a phase diagram at which the
three phase boundaries meet and all three phases are in
mutual equilibrium.

9. The lever rule allows for the calculation of the relative
amounts of two phases in equilibrium: nαlα = nβlβ.

10. An azeotrope is a mixture that boils without change of
composition.

11. The upper critical solution temperature is the highest
temperature at which phase separation occurs in a binary
liquid mixture. The lower critical solution temperature is 
the temperature below which the components of a binary
mixture mix in all proportions and above which they form
two phases.

12. The chemical potential is defined as μ = (∂G/∂n)p,T,n′ and 
the total Gibbs energy of a mixture is G = ∑JnJμJ.

13. The chemical potential is uniform throughout a system at
equilibrium.

14. The temperature dependence of the vapour pressure of 
a condensed phase is given by the Clausius–Clapeyron
equation, eqn 16.14.

15. The fundamental equation of chemical thermodynamics,
eqn 16.5, relates the change in Gibbs energy to changes in
pressure, temperature, and composition.

16. The chemical potential of a perfect gas is μ = μ7 +
RT ln(p/p7), where μ7 is the standard chemical potential, 
the chemical potential of the pure gas at 1 bar.

17. An ideal solution is a solution in which all components 
obey Raoult’s law (pA = xA pA*) throughout the composition
range.

18. An ideal-dilute solution is a solution for which the solute
obeys Henry’s law (pB = xBK B*) and the solvent obeys
Raoult’s law.

19. An excess function (XE) is the difference between the
observed thermodynamic function of mixing and the
function for an ideal solution.

20. A regular solution is a solution for which H E ≠ 0 but 
SE = 0.

21. A colligative property is a property that depends only on 
the number of solute particles present, not their identity.

22. Osmosis is the spontaneous passage of a pure solvent 
into a solution separated from it by a semipermeable
membrane, a membrane permeable to the solvent but 
not to the solute.

23. The osmotic pressure is the pressure that must be applied 
to the solution to stop the influx of solvent.

24. The activity is defined as aA = pA/pA*.

25. The solvent activity is related to its chemical potential by 
μA = μA* + RT ln aA. The activity may be written in terms 
of the activity coefficient γA = aA/xA.

26. The chemical potential of a solute in an ideal-dilute solution
is given by μB = μB

7 + RT ln aB. The activity may be written in
terms of the activity coefficient γB = aB/xB.

27. The mean activity coefficient is the geometric mean of the
individual coefficients: γ± = (γ +

pγ −
q)1/(p+q).

28. The Debye–Hückel theory of activity coefficients 
of electrolyte solutions is based on the assumption 
that Coulombic interactions between ions are 
dominant; a key idea of the theory is that of an 
ionic atmosphere.

eqn 16.59 accounts for some activity coefficients over a moder-
ate range of dilute solutions (up to about 0.1 mol kg−1); never-
theless it remains very poor near 1 mol kg−1.

Current theories of activity coefficients for ionic solutes take
an indirect route. They set up a theory for the dependence of 
the activity coefficient of the solvent on the concentration of 

the solute, and then use the Gibbs–Duhem equation (eqn 16.7)
to estimate the activity coefficient of the solute. The results are
reasonably reliable for solutions with molalities greater than
about 0.1 mol kg−1 and are valuable for the discussion of mixed
salt solutions, such as sea water.
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Further information

Further information 16.1 The phase rule

The phase rule is a general relation between the variance, F, the number
of components, C, and the number of phases at equilibrium, P, for a
system of any composition:

F = C − P + 2 (16.60)

A constituent is a chemical species (an ion or a molecule) that is 
present. Thus, a mixture of ethanol and water has two constituents. 
A solution of sodium chloride has three constituents: water, Na+ ions,
and Cl− ions. The term constituent should be carefully distinguished
from ‘component’, which has a more technical meaning. A component
is a chemically independent constituent of a system. The number of
components, C, in a system is the minimum number of independent
species necessary to define the composition of all the phases present 
in the system. The variance, F, of a system is the number of intensive
variables that can be changed independently without disturbing the
number of phases in equilibrium. In a single-component, single-phase
system (C = 1, P = 1), the pressure and temperature may be changed
independently without changing the number of phases, so F = 2. We 
say that such a system is bivariant, or that it has two degrees of freedom.
On the other hand, if two phases are in equilibrium (a liquid and its
vapour, for instance) in a single-component system (C = 1, P = 2), the
temperature (or the pressure) can be changed at will, but the change 
in temperature (or pressure) demands an accompanying change 
in pressure (or temperature) to preserve the number of phases 
in equilibrium. That is, the variance of the system has fallen to 1.

To see the origin of eqn 16.60, consider first the special case of 
a one-component system. For two phases in equilibrium, we can 
write μJ(α) = μJ(β). Each chemical potential is a function of the 
pressure and temperature, so

μJ(α; p,T) = μJ(β; p,T)

This is an equation relating p and T, so only one of these variables is
independent ( just as the equation x + y = 2 is a relation for y in terms 
of x: y = 2 − x). That conclusion is consistent with F = 1. For three 
phases in mutual equilibrium,

μJ(α; p,T) = μJ(β; p,T) = μJ(γ ; p,T)

This relation is actually two equations for two unknowns (μJ(α; p,T) =
μJ(β; p,T) and μJ(β; p,T) = μJ(γ ; p,T)), and therefore has a solution only
for a single value of p and T (just as the pair of equations x + y = 2 and 
3x − y = 4 has the single solution x = 3–2 and y = 1–2 ). That conclusion is
consistent with F = 0. Four phases cannot be in mutual equilibrium 
in a one-component system because the three equalities

μJ(α, p,T) = μJ(β; p,T) μJ(β; p,T) = μJ(γ, p,T) μJ(γ ; p,T) = μJ(δ; p,T)

are three equations for two unknowns (p and T) and are not consistent
(just as x + y = 2, 3x − y = 4, and x + 4y = 6 have no solution).

Now consider the general case. We begin by counting the total
number of intensive variables. The pressure, p, and temperature, T,
count as 2. We can specify the composition of a phase by giving the 
mole fractions of C − 1 components. We need specify only C − 1 and not
all C mole fractions because x1 + x2 + . . . + xC = 1, and all mole fractions
are known if all except one are specified. Because there are P phases, the

total number of composition variables is P(C − 1). At this stage, the total
number of intensive variables is P(C − 1) + 2.

At equilibrium, the chemical potential of a component J must be the
same in every phase:

μJ(α) = μJ(β) = . . . for P phases

That is, there are P − 1 equations of this kind to be satisfied for each
component J. As there are C components, the total number of equations
is C(P − 1). Each equation reduces our freedom to vary one of the 
P(C − 1) + 2 intensive variables. It follows that the total number of
degrees of freedom is

F = P(C − 1) + 2 − C(P − 1) = C − P + 2

which is eqn 16.60.
For a one-component system, such as pure water, F = 3 − P.

When only one phase is present, F = 2 and both p and T can be varied
independently without changing the number of phases. In other words, 
a single phase is represented by an area on a phase diagram. When two
phases are in equilibrium F = 1, which implies that pressure is not freely
variable if the temperature is set; indeed, at a given temperature, a liquid
has a characteristic vapour pressure. It follows that the equilibrium of
two phases is represented by a line in the phase diagram. Instead of
selecting the temperature, we could select the pressure, but having 
done so the two phases would be in equilibrium at a single definite
temperature. Therefore, freezing (or any other phase transition) 
occurs at a definite temperature at a given pressure.

When three phases are in equilibrium, F = 0 and the system is
invariant. This special condition can be established only at a definite
temperature and pressure that is characteristic of the substance and
outside our control. The equilibrium of three phases is therefore
represented by a point, the triple point, on a phase diagram. Four 
phases cannot be in equilibrium in a one-component system because 
F cannot be negative.

Further information 16.2 The Ehrenfest classification

Many familiar phase transitions, like fusion and vaporization, are
accompanied by changes of enthalpy and volume. These changes have
implications for the slopes of the chemical potentials of the phases at
either side of the phase transition. Thus, at the transition from a phase 
α to another phase β,

(16.61)

Because ΔtrsV and ΔtrsH are nonzero for melting and vaporization, it
follows that for such transitions the slopes of the chemical potential
plotted against either pressure or temperature are different on either 
side of the transition (Fig. 16.46a). In other words, the first derivatives 
of the chemical potentials with respect to pressure and temperature are
discontinuous at the transition.
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A transition for which the first derivative of the chemical potential
with respect to temperature is discontinuous is classified as a first-order
phase transition. The constant-pressure heat capacity, Cp, of a substance
is the slope of a plot of the enthalpy with respect to temperature. 
At a first-order phase transition, H changes by a finite amount for an
infinitesimal change of temperature. Therefore, at the transition the 
heat capacity is infinite. The physical reason is that heating drives the
transition rather than raising the temperature. For example, boiling
water stays at the same temperature even though heat is being supplied.

A second-order phase transition in the Ehrenfest sense is one in 
which the first derivative of μ with respect to temperature is continuous
but its second derivative is discontinuous. A continuous slope of μ
(a graph with the same slope on either side of the transition) implies 
that the volume and entropy (and hence the enthalpy) do not change 
at the transition (Fig. 16.46b). The heat capacity is discontinuous at the
transition but does not become infinite there. An example of a second-
order transition is the conducting–superconducting transition in metals
at low temperatures. One type of second-order transition is associated
with a change in symmetry of the crystal structure of a solid. Thus,
suppose the arrangement of atoms in a solid is like that represented 
in Fig. 16.47a, with one dimension of the tetragonal unit cell longer 
than the other two, which are equal. Moreover, suppose the two 
shorter dimensions increase more than the long dimension when 
the temperature is raised. There may come a stage when the three
dimensions become equal. At that point the crystal has cubic symmetry
(Fig. 16.47b), and at higher temperatures it will expand equally in all
three directions (because there is no longer any distinction between
them). The tetragonal → cubic phase transition has occurred but, as it
has not involved a discontinuity in the interaction energy between the
atoms or the volume they occupy, the transition is not first order.

Further information 16.3 The Debye–Hückel theory 
of ionic solutions

Imagine a solution in which all the ions have their actual positions, 
but in which their Coulombic interactions have been turned off. 
The difference in molar Gibbs energy between the ideal and real

solutions is equal to we, the electrical work of charging the system 
in this arrangement. For a salt MpXq, we write

= p(μ+ − μ+
ideal) + q(μ− − μ−

ideal)

From eqn 16.54 we write

μ+ − μ+
ideal = μ− − μ−

ideal = RT ln γ±

So it follows that

(16.62)

This equation tells us that to calculate a mean activity coefficient we
must first find the final distribution of the ions and then the electrical
work of charging them in that distribution.

The Coulomb potential at a distance r from an isolated ion of charge
zie in a medium of permittivity ε is

(16.63)

The ionic atmosphere causes the potential to decay with distance more
sharply than this expression implies. Such shielding is a familiar problem
in electrostatics, and its effect is taken into account by replacing the
Coulomb potential by the shielded Coulomb potential, an expression 
of the form

(16.64)

where rD is called the Debye length. When rD is large, the shielded
potential is virtually the same as the unshielded potential. When rD

is small, the shielded potential is much smaller than the unshielded
potential, even for short distances (Fig. 16.48).

To calculate rD, we need to know how the charge density, ρi, of the
ionic atmosphere, the charge in a small region divided by the volume of
the region, varies with distance from the ion. This step draws on another
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Fig. 16.46 The changes in thermodynamic properties
accompanying (a) first-order and (b) second-order phase
transitions.
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Fig. 16.47 One version of a second-order phase transition in
which (a) a tetragonal phase expands more rapidly in two
directions than a third, and hence becomes a cubic phase, which
(b) expands uniformly in three directions as the temperature is
raised. There is no rearrangement of atoms at the transition
temperature, and hence no enthalpy of transition.
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standard result of electrostatics, in which charge density and potential
are related by Poisson’s equation:

(16.65)

where ∇2 = (∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2) is the Laplacian (Mathematical
background 4). Because we are considering only a spherical ionic
atmosphere, we can use a simplified form of this equation in which 
the charge density varies only with distance from the central ion:

Substitution of the expression for the shielded potential, eqn 16.64,
results in

(16.66)

To solve this equation we need to relate ρi and φi.
For the next step we draw on the fact that the energy of an ion

depends on its closeness to the central ion, and then use the Boltzmann
distribution to work out the probability that an ion will be found at 
each distance. The energy of an ion of charge zj e at a distance where 
it experiences the potential φi of the central ion i relative to its energy
when it is far away in the bulk solution is its charge times the potential:

E = zj eφi

Therefore, according to the Boltzmann distribution, the ratio 
of the molar concentration, cj, of ions at a distance r and the molar
concentration in the bulk, c j°, where the energy is zero, is:

The charge density, ρi, at a distance r from the ion i is the molar
concentration of each type of ion multiplied by the charge per mole 
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of ions, zieNA. The quantity eNA, the magnitude of the charge per mole 
of electrons, is Faraday’s constant, F = 96.48 kC mol−1. It follows that

ρi = c+z+F + c−z−F = c+°z+Fe−z+eφi/kT + c−°z−Fe−z−eφi/kT (16.67)

At this stage we need to simplify the expression to avoid the awkward
exponential terms. Because the average electrostatic interaction energy 
is small compared with kT we may use e−x ≈ 1 − x to write eqn 16.67 as

Replacing e by F/NA and NAk by R results in the following expression:

(16.68)

The first term in the expansion is zero because it is the charge density 
in the bulk, uniform solution, and the solution is electrically neutral. 
The unwritten terms are assumed to be too small to be significant. The
one remaining term can be expressed in terms of the ionic strength, 
eqn 16.57, by noting that in the dilute aqueous solutions we are
considering there is little difference between molality and molar
concentration, and c ≈ bρ, where ρ is the mass density of the solvent:

c+° z+
2 + c−° z−

2 ≈ (b+° z+
2 + b−° z−

2)ρ = 2Ib7ρ

With these approximations, eqn 16.68 becomes

We can now solve eqn 16.66 for rD:

(16.69)

To calculate the activity coefficient we need to find the electrical work 
of charging the central ion when it is surrounded by its atmosphere. To
do so, we need to know the potential at the ion due to its atmosphere,
φatmos. This potential is the difference between the total potential, given
by eqn 16.64, and the potential due to the central ion itself:

φatmos = φ − φcentral ion =

The potential at the central ion (at r = 0) is obtained by taking the limit
of this expression as r → 0 and is

This expression shows us that the potential of the ionic atmosphere 
is equivalent to the potential arising from a single charge of equal
magnitude but opposite sign to that of the central ion and located at 
a distance rD from the ion. If the charge of the central ion were Q and 
not zie, then the potential due to its atmosphere would be

The work of adding a charge dQ to a region where the electrical potential
is φatmos(0) is
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Fig. 16.48 The variation of the shielded Coulomb potential with
distance for different values of the Debye length, rD/a. The
smaller the Debye length, the more sharply the potential decays
to zero. In each case, a is an arbitrary unit of length.

interActivity Write an expression for the difference 
between the unshielded and shielded Coulomb 

potentials evaluated at rD. Then plot this expression against rD

and provide a physical interpretation for the shape of the plot.
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dwe = φatmos(0)dQ

Therefore, the total molar work of fully charging the ions is

where in the last step we have used F = NAe. It follows from eqn 16.62
that the mean activity coefficient of the ions is

However, for neutrality pz+ + qz− = 0; therefore (for this step, multiply
pz+ + qz− = 0 by z+ and also, separately, by z−; add the two expressions
and rearrange the result by using p + q = s and z+z− = −|z+z−|):
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Replacing rD with the expression in eqn 16.69 gives

where we have grouped terms in such a way as to show that this expression
is beginning to take the form of the limiting law in eqn 16.56. Indeed,
conversion to common logarithms (by using ln x = ln 10 × log x) gives

which is eqn 16.56 (log γ± = −|z+z− |AI1/2) with

(16.70)
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Discussion questions

16.1 Discuss what will be observed as a sample of water is taken along a
path in its phase diagram that encircles and is close to its critical point.

16.2 Consider the variation of the melting point with pressure observed
for water and carbon dioxide. Provide a molecular explanation for
differences in behaviour of these two substances.

16.3 Discuss the scope and applicability of the fundamental equation of
chemical thermodynamics.

16.4 Compare the dependence of the chemical potential on temperature
for a solid, liquid, and gas. How are these dependencies reflected in the
phase diagram?

16.5 Interpret the forms of the Clapeyron and Clausius–Clapeyron
equations, paying particular attention to the appearance in them of
parameters such as the enthalpy of transition and the temperature.

16.6 Distinguish between a first-order phase transition, a second-order
phase transition, and a λ-transition at both molecular and macroscopic
levels.

16.7 Why does the chemical potential of a substance depend on the
pressure even if the substance is incompressible?

16.8 Explain the origin of colligative properties in both thermodynamic
and molecular terms.

16.9 Explain what is meant by a regular solution. Discuss how the
magnitude and sign of the parameter ξ captures various features 
of real solutions.

16.10 Describe the general features of the Debye–Hückel theory of
electrolyte solutions. Why is it only a limiting law?

16.11 Define the following terms: phase, constituent, component, 
and degree of freedom.

16.12 What factors determine the number of theoretical plates 
required to achieve a desired degree of separation in fractional
distillation?

Exercises

16.1(a) Methylethyl ether (A) and diborane, B2H6 (B), form a compound
that melts congruently at 133 K. The system exhibits two eutectics, one at
25 mol per cent B and 123 K and a second at 90 mol per cent B and 104 K.
The melting points of pure A and B are 131 K and 110 K, respectively.
Sketch the phase diagram for this system. Assume negligible solid–solid
solubility.

16.1(b) Sketch the phase diagram of the system NH3/N2H4 given that 
the two substances do not form a compound with each other, that NH3
freezes at −78°C and N2H4 freezes at +2°C, and that a eutectic is formed
when the mole fraction of N2H4 is 0.07 and that the eutectic melts 
at −80°C.

16.2(a) Figure 16.49 shows the phase diagram for water (A) and 
2-methyl-1-propanol (B). Describe what will be observed when a
mixture of composition xB = 0.8 is heated, at each stage giving the
number, composition, and relative amounts of the phases present.

16.2(b) Figure 16.50 is the phase diagram for silver and tin. Label the
regions, and describe what will be observed when liquids of
compositions a and b are cooled to 200 K.

16.3(a) The solid and liquid phases of a mixture of water (W) and
ethanol (E) are in equilibrium. What are the relationships between 
the magnitudes of μW(s), μW(l), μE(s), and μE(l)?
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16.3(b) The liquid and vapour phases of a mixture of benzene (B) and
methylbenzene (M) are in equilibrium. What are the relationships
between the magnitudes of μB(l), μB(g), μM(l), and μM(g)?

16.4(a) A mixture of water and ethanol is prepared with a mole fraction
of water of 0.60. If a small change in the mixture composition results in
an increase in the chemical potential of water by 0.25 J mol−1, by how
much will the chemical potential of ethanol change?

16.4(b) A mixture of water and ethanol is prepared with a mole fraction
of water of 0.40. If a small change in the mixture composition results in
an increase in the chemical potential of ethanol by 0.35 J mol−1, by how
much will the chemical potential of water change?

16.5(a) By how much does the chemical potential of pure water change
when the temperature of a sample is increased from 20°C to 25°C?

16.5(b) By how much does the chemical potential of pure octane change
when the temperature of a sample is increased from 20°C to 25°C?

16.6(a) By how much does the chemical potential of pure water increase
when the pressure on a sample is increased from 1.0 bar to 100 kbar? The
mass density of water at 20°C is 0.997 g cm−3.

16.6(b) By how much does the chemical potential of pure octane increase
when the pressure on a sample is increased from 1.0 bar to 100 kbar? The
mass density of octane at 20°C is 0.703 g cm−3.

16.7(a) The vapour pressure of dichloromethane at 24.1°C is 53.3 kPa
and its enthalpy of vaporization is 28.7 kJ mol−1. Estimate the
temperature at which its vapour pressure is 80.0 kPa.

16.7(b) The vapour pressure of a substance at 20.0°C is 48.4 kPa and its
enthalpy of vaporization is 34.7 kJ mol−1. Estimate the temperature at
which its vapour pressure is 58.0 kPa.

16.8(a) The molar volume of a certain solid is 161.0 cm3 mol−1 at 
1.00 atm and 350.75 K, its melting temperature. The molar volume 
of the liquid at this temperature and pressure is 163.3 cm3 mol−1. At 
100 atm the melting temperature changes to 351.26 K. Calculate the
enthalpy and entropy of fusion of the solid.

16.8(b) The molar volume of a certain solid is 142.0 cm3 mol−1 at 
1.00 atm and 427.15 K, its melting temperature. The molar volume 
of the liquid at this temperature and pressure is 152.6 cm3 mol−1. At 
1.2 MPa the melting temperature changes to 429.26 K. Calculate the
enthalpy and entropy of fusion of the solid.

16.9(a) The vapour pressure of a liquid in the temperature range 
200 K to 260 K was found to fit the expression ln(p/Torr) = 19.176 −
1501.8/(T/K). Calculate the enthalpy of vaporization of the liquid.

16.9(b) The vapour pressure of a liquid in the temperature range 
200 K to 260 K was found to fit the expression ln(p/Torr) = 17.461 −
2100.8/(T/K). Calculate the enthalpy of vaporization of the liquid.

16.10(a) When benzene freezes at 5.5°C (the normal freezing point) 
its density changes from 0.879 g cm−3 to 0.891 g cm−3. Its enthalpy 
of fusion is 10.59 kJ mol−1. Estimate the freezing point of benzene 
at 10.0 kbar.

16.10(b) When a certain liquid freezes at −3.65°C (the normal freezing
point) its density changes from 0.790 g cm−3 to 0.799 g cm−3. Its enthalpy
of fusion is 6.68 kJ mol−1. Estimate the freezing point of the liquid at 
100 MPa.

16.11(a) An open vessel containing (a) water (vapour pressure 3.2 kPa),
(b) benzene (vapour pressure 13.1 kPa) stands in a laboratory measuring
4.0 m × 4.0 m × 3.0 m at 25°C. What mass of each substance will be
found in the air if there is no ventilation?

16.11(b) An open vessel containing mercury (vapour pressure 0.23 Pa)
stands in a laboratory measuring 6.0 m × 5.0 m × 3.5 m at 25°C. What
mass of mercury will be found in the air if there is no ventilation?

16.12(a) The normal boiling point of carbon tetrachloride is 76.8°C.
Estimate (a) its enthalpy of vaporization and (b) its vapour pressure at
25°C and 70°C.

16.12(b) The normal boiling point of hexane is 69.0°C. Estimate (a) its
enthalpy of vaporization and (b) its vapour pressure at 25°C and 60°C.

16.13(a) Calculate the melting point of ice under a pressure of 50 bar.
Assume that the density of ice under these conditions is approximately
0.92 g cm−3 and that of liquid water is 1.00 g cm−3.

16.13(b) Calculate the melting point of ice under a pressure of 10 MPa.
Assume that the density of ice under these conditions is approximately
0.915 g cm−3 and that of liquid water is 0.998 g cm−3.

16.14(a) Consider a container of volume 10.0 dm3 that is divided 
into two compartments of equal size. In the left compartment there is
nitrogen at 1.5 bar and 25°C; in the right compartment there is hydrogen
at the same temperature and pressure. Calculate the entropy and Gibbs
energy of mixing when the partition is removed. Assume that the gases
are perfect.

16.14(b) Consider a container of volume 350 cm3 that is divided into 
two compartments of equal size. In the left compartment there is argon
at 150 kPa and 0°C; in the right compartment there is neon at the same
temperature and pressure. Calculate the entropy and Gibbs energy of
mixing when the partition is removed. Assume that the gases are perfect.
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16.15(a) Air is approximately 76 per cent N2, 23 per cent O2, and 
1 per cent Ar by mass. Calculate the entropy, enthalpy, and Gibbs 
energy of mixing when it is prepared from the pure (and perfect) 
gases.

16.15(b) Calculate the Gibbs energy, entropy, and enthalpy of mixing
when 25 g of hexane is mixed with 25 g of heptane at 298 K; treat the
solution as ideal.

16.16(a) What proportions of hexane and heptane should be mixed 
(a) by mole fraction, (b) by mass in order to achieve the greatest 
entropy of mixing?

16.16(b) What proportions of benzene and ethylbenzene should be
mixed (a) by mole fraction, (b) by mass in order to achieve the greatest
entropy of mixing?

16.17(a) At 300 K, the partial vapour pressures of HCl (that is, the partial
pressure of the HCl vapour) in liquid GeCl4 are as follows:

xHCl 0.005 0.012 0.019

pHCl/kPa 32.0 76.9 121.8

Show that the solution obeys Henry’s law in this range of mole fractions,
and calculate Henry’s law constant at 300 K.

16.17(b) At 310 K, the partial vapour pressures of a substance B dissolved
in a liquid A are as follows:

xB 0.010 0.015 0.020

pB/kPa 82.0 122.0 166.1

Show that the solution obeys Henry’s law in this range of mole fractions,
and calculate Henry’s law constant at 310 K.

16.18(a) The vapour pressure of pure liquid A at 300 K is 76.7 kPa 
and that of pure liquid B is 52.0 kPa. These two compounds form ideal
liquid and gaseous mixtures. Consider the equilibrium composition 
of a mixture in which the mole fraction of A in the vapour is 0.350.
Calculate the total pressure of the vapour and the composition of the
liquid mixture.

16.18(b) The vapour pressure of pure liquid A at 293 K is 68.8 kPa 
and that of pure liquid B is 82.1 kPa. These two compounds form ideal
liquid and gaseous mixtures. Consider the equilibrium composition 
of a mixture in which the mole fraction of A in the vapour is 0.612.
Calculate the total pressure of the vapour and the composition of the
liquid mixture.

16.19(a) Predict the partial vapour pressure of HCl above its solution in
liquid germanium tetrachloride of molality 0.15 mol kg−1. For data, see
Exercise 16.17a.

16.19(b) Predict the partial vapour pressure of the component B 
above its solution in A in Exercise 16.17b when the molality of B is 
0.15 mol kg−1.

16.20(a) The vapour pressure of benzene is 53.3 kPa at 60.6°C, but 
it fell to 51.5 kPa when 19.0 g of an involatile organic compound 
was dissolved in 500 g of benzene. Calculate the molar mass of the
compound.

16.20(b) The vapour pressure of 2-propanol is 50.00 kPa at 338.8°C, 
but it fell to 49.62 kPa when 8.69 g of an involatile organic compound
was dissolved in 250 g of 2-propanol. Calculate the molar mass of the
compound.

16.21(a) Use Henry’s law and the data in Table 16.1 to calculate the
solubility (as a molality) of CO2 in water at 25°C when its partial
pressure is (a) 0.10 atm, (b) 1.00 atm.

16.21(b) The mole fractions of N2 and O2 in air at sea level are
approximately 0.78 and 0.21. Calculate the molalities of the solution
formed in an open flask of water at 25°C.

16.22(a) The osmotic pressures of solutions of polystyrene in toluene
were measured at 25°C and the pressure was expressed in terms of the
height of the solvent of density 1.004 g cm−3:

c/(g dm−3) 2.042 6.613 9.521 12.602

h/cm 0.592 1.910 2.750 3.600

Calculate the molar mass of the polymer.

16.22(b) The molar mass of an enzyme was determined by dissolving it 
in water, measuring the osmotic pressure at 20°C, and extrapolating the
data to zero concentration. The following data were obtained:

c/(mg cm−3) 3.221 4.618 5.112 6.722

h/cm 5.746 8.238 9.119 11.990

Calculate the molar mass of the enzyme.

16.23(a) A sample consists of 30 per cent by mass of a dimer with 
M = 30 kg mol−1 and its monomer. What are the values of the 
number-average and weight-average molar masses? What is the 
value of the heterogeneity index?

16.23(b) A sample consists of 25 per cent by mass of a trimer with 
M = 22 kg mol−1 and its monomer. What are the values of the 
number-average and weight-average molar masses? What is the 
value of the heterogeneity index?

16.24(a) The maximum value of the excess enthalpy of mixing of a
mixture of benzene and cyclohexane at 25°C is 700 J mol−1. Identify the
value of the parameter ξ in the expression that is used to model a regular
solution. Can you expect phase separation?

16.24(b) The maximum value of the excess enthalpy of mixing of a
mixture at 25°C is 1.4 kJ mol−1. Identify the value of the parameter ξ in
the expression that is used to model a regular solution. Can you expect
phase separation?

16.25(a) Substances A and B are both volatile liquids with pA* = 300 Torr,
pB* = 250 Torr, and KB = 200 Torr (concentration expressed in mole
fraction). When xA = 0.9, bB = 2.22 mol kg−1, pA = 250 Torr, and pB =
25 Torr. Calculate the activities and activity coefficients of A and B. Use
the mole fraction, Raoult’s law basis system for A and the Henry’s 
law basis system (both mole fractions and molalities) for B.

16.25(b) Given that p*(H2O) = 0.02308 atm and p(H2O) = 0.02239 atm
in a solution in which 0.122 kg of a non-volatile solute (M = 241 g mol−1)
is dissolved in 0.920 kg water at 293 K, calculate the activity and activity
coefficient of water in the solution.

16.26(a) By measuring the equilibrium between liquid and vapour
phases of an acetone (A)–methanol (M) solution at 57.2°C at 1.00 atm, 
it was found that xA = 0.400 when yA = 0.516. Calculate the activities and
activity coefficients of both components in this solution on the Raoult’s
law basis. The vapour pressures of the pure components at this
temperature are: pA* = 105 kPa and pM* = 73.5 kPa.

16.26(b) By measuring the equilibrium between liquid and vapour
phases of a solution at 30°C at 1.00 atm, it was found that xA = 0.220
when yA = 0.314. Calculate the activities and activity coefficients of 
both components in this solution on the Raoult’s law basis. The 
vapour pressures of the pure components at this temperature are: 
pA* = 73.0 kPa and pB* = 92.1 kPa.

16.27(a) The maximum value of the excess enthalpy of mixing of two
liquids that form a regular solution at 20°C is 800 J mol−1. What are the
activities of the components at that composition?
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16.27(b) The maximum value of the excess enthalpy of mixing of two
liquids that form a regular solution at 30°C is 1.4 kJ mol−1. What are the
activities of the components at that composition?

16.28(a) Calculate the ionic strength of a solution that is 0.15 mol kg−1 in
KCl(aq) and 0.35 mol kg−1 in CuSO4(aq).

16.28(b) Calculate the ionic strength of a solution that is 0.080 mol kg−1

in K3[Fe(CN)6](aq), 0.030 mol kg−1 in KCl(aq), and 0.075 mol kg−1 in
NaBr(aq).

16.29(a) Calculate the masses of (a) Ca(NO3)2 and, separately, (b) NaCl
to add to a 0.250 mol kg−1 solution of KNO3(aq) containing 800 g of
solvent to raise its ionic strength to 0.450.

16.29(b) Calculate the masses of (a) KNO3 and, separately, (b) Ba(NO3)2
to add to a 0.150 mol kg−1 solution of KNO3(aq) containing 250 g of
solvent to raise its ionic strength to 1.00.

16.30(a) Estimate the mean activity coefficient and activity of 
a solution that is 5.0 mmol kg−1 CaCl2(aq) and 4.0 mmol kg−1

NaF(aq).

16.30(b) Estimate the mean activity coefficient and activity of a 
solution that is 2.5 mmol kg−1 NaCl(aq) and 5.5 mmol kg−1

Ca(NO3)2(aq).

16.31(a) The mean activity coefficients of HBr in three dilute 
aqueous solutions at 25°C are 0.930 (at 5.0 mmol kg−1), 0.907 
(at 10.0 mmol kg−1), and 0.879 (at 20.0 mmol kg−1). Estimate 
the value of B in the extended Debye–Hückel law if C = 0.

16.31(b) The mean activity coefficients of KCl in three dilute 
aqueous solutions at 25°C are 0.927 (at 5.0 mmol kg−1), 0.902 
(at 10.0 mmol kg−1), and 0.816 (at 50.0 mmol kg−1). Estimate 
the value of B in the extended Debye–Hückel law if C = 0.

Problems*

Numerical problems

16.1 The following temperature/composition data were obtained for a
mixture of octane (O) and methylbenzene (M) at 1.00 atm, where x is
the mole fraction in the liquid and y the mole fraction in the vapour at
equilibrium.

θ/°C 110.9 112.0 114.0 115.8 117.3 119.0 121.1 123.0

xM 0.908 0.795 0.615 0.527 0.408 0.300 0.203 0.097

yM 0.923 0.836 0.698 0.624 0.527 0.410 0.297 0.164

The boiling points are 110.6°C and 125.6°C, for M and O, respectively.
Plot the temperature/composition diagram for the mixture. What is the
composition of the vapour in equilibrium with the liquid of composition
(a) xM = 0.250 and (b) xO = 0.250?

16.2 Figure 16.51 shows the experimentally determined phase 
diagrams for the nearly ideal solution of hexane and heptane. 
(a) Label the regions of the diagrams as to which phases are present. 
(b) For an equimolar mixture of C6H14 and C7H16, estimate the 
vapour pressure at 70°C when vaporization on reduction of the 
external pressure just begins. (c) What is the vapour pressure of the
solution at 70°C when just one drop of liquid remains? (d) Estimate
from the figures the mole fraction of hexane in the liquid and vapour
phases for the conditions of part b. (e) What are the mole fractions for
the conditions of part c?

16.3 Uranium tetrafluoride and zirconium tetrafluoride melt at 
1035°C and 912°C, respectively. They form a continuous series 
of solid solutions with a minimum melting temperature of 765°C 
and composition x(ZrF4) = 0.77. At 900°C, the liquid solution of
composition x(ZrF4) = 0.28 is in equilibrium with a solid solution of
composition x(ZrF4) = 0.14. At 850°C the two compositions are 0.87 
and 0.90, respectively. Sketch the phase diagram for this system and state
what is observed when a liquid of composition x(ZrF4) = 0.40 is cooled
slowly from 900°C to 500°C.

16.4 Hexane and perfluorohexane show partial miscibility below 22.7°C.
The concentration at the upper critical temperature is x = 0.355, where x
is the mole fraction of C6F14. At 22.0°C the two solutions in equilibrium

have x = 0.24 and x = 0.48, respectively, and at 21.5°C the mole fractions
are 0.22 and 0.51. Sketch the phase diagram. Describe the phase changes
that occur when perfluorohexane is added to a fixed amount of hexane at
(a) 23°C, (b) 22°C.

16.5 Methane (melting point 91 K) and tetrafluoromethane (melting
point 89 K) do not form solid solutions with each other, and as liquids
they are only partially miscible. The upper critical temperature of the

* Problems denoted by the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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liquid mixture is 94 K at x(CF4) = 0.43 and the eutectic temperature 
is 84 K at x(CF4) = 0.88. At 86 K, the phase in equilibrium with the
tetrafluoromethane-rich solution changes from solid methane to a
methane-rich liquid. At that temperature, the two liquid solutions that
are in mutual equilibrium have the compositions x(CF4) = 0.10 and
x(CF4) = 0.80. Sketch the phase diagram.

16.6 The temperature dependence of the vapour pressure of solid 
sulfur dioxide can be approximately represented by the relation 
log(p/Torr) = 10.5916 − 1871.2/(T/K) and that of liquid sulfur dioxide 
by log(p/Torr) = 8.3186 − 1425.7/(T/K). Estimate the temperature and
pressure of the triple point of sulfur dioxide.

16.7 The enthalpy of vaporization of a certain liquid is found to be 
22.0 kJ mol−1 at 380 K, its normal boiling point. The molar volumes 
of the liquid and the vapour at the boiling point are 120 cm3 mol−1 and
13.5 dm3 mol−1, respectively. (a) Estimate dp/dT from the Clapeyron
equation and (b) the percentage error in its value if the
Clausius–Clapeyron equation is used instead.

16.8 The enthalpy of fusion of mercury is 2.292 kJ mol−1, and its normal
freezing point is 234.3 K with a change in molar volume of +0.517 cm−3

mol−1 on melting. At what temperature will the bottom of a column of
mercury (density 13.6 g cm−3) of height 10.0 m be expected to freeze?

16.9 The vapour pressure, p, of a compound varies with temperature as
follows:

T/K 250 270 280 290 300 310 330

p/kPa 0.036 0.514 1.662 4.918 13.43 34.1 182.9

What are (a) the normal boiling point and (b) the enthalpy of
vaporization of the compound?

16.10 Construct the phase diagram for benzene near its triple point at 
36 Torr and 5.50°C using the following data: ΔfusH = 10.6 kJ mol−1,
ΔvapH = 30.8 kJ mol−1, ρ(s) = 0.891 g cm−3, ρ(l) = 0.879 g cm−3.

16.11‡ Sato et al. ( J. Polymer Sci., Polym. Phys. 14, 619 (1976)) have
reported the data in the table below for the osmotic pressures of
polychloroprene (ρ = 1.25 g cm−3) in toluene (ρ = 0.858 g cm−3) 
at 30°C. Determine the molar mass of polychloroprene and its 
second osmotic virial coefficient.

c/(mg cm−3) 1.33 2.10 4.52 7.18 9.87

Π/(N m−2) 30 51 132 246 390

16.12‡ In an investigation of thermophysical properties of
methylbenzene (R.D. Goodwin, J. Phys. Chem. Ref. Data 18, 1565
(1989)), Goodwin presented expressions for two coexistence curves
(phase boundaries). The solid–liquid coexistence curve is given by

p/bar = p3/bar + 1000 × (5.60 + 11.727x)x

where x = T/T3 − 1 and the triple point pressure and temperature are 
p3 = 0.4362 μbar and T3 = 178.15 K. The liquid–vapour curve is given by:

ln(p/bar) = −10.418/y + 21.157 − 15.996y + 14.015y2 − 5.0120y3

+ 4.7224(1 − y)1.70

where y = T/Tc = T/(593.95 K). (a) Plot the solid–liquid and
liquid–vapour phase boundaries. (b) Estimate the standard melting
point of methylbenzene. (c) Estimate the standard boiling point of
methylbenzene. (d) Compute the standard enthalpy of vaporization of
methylbenzene, given that the molar volumes of the liquid and vapour 
at the normal boiling point are 0.12 dm3 mol−1 and 30.3 dm3 mol−1,
respectively.

16.13‡ The following data have been obtained for the liquid–vapour
equilibrium compositions of mixtures of nitrogen and oxygen at 100 kPa:

T/K 77.3 78 80 82 84 86 88 90.2

x(O2) 0 10 34 54 70 82 92 100

y(O2) 0 2 11 22 35 52 73 100

p*(O2)/Torr 154 171 225 294 377 479 601 760

Plot the data on a temperature–composition diagram and determine the
extent to which it fits the predictions for an ideal solution by calculating
the activity coefficients of O2 at each composition.

16.14 The following table gives the mole fraction of methylbenzene 
(A) in liquid and gaseous mixtures with butanone at equilibrium at
303.15 K and the total pressure p. Take the vapour to be perfect and
calculate the partial pressures of the two components. Plot them against
their respective mole fractions in the liquid mixture and find the Henry’s
law constants for the two components.

xA 0 0.0898 0.2476 0.3577 0.5194 0.6036

yA 0 0.0410 0.1154 0.1762 0.2772 0.3393

p/kPa 36.066 34.121 30.900 28.626 25.239 23.402

xA 0.7188 0.8019 0.9105 1

yA 0.4450 0.5435 0.7284 1

p/kPa 20.6984 18.592 15.496 12.295

16.15 The table below lists the vapour pressures of mixtures of
iodoethane (I) and ethyl acetate (A) at 50°C. Find the activity coefficients
of both components on (a) the Raoult’s law basis, (b) the Henry’s law
basis with iodoethane as solute.

xI 0 0.0579 0.1095 0.1918 0.2353 0.3718

pI/kPa 0 3.73 7.03 11.7 14.05 20.72

pA/kPa 37.38 35.48 33.64 30.85 29.44 25.05

xI 0.5478 0.6349 0.8253 0.9093 1.0000

pI/kPa 28.44 31.88 39.58 43.00 47.12

pA/kPa 19.23 16.39 8.88 5.09 0

16.16‡ Aminabhavi et al. examined mixtures of cyclohexane with
various long-chain alkanes ( J. Chem. Eng. Data 41, 526 (1996)). Among
their data are the following measurements of the density of a mixture of
cyclohexane and pentadecane as a function of mole fraction of
cyclohexane (xc) at 298.15 K:

xc 0.6965 0.7988 0.9004

ρ/(g cm−3) 0.7661 0.7674 0.7697

Fit a polynomial expression to the data (use mathematical software) 
and determine the excess volume of mixing and partial molar volumes,
VJ = (∂V/∂nJ)p,T, of the components. Plot your results.

16.17‡ Comelli and Francesconi examined mixtures of propionic acid
with various other organic liquids at 313.15 K ( J. Chem. Eng. Data 41,
101 (1996)). They report the excess volume of mixing propionic acid
with oxane as V E = x1x2{a0 + a1(x1 − x2)}, where x1 is the mole fraction 
of propionic acid, x2 that of oxane, a0 = −2.4697 cm3 mol−1, and 
a1 = 0.0608 cm3 mol−1. The density of propionic acid at this temperature
is 0.97174 g cm−3; that of oxane is 0.86398 g cm−3. (a) Derive an
expression for the partial molar volume VJ = (∂V/∂nJ)p,T of each
component at this temperature. (b) Compute the partial molar 
volume for each component in an equimolar mixture.

16.18‡ Francesconi et al. studied the liquid–vapour equilibria of
trichloromethane and 1,2-epoxybutane at several temperatures 
( J. Chem. Eng. Data 41, 310 (1996)). Among their data are the following
measurements of the mole fractions of trichloromethane in the liquid
phase (x T) and the vapour phase (yT) at 298.15 K as a function of
pressure.
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p/kPa 23.40 21.75 20.25 18.75 18.15 20.25 22.50 26.30

x 0 0.129 0.228 0.353 0.511 0.700 0.810 1

y 0 0.065 0.145 0.285 0.535 0.805 0.915 1

Compute the activity coefficients of both components on the basis of
Raoult’s law.

16.19 The mean activity coefficients for aqueous solutions of NaCl at
25°C are given below. Confirm that they support the Debye–Hückel
limiting law and that an improved fit is obtained with the extended law.

b/(mmol kg−1) 1.0 2.0 5.0 10.0 20.0

γ± 0.9649 0.9519 0.9275 0.9024 0.8712

Theoretical problems

16.20 Show that two phases are in thermal equilibrium only if their
temperatures are the same.

16.21 Show that two phases are in mechanical equilibrium only if their
pressures are equal.

16.22 The change in enthalpy is given by dH = CpdT + Vdp. The
Clapeyron equation relates dp and dT at equilibrium, and so in
combination the two equations can be used to find how the enthalpy
changes along a phase boundary as the temperature changes and the 
two phases remain in equilibrium. Show that d(ΔH/T) = ΔCp d ln T.

16.23 Combine the barometric formula (Problem 13.20) for the
dependence of the pressure on altitude with the Clausius–Clapeyron
equation, and predict how the boiling temperature of a liquid depends
on the altitude and the ambient temperature. Take the mean ambient
temperature as 20°C and predict the boiling temperature of water at
3000 m.

16.24 Figure 16.20 is a schematic representation of how the chemical
potentials of the solid, liquid, and gaseous phases of a substance vary with
temperature. All have a negative slope, but it is unlikely that they are
truly straight lines as indicated in the illustrations. Derive an expression
for the curvatures (specifically, the second derivatives with respect to
temperature) of these lines. Is there a restriction on the curvature of
these lines? Which state of matter shows the greatest curvature?

16.25 Use the expressions relating the Gibbs energy and entropy of a
perfect gas to the molecular partition function to show that (a) eqns
15.40 and 15.2 are consistent with eqn 16.9, (b) eqn 15.40 is consistent
with eqn 16.10.

16.26 The excess Gibbs energy of a certain binary mixture is equal to
gRTx(1 − x) where g is a constant and x is the mole fraction of a solute A.
Find an expression for the chemical potential of A in the mixture and
sketch its dependence on the composition.

16.27 The excess Gibbs energy of mixing of methylcyclohexane 
(MCH) and tetrahydrofuran (THF) at 303.15 K were found to fit the
expression

GE = RTx(1 − x){0.4857 − 0.1077(2x − 1) + 0.0191(2x − 1)2}

where x is the mole fraction of the methylcyclohexane. Does this
empirical expression support the view that the solution is regular? 
If it is not regular over the full range of compositions, is it regular 
over short regions? Can you adjust the regular model to accommodate
the data?

16.28 Use the Gibbs–Duhem equation to show that the chemical
potential of a component B in a binary mixture can be obtained if
the chemical potential of the second component A is known for all
compositions up to the one of interest. Do this by proving that

Go on to formulate a version of this expression for a regular solution in
which the activity coefficients are represented by the Margules equations
and the parameter ξ.

16.29 A similar expression to that derived in Problem 16.28 applies to
the partial molar volume. Use the following data (which are for 298 K) to
evaluate the integral graphically to find the partial molar volume of
propanone in a propanone/trichloromethane mixture at x = 0.500.

x(CHCl3) 0 0.194 0.385 0.559 0.788 0.889 1.000

Vm/(cm3 mol−1) 73.99 75.29 76.50 77.55 79.08 79.82 80.67

16.30 The ‘osmotic coefficient’, φ, is defined as φ = −(xA/xB) ln aA. By
writing r = xB/xA, and using the Gibbs–Duhem equation, show that it is
possible to calculate the activity of B from the activities of A over a
composition range by using the formula

16.31 Show that the osmotic pressure of a real solution is given by 
ΠV = −RT ln aA. Go on to show that, provided the concentration of the
solution is low, this expression takes the form ΠV = φRT[B] and hence
that the osmotic coefficient, φ, (which is defined in Problem 16.30) may
be determined from osmometry.

16.32 Deduce an expression for the depression of freezing point of an
ideal solution and show, subject to a series of approximations that you
should specify, that the depression is proportional to the mole fraction 
of the solute, ΔT = Kf xB, with Kf = RT f*/ΔfusH, where T f* is the freezing
temperature of the pure solvent and ΔfusH its enthalpy of fusion. Hint.
At the freezing temperature of the solvent, the chemical potential of the
liquid solvent is equal to that of the solid solvent.

16.33 Repeat the preceding problem for the elevation of boiling point of
a solvent in a solution.

16.34 Show that the freezing-point depression of a real solution in which
the solvent of molar mass M has activity aA obeys

and use the Gibbs–Duhem equation to show that

where aB is the solute activity and bB is its molality. Use the Debye–
Hückel limiting law to show that the osmotic coefficient (φ, Problem
16.30) is given by φ = 1 − 1–3 A′I with A′ = 2.303A and I = b/b7.

Applications: to biology and materials science

16.35 For the calculation of the solubility c of a gas in a solvent, it is 
often convenient to use the expression c = Kp, where K is the Henry’s law
constant. Breathing air at high pressures, such as in scuba diving, results
in an increased concentration of dissolved nitrogen. The Henry’s law
constant for the solubility of nitrogen is 0.18 μg/(g H2O atm). What
mass of nitrogen is dissolved in 100 g of water saturated with air at 
4.0 atm and 20°C? Compare your answer to that for 100 g of water
saturated with air at 1.0 atm. (Air is 78.08 mole per cent N2.) If nitrogen
is four times as soluble in fatty tissues as in water, what is the increase 
in nitrogen concentration in fatty tissue in going from 1 atm to 4 atm?
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16.36 The addition of a small amount of a salt, such as (NH4)2SO4, to 
a solution containing a charged protein increases the solubility of the
protein in water. This observation is called the salting-in effect. However,
the addition of large amounts of salt can decrease the solubility of the
protein to such an extent that the protein precipitates from solution.
This observation is called the salting-out effect and is used widely by
biochemists to isolate and purify proteins. Consider the equilibrium
PXν(s) 5 Pν+(aq) + νX−(aq), where Pν+ is a polycationic protein 
of charge +ν and X− is its counter ion. Use Le Chatelier’s principle and
the physical principles behind the Debye–Hückel theory to provide a
molecular interpretation for the salting-in and salting-out effects. Hint.
Le Chatelier’s principle should be familiar to you from introductory
chemistry. For a review, see Section 17.4.

16.37 In a theoretical study of a protein, the temperature–composition
diagram shown in Fig. 16.52 was obtained. It shows three structural
regions: the native form, the unfolded form, and a ‘molten globule’
form, a partially unfolded but still compact form of the protein. (i) Is the
molten globule form ever stable when the denaturant concentration is
below 0.1? (ii) Describe what happens to the polymer as the native form
is heated in the presence of denaturant at concentration 0.15.

16.38 Magnesium oxide and nickel oxide withstand high temperatures.
However, they do melt when the temperature is high enough and the
behaviour of mixtures of the two is of considerable interest to the
ceramics industry. Draw the temperature–composition diagram for 
the system using the data below, where x is the mole fraction of MgO 
in the solid and y its mole fraction in the liquid.

θ/°C 1960 2200 2400 2600 2800

x 0 0.35 0.60 0.83 1.00

y 0 0.18 0.38 0.65 1.00

State (a) the melting point of a mixture with x = 0.30, (b) the
composition and proportion of the phases present when a solid of
composition x = 0.30 is heated to 2200°C, (c) the temperature at 
which a liquid of composition y = 0.70 will begin to solidify.

16.39‡ A substance as well known as methane still receives research
attention because it is an important component of natural gas, a
commonly used fossil fuel. Friend et al. have published a review of
thermophysical properties of methane ( J. Phys. Chem. Ref. Data 18, 

583 (1989)), which included the following data describing the
liquid–vapour phase boundary.

T/K 100 108 110 112 114 120

p/MPa 0.034 0.074 0.088 0.104 0.122 0.192

T/K 130 140 150 160 170 190

p/MPa 0.368 0.642 1.041 1.593 2.329 4.521

(a) Plot the liquid–vapour phase boundary. (b) Estimate the standard
boiling point of methane. (c) Compute the standard enthalpy of
vaporization of methane, given that the molar volumes of the liquid and
vapour at the standard boiling point are 3.80 × 10−2 and 8.89 dm3 mol−1,
respectively.

16.40‡ Diamond is the hardest substance and the best conductor of 
heat yet characterized. For these reasons, it is used widely in industrial
applications that require a strong abrasive. Unfortunately, it is difficult
to synthesize diamond from the more readily available allotropes of
carbon, such as graphite. To illustrate this point, calculate the pressure
required for diamond to become thermodynamically more stable than
graphite at 25°C. The following data apply to 25°C and 100 kPa. Assume
the specific volume, Vs, and κT are constant with respect to pressure
changes.

Graphite Diamond

ΔfG
7/(kJ mol−1) 0 +2.8678

Vs/(cm3 g−1) 0.444 0.284

κT /kPa 3.04 × 10−8 0.187 × 10−8

16.41‡ Polymer scientists often report their data in rather strange 
units. For example, in the determination of molar masses of polymers in
solution by osmometry, osmotic pressures are often reported in grams
per square centimetre (g cm−2) and concentrations in grams per cubic
centimetre (g cm−3). (a) With these choices of units, what would be the
units of R in the van’t Hoff equation? (b) The data in the table below on
the concentration dependence of the osmotic pressure of polyisobutene
in chlorobenzene at 25°C have been adapted from J. Leonard and H.
Daoust ( J. Polymer Sci. 57, 53 (1962)). From these data, determine the
molar mass of polyisobutene by plotting Π/c against c. (c) Theta solvents
are solvents for which the second osmotic coefficient is zero; for ‘poor’
solvents the plot is linear and for good solvents the plot is non-linear.
From your plot, how would you classify chlorobenzene as a solvent for
polyisobutene? Rationalize the result in terms of the molecular structure
of the polymer and solvent. (d) Determine the second and third osmotic
virial coefficients by fitting the curve to the virial form of the osmotic
pressure equation. (e) Experimentally, it is often found that the virial
expansion can be represented as

Π/c = RT/M (1 + B′c + gB′2c′2 + . . .)

and in good solvents, the parameter g is often about 0.25. With terms
beyond the second power ignored, obtain an equation for (Π/c)1/2

and plot this quantity against c. Determine the second and third virial
coefficients from the plot and compare to the values from the first plot.
Does this plot confirm the assumed value of g?

10−2(Π/c)/(g cm−2/g cm−3) 2.6 2.9 3.6 4.3 6.0 12.0

c/(g cm−3) 0.0050 0.010 0.020 0.033 0.057 0.10

10−2(Π/c)/(g cm−2/g cm−3) 19.0 31.0 38.0 52 63

c/(g cm−3) 0.145 0.195 0.245 0.27 0.29
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Chemical equilibrium

This chapter develops the concept of chemical potential and shows how it is used to 
account for the equilibrium composition of chemical reactions. The equilibrium composition
corresponds to a minimum in the Gibbs energy plotted against the extent of reaction, and
by locating this minimum we establish the relation between the equilibrium constant 
and the standard Gibbs energy of reaction. The thermodynamic formulation of equilibrium 
enables us to establish the quantitative effects of changes in the conditions. The principles
of thermodynamics established in the preceding chapters can be applied to the description
of the thermodynamic properties of reactions that take place in electrochemical cells, in
which, as the reaction proceeds, it drives electrons through an external circuit. Thermo-
dynamic arguments can be used to derive an expression for the electric potential of such
cells and the potential can be related to their composition. There are two major topics 
developed in this connection. One is the definition and tabulation of standard potentials; the
second is the use of these standard potentials to predict the equilibrium constants and
other thermodynamic properties of chemical reactions.

Chemical reactions tend to move towards a dynamic equilibrium in which both 
reactants and products are present but have no further tendency to undergo net
change. In some cases, the concentration of products in the equilibrium mixture is so
much greater than that of the unchanged reactants that for all practical purposes the
reaction is ‘complete’. However, in many important cases the equilibrium mixture
has significant concentrations of both reactants and products. In this chapter we see
how to use thermodynamics to predict the equilibrium composition under any reac-
tion conditions. Because many reactions of ions involve the transfer of electrons, they
can be studied (and utilized) by allowing them to take place in an electrochemical cell.
Measurements like those described in this chapter provide data that are very useful 
for discussing the characteristics of electrolyte solutions and of ionic equilibria in 
solution.

Spontaneous chemical reactions

We have seen that the direction of spontaneous change at constant temperature and
pressure is towards lower values of the Gibbs energy, G. The idea is entirely general,
and in this chapter we apply it to the discussion of chemical reactions.

17
Spontaneous chemical reactions

17.1 The Gibbs energy minimum
and the reaction Gibbs energy

17.2 The thermodynamic
description of equilibrium

I17.1 Impact on biology: Energy
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conditions
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17.1 The Gibbs energy minimum and the reaction
Gibbs energy

We locate the equilibrium composition of a reaction mixture by
calculating the Gibbs energy of the reaction mixture and identi-
fying the composition that corresponds to minimum G.

Consider the equilibrium A 5 B. Even though this reaction
looks trivial, there are many examples of it, such as the isomer-
ization of pentane to 2-methylbutane and the conversion of 
l-alanine to d-alanine. Suppose an infinitesimal amount dξ of 
A turns into B; then the change in the amount of A present is 
dnA = −dξ and the change in the amount of B present is dnB =
+dξ. The quantity ξ (xi) is called the extent of reaction; it has the 
dimensions of amount of substance and is reported in moles.
When the extent of reaction changes by a finite amount Δξ, the
amount of A present changes from nA,0 to nA,0 − Δξ and the amount
of B changes from nB,0 to nB,0 + Δξ. So, if initially 2.0 mol A is
present and we wait until Δξ = +1.5 mol, then the amount of 
A remaining will be 0.5 mol.

The reaction Gibbs energy, ΔrG, is defined as the slope of the
graph of the Gibbs energy plotted against the extent of reaction:

[17.1]

Although Δ normally signifies a difference in values, here Δr

signifies a derivative, the slope of G with respect to ξ. However,
to see that there is a close relationship with the normal usage,
suppose the reaction advances by dξ at constant temperature
and pressure. The corresponding change in Gibbs energy is

dG = μAdnA + μBdnB = −μAdξ + μBdξ = (μB − μA)dξ

This equation can be reorganized into

That is,

ΔrG = μB − μA (17.2)

We see that ΔrG can also be interpreted as the difference be-
tween the chemical potentials (the partial molar Gibbs energies)
of the reactants and products at the composition of the reaction
mixture.

Because chemical potential varies with composition, the slope
of the plot of Gibbs energy against extent of reaction changes 
as the reaction proceeds. Moreover, because the reaction runs 
in the direction of decreasing G (that is, down the slope of G
plotted against ξ), we see from eqn 17.2 that the reaction A → B
is spontaneous when μA > μB, whereas the reverse reaction is
spontaneous when μB > μA. The slope is zero, and the reaction is
spontaneous in neither direction, when

ΔrG = 0 (17.3)
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This condition occurs when μB = μA (Fig. 17.1). It follows that, if
we can find the composition of the reaction mixture that ensures
μB = μA, then we can identify the composition of the reaction
mixture at equilibrium.

We can express the spontaneity of a reaction at constant tem-
perature and pressure in terms of the reaction Gibbs energy:

If ΔrG < 0, the forward reaction is spontaneous.
If ΔrG > 0, the reverse reaction is spontaneous.
If ΔrG = 0, the reaction is at equilibrium.

17.2 The thermodynamic description 
of equilibrium

With the background established, we are now ready to see 
how to apply thermodynamics to the description of chemical
equilibrium.

(a) Perfect gas equilibria

When A and B are perfect gases we can use eqn 16.15 (μ = μ7 +
RT ln p, with p interpreted as p/p7) to write

ΔrG = μB − μA = (μB
7 + RT ln pB) − (μA

7 + RT ln pA)

= ΔrG
7 + RT ln (17.4)°

If we denote the ratio of partial pressures by Q, we obtain

ΔrG = ΔrG
7 + RT ln Q Q = (17.5)°

The ratio Q is an example of a reaction quotient. It ranges from
0 when pB = 0 (corresponding to pure A) to infinity when pA = 0
(corresponding to pure B). The standard reaction Gibbs energy,
ΔrG

7, is defined (like the standard reaction enthalpy) as the dif-
ference in the standard molar Gibbs energies of the reactants
and products. For our reaction

p
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Fig. 17.1 As the reaction advances (represented by motion from
left to right along the horizontal axis) the slope of the Gibbs
energy changes. Equilibrium corresponds to zero slope, at the
foot of the valley.
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ΔrG
7 = G 7

B,m − G 7
A,m (17.6a)

In Section 15.6 we saw that the difference in standard molar
Gibbs energies of the products and reactants is equal to the dif-
ference in their standard Gibbs energies of formation, so in
practice we calculate ΔrG

7 from

ΔrG
7 = ΔfG

7(B) − ΔfG
7(A) (17.6b)

At equilibrium Δ rG = 0. The ratio of partial pressures at equi-
librium is denoted K, and eqn 17.5 becomes

0 = Δ rG
7 + RT ln K

This expression rearranges to

RT ln K = −ΔrG
7 (17.7)°

This relation is a special case of one of the most important equa-
tions in chemical thermodynamics: it is the link between tables
of thermodynamic data, such as those in the Data section at the
end of this volume, and the chemically important equilibrium
constant, K.

We see from eqn 17.7 that, when ΔrG
7 > 0, the equilibrium

constant K < 1. Therefore, at equilibrium the partial pressure of
A exceeds that of B, which means that the reactant A is favoured
in the equilibrium. When ΔrG

7 < 0, the equilibrium constant 
K > 1, so at equilibrium the partial pressure of B exceeds that of
A. Now the product B is favoured in the equilibrium.

In molecular terms, the minimum in the Gibbs energy, which
corresponds to ΔrG = 0, stems from the Gibbs energy of mixing
of the two gases. Hence, an important contribution to the posi-
tion of chemical equilibrium is the mixing of the products with
the reactants as the products are formed.

To appreciate the role of mixing, consider a hypothetical re-
action in which A molecules change into B molecules without
mingling together. The Gibbs energy of the system changes from
G 7(A) to G 7(B) in proportion to the amount of B that had been
formed, and the slope of the plot of G against the extent of reac-
tion is a constant and equal to ΔrG

7 at all stages of the reaction
(Fig. 17.2). There is no intermediate minimum in the graph.
However, in fact, the newly produced B molecules do mix with
the surviving A molecules. We have seen that the contribution 
of a mixing process to the change in Gibbs energy is given by eqn
16.18 (ΔmixG = nRT(xA ln xA + xB ln xB)). This expression makes
a U-shaped contribution to the total change in Gibbs energy. 
As can be seen from Fig. 17.2, there is now an intermediate 
minimum in the Gibbs energy, and its position corresponds to
the equilibrium composition of the reaction mixture.

(b) The general case of a reaction

We can easily extend the argument that led to eqn 17.7 to a gen-
eral reaction. First, we need to generalize the concept of extent of
reaction.

K
p

p
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

B

A equilibrium

In Section 14.7 we saw that a chemical reaction, such as 
2 A + B → 3 C + D, can be expressed in the form

(17.8)

where J denotes the substances and the νJ are the correspond-
ing stoichiometric numbers in the chemical equation. In our 
example, these numbers have the values νA = −2, νB = −1, νC = +3,
and νD = +1; as we saw in Section 14.7, a stoichiometric number
is positive for products and negative for reactants. Then we
define ξ so that, if it changes by Δξ, then the change in the
amount of any species J is νJΔξ.

l A BRIEF ILLUSTRATION

In the notation of eqn 17.8, the stoichiometric numbers in
the equation

N2(g) + 3 H2(g) → 2 NH3(g)

are νN2
= −1, νH2

= −3, and νNH3
= +2. Therefore, if initially

there is 10 mol N2 present, then when the extent of reaction
changes from ξ = 0 to ξ = 1 mol, implying that Δξ = +1 mol,
the amount of N2 changes from 10 mol to 9 mol. All the N2

has been consumed when ξ = 10 mol. When Δξ = +1 mol, the
amount of H2 changes by −3 × (1 mol) = −3 mol and the
amount of NH3 changes by +2 × (1 mol) = +2 mol. l

In the following Justification, we show that the Gibbs energy
of reaction can always be written

ΔrG = ΔrG
7 + RT ln Q (17.9)

0 = ∑νJ
J

J

G
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b
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Extent of reaction,
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mixing

Including
mixing

Mixing

0 �

Fig. 17.2 If the mixing of reactants and products is ignored, then
the Gibbs energy changes linearly from its initial value (pure
reactants) to its final value (pure products) and the slope of 
the line is ΔrG

7. However, as products are produced, there is 
a further contribution to the Gibbs energy arising from their
mixing (lowest curve). The sum of the two contributions has 
a minimum. That minimum corresponds to the equilibrium
composition of the system.
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with the standard reaction Gibbs energy calculated from

− (17.10a)

or, more formally,

(17.10b)

The reaction quotient, Q, has the form

(17.11a)

with each species raised to the power given by its stoichiometric
coefficient. More formally, to write the general expression for 
Q we introduce the symbol Π to denote the product of what 
follows it (just as ∑ denotes the sum), and define Q as

[17.11b]

Because reactants have negative stoichiometric numbers, they
automatically appear as the denominator when the product is
written out explicitly. Recall from Table 16.2 that, for pure solids
and liquids, the activity is 1 under ordinary laboratory condi-
tions, so such substances make no contribution to Q even
though they may appear in the chemical equation.

l A BRIEF ILLUSTRATION

Consider the reaction 2 A + 3 B → C + 2 D, in which case
νA = −2, νB = −3, νC = +1, and νD = +2. The reaction quotient
is then

Q = aA
−2aB

−3aCa2
D = l

Justification 17.1 The dependence of the reaction Gibbs
energy on the reaction quotient

Consider the reaction with stoichiometric numbers νJ. When
the reaction advances by dξ, the amounts of reactants and
products change by dnJ = νJdξ. The resulting infinitesimal
change in the Gibbs energy at constant temperature and 
pressure is

It follows that

To make further progress, we note that the chemical poten-
tial of a species J is related to its activity by eqn 16.41 (μJ = μJ

7 +
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RT ln aJ). When this expression is substituted into the pre-
ceding equation we obtain

with Q given by eqn 17.11b. We have used the relations

a ln x = ln xa

Now we conclude the argument based on eqn 17.9. At equi-
librium, the slope of G is zero: ΔrG = 0. The activities then have
their equilibrium values and we can write

[17.12]

This expression has the same form as Q, eqn 17.11, but is evalu-
ated using equilibrium activities. From now on, we shall not write
the ‘equilibrium’ subscript explicitly, and will rely on the con-
text to make it clear that for K we use equilibrium values and for
Q we use the values at the specified stage of the reaction.

An equilibrium constant K expressed in terms of activities is
called a thermodynamic equilibrium constant. Note that, because
activities are dimensionless numbers, the thermodynamic equi-
librium constant is also dimensionless. In elementary applica-
tions, the activities that occur in eqn 17.12 are often replaced by
the numerical values of molalities (that is, by replacing aJ by
bJ/b

7, where b 7 = 1 mol kg−1), molar concentrations (that is, as
[J]/c 7, where c 7 = 1 mol dm−3), or the numerical values of partial
pressures (that is, by pJ/p

7, where p7 = 1 bar). In each case, the
resulting expressions are only approximations. The approxima-
tion is particularly severe for electrolyte solutions, for in them
activity coefficients differ from 1 even in very dilute solutions
(Section 16.6e).

l A BRIEF ILLUSTRATION

The equilibrium constant for the heterogeneous equilibrium
CaCO3(s) 5 CaO(s) + CO2(g) is
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where the activities of CaO(s) and CaCO3(s) are set to 1 be-
cause each substance appears in the reaction as a separate,
pure phase. Provided the carbon dioxide can be treated as a
perfect gas, we can go on to write

K ≈ pCO2
/p7

and conclude that in this case the equilibrium constant is the
numerical value of the decomposition vapour pressure of
calcium carbonate. l

(c) Calculating equilibrium constants from 
thermodynamic data

If we set ΔrG = 0 in eqn 17.9 and replace Q by K, then we imme-
diately obtain

RT ln K = −ΔrG
7 (17.13)

This is an exact and highly important thermodynamic relation,
for it enables us to predict the equilibrium constant of any reac-
tion from tables of thermodynamic data, and hence to predict
the equilibrium composition of the reaction mixture.

Example 17.1 Calculating an equilibrium constant 1

Calculate the equilibrium constant for the ammonia synthesis
reaction, N2(g) + 3 H2(g) → 2 NH3(g), at 298 K and show
how K is related to the partial pressures of the species at equi-
librium when the overall pressure is low enough for the gases
to be treated as perfect.

Method Calculate the standard reaction Gibbs energy from
eqn 17.10 and convert it to the value of the equilibrium con-
stant by using eqn 17.13. The expression for the equilibrium
constant is obtained from eqn 17.12 and, because the gases
are taken to be perfect, replace each activity by the ratio p/p7,
where p is a partial pressure.

Answer The standard Gibbs energy of the reaction is

ΔrG
7 = 2Δ f G

7(NH3, g) − {Δ f G
7(N2, g) + 3Δ f G

7(H2, g)}
= 2Δ f G

7(NH3, g) = 2 × (−16.5 kJ mol−1)

Then,

Hence, K = 6.1 × 105. This result is thermodynamically exact.
The thermodynamic equilibrium constant for the reaction is

and this ratio has exactly the value we have just calculated. 
At low overall pressures, the activities can be replaced by the

K
a

a a
= NH

N H

3

2 2

2

3

ln
( . )

( .
K = −

× − × −

−
2 16 5 10

8 3145

3 1

1

J mol

J K mol−− ×
=

× ×
×1

32 16 5 10

8 3145) (

.

.298 K) 298

ratios p/p7, where p is a partial pressure, and an approximate
form of the equilibrium constant is

Self-test 17.1 Evaluate the equilibrium constant for N2O4(g)
5 2 NO2(g) at 298 K. [K = 0.15]

We can also express the thermodynamic equilibrium constant
in terms of the mole fractions, xJ, or molalities, bJ, of the species.
To do so, we need to know the activity coefficients, and then to
use aJ = γJxJ or aJ = γJbJ/b

7 (recalling that the activity coefficients
depend on the choice). For example, in the latter case, for an
equilibrium of the form A + B 5 C + D, where all four species
are solutes, we write

(17.14)

The activity coefficients must be evaluated at the equilibrium
composition of the mixture (for instance, by using one of the
Debye–Hückel expressions, Section 16.6e), which may involve 
a complicated calculation, because the activity coefficients are
known only if the equilibrium composition is already known. 
In elementary applications, and to begin the iterative calculation
of the concentrations in a real example, the assumption is often
made that the activity coefficients are all so close to unity that 
Kγ = 1. Then we obtain the result widely used in elementary
chemistry that K ≈ Kb, and equilibria are discussed in terms of
molalities (or molar concentrations) themselves.

(d) Equilibria in biological systems

For biological systems it is appropriate to adopt the biological
standard state, in which aH+ = 10−7 and pH = −log aH+ = 7. It 
follows from eqn 17.9 that the relation between the thermody-
namic and biological standard Gibbs energies of reaction for a
reaction of the form

A + ν H+(aq) → P (17.15a)

is

Δ rG
⊕ = ΔrG

7 + 7νRT ln 10 (17.15b)

Note that there is no difference between the two standard values
if hydrogen ions are not involved in the reaction (ν = 0).

l A BRIEF ILLUSTRATION

Consider the reaction

NADH(aq) + H+(aq) → NAD+(aq) + H2(g)

at 37°C, for which Δ rG
7 = −21.8 kJ mol−1; NADH is the re-

duced form of nicotinamide adenine dinucleotide and NAD+
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is its oxidized form; the molecules play an important role 
in the later stages of the respiratory process. It follows that
because ν = 1 and 7 ln 10 = 16.1,

ΔrG
⊕ = −21.8 kJ mol−1

+ 16.1 × (8.3145 × 10−3 kJ K−1 mol−1) × (310 K)
= +19.7 kJ mol−1

Note that the biological standard value is opposite in sign 
(in this example) to the thermodynamic standard value: the
much lower concentration of hydronium ions (by seven 
orders of magnitude) at pH = 7 in place of pH = 0, has 
resulted in the reverse reaction becoming spontaneous under
these biologically standard conditions (with all other species
at unit activity). l

Self-test 17.2 For a particular reaction of the form A → B +
2 H+ in aqueous solution, it was found that ΔrG

7 = +20 kJ mol−1

at 28°C. Estimate the value of ΔrG
⊕. [−61 kJ mol−1]

(e) Exergonic and endergonic reactions

A reaction for which Δ rG
7 < 0 is called exergonic (from the

Greek words for work producing). The name signifies that, 
because the process is spontaneous, it can be used to drive another
process, such as another reaction, or used to do non-expansion
work. A simple mechanical analogy is a pair of weights joined 
by a string (Fig. 17.3): the lighter of the pair of weights will be
pulled up as the heavier weight falls down. Although the lighter
weight has a natural tendency to move downward, its coupling
to the heavier weight results in it being raised. In biological cells,
the oxidation of carbohydrates acts as the heavy weight that

drives other reactions forward and results in the formation of
proteins from amino acids, muscle contraction, and brain activity.
A reaction for which Δ rG

7 > 0 is called endergonic (signifying
work consuming). The reaction can be made to occur only 
by doing work on it, such as electrolysing water to reverse its
spontaneous formation reaction.

IMPACT ON BIOLOGY

I17.1 Energy conversion in biological cells

The whole of life’s activities depends on the coupling of exer-
gonic and endergonic reactions, for the oxidation of food drives
other reactions forward. In biological cells, the energy released
by the oxidation of foods is stored in adenosine triphosphate
(ATP, 1). The essence of the action of ATP is its ability to lose its
terminal phosphate group by hydrolysis and to form adenosine
diphosphate (ADP):

ATP(aq) + H2O(l) → ADP(aq) + Pi
−(aq) + H3O+(aq)

Fig. 17.3 If two weights are coupled as shown here, 
then the heavier weight will move the lighter weight in 
its nonspontaneous direction: overall, the process is still
spontaneous. The weights are the analogues of two chemical
reactions: a reaction with a large negative ΔG can force another
reaction with a smaller ΔG to run in its nonspontaneous
direction.

where Pi
− denotes an inorganic phosphate group, such as H2PO4

−.
The biological standard values for ATP hydrolysis at 37°C 
(310 K, blood temperature) are ΔrG

⊕ = −31 kJ mol−1, Δr H⊕ =
−20 kJ mol−1, and ΔrS

⊕ = +34 J K−1 mol−1. The hydrolysis 
is therefore exergonic (ΔrG

⊕ < 0) under these conditions and 
31 kJ mol−1 is available for driving other reactions, such as the
strongly endergonic biosynthesis of proteins from aminoacids.
Moreover, because the reaction entropy is large, the reaction
Gibbs energy is sensitive to temperature.

In view of its exergonicity the ADP-phosphate bond has been
called a ‘high-energy phosphate bond’. The name is intended to
signify a high tendency to undergo reaction, and should not be
confused with ‘strong’ bond. In fact, even in the biological sense
it is not of very ‘high energy’. The action of ATP depends on it
being intermediate in activity. Thus ATP acts as a phosphate
donor to a number of acceptors (for example, glucose), but is
recharged by more powerful phosphate donors in a number of
biochemical processes.

We now use the oxidation of glucose to CO2 and H2O by O2

as an example of how the breakdown of foods is coupled to the
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formation of ATP in the cell. The process begins with glycolysis,
a partial oxidation of glucose by nicotinamide adenine dinu-
cleotide (NAD+, 2) to pyruvate ion, CH3COCO2

−, continues
with the citric acid cycle, which oxidizes pyruvate to CO2, and
ends with the reactions of the respiratory chain, during which 
O2 is reduced to H2O (Impact I17.3).

2 CH3COCO2
−(aq) + 8 NAD+(aq) + 2 FAD(aq) + 2 ADP(aq) 

+ 2 Pi
−(aq) + 8 H2O(l) → 6 CO2(g) + 8 NADH(aq) 

+ 4 H3O+(aq) + 2 FADH2(aq) + 2 ATP(aq)

The NADH and FADH2 go on to reduce O2 during oxidative
phosphorylation, which also produces ATP. The citric acid cycle
and oxidative phosphorylation generate as many as 38 ATP
molecules for each glucose molecule consumed. Each mole of
ATP molecules extracts 31 kJ from the 2880 kJ supplied by 1 mol
C6H12O6 (180 g of glucose), so 1178 kJ is stored for later use.

17.3 The statistical description of equilibrium

The Gibbs energy of a gas of independent molecules is given by
eqn 15.40 in terms of the molar partition function, qm = q /n. The
equilibrium constant K of a reaction is related to the standard
Gibbs energy of reaction by eqn 17.13 (Δ rG

7 = −RT ln K). It 
follows that we can combine these two equations to calculate 
the equilibrium constant. We shall consider gas-phase reactions
in which the equilibrium constant is expressed in terms of the
partial pressures of the reactants and products.

(a) The relation between K and the partition function

To find an expression for the standard reaction Gibbs energy we
need expressions for the standard molar Gibbs energies, G 7/n, 
of each species. For these expressions, we need the value of the
molar partition function when p = p7 (where p7 = 1 bar): we 
denote this standard molar partition function q 7

m. Because only
the translational component depends on the pressure, we can
find q 7

m by evaluating the partition function with V replaced by
V 7

m, where V 7
m = RT/p7. For a species J it follows that (eqn 15.40)

G 7
m(J) = G 7

m(J,0) − (17.16)°

where G 7
m(J,0) is the value of G 7

m(J) at T = 0 and q 7
J,m is the 

standard molar partition function of J. By combining expres-
sions like this one (as shown in the following Justification), the
equilibrium constant for the reaction

a A + b B → c C + d D

is given by the expression

(17.17a)

where ΔrE0 is the difference in molar energies of the ground
states of the products and reactants (this term is defined more
precisely in the Justification), and is calculated from the bond
dissociation energies of the species (Fig. 17.4). In terms of the
stoichiometric numbers, we would write

(17.17b)K
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Glycolysis occurs in the cytosol, the aqueous material encap-
sulated by the cell membrane, and consists of ten enzyme-
catalysed reactions. At blood temperature, ΔrG

⊕ = −147 kJ mol−1

for the oxidation of glucose by NAD+ to pyruvate ions. The 
oxidation of one glucose molecule is coupled to the conversion
of two ADP molecules to two ATP molecules, so the net reaction
of glycolysis is:

C6H12O6(aq) + 2 NAD+(aq) + 2 ADP(aq) + 2 Pi
−(aq) + 2 H2O(l)

→ 2 CH3COCO2
−(aq) + 2 NADH(aq) + 2 ATP(aq) + 2 H3O+(aq)

The standard reaction Gibbs energy is (−147) − 2(−31) kJ mol−1

= −85 kJ mol−1. The reaction is exergonic, and therefore spon-
taneous: the oxidation of glucose is used to ‘recharge’ the ATP.

In the presence of O2, pyruvate is oxidized further during the
citric acid cycle and oxidative phosphorylation, which occur in 
a special compartment of the cell called the mitochondrion. The
citric acid cycle requires eight enzymes that couple the synthesis
of ATP to the oxidation of pyruvate by NAD+ and flavin adenine
dinucleotide (FAD, 3):
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Justification 17.2 The equilibrium constant in terms of the
partition function 1

The standard molar reaction Gibbs energy for the reaction is

Δr G 7 = cG 7
m(C) + dG 7

m(D) − aG 7
m(A) − bG 7

m(B)
= cG 7

m(C,0) + dG 7
m(D,0) − aG 7

m(A,0) − bG 7
m(B,0)

Because G(0) = U(0), the first term on the right is

ΔrE0 = cU 7
m(C,0) + dU 7

m(D,0) − aU 7
m(A,0) − bU 7

m(B,0)
(17.18a)

the reaction internal energy at T = 0 (a molar quantity). At 
T = 0 only the ground states of the species are accessible, so
ΔrE0 is the weighted difference between the molar ground-state
energies:

ΔrE0 = cEm(C) + dEm(D) − aEm(A) − bEm(B) (17.18b)

Now we can write

At this stage we can pick out an expression for K by com-
paring this equation with ΔrG

7 = −RT ln K, which gives

This expression is easily rearranged into eqn 17.17a by form-
ing the exponential of both sides.
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Fig. 17.4 The definition of ΔrE0 for the calculation of equilibrium
constants.

We shall illustrate the application of eqn 17.17 to an equilib-
rium in which a diatomic molecule X2 dissociates into its atoms:

X2(g) 5 2 X(g)

According to eqn 17.17 (with a = 1, b = 0, c = 2, and d = 0):

(17.19a)

with

ΔrE0 = 2Em(X) − Em(X2) = D0(X-X) (17.19b)

where D0(X-X) is the dissociation energy of the X-X bond.
The standard molar partition functions of the atoms X are

where gX is the degeneracy of the electronic ground state of 
X and we have used V 7

m = RT/p7. The diatomic molecule X2

also has rotational and vibrational degrees of freedom, so its
standard molar partition function is

where gX2
is the degeneracy of the electronic ground state of X2.

It follows from eqn 17.19 that the equilibrium constant is

(17.20)

where we have used R/NA = k. All the quantities in this expres-
sion can be calculated from spectroscopic data. Expressions 
for the Λs, the thermal wavelengths of the species, are collected
in Table 13.1 and depend on the masses of the species and the
temperature; the expressions for the rotational and vibrational
partition functions are also available in Table 13.1 and depend
on the rotational constant and vibrational wavenumber of the
molecule.

Example 17.2 Calculating an equilibrium constant 2

Evaluate the equilibrium constant for the dissociation Na2(g)
5 2 Na(g) at 1000 K from the following data: è = 0.1547 cm−1,
# = 159.2 cm−1, D0 = 70.4 kJ mol−1. The Na atoms have doublet
ground terms.

Method The partition functions required are specified in 
eqn 17.20. They are evaluated by using the expressions in
Table 13.1. For a homonuclear diatomic molecule, σ = 2. 
In the evaluation of kT/p7 use p7 = 105 Pa and 1 Pa m3 = 1 J.
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It is quite easy to show (see the Justification below) that the
ratio of numbers of R and P molecules at equilibrium is given by

(17.21a)

and therefore that the equilibrium constant for the reaction is

(17.21b)

just as would be obtained from eqn 17.17. For an R 5 P equilib-
rium, the V factors in the partition functions cancel, so the 
appearance of q in place of q 7 has no effect. In the case of a more
general reaction, the conversion from q to q 7 comes about at the
stage of converting the pressures that occur in K to numbers of
molecules.

Justification 17.3 The equilibrium constant in terms of the
partition function 2

The population in a state i of the composite (R,P) system is

where N is the total number of molecules. The total number
of R molecules is the sum of these populations taken over the
states belonging to R; these states we label r with energies εr.
The total number of P molecules is the sum over the states 
belonging to P; these states we label P with energies εp′ (the
prime is explained in a moment):

N n
N

N n
N

R r
r r

P p
p p

e er p= = = =∑ ∑ ∑ ∑− − ′

q q
βε βε
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N
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=
−e βε

q

K E RT= −q

q
P
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e rΔ 0 /

N

N
E RTP
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P
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e r= −q

q
Δ 0 /

s E0r

R

P

Fig. 17.5 The array of R(eactants) and P(roducts) energy levels.
At equilibrium all are accessible (to differing extents, depending
on the temperature), and the equilibrium composition of 
the system reflects the overall Boltzmann distribution of
populations. As ΔE0 increases, R becomes dominant.

s E0r

R
P

Fig. 17.6 It is important to take into account the densities of states
of the molecules. Even though P might lie well above R in energy
(that is, ΔE0 is large and positive), P might have so many states
that its total population dominates in the mixture. In classical
thermodynamic terms, we have to take entropies into account 
as well as enthalpies when considering equilibria.

Answer The partition functions and other quantities required
are as follows:

Λ(Na2) = 8.14 pm Λ(Na) = 11.5 pm
q R(Na2) = 2246 qV(Na2) = 4.885
g(Na) = 2 g(Na2) = 1

Then, from eqn 17.20,

= 2.46

where we have used 1 J = 1 kg m2 s−2 and 1 Pa = 1 kg m−1 s−1.

Self-test 17.3 Evaluate K at 1500 K. [52]

(b) Contributions to the equilibrium constant

We are now in a position to appreciate the physical basis of equi-
librium constants. To see what is involved, consider a simple 
R 5 P gas-phase equilibrium (R for reactants, P for products).

Figure 17.5 shows two sets of energy levels; one set of states
belongs to R, and the other belongs to P. The populations of the
states are given by the Boltzmann distribution, and are inde-
pendent of whether any given state happens to belong to R or to
P. We can therefore imagine a single Boltzmann distribution
spreading, without distinction, over the two sets of states. If the
spacings of R and P are similar (as in Fig. 17.5), and P lies above
R, the diagram indicates that R will dominate in the equilibrium
mixture. However, if P has a high density of states (a large num-
ber of states in a given energy range, as in Fig. 17.6) then, even
though its zero-point energy lies above that of R, the species P
might still dominate at equilibrium.

 
K =

× × × × ×− − −( . ) ( ( .1 38 10 1000 4 8 14 1023 1 12JK K) m)3

((10 Pa) 2246 4.885 (1.15 10 m)
e

5 6× × × ×
×−

−
11

8 47.
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The sum over the states of R is its partition function, q R, so

The sum over the states of P is also a partition function, 
but the energies are measured from the ground state of the
combined system, which is the ground state of R. However, 
because εp′ = εp + Δε0, where Δε0 is the separation of zero-
point energies (as in Fig. 17.5),

The switch from Δε0/k to ΔrE0/R in the last step is the con-
version of molecular energies to molar energies: E0 = NAε0

and R = NAk.
The equilibrium constant of the R 5 P reaction is pro-

portional to the ratio of the numbers of the two types of
molecule. Therefore,

as in eqn 17.21b.

The content of eqn 17.21 can be seen most clearly by exagger-
ating the molecular features that contribute to it. We shall sup-
pose that R has only a single accessible level, which implies that
q R = 1. We also suppose that P has a large number of evenly,
closely spaced levels (Fig. 17.7). The partition function of P is
then q P = kT/ε. In this model system, the equilibrium constant is

(17.22)
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When Δ r E0 is very large, the exponential term dominates and 
K << 1, which implies that very little P is present at equilibrium.
When ΔrE0 is small but still positive, K can exceed 1 because the
factor kT/ε may be large enough to overcome the small size of
the exponential term. The size of K then reflects the predomin-
ance of P at equilibrium on account of its high density of states.

The model also shows why the Gibbs energy, G, and not just
the enthalpy, determines the position of equilibrium. It shows
that the density of states (and hence the entropy) of each species
as well as their relative energies controls the distribution of popu-
lations and hence the value of the equilibrium constant. This
competition is mirrored in eqn 17.13, as can be seen most clearly
by using ΔrG

7 = ΔrH
7 − TΔ rS

7 and writing it in the form

K = e−ΔrH
7/RTeΔrS

7/R (17.23)

Note that a positive reaction enthalpy results in a lowering of 
the equilibrium constant (that is, an endothermic reaction can
be expected to have an equilibrium composition that favours the
reactants). However, if there is positive reaction entropy, then
the equilibrium composition may favour products, despite the
endothermic character of the reaction.

The response of equilibria to the
conditions

Equilibria respond to changes in pressure, temperature, and
concentrations of reactants and products. The equilibrium con-
stant for a reaction is not affected by the presence of a catalyst 
or an enzyme (a biological catalyst). As we shall see in detail in
Chapter 21, catalysts increase the rate at which equilibrium is
attained but do not affect its position. However, it is important
to note that in industry reactions rarely reach equilibrium,
partly on account of the rates at which reactants mix.

17.4 How equilibria respond to pressure

The equilibrium constant depends on the value of ΔrG
7, which

is defined at a single, standard pressure. The value of ΔrG
7, and

hence of K, is therefore independent of the pressure at which the
equilibrium is actually established. Formally we may express this
independence as

(17.24)

The conclusion that K is independent of pressure does not
necessarily mean that the equilibrium composition is independ-
ent of the pressure, and its effect depends on how the pressure 
is applied. The pressure within a reaction vessel can be increased
by injecting an inert gas into it. However, so long as the gases are
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Fig. 17.7 The model used in the text for exploring the effects of
energy separations and densities of states on equilibria. The
products P can dominate provided ΔE0 is not too large and P 
has an appreciable density of states.
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perfect, this addition of gas leaves all the partial pressures of the
reacting gases unchanged: the partial pressure of a perfect gas 
is the pressure it would exert if it were alone in the container, 
so the presence of another gas has no effect. It follows that 
pressurization by the addition of an inert gas has no effect on 
the equilibrium composition of the system (provided the gases 
are perfect). Alternatively, the pressure of the system may be
increased by confining the gases to a smaller volume (that is, by
compression). Now the individual partial pressures are changed
but their ratio (as it appears in the equilibrium constant) remains
the same. Consider, for instance, the perfect gas equilibrium 
A 5 2 B, for which the equilibrium constant is

The right-hand side of this expression remains constant only if
an increase in pA cancels an increase in the square of pB. This 
relatively steep increase of pA compared to pB will occur if the
equilibrium composition shifts in favour of A at the expense of
B. Then the number of A molecules will increase as the volume
of the container is decreased and its partial pressure will rise
more rapidly than can be ascribed to a simple change in volume
alone (Fig. 17.8).

The increase in the number of A molecules and the corres-
ponding decrease in the number of B molecules in the equilib-
rium A 5 2 B is a special case of a principle proposed by the
French chemist Henri Le Chatelier. Le Chatelier’s principle
states that:

A system at equilibrium, when subjected to a disturbance, 
responds in a way that tends to minimize the effect of the 
disturbance.

The principle implies that, if a system at equilibrium is com-
pressed, then the reaction will adjust so as to minimize the 

K
p

p p
= B

A

2

7

increase in pressure. This it can do by reducing the number of
particles in the gas phase, which implies a shift A ← 2 B.

To treat the effect of compression quantitatively, we suppose
that there is an amount n of A present initially (and no B). At
equilibrium the amount of A is (1 − α)n and the amount of B is
2αn, where α is the extent of dissociation of A into 2B. It follows
that the mole fractions present at equilibrium are

The equilibrium constant for the reaction is

which rearranges to

(17.25)

This formula shows that, even though K is independent of pres-
sure, the amounts of A and B do depend on pressure (Fig. 17.9).
It also shows that, as p is increased, α decreases, in accord with
Le Chatelier’s principle.

l A BRIEF ILLUSTRATION

To predict the effect of compression on the composition of
the ammonia synthesis at equilibrium, N2(g) + 3 H2(g) 5
2 NH3(g), we note that the number of gas molecules decreases
(from 4 to 2). So, Le Chatelier’s principle predicts that an 
increase in pressure will favour the product. The equilibrium
constant, treating all gases as perfect, is
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Fig. 17.8 When a reaction at equilibrium is compressed 
(from a to b), the reaction responds by reducing the number 
of molecules in the gas phase (in this case by producing the
dimers represented by the linked spheres).

0 4 8 12 16
0

0.2

0.4

0.6

0.8

1.0

E
xt

en
t 

o
f 

d
is

so
ci

at
io

n
,

0.1
1.0

10

100

p p/

Q

o–

Fig. 17.9 The pressure dependence of the degree of dissociation,
α, at equilibrium for an A(g) 5 2 B(g) reaction for different
values of the equilibrium constant K. The value α = 0
corresponds to pure A; α = 1 corresponds to pure B.

interActivity Plot xA and xB against the pressure p for 
several values of the equilibrium constant K.
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where Kx is the part of the equilibrium constant expression
that contains the equilibrium mole fractions of reactants and
products (note that, unlike K itself, Kx is not an equilibrium
constant). Therefore, doubling the pressure must increase Kx

by a factor of 4 to preserve the value of K. l

Self-test 17.4 Predict the effect of a compression that results
in a tenfold pressure increase on the equilibrium composi-
tion of the reaction 3 N2(g) + H2(g) 5 2 N3H(g).

[100-fold increase in Kx]

17.5 The response of equilibria to temperature

Le Chatelier’s principle predicts that a system at equilibrium will
tend to shift in the endothermic direction if the temperature is
raised, for then energy is absorbed as heat and the rise in tem-
perature is opposed. Conversely, an equilibrium can be expected
to shift in the exothermic direction if the temperature is lowered,
for then energy is released and the reduction in temperature is
opposed. These conclusions can be summarized as follows:

Exothermic reactions (Δr H 7 < 0): increased temperature
favours the reactants.

Endothermic reactions (Δr H 7 > 0): increased temperature
favours the products.

We shall now justify these remarks and see how to express the
changes quantitatively.

(a) The van ’t Hoff equation

The van ’t Hoff equation, which is derived in the Justification
below, is an expression for the slope of a plot of the equilibrium
constant (specifically, ln K) as a function of temperature. It may
be expressed in either of two ways:

(a) (b) (17.26)

Justification 17.4 The van’t Hoff equation

From eqn 17.13, we know that

Differentiation of ln K with respect to temperature then gives
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The differentials are complete because K and ΔrG
7 depend

only on temperature, not on pressure. To develop this equa-
tion we use the Gibbs–Helmholtz equation (eqn 15.63) in the
form

where ΔrH
7 is the standard reaction enthalpy at the temper-

ature T. Combining the two equations gives the van’t Hoff

equation, eqn 17.26a. The second form of the equation is 
obtained by noting that

, so dT = −T2d(1/T)

It follows that eqn 17.26a can be rewritten as

which simplifies into eqn 17.26b.

Equation 17.26a shows that d ln K/dT < 0 (and therefore that
dK/dT < 0) for an exothermic reaction (ΔrH

7 < 0). A negative
slope means that ln K, and therefore K itself, decreases as the
temperature rises. Therefore, as asserted above, in the case of an
exothermic reaction the equilibrium shifts away from products.
The opposite occurs in the case of endothermic reactions.

Some insight into the thermodynamic basis of this behaviour
comes from the expression ΔrG

7 = Δr H 7 − TΔrS
7 written in the

form −ΔrG
7/T = −Δr H 7/T + ΔrS

7. When the reaction is exother-
mic, −Δr H 7/T corresponds to a positive change of entropy of 
the surroundings and favours the formation of products. When
the temperature is raised, −Δr H 7/T decreases, and the increasing
entropy of the surroundings has a less important role. As a
result, the equilibrium lies less to the right. When the reaction is
endothermic, the principal factor is the increasing entropy of
the reaction system. The importance of the unfavourable change
of entropy of the surroundings is reduced if the temperature is
raised (because then Δr H 7/T is smaller), and the reaction is able
to shift towards products.

From a molecular perspective, consider the typical arrange-
ment of energy levels for an endothermic reaction as shown in
Fig. 17.10a. When the temperature is increased, the Boltzmann
distribution adjusts and the populations change as shown. The
change corresponds to an increased population of the higher 
energy states at the expense of the population of the lower 
energy states. We see that the states that arise from the B mole-
cules become more populated at the expense of the A molecules.
Therefore, the total population of B states increases, and B 
becomes more abundant in the equilibrium mixture. Conversely,
if the reaction is exothermic (Fig. 17.10b), then an increase in
temperature increases the population of the A states (which start
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Self-test 17.5 The equilibrium constant of the reaction 
2 SO2(g) + O2(g) 5 2 SO3(g) is 4.0 × 1024 at 300 K, 2.5 × 1010

at 500 K, and 3.0 × 104 at 700 K. Estimate the reaction
enthalpy at 500 K. [−200 kJ mol−1]

(b) The value of K at different temperatures

To find the value of the equilibrium constant at a temperature
T2 in terms of its value K1 at another temperature T1, we integ-
rate eqn 17.26b between these two temperatures:

(17.27)

If we suppose that Δr H 7 varies only slightly with temperature
over the temperature range of interest, then we may take it 
outside the integral. It follows that

(17.28)

l A BRIEF ILLUSTRATION

To estimate the equilibrium constant for the synthesis of 
ammonia at 500 K from its value at 298 K (6.1 × 105 for the 
reaction N2(g) + 3 H2(g) → 2 NH3(g)) we use the standard
reaction enthalpy, which can be obtained from Table 14.6 
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Fig. 17.10 The effect of temperature on a chemical equilibrium
can be interpreted in terms of the change in the Boltzmann
distribution with temperature and the effect of that change in the
population of the species. (a) In an endothermic reaction, the
population of B increases at the expense of A as the temperature
is raised. (b) In an exothermic reaction, the opposite happens.
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Fig. 17.11 When −ln K is plotted against 1/T, a straight line is
expected with slope equal to ΔrH

7/R if the standard reaction
enthalpy does not vary appreciably with temperature. This is a
non-calorimetric method for the measurement of reaction
enthalpies.

interActivity The equilibrium constant of a reaction is found 
to fit the expression ln K = a + b/(T/K) + c/(T/K)3 over a 

range of temperatures. (a) Write expressions for ΔrH
7 and ΔrS

7. 
(b) Plot ln K against T between 400 K and 600 K for a = −2.0, 
b = −1.0 × 103, and c = 2.0 × 107.

at higher energy) at the expense of the B states, so the reactants
become more abundant.

Example 17.3 Measuring a reaction enthalpy

The data below show the temperature variation of the equi-
librium constant of the reaction Ag2CO3(s) 5 Ag2O(s) +
CO2(g). Calculate the standard reaction enthalpy of the 
decomposition.

T/K 350 400 450 500

K 3.98 × 10−4 1.41 × 10−2 1.86 × 10−1 1.48

Method It follows from eqn 17.26b that, provided the reac-
tion enthalpy can be assumed to be independent of tempera-
ture, a plot of −ln K against 1/T should be a straight line of
slope ΔrH

7/R.

Answer We draw up the following table:

T/K 350 400 450 500

(103 K)/T 2.86 2.50 2.22 2.00

−ln K 7.83 4.26 1.68 −0.39

These points are plotted in Fig. 17.11. The slope of the graph
is +9.6 × 103 K, so

Δr H 7 = (+9.6 × 103 K) × R = +80 kJ mol−1

The temperature dependence of the equilibrium constant
provides a non-calorimetric method of determining ΔrH

7. A
drawback is that the reaction enthalpy is actually temperature
dependent, so the plot is not expected to be perfectly linear.
However, the temperature dependence is weak in many cases,
so the plot is reasonably straight. In practice, the method is
not very accurate, but it is often the only method available.
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in the Data section by using ΔrH
7 = 2ΔfH

7(NH3,g), and assume
that its value is constant over the range of temperatures.
Then, with Δr H 7 = −92.2 kJ mol−1, from eqn 17.28 we find

= −1.71

It follows that K2 = 0.18, a lower value than at 298 K, as 
expected for this exothermic reaction. l

Self-test 17.6 The equilibrium constant for N2O4(g) 5
2 NO2(g) was calculated in Self-test 17.1. Estimate its value 
at 100°C. [15]

Knowledge of the temperature dependence of the equilibrium
constant for a reaction can be useful in the design of laboratory
and industrial processes. For example, synthetic chemists can
improve the yield of a reaction by changing the temperature 
of the reaction mixture. Also, reduction of a metal oxide with
carbon or carbon monoxide results in the extraction of the
metal when the process is carried out at a temperature for which
K >> 1.

Electrochemistry

We shall now see how the foregoing ideas, with certain changes
of technical detail, can be used to describe the equilibrium prop-
erties of reactions taking place in electrochemical cells. The abil-
ity to make very precise measurements of currents and potential
differences (‘voltages’) means that electrochemical methods can
be used to determine thermodynamic properties of reactions
that may be inaccessible by other methods.

An electrochemical cell consists of two electrodes, or metallic
conductors, in contact with an electrolyte, an ionic conductor
(which may be a solution, a liquid, or a solid). An electrode and
its electrolyte comprise an electrode compartment. The two
electrodes may share the same compartment. The various kinds
of electrode are summarized in Table 17.1. Any ‘inert metal’
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shown as part of the specification is present to act as a source or
sink of electrons, but takes no other part in the reaction other
than acting as a catalyst for it. If the electrolytes are different, the
two compartments may be joined by a salt bridge, which is 
a tube containing a concentrated electrolyte solution (almost 
always potassium chloride in agar jelly) that completes the elec-
trical circuit and enables the cell to function. A galvanic cell is an
electrochemical cell that produces electricity as a result of the
spontaneous reaction occurring inside it. An electrolytic cell is
an electrochemical cell in which a nonspontaneous reaction is
driven by an external source of current.

17.6 Half-reactions and electrodes

It will be familiar from introductory chemistry courses that oxi-
dation is the removal of electrons from a species, a reduction is
the addition of electrons to a species, and a redox reaction is a
reaction in which there is a transfer of electrons from one species
to another. The electron transfer may be accompanied by other
events, such as atom or ion transfer, but the net effect is electron
transfer and hence a change in oxidation number of an element.
The reducing agent (or ‘reductant’) is the electron donor; the
oxidizing agent (or ‘oxidant’) is the electron acceptor. It should
also be familiar that any redox reaction may be expressed as the
difference of two reduction half-reactions, which are conceptual
reactions showing the gain of electrons. Even reactions that are
not redox reactions may often be expressed as the difference of
two reduction half-reactions. The reduced and oxidized species
in a half-reaction form a redox couple. In general we write a couple
as Ox/Red and the corresponding reduction half-reaction as

Ox + ν e− → Red (17.29)

l A BRIEF ILLUSTRATION

The dissolution of silver chloride in water AgCl(s) → Ag+(aq)
+ Cl−(aq), which is not a redox reaction, can be written as the
difference of the following two reduction half-reactions:

AgCl(s) + e− → Ag(s) + Cl−(aq)
Ag+(aq) + e− → Ag(s)

The redox couples are AgCl/Ag,Cl− and Ag+/Ag, respectively. l

Table 17.1 Varieties of electrode

Electrode type Designation Redox couple Half-reaction

Metal/metal ion M(s)|M+(aq) M+/M M+(aq) + e− → M(s)

Gas Pt(s)|X2(g)|X+(aq) X+/X2 X+(aq) + e− → 1–2 X2(g)

Pt(s)|X2(g)|X−(aq) X2/X− 1–2 X2(g) + e− → X−(aq)

Metal/insoluble salt M(s)|MX(s)|X−(aq) MX/M,X− MX(s) + e− → M(s) + X−(aq)

Redox Pt(s)|M+(aq),M2+(aq) M2+/M+ M2+(aq) + e− → M+(aq)
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Self-test 17.7 Express the formation of H2O from H2 and O2

in acidic solution (a redox reaction) as the difference of two
reduction half-reactions.

[4 H+(aq) + 4 e− → 2 H2(g), 
O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l)]

We shall often find it useful to express the composition of 
an electrode compartment in terms of the reaction quotient, Q,
for the half-reaction. This quotient is defined like the reaction
quotient for the overall reaction, but the electrons are ignored.

l A BRIEF ILLUSTRATION

The reaction quotient for the reduction of O2 to H2O in acid
solution, O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l), is

The approximations used in the second step are that the 
activity of water is 1 (because the solution is dilute) and the
oxygen behaves as a perfect gas, so aO2

≈ pO2
/p7. l

Self-test 17.8 Write the half-reaction and the reaction quo-
tient for a chlorine gas electrode.

[Cl2(g) + 2 e− → 2 Cl−(aq), Q = a 2
Cl−/aCl2

≈ a 2
Cl−p

7/pCl2
]

The reduction and oxidation processes responsible for the
overall reaction in a cell are separated in space: oxidation takes
place at one electrode and reduction takes place at the other. 
As the reaction proceeds, the electrons released in the oxidation
Red1 → Ox1 + ν e− at one electrode travel through the external
circuit and re-enter the cell through the other electrode. There
they bring about reduction Ox2 + ν e− → Red2. The electrode at
which oxidation occurs is called the anode; the electrode at which
reduction occurs is called the cathode. In a galvanic cell, the
cathode has a higher potential than the anode: the species under-
going reduction, Ox2, withdraws electrons from its electrode
(the cathode, Fig. 17.12), so leaving a relative positive charge on
it (corresponding to a high potential). At the anode, oxidation
results in the transfer of electrons to the electrode, so giving it a
relative negative charge (corresponding to a low potential).

17.7 Varieties of cells

The simplest type of cell has a single electrolyte common to 
both electrodes (as in Fig. 17.12). In some cases it is necessary to
immerse the electrodes in different electrolytes, as in the ‘Daniell
cell’ in which the redox couple at one electrode is Cu2+/Cu and
at the other is Zn2+/Zn (Fig. 17.13). In an electrolyte concentra-
tion cell, the electrode compartments are identical except for the
concentrations of the electrolytes. In an electrode concentration
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cell, the electrodes themselves have different concentrations, 
either because they are gas electrodes operating at different pres-
sures or because they are amalgams (solutions in mercury) with
different concentrations.

(a) Liquid junction potentials

In a cell with two different electrolyte solutions in contact, as in
the Daniell cell, there is an additional source of potential differ-
ence across the interface of the two electrolytes. This potential 
is called the liquid junction potential, Elj. Another example of 
a junction potential is that between different concentrations 
of hydrochloric acid. At the junction, the mobile H+ ions diffuse
into the more dilute solution. The bulkier Cl− ions follow, but
initially do so more slowly, which results in a potential difference

Reduction

Anode Cathode
– +

Electrons

Oxidation

Fig. 17.12 When a spontaneous reaction takes place in a 
galvanic cell, electrons are deposited in one electrode (the site 
of oxidation, the anode) and collected from another (the site 
of reduction, the cathode), and so there is a net flow of current
which can be used to do work. Note that the + sign of the
cathode can be interpreted as indicating the electrode at which
electrons enter the cell, and the − sign of the anode is where the
electrons leave the cell.

Zinc

Copper

Zinc sulfate solution

Copper(II) sulfate solution

Porous pot

+-

Fig. 17.13 One version of the Daniell cell. The copper electrode is
the cathode and the zinc electrode is the anode. Electrons leave
the cell from the zinc electrode and enter it again through the
copper electrode.
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at the junction. The potential then settles down to a value such
that, after that brief initial period, the ions diffuse at the same
rates. Electrolyte concentration cells always have a liquid junction;
electrode concentration cells do not.

The contribution of the liquid junction to the potential can be
reduced (to about 1 to 2 mV) by joining the electrolyte com-
partments through a salt bridge (Fig. 17.14). The reason for the
success of the salt bridge is that the liquid junction potentials at
either end are largely independent of the concentrations of the
two dilute solutions, and so nearly cancel.

(b) Notation

In the notation for cells, phase boundaries are denoted by a 
vertical bar. For example, the cell corresponding to the redox 
reaction AgCl(s) + 1–2 H2(g) → Ag(s) + HCl(aq) and using a Pt 
electrode is denoted

Pt(s)|H2(g)|HCl(aq)|AgCl(s)|Ag(s)

A liquid junction is denoted by �, so the cell in Fig. 17.13, is 
denoted

Zn(s)|ZnSO4(aq)�CuSO4(aq)|Cu(s)

A double vertical line, ||, denotes an interface for which it is 
assumed that the junction potential has been eliminated. Thus
the cell in Fig. 17.14 is denoted

Zn(s)|ZnSO4(aq)||CuSO4(aq)|Cu(s)

An example of an electrolyte concentration cell in which the 
liquid junction potential is assumed to be eliminated is

Pt(s)|H2(g)|HCl(aq, b1)||HCl(aq, b2)|H2(g)|Pt(s)

17.8 The cell potential

The current produced by a galvanic cell arises from the spontan-
eous chemical reaction taking place inside it. The cell reaction is
the reaction in the cell written on the assumption that the right-
hand electrode is the cathode, and hence that the spontaneous

reaction is one in which reduction is taking place in the right-
hand compartment. Later we see how to predict if the right-hand
electrode is in fact the cathode; if it is, then the cell reaction is
spontaneous as written. If the left-hand electrode turns out to be
the cathode, then the reverse of the corresponding cell reaction
is spontaneous.

To write the cell reaction corresponding to a cell diagram, we
first write the right-hand half-reaction as a reduction (because
we have assumed that to be spontaneous). Then we subtract
from it the left-hand reduction half-reaction (for, by implica-
tion, that electrode is the site of oxidation). Thus, in the cell
Zn(s)|ZnSO4(aq)||CuSO4(aq)|Cu(s) the two electrodes and their
reduction half-reactions are

Right-hand electrode: Cu2+(aq) + 2 e− → Cu(s)
Left-hand electrode: Zn2+(aq) + 2 e− → Zn(s)

Hence, the overall cell reaction is the difference:

Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq)

(a) The Nernst equation

A cell in which the overall cell reaction has not reached chemical
equilibrium can do electrical work as the reaction drives electrons
through an external circuit. The work that a given transfer of ele-
ctrons can accomplish depends on the potential difference between
the two electrodes. When this potential difference is large, a given
number of electrons travelling between the electrodes can do a
large amount of electrical work. When the potential difference is
small, the same number of electrons can do only a small amount
of work. A cell in which the overall reaction is at equilibrium can
do no work, and then its potential difference is zero.

According to the discussion in Section 15.5, we know that the
maximum non-expansion work, which in the current context is
electrical work, that a system (the cell) can do is given by eqn
15.49b (wadd,max = ΔG), with ΔG identified (as we shall show) with
the Gibbs energy of the cell reaction, ΔrG. It follows that, to draw
thermodynamic conclusions from measurements of the work a
cell can do, we must ensure that the cell is operating reversibly,
for only then is it producing maximum work. Moreover, we saw
in Section 17.1 that the reaction Gibbs energy is actually a prop-
erty relating to a specified composition of the reaction mixture.
Therefore, to make use of ΔrG we must ensure that the cell is 
operating reversibly at a specific, constant composition. Both these
conditions are achieved by measuring the potential difference
generated by the cell when it is balanced by an exactly opposing
source of potential so that the cell reaction occurs reversibly, the
composition is constant, and no current flows: in effect, the cell
reaction is poised for change, but not actually changing. The 
resulting potential difference is called the cell potential, Ecell.

1

Electrode Electrode
Salt bridge

Electrode
compartments

Zn

ZnSO (aq)4 CuSO (aq)4

Cu

Fig. 17.14 The salt bridge, essentially an inverted U-tube full of
concentrated salt solution in a jelly, has two opposing liquid
junction potentials that almost cancel.

1 The cell potential was formerly and is still widely called the electromotive force
(emf). That name has fallen out of favour with the IUPAC because the cell 
potential is not a force.
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As we show in the following Justification, the relation between
the reaction Gibbs energy and the cell potential is

−νFEcell = ΔrG (17.30)

where F is Faraday’s constant, F = eNA, and ν is the stoichio-
metric coefficient of the electrons in the half-reactions into
which the cell reaction can be divided. This equation is the key
connection between electrical measurements on the one hand
and thermodynamic properties on the other. It will be the basis
of all that follows.

Justification 17.5 The relation between the cell potential and
the reaction Gibbs energy

We consider the change in G when the cell reaction advances
by an infinitesimal amount dξ at some composition. From
eqn 17.1 we can write (at constant temperature and pressure)

dG = ΔrGdξ

The maximum non-expansion (electrical) work that the 
reaction can do as it advances by dξ at constant temperature
and pressure is therefore

dwe = ΔrGdξ

This work is infinitesimal, and the composition of the system
is virtually constant when it occurs.

Suppose that the reaction advances by dξ, then νdξ elec-
trons must travel from the anode to the cathode. The total
charge transported between the electrodes when this change
occurs is −νeNAdξ (because νdξ is the amount of electrons
and the charge per mole of electrons is −eNA). Hence, the
total charge transported is −νFdξ because eNA = F. The work
done when an infinitesimal charge −νFdξ travels from the
anode to the cathode is equal to the product of the charge and
the potential difference Ecell:

dwe = −νFEcelldξ

When we equate this relation to the one above (dwe = ΔrGdξ),
the advancement dξ cancels, and we obtain eqn 17.30.

It follows from eqn 17.30 that, by knowing the reaction Gibbs
energy at a specified composition, we can state the cell potential
at that composition. Note that a negative reaction Gibbs energy,
corresponding to a spontaneous cell reaction, corresponds to a
positive cell potential. Another way of looking at the content 
of eqn 17.30 is that it shows that the driving power of a cell is
proportional to the slope of the Gibbs energy with respect to the 
extent of reaction. It is plausible that a reaction that is far from
equilibrium (when the slope is steep) has a strong tendency to
drive electrons through an external circuit (Fig. 17.15). When
the slope is close to zero (when the cell reaction is close to equi-
librium), the cell potential is small.

l A BRIEF ILLUSTRATION

Equation 17.30 provides an electrical method for measuring
a reaction Gibbs energy at any composition of the reaction
mixture: we simply measure the cell potential and convert it
to ΔrG. Conversely, if we know the value of ΔrG at a particu-
lar composition, then we can predict the cell potential. For
example, if ΔrG = −1 × 102 kJ mol−1 and ν = 1, then

where we have used 1 J = 1 C V. l

We can go on to relate the cell potential to the activities of the
participants in the cell reaction. We know that the reaction
Gibbs energy is related to the composition of the reaction mix-
ture by eqn 17.9 (ΔrG = ΔrG

7 + RT ln Q); it follows, on division
of both sides by −νF, that

The first term on the right is written

[17.31]

and called the standard cell potential. That is, the standard cell
potential is the standard reaction Gibbs energy expressed as a
potential (in volts). It follows that

(17.32)

This equation for the cell potential in terms of the composition
is called the Nernst equation; the dependence on composition
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Fig. 17.15 A spontaneous reaction occurs in the direction of
decreasing Gibbs energy. When expressed in terms of a cell
potential, the spontaneous direction of change can be expressed
in terms of the cell potential, Ecell. The reaction is spontaneous 
as written (from left to right in the figure) when Ecell > 0. The
reverse reaction is spontaneous when Ecell < 0. When the cell
reaction is at equilibrium, the cell potential is zero.
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that it predicts is summarized in Fig. 17.16. One important 
application of the Nernst equation is to the determination of the
pH of a solution and, with a suitable choice of electrodes, of the
concentration of other ions.

We see from eqn 17.32 that the standard cell potential (which
will shortly move to centre stage of the exposition) can be inter-
preted as the cell potential when all the reactants and products in
the cell reaction are in their standard states, for then all activities
are 1, so Q = 1 and ln Q = 0. However, the fact that the standard
cell potential is merely a disguised form of the standard reaction
Gibbs energy (eqn 17.31) should always be kept in mind and 
underlies all its applications.

l A BRIEF ILLUSTRATION

Because RT/F = 25.7 mV at 25°C, a practical form of the
Nernst equation is

It then follows that, for a reaction in which ν = 1, if Q is 
increased by a factor of 10, then the cell potential decreases 
by 59.2 mV. l

(b) Cells at equilibrium

A special case of the Nernst equation has great importance 
in electrochemistry and provides a link to the earlier part of the
chapter. Suppose the reaction has reached equilibrium; then 
Q = K, where K is the equilibrium constant of the cell reaction.
However, a chemical reaction at equilibrium cannot do work,

  
E E Qcell cell

25.7 mV
= −7

ν
ln

and hence it generates zero potential difference between the
electrodes of a galvanic cell. Therefore, setting Ecell = 0 and Q = K
in the Nernst equation gives

(17.33)

This very important equation (which could also have been 
obtained more directly by substituting eqn 17.31 into eqn 17.13)
lets us predict equilibrium constants from measured standard
cell potentials. However, before we use it extensively, we need to
establish a further result (in Section 17.9, after the following
Impact section).

l A BRIEF ILLUSTRATION

Because the standard potential of the Daniell cell is +1.10 V,
the equilibrium constant for the cell reaction Cu2+(aq) +
Zn(s) → Cu(s) + Zn2+(aq), for which ν = 2, is K = 1.6 × 1037

at 298 K. We conclude that the displacement of copper by
zinc goes virtually to completion. Note that a cell potential of
about 1 V is easily measurable but corresponds to an equilib-
rium constant that would be impossible to measure by direct
chemical analysis. l

IMPACT ON ENGINEERING

I17.2 Fuel cells

A fuel cell operates like a conventional galvanic cell with the
exception that the reactants are supplied from outside rather
than forming an integral part of its construction. A fundamental
and important example of a fuel cell is the hydrogen/oxygen cell,
such as the ones used in the Apollo Moon missions. One of the
electrolytes used is concentrated aqueous potassium hydroxide
maintained at 200°C and 20–40 atm; the electrodes may be
porous nickel in the form of sheets of compressed powder. The
cathode reaction is the reduction

O2(g) + 2 H2O(l) + 4 e− → 4 OH−(aq) E 7 = +0.40 V

and the anode reaction is the oxidation

H2(g) + 2 OH−(aq) → 2 H2O(l) + 2 e−

For the corresponding reduction, E 7 = −0.83 V. Because the
overall reaction

2 H2(g) + O2(g) → 2 H2O(l) E 7 = +1.23 V

is exothermic, it is less favourable thermodynamically at 200°C
than at 25°C, so the cell potential is lower at the higher tem-
perature. However, the increased pressure compensates for the 
increased temperature, and at 200°C and 40 atm E ≈ +1.2 V.

A property that determines the efficiency of an electrode is the
current density, the electric current flowing through a region of
an electrode divided by the area of the region. One advantage of
the hydrogen/oxygen system is the large exchange current density,
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Fig. 17.16 The variation of cell potential with the value of the
reaction quotient for the cell reaction for different values of ν
(the number of electrons transferred). At 298 K, RT/F = 25.69 mV,
so the vertical scale refers to multiples of this value.

interActivity Plot the variation of cell potential with the 
value of the reaction quotient for the cell reaction for 

different values of the temperature. Does the cell potential
become more or less sensitive to composition as the 
temperature increases?
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the magnitude of the equal but opposite current densities when
the electrode is at equilibrium, of the hydrogen reaction. Unfor-
tunately, the oxygen reaction has an exchange current density of
only about 0.1 nA cm−2, which limits the current available from
the cell. One way round the difficulty is to use a catalytic surface
with a large surface area. One type of highly developed fuel cell
has phosphoric acid as the electrolyte and operates with hydro-
gen and air at about 200°C; the hydrogen is obtained from a 
reforming reaction on natural gas

Anode: 2 H2(g) → 4 H+(aq) + 4 e−

Cathode: O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l)

This fuel cell has shown promise for combined heat and power
systems (CHP systems). In such systems, the waste heat is used 
to heat buildings or to do work. Efficiency in a CHP plant can
reach 80 per cent. The power output of batteries of such cells 
has reached the order of 10 MW. Although hydrogen gas is an 
attractive fuel, it has disadvantages for mobile applications: it 
is difficult to store and dangerous to handle. One possibility for
portable fuel cells is to store the hydrogen in carbon nanotubes.
It has been shown that carbon nanofibres in herringbone pat-
terns can store huge amounts of hydrogen and result in energy
densities twice that of gasoline.

Cells with molten carbonate electrolytes at about 600°C can
make use of natural gas directly. Until these materials have 
been developed, one attractive fuel is methanol, which is easy to
handle and is rich in hydrogen atoms:

Anode: CH3OH(l) + 6 OH−(aq) → 5 H2O(l) + CO2(g) + 6 e−

Cathode: O2(g) + 4 e− + 2 H2O(l) → 4 OH−(aq)

One disadvantage of methanol, however, is the phenomenon 
of ‘electro-osmotic drag’ in which protons moving through the
polymer electrolyte membrane separating the anode and cathode
carry water and methanol with them into the cathode compart-
ment where the potential is sufficient to oxidize CH3OH to CO2,
so reducing the efficiency of the cell. Solid ionic conducting
oxide cells operate at about 1000°C and can use hydrocarbons
directly as fuel.

17.9 Standard electrode potentials

A galvanic cell is a combination of two electrodes, and each one
can be considered as making a characteristic contribution to the
overall cell potential, which is then the difference of the two 
contributions:

Red1,Ox1||Red2,Ox2 Ecell = E2 − E1 (17.34)

Here E2 is the potential of the right-hand electrode (of the cell as
written) and E1 is that of the left-hand electrode. Although it is
not possible to measure the contribution of a single electrode,
we can define the potential of one of the electrodes as zero and

then assign values to others on that basis. The specially selected
electrode is the standard hydrogen electrode (SHE):

Pt(s)|H2(g)|H+(aq) E 7 = 0 [17.35]

at all temperatures. To achieve the standard conditions, the 
activity of the hydrogen ions must be 1 (that is, pH = 0) and 
the pressure of the hydrogen gas must be 1 bar. The standard
potential, E7, of another couple is then assigned by constructing
a cell in which it is the right-hand electrode and the standard 
hydrogen electrode is the left-hand electrode.

The procedure for measuring a standard potential can be 
illustrated by considering a specific case, the silver chloride elec-
trode. The measurement is made on the ‘Harned cell’:

Pt(s)|H2(g)|HCl(aq)|AgCl(s)|Ag(s)
1–2 H2(g) + AgCl(s) → HCl(aq) + Ag(s)

for which the Nernst equation is

We shall set aH2
= 1 from now on, and for simplicity write the

standard cell potential as E 7
cell; then

The activities can be expressed in terms of the molality b of
HCl(aq) through aH+ = γ±b/b7 and aCl− = γ±b/b7 (as we saw in
Section 16.6e), so

where for simplicity we have replaced b/b7 by b. This expression
rearranges to

{17.36}

From the Debye–Hückel limiting law for a 1,1-electrolyte
(Section 16.6e; a 1,1-electrolyte is a solution of singly charged
M+ and X− ions), we know that ln γ± ∝ −b1/2. The natural loga-
rithm used here is proportional to the common logarithm that
appears in eqn 16.56 (because ln x = ln 10 log x = 2.303 log x).
Therefore, with the constant of proportionality in this relation
written as (F/2RT)C, eqn 17.36 becomes

{17.37}

The expression on the left is evaluated at a range of molalities,
plotted against b1/2, and extrapolated to b = 0. The intercept at
b1/2 = 0 is the value of E 7 for the silver/silver-chloride electrode.
In precise work, the b1/2 term is brought to the left, and a higher
order correction term from the extended Debye–Hückel law is
used on the right.
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l A BRIEF ILLUSTRATION

The potential of the cell Pt(s)|H2(g, p7)|HCl(aq, b)|AgCl(s)|
Ag(s) at 25°C has the following values:

b/(10−3 b7) 3.215 5.619 9.138 25.63

Ecell/V 0.52053 0.49257 0.46860 0.41824

To determine the standard cell potential we draw up the fol-
lowing table, using 2RT/F = 0.051 39 V:

b/(10−3 b7) 3.215 5.619 9.138 25.63

{b/(10−3 b7)}1/2 1.793 2.370 3.023 5.063

Ecell/V 0.52053 0.49257 0.46860 0.41824

Ecell/V + 0.051 39 ln b 0.2256 0.2263 0.2273 0.2299

The data are plotted in Fig. 17.17; as can be seen, they 
extrapolate to E 7

cell = 0.2232 V, which we identify as the value
of E7(Ag,AgCl,Cl−). l

Self-test 17.9 The data below are for the cell Pt(s)|H2(g, p7)|
HBr(aq, b)|AgBr(s)|Ag(s) at 25°C. Determine the standard
potential of the cell.

b/(10−4 b7) 4.042 8.444 37.19

Ecell/V 0.47381 0.43636 0.36173
[0.071 V]

Table 17.2 lists the standard potentials of a number of elec-
trodes at 298 K. An important feature of standard cell potentials
and standard electrode potentials is that they are unchanged if
the chemical equation for the cell reaction or a half-reaction is
multiplied by a numerical factor. A numerical factor increases
the value of the standard Gibbs energy for the reaction. How-
ever, it also increases the number of electrons transferred by the
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Fig. 17.17 The plot and the extrapolation used for the
experimental measurement of a standard cell potential. The
intercept at b1/2 = 0 is E 7

cell.

interActivity For the cell described by Fig. 17.17 and the 
corresponding brief illustration, plot a family of curves of 

E against b/b7 for several values of the temperature T.

Synoptic table 17.2* Standard potentials at 298 K

Couple E 7/V

Ce4+(aq) + e− → Ce3+(aq) +1.61

Cu2+(aq) + 2 e− → Cu(s) +0.34

AgCl(s) + e− → Ag(s) + Cl−(aq) +0.22

H+(aq) + e− → 1–2 H2(g) 0

Zn2+(aq) + 2 e− → Zn(s) −0.76

Na+(aq) + e− → Na(s) −2.71

* More values are given in the Data section.

same factor, and by eqn 17.30 the value of E7 remains unchanged.
A practical consequence is that a cell potential is independent of
the physical size of the cell. In other words, cell potential is an 
intensive property.

The standard potentials in Table 17.2 may be combined to
give values for couples that are not listed there. However, to do
so, we must take into account the fact that different couples may
correspond to the transfer of different numbers of electrons.
The procedure is illustrated in the following example.

Example 17.4 Evaluating a standard potential from two others

Given that the standard potentials of the Cu2+/Cu and
Cu+/Cu couples are +0.340 V and +0.522 V, respectively,
evaluate E 7(Cu2+,Cu+).

Method First, we note that reaction Gibbs energies may be
added (as in a Hess’s law analysis of reaction enthalpies).
Therefore, we should convert the E 7 values to ΔG 7 values by
using eqn 17.30, add them appropriately, and then convert
the overall ΔG 7 to the required E 7 by using eqn 17.30 again.
This roundabout procedure is necessary because, as we shall see,
although the factor F cancels, the factor ν in general does not.

Answer The electrode reactions are as follows:

(a) Cu2+(aq) + 2 e− → Cu(s)
E 7 = +0.340 V, so ΔrG

7 = −2(0.340 V)F

(b) Cu+(aq) + e− → Cu(s)
E 7 = +0.522 V, so ΔrG

7 = −(0.522 V)F

The required reaction is

(c) Cu2+(aq) + e− → Cu+(aq) E 7 = −ΔrG
7/F

Because (c) = (a) − (b), the standard Gibbs energy of reaction
(c) is

ΔrG
7 = ΔrG

7 (a) − ΔrG
7(b) = −(0.158 V) × F
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of K is obtained by doing the calculations we have described 
previously. For example, to determine whether zinc can displace
magnesium from aqueous solutions at 298 K, we note that 
zinc lies above magnesium in the electrochemical series, so zinc
cannot reduce magnesium ions in aqueous solution. Zinc can 
reduce hydrogen ions, because hydrogen lies higher in the series.
However, even for reactions that are thermodynamically favour-
able, there may be kinetic factors that result in very slow rates of
reaction.

(b) The determination of activity coefficients

Once the standard potential of an electrode in a cell is known, we
can use it to determine mean activity coefficients by measuring
the cell potential with the ions at the concentration of interest.
For example, the mean activity coefficient of the ions in hydro-
chloric acid of molality b is obtained from eqn 17.36 in the form

{17.39}

once Ecell has been measured.

(c) The determination of equilibrium constants

The principal use for standard potentials is to calculate the stand-
ard potential of a cell formed from any two electrodes. To do so,

ln
/

lnγ ± =
−

−
E E

RT F
bcell cell

7

2

Table 17.3 The electrochemical
series of the metals*

Least strongly reducing

Gold

Platinum

Silver

Mercury

Copper

(Hydrogen)

Lead

Tin

Nickel

Iron

Zinc

Chromium

Aluminium

Magnesium

Sodium

Calcium

Potassium

Most strongly reducing

* Additional metals can be inserted into the
series by considering the data in Table 17.2.

Therefore, E 7 = +0.158 V. Note that the generalization of the
calculation we just performed, since (a) = (b) + (c), is

νaE
7(a) = νbE 7(b) + νcE

7(c)

A note on good practice Whenever combining standard 
potentials to obtain the standard potential of a third couple,
always work via the Gibbs energies because they are additive,
whereas, in general, standard potentials are not.

Self-test 17.10 Calculate the standard potential of the Fe3+/Fe
couple from the values for the Fe3+/Fe2+ and Fe2+/Fe couples.

[−0.037 V]

17.10 Applications of standard potentials

Cell potentials are a convenient source of data on equilibrium
constants and the Gibbs energies, enthalpies, and entropies of
reactions. In practice the standard values of these quantities are
the ones normally determined.

(a) The electrochemical series

We have seen that for two redox couples, Ox1/Red1 and Ox2/Red2,
the cell potential is given by eqn 17.34; for their standard values

Red1,Ox1||Red2,Ox2 E 7
cell = E 2

7 − E 1
7 (17.38a)

It follows that the cell reaction

Red1 + Ox2 → Ox1 + Red2 (17.38b)

is spontaneous as written if E 7
cell > 0, and therefore if E 2

7 > E 1
7.

Because in the cell reaction Red1 reduces Ox2, we can conclude
that

Red1 has a thermodynamic tendency to reduce Ox2 if E1
7 < E2

7

More briefly: low reduces high. The reactions of the electron
transport chains of respiration are good applications of this
principle (see Impact I17.3).

l A BRIEF ILLUSTRATION

Because E 7(Zn2+,Zn) = −0.76 V < E 7(Cu2+,Cu) = +0.34 V,
zinc has a thermodynamic tendency to reduce Cu2+ ions in
aqueous solution. l

Table 17.3 shows a part of the electrochemical series, the
metallic elements (and hydrogen) arranged in the order of their
reducing power as measured by their standard potentials in
aqueous solution. A metal low in the series (with a lower stand-
ard potential) can reduce the ions of metals with higher standard
potentials. This conclusion is qualitative. The quantitative value
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we subtract the standard potential of the left-hand electrode
from the standard potential of the right-hand electrode, E 7

cell =
E 7(right) − E 7(left). Because ΔG 7 = −νFE 7

cell, it then follows that
if the result gives E 7

cell > 0, then the corresponding cell reaction
has K > 1.

l A BRIEF ILLUSTRATION

A disproportionation is a reaction in which a species is 
both oxidized and reduced. To study the disproportionation
2 Cu+(aq) → Cu(s) + Cu2+(aq) we combine the following 
electrodes:

Right-hand electrode: Cu(s)|Cu+(aq)
Cu+(aq) + e− → Cu(aq) E 7 = +0.52 V

Left-hand electrode: Pt(s)|Cu2+(aq),Cu+(aq)
Cu2+(aq) + e− → Cu+(s) E 7 = +0.16 V

where the standard potentials are measured at 298 K. The
standard cell potential is therefore

E 7
cell = +0.52 V − 0.16 V = +0.36 V

We can now calculate the equilibrium constant of the cell 
reaction. Because ν = 1, from eqn 17.33

Hence, K = 1.2 × 106. l

Self-test 17.11 Calculate the solubility constant (the equi-
librium constant for the reaction Hg2Cl2(s) 5 Hg 2

2+(aq) +
2 Cl−(aq)) and the solubility of mercury(I) chloride at 298.15 K
assuming activity coefficients of 1. Hint. The mercury(I) ion
is the diatomic species Hg 2

2+.
[2.6 × 10−18, 8.7 × 10−7 mol kg−1]

(d) The determination of thermodynamic functions

The standard cell potential is related to the standard reaction
Gibbs energy through eqn 17.30 (ΔrG

7 = −νFE 7
cell). Therefore, 

by measuring E 7
cell we can obtain this important thermodynamic

quantity. Its value can then be used to calculate the Gibbs energy
of formation of ions by using the convention explained in
Section 15.6.

The temperature coefficient of the standard cell potential,
dE 7

cell/dT, gives the standard entropy of the cell reaction. This
conclusion follows from the thermodynamic relation (∂G/∂T)p

= −S and eqn 17.30, which combine to give

(17.40)

The derivative is complete because E 7
cell, like ΔrG

7, is independ-
ent of the pressure. Hence we have an electrochemical technique

  

d

d
cell rE

T

S

F

7 7
=

Δ
ν

 
ln

.
K = =

0.36 V

0.025693 V 0.025693

0 36

for obtaining standard reaction entropies and through them the
entropies of ions in solution.

Finally, we can combine the results obtained so far and use
them to obtain the standard reaction enthalpy:

(17.41)

This expression provides a non-calorimetric method for meas-
uring Δr H 7 and, through the convention Δf H

7(H+, aq) = 0, the
standard enthalpies of formation of ions in solution (Section 14.8).
Thus, electrical measurements can be used to calculate all the
thermodynamic properties with which this chapter began.

Example 17.5 Using the temperature coefficient of the cell
potential

The standard potential of the cell Pt(s)|H2(g)|HBr(aq)|
AgBr(s)|Ag(s) was measured over a range of temperatures,
and the data were fitted to the following polynomial:

E 7
cell/V = 0.07131 − 4.99 × 10−4(T/K − 298) 

− 3.45 × 10−6(T/K − 298)2

Evaluate the standard reaction Gibbs energy, enthalpy, and
entropy at 298 K of the reaction AgBr(s) + 1–2 H2(g) → Ag(s) +
HBr(aq).

Method The standard Gibbs energy of reaction is obtained
by using eqn 17.30 after evaluating E 7

cell at 298 K and by using
1 V C = 1 J. The standard entropy of reaction is obtained
by using eqn 17.40, which involves differentiating the poly-
nomial with respect to T and then setting T = 298 K. The 
reaction enthalpy is obtained by combining the values of the
standard Gibbs energy and entropy.

Answer At T = 298 K, E 7
cell = +0.07131 V, so

ΔrG
7 = −νFE 7

cell = −(1) × (9.6485 × 104 C mol−1)  
× (+0.07131 V)

= −6.880 × 103 V C mol−1 = −6.880 kJ mol−1

The temperature coefficient of the standard cell potential is

= −4.99 × 10−4 V K−1

− 2(3.45 × 10−6)(T/K − 298) V K−1

At T = 298 K this expression evaluates to

= −4.99 × 10−4 V K−1

So, from eqn 17.40, the reaction entropy is

ΔrS
7 = 1 × (9.6485 × 104 C mol−1) × (−4.99 × 10−4 V K−1)

= −48.1 J K−1 mol−1

  

d

d
cellE

T

7
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d
cellE

T

7
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Reduced Q migrates to complex III (Q-cytochrome c oxido-
reductase), which catalyses the reduction of the protein cyto-
chrome c (Cyt c). Cytochrome c contains the haem c group (5),
the central iron ion of which can exist in oxidation states +3 and
+2. The net reaction catalysed by complex III is

QH2 + 2 Fe3+(Cyt c) ffffg Q + 2 Fe2+(Cyt c) + 2 H+

E ⊕
cell = +0.15 V, ΔrG

⊕ = −29 kJ mol−1

Additional Q molecules are reduced by FADH2 in complex II
(succinate-Q reductase):

FADH2 + Q fffg FAD + QH2

E ⊕
cell = +0.32 V, ΔrG

⊕ = −62 kJ mol−1

It then follows that

Δr H 7 = ΔrG
7 + TΔrS

7

= −6.880 kJ mol−1 + (298 K) × (−0.0481 kJ K−1 mol−1)
= −21.2 kJ mol−1

One difficulty with this procedure lies in the accurate meas-
urement of small temperature coefficients of the cell poten-
tial. Nevertheless, it is another example of the striking ability
of thermodynamics to relate the apparently unrelated, in this
case to relate electrical measurements to thermal properties.

Self-test 17.12 Predict the standard potential of the Harned
cell at 303 K from tables of thermodynamic data.

[+0.219 V]

IMPACT ON BIOLOGY

I17.3 The respiratory chain

In the exergonic oxidation of glucose, 24 electrons are transferred
from each C6H12O6 molecule to six O2 molecules. The electrons
do not flow directly from glucose to O2. During glycolysis and
the citric acid cycle, glucose is oxidized to CO2 by NAD+ and FAD:

C6H12O6(s) + 10 NAD+ + 2 FAD + 4 ADP + 4 Pi
− + 4 H2O 

→ 6 CO2 + 10 NADH + 2 FADH2 + 4 ATP + 6 H+

In the respiratory chain, electrons from the powerful reducing
agents NADH and FADH2 pass through four membrane-bound
protein complexes and two mobile electron carriers before 
reducing O2 to H2O.

The respiratory chain begins in complex I (NADH-Q oxido-
reductase), where NADH is oxidized by coenzyme Q (Q, 4) in a
two-electron reaction:

H+ + NADH + Q fffg NAD+ + QH2

E ⊕
cell = +0.42 V, ΔrG

⊕ = −81 kJ mol−1

Reduced cytochrome c carries electrons from complex III to
complex IV (cytochrome c oxidase), where O2 is reduced to
H2O:

2 Fe2+(Cyt c) + 2 H+ + 1–2 O2 ffffg 2 Fe3+(Cyt c) + H2O
E ⊕

cell = +0.56 V, ΔrG
⊕ = −108 kJ mol−1

The reactions that occur in complexes I, III, and IV drive the
synthesis of ATP during oxidative phosphorylation. To under-
stand this process, we need to consider the structure of the 
mitochondrion, which is shown in Fig. 17.18. The protein com-
plexes associated with the electron transport chain span the
inner membrane and phosphorylation takes place in the inter-
membrane space. The Gibbs energy of the reactions in complexes
I, III, and IV is first used to do the work of moving protons
across the mitochondrial membrane. For example, the oxida-
tion of NADH by Q in complex I is coupled to the transfer of
four protons across the membrane. The coupling of electron
transfer and proton pumping in complexes III and IV contribute
further to a gradient of proton concentration across the mem-
brane. Then the enzyme H+-ATPase uses the energy stored in
the proton gradient to phosphorylate ADP to ATP. Experiments
show that 11 molecules of ATP are made for every three mole-
cules of NADH and one molecule of FADH2 that are oxidized by
the respiratory chain. The ATP is then hydrolysed on demand to
perform useful biochemical work throughout the cell.

complex I

complex II

complex III

complex IV
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The chemiosmotic theory proposed by Peter Mitchell in 
the late 1960s explains how H+-ATPases synthesize ATP from
ADP. The energy stored in a transmembrane proton gradient
comes from two contributions. First, the difference in activity 
of H+ ion results in a difference in molar Gibbs energy across 
the mitochrondrial membrane, which contributes a term 
RT ln(aH+,in/aH+,out) to the stored energy. Second, there is a

membrane potential difference Δφ = φin − φout that arises from
differences in Coulombic interactions on each side of the mem-
brane. The charge difference across a membrane per mole of H+

ions is NAe, or F, where F = eNA. It follows from Justification 17.5
that the molar Gibbs energy difference is then FΔφ. Consequently,
we write the total Gibbs energy stored by the combination of an
activity gradient and a membrane potential gradient. After re-
placing activities by molar concentrations, we obtain

This equation also provides an estimate of the Gibbs energy
available for phosphorylation of ADP. After using ln [H+] =
ln 10 × log [H+] and substituting ΔpH = pHin − pHout = −log [H+]in

+ log [H+]out, it follows that

ΔGm = FΔφ − (RT ln 10)ΔpH

In the mitochondrion, ΔpH ≈ −1.4 and Δφ ≈ 0.14 V, so ΔGm ≈
+21.5 kJ mol−1. Because 31 kJ mol−1 is needed for phosphorylation,
we conclude that at least 2 mol H+ (and probably more) must
flow through the membrane for the phosphorylation of 1 mol ADP.

Δ ΔG G G RT Fm m,in m,out
in

out

H

H
= − = +

+

+ln
[ ]

[ ]
φ

Outer
membrane

Inner
membrane

Matrix

Intermembrane
space

Fig. 17.18 The general structure of a mitochondrion.

Checklist of key ideas

1. The extent of reaction (ξ) is defined such that, when the
extent of reaction changes by Δξ, the amount of A present
changes from nA,0 to nA,0 − Δξ.

2. The reaction Gibbs energy is the slope of the graph of the
Gibbs energy plotted against the extent of reaction; at
equilibrium, ΔrG = 0.

3. An exergonic reaction is a reaction for which ΔrG < 0; 
such a reaction can be used to drive another process. An
endergonic reaction is a reaction for which ΔrG > 0.

4. At an arbitrary stage of a reaction, ΔrG = ΔrG
7 + RT ln Q.

5. The equilibrium constant (K) may be written in terms of
ΔrG

7 as ΔrG
7 = −RT ln K.

6. The standard reaction Gibbs energy may be calculated from
standard Gibbs energies of formation, eqn 17.10.

7. The thermodynamic equilibrium constant is related to the
molecular partition functions by eqn 17.17.

8. Le Chatelier’s principle states that a system at equilibrium,
when subjected to a disturbance, responds in a way that
tends to minimize the effect of the disturbance.

9. The temperature dependence of the equilibrium constant is
given by the van’t Hoff equation: eqn 17.26.

10. A galvanic cell is an electrochemical cell that produces
electricity as a result of the spontaneous reaction occurring
inside it. An electrolytic cell is an electrochemical cell in
which a nonspontaneous reaction is driven by an external
source of current.

11. Oxidation is the removal of electrons from a species;
reduction is the addition of electrons to a species; a redox
reaction is a reaction in which there is a transfer of electrons
from one species to another.

12. An anode is the electrode at which oxidation occurs; a
cathode is the electrode at which reduction occurs.

13. The cell potential is the potential difference of the cell when
it is balanced by an exactly opposing source of potential so
that the cell reaction occurs reversibly, the composition is
constant, and no current flows.

14. The cell potential and the reaction Gibbs energy are related
by −νFEcell = ΔrG.

15. The standard cell potential is the standard reaction Gibbs
energy expressed as a potential: E 7

cell = −ΔrG
7/νF.

16. The Nernst equation, eqn 17.32, expresses the cell potential
in terms of the composition.

17. The equilibrium constant for a cell reaction is related to the
standard cell potential by ln K = νFE 7

cell/RT.

18. The standard potential of a couple (E 7) is the standard
potential of a cell in which a couple forms the right-hand
electrode and the standard hydrogen electrode is the 
left-hand electrode.

19. To calculate the standard cell potential, form the difference
of electrode potentials: E 7

cell = E 7(right) − E 7(left).

20. The temperature coefficient of the standard cell potential is
given by dE 7/dT = ΔrS

7/νF.
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Discussion questions

17.1 Explain how the mixing of reactants and products affects the
position of chemical equilibrium.

17.2 Explain how a reaction that is not spontaneous may be driven
forward by coupling to a spontaneous reaction.

17.3 Use concepts of statistical thermodynamics to describe the
molecular features that determine the magnitudes of equilibrium
constants and their variation with temperature.

17.4 Suggest how the thermodynamic equilibrium constant may
respond differently to changes in pressure and temperature from the
equilibrium constant expressed in terms of partial pressures.

17.5 Account for Le Chatelier’s principle in terms of thermodynamic
quantities. Can you think of a reason why the principle might fail?

17.6 State the limits to the generality of the van’t Hoff equation, written
as in eqn 17.28.

17.7 Distinguish between galvanic, electrolytic, and fuel cells.

17.8 Explain why salt bridges are routinely used in electrochemical cell
measurements.

17.9 Discuss how the electrochemical series can be used to determine if a
redox reaction is spontaneous.

17.10 Describe a method for the determination of the standard potential
of a redox couple.

17.11 Describe at least one non-calorimetric experimental method for
determining a standard reaction enthalpy.

Exercises

17.1(a) Write the expressions for the equilibrium constants of the
following reactions in terms of (i) activities and (ii) where appropriate,
the ratios p/p7 and the products γb/b7:

(a) CO(g) + Cl2(g) 5 COCl(g) + Cl(g)
(b) 2 SO2(g) + O2(g) 5 2 SO3(g)
(c) Fe(s) + PbSO4(aq) 5 FeSO4(aq) + Pb(s)
(d) Hg2Cl2(s) + H2(g) 5 2 HCl(aq) + 2 Hg(l)
(e) 2 CuCl(aq) 5 Cu(s) + CuCl2(aq)

17.1(b) Write the expressions for the equilibrium constants of the
following reactions in terms of (i) activities and (ii) where appropriate,
the ratios p/p7 and the products γb/b7:

(a) H2(g) + Br2(g) 5 2 HBr(g)
(b) 2 O3(g) 5 3 O2(g)
(c) 2 H2(g) + O2(g) 5 2 H2O(l)
(d) H2(g) + O2(g) 5 H2O2(aq)
(e) H2(g) + I2(g) 5 2 HI(aq)

17.2(a) Identify the stoichiometric numbers in the reaction 
Hg2Cl2(s) + H2(g) → 2 HCl(aq) + 2 Hg(l).

17.2(b) Identify the stoichiometric numbers in the reaction 
CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l).

17.3(a) The standard reaction Gibbs energy of the isomerization 
of borneol (C10H17OH) to isoborneol in the gas phase at 503 K is 
+9.4 kJ mol−1. Calculate the reaction Gibbs energy in a mixture
consisting of 0.15 mol of borneol molecules and 0.30 mol of isoborneol
molecules when the total pressure is 600 Torr. Under these conditions, 
is the isomerization of borneol spontaneous?

17.3(b) The standard reaction Gibbs energy of the isomerization of 
cis-2-butene to trans-2-butene in the gas phase at 298 K is −2.9 kJ mol−1.
Calculate the reaction Gibbs energy in a mixture consisting of 0.25 mol
of cis-2-butene molecules and 0.95 mol of trans-2-butene molecules
when the total pressure is 600 Torr. Under these conditions, is the
isomerization of cis-2-butene spontaneous?

17.4(a) The equilibrium pressure of O2 over solid silver and silver oxide,
Ag2O, at 298 K is 11.85 Pa. Calculate the standard Gibbs energy of
formation of Ag2O(s) at 298 K.

17.4(b) The equilibrium pressure of H2 over solid uranium and uranium
hydride, UH3, at 500 K is 139 Pa. Calculate the standard Gibbs energy of
formation of UH3(s) at 500 K.

17.5(a) From information in the Data section, calculate the standard
Gibbs energy and the equilibrium constant at (a) 298 K and (b) 400 K 
for the reaction PbO(s) + CO(g) 5 Pb(s) + CO2(g). Assume that the
reaction enthalpy is independent of temperature.

17.5(b) From information in the Data section, calculate the standard
Gibbs energy and the equilibrium constant at (a) 25°C and (b) 50°C 
for the reaction CH4(g) + 3 Cl2(g) 5 CHCl3(l) + 3 HCl(g). Assume 
that the reaction enthalpy is independent of temperature. 
ΔfH

7(CHCl3) = −134.71 kJ mol−1, ΔfG
7(CHCl3) = −73.66 kJ mol−1.

17.6(a) For CaF2(s) 5 Ca2+(aq) + 2 F−(aq), K = 3.9 × 10−11 at 25°C and
the standard Gibbs energy of formation of CaF2(s) is −1167 kJ mol−1.
Calculate the standard Gibbs energy of formation of CaF2(aq).

17.6(b) For PbI2(s) 5 Pb2+(aq) + 2 I−(aq), K = 1.4 × 10−8 at 25°C and 
the standard Gibbs energy of formation of PbI2(s) is −173.64 kJ mol−1.
Calculate the standard Gibbs energy of formation of PbI2(aq).

17.7(a) In the gas-phase reaction 2 A + B 5 3 C + 2 D, it was found that,
when 1.00 mol A, 2.00 mol B, and 1.00 mol D were mixed and allowed to
come to equilibrium at 25°C, the resulting mixture contained 0.90 mol C
at a total pressure of 1.00 bar. Calculate (a) the mole fractions of each
species at equilibrium, (b) Kx, (c) K, and (d) ΔrG

7.

17.7(b) In the gas-phase reaction A + B 5 C + 2 D, it was found that
when 2.00 mol A, 1.00 mol B, and 3.00 mol D were mixed and allowed 
to come to equilibrium at 25°C, the resulting mixture contained 
0.79 mol C at a total pressure of 1.00 bar. Calculate (a) the mole 
fractions of each species at equilibrium, (b) Kx, (c) K, and (d) ΔrG

7.

17.8(a) The hydrolysis of ATP (Impact I17.1) is written as ATP4−(aq) +
H2O(l) → ADP3−(aq) + HPO4

2−(aq) + H3O+(aq). For this reaction the
standard reaction Gibbs energy is +10 kJ mol−1 at 298 K. What is the
biological standard state value?

17.8(b) The overall reaction for the glycolysis reaction (Impact I17.1) is
C6H12O6(aq) + 2 NAD+(aq) + 2 ADP3−(aq) + 2 HPO4

2−(aq) + 2 H2O(l) 
→ 2 CH3COCO2

−(aq) + 2 NADH(aq) + 2 ATP4−(aq) + 2 H3O+(aq). For
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this reaction, the standard reaction Gibbs energy is −80.6 kJ mol−1 at 
298 K. What is the biological standard state value?

17.9(a) Calculate the value of K for the reaction I2(g) 5 2 I(g) at 1000 K
from the following data for I2: # = 214.36 cm−1, è = 0.0373 cm−1, 
De = 1.5422 eV. The ground state of the I atoms is 2P3/2, implying
fourfold degeneracy.

17.9(b) Calculate the value of K at 298 K for the gas-phase isotopic
exchange reaction 2 79Br81Br 5 79Br79Br + 81Br81Br. The Br2 molecule
has a non-degenerate ground state, with no other electronic states
nearby. Base the calculation on the wavenumber of the vibration of
79Br81Br, which is 323.33 cm−1.

17.10(a) Calculate the percentage change in Kx for the reaction 
H2CO(g) 5 CO(g) + H2(g) when the total pressure is increased from 
1.0 bar to 3.0 bar at constant temperature.

17.10(b) Calculate the percentage change in Kx for the reaction
CH3OH(g) + NOCl(g) 5 HCl(g) + CH3NO2(g) when the total pressure
is increased from 1.0 bar to 4.0 bar at constant temperature.

17.11(a) The standard reaction enthalpy of Zn(s) + H2O(g) → ZnO(s) +
H2(g) is approximately constant at +224 kJ mol−1 from 920 K up to 
1280 K. The standard reaction Gibbs energy is +33 kJ mol−1 at 1280 K.
Estimate the temperature at which the equilibrium constant becomes
greater than 1.

17.11(b) The standard enthalpy of a certain reaction is approximately
constant at +125 kJ mol−1 from 800 K up to 1500 K. The standard
reaction Gibbs energy is +22 kJ mol−1 at 1120 K. Estimate the
temperature at which the equilibrium constant becomes greater than 1.

17.12(a) The equilibrium constant of the reaction 2 C3H6(g) 5 C2H4(g)
+ C4H8(g) is found to fit the expression ln K = A + B/T + C/T 2 between
300 K and 600 K, with A = −1.04, B = −1088 K, and C = 1.51 × 105 K2.
Calculate the standard reaction enthalpy and standard reaction entropy
at 450 K.

17.12(b) The equilibrium constant of a reaction is found to fit the
expression ln K = A + B/T + C/T 3 between 400 K and 600 K with 
A = −2.01, B = −1170 K, and C = 2.2 × 107 K3. Calculate the standard
reaction enthalpy and standard reaction entropy at 500 K.

17.13(a) What is the standard enthalpy of a reaction for which the
equilibrium constant is (a) doubled, (b) halved when the temperature 
is increased by 10 K at 298 K?

17.13(b) What is the standard enthalpy of a reaction for which the
equilibrium constant is (a) doubled, (b) halved when the temperature 
is increased by 15 K at 310 K?

17.14(a) Estimate the temperature at which CaCO3(calcite) decomposes.

17.14(b) Estimate the temperature at which CuSO4·5H2O undergoes
dehydration.

17.15(a) Write the cell reaction and electrode half-reactions and calculate
the standard cell potential of each of the following cells:

(a) Zn(s)|ZnSO4(aq)||AgNO3(aq)|Ag(s)
(b) Cd(s)|CdCl2(aq)||HNO3(aq)|H2(g)|Pt(s)
(c) Pt(s)|K3[Fe(CN)6](aq),K4[Fe(CN)6](aq)||CrCl3(aq)|Cr(s)
(d) Pt(s)|Fe3+(aq),Fe2+(aq)||Sn4+(aq),Sn2+(aq)|Pt(s)

17.15(b) Write the cell reaction and electrode half-reactions and calculate
the standard cell potential of each of the following cells:

(a) Pt(s)|K3[Fe(CN)6](aq),K4[Fe(CN)6](aq)||Mn2+(aq),H+(aq)|
MnO2(s)|Pt(s)

(b) Cu(s)|Cu2+(aq)||Mn2+(aq),H+(aq)|MnO2(s)|Pt(s)
(c) Pt(s)|Cl2(g)|HCl(aq)||HBr(aq)|Br2(l)|Pt(s)
(d) Fe(s)|Fe2+(aq)||Mn2+(aq),H+(aq)|MnO2(s)|Pt(s)

17.16(a) Devise cells in which the following are the reactions and
calculate the standard cell potential in each case:

(a) Fe(s) + PbSO4(aq) → FeSO4(aq) + Pb(s)
(b) Hg2Cl2(s) + H2(g) → 2 HCl(aq) + 2 Hg(l)
(c) 2 H2(g) + O2(g) → 2 H2O(l)

17.16(b) Devise cells in which the following are the reactions and
calculate the standard cell potential in each case:

(a) H2(g) + O2(g) → H2O2(aq)
(b) H2(g) + I2(g) → 2 HI(aq)
(c) 2 CuCl(aq) → Cu(s) + CuCl2(aq)

17.17(a) Consider the cell Ag|AgBr(s)|KBr(aq, 0.050 mol kg−1)||
Cd(NO3)2(aq, 0.010 mol kg−1)|Cd. (a) Write the cell reaction. 
(b) Write the Nernst equation for the cell. (c) Use the Debye–Hückel
limiting law and the Nernst equation to estimate the cell potential at
25°C.

17.17(b) Consider the cell Pt|H2(g,p7)|HCl(aq, 0.010 mol kg−1)|AgCl(s)|Ag.
(a) Write the cell reaction. (b) Write the Nernst equation for the cell. 
(c) Use the Debye–Hückel limiting law and the Nernst equation to
estimate the cell potential at 25°C.

17.18(a) Calculate ΔrG
7 for the cell reactions in Exercise 17.15a.

17.18(b) Calculate ΔrG
7 for the cell reactions in Exercise 17.15b.

17.19(a) Calculate the equilibrium constants of the following reactions 
at 25°C from standard potential data:

(a) Sn(s) + Sn4+(aq) 5 2 Sn2+(aq)
(b) Fe(s) + Hg(NO3)2(aq) 5 Hg(l) + Fe(NO3)2(aq)

17.19(b) Calculate the equilibrium constants of the following reactions 
at 25°C from standard potential data:

(a) Cd(s) + CuSO4(aq) 5 Cu(s) + CdSO4(aq)
(b) 3 Au+(aq) 5 2 Au(s) + Au3+(aq)

17.20(a) Calculate the standard potential of the Ce4+/Ce couple from the
values for the Ce3+/Ce and Ce4+/Ce3+ couples.

17.20(b) Calculate the standard potential of the Au3+/Au+ couple from
the values for the Au3+/Au and Au+/Au couples.

17.21(a) Can mercury produce zinc metal from aqueous zinc sulfate
under standard conditions?

17.21(b) Can chlorine gas oxidize water to oxygen gas under standard
conditions in basic solution?

17.22(a) The potential of the cell Ag|AgI(s)|AgI(aq)|Ag is +0.9509 V at
25°C. Calculate (a) the solubility of AgI and (b) its solubility.

17.22(b) The potential of the cell Bi|Bi2S3(s)|Bi2S3(aq)|Bi is −0.96 V at
25°C. Calculate (a) the solubility of Bi2S3 and (b) its solubility.

17.23(a) The standard potential of the cell Pt(s)|H2(g)|HCl(aq)|
Hg2Cl2(s)|Hg(l) was found to be +0.2699 V at 293 K and +0.2669 V 
at 303 K. Evaluate the standard reaction Gibbs energy, enthalpy, 
and entropy at 298 K of the reaction Hg2Cl2(s) + H2(g) → 2 Hg(l) +
2 HCl(aq).

17.23(b) The standard potential of the cell Pt(s)|H2(g)|HBr(aq)|
AgBr(s)|Ag(s) was found to be +0.073 72 V at 293 K and +0.068 73 V 
at 303 K. Evaluate the standard reaction Gibbs energy, enthalpy, and
entropy at 298 K of the reaction AgBr(s) + 1–2 H2(g) → Ag(s) + HBr(aq).
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Problems*

Numerical problems

17.1 The equilibrium constant for the reaction, I2(s) + Br2(g) 5
2 IBr(g) is 0.164 at 25°C. (a) Calculate ΔrG

7 for this reaction. 
(b) Bromine gas is introduced into a container with excess solid iodine.
The pressure and temperature are held at 0.164 atm and 25°C. Find the
partial pressure of IBr(g) at equilibrium. Assume that all the bromine is
in the liquid form and that the vapour pressure of iodine is negligible. 
(c) In fact, solid iodine has a measurable vapour pressure at 25°C. In this
case, how would the calculation have to be modified?

17.2 The standard Gibbs energy of formation of NH3(g) is −16.5 kJ mol−1

at 298 K. What is the reaction Gibbs energy when the partial pressures 
of the N2, H2, and NH3 (treated as perfect gases) are 3.0 bar, 1.0 bar, and
4.0 bar, respectively? What is the spontaneous direction of the reaction
in this case?

17.3 The degree of dissociation, α, is defined as the fraction of reactant
that has decomposed; if the initial amount of reactant is n and the
amount at equilibrium is neq, then α = (n − neq)/n. The standard Gibbs
energy of reaction for the decomposition H2O(g) → H2(g) + 1–2 O2(g) is
+118.08 kJ mol−1 at 2300 K. What is the degree of dissociation of H2O at
2300 K and 1.00 bar? Hints. The equilibrium constant is obtained from
the standard Gibbs energy of reaction by using eqn 17.13, so the task is to
relate the degree of dissociation, α, to K and then to find its numerical
value. Proceed by expressing the equilibrium compositions in terms of
α. For example, if an amount n H2O is present initially, then an amount
αn H2O reacts to reach equilibrium and an amount(1 − α)n H2O(g) is
present at equilibrium. Then, solve for α in terms of K. Because the
standard Gibbs energy of reaction is large and positive, we can anticipate
that K will be small, and hence that α << 1, which opens the way to
making approximations to obtain its numerical value.

17.4 Calculate and plot as a function of temperature, in the range 300 K
to 1000 K, the equilibrium constant for the reaction CD4(g) + HCl(g) 5
CHD3(g) + DCl(g) using the following data (numbers in parentheses 
are degeneracies): #(CHD3)/cm−1 = 2993(1), 2142(1), 1003(3), 1291(2),
1036(2); #(CD4)/cm−1 = 2109(1), 1092(2), 2259(3), 996(3); #(HCl)/cm−1

= 2991; #(DCl)/cm−1 = 2145; è(HCl)/cm−1 = 10.59; è(DCl)/cm−1 =
5.445; è(CHD3)/cm−1 = 3.28; é(CHD3)/cm−1 = 2.63, è(CD4)/cm−1 = 2.63.

17.5 The exchange of deuterium between acid and water is an important
type of equilibrium, and we can examine it using spectroscopic data on
the molecules. Calculate the equilibrium constant at (a) 298 K and (b)
800 K for the gas-phase exchange reaction H2O + DCl 5 HDO + HCl
from the following data: #(H2O)/cm−1 = 3656.7, 1594.8, 3755.8;
#(HDO)/cm−1 = 2726.7, 1402.2, 3707.5; é(H2O)/cm−1 = 27.88,
è(H2O)/cm−1 = 14.51, ê(H2O)/cm−1 = 9.29; é(HDO)/cm−1 = 23.38,
è(HDO)/cm−1 = 9.102, ê(HDO)/cm−1 = 6.417; è(HCl)/cm−1 = 10.59;
è(DCl)/cm−1 = 5.449, #(HCl)/cm−1 = 2991; #(DCl)/cm−1 = 2145.

17.6 The dissociation vapour pressure of NH4Cl at 427°C is 608 kPa 
but at 459°C it has risen to 1115 kPa. Calculate (a) the equilibrium
constant, (b) the standard reaction Gibbs energy, (c) the standard
enthalpy, (d) the standard entropy of dissociation, all at 427°C. Assume
that the vapour behaves as a perfect gas and that ΔH 7 and ΔS 7 are
independent of temperature in the range given.

17.7 Consider the dissociation of methane, CH4(g), into the elements
H2(g) and C(s, graphite). (a) Given that Δ fH

7(CH4, g) = −74.85 kJ mol−1

and that, for the formation of methane from its elements, Δf S
7(CH4, g)

= −80.67 J K−1 mol−1 at 298 K, calculate the value of the equilibrium
constant at 298 K. (b) Assuming that Δf H

7 is independent of
temperature, calculate K at 50°C.

17.8 The equilibrium pressure of H2 over U(s) and UH3(s) between 
450 K and 715 K fits the expression ln(p/Pa) = A + B/T + C ln(T/K), with
A = 69.32, B = −1.464 × 104 K, and C = −5.65. Find an expression for the
standard enthalpy of formation of UH3(s) and from it calculate ΔrC p

7.

17.9 The degree of dissociation, αe (see Problem 17.3), of CO2(g) into
CO(g) and O2(g) at high temperatures was found to vary with
temperature as follows:

T/K 1395 1443 1498

αe/10−4 1.44 2.50 4.71

Assuming Δr H 7 to be constant over this temperature range, calculate K,
ΔrG

7, Δr H 7, and ΔrS
7. Make any justifiable approximations.

17.10 The standard reaction enthalpy for the decomposition of
CaCl2·NH3(s) into CaCl2(s) and NH3(g) is nearly constant at +78 kJ
mol−1 between 350 K and 470 K. The equilibrium pressure of NH3 in the
presence of CaCl2·NH3 is 1.71 kPa at 400 K. Find an expression for the
temperature dependence of ΔrG

7 in the same range.

17.11 Calculate the equilibrium constant of the reaction CO(g) +
H2(g) 5 H2CO(g) given that for the production of liquid formaldehyde
ΔrG

7 = +28.95 kJ mol−1 at 298 K and that the vapour pressure of
formaldehyde is 1500 Torr at that temperature.

17.12 Acetic acid was evaporated in a container of volume 21.45 cm3

at 437 K and at an external pressure of 101.9 kPa. The container was then
sealed. The mass of acid present in the sealed container was 0.0519 g. 
The experiment was repeated with the same container but at 471 K, 
and it was found that 0.0380 g of acetic acid was present. Calculate the
equilibrium constant for the dimerization of the acid in the vapour and
the enthalpy of vaporization.

17.13 A sealed container was filled with 0.300 mol H2(g), 0.400 mol
I2(g), and 0.200 mol HI(g) at 870 K and total pressure 1.00 bar. Calculate
the amounts of the components in the mixture at equilibrium given that
K = 870 for the reaction H2(g) + I2(g) 5 2 HI(g).

17.14 The dissociation of I2 can be monitored by measuring the total
pressure, and three sets of results are as follows:

T/K 973 1073 1173

100p/atm 6.244 7.500 9.181

104nI 2.4709 2.4555 2.4366

where nI is the amount of I atoms per mole of I2 molecules in the
mixture, which occupied 342.68 cm3. Calculate the equilibrium
constants of the dissociation and the standard enthalpy of dissociation 
at the mean temperature.

17.15‡ In a study of Cl2O(g) by photoelectron ionization (R.P. 
Thorn et al., J. Phys. Chem. 100, 141 78 (1996)) the authors report
Δf H

7(Cl2O) = +77.2 kJ mol−1. They combined this measurement with
literature data on the reaction Cl2O (g) + H2O(g) → 2 HOCl(g), for
which K = 8.2 × 10−2 and ΔrS

7 = +16.38 J K−1 mol−1, and with readily 
available thermodynamic data on water vapour to report a value for
Δf H

7(HOCl). Calculate that value. All quantities refer to 298 K.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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17.16‡ The 1980s saw reports of Δf H
7(SiH2) ranging from 243 to 289 kJ

mol−1. For example, the lower value was cited in the review article by R.
Walsh (Acc. Chem. Res. 14, 246 (1981)); Walsh later leant towards the
upper end of the range (H.M. Frey et al., J. Chem. Soc., Chem. Commun.
1189 (1986)). The higher value was reported in S.-K. Shin and J.L.
Beauchamp, J. Phys. Chem. 90, 1507 (1986). If the standard enthalpy 
of formation is uncertain by this amount, by what factor is the
equilibrium constant for the formation of SiH2 from its elements
uncertain at (a) 298 K, (b) 700 K?

17.17‡ Suppose that an iron catalyst at a particular manufacturing plant
produces ammonia in the most cost-effective manner at 450°C when the
pressure is such that Δ rG for the reaction 1–2 N2(g) + 3–2 H2(g) → NH3(g) is
equal to −500 J mol−1. (a) What pressure is needed? (b) Now suppose
that a new catalyst is developed that is most cost-effective at 400°C when
the pressure gives the same value of ΔrG. What pressure is needed when
the new catalyst is used? What are the advantages of the new catalyst?
Assume that (i) all gases are perfect gases or that (ii) all gases are van der
Waals gases. Isotherms of ΔrG(T, p) in the pressure range 100 atm ≤ p
≤ 400 atm are needed to derive the answer. (c) Do the isotherms you
plotted confirm Le Chatelier’s principle concerning the response of
equilibrium to changes in temperature and pressure?

17.18 Given that ΔrG
7 = −212.7 kJ mol−1 for the reaction in the Daniell

cell at 25°C, and b(CuSO4) = 1.0 × 10−3 mol kg−1 and b(ZnSO4) = 3.0 ×
10−3 mol kg−1, calculate (a) the ionic strengths of the solutions, (b) the
mean activity coefficients in the compartments, (c) the reaction
quotient, (d) the standard cell potential, and (e) the cell potential.
(Take γ+ = γ− = γ± in the respective compartments.)

17.19 Although the hydrogen electrode may be simple conceptually, it 
is cumbersome to use and several substitutes have been devised. One of
these alternatives is the quinhydrone electrode (quinhydrone, Q·QH2,
is a complex of quinone, C6H4O2 = Q, and hydroquinone, C6H4O2H2 =
QH2). The electrode half–reaction is Q(aq) + 2 H+(aq) + 2 e− → QH2(aq),
E 7 = +0.6994 V. If the cell Hg|Hg2Cl2(s)|HCl(aq)|Q·QH2|Au is prepared,
and the measured cell potential is +0.190 V, what is the pH of the HCl
solution? Assume that the Debye–Hückel limiting law is applicable.

17.20 Consider the cell, Zn(s)|ZnCl2(0.0050 mol kg−1)|Hg2Cl2(s)|Hg(l),
for which the cell reaction is Hg2Cl2(s) + Zn(s) → 2 Hg(l) + 2 Cl−(aq) +
Zn2+(aq). Given that E 7(Zn2+,Zn) = −0.7628 V, E 7(Hg2Cl2, Hg) =
+0.2676 V, and that the cell potential is +1.2272 V, (a) write the Nernst
equation for the cell. Determine (b) the standard cell potential, (c) ΔrG,
ΔrG

7, and K for the cell reaction, (d) the mean activity and activity
coefficient of ZnCl2 from the measured cell potential, and (e) the mean
activity coefficient of ZnCl2 from the Debye–Hückel limiting law. 
(f) Given that (∂E/∂T)p = −4.52 × 10−4 V K−1, calculate ΔrS and Δr H.

17.21 The potential of the cell Pt|H2(g, p7)|HCl(aq,b)|Hg2Cl2(s)|Hg(l)
has been measured with high precision (G. J. Hills and D. J. G. Ives, J.
Chem. Soc., 311 (1951)) with the following results at 25°C:

b/(mmol kg−1) 1.6077 3.0769 5.0403 7.6938 10.9474

E/V 0.60080 0.56825 0.54366 0.52267 0.50532

Determine the standard potential of the cell and the mean activity
coefficient of HCl at these molalities. (Make a least-squares fit of the 
data to the best straight line.)

17.22 Careful measurements of the potential of the cell 
Pt|H2(g, p7)|NaOH(aq, 0.0100 mol kg−1), NaCl(aq, 0.011 25 mol kg−1)|
AgCl(s)|Ag have been reported (C.P. Bezboruah et al., J. Chem. Soc.
Faraday Trans. I 69, 949 (1973)). Among the data is the following
information:

θ/°C 20.0 25.0 30.0

E/V 1.04774 1.04864 1.04942

Calculate pKw at these temperatures and the standard enthalpy and
entropy of the autoprotolysis of water at 25.0°C.

17.23 Measurements of the potentials of cells of the type
Ag|AgX(s)|MX(b1)|MxHg|MX(b2)|AgX(s)|Ag, where MxHg denotes 
an amalgam and the electrolyte is an alkali metal halide dissolved in
ethylene glycol, have been reported (U. Sen, J. Chem. Soc. Faraday Trans.
I 69, 2006 (1973)) and some values for LiCl are given below. Estimate the
activity coefficient at the concentration marked * and then use this value
to calculate activity coefficients from the measured cell potential at the
other concentrations. Base your answer on the following version of the
extended Debye–Hückel law:

with A = 1.461, B = 1.70, C = 0.20, and I = b/b7. For b2 =
0.091 41 mol kg−1:

b1/(mol kg−1) 0.0555 0.09141* 0.1652 0.2171 1.040 1.350

E/V −0.0220 0.0000 0.0263 0.0379 0.1156 0.1336

17.24 The standard potential of the AgCl/Ag,Cl− couple has been
measured very carefully over a range of temperature (R.G. Bates and 
V.E. Bowers, J. Res. Nat. Bur. Stand. 53, 283 (1954)) and the results were
found to fit the expression

E 7/V = 0.23659 − 4.8564 × 10−4(θ/°C) − 3.4205 × 10−6 (θ/°C)2

+ 5.869 × 10−9(θ/°C)3

Calculate the standard Gibbs energy and enthalpy of formation of 
Cl−(aq) and its entropy at 298 K.

17.25‡ The table below summarizes the potential observed for the cell
Pd|H2(g, 1 bar)|BH(aq, b), B(aq, b)|AgCl(s)|Ag. Each measurement is
made at equimolar concentrations of 2-aminopyridinium chloride (BH)
and 2-aminopyridine (B). The data are for 25°C and it is found that 
E 7 = 0.222 51 V. Use the data to determine pKa for the acid at 25°C 
and the mean activity coefficient (γ±) of BH as a function of molality 
(b) and ionic strength (I). Use the extended Debye–Hückel equation 
for the mean activity coefficient in the form

where A = 0.5091 and B and k are parameters that depend upon 
the ions. Draw a graph of the mean activity coefficient with 
b = 0.04 mol kg−1 and 0 ≤ I ≤ 0.1.

b/(mol kg−1) 0.01 0.02 0.03 0.04 0.05

E 7(25°C)/V 0.74452 0.72853 0.71928 0.71314 0.70809

b/(mol kg−1) 0.06 0.07 0.08 0.09 0.10

E 7(25°C)/V 0.70380 0.70059 0.69790 0.69571 0.69338

Hint. Use mathematical software or a spreadsheet.

Theoretical problems

17.26 Express the equilibrium constant of a gas-phase reaction A + 3 B
5 2 C in terms of the equilibrium value of the extent of reaction, ξ,
given that initially A and B were present in stoichiometric proportions.
Find an expression for ξ as a function of the total pressure, p, of the
reaction mixture and sketch a graph of the expression obtained.

17.27 The equilibrium constant K calculated from thermodynamic data
refers to activities. For gas-phase reactions, that means partial pressures
(and explicitly, pJ/p

7). However, in practical applications we might wish
to discuss gas-phase reactions in terms of molar concentrations. The
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equilibrium constant is then denoted Kc and, for the equilibrium 
a A(g) + b B(g) 5 c C(g) + d D(g), we write

with, as usual, the molar concentration [J] interpreted as [J]/c 7 with 
c 7 = 1 mol dm−3. Show that

where Δνgas = c + d − (a + b).

17.28 Find an expression for the standard reaction Gibbs energy at a
temperature T ′ in terms of its value at another temperature T and the
coefficients a, b, and c in the expression for the molar heat capacity listed
in Table 14.2. Evaluate the standard Gibbs energy of formation of H2O(l)
at 372 K from its value at 298 K.

17.29 Show that, if the ionic strength of a solution of the sparingly
soluble salt MX and the freely soluble salt NX is dominated by the
concentration C of the latter, and if it is valid to use the Debye–Hückel
limiting law, the solubility S′ in the mixed solution is given by

when Ks is small (in a sense to be specified).

Applications: to biology, environmental science, and
chemical engineering

17.30 The protein myoglobin (Mb) stores O2 in muscle and the protein
haemoglobin (Hb) transports O2 in blood; haemoglobin is composed of
four myoglobin-like molecules. Here we explore the chemical equilibria
associated with binding of O2 in these proteins. (a) First, consider the
equilibrium between Mb and O2:

Mb(aq) + O2(g) 5 MbO2(aq)

where p is the numerical value of the partial pressure (in torr) of O2 gas.
Show that the fractional saturation, s, the fraction of Mb molecules that
are oxygenated, is

and plot the dependence of s on p for K = 0.05. (b) Now consider the
equilibria between Hb and O2:

Hb(aq) + O2(g) 5 HbO2(aq)

HbO2(aq) + O2(g) 5 Hb(O2)2(aq)

Hb(O2)2(aq) + O2(g) 5 Hb(O2)3(aq)

Hb(O2)3(aq) + O2(g) 5 Hb(O2)4(aq)

Show that
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and plot the dependence of s on p (in torr) for K1 = 0.01, K2 = 0.02, 
K3 = 0.04, and K4 = 0.08. Hints. To develop an expression for s, 
proceed as follows: (i) express [Hb(O2)2] in terms of [HbO2] 
by using K2, then express [HbO2] in terms of [Hb] by using K1, 
and likewise for all the other concentrations of Hb(O2)3 and Hb(O2)4.
(ii) Show that

[O2]bound = [HbO2] + 2[Hb(O2)2] + 3[Hb(O2)3] + 4[Hb(O2)4]

= (1 + 2K2p + 3K2K3p2 + 4K2K3K4p3)K1p[Hb]

[Hb]total = (1 + K1p + K1K2p2 + K1K2K3p3 + K1K2K3K4p4)[Hb]

(iii) Use the fact that each Hb molecule has four sites at which O2
can attach. (c) The binding of O2 to haemoglobin is an example of
cooperative binding, in which the binding of a ligand (in this case O2) 
to a biopolymer (in this case Hb) becomes more favourable
thermodynamically (that is, the equilibrium constant increases) as the
number of bound ligands increases up to the maximum number of
binding sites. Which features of the plot from part (b) can be ascribed 
to cooperative binding of O2 to Hb?

17.31 The curves you were asked to plot in Problem 17.30 may also be
modelled mathematically by the equation

where s is the saturation, p is the partial pressure of O2, K is a constant
(not the binding constant for one ligand), and ν is the Hill coefficient,
which varies from 1, for no cooperativity, to N for all-or-none binding of
N ligands (N = 4 in Hb). The Hill coefficient for myoglobin is 1, and for
haemoglobin it is 2.8. (a) Determine the constant K for both Mb and Hb
from the graph of fractional saturation (at s = 0.5) and then calculate the
fractional saturation of Mb and Hb for the following values of p/kPa: 
1.0, 1.5, 2.5, 4.0, 8.0. (b) Calculate the value of s at the same p values
assuming ν has the theoretical maximum value of 4.

17.32 Here we investigate the molecular basis for the observation 
that the hydrolysis of ATP is exergonic at pH = 7.0 and 310 K. (a) It is
thought that the exergonicity of ATP hydrolysis is due in part to the fact
that the standard entropies of hydrolysis of polyphosphates are positive.
Why would an increase in entropy accompany the hydrolysis of a
triphosphate group into a diphosphate and a phosphate group? (b)
Under identical conditions, the Gibbs energies of hydrolysis of H4ATP
and MgATP2−, a complex between the Mg2+ ion and ATP4−, are less
negative than the Gibbs energy of hydrolysis of ATP4−. This observation
has been used to support the hypothesis that electrostatic repulsion
between adjacent phosphate groups is a factor that controls the
exergonicity of ATP hydrolysis. Provide a rationale for the hypothesis
and discuss how the experimental evidence supports it. Do these
electrostatic effects contribute to the ΔrH or ΔrS terms that determine 
the exergonicity of the reaction? Hint. In the MgATP2− complex, 
the Mg2+ ion and ATP4− anion form two bonds: one that involves 
a negatively charged oxygen belonging to the terminal phosphate 
group of ATP4− and another that involves a negatively charged oxygen
belonging to the phosphate group adjacent to the terminal phosphate
group of ATP4−.

17.33 To get a sense of the effect of cellular conditions on the ability 
of ATP to drive biochemical processes, compare the standard Gibbs
energy of hydrolysis of ATP to ADP with the reaction Gibbs energy in 
an environment at 37°C in which pH = 7.0 and the ATP, ADP, and Pi

−

concentrations are all 1.0 μmol dm−3.

17.34 Under biochemical standard conditions, aerobic respiration
produces approximately 38 molecules of ATP per molecule of glucose
that is completely oxidized. (a) What is the percentage efficiency of
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aerobic respiration under biochemical standard conditions? (b) The
following conditions are more likely to be observed in a living cell: 
pCO2

= 5.3 × 10−2 atm, pO2
= 0.132 atm, [glucose] = 5.6 × 10−2 mol dm−3, 

[ATP] = [ADP] = [Pi] = 1.0 × 10−4 mol dm−3, pH = 7.4, T = 310 K.
Assuming that activities can be replaced by the numerical values of
molar concentrations, calculate the efficiency of aerobic respiration
under these physiological conditions. (c) A typical diesel engine 
operates between Tc = 873 K and Th = 1923 K with an efficiency that is
approximately 75 per cent of the theoretical limit of (1 − Tc/Th) (see
Section 15.2). Compare the efficiency of a typical diesel engine with that
of aerobic respiration under typical physiological conditions (see part b).
Why is biological energy conversion more or less efficient than energy
conversion in a diesel engine?

17.35 In anaerobic bacteria, the source of carbon may be a molecule
other than glucose and the final electron acceptor is some molecule other
than O2. Could a bacterium evolve to use the ethanol/nitrate pair instead
of the glucose/O2 pair as a source of metabolic energy?

17.36 If the mitochondrial electric potential between matrix and the
intermembrane space were 70 mV, as is common for other membranes,
how much ATP could be synthesized from the transport of 4 mol H+,
assuming the pH difference remains the same?

17.37 The standard potentials of proteins are not commonly measured
by the methods described in this chapter because proteins often lose
their native structure and function when they react on the surfaces of
electrodes. In an alternative method, the oxidized protein is allowed to
react with an appropriate electron donor in solution. The standard
potential of the protein is then determined from the Nernst equation,
the equilibrium concentrations of all species in solution, and the known
standard potential of the electron donor. We shall illustrate this method
with the protein cytochrome c. The one-electron reaction between
cytochrome c (cyt) and 2,6-dichloroindophenol, D, can be followed
spectrophotometrically because each of the four species in solution 
has a distinct colour, or absorption spectrum. We write the reaction as
cytox + Dred 5 cytred + Dox, where the subscripts ‘ox’ and ‘red’ refer to
oxidized and reduced states, respectively. (a) Consider E 7

cyt and E 7
D to 

be the standard potentials of cytochrome c and D, respectively. 
Show that, at equilibrium (‘eq’), a plot of ln([Dox]eq/[Dred]eq) versus
ln([cytox]eq/[cytred]eq) is linear with slope of one and y-intercept 
F(E 7

cyt − E 7
D)/RT, where equilibrium activities are replaced by the

numerical values of equilibrium molar concentrations. (b) The following
data were obtained for the reaction between oxidized cytochrome c and
reduced D in a pH = 6.5 buffer at 298 K. The ratios [Dox]eq/[Dred]eq
and [cytox]eq/[cytred]eq were adjusted by titrating a solution containing
oxidized cytochrome c and reduced D with a solution of sodium
ascorbate, which is a strong reductant. From the data and the standard
potential of D of 0.237 V, determine the standard potential of
cytochrome c at pH = 6.5 and 298 K.

[Dox]eq/[Dred]eq 0.00279 0.00843 0.0257 0.0497

[cytox]eq/[cytred]eq 0.0106 0.0230 0.0894 0.197

[Dox]eq/[Dred]eq 0.0748 0.238 0.534

[cytox]eq/[cytred]eq 0.335 0.809 1.39

17.38‡ The dimerization of ClO in the Antarctic winter stratosphere is
believed to play an important part in that region’s severe seasonal
depletion of ozone. The following equilibrium constants are based on
measurements by P. A. Cox and G. D. Hayman (Nature 332, 796 (1988))
on the reaction 2ClO (g) → (ClO)2 (g).

T/K 233 248 258 268 273

K 4.13 × 108 5.00 × 107 1.45 × 107 5.37 × 106 3.20 × 106

T/K 280 288 295 303

K 9.62 × 105 4.28 × 105 1.67 × 105 7.02 × 104

(a) Derive the values of Δr H 7 and ΔrS
7 for this reaction. (b) Compute 

the standard enthalpy of formation and the standard molar entropy 
of (ClO)2 given Δf H

7(ClO) = +101.8 kJ mol−1 and S 7
m(ClO) =

226.6 J K−1 mol−1.

17.39 A fuel cell develops an electric potential from the chemical
reaction between reagents supplied from an outside source. What is the
potential of a cell fuelled by (a) hydrogen and oxygen, (b) the complete
oxidation of benzene at 1.0 bar and 298 K?

17.40 A fuel cell is constructed in which both electrodes make use of the
oxidation of methane. The left-hand electrode makes use of the complete
oxidation of methane to carbon dioxide and water; the right-hand
electrode makes use of the partial oxidation of methane to carbon
monoxide and water. (a) Which electrode is the cathode? (b) What 
is the cell potential at 25°C when all gases are at 1 bar?

17.41‡ Nitric acid hydrates have received much attention as possible
catalysts for heterogeneous reactions which bring about the Antarctic
ozone hole. Worsnop et al. investigated the thermodynamic stability of
these hydrates under conditions typical of the polar winter stratosphere
(D.R. Worsnop et al., Science 259, 71 (1993)). Standard reaction Gibbs
energies can be computed for the following reactions at 190 K from 
their data:

(i) H2O(g) → H2O(s) ΔrG
7 = −23.6 kJ mol−1

(ii) H2O(g) + HNO3(g) → HNO3·H2O(s) ΔrG
7 = −57.2 kJ mol−1

(iii) 2 H2O(g) + HNO3(g) → HNO3·2H2O(s) ΔrG
7 = −85.6 kJ mol−1

(iv) 3 H2O(g) + HNO3(g) → HNO3·3H2O(s) ΔrG
7 = −112.8 kJ mol−1

Which solid is thermodynamically most stable at 190 K if pH2O =
1.3 × 10−7 bar and pHNO3

= 4.1 × 10−10 bar? Hint. Try computing ΔrG
for each reaction under the prevailing conditions; if more than one solid
forms spontaneously, examine ΔrG for the conversion of one solid to
another.
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PART 5
Chemical dynamics

The final part of the book is concerned with another fertile area of study within

physical chemistry, namely, the rates and mechanisms of chemical reactions. 

In Chapter 18 we consider the motion of molecules in gases and liquids and the

motion of ions in solution. Our goal is to account for the rates at which molecules

and energy migrate through gases by using the kinetic model and generalize the

discussion to treat migration through various media by formulating the diffusion

equation.

In Chapter 19 we explore rates of chemical reactions and experimental

techniques for their measurement. A rate law provides both a summary 

of experimental observations on the rate of a reaction and insight into its

mechanism, the sequence of elementary steps by which it occurs. We 

show how to derive rate laws for simple and complex reaction mechanisms,

often by using a variety of common approximations.

In Chapter 20 we introduce several theories, some simple and others 

more sophisticated, that account for reaction rates and their temperature

dependence. The simplest theory, collision theory, can be used only for 

simple gas-phase reactions and is based on the kinetic model of gases. A more

sophisticated approach is provided by transition-state theory and makes use 

of concepts of statistical thermodynamics introduced in Part 4, building on the

information about molecular energy levels that have either been determined

spectroscopically or computed. Transition-state theory is useful for discussions

of rates of reactions in solution, including electron transfer processes. The

highest level of sophistication comes from the theoretical and experimental

explorations of potential energy surfaces computed by using the techniques

described in Part 2.

Of enormous importance in both industry and biology is the control of reaction

rates by catalysis, which we discuss in Chapter 21. The themes developed there

give us deep understanding of how reaction rates are optimized in biological and

industrial processes.

18 Molecular motion

19 Chemical kinetics

20 Molecular reaction dynamics

21 Catalysis
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Molecular motion

One of the simplest types of molecular motion to describe is the chaotic motion of
molecules of a perfect gas. We see that a simple theory accounts for the pressure of a gas
and the rates at which molecules and energy migrate through gases. Molecular mobility 
is particularly important in liquids. Another simple kind of motion is the net motion of ions in
solution in the presence of an electric field. Molecular and ionic motion have common fea-
tures and, by considering them from a more general viewpoint, we derive expressions that
govern the migration of properties through matter. One of the most useful consequences of
this general approach is the formulation of the diffusion equation, which is an equation that
shows how matter and energy spread through media of various kinds. Finally, we build a
simple model for all types of molecular motion, in which the molecules migrate in a series of
small steps, and see that it accounts for many of the properties of migrating molecules in
both gases and condensed phases.

The general approach we describe in this chapter provides techniques for discussing
the motion of all kinds of particles in all kinds of fluids. We set the scene by consider-
ing a simple type of motion, that of molecules in a perfect gas, and go on to see that
molecular motion in liquids shows a number of similarities. We shall concentrate on
the transport properties of a substance, its ability to transfer matter, energy, or some
other property from one place to another. Four examples of transport properties are:

Diffusion, the net transport of a species down a concentration gradient.

Thermal conduction, the net transport of heat (more formally, the energy of 
thermal motion) down a temperature gradient.

Electric conduction, the net transport of charged species down a potential gradient
(as part of a complete electric circuit).

Viscosity, the net transfer of linear momentum down a velocity gradient.

It is convenient to include in the discussion effusion, the emergence of a gas from a
container through a small hole.

Motion in gases

Here we present the kinetic model of a perfect gas as a starting point for the discussion
of its transport properties. In the kinetic model of gases (which is sometimes called the
kinetic-molecular theory, KMT) we assume that the only contribution to the energy of
the gas is from the kinetic energies of the molecules. The kinetic model is one of the

18
Motion in gases

18.1 The kinetic model of gases

18.2 Collisions with walls and
surfaces

18.3 The rate of effusion

18.4 Transport properties of a
perfect gas

Motion in liquids

18.5 Experimental results

18.6 The conductivities of
electrolyte solutions

18.7 The mobilities of ions

I18.1 Impact on biochemistry: Gel
electrophoresis in genomics
and proteomics

Diffusion

18.8 The thermodynamic view

18.9 The diffusion equation

18.10 Diffusion probabilities

18.11 The statistical view

I18.2 Impact on biochemistry:
Transport across membranes

Checklist of key ideas

Further information 18.1: The transport
characteristics of a perfect gas

Further information 18.2: Random
coils

Discussion questions

Exercises

Problems
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most remarkable—and arguably most beautiful—models in
physical chemistry for, from a set of very slender assumptions,
powerful quantitative conclusions can be reached.

18.1 The kinetic model of gases

The kinetic model is based on three assumptions:

1. The gas consists of molecules of mass m in ceaseless random
motion obeying the laws of classical mechanics.

2. The size of the molecules is negligible, in the sense that
their diameters are much smaller than the average distance 
travelled between collisions.

3. The molecules interact only through brief elastic collisions.

An elastic collision is a collision in which the total translational
kinetic energy of the molecules is conserved.

(a) Pressure and molecular speeds

From the very economical assumptions of the kinetic model, we
show in the following Justification that the pressure and volume
of the gas are related by

pV = 1–3 nMc 2 (18.1)°

where M = mNA, the molar mass of the molecules of mass m, and
c is their root mean square speed, the square root of the mean of
the squares of the speeds, v, of the molecules:

c = 〈v2〉1/2 [18.2]

Justification 18.1 The pressure of a gas according to the
kinetic model

Consider the arrangement in Fig. 18.1. When a particle of
mass m that is travelling with a component of velocity vx par-
allel to the x-axis collides with the wall on the right and is

reflected, its linear momentum changes from mvx before the
collision to −mvx after the collision (when it is travelling in
the opposite direction). The x-component of momentum
therefore changes by 2mvx on each collision (the y- and z-
components are unchanged). Many molecules collide with
the wall in an interval Δt, and the total change of momentum
is the product of the change in momentum of each molecule
multiplied by the number of molecules that reach the wall
during the interval.

Because a molecule with velocity component vx can travel
a distance vxΔt along the x-axis in an interval Δt, all the
molecules within a distance vxΔt of the wall will strike it if
they are travelling towards it (Fig. 18.2). It follows that, if the
wall has area A, then all the particles in a volume A × vxΔt will
reach the wall (if they are travelling towards it). The number
density of particles is nNA/V, where n is the total amount of
molecules in the container of volume V and NA is Avogadro’s
constant, so the number of molecules in the volume AvxΔt is
(nNA/V) × AvxΔt.

At any instant, half the particles are moving to the right
and half are moving to the left. Therefore, the average 
number of collisions with the wall during the interval Δt is
1–2nNAAvxΔt/V. The total momentum change in that interval is
the product of this number and the change 2mvx:

where M = mNA.
Next, to find the force, we calculate the rate of change of

momentum, which is this change of momentum divided by
the interval Δt during which it occurs:

This rate of change of momentum is equal to the force (by
Newton’s second law of motion). It follows that the pressure,
the force divided by the area, is

  
Rate of change of momentum =

nMA

V
xv2

A=
nmAN t

V
xv Δ2

==
nMA t

V
xv2Δ

  
Momentum change A= ×

nN A t

V
mx

x

v
v

Δ
2

2
mvx

–mvx

x

Before
collision

After
collision

(a)

(b)

Fig. 18.1 The pressure of a gas arises from the impact 
of its molecules on the walls. In an elastic collision of a
molecule with a wall perpendicular to the x-axis, the 
x-component of velocity is reversed but the y- and 
z-components are unchanged.

x | |v tx s

Volume=| |v t Ax s

Area A

Will

Won te

Fig. 18.2 A molecule will reach the wall on the right within
an interval Δt if it is within a distance vxΔt of the wall and
travelling to the right.
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Not all the molecules travel with the same velocity, so the 
detected pressure, p, is the average (denoted 〈. . .〉) of the
quantity just calculated:

This expression already resembles the perfect gas equation of
state.

To write an expression of the pressure in terms of the root
mean square speed, c, we begin by writing the speed of a single
molecule, v, as v2 = vx

2 + vy
2 + vz

2. Because the root mean square
speed, c, is defined as c = 〈v2〉1/2 (eqn 18.2), it follows that

c 2 = 〈v2〉 = 〈vx
2〉 + 〈vy

2〉 + 〈vz
2〉

However, because the molecules are moving randomly, all
three averages are the same. It follows that c 2 = 3〈vx

2〉. Equa-
tion 18.1 follows immediately by substituting 〈vx

2〉 = 1–3c 2 into 
p = nM〈vx

2〉/V.

Equation 18.1 is one of the key results of the kinetic model.
We see that, if the root mean square speed of the molecules 
depends only on the temperature, then at constant temperature

pV = constant

which is the content of Boyle’s law. Moreover, for eqn 18.1 to be
the equation of state of a perfect gas, its right-hand side must be
equal to nRT. It follows that the root mean square speed of the
molecules in a gas at a temperature T must be

(18.3)°

However, it is also possible to demonstrate that the right-hand
side of eqn 18.1 is equal to nRT by appealing to the Boltzmann
distribution. To do so, we proceed in two steps. First, in the fol-
lowing Justification we show that the fraction of molecules that
have a speed in the range v to v + dv is f (v)dv, where

(18.4)

The function f (v) is called the Maxwell–Boltzmann distribution
of speeds. Then we use this distribution to calculate the average
value of v2.

Justification 18.2 The Maxwell distribution of speeds

The Boltzmann distribution implies that the fraction of
molecules with velocity components vx, vy, vz is proportional
to an exponential function of their kinetic energy, which is

E = 1–2mvx
2 + 1–2mvy

2 + 1–2mvz
2

  
f

M

RT
M RT( )

/

/v v v=
⎛

⎝
⎜

⎞

⎠
⎟ −4

2

3 2

2 22π
π

e

 
c

RT

M
=

⎛

⎝
⎜

⎞

⎠
⎟

3
1 2/

  
p

nM

V
x=

〈 〉v2

  
Pressure =

nM

V
xv2 Therefore, we can use the relation ax+y+z+... = axayaz . . . to

write

f = Ke−E/kT = Ke−(1−2 mv2
x+

1−2 mv2
y+

1−2 mv2
z)/kT

= Ke−mv2
x /2kTe−mv2

y /2kTe−mv2
z /2kT

where K is a constant of proportionality (at constant temper-
ature) and fdvxdvydvz is the fraction of molecules in the 
velocity range vx to vx + dvx, vy to vy + dvy, and vz to vz + dvz.
We see that the fraction factorizes into three terms, one for
each axis, and we can write f = f(vx)f(vy)f(vz) with

f(vx) = K1/3e−mv2
x /2kT

and likewise for the other two axes.
To determine the constant K, we note that a molecule must

have a velocity component somewhere in the range −∞ < vx

< ∞, so

Substitution of the expression for f(vx) then gives

where we have used the standard integral

Therefore, K = (m/2πkT )3/2 = (M/2πRT)3/2, where M is the
molar mass of the molecules (m = M/NA and NAk = R). At this
stage we know that

(18.5)

The probability that a molecule has a velocity in the range
vx to vx + dvx, vy to vy + dvy, vz to vz + dvz is

f(vx)f(vy)f(vz)dvxdvydvz =

where v2 = vx
2 + vy

2 + vz
2. The probability f(v)dv that the

molecules have a speed in the range v to v + dv regardless of
direction is the sum of the probabilities that the velocity lies
in any of the volume elements dvxdvydvz forming a spherical
shell of radius v and thickness dv (Fig. 18.3). The sum of the
volume elements on the right-hand side of the last equation
is the volume of this shell, 4πv2dv. Therefore,

which is eqn 18.4.
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The important features of the Maxwell–Boltzmann distribu-
tion are as follows (and are shown pictorially in Fig. 18.4):

1. Equation 18.4 includes a decaying exponential function,
the term e−Mv2/2RT. Its presence implies that the fraction of mole-
cules with very high speeds will be very small because e−x2

becomes
very small when x2 is large.

2. The factor M/2RT multiplying v2 in the exponent is large
when the molar mass, M, is large, so the exponential factor 
goes most rapidly towards zero when M is large. That is, heavy
molecules are unlikely to be found with very high speeds.

3. The opposite is true when the temperature, T, is high: then
the factor M/2RT in the exponent is small, so the exponential
factor falls towards zero relatively slowly as v increases. In other
words, a greater fraction of the molecules can be expected to
have high speeds at high temperatures than at low temperatures.

4. A factor v2 (the term before the e) multiplies the exponen-
tial. This factor goes to zero as v goes to zero, so the fraction of
molecules with very low speeds will also be very small.

5. The remaining factors (the term in parentheses in eqn 18.4
and the 4π) simply ensure that, when we sum the fractions over
the entire range of speeds from zero to infinity, then we get 1.

Once we have the Maxwell–Boltzmann distribution, we can
calculate the mean value of any power of the speed by evaluating
the appropriate integral. For instance, to evaluate the fraction 
of molecules in a given narrow range of speeds, Δv, we evaluate
f (v) at the speed of interest, assume that f (v) is constant over the
narrow range, then multiply it by the width of the range of
speeds of interest, that is, we form f(v)Δv. To use the distribu-
tion to calculate the fraction in a range of speeds that is too wide
to be treated as infinitesimal, we evaluate the integral:

Fraction in the range v1 to v2 = (18.6)

This integral is the area under the graph of f as a function of v
and, except in special cases, has to be evaluated numerically by
using mathematical software (Fig. 18.5). To evaluate the average
value of vn we calculate

(18.7)
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∞
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Fig. 18.3 To evaluate the probability that a molecule has a speed
in the range v to v + dv, we evaluate the total probability that 
the molecule will have a speed that is anywhere on the surface 
of a sphere of radius v = (vx

2 + vy
2 + vz

2)1/2 by summing the
probabilities that it is in a volume element dvxdvydvz at a
distance v from the origin.
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Fig. 18.5 To calculate the probability that a molecule will have a
speed in the range v1 to v2, we integrate the distribution between
those two limits; the integral is equal to the area of the curve
between the limits, as shown shaded here.
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Fig. 18.4 The distribution of molecular speeds with temperature
and molar mass. Note that the most probable speed
(corresponding to the peak of the distribution) increases 
with temperature and with decreasing molar mass, and
simultaneously the distribution becomes broader. We 
first saw this diagram as Fundamentals Fig. F.7.

interActivity (a) Plot different distributions by keeping 
the molar mass constant at 100 g mol−1 and varying 

the temperature of the sample between 200 K and 2000 K. (b)
Use mathematical software or the Living graph applet from the
text’s web site to evaluate numerically the fraction of molecules
with speeds in the range 100 m s−1 to 200 m s−1 at 300 K and 
1000 K. (c) Based on your observations, provide a molecular
interpretation of temperature.
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As shown in Example 18.1, we can use the Maxwell distribu-
tion to evaluate the mean speed, K, of the molecules in a gas:

(18.8)

We can identify the most probable speed, c*, from the location
of the peak of the distribution:

(18.9)

The location of the peak of the distribution is found by differ-
entiating f with respect to v and looking for the value of v at
which the derivative is zero (other than at v = 0 and v = ∞); see
Problem 8.21. Figure 18.6 summarizes these results.

The mean relative speed, Krel, the mean speed with which one
molecule approaches another, can also be calculated from the
distribution:

Krel = 21/2K (18.10)

This result is much harder to derive, but the diagram in Fig. 18.7
should help to show that it is plausible. The last result can also 
be generalized to the relative mean speed of two dissimilar
molecules of masses mA and mB:

(18.11)

Note that the molecular masses (not the molar masses) and
Boltzmann’s constant, k = R/NA, appear in this expression; the
quantity μ is called the reduced mass of the molecules. Equa-
tion 18.11 turns into eqn 18.10 when the molecules are identical
(that is, mA = mB = m, so μ = 1–2m).
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Fig. 18.6 A summary of the conclusions that can be deduced from
the Maxwell distribution for molecules of molar mass M at a
temperature T: c* is the most probable speed, K is the mean
speed, and c is the root mean square speed.

In particular, straightforward integration with n = 2 results in
eqn 18.3 for the mean square speed (c 2) of the molecules at a
temperature T. We can conclude that the root mean square speed 
of the molecules of a gas is proportional to the square root of the
temperature and inversely proportional to the square root of the
molar mass. That is, the higher the temperature, the higher the root
mean square speed of the molecules, and, at a given tempera-
ture, heavy molecules travel more slowly than light molecules.
Sound waves are pressure waves, and for them to propagate the
molecules of the gas must move to form regions of high and low
pressure. Therefore, we should expect the root mean square
speeds of molecules to be comparable to the speed of sound in
air (340 m s−1). The root mean square speed of N2 molecules, for
instance, is found from eqn 18.3 to be 515 m s−1 at 298 K.

Example 18.1 Calculating the mean speed of molecules in a gas

What is the mean speed, K, of N2 molecules in air at 25°C?

Method The mean speed, K, is obtained by evaluating the 
integral

with f given in eqn 18.4.

Answer The integral required is

where we have used the standard result from tables of
integrals (or software) that

Substitution of the data then gives

We have used 1 J = 1 kg m2 s−2.

Self-test 18.1 Evaluate the root mean square speed of the
molecules by integration. You will need the standard integral

[c = (3RT/M)1/2, 515 m s−1 at 298 K]
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The Maxwell distribution has been verified experimentally.
For example, molecular speeds can be measured directly with a
velocity selector (Fig. 18.8). The spinning cylinder has channels
that permit the passage of only those molecules moving through
them at the appropriate speed, and the number of molecules can
be determined by collecting them at a detector.

(b) The collision frequency

Although the kinetic-molecular theory assumes that the mole-
cules are pointlike, we can count a ‘hit’ whenever the centres of
two molecules come within a distance d of each other, where d,

the collision diameter, is of the order of the actual diameters of
the molecules (for impenetrable hard spheres d is the diameter).
As we show in the following Justification, we can use the kinetic
model to deduce that the collision frequency, z, the number of
collisions made by one molecule divided by the time interval
during which the collisions are counted, when there are N
molecules in a volume V is

z = σKrelN (18.12a)°

with N = N/V and Krel given in eqn 18.10. The area σ = πd2 is called
the collision cross-section of the molecules. Some typical collision
cross-sections are given in Table 18.1. In terms of the pressure,

(18.12b)°

Justification 18.3 Using the kinetic model to calculate the
collision frequency

We consider the positions of all the molecules except one 
to be frozen. Then we note what happens as one mobile
molecule travels through the gas with a mean relative speed
Krel for a time Δt. In doing so it sweeps out a ‘collision tube’ 
of cross-sectional area σ = πd2 and length KrelΔt, and there-
fore of volume σKrelΔt (Fig. 18.9). The number of stationary

  
z

p

kT
=

σK rel

v

v

21/2v

21/2v

0 2v

Fig. 18.7 A simplified version of the argument to show that the
mean relative speed of molecules in a gas is related to the mean
speed. When the molecules are moving in the same direction,
the mean relative speed is zero; it is 2v when the molecules are
approaching each other. A typical mean direction of approach is
from the side, and the mean speed of approach is then 21/2v. The
last direction of approach is the most characteristic, so the mean
speed of approach can be expected to be about 21/2v. This value
is confirmed by more detailed calculation.

Fig. 18.8 A velocity selector. The molecules are produced in the
source (which may be an oven with a small hole in one wall), and
travel in a beam towards the rotating channels. Only if the speed
of a molecule is such as to carry it along the channel that rotates
into its path will it reach the detector. Thus, the number of slow
molecules can be counted by rotating the discs slowly and the
number of fast molecules counted by rotating the discs rapidly.

Synoptic table 18.1* Collision cross-sections

σ/nm2

C6H6 0.88

CO2 0.52

He 0.21

N2 0.43

* More values are given in the Data section.

Miss

Hit

d
d

c trels

Area, T

Fig. 18.9 In an interval Δt, a molecule of diameter d sweeps out 
a tube of radius d and length KrelΔt. As it does so it encounters
other molecules with centres that lie within the tube, and each
such encounter counts as one collision. In reality, the tube is not
straight, but changes direction at each collision. Nevertheless,
the volume swept out is the same, and this straightened version
of the tube can be used as a basis of the calculation.
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molecules with centres inside the collision tube is given by
the volume of the tube multiplied by the number density 
N = N/V, and is N σKrelΔt. The number of hits scored in the 
interval Δt is equal to this number, so the number of colli-
sions divided by the time interval is N σKrel. The expression 
in terms of the pressure of the gas is obtained by using the
perfect gas equation to write

Equation 18.12a shows that, at constant volume, the collision
frequency increases with increasing temperature. Equation 18.12b
shows that, at constant temperature, the collision frequency is
proportional to the pressure. Such a proportionality is plausible
for, the greater the pressure, the greater the number density of
molecules in the sample, and the rate at which they encounter
one another is greater even though their average speed remains
the same. For an N2 molecule in a sample at 1 atm and 25°C, 
z ≈ 5 × 109 s−1, so a given molecule collides about 5 × 109 times
each second. We are beginning to appreciate the timescale of
events in gases.

(c) The mean free path

Once we have the collision frequency, we can calculate the mean
free path, λ (lambda), the average distance a molecule travels
between collisions. If a molecule collides with a frequency z, it
spends a time 1/z in free flight between collisions, and therefore
travels a distance (1/z)K. It follows that the mean free path is

(18.13)

Substitution of the expression for z in eqn 18.12 gives

(18.14)

Doubling the pressure reduces the mean free path by half. A 
typical mean free path in nitrogen gas at 1 atm is 70 nm, or about
103 molecular diameters. Although the temperature appears in
eqn 18.14, in a sample of constant volume, the pressure is pro-
portional to T, so T/p remains constant when the temperature is
increased. Therefore, the mean free path is independent of the
temperature in a sample of gas in a container of fixed volume.
The distance between collisions is determined by the number of
molecules present in the given volume, not by the speed at which
they travel.

In summary, a typical gas (N2 or O2) at 1 atm and 25°C can 
be thought of as a collection of molecules travelling with a 
mean speed of about 500 m s−1. Each molecule makes a collision
within about 1 ns, and between collisions it travels about 103

molecular diameters. The kinetic model of gases is valid (and the
gas behaves nearly perfectly) if the diameter of the molecules is

λ
σ

=
kT

p21 2/

 
λ =

K
z

N = = = =
N

V

nN

V

pN

RT

p

kT
A A

much smaller than the mean free path (d << λ), for then the
molecules spend most of their time far from one another.

18.2 Collisions with walls and surfaces

The key result for accounting for transport in the gas phase is 
the rate at which molecules strike an area (which may be an
imaginary area embedded in the gas, or part of a real wall). The
collision flux, ZW, is the number of collisions with the area in a
given time interval divided by the area and the duration of the
interval. The collision frequency, the number of hits per second,
is obtained by multiplication of the collision flux by the area of
interest. We show in the following Justification that the collision
flux is

(18.15)°

l A (VERY) BRIEF ILLUSTRATION

When p = 100 kPa (1.00 bar) and T = 300 K, ZW ≈ 3 × 1023 cm−2

s−1 for O2. l

Justification 18.4 The collision flux

Consider a wall of area A perpendicular to the x-axis (as 
in Fig. 18.2). If a molecule has vx > 0 (that is, it is travelling in
the direction of positive x), then it will strike the wall within
an interval Δt if it lies within a distance vxΔt of the wall.
Therefore, all molecules in the volume AvxΔt, and with posi-
tive x-component of velocities, will strike the wall in the 
interval Δt. The total number of collisions in this interval 
is therefore the volume AvxΔt multiplied by the number 
density, N, of molecules. However, to take account of the
presence of a range of velocities in the sample, we must sum
the result over all the positive values of vx weighted by the
probability distribution of velocities (eqn 18.5):

Number of collisions =

The collision flux is the number of collisions divided by A
and Δt, so

Then, using the velocity distribution in eqn 18.5,

where we have used the standard integral
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Therefore,

(18.16)°

where we have used eqn 18.8 in the form K = (8kT/πm)1/2,
which implies that 1–4 K = (kT/2πm)1/2. Substitution of N =
nNA/V = p/kT gives eqn 18.15.

18.3 The rate of effusion

The essential empirical observations on effusion are summar-
ized by Graham’s law of effusion, which states that the rate of 
effusion is inversely proportional to the square root of the molar
mass. The basis of this result is that, as remarked above, the
mean speed of molecules is inversely proportional to M1/2, so the
rate at which they strike the area of the hole is also inversely 
proportional to M1/2. However, by using the expression for the
rate of collisions, we can obtain a more detailed expression for
the rate of effusion and hence use effusion data more effectively.

When a gas at a pressure p and temperature T is separated
from a vacuum by a small hole, the rate of escape of its molecules
is equal to the rate at which they strike the area of the hole
(which is the product of the area and collision flux). Therefore,
for a hole of area A0,

(18.17)°

where, in the last step, we have used R = NAk and M = mNA. This
rate is inversely proportional to M1/2, in accord with Graham’s
law.

Equation 18.17 is the basis of the Knudsen method for the 
determination of the vapour pressures of liquids and solids, par-
ticularly of substances with very low vapour pressures. In this
technique, a sample of the substance is enclosed in a cavity with
a small hole and its mass is monitored as a function of time. The
value of the vapour pressure, p, is then obtained by applying 
eqn 18.17.

Example 18.2 Calculating the vapour pressure from a mass loss

Caesium (m.p. 29°C, b.p. 686°C) was introduced into a
container and heated to 500 K. When a hole of diameter 
0.50 mm was opened in the container for 100 s, a mass loss 
of 385 mg was measured. Calculate the vapour pressure of
liquid caesium at 500 K.

Method The pressure of vapour is constant inside the con-
tainer despite the effusion of atoms because the hot liquid
metal replenishes the vapour. The rate of effusion is therefore
constant, and given by eqn 18.17. To express the rate in terms
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of mass, multiply the number of atoms that escape by the
mass of each atom.

Answer The mass loss Δm in an interval Δt is related to the
collision flux by Δm = ZWA0mΔt, where A0 is the area of the
hole and m is the mass of one atom. It follows that

Because ZW is related to the pressure by eqn 18.15, we can
write

Because M = 132.9 g mol−1, substitution of the data gives 
p = 8.7 kPa (using 1 Pa = 1 N m−2 = 1 J m−1), or 65 Torr.

Self-test 18.2 How long would it take 1.0 g of Cs atoms to 
effuse out of the oven under the same conditions? [260 s]

18.4 Transport properties of a perfect gas

Transport properties are commonly expressed in terms of a
number of ‘phenomenological’ equations, equations that are
empirical summaries of experimental observations. These phe-
nomenological equations apply to all kinds of properties and
media. In the following sections, we introduce the equations for
the general case and then show how to calculate the parameters
that appear in them.

(a) The phenomenological equations

The net rate of transport of a property is measured by its flux, J,
the quantity of that property passing through a given area in a
given time interval divided by the area and the duration of the
interval. If matter is flowing (as in diffusion), we speak of a matter
flux of so many molecules per square metre per second; if the
property is the energy of thermal motion (as in thermal conduc-
tion), then we speak of the energy flux and express it in joules
per square metre per second, and so on.

Experimental observations on transport properties show that
the flux of a property is usually proportional to the first deriva-
tive of some other related property. For example, the flux of
matter diffusing parallel to the z-axis of a container is found to
be proportional to the first derivative of the concentration:

(18.18)

where N is the number density of particles with units number
per metre cubed (m−3). The SI units of J are number per square
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metre per second (m−2 s−1). The proportionality of the flux of
matter to the concentration gradient is sometimes called Fick’s
first law of diffusion: the law implies that, if the concentration
varies steeply with position, then diffusion will be fast. There 
is no net flux if the concentration is uniform (dN /dz = 0).
Similarly, the rate of thermal conduction (the flux of the energy
associated with thermal motion) is found to be proportional 
to the temperature gradient:

(18.19)

The SI units of this flux are joules per square metre per second
(J m−2 s−1).

A positive value of J signifies a flux towards positive z; a nega-
tive value of J signifies a flux towards negative z. Because matter
flows down a concentration gradient, from high concentration
to low concentration, J is positive if dN /dz is negative (Fig. 18.10).
Therefore, the coefficient of proportionality in eqn 18.18 must
be negative, and we write it −D, with D a positive constant:

(18.20)

The constant D is called the diffusion coefficient; its SI units are
metre squared per second (m2 s−1). Energy of thermal motion
(‘heat’) migrates down a temperature gradient, and the same
reasoning leads to

(18.21)

where κ (kappa) is the coefficient of thermal conductivity. The
SI units of κ are joules per kelvin per metre per second (J K−1

m−1 s−1). Some experimental values are given in Table 18.2.
To see the connection between the flux of momentum and

the viscosity, consider a fluid in a state of Newtonian flow, which
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can be imagined as occurring by a series of layers moving 
past one another (Fig. 18.11). The layer next to the wall of the
vessel is stationary, and the velocity of successive layers varies
linearly with distance, z, from the wall. Molecules ceaselessly
move between the layers and bring with them the x-component
of linear momentum they possessed in their original layer. A
layer is retarded by molecules arriving from a more slowly mov-
ing layer because they have a low momentum in the x-direction.
A layer is accelerated by molecules arriving from a more rapidly
moving layer. We interpret the net retarding effect as the fluid’s
viscosity.

Because the retarding effect depends on the transfer of the 
x-component of linear momentum into the layer of interest, 
the viscosity depends on the flux of this x-component in the 
z-direction. The flux of the x-component of momentum is 
proportional to dvx /dz because there is no net flux when all the
layers move at the same velocity. We can therefore write

(18.22)
  
J x

z
x( -component of momentum)

d

d
= −η

v

J > 0

z
d
dz

< 0

Fig. 18.10 The flux of particles down a concentration gradient.
Fick’s first law states that the flux of matter (the number of
particles passing through an imaginary window in a given
interval divided by the area of the window and the length of the
interval) is proportional to the density gradient at that point.

W
al
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Bring high
-momentumxBring low

-momentumx

x

z

Fig. 18.11 The viscosity of a fluid arises from the transport of
linear momentum. In this illustration the fluid is undergoing
laminar flow, and particles bring their initial momentum when
they enter a new layer. If they arrive with high x-component of
momentum they accelerate the layer; if with low x-component of
momentum they retard the layer.

Synoptic table 18.2* Transport properties of gases at 1 atm

k/(J K−1 m−1 s−1) h/(mP)†

273 K 273 K 293 K

Ar 0.0163 210 223

CO2 0.0145 136 147

He 0.1442 187 196

N2 0.0240 166 176

* More values are given in the Data section.
† 1 μP = 10−7 kg m−1 s−1.
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The constant of proportionality, η (eta), is the coefficient of 
viscosity (or simply ‘the viscosity’). Its SI units are kilogram 
per metre per second (kg m−1 s−1, which is equivalent to Pa s).
Viscosities are often reported in the non-SI unit poise (P), where
1 P = 10−1 kg m−1 s−1. There are a variety of methods of deter-
mining viscosity, including monitoring the rate of flow of a fluid
through a narrow tube. Some experimental values are given in
Table 18.2.

(b) The transport parameters

As shown in Further information 18.1 and summarized in Table
18.3, the kinetic model leads to expressions for the diffusional
parameters of a perfect gas.

The diffusion coefficient is

D = 1–3λK (18.23)°

As usual, we need to consider the significance of this expression:

1. The mean free path, λ, decreases as the pressure is 
increased (eqn 18.14), so D decreases with increasing pressure
and, as a result, the gas molecules diffuse more slowly.

2. The mean speed, K, increases with the temperature 
(eqn 18.8), so D also increases with temperature. As a result,
molecules in a hot sample diffuse more quickly than those in a
cool sample (for a given concentration gradient).

3. Because the mean free path increases when the collision
cross-section of the molecules decreases (eqn 18.14), the diffusion
coefficient is greater for small molecules than for large molecules.

Similarly, according to the kinetic model of gases, the thermal
conductivity of a perfect gas A having molar concentration [A]
is given by the expression

κ = 1–3λKCV,m[A] (18.24)°

where CV,m is the molar heat capacity at constant volume. To 
interpret this expression, we note that:

1. Because λ is inversely proportional to the pressure, and
hence inversely proportional to the molar concentration of the
gas, the thermal conductivity is independent of the pressure.

2. The thermal conductivity is greater for gases with a high
heat capacity because a given temperature gradient then corres-
ponds to a greater energy gradient.

The physical reason for the pressure independence of κ is that
the thermal conductivity can be expected to be large when many
molecules are available to transport the energy, but the presence
of so many molecules limits their mean free path and they can-
not carry the energy over a great distance. These two effects 
balance. The thermal conductivity is indeed found experiment-
ally to be independent of the pressure, except when the pressure
is very low, when κ ∝ p. At low pressures λ exceeds the dimen-
sions of the apparatus, and the distance over which the energy 
is transported is determined by the size of the container and not
by the other molecules present. The flux is still proportional to
the number of carriers, but the length of the journey no longer
depends on λ, so κ ∝ [A], which implies that κ ∝ p.

Finally, the kinetic model leads to the following expression for
the viscosity (see Further information 18.1):

η = 1–3MλK[A] (18.25)°

where [A] is the molar concentration of the gas molecules and 
M is their molar mass. We can interpret this expression as 
follows:

1. Because λ ∝ 1/p (eqn 18.14) and [A] ∝ p, it follows that 
η ∝ K, independent of p. That is, the viscosity is independent of
the pressure.

2. Because K ∝ T1/2 (eqn 18.8), η ∝ T1/2. That is, the viscosity
of a gas increases with temperature.

The physical reason for the pressure independence of the viscos-
ity is the same as for the thermal conductivity: more molecules
are available to transport the momentum, but they carry it less
far on account of the decrease in mean free path. The increase 
of viscosity with temperature is explained when we remember
that at high temperatures the molecules travel more quickly, so
the flux of momentum is greater. By contrast, we shall see in
Section 18.5, the viscosity of a liquid decreases with increase 
in temperature because intermolecular interactions must be
overcome.

Table 18.3 Transport properties of perfect gases

Property Transported quantity Simple kinetic theory Units

Diffusion Matter D = 1–
3λK m2 s−1

Thermal conductivity Energy κ = 1–
3λKCV,m[A] J K−1 m−1 s−1

Viscosity Linear momentum η = 1–
3λKmN kg m−1 s−1
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Motion in liquids

We outlined what is currently known about the structure of 
simple liquids in Section 8.8. Here we consider a particularly
simple type of motion through a liquid, that of an ion, and see
that the information that motion provides can be used to infer
the behaviour of uncharged species too.

18.5 Experimental results

The motion of molecules in liquids can be studied experiment-
ally by a variety of methods. Relaxation time measurements 
in NMR and EPR (Chapter 12) can be interpreted in terms of 
the mobilities of the molecules, and have been used to show that
big molecules in viscous fluids typically rotate in a series of small
(about 5°) steps, whereas small molecules in nonviscous fluids
typically jump through about 1 radian (57°) in each step. Another
important technique is inelastic neutron scattering, in which
the energy neutrons collect or discard as they pass through a
sample is interpreted in terms of the motion of its particles. The
same technique is used to examine the internal dynamics of
macromolecules.

More mundane than these experiments are viscosity meas-
urements (Table 18.4). For a molecule to move in a liquid, it
must acquire at least a minimum energy to escape from its neigh-
bours. The probability that a molecule has at least an energy Ea is
proportional to e−Ea/RT, so the mobility of the molecules in the
liquid should follow this type of temperature dependence.
Because the coefficient of viscosity, η, is inversely proportional
to the mobility of the particles, we should expect that

η ∝ eEa/RT (18.26)

(Note the positive sign of the exponent.) This expression implies
that the viscosity should decrease sharply with increasing tem-
perature. Such a variation is found experimentally, at least over
reasonably small temperature ranges (Fig. 18.12). The activation
energy Ea typical of viscosity is comparable to the mean poten-
tial energy of intermolecular interactions.

One problem with the interpretation of viscosity measure-
ments is that the change in density of the liquid as it is heated
makes a pronounced contribution to the temperature variation
of the viscosity. Thus, the temperature dependence of viscosity
at constant volume, when the density is constant, is much less
than that at constant pressure. The intermolecular interactions
between the molecules of the liquid govern the magnitude of Ea,
but the problem of calculating it is immensely difficult and still
largely unsolved. At low temperatures, the viscosity of water 
decreases as the pressure is increased. This behaviour is consist-
ent with the rupture of hydrogen bonds.

18.6 The conductivities of electrolyte solutions

Further insight into the nature of molecular motion can be 
obtained by studying the net transport of charged species through
solution, for ions can be dragged through the solvent by the 
application of a potential difference between two electrodes 
immersed in the sample. By studying the transport of charge
through electrolyte solutions it is possible to build up a picture
of the events that occur in them and, in some cases, to extra-
polate the conclusions to species that have zero charge, that is, 
to neutral molecules.

The fundamental measurement used to study the motion of
ions is that of the electrical resistance, R, of the solution. The
conductance, G, of a solution is the inverse of its resistance 
R: G = 1/R. As resistance is expressed in ohms, Ω, the conduc-
tance of a sample is expressed in Ω−1. The reciprocal ohm used
to be called the mho, but its SI designation is now the siemens, S,
and 1 S = 1 Ω−1 = 1 C V−1 s−1. The conductance of a sample 
decreases with its length l and increases with its cross-sectional
area A. We therefore write

Synoptic table 18.4* Viscosities of liquids at 298 K

h/(10−3 kg m−1 s−1)

Benzene 0.601

Mercury 1.55

Pentane 0.224

Water† 0.891

*More values are given in the Data section.
† The viscosity of water corresponds to 0.891 cP.
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Fig. 18.12 The experimental temperature dependence of the
viscosity of water. As the temperature is increased, more
molecules are able to escape from the potential wells provided 
by their neighbours, and so the liquid becomes more fluid. A
plot of ln η against 1/T is a straight line (over a small range) 
with positive slope.
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(18.27)

where κ is the conductivity (in this section of the chapter, the
electrical conductivity). With the conductance in siemens and
the dimensions in metres, it follows that the SI units of κ are
siemens per metre (S m−1).

The conductivity of a solution depends on the number of ions
present, and it is normal to introduce the molar conductivity,
Λm, which is defined as

[18.28]

where c is the molar concentration of the added electrolyte. 
The SI unit of molar conductivity is siemens metre-squared per
mole (S m2 mol−1), and typical values are about 10 mS m2 mol−1

(where 1 mS = 10−3 S).
The values of the molar conductivity as calculated by eqn

18.28 are found to vary with the concentration. One reason for
this variation is that the number of ions in the solution might
not be proportional to the concentration of the electrolyte. 
For instance, the concentration of ions in a solution of a weak
electrolyte depends on the concentration of the solute in a com-
plicated way, and doubling the concentration of the solute
added does not double the number of ions. Secondly, because
ions interact strongly with one another, the conductivity of a 
solution is not exactly proportional to the number of ions 
present.

In an extensive series of measurements during the nine-
teenth century, Friedrich Kohlrausch established the Kohlrausch
law, that at low concentrations the molar conductivities of
strong electrolytes vary linearly with the square root of the 
concentration:

Λm = Λ°m − Kc1/2 (18.29)

He also established that Λ°m, the limiting molar conductivity, 
the molar conductivity in the limit of zero concentration, is the
sum of contributions from its individual ions. If the limiting
molar conductivity of the cations is denoted λ+ and that of the
anions λ−, then his law of the independent migration of ions
states that

Λ°m = ν+λ+ + ν−λ− (18.30)°

where ν+ and ν− are the numbers of cations and anions per for-
mula unit of electrolyte (for example, ν+ = ν− = 1 for HCl, NaCl,
and CuSO4, but ν+ = 1, ν− = 2 for MgCl2).

18.7 The mobilities of ions

To interpret conductivity measurements we need to know why
ions move at different rates, why they have different molar con-
ductivities, and why the molar conductivities of strong electrolytes

 
Λm =

κ
c

G
A

l
=

κ decrease with the square root of the molar concentration. The
central idea in this section is that, although the motion of an ion
remains largely random, the presence of an electric field biases
its motion, and the ion undergoes net migration through the 
solution.

(a) The drift speed

When the potential difference between two planar electrodes 
a distance l apart is Δφ, the ions in the solution between them 
experience a uniform electric field of magnitude

(18.31)

In such a field, an ion of charge ze experiences a force of 
magnitude

F = zeE = (18.32)

where here and throughout the chapter we disregard the sign of
the charge number and so avoid notational complications. A
cation responds to the application of the field by accelerating 
towards the negative electrode and an anion responds by acceler-
ating towards the positive electrode. However, this acceleration
is short-lived. As the ion moves through the solvent it experi-
ences a frictional retarding force, Ffric, proportional to its speed.
For a spherical particle of radius a travelling at a speed s, this
force is given by Stokes’ law, which was derived by considering
the hydrodynamics of the passage of a sphere through a continu-
ous fluid:

Ffric = fs f = 6πηa (18.33)

where η is the viscosity. In writing eqn 18.33, we assume that it
applies on a molecular scale, and independent evidence from
magnetic resonance suggests that it often gives at least the right
order of magnitude.

The two forces act in opposite directions, and the ions quickly
reach a terminal speed, the drift speed, when the accelerating
force is balanced by the viscous drag. The net force is zero 
when

(18.34)

It follows that the drift speed of an ion is proportional to the
strength of the applied field. We write

s = uE [18.35]

where u is called the mobility of the ion (Table 18.5). Com-
parison of the last two equations shows that

(18.36)u
ze
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6πη
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l A BRIEF ILLUSTRATION

For an order of magnitude estimate we can take z = 1 and a
the radius of an ion such as Cs+ (which might be typical of a
smaller ion plus its hydration sphere), which is 170 pm. For
the viscosity, we use η = 1.0 cP (1.0 × 10−3 kg m−1 s−1, Table
18.4). Then u ≈ 5 × 10−8 m2 V−1 s−1. This value means that,
when there is a potential difference of 1 V across a solution of
length 1 cm (so E = 100 V m−1), the drift speed is typically
about 5 μm s−1. That speed might seem slow, but not when
expressed on a molecular scale, for it corresponds to an ion
passing about 104 solvent molecules per second. l

Because the drift speed governs the rate at which charged
species are transported, we might expect the conductivity to 
decrease with increasing solution viscosity and ion size. Experi-
ments confirm these predictions for bulky ions (such as R4N+

and RCO2
−) but not for small ions. For example, the molar con-

ductivities of the alkali metal ions in water increase from Li+ to
Cs+ (Table 18.5) even though the ionic radii increase. The para-
dox is resolved when we realize that the radius a in the Stokes
formula is the hydrodynamic radius (or ‘Stokes radius’) of the
ion, its effective radius in the solution taking into account all the
H2O molecules it carries in its hydration shell. Small ions give
rise to stronger electric fields than large ones (the electric field 
at the surface of a sphere of radius r is proportional to ze/r2 and
it follows that the smaller the radius the stronger the field), so
small ions are more extensively solvated than big ions. Thus, an
ion of small ionic radius may have a large hydrodynamic radius
because it drags many solvent molecules through the solution as
it migrates. The hydrating H2O molecules are often very labile,
however, and NMR and isotope studies have shown that the 
exchange between the coordination sphere of the ion and the
bulk solvent is very rapid for ions of low charge but may be slow
for ions of high charge (Fig. 18.13).

The proton, although it is very small, has a very high molar
conductivity (Table 18.5)! Proton and 17O-NMR show that the
times characteristic of protons hopping from one molecule to
the next are about 1.5 ps, which is comparable to the time that
inelastic neutron scattering shows it takes a water molecule to

reorientate through about 1 radian (1 to 2 ps). According to the
Grotthuss mechanism, there is an effective motion of a proton
that involves the rearrangement of bonds in a group of water
molecules. However, the actual mechanism is still highly con-
tentious. Attention now focuses on the H9O4

+ unit, in which the
nearly trigonal planar H3O+ ion is linked to three strongly sol-
vating H2O molecules. This cluster of atoms is itself hydrated,
but the hydrogen bonds in the secondary sphere are weaker than
in the primary sphere. It is envisaged that the rate-determining
step is the cleavage of one of the weaker hydrogen bonds of 
this secondary sphere (Fig. 18.14a). After this bond cleavage has
taken place, and the released molecule has rotated through a few
degrees (a process that takes about 1 ps), there is a rapid adjust-
ment of bond lengths and angles in the remaining cluster, to
form an H5O2

+ cation of structure H2OîH+ îOH2 (Fig. 18.14b).

Synoptic table 18.5* Ionic mobilities in water at 298 K

u/(10−8 m2 s−1 V−1) u/(10−8 m2 s−1 V−1)

H+ 36.23 OH− 20.64

Na+ 5.19 Cl− 7.91

K+ 7.62 Br− 8.09

Zn2+ 5.47 SO4
2− 8.29

* More values are given in the Data section.
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Fig. 18.13 The half-lives of water molecules in the hydration
spheres of ions.

(a)

(b)

(c)

+

+

+

Fig. 18.14 The mechanism of conduction by water as proposed by
N. Agmon (Chem. Phys. Lett. 244, 456 (1995)). Proton transfer
between neighbouring molecules occurs when one molecule
rotates into such a position that an O-HîO hydrogen bond 
can flip into being an OîH-O hydrogen bond. See text for a
description of the steps.
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Shortly after this reorganization has occurred, a new H9O4
+ clus-

ter forms as other molecules rotate into a position where they
can become members of a secondary hydration sphere, but now
the positive charge is located one molecule to the right of its 
initial location (Fig. 18.14c). According to this model, there is
no coordinated motion of a proton along a chain of molecules,
simply a very rapid hopping between neighbouring sites, with a
low activation energy. The model is consistent with the observa-
tion that the molar conductivity of protons increases as the pres-
sure is raised, for increasing pressure ruptures the hydrogen
bonds in water. The mobility of NH4

+ in liquid ammonia is also
anomalous and presumably occurs by an analogous mechanism.

A brief comment The H3O+ ion is trigonal pyramidal in the
gas phase but, as a result of its hydration, is nearly planar in
water.

(b) Mobility and conductivity

Ionic mobilities provide a link between measurable and the-
oretical quantities. As a first step we establish in the following
Justification the relation between an ion’s mobility and its molar
conductivity:

λ = zuF (18.37)°

where F is Faraday’s constant (F = NAe).

Justification 18.5 The relation between ionic mobility and
molar conductivity

To keep the calculation simple, we ignore signs in the follow-
ing, and concentrate on the magnitudes of quantities.

Consider a solution of a fully dissociated strong electrolyte
at a molar concentration c. Let each formula unit give rise to
ν+ cations of charge z+e and ν− anions of charge z−e. The
molar concentration of each type of ion is therefore νc (with
ν = ν+ or ν−), and the number density of each type is νcNA.
The number of ions of one kind that pass through an imagin-
ary window of area A during an interval Δt is equal to the
number within the distance sΔt (Fig. 18.15), and therefore to
the number in the volume sΔtA. (The same sort of argument
was used in Section 18.1 in the discussion of the pressure of 
a gas.) The number of ions of that kind in this volume is 
equal to sΔtAνcNA. The flux through the window (the num-
ber of this type of ion passing through the window divided by
the area of the window and the duration of the interval) is
therefore

Each ion carries a charge ze, so the flux of charge is

J(charge) = zsνceNA = zsνcF

 
J

s tA cN

A t
s cN( )ions A

A= =
Δ

Δ
ν

ν

Because s = uE , the flux is

J(charge) = zuνcFE

The current, I, through the window due to the ions we are
considering is the charge flux times the area:

I = JA = zuνcFEA

Because the electric field is the potential gradient, Δφ/l, we
can write

Current and potential difference are related by Ohm’s law,
Δφ = IR, so it follows that

where we have used eqn 18.27 in the form κ = Gl/A. Note that
the proportionality of current to potential difference (I ∝ Δφ)
is another example of a phenomenological flux equation like
those introduced in Section 18.4. Comparison of the last two
expressions gives κ = zuνcF. Division by the molar concen-
tration of ions, νc, then results in eqn 18.37.

Equation 18.37 applies to the cations and to the anions.
Therefore, for the solution itself in the limit of zero concentra-
tion (when there are no ionic interactions),

Λ°m = (z+u+ν+ + z−u−ν−)F (18.38a)°

For a symmetrical z:z electrolyte (for example, CuSO4 with 
z = 2), this equation simplifies to

Λ°m = z(u+ + u−)F (18.38b)°
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Fig. 18.15 In the calculation of the current, all the cations
within a distance s+Δt (that is, those in the volume 
s+AΔt ) will pass through the area A. The anions in the
corresponding volume the other side of the window will
also contribute to the current similarly.



18 MOLECULAR MOTION 605

l A BRIEF ILLUSTRATION

Earlier, we estimated the typical ionic mobility as 5 × 10−8 m2

V−1 s−1; so, with z = 1 for both the cation and anion, we can 
estimate that a typical limiting molar conductivity should be
about 10 mS m2 mol−1, in accord with experiment. The experi-
mental value for KCl, for instance, is 15 mS m2 mol−1. l

IMPACT ON BIOCHEMISTRY

I18.1 Gel electrophoresis in genomics and proteomics

Advances in biotechnology are linked strongly to the develop-
ment of physical techniques. The effort to characterize the entire
genetic material, or genome, of organisms as simple as bacteria
and as complex as Homo sapiens will lead to important new 
insights into the molecular mechanisms of disease, primarily
through the discovery of previously unknown proteins encoded
by the deoxyribonucleic acid (DNA) in genes. However, decod-
ing genomic DNA will not always lead to accurate predictions of
the amino acids present in biologically active proteins. Many
proteins undergo chemical modification, such as cleavage into
smaller proteins, after being synthesized in the cell. Moreover, 
it is known that one piece of DNA may encode more than one
active protein. It follows that it is also important to describe 
the proteome, the full complement of functional proteins of an 
organism, by characterizing directly the proteins after they have
been synthesized and processed in the cell.

The procedures of genomics and proteomics, the analysis 
of the genome and proteome, of complex organisms are time-
consuming because of the very large number of molecules 
that must be characterized. For example, the human genome
contains about 30 000 genes and the number of active proteins
is likely to be much larger. Success in the characterization of 
the genome and proteome of any organism will depend on the 
deployment of very rapid techniques for the determination 
of the order in which molecular building blocks are linked 
covalently in DNA and proteins.

Many macromolecules, such as DNA, are charged and move
in response to an electric field. This motion, with a drift speed
given by eqn 18.34, is called electrophoresis and it depends on
its net charge, size (and hence molar mass), and shape. The lat-
ter two factors are implied by the dependence of the drift speed
on the frictional force. Consequently, experimental techniques
based on electrophoresis are very useful to polymer chemists
and biochemists in the characterization of macromolecules.

An important tool in genomics and proteomics is gel elec-
trophoresis, in which biopolymers are separated on a slab of a
porous gel, a semirigid dispersion of a solid in a liquid. Because
the molecules must pass through the pores in the gel, the larger
the macromolecule the less mobile it is in the electric field and,
conversely, the smaller the macromolecule the more swiftly it
moves through the pores. In this way, gel electrophoresis allows
for the separation of components of a mixture according to their

molar masses. Two common gel materials for the study of pro-
teins and nucleic acids are agarose and cross-linked polyacry-
lamide. Agarose has large pores and is better suited for the study
of large macromolecules, such as DNA and enzyme complexes.
Polyacrylamide gels with varying pore sizes can be made by
changing the concentration of acrylamide in the polymerization
solution. In general, smaller pores form as the concentration 
of acrylamide is increased, making possible the separation of 
relatively small macromolecules by polyacrylamide gel electro-
phoresis (PAGE).

The separation of very large pieces of DNA, such as chromo-
somes, by conventional gel electrophoresis is not effective, 
making the analysis of genomic material rather difficult. Double-
stranded DNA molecules are thin enough to pass through gel
pores, but long and flexible DNA coils can become trapped in
the pores and the result is impaired mobility along the direction
of the applied electric field. This problem can be avoided with
pulsed-field electrophoresis, in which a brief burst of the electric
field is applied first along one direction and then along a 
perpendicular direction. In response to the switching back and
forth between field directions, the DNA coils writhe about and
eventually pass through the gel pores. In this way, the mobility
of the macromolecule can be related to its molar mass.

We have seen that charge also determines the drift speed. For
example, proteins of the same size but different net charge travel
along the slab at different speeds. One way to avoid this problem
and to achieve separation by molar mass is to denature the pro-
teins in a controlled way. Sodium dodecyl sulfate is an anionic
detergent that is very useful in this respect: it denatures proteins,
whatever their initial shapes, into rods by forming a complex
with them. Moreover, most protein molecules bind a constant
number of ions, so the net charge per protein is well regulated.
Under these conditions, different proteins in a mixture may 
be separated according to size only. The molar mass of each 
constituent protein is estimated by comparing its mobility in its
rod-like complex form with a standard sample of known molar
mass. However, molar masses obtained by this method, often
referred to as SDS-PAGE when polyacrylamide gels are used, are
not as accurate as those obtained by mass spectrometry.

Another technique that deals with the effect of charge on drift
speed takes advantage of the fact that the overall charge of pro-
teins and other biopolymers depends on the pH of the medium.
For instance, in acidic environments protons attach to basic
groups and the net charge is positive; in basic media the net
charge is negative as a result of proton loss. At the isoelectric
point, the pH is such that there is no net charge on the biopoly-
mer. Consequently, the drift speed of a biopolymer depends 
on the pH of the medium, with s = 0 at the isoelectric point 
(Fig. 18.16). Isoelectric focusing is an electrophoresis method
that exploits the dependence of drift speed on pH. In this tech-
nique, a mixture of proteins is dispersed in a medium with a pH
gradient along the direction of an applied electric field. Each
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protein in the mixture will stop moving at a position in the gradi-
ent where the pH is equal to the isoelectric point. In this manner,
the protein mixture can be separated into its components.

Diffusion

We are now in a position to extend the discussion of ionic 
motion to cover the migration of neutral molecules and of ions
in the absence of an applied electric field. We shall do this by 
expressing ion motion in a more general way than hitherto, and
will then discover that the same equations apply even when the
charge on the particles is zero.

18.8 The thermodynamic view

We saw in Section 15.5 that, at constant temperature and 
pressure, the maximum non-expansion work that can be done
per mole when a substance moves from a location where its
chemical potential is μ to a location where its chemical potential
is μ + dμ is dw = dμ. In a system in which the chemical potential
depends on the position x,

We also saw in Chapter 14 (Table 14.1) that in general work can
always be expressed in terms of an opposing force (which here
we write F ), and that

dw = −F dx

By comparing these two expressions, we see that the slope of the
chemical potential can be interpreted as an effective force per
mole of molecules. We write this thermodynamic force as

d d dw
x

x
p T

= =
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟μ

μ

,

[18.39]

There is not necessarily a real force pushing the particles down
the slope of the chemical potential. As we shall see, the force may
represent the spontaneous tendency of the molecules to disperse
as a consequence of the Second Law and the hunt for maximum
entropy.

In a solution in which the activity of the solute is a, the chem-
ical potential is μ = μ7 + RT ln a. If the solution is not uniform
the activity depends on the position and we can write

(18.40a)

If the solution is ideal, a may be replaced by the molar concen-
tration c, and then

(18.40b)°

where we have also used the relation d ln y/dx = (1/y)(dy/dx).
In Section 18.4 we saw that Fick’s first law of diffusion (that

the particle flux is proportional to the concentration gradient)
could be deduced from the kinetic model of gases. We shall now
show that it can be deduced more generally and that it applies to
the diffusion of species in condensed phases too. We suppose
that the flux of diffusing particles is motion in response to a
thermodynamic force arising from a concentration gradient.
The particles reach a steady drift speed, s, when the thermody-
namic force, F, is matched by the viscous drag. This drift speed
is proportional to the thermodynamic force, and we write s ∝ F.
However, the particle flux, J, is proportional to the drift speed,
and the thermodynamic force is proportional to the concentra-
tion gradient, dc/dx. The chain of proportionalities (J ∝ s, s ∝ F,
and F ∝ dc/dx) implies that J ∝ dc/dx, which is the content of
Fick’s law.

(a) The Einstein relation

If we divide both sides of eqn 18.20 by Avogadro’s constant,
thereby converting numbers into amounts (numbers of moles),
then Fick’s law becomes

(18.41)

In this expression, D is the diffusion coefficient and dc/dx is the
slope of the molar concentration. The flux is related to the drift
speed by

J = sc (18.42)

This relation follows from the argument that we have used 
several times before. Thus, all particles within a distance sΔt, and
therefore in a volume sΔtA, can pass through a window of area A
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Fig. 18.16 The plot of drift speed of the protein bovine serum
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in an interval Δt. Hence, the amount of substance that can pass
through the window in that interval is sΔtAc. Therefore,

If now we express dc/dx in terms of F by using eqn 18.40b, we find

(18.43)

Therefore, once we know the effective force and the diffusion
coefficient, D, we can calculate the drift speed of the particles
(and vice versa) whatever the origin of the force.

There is one case where we already know the drift speed and
the effective force acting on a particle: an ion in solution has a
drift speed s = uE when it experiences a force NAezE from an
electric field of strength E. Therefore, substituting these known
values into eqn 18.43 and using NAe = F gives uE = DFzE /RT and
hence

(18.44)

This equation rearranges into the very important result known
as the Einstein relation between the diffusion coefficient and the
ionic mobility:

(18.45)°

On inserting the typical value u = 5 × 10−8 m2 s−1 V−1, we find 
D ≈ 1 × 10−9 m2 s−1 at 25°C as a typical value of the diffusion
coefficient of an ion in water.

(b) The Nernst–Einstein equation

The Einstein relation provides a link between the molar conduc-
tivity of an electrolyte and the diffusion coefficients of its ions.
First, by using eqns 18.37 and 18.44 we write

(18.46)°

for each type of ion. Then, from Λ°m = ν+λ+ + ν−λ−, the limiting
molar conductivity is

(18.47)°

which is the Nernst–Einstein equation. An application of this
equation is to the determination of ionic diffusion coefficients
from conductivity measurements; another is to the prediction of
conductivities using models of ionic diffusion (see below).

(c) The Stokes–Einstein equation

Equations 18.36 (u = ez/f ) and 18.44 relate the mobility of an ion
to the frictional force and to the diffusion coefficient, respect-
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Synoptic table 18.6* Diffusion coefficients at 298 K

D/(10−9 m2 s−1)

H+ in water 9.31

I2 in hexane 4.05

Na+ in water 1.33

Sucrose in water 0.522

* More values are given in the Data section.

ively. We can combine the two expressions into the Stokes–
Einstein equation:

(18.48)

If the frictional force is described by Stokes’s law, then we 
also obtain a relation between the diffusion coefficient and the 
viscosity of the medium:

(18.49)

An important feature of eqn 18.48 (and of its special case, 
eqn 18.49) is that it makes no reference to the charge of the 
diffusing species. Therefore, the equation also applies in the
limit of vanishingly small charge, that is, it also applies to neutral
molecules. Consequently, we may use viscosity measurements
to estimate the diffusion coefficients for electrically neutral
molecules in solution (Table 18.6). It must not be forgotten,
however, that both equations depend on the assumption that
the viscous drag is proportional to the speed.

Example 18.3 Interpreting the mobility of an ion

Use the experimental value of the mobility to evaluate the
diffusion coefficient, the limiting molar conductivity, and the
hydrodynamic radius of a sulfate ion in aqueous solution at
298 K.

Method The starting point is the mobility of the ion, which
is given in Table 18.5. The diffusion coefficient can then be
determined from the Einstein relation, eqn 18.45. The ionic
conductivity is related to the mobility by eqn 18.37. To esti-
mate the hydrodynamic radius, a, of the ion, use the Stokes–
Einstein relation to find f and the Stokes law to relate f to a.

Answer From Table 18.5, the mobility of SO4
2− is 8.29 × 10−8

m2 s−1 V−1. It follows from eqn 18.45 that

= 1.1 × 10−9 m2 s−1D
uRT

zF
=

D
kT

a
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6πη

D
kT

f
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There is also an outflow through the right-hand window. 
The flux through that window is J ′, and the rate of change of
concentration that results is

The net rate of change of concentration is therefore

Each flux is proportional to the concentration gradient at the
window. So, by using Fick’s first law, we can write

When this relation is substituted into the expression for the
rate of change of concentration in the slab, we get eqn 18.50.

The diffusion equation shows that the rate of change of con-
centration is proportional to the curvature (more precisely, to
the second derivative) of the concentration with respect to dis-
tance. If the concentration changes sharply from point to point
(if the distribution is highly wrinkled) then the concentration
changes rapidly with time. Where the curvature is positive (a
dip, Fig. 18.18), the change in concentration is positive; the dip
tends to fill. Where the curvature is negative (a heap), the change
in concentration is negative; the heap tends to spread. If the 
curvature is zero, then the concentration is constant in time. 
If the concentration decreases linearly with distance, then the
concentration at any point is constant because the inflow of 
particles is exactly balanced by the outflow.

The diffusion equation can be regarded as a mathematical for-
mulation of the intuitive notion that there is a natural tendency
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From eqn 18.37 it follows that

λ = zuF = 16 mS m2 mol−1

Finally, from f = 6πηa using 0.891 cP (or 8.91 × 10−4 kg m−1 s−1)
for the viscosity of water (Table 18.4):

The bond length in SO4
2− is 144 pm, so the radius calculated

here is plausible and consistent with a small degree of solvation.

Self-test 18.3 Repeat the calculation for the NH4
+ ion.

[1.96 × 10−9 m2 s−1, 7.4 mS m2 mol−1, 125 pm]

18.9 The diffusion equation

We now turn to the discussion of time-dependent diffusion 
processes, where we are interested in the spreading of inhomo-
geneities with time. One example is the temperature of a metal
bar that has been heated at one end: if the source of heat is 
removed, then the bar gradually settles down into a state of 
uniform temperature. When the source of heat is maintained
and the bar can radiate, it settles down into a steady state of non-
uniform temperature. Another example (and one more relevant
to chemistry) is the concentration distribution in a solvent to
which a solute is added. We shall focus on the description of 
the diffusion of particles, but similar arguments apply to the 
diffusion of physical properties, such as temperature. Our aim is
to obtain an equation for the rate of change of the concentration
of particles in an inhomogeneous region.

The central equation of this section is the diffusion equation,
also called ‘Fick’s second law of diffusion’, which relates the rate
of change of concentration at a point to the spatial variation of
the concentration at that point:

(18.50)

We show in the following Justification that the diffusion equa-
tion follows from Fick’s first law of diffusion.

Justification 18.6 The diffusion equation

Consider a thin slab of cross-sectional area A that extends
from x to x + λ (Fig. 18.17). Let the concentration at x be c at
the time t. The amount (in moles) of particles that enter the
slab in the infinitesimal interval dt is JAdt, so the rate of 
increase in molar concentration inside the slab (which has
volume Aλ) on account of the flux from the left is
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Fig. 18.17 The net flux in a region is the difference between
the flux entering from the region of high concentration
(on the left) and the flux leaving to the region of low
concentration (on the right).
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for the wrinkles in a distribution to disappear. More succinctly:
Nature abhors a wrinkle.

(a) Diffusion with convection

The transport of particles arising from the motion of a streaming
fluid is called convection. If for the moment we ignore diffusion,
then the flux of particles through an area A in an interval Δt
when the fluid is flowing at a velocity v can be calculated in the
way we have used several times before (by counting the particles
within a distance vΔt), and is

(18.51)

This J is called the convective flux. The rate of change of con-
centration in a slab of thickness l and area A is, by the same 
argument as before and assuming that the velocity does not 
depend on the position,

(18.52)

When both diffusion and convection occur, the total change of
concentration in a region is the sum of the two effects, and the
generalized diffusion equation is

(18.53)

A further refinement, which is important in chemistry, is the
possibility that the concentrations of particles may change as 
a result of reaction. When reactions are included in eqn 18.53
(Section 20.5), we get a powerful differential equation for dis-
cussing the properties of reacting, diffusing, convecting systems,
which is the basis of reactor design in chemical industry and of
the utilization of resources in living cells.
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(b) Solutions of the diffusion equation

The diffusion equation is a second-order differential equation
with respect to space and a first-order differential equation with
respect to time. Therefore, we must specify two boundary con-
ditions for the spatial dependence and a single initial condition
for the time dependence.

As an illustration, consider a solvent in which the solute is 
initially coated on one surface of the container (for example, 
a layer of sugar on the bottom of a deep beaker of water). The
single initial condition is that at t = 0 all N0 particles are concen-
trated on the yz-plane (of area A) at x = 0. The two boundary
conditions are derived from the requirements (1) that the 
concentration must everywhere be finite and (2) that the total
amount (number of moles) of particles present is n0 (with n0 =
N0/NA) at all times. These requirements imply that the flux of
particles is zero at the top and bottom surfaces of the system.
Under these conditions it is found that

(18.54)

as may be verified by direct substitution (Problem 18.30). 
Figure 18.19 shows the shape of the concentration distribution
at various times, and it is clear that the concentration spreads
and tends to uniformity.

Another useful result is for a localized concentration of solute
in a three-dimensional solvent (a sugar lump suspended in a
large flask of water). The concentration of diffused solute is
spherically symmetrical, and at a radius r is

(18.55)c r t
n

Dt
r Dt( , )

( ) /
/= −0

3 2
4

8

2

π
e

c x t
n

A Dt
x Dt( , )

( ) /
/= −0

1 2
42

π
e

Position, x

C
o

n
ce

n
tr

at
io

n
,c

Negative
curvature

Positive
curvature

Spreads

Fills

Fig. 18.18 Nature abhors a wrinkle. The diffusion equation tells 
us that peaks in a distribution (regions of negative curvature)
spread and troughs (regions of positive curvature) fill in.
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Fig. 18.19 The concentration profiles above a plane from which 
a solute is diffusing. The curves are plots of eqn 18.54 and are
labelled with different values of Dt. The units of Dt and x are
arbitrary, but are related so that Dt/x2 is dimensionless. For
example, if x is in metres, Dt would be in metres2; so, for 
D = 10−9 m2 s−1, Dt = 0.1 m2 corresponds to t = 108 s.

interActivity Generate a family of curves similar to 
that shown in Fig. 18.19 but by using eqn 18.55, which 

describes diffusion in three dimensions.
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Other chemically (and physically) interesting arrangements, such
as transport of substances across biological membranes can be
treated (Impact I18.2). In many cases the solutions are more
cumbersome.

The solutions of the diffusion equation are useful for experi-
mental determinations of diffusion coefficients. In the capillary
technique, a capillary tube, open at one end and containing a 
solution, is immersed in a well-stirred larger quantity of solvent,
and the change of concentration in the tube is monitored. The
solute diffuses from the open end of the capillary at a rate that
can be calculated by solving the diffusion equation with the 
appropriate boundary conditions, so D may be determined. 
In the diaphragm technique, the diffusion occurs through the
capillary pores of a sintered glass diaphragm separating the well-
stirred solution and solvent. The concentrations are monitored
and then related to the solutions of the diffusion equation 
corresponding to this arrangement. Diffusion coefficients may
also be measured by a number of techniques, including NMR 
spectroscopy.

18.10 Diffusion probabilities

The solutions of the diffusion equation can be used to predict
the concentration of particles (or the value of some other phys-
ical quantity, such as the temperature in a nonuniform system)
at any location. We can also use them to calculate the average
displacement of the particles in a given time.

Example 18.4 Calculating the average displacement

Calculate the average displacement of particles in a time t in a
one-dimensional system if they have a diffusion constant D.

Method We need to use the results of probability theory
summarized in Mathematical background 7. In this case, we
calculate the probability that a particle will be found at a cer-
tain distance from the origin, and then calculate the average
by weighting each distance by that probability.

Answer The number of particles in a slab of thickness dx and
area A at x, where the molar concentration is c, is cANAdx.
The probability that any of the N0 = n0NA particles is in the
slab is therefore cANAdx/N0. If the particle is in the slab, it has
travelled a distance x from the origin. Therefore, the average
displacement of all the particles is the sum of each x weighted
by the probability of its occurrence:

where we have used the standard integral in Justification
18.4. If we use the Stokes–Einstein relation for the diffusion
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coefficient, the average displacement of particles of radius a
in a solvent of viscosity η is

The average displacement varies as the square root of the
lapsed time.

Self-test 18.4 Derive an expression for the root mean square
distance travelled by diffusing particles in a time t in a one-
dimensional system. You will need the standard integral

[〈x2〉1/2 = (2Dt)1/2]

As shown in Example 18.4, the average displacement of a
diffusing particle in a time t in a one-dimensional system is

(18.56)

and the root mean square displacement in the same time is

〈x2〉1/2 = (2Dt)1/2 (18.57)

The latter is a valuable measure of the spread of particles when
they can diffuse in both directions from the origin (for then 〈x〉
= 0 at all times). The root mean square displacement of particles
with a typical diffusion coefficient (D = 5 × 10−10 m2 s−1) is illus-
trated in Fig. 18.20, which shows how long it takes for diffusion
to increase the net distance travelled on average to about 1 cm in
an unstirred solution. The graph shows that diffusion is a very
slow process (which is why solutions are stirred, to encourage
mixing by convection). The diffusion of pheromones in still air
is also very slow, and greatly accelerated by convection.
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Fig. 18.20 The root mean square distance covered by particles
with D = 5 × 10−10 m2 s−1. Note the great slowness of diffusion.
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18.11 The statistical view

An intuitive picture of diffusion is of the particles moving in a
series of small steps and gradually migrating from their original
positions. We shall explore this idea using a model in which the
particles can jump through a distance λ in a time τ. The total dis-
tance travelled by a particle in a time t is therefore tλ/τ. However,
the particle will not necessarily be found at that distance from the
origin. The direction of each step may be different, and the net dis-
tance travelled must take the changing directions into account.

If we simplify the discussion by allowing the particles to travel
only along a straight line (the x-axis), and for each step (to the
left or the right) to be through the same distance λ, then we 
obtain the one-dimensional random walk. The same model 
can be used to discuss the random coil structures of denatured
polymers (Further information 18.2).

We show in the following Justification that the probability of a
particle being at a distance x from the origin after a time t is

(18.58)

Justification 18.7 The one-dimensional random walk

Consider a one-dimensional random walk in which each step
is through a distance λ to the left or right. The net distance
travelled after N steps is equal to the difference between the
number of steps to the right (NR) and to the left (NL), and is
(NR − NL)λ. We write n = NR − NL and the total number of
steps as N = NR + NL.

The number of ways of performing a walk with a given net
distance of travel nλ is the number of ways of making NR

steps to the right and NL steps to the left, and is given by the
binomial coefficient

The probability of the net distance walked being nλ is

The use of Stirling’s approximation (Section 13.1) in the form

ln x! ≈ ln(2π)1/2 + (x + 1–2) ln x − x

gives (after quite a lot of algebra; see Problem 18.35)
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For small net distances (n << N) we can use the approxima-
tion ln(1 ± x) ≈ ±x − 1–2x 2, and so obtain

At this point, we note that the number of steps taken in a time
t is N = t/τ and the net distance travelled from the origin is 
x = nλ. Substitution of these quantities into the expression
for ln P gives

which, upon using elnx = x and ex+y = exey, rearranges into 
eqn 18.58.

The differences of detail between eqns 18.54 and 18.58 arise
from the fact that in the present calculation the particles can 
migrate in either direction from the origin. Moreover, they 
can be found only at discrete points separated by λ instead of
being anywhere on a continuous line. The fact that the two 
expressions are so similar suggests that diffusion can indeed be
interpreted as the outcome of a large number of steps in random
directions.

We can now relate the coefficient D to the step length λ and
the rate at which the jumps occur. Thus, by comparing the two
exponents in eqn 18.54 and eqn 18.58 we can immediately write
down the Einstein–Smoluchowski equation:

(18.59)

l A BRIEF ILLUSTRATION

Suppose that an SO4
2− ion jumps through its own diameter

each time it makes a move in an aqueous solution; then, 
because D = 1.1 × 10−9 m2 s−1 and a = 220 pm (as deduced
from mobility measurements), it follows from λ = 2a that 
τ = 90 ps. Because τ is the time for one jump, the ion makes 
1 × 1010 jumps per second. l

The Einstein–Smoluchowski equation is the central connec-
tion between the microscopic details of particle motion and the
macroscopic parameters relating to diffusion (for example, the
diffusion coefficient and, through the Stokes–Einstein relation,
the viscosity). It also brings us back full circle to the properties 
of the perfect gas. For if we interpret λ/τ as K, the mean speed of
the molecules, and interpret λ as a mean free path, then we 
can recognize in the Einstein–Smoluchowski equation the same 
expression as we obtained from the kinetic model of gases, 
eqn 18.23. That is, the diffusion of a perfect gas is a random walk
with an average step size equal to the mean free path.

 
D =

λ
τ

2

2

ln ln
/

P
t

x

t
≈

⎛

⎝
⎜

⎞

⎠
⎟ −

2

2

1 2 2

2

τ τ
λπ

ln ln
/

P
N

n

N
≈

⎛

⎝
⎜

⎞

⎠
⎟ −

2

2

1 2 2

π



612 18 MOLECULAR MOTION

IMPACT ON BIOCHEMISTRY

I18.2 Transport across membranes

Controlled transport of molecules and ions across biological
membranes is at the heart of a number of key cellular processes,
such as the transmission of nerve impulses, the transfer of glucose
into red blood cells, and the synthesis of ATP by oxidative phos-
phorylation (Impact I17.3). Here we examine in some detail the
various ways in which ions cross the alien environment of the
lipid bilayer.

Suppose that a membrane provides a barrier that slows down
the transfer of molecules or ions into or out of the cell. We saw
in Impact I17.3 that the thermodynamic tendency to transport
an ion through the membrane is partially determined by a con-
centration gradient (more precisely, an activity gradient) across
the membrane, which results in a difference in molar Gibbs 
energy between the inside and the outside of the cell, and a
transmembrane potential gradient, which is due to the different
potential energy of the ions on each side of the bilayer. There is
a tendency, called passive transport, for a species to move down
concentration and membrane potential gradients. It is also pos-
sible to move a species against these gradients, but now the flow
must be driven by an exergonic process, such as the hydrolysis of
ATP. This process is called active transport.

Consider the passive transport of an uncharged species A
across a lipid bilayer of thickness l. To simplify the problem, we
will assume that the concentration of A is always maintained at
[A] = [A]0 on one surface of the membrane and at [A] = 0 on the
other surface, perhaps by a perfect balance between the rate of
the process that produces A on one side and the rate of another
process that consumes A completely on the other side. This is
one example of a steady-state assumption, which will be dis-
cussed in more detail in Section 19.6. Then ∂[A]/∂t = 0 and 
eqn 18.50 simplifies to

where D is the diffusion coefficient and the steady-state assump-
tion makes partial derivatives unnecessary. We use the boundary
conditions [A](0) = [A]0 and [A](l) = 0 to solve the differential
equation above and the result, which may be verified by differ-
entiation, is

which implies that the [A] decreases linearly inside the mem-
brane. We now use Fick’s first law to calculate the flux J of A
through the membrane and the result is
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However, we need to modify this equation slightly to account
for the fact that the concentration of A on the surface of a mem-
brane is not always equal to the concentration of A measured 
in the bulk solution, which we assume to be aqueous. This
difference arises from the significant difference in the solubility
of A in an aqueous environment and in the solution–membrane
interface. One way to deal with this problem is to define a parti-
tion coefficient, κ (kappa), as

where [A]s is the concentration of A in the bulk aqueous solu-
tion. It follows that

(18.60)

In spite of the assumptions that led to its final form, this equa-
tion describes adequately the passive transport of many non-
electrolytes through membranes of blood cells.

In many cases the flux is underestimated by the equation
above and the implication is that the membrane is more perme-
able than expected. However, the permeability increases only for
certain species and not others and this is evidence that transport
can be mediated by carriers. One example is the transporter 
protein that carries glucose into cells.

A characteristic of a carrier C is that it binds to the transported
species A and the dissociation of the AC complex is described by

AC 5 A + C

where we have used concentrations instead of activities. After
writing [C]0 = [C] + [AC], where [C]0 is the total concentration
of carrier, it follows that

We can now use eqn 18.60 to write an expression for the flux of
the species AC through the membrane:

where κAC and DAC are the partition coefficient and diffusion
coefficient of the species AC, respectively. We see from Fig. 18.21
that when [A] << K the flux varies linearly with [A] and that the
flux reaches a maximum value of Jmax = κACDAC[C]0 /l when 
[A] >> K. This behaviour is characteristic of mediated transport.

The transport of ions into or out of a cell needs to be mediated
(that is, facilitated by other species) because the hydrophobic
environment of the membrane is inhospitable to ions. There 
are two mechanisms for ion transport: mediation by a carrier
molecule and transport through a channel former, a protein

 
J

D

l K
J

K
=

+
=

+
κ AC AC C A

A

A

A

[ ] [ ]

[ ]

[ ]

[ ]max
0

[ ]
[

[ ]
AC

A][C]

A
=

+
0

K

K =
[ ][ ]

[ ]

A C

AC

 
J D

l
= κ

[ ]A s

κ =
[ ]

[ ]

A

A s

0



18 MOLECULAR MOTION 613

that creates a hydrophilic pore through which the ion can pass.
An example of a channel former is the polypeptide gramicidin
A, which increases the membrane permeability to cations such
as H+, K+, and Na+.

Ion channels are proteins that effect the movement of specific
ions down a membrane potential gradient (see Impact I17.3).
They are highly selective, so there is a channel protein for Ca2+,
another for Cl−, and so on. The opening of the gate may be 
triggered by potential differences between the two sides of the
membrane or by the binding of an effector molecule to a specific
receptor site on the channel.

Ions such as H+, Na+, K+, and Ca2+ are often transported
actively across membranes by integral proteins called ion pumps.
Ion pumps are molecular machines that work by adopting 
conformations that are permeable to one ion but not others 
depending on the state of phosphorylation of the protein.
Because protein phosphorylation requires dephosphorylation
of ATP, the conformational change that opens or closes the
pump is endergonic and requires the use of energy stored during
metabolism.

The structures of a number of channel proteins have been 
obtained by the now traditional X-ray diffraction techniques 
described in Chapter 9. Information about the flow of ions across
channels and pumps is supplied by the patch clamp technique.
One of many possible experimental arrangements is shown in
Fig. 18.22. With mild suction, a ‘patch’ of membrane from a
whole cell or a small section of a broken cell can be attached
tightly to the tip of a micropipette filled with an electrolyte solu-
tion and containing an electronic conductor, the so-called patch
electrode. A potential difference (the ‘clamp’) is applied between
the patch electrode and an intracellular electronic conductor in
contact with the cytosol of the cell. If the membrane is perme-
able to ions at the applied potential difference, a current flows
through the completed circuit. Using narrow micropipette tips

with diameters of less than 1 μm, ion currents of a few picoam-
peres (1 pA = 10−12 A) have been measured across sections of
membranes containing only one ion channel protein.

A detailed picture of the mechanism of action of ion channels
has emerged from analysis of patch clamp data and structural
data. Here we focus on the K+ ion channel protein, which, like all
other mediators of ion transport, spans the membrane bilayer
(Fig. 18.23). The pore through which ions move has a length 
of 3.4 nm and is divided into two regions: a wide region with a
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Fig. 18.21 The flux of the species AC through a membrane varies
with the concentration of the species A. The behaviour shown in
the figure and explained in the text is characteristic of mediated
transport of A, with C as a carrier molecule.
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Fig. 18.22 A representation of the patch clamp technique for 
the measurement of ionic currents through membranes in 
intact cells. A section of membrane containing an ion channel 
is in tight contact with the tip of a micropipette containing an
electrolyte solution and the patch electrode. An intracellular
electronic conductor is inserted into the cytosol of the cell and
the two conductors are connected to a power supply and current
measuring device.
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Fig. 18.23 A schematic representation of the cross-section of a
membrane-spanning K+ ion channel protein. The bulk of the
protein is shown in light shades of beige. The pore through
which ions move is divided into two regions: a wide region with
a length of 2.2 nm and diameter of 1.0 nm, and a narrow region,
the selectivity filter, with a length of 1.2 nm and diameter of 
0.3 nm. The selectivity filter has a number of carbonyl groups
(shown in dark green) that grip K+ ions. As explained in the text,
electrostatic repulsions between two bound K+ ions ‘encourage’
ionic movement through the selectivity filter and across the
membrane.
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length of 2.2 nm and diameter of 1.0 nm, and a narrow region
with a length of 1.2 nm and diameter of 0.3 nm. The narrow 
region is called the selectivity filter of the K+ ion channel because
it allows only K+ ions to pass.

Filtering is a subtle process that depends on ionic size and the
thermodynamic tendency of an ion to lose its hydrating water
molecules. Upon entering the selectivity filter, the K+ ion is
stripped of its hydrating shell and is then gripped by carbonyl
groups of the protein. Dehydration of the K+ ion is endergonic
(ΔdehydG 7 = +203 kJ mol−1), but is driven by the energy of inter-
action between the ion and the protein. The Na+ ion, though
smaller than the K+ ion, does not pass through the selectivity
filter of the K+ ion channel because interactions with the protein
are not sufficient to compensate for the high Gibbs energy of 
dehydration of Na+ (ΔdehydG7 = +301 kJ mol−1). More specifically,
a dehydrated Na+ ion is too small and cannot be held tightly by
the protein carbonyl groups, which are positioned for ideal 
interactions with the larger K+ ion. In its hydrated form, the Na+

ion is too large (larger than a dehydrated K+ ion), does not fit in
the selectivity filter, and does not cross the membrane.

Though very selective, a K+ ion channel can still let other ions
pass through. For example, K+ and Tl+ ions have similar radii
and Gibbs energies of dehydration, so Tl+ can cross the mem-
brane. As a result, Tl+ is a neurotoxin because it replaces K+ in
many neuronal functions.

The efficiency of transfer of K+ ions through the channel 
can also be explained by structural features of the protein. For
efficient transport to occur, a K+ ion must enter the protein, but
then must not be allowed to remain inside for very long, so that,
as one K+ ion enters the channel from one side, another K+ ion
leaves from the opposite side. An ion is lured into the channel by
water molecules about halfway through the length of the mem-
brane. Consequently, the thermodynamic cost of moving an ion
from an aqueous environment to the less hydrophilic interior of
the protein is minimized. The ion is encouraged to leave the pro-
tein by electrostatic interactions in the selectivity filter, which
can bind two K+ ions simultaneously, usually with a bridging
water molecule. Electrostatic repulsion prevents the ions from
binding too tightly, minimizing the residence time of an ion in
the selectivity filter, and maximizing the transport rate.

Checklist of key ideas

1. Diffusion is the migration of matter down a concentration
gradient; thermal conduction is the migration of energy
down a temperature gradient; electric conduction is the
migration of electric charge along an electrical potential
gradient; viscosity is the migration of linear momentum
down a velocity gradient.

2. The kinetic model of a gas considers only the contribution
to the energy from the kinetic energies of the molecules.
Important results from the model include expressions for
the pressure (pV = 1–3nMc2) and the root mean square speed
(c = 〈v2〉1/2 = (3RT/M)1/2).

3. The Maxwell distribution of speeds is the function which,
through f(v)dv, gives the fraction of molecules that have
speeds in the range v to v + dv.

4. The collision frequency is the number of collisions made by a
molecule in an interval divided by the length of the interval:
z = σKrelN , where the collision cross-section is σ = πd2.

5. The mean free path is the average distance a molecule travels
between collisions: λ = K/z.

6. The collision flux, ZW, is the number of collisions with an
area in a given time interval divided by the area and the
duration of the interval: ZW = p/(2πmkT)1/2.

7. Effusion is the emergence of a gas from a container through
a small hole. Graham’s law of effusion states that the rate of
effusion is inversely proportional to the square root of the
molar mass.

8. Flux J is the quantity of a property passing through a given
area in a given time interval divided by the area and the
duration of the interval.

9. Fick’s first law of diffusion states that the flux of matter 
is proportional to the concentration gradient, J(matter) 
= −DdN /dz, where D is the diffusion coefficient.

10. The ionic conductivity is the contribution of ions of one
type to the molar conductivity: λ = zuF.

11. The diffusion equation is a relation between the rate 
of change of concentration at a point and the spatial
variation of the concentration at that point: ∂c/∂t =
D∂2c/∂x2.

12. In a one-dimensional random walk, the probability P
that a molecule moves a distance x from the origin for a
period t by taking small steps with size λ and time τ is: 
P = (2τ/πt)1/2e−x2τ/2tλ2

.
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Further information

Further information 18.1 The transport characteristics of a
perfect gas

Here we derive expressions for the diffusion characteristics (specifically,
the diffusion coefficient, the thermal conductivity, and the viscosity) 
of a perfect gas on the basis of the kinetic-molecular theory.

(a) The diffusion coefficient

Consider the arrangement depicted in Fig. 18.24. On average, the
molecules passing through the area A at z = 0 have travelled about one
mean free path λ since their last collision. Therefore, the number density
where they originated is N (z) evaluated at z = −λ. This number density is
approximately

(18.61)

where we have used a Taylor expansion of the form f(x) = f(0) +
(df /dx)0x + . . . truncated after the second term (see Mathematical
background 1). The average number of impacts on the imaginary 
window of area A0 during an interval Δt is ZWA0Δt, with ZW = 1–4NK
(eqn 18.16). Therefore, the flux from left to right, J(L → R), arising 
from the supply of molecules on the left, is

(18.62)

There is also a flux of molecules from right to left. On average, the
molecules making the journey have originated from z = +λ where the
number density is N (λ). Therefore,

J(L ← R) = − 1–4N (λ)K (18.63)

The average number density at z = +λ is approximately

(18.64)
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The net flux is

Jz = J(L → R) + J(L ← R)

(18.65)

This equation shows that the flux is proportional to the first derivative of
the concentration, in agreement with Fick’s law.

At this stage it looks as though we can pick out a value of the 
diffusion coefficient by comparing eqns 18.65 and 18.41, so obtaining 
D = 1–2λK. It must be remembered, however, that the calculation is quite
crude, and is little more than an assessment of the order of magnitude 
of D. One aspect that has not been taken into account is illustrated in 
Fig. 18.25, which shows that, although a molecule may have begun its
journey very close to the window, it could have a long flight before it 
gets there. Because the path is long, the molecule is likely to collide
before reaching the window, so it ought to be added to the graveyard 
of other molecules that have collided. To take this effect into account
involves a lot of work, but the end result is the appearance of a 
factor of 2–3 representing the lower flux. The modification results 
in eqn 18.23.

(b) Thermal conductivity

According to the equipartition theorem (Fundamentals F.5), each
molecule carries an average energy ε = νkT, where ν is a number of the
order of 1. For monatomic particles, ν = 3–2. When one molecule passes
through the imaginary window, it transports that energy on average. We
suppose that the number density is uniform but that the temperature is
not. On average, molecules arrive from the left after travelling a mean
free path from their last collision in a hotter region, and therefore with 
a higher energy. Molecules also arrive from the right after travelling a
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Fig. 18.24 The calculation of the rate of diffusion of a gas considers
the net flux of molecules through a plane of area A as a result of
arrivals from on average a distance λ away in each direction,
where λ is the mean free path.

Short flight
(survives)

Long flight
(collides
in flight)

Fig. 18.25 One approximation ignored in the simple treatment is
that some particles might make a long flight to the plane even
though they are only a short perpendicular distance away, and
therefore they have a higher chance of colliding during their
journey.
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mean free path from a cooler region. The two opposing energy fluxes 
are therefore

J(L → R) = 1–4KN ε(−λ)

J(L ← R) = − 1–4KN ε(λ) (18.66)

and the net flux is

Jz = J(L → R) + J(L ← R) = (18.67)

As before, we multiply by 2–3 to take long flight paths into account, and so
arrive at

(18.68)

The energy flux is proportional to the temperature gradient, as we
wanted to show. Comparison of this equation with eqn 18.21 shows that

κ = 1–3νkλKN (18.69)

Equation 18.24 then follows from CV,m = νkNA for a perfect gas, 
where [A] is the molar concentration of A. For this step, we use 
N = N/V = nNA/V = NA[A].

(c) Viscosity

Molecules travelling from the right in Fig. 18.26 (from a fast layer to a
slower one) transport a momentum mvx(λ) to their new layer at z = 0;
those travelling from the left transport mvx(−λ) to it. If it is assumed that
the density is uniform, the collision flux is 1–4N K. Those arriving from the
right on average carry a momentum

(18.70a)

Those arriving from the left bring a momentum

(18.70b)
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The net flux of x-momentum in the z-direction is therefore

(18.71)

The flux is proportional to the velocity gradient, as we wished to show.
Comparison of this expression with eqn 18.22, and multiplication by 2–3
in the normal way, leads to

η = 1–3N mλK (18.72)

which can easily be converted into eqn 18.25 by using N m = nM and 
[A] = n/V.

Further information 18.2 Random coils

The most likely conformation of a polymer chain of identical monomer
units not capable of forming hydrogen bonds or any other type of
specific bond is a random coil. Polyethylene is a simple example. The
random coil model is a helpful starting point for estimating the orders of
magnitude of the hydrodynamic properties of polymers and denatured
proteins in solution. The mathematics of random coils is almost
identical to that of the random walk, for a coil is like the track of a 
walk frozen in time.

The simplest model of a random coil is a freely jointed chain, in which
any bond is free to make any angle with respect to the preceding one
(Fig. 18.27). We assume that the residues occupy zero volume, so
different parts of the chain can occupy the same region of space. The
model is obviously an oversimplification because a bond is actually
constrained to a cone of angles around a direction defined by its
neighbour (Fig. 18.28). In a hypothetical one-dimensional freely 
jointed chain all the residues lie in a straight line, and the angle between
neighbours is either 0° or 180°. The residues in a three-dimensional
freely jointed chain are not restricted to lie in a line or a plane.

By exactly the same argument as in Justification 18.7, the probability,
P, that the ends of a one-dimensional freely jointed chain composed 
of N units of length l are a distance nl apart is

(18.73)
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Fig. 18.26 The calculation of the viscosity of a gas examines the net
x-component of momentum brought to a plane from faster and
slower layers on average a mean free path away in each direction.

Arbitrary
angles

Fig. 18.27 A freely jointed chain is like a three-dimensional
random walk, each step being in an arbitrary direction but of the
same length.
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This function is plotted in Fig. 18.29 and can be used to calculate the
probability that the ends of a three-dimensional freely jointed chain lie
in the range r to r + dr. We write this probability as f(r)dr, where

(18.74)
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In some coils, the ends may be far apart whereas in others their
separation is small. Here and elsewhere we are ignoring the fact 
that the chain cannot be longer than Nl. Although eqn 18.74 gives a
nonzero probability for R > Nl, the values are so small that the errors 
in pretending that R can range up to infinity are negligible. An
alternative interpretation of eqn 18.74 is to regard each coil in a sample
as ceaselessly writhing from one conformation to another; then f(r)dr
is the probability that at any instant the chain will be found with the
separation of its ends between r and r + dr.

There are several measures of the geometrical size of a random coil.
The contour length, Rc, is the length of the macromolecule measured
along its backbone from atom to atom (it corresponds to the total length
of a random walk). For a polymer of N monomer units each of length l,
the contour length is

Rc = Nl (18.75)

The root mean square separation, Rrms, is a measure of the average
separation of the ends of a random coil (it corresponds to the root mean
square distance reached from the origin of a radom walk): it is the square
root of the mean value of R2:

Rrms = N1/2l (18.76)

We see that as the number of monomer units increases, the root mean
square separation of its ends increases as N1/2 (Fig. 18.30), and
consequently its volume increases as N3/2.

Arbitrary
angle

Arbitrary
angle

I

I
I

I

Fig. 18.28 A better description is obtained by fixing the bond angle
(for example, at the tetrahedral angle) and allowing free rotation
about a bond direction.
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Fig. 18.29 The probability distribution for the separation of the
ends of a one-dimensional random coil. The separation of the
ends is nl, where l is the bond length.
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Fig. 18.30 The variation of the root mean square separation of the
ends of a three-dimensional random coil, Rrms, with the number
of monomers.

Discussion questions

18.1 Specify and analyse critically the assumptions that underlie the
kinetic model of gases.

18.2 Provide molecular interpretations for the dependencies of the mean
free path on the temperature, pressure, and size of gas molecules.

18.3 Provide a molecular interpretation for each of the following
processes: diffusion, thermal conduction, electric conduction, and
viscosity.

18.4 Discuss the difference between the hydrodynamic radius of an ion
and its ionic radius and explain why a small ion can have a large
hydrodynamic radius.

18.5 To what extent is the analogy between a random walk and a
random coil valid?

18.6 Discuss the mechanism of proton conduction in water. How could
the model be tested?

18.7 Describe the origin of the thermodynamic force. To what extent
can it be regarded as an actual force?

18.8 Account physically for the form of the diffusion equation.

18.9 Identify and describe the processes responsible for the transport of
ions across biological membranes.
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Exercises

18.1(a) Determine the ratios of (a) the mean speeds, (b) the mean
translational kinetic energies of H2 molecules and Hg atoms at 20°C.

18.1(b) Determine the ratios of (a) the mean speeds, (b) the mean kinetic
energies of He atoms and Hg atoms at 25°C.

18.2(a) Calculate the root mean square speeds of H2 and O2 molecules at
20°C.

18.2(b) Calculate the root mean square speeds of CO2 molecules and He
atoms at 20°C.

18.3(a) Use the Maxwell distribution of speeds to estimate the fraction 
of N2 molecules at 400 K that have speeds in the range 200 to 210 m s−1.

18.3(b) Use the Maxwell distribution of speeds to estimate the fraction 
of CO2 molecules at 400 K that have speeds in the range 400 to
405 m s−1.

18.4(a) Calculate the most probable speed, the mean speed, and the
mean relative speed of CO2 molecules in air at 20°C.

18.4(b) Calculate the most probable speed, the mean speed, and the
mean relative speed of H2 molecules in air at 20°C.

18.5(a) Assume that air consists of N2 molecules with a collision
diameter of 395 pm. Calculate (a) the mean speed of the molecules, 
(b) the mean free path, (c) the collision frequency in air at 1.0 atm 
and 25°C.

18.5(b) The best laboratory vacuum pump can generate a vacuum of
about 1 nTorr. At 25°C and assuming that air consists of N2 molecules
with a collision diameter of 395 pm, calculate (a) the mean speed of the
molecules, (b) the mean free path, (c) the collision frequency in the gas.

18.6(a) At what pressure does the mean free path of argon at 20°C
become comparable to the diameter of a 100 cm3 vessel that contains it?
Take σ = 0.36 nm2.

18.6(b) At what pressure does the mean free path of argon at 20°C
become comparable to 10 times the diameters of the atoms themselves?
Take σ = 0.36 nm2.

18.7(a) At an altitude of 20 km the temperature is 217 K and the 
pressure 0.050 atm. What is the mean free path of N2 molecules? 
(σ = 0.43 nm2.)

18.7(b) At an altitude of 15 km the temperature is 217 K and the pressure
12.1 kPa. What is the mean free path of N2 molecules? (σ = 0.43 nm2.)

18.8(a) How many collisions does a single Ar atom make in 1.0 s when
the temperature is 25°C and the pressure is (a) 10 atm, (b) 1.0 atm, 
(c) 1.0 μatm?

18.8(b) How many collisions per second does an N2 molecule make at an
altitude of 15 km? (See Exercise 18.7b for data.)

18.9(a) A solid surface with dimensions 5.0 mm × 4.0 mm is exposed to
argon gas at 25 Pa and 300 K. How many collisions do the Ar atoms
make with this surface in 100 s?

18.9(b) A solid surface with dimensions 2.0 cm × 10.0 cm is exposed to
helium gas at 120 Pa and 1200 K. How many collisions do the He atoms
make with this surface in 1.0 s?

18.10(a) If 125 cm3 of hydrogen gas effuses through a small hole in 135
seconds, how long will it take the same volume of oxygen gas to effuse
under the same temperature and pressure?

18.10(b) If 175 cm3 of carbon dioxide effuses through a small hole in 
255 seconds, how long will it take the same volume of sulfur dioxide to
effuse under the same temperature and pressure?

18.11(a) An effusion cell has a circular hole of diameter 1.50 mm. If the
molar mass of the solid in the cell is 300 g mol−1 and its vapour pressure
is 0.735 Pa at 500 K, by how much will the mass of the solid decrease in a
period of 1.00 h?

18.11(b) An effusion cell has a circular hole of diameter 1.00 mm. If the
molar mass of the solid in the cell is 250 g mol−1 and its vapour pressure
is 0.324 Pa at 425 K, by how much will the mass of the solid decrease in a
week (use 1 week = 7 × 24 h)?

18.12(a) A manometer was connected to a bulb containing a gaseous
sample under slight pressure. The gas was allowed to escape through a
small pinhole, and the time for the manometer reading to drop from 
74 cm to 20 cm was 152 s. When the experiment was repeated using
nitrogen (for which M = 28.02 g mol−1) the same fall took place in 45 s.
Calculate the molar mass of the sample.

18.12(b) A manometer was connected to a bulb containing nitrogen
under slight pressure. The gas was allowed to escape through a small
pinhole, and the time for the manometer reading to drop from 75.1 cm
to 32.5 cm was 22.5 s. When the experiment was repeated using a
fluorocarbon gas, the same fall took place in 135.0 s. Calculate the 
molar mass of the fluorocarbon.

18.13(a) A space vehicle of internal volume 3.0 m3 is struck by a meteor
and a hole of radius 0.10 mm is formed. If the oxygen pressure within 
the vehicle is initially 80 kPa and its temperature 298 K, how long will 
the pressure take to fall to 70 kPa?

18.13(b) A container of internal volume 22.0 m3 was punctured, and a
hole of radius 0.050 mm was formed. If the nitrogen pressure within the
vehicle is initially 122 kPa and its temperature 293 K, how long will the
pressure take to fall to 105 kPa?

18.14(a) Calculate the thermal conductivity of argon (CV,m =
12.5 J K−1 mol−1, σ = 0.36 nm2) at room temperature.

18.14(b) Calculate the thermal conductivity of nitrogen (CV,m =
20.8 J K−1 mol−1, σ = 0.43 nm2) at room temperature.

18.15(a) Calculate the diffusion constant of argon at 20°C and 
(a) 1.00 Pa, (b) 100 kPa, (c) 10.0 MPa. If a pressure gradient of 
1.0 bar m−1 is established in a pipe, what is the flow of gas due to
diffusion?

18.15(b) Calculate the diffusion constant of nitrogen at 20°C and 
(a) 100.0 Pa, (b) 100 kPa, (c) 20.0 MPa. If a pressure gradient of 
1.20 bar m−1 is established in a pipe, what is the flow of gas due to
diffusion?

18.16(a) Calculate the flux of energy arising from a temperature 
gradient of 10.5 K m−1 in a sample of argon in which the mean
temperature is 280 K.

18.16(b) Calculate the flux of energy arising from a temperature 
gradient of 8.5 K m−1 in a sample of hydrogen in which the mean
temperature is 290 K.

18.17(a) Use the experimental value of the thermal conductivity of 
neon (Table 18.2) to estimate the collision cross-section of Ne atoms 
at 273 K.
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18.17(b) Use the experimental value of the thermal conductivity of
nitrogen (Table 18.2) to estimate the collision cross-section of N2
molecules at 298 K.

18.18(a) In a double-glazed window, the panes of glass are separated by
1.0 cm. What is the rate of transfer of heat by conduction from the warm
room (28°C) to the cold exterior (−15°C) through a window of area 
1.0 m2? What power of heater is required to make good the loss of heat?

18.18(b) Two sheets of copper of area 2.00 m2 are separated by 5.00 cm.
What is the rate of transfer of heat by conduction from the warm sheet
(70°C) to the cold sheet (0°C)? What is the rate of loss of heat?

18.19(a) Use the experimental value of the coefficient of viscosity for
neon (Table 18.2) to estimate the collision cross-section of Ne atoms 
at 273 K.

18.19(b) Use the experimental value of the coefficient of viscosity for
nitrogen (Table 18.2) to estimate the collision cross-section of the
molecules at 273 K.

18.20(a) Calculate the viscosity of air at (a) 273 K, (b) 298 K, (c) 1000 K.
Take σ ≈ 0.40 nm2. (The experimental values are 173 μP at 273 K, 182 μP
at 20°C, and 394 μP at 600°C.)

18.20(b) Calculate the viscosity of benzene vapour at (a) 273 K, 
(b) 298 K, (c) 1000 K. Take σ ≈ 0.88 nm2.

18.21(a) The viscosity of water at 20°C is 1.002 cP and 0.7975 cP at 30°C.
What is the energy of activation for the transport process?

18.21(b) The viscosity of mercury at 20°C is 1.554 cP and 1.450 cP at
40°C. What is the energy of activation for the transport process?

18.22(a) The mobility of a chloride ion in aqueous solution at 25°C is
7.91 × 10−8 m2 s−1 V−1. Calculate the molar ionic conductivity.

18.22(b) The mobility of an acetate ion in aqueous solution at 25°C is
4.24 × 10−8 m2 s−1 V−1. Calculate the molar ionic conductivity.

18.23(a) The mobility of a Rb+ ion in aqueous solution is 7.92 × 10−8 m2

s−1 V−1 at 25°C. The potential difference between two electrodes placed
in the solution is 25.0 V. If the electrodes are 7.00 mm apart, what is the
drift speed of the Rb+ ion?

18.23(b) The mobility of a Li+ ion in aqueous solution is 4.01 × 10−8 m2

s−1 V−1 at 25°C. The potential difference between two electrodes placed
in the solution is 24.0 V. If the electrodes are 5.0 mm apart, what is the
drift speed of the ion?

18.24(a) The limiting molar conductivities of NaI, NaNO3, and AgNO3
are 12.69 mS m2 mol−1, 12.16 mS m2 mol−1, and 13.34 mS m2 mol−1,
respectively (all at 25°C). What is the limiting molar conductivity of 
AgI at this temperature?

18.24(b) The limiting molar conductivities of KF, KCH3CO2, and
Mg(CH3CO2)2 are 12.89 mS m2 mol−1, 11.44 mS m2 mol−1, and 
18.78 mS m2 mol−1, respectively (all at 25°C). What is the limiting 
molar conductivity of MgF2 at this temperature?

18.25(a) At 25°C the molar ionic conductivities of Li+, Na+, and K+

are 3.87 mS m2 mol−1, 5.01 mS m2 mol−1, and 7.35 mS m2 mol−1,
respectively. What are their mobilities?

18.25(b) At 25°C the molar ionic conductivities of F−, Cl−, and Br−

are 5.54 mS m2 mol−1, 7.635 mS m2 mol−1, and 7.81 mS m2 mol−1,
respectively. What are their mobilities?

18.26(a) The mobility of a SO4
2− ion in aqueous solution at 25°C is 

8.19 × 10−8 m2 s−1 V−1. Calculate its diffusion coefficient in water at 25°C.

18.26(b) The mobility of an NH4
+ ion in aqueous solution at 25°C is 

7.63 × 10−8 m2 s−1 V−1. Calculate its diffusion coefficient in water at 25°C.

18.27(a) The diffusion coefficient of glucose in water at 25°C is 
6.73 × 10−10 m2 s−1. Estimate the time required for a glucose molecule 
to undergo a root mean square displacement of 5.0 mm.

18.27(b) The diffusion coefficient of H2O in water at 25°C is 2.26 ×
10−9 m2 s−1. Estimate the time required for an H2O molecule to undergo
a root mean square displacement of 1.0 cm.

18.28(a) Estimate the effective radius of a sucrose molecule in water at
25°C given that its diffusion coefficient is 5.2 × 10−10 m2 s−1 and that the
viscosity of water is 1.00 cP.

18.28(b) Estimate the effective radius of a glycine molecule in water at
25°C given that its diffusion coefficient is 1.055 × 10−9 m2 s−1 and that the
viscosity of water is 1.00 cP.

18.29(a) The diffusion coefficient for Cl− in water is 2.03 × 10−9 m2 s−1.
How long does the ion take to jump through about one ionic diameter
(approximately the fundamental jump length for translational motion)?

18.29(b) The diffusion coefficient for a glycine molecule in water is 
1.064 × 10−9 m2 s−1. How long does a molecule take to jump through
about one molecular diameter (approximately the fundamental jump
length for translational motion)?

18.30(a) A layer of 20.0 g of sucrose is spread uniformly over a surface of
area 5.0 cm2 and covered in water to a depth of 20 cm. What will be the
molar concentration of sucrose molecules at 10 cm above the original
layer at (a) 10 s, (b) 24 h? Assume diffusion is the only transport process
and take D = 5.216 × 10−9 m2 s−1.

18.30(b) A layer of 10.0 g of sucrose is spread uniformly over a surface 
of area 10.0 cm2 and covered in hexane to a depth of 10 cm. What will 
be the molar concentration of sucrose molecules at 5.0 cm above the
original layer at (a) 10 s, (b) 24 h? Assume diffusion is the only transport
process and take D = 4.05 × 10−9 m2 s−1.

18.31(a) A certain polymer chain consists of 900 segments, each 1.05 nm
long. If the chain were ideally flexible, what would be the root mean
square separation of the ends of the chain?

18.31(b) A certain polymer chain consists of 800 segments, each 1.25 nm
long. If the chain were ideally flexible, what would be the root mean
square separation of the ends of the chain?

18.32(a) Calculate the contour length and the root mean square
separation of the ends of a polyethylene molecule of molar mass 
300 kg mol−1.

18.32(b) Calculate the contour length and the root mean square
separation of the ends of a polypropylene molecule of molar mass 
250 kg mol−1.
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Problems*

Numerical problems

18.1 Instead of the arrangement in Fig. 18.8, the speed of molecules can
also be measured with a rotating slotted-disc apparatus, which consists
of five coaxial 5.0 cm diameter discs separated by 1.0 cm, the slots in
their rims being displaced by 2.0° between neighbours. The relative
intensities, I, of the detected beam of Kr atoms for two different
temperatures and at a series of rotation rates were as follows:

ν/Hz 20 40 80 100 120

I (40 K) 0.846 0.513 0.069 0.015 0.002

I (100 K) 0.592 0.485 0.217 0.119 0.057

Find the distributions of molecular velocities, f(vx), at these
temperatures, and check that they conform to the theoretical prediction
for a one-dimensional system.

18.2‡ Fenghour et al. ( J. Phys. Chem. Ref. Data 24, 1649 (1995)) have
compiled an extensive table of viscosity coefficients for ammonia in the
liquid and vapour phases. Deduce the effective molecular diameter of
NH3 based on each of the following vapour-phase viscosity coefficients:
(a) η = 9.08 × 10−6 kg m−1 s−1 at 270 K and 1.00 bar; (b) η = 1.749 ×
10−5 kg m−1 s−1 at 490 K and 10.0 bar.

18.3 Calculate the ratio of the thermal conductivities of gaseous
hydrogen at 300 K to gaseous hydrogen at 10 K. Be circumspect, and
think about the modes of motion that are thermally active at the two
temperatures.

18.4 A Knudsen cell was used to determine the vapour pressure of
germanium at 1000°C. During an interval of 7200 s the mass loss
through a hole of radius 0.50 mm amounted to 43 μg. What is the
vapour pressure of germanium at 1000°C? Assume the gas to be
monatomic.

18.5 The pressure of a Knudsen cell of volume V in which a vapour is
confined (with no condensed phase to replenish the vapour phase)
decays exponentially with a time constant τ = (2πM/RT)1/2(V/A) (see
Problem 18.28 for the derivation of a related expression). How long
would it take the pressure of barium vapour in a cell with V = 100 cm3

and A = 0.10 mm2 at 1300°C to fall to 1/10 of its initial value?

18.6 The vapour pressure of zinc in the range 250°C to 419°C can be
estimated from the expression log (p/Torr) = a − b/T with a = 9.200 and
b = 6947 K. Calculate and plot the beam flux (in Zn atoms per second)
emerging from a hole of radius 0.20 mm as the temperature of the oven
containing solid zinc is raised from 250°C to 400°C.

18.7 The viscosity of benzene varies with temperature as shown in the
following table. Use the data to infer the activation energy for viscosity
(the parameter Ea in eqn 18.26).

θ/°C 10 20 30 40 50 60 70

η/cP 0.758 0.652 0.564 0.503 0.442 0.392 0.358

18.8 An empirical expression that reproduces the viscosity of water in
the range 20–100°C is
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Explore (by using mathematical software) the possibility of fitting 
an exponential curve to this expression and hence identifying an
activation energy for the viscosity. This approach is taken further in
Problem 18.29.

18.9 The conductivity of aqueous ammonium chloride at a series of
concentrations is listed in the following table. Deduce the molar
conductivity and determine the parameters that occur in the 
Kohlrausch law.

c /(mol dm−3) 1.334 1.432 1.529 1.672 1.725

κ /(mS cm−1) 131 139 147 156 164

18.10 Conductivities are often measured by comparing the resistance 
of a cell filled with the sample to its resistance when filled with some
standard solution, such as aqueous potassium chloride. The conductivity
of water is 76 mS m−1 at 25°C and the conductivity of 0.100 mol dm−3

KCl(aq) is 1.1639 S m−1. A cell had a resistance of 33.21 Ω when filled
with 0.100 mol dm−3 KCl(aq) and 300.0 Ω when filled with 0.100 mol
dm−3 CH3COOH. What is the molar conductivity of acetic acid at that
concentration and temperature?

18.11 The resistances of a series of aqueous NaCl solutions, formed by
successive dilution of a sample, were measured in a cell with cell constant
(the constant C in the relation κ = C/R) equal to 0.2063 cm−1. The
following values were found:

c /(mol dm−3) 0.00050 0.0010 0.0050 0.010 0.020 0.050

R/Ω 3314 1669 342.1 174.1 89.08 37.14

Verify that the molar conductivity follows the Kohlrausch law and find
the limiting molar conductivity. Determine the coefficient K. Use the
value of K (which should depend only on the nature, not the identity, 
of the ions) and the information that λ(Na+) = 5.01 mS m2 mol−1 and
λ(I−) = 7.68 mS m2 mol−1 to predict (a) the molar conductivity, (b) the
conductivity, (c) the resistance it would show in the cell of 0.010 mol
dm−3 NaI(aq) at 25°C.

18.12 What are the drift speeds of Li+, Na+, and K+ in water when 
a potential difference of 100 V is applied across a 5.00-cm conductivity
cell? How long would it take an ion to move from one electrode to the
other? In conductivity measurements it is normal to use alternating
current: what are the displacements of the ions in (a) centimetres, 
(b) solvent diameters, about 300 pm, during a half cycle of 2.0 kHz
applied potential difference?

18.13‡ Bakale et al. ( J. Phys. Chem. 100, 12477 (1996)) measured 
the mobility of singly charged C−

60 ions in a variety of nonpolar 
solvents. In cyclohexane at 22°C, the mobility is 1.1 × 10−8 m2 V−1 s−1. 
Estimate the effective radius of the C−

60 ion. The viscosity of the solvent is
0.93 × 10−3 kg m−1 s−1. Suggest a reason why there is a substantial difference
between this number and the van der Waals radius of neutral C60.

18.14 A dilute solution of potassium permanganate in water at 25°C was
prepared. The solution was in a horizontal tube of length 10 cm, and at
first there was a linear gradation of intensity of the purple solution from
the left (where the concentration was 0.100 mol dm−3) to the right
(where the concentration was 0.050 mol dm−3). What is the magnitude
and sign of the thermodynamic force acting on the solute (a) close to the

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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left face of the container, (b) in the middle, (c) close to the right face.
Give the force per mole and force per molecule in each case.

18.15 A dilute solution of potassium permanganate in water at 25°C 
was prepared. The solution was in a horizontal tube of length 10 cm, and
at first there was a Gaussian distribution of concentration around the
centre of the tube at x = 0, c(x) = c0e−ax2

, with c0 = 0.100 mol dm−3 and 
a = 0.10 cm−2. Determine the thermodynamic force acting on the solute
as a function of location, x, and plot the result. Give the force per mole
and force per molecule in each case. What do you expect to be the
consequence of the thermodynamic force?

18.16 Instead of a Gaussian ‘heap’ of solute, as in Problem 18.15,
suppose that there is a Gaussian dip, a distribution of the form
c(x) = c0(1 − e−ax2

). Repeat the calculation in Problem 18.15 and its
consequences.

18.17 Estimate the diffusion coefficients and the effective hydrodynamic
radii of the alkali metal cations in water from their mobilities at 25°C.
Estimate the approximate number of water molecules that are dragged
along by the cations. Ionic radii are given in Table 9.3.

18.18 Nuclear magnetic resonance can be used to determine the
mobility of molecules in liquids. A set of measurements on methane 
in carbon tetrachloride showed that its diffusion coefficient is 
2.05 × 10−9 m2 s−1 at 0°C and 2.89 × 10−9 m2 s−1 at 25°C. Deduce 
what information you can about the mobility of methane in carbon
tetrachloride.

18.19 A lump of sucrose of mass 10.0 g is suspended in the middle 
of a spherical flask of water of radius 10 cm at 25°C. What is the
concentration of sucrose at the wall of the flask after (a) 1.0 h, 
(b) 1.0 week. Take D = 5.22 × 10−10 m2 s−1.

18.20 In a series of observations on the displacement of rubber latex
spheres of radius 0.212 μm, the mean square displacements after selected
time intervals were on average as follows:

t/s 30 60 90 120
1012〈x2〉/m2 88.2 113.5 128 144

These results were originally used to find the value of Avogadro’s
constant, but there are now better ways of determining NA, so the data
can be used to find another quantity. Find the effective viscosity of water
at the temperature of this experiment (25°C).

Theoretical problems

18.21 Start from the Maxwell–Boltzmann distribution and derive an
expression for the most probable speed of a gas of molecules at a
temperature T. Go on to demonstrate the validity of the equipartition
conclusion that the average translational kinetic energy of molecules free
to move in three dimensions is 3–2 kT.

18.22 In Section 14.4 it was established that the heat capacity of a
collection of molecules is proportional to the variance of their energy
(the mean square deviation of the energy from its mean value). Use the
Maxwell–Boltzmann distribution of speeds to calculate the translational
contribution to the heat capacity of a gas by this approach.

18.23 Consider molecules that are confined to move in a plane 
(a two-dimensional gas). Calculate the distribution of speeds and
determine the mean speed of the molecules at a temperature T.

18.24 A specially constructed velocity selector accepts a beam of
molecules from an oven at a temperature T but blocks the passage of
molecules with a speed greater than the mean. What is the mean speed 
of the emerging beam, relative to the initial value, treated as a one-
dimensional problem?

18.25 What, according to the Maxwell–Boltzmann distribution, is the
proportion of gas molecules having (a) more than, (b) less than the root
mean square speed? (c) What are the proportions having speeds greater
and smaller than the mean speed?

18.26 Calculate the fractions of molecules in a gas that have a speed in a
range Δv at the speed nc* relative to those in the same range at c* itself ?
This calculation can be used to estimate the fraction of very energetic
molecules (which is important for reactions). Evaluate the ratio for 
n = 3 and n = 4.

18.27 Derive an expression for 〈vn〉1/n from the Maxwell–Boltzmann
distribution of speeds. You will need the standard integrals

where the ‘double factorial’ means (2m − 1)!! = 1 × 3 × 5 . . . × (2m − 1).

18.28 Derive an expression that shows how the pressure of a gas inside
an effusion oven (a heated chamber with a small hole in one wall) varies
with time if the oven is not replenished as the gas escapes. Then show
that t1/2, the time required for the pressure to decrease to half its initial
value, is independent of the initial pressure. Hint. Begin by setting up a
differential equation relating dp/dt to p = NkT/V, and then integrating it.

18.29 In Section 20.1 we shall see that a general expression for the
activation energy of a chemical reaction is Ea = RT2(d ln k/dT). Confirm
that the same expression may be used to extract the activation energy
from eqn 18.26 for the viscosity and then apply the expression to deduce
the temperature dependence of the activation energy when the viscosity
of water is given by the empirical expression in Problem 18.8. Plot this
activation energy as a function of temperature. Suggest an explanation 
of the temperature dependence of Ea.

18.30 Confirm that eqn 18.54 is a solution of the diffusion equation with
the correct initial value.

18.31 Confirm that

is a solution of the diffusion equation with convection (eqn 18.53) with
all the solute concentrated at x = x0 at t = 0 and plot the concentration
profile at a series of times to show how the distribution spreads and its
centroid drifts.

18.32 The thermodynamic force has a direction as well as a magnitude,
and in a three-dimensional ideal system eqn 18.40 becomes F = −RT∇ ln c.
What is the thermodynamic force acting to bring about the diffusion
summarized by eqn 18.55 (that of a solute initially suspended at the
centre of a flask of solvent)? Hint. Use ∇ = i(∂/∂x) + j(∂/∂y) + k(∂/∂z).

18.33 The diffusion equation is valid when many elementary steps are
taken in the time interval of interest; but the random walk calculation
lets us discuss distributions for short times as well as for long. Use eqn
18.58 to calculate the probability of being six paces from the origin 
(that is, at x = 6λ) after (a) four, (b) six, (c) twelve steps.

18.34 Use mathematical software to calculate P in a one-dimensional
random walk, and evaluate the probability of being at x = 6λ for N = 6,
10, 14, . . . , 60. Compare the numerical value with the analytical value in
the limit of a large number of steps. At what value of N is the discrepancy
no more than 0.1 per cent?
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18.35 Supply the intermediate mathematical steps in Justification 18.7.

18.36 Evaluate the radius of gyration of (a) a solid sphere of radius R, 
(b) a long, thin uniform rod of length l for rotation about an axis
perpendicular to its long axis.

18.37 Derive eqn 18.76 for the root mean square separation of the ends
of a random coil.

Applications to: astrophysics and biochemistry

18.38 Calculate the escape velocity (the minimum initial velocity that
will take an object to infinity) from the surface of a planet of radius R.
What is the value for (a) the Earth, R = 6.37 × 106 m, g = 9.81 m s−2, 
(b) Mars, R = 3.38 × 106 m, mMars/mEarth = 0.108. At what temperatures
do H2, He, and O2 molecules have mean speeds equal to their escape
speeds? What proportion of the molecules have enough speed to escape
when the temperature is (a) 240 K, (b) 1500 K? Calculations of this kind
are very important in considering the composition of planetary
atmospheres.

18.39 The kinetic model of gases is valid when the size of the particles 
is negligible compared with their mean free path. It may seem absurd,
therefore, to expect the kinetic theory and, as a consequence, the perfect
gas law, to be applicable to the dense matter of stellar interiors. In the
Sun, for instance, the density is 150 times that of liquid water at its 
centre and comparable to that of water about halfway to its surface.
However, we have to realize that the state of matter is that of a plasma, 
in which the electrons have been stripped from the atoms of hydrogen
and helium that make up the bulk of the matter of stars. As a result, the
particles making up the plasma have diameters comparable to those 
of nuclei, or about 10 fm. Therefore, a mean free path of only 0.1 pm
satisfies the criterion for the validity of the kinetic model and the perfect
gas law. We can therefore use pV = nRT as the equation of state for the
stellar interior. (a) Calculate the pressure halfway to the centre of the
Sun, assuming that the interior consists of ionized hydrogen atoms, the
temperature is 3.6 MK, and the mass density is 1.20 g cm−3 (slightly
higher than the density of water). (b) Combine the result from part 
(a) with the expression for the pressure from the kinetic model to show
that the pressure of the plasma is related to its kinetic energy density 
ρk = Ek/V, the kinetic energy of the molecules in a region divided by 
the volume of the region, by p = 2–3ρk. (c) What is the kinetic energy
density halfway to the centre of the Sun? Compare your result with the
(translational) kinetic energy density of the Earth’s atmosphere on a
warm day (25°C): 1.5 × 105 J m−3 (corresponding to 0.15 J cm−3). 
(d) A star eventually depletes some of the hydrogen in its core, which
contracts and results in higher temperatures. The increased temperature

results in an increase in the rates of nuclear reaction, some of which
result in the formation of heavier nuclei, such as carbon. The outer 
part of the star expands and cools to produce a red giant. Assume 
that halfway to the centre a red giant has a temperature of 3500 K, is
composed primarily of fully ionized carbon atoms and electrons, and 
has a mass density of 1200 kg m−3. What is the pressure at this point? 
(e) If the red giant in part (d) consisted of neutral carbon atoms, what
would be the pressure at the same point under the same conditions?

18.40 Interstellar space is quite a different medium than the gaseous
environments we commonly encounter on Earth. For instance, a typical
density of the medium is about 1 atom cm−3 and that atom is typically H;
the effective temperature due to stellar background radiation is about 
10 000 K. Estimate the diffusion coefficient and thermal conductivity of
H under these conditions. Comment. Energy is in fact transferred much
more effectively by radiation.

18.41 The principal components of the atmosphere of the Earth are
diatomic molecules, which can rotate as well as translate. Given that the
translational kinetic energy density of the atmosphere is 0.15 J cm−3,
what is the total kinetic energy density, including rotation?

18.42 The diffusion coefficient of a particular kind of t-RNA molecule is
D = 1.0 × 10−11 m2 s−1 in the medium of a cell interior. How long does it
take molecules produced in the cell nucleus to reach the walls of the cell
at a distance 1.0 μm, corresponding to the radius of the cell?

18.43‡ In this problem, we examine a model for the transport of 
oxygen from air in the lungs to blood. First, show that, for the initial 
and boundary conditions c(x,0) = co, (0 < x < ∞) and c(0,t) = cs (0 ≤ t ≤ ∞)
where co and cs are constants, the concentration, c(x,t), of a species is
given by

c(x,t) = co + (cs − co){1 − erf(ξ)}

where erf(ξ) is the error function

and the concentration c(x,t) evolves by diffusion from the yz-plane of
constant concentration, such as might occur if a condensed phase is
absorbing a species from a gas phase. Now draw graphs of concentration
profiles at several different times of your choice for the diffusion of
oxygen into water at 298 K (when D = 2.10 × 10−9 m2 s−1) on a spatial
scale comparable to passage of oxygen from lungs through alveoli into
the blood. Use co = 0 and set cs equal to the solubility of oxygen in water.
Hint. Use mathematical software.
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Chemical kinetics

This chapter, the first of a sequence that explores the rates of chemical reactions, begins
with a discussion of the definition of reaction rate and outlines the techniques for its 
measurement. The results of such measurements show that reaction rates depend on the
concentration of reactants (and products) in characteristic ways that can be expressed in
terms of differential equations known as rate laws. The solutions of these equations are
used to predict the concentrations of species at any time after the start of the reaction. The
form of the rate law also provides insight into the series of elementary steps by which a 
reaction takes place. The key task in this connection is the construction of a rate law from a
proposed mechanism and its comparison with experiment. Simple elementary steps have
simple rate laws, and these rate laws can be combined together by invoking one or more
approximations. These approximations include the concept of the rate-determining step of
a reaction, the steady-state concentration of a reaction intermediate, and the existence of 
a pre-equilibrium. We go on to consider complex reaction mechanisms, focusing on poly-
merization reactions and photochemistry, in which reactions are initiated by light.

This chapter introduces the principles of chemical kinetics, the study of reaction
rates, by showing how the rates of reactions may be measured and interpreted. The
rate of a chemical reaction might depend on variables under our control, such as 
the pressure, the temperature, and the presence of a catalyst, and we may be able to
optimize the rate by the appropriate choice of conditions. The study of reaction rates
also leads to an understanding of the mechanisms of reactions, their analysis into a 
sequence of elementary steps.

Empirical chemical kinetics

The first steps in the kinetic analysis of reactions are to establish the stoichiometry 
of the reaction and identify any side reactions. The basic data of chemical kinetics are
then the concentrations of the reactants and products at different times after a reaction
has been initiated. The rates of most chemical reactions are sensitive to the temperature,
so in conventional experiments the temperature of the reaction mixture must be held
constant throughout the course of the reaction. This requirement puts severe demands
on the design of an experiment. Gas-phase reactions, for instance, are often carried
out in a vessel held in contact with a substantial block of metal. Liquid-phase reac-
tions, including flow reactions, must be carried out in an efficient thermostat. Special
efforts have to be made to study reactions at low temperatures, as in the study of the
kinds of reactions that take place in interstellar clouds. Thus, supersonic expansion of
the reaction gas can be used to attain temperatures as low as 10 K. For work in the liquid
phase and the solid phase, very low temperatures are often reached by flowing cold
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Spectroscopy is widely applicable, and is especially useful when
one substance in the reaction mixture has a strong characteristic
absorption in a conveniently accessible region of the electro-
magnetic spectrum. For example, the progress of the reaction

H2(g) + Br2(g) → 2 HBr(g)

can be followed by measuring the absorption of visible light 
by bromine. A reaction that changes the number or type of ions
present in a solution may be followed by monitoring the elec-
trical conductivity of the solution. The replacement of neutral
molecules by ionic products can result in dramatic changes in
the conductivity, as in the reaction

(CH3)3CCl(aq) + H2O(l) → (CH3)3COH(aq) + H+(aq) + Cl−(aq)

If hydrogen ions are produced or consumed, the reaction may
be followed by monitoring the pH of the solution.

Other methods of determining composition include emission
spectroscopy, mass spectrometry, gas chromatography, nuclear
magnetic resonance, and electron paramagnetic resonance (for
reactions involving radicals or paramagnetic d-metal ions).

(b) Application of the techniques

In a real-time analysis the composition of the system is analysed
while the reaction is in progress. Either a small sample is with-
drawn or the bulk solution is monitored. In the flow method the
reactants are mixed as they flow together in a chamber (Fig. 19.1).
The reaction continues as the thoroughly mixed solutions flow
through the outlet tube, and observation of the composition at
different positions along the tube is equivalent to the observa-
tion of the reaction mixture at different times after mixing. The
disadvantage of conventional flow techniques is that a large 
volume of reactant solution is necessary. This makes the study of
fast reactions particularly difficult because to spread the reaction
over a length of tube the flow must be rapid. This disadvantage
is avoided by the stopped-flow technique, in which the reagents
are mixed very quickly in a small chamber fitted with a syringe
instead of an outlet tube (Fig. 19.2). The flow ceases when the
plunger of the syringe reaches a stop, and the reaction con-
tinues in the mixed solutions. Observations, commonly using

Mixing
chamber

Driving
syringes

Movable
spectrometer

Fig. 19.1 The arrangement used in the flow technique for
studying reaction rates. The reactants are injected into 
the mixing chamber at a steady rate. The location of the
spectrometer corresponds to different times after initiation.

liquid or cold gas around the reaction vessel. Alternatively, the
entire reaction vessel is immersed in a thermally insulated con-
tainer filled with a cryogenic liquid, such as liquid helium (for
work at around 4 K) or liquid nitrogen (for work at around 
77 K). Non-isothermal conditions are sometimes employed. For
instance, the shelf-life of an expensive pharmaceutical may be
explored by slowly raising the temperature of a single sample.

19.1 Experimental techniques

The method used to monitor concentrations depends on the
species involved and the rapidity with which their concentra-
tions change. Many reactions reach equilibrium over periods of
minutes or hours, and several techniques may then be used to
follow the changing concentrations.

(a) Monitoring the progress of a reaction

A reaction in which at least one component is a gas might result
in an overall change in pressure in a system of constant volume,
so its progress may be followed by recording the variation of
pressure with time.

Example 19.1 Monitoring the variation in pressure

Predict how the total pressure varies during the isothermal
gas-phase decomposition 2 N2O5(g) → 4 NO2(g) + O2(g) in
a constant-volume container.

Method The total pressure (at constant volume and temper-
ature and assuming perfect gas behaviour) is proportional 
to the number of gas-phase molecules. Therefore, because 
1 mol N2O5 gives rise to 5–2 mol of gas molecules, we can expect
the pressure to rise to 5–2 times its initial value. To confirm this
conclusion, express the progress of the reaction in terms of
the fraction, α, of N2O5 molecules that have reacted.

Answer Let the initial pressure be p0 and the initial amount of
N2O5 molecules present be n. When a fraction α of the N2O5

molecules has decomposed, the amounts of the components
in the reaction mixture are:

N2O5 NO2 O2 Total

Amount: n(1 − α) 2αn 1–2αn n(1 + 3–2α)

When α = 0 the pressure is p0, so at any stage the total pres-
sure is

p = (1 + 3–2α)p0

When the reaction is complete (α = 1), the pressure will have
risen to 5–2 times its initial value.

Self-test 19.1 Repeat the calculation for 2 NOBr(g) →
2 NO(g) + Br2(g). [p = (1 + 1–2α)p0]
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spectroscopic techniques such as ultraviolet–visible absorption,
circular dichroism, and fluorescence emission, are made on the
sample as a function of time. The technique allows for the study 
of reactions that occur on the millisecond to second timescale.
The suitability of the stopped-flow method to the study of 
small samples means that it is appropriate for many biochemical
reactions, and it has been widely used to study the kinetics of
protein folding and enzyme action (see Impact I19.1).

Very fast reactions can be studied by flash photolysis, in
which the sample is exposed to a brief flash of light that initiates
the reaction and then the contents of the reaction chamber are
monitored. Most work is now done with lasers with photolysis
pulse widths that range from femtoseconds to nanoseconds
(Section 11.7). The apparatus used for flash photolysis studies is
based on the experimental design for time-resolved spectroscopy
(Section 11.7). Reactions occurring on a picosecond or femto-
second timescale may be monitored by using electronic absorp-
tion or emission, infrared absorption, or Raman scattering. The
spectra are recorded at a series of times following laser excitation.
The laser pulse can initiate the reaction by forming a reactive
species, such as an excited electronic state of a molecule, a radical,
or an ion. We discuss examples of excited state reactions in
Section 19.9. An example of radical generation is the light-
induced dissociation of Cl2(g) to yield Cl atoms that react with
HBr to make HCl and Br according to the following sequence:

Cl2 + hν → Cl + Cl

Cl + HBr → HCl* + Br

HCl* + M → HCl + M

Here HCl* denotes a vibrationally excited ‘hot’ HCl molecule
and M is a body (an unreactive molecule or the wall of the con-
tainer) that removes the excess energy stored in HCl. A so-called
‘third body’ (M) is not always necessary for heteronuclear dia-
tomic molecules because they can discard energy radiatively, but
homonuclear diatomic molecules are vibrationally and rotation-
ally inactive, and can discard energy only by collision.

In contrast to real-time analysis, quenching methods are
based on stopping, or quenching, the reaction after it has been
allowed to proceed for a certain time. In this way the composi-

tion is analysed at leisure and reaction intermediates may be
trapped. These methods are suitable only for reactions that are
slow enough for there to be little reaction during the time it takes
to quench the mixture. In the chemical quench flow method,
the reactants are mixed in much the same way as in the flow
method but the reaction is quenched by another reagent, such 
as a solution of acid or base, after the mixture has travelled along
a fixed length of the outlet tube. Different reaction times can be
selected by varying the flow rate along the outlet tube. An advant-
age of the chemical quench flow method over the stopped-flow
method is that spectroscopic fingerprints are not needed in order
to measure the concentration of reactants and products. Once
the reaction has been quenched, the solution may be examined
by ‘slow’ techniques, such as gel electrophoresis, mass spectro-
metry, and chromatography. In the freeze quench method, the
reaction is quenched by cooling the mixture within milliseconds
and the concentrations of reactants, intermediates, and products
are measured spectroscopically.

19.2 The rates of reactions

Reaction rates depend on the composition and the temperature
of the reaction mixture. The next few sections look at these 
observations in more detail.

(a) The definition of rate

Consider a reaction of the form A + 2 B → 3 C + D, in which at
some instant the molar concentration of a participant J is [J] and
the volume of the system is constant. The instantaneous rate of
consumption of one of the reactants at a given time is −d[R]/dt,
where R is A or B. This rate is a positive quantity (Fig. 19.3). The
rate of formation of one of the products (C or D, which we 
denote P) is d[P]/dt (note the difference in sign). This rate is also
positive.

Mixing
chamber

Driving
syringes

Fixed
spectrometer

Stopping
syringe

Fig. 19.2 In the stopped-flow technique the reagents are driven
quickly into the mixing chamber by the driving syringes and
then the time dependence of the concentrations is monitored.

M
o

la
r 

co
n

ce
n

tr
at

io
n

, [
J]

Time, t

(b)Tangent,
rate = –slope

(a)Tangent,
rate = slope

Reactant

Product

Fig. 19.3 The definition of (instantaneous) rate as the slope 
of the tangent drawn to the curve showing the variation of
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It follows from the stoichiometry of the reaction A + 2 B →
3 C + D that

so there are several rates connected with the reaction. The un-
desirability of having different rates to describe the same reaction
is avoided by using the extent of reaction, ξ (xi, the quantity 
introduced in Section 17.1):

(19.1)

where νJ is the stoichiometric number of species J, and defining
the unique rate of reaction, v, as the rate of change of the extent
of reaction divided by the volume V:

[19.2]

It follows that

(19.3a)

(Remember that νJ is negative for reactants and positive for
products.) For a homogeneous reaction in a constant-volume
system the volume V can be taken inside the differential and we
use [J] = nJ/V to write

(19.3b)

For a heterogeneous reaction, we use the (constant) surface area,
A, occupied by the species in place of V and use σJ = nJ/A to write

(19.3c)

In each case there is now a single rate for the entire reaction (for
the chemical equation as written). With molar concentrations in
moles per cubic decimetre and time in seconds, reaction rates of
homogeneous reactions are reported in moles per cubic decimetre
per second (mol dm−3 s−1) or related units. For gas-phase reac-
tions, such as those taking place in the atmosphere, concentrations
are often expressed in molecules per cubic centimetre (molecules
cm−3) and rates in molecules per cubic centimetre per second
(molecules cm−3 s−1). For heterogeneous reactions, rates are 
expressed in moles per square metre per second (mol m−2 s−1) or
related units.

l A BRIEF ILLUSTRATION

If the rate of formation of NO in the reaction 2 NOBr(g) 
→ 2 NO(g) + Br2(g) is reported as 0.16 mmol dm−3 s−1, we
use νNO = +2 to report that v = 0.080 mmol dm−3 s−1. Because
νNOBr = −2 it follows that d[NOBr]/dt = −0.16 mmol dm−3 s−1.
The rate of consumption of NOBr is therefore 0.16 mmol
dm−3 s−1, or 9.6 × 1016 molecules cm−3 s−1. l
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Self-test 19.2 The rate of change of molar concentration of
CH3 radicals in the reaction 2 CH3(g) → CH3CH3(g) was 
reported as d[CH3]/dt = −1.2 mol dm−3 s−1 under particular
conditions. What is (a) the rate of reaction and (b) the rate of
formation of CH3CH3?

[(a) 0.60 mol dm−3 s−1, (b) 0.60 mol dm−3 s−1]

(b) Rate laws and rate constants

The rate of reaction is often found to be proportional to the con-
centrations of the reactants raised to a power. For example, the
rate of a reaction may be proportional to the molar concentra-
tions of two reactants A and B, so we write

v = kr[A][B] (19.4)

with each concentration raised to the first power. The coefficient
kr is called the rate constant for the reaction. The rate constant is
independent of the concentrations but depends on the temper-
ature. An experimentally determined equation of this kind is
called the rate law of the reaction. More formally, a rate law is an
equation that expresses the rate of reaction as a function of the
concentrations of all the species present in the overall chemical
equation for the reaction at some time:

v = f ([A],[B], . . .) [19.5a]

For homogeneous gas-phase reactions, it is often more con-
venient to express the rate law in terms of partial pressures, which
are related to molar concentrations by pJ = RT[J]. In this case, we
write

v = f (pA,pB, . . .) [19.5b]

The rate law of a reaction is determined experimentally, and
cannot in general be inferred from the chemical equation for the
reaction. The reaction of hydrogen and bromine, for example,
has a very simple stoichiometry, H2(g) + Br2(g) → 2 HBr(g), but
its rate law is complicated:

(19.6)

In certain cases the rate law does reflect the stoichiometry of the
reaction; but that is either a coincidence or reflects a feature of
the underlying reaction mechanism (see later).

A note on good (or, at least, our) practice We denote a general
rate constant kr to distinguish it from the Boltzmann constant
k. In some texts k is used for the former and kB for the latter.
When expressing the rate constants in a more complicated
rate law, such as that in eqn 19.6, we use ka, kb, and so on.

A practical application of a rate law is that, once we know the
law and the value of the rate constant, we can predict the rate of

v =
+

k

k
a

b

H Br

Br HBr

[ ][ ]
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/
2 2

3 2

2
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reaction from the composition of the mixture. Moreover, as we
shall see later, by knowing the rate law, we can go on to predict
the composition of the reaction mixture at a later stage of the 
reaction. Moreover, a rate law is a guide to the mechanism of the
reaction, for any proposed mechanism must be consistent with
the observed rate law.

(c) Reaction order

Many reactions are found to have rate laws of the form

v = kr[A]a[B]b . . . (19.7)

The power to which the concentration of a species (a product or
a reactant) is raised in a rate law of this kind is the order of the
reaction with respect to that species. A reaction with the rate law
in eqn 19.4 is first order in A and first order in B. The overall
order of a reaction with a rate law like that in eqn 19.7 is the sum
of the individual orders, a + b + . . .. The rate law in eqn 19.4 is
therefore second order overall.

A reaction need not have an integral order, and many gas-
phase reactions do not. For example, a reaction having the rate
law v = kr[A]1/2[B] is half order in A, first order in B, and three-
halves order overall. Some reactions obey a zero-order rate 
law, and therefore have a rate that is independent of the con-
centration of the reactant (so long as some is present). Thus, the
catalytic decomposition of phosphine (PH3) on hot tungsten at
high pressures has the rate law v = kr. The PH3 decomposes at 
a constant rate until it has almost entirely disappeared. Zero-
order reactions typically occur when there is a bottle-neck of
some kind in the mechanism, as in heterogeneous reactions when
the surface is saturated and the subsequent reaction slow and in
a number of enzyme reactions when there is a large excess of
substrate relative to the enzyme.

When a rate law is not of the form in eqn 19.7, the reaction
does not have an overall order and may not even have definite
orders with respect to each participant. Thus, although eqn 19.6
shows that the reaction of hydrogen and bromine is first order in
H2, the reaction has an indefinite order with respect to both Br2

and HBr and has no overall order.
These remarks point to three problems. First, we must see

how to identify the rate law and obtain the rate constant from
the experimental data. We concentrate on this aspect in this
chapter. Second, we must see how to construct reaction mech-
anisms that are consistent with the rate law. We shall introduce
the techniques of doing so in this chapter and develop them 
further in Chapter 20. Third, we must account for the values of
the rate constants and explain their temperature dependence.
We shall see a little of what is involved in this chapter, but leave
the details until Chapter 20.

(d) The determination of the rate law

The determination of a rate law is simplified by the isolation
method in which the concentrations of all the reactants except

one are in large excess. If B is in large excess, for example, then to
a good approximation its concentration is constant throughout
the reaction. Although the true rate law might be v = kr[A][B],
we can approximate [B] by [B]0, its initial value, and write

v = k′r[A] k′r = kr[B]0 (19.8)

which has the form of a first-order rate law. Because the true rate
law has been forced into first-order form by assuming that the
concentration of B is constant, eqn 19.8 is called a pseudofirst-
order rate law. The dependence of the rate on the concentration
of each of the reactants may be found by isolating them in turn
(by having all the other substances present in large excess), and
so constructing a picture of the overall rate law.

In the method of initial rates, which is often used in con-
junction with the isolation method, the rate is measured at the 
beginning of the reaction for several different initial concentra-
tions of reactants. We shall suppose that the rate law for a 
reaction with A isolated is v = k′r[A]a, then its initial rate, v0, is
given by the initial values of the concentration of A, and we write
v0 = k′r[A]0

a. Taking logarithms gives:

log v0 = log k′r + a log[A]0 (19.9)

For a series of initial concentrations, a plot of the logarithms of
the initial rates against the logarithms of the initial concentra-
tions of A should be a straight line with slope a.

Example 19.2 Using the method of initial rates

The recombination of iodine atoms in the gas phase in the
presence of argon was investigated and the order of the reac-
tion was determined by the method of initial rates. The initial
rates of reaction of 2 I(g) + Ar(g) → I2(g) + Ar(g) were as
follows:

[I]0 /(10−5 mol dm−3) 1.0 2.0

v0/(mol dm−3 s−1) (a) 8.70 × 10−4 3.48 × 10−3

(b) 4.35 × 10−3 1.74 × 10−2

(c) 8.69 × 10−3 3.47 × 10−2

[I]0 /(10−5 mol dm−3) 4.0 6.0

v0 /(mol dm−3 s−1) (a) 1.39 × 10−2 3.13 × 10−2

(b) 6.96 × 10−2 1.57 × 10−1

(c) 1.38 × 10−1 3.13 × 10−1

The Ar concentrations are (a) 1.0 mmol dm−3, (b) 5.0 mmol
dm−3, and (c) 10.0 mmol dm−3. Determine the orders of re-
action with respect to the I and Ar atom concentrations and
the rate constant.

Method Plot the logarithm of the initial rate, log v0, against
log[I]0 for a given concentration of Ar, and, separately,
against log [Ar]0 for a given concentration of I. The slopes 
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The method of initial rates might not reveal the full rate law,
for once the products have been generated they might particip-
ate in the reaction and affect its rate. For example, products 
participate in the synthesis of HBr, because eqn 19.6 shows that
the full rate law depends on the concentration of HBr. To avoid
this difficulty, the rate law should be fitted to the data through-
out the reaction. The fitting may be done, in simple cases at least,
by using a proposed rate law to predict the concentration of 
any component at any time, and comparing it with the data. A
law should also be tested by observing whether the addition of
products or, for gas-phase reactions, a change in the surface-to-
volume ratio in the reaction chamber affects the rate.

19.3 Integrated rate laws

Because rate laws are differential equations, we must integrate
them if we want to find the concentrations as a function of time.
Even the most complex rate laws may be integrated numerically.
However, in a number of simple cases analytical solutions, known
as integrated rate laws, are easily obtained, and prove to be very
useful. We examine a few of these simple cases here.

(a) First-order reactions

As shown in the following Justification, the integrated form of
the first-order rate law

(19.10a)

is

[A] = [A]0e−krt (19.10b)

where [A]0 is the initial concentration of A (at t = 0).

Justification 19.1 First-order integrated rate law

First, we rearrange eqn 19.10a into

This expression can be integrated directly because kr is a con-
stant independent of t. Initially (at t = 0) the concentration 
of A is [A]0, and at a later time t it is [A], so we make these 
values the limits of the integrals and write

Because the integral of 1/x is ln x, eqn 19.10b is obtained 
immediately.
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of the two lines are the orders of reaction with respect to I 
and Ar, respectively. The intercepts with the vertical axis give 
log k′r and, by using eqn 19.8, kr.

Answer The plots are shown in Fig. 19.4. The slopes are 2 
and 1, respectively, so the (initial) rate law is v0 = kr[I]0

2[Ar]0.
This rate law signifies that the reaction is second order in [I],
first order in [Ar], and third order overall. The intercept cor-
responds to kr = 9 × 109 mol−2 dm6 s−1.

A note on good practice The units of kr come automatically
from the calculation, and are always such as to convert the
product of concentrations to a rate in concentration/time
(for example, mol dm−3 s−1).

Self-test 19.3 The initial rate of a reaction depended on con-
centration of a substance J as follows:

[J]0 /(mmol dm−3) 5.0 8.2 17 30

v0 /(10−7 mol dm−3 s−1) 3.6 9.6 41 130

Determine the order of the reaction with respect to J and
calculate the rate constant. [2, 1.4 × 10−2 dm3 mol−1 s−1]
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Fig. 19.4 The plot of log v0 against (a) log[I]0 for a given [Ar]0, and
(b) log[Ar]0 for a given [I]0.
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Method As indicated in the text, to confirm that a reaction 
is first order, plot ln([A]/[A]0) against time and expect a
straight line. Because the partial pressure of a gas is propor-
tional to its concentration, an equivalent procedure is to plot
ln(p/p0) against t. If a straight line is obtained, its slope can be
identified with −kr.

Answer We draw up the following table:

t/s 0 1000 2000 3000 4000

ln(p/p0) 1 −0.357 −0.717 −1.078 −1.437

Figure 19.6 shows the plot of ln(p/p0) against t. The plot is
straight, confirming a first-order reaction, and its slope is 
−3.6 × 10−4. Therefore, kr = 3.6 × 10−4 s−1.

A note on good practice Because the horizontal and vertical
axes of graphs are labelled with pure numbers, the slope of 
a graph is always dimensionless. For a graph of the form y =
b + mx we can write y = b + (m units)(x/units), where ‘units’
are the units of x, and identify the (dimensionless) slope with 
‘m units’. Then m = slope/units. In the present case, because
the graph shown here is a plot of ln(p/p0) against t/s (with
‘units’ = s) and kr is the negative value of the slope of ln(p/p0)
against t itself, kr = −slope/s.

Self-test 19.4 In a particular experiment, it was found that
the concentration of N2O5 in liquid bromine varied with time
as follows:

t/s 0 200 400 600 1000

[N2O5]/(mol dm−3) 0.110 0.073 0.048 0.032 0.014

Confirm that the reaction is first order in N2O5 and deter-
mine the rate constant. [kr = 2.1 × 10−3 s−1]
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Fig. 19.5 The exponential decay of the reactant in a first-order
reaction. The larger the rate constant, the more rapid the decay:
here klarge = 3ksmall.

interActivity For a first-order reaction of the form A → nB 
(with n possibly fractional), the concentration of the 

product varies with time as [B] = n[B]0(1 − e−krt). Plot the time
dependence of [A] and [B] for the cases n = 0.5, 1, and 2.

0 1000 2000 3000 4000
t/s
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ln
 (

/
)
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Fig. 19.6 The determination of the rate constant of a first-order
reaction: a straight line is obtained when ln[A] (or, as here, ln p/p0)
is plotted against t; the slope gives kr.

Equation 19.10b shows that, if ln([A]/[A]0) is plotted against
t, then a first-order reaction will give a straight line of slope 
−kr. Some rate constants determined in this way are given in 
Table 19.1. The second expression in eqn 19.10b shows that in a
first-order reaction the reactant concentration decreases expon-
entially with time with a rate determined by kr (Fig. 19.5).

Example 19.3 Analysing a first-order reaction

The variation in the partial pressure of azomethane with time
was followed at 600 K, with the results given below. Confirm
that the decomposition

CH3N2CH3(g) → CH3CH3(g) + N2(g)

is first order in azomethane, and find the rate constant at 
600 K.

t/s 0 1000 2000 3000 4000

p/Pa 10.9 7.63 5.32 3.71 2.59

Synoptic table 19.1* Kinetic data for first-order reactions

Reaction Phase q/°C kr/s−1 t1/2

2 N2O5 → 4 NO2 + O2 g 25 3.38 × 10−5 5.70 h

Br2(l) 25 4.27 × 10−5 4.51 h

C2H6 → 2 CH3 g 700 5.36 × 10−4 21.6 min

* More values are given in the Data section.
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(b) Half-lives and time constants

A useful indication of the rate of a first-order chemical reaction
is the half-life, t1/2, of a substance, the time taken for the concen-
tration of a reactant to fall to half its initial value. The time for
[A] to decrease from [A]0 to 1–2[A]0 in a first-order reaction is
given by eqn 19.10b as

Hence

(19.11)

(ln 2 = 0.693.) The main point to note about this result is that,
for a first-order reaction, the half-life of a reactant is independ-
ent of its initial concentration. Therefore, if the concentration of
A at some arbitrary stage of the reaction is [A], then it will have
fallen to 1–2[A] after a further interval of (ln 2)/kr. Some half-lives
are given in Table 19.1.

Another indication of the rate of a first-order reaction is the
time constant, τ (tau), the time required for the concentration
of a reactant to fall to 1/e of its initial value. From eqn 19.10b it
follows that

That is, the time constant of a first-order reaction is the recip-
rocal of the rate constant:

(19.12)

(c) Second-order reactions

We show in the Justification below that the integrated form of
the second-order rate law

(19.13a)

is either of the following two forms:

(19.13b)

(19.13c)

where [A]0 is the initial concentration of A (at t = 0).

Justification 19.2 Second-order integrated rate law

To integrate eqn 19.13a we rearrange it into
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The concentration is [A]0 at t = 0 and [A] at a general time t
later. Therefore,

Because the integral of 1/x2 is −1/x, we obtain eqn 19.13b by
substitution of the limits

We can then rearrange this expression into eqn 19.13c.

Equation 19.13b shows that to test for a second-order reac-
tion we should plot 1/[A] against t and expect a straight line. The
slope of the graph is kr. Some rate constants determined in this
way are given in Table 19.2. The rearranged form, eqn 19.13c,
lets us predict the concentration of A at any time after the start
of the reaction. It shows that the concentration of A approaches
zero more slowly than in a first-order reaction with the same ini-
tial rate (Fig. 19.7).

It follows from eqn 19.13b by substituting t = t1/2 and [A] =
1–2[A]0 that the half-life of a species A that is consumed in a 
second-order reaction is

(19.14)

Therefore, unlike a first-order reaction, the half-life of a sub-
stance in a second-order reaction varies with the initial con-
centration. A practical consequence of this dependence is that
species that decay by second-order reactions (which includes
some environmentally harmful substances) may persist in low
concentrations for long periods because their half-lives are long
when their concentrations are low. In general, for an nth-order
reaction (with n neither 0 nor 1) of the form A → products, the
half-life is related to the rate constant and the initial concentra-
tion of A by (see Problem 19.19)
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Synoptic table 19.2* Kinetic data for second-order reactions

Reaction Phase q/°C kr /(dm3 mol−1 s−1)

2 NOBr → 2 NO + Br2 g 10 0.80

2 I → I2 g 23 7 × 109

CH3Cl + CH3O− CH3OH(l) 20 2.29 × 10−6

* More values are given in the Data section.
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Another type of second-order reaction is one that is first order
in each of two reactants A and B:

(19.16)

Such a rate law cannot be integrated until we know how the con-
centration of B is related to that of A. For example, if the reaction
is A + B → P, where P denotes products, and the initial concen-
trations are [A]0 and [B]0, then it is shown in the Justification
below that, at a time t after the start of the reaction, the concen-
trations satisfy the relation

(19.17)

Therefore, a plot of the expression on the left against t should be
a straight line from which kr can be obtained.

Justification 19.3 Overall second-order rate law

It follows from the reaction stoichiometry that, when the
concentration of A has fallen to [A]0 − x, the concentration of
B will have fallen to [B]0 − x (because each A that disappears
entails the disappearance of one B). It follows that

Because [A] = [A]0 − x, it follows that d[A]/dt = −dx/dt and
the rate law may be written as
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The initial condition is that x = 0 when t = 0, so the integra-
tion required is

The integral on the right is simply krt. The integral on the left
is evaluated by using the method of partial fractions in which
we write

It follows that

and therefore that

This expression can be simplified and rearranged into eqn 19.17
by combining the two logarithms by using ln y − ln z = ln(y/z)
and noting that [A] = [A]0 − x and [B] = [B]0 − x. Similar cal-
culations may be carried out to find the integrated rate laws
for other orders, and some are listed in Table 19.3.

19.4 Reactions approaching equilibrium

Because all the laws considered so far disregard the possibility
that the reverse reaction is important, none of them describes
the overall rate when the reaction is close to equilibrium. At that
stage the products may be so abundant that the reverse reaction
must be taken into account. In practice, however, most kinetic
studies are made on reactions that are far from equilibrium, and
the reverse reactions are unimportant.

(a) First-order reactions close to equilibrium

We can explore the variation of the composition with time close
to chemical equilibrium by considering the reaction in which A
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Fig. 19.7 The variation with time of the concentration of a
reactant in a second-order reaction. The grey lines are the
corresponding decays in a first-order reaction with the same
initial rate. For this illustration, klarge = 3ksmall.

interActivity For a second-order reaction of the form 
A → nB (with n possibly fractional), the concentration of 

the product varies with time as [B] = nkrt[A]0
2 /(1 + krt[A]0). Plot

the time dependence of [A] and [B] for the cases n = 0.5, 1, and 2.
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forms B and both forward and reverse reactions are first order
(as in some isomerizations). The scheme we consider is

A → B v = kr[A] (19.18)
B → A v = kr′[B]

The concentration of A is reduced by the forward reaction (at a
rate kr[A]) but it is increased by the reverse reaction (at a rate
kr′[B]). The net rate of change is therefore

= −kr[A] + kr′[B]

If the initial concentration of A is [A]0, and no B is present 
initially, then at all times [A] + [B] = [A]0. Therefore,

= −kr[A] + kr′([A]0 − [A]) = −(kr + kr′)[A] + kr′[A]0

The solution of this first-order differential equation (as may be
checked by differentiation) is

t

d[A]

d

t

d[A]

d

(19.19)

Figure 19.8 shows the time dependence predicted by this equation.
As t → ∞, the concentrations reach their equilibrium values,

which are given by eqn 19.19 as:

(19.20)

It follows that the equilibrium constant of the reaction is

(19.21)

(This expression is approximate because thermodynamic equi-
librium constants are expressed in terms of activities, not con-
centrations.) Exactly the same conclusion can be reached—more
simply, in fact—by noting that, at equilibrium, the forward and
reverse rates must be the same, so
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Table 19.3 Integrated rate laws

Order Reaction Rate law* t1/2

0 A → P v = kr [A]0 /2kr

krt = x for 0 ≤ x ≤ [A]0

1 A → P v = kr[A] (ln 2)/kr

2 A → P v = kr[A]2 1/kr[A]0

A + B → P v = kr[A][B]

A + 2 B → P v = kr[A][B]

A → P with autocatalysis v = kr[A][P]

3 A + 2 B → P v = kr[A][B]2

n ≠ 1 A → P v = kr[A]n

* x = [P] and v = dx /dt.
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kr[A]eq = k r′[B]eq

This relation rearranges into eqn 19.21. The theoretical import-
ance of eqn 19.21 is that it relates a thermodynamic quantity, the
equilibrium constant, to quantities relating to rates. Its practical
importance is that, if one of the rate constants can be measured,
then the other may be obtained if the equilibrium constant is
known.

For a more general reaction, the overall equilibrium constant
can be expressed in terms of the rate constants for all the inter-
mediate stages of the reaction mechanism:

(19.22)

where ka, kb, . . . are the rate constants for the individual steps
and ka′, kb′ , . . . are for the corresponding reverse steps.

(b) Relaxation methods

The term relaxation denotes the return of a system to equilib-
rium. It is used in chemical kinetics to indicate that an externally
applied influence has shifted the equilibrium position of a reac-
tion, normally suddenly, and that the reaction is adjusting to the
equilibrium composition characteristic of the new conditions
(Fig. 19.9). We shall consider the response of reaction rates to a
temperature jump, a sudden change in temperature. We know
from Section 17.5 that the equilibrium composition of a reaction
depends on the temperature (provided ΔrH

7 is nonzero), so a
shift in temperature acts as a perturbation on the system. One
way of achieving a temperature jump is to discharge a capacitor
through a sample made conducting by the addition of ions, but
laser or microwave discharges can also be used. Temperature
jumps of between 5 and 10 K can be achieved in about 1 μs with
electrical discharges. The high energy output of pulsed lasers
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(Section 11.7) is sufficient to generate temperature jumps of 
between 10 and 30 K within nanoseconds in aqueous samples.
Some equilibria are also sensitive to pressure, and pressure-
jump techniques may then also be used.

When a sudden temperature increase is applied to a simple 
A 5 B equilibrium that is first order in each direction, we show
in the following Justification that the composition relaxes expon-
entially to the new equilibrium composition:

x = x0e−t/τ (19.23)

where x0 is the departure from equilibrium immediately after
the temperature jump, x is the departure from equilibrium at
the new temperature after a time t, and kr and kr′ are the forward
and reverse rate constants, respectively, at the new temperature.

Justification 19.4 Relaxation to equilibrium

When the temperature of a system at equilibrium is increased
suddenly, the rate constants change from their earlier values
to the new values kr and kr′ characteristic of that temperature,
but the concentrations of A and B remain for an instant at
their old equilibrium values. As the system is no longer at
equilibrium, it readjusts to the new equilibrium concentra-
tions, which are now given by

kr[A]eq = kr′[B]eq

and it does so at a rate that depends on the new rate constants.
We write the deviation of [A] from its new equilibrium value
as x, so [A] = x + [A]eq and [B] = [B]eq − x. The concentration
of A then changes as follows:

= −kr[A] + kr′[B]

= −kr([A]eq + x) + kr′([B]eq − x)
= −(kr + kr′)x

t
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Fig. 19.8 The approach of concentrations to their equilibrium
values as predicted by eqn 19.19 for a reaction A 6 B that is first
order in each direction, and for which kr = 2kr′.

interActivity Set up the rate equations and plot the 
corresponding graphs for the approach to and 

equilibrium of the reaction scheme A 6 2 B.
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Fig. 19.9 The relaxation to the new equilibrium composition
when a reaction initially at equilibrium at a temperature T1 is
subjected to a sudden change of temperature, which takes it 
to T2.
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because the two terms involving the equilibrium concentra-
tions cancel. Because d[A]/dt = dx/dt, this equation is a first-
order differential equation with the solution that resembles
eqn 19.10b and is given in eqn 19.23.

Equation 19.23 shows that the concentrations of A and B relax
into the new equilibrium at a rate determined by the sum of the
two new rate constants. Because the equilibrium constant under
the new conditions is K ≈ kr/kr′, its value may be combined with
the relaxation time measurement to find the individual kr and kr′.

Example 19.4 Analysing a temperature-jump experiment

The equilibrium constant for the autoprotolysis of water,
H2O(l) 5 H+(aq) + OH−(aq), is Kw = a(H+)a(OH−) = 1.008 ×
10−14 at 298 K. After a temperature jump, the reaction returns
to equilibrium with a relaxation time of 37 μs at 298 K and
pH ≈ 7. Given that the forward reaction is first order and the
reverse is second order overall, calculate the rate constants
for the forward and reverse reactions.

Method We need to derive an expression for the relaxation
time, τ (the time constant for return to equilibrium), in terms
of kr (forward, first-order reaction) and kr′ (reverse, second-
order reaction). Relate kr and kr′ through the equilibrium
constant, but be careful with units because Kw is dimensionless.
Throughout the problem, be prepared to make approxima-
tions to simplify mathematical manipulations.

Answer The forward rate at the final temperature is kr[H2O]
and the reverse rate is kr′[H+][OH−]. The net rate of deproto-
nation of H2O is

= −kr[H2O] + kr′[H+][OH−]

We write [H2O] = [H2O]eq + x, [H+] = [H+]eq − x, and [OH−]
= [OH−]eq − x, and obtain

= −{kr + kr′([H+]eq + [OH−]eq)}x − kr[H2O]eq

+ kr′[H+]eq[OH−]eq + kr′x2

≈ −{kr + kr′([H+]eq + [OH−]eq)}x

where we have neglected the term in x2 and used the equilib-
rium condition kr[H2O]eq = kr′[H+]eq[OH−]eq to eliminate the
terms that are independent of x. It follows that

= kr + kr′([H+]eq + [OH−]eq)

At this point we note that

Kw = a(H+)a(OH−) ≈ ([H+]eq/c7)([OH−]eq)/c7)
= [H+]eq[OH−]eq/c72
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with c 7 = 1 mol dm−3. For this electrically neutral system,
[H+] = [OH−], so the concentration of each type of ion is
K w

1/2c 7, and hence

At this point we note that

The molar concentration of pure water is 55.6 mol dm−3, so
[H2O]eq/c 7 = 55.6. If we write K = Kw /55.6 = 1.81 × 10−16, we
obtain

= kr′{K + 2K w
1/2}c 7

Hence,

It follows that

kr = kr′ Kc 7 = 2.5 × 10−5 s−1

The reaction is faster in ice, where kr′ = 8.6 × 1012 dm3 mol−1 s−1.

A note on good practice Notice how we keep track of units
through the use of c 7: K and Kw are dimensionless; kr′ is 
expressed in dm3 mol−1 s−1 and kr is expressed in s−1.

Self-test 19.5 Derive an expression for the relaxation time of
a concentration when the reaction A + B 6 C + D is second
order in both directions.

[1/τ = kr([A] + [B])eq + kr′([C] + [D])eq]

Accounting for the rate laws

We now move on to the second stage of the analysis of kinetic data,
their explanation in terms of a postulated reaction mechanism.

19.5 Elementary reactions

Most reactions occur in a sequence of steps called elementary
reactions, each of which involves only a small number of mole-
cules or ions. A typical elementary reaction is
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H + Br2 → HBr + Br

Note that the phase of the species is not specified in the chemical
equation for an elementary reaction, and the equation repre-
sents the specific process occurring to individual molecules.
This equation, for instance, signifies that an H atom attacks 
a Br2 molecule to produce an HBr molecule and a Br atom. 
The molecularity of an elementary reaction is the number of
molecules coming together to react in an elementary reaction.
In a unimolecular reaction, a single molecule shakes itself apart
or its atoms into a new arrangement, as in the isomerization of
cyclopropane (1) to propene (2). In a bimolecular reaction, a
pair of molecules collide and exchange energy,
atoms, or groups of atoms, or undergo some
other kind of change. It is most important to
distinguish molecularity from order: reaction
order is an empirical quantity, and obtained
from the experimental rate law; molecularity
refers to an elementary reaction proposed as
an individual step in a mechanism.

The rate law of a unimolecular elementary
reaction is first order in the reactant:

A → P (19.24)

where P denotes products (several different species may be
formed). A unimolecular reaction is first order because the
number of A molecules that decay in a short interval is pro-
portional to the number available to decay. (Ten times as 
many decay in the same interval when there are initially 1000 
A molecules as when there are only 100 present.) Therefore, 
the rate of decomposition of A is proportional to its molar 
concentration.

An elementary bimolecular reaction has a second-order rate
law:

A + B → P (19.25)

A bimolecular reaction is second order because its rate is pro-
portional to the rate at which the reactant species meet, which 
in turn is proportional to their concentrations. Therefore, if 
we have evidence that a reaction is a single-step, bimolecular
process, we can write down the rate law (and then go on to test 
it). Bimolecular elementary reactions are believed to account 
for many homogeneous reactions, such as the dimerizations of
alkenes and dienes and reactions such as

CH3I(alc) + CH3CH2O−(alc) → CH3OCH2CH3(alc) + I−(alc)

(where ‘alc’ signifies alcohol solution). There is evidence that the
mechanism of this reaction is a single elementary step

CH3I + CH3CH2O− → CH3OCH2CH3 + I−
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d
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d[A]

d
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This mechanism is consistent with the observed rate law v =
kr[CH3I][CH3CH2O−].

We shall see below how to combine a series of simple steps 
together into a mechanism and how to arrive at the correspond-
ing rate law. For the present we emphasize that if the reaction is
an elementary bimolecular process, then it has second-order kinetics
but, if the kinetics are second order, then the reaction might be com-
plex. The postulated mechanism can be explored only by detailed
detective work on the system, and by investigating whether side
products or intermediates appear during the course of the reac-
tion. Detailed analysis of this kind was one of the ways, for 
example, in which the reaction H2(g) + I2(g) → 2 HI(g) was
shown to proceed by a complex mechanism. For many years the
reaction had been accepted on good, but insufficiently meticu-
lous evidence, as a fine example of a simple bimolecular reac-
tion, H2 + I2 → HI + HI, in which atoms exchanged partners
during a collision.

19.6 Consecutive elementary reactions

Some reactions proceed through the formation of an intermedi-
ate (I), as in the consecutive unimolecular reactions

A
ka→ I

kb→ P

An example is the decay of a radioactive family, such as

239U 
23.5 min⎯⎯→ 239Np

2.35 day⎯⎯→ 239Pu

(The times are half-lives.) We can discover the characteristics of
this type of reaction by setting up the rate laws for the net rate of
change of the concentration of each substance.

(a) The variation of concentrations with time

The rate of unimolecular decomposition of A is

(19.26a)

and A is not replenished. The intermediate I is formed from A
(at a rate ka[A]) but decays to P (at a rate kb[I]). The net rate of
formation of I is therefore

(19.26b)

The product P is formed by the unimolecular decay of I:

(19.26c)

We suppose that initially only A is present, and that its concen-
tration is [A]0.

The first of the rate laws, eqn 19.26a, is an ordinary first-order
decay, so we can write

[A] = [A]0e−kat (19.27a)
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Fig. 19.10 The concentrations of A, I, and P in the consecutive
reaction scheme A → I → P. The curves are plots of eqns
19.27a–c with ka = 10kb. If the intermediate I is in fact the 
desired product, it is important to be able to predict when its
concentration is greatest; see Example 19.5.

interActivity Use mathematical software, an electronic 
spreadsheet, or the applets found in the Living graphs

section of the text’s web site to investigate the effects on [A], 
[I], [P], and tmax of decreasing the ratio ka/kb from 10 (as in 
Fig. 19.10) to 0.05. Compare your results with those shown in
Fig. 19.12.

through a maximum, tmax, by calculating d[I]/dt and setting
the resulting rate equal to zero.

Answer It follows from eqn 19.27b that

This rate is equal to zero when

kae
−kat = kbe−kbt

Therefore,

For a given value of ka, as kb increases both the time at which
[I] is a maximum and the yield of I decrease.

Self-test 19.6 Calculate the maximum concentration of I
and justify the last remark.

[[I]max/[A]0 = (ka/kb)c, c = kb/(kb − ka)]

(b) The steady-state approximation

One feature of the calculations so far has probably not gone 
unnoticed: there is a considerable increase in mathematical
complexity as soon as the reaction mechanism has more than 
a couple of steps. A reaction scheme involving many steps is
nearly always unsolvable analytically, and alternative methods
of solution are necessary. One approach is to integrate the rate
laws numerically. An alternative approach, which continues to
be widely used because it leads to convenient expressions and
more readily digestible results, is to make an approximation.

The steady-state approximation, which is also widely called
the quasi-steady-state approximation (QSSA) to distinguish it
from a true steady state, assumes that, after an initial induction
period, an interval during which the concentrations of inter-
mediates, I, rise from zero, and during the major part of the 
reaction, the rates of change of concentrations of all reaction 
intermediates are negligibly small (Fig. 19.11):

(19.28)

This approximation greatly simplifies the discussion of reaction
schemes. For example, when we apply the approximation to the
consecutive first-order mechanism, we set d[I]/dt = 0 in eqn
19.26b, which then becomes

ka[A] − kb[I] ≈ 0

Then

[I] ≈ (ka /kb)[A] (19.29)

 

d[I

d

]

t
≈ 0

 
t

k k

k

kmax ln=
−
1

a b

a

b

 

d I

d

A e ea a b

b a

a b[ ] [ ] ( )

t

k k k

k k

k t k t

= −
−

−

− −
0

When this equation is substituted into eqn 19.26b, we obtain
after rearrangement

This differential equation has a standard form (see Mathematical
background 2) and, after setting [I]0 = 0, the solution is

(19.27b)

At all times [A] + [I] + [P] = [A]0, so it follows that

(19.27c)

The concentration of the intermediate I rises to a maximum and
then falls to zero (Fig. 19.10). The concentration of the product
P rises from zero towards [A]0.

Example 19.5 Analysing consecutive reactions

Suppose that in an industrial batch process a substance A
produces the desired compound I, which goes on to decay to
a worthless product C, each step of the reaction being first
order. At what time will I be present in greatest concentration?

Method The time dependence of the concentration of I is
given by eqn 19.27b. We can find the time at which [I] passes
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For this expression to be consistent with eqn 19.27b, we require
ka/kb << 1 (so that, even though [A] does depend on the time, the
dependence of [I] on the time is negligible). On substituting this
value of [I] into eqn 19.26c, that equation becomes

(19.30)

and we see that P is formed by a first-order decay of A, with a rate
constant ka, the rate constant of the slower step. We can write
down the solution of this equation at once by substituting the
solution for [A], eqn 19.27a, and integrating:

[P] = ka[A]0 e−katdt = (1 − e−kat)[A]0 (19.31)

This is the same (approximate) result as before, eqn 19.27c, 
but much more quickly obtained. Figure 19.12 compares the 
approximate solutions found here with the exact solutions found
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Fig. 19.11 The basis of the steady-state approximation. It is
supposed that the concentrations of intermediates remain small
and hardly change during most of the course of the reaction.
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Fig. 19.12 A comparison of the exact result for the concentrations
of a consecutive reaction and the concentrations obtained by
using the steady-state approximation (red lines) for kb = 20ka.
(The curve for [A] is unchanged.)

earlier: kb does not have to be very much bigger than ka for the
approach to be reasonably accurate.

Example 19.6 Using the steady-state approximation

Devise the rate law for the decomposition of N2O5,

2 N2O5(g) → 4 NO2(g) + O2(g)

on the basis of the following mechanism:

N2O5 → NO2 + NO3 ka

NO2 + NO3 → N2O5 ka′
NO2 + NO3 → NO2 + O2 + NO kb

NO + N2O5 → NO2 + NO2 + NO2 kc

A note on good practice Note that when writing the equation
for an elementary reaction all the species are displayed indi-
vidually, so we write A → B + B, for instance, not A → 2 B.

Method First identify the intermediates (species that occur
in the reaction steps but do not appear in the overall reac-
tion) and write expressions for their net rates of formation.
Then, all net rates of change of the concentrations of inter-
mediates are set equal to zero and the resulting equations are
solved algebraically.

Answer The intermediates are NO and NO3; the net rates of
change of their concentrations are

= kb[NO2][NO3] − kc[NO][N2O5] ≈ 0

= ka[N2O5] − ka′[NO2][NO3] − kb[NO2][NO3] ≈ 0

The net rate of change of concentration of N2O5 is

= − ka[N2O5] + ka′[NO2][NO3] − kc[NO][N2O5]

and replacing the concentrations of the intermediates by
using the equations above gives

Self-test 19.7 Derive the rate law for the decomposition of
ozone in the reaction 2 O3(g) → 3 O2(g) on the basis of the
(incomplete) mechanism

O3 → O2 + O ka

O2 + O → O3 ka′
O + O3 → O2 + O2 kb

[d[O3]/dt = −2kakb[O3]2/(ka′[O2] + kb[O3])]
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(c) The rate-determining step

Equation 19.31 shows that, when kb >> ka, then the formation of
the final product P depends on only the smaller of the two rate
constants. That is, the rate of formation of P depends on the rate
at which I is formed, not on the rate at which I changes into P.
For this reason, the step A → I is called the ‘rate-determining
step’ of the reaction. Its existence has been likened to building a
six-lane highway up to a single-lane bridge: the traffic flow is
governed by the rate of crossing the bridge. Similar remarks
apply to more complicated reaction mechanisms, and in general
the rate-determining step is the slowest step in a mechanism and
controls the overall rate of the reaction. The rate-determining
step is not just the slowest step: it must be slow and be a crucial
gateway for the formation of products. If a faster reaction can
also lead to products, then the slowest step is irrelevant because
the slow reaction can then be side-stepped (Fig. 19.13).

The rate law of a reaction that has a rate-determining step can
often be written down almost by inspection. If the first step in a
mechanism is rate-determining, then the rate of the overall re-
action is equal to the rate of the first step because all subsequent
steps are so fast that once the first intermediate is formed it 
results immediately in the formation of products. Figure 19.14
shows the reaction profile for a mechanism of this kind in which
the slowest step is the one with the highest activation energy (the
concept of activation energy should be familiar from introduc-
tory chemistry and is discussed in more detail in Section 20.1).
Once over the initial barrier, the intermediates cascade into
products. However, a rate-determining step may also stem from
the low concentration of a crucial reactant and need not corres-
pond to the step with highest activation barrier.

(d) Kinetic and thermodynamic control of reactions

In some cases reactants can give rise to a variety of products, as
in nitrations of monosubstituted benzene, when various pro-

portions of the ortho-, meta-, and para-substituted products are
obtained, depending on the directing power of the original sub-
stituent. Suppose two products, P1 and P2, are produced by the
following competing reactions:

A + B → P1 Rate of formation of P1 = k1[A][B]

A + B → P2 Rate of formation of P2 = k2[A][B]

The relative proportion in which the two products have been
produced at a given stage of the reaction (before it has reached
equilibrium) is given by the ratio of the two rates, and therefore
to the two rate constants:

(19.32)

This ratio represents the kinetic control over the proportions of
products, and is a common feature of the reactions encountered
in organic chemistry where reactants are chosen that facilitate
pathways favouring the formation of a desired product. If a re-
action is allowed to reach equilibrium, then the proportion of
products is determined by thermodynamic rather than kinetic
considerations, and the ratio of concentrations is controlled by
considerations of the standard Gibbs energies of all the reactants
and products.

(e) Pre-equilibria

From a simple sequence of consecutive reactions we now turn to
a slightly more complicated mechanism in which an intermediate
I reaches an equilibrium with the reactants A and B:

A + B 5 I → P

The rate constants are ka and ka′ for the forward and reverse 
reactions of the equilibrium and kb for the final step. This
scheme involves a pre-equilibrium, in which an intermediate is
in equilibrium with the reactants. A pre-equilibrium can arise
when the rate of decay of the intermediate back into reactants is
much faster than the rate at which it forms products; thus, the
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Fig. 19.13 In these diagrams of reaction schemes, heavy arrows
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(a) The first step is rate-determining; (b) the second step is 
rate-determining; (c) although one step is slow, it is not rate-
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The kinetics of complex reactions

Many reactions take place by mechanisms that involve several
elementary steps. Some take place at a useful rate only after 
absorption of light or if a catalyst is present. In the following 
sections we begin to see how to develop the ideas introduced
above to deal with these special kinds of reactions. We leave the
study of catalysis to Chapter 21 and focus here on the kinetic
analysis of a special class of reactions in the gas phase, polymer-
ization processes, and photochemical reactions.

19.7 The Lindemann–Hinshelwood mechanism
of unimolecular reactions

A number of gas-phase reactions follow first-order kinetics, as in
the isomerization of cyclopropane:

cyclo-C3H6 → CH3CH=CH2 v = kr[cyclo-C3H6] (19.36)

The problem with the interpretation of first-order rate laws is that
presumably a molecule acquires enough energy to react as a result
of its collisions with other molecules. However, collisions are sim-
ple bimolecular events, so how can they result in a first-order rate
law? First-order gas-phase reactions are widely called ‘unimolecu-
lar reactions’ because they also involve an elementary unimolecu-
lar step in which the reactant molecule changes into the product.
This term must be used with caution, though, because the over-
all mechanism has bimolecular as well as unimolecular steps.

The first successful explanation of unimolecular reactions was
provided by Frederick Lindemann in 1921 and then elaborated by
Cyril Hinshelwood. In the Lindemann–Hinshelwood mechanism
it is supposed that a reactant molecule A becomes energetically
excited by collision with another A molecule (Fig. 19.15):

A + A → A* + A (19.37)
 

d[A

d
[A]a

*]

t
k= 2

condition is possible when ka′ >> kb but not when kb >> ka′. Because
we assume that A, B, and I are in equilibrium, we can write

(19.33)

In writing these equations, we are presuming that the rate of re-
action of I to form P is too slow to affect the maintenance of the
pre-equilibrium (see the example below). The rate of formation
of P may now be written:

(19.34)

This rate law has the form of a second-order rate law with a com-
posite rate constant:

kr = kbK = (19.35)

Example 19.7 Analysing a pre-equilibrium

Repeat the pre-equilibrium calculation but without ignoring
the fact that I is slowly leaking away as it forms P.

Method Begin by writing the net rates of change of the con-
centrations of the substances and then invoke the steady-state
approximation for the intermediate I. Use the resulting expres-
sion to obtain the rate of change of the concentration of P.

Answer The net rates of change of P and I are

The second equation solves to

When we substitute this result into the expression for the rate
of formation of P, we obtain

This expression reduces to that in eqn 19.35 when the rate
constant for the decay of I into products is much smaller than
that for its decay into reactants, kb << ka′.

Self-test 19.8 Show that the pre-equilibrium mechanism in
which 2 A 5 I (K) followed by I + B → P (kb) results in an
overall third-order reaction. [d[P]/dt = kbK[A]2[B]]
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Fig. 19.15 A representation of the Lindemann–Hinshelwood
mechanism of unimolecular reactions. The species A is excited
by collision with A, and the excited A molecule (A*) may either
be deactivated by a collision with A or go on to decay by a
unimolecular process to form products.
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The energized molecule (A*) might lose its excess energy by 
collision with another molecule:

A + A* → A + A (19.38)

Alternatively, the excited molecule might shake itself apart and
form products P. That is, it might undergo the unimolecular
decay

A* → P (19.39)

If the unimolecular step is slow enough to be the rate-
determining step, the overall reaction will have first-order kinet-
ics, as observed. This conclusion can be demonstrated explicitly
by applying the steady-state approximation to the net rate of
formation of A*:

(19.40)

This equation solves to

(19.41)

so the rate law for the formation of P is

(19.42)

At this stage the rate law is not first order. However, if the rate of
deactivation by (A*, A) collisions is much greater than the rate
of unimolecular decay, in the sense that

ka′[A*][A] >> kb[A*] or ka′[A] >> kb

then we can neglect kb in the denominator and obtain

(19.43)

Equation 19.43 is a first-order rate law, as we set out to show.
The Lindemann–Hinshelwood mechanism can be tested 

because it predicts that, as the concentration (and therefore the
partial pressure) of A is reduced, the reaction should switch to
overall second-order kinetics. Thus, when ka′[A] << kb, the rate
law in eqn 19.42 is

(19.44)

The physical reason for the change of order is that at low pres-
sures the rate-determining step is the bimolecular formation of
A*. If we write the full rate law in eqn 19.42 as

(19.45)
d[P]

d
A

A

[Ar r
a b

b at
k k

k k

k k
= =

+ ′
[ ]

[ ]

]

 

d[P]

d
[Aat

k≈ ]2

d[P]

d
A]r r

a b

at
k k

k k

k
= =

′
[

d[P

d
[A

A

[Ab
a b

b a

]
*]

[ ]

]t
k

k k

k k
= =

+ ′

2

[ *]
[ ]

]
A

A

[A
a

b a

=
+ ′

k

k k

2

 

d[A

d
[A [A][A [Aa a b

*]
] *] *]

t
k k k= − ′ − ≈2 0

 

d[A

d
[Ab

*]
*]

t
k= −

 

d[A

d
[A][Aa

*]
*]

t
k= − ′

then the expression for the effective rate constant, kr, can be re-
arranged to

(19.46)

Hence, a test of the theory is to plot 1/kr against 1/[A], and to 
expect a straight line. Deviations from this behaviour are com-
mon and in Chapter 20 we shall enhance the description of the
mechanism to take into account experimental results over a
range of pressures.

19.8 Polymerization kinetics

We explored the structure of synthetic polymers in Chapter 9.
Now we give an overview of the mechanisms of the reactions that
lead to the formation of this important class of macromolecules.

There are two major classes of polymerization process and the
average molar mass of the product varies with time in distinctive
ways. In stepwise polymerization any two monomers present in
the reaction mixture can link together at any time and growth of
the polymer is not confined to chains that are already forming
(Fig. 19.16). As a result, monomers are removed early in the 
reaction and, as we shall see, the average molar mass of the 
product grows with time. In chain polymerization an activated
monomer, M, attacks another monomer, links to it, then that
unit attacks another monomer, and so on. The monomer is used
up as it becomes linked to the growing chains (Fig. 19.17). High
polymers are formed rapidly and only the yield, not the average
molar mass, of the polymer is increased by allowing long reac-
tion times.
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Fig. 19.16 In stepwise polymerization, growth can start at any pair
of monomers, and so new chains begin to form throughout the
reaction.
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(a) Stepwise polymerization

Stepwise polymerization commonly proceeds by a condensa-
tion reaction, in which a small molecule (typically H2O) is elim-
inated in each step. Stepwise polymerization is the mechanism
of production of polyamides, as in the formation of nylon-66:

H2N(CH2)6NH2 + HOOC(CH2)4COOH 
→ H2N(CH2)6NHCO(CH2)4COOH + H2O
→ H-[NH(CH2)6NHCO(CH2)4CO]n-OH

Polyesters and polyurethanes are formed similarly (the latter
without elimination). A polyester, for example, can be regarded
as the outcome of the stepwise condensation of a hydroxyacid
HO-M-COOH. We shall consider the formation of a polyester
from such a monomer, and measure its progress in terms of the
concentration of the -COOH groups in the sample (which we
denote A), for these groups gradually disappear as the conden-
sation proceeds. Because the condensation reaction can occur
between molecules containing any number of monomer units,
chains of many different lengths can grow in the reaction mixture.

In the absence of a catalyst, we can expect the condensation 
to be overall second order in the concentration of the -OH and 
-COOH (or A) groups, and write

= −kr[OH][A] (19.47a)

However, because there is one -OH group for each -COOH
group, this equation is the same as

= −kr[A]2 (19.47b)
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If we assume that the rate constant for the condensation is inde-
pendent of the chain length, then kr remains constant throughout
the reaction. The solution of this rate law is given by eqn 19.13c
([A] = [A]0/(1 + krt[A]0)). It follows that the fraction, p, of 
-COOH groups that have condensed at time t is

(19.48)

Next, we calculate the degree of polymerization, which is
defined as the average number of monomer residues per poly-
mer molecule. This quantity is the ratio of the initial concentra-
tion of A, [A]0, to the concentration of end groups, [A], at the
time of interest, because there is one -A group per polymer
molecule. For example, if there were initially 1000 A groups and
there are now only 10, each polymer must be 100 units long on
average. Because we can express [A] in terms of p (eqn 19.48),
the average number of monomers per polymer molecule, 〈N 〉, is

(19.49a)

This result is illustrated in Fig. 19.18. When we express p in
terms of the rate constant kr (eqn 19.48), we find

〈N 〉 = 1 + krt[A]0 (19.49b)

The average length grows linearly with time. Therefore, the
longer a stepwise polymerization proceeds, the higher the aver-
age molar mass of the product.

(b) Chain polymerization

Many gas-phase reactions and liquid-phase polymerization 
reactions are chain reactions. In a chain reaction, a reaction 
intermediate produced in one step generates an intermediate 
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Fig. 19.17 The process of chain polymerization. Chains grow as
each chain acquires additional monomers.
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in a subsequent step, then that intermediate generates another 
intermediate, and so on. The intermediates in a chain reaction
are called chain carriers. In a radical chain reaction the chain
carriers are radicals (species with unpaired electrons).

Chain polymerization occurs by addition of monomers to 
a growing polymer, often by a radical chain process. It results 
in the rapid growth of an individual polymer chain for each 
activated monomer. Examples include the polymerizations of
ethene, methyl methacrylate, and styrene, as in

-CH2CHX· + CH2=CHX → -CH2CHXCH2CHX·

and subsequent reactions. The central feature of the kinetic
analysis (which is summarized in the following Justification) is
that the rate of polymerization is proportional to the square root
of the initiator concentration:

v = kr[I]1/2[M] (19.50)

Justification 19.5 The rate of chain polymerization

There are three basic types of reaction step in a chain poly-
merization process:

(a) Initiation, in which the chain carriers are formed:

I → R· + R· vi = ki[I]
M + R· → ·M1 (fast)

where I is the initiator, R· the radical I forms, and ·M1 is a
monomer radical. We have shown a reaction in which a 
radical is produced, but in some polymerizations the initi-
ation step leads to the formation of an ionic chain carrier.
The rate-determining step is the formation of the radicals R·
by homolysis of the initiator, so the rate of initiation is equal
to the vi given above.

(b) Propagation, in which a chain carrier attacks a
monomer molecule and each attack leads to a new carrier:

M + ·M1 → ·M2

M + ·M2 → ·M3

M + ·Mn−1 → ·Mn vp = kp[M][·M]

If we assume that the rate of propagation is independent of
chain size for sufficiently large chains, then we can use only
the equation given above to describe the propagation pro-
cess. Consequently, for sufficiently large chains, the rate of
propagation is equal to the overall rate of polymerization.

Because this chain of reactions propagates quickly, the rate
at which the total concentration of radicals grows is equal to
the rate of the rate-determining initiation step. It follows that

(19.51)

where f is the fraction of radicals R· that successfully initiate a
chain.

(c) Termination, in which radicals combine and end the
chain:
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·Mn + ·Mm → Mn+m (mutual termination)
·Mn + ·Mm → Mn + Mm (disproportionation)
M + ·Mn → ·M + Mn (chain transfer)

In mutual termination two growing radical chains combine.
In termination by disproportionation a hydrogen atom
transfers from one chain to another, corresponding to the
oxidation of the donor and the reduction of the acceptor. In
chain transfer, a new chain initiates at the expense of the one
currently growing.

Here we suppose that only mutual termination occurs. If
we assume that the rate of termination is independent of the
length of the chain, the rate law for termination is

vt = kt[·M]2 (19.52)

and the rate of change of radical concentration by this pro-
cess is

(19.53)

The steady-state approximation gives:

= 2fki[I] − 2kt[·M]2 = 0

The steady-state concentration of radical chains is therefore

(19.54)

Because the rate of propagation of the chains is the negative
of the rate at which the monomer is consumed, we can write
vP = −d[M]/dt and

vP = kP[·M][M] = (19.55)

This rate is also the rate of polymerization, which has the
form of eqn 19.50.

The kinetic chain length, ν, is the ratio of the number of
monomer units consumed per activated centre produced in the
initiation step:

[19.56a]

The kinetic chain length can be expressed in terms of the rate 
expressions in Justification 19.5. To do so, we recognize that
monomers are consumed at the rate that chains propagate. Then,

(19.56b)

By making the steady-state approximation, we set the rate of
production of radicals equal to the termination rate. Therefore,
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we can write the expression for the kinetic chain length as

When we substitute the steady-state expression, eqn 19.54 for
the radical concentration, we obtain

ν = kr[M][I]−1/2 kr = 1–2kp( fkikt)
−1/2 (19.57)

Consider a polymer produced by a chain mechanism with
mutual termination. In this case, the average number of mono-
mers in a polymer molecule, 〈N 〉, produced by the reaction is the
sum of the numbers in the two combining polymer chains. The
average number of units in each chain is ν. Therefore,

〈N 〉 = 2ν = 2kr[M][I]−1/2 (19.58)

with kr given in eqn 19.57. We see that, the slower the initiation of
the chain (the smaller the initiator concentration and the smaller
the initiation rate constant), the greater the kinetic chain length,
and therefore the higher the average molar mass of the polymer.

19.9 Photochemistry

Many reactions can be initiated by the absorption of electro-
magnetic radiation. The most important of all are the photo-
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chemical processes that capture the radiant energy of the Sun.
Some of these reactions lead to the heating of the atmosphere
during the daytime by absorption of ultraviolet radiation. Others
include the absorption of visible radiation during photosynthesis
(Impact I19.1). Table 19.4 summarizes common photochemical
reactions.

Photochemical processes are initiated by the absorption of 
radiation by at least one component of a reaction mixture. In a
primary process, products are formed directly from the excited
state of a reactant. Examples include fluorescence (Section 11.5)
and the cis–trans photoisomerization of retinal (Table 19.4, see
also Impact I11.1). Products of a secondary process originate
from intermediates that are formed directly from the excited state
of a reactant. Examples include photosynthesis (Impact I19.1).

Competing with the formation of photochemical products is
a host of primary photophysical processes that can deactivate
the excited state (Table 19.5). Electronic transitions caused
by absorption of ultraviolet and visible radiation occur within
10−16–10−15 s. We expect, then, that the upper limit for the 
rate constant of a first-order photochemical reaction is about
1016 s−1. Fluorescence is slower than absorption, with typical
lifetimes of 10−12–10−6 s. Therefore, the excited singlet state can
initiate very fast photochemical reactions in the femtosecond
(10−15 s) to picosecond (10−12 s) timescale. An example is the 

Table 19.4 Examples of photochemical processes

Process General form Example

Ionization A* → A+ + e− NO* f134 nmfg NO+ + e−

Electron transfer A* + B → A+ + B− or A− + B+ [Ru(bpy)3
2+]* + Fe3+ f452 nmfg Ru(bpy)3

3+ + Fe2+

Dissociation A* → B + C O3* f1180fnmfg O2 + O

A* + B-C → A + B + C Hg* CH4 f254 nmfg Hg + CH3 + H

Addition 2 A* → B

A* + B → AB

Abstraction A* + B-C → A-B + C Hg* + H2 f254 nmfg HgH + H

Isomerization or rearrangement A* → A′

* Excited state.
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initial event of vision (Impact I11.1). Typical intersystem crossing
(ISC) and phosphorescence times for large organic molecules
are 10−12–10−4 s and 10−6–10−1 s, respectively. As a consequence,
excited triplet states are photochemically important. Indeed, 
because phosphorescence decay is several orders of magnitude
slower than most typical reactions, species in excited triplet
states can undergo a very large number of collisions with other
reactants before deactivation.

(a) The primary quantum yield

We shall see that the rates of deactivation of the excited state 
by radiative, non-radiative, and chemical processes determine
the yield of product in a photochemical reaction. The primary
quantum yield, φ, is defined as the number of photophysical or
photochemical events that lead to primary products divided by
the number of photons absorbed by the molecule in the same 
interval:

[19.59a]

When we divide both the numerator and denominator of this
expression by the time interval over which the events occurred,
we see that the primary quantum yield is also the rate of radiation-
induced primary events divided by the rate of photon absorp-
tion, Iabs:

 
φ =

number of events

number of photons absorbedd

[19.59b]

A molecule in an excited state must either decay to the ground
state or form a photochemical product. Therefore, the total
number of molecules deactivated by radiative processes, non-
radiative processes, and photochemical reactions must be equal
to the number of excited species produced by absorption of
light. We conclude that the sum of primary quantum yields φi

for all photophysical and photochemical events i must be equal
to 1, regardless of the number of reactions involving the excited
state. It follows that

(19.60)

It follows that for a decaying excited singlet state we write

φf + φIC + φp = 1

where φf, φIC, and φp are the quantum yields of fluorescence, 
internal conversion, and phosphorescence, respectively (inter-
system crossing from the singlet to the triplet state is taken
into account with the measurement of φp). The quantum yield
of photon emission by fluorescence and phosphorescence is 
φemission = φf + φp, which is less than 1. If the excited singlet state
also participates in a primary photochemical reaction with
quantum yield φr, we write

φf + φIC + φp + φr = 1

We can now strengthen the link between reaction rates and 
primary quantum yield already established by eqns 19.59 and
19.60. By taking the constant Iabs out of the summation in 
eqn 19.60 and rearranging, we obtain Iabs = ∑ivi. Substituting
this result into eqn 19.59b gives the general result

(19.61)

Therefore, the primary quantum yield may be determined directly
from the experimental rates of all photophysical and photo-
chemical processes that deactivate the excited state (Fig. 19.19).

(b) Mechanism of decay of excited singlet states

Consider the formation and decay of an excited singlet state in
the absence of a chemical reaction:

Absorption: S + hνi → S* vabs = Iabs

Fluorescence: S* → S + hνf vf = kf[S*]
Internal conversion: S* → S vIC = kIC[S*]
Intersystem crossing: S* → T* vISC = kISC[S*]

in which S is an absorbing species, S* an excited singlet state, T*
an excited triplet state, and hνi and hνf are the energies of the in-
cident and fluorescent photons, respectively. From the methods
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Table 19.5 Common photophysical processes†

Primary absorption S + hν → S*

Excited-state absorption S* + hν → S**

T* + hν → T**

Fluorescence S* → S + hν
Stimulated emission S* + hν → S + 2hν
Intersystem crossing (ISC) S* → T*

Phosphorescence T* → S + hν
Internal conversion (IC) S* → S

Collision-induced emission S* + M → S + M + hν
Collisional deactivation S* + M → S + M

T* + M → S + M

Electronic energy transfer:

Singlet–singlet S* + S → S + S*

Triplet–triplet T* + T → T + T*

Excimer formation S* + S → (SS)*

Energy pooling

Singlet–singlet S* + S* → S** + S

Triplet–triplet T* + T* → S* + S

† S denotes a singlet state, T a triplet state, and M is a third-body. 
* denotes an excited state.
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developed in this chapter and the rates of the steps that form and
destroy the excited singlet state S*, we write the rate of forma-
tion and decay of S* as:

Rate of formation of [S*] = Iabs

Rate of decay of [S*] = −kf[S*] − kISC[S*] − kIC[S*] 
= −(kf + kISC + kIC)[S*]

It follows that the excited state decays by a first-order process,
so, when the light is turned off, the concentration of S* varies
with time t as:

[S*]t = [S*]0e−t/τ0 (19.62)

where the observed lifetime, τ0, of the first excited singlet state is
defined as

[19.63]

We show in the following Justification that the quantum yield of
fluorescence is

(19.64)

Justification 19.6 The quantum yield of fluorescence

Most fluorescence measurements are conducted by illuminat-
ing a relatively dilute sample with a continuous and intense
beam of light. It follows that [S*] is small and constant, so we
may invoke the steady-state approximation (Section 19.6)
and write:

= Iabs − kf[S*] − kISC[S*] − kIC[S*]

= Iabs − (kf + kISC + kIC)[S*] = 0
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Consequently,

Iabs = (kf + kISC + kIC)[S*]

By using this expression and eqn 19.59b, the quantum yield
of fluorescence is written as:

which, by cancelling the [S*], simplifies to eqn 19.64.

The observed fluorescence lifetime can be measured with a
pulsed laser technique (Section 11.7). First, the sample is excited
with a short light pulse from a laser using a wavelength at which
S absorbs strongly. Then, the exponential decay of the fluores-
cence intensity after the pulse is monitored. From eqn 19.63, it
follows that

(19.65)

l A BRIEF ILLUSTRATION

In water, the fluorescence quantum yield and observed
fluorescence lifetime of tryptophan are φf = 0.20 and τ0 =
2.6 ns, respectively. It follows from eqn 19.65 that the fluores-
cence rate constant kf is

l

(c) Quenching

The shortening of the lifetime of the excited state is called quench-
ing. Quenching may be either a desired process, such as in energy
or electron transfer, or an undesired side reaction that can decrease
the quantum yield of a desired photochemical process. Quench-
ing effects may be studied by monitoring the emission from the
excited state that is involved in the photochemical reaction.

The addition of a quencher, Q, opens an additional channel
for deactivation of S*:

Quenching: S* + Q → S + Q vQ = kQ[Q][S*]

The Stern–Volmer equation, which is derived in the Justification
below, relates the fluorescence quantum yields φf,0 and φf meas-
ured in the absence and presence, respectively, of a quencher Q
at a molar concentration [Q]:

(19.66)

This equation tells us that a plot of φf,0/φf against [Q] should 
be a straight line with slope τ0kQ. Such a plot is called a Stern–
Volmer plot (Fig. 19.20). The method may also be applied to the
quenching of phosphorescence.
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Fig. 19.19 A Jablonski diagram for deactivation of a singlet
electronic state S*, with each process labelled by its
corresponding rate constant: fluorescence, internal conversion,
intersystem crossing, and photochemical reaction (kf , kIC, kISC,
and kr, respectively). Jablonski diagrams were introduced in
Section 11.5.
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Justification 19.7 The Stern–Volmer equation

With the addition of quenching, the steady-state approxima-
tion for [S*] now gives:

= Iabs − (kf + kISC + kIC + kQ[Q])[S*] = 0

and the fluorescence quantum yield in the presence of the
quencher is:

The quantum yield when [Q] = 0 is

It follows that

By using eqn 19.65, this expression simplifies to eqn 19.66.

Because the fluorescence intensity and lifetime are both pro-
portional to the fluorescence quantum yield (specifically, from
eqn 19.65, τ = φf /kf), plots of If,0/If and τ0/τ (where the subscript
0 indicates a measurement in the absence of quencher) against
[Q] should also be linear with the same slope and intercept as
those shown for eqn 19.66.
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Example 19.8 Determining the quenching rate constant

The molecule 2,2′-bipyridine (3) forms a complex with the
Ru2+ ion. Ruthenium(II) tris-(2,2′-bipyridyl), Ru(bpy)3

2+ (4),
has a strong metal-to-ligand charge transfer (MLCT) transition
(Section 11.4) at 450 nm. The quenching of the *Ru(bpy)3

2+

excited state by Fe(H2O)6
3+ in acidic solution was monitored by

measuring emission lifetimes at 600 nm. Determine the quench-
ing rate constant for this reaction from the following data:

f,0
/

f

[Q]

Slope = 0kQ

0

1

&
&

:

Fig. 19.20 The format of a Stern–Volmer plot and the
interpretation of the slope in terms of the rate constant for
quenching and the observed fluorescence lifetime in the absence
of quenching.

[Fe(H2O)6
3+]/(10−4 mol dm−3) 0 1.6 4.7 7 9.4

τ/(10−7 s) 6 4.05 3.37 2.96 2.17

Method Re-write the Stern–Volmer equation (eqn 19.66) for
use with lifetime data; then fit the data to a straight line.

Answer Upon substitution of τ0/τ for φf,0/φf in eqn 19.66 and
after rearrangement, we obtain:

Figure 19.21 shows a plot of 1/τ versus [Fe3+] and the results
of a fit to this equation. The slope of the line is 2.8 × 109, so 
kQ = 2.8 × 109 dm3 mol−1 s−1.
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Fig. 19.21 The Stern–Volmer plot of the data for Example 19.8.
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Electron transfer can also be studied by time-resolved spec-
troscopy (Section 11.7). The oxidized and reduced products
often have electronic absorption spectra distinct from those of
their neutral parent compounds. Therefore, the rapid appear-
ance of such known features in the absorption spectrum after
excitation by a laser pulse may be taken as indication of quench-
ing by electron transfer. In the following section we explore 
energy transfer in detail.

(d) Resonance energy transfer

We visualize the processes S → S* and S* + Q → S + Q* as 
follows. The oscillating electric field of the incoming elec-
tromagnetic radiation induces an oscillating electric dipole 
moment in S. Energy is absorbed by S if the frequency of the 
incident radiation, ν, is such that ν = ΔES /h, where ΔES is the 
energy separation between the ground and excited electronic
states of S and h is Planck’s constant. This is the ‘resonance con-
dition’ for absorption of radiation. The collapse of S* to S results
in a transition dipole that can induce a transition in Q. That is,
the oscillating dipole on S now can affect electrons bound to a
nearby Q molecule by inducing an oscillating dipole moment in
the latter. If the frequency of oscillation of the electric dipole
moment in S is such that ν = ΔEQ/h then Q will absorb energy
from S.

The efficiency, ηT, of resonance energy transfer is defined as

[19.67]

According to the Förster theory of resonance energy transfer,
which was proposed by T. Förster in 1959, energy transfer is
efficient when:

1. The energy donor and acceptor are separated by a short
distance (of the order of nanometres).

2. Photons emitted by the excited state of the donor can be
absorbed directly by the acceptor.

We show in Further information 19.1 that, for donor–acceptor
systems that are held rigidly either by covalent bonds or by a
protein ‘scaffold’, ηT increases with decreasing distance, R, 
according to

(19.68)

where R0 is a parameter (with dimensions of distance) that is
characteristic of each donor–acceptor pair. Equation 19.68 has
been verified experimentally and values of R0 are available for a
number of donor–acceptor pairs (Table 19.6).

The emission and absorption spectra of molecules span a
range of wavelengths, so the second requirement of the Förster
theory is met when the emission spectrum of the donor mole-
cule overlaps significantly with the absorption spectrum of the

ηT =
+
R

R R
0
6

0
6 6

η
φ
φT

f

f,0

= −1

This example shows that measurements of emission life-
times are preferred because they yield the value of kQ directly.
To determine the value of kQ from intensity or quantum yield
measurements, we need to make an independent measure-
ment of τ0.

Self-test 19.9 The quenching of tryptophan fluorescence 
by dissolved O2 gas was monitored by measuring emission
lifetimes at 348 nm in aqueous solutions. Determine the
quenching rate constant for this process from the following
data:

[O2]/(10−2 mol dm−3) 0 2.3 5.5 8 10.8

τ/(10−9 s) 2.6 1.5 0.92 0.71 0.57

[1.3 × 1010 dm3 mol−1 s−1]

Three common mechanisms for bimolecular quenching of an
excited singlet (or triplet) state are:

Collisional deactivation: S* + Q → S + Q

Electron transfer: S* + Q → S+ + Q− or S− + Q+

Resonance energy transfer: S* + Q → S + Q*

The quenching rate constant itself does not give much insight
into the mechanism of quenching. For the system of Example
19.8, it is known that the quenching of the excited state of
Ru(bpy)3

2+ is a result of light-induced electron transfer to Fe3+,
but the quenching data do not allow us to prove the mechanism.
However, there are some criteria that govern the relative effi-

ciencies of collisional quenching, energy and electron transfer.
Collisional quenching is particularly efficient when Q is a heavy
species, such as iodide ion, which receives energy from S* and
then decays primarily by internal conversion to the ground state.
According to the Marcus theory of electron transfer, which was
proposed by R.A. Marcus in 1965, the rates of electron transfer
(from ground or excited states) depend on (see also Section 20.8):

1. The distance between the donor and acceptor, with elec-
tron transfer becoming more efficient as the distance between
donor and acceptor decreases.

2. The reaction Gibbs energy, ΔrG, with electron transfer be-
coming more efficient as the reaction becomes more exergonic.
For example, efficient photooxidation of S requires that the 
reduction potential of S* be lower than the reduction potential
of Q.

3. The reorganization energy, the energy cost incurred by
molecular rearrangements of donor, acceptor, and medium
during electron transfer. The electron transfer rate is predicted
to increase as this reorganization energy is matched closely by
the reaction Gibbs energy.
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acceptor. In the overlap region, photons emitted by the donor
have the proper energy to be absorbed by the acceptor (Fig. 19.22).

In many cases, it is possible to prove that energy transfer is the
dominant mechanism of quenching if the excited state of the 
acceptor fluoresces or phosphoresces at a characteristic wave-
length. In a pulsed laser experiment, the rise in fluorescence
intensity from Q* with a characteristic time that is the same as
that for the decay of the fluorescence of S* is often taken as indi-
cation of energy transfer from S to Q.

Equation 19.68 forms the basis of fluorescence resonance 
energy transfer (FRET), in which the dependence of the energy
transfer efficiency, ηT, on the distance, R, between energy donor
and acceptor can be used to measure distances in biological 
systems. In a typical FRET experiment, a site on a biopolymer 
or membrane is labelled covalently with an energy donor and 

another site is labelled covalently with an energy acceptor. In
certain cases, the donor or acceptor may be natural constituents
of the system, such as amino acid groups, co-factors, or enzyme
substrates. The distance between the labels is then calculated
from the known value of R0 and eqn 19.68. Several tests have
shown that the FRET technique is useful for measuring dis-
tances ranging from 1 to 9 nm.

l A BRIEF ILLUSTRATION

When an amino acid on the surface of rhodopsin was labelled
covalently with the energy donor 1,5-I AEDANS (5), the
fluorescence quantum yield of the label decreased from 
0.75 to 0.68 due to quenching by the visual pigment 11-cis-
retinal (6). From eqn 19.67, we calculate ηT = 1 − (0.68/0.75)
= 0.093 and from eqn 19.68 and the known value of R0 =
5.4 nm for the 1,5-I AEDANS/11-cis-retinal pair we calculate
R = 7.9 nm. Therefore, we take 7.9 nm to be the distance 
between the surface of the protein and 11-cis-retinal. l

Table 19.6 Values of R0 for some donor–acceptor pairs*

Donor† Acceptor R0/nm

Naphthalene Dansyl 2.2

Dansyl ODR 4.3

Pyrene Coumarin 3.9

IEDANS FITC 4.9

Tryptophan IEDANS 2.2

Tryptophan Haem (heme) 2.9

* Additional values may be found in J.R. Lacowicz, Principles of fluorescence
spectroscopy, Kluwer Academic/Plenum, New York (1999).
† Abbreviations:
Dansyl: 5-dimethylamino-1-naphthalenesulfonic acid
FITC: fluorescein 5-isothiocyanate
IEDANS: 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid
ODR: octadecyl-rhodamine
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Fig. 19.22 According to the Förster theory, the rate of energy
transfer from a molecule S* in an excited state to a quencher
molecule Q is optimized at radiation frequencies in which the
emission spectrum of S* overlaps with the absorption spectrum
of Q, as shown in the shaded region.

If donor and acceptor molecules diffuse in solution or in the
gas phase, Förster theory predicts that the efficiency of quench-
ing by energy transfer increases as the average distance travelled
between collisions of donor and acceptor decreases. That is, the
quenching efficiency increases with concentration of quencher,
as predicted by the Stern–Volmer equation.

IMPACT ON BIOCHEMISTRY

I19.1 Harvesting of light during plant photosynthesis

A large proportion of solar radiation with wavelengths below
400 nm and above 1000 nm is absorbed by atmospheric gases
such as ozone and O2, which absorb ultraviolet radiation, and
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CO2 and H2O, which absorb infrared radiation (Impact I10.2).
As a result, plants, algae, and some species of bacteria evolved
photosynthetic apparatus that captures visible and near-infrared
radiation. Plants use radiation in the wavelength range of 400–
700 nm to drive the endergonic reduction of CO2 to glucose,
with concomitant oxidation of water to O2 (ΔrG

⊕ = +2880 kJ
mol−1; recall that the symbol ⊕ means the biological standard
state, Section 17.2), in essence the reverse of glycolysis and the
citric acid cycle (Impact I17.1):

Electrons flow from reductant to oxidant via a series of electro-
chemical reactions that are coupled to the synthesis of ATP. The
process takes place in the chloroplast, a special organelle of the
plant cell, where chlorophylls a and b (7) and carotenoids (of
which β-carotene (8) is an example) bind to integral proteins
called light harvesting complexes, which absorb solar energy and

6 CO2(g) + 6 H2O(l)
photosynthesis

glycolysis and the citric acid cycle
⎯⎯⎯⎯⎯⎯⎯⎯⎯→←⎯⎯⎯⎯⎯⎯⎯⎯⎯ C6H12O6(s) + 6 O2(g)

transfer it to protein complexes known as reaction centres, where
light-induced electron transfer reactions occur. The combina-
tion of a light harvesting complex and a reaction centre complex
is called a photosystem. Plants have two photosystems that drive
the reduction of NADP+ (9) by water:

It is clear that energy from light is required to drive this reaction
because, in the dark, E⊕ = −1.135 V and ΔrG

⊕ = +438.0 kJ mol−1.
Light harvesting complexes bind large numbers of pigments

in order to provide a sufficiently large area for capture of radi-
ation. In photosystems I and II, absorption of a photon raises a
chlorophyll or carotenoid molecule to an excited singlet state
and within 0.1–5 ps the energy hops to a nearby pigment by 
the Förster mechanism (Section 19.9). About 100–200 ps later,
which corresponds to thousands of hops within the light har-
vesting complex, more than 90 per cent of the absorbed energy
reaches the reaction centre. There, a chlorophyll a dimer 
becomes electronically excited and initiates ultrafast electron
transfer reactions. For example, the transfer of an electron from
the excited singlet state of P680, the chlorophyll dimer of the
photosystem II reaction centre, to its immediate electron accep-
tor, a phaeophytin a molecule (a chlorophyll a molecule where
the central Mg2+ ion is replaced by two protons, which are
bound to two of the pyrrole nitrogen atoms in the ring), occurs
within 3 ps. Once the excited state of P680 has been quenched
efficiently by this first reaction, subsequent steps that lead to the
oxidation of water occur more slowly, with reaction times vary-
ing from 200 ps to 1 ms. The electrochemical reactions within
the photosystem I reaction centre also occur in this time interval.

 2 22H O NADP light, photosystems I and II+ ⎯ →+ ⎯⎯⎯⎯⎯⎯⎯⎯ + +O NADPH H2 2 2 +
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We see that the initial energy and electron transfer events of
photosynthesis are under tight kinetic control. Photosynthesis
captures solar energy efficiently because the excited singlet state
of chlorophyll is quenched rapidly by processes that occur with
relaxation times that are much shorter than the fluorescence
lifetime, which is typically about 1 ns in organic solvents at room
temperature.

Working together, photosystem I and the enzyme ferredoxin:
NADP+ oxidoreductase catalyse the light-induced oxidation of
NADP+ to NADPH. The electrons required for this process
come initially from P700, the chlorophyll dimer of the photo-
system I reaction centre, in its excited state. The resulting P700+

is then reduced by the mobile carrier plastocyanin (Pc), a pro-
tein in which the bound copper ion can exist in oxidation states
+2 and +1. The net reaction is

NADP+ + 2 Cu+(Pc) + H+ fffffffg NADPH + 2 Cu2+(Pc)

Oxidized plastocyanin accepts electrons from reduced plasto-
quinone (PQ, 10). The process is catalysed by the cytochrome
b6 f complex, a membrane protein complex that resembles com-
plex III of mitochondria (Impact I17.3):

PQH2 + 2 Cu2+(Pc) fffffg PQ + 2 H+ + 2 Cu+(Pc)
E⊕ = +0.370 V, ΔrG

⊕ = −71.4 kJ mol−1

This reaction is sufficiently exergonic to drive the synthesis of
ATP in the process known as photophosphorylation.

Plastoquinone is reduced by water in a process catalysed by
light and photosystem II. The electrons required for the reduc-
tion of plastoquinone come initially from P680 in its excited
state. The resulting P680+ is then reduced ultimately by water.
The net reaction is

H2O + PQ fffffffg 1–2 O2 + PQH2

In this way, plant photosynthesis uses an abundant source of
electrons (water) and of energy (the Sun) to drive the ender-
gonic reduction of NADP+, with concomitant synthesis of 
ATP (Fig. 19.23). Experiments show that, for each molecule of
NADPH formed in the chloroplast of green plants, one molecule
of ATP is synthesized.
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Fig. 19.23 In plant photosynthesis, light-induced electron transfer processes lead to the oxidation of water to O2 and the reduction of NADP+

to NADPH, with concomitant production of ATP. The energy stored in ATP and NADPH is used to reduce CO2 to carbohydrate in a
separate set of reactions. The scheme summarizes the general patterns of electron flow and does not show all the intermediate electron
carriers in photosystems I and II, the cytochrome b6 f complex, and ferredoxin:NADP+ oxidoreductase.

light, photosystem II
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The ATP and NADPH molecules formed by the light-induced
electron transfer reactions of plant photosynthesis participate
directly in the reduction of CO2 to glucose in the chloroplast:

6 CO2 + 12 NADPH + 12 ATP + 12 H+

→ C6H12O6 + 12 NADP+ + 12 ADP + 12 Pi + 6 H2O

In summary, plant photosynthesis uses solar energy to transfer
electrons from a poor reductant (water) to carbon dioxide. In

the process, high energy molecules (carbohydrates, such as glucose)
are synthesized in the cell. Animals feed on the carbohydrates
derived from photosynthesis. During aerobic metabolism, the O2

released by photosynthesis as a waste product is used to oxidize
carbohydrates to CO2, driving biological processes, such as bio-
synthesis, muscle contraction, cell division, and nerve conduc-
tion. Hence, the sustenance of life on Earth depends on a tightly
regulated carbon–oxygen cycle that is driven by solar energy.

Checklist of key ideas

1. The rates of chemical reactions are measured by using
techniques that monitor the concentrations of species
present in the reaction mixture. Examples include real-time
and quenching procedures, flow and stopped-flow
techniques, and flash photolysis.

2. The instantaneous rate of a reaction is the slope of the
tangent to the graph of concentration against time
(expressed as a positive quantity).

3. A rate law is an expression for the reaction rate in terms of
the concentrations of the species that occur in the overall
chemical reaction.

4. For a rate law of the form v = kr[A]a[B]b . . . , the rate
constant is kr, the order with respect to A is a, and the 
overall order is a + b + . . . .

5. An integrated rate law is an expression for the concentration
of a reactant or product as a function of time (Table 19.3).

6. The half-life t1/2 of a reaction is the time it takes for the
concentration of a species to fall to half its initial value. The
time constant τ is the time required for the concentration of
a reactant to fall to 1/e of its initial value. For a first-order
reaction, t1/2 = (ln 2)/kr and τ = 1/kr.

7. The equilibrium constant for a reaction is equal to the ratio
of the forward and reverse rate constants, K = kr /kr′.

8. In relaxation methods of kinetic analysis, the equilibrium
position of a reaction is first shifted suddenly and then
allowed to readjust to the equilibrium composition
characteristic of the new conditions.

9. The mechanism of reaction is the sequence of elementary
steps involved in a reaction.

10. The molecularity of an elementary reaction is the number 
of molecules coming together to react. An elementary
unimolecular reaction has first-order kinetics; an elementary
bimolecular reaction has second-order kinetics.

11. The rate-determining step is the slowest step in a reaction
mechanism that controls the rate of the overall reaction.

12. In the steady-state approximation, it is assumed that the
concentrations of all reaction intermediates remain 
constant and small throughout the reaction.

13. Provided a reaction has not reached equilibrium, the
products of competing reactions are controlled kinetically,
with [P2]/[P1] = k2/k1.

14. Pre-equilibrium is a state in which an intermediate is in
equilibrium with the reactants and which arises when the
rates of formation of the intermediate and its decay back
into reactants are much faster than its rate of formation of
products.

15. The Lindemann–Hinshelwood mechanism of
‘unimolecular’ reactions accounts for the first-order 
kinetics of gas-phase reactions.

16. In stepwise polymerization any two monomers in 
the reaction mixture can link together at any time and
growth of the polymer is not confined to chains that are
already forming. The longer a stepwise polymerization
proceeds, the higher the average molar mass of the 
product.

17. In chain polymerization an activated monomer attacks
another monomer and links to it. That unit attacks 
another monomer, and so on. The slower the initiation 
of the chain, the higher the average molar mass of the
polymer.

18. The primary quantum yield of a photochemical reaction 
is the number of reactant molecules producing specified
primary products for each photon absorbed; the overall
quantum yield is the number of reactant molecules that
react for each photon absorbed.

19. The observed fluorescence lifetime is related to the 
quantum yield, φf , and rate constant, kf , of fluorescence 
by τ0 = φf /kf.

20. A Stern–Volmer plot is used to analyse the kinetics of
fluorescence quenching in solution. It is based on the
Stern–Volmer equation, φf,0 /φf = 1 + τ0kQ[Q].

21. Collisional deactivation, electron transfer, and resonance
energy transfer are common fluorescence quenching
processes. The rate constants of electron and resonance
energy transfer decrease with increasing separation 
between donor and acceptor molecules.
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Further information

Further information 19.1 Förster theory of resonance energy transfer

From the qualitative description given in Section 19.9, we conclude 
that resonance energy transfer arises from the interaction between two
oscillating dipoles with moments μS and μQ. From Section 8.3, the
energy of the dipole–dipole interaction, Vdipole–dipole, is

where R is the distance between the dipoles. We saw in Further
information 4.2 that the rate of a transition from a state i to a state f at a
radiation frequency ν is proportional to the square modulus of the
matrix element of the perturbation between the two states:

wf←i ∝ |Hfi
(1)|2

For energy transfer, the wavefunctions of the initial and final states may
be denoted as ψS*ψQ and ψSψQ*, respectively, and H(1) may be written
from Vdipole–dipole. It follows that the rate of energy transfer, wT, at a fixed
distance R is given by

We have used the fact that the terms related to S are functions of
coordinates that are independent of those for the functions related 
to Q. In the last expression, the integrals are squares of transition 
dipole moments at the radiation frequency ν, the first corresponding 
to emission of S* to S and the second to absorption of Q to Q*.

We interpret the expression for wT as follows. The rate of energy
transfer is proportional to R−6, so it decreases sharply with increasing
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separation between the energy donor and acceptor. Furthermore, the
energy transfer rate is optimized when both emission of radiation by S*
and absorption of radiation by Q are efficient at the frequency ν. Because
the absorption and emission spectra of large molecules in condensed
phases are broad, it follows that the energy transfer rate is optimal at
radiation frequencies in which the emission spectrum of the donor and
the absorption spectrum of the acceptor overlap significantly.

In practice, it is more convenient to measure the efficiency of energy
transfer and not the rate itself. In much the same way that we defined the
quantum yield as a ratio of rates, we can also define the efficiency of
energy transfer, ηT, as the ratio

w0 = (kf + kIC + kISC)[S*] (19.69)

where w0 is the rate of deactivation of S* in the absence of the 
quencher. The efficiency may be expressed in terms of the experimental
fluorescence quantum yields φf,0 and φf of the donor in the absence 
and presence of the acceptor, respectively. To proceed, we use eqn 19.61
to write:

and

where vf is the rate of fluorescence. Substituting these results into 
eqn 19.69 gives, after a little algebra, eqn 19.67.

Alternatively, we can express w0 in terms of the parameter R0, the
characteristic distance at which wT = w0 for a specified pair of S and 
Q (Table 19.6). By using wT ∝ R−6 and w0 ∝ R0

−6, we can rearrange the
expression for ηT into eqn 19.68.
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Discussion questions

19.1 Consult literature sources and list the observed ranges of 
timescales during which the following processes occur: radiative 
decay of excited electronic states, molecular rotational motion,
molecular vibrational motion, proton transfer reactions, energy 
transfer between fluorescent molecules used in FRET analysis, 
electron transfer events between complex ions in solution, and 
collisions in liquids.

19.2 Describe the main features, including advantages and
disadvantages, of the following experimental methods for determining
the rate law of a reaction: the isolation method, the method of initial
rates, and fitting data to integrated rate law expressions.

19.3 Distinguish between reaction order and molecularity.

19.4 Distinguish between zeroth-order, first-order, second-order, and
pseudofirst-order reactions and illustrate how reaction orders may
change under different circumstances.

19.5 Assess the validity of the following statement: the rate-determining
step is the slowest step in a reaction mechanism.

19.6 Distinguish between a pre-equilibrium approximation and a
steady-state approximation.

19.7 Distinguish between kinetic and thermodynamic control of a
reaction. Suggest criteria for expecting one rather than the other.

19.8 Discuss the limitations of the generality of the expression 
kr = kakb[A]/(kb + ka′[A]) for the effective rate constant of a unimolecular
reaction according to the Lindemann mechanism.

19.9 Bearing in mind distinctions between the mechanisms of stepwise
and chain polymerization, describe ways in which it is possible to control
the molar mass of a polymer by manipulating the kinetic parameters of
polymerization.

19.10 Distinguish between the primary quantum yield and overall
quantum yield of a chemical reaction. Describe an experimental
procedure for the determination of the quantum yield.

19.11 Discuss experimental procedures that make it possible to
differentiate between quenching by energy transfer, collisions, or
electron transfer.

19.12 Discuss the factors that govern the rates of photo-induced electron
transfer according to Marcus theory and that govern the rates of
resonance energy transfer according to Förster theory. Can you find
similarities between the two theories?
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Exercises

19.1(a) Predict how the total pressure varies during the gas-phase
reaction 2 ICl(g) + H2(g) → I2(g) + 2 HCl(g) in a constant-volume
container.

19.1(b) Predict how the total pressure varies during the gas-phase
reaction N2(g) + 3 H2(g) → 2 NH3(g) in a constant-volume container.

19.2(a) The rate of the reaction A + 2 B → 3 C + D was reported as
2.7 mol dm−3 s−1. State the rates of formation and consumption of the
participants.

19.2(b) The rate of the reaction A + 3 B → C + 2 D was reported as 
2.7 mol dm−3 s−1. State the rates of formation and consumption of the
participants.

19.3(a) The rate of formation of C in the reaction 2 A + B → 2 C + 3 D is
2.7 mol dm−3 s−1. State the reaction rate, and the rates of formation or
consumption of A, B, and D.

19.3(b) The rate of consumption of B in the reaction A + 3 B → C + 2 D
is 2.7 mol dm−3 s−1. State the reaction rate, and the rates of formation or
consumption of A, C, and D.

19.4(a) The rate law for the reaction in Exercise 19.2a was found to be 
v = kr[A][B]. What are the units of kr? Express the rate law in terms of 
the rates of formation and consumption of (a) A, (b) C.

19.4(b) The rate law for the reaction in Exercise 19.2b was found to be 
v = kr[A][B]2. What are the units of kr? Express the rate law in terms of
the rates of formation and consumption of (a) A, (b) C.

19.5(a) The rate law for the reaction in Exercise 19.3a was reported as
d[C]/dt = kr[A][B][C]. Express the rate law in terms of the reaction rate;
what are the units for kr?

19.5(b) The rate law for the reaction in Exercise 19.3b was reported as
d[C]/dt = kr[A][B][C]−1. Express the rate law in terms of the reaction
rate; what are the units for kr?

19.6(a) If the rate laws are expressed with (a) concentrations in moles per
decimetre cubed, (b) pressures in kilopascals, what are the units of the
second-order and third-order rate constants?

19.6(b) If the rate laws are expressed with (a) concentrations in
molecules per metre cubed, (b) pressures in pascals, what are the 
units of the second-order and third-order rate constants?

19.7(a) At 518°C, the rate of decomposition of a sample of gaseous
acetaldehyde, initially at a pressure of 363 Torr, was 1.07 Torr s−1 when
5.0 per cent had reacted and 0.76 Torr s−1 when 20.0 per cent had
reacted. Determine the order of the reaction.

19.7(b) At 400 K, the rate of decomposition of a gaseous compound
initially at a pressure of 12.6 kPa, was 9.71 Pa s−1 when 10.0 per cent had
reacted and 7.67 Pa s−1 when 20.0 per cent had reacted. Determine the
order of the reaction.

19.8(a) At 518°C, the half-life for the decomposition of a sample of
gaseous acetaldehyde (ethanal) initially at 363 Torr was 410 s. When 
the pressure was 169 Torr, the half-life was 880 s. Determine the order 
of the reaction.

19.8(b) At 400 K, the half-life for the decomposition of a sample of 
a gaseous compound initially at 55.5 kPa was 340 s. When the pressure
was 28.9 kPa, the half-life was 178 s. Determine the order of the 
reaction.

19.9(a) The rate constant for the first-order decomposition of N2O5 in
the reaction 2 N2O5(g) → 4 NO2(g) + O2(g) is kr = 3.38 × 10−5 s−1 at
25°C. What is the half-life of N2O5? What will be the pressure, initially
500 Torr, after (a) 50 s, (b) 20 min after initiation of the reaction?

19.9(b) The rate constant for the first-order decomposition of a
compound A in the reaction 2 A → P is kr = 3.56 × 10−7 s−1 at 25°C. 
What is the half-life of A? What will be the pressure, initially 33.0 kPa
after (a) 50 s, (b) 20 min after initiation of the reaction?

19.10(a) A second-order reaction of the type A + B → P was carried out
in a solution that was initially 0.075 mol dm−3 in A and 0.050 mol dm−3

in B. After 1.0 h the concentration of B had fallen to 0.020 mol dm−3. 
(a) Calculate the rate constant. (b) What is the half-life of the reactants?

19.10(b) A second-order reaction of the type A + 2 B → P was 
carried out in a solution that was initially 0.050 mol dm−3 in A and 
0.030 mol dm−3 in B. After 1.0 h the concentration of B had fallen to
0.010 mol dm−3. (a) Calculate the rate constant. (b) What is the half-life
of the reactants?

19.11(a) The second-order rate constant for the reaction

CH3COOC2H5(aq) + OH−(aq) → CH3CO2
−(aq) + CH3CH2OH(aq)

is 0.11 dm3 mol−1 s−1. What is the concentration of ester
(CH3COOC2H5) after (a) 20 s, (b) 15 min when ethyl acetate is 
added to sodium hydroxide so that the initial concentrations are
[NaOH] = 0.060 mol dm−3 and [CH3COOC2H5] = 0.110 mol dm−3?

19.11(b) The second-order rate constant for the reaction A + 2 B →
C + D is 0.34 dm3 mol−1 s−1. What is the concentration of C after 
(a) 20 s, (b) 15 min when the reactants are mixed with initial
concentrations of [A] = 0.027 mol dm−3 and [B] = 0.130 mol dm−3?

19.12(a) A reaction 2 A → P has a second-order rate law with 
kr = 4.30 × 10−4 dm3 mol−1 s−1. Calculate the time required for the
concentration of A to change from 0.210 mol dm−3 to 0.010 mol dm−3.

19.12(b) A reaction 2 A → P has a third-order rate law with kr = 6.50 ×
10−4 dm6 mol−2 s−1. Calculate the time required for the concentration of
A to change from 0.067 mol dm−3 to 0.015 mol dm−3.

19.13(a) The equilibrium NH3(aq) + H2O(l) 5 NH4
+(aq) + OH−(aq) 

at 25°C is subjected to a temperature jump which slightly increased the
concentration of NH4

+(aq) and OH−(aq). The measured relaxation time
is 7.61 ns. The equilibrium constant for the system is 1.78 × 10−5 at 25°C,
and the equilibrium concentration of NH3(aq) is 0.15 mol dm−3.
Calculate the rate constants for the forward and reversed steps.

19.13(b) The equilibrium A 5 B + C at 25°C is subjected to a
temperature jump which slightly increases the concentrations of B and
C. The measured relaxation time is 3.0 μs. The equilibrium constant for
the system is 2.0 × 10−16 at 25°C, and the equilibrium concentrations of B
and C at 25°C are both 2.0 × 10−4 mol dm−3. Calculate the rate constants
for the forward and reverse steps.

19.14(a) The mechanism for the reaction of A2 with B

A2 6 A + A (fast)

A + B → P (slow)

involves an intermediate A. Deduce the rate law for the reaction in two
ways by (i) assuming a pre-equilibrium and (ii) making a steady-state
approximation.
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19.14(b) The reaction mechanism for renaturation of a double helix from
its strands A and B:

A + B 5 unstable helix (fast)

Unstable helix → stable double helix (slow)

involves an intermediate. Deduce the rate law for the reaction in two
ways by (i) assuming a pre-equilibrium and (ii) making a steady-state
approximation.

19.15(a) The effective rate constant for a gaseous reaction that has a
Lindemann–Hinshelwood mechanism is 2.50 × 10−4 s−1 at 1.30 kPa and
2.10 × 10−5 s−1 at 12 Pa. Calculate the rate constant for the activation step
in the mechanism.

19.15(b) The effective rate constant for a gaseous reaction that has a
Lindemann–Hinshelwood mechanism is 1.7 × 10−3 s−1 at 1.09 kPa and
2.2 × 10−4 s−1 at 25 Pa. Calculate the rate constant for the activation step
in the mechanism.

19.16(a) Calculate the fraction condensed and the degree of
polymerization at t = 5.00 h of a polymer formed by a stepwise process
with kr = 1.39 dm3 mol−1 s−1 and an initial monomer concentration of
1.00 × 10−2 mol dm−3.

19.16(b) Calculate the fraction condensed and the degree of
polymerization at t = 10.00 h of a polymer formed by a stepwise process
with kr = 2.80 × 10−2 dm3 mol−1 s−1 and an initial monomer
concentration of 5.00 × 10−2 mol dm−3.

19.17(a) Consider a polymer formed by a chain process. By how much
does the kinetic chain length change if the concentration of initiator
increases by a factor of 3.6 and the concentration of monomer decreases
by a factor of 4.2?

19.17(b) Consider a polymer formed by a chain process. By how much
does the kinetic chain length change if the concentration of initiator
decreases by a factor of 10.0 and the concentration of monomer
increases by a factor of 5.0?

19.18(a) In a photochemical reaction A → 2 B + C, the quantum yield
with 500 nm light is 2.1 × 102 mol einstein−1 (1 einstein = 1 mol
photons). After exposure of 300 mmol of A to the light, 2.28 mmol of 
B is formed. How many photons were absorbed by A?

19.18(b) In a photochemical reaction A → B + C, the quantum yield 
with 500 nm light is 1.2 × 102 mol einstein−1. After exposure of 200 mmol
A to the light, 1.77 mmol B is formed. How many photons were
absorbed by A?

19.19(a) In an experiment to measure the quantum yield of a
photochemical reaction, the absorbing substance was exposed to 
490 nm light from a 100 W source for 45 min. The intensity of the
transmitted light was 40 per cent of the intensity of the incident light. 
As a result of irradiation, 0.344 mol of the absorbing substance
decomposed. Determine the quantum yield.

19.19(b) In an experiment to measure the quantum yield of a
photochemical reaction, the absorbing substance was exposed to 
320 nm radiation from a 87.5 W source for 28.0 min. The intensity 
of the transmitted light was 0.257 that of the incident light. As a result 
of irradiation, 0.324 mol of the absorbing substance decomposed.
Determine the quantum yield.

19.20(a) Consider the quenching of an organic fluorescent species 
with τ0 = 6.0 ns by a d-metal ion with kQ = 3.0 × 108 dm3 mol−1 s−1.
Predict the concentration of quencher required to decrease the
fluorescence intensity of the organic species to 50 per cent of the
unquenched value.

19.20(b) Consider the quenching of an organic fluorescent species with
τ0 = 3.5 ns by a d-metal ion with kQ = 2.5 × 109 dm3 mol−1 s−1. Predict 
the concentration of quencher required to decrease the fluorescence
intensity of the organic species to 75 per cent of the unquenched value.

19.21(a) An amino acid on the surface of a protein was labelled
covalently with 1,5-I-AEDANS and another was labelled covalently with
FITC. The fluorescence quantum yield of 1,5-I-AEDANS decreased by 
10 per cent due to quenching by FITC. What is the distance between the
amino acids? Hint. See Table 19.6.

19.21(b) An amino acid on the surface of an enzyme was labelled
covalently with 1,5-I-AEDANS and it is known that the active site
contains a tryptophan residue. The fluorescence quantum yield of
tryptophan decreased by 15 per cent due to quenching by 1,5-IAEDANS.
What is the distance between the active site and the surface of the
enzyme? Hint. See Table 19.6.

Problems*

Numerical problems

19.1 The data below apply to the formation of urea from ammonium
cyanate, NH4CNO → NH2CONH2. Initially 22.9 g of ammonium
cyanate was dissolved in enough water to prepare 1.00 dm3 of solution.
Determine the order of the reaction, the rate constant, and the mass of
ammonium cyanate left after 300 min.

t/min 0 20.0 50.0 65.0 150

m(urea)/g 0 7.0 12.1 13.8 17.7

19.2 The data below apply to the reaction, (CH3)3CBr + H2O →
(CH3)3COH + HBr. Determine the order of the reaction, the rate
constant, and the molar concentration of (CH3)3CBr after 43.8 h.

t/h 0 3.15 6.20 10.00 18.30 30.80

[(CH3)3CBr]/ 10.39 8.96 7.76 6.39 3.53 2.07
(10−2 mol dm−3)

19.3 The thermal decomposition of an organic nitrile produced the
following data:

t/(103 s) 0 2.00 4.00 6.00 8.00 10.00 12.00

[nitrile]/ 1.50 1.26 1.07 0.92 0.81 0.72 0.65
(mol dm−3)

Determine the order of the reaction and the rate constant.

19.4 The following data have been obtained for the decomposition 
of N2O5(g) at 67°C according to the reaction 2 N2O5(g) → 4 NO2(g) +
O2(g). Determine the order of the reaction, the rate constant, and 
the half-life. It is not necessary to obtain the result graphically; you 
may do a calculation using estimates of the rates of change of
concentration.

t/min 0 1 2 3 4 5

[N2O5]/(mol dm−3) 1.000 0.705 0.497 0.349 0.246 0.173

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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19.5 The gas-phase decomposition of acetic acid at 1189 K proceeds by
way of two parallel reactions:

(1) CH3COOH → CH4 + CO2 k1 = 3.74 s−1

(2) CH3COOH → CH2CO + H2O k2 = 4.65 s−1

What is the maximum percentage yield of the ketene CH2CO obtainable
at this temperature?

19.6 Sucrose is readily hydrolysed to glucose and fructose in acidic
solution. The hydrolysis is often monitored by measuring the angle 
of rotation of plane-polarized light passing through the solution. From
the angle of rotation the concentration of sucrose can be determined. 
An experiment on the hydrolysis of sucrose in 0.50 m HCl(aq) produced
the following data:

t/min 0 14 39 60 80 110 140 170 210

[sucrose]/
(mol dm−3) 0.316 0.300 0.274 0.256 0.238 0.211 0.190 0.170 0.146

Determine the rate constant of the reaction and the half-life of a sucrose
molecule.

19.7 The composition of a liquid phase reaction 2 A → B was followed
by a spectrophotometric method with the following results:

t/min 0 10 20 30 40 ∞
[B]/(mol dm−3) 0 0.089 0.153 0.200 0.230 0.312

Determine the order of the reaction and its rate constant.

19.8 The ClO radical decays rapidly by way of the reaction, 2 ClO →
Cl2 + O2. The following data have been obtained:

t/(10−3 s) 0.12 0.62 0.96 1.60 3.20 4.00 5.75

[ClO]/(10−6 mol dm−3) 8.49 8.09 7.10 5.79 5.20 4.77 3.95

Determine the rate constant of the reaction and the half-life of a ClO
radical.

19.9 Cyclopropane isomerizes into propene when heated to 500°C in the
gas phase. The extent of conversion for various initial pressures has been
followed by gas chromatography by allowing the reaction to proceed for
a time with various initial pressures:

p0/Torr 200 200 400 400 600 600

t/s 100 200 100 200 100 200

p/Torr 186 173 373 347 559 520

where p0 is the initial pressure and p is the final pressure of cyclopropane.
What are the order and rate constant for the reaction under these
conditions?

19.10 The addition of hydrogen halides to alkenes has played a
fundamental role in the investigation of organic reaction mechanisms.
In one study (M.J. Haugh and D.R. Dalton, J. Am. Chem. Soc. 97, 5674
(1975)), high pressures of hydrogen chloride (up to 25 atm) and 
propene (up to 5 atm) were examined over a range of temperatures 
and the amount of 2-chloropropane formed was determined by NMR.
Show that, if the reaction A + B → P proceeds for a short time δt, the
concentration of product follows [P]/[A] = kr[A]m−1[B]nδt if the reaction
is mth-order in A and nth-order in B. In a series of runs the ratio of
[chloropropane] to [propene] was independent of [propene] but the
ratio of [chloropropane] to [HCl] for constant amounts of propene
depended on [HCl]. For δt ≈ 100 h (which is short on the timescale 
of the reaction) the latter ratio rose from zero to 0.05, 0.03, 0.01 for
p(HCl) = 10 atm, 7.5 atm, 5.0 atm. What are the orders of the reaction
with respect to each reactant?

19.11 Use mathematical software or an electronic spreadsheet to
examine the time dependence of [I] in the reaction mechanism A → I 
→ P (ka, kb). In all of the following calculations, use [A]0 = 1 mol dm−3

and a time range of 0 to 5 s. (a) Plot [I] against t for ka = 10 s−1 and 
kb = 1 s−1. (b) Increase the ratio kb /ka steadily by decreasing the value of
ka and examine the plot of [I] against t at each turn. What approximation
about d[I]/dt becomes increasingly valid?

19.12 Show that the following mechanism can account for the rate law of
the reaction in Problem 19.10:

HCl + HCl 5 (HCl)2 K1

HCl + CH3CH=CH2 5 complex K2

(HCl)2 + complex → CH3CHClCH3 + 2 HCl kr (slow)

What further tests could you apply to verify this mechanism?

19.13 Consider the dimerization 2 A 6 A2, with forward rate constant
ka and backward rate constant ka′. (a) Derive the following expression 
for the relaxation time in terms of the total concentration of monomer,
[A]tot = [A] + 2[A2]:

(b) Describe the computational procedures that lead to the
determination of the rate constants ka and ka′ from measurements of 
τ for different values of [A]tot. (c) Use the data provided below and the
procedure you outlined in part (b) to calculate the rate constants ka and
ka′, and the equilibrium constant K for formation of hydrogen-bonded
dimers of 2-pyridone:

[P]/(mol dm−3) 0.500 0.352 0.251 0.151 0.101

τ/ns 2.3 2.7 3.3 4.0 5.3

19.14 In Problem 19.9 the isomerization of cyclopropane over a 
limited pressure range was examined. If the Lindemann mechanism 
of first-order reactions is to be tested we also need data at low pressures.
These have been obtained (H.O. Pritchard et al., Proc. R. Soc. A217, 
563 (1953)):

p/Torr 84.1 11.0 2.89 0.569 0.120 0.067

104 kr/s
−1 2.98 2.23 1.54 0.857 0.392 0.303

Test the Lindemann theory with these data.

19.15 Dansyl chloride, which absorbs maximally at 330 nm and
fluoresces maximally at 510 nm, can be used to label amino acids in
fluorescence microscopy and FRET studies. Tabulated below is the
variation of the fluorescence intensity of an aqueous solution of dansyl
chloride with time after excitation by a short laser pulse (with I0 the
initial fluorescence intensity). The ratio of intensities is equal to the 
ratio of the rates of photon emission.

t/ns 5.0 10.0 15.0 20.0

If /I0 0.45 0.21 0.11 0.05

(a) Calculate the observed fluorescence lifetime of dansyl chloride in
water. (b) The fluorescence quantum yield of dansyl chloride in water is
0.70. What is the fluorescence rate constant?

19.16 When benzophenone is illuminated with ultraviolet light it is
excited into a singlet state. This singlet changes rapidly into a triplet,
which phosphoresces. Triethylamine acts as a quencher for the triplet.
In an experiment in methanol as solvent, the phosphorescence intensity
varied with amine concentration as shown below. A time-resolved 
laser spectroscopy experiment had also shown that the half-life of the
fluorescence in the absence of quencher is 29 μs. What is the value 
of kQ?

 

1
8

2
2

τ
= + ′k k ka a a totA]′ [
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[Q]/(mol dm−3) 0.0010 0.0050 0.0100
If /(arbitrary units) 0.41 0.25 0.16

19.17 An electronically excited state of Hg can be quenched by N2
according to

Hg* (g) + N2 (g, v = 0) → Hg (g) + N2 (g, v = 1)

in which energy transfer from Hg* excites N2 vibrationally. Fluorescence
lifetime measurements of samples of Hg with and without N2 present are
summarized below (T = 300 K):

pN2
= 0.0 atm

Relative fluorescence intensity 1.000 0.606 0.360 0.22 0.135

t/μs 0.0 5.0 10.0 15.0 20.0

pN2
= 9.74 × 10−4 atm

Relative fluorescence intensity 1.000 0.585 0.342 0.200 0.117

t/μs 0.0 3.0 6.0 9.0 12.0

You may assume that all gases are perfect. Determine the rate constant
for the energy transfer process.

19.18 The Förster theory of resonance energy transfer and the basis 
for the FRET technique can be tested by performing fluorescence
measurements on a series of compounds in which an energy donor and
an energy acceptor are covalently linked by a rigid molecular linker of
variable and known length. L. Stryer and R.P. Haugland (Proc. Natl.
Acad. Sci. USA 58, 719 (1967)) collected the following data on a family of
compounds with the general composition dansyl-(l-prolyl)n-naphthyl,
in which the distance R between the naphthyl donor and the dansyl
acceptor was varied from 1.2 nm to 4.6 nm by increasing the number 
of prolyl units in the linker:

R/nm 1.2 1.5 1.8 2.8 3.1 3.4 3.7 4.0 4.3 4.6

1 − ηT 0.99 0.94 0.87 0.82 0.74 0.65 0.40 0.28 0.24 0.16

Are the data described adequately by eqn 19.68? If so, what is the value of
R0 for the naphthyl–dansyl pair?

Theoretical problems

19.19 Show that t1/2 is given by eqn 19.15 for a reaction that is nth 
order in A. Then deduce an expression for the time it takes for the
concentration of a substance to fall to one-third the initial value in an
nth-order reaction.

19.20 The equilibrium A 5 B is first order in both directions. Derive 
an expression for the concentration of A as a function of time when the
initial molar concentrations of A and B are [A]0 and [B]0. What is the
final composition of the system?

19.21 Derive an integrated expression for a second-order rate law 
v = kr[A][B] for a reaction of stoichiometry 2 A + 3 B → P.

19.22 Derive the integrated form of a third-order rate law v = kr[A]2[B]
in which the stoichiometry is 2 A + B → P and the reactants are initially
present in (a) their stoichiometric proportions, (b) with B present
initially in twice the amount.

19.23 Set up the rate equations for the reaction mechanism:

Show that the mechanism is equivalent to

under specified circumstances.

A C
r rk k, ′⎯ →⎯← ⎯⎯

A B C
a a b bk k k k, ,′ ′⎯ →⎯← ⎯⎯⎯ ⎯ →⎯⎯← ⎯⎯⎯

19.24 Show that the ratio t1/2/t3/4, where t1/2 is the half-life and t3/4 is 
the time for the concentration of A to decrease to 3–4 of its initial value
(implying that t3/4 < t1/2), can be written as a function of n alone, and 
can therefore be used as a rapid assessment of the order of a reaction.

19.25 Derive an equation for the steady-state rate of the sequence of
reactions A 6 B 6 C 6 D, with [A] maintained at a fixed value and the
product D removed as soon as it is formed.

19.26 Consider the dimerization 2 A 6 A2 with forward rate constant kr
and backward rate constant kr′ . Show that the relaxation time is:

19.27 Express the root mean square deviation {〈M2〉 − 〈M〉2}1/2 of the
molar mass of a condensation polymer in terms of the fraction p, and
deduce its time dependence.

19.28 Calculate the ratio of the mean cube molar mass to the mean
square molar mass in terms of (a) the fraction p, (b) the chain length.

19.29 Calculate the average polymer length in a polymer produced by a
chain mechanism in which termination occurs by a disproportionation
reaction of the form M· + ·M → M + :M.

19.30 Derive an expression for the time dependence of the degree of
polymerization for a stepwise polymerization in which the reaction is
acid-catalysed by the -COOH acid functional group. The rate law is
d[A]/dt = −kr[A]2[OH].

19.31 Conventional equilibrium considerations do not apply when a
reaction is being driven by light absorption. Thus the steady-state
concentrations of products and reactants might differ significantly from
equilibrium values. For instance, suppose the reaction A → B is driven
by light absorption, and that its rate is Ia, but that the reverse reaction
B → A is bimolecular and second order with a rate kr[B]2. What is the
stationary state concentration of B? Why does this ‘photostationary state’
differ from the equilibrium state?

19.32 The photochemical chlorination of chloroform in the gas has 
been found to follow the rate law d[CCl4]/dt = kr[Cl2]1/2Ia

1/2. Devise a
mechanism that leads to this rate law when the chlorine pressure is high.

Applications to: biochemistry and environmental science

19.33 Pharmacokinetics is the study of the rates of absorption and
elimination of drugs by organisms. In most cases, elimination is slower
than absorption and is a more important determinant of availability 
of a drug for binding to its target. A drug can be eliminated by many
mechanisms, such as metabolism in the liver, intestine, or kidney
followed by excretion of breakdown products through urine or faeces. As
an example of pharmacokinetic analysis, consider the elimination of beta
adrenergic blocking agents (beta blockers), drugs used in the treatment
of hypertension. After intravenous administration of a beta blocker, the
blood plasma of a patient was analysed for remaining drug and the data
are shown below, where c is the drug concentration measured at a time 
t after the injection.

t/min 30 60 120 150 240 360 480

c/(ng cm−3) 699 622 413 292 152 60 24

(a) Is removal of the drug a first- or second-order process? (b) Calculate
the rate constant and half-life of the process. Comment. An essential
aspect of drug development is the optimization of the half-life of
elimination, which needs to be long enough to allow the drug to find and
act on its target organ but not so long that harmful side-effects become
important.

τ =
′ +

1

4k kr r eqA[ ]
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19.34 Consider a mechanism for the helix–coil transition in
polypeptides that begins in the middle of the chain:

hhhh . . . 6 hchh . . .
hchh . . . 6 cccc . . .

The first conversion from h to c, also called a nucleation step, is relatively
slow, so neither step may be rate-determining. (a) Set up the rate
equations for this mechanism. (b) Apply the steady-state approximation
and show that, under these circumstances, the mechanism is equivalent
to hhhh . . . 6 cccc. . . .

19.35‡ The oxidation of HSO3
− by O2 in aqueous solution is a reaction 

of importance to the processes of acid rain formation and flue gas
desulfurization. R.E. Connick et al. (Inorg. Chem. 34, 4543 (1995))
report that the reaction 2 HSO3

− + O2 → 2 SO4
2− + 2 H+ follows the 

rate law v = kr[HSO3
−]2[H+]2. Given pH = 5.6 and an oxygen molar

concentration of 2.4 × 10−4 mol dm−3 (both presumed constant), an
initial HSO3

− molar concentration of 5 × 10−5 mol dm−3, and a rate

constant of 3.6 × 106 dm9 mol−3 s−1, what is the initial rate of reaction?
How long would it take for HSO3

− to reach half its initial concentration?

19.36 In light-harvesting complexes, the fluorescence of a chlorophyll
molecule is quenched by nearby chlorophyll molecules. Given that for a
pair of chlorophyll a molecules R0 = 5.6 nm, by what distance should two
chlorophyll a molecules be separated to shorten the fluorescence lifetime
from 1 ns (a typical value for monomeric chlorophyll a in organic
solvents) to 10 ps?

19.37‡ Ultraviolet radiation photolyses O3 to O2 and O. Determine the
rate at which ozone is consumed by 305 nm radiation in a layer of the
stratosphere of thickness 1 km. The quantum yield is 0.94 at 220 K, the
concentration about 8 × 10−9 mol dm−3, the molar absorption coefficient
260 dm3 mol−1 cm−1, and the flux of 305 nm radiation about 1 × 1014

photons cm−2 s−1. (Data from W.B. DeMore et al., Chemical kinetics and
photochemical data for use in stratospheric modeling: Evaluation Number
11, JPL Publication 94–26 (1994).)



Molecular reaction
dynamics

The rates of chemical reactions typically increase with temperature according to the
Arrhenius equation. The simplest quantitative account of reaction rates and their tempera-
ture dependence is in terms of collision theory, which can be used only for the discussion 
of reactions between simple species in the gas phase. Reactions in solution, in general, are
classified as diffusion controlled or activation controlled. In transition state theory, it is 
assumed that the reactant molecules form a complex that can be discussed in terms of the
population of its energy levels. Transition state theory inspires a thermodynamic approach
to reaction rates, in which the rate constant is expressed in terms of thermodynamic 
parameters. This approach is useful for parametrizing the rates of reactions in solution. For
electron transfer reactions in particular, the rate depends on the distance between electron
donor and acceptor, the standard Gibbs energy of reaction, and the energy associated with
molecular rearrangements that accompany the transfer of charge. The highest level of 
sophistication is in terms of potential energy surfaces and the motion of molecules through
these surfaces. As we shall see, such an approach gives an intimate picture of the events
that occur when reactions occur and is open to experimental study.

Now we are at the heart of chemistry. Here we examine the details of what happens to
molecules at the climax of reactions. Extensive changes of structure are taking place
and energies the size of dissociation energies are being redistributed among bonds:
old bonds are being ripped apart and new bonds are being formed.

The calculation of the rates of chemical processes from first principles is very
difficult. Nevertheless, like so many intricate problems, the broad features can be 
established quite simply. Only when we enquire more deeply do the complications
emerge. In this chapter we look at several approaches to the calculation of a rate 
constant for elementary bimolecular processes, ranging from electron transfer to
chemical reactions involving bond breakage and formation. Although a great deal 
of information can be obtained from gas-phase reactions, many reactions of interest
take place in solution, and we shall also see to what extent their rates can be predicted.

The temperature dependence of reaction rates

Chemical reactions usually speed up as the temperature is increased because the 
rate constants of most reactions increase as the temperature is raised. Throughout 
the chapter we shall see that the dependence of the rate constant on temperature is
captured by various of the theoretical approaches to computing rate constants.
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The temperature dependence of
reaction rates

20.1 The Arrhenius equation

20.2 The activation energy of a
composite reaction

Reactive encounters

20.3 Collision theory

20.4 Diffusion-controlled reactions

20.5 The material balance equation

Transition state theory

20.6 The Eyring equation

20.7 Thermodynamic aspects

20.8 Electron transfer in
homogeneous systems

The dynamics of molecular
collisions

20.9 Reactive collisions

20.10 Potential energy surfaces

20.11 Some results from
experiments and calculations

Checklist of key ideas

Further information 20.1: The RRK
model of unimolecular reactions

Further information 20.2: The Gibbs
energy of activation of electron transfer

Discussion questions

Exercises

Problems



20 MOLECULAR REACTION DYNAMICS 659

20.1 The Arrhenius equation

It is found experimentally for many reactions that a plot of 
ln kr against 1/T gives a straight line. This behaviour is normally 
expressed mathematically by introducing two parameters, one
representing the intercept and the other the slope of the straight
line, and writing the Arrhenius equation

(20.1a)

This equation is more commonly written in the form

kr = Ae−Ea /RT (20.1b)

The parameter A, which corresponds to the intercept of the line
at 1/T = 0 (at infinite temperature, Fig. 20.1), is called the pre-
exponential factor or the ‘frequency factor’. The parameter Ea,
which is obtained from the slope of the line (−Ea/R), is called the
activation energy. Collectively the two quantities are called the
Arrhenius parameters (Table 20.1).

 
ln lnk A

E

RTr = − a

Synoptic table 20.1* Arrhenius parameters

(1) First-order reactions A/s−1 Ea/(kJ mol−1)

CH3NC → CH3CN 3.98 × 1013 160

2 N2O5 → 4 NO2 + O2 4.94 × 1013 103.4

(2) Second-order reactions A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

OH + H2 → H2O + H 8.0 × 1010 42

NaC2H5O + CH3I in ethanol 2.42 × 1011 81.6

* More values are given in the Data section.

ln
k r

ln A

1/T

Slope = – /E  Ra

Fig. 20.1 A plot of ln kr against 1/T is a straight line when the
reaction follows the behaviour described by the Arrhenius
equation (eqn 20.1). The slope gives −Ea/R and the intercept 
at 1/T = 0 gives ln A.

Example 20.1 Determining the Arrhenius parameters

The rate of the second-order decomposition of acetaldehyde
(ethanal, CH3CHO) was measured over the temperature
range 700–1000 K, and the rate constants are reported below.
Find Ea and A.

T/K 700 730 760 790

kr /(dm3 mol−1 s−1) 0.011 0.035 0.105 0.343

T/K 810 840 910 1000

kr /(dm3 mol−1 s−1) 0.789 2.17 20.0 145

Method According to eqn 20.1a, the data can be analysed by
plotting ln(kr/dm3 mol−1 s−1) against 1/(T/K), or more con-
veniently (103 K)/T, and getting a straight line. We obtain the
activation energy from the slope which equals −Ea/R; the 
intercept at T = 0 is ln(A/dm3 mol−1 s−1).

Answer We draw up the following table:

(103 K)/T 1.43 1.37 1.32 1.27

ln(kr /dm3 mol−1 s−1) −4.51 −3.35 −2.25 −1.07

(103 K)/T 1.23 1.19 1.10 1.00

ln(kr /dm3 mol−1 s−1) −0.24 0.77 3.00 4.98

Now plot ln kr against 1/T (Fig. 20.2). The least-squares fit 
results in a line with slope −22.7 × 103 K and intercept 27.7.
Therefore,

Ea = −(−22.7 × 103 K) × (8.3145 J K−1 mol−1) = 189 kJ mol−1

A = e27.7 dm3 mol−1 s−1 = 1.1 × 1012 dm3 mol−1 s−1

A note on good practice Note that A has the same units as kr.
In practice, A is obtained from one of the mid-range data 
values rather than using a lengthy extrapolation.
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10  K/3 T
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5
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k r
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Fig. 20.2 The Arrhenius plot using the data in Example 20.1.
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That is, the composite rate constant kr has an Arrhenius-like
form with activation energy

Ea = Ea(a) + Ea(b) − E a′(a) (20.4)

Provided Ea(a) + Ea(b) > Ea′(a), the activation energy is positive
and the rate increases with temperature. However, it is con-
ceivable that Ea(a) + Ea(b) < E a′(a) (Fig. 20.3), in which case the
activation energy is negative and the rate will decrease as the 
temperature is raised. There is nothing remarkable about this
behaviour: all it means is that the reverse reaction (correspond-
ing to the deactivation of A*) is so sensitive to temperature that
its rate increases sharply as the temperature is raised, and depletes
the steady-state concentration of A*.

The Lindemann–Hinshelwood mechanism is an unlikely
candidate for the type of behaviour we have described because
the deactivation of A* has only a small activation energy, but
there are reactions with analogous mechanisms in which a 
negative activation energy is observed.

l A BRIEF ILLUSTRATION

The rate law for the oxidation of NO according to the 
mechanism

NO + NO 6 (NO)2 ka, ka′

(NO)2 + O2 → NO2 + NO2 kb

is

when ka′ >> kb[O2]. Provided the activation energy of the step
(NO)2 → NO + NO is higher than the sum of the activation
energies of the other two steps, the overall activation energy

 

d[NO

d

NO] [O

O

2

a b

a b

a

2 2

2

2 2] [ ]

[ ]
[

t

k k

k k

k k

k
=

′ +
≈

′
a b NNO] [O2

2]

Self-test 20.1 Determine A and Ea from the following data:

T/K 300 350 400

kr/(dm3 mol−1 s−1) 7.9 × 106 3.0 × 107 7.9 × 107

T/K 450 500

kr/(dm3 mol−1 s−1) 1.7 × 108 3.2 × 108

[8 × 1010 dm3 mol−1 s−1, 23 kJ mol−1]

The fact that Ea is given by the slope of the plot of ln kr against
1/T means that, the higher the activation energy, the stronger
the temperature dependence of the rate constant (that is, the
steeper the slope). A high activation energy signifies that the rate
constant depends strongly on temperature. If a reaction has zero
activation energy, its rate is independent of temperature. In
some cases the activation energy is negative, which indicates that
the rate decreases as the temperature is raised.

The temperature dependence of some reactions is non-
Arrhenius, in the sense that a straight line is not obtained when
ln kr is plotted against 1/T. However, it is still possible to define
an activation energy at any temperature as

[20.2]

This definition reduces to the earlier one (as the slope of a
straight line) for a temperature-independent activation energy
(see Problem 20.16). However, the definition in eqn 20.2 is 
more general than that in eqn 20.1, because it allows Ea to be 
obtained from the slope (at the temperature of interest) of a plot
of ln kr against 1/T even if the Arrhenius plot is not a straight
line. Non-Arrhenius behaviour is sometimes a sign that quan-
tum mechanical tunnelling is playing a significant role in the 
reaction.

20.2 The activation energy of a composite
reaction

Although the rate of each step of a complex mechanism might
increase with temperature and show Arrhenius behaviour, is
that true of a composite reaction? To answer this question, we
consider the high-pressure limit of the Lindemann–Hinshelwood
mechanism as expressed in eqn 19.43. If each of the rate con-
stants has an Arrhenius-like temperature dependence, we can
use eqn 20.1b for each of them, and write

(20.3)
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Fig. 20.3 For a reaction with a pre-equilibrium, there are three
activation energies to take into account, two referring to the
reversible steps of the pre-equilibrium and one for the final step.
The relative magnitudes of the activation energies determine
whether the overall activation energy is (a) positive or 
(b) negative.
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will be negative. The decrease in rate with increasing tem-
perature can be understood in terms of a pre-equilibrium, 
in which (NO)2 is formed in an exothermic reaction, so its
concentration decreases as the temperature is raised and 
consequently NO2 is formed more slowly. l

Reactive encounters

In this section we consider two elementary approaches to the
calculation of reaction rates, one relating to gas-phase reactions
and the other to reactions in solution. Both approaches are
based on the view that reactant molecules must meet, and that
reaction takes place only if the molecules have a certain min-
imum energy. In the collision theory of bimolecular gas-phase
reactions, products are formed only if the collision is sufficiently
energetic; otherwise the colliding reactant molecules separate
again. In solution, the reactant molecules may simply diffuse
together and then acquire energy from their immediate sur-
roundings while they are in contact.

20.3 Collision theory

In this section, we build on the material from Chapter 18 on the
kinetic theory of gases and consider the bimolecular elementary
reaction

A + B → P v = kr[A][B] (20.5)

where P denotes products. We aim to calculate the second-order
rate constant kr.

We can anticipate the general form of the expression for kr by
considering the physical requirements for reaction. We expect
the rate v to be proportional to the rate of collisions, and there-
fore to the mean speed of the molecules, K ∝ (T/M)1/2 where M is
the molar mass of the molecules; we also expect the rate to be
proportional to their collision cross-section, σ (Section 18.1),
and to the number densities N A and N B of A and B:

v ∝ σ(T/M)1/2N AN B ∝ σ(T/M)1/2[A][B]

However, a collision will be successful only if the kinetic energy
exceeds a minimum value which we denote E ′. This require-
ment suggests that the rate should also be proportional to a
Boltzmann factor of the form e−E ′/RT. Therefore,

v ∝ σ(T/M)1/2 e−E ′/RT[A][B]

and we can anticipate, by writing the reaction rate in the form
given in eqn 20.5, that

kr ∝ σ(T/M)1/2 e−E ′/RT

At this point, we begin to recognize the form of the Arrhenius
equation, eqn 20.1b, and identify the minimum kinetic energy

E′ with the activation energy Ea of the reaction. This identifica-
tion, however, should not be regarded as precise, since collision
theory is only a rudimentary model of chemical reactivity.

Not every collision will lead to reaction even if the energy 
requirement is satisfied, because the reactants may need to col-
lide in a certain relative orientation. This ‘steric requirement’
suggests that a further factor, P, should be introduced, and that

kr ∝ Pσ(T/M)1/2e−Ea/RT (20.6)

As we shall see in detail below, this expression has the form pre-
dicted by collision theory. It reflects three aspects of a successful
collision:

kr ∝ steric requirement × encounter rate 
× minimum energy requirement

(a) Collision rates in gases

We have anticipated that the reaction rate, and hence kr, depends
on the frequency with which molecules collide. The collision
density, ZAB, is the number of (A,B) collisions in a region of the
sample in an interval of time divided by the volume of the region
and the duration of the interval. The frequency of collisions of 
a single molecule in a gas was calculated in Section 18.1. As
shown in the following Justification, that result can be adapted to 
deduce that

(20.7a)

where σ is the collision cross-section (Fig. 20.4)

σ = πd2 d = 1–2(dA + dB) (20.7b)
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Fig. 20.4 The collision cross-section for two molecules can be
regarded to be the area within which the projectile molecule 
(A) must enter around the target molecule (B) in order for a
collision to occur. If the diameters of the two molecules are dA

and dB, the radius of the target area is d = 1–2 (dA + dB) and the
cross-section is πd2.
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dA and dB are the diameters of A and B, respectively and μ is the
reduced mass,

(20.7c)

Similarly, the collision density for like molecules at a molar con-
centration [A] is

(20.8)

Collision densities may be very large. For example, in nitrogen at
room temperature and atmospheric pressure, with d = 280 pm,
Z = 5 × 1034 m−3 s−1.

Justification 20.1 The collision density

It follows from eqn 18.12 that the collision frequency, z, 
for a single A molecule of mass mA in a gas of other A mole-
cules is

z = σKrelN A (20.9)

where N A is the number density of A molecules and Krel is
their relative mean speed. As indicated in Section 18.1,

Krel = 21/2K (20.10)

For future convenience, it is sensible to introduce μ = 1–2m
(for like molecules of mass m), and then to write

(20.11)

This expression also applies to the mean relative speed of 
dissimilar molecules, provided that μ is interpreted as the 
reduced mass in eqn 20.7c.

The total collision density is the collision frequency multi-
plied by the number density of A molecules:

ZAA = 1–2zN A = 1–2σKrelN A
2 (20.12a)

The factor of 1–2 has been introduced to avoid double counting
of the collisions (so one A molecule colliding with another A
molecule is counted as one collision regardless of their actual
identities). For collisions of A and B molecules present at
number densities N A and N B, the collision density is

ZAB = σKrelN AN B (20.12b)

Note that we have discarded the factor of 1–2 because now we
are considering an A molecule colliding with any of the B
molecules as a collision.

The number density of a species J is N J = NA[J], where [J]
is their molar concentration and NA is Avogadro’s constant.
Equations 20.7a and 20.8 then follow.
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(b) The energy requirement

According to collision theory, the rate of change in the number
density, N A, of A molecules is the product of the collision density
and the probability that a collision occurs with sufficient energy.
The latter condition can be incorporated by writing the collision
cross-section σ as a function of the kinetic energy ε of approach
of the two colliding species, and setting the cross-section, σ(ε),
equal to zero if the kinetic energy of approach is below a certain
threshold value, εa. Later, we shall identify NAεa as Ea, the (molar)
activation energy of the reaction. Then, for a collision between A
and B with a specific relative speed of approach vrel (not, at this
stage, a mean value),

or, in terms of molar concentrations,

(20.13)

The kinetic energy associated with the relative motion of the 
two particles takes the form ε = 1–2μv2

rel when the centre-of-mass 
coordinates are separated from the internal coordinates of each
particle. Therefore the relative speed is given by vrel = (2ε/μ)1/2.
At this point we recognize that a wide range of approach energies
ε is present in a sample, so we should average the expression just
derived over a Boltzmann distribution of energies f(ε), and write

(20.14)

and hence recognize the rate constant as

(20.15)

Now suppose that the reactive collision cross-section is zero
below εa. We show in the following Justification that, above εa,
σ(ε) varies as

(20.16)

with the energy-independent σ given by eqn 20.7b. This form 
of the energy dependence for σ(ε) is broadly consistent with 
experimental determinations of the reaction between H and D2

as determined by molecular beam measurements of the kind 
described later (Fig. 20.5).

Justification 20.2 The collision cross-section

Consider two colliding molecules A and B with relative speed
vrel and relative kinetic energy ε = 1–2μv2

rel (Fig. 20.6). Intuitively
we expect that a head-on collision between A and B will be
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most effective in bringing about a chemical reaction. There-
fore, vrel,A–B, the magnitude of the relative velocity compon-
ent parallel to an axis that contains the vector connecting the
centres of A and B, must be large. From trigonometry and the
definitions of the distances a and d, and the angle θ given in
Fig. 20.6, it follows that

We assume that only the kinetic energy associated with the
head-on component of the collision, εA–B, can lead to a chem-
ical reaction. After squaring both sides of this equation and
multiplying by 1–2μ, it follows that

The existence of an energy threshold, εa, for the formation 
of products implies that there is a maximum value of a, amax,
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above which reaction does not occur. Setting a = amax and
εA–B = εa gives

Substitution of σ(ε) for πa2
max and σ for πd2 in the equation

above gives eqn 20.16. Note that the equation can be used
only when ε > εa.

With the energy dependence of the collision cross-section 
established, we can evaluate the integral in eqn 20.15. In the 
following Justification we show that

kr ∝ NAσKrel e−Ea/RT (20.17)

Justification 20.3 The rate constant

The Maxwell–Boltzmann distribution of molecular speeds
given in Section 18.1 may be expressed in terms of the kinetic
energy, ε, by writing ε = 1–2μv2; then dv = dε/(2με)1/2 and eqn
18.4 becomes

The integral we need to evaluate is therefore

To proceed, we introduce the approximation for σ(ε) in 
eqn 20.16, and evaluate

We have made use of the fact that σ = 0 for ε < εa. It follows that

as in eqn 20.17 (with εa /kT = Ea /RT).

Equation 20.17 has the Arrhenius form kr = Ae−Ea/RT provided
the exponential temperature dependence dominates the weak
square-root temperature dependence of the pre-exponential
factor. It follows that we can identify (within the constraints 
of collision theory) the activation energy, Ea, with the minimum
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Fig. 20.5 The variation of the reactive cross-section with energy as
expressed by eqn 20.16. The data points are from experiments on
the reaction H + D2 → HD + D (K. Tsukiyama et al., J. Chem.
Phys., 84, 1934 (1986)).

d

a

B

vrel,A–B

vrel

I

A

Fig. 20.6 The parameters used in the calculation of the
dependence of the collision cross-section on the relative kinetic
energy of two molecules A and B.



664 20 MOLECULAR REACTION DYNAMICS

kinetic energy along the line of approach that is needed for reac-
tion, and that the pre-exponential factor is a measure of the rate
at which collisions occur in the gas.

(c) The steric requirement

The simplest procedure for calculating kr is to use for σ the 
values obtained for non-reactive collisions (for example, typic-
ally those obtained from viscosity measurements) or from tables
of molecular radii. Table 20.2 compares some values of the pre-
exponential factor calculated in this way with values obtained
from Arrhenius plots. One of the reactions shows fair agreement
between theory and experiment, but for others there are major
discrepancies. In some cases the experimental values are orders
of magnitude smaller than those calculated, which suggests that
the collision energy is not the only criterion for reaction and that
some other feature, such as the relative orientation of the colliding
species, is important. Moreover, one reaction in the table has a
pre-exponential factor larger than theory, which seems to indicate
that the reaction occurs more quickly than the particles collide!

We can accommodate the disagreement between experiment
and theory by introducing a steric factor, P, and expressing the
reactive cross-section, σ*, as a multiple of the collision cross-
section, σ* = Pσ (Fig. 20.7). Then the rate constant becomes

Synoptic table 20.2* Arrhenius parameters for gas-phase reactions

A/(dm3 mol−1 s−1)

Experiment Theory Ea/(kJ mol−1) P

2 NOCl → 2 NO + Cl2 9.4 × 109 5.9 × 1010 102 0.16

2 ClO → Cl2 + O2 6.3 × 107 2.5 × 1010 0 2.5 × 10−3

H2 + C2H4 → C2H6 1.24 × 106 7.4 × 1011 180 1.7 × 10−6

K + Br2 → KBr + Br 1.0 × 1012 2.1 × 1011 0 4.8

* More values are given in the Data section.

Area *
Area

Products

Deflected
reactant
molecule

T
T

Fig. 20.7 The collision cross-section is the target area that results
in simple deflection of the projectile molecule; the reaction
cross-section is the corresponding area for chemical change 
to occur on collision.

(20.18)

This expression has the form we anticipated in eqn 20.6. The
steric factor is normally found to be several orders of magnitude
smaller than 1.

Example 20.2 Estimating a steric factor (1)

Estimate the steric factor for the reaction H2 + C2H4 → C2H6

at 628 K given that the pre-exponential factor is 1.24 × 106

dm3 mol−1 s−1.

Method To calculate P, we need to calculate the pre-
exponential factor, A, by using eqn 20.18 and then compare
the answer with experiment: the ratio is P. Table 18.1 lists 
collision cross-sections for non-reactive encounters. The 
best way to estimate the collision cross-section for dissimilar
spherical species is to calculate the collision diameter for 
each one (from σ = πd2), to calculate the mean of the two 
diameters, and then to calculate the cross-section for that
mean diameter (eqn 20.7b). However, as neither species is
spherical, a simpler but more approximate procedure is just
to take the average of the two collision cross-sections.

Answer The reduced mass of the colliding pair with m1 =
2.016mu for H2 and m2 = 28.05mu for C2H4, is

= 3.12 × 10−27 kg

Hence

From Table 18.1, σ(H2) = 0.27 nm2 and σ(C2H4) = 0.64 nm2,
giving a mean collision cross-section of σ = 0.46 nm2. Therefore,
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Experimentally A = 1.24 × 106 dm3 mol−1 s−1, so it follows that
P = 1.68 × 10−6. The very small value of P is one reason why
catalysts are needed to bring this reaction about at a reason-
able rate. As a general guide, the more complex the mole-
cules, the smaller the value of P.

Self-test 20.2 It is found for the reaction NO + Cl2 → NOCl
+ Cl that A = 4.0 × 109 dm3 mol−1 s−1 at 298 K. Use σ(NO) =
0.42 nm2 and σ(Cl2) = 0.93 nm2 to estimate the P factor for
the reaction. [0.018]

An example of a reaction for which it is possible to estimate
the steric factor is K + Br2 → KBr + Br, with the experimental
value P = 4.8. In this reaction, the distance of approach at which
reaction occurs appears to be considerably larger than the dis-
tance needed for deflection of the path of the approaching
molecules in a non-reactive collision. It has been proposed that
the reaction proceeds by a harpoon mechanism. This brilliant
name is based on a model of the reaction that pictures the K
atom as approaching a Br2 molecule and, when the two are close
enough, an electron (the harpoon) flips across from K to Br2. In
place of two neutral particles there are now two ions, so there 
is a Coulombic attraction between them: this attraction is the
line on the harpoon. Under its influence the ions move together
(the line is wound in), the reaction takes place, and KBr + Br
emerge. The harpoon extends the cross-section for the reactive
encounter, and the reaction rate is greatly underestimated by
taking for the collision cross-section the value for simple mechan-
ical contact between K and Br2.

Example 20.3 Estimating a steric factor (2)

Estimate the value of P for the harpoon mechanism by calcu-
lating the distance at which it becomes energetically favour-
able for the electron to leap from K to Br2. Take the sum of
the radii of the reactants (treating them as spherical) to be
400 pm.

Method We should begin by identifying all the contributions
to the energy of interaction between the colliding species.
There are three contributions to the energy of the process
K + Br2 → K+ + Br2

−. The first is the ionization energy, I, of K.
The second is the electron affinity, Eea, of Br2. The third is the
Coulombic interaction energy between the ions when they
have been formed: when their separation is R, this energy is 
−e2/4πε0R. The electron flips across when the sum of these
three contributions changes from positive to negative (that is,
when the sum is zero) and becomes energetically favourable.

Answer The net change in energy when the transfer occurs at
a separation R is

The ionization energy I is larger than Eea, so E becomes nega-
tive only when R has decreased to less than some critical value
R* given by

When the particles are at this separation, the harpoon shoots
across from K to Br2, so we can identify the reactive cross-
section as σ* = πR*2. This value of σ* implies that the steric
factor is

where d = R(K) + R(Br2), the sum of the radii of the spherical
reactants. With I = 420 kJ mol−1 (corresponding to 7.0 ×
10−19 J), Eea ≈ 250 kJ mol−1 (corresponding to 4.2 × 10−19 J),
and d = 400 pm, we find P = 4.2, in good agreement with the
experimental value (4.8).

Self-test 20.3 Estimate the value of P for the harpoon 
reaction between Na and Cl2 for which d ≈ 350 pm; take
Eea ≈ 230 kJ mol−1. [2.2]

Example 20.3 illustrates two points about steric factors. First,
the concept of a steric factor is not wholly useless because in
some cases its numerical value can be estimated. Second, and
more pessimistically, most reactions are much more complex
than K + Br2, and we cannot expect to obtain P so easily.

(d) The RRK model

The steric factor P can also be estimated for unimolecular gas-
phase reactions, and its introduction brings the Lindemann–
Hinshelwood mechanism (Section 19.7) into closer agreement
with experimental results. For example, Fig. 20.8 shows a typical
plot of experimental values of 1/kr against 1/[A]. The plot has a
pronounced curvature, corresponding to a larger value of kr (a
smaller value of 1/kr) at high pressures (low 1/[A]) than would
be expected by a Lindemann–Hinshelwood extrapolation of the
reasonably linear low pressure (high 1/[A]) data.

The improved model was proposed in 1926 by O.K. Rice 
and H.C. Ramsperger and almost simultaneously by L.S. Kassel, 
and is now known as the Rice–Ramsperger–Kassel model (RRK
model). The model has been elaborated, largely by R.A. Marcus,
into the ‘RRKM model’. Here we outline Kassel’s original 
approach to the RRK model; the details are set out in Further
information 20.1. The essential feature of the model is that, 
although a molecule might have enough energy to react, that 
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energy is distributed over all the modes of motion of the
molecule, and reaction will occur only when enough of that 
energy has migrated into a particular location (such as a bond)
in the molecule. We show in Further information 20.1 that this
distribution effect leads to a P-factor of the form

(20.19a)

where s is the number of modes of motion over which the energy
E may be dissipated and E* is the energy required for the bond of
interest to break. The resulting Kassel form of the unimolecular
rate constant for the decay of A* to products is

for E ≥ E* (20.19b)

where kb is the rate constant used in the original Lindemann
theory.

The energy dependence of the rate constant given by eqn
20.19b is shown in Fig. 20.9 for various values of s. We see that
the rate constant is smaller at a given excitation energy if s is
large, as it takes longer for the excitation energy to migrate
through all the oscillators of a large molecule and accumulate in
the critical mode. As E becomes very large, however, the term in
parentheses approaches 1, and kb(E) becomes independent of
the energy and the number of oscillators in the molecule, as
there is now enough energy to accumulate immediately in the
critical mode regardless of the size of the molecule.

This approach to the calculation of P is limited to unimole-
cular reactions, so it is clear that we need a more powerful theory
that lets us calculate rate constants for a wider variety of reac-
tions. We go part of the way toward describing such a theory in
Section 20.6.
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20.4 Diffusion-controlled reactions

Encounters between reactants in solution occur in a very dif-
ferent manner from encounters in gases. Reactant molecules
have to jostle their way through the solvent, so their encounter 
frequency is considerably less than in a gas. However, because 
a molecule also migrates only slowly away from a location, two
reactant molecules that encounter each other stay near each
other for much longer than in a gas. This lingering of one
molecule near another on account of the hindering presence of
solvent molecules is called the cage effect. Such an encounter
pair may accumulate enough energy to react even though it does
not have enough energy to do so when it first forms. The activa-
tion energy of a reaction is a much more complicated quantity in
solution than in a gas because the encounter pair is surrounded
by solvent and we need to consider the energy of the entire local
assembly of reactant and solvent molecules.

(a) Classes of reaction

The complicated overall process can be divided into simpler
parts by setting up a simple kinetic scheme. We suppose that the
rate of formation of an encounter pair AB is first order in each of
the reactants A and B:

A + B → AB v = kd[A][B]

As we shall see, kd (where the d signifies diffusion) is determined
by the diffusional characteristics of A and B. The encounter pair
can break up without reaction or it can go on to form products
P. If we suppose that both processes are pseudofirst-order reac-
tions (with the solvent perhaps playing a role), then we can write

AB → A + B v = kd′[AB]

and

AB → P v = ka[AB]

(1
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Fig. 20.8 The pressure dependence of the unimolecular
isomerization of trans-CHD=CHD showing a pronounced
departure from the straight line predicted by eqn 19.46 based 
on the Lindemann–Hinshelwood mechanism.
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The concentration of AB can now be found from the equation
for the net rate of change of concentration of AB:

where we have applied the steady-state approximation. This 
expression solves to

The rate of formation of products is therefore

(20.20)

Two limits can now be distinguished. If the rate of separation
of the unreacted encounter pair is much slower than the rate 
at which it forms products, then k ′d << ka and the effective rate
constant is

(20.21a)

In this diffusion-controlled limit, the rate of reaction is governed
by the rate at which the reactant molecules diffuse through the
solvent. Because the combination of radicals involves very little
activation energy, radical and atom recombination reactions are
often diffusion-controlled. An activation-controlled reaction
arises when a substantial activation energy is involved in the 
reaction AB → P. Then ka << kd′ and

(20.21b)

where K is the equilibrium constant for A + B 5 AB. In this
limit, the reaction proceeds at the rate at which energy accumu-
lates in the encounter pair from the surrounding solvent. Some
experimental data are given in Table 20.3.

(b) Diffusion and reaction

The rate of a diffusion-controlled reaction is calculated by 
considering the rate at which the reactants diffuse together. 
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As shown in the following Justification, the rate constant for a 
reaction in which the two reactant molecules react if they come
within a distance R* of one another is

kd = 4πR*DNA (20.22)

where D is the sum of the diffusion coefficients of the two re-
actant species in the solution. It follows from this expression
that an indication that a reaction is diffusion-controlled is that
its rate constant is of the order of 109 dm3 mol−1 s−1 or greater, as
may be confirmed by taking values of R* and D to be 100 nm and
10−9 m2 s−1, respectively.

Justification 20.4 Solution of the radial diffusion equation

The general form of the diffusion equation (Section 18.9)
corresponding to motion in three dimensions is DB∇2[B] =
∂[B]/∂t; therefore, the concentration of B when the system
has reached a steady state (∂[B]/∂t = 0) satisfies ∇2[B]r = 0,
where the subscript r signifies a quantity that varies with the
distance r. For a spherically symmetrical system, ∇2 can be
replaced by radial derivatives alone (see Table 1.1), so the
equation satisfied by [B]r is

The general solution of this equation is

as may be verified by substitution. We need two boundary
conditions to pin down the values of the two constants (a and
b). One condition is that [B]r has its bulk value [B] as r → ∞.
The second condition is that the concentration of B is zero at
r = R*, the distance at which reaction occurs. It follows that 
a = [B] and b = −R*[B], and hence that (for r ≥ R*)

(20.23)

Figure 20.10 illustrates the variation of concentration expressed
by this equation.

The rate of reaction is the (molar) flux, J, of the reactant B
towards A multiplied by the area of the spherical surface of
radius R*:

Rate of reaction = 4πR*2J

From Fick’s first law (eqn 18.41), the flux of B towards A is
proportional to the concentration gradient, so at a radius R*:

(A sign change has been introduced because we are interested
in the flux towards decreasing values of r.) It follows that

Rate of reaction = 4πR*DB[B]
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Synoptic table 20.3* Arrhenius parameters for reactions in
solution

Solvent A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

(CH3)3CCl solvolysis Water 7.1 × 1016 100

Ethanol 3.0 × 1013 112

Chloroform 1.4 × 104 45

CH3CH2Br + OH− Ethanol 4.3 × 1011 90

* More values are given in the Data section.
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The rate of the diffusion-controlled reaction is equal to the
average flow of B molecules to all the A molecules in the 
sample. If the bulk concentration of A is [A], the number of
A molecules in the sample of volume V is NA[A]V; the global
flow of all B to all A is therefore 4πR*DBNA[A][B]V. Because
it is unrealistic to suppose that all A molecules are stationary,
we replace DB by the sum of the diffusion coefficients of the
two species and write D = DA + DB. Then the rate of change of
concentration of AB is

Hence, the diffusion-controlled rate constant is as given in
eqn 20.22.

We can take eqn 20.22 further by incorporating the Stokes–
Einstein equation (eqn 18.48) relating the diffusion constant
and the hydrodynamic radius RA and RB of each molecule in a
medium of viscosity η:

(20.24)

As these relations are approximate, little extra error is intro-
duced if we write RA = RB = 1–2R*, which leads to

(20.25)

(The R in this equation is the gas constant.) The radii have 
cancelled because, although the diffusion constants are smaller
when the radii are large, the reactive collision radius is larger 
and the particles need travel a shorter distance to meet. In this 
approximation, the rate constant is independent of the identities
of the reactants, and depends only on the temperature and the
viscosity of the solvent.
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l A BRIEF ILLUSTRATION

The rate constant for the recombination of I atoms in hexane
at 298 K, when the viscosity of the solvent is 0.326 cP (with 
1 P = 10−1 kg m−1 s−1), is

where we have used 1 J = 1 kg m2 s−2. Because 1 m3 = 103 dm3,
this result corresponds to 2.0 × 1010 dm3 mol−1 s−1. The experi-
mental value is 1.3 × 1010 dm3 mol−1 s−1, so the agreement is
very good considering the approximations involved. l

20.5 The material balance equation

The diffusion of reactants plays an important role in many chem-
ical processes, such as the diffusion of O2 molecules into red
blood corpuscles and the diffusion of a gas towards a catalyst.
We can catch a glimpse of the kinds of calculations involved by
considering the diffusion equation (Section 18.9) generalized to
take into account the possibility that the diffusing, convecting
molecules are also reacting.

(a) The formulation of the equation

Consider a small volume element in a chemical reactor (or a 
biological cell). The net rate at which J molecules enter the 
region by diffusion and convection is given by eqn 18.53:

(20.26)

where v is the velocity of flow of J. The net rate of change of
molar concentration due to chemical reaction is

if we suppose that J disappears by a pseudofirst-order reaction.
Therefore, the overall rate of change of the concentration of J is

(20.27)

Equation 20.27 is called the material balance equation. If the
rate constant is large, then [J] will decline rapidly. However, if
the diffusion constant is large, then the decline can be replen-
ished as J diffuses rapidly into the region. The convection term,
which may represent the effects of stirring, can sweep material
either into or out of the region according to the signs of v and the
concentration gradient ∂[J]/∂x.

(b) Solutions of the equation

The material balance equation is a second-order partial differ-
ential equation and is far from easy to solve in general. Some
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idea of how it is solved can be obtained by considering the 
special case in which there is no convective motion (as in an 
unstirred reaction vessel):

(20.28)

As may be verified by substitution (Problem 20.17), if the 
solution of this equation in the absence of reaction (that is, for 
kr = 0) is [J], then the solution [J]* in the presence of reaction 
(kr > 0) is

[J]* = [J]e−krt (20.29)

We have already met one solution of the diffusion equation in
the absence of reaction: eqn 18.54 is the solution for a system in
which initially a layer of n0NA molecules is spread over a plane of
area A:

(20.30)

When this expression is substituted into eqn 20.29 and the 
integral is evaluated numerically, we obtain the concentration of
J as it diffuses away from its initial surface layer and undergoes
reaction in the solution above (Fig. 20.11).

Even this relatively simple example has led to an equation 
that is difficult to solve, and only in some special cases can 
the full material balance equation be solved analytically. Most
modern work on reactor design and cell kinetics uses numerical
methods to solve the equation, and detailed solutions for 

[J
e

]
( )

/

/
=

−n

A Dt

x Dt
0

4

1 2

2

π

 

∂
∂

∂
∂

[ ] [ ]
[ ]

J J
Jrt

D
x

k= −
2

2

realistic environments, such as vessels of different shapes (which
influence the boundary conditions on the solutions) and with a
variety of inhomogeneously distributed reactants, can be obtained
reasonably easily.

Transition state theory

During the course of a chemical reaction that begins with a 
collision between molecules of A and molecules of B, the poten-
tial energy of the system typically changes in a manner shown
in Fig. 20.12. Although the illustration displays an exothermic
reaction, a potential barrier is also common for endothermic 
reactions. As the reaction event proceeds, A and B come into
contact, distort, and begin to exchange or discard atoms. The 
reaction coordinate is a representation of the atomic displace-
ments, such as changes in interatomic distances and bond
angles, that are directly involved in the formation of products
from reactants. The potential energy rises to a maximum and
the cluster of atoms that corresponds to the region close to the
maximum is called the activated complex. After the maximum,
the potential energy falls as the atoms rearrange in the cluster
and reaches a value characteristic of the products. The climax of
the reaction is at the peak of the potential energy, which can be
identified with the activation energy Ea; however, as in collision
theory, this identification should be regarded as approximate.
Here two reactant molecules have come to such a degree of
closeness and distortion that a small further distortion will send
them in the direction of products. This crucial configuration is
called the transition state of the reaction. Although some mole-
cules entering the transition state might revert to reactants, if
they pass through this configuration then it is inevitable that
products will emerge from the encounter.Dt = 0.05

Dt = 0.10

Distance from plane, x

C
o

n
ce

n
tr

at
io

n
 o

f 
re

ac
ta

n
t

Fig. 20.11 The concentration profiles for a diffusing, reacting
system (for example, a column of solution) in which one
reactant is initially in a layer at x = 0. In the absence of reaction
(grey lines) the concentration profiles are the same as in 
Fig. 18.19.

interActivity Use the interactive applet found in the Living
graphs section of the text’s web site to explore the effect 

of varying the value of the rate constant kr on the spatial
variation of [J] for a constant value of the diffusion constant D.
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Fig. 20.12 A potential energy profile for an exothermic reaction.
The height of the barrier between the reactants and products is
the activation energy of the reaction.
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A note on good practice The terms activated complex and
transition state are often used as synonyms; however, it is best
to preserve the distinction, with the former referring to the
cluster of atoms and the latter to their critical configuration.

In transition state theory (which is also widely referred to as
activated complex theory), the notion of the transition state is
used in conjunction with concepts of statistical thermodynamics
to provide a more detailed calculation of rate constants than that
presented by collision theory (Section 20.3). Transition state
theory has the advantage that a quantity corresponding to the
steric factor appears automatically, and P does not need to 
be grafted on to an equation as an afterthought; it is an attempt 
to identify the principal features governing the size of a rate
constant in terms of a model of the events that take place dur-
ing the reaction. There are several approaches to the calculation
of rate constants by transition state theory; here we present the
simplest one.

20.6 The Eyring equation

Transition state theory pictures a reaction between A and B as
proceeding through the formation of an activated complex, C‡,
in a rapid pre-equilibrium (Fig. 20.13):1

A + B 5 C‡ (20.31)

where we have replaced the activity of each species by p/p7.
When we express the partial pressures, pJ, in terms of the molar
concentrations, [J], by using pJ = RT[J], the concentration of 

  
K

p p

p p
‡ = C

A B

‡
7

activated complex is related to the (dimensionless) equilibrium
constant by

(20.32)

The activated complex falls apart by unimolecular decay into
products, P, with a rate constant k ‡:

C‡ → P v = k‡[C‡] (20.33)

It follows that

v = kr[A][B] (20.34)

Our task is to calculate the unimolecular rate constant k ‡ and
the equilibrium constant K ‡.

(a) The rate of decay of the activated complex

An activated complex can form products if it passes through the
transition state. As the reactant molecules approach the activ-
ated complex region, some bonds are forming and shortening
while others are lengthening and breaking; therefore, along 
the reaction coordinate, there is a vibration-like motion of the
atoms in the activated complex. If this vibration-like motion 
occurs with a frequency ν‡, then the frequency with which the
cluster of atoms forming the complex approaches the transition
state is also ν‡. However, it is possible that not every oscillation
along the reaction coordinate takes the complex through the
transition state. For instance, the centrifugal effect of rotations
might also be an important contribution to the breakup of the
complex, and in some cases the complex might be rotating too
slowly, or rotating rapidly but about the wrong axis. Therefore,
we suppose that the rate of passage of the complex through the
transition state is proportional to the vibrational frequency
along the reaction coordinate, and write

k‡ = κν‡ (20.35)

where κ (kappa) is the transmission coefficient. In the absence
of information to the contrary, κ is assumed to be about 1.

(b) The concentration of the activated complex

We saw in Section 17.3 how to calculate equilibrium constants
from structural data. Equation 17.17 of that section can be used
directly, which in this case gives

(20.36)

where

ΔE0 = E0(C‡) − E0(A) − E0(B) (20.37)

and the q J
7 are the standard molar partition functions, as defined

in Section 17.3. Note that the units of NA and the qJ are mol−1,
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Fig. 20.13 A reaction profile (for an exothermic reaction). The
horizontal axis is the reaction coordinate, and the vertical axis is
potential energy. The activated complex is the region near the
potential maximum, and the transition state corresponds to the
maximum itself.

1 This chapter inevitably puts heavy demands on the letter K; the various mean-
ings are summarized in Table 20.4 at the end of the chapter.
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so K ‡ is dimensionless (as is appropriate for an equilibrium 
constant).

In the final step of this part of the calculation, we focus atten-
tion on the partition function of the activated complex. We have
already assumed that a vibration of the activated complex C‡ tips
it through the transition state. The partition function for this
vibration is (see eqn 13.10)

where ν‡ is its frequency (the same frequency that determines
k‡). This frequency is much lower than for an ordinary mole-
cular vibration because the oscillation corresponds to the com-
plex falling apart (Fig. 20.14), so the force constant is very low.
Therefore, provided that hν‡/kT << 1, the exponential may be
expanded and the partition function reduces to

We can therefore write

(20.38)

where Á denotes the partition function for all the other modes of
the complex. The constant K ‡ is therefore

(20.39)K
kT

h

N
E RT‡

‡
‡ ‡ /‡= = −

ν
I I

Á 7

7 7
A C

A B

e
q q

Δ 0

   
q C C‡‡ ‡

≈
kT

hν
Á

q =

− − +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≈
1

1 1
h

kT

kT

hν ν‡ ‡

  
q =

− −

1

1 e h kTν ‡/

with I ‡ a kind of equilibrium constant, but with one vibrational
mode of C‡ discarded.

(c) The rate constant

We can now combine all the parts of the calculation into

At this stage the unknown frequencies ν‡ cancel, and after writ-
ing I c

‡ = (RT/p7)I ‡, we obtain the Eyring equation:

(20.40)

The factor I c
‡ is given by eqn 20.39 and the definition I c

‡ =
(RT/p7)I ‡ in terms of the partition functions of A, B, and C‡, so
in principle we now have an explicit expression for calculating
the second-order rate constant for a bimolecular reaction in
terms of the molecular parameters for the reactants and the
activated complex and the quantity κ.

The partition functions for the reactants can normally be cal-
culated quite readily by using either spectroscopic information
about their energy levels or the approximate expressions set out
in Table 13.1. The difficulty with the Eyring equation, however,
lies in the calculation of the partition function of the activated
complex: C‡ is difficult to investigate spectroscopically (but see
Section 20.6e), and in general we need to make assumptions
about its size, shape, and structure. We shall illustrate what is 
involved in one simple but significant case.

(d) The collision of structureless particles

Consider the case of two structureless particles A and B colliding
to give an activated complex that resembles a diatomic mole-
cule. Because the reactants J = A, B are structureless ‘atoms’, the
only contributions to their partition functions are the transla-
tional terms:

(20.41a)

The activated complex is a diatomic cluster of mass mC = mA + mB

and moment of inertia I. It has one vibrational mode, but that
mode corresponds to motion along the reaction coordinate and
therefore does not appear in ÁC‡. It follows that the standard
molar partition function of the activated complex, taking into
account rotational and translational contributions, is

(20.41b)

The moment of inertia of a diatomic molecule of bond length 
r is μr2, where μ = mAmB/(mA + mB) is the effective mass, so the
expression for the rate constant is
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Fig. 20.14 In an elementary depiction of the activated complex
close to the transition state, there is a broad, shallow dip in the
potential energy surface along the reaction coordinate. The
complex vibrates harmonically and almost classically in this well.
However, this depiction is an oversimplification, for in many
cases there is no dip at the top of the barrier, and the curvature
of the potential energy, and therefore the force constant, is
negative. Formally, the vibrational frequency is then imaginary.
We ignore this problem here.
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(20.42)

Finally, by identifying κπr2 as the reactive cross-section σ*, we
arrive at precisely the same expression as that obtained from
simple collision theory (eqn 20.17).

(e) Observation and manipulation of the activated complex

The development of femtosecond pulsed lasers (Section 11.7)
has made it possible to make observations on species that have
such short lifetimes that in a number of respects they resemble
an activated complex, which often survives for only a few pico-
seconds. In a typical experiment designed to detect an activated
complex, a femtosecond laser pulse is used to excite a molecule
to a dissociative state, and then the system is exposed to a second
femtosecond pulse at an interval after the dissociating pulse. The
frequency of the second pulse is set at an absorption of one of the
free fragmentation products, so its absorption is a measure of
the abundance of the dissociation product. For example, when
ICN is dissociated by the first pulse, the emergence of CN from
the photoactivated state can be monitored by watching the
growth of the free CN absorption (or, more commonly, its laser-
induced fluorescence). In this way it has been found that the CN
signal remains zero until the fragments have separated by about
600 pm, which takes about 205 fs.

Some sense of the progress that has been made in the study of
the intimate mechanism of chemical reactions can be obtained
by considering the decay of the ion pair Na+I−. As shown in 
Fig. 20.15, excitation of the ionic species with a femtosecond
laser pulse forms an excited state that corresponds to a cova-
lently bonded NaI molecule. The system can be described with
two potential energy surfaces, one largely ‘ionic’ and another
‘covalent’, which cross at an internuclear separation of 693 pm.
A short laser pulse is composed of a wide range of frequencies,
which excite many vibrational states of NaI simultaneously.
Consequently, the electronically excited complex exists as a 
superposition of states, or a localized wavepacket, which oscil-
lates between the ‘covalent’ and ‘ionic’ potential energy surfaces,
as shown in Fig. 20.15. The complex can also dissociate, shown
as movement of the wavepacket toward very long internuclear
separation along the dissociative surface. However, not every
outward-going swing leads to dissociation because there is a
chance that the I atom can be harpooned again, in which case it
fails to make good its escape. The dynamics of the system is probed
by a second laser pulse with a frequency that corresponds to the
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absorption frequency of the free Na product or to the frequency
at which Na absorbs when it is a part of the complex. The latter
frequency depends on the NaîI distance, so an absorption (in
practice, a laser-induced fluorescence) is obtained each time the
wavepacket returns to that separation.

A typical set of results is shown in Fig. 20.16. The bound Na
absorption intensity shows up as a series of pulses that recur in
about 1 ps, showing that the wavepacket oscillates with about
that period. The decline in intensity shows the rate at which the
complex can dissociate as the two atoms swing away from 
each other. The free Na absorption also grows in an oscillating
manner, showing the periodicity of wavepacket oscillation, each
swing of which gives it a chance to dissociate. The precise period
of the oscillation in NaI is 1.25 ps, corresponding to a vibrational
wavenumber of 27 cm−1 (recall that the activated complex theory

Na + I
(ionic)

+ X

Na + I
(covalent)

Internuclear
separation

Po
te

n
ti

al
 e

n
er

g
y

Fig. 20.15 Excitation of the ion pair Na+I− forms an excited state
with covalent character. Also shown is movement between a
‘covalent’ surface (in green) and an ‘ionic’ surface (in purple) 
of the wavepacket formed by laser excitation. The non-crossing
rule ensures that the two curves mix at their intersection; Na + I
is the lower state at large distances.
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Fig. 20.16 Femtosecond spectroscopic results for the reaction in
which sodium iodide separates into Na and I. The lower curve is
the absorption of the electronically excited complex and the
upper curve is the absorption of free Na atoms. (Adapted from
A.H. Zewail, Science 242, 1645 (1988).)
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assumes that such a vibration has a very low frequency). The
complex survives for about ten oscillations. In contrast, although
the oscillation frequency of NaBr is similar, it barely survives
one oscillation.

Femtosecond spectroscopy has also been used to examine
analogues of the activated complex involved in bimolecular 
reactions. Thus, a molecular beam can be used to produce a 
van der Waals molecule (Section 8.7), such as IHîOCO. The HI
bond can be dissociated by a femtosecond pulse, and the H atom
is ejected towards the O atom of the neighbouring CO2 molecule
to form HOCO. Hence, the van der Waals molecule is a source
of a species that resembles the activated complex of the reaction

H + CO2 → [HOCO]‡ → HO + CO

The probe pulse is tuned to the OH radical, which enables the
evolution of [HOCO]‡ to be studied in real time. Femtosecond
transition state spectroscopy has also been used to study more
complex reactions, such as the Diels–Alder reaction, nucleophilic
substitution reactions, and pericyclic addition and cleavage 
reactions. Biological processes that are open to study by femto-
second spectroscopy include the energy-converting processes of
photosynthesis and the photostimulated processes of vision. In
other experiments, the photoejection of carbon monoxide from
myoglobin and the attachment of O2 to the exposed site have
been studied to obtain rate constants for the two processes.

The techniques used for the spectroscopic detection of trans-
ition states can also be used to control the outcome of a chemical
reaction by direct manipulation of the transition state. Consider
the reaction I2 + Xe → XeI* + I, which occurs by a harpoon
mechanism with a transition state denoted as [Xe+ î I− î I]. The
reaction can be initiated by exciting I2 to an electronic state at
least 52 460 cm−1 above the ground state and then followed by
measuring the time dependence of the chemiluminescence of
XeI*. To exert control over the yield of the product, a pair of
femtosecond pulses can be used to induce the reaction. The first
pulse excites the I2 molecule to a low energy and unreactive elec-
tronic state. We already know that excitation by a femtosecond
pulse generates a wavepacket that can be treated as a particle
travelling across the potential energy surface. In this case, the
wavepacket does not have enough energy to react, but excitation
by another laser pulse with the appropriate wavelength can pro-
vide the necessary additional energy. It follows that activated
complexes with different geometries can be prepared by varying
the time delay between the two pulses, as the partially localized
wavepacket will be at different locations on the potential energy
surface as it evolves after being formed by the first pulse. Because
the reaction occurs by the harpoon mechanism, the product
yield is expected to be optimal if the second pulse is applied
when the wavepacket is at a point where the XeîI2 distance 
is just right for electron transfer from Xe to I2 to occur (see
Example 20.3). This type of control of the I2 + Xe reaction has
been demonstrated.

20.7 Thermodynamic aspects

The statistical thermodynamic version of transition state theory
rapidly runs into difficulties because only in some cases is 
anything known about the structure of the activated complex.
However, the concepts that it introduces, principally that of an
equilibrium between the reactants and the activated complex,
have motivated a more general, empirical approach in which
the activation process is expressed in terms of thermodynamic
functions.

(a) Activation parameters

If we accept that I ‡ is an equilibrium constant (despite one
mode of C‡ having been discarded), we can express it in terms of
a Gibbs energy of activation, Δ‡G, through the definition:

Δ‡G = −RT ln I ‡ [20.43]

All the Δ‡X in this section are standard thermodynamic quanti-
ties, Δ‡X 7, but we shall omit the standard state sign to avoid
overburdening the notation. Then the rate constant becomes

(20.44)

Because G = H − TS, the Gibbs energy of activation can be 
divided into an entropy of activation, Δ‡S, and an enthalpy of
activation, Δ‡H, by writing

Δ‡G = Δ‡H − TΔ‡S [20.45]

When eqn 20.45 is used in eqn 20.44 and κ is absorbed into the
entropy term, we obtain

(20.46)

The formal definition (eqn 20.2) of activation energy, 
Ea = RT 2(d ln kr /dT), then gives Ea = Δ‡H + 2RT, so

kr = e2BeΔ‡S/Re−Ea/RT (20.47a)

A brief comment For reactions of the type A + B → P in the
gas phase, Ea = Δ‡H + 2RT. For these reactions in solution, 
Ea = Δ‡H + RT.

from which it follows that the Arrhenius factor A can be
identified as

A = e2BeΔ‡S/R (20.47b)

The entropy of activation is negative because throughout the
system reactant species are combining to form reactive pairs.
However, if there is a reduction in entropy below what would 
be expected for the simple encounter of A and B, then the
Arrhenius factor A will be smaller than that expected on the
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basis of simple collision theory. Indeed, we can identify that 
additional reduction in entropy, Δ‡Ssteric, as the origin of the
steric factor of collision theory, and write

P = eΔ‡Ssteric/R (20.48)

Thus, the more complex the steric requirements of the en-
counter, the more negative the value of Δ‡Ssteric, and the smaller
the value of P.

Gibbs energies, enthalpies, entropies, volumes, and heat 
capacities of activation are widely used to report experimental
reaction rates, especially for organic reactions in solution. They
are encountered when relationships between equilibrium con-
stants and rates of reaction are explored using correlation
analysis, in which ln K (which is equal to −ΔrG

7/RT) is plotted
against ln kr (which is proportional to −Δ‡G/RT). In many cases
the correlation is linear, signifying that, as the reaction becomes
thermodynamically more favourable, its rate constant increases
(Fig. 20.17). This linear correlation is the origin of the alterna-
tive name linear free energy relation (LFER).

(b) Reactions between ions

The thermodynamic version of transition state theory simplifies
the discussion of reactions in solution. The statistical thermo-
dynamic theory is very complicated to apply because the solvent
plays a role in the activated complex. In the thermodynamic 
approach we combine the rate law

with the thermodynamic equilibrium constant (Section 17.2)
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If k r° is the rate constant at zero ionic strength when the activity
coefficients are 1 (that is, k r° = k‡K), we can write

(20.49b)

At low concentrations the activity coefficients can be ex-
pressed in terms of the ionic strength, I, of the solution by 
using the Debye–Hückel limiting law (Section 16.6, particularly
eqn 16.56). We assume here that both reactants A and B are 1,1-
electrolytes so z+ = z− for each; therefore

log γA = −AzA
2 I1/2 log γB = −AzB

2 I1/2 (20.50a)

with A = 0.509 in aqueous solution at 298 K and zA and zB the
charge numbers of A and B, respectively. Since the activated
complex forms from reaction of one of the ions of A with one 
of the ions of B, the charge number of the activated complex is 
zA + zB where zJ is positive for cations and negative for anions.
Therefore

log γC‡ = −A(zA + zB)2I1/2 (20.50b)

Inserting these relations into eqn 20.49b results in

log kr = log k r° − A{zA
2 + zB

2 − (zA + zB)2}I1/2

= log k r° + 2AzAzBI1/2 (20.51)

Equation 20.51 expresses the kinetic salt effect, the variation
of the rate constant of a reaction between ions with the ionic
strength of the solution (Fig. 20.18). If the reactant ions have the
same sign (as in a reaction between cations or between anions),
then increasing the ionic strength by the addition of inert ions
increases the rate constant. The formation of a single, highly
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Fig. 20.18 Experimental tests of the kinetic salt effect for reactions
in water at 298 K. The ion types are shown as spheres, and the
slopes of the lines are those given by the Debye–Hückel limiting
law and eqn 20.51.
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of the second ion is +2. This analysis suggests that the penta-
amminebromocobalt(III) cation [CoBr(NH3)5]

2+ participates
in the formation of the activated complex and that the charge
of the activated complex is −1 + 2 = +1. Although we do not
pursue the point here, you should be aware that the rate 
constant is also influenced by the relative permittivity of the
medium.

Self-test 20.4 An ion of charge number +1 is known to be 
involved in the activated complex of a reaction. Deduce the
charge number of the other ion from the following data:

I 0.0050 0.010 0.015 0.020 0.025 0.030

kr/kr° 0.930 0.902 0.884 0.867 0.853 0.841

[−1]

20.8 Electron transfer in homogeneous systems

Here we apply the concepts of transition state theory and quan-
tum theory to the study of a deceptively simple process, electron
transfer between molecules in homogeneous systems. We describe
a theoretical approach to the calculation of rate constants and
discuss the theory in the light of experimental results on a vari-
ety of systems, including protein complexes. Electron transfer
reactions between protein-bound co-factors or between pro-
teins play an important role in a variety of biological processes,
including oxidative phosphorylation, photosynthesis, nitrogen
fixation, the reduction of atmospheric N2 to NH3 by certain 
microorganisms, and the mechanisms of action of oxidoreduc-
tases, which are enzymes that catalyse redox reactions. We shall
see that relatively simple expressions may be used to predict the
rates of electron transfer with reasonable accuracy.

(a) The rates of electron transfer processes

Consider electron transfer from a donor species D to an acceptor
species A in solution. The overall reaction is

D + A → D+ + A− v = kr[D][A] (20.52)

In the first step of the mechanism, D and A must diffuse through
the solution and collide to form a complex DA, in which the
donor and acceptor are separated by r, the distance between the
outer surface of each species.

D + A 6 DA (ka, ka′) (20.53a)

Next, electron transfer occurs within the DA complex to yield
D+A−:

DA 6 D+A− (ket, k′et) (20.53b)

The complex D+A− can also break apart and the ions diffuse
through the solution:

charged ionic complex from two less highly charged ions is
favoured by a high ionic strength because the new ion has a
denser ionic atmosphere and interacts with that atmosphere
more strongly. Conversely, ions of opposite charge react more
slowly in solutions of high ionic strength. Now the charges can-
cel and the complex has a less favourable interaction with its 
atmosphere than the separated ions.

Example 20.4 Analysing the kinetic salt effect

The rate constant for the base (OH−) hydrolysis of
[CoBr(NH3)5]2+ varies with ionic strength as tabulated below.
What can be deduced about the charge of the activated 
complex in the rate-determining stage? We cannot assume
without more evidence that it is a bimolecular process with
an activated complex of charge +1.

I 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300

kr/kr° 0.718 0.631 0.562 0.515 0.475 0.447

Method According to eqn 20.51, a plot of log(kr/kr°) against
I1/2 will have a slope of 1.02zAzB, from which we can infer the
charges of the ions involved in the formation of the activated
complex.

Answer Form the following table:

I 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300

I1/2 0.071 0.100 0.122 0.141 0.158 0.173

log(kr/kr°) −0.14 −0.20 −0.25 −0.29 −0.32 −0.35

These points are plotted in Fig. 20.19. The slope of the (least
squares) straight line is −2.04, indicating that zAzB = −2.
Because zA = −1 for the OH− ion, if that ion is involved in the
formation of the activated complex, then the charge number
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Fig. 20.19 The experimental ionic strength dependence 
of the rate constant of a hydrolysis reaction: the slope gives
information about the charge types involved in the activated
complex of the rate-determining step. See Example 20.4.
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D+A− → D+ + A− (kd) (20.53c)

We show in the following Justification that on the basis of this
model

(20.54)

Justification 20.5 The rate constant for electron transfer in
solution

We begin by identifying the rate of the overall reaction
(eqn 20.52) with the rate of formation of separated ions:

v = kr[D][A] = kd[D+A−]

There are two reaction intermediates, DA and D+A−, and 
we apply the steady-state approximation to both. From

it follows that

and from

it follows that

When we multiply this expression by kd, we see that the re-
sulting equation has the form of the rate of electron transfer,
v = kr[D][A], with kr given by

To obtain eqn 20.54, we divide the numerator and 
denominator on the right-hand side of this expression by
kdket and solve for the reciprocal of kr.

To gain insight into eqn 20.54 and the factors that determine
the rate of electron transfer reactions in solution, we assume that
the main decay route for D+A− is dissociation of the complex
into separated ions, or kd >> k ′et. It follows that
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When ket >> ka′, we see that kr ≈ ka and the rate of product forma-
tion is controlled by diffusion of D and A in solution, which 
fosters formation of the DA complex. When ket << ka′, we see that
kr ≈ (ka/ka′)ket or, after using eqn 20.53a,

kr ≈ (ka/ka′)ket = Kket (20.55)

where K is the equilibrium constant for the diffusive encounter
process in eqn 20.53a. We see that the process is controlled by ket

and therefore the activation energy of electron transfer in the DA
complex. Using transition state theory (Section 20.7), we write

ket = κν‡e−Δ‡G/RT (20.56)

where κ is the transmission coefficient, ν‡ is the vibrational
frequency with which the activated complex approaches the
transition state, and Δ‡G is the Gibbs energy of activation. Our
remaining task, therefore, is to find expressions for κν‡ and Δ‡G.

Our discussion concentrates on the following two key aspects
of the theory of electron transfer processes, which was developed
independently by R.A. Marcus, N.S. Hush, V.G. Levich, and
R.R. Dogonadze:

1. Electrons are transferred by tunnelling through a potential
energy barrier, the height of which is partly determined by the
ionization energies of the DA and D+A− complexes. Electron
tunnelling influences the magnitude of κν‡.

2. The complex DA and the solvent molecules surrounding 
it undergo structural rearrangements prior to electron transfer.
The energy associated with these rearrangements and the stand-
ard reaction Gibbs energy determine Δ‡G.

(b) The role of electron tunnelling

We saw in Section 11.3 that, according to the Franck–Condon
principle, electronic transitions are so fast that they can be re-
garded as taking place in a stationary nuclear framework. This
principle also applies to an electron transfer process in which 
an electron migrates from one energy surface, representing the
dependence of the energy of DA on its geometry, to another 
representing the energy of D+A−. We can represent the potential
energy (and the Gibbs energy) surfaces of the two complexes
(the reactant complex, DA, and the product complex, D+A−) by
the parabolas characteristic of harmonic oscillators, with the
displacement coordinate corresponding to the changing geo-
metries (Fig. 20.20). This coordinate represents a collective mode
of the donor, acceptor, and solvent.

According to the Franck–Condon principle, the nuclei do not
have time to move when the system passes from the reactant 
to the product surface as a result of the transfer of an electron.
Therefore, electron transfer can occur only after thermal fluctu-
ations bring the geometry of DA to q* in Fig 20.20, the value of
the nuclear coordinate at which the two parabolas intersect.

The factor κν‡ is a measure of the probability that the system
will convert from reactants (DA) to products (D+A−) at q* by
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electron transfer within the thermally excited DA complex. To
understand the process, we must turn our attention to the effect
that the rearrangement of nuclear coordinates has on electronic
energy levels of DA and D+A− for a given distance r between D
and A (Fig. 20.21). Initially, the electron to be transferred occu-
pies the HOMO of D, and the overall energy of DA is lower than
that of D+A− (Fig. 20.21a). As the nuclei rearrange to a configu-
ration represented by q* in Fig. 20.21b, the highest occupied
electronic level of DA and the lowest unoccupied electronic level
of D+A− become degenerate and electron transfer becomes ener-
getically feasible. Over reasonably short distances r, the main
mechanism of electron transfer is tunnelling through the poten-
tial energy barrier depicted in Fig. 20.21b. After an electron
moves from the HOMO of D to the LUMO of A, the system 
relaxes to the configuration represented by q0

P in Fig. 20.21c. 
As shown in the figure, now the energy of D+A− is lower than
that of DA, reflecting the thermodynamic tendency for A to 
remain reduced and for D to remain oxidized.

The tunnelling event responsible for electron transfer is sim-
ilar to that described in Section 2.3, except that in this case the
electron tunnels from an electronic level of D, with wavefunc-
tion ψD, to an electronic level of A, with wavefunction ψA. We
saw in Section 4.3 that the rate of an electronic transition from a
level described by the wavefunction ψD to a level described by
ψA is proportional to the square of the integral

where Ë is a hamiltonian that describes the coupling of the 
electronic wavefunctions. The probability of tunnelling through
a potential barrier typically has an exponential dependence on
distance, so we suspect that the distance dependence of H 2

DA is

HDA(r)2 = H°2
DAe−βr (20.57)
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Fig. 20.20 The Gibbs energy surfaces of the complexes DA and
D+A− involved in an electron transfer process are represented 
by parabolas characteristic of harmonic oscillators, with the
displacement coordinate q corresponding to the changing
geometries of the system. In the plot, q 0

R and q 0
P are the values 

of q at which the minima of the reactant and product parabolas
occur, respectively. The parabolas intersect at q = q*. The plots
also portray the Gibbs energy of activation, Δ‡G, the standard
reaction Gibbs energy, Δ rG

7, and the reorganization energy, 
λ (discussed in Section 20.8c).
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Fig. 20.21 Correspondence between the electronic energy levels
(shown on the left) and the nuclear energy levels (shown on the
right) for the DA and D+A− complexes involved in an electron
transfer process. (a) At the nuclear configuration denoted 
by q0

R, the electron to be transferred in DA is in an occupied
electronic energy level (denoted by a blue circle) and the lowest
unoccupied energy level of D+A− (denoted by an unfilled circle)
is of too high an energy to be a good electron acceptor. (b) As 
the nuclei rearrange to a configuration represented by q*, DA
and D+A− become degenerate and electron transfer occurs by
tunnelling through the barrier of height V and width r, the
distance between the outer surfaces of the donor and acceptor.
(c) The system relaxes to the equilibrium nuclear configuration
of D+A− denoted by q0

P, in which the lowest unoccupied
electronic level of DA is higher in energy than the highest
occupied electronic level of D+A−. (Adapted from R.A. 
Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).)
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where r is the edge-to-edge distance between D and A, β is a 
parameter that measures the sensitivity of the electronic coup-
ling matrix element to distance, and H°DA is the value of the 
electronic coupling matrix element when D and A are in contact 
(r = 0).

(c) The expression for the rate of electron transfer

The pre-exponential factor κν‡ in ket is proportional to the 
tunnelling probability, which in turn is proportional to HDA(r)2,
as expressed by eqn 20.57. Therefore, we can expect the full 
expression for ket to have the form

ket = CHDA(r)2e−Δ‡G/RT (20.58)

with C a constant of proportionality and HDA(r)2 given by
eqn 20.57. We show in Further information 20.2 that the Gibbs
energy of activation Δ‡G is

(20.59)

where ΔrG
7 is the standard reaction Gibbs energy for the elec-

tron transfer process DA → D+A−, and λ is the reorganization
energy, the energy change associated with molecular rearrange-
ments that must take place so that DA can take on the equi-
librium geometry of D+A−. These molecular rearrangements 
include the relative reorientation of the D and A molecules 
in DA and the relative reorientation of the solvent molecules
surrounding DA. Equation 20.59 shows that Δ‡G = 0, with the
implication that the reaction is not slowed down by an activa-
tion barrier, when ΔrG

7 = −λ, corresponding to the cancellation
of the reorganization energy term by the standard reaction
Gibbs energy.

The only missing piece of the expression for ket is the value of
the constant of proportionality C. Detailed calculation, which
we do not repeat here, gives

(20.60)

Equation 20.58 has some limitations. For instance, it describes
processes with weak electronic coupling between donor and 
acceptor. Weak coupling is observed when the electroactive
species are sufficiently far apart that the wavefunctions ψA and
ψD do not overlap extensively and the tunnelling is an exponen-
tial function of distance. An example of a weakly coupled system
is the cytochrome c–cytochrome b5 complex, in which the 
electroactive haem-bound iron ions shuttle between oxidation
states +2 and +3 during electron transfer and are about 1.7 nm
apart. Strong coupling is observed when the wavefunctions ψA

and ψD overlap very extensively and, as well as other complica-
tions, the tunnelling probability is no longer a simple exponen-
tial function of distance. Examples of strongly coupled systems
are mixed-valence, binuclear d-metal complexes with the general
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structure LmMn+–B–Mp+Lm, in which the electroactive metal
ions are separated by a bridging ligand B. In these systems, 
r < 1.0 nm. The weak coupling limit applies to a large number 
of electron transfer reactions, including those between proteins
during metabolism (Impact I17.3).

(d) Experimental results

It is difficult to measure the distance dependence of ket when the
reactants are ions or molecules that are free to move in solution.
In such cases, electron transfer occurs after a donor–acceptor
complex forms and it is not possible to exert control over r, the
edge-to-edge distance. The most meaningful experimental tests
of the dependence of ket on r are those in which the same donor
and acceptor are positioned at a variety of distances, perhaps by
covalent attachment to molecular linkers (see 1 for an example).
Under these conditions, the term e−Δ‡G/RT becomes a constant
and, after taking the natural logarithm of eqn 20.58 and using
eqn 20.57, we obtain

ln ket = −βr + constant (20.61)

which implies that a plot of ln ket against r should be a straight
line with slope −β. The value of β depends on the medium
through which the electron must travel from donor to acceptor.
In a vacuum, 28 nm−1 < β < 35 nm−1, whereas β ≈ 9 nm−1 when
the intervening medium is a molecular link between donor and
acceptor. Electron transfer between protein-bound co-factors
can occur at distances of up to about 2.0 nm, a long distance on
a molecular scale, corresponding to about 20 carbon atoms,
with the protein providing an intervening medium between
donor and acceptor.

The dependence of ket on the standard reaction Gibbs energy
has been investigated in systems where the edge-to-edge dis-
tance and the reorganization energy are constant for a series 
of reactions. Then, by using eqn 20.59 for Δ‡G, eqn 20.58 
becomes
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(20.62)

and a plot of ln ket (or log ket) against ΔrG
7 (or −ΔrG

7) is pre-
dicted to be shaped like a downward parabola. Equation 20.62
implies that the rate constant increases as ΔrG

7 decreases but
only up to −ΔrG

7 = λ. Beyond that, the reaction enters the 
inverted region, in which the rate constant decreases as the reac-
tion becomes more exergonic (ΔrG

7 becomes more negative).
The inverted region has been observed in a series of special 
compounds in which the electron donor and acceptor are linked 
covalently to a molecular spacer of known and fixed size 
(Fig. 20.22).

The dynamics of molecular
collisions

We now come to the third and most detailed level of our 
examination of the factors that govern the rates of reactions.
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20.9 Reactive collisions

Molecular beams allow us to study collisions between molecules
in preselected energy states (for example, specific rotational and
vibrational states), and can be used to determine the states of 
the products of a reactive collision. Information of this kind is
essential if a full picture of the reaction is to be built, because the
rate constant is an average over events in which reactants in
different initial states evolve into products in their final states.

(a) Experimental probes of reactive collisions

Detailed experimental information about the intimate processes
that occur during reactive encounters comes from molecular
beams, especially crossed molecular beams (Fig. 20.23). The 
detector for the products of the collision of two beams can be
moved to different angles, so the angular distribution of the prod-
ucts can be determined. Because the molecules in the incoming
beams can be prepared with different energies (for example, with
different translational energies by using rotating sectors and 
supersonic nozzles, with different vibrational energies by using
selective excitation with lasers, and with different orientations
by using electric fields), it is possible to study the dependence of
the success of collisions on these variables and to study how they
affect the properties of the outcoming product molecules.

One method for examining the energy distribution in the
products is infrared chemiluminescence, in which vibrationally
excited molecules emit infrared radiation as they return to 
their ground states. By studying the intensities of the infrared
emission spectrum, the populations of the vibrational states of
the products may be determined (Fig. 20.24). Another method
makes use of laser-induced fluorescence. In this technique, a laser
is used to excite a product molecule from a specific vibration-
rotation level; the intensity of the fluorescence from the upper
state is monitored and interpreted in terms of the population of

(a)

(b)

(c) (d)

(e)
(f)
(g)

(h)

0 0.5 1 1.5 2

8

9

7

6

lo
g

(
/s

k e
t

–1
)

– °/eVsrG
2.5

10

Fig. 20.22 Variation of log ket with −Δ rG
7 for a series of

compounds with the structures given in (1). Kinetic
measurements were conducted in 2-methyltetrahydrofuran 
and at 296 K. The distance between donor (the reduced biphenyl
group) and the acceptor is constant for all compounds in the
series because the molecular linker remains the same. Each
acceptor has a characteristic standard reduction potential, so it
follows that the standard Gibbs energy for the electron transfer
process is different for each compound in the series. The line is 
a fit to a version of eqn 20.62 and the maximum of the parabola
occurs at −ΔrG

7 = λ = 1.2 eV = 1.2 × 102 kJ mol−1. (Reproduced
with permission from J.R. Miller et al., J. Am. Chem. Soc. 106,
3047 (1984).)

Source 1

Source 2

Detector

Fig. 20.23 In a crossed-beam experiment, state-selected molecules
are generated in two separate sources, and are directed
perpendicular to one another. The detector responds to
molecules (which may be product molecules if a chemical
reaction occurs) scattered into a chosen direction.
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the initial vibration-rotation state. When the molecules being
studied do not fluoresce efficiently, coherent anti-Stokes Raman
spectroscopy (CARS, Section 10.14) can be used to monitor the
progress of reaction. Multiphoton ionization (MPI) techniques
are also good alternatives for the study of weakly fluorescing
molecules. In MPI, the absorption by a molecule of several pho-
tons from one or more pulsed lasers results in ionization if 
the total photon energy is greater than the ionization energy of
the molecule. The angular distribution of products can be deter-
mined by reaction product imaging. In this technique, product
ions are accelerated by an electric field towards a phosphores-
cent screen and the light emitted from specific spots where the
ions struck the screen is imaged by a charge-coupled device
(CCD). An important variant of MPI is resonant multiphoton
ionization (REMPI), in which one or more photons promote 
a molecule to an electronically excited state and then additional
photons are used to generate ions from the excited state. The
power of REMPI lies in the fact that the experimenter can choose
which reactant or product to study by tuning the laser frequency
to the electronic absorption band of a specific molecule.

(b) State-to-state reaction dynamics

The concept of collision cross-section was introduced in connec-
tion with collision theory in Section 20.3, where we saw that the
second-order rate constant, kr, can be expressed as a Boltzmann-
weighted average of the reactive collision cross-section and the
relative speed of approach of the colliding reactant molecules.
We shall write eqn 20.15 as

kr = 〈σvrel〉NA (20.63)

where the angle brackets denote a Boltzmann average. Mole-
cular beam studies provide a more sophisticated version of this
quantity, for they provide the state-to-state cross-section, σnn′,
and hence the state-to-state rate constant, knn′ for the reactive

transition from initial state n of the reactants to final state n′ of
the products:

knn′ = 〈σnn′vrel〉NA (20.64)

The rate constant kr is the sum of the state-to-state rate constants
over all final states (because a reaction is successful whatever the
final state of the products) and over a Boltzmann-weighted sum
of initial states (because the reactants are initially present with a
characteristic distribution of populations at a temperature T):

(20.65)

where fn(T) is the Boltzmann factor at a temperature T. It 
follows that, if we can determine or calculate the state-to-state
cross-sections for a wide range of approach speeds and initial
and final states, then we have a route to the calculation of the
rate constant for the reaction.

20.10 Potential energy surfaces

One of the most important concepts for discussing beam results
and calculating the state-to-state collision cross-section is the
potential energy surface of a reaction, the potential energy as a
function of the relative positions of all the atoms taking part in
the reaction. Potential energy surfaces may be constructed from
experimental data, with the techniques described in Section 20.9,
and from results of quantum chemical calculations (Chapter 6).
The theoretical method requires the systematic calculation of
the energies of the system in a large number of geometrical 
arrangements. Special computational techniques, such as those
described in Chapter 6, are used to take into account electron
correlation, which arises from instantaneous interactions be-
tween electrons as they move closer to and farther from each
other in a molecule or molecular cluster. Techniques that incor-
porate electron correlation accurately are very time-consuming
and, consequently, only reactions between relatively simple par-
ticles, such as the reactions H + H2 → H2 + H and H + H2O →
OH + H2, are amenable to this type of theoretical treatment. An
alternative is to use semiempirical methods, in which results of
calculations and experimental parameters are used to construct
the potential energy surface.

To illustrate the features of a potential energy surface we 
consider the collision between an H atom and an H2 molecule.
Detailed calculations show that the approach of an atom HA

along the HB-HC axis requires less energy for reaction than any
other approach, so initially we confine our attention to a collinear
approach. Two parameters are required to define the nuclear
separations: one is the HA-HB separation RAB, and the other is
the HB-HC separation RBC.

At the start of the encounter RAB is infinite and RBC is the H2

equilibrium bond length. At the end of a successful reactive 
encounter RAB is equal to the equilibrium bond length and RBC
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Fig. 20.24 Infrared chemiluminescence from CO produced in 
the reaction O + CS → CO + S arises from the non-equilibrium
populations of the vibrational states of CO and the radiative
relaxation to equilibrium.
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is infinite. The total energy of the three-atom system depends 
on their relative separations, and can be found by doing an 
electronic structure calculation. The plot of the total energy of
the system against RAB and RBC gives the potential energy surface 
of this collinear reaction (Fig. 20.25). This surface is normally
depicted as a contour diagram (Fig. 20.26).

When RAB is very large, the variation in potential energy 
represented by the surface as RBC changes is that of an isolated
H2 molecule as its bond length is altered. A section through the 
surface at RAB = ∞, for example, is the same as the H2 bonding
potential energy curve. At the edge of the diagram where RBC is
very large, a section through the surface is the molecular poten-
tial energy curve of an isolated HAHB molecule.

The actual path of the atoms in the course of the encounter
depends on their total energy, the sum of their kinetic and 
potential energies. However, we can obtain an initial idea of 
the paths available to the system for paths that correspond to
least potential energy. For example, consider the changes in 
potential energy as HA approaches HBHC. If the HB-HC bond

length is constant during the initial approach of HA, then the 
potential energy of the H3 cluster rises along the path marked A
in Fig. 20.27. We see that the potential energy reaches a high value
as HA is pushed into the molecule and then decreases sharply as 
HC breaks off and separates to a great distance. An alternative 
reaction path can be imagined (B) in which the HB-HC bond
length increases while HA is still far away. Both paths, although
feasible if the molecules have sufficient initial kinetic energy,
take the three atoms to regions of high potential energy in the
course of the encounter.

The path of least potential energy is the one marked C, corres-
ponding to RBC lengthening as HA approaches and begins to
form a bond with HB. The HB-HC bond relaxes at the demand
of the incoming atom, and the potential energy climbs only as
far as the saddle-shaped region of the surface, to the saddle point
marked C‡. The encounter of least potential energy is one in which
the atoms take route C up the floor of the valley, through the
saddle point, and down the floor of the other valley as HC recedes
and the new HA-HB bond achieves its equilibrium length. This
path is the reaction coordinate we met earlier in this chapter.

We can now make contact with the transition state theory of
reaction rates. In terms of trajectories on potential surfaces with
a total energy close to the saddle point energy, the transition state
can be identified with a critical geometry such that every trajectory
that goes through this geometry goes on to react (Fig. 20.28).

A brief comment Most trajectories on potential energy sur-
faces do not go directly over the saddle point and therefore,
to result in a reaction, they require a total energy significantly
higher than the saddle point energy. As a result, the experi-
mentally determined activation energy is often much higher
than the calculated saddle-point energy.
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Fig. 20.25 The potential energy surface for the H + H2 → H2 + H
reaction when the atoms are constrained to be collinear.
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0

B
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C

C‡

Fig. 20.27 Various trajectories through the potential energy
surface shown in Fig. 20.26. Path A corresponds to a route 
in which RBC is held constant as HA approaches; path B
corresponds to a route in which RBC lengthens at an early stage
during the approach of HA; path C is the route along the floor 
of the potential valley.Re

Re

RBC

RAB
0

Fig. 20.26 The contour diagram (with contours of equal potential
energy) corresponding to the surface in Fig. 20.25. Re marks the
equilibrium bond length of an H2 molecule (strictly, it relates to
the arrangement when the third atom is at infinity).
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20.11 Some results from experiments and
calculations

To travel successfully from reactants to products, classically the
incoming molecules must possess enough kinetic energy to be
able to climb to the saddle point of the potential surface. We pro-
ceed with this classical argument, although quantum mechanical
tunnelling can also play an important role in reactivity, particu-
larly in hydrogen atom or electron transfer reactions. Therefore,
the shape of the surface can be explored experimentally by
changing the relative speed of approach (by selecting the beam
velocity) and the degree of vibrational excitation and observing
whether reaction occurs and whether the products emerge in a
vibrationally excited state (Fig. 20.29). For example, one ques-
tion that can be answered is whether it is better to smash the 
reactants together with a lot of translational kinetic energy or to
ensure instead that they approach in highly excited vibrational
states. Thus, is trajectory C2*, where the HBHC molecule is ini-
tially vibrationally excited, more efficient at leading to reaction
than the trajectory C1*, in which the total energy is the same but
reactants have a high translational kinetic energy?

(a) The direction of attack and separation

Figure 20.30 shows the results of a calculation of the potential
energy as an H atom approaches an H2 molecule from different
angles, the H2 bond being allowed to relax to the optimum
length in each case. The potential barrier is least for collinear 
attack, as we assumed earlier. (But we must be aware that other
lines of attack are feasible and contribute to the overall rate; 
see the brief comment above.) In contrast, Fig. 20.31 shows the
potential energy changes that occur as a Cl atom approaches an
HI molecule. The lowest barrier occurs for approaches within a
cone of half-angle 30° surrounding the H atom. The relevance 
of this result to the calculation of the steric factor of collision

theory should be noted: not every collision is successful, because
not every one lies within the reactive cone.

If the collision is sticky, so that when the reactants collide 
they orbit around each other, the products can be expected to
emerge in random directions because all memory of the approach

Potential
energy

RAB RBC

Fig. 20.28 The transition state is a set of configurations (here,
marked by the line across the saddle point) through which
successful reactive trajectories must pass.

RBC

RBC

RAB RAB
0 0

C*
1
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C*2

C3

C4

(c) (d)

Fig. 20.29 Some successful (*) and unsuccessful encounters. (a)
C1* corresponds to the path along the foot of the valley; (b) C2*
corresponds to an approach of A to a vibrating BC molecule, and
the formation of a vibrating AB molecule as C departs. (c) C3

corresponds to A approaching a non-vibrating BC molecule, but
with insufficient translational kinetic energy; (d) C4 corresponds
to A approaching a vibrating BC molecule, but still the energy,
and the phase of the vibration, is insufficient for reaction.

H
H

H
H

Fig. 20.30 An indication of how the anisotropy of the potential
energy changes as H approaches H2 with different angles of
attack. The collinear attack has the lowest potential barrier to
reaction. The surface indicates the potential energy profile along
the reaction coordinate for each configuration.
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direction has been lost. A rotation takes about 1 ps, so if the colli-
sion is over in less than that time the complex will not have 
had time to rotate and the products will be thrown off in a spe-
cific direction. In the collision of K and I2, for example, most of
the products are thrown off in the forward direction (forward
and backward directions refer to directions in a centre-of-mass 
coordinate system with the origin at the centre of mass of the
colliding reactants and collision occurring when molecules are
at the origin). This product distribution is consistent with the
harpoon mechanism (Section 20.3) because the transition takes
place at long range. In contrast, the collision of K with CH3I
leads to reaction only if the molecules approach each other very
closely. In this mechanism, K effectively bumps into a brick 
wall, and the KI product bounces out in the backward direction.
The detection of this anisotropy in the angular distribution of
products gives an indication of the distance and orientation of
approach needed for reaction, as well as showing that the event
is complete in less than 1 ps.

(b) Attractive and repulsive surfaces

Some reactions are very sensitive to whether the energy has been
predigested into a vibrational mode or left as the relative trans-
lational kinetic energy of the colliding molecules. For example, if
two HI molecules are hurled together with more than twice the
activation energy of the reaction, then no reaction occurs if all
the energy is translational. For F + HCl → Cl + HF, for example,
the reaction is about five times more efficient when the HCl is in
its first vibrational excited state than when, although HCl has
the same total energy, it is in its vibrational ground state.

The origin of these requirements can be found by examining
the potential energy surface. Figure 20.32 shows an attractive
surface in which the saddle point occurs early in the reaction 
coordinate. Figure 20.33 shows a repulsive surface in which the
saddle point occurs late. A surface that is attractive in one direc-
tion is repulsive in the reverse direction.

Consider first the attractive surface. If the original molecule is
vibrationally excited, then a collision with an incoming molecule

takes the system along C. This path is bottled up in the region of
the reactants, and does not take the system to the saddle point.
If, however, the same amount of energy is present solely as trans-
lational kinetic energy, then the system moves along C* and
travels smoothly over the saddle point into products. We can
therefore conclude that reactions with attractive potential energy
surfaces proceed more efficiently if the energy is in relative trans-
lational motion. Moreover, the potential surface shows that
once past the saddle point the trajectory runs up the steep wall 
of the product valley, and then rolls from side to side as it falls 
to the foot of the valley as the products separate. In other words,
the products emerge in a vibrationally excited state.

Now consider the repulsive surface. On trajectory C the colli-
sional energy is largely in translation. As the reactants approach,
the potential energy rises. Their path takes them up the opposing
face of the valley, and they are reflected back into the reactant 
region. This path corresponds to an unsuccessful encounter,

Unsuccessful
attack

Successful
attackI

H

Cl

Fig. 20.31 The potential energy barrier for the approach of Cl 
to HI. In this case, successful encounters occur only when Cl
approaches within a cone surrounding the H atom.

C*
‡

CC

Fig. 20.32 An attractive potential energy surface. A successful
encounter (C*) involves high translational kinetic energy and
results in a vibrationally excited product.

C

C*

C

‡

Fig. 20.33 A repulsive potential energy surface. A successful
encounter (C*) involves initial vibrational excitation and the
products have high translational kinetic energy. A reaction that
is attractive in one direction is repulsive in the reverse direction.
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even though the energy is sufficient for reaction. On C* some of
the energy is in the vibration of the reactant molecule and the
motion causes the trajectory to weave from side to side up the
valley as it approaches the saddle point. This motion may be
sufficient to tip the system round the corner to the saddle point
and then on to products. In this case, the product molecule is 
expected to be in an unexcited vibrational state. Reactions with
repulsive potential surfaces can therefore be expected to proceed
more efficiently if the excess energy is present as vibrations. This
is the case with the H + Cl2 → HCl + Cl reaction, for instance.

(c) Classical trajectories

A clear picture of the reaction event can be obtained by using
classical mechanics to calculate the trajectories of the atoms 
taking place in a reaction from a set of initial conditions, such 
as velocities, relative orientations, and internal energies of the
reacting particles. The initial values used for the internal energy
reflect the quantization of electronic, vibrational, and rotational
energies in molecules but the features of quantum mechanics
are not used explicitly in the calculation of the trajectory.

Figure 20.34 shows the result of such a calculation of the 
positions of the three atoms in the reaction H + H2 → H2 + H,
the horizontal coordinate now being time and the vertical co-
ordinate the separations. This illustration shows clearly the 
vibration of the original molecule and the approach of the 
attacking atom. The reaction itself, the switch of partners, takes
place very rapidly and is an example of a direct mode process.
The newly formed molecule shakes, but quickly settles down to
steady, harmonic vibration as the expelled atom departs. In con-
trast, Fig. 20.35 shows an example of a complex mode process,
in which the activated complex survives for an extended period.
The reaction in the figure is the exchange reaction KCl + NaBr
→ KBr + NaCl. The tetratomic activated complex survives for

about 5 ps, during which time the atoms make about 15 oscilla-
tions before dissociating into products.

(d) Quantum mechanical scattering theory

Classical trajectory calculations do not recognize the fact that
the motion of atoms, electrons, and nuclei is governed by 
quantum mechanics. The concept of trajectory then fades and 
is replaced by the unfolding of a wavefunction that represents 
initially the reactants and finally products.

Complete quantum mechanical calculations of trajectories
and rate constants are very onerous because it is necessary to
take into account all the allowed electronic, vibrational, and 
rotational states populated by each atom and molecule in the
system at a given temperature. It is common to define a ‘chan-
nel’ as a group of molecules in well-defined quantum mechan-
ically allowed states. Then, at a given temperature, there are
many channels that represent the reactants and many channels
that represent possible products, with some transitions between
channels being allowed but others not allowed. Furthermore,
not every transition leads to a chemical reaction. For example,
the process H2* + OH → H2 + (OH)*, where the asterisk denotes
an excited state, amounts to energy transfer between H2 and OH,
whereas the process H2* + OH → H2O + H represents a chemical
reaction. What complicates a quantum mechanical calculation
of rate constants even in this simple four-atom system is that
many reacting channels present at a given temperature can 
lead to the desired products H2O + H, which themselves may be
formed as many distinct channels. The cumulative reaction 
probability, N(E), at a fixed total energy E is then written as

(20.66)N E P Eij
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Fig. 20.34 The calculated trajectories for a reactive encounter
between A and a vibrating BC molecule leading to the formation
of a vibrating AB molecule. This direct-mode reaction is between
H and H2. (M. Karplus et al., J. Chem. Phys. 43, 3258 (1965).)
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complex-mode reaction, KCl + NaBr → KBr + NaCl, in which
the collision cluster has a long lifetime. (P. Brumer and M.
Karplus, Faraday Disc. Chem. Soc. 55, 80 (1973).)
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where Pij(E) is the probability for a transition between a reactant
channel i and a product channel j and the summation is over all
possible transitions that lead to product. It is then possible to
show that the rate constant is given by

(20.67)

where Q R(T) is the partition function density (the partition
function divided by the volume) of the reactants at the temper-
ature T. The significance of eqn 20.67 is that it provides a direct
connection between an experimental quantity, the rate constant,
and a theoretical quantity, N(E).

k T

N E E
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Table 20.4 Summary of uses of k

Symbol Significance

k Boltzmann’s constant

kr Rate constant

kr° Rate constant at zero ionic strength

ka, kb, . . . Rate constants for individual steps

ka′, kb′ , . . . Rate constants for individual reverse steps

k‡ Rate constant for unimolecular decay of activated complex

K Equilibrium constant (dimensionless)

Kγ Ratio of activity coefficients

K ‡ Proportionality constant in transition state theory

κ Transmission coefficient

I Equilibrium constant with one mode discarded

kf Force constant

Checklist of key ideas

1. The temperature dependence of the rate constant of 
a reaction typically follows the Arrhenius equation, 
ln kr = ln A − Ea/RT.

2. The activation energy, the parameter Ea in the Arrhenius
equation, is the minimum kinetic energy for reaction 
during a molecular encounter. The larger the activation
energy, the more sensitive the rate constant is to the
temperature.

3. In collision theory, it is supposed that the rate is
proportional to the collision frequency, a steric factor, 
and the fraction of collisions that occur with at least the
kinetic energy Ea along their lines of centres.

4. For unimolecular reactions, the steric factor can be
computed by using the RRK model.

5. A reaction in solution may be diffusion-controlled if its 
rate is controlled by the rate at which reactant molecules
encounter each other in solution. The rate of an activation-
controlled reaction is controlled by the rate at which the
encounter pair accumulates sufficient energy.

6. The material balance equation relates the overall rate 
of change of the concentration of a species to its rates 
of diffusion, convection, and reaction (eqn 20.27).

7. In transition state theory, it is supposed that an activated
complex is in equilibrium with the reactants, and that the

rate at which that complex forms products depends on the
rate at which it passes through a transition state. The result 
is the Eyring equation, kr = κ(kT/h)I c

‡.

8. The rate constant may be parametrized in terms of the Gibbs
energy, entropy, and enthalpy of activation.

9. The kinetic salt effect is the effect of an added inert salt on
the rate of a reaction between ions.

10. The rate constant of electron transfer in a donor–acceptor
complex depends on the distance between electron donor
and acceptor, the standard reaction Gibbs energy, and the
reorganization energy, λ.

11. Techniques for the study of reactive collisions include
infrared chemiluminescence, laser-induced fluorescence,
multiphoton ionization (MPI), reaction product imaging,
and resonant multiphoton ionization (REMPI).

12. A potential energy surface maps the potential energy as a
function of the relative positions of all the atoms taking 
part in a reaction. In an attractive surface, the saddle point
(the highest point) occurs early on the reaction coordinate.
In a repulsive surface, the saddle point occurs late on the
reaction coordinate.

13. Femtosecond laser techniques can be used to probe directly
the activated complex and to control the outcome of some
chemical reactions.
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Further information

Further information 20.1 The RRK model of unimolecular
reactions

To set up the RRK model, we suppose that a molecule consists of s
identical harmonic oscillators, each of which has frequency ν. In
practice, of course, the vibrational modes of a molecule have different
frequencies, but assuming that they are all the same is a good first
approximation. Next, we suppose that the vibrations are excited to 
a total energy E = nhν and then set out to calculate the number of 
ways N in which the energy can be distributed over the oscillators.

We can represent the n quanta as follows:

�������������������������������� . . .
���

These quanta must be put in s containers (the s oscillators), which can be
represented by inserting s − 1 walls, denoted by |. One such distribution is

��|����|��||���|��������|����|||�����|
���� . . . �|��

The total number of arrangements of each quantum and wall (of which
there are n + s − 1 in all) is (n + s − 1)! where, as usual, x! = x(x − 1) . . . 1.
However the n! arrangements of the n quanta are indistinguishable, as
are the (s − 1)! arrangements of the s − 1 walls. Therefore, to find N we
must divide (n + s − 1)! by these two factorials. It follows that

(20.68)

The distribution of the energy throughout the molecule means that 
it is too sparsely spread over all the modes for any particular bond to be
sufficiently highly excited to undergo dissociation. If we suppose that a
bond will break if it is excited to at least an energy E* = n*hν, then the
number of ways in which at least this energy can be localized in one 
bond is

(20.69)

To obtain this result, we isolate one critical oscillator as the one that
undergoes dissociation if it has at least n* of the quanta, leaving up to 
n − n* quanta to be accommodated in the remaining s − 1 oscillators 
(and therefore with s −2 walls in the partition in place of the s − 1 walls 
we used above). We suppose that the critical oscillator consists of a 
single level plus an array of levels like the other oscillators, and that
dissociation occurs however many quanta are in this latter array of 
levels, from 0 upwards. For example, in a system of five oscillators 
(other than the critical one) we might suppose that at least 6 quanta 
out of the 28 available must be present in the critical oscillator, then 
all the following partitions will result in dissociation:

������|�����|��������|����||�����

�������|����|��������|����||�����

��������|���|��������|����||�����

. . .

(The leftmost partition is the critical oscillator.) However, these
partitions are equivalent to
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and we see that we have the problem of permuting 28 − 6 = 22 
(in general, n − n*) quanta and 5 (in general, s − 1) walls, and therefore a
total of 27 (in general, n − n* + s − 1) objects. Therefore, the calculation
is exactly like the one above for N, except that we have to find the
number of distinguishable permutations of n − n* quanta in s containers
(and therefore s − 1 walls). The number N* is therefore obtained from
eqn 20.68 by replacing n by n − n*.

From the preceding discussion we conclude that the probability that
one specific oscillator will have undergone sufficient excitation to
dissociate is the ratio N*/N, which is

(20.70)

Equation 20.70 is still awkward to use, even when written out in terms
of its factors:

However, because s − 1 is small (in the sense s − 1 << n − n*), we can
approximate this expression by

Because the energy of the excited molecule is E = nhν and the critical
energy is E* = n*hν, this expression may be written

The dispersal of the energy of the collision reduces the rate constant
below its simple ‘Lindemann’ form. To obtain the observed rate constant
we should multiply the latter by the probability that the energy will in
fact be localized in the bond of interest. Doing so gives eqn 20.19b, with
the probability P identified with the P-factor of ordinary collision theory.

Further information 20.2 The Gibbs energy of activation of
electron transfer

The simplest way to derive an expression for the Gibbs energy of
activation of electron transfer processes is to construct a model in 
which the surfaces for DA (the ‘reactant complex’, denoted R) and for
D+A− (the ‘product complex’, denoted P) are described by classical
harmonic oscillators with identical reduced masses μ and angular
frequencies ω, but displaced minima, as shown in Fig. 20.20. The 
molar Gibbs energies Gm,R(q) and Gm,P(q) of the reactant and product
complexes, respectively, may be written as
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Gm,R(q) = 1–2 NAμω2(q − q0
R)2 + Gm,R(q0

R) (20.71a)

Gm,P(q) = 1–2 NAμω2(q − q0
P)2 + Gm,P(q0

P) (20.71b)

where q0
R and q0

P are the values of q at which the minima of the reactant
and product parabolas occur, respectively. The standard reaction Gibbs
energy for the electron transfer process DA → D+A− is Δ rG

7 = Gm,P(q0
P) −

Gm,R(q0
R), the difference in standard molar Gibbs energy between the

minima of the parabolas. In Fig. 20.20, ΔrG
7 < 0.

We also note that q*, the value of q corresponding to the transition
state of the complex, may be written in terms of the parameter α, the
fractional change in q:

q* = q0
R + α(q0

P − q0
R) (20.72)

We see from Fig. 20.20 that Δ‡G = Gm,R(q*) − Gm,R(q0
R). It then follows

from eqns 20.71a, 20.71b, and 20.72 that

Δ‡G = 1–2 NAμω2(q* − q0
R)2 = 1–2 NAμω2{α(q0

P − q0
R)}2 (20.73)

We now define the reorganization energy, λ, as

λ = 1–2 NAμω2(q0
P − q0

R)2 (20.74)

which can be interpreted as Gm,R(q0
P) − Gm,R(q0

R) and, consequently, as
the (Gibbs) energy required to deform the equilibrium configuration 
of DA to the equilibrium configuration of D+A− (as shown in Fig. 20.20).
It follows from eqns 20.73 and 20.74 that

Δ‡G = α2λ (20.75)

Because Gm,R(q*) = Gm,P(q*), it follows from eqns 20.71b, 20.74, and
20.75 that

α2λ = 1–2 NAμω2{(α − 1)(q0
P − q0

R)}2 + ΔrG
7 = (α − 1)λ + ΔrG

7 (20.76)

which implies that

(20.77)

By combining eqns 20.75 and 20.77, we obtain eqn 20.59. We can obtain
an identical relation if we allow the harmonic oscillators to have different
angular frequencies and hence different curvatures.
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Discussion questions

20.1 Define the terms in and discuss the generality of the expression 
ln kr = ln A − Ea/RT.

20.2 Is it possible for the activation energy of a reaction to be negative?
Explain your conclusion and provide a molecular interpretation.

20.3 Discuss how the collision theory of gases builds upon the kinetic-
molecular theory.

20.4 Describe the essential features of the harpoon mechanism.

20.5 Discuss the significance of the steric P-factor in the RRK model.

20.6 Distinguish between a diffusion-controlled reaction and an
activation-controlled reaction. Do both have activation energies?

20.7 Describe in outline the formulation of the Eyring equation.

20.8 Explain the physical origin of the kinetic salt effect. What might be
the effect of the relative permittivity of the medium?

20.9 Discuss how the following factors determine the rate of electron
transfer in homogeneous systems: the distance between electron donor

and acceptor, the standard Gibbs energy of the process, and the
reorganization energy of redox active species and the surrounding
medium.

20.10 Describe how the following techniques are used in the study 
of chemical dynamics: infrared chemiluminescence, laser-induced
fluorescence, multiphoton ionization, resonant multiphoton ionization,
reaction product imaging, and femtosecond spectroscopy.

20.11 Discuss the relationship between the saddle-point energy and 
the activation energy of a reaction.

20.12 A method for directing the outcome of a chemical reaction
consists of using molecular beams to control the relative orientations of
reactants during a collision. Consider the reaction Rb + CH3I → RbI +
CH3. How should CH3I molecules and Rb atoms be oriented to
maximize the production of RbI?

20.13 Consider a reaction with an attractive potential energy surface.
Discuss how the initial distribution of reactant energy affects how efficiently
the reaction proceeds. Repeat for a repulsive potential energy surface.

Exercises

20.1(a) The rate constant for the decomposition of a certain substance is
3.80 × 10−3 dm3 mol−1 s−1 at 35°C and 2.67 × 10−2 dm3 mol−1 s−1 at 50°C.
Evaluate the Arrhenius parameters of the reaction.

20.1(b) The rate constant for the decomposition of a certain substance is
2.25 × 10−2 dm3 mol−1 s−1 at 29°C and 4.01 × 10−2 dm3 mol−1 s−1 at 37°C.
Evaluate the Arrhenius parameters of the reaction.

20.2(a) The rate of a chemical reaction is found to triple when the
temperature is raised from 24°C to 49°C. Determine the activation energy.

20.2(b) The rate of a chemical reaction is found to double when the
temperature is raised from 25°C to 35°C. Determine the activation
energy.

20.3(a) The mechanism of a composite reaction consists of a fast 
pre-equilibrium step with forward and reverse activation energies of 
25 kJ mol−1 and 38 kJ mol−1, respectively, followed by an elementary step
of activation energy 10 kJ mol−1. What is the activation energy of the
composite reaction?
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20.3(b) The mechanism of a composite reaction consists of a fast 
pre-equilibrium step with forward and reverse activation energies 
of 27 kJ mol−1 and 35 kJ mol−1, respectively, followed by an elementary
step of activation energy 15 kJ mol−1. What is the activation energy of the
composite reaction?

20.4(a) Calculate the collision frequency, z, and the collision density, Z,
in ammonia, R = 190 pm, at 30°C and 120 kPa. What is the percentage
increase when the temperature is raised by 10 K at constant volume?

20.4(b) Calculate the collision frequency, z, and the collision density, Z, in
carbon monoxide, R = 180 pm at 30°C and 120 kPa. What is the percentage
increase when the temperature is raised by 10 K at constant volume?

20.5(a) Collision theory depends on knowing the fraction of molecular
collisions having at least the kinetic energy Ea along the line of flight.
What is this fraction when (a) Ea = 20 kJ mol−1, (b) Ea = 100 kJ mol−1

at (i) 350 K and (ii) 900 K?

20.5(b) Collision theory depends on knowing the fraction of molecular
collisions having at least the kinetic energy Ea along the line of flight.
What is this fraction when (a) Ea = 15 kJ mol−1, (b) Ea = 150 kJ mol−1

at (i) 300 K and (ii) 800 K?

20.6(a) Calculate the percentage increase in the fractions in Exercise
20.5a when the temperature is raised by 10 K.

20.6(b) Calculate the percentage increase in the fractions in Exercise
20.5b when the temperature is raised by 10 K.

20.7(a) Use the collision theory of gas-phase reactions to calculate the
theoretical value of the second-order rate constant for the reaction 
H2(g) + I2(g) → 2 HI(g) at 650 K, assuming that it is elementary 
and bimolecular. The collision cross-section is 0.36 nm2, the reduced
mass is 3.32 × 10−27 kg, and the activation energy is 171 kJ mol−1.
(Assume a steric factor of 1.)

20.7(b) Use the collision theory of gas-phase reactions to calculate 
the theoretical value of the second-order rate constant for the reaction
D2(g) + Br2(g) → 2 DBr(g) at 450 K, assuming that it is elementary 
and bimolecular. Take the collision cross-section as 0.30 nm2, the
reduced mass as 3.930mu, and the activation energy as 200 kJ mol−1.
(Assume a steric factor of 1.)

20.8(a) A typical diffusion coefficient for small molecules in aqueous
solution at 25°C is 6 × 10−9 m2 s−1. If the critical reaction distance is 
0.5 nm, what value is expected for the second-order rate constant for a
diffusion-controlled reaction?

20.8(b) Suppose that the typical diffusion coefficient for a reactant in
aqueous solution at 25°C is 5.2 × 10−9 m2 s−1. If the critical reaction
distance is 0.4 nm, what value is expected for the second-order rate
constant for the diffusion-controlled reaction?

20.9(a) Calculate the magnitude of the diffusion-controlled rate 
constant at 298 K for a species in (a) water, (b) pentane. The viscosities
are 1.00 × 10−3 kg m−1 s−1, and 2.2 × 10−4 kg m−1 s−1, respectively.

20.9(b) Calculate the magnitude of the diffusion-controlled rate constant
at 298 K for a species in (a) decylbenzene, (b) concentrated sulfuric acid.
The viscosities are 3.36 cP and 27 cP, respectively.

20.10(a) Calculate the magnitude of the diffusion-controlled rate
constant at 320 K for the recombination of two atoms in water, for 
which η = 0.89 cP. Assuming the concentration of the reacting species is
1.5 mmol dm−3 initially, how long does it take for the concentration of
the atoms to fall to half that value? Assume the reaction is elementary.

20.10(b) Calculate the magnitude of the diffusion-controlled rate
constant at 320 K for the recombination of two atoms in benzene, for

which η = 0.601 cP. Assuming the concentration of the reacting species 
is 2.0 mmol dm−3 initially, how long does it take for the concentration 
of the atoms to fall to half that value? Assume the reaction is elementary.

20.11(a) For the gaseous reaction A + B → P, the reactive cross-section
obtained from the experimental value of the pre-exponential factor is 
9.2 × 10−22 m2. The collision cross-sections of A and B estimated from
the transport properties are 0.95 and 0.65 nm2, respectively. Calculate
the P-factor for the reaction.

20.11(b) For the gaseous reaction A + B → P, the reactive cross-section
obtained from the experimental value of the pre-exponential factor is 
8.7 × 10−22 m2. The collision cross-sections of A and B estimated from
the transport properties are 0.88 and 0.40 nm2, respectively. Calculate
the P-factor for the reaction.

20.12(a) Two neutral species, A and B, with diameters 655 pm and 
1820 pm, respectively, undergo the diffusion-controlled reaction 
A + B → P in a solvent of viscosity 2.93 × 10−3 kg m−1 s−1 at 40°C.
Calculate the initial rate d[P]/dt if the initial concentrations of A and B
are 0.170 mol dm−3 and 0.350 mol dm−3, respectively.

20.12(b) Two neutral species, A and B, with diameters 421 pm and 
945 pm, respectively, undergo the diffusion-controlled reaction A + B 
→ P in a solvent of viscosity 1.35 cP at 20°C. Calculate the initial rate
d[P]/dt if the initial concentrations of A and B are 0.155 mol dm−3 and
0.195 mol dm−3, respectively.

20.13(a) The reaction of propylxanthate ion in acetic acid buffer solutions
has the mechanism A− + H+ → P. Near 30°C the rate constant is given 
by the empirical expression kr = (2.05 × 1013)e−(8681 K)/T dm3 mol−1 s−1.
Evaluate the energy and entropy of activation at 30°C.

20.13(b) The reaction A− + H+ → P has a rate constant given by the
empirical expression kr = (6.92 × 1012)e−(5925 K)/T dm3 mol−1 s−1. 
Evaluate the energy and entropy of activation at 25°C.

20.14(a) When the reaction in Exercise 20.13a occurs in a dioxane/
water mixture that is 30 per cent dioxane by mass, the rate constant fits 
kr = (7.78 × 1014)e−(9134 K)/T dm3 mol−1 s−1 near 30°C. Calculate Δ‡G for
the reaction at 30°C.

20.14(b) A rate constant is found to fit the expression kr = (4.98 ×
1013)e−(4972 K)/T dm3 mol−1 s−1 near 25°C. Calculate Δ‡G for the reaction
at 25°C.

20.15(a) The gas-phase association reaction between F2 and IF5 is first
order in each of the reactants. The energy of activation for the reaction is
58.6 kJ mol−1. At 65°C the rate constant is 7.84 × 10−3 kPa−1 s−1. Calculate
the entropy of activation at 65°C.

20.15(b) A gas-phase recombination reaction is first order in each of the
reactants. The energy of activation for the reaction is 39.7 kJ mol−1. At 65°C
the rate constant is 0.35 m3 s−1. Calculate the entropy of activation at 65°C.

20.16(a) Calculate the entropy of activation for a collision between two
structureless particles at 300 K, taking M = 65 g mol−1 and σ* = 0.35 nm2.

20.16(b) Calculate the entropy of activation for a collision between two
structureless particles at 450 K, taking M = 92 g mol−1 and σ* = 0.45 nm2.

20.17(a) The pre-exponential factor for the gas-phase decomposition 
of a gas at low pressures is 4.6 × 1012 dm3 mol−1 s−1 and its activation
energy is 10.0 kJ mol−1. What are (a) the entropy of activation, (b) the
enthalpy of activation, (c) the Gibbs energy of activation at 298 K?

20.17(b) The pre-exponential factor for a gas-phase decomposition 
of a gas at low pressures is 2.3 × 1013 dm3 mol−1 s−1 and its activation
energy is 30.0 kJ mol−1. What are (a) the entropy of activation, (b) the
enthalpy of activation, (c) the Gibbs energy of activation at 298 K?
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20.18(a) The rate constant of the reaction H2O2(aq) + I−(aq) + H+(aq) 
→ H2O(l) + HIO(aq) is sensitive to the ionic strength of the aqueous
solution in which the reaction occurs. At 25°C, kr = 12.2 dm6 mol−2

min−1 at an ionic strength of 0.0525. Use the Debye–Hückel limiting 
law to estimate the rate constant at zero ionic strength.

20.18(b) At 25°C, kr = 1.55 dm6 mol−2 min−1 at an ionic strength of
0.0241 for a reaction in which the rate-determining step involves the
encounter of two singly charged cations. Use the Debye–Hückel limiting
law to estimate the rate constant at zero ionic strength.

20.19(a) For a pair of electron donor and acceptor at 298 K, 
HDA(r) = 0.04 cm−1, ΔrG

7 = −0.185 eV, and ket = 37.5 s−1. Estimate 
the value of the reorganization energy.

20.19(b) For a pair of electron donor and acceptor at 298 K, 
ket = 2.02 × 105 s−1 for ΔrG

7 = −0.665 eV. The standard reaction Gibbs
energy changes to ΔrG

7 = −0.975 eV when a substituent is added to the
electron acceptor and the rate constant for electron transfer changes to
ket = 3.33 × 106 s−1. Assuming that the distance between donor and acceptor
is the same in both experiments, estimate the values of HDA(r) and λ.

20.20(a) For a pair of electron donor and acceptor, ket = 2.02 × 105 s−1

when r = 1.11 nm and ket = 4.51 × 104 s−1 when r = 1.23 nm. Assuming
that ΔrG

7 and λ are the same in both experiments, estimate the value 
of β.

20.20(b) Refer to Exercise 20.20a. Estimate the value of ket when 
r = 1.59 nm.

Problems*

Numerical problems

20.1 A first-order decomposition reaction is observed to have the
following rate constants at the indicated temperatures. Estimate the
activation energy.

kr /(10−3 s−1) 2.46 45.1 576

θ/°C 0 20.0 40.0

20.2 The second-order rate constants for the reaction of oxygen atoms
with aromatic hydrocarbons have been measured (R. Atkinson and 
J.N. Pitts, J. Phys. Chem. 79, 295 (1975)). In the reaction with benzene
the rate constants are 1.44 × 107 dm3 mol−1 s−1 at 300.3 K, 3.03 × 107 dm3

mol−1 s−1 at 341.2 K, and 6.9 × 107 dm3 mol−1 s−1 at 392.2 K. Find the 
pre-exponential factor and activation energy of the reaction.

20.3‡ P.W. Seakins, et al. ( J. Phys. Chem. 96, 9847 (1992)) measured the
forward and reverse rate constants for the gas-phase reaction C2H5(g) +
HBr(g) → C2H6(g) + Br(g) and used their findings to compute
thermodynamic parameters for C2H5. The reaction is bimolecular in
both directions with Arrhenius parameters A = 1.0 × 109 dm3 mol−1 s−1,
Ea = −4.2 kJ mol−1 for the forward reaction and A = 1.4 × 1011 dm3 mol−1

s−1, Ea = 53.3 kJ mol−1 for the reverse reaction. Compute Δf H
7, S 7

m, and
Δf G

7 of C2H5 at 298 K.

20.4 In the dimerization of methyl radicals at 25°C, the experimental
pre-exponential factor is 2.4 × 1010 dm3 mol−1 s−1. What are (a) the
reactive cross-section, (b) the P-factor for the reaction if the C-H 
bond length is 154 pm?

20.5 Nitrogen dioxide reacts bimolecularly in the gas phase to give
2 NO + O2. The temperature dependence of the second-order rate
constant for the rate law d[P]/dt = kr[NO2]2 is given below. What 
are the P-factor and the reactive cross-section for the reaction?

T/K 600 700 800 1000

kr /(cm3 mol−1 s−1) 4.6 × 102 9.7 × 103 1.3 × 105 3.1 × 106

Take σ = 0.60 nm2.

20.6 The diameter of the methyl radical is about 308 pm. What is the
maximum rate constant in the expression d[C2H6]/dt = kr[CH3]2 for
second-order recombination of radicals at room temperature? 10 per

cent of a 1.0-dm3 sample of ethane at 298 K and 100 kPa is dissociated
into methyl radicals. What is the minimum time for 90 per cent
recombination?

20.7 The rates of thermolysis of a variety of cis- and trans-azoalkanes
have been measured over a range of temperatures in order to settle a
controversy concerning the mechanism of the reaction. In ethanol 
an unstable cis-azoalkane decomposed at a rate that was followed by
observing the N2 evolution, and this led to the rate constants listed 
below (P.S. Engel and D.J. Bishop, J. Am. Chem. Soc. 97, 6754 (1975)).
Calculate the enthalpy, entropy, energy, and Gibbs energy of activation
at −20°C.

θ/°C −24.82 −20.73 −17.02 −13.00 −8.95

104 × kr /s−1 1.22 2.31 4.39 8.50 14.3

20.8 In an experimental study of a bimolecular reaction in aqueous
solution, the second-order rate constant was measured at 25°C and at a
variety of ionic strengths and the results are tabulated below. It is known
that a singly charged ion is involved in the rate-determining step. What
is the charge on the other ion involved?

I/(mol kg−1) 0.0025 0.0037 0.0045 0.0065 0.0085

kr/(dm3 mol−1 s−1) 1.05 1.12 1.16 1.18 1.26

20.9 The rate constant of the reaction I−(aq) + H2O2(aq) →
H2O(l) + IO−(aq) varies slowly with ionic strength, even though 
the Debye–Hückel limiting law predicts no effect. Use the following 
data from 25°C to find the dependence of log kr on the ionic 
strength:

I/(mol kg−1) 0.0207 0.0525 0.0925 0.1575

kr/(dm3 mol−1 min−1) 0.663 0.670 0.679 0.694

Evaluate the limiting value of kr at zero ionic strength. What does the
result suggest for the dependence of log γ on ionic strength for a neutral
molecule in an electrolyte solution?

20.10 The total cross-sections for reactions between alkali metal atoms
and halogen molecules are given in the table below (R.D. Levine and R.B.
Bernstein, Molecular reaction dynamics, Clarendon Press, Oxford, p. 72
(1974)). Assess the data in terms of the harpoon mechanism.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta and Marshall Cady.
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σ*/nm2 Cl2 Br2 I2

Na 1.24 1.16 0.97

K 1.54 1.51 1.27

Rb 1.90 1.97 1.67

Cs 1.96 2.04 1.95

Electron affinities are approximately 1.3 eV (Cl2), 1.2 eV (Br2), and 
1.7 eV (I2), and ionization energies are 5.1 eV (Na), 4.3 eV (K), 4.2 eV
(Rb), and 3.9 eV (Cs).

20.11‡ M. Cyfert et al. (Int. J. Chem. Kinet. 28, 103 (1996)) examined 
the oxidation of tris(1,10-phenanthroline)iron(II) by periodate in
aqueous solution, a reaction that shows autocatalytic behaviour. To
assess the kinetic salt effect, they measured rate constants at a variety of
concentrations of Na2SO4 far in excess of reactant concentrations and
reported the following data:

b(Na2SO4)/(mol kg−1) 0.2 0.15 0.1 0.05 0.025 0.0125 0.005

kr/(dm3/2 mol−1/2 s−1) 0.462 0.430 0.390 0.321 0.283 0.252 0.224

What can be inferred about the charge of the activated complex of the
rate-determining step?

20.12‡ J. Czarnowski and H.J. Schuhmacher (Chem. Phys. Lett. 17, 
235 (1972)) suggested the following mechanism for the thermal
decomposition of F2O in the reaction 2 F2O(g) → 2 F2(g) + O2(g):

(1) F2O + F2O → F + OF + F2O ka

(2) F + F2O → F2 + OF kb

(3) OF + OF → O2 + F + F kc

(4) F + F + F2O → F2 + F2O kd

(a) Using the steady-state approximation, show that this mechanism 
is consistent with the experimental rate law −d[F2O]/dt = kr[F2O]2 +
kr′[F2O]3/2. (b) The experimentally determined Arrhenius parameters in
the range 501–583 K are A = 7.8 × 1013 dm3 mol−1 s−1, Ea/R = 1.935 ×
104 K for kr and A = 2.3 × 1010 dm3 mol−1 s−1, Ea/R = 1.691 × 104 K for kr′.
At 540 K, ΔfH

7(F2O) = +24.41 kJ mol−1, D(F-F) = 160.6 kJ mol−1, and
D(O-O) = 498.2 kJ mol−1. Estimate the bond dissociation energies of
the first and second F-O bonds and the Arrhenius activation energy 
of reaction 2.

20.13‡ For the gas-phase reaction A + A → A2, the experimental 
rate constant, kr, has been fitted to the Arrhenius equation with the 
pre-exponential factor A = 4.07 × 105 dm3 mol−1 s−1 at 300 K and an
activation energy of 65.43 kJ mol−1. Calculate Δ‡S, Δ‡H, Δ‡U, and Δ‡G
for the reaction.

20.14‡ One of the most historically significant studies of chemical
reaction rates was that by M. Bodenstein (Z. physik. Chem. 29, 295
(1899)) of the gas-phase reaction 2 HI(g) → H2(g) + I2(g) and its reverse,
with rate constants kr and k r′, respectively. The measured rate constants
as a function of temperature are:

T/K 647 666 683 700 716 781

kr/(22.4 dm3 mol−1 min−1) 0.230 0.588 1.37 3.10 6.70 105.9

kr′/(22.4 dm3 mol−1 min−1) 0.0140 0.0379 0.0659 0.172 0.375 3.58

Demonstrate that these data are consistent with the collision theory of
bimolecular gas-phase reactions.

20.15 Consider the reaction D + A → D+ + A−. The rate constant kr
may be determined experimentally or may be predicted by the Marcus
cross-relation

kr = (kDDkAAK)1/2 f

where kDD and kAA are the experimental rate constants for the electron
self-exchange processes *D + D+ → *D+ + D and *A + A+ → *A+ + A,

respectively, and f is a function of K = [D+][A−]/[D][A], kDD, kAA, and the
collision frequencies (see Problem 20.27 for a derivation of the Marcus
cross-relation). It is common to make the assumption that f ≈ 1. Use the
approximate form of the Marcus relation to estimate the rate constant
for the reaction Ru(bpy)3

3+ + Fe(H2O)6
2+ → Ru(bpy)3

2+ + Fe(H2O)6
3+,

where bpy stands for 4,4′-bipyridine. The following data are useful:

Ru(bpy)3
3+ + e− → Ru(bpy)3

2+ E 7 = 1.26 V

Fe(H2O)6
3+ + e− → Fe(H2O)6

2+ E 7 = 0.77 V

*Ru(bpy)3
3+ + Ru(bpy)3

2+ → *Ru(bpy)3
2+ + Ru(bpy)3

3+

kRu = 4.0 × 108 dm3 mol−1 s−1

*Fe(H2O)6
3+ + Fe(H2O)6

2+ → *Fe(H2O)6
2+ + Fe(H2O)6

3+

kFe = 4.2 dm3 mol−1 s−1

Theoretical problems

20.16 Show that the definition of Ea given in eqn 20.2 reduces to eqn 20.1
for a temperature-independent activation energy.

20.17 Confirm that eqn 20.29 is a solution of eqn 20.28, where [J] is a
solution of the same equation but with kr = 0 and for the same initial
conditions.

20.18 Evaluate [J]* numerically using mathematical software for
integration in eqn 20.29, and explore the effect of increasing reaction
rate constant on the spatial distribution of J.

20.19 Estimate the orders of magnitude of the partition functions
involved in a rate expression. State the order of magnitude of q T

m/NA, 
q R, q V, q E for typical molecules. Check that in the collision of two
structureless molecules the order of magnitude of the pre-exponential
factor is of the same order as that predicted by collision theory. Go on to
estimate the P-factor for a reaction in which A + B → P, and A and B are
non-linear triatomic molecules.

20.20 Use the Debye–Hückel limiting law to show that changes in 
ionic strength can affect the rate of reaction catalysed by H+ from the
deprotonation of a weak acid. Consider the mechanism: H+(aq) + B(aq)
→ P, where H+ comes from the deprotonation of the weak acid, HA. The
weak acid has a fixed concentration. First show that log [H+], derived
from the ionization of HA, depends on the activity coefficients of ions
and thus depends on the ionic strength. Then find the relationship
between log(rate) and log [H+] to show that the rate also depends 
on the ionic strength.

20.21 The Eyring equation can also be applied to physical processes. 
As an example, consider the rate of diffusion of an atom stuck to the
surface of a solid. Suppose that in order to move from one site to another
it has to reach the top of the barrier where it can vibrate classically in the
vertical direction and in one horizontal direction, but vibration along 
the other horizontal direction takes it into the neighbouring site. Find 
an expression for the rate of diffusion, and evaluate it for W atoms 
on a tungsten surface (Ea = 60 kJ mol−1). Suppose that the vibration
frequencies at the transition state are (a) the same as, (b) one-half 
the value for the adsorbed atom. What is the value of the diffusion
coefficient D at 500 K? (Take the site separation as 316 pm and 
ν‡ = 1 × 1011 Hz.)

20.22 Suppose now that the adsorbed, migrating species treated in
Problem 20.21 is a spherical molecule, and that it can rotate classically 
as well as vibrate at the top of the barrier, but that at the adsorption site
itself it can only vibrate. What effect does this have on the diffusion
constant? Take the molecule to be methane, for which è = 5.24 cm−1.

20.23 Show that the intensities of a molecular beam before and after
passing through a chamber of length L containing inert scattering atoms
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are related by I = I0e−N σL, where σ is the collision cross-section and N the
number density of scattering atoms.

20.24 In a molecular beam experiment to measure collision cross-
sections it was found that the intensity of a CsCl beam was reduced to 
60 per cent of its intensity on passage through CH2F2 at 10 μTorr, but
that when the target was Ar at the same pressure the intensity was
reduced only by 10 per cent. What are the relative cross-sections of 
the two types of collision? Why is one much larger than the other?

20.25‡ Show that bimolecular reactions between non-linear molecules
are much slower than between atoms even when the activation energies
of both reactions are equal. Use transition state theory and make the
following assumptions. (1) All vibrational partition functions are close
to unity; (2) all rotational partition functions are approximately 
1 × 101.5, which is a reasonable order of magnitude number; (3) 
the translational partition function for each species is 1 × 1026.

20.26 This exercise gives some familiarity with the difficulties involved 
in predicting the structure of activated complexes. It also demonstrates
the importance of femtosecond spectroscopy to our understanding 
of chemical dynamics because direct experimental observation of the
activated complex removes much of the ambiguity of theoretical
predictions. Consider the attack of H on D2, which is one step in the 
H2 + D2 reaction. (a) Suppose that the H approaches D2 from the side
and forms a complex in the form of an isosceles triangle. Take the H–D
distance as 30 per cent greater than in H2 (74 pm) and the D–D distance
as 20 per cent greater than in H2. Let the critical coordinate be the
antisymmetric stretching vibration in which one H–D bond stretches as
the other shortens. Let all the vibrations be at about 1000 cm−1. Estimate
kr for this reaction at 400 K using the experimental activation energy of
about 35 kJ mol−1. (b) Now change the model of the activated complex
in part (a) and make it linear. Use the same estimated molecular bond
lengths and vibrational frequencies to calculate kr for this choice of
model. (c) Clearly, there is much scope for modifying the parameters 
of the models of the activated complex. Use mathematical software or
write and run a program that allows you to vary the structure of the
complex and the parameters in a plausible way, and look for a model 
(or more than one model) that gives a value of kr close to the
experimental value, 4 × 105 dm3 mol−1 s−1.

20.27 Derive the approximate form of the Marcus cross-relation, 
kr = (kDDkAAK)1/2 (Problem 20.15), by following these steps. (a) Use 
eqn 20.59 to write expressions for Δ‡G, Δ‡GDD, and Δ‡GAA, keeping in
mind that ΔrG

7 = 0 for the electron self-exchange reactions. (b) Assume
that the reorganization energy λDA for the reaction D + A → D+ + A− is
the average of the reorganization energies λDD and λAA of the electron
self-exchange reactions. Then show that, in the limit of small magnitude
of ΔrG

7, or |ΔrG
7 | << λDA,

Δ‡G = 1–2 (Δ‡GDD + Δ‡GAA + Δ rG
7)

where Δ rG
7 is the standard Gibbs energy for the reaction D + A → D+ +

A−. (c) Use an equation of the form of eqn 20.56 to write expressions 
for kDD and kAA. (d) Use eqn 20.56 and the result above to write an
expression for kr. (e) Complete the derivation by using the results from
part (c), the relation K = e−ΔrG

7/RT, and assuming that all κν‡ terms,
which may be interpreted as collision frequencies, are identical.

Applications: to environmental science and biochemistry

20.28‡ R. Atkinson ( J. Phys. Chem. Ref. Data 26, 215 (1997)) has
reviewed a large set of rate constants relevant to the atmospheric
chemistry of volatile organic compounds. The recommended rate
constant for the bimolecular association of O2 with an alkyl radical 
R at 298 K is 4.7 × 109 dm3 mol−1 s−1 for R = C2H5 and 8.4 × 109 dm3

mol−1 s−1 for R = cyclohexyl. Assuming no energy barrier, compute the

steric factor, P, for each reaction. (Hint. Obtain collision diameters from
collision cross-sections of similar molecules in the Data section.)

20.29‡ The compound α-tocopherol, a form of vitamin E, is a 
powerful antioxidant that may help to maintain the integrity of
biological membranes. R.H. Bisby and A.W. Parker ( J. Am. Chem. 
Soc. 117, 5664 (1995)) studied the reaction of photochemically excited
duroquinone with the antioxidant in ethanol. Once the duroquinone
was photochemically excited, a bimolecular reaction took place at a 
rate described as diffusion limited. (a) Estimate the rate constant for a
diffusion-limited reaction in ethanol. (b) The reported rate constant was
2.77 × 109 dm3 mol−1 s−1; estimate the critical reaction distance if the sum
of diffusion constants is 1 × 10−9 m2 s−1.

20.30 The study of conditions that optimize the association of 
proteins in solution guides the design of protocols for formation 
of large crystals that are amenable to analysis by the X-ray diffraction
techniques discussed in Chapter 9. It is important to characterize 
protein dimerization because the process is considered to be the rate-
determining step in the growth of crystals of many proteins. Consider
the variation with ionic strength of the rate constant of dimerization in
aqueous solution of a cationic protein P:

I/(mol kg−1) 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350

kr/k r° 8.10 13.30 20.50 27.80 38.10 52.00

What can be deduced about the charge of P?

20.31 A useful strategy for the study of electron transfer in proteins
consists of attaching an electroactive species to the protein’s surface 
and then measuring ket between the attached species and an electroactive
protein co-factor. J.W. Winkler and H.B. Gray (Chem. Rev. 92, 369
(1992)) summarize data for cytochrome c modified by replacement of
the haem iron by a zinc ion, resulting in a zinc–porphyrin (ZnP) group
in the interior of the protein, and by attachment of a ruthenium ion
complex to a surface histidine aminoacid. The edge-to-edge distance
between the electroactive species was thus fixed at 1.23 nm. A variety of
ruthenium ion complexes with different standard potentials was used.
For each ruthenium-modified protein, either the Ru2+ → ZnP+ or the
ZnP* → Ru3+, in which the electron donor is an electronically excited
state of the zinc–porphyrin group formed by laser excitation, was
monitored. This arrangement leads to different standard reaction Gibbs
energies because the redox couples ZnP+/ZnP and ZnP+/ZnP* have
different standard potentials, with the electronically excited porphyrin
being a more powerful reductant. Use the following data to estimate the
reorganization energy for this system:

−Δ rG
7/eV 0.665 0.705 0.745 0.975 1.015 1.055

ket/(106 s−1) 0.657 1.52 1.12 8.99 5.76 10.1

20.32 The photosynthetic reaction centre of the purple photosynthetic
bacterium Rhodopseudomonas viridis contains a number of bound 
co-factors that participate in electron transfer reactions. The following
table shows data compiled by Moser et al. (Nature 355, 796 (1992)) on
the rate constants for electron transfer between different co-factors and
their edge-to-edge distances:

Reaction BChl− → BPh BPh− → BChl2
+ BPh− → QA cyt c559 → BChl2

+

r/nm 0.48 0.95 0.96 1.23

ket/s
−1 1.58 × 1012 3.98 × 109 1.00 × 109 1.58 × 108

Reaction QA
− → QB QA

− → BChl2
+

r/nm 1.35 2.24

ket/s
−1 3.98 × 107 63.1

(BChl, bacteriochlorophyll; BChl2, bacteriochlorophyll dimer,
functionally distinct from BChl; BPh, bacteriophaeophytin; QA and QB,
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quinone molecules bound to two distinct sites; cyt c559, a cytochrome
bound to the reaction centre complex). Are these data in agreement with
the behaviour predicted by eqn 20.61? If so, evaluate the value of β.

20.33 The rate constant for electron transfer between a cytochrome c
and the bacteriochlorophyll dimer of the reaction centre of the purple
bacterium Rhodobacter sphaeroides (Problem 20.32) decreases with
decreasing temperature in the range 300 K to 130 K. Below 130 K, the
rate constant becomes independent of temperature. Account for these
results.

20.34‡ Methane is a byproduct of a number of natural processes (such as
digestion of cellulose in ruminant animals, anaerobic decomposition of
organic waste matter) and industrial processes (such as food production
and fossil fuel use). Reaction with the hydroxyl radical OH is the main
path by which CH4 is removed from the lower atmosphere. T. Gierczak
et al. ( J. Phys. Chem. A 101, 3125 (1997)) measured the rate constants 
for the elementary bimolecular gas-phase reaction of methane with 
the hydroxyl radical over a range of temperatures of importance to

atmospheric chemistry. Deduce the Arrhenius parameters A and Ea from
the following measurements:

T/K 295 223 218 213 206 200 195

kr /(106 dm3 mol−1 s−1) 3.55 0.494 0.452 0.379 0.295 0.241 0.217

20.35‡ As we saw in Problem 20.34, reaction with the hydroxyl radical
OH is the main path by which CH4, a byproduct of many natural and
industrial processes, is removed from the lower atmosphere. T. Gierczak
et al. ( J. Phys. Chem. A 101, 3125 (1997)) measured the rate constants 
for the bimolecular gas-phase reaction CH4(g) + OH(g) → CH3(g) +
H2O(g) and found A = 1.13 × 109 dm3 mol−1 s−1 and Ea = 14.1 kJ mol−1

for the Arrhenius parameters. (a) Estimate the rate of consumption of
CH4. Take the average OH concentration to be 3.0 × 10−15 mol dm−3,
that of CH4 to be 4.0 × 10−8 mol dm−3, and the temperature to be 
−10°C. (b) Estimate the global annual mass of CH4 consumed by 
this reaction (which is slightly less than the amount introduced to the
atmosphere) given an effective volume for the Earth’s lower atmosphere
of 4 × 1021 dm3.



Catalysis

This chapter extends the material introduced in Chapters 19 and 20 by showing how to deal
with catalysis. We begin with a description of homogeneous catalysis and apply the associ-
ated concepts to enzyme-catalysed reactions. We go on to consider heterogeneous cata-
lysis by exploring the extent to which a solid surface is covered and the variation of the 
extent of coverage with pressure and temperature. Then we use this material to discuss how
surfaces affect the rate and course of chemical change by acting as the site of catalysis.

A catalyst is a substance that accelerates a reaction but undergoes no net chemical
change. The catalyst lowers the activation energy of the reaction by providing an 
alternative path that avoids the slow, rate-determining step of the uncatalysed reac-
tion (Fig. 21.1). Catalysts can be very effective; for instance, the activation energy for
the decomposition of hydrogen peroxide in solution is 76 kJ mol−1, and the reaction
is slow at room temperature. When a little iodide ion is added, the activation energy
falls to 57 kJ mol−1 and the rate constant increases by a factor of 2000.

A homogeneous catalyst is a catalyst in the same phase as the reaction mixture. For
example, the decomposition of hydrogen peroxide in aqueous solution is catalysed 
by bromide ion or catalase. Enzymes, which are biological catalysts, are very specific
and can have a dramatic effect on the reactions they control. For example, the enzyme
catalase reduces the activation energy for the decomposition of hydrogen peroxide to
8 kJ mol−1, corresponding to an acceleration of the reaction by a factor of 1015 at 298 K.

A heterogeneous catalyst is a catalyst in a different phase from the reaction mix-
ture. For example, the hydrogenation of ethene to ethane, a gas-phase reaction, is 
accelerated in the presence of a solid catalyst such as palladium, platinum, or nickel.

21
Homogeneous catalysis

21.1 Acid and base catalysis

21.2 Enzymes

Heterogeneous catalysis

21.3 The growth and structure of
surfaces

21.4 The extent of adsorption

21.5 The rates of surface processes

I21.1 Impact on biochemistry:
Biosensor analysis

21.6 Mechanisms of heterogeneous
catalysis

21.7 Catalytic activity at surfaces

I21.2 Impact on technology:
Catalysis in the chemical
industry

Checklist of key ideas

Further information 21.1: The BET
isotherm

Discussion questions

Exercises
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Fig. 21.1 A catalyst provides a different path with a lower activation energy. The result is
an increase in the rate of formation of products.
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The metal provides a surface upon which the reactants bind; this
binding facilitates encounters between reactants and increases
the rate of the reaction.

Homogeneous catalysis

We can obtain some idea of the mode of action of homogeneous
catalysts by examining the kinetics of the bromide-catalysed 
decomposition of hydrogen peroxide:

2 H2O2(aq) → 2 H2O(l) + O2(g)

The reaction is believed to proceed through the following pre-
equilibrium:

H3O+ + H2O2 5 H3O2
+ + H2O

H3O2
+ + Br− → HOBr + H2O v = ka[H3O2

+][Br−]

HOBr + H2O2 → H3O+ + O2 + Br− (fast)

where we have set the activity of H2O in the equilibrium constant
equal to 1 and assumed that the thermodynamic properties of the
other substances are ideal. The second step is rate-determining.
Therefore, we can obtain the rate law of the overall reaction by
setting the overall rate equal to the rate of the second step and
using the equilibrium constant to express the concentration of
H3O2

+ in terms of the reactants. The result is

= kr[H2O2][H3O+][Br−]

with kr = kaK, in agreement with the observed dependence of the
rate on the Br− concentration and the pH of the solution. The
observed activation energy is that of the effective rate constant
kaK.

21.1 Acid and base catalysis

The catalytic action of acids and bases should be well known
from previous study of organic and inorganic chemistry. Here
we summarize and generalize the main ideas.

In acid catalysis the crucial step is the transfer of a proton to
the substrate:

X + HA → HX+ + A− HX+ → products

Acid catalysis is the primary process in the solvolysis of esters
and keto–enol tautomerism. In base catalysis, a proton is trans-
ferred from the substrate to a base:

XH + B → X− + BH+ X− → products

Base catalysis is the primary step in the isomerization and halo-
genation of organic compounds, and of the Claisen and aldol
condensation reactions.
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21.2 Enzymes

Enzymes are homogeneous biological catalysts. These ubiquitous
compounds are special proteins or nucleic acids that contain 
an active site, which is responsible for binding the substrates,
the reactants, and processing them into products. As is true of
any catalyst, the active site returns to its original state after the
products are released. Many enzymes consist primarily of pro-
teins, some featuring organic or inorganic co-factors in their 
active sites. However, certain RNA molecules can also be bio-
logical catalysts, forming ribozymes. A very important example
of a ribozyme is the ribosome, a large assembly of proteins and 
catalytically active RNA molecules responsible for the synthesis
of proteins in the cell.

The structure of the active site is specific to the reaction that 
it catalyses, with groups in the substrate interacting with groups 
in the active site through intermolecular interactions, such as
hydrogen-bonding, electrostatic, or van der Waals interactions.
Figure 21.2 shows two models that explain the binding of a
substrate to the active site of an enzyme. In the lock-and-key
model, the active site and substrate have complementary three-
dimensional structures and dock perfectly without the need for
major atomic rearrangements. Experimental evidence favours
the induced fit model, in which binding of the substrate induces
a conformational change in the active site. Only after the change
does the substrate fit snugly in the active site.

Enzyme-catalysed reactions are prone to inhibition by mole-
cules that interfere with the formation of product. Many drugs
for the treatment of disease function by inhibiting enzymes.
For example, an important strategy in the treatment of acquired 
immune deficiency syndrome (AIDS) involves the steady admin-
istration of a specially designed protease inhibitor. The drug

S

E

ES

Induced
fit

Lock
and
key

Active
site

E

S

Fig. 21.2 Two models that explain the binding of a substrate to
the active site of an enzyme. In the lock-and-key model, the
active site and substrate have complementary three-dimensional
structures and dock perfectly without the need for major atomic
rearrangements. In the induced fit model, binding of the
substrate induces a conformational change in the active site. The
substrate fits well in the active site after the conformational
change has taken place.
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inhibits an enzyme that is key to the formation of the protein 
envelope surrounding the genetic material of the human immuno-
deficiency virus (HIV). Without a properly formed envelope,
HIV cannot replicate in the host organism.

(a) The Michaelis–Menten mechanism of enzyme catalysis

Experimental studies of enzyme kinetics are typically conducted
by monitoring the initial rate of product formation in a solution
in which the enzyme is present at very low concentration. Indeed,
enzymes are such efficient catalysts that significant accelerations
may be observed even when their concentration is more than
three orders of magnitude smaller than that of the substrate.

The principal features of many enzyme-catalysed reactions
are as follows:

1. For a given initial concentration of substrate, [S]0, the 
initial rate of product formation is proportional to the total 
concentration of enzyme, [E]0.

2. For a given [E]0 and low values of [S]0, the rate of product
formation is proportional to [S]0.

3. For a given [E]0 and high values of [S]0, the rate of product
formation becomes independent of [S]0, reaching a maximum
value known as the maximum velocity, vmax.

The Michaelis–Menten mechanism accounts for these features
(Fig. 21.3). According to this mechanism, an enzyme–substrate
complex is formed in the first step and either the substrate is 
released unchanged or after modification to form products:

E + S 6 ES ka, ka′ (21.1)
ES → P + E kb

We show in the following Justification that this mechanism 
leads to the Michaelis–Menten equation for the rate of product
formation

(21.2)

where KM = (ka′ + kb)/ka is the Michaelis constant, characteristic
of a given enzyme acting on a given substrate.

Justification 21.1 The Michaelis–Menten equation

The rate of product formation according to the Michaelis–
Menten mechanism is

v = kb[ES]

We can obtain the concentration of the enzyme–substrate com-
plex by invoking the steady-state approximation and writing

= ka[E][S] − ka′[ES] − kb[ES] = 0

It follows that

where [E] and [S] are the concentrations of free enzyme and
substrate, respectively. Now we define the Michaelis constant as

and note that KM has the same units as molar concentration.
To express the rate law in terms of the concentrations of 
enzyme and substrate added, we note that [E]0 = [E] + [ES].
Moreover, because the substrate is typically in large excess
relative to the enzyme, the free substrate concentration is 
approximately equal to the initial substrate concentration
and we can write [S] ≈ [S]0. It then follows that:

We obtain eqn 21.2 when we substitute this expression for
[ES] into that for the rate of product formation (v = kb[ES]).

Equation 21.2 shows that, in accord with experimental obser-
vations (Fig. 21.3):

1. When [S]0 << KM, the rate is proportional to [S]0:

(21.3a)

2. When [S]0 >> KM, the rate reaches its maximum value and
is independent of [S]0:

v = vmax = kb[E]0 (21.3b)
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Fig. 21.3 The variation of the rate of an enzyme-catalysed
reaction with substrate concentration. The approach to a
maximum rate, vmax, for large [S] is explained by the
Michaelis–Menten mechanism.

interActivity Use the Michaelis–Menten equation to
generate two families of curves showing the dependence 

of v on [S]: one in which KM varies but vmax is constant, and
another in which vmax varies but KM is constant.
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Substitution of the definition of vmax into eqn 21.2 gives:

(21.4a)

We can rearrange this expression into a form that is amenable to
data analysis by linear regression:

(21.4b)

A Lineweaver–Burk plot is a plot of 1/v against 1/[S]0, and 
according to eqn 21.4b it should yield a straight line with 
slope of KM/vmax, a y-intercept at 1/vmax, and an x-intercept at 
−1/KM (Fig. 21.4). The value of kb is then calculated from the 
y-intercept and eqn 21.3b. However, the plot cannot give the
individual rate constants ka and ka′ that appear in the expression
for KM. The stopped-flow technique described in Section 19.1
can give the additional data needed, because we can find the rate
of formation of the enzyme–substrate complex by monitoring
the concentration after mixing the enzyme and substrate. This
procedure gives a value for ka, and ka′ is then found by combin-
ing this result with the values of kb and KM.

(b) The catalytic efficiency of enzymes

The turnover frequency, or catalytic constant, of an enzyme,
kcat, is the number of catalytic cycles (turnovers) performed by
the active site in a given time interval divided by the duration of
the interval. This quantity has units of a first-order rate constant
and, in terms of the Michaelis–Menten mechanism, is numer-
ically equivalent to kb, the rate constant for release of product
from the enzyme–substrate complex. It follows from the identi-
fication of kcat with kb and from eqn 21.3b that

(21.5)

The catalytic efficiency, η (eta), of an enzyme is the ratio
kcat/KM. The higher the value of η, the more efficient is the 
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Fig. 21.4 A Lineweaver–Burk plot for the analysis of an enzyme-
catalysed reaction that proceeds by a Michaelis–Menten
mechanism and the significance of the intercepts and the slope.

enzyme. We can think of the catalytic efficiency as the effective
rate constant of the enzymatic reaction. From KM = (ka′ + kb)/ka

and eqn 21.5, it follows that

(21.6)

The efficiency reaches its maximum value of ka when kb >> ka′.
Because ka is the rate constant for the formation of a com-
plex from two species that are diffusing freely in solution, the 
maximum efficiency is related to the maximum rate of diffu-
sion of E and S in solution. This limit (Section 20.4) leads to 
rate constants of about 108–109 dm3 mol−1 s−1 for molecules as
large as enzymes at room temperature. The enzyme catalase has
η = 4.0 × 108 dm3 mol−1 s−1 and is said to have attained ‘catalytic
perfection’, in the sense that the rate of the reaction it catalyses is
controlled only by diffusion: it acts as soon as a substrate makes
contact.

Example 21.1 Determining the catalytic efficiency of an enzyme

The enzyme carbonic anhydrase catalyses the hydration of CO2

in red blood cells to give bicarbonate (hydrogencarbonate)
ion:

CO2(g) + H2O(l) → HCO3
−(aq) + H+(aq)

The following data were obtained for the reaction at pH = 7.1,
273.5 K, and an enzyme concentration of 2.3 nmol dm−3:

[CO2]0/(mmol dm−3) 1.25 2.5 5 20

rate/(mmol dm−3 s−1) 2.78 × 10−2 5.00 × 10−2 8.33 × 10−2 1.67 × 10−1

Determine the catalytic efficiency of carbonic anhydrase at
273.5 K.

Method Prepare a Lineweaver–Burk plot and determine the
values of KM and vmax by linear regression analysis. From 
eqn 21.5 and the enzyme concentration, calculate kcat and the
catalytic efficiency from eqn 21.6.

Answer We draw up the following table:

1/([CO2]0/(mmol dm−3)) 0.800 0.400 0.200 0.0500

1/(v/(mmol dm−3 s−1)) 36.0 20.0 12.0 6.00

Figure 21.5 shows the Lineweaver–Burk plot for the data. The
slope is 40.0 and the y-intercept is 4.00. Hence,

and
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E + S 6 ES ka, ka′

ES → E + P kb

EI 5 E + I (21.7a)

ESI 5 ES + I (21.7b)

The lower the values of KI and KI′ the more efficient are the 
inhibitors. The rate of product formation is always given by 
v = kb[ES], because only ES leads to product. As shown in the
following Justification, the rate of reaction in the presence of an
inhibitor is

(21.8a)

where α = 1 + [I]/KI and α′ = 1 + [I]/KI′. This equation is very
similar to the Michaelis–Menten equation for the uninhibited
enzyme (eqn 21.2) and is also amenable to analysis by a
Lineweaver–Burk plot:

(21.8b)

Justification 21.2 Enzyme inhibition

By mass balance, the total concentration of enzyme is:

[E]0 = [E] + [EI] + [ES] + [ESI]

By using eqns 21.7a and 21.7b and the definitions

and

it follows that

[E]0 = [E]α + [ES]α′

By using KM = [E][S]/[ES] and replacing [S] with [S]0, we can
write

The expression for the rate of product formation is then:

which, after using eqn 21.5, gives eqn 21.8.

There are three major modes of inhibition that give rise to
distinctly different kinetic behaviour. In competitive inhibition
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and

A note on good practice The slope and the intercept are 
unitless: we have remarked previously that all graphs should
be plotted as pure numbers.

Self-test 21.1 The enzyme α-chymotrypsin is secreted in 
the pancreas of mammals and cleaves peptide bonds made
between certain amino acids. Several solutions containing
the small peptide N-glutaryl-l-phenylalanine-p-nitroanilide
at different concentrations were prepared and the same small
amount of α-chymotrypsin was added to each one. The fol-
lowing data were obtained on the initial rates of the formation
of product:

[S]0/(mmol dm−3) 0.334 0.450 0.667 1.00 1.33 1.67

v/(mmol dm−3 s−1) 0.152 0.201 0.269 0.417 0.505 0.667

Determine the maximum velocity and the Michaelis constant
for the reaction.

[vmax = 2.80 mmol dm−3 s−1, KM = 5.89 mmol dm−3]

(c) Mechanisms of enzyme inhibition

An inhibitor, I, decreases the rate of product formation from the
substrate by binding to the enzyme, to the ES complex, or to the
enzyme and ES complex simultaneously. The most general 
kinetic scheme for enzyme inhibition is then:
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Fig. 21.5 The Lineweaver–Burk plot of the data for Example 21.1.
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the inhibitor binds only to the active site of the enzyme and
thereby inhibits the attachment of the substrate. This condition
corresponds to α > 1 and α′ = 1 (because ESI does not form).
The slope of the Lineweaver–Burk plot increases by a factor 
of α relative to the slope for data on the uninhibited enzyme 
(α = α′ = 1). The y-intercept does not change as a result of com-
petitive inhibition (Fig. 21.6a). In uncompetitive inhibition the 
inhibitor binds to a site of the enzyme that is removed from 
the active site, but only if the substrate is already present. The 
inhibition occurs because ESI reduces the concentration of ES,
the active type of complex. In this case α = 1 (because EI does 
not form) and α′ > 1. The y-intercept of the Lineweaver–Burk
plot increases by a factor of α′ relative to the y-intercept for 
data on the uninhibited enzyme but the slope does not change
(Fig. 21.6b). In non-competitive inhibition (also called mixed
inhibition) the inhibitor binds to a site other than the active 
site, and its presence reduces the ability of the substrate to bind
to the active site. Inhibition occurs at both the E and ES sites.
This condition corresponds to α > 1 and α′ > 1. Both the slope
and y-intercept of the Lineweaver–Burk plot increase upon
addition of the inhibitor. Figure 21.6c shows the special case of
KI = KI′ and α = α′, which results in intersection of the lines at 
the x-axis.

In all cases, the efficiency of the inhibitor may be obtained 
by determining KM and vmax from a control experiment with 
uninhibited enzyme and then repeating the experiment with 
a known concentration of inhibitor. From the slope and y-
intercept of the Lineweaver–Burk plot for the inhibited enzyme
(eqn 21.8b), the mode of inhibition, the values of α or α′, and
the values of KI or KI′ may be obtained.

Example 21.2 Distinguishing between types of inhibition

Five solutions of a substrate, S, were prepared with the con-
centrations given in the first column below and each one was
divided into five equal volumes. The same concentration of
enzyme was present in each one. An inhibitor, I, was then
added in four different concentrations to the samples, and
the initial rate of formation of product was determined with
the results given below. Does the inhibitor act competitively
or noncompetitively? Determine KI and KM.

[I]/(mmol dm−3)

[S]0/(mmol dm−3) 0 0.20 0.40 0.60 0.80

0.050 0.033 0.026 0.021 0.018 0.016 54
0.10 0.055 0.045 0.038 0.033 0.029 4
0.20 0.083 0.071 0.062 0.055 0.050 6
0.40 0.111 0.100 0.091 0.084 0.077 44
0.60 0.126 0.116 0.108 0.101 0.094 7
Method We draw a series of Lineweaver–Burk plots for
different inhibitor concentrations. If the plots resemble those 
in Fig. 21.6a, then the inhibition is competitive. On the other
hand, if the plots resemble those in Fig. 21.6c, then the in-
hibition is noncompetitive. To find KI, we need to determine
the slope at each value of [I], which is equal to αKM/vmax, or
KM/vmax + KM[I]/KIvmax, then plot this slope against [I]: the
intercept at [I] = 0 is the value of KM/vmax and the slope is
KM/KIvmax.

Answer First, we draw up a table of 1/[S]0 and 1/v for each
value of [I]:

[I]/(mmol dm−3)

1/([S]0/(mmol dm−3)) 0 0.20 0.40 0.60 0.80

20 30 38 48 56 62 54
10 18 22 26 30 34 4
5.0 12 14 16 18 20 6
2.5 9.01 10.0 11.0 11.9 13.0 4

4
1.7 7.94 8.62 9.26 9.90 10.6 7
The five plots (one for each [I]) are given in Fig. 21.7. We 
see that they pass through the same intercept on the vertical
axis, so the inhibition is competitive. The mean of the (least
squares) intercepts is 5.83, so vmax = 0.172 μmol dm−3 s−1

(note how it picks up the units for v in the data). The (least
squares) slopes of the lines are as follows:

[I]/(mmol dm−3) 0 0.20 0.40 0.60 0.80

Slope 1.219 1.627 2.090 2.489 2.832
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Fig. 21.6 Lineweaver–Burk plots characteristic of the three major
modes of enzyme inhibition: (a) competitive inhibition, (b)
uncompetitive inhibition, and (c) noncompetitive inhibition,
showing the special case α = α′ > 1.

interActivity Use eqn 21.8 to explore the effect of 
competitive, uncompetitive, and noncompetitive 

inhibition on the shapes of the plots of v against [S] for 
constant KM and vmax.
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These values are plotted in Fig. 21.8. The intercept at [I] = 0 is
1.234, so KM = 0.212 mmol dm−3. The (least squares) slope of
the line is 2.045, so

Self-test 21.2 Repeat the question using the following data:

[I]/(mmol dm−3)

[S]0/(mmol dm−3) 0 0.20 0.40 0.60 0.80

0.050 0.020 0.015 0.012 0.0098 0.0084 54
0.10 0.035 0.026 0.021 0.017 0.015 4
0.20 0.056 0.042 0.033 0.028 0.024 6
0.40 0.080 0.059 0.047 0.039 0.034 44
0.60 0.093 0.069 0.055 0.046 0.039 7

[Noncompetitive, KM = 0.30 mmol dm−3, 
KI = 0.57 mmol dm−3]
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Heterogeneous catalysis

The remainder of this chapter is devoted to developing and 
applying concepts of structure and reactivity in heterogeneous
catalysis. For simplicity, we consider only gas/solid systems. 
To understand the catalytic role of a solid surface we begin by 
describing its unique structural features. Then, because many
reactions catalysed by surfaces involve reactants and products in
the gas phase, we discuss adsorption, the attachment of particles
to a solid surface, and desorption, the reverse process. Finally,
we consider specific mechanisms of heterogeneous catalysis.

21.3 The growth and structure of surfaces

The substance that adsorbs to a surface is the adsorbate and the
underlying material that we are concerned with in this section is
the adsorbent or substrate.

(a) Surface growth

A simple picture of a perfect crystal surface is as a tray of oranges
in a grocery store (Fig. 21.9). A gas molecule that collides with
the surface can be imagined as a ping-pong ball bouncing errat-
ically over the oranges. The molecule loses energy as it bounces
under the influence of intermolecular forces, but it is likely to
escape from the surface before it has lost enough kinetic energy
to be trapped. The same is true, to some extent, of an ionic 
crystal in contact with a solution. There is little energy advantage
for an ion in solution to discard some of its solvating molecules
and stick at an exposed position on a flat surface.

The picture changes when the surface has defects, for then
there are ridges of incomplete layers of atoms or ions. A typical
type of surface defect is a step between two otherwise flat layers
of atoms called terraces (Fig. 21.10). A step defect might itself
have defects, including kinks. When an atom settles on a terrace
it bounces across it under the influence of the intermolecular
potential, and might come to a step or a corner formed by a kink.
Instead of interacting with a single terrace atom, the molecule
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Fig. 21.7 Lineweaver–Burk plots for the data in Example 21.2. Each
line corresponds to a different concentration of inhibitor.
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Fig. 21.8 Plot of the slopes of the plots in Fig. 21.7 against [I] based
on the data in Example 21.2.

Fig. 21.9 A schematic diagram of the flat surface of a solid. This
primitive model is largely supported by scanning tunnelling
microscope images (see Impact I2.1).
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now interacts with several, and the interaction may be strong
enough to trap it. Likewise, when ions deposit from solution, the
loss of the solvation interaction is offset by a strong Coulombic
interaction between the arriving ions and several ions at the sur-
face defect.

The rapidity of growth depends on the crystal plane con-
cerned, and the slowest growing faces dominate the appearance
of the crystal. This feature is explained in Fig. 21.11, where 
we see that, although the horizontal face grows forward most
rapidly, it grows itself out of existence, and the more slowly
growing faces survive.

(b) Surface composition and structure

Under normal conditions, a surface exposed to a gas is con-
stantly bombarded with molecules and a freshly prepared sur-
face is covered very quickly. Just how quickly can be estimated
by using the kinetic theory of gases and the following expression
for the collision flux, ZW, the number of hits on a region of a sur-
face during an interval divided by the area of the region and the
duration of the interval:

 
Z

p

mkTW =
( ) /2 1 2π

At first glance this expression seems to suggest that the collision
flux decreases with increasing temperature, which seems un-
likely because the molecules then move faster. However, it is 
always important to be circumspect when interpreting equa-
tions. In this case, we should note that the pressure increases
with temperature (p ∝ T in a constant-volume container), so the
overall temperature dependence is ZW ∝ T1/2 and, as expected,
the flux increases with temperature. A practical form of this
equation is

with Z0 = 2.63 × 1024 m−2 s−1

where M is the molar mass of the gas. For air (M ≈ 29 g mol−1) at
1 atm and 22°C the collision flux is 3 × 1027 m−2 s−1. Because 1 m2

of metal surface consists of about 1019 atoms, each atom is
struck about 108 times each second. Even if only a few collisions
leave a molecule adsorbed to the surface, the time for which a
freshly prepared surface remains clean is very short.

The obvious way to retain cleanliness is to reduce the pres-
sure. When it is reduced to 0.1 mPa (as in a simple vacuum sys-
tem) the collision flux falls to about 1018 m−2 s−1, corresponding
to one hit per surface atom in each 0.1 s. Even that is too brief 
in most experiments, and in ultra-high vacuum (UHV) tech-
niques pressures as low as 0.1 μPa (when ZW = 1015 m−2 s−1) are
reached on a routine basis and ones as low as 1 nPa (when ZW =
1013 m−2 s−1) are reached with special care. These collision fluxes
correspond to each surface atom being hit once every 105 to 
106 s, or about once a day.

The chemical composition of a surface can be determined by
a variety of ionization techniques. The same techniques can be
used to detect any remaining contamination after cleaning and
to detect layers of material adsorbed later in the experiment.
One technique that may be used is photoemission spectroscopy,
a derivative of the photoelectric effect, in which X-rays (for XPS)
or hard (short wavelength) ultraviolet (for UPS) ionizing radi-
ation is used to eject electrons from adsorbed species. The kinetic
energies of the electrons ejected from their orbitals are measured
and the pattern of energies is a fingerprint of the material pre-
sent (Fig. 21.12). UPS, which examines electrons ejected from
valence shells, is also used to establish the bonding characteristics
and the details of valence shell electronic structures of substances
on the surface. Its usefulness is its ability to reveal which orbitals
of the adsorbate are involved in the bond to the substrate. For
instance, the principal difference between the photoemission 
results on free benzene and benzene adsorbed on palladium is 
in the energies of the π electrons. This difference is interpreted 
as meaning that the C6H6 molecules lie parallel to the surface
and are attached to it by their π orbitals. In contrast, pyridine
(C6H5N) stands almost perpendicular to the surface, and is 
attached by a σ bond formed by the nitrogen lone pair.

A very important technique, which is widely used in the micro-
electronics industry, is Auger electron spectroscopy (AES). The
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Fig. 21.10 Some of the kinds of defects that may occur on
otherwise perfect terraces. Defects play an important role in
surface growth and catalysis.
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Fig. 21.11 The slower-growing faces of a crystal dominate its final
external appearance. Three successive stages of the growth are
shown.
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Auger effect (pronounced oh-zhey) is the emission of a second
electron after high energy radiation has expelled another electron.
The first electron to depart leaves a hole in a low-lying orbital,
and an upper electron falls into it. The energy released in this
transition may result either in the generation of radiation, which
is called X-ray fluorescence (Fig. 21.13a), or in the ejection 
of another electron (Fig. 21.13b). The latter is the secondary
electron of the Auger effect. The energies of the secondary elec-
trons are characteristic of the material present, so the Auger
effect effectively takes a fingerprint of the sample. In practice, the
Auger spectrum is normally obtained by irradiating the sample
with an electron beam rather than electromagnetic radiation. In
scanning Auger electron microscopy (SAM), the finely focused
electron beam is scanned over the surface and a map of com-
position is compiled; the resolution can reach to below about 
50 nm.

One of the most informative techniques for determining the
arrangement of the atoms close to and adsorbed on the surface

is low energy electron diffraction (LEED). This technique is like
X-ray diffraction but using the wave character of electrons, and
the sample is now the surface of a solid. The use of low-energy
electrons (with energies in the range 10–200 eV, correspond-
ing to wavelengths in the range 100–400 pm) ensures that the
diffraction is caused only by atoms on and close to the surface.
The experimental arrangement is shown in Fig. 21.14, and typ-
ical LEED patterns, obtained by photographing the fluorescent
screen through the viewing port, are shown in Fig. 21.15.

Example 21.3 Interpreting a LEED pattern

The LEED pattern from a clean unreconstructed (110) face of
palladium is shown in (a) below. The reconstructed surface
gives a LEED pattern shown as (b). What can be inferred
about the structure of the reconstructed surface?

l l l l l l

l l l

l l l l l l

(a) (b) l l l

l l l l l l
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Fig. 21.12 The X-ray photoelectron emission spectrum of a
sample of gold contaminated with a surface layer of mercury.
(M.W. Roberts and C.S. McKee, Chemistry of the metal–gas
interface, Oxford (1978).)
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electron

(a) (b)

Secondary
electron

Fig. 21.13 When an electron is expelled from a solid (a) an
electron of higher energy may fall into the vacated orbital and
emit an X-ray photon to produce X-ray fluorescence.
Alternatively (b) the electron falling into the orbital may give up
its energy to another electron, which is ejected in the Auger
effect.

Insulator

Sample

Viewing
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Grids

Phosphor
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Electron
gun

Fig. 21.14 A schematic diagram of the apparatus used for a LEED
experiment. The electrons diffracted by the surface layers are
detected by the fluorescence they cause on the phosphor screen.

(a) (b)

Fig. 21.15 LEED photographs of (a) a clean platinum surface and
(b) after its exposure to propyne, CH3C.CH. (Photographs
provided by Professor G.A. Somorjai.)
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Method Recall from Bragg’s law (Section 9.3), λ = 2d sin θ,
that, for a given wavelength, the smaller the separation d of
the layers, the greater the scattering angle (so that 2d sin θ
remains constant). In terms of the LEED pattern, the farther
apart the atoms responsible for the pattern, the closer the
spots appear in the pattern. Twice the separation between 
the atoms corresponds to half the separation between the
spots, and vice versa. Therefore, inspect the two patterns and
identify how the new pattern relates to the old.

Solution The vertical separation between spots is unchanged,
which indicates that the atoms remain in the same position 
in that dimension when reconstruction occurs. However, the
horizontal spacing is halved, which suggests that the atoms
are twice as far apart in that direction as they are in the un-
reconstructed surface.

Self-test 21.3 Sketch the LEED pattern for a surface
that was reconstructed from that shown in (a) above by
tripling the vertical separation.

LEED experiments show that the surface of a crystal rarely has
exactly the same form as a slice through the bulk. As a general
rule, it is found that metal surfaces are often simply truncations
of the bulk lattice, but the distance between the top layer of
atoms and the one below is contracted by around 5 per cent.
Semiconductors generally have surfaces reconstructed to a depth
of several layers. Reconstruction occurs in ionic solids. For 
example, in lithium fluoride the Li+ and F− ions close to the sur-
face apparently lie on slightly different planes. An actual exam-
ple of the detail that can now be obtained from refined LEED
techniques is shown in Fig. 21.16 for CH3C- adsorbed on a
(111) plane of rhodium.

The presence of terraces, steps, and kinks in a surface shows
up in LEED patterns, and their surface density (the number 
of defects in a region divided by the area of the region) can be
estimated. Three examples of how steps and kinks affect the pat-
tern are shown in Fig. 21.17. The samples used were obtained by
cleaving a crystal at different angles to a plane of atoms. Only

terraces are produced when the cut is parallel to the plane, and
the density of steps increases as the angle of the cut increases.
The observation of additional structure in the LEED patterns,
rather than blurring, shows that the steps are arrayed regularly.

Terraces, steps, kinks, and dislocations on a surface may be
observed by scanning tunnelling microscopy (STM), and atomic
force microscopy (AFM), two techniques that have revolution-
ized the study of surfaces (Impact I2.1). Figure 21.18 shows 
the dissociation of SiH3 adsorbed on to a Si(001) surface into
adsorbed SiH2 units and H atoms.

21.4 The extent of adsorption

The extent of surface coverage is normally expressed as the frac-
tional coverage, θ :

[21.9]

The fractional coverage is often expressed in terms of the volume
of adsorbate adsorbed by θ = V/V∞, where V∞ is the volume of
adsorbate corresponding to complete monolayer coverage. The
rate of adsorption, dθ/dt, is the rate of change of surface cover-
age, and can be determined by observing the change of fractional
coverage with time.

Among the principal techniques for measuring dθ/dt are flow
methods, in which the sample itself acts as a pump because 
adsorption removes particles from the gas. One commonly used
technique is therefore to monitor the rates of flow of gas into
and out of the system: the difference is the rate of gas uptake 
by the sample. Integration of this rate then gives the fractional
coverage at any stage. In flash desorption the sample is suddenly
heated (electrically) and the resulting rise of pressure is inter-
preted in terms of the amount of adsorbate originally on the

 
θ =

number of adsorption sites occupied

number of adsorption sites available

Fig. 21.17 LEED patterns may be used to assess the defect density
of a surface. The photographs correspond to a platinum surface
with (a) low defect density, (b) regular steps separated by about
six atoms, and (c) regular steps with kinks. (Photographs
provided by Professor G.A. Samorjai.)

148 pm
12 pm

130 pm

Fig. 21.16 The structure of a surface close to the point of
attachment of CH3C- to the (110) surface of rhodium at 300 K
and the changes in positions of the metal atoms that accompany
chemisorption.
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sample. The interpretation may be confused by the desorption
of a non-adsorbed compound (for example, WO3 from oxygen
on tungsten). Gravimetry, in which the sample is weighed on a
microbalance during the experiment, can also be used. A com-
mon instrument for gravimetric measurements is the quartz
crystal microbalance (QCM), in which the mass of a sample laid
on the surface of a quartz crystal is related to changes in the 
latter’s mechanical properties. The key principle behind the 
operation of a QCM is the ability of a quartz crystal to vibrate 
at a characteristic frequency when an oscillating electric field is
applied. The vibrational frequency decreases when material is
spread over the surface of the crystal and the change in frequency
is proportional to the mass of material. Masses as small as a few
nanograms (1 ng = 10−9 g) can be measured reliably in this way.

(a) Physisorption and chemisorption

Molecules and atoms can attach to surfaces in two ways. In 
physisorption (an abbreviation of ‘physical adsorption’), there
is a van der Waals interaction (for example, a dispersion or a
dipolar interaction) between the adsorbate and the substrate.
Van der Waals interactions have a long range but are weak, and
the energy released when a particle is physisorbed is of the same
order of magnitude as the enthalpy of condensation. Such small
energies can be absorbed as vibrations of the lattice and dissip-
ated as thermal motion, and a molecule bouncing across the 
surface will gradually lose its energy and finally adsorb to it in
the process called accommodation. The enthalpy of physisorp-
tion can be measured by monitoring the rise in temperature of 
a sample of known heat capacity, and typical values are in the 
region of −20 kJ mol−1 (Table 21.1). This small enthalpy change
is insufficient to lead to bond breaking, so a physisorbed
molecule retains its identity, although it might be distorted by
the presence of the surface.

In chemisorption (an abbreviation of ‘chemical adsorption’),
the molecules (or atoms) stick to the surface by forming a chem-
ical (usually covalent) bond, and tend to find sites that maximize
their coordination number with the substrate. The enthalpy of
chemisorption is very much greater than that for physisorption,
and typical values are in the region of −200 kJ mol−1 (Table 21.2).
The distance between the surface and the closest adsorbate atom

Fig. 21.18 Visualization by STM of the reaction SiH3 → SiH2 + H on a 4.7 nm × 4.7 nm area of a Si(001) surface. (a) The Si(001) surface
before exposure to Si2H6(g). (b) Adsorbed Si2H6 dissociates into SiH2(surface), on the left of the image, and SiH3(surface), on the right. (c)
After 8 min, SiH3(surface) dissociates to SiH2(surface) and H(surface). (Reproduced with permission from Y. Wang et al. Surface Science 64,
311 (1994).)

Synoptic table 21.1* Maximum observed
enthalpies of physisorption

Adsorbate ΔadH 7/(kJ mol−1)

CH4 −21

H2 −84

H2O −59

N2 −21

* More values are given in the Data section.

Synoptic table 21.2* Enthalpies of
chemisorption, ΔadH 7/(kJ mol−1)

Adsorbate Adsorbent (substrate)

Cr Fe Ni

C2H4 −427 −285 −243

CO −192

H2 −188 −134

NH3 −188 −155

* More values are given in the Data section.
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is also typically shorter for chemisorption than for physisorption.
A chemisorbed molecule may be torn apart at the demand of the
unsatisfied valencies of the surface atoms, and the existence of
molecular fragments on the surface as a result of chemisorption
is one reason why solid surfaces catalyse reactions.

Except in special cases, chemisorption must be exothermic. A
spontaneous process requires ΔG < 0. Because the translational
freedom of the adsorbate is reduced when it is adsorbed, ΔS
is negative. Therefore, in order for ΔG = ΔH − TΔS to be negat-
ive, ΔH must be negative (that is, the process is exothermic).
Exceptions may occur if the adsorbate dissociates and has high
translational mobility on the surface. For example, H2 adsorbs
endothermically on glass because there is a large increase of trans-
lational entropy accompanying the dissociation of the molecules
into atoms that move quite freely over the surface. In this case,
the entropy change in the process H2(g) → 2 H(glass) is suffi-

ciently positive to overcome the small positive enthalpy change.
The enthalpy of adsorption depends on the extent of surface

coverage, mainly because the adsorbate particles interact. If the
particles repel each other (as for CO on palladium) the adsorp-
tion becomes less exothermic (the enthalpy of adsorption less
negative) as coverage increases. Moreover, LEED studies show
that such species settle on the surface in a disordered way until
packing requirements demand order. If the adsorbate particles
attract one another (as for O2 on tungsten), then they tend to
cluster together in islands, and growth occurs at the borders.
These adsorbates also show order–disorder transitions when they
are heated enough for thermal motion to overcome the particle–
particle interactions, but not so much that they are desorbed.

(b) Adsorption isotherms

The free gas and the adsorbed gas are in dynamic equilibrium,
and the fractional coverage of the surface depends on the pres-
sure of the overlying gas. The variation of θ with pressure at a
chosen temperature is called the adsorption isotherm.

The simplest physically plausible isotherm is based on three
assumptions:

1. Adsorption cannot proceed beyond monolayer coverage.

2. All sites are equivalent and the surface is uniform (that is,
the surface is perfectly flat on a microscopic scale).

3. The ability of a molecule to adsorb at a given site is inde-
pendent of the occupation of neighbouring sites (that is, there
are no interactions between adsorbed molecules).

The dynamic equilibrium is

A(g) + M(surface) 5 AM(surface)

with rate constants ka for adsorption and kd for desorption. The
rate of change of surface coverage due to adsorption is propor-
tional to the partial pressure p of A and the number of vacant
sites N(1 − θ), where N is the total number of sites:

(21.10a)

The rate of change of θ due to desorption is proportional to the
number of adsorbed species, Nθ :

(21.10b)

At equilibrium there is no net change (that is, the sum of 
these two rates is zero), and solving for θ gives the Langmuir
isotherm:

(21.11)

Example 21.4 Using the Langmuir isotherm

The data given below are for the adsorption of CO on char-
coal at 273 K. Confirm that they fit the Langmuir isotherm,
and find the constant K and the volume corresponding to
complete coverage. In each case V has been corrected to 
1.00 atm (101.325 kPa).

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3

V/cm3 10.2 18.6 25.5 31.5 36.9 41.6 46.1

Method From eqn 21.11,

Kpθ + θ = Kp

With θ = V/V∞, where V∞ is the volume corresponding to
complete coverage, this expression can be rearranged into

Hence, a plot of p/V against p should give a straight line of
slope 1/V∞ and intercept 1/KV∞.

Answer The data for the plot are as follows:

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3

(p/kPa)/(V/cm3) 1.30 1.44 1.57 1.69 1.81 1.92 2.02

The points are plotted in Fig. 21.19. The (least squares) slope
is 0.00900, so V∞ = 111 cm3. The intercept at p = 0 is 1.20, so

Self-test 21.4 Repeat the calculation for the following data:

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3

V/cm3 10.3 19.3 27.3 34.1 40.0 45.5 48.0

[128 cm3, 6.69 × 10−3 kPa−1]

K =
×

= ×−
− −1

111 1 20
7 51 10

3
3

( ( . )
.

cm ) kPa cm
kPa

3
11

p

V

p

V KV
= +

∞ ∞

1

K
k

k
= a

d

θ =
+
Kp

Kp1

 

d

d d
θ

θ
t

k N= −

 

d

d a
θ

θ
t

k pN= −( )1



21 CATALYSIS 705

For adsorption with dissociation, the rate of adsorption is
proportional to the pressure and to the probability that both
atoms will find sites, which is proportional to the square of the
number of vacant sites,

(21.12a)

The rate of desorption is proportional to the frequency of 
encounters of atoms on the surface, and is therefore second
order in the number of atoms present:

(21.12b)

The condition for no net change leads to the isotherm

(21.13)

The surface coverage now depends more weakly on pressure
than for non-dissociative adsorption.

The shapes of the Langmuir isotherms with and without 
dissociation are shown in Figs. 21.20 and 21.21. The fractional
coverage increases with increasing pressure, and approaches 
1 only at very high pressure, when the gas is forced on to every
available site of the surface. Different curves (and therefore dif-
ferent values of K) are obtained at different temperatures, and
the temperature dependence of K can be used to determine the
isosteric enthalpy of adsorption, ΔadH 7, the standard enthalpy
of adsorption at a fixed surface coverage. To determine this quan-
tity we recognize that K is essentially an equilibrium constant,
and then use the van’t Hoff equation (eqn 17.26) to write:

(21.14)
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Example 21.5 Measuring the isosteric enthalpy of adsorption

The data below show the pressures of CO needed for the 
volume of adsorption (corrected to 1.00 atm and 273 K) to be
10.0 cm3 using the same sample as in Example 21.4. Calculate
the adsorption enthalpy at this surface coverage.

T/K 200 210 220 230 240 250

p/kPa 4.00 4.95 6.03 7.20 8.47 9.85

Method The Langmuir isotherm can be rearranged to
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Fig. 21.19 The plot of the data in Example 21.4. As illustrated here,
the Langmuir isotherm predicts that a straight line should be
obtained when p/V is plotted against p.
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Fig. 21.20 The Langmuir isotherm for dissociative adsorption,
X2(g) → 2 X(surface), for different values of K.

interActivity Using eqn 21.13, generate a family of curves 
showing the dependence of 1/θ on 1/p for several values of K.
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Fig. 21.21 The Langmuir isotherm for non-dissociative
adsorption for different values of K.

interActivity Using eqn 21.11, generate a family of curves 
showing the dependence of 1/θ on 1/p for several values

of K. Taking these results together with those of the previous
interActivity, discuss how plots of 1/θ against 1/p can be used to
distinguish between adsorption with and without dissociation.
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Therefore, when θ is constant,

ln K + ln p = constant

It follows from eqn 21.14 that

With d(1/T)/dT = −1/T 2, this expression rearranges to

Therefore, a plot of ln p against 1/T should be a straight line
of slope ΔadH 7/R.

Answer We draw up the following table:

T/K 200 210 220 230 240 250

103/(T/K) 5.00 4.76 4.55 4.35 4.17 4.00

ln(p/kPa) 1.39 1.60 1.80 1.97 2.14 2.29

The points are plotted in Fig. 21.22. The slope (of the least
squares fitted line) is −0.904, so

ΔadH 7 = −(0.904 × 103 K) × R = −7.52 kJ mol−1

The value of K can be used to obtain a value of ΔadG 7, and
then that value combined with ΔadH 7 to obtain the standard
entropy of adsorption. The expression for (∂ ln p/∂T)θ in this
example is independent of the model for the isotherm.

Self-test 21.5 Repeat the calculation using the following data:

T/K 200 210 220 230 240 250

p/kPa 4.32 5.59 7.07 8.80 10.67 12.80

[−9.0 kJ mol−1]
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If the initial adsorbed layer can act as a substrate for further
(for example, physical) adsorption, then instead of the isotherm
levelling off to some saturated value at high pressures, it can 
be expected to rise indefinitely. The most widely used isotherm
dealing with multilayer adsorption was derived by Stephen
Brunauer, Paul Emmett, and Edward Teller, and is called the
BET isotherm (it is derived in Further Information 21.1):

with (21.15)

In this expression, p* is the vapour pressure above a layer of 
adsorbate that is more than one molecule thick and which 
resembles a pure bulk liquid, Vmon is the volume corresponding
to monolayer coverage, and c is a constant that is large when the
enthalpy of desorption from a monolayer is large compared
with the enthalpy of vaporization of the liquid adsorbate:

c = e(ΔdesH
7−ΔvapH 7)/RT (21.16)

Figure 21.23 illustrates the shapes of BET isotherms. They rise
indefinitely as the pressure is increased because there is no limit
to the amount of material that may condense when multilayer
coverage may occur. A BET isotherm is not accurate at all pres-
sures, but it is widely used in industry to determine the surface
areas of solids.

Example 21.6 Using the BET isotherm

The data below relate to the adsorption of N2 on rutile (TiO2)
at 75 K. Confirm that they fit a BET isotherm in the range of
pressures reported, and determine Vmon and c.

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29

V/mm3 601 720 822 935 1046 1146 1254
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Fig. 21.22 The isosteric enthalpy of adsorption can be obtained
from the slope of the plot of ln p against 1/T, where p is the
pressure needed to achieve the specified surface coverage. The data
used are from Example 21.5.
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Fig. 21.23 Plots of the BET isotherm for different values of c. The
value of V/Vmon rises indefinitely because the adsorbate may
condense on the covered substrate surface.

interActivity Using eqn 21.15, generate a family of curves 
showing the dependence of zVmon/(1 − z)V on z for 

different values of c.
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At 75 K, p* = 76.0 kPa. The volumes have been corrected to
1.00 atm and 273 K and refer to 1.00 g of substrate.

Method Equation 21.15 can be reorganized into

It follows that (c − 1)/cVmon can be obtained from the slope of
a plot of the expression on the left against z, and cVmon can be
found from the intercept at z = 0. The results can then be
combined to give c and Vmon.

Answer We draw up the following table:

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29

103z 2.11 24.6 80.4 154 224 288 359

104z/(1 − z)(V/mm3) 0.035 0.350 1.06 1.95 2.76 3.53 4.47

These points are plotted in Fig. 21.24. The least squares best
line has an intercept at 0.0398, so

The slope of the line is 1.23 × 10−2, so

The solutions of these equations are c = 310 and Vmon =
811 mm3. At 1.00 atm and 273 K, 811 mm3 corresponds 
to 3.6 × 10−5 mol, or 2.2 × 1019 atoms. Because each atom 
occupies an area of about 0.16 nm2, the surface area of the
sample is about 3.5 m2.

Self-test 21.6 Repeat the calculation for the following data:

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29

V/cm3 235 559 649 719 790 860 950

[370, 615 cm3]

c

cV

−
= × × × = ×− − − −1

1 23 10 10 10 1 23 102 3 4 3 3

mon

mm( . ) . mmm−3

1
3 98 10 6 3

cVmon

mm= × − −.

z

z V cV

c z

cV( )

( )

1

1 1

−
= +

−

mon mon

When c >> 1, the BET isotherm takes the simpler form

(21.17)

This expression is applicable to unreactive gases on polar sur-
faces, for which c ≈ 102 because ΔdesH

7 is then significantly
greater than ΔvapH 7 (eqn 21.16). The BET isotherm fits experi-
mental observations moderately well over restricted pressure
ranges, but it errs by underestimating the extent of adsorption at
low pressures and by overestimating it at high pressures.

An assumption of the Langmuir isotherm is the independ-
ence and equivalence of the adsorption sites. Deviations from
the isotherm can often be traced to the failure of these assump-
tions. For example, the enthalpy of adsorption often becomes
less negative as θ increases, which suggests that the energetically
most favourable sites are occupied first. Various attempts have
been made to take these variations into account. The Temkin
isotherm,

θ = c1 ln(c2p) (21.18)

where c1 and c2 are constants, corresponds to supposing that 
the adsorption enthalpy changes linearly with pressure. The
Freundlich isotherm

θ = c1p1/c2 (21.19)

corresponds to a logarithmic change. This isotherm attempts to
incorporate the role of substrate–substrate interactions on the
surface.

Different isotherms agree with experiment more or less 
well over restricted ranges of pressure, but they remain largely 
empirical. Empirical, however, does not mean useless, for if the
parameters of a reasonably reliable isotherm are known, reason-
ably reliable results can be obtained for the extent of surface 
coverage under various conditions. This kind of information is
essential for any discussion of heterogeneous catalysis.

21.5 The rates of surface processes

The rates of surface processes may be studied by techniques 
described in Section 21.3. Another technique, second harmonic
generation (SHG), is very important for the study of all types of
surfaces, including thin films and liquid–gas interfaces. We saw
in Section 11.7 that second harmonic generation is the conver-
sion of an intense, pulsed laser beam to radiation with twice its
initial frequency as it passes though a material. In addition to a
number of crystals, surfaces are also suitable materials for SHG.
Because pulsed lasers are the excitation sources, time-resolved
measurements of the kinetics and dynamics of surface processes
are possible over timescales as short as femtoseconds.

Figure 21.25 shows how the potential energy of a molecule
varies with its distance from the substrate surface. As the
molecule approaches the surface its energy falls as it becomes
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Fig. 21.24 The BET isotherm can be tested, and the parameters
determined, by plotting z/(1 − z)V against z = p/p*. The data are
from Example 21.6.
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physisorbed into the precursor state for chemisorption. Dis-
sociation into fragments often takes place as a molecule moves
into its chemisorbed state, and after an initial increase of energy
as the bonds stretch there is a sharp decrease as the adsorbate–
substrate bonds reach their full strength. Even if the molecule
does not fragment, there is likely to be an initial increase of 
potential energy as the molecule approaches the surface and the
bonds adjust.

In most cases, therefore, we can expect there to be a potential
energy barrier separating the precursor and chemisorbed states.
This barrier, though, might be low, and might not rise above 
the energy of a distant, stationary particle (as in Fig. 21.25a). 
In this case, chemisorption is not an activated process and can 
be expected to be rapid. Many gas adsorptions on clean metals
appear to be non-activated. In some cases the barrier rises above
the zero axis (as in Fig. 21.25b); such chemisorptions are acti-
vated and slower than the non-activated kind. An example is 
H2 on copper, which has an activation energy in the region of 
20–40 kJ mol−1.

One point that emerges from this discussion is that rates are
not good criteria for distinguishing between physisorption and
chemisorption. Chemisorption can be fast if the activation energy
is small or zero, but it may be slow if the activation energy is
large. Physisorption is usually fast, but it can appear to be slow if
adsorption is taking place on a porous medium.

(a) The rate of adsorption

The rate at which a surface is covered by adsorbate depends on
the ability of the substrate to dissipate the energy of the incom-
ing particle as thermal motion as it crashes on to the surface. If
the energy is not dissipated quickly, the particle migrates over
the surface until a vibration expels it into the overlying gas or it
reaches an edge. The proportion of collisions with the surface

that successfully lead to adsorption is called the sticking prob-
ability, s:

[21.20]

The denominator can be calculated from the kinetic model, and
the numerator can be measured by observing the rate of change
of pressure.

Values of s vary widely. For example, at room temperature
CO has s in the range 0.1–1.0 for several d-metal surfaces, but for
N2 on rhenium s < 10−2, indicating that more than a hundred
collisions are needed before one molecule sticks successfully.
Beam studies on specific crystal planes show a pronounced
specificity: for N2 on tungsten, s ranges from 0.74 on the (320)
faces down to less than 0.01 on the (110) faces at room temper-
ature. The sticking probability decreases as the surface coverage
increases (Fig. 21.26). A simple assumption is that s is propor-
tional to 1 − θ, the fraction uncovered, and it is common to write

s = (1 − θ)s0 (21.21)

where s0 is the sticking probability on a perfectly clean surface.
The results in Fig. 21.26 do not fit this expression because they
show that s remains close to s0 until the coverage has risen to
about 3 × 1014 molecules cm−2, and then falls steeply. The expla-
nation is probably that the colliding molecule does not enter the
chemisorbed state at once, but moves over the surface until it
encounters an empty site.

(b) The rate of desorption

Desorption is always activated because the particles have to be
lifted from the foot of a potential well. A physisorbed particle 
vibrates in its shallow potential well, and might shake itself off

the surface after a short time. The temperature dependence of
the first-order rate of departure can be expected to be Arrhenius-

s =
rate of adsorption of particles by the surrface

rate of collision of particles with thhe surface
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Fig. 21.25 The potential energy profiles for the dissociative
chemisorption of an A2 molecule. In each case, P is the enthalpy
of (non-dissociative) physisorption and C that for
chemisorption (at T = 0). The relative locations of the curves
determine whether the chemisorption is (a) not activated or (b)
activated.
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Fig. 21.26 The sticking probability of N2 on various faces of a
tungsten crystal and its dependence on surface coverage. Note
the very low sticking probability for the (110) and (111) faces.
(Data provided by Professor D.A. King.)
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like, with an activation energy for desorption, Ed, comparable to
the enthalpy of physisorption:

kd = Ae−Ed/RT (21.22)

Therefore, the half-life for remaining on the surface has a tem-
perature dependence

(21.23)

(Note the positive sign in the exponent.) If we suppose that 1/τ0

is approximately the same as the vibrational frequency of the
weak particle–surface bond (about 1012 Hz) and Ed ≈ 25 kJ mol−1,
then residence half-lives of around 10 ns are predicted at room
temperature. Lifetimes close to 1 s are obtained only by lower-
ing the temperature to about 100 K. For chemisorption, with 
Ed = 100 kJ mol−1 and guessing that τ0 = 10−14 s (because the 
adsorbate–substrate bond is quite stiff), we expect a residence
half-life of about 3 × 103 s (about an hour) at room temperature,
decreasing to 1 s at about 350 K.

The desorption activation energy can be measured in several
ways. However, we must be guarded in its interpretation because
it often depends on the fractional coverage, and so may change
as desorption proceeds. Moreover, the transfer of concepts such
as ‘reaction order’ and ‘rate constant’ from bulk studies to sur-
faces is hazardous, and there are few examples of strictly first-
order or second-order desorption kinetics (just as there are few
integral-order reactions in the gas phase too).

If we disregard these complications, one way of measuring the
desorption activation energy is to monitor the rate of increase 
in pressure when the sample is maintained at a series of tem-
peratures, and to attempt to make an Arrhenius plot. A more 
sophisticated technique is temperature programmed desorption
(TPD) or thermal desorption spectroscopy (TDS). The basic
observation is a surge in desorption rate (as monitored by a mass
spectrometer) when the temperature is raised linearly to the
temperature at which desorption occurs rapidly, but once the
desorption has occurred there is no more adsorbate to escape
from the surface, so the desorption flux falls again as the tempera-
ture continues to rise. The TPD spectrum, the plot of desorption
flux against temperature, therefore shows a peak, the location of
which depends on the desorption activation energy. There are
three maxima in the example shown in Fig. 21.27, indicating the
presence of three sites with different activation energies.

In many cases only a single activation energy (and a single 
peak in the TPD spectrum) is observed. When several peaks are 
observed they might correspond to adsorption on different crystal
planes or to multilayer adsorption. For instance, Cd atoms on
tungsten show two activation energies, one of 18 kJ mol−1 and
the other of 90 kJ mol−1. The explanation is that the more tightly
bound Cd atoms are attached directly to the substrate, and the
less strongly bound are in a layer (or layers) above the primary
overlayer. Another example of a system showing two desorption

t
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E RT
1 2 0 0

2 2
/

/ln ln
= = =
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e dτ τ

activation energies is CO on tungsten, the values being 120 kJ
mol−1 and 300 kJ mol−1. The explanation is believed to be the 
existence of two types of metal–adsorbate binding site, one 
involving a simple M-CO bond, the other adsorption with dis-
sociation into individually adsorbed C and O atoms.

(c) Mobility on surfaces

A further aspect of the strength of the interactions between 
adsorbate and substrate is the mobility of the adsorbate. Mobility
is often a vital feature of a catalyst’s activity, because a catalyst
might be impotent if the reactant molecules adsorb so strongly
that they cannot migrate. The activation energy for diffusion
over a surface need not be the same as for desorption because the
particles may be able to move through valleys between poten-
tial peaks without leaving the surface completely. In general, 
the activation energy for migration is about 10–20 per cent of
the energy of the surface–adsorbate bond, but the actual value 
depends on the extent of coverage. The defect structure of the
sample (which depends on the temperature) may also play a
dominant role because the adsorbed molecules might find it 
easier to skip across a terrace than to roll along the foot of a step,
and these molecules might become trapped in vacancies in an
otherwise flat terrace. Diffusion may also be easier across one
crystal face than another, and so the surface mobility depends
on which lattice planes are exposed.

Diffusion characteristics of an adsorbate can be examined 
by using STM to follow the change in surface characteristics or
by field-ionization microscopy (FIM), which portrays the elec-
trical characteristics of a surface by using the ionization of noble
gas atoms to probe the surface (Fig. 21.28). An individual atom
is imaged, the temperature is raised, and then lowered after a
definite interval. A new image is then recorded, and the new posi-
tion of the atom measured (Fig. 21.29). A sequence of images
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Fig. 21.27 The flash desorption spectrum of H2 on the (100) face
of tungsten. The three peaks indicate the presence of three sites
with different adsorption enthalpies and therefore different
desorption activation energies. (P.W. Tamm and L.D. Schmidt,
J. Chem. Phys. 51, 5352 (1969).)
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shows that the atom makes a random walk across the surface, and
the diffusion coefficient, D, can be inferred from the mean dis-
tance, d, travelled in an interval τ by using the two-dimensional
random walk expression d = (Dτ)1/2. The value of D for different
crystal planes at different temperatures can be determined dir-
ectly in this way, and the activation energy for migration over
each plane obtained from the Arrhenius-like expression

D = D0e−ED/RT (21.24)

where ED is the activation energy for diffusion. Typical values for
W atoms on tungsten have ED in the range 57–87 kJ mol−1 and
D0 ≈ 3.8 × 10−11 m2 s−1. For CO on tungsten, the activation energy
falls from 144 kJ mol−1 at low surface coverage to 88 kJ mol−1

when the coverage is high.

IMPACT ON BIOCHEMISTRY

I21.1 Biosensor analysis

Biosensor analysis is a very sensitive and sophisticated optical
technique that is now used routinely to measure the kinetics and
thermodynamics of interactions between biopolymers. A bio-
sensor detects changes in the optical properties of a surface in
contact with a biopolymer.

The mobility of delocalized valence electrons accounts for the
electrical conductivity of metals and these mobile electrons
form a plasma, a dense gas of charged particles. Bombardment
of the plasma by light or an electron beam can cause transient
changes in the distribution of electrons, with some regions be-
coming slightly more dense than others. Coulomb repulsion in
the regions of high density causes electrons to move away from
each other, so lowering their density. The resulting oscillations
in electron density, called plasmons, can be excited both in the
bulk and on the surface of a metal. Plasmons in the bulk may be
visualized as waves that propagate through the solid. A surface
plasmon also propagates away from the surface, but the ampli-
tude of the wave, also called an evanescent wave, decreases
sharply with distance from the surface.

Biosensor analysis is based on the phenomenon of surface
plasmon resonance (SPR), the absorption of energy from an 
incident beam of electromagnetic radiation by surface plasmons.
Absorption, or ‘resonance’, can be observed with appropriate
choice of the wavelength and angle of incidence of the excitation
beam. It is common practice to use a monochromatic beam and
to vary the angle of incidence θ (Fig. 21.30). The beam passes
through a prism that strikes one side of a thin film of gold or sil-
ver. The angle corresponding to light absorption depends on the
refractive index of the medium in direct contact with the oppos-
ing side of the metallic film. This variation of the resonance
angle with the state of the surface arises from the ability of the
evanescent wave to interact with material a short distance away
from the surface.

As an illustration of biosensor analysis, we consider the asso-
ciation of two polymers, A and B. In a typical experiment, a
stream of solution containing a known concentration of A flows
above the surface to which B is chemisorbed. Figure 21.31 shows
that the kinetics of binding of A to B may be followed by mon-
itoring the time dependence of the SPR signal, denoted by R,
which is typically the shift in resonance angle. The system is nor-
mally allowed to reach equilibrium, which is denoted by the
plateau in Fig. 21.31. Then, a solution containing no A is flowed
above the surface and the AB complex dissociates. Again, ana-
lysis of the decay of the SPR signal reveals the kinetics of dissoci-
ation of the AB complex.

He

He+

Fig. 21.28 The events leading to an FIM image of a surface. The
He atom migrates across the surface until it is ionized at an
exposed atom, when it is pulled off by the externally applied
potential. (The bouncing motion is due to the intermolecular
potential, not gravity!)

Fig. 21.29 FIM micrographs showing the migration of Re atoms on rhenium during 3 s intervals at 375 K. (Photographs provided by
Professor G. Ehrlich.)
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The equilibrium constant for formation of the AB complex
can be measured directly from data of the type displayed in 
Fig. 21.31. Consider the equilibrium

A + B 5 AB

where kon and koff are the rate constants for formation and dis-
sociation of the AB complex, and K is the equilibrium constant
for formation of the AB complex. It follows that

(21.25)

In a typical experiment, the flow rate of A is sufficiently high that
[A] = a0 is essentially constant. We can also write [B] = b0 − [AB]
from mass-balance considerations, where b0 is the total con-
centration of B. Finally, the SPR signal is often observed to be
proportional to [AB]. The maximum value that R can have 
is Rmax ∝ b0, which would be measured if all B molecules were
ligated to A. We may then write

 

d[AB]
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[A][B] [AB]on offt

k k= −

K
k

k
= on

off

(21.26)

At equilibrium R = Req and dR/dt = 0. It follows (after some al-
gebra) that

(21.27)

Hence, the value of K can be obtained from measurements of Req

for a series of a0.
Biosensor analysis has been used in the study of thin films,

metal/electrolyte surfaces, Langmuir–Blodgett films, and a num-
ber of biopolymer interactions, such as antibody–antigen and
protein–DNA interactions. The most important advantage of the
technique is its sensitivity; it is possible to measure the adsorp-
tion of nanograms of material on to a surface. For biological
studies, the main disadvantage is the requirement for immobil-
ization of at least one of the components of the system under
study.

21.6 Mechanisms of heterogeneous catalysis

Many catalysts depend on co-adsorption, the adsorption of two
or more species. One consequence of the presence of a second
species may be the modification of the electronic structure at 
the surface of a metal. For instance, partial coverage of d-metal
surfaces by alkali metals has a pronounced effect on the elec-
tron distribution and reduces the work function of the metal.
Such modifiers can act as promoters (to enhance the action of
catalysts) or as poisons (to inhibit catalytic action).

Figure 21.32 shows the potential energy curve for a reaction
influenced by the action of a heterogeneous catalyst. Differences
between Figs. 21.32 and 21.1 arise from the fact that heterogen-
eous catalysis normally depends on at least one reactant being
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Fig. 21.30 The experimental arrangement for the observation of
surface plasmon resonance, as explained in the text.
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Fig. 21.31 The time dependence of a surface plasmon resonance
signal, R, showing the effect of binding of a ligand to a
biopolymer adsorbed on to a surface. Binding leads to an
increase in R until an equilibrium value, Req, is obtained. Passing
a solution containing no ligand over the surface leads to
dissociation and decrease in R.
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Fig. 21.32 The reaction profiles for catalysed and uncatalysed
reactions. The catalysed reaction path includes activation
energies for adsorption and desorption as well as an overall
lower activation energy for the process.
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adsorbed (usually chemisorbed) and modified to a form in which
it readily undergoes reaction, and desorption of the products.
Modification of the reactant often takes the form of a mole-
cular fragmentation. In practice, the active phase is dispersed 
as very small particles of linear dimension less than 2 nm on a
porous oxide support. Shape-selective catalysts, such as the 
zeolites (Impact I21.2), which have a pore size that can distin-
guish shapes and sizes at a molecular scale, have high internal
specific surface areas, in the range of 100–500 m2 g−1.

The decomposition of phosphine (PH3) on tungsten is first
order at low pressures and zeroth order at high pressures. To 
account for these observations, we write down a plausible rate
law in terms of an adsorption isotherm and explore its form in
the limits of high and low pressure. If the rate is supposed to be
proportional to the surface coverage and we suppose that θ is
given by the Langmuir isotherm, we would write

(21.28a)

where p is the pressure of phosphine. When the pressure is 
so low that Kp << 1, we can neglect Kp in the denominator and 
obtain

v = kr Kp (21.28b)

and the decomposition is first order. When Kp >> 1, we can 
neglect the 1 in the denominator, whereupon the Kp terms 
cancel and we are left with

v = kr (21.28c)

and the decomposition is zeroth order.

Self-test 21.7 Suggest the form of the rate law for the deuter-
ation of NH3 in which D2 adsorbs dissociatively but not ex-
tensively (that is, Kp << 1, with p the partial pressure of D2),
and NH3 (with partial pressure p′) adsorbs at different sites.

[v = kr(Kp)1/2K ′p′/(1 + K ′p′)]

In the Langmuir–Hinshelwood mechanism (LH mechanism)
of surface-catalysed reactions, the reaction takes place by en-
counters between molecular fragments and atoms adsorbed on
the surface. We therefore expect the rate law to be second order
in the extent of surface coverage:

A + B → P v = krθAθB (21.29)

Insertion of the appropriate isotherms for A and B then gives the
reaction rate in terms of the partial pressures of the reactants.
For example, if A and B follow Langmuir isotherms, and adsorb
without dissociation, so that

(21.30)θB
B B
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then it follows that the rate law is

(21.31)

The parameters K in the isotherms and the rate constant kr are
all temperature dependent, so the overall temperature depend-
ence of the rate may be strongly non-Arrhenius (in the sense
that the reaction rate is unlikely to be proportional to e−Ea/RT).
The Langmuir–Hinshelwood mechanism is dominant for the
catalytic oxidation of CO to CO2.

In the Eley–Rideal mechanism (ER mechanism) of a surface-
catalysed reaction, a gas-phase molecule collides with another
molecule already adsorbed on the surface. The rate of formation
of product is expected to be proportional to the partial pressure,
pB, of the non-adsorbed gas B and the extent of surface coverage,
θA, of the adsorbed gas A. It follows that the rate law should be

A + B → P v = kr pBθA (21.32)

The rate constant, kr, might be much larger than for the uncata-
lysed gas-phase reaction because the reaction on the surface has 
a low activation energy and the adsorption itself is often not
activated.

If we know the adsorption isotherm for A, we can express the
rate law in terms of its partial pressure, pA. For example, if the
adsorption of A follows a Langmuir isotherm in the pressure
range of interest, then the rate law would be

(21.33)

If A were a diatomic molecule that adsorbed as atoms, we would
substitute the isotherm given in eqn 21.13 instead.

According to eqn 21.33, when the partial pressure of A is high
(in the sense KpA >> 1) there is almost complete surface coverage,
and the rate is equal to krpB. Now the rate-determining step is
the collision of B with the adsorbed fragments. When the pres-
sure of A is low (KpA << 1), perhaps because of its reaction, the
rate is equal to krKpA pB; now the extent of surface coverage is 
important in the determination of the rate.

Almost all thermal surface-catalysed reactions are thought to
take place by the LH mechanism, but a number of reactions with
an ER mechanism have also been identified from molecular
beam investigations. For example, the reaction between H(g)
and D(ad) to form HD(g) is thought to be by an ER mechanism
involving the direct collision and pick-up of the adsorbed D
atom by the incident H atom. However, the two mechanisms
should really be thought of as ideal limits, and all reactions lie
somewhere between the two and show features of each one.

21.7 Catalytic activity at surfaces

It has become possible to investigate how the catalytic activity of
a surface depends on its structure as well as its composition. For
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instance, the cleavage of C-H and H-H bonds appears to 
depend on the presence of steps and kinks, and a terrace often has
only minimal catalytic activity. The reaction H2 + D2 → 2 HD
has been studied in detail. For this reaction, terrace sites are 
inactive but one molecule in ten reacts when it strikes a step.
Although the step itself might be the important feature, it may
be that the presence of the step merely exposes a more reactive
crystal face (the step face itself). Likewise, the dehydrogenation
of hexane to hexene depends strongly on the kink density, 
and it appears that kinks are needed to cleave C-C bonds. 
These observations suggest a reason why even small amounts of 
impurities may poison a catalyst: they are likely to attach to step
and kink sites, and so impair the activity of the catalyst entirely.
A constructive outcome is that the extent of dehydrogenation
may be controlled relative to other types of reactions by seeking
impurities that adsorb at kinks and act as specific poisons.

The activity of a catalyst depends on the strength of chem-
isorption as indicated by the ‘volcano’ curve in Fig. 21.33 (which
is so called on account of its general shape). To be active, the 
catalyst should be extensively covered by adsorbate, which is 
the case if chemisorption is strong. On the other hand, if the
strength of the substrate–adsorbate bond becomes too great, the
activity declines either because the other reactant molecules
cannot react with the adsorbate or because the adsorbate mole-
cules are immobilized on the surface. This pattern of behaviour
suggests that the activity of a catalyst should initially increase
with strength of adsorption (as measured, for instance, by the
enthalpy of adsorption) and then decline, and that the most 
active catalysts should be those lying near the summit of the 
volcano. Most active metals are those that lie close to the middle
of the d-block.

Many metals are suitable for adsorbing gases, and the gen-
eral order of adsorption strengths decreases along the series O2,

C2H2, C2H4, CO, H2, CO2, N2. Some of these molecules adsorb
dissociatively (for example, H2). Elements from the d-block,
such as iron, vanadium, and chromium, show a strong activity
towards all these gases, but manganese and copper are unable to
adsorb N2 and CO2. Metals towards the left of the periodic table
(for example, magnesium and lithium) can adsorb (and, in fact,
react with) only the most active gas (O2). These trends are sum-
marized in Table 21.3.

IMPACT ON TECHNOLOGY

I21.2 Catalysis in the chemical industry

Almost the whole of modern chemical industry depends on the
development, selection, and application of catalysts (Table 21.4).
All we can hope to do in this section is to give a brief indication
of some of the problems involved. Other than the ones we con-
sider, these problems include the danger of the catalyst being
poisoned by byproducts or impurities, and economic considera-
tions relating to cost and lifetime.

An example of catalytic action is found in the hydrogenation
of alkenes. The alkene (1) adsorbs by forming two bonds with
the surface (2), and on the same surface there may be adsorbed
H atoms. When an encounter occurs, one of the alkene–surface
bonds is broken (forming 3 or 4) and later an encounter with a
second H atom releases the fully hydrogenated hydrocarbon,
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Fig. 21.33 A volcano curve of catalytic activity arises because,
although the reactants must adsorb reasonably strongly, they
must not adsorb so strongly that they are immobilized. The
lower curve refers to the first series of d-block metals, the upper
curve to the second and third series d-block metals. The group
numbers relate to the periodic table inside the back cover.

Table 21.3 Chemisorption abilities*

O2 C2H2 C2H4 CO H2 CO2 N2

Ti, Cr, Mo, Fe + + + + + + +
Ni, Co + + + + + + −
Pd, Pt + + + + + − −
Mn, Cu + + + + ± − −
Al, Au + + + − − − −
Li, Na, K + + − − − − −
Mg, Ag, Zn, Pb + − − − − − −

* +, Strong chemisorption; ±, chemisorption; −, no chemisorption.

Table 21.4 Properties of catalysts

Catalyst

Metals

Semiconducting 
oxides and sulfides

Insulating oxides

Acids

Function

Hydrogenation
Dehydrogenation

Oxidation 
Desulfurization

Dehydration

Polymerization
Isomerization 
Cracking 
Alkylation

Examples

Fe, Ni, Pt, Ag

NiO, ZnO, MgO, Bi2O3/
MoO3, MoS2

Al2O3, SiO2, MgO

H3PO4, H2SO4,
SiO3/Al2O3, zeolites
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which is the thermodynamically more stable species. The evid-
ence for a two-stage reaction is the appearance of different iso-
meric alkenes in the mixture. The formation of isomers comes
about because, while the hydrocarbon chain is waving about over
the surface of the metal, an atom in the chain might chemisorb
again to form (5) and then desorb to (6), an isomer of the original
molecule. The new alkene would not be formed if the two 
hydrogen atoms attached simultaneously.

A major industrial application of catalytic hydrogenation is to
the formation of edible fats from vegetable and animal oils. Raw
oils obtained from sources such as the soya bean have the struc-
ture CH2(OOCR)CH(OOCR′)CH2(OOCR″), where R, R′, and
R″ are long-chain hydrocarbons with several double bonds. One
disadvantage of the presence of many double bonds is that the
oils are susceptible to atmospheric oxidation, and therefore are
liable to become rancid. The geometrical configuration of the
chains is responsible for the liquid nature of the oil, and in many
applications a solid fat is at least much better and often neces-
sary. Controlled partial hydrogenation of an oil with a catalyst,
carefully selected so that hydrogenation is incomplete and so
that the chains do not isomerize (finely divided nickel, in fact),
is used on a wide scale to produce edible fats. The process, and
the industry, is not made any easier by the seasonal variation of
the number of double bonds in the oils.

Catalytic oxidation is also widely used in industry and in pol-
lution control. Although in some cases it is desirable to achieve
complete oxidation (as in the production of nitric acid from 
ammonia), in others partial oxidation is the aim. For example,
the complete oxidation of propene to carbon dioxide and 
water is wasteful, but its partial oxidation to propenal (acrolein,

CH2=CHCHO) is the start of important industrial processes.
Likewise, the controlled oxidations of ethene to ethanol, ethanal
(acetaldehyde), and (in the presence of acetic acid and chlorine)
to chloroethene (vinyl chloride, for the manufacture of PVC),
are the initial stages of very important chemical industries.

Some of these oxidation reactions are catalysed by d-metal
oxides of various kinds. The physical chemistry of oxide surfaces
is very complex, as can be appreciated by considering what hap-
pens during the oxidation of propene to propenal on bismuth
molybdate. The first stage is the adsorption of the propene
molecule with loss of a hydrogen to form the propenyl (allyl)
radical, CH2=CHCH2. An O atom in the surface can now trans-
fer to this radical, leading to the formation of propenal and its
desorption from the surface. The H atom also escapes with a
surface O atom, and goes on to form H2O, which leaves the sur-
face. The surface is left with vacancies and metal ions in lower
oxidation states. These vacancies are attacked by O2 molecules
in the overlying gas, which then chemisorb as O2

− ions, so 
reforming the catalyst. This sequence of events, which is called
the Mars van Krevelen mechanism, involves great upheavals of
the surface, and some materials break up under the stress.

Many of the small organic molecules used in the preparation
of all kinds of chemical products come from oil. These small
building blocks of polymers, perfumes, and petrochemicals in
general, are usually cut from the long-chain hydrocarbons drawn
from the Earth as petroleum. The catalytically induced fragmen-
tation of the long-chain hydrocarbons is called cracking, and is
often brought about on silica–alumina catalysts. These catalysts
act by forming unstable carbocations, which dissociate and re-
arrange to more highly branched isomers. These branched iso-
mers burn more smoothly and efficiently in internal combustion
engines, and are used to produce higher octane fuels.

Catalytic reforming uses a dual-function catalyst, such as a
dispersion of platinum and acidic alumina. The platinum pro-
vides the metal function, and brings about dehydrogenation and
hydrogenation. The alumina provides the acidic function, being
able to form carbocations from alkenes. The sequence of events
in catalytic reforming shows up very clearly the complications
that must be unravelled if a reaction as important as this is to be
understood and improved. The first step is the attachment of the
long-chain hydrocarbon by chemisorption to the platinum. In
this process first one and then a second H atom is lost, and an
alkene is formed. The alkene migrates to a Brønsted acid site,
where it accepts a proton and attaches to the surface as a car-
bocation. This carbocation can undergo several different reac-
tions. It can break into two, isomerize into a more highly branched
form, or undergo varieties of ring-closure. Then the adsorbed
molecule loses a proton, escapes from the surface, and migrates
(possibly through the gas) as an alkene to a metal part of the cata-
lyst where it is hydrogenated. We end up with a rich selection of
smaller molecules which can be withdrawn, fractionated, and
then used as raw materials for other products.
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The concept of a solid surface has been extended with the
availability of microporous materials, in which the surface
effectively extends deep inside the solid. Zeolites are microp-
orous aluminosilicates with the general formula {[Mn+]x/n·
[H2O]m}{[AlO2]x[SiO2]y}

x−, where Mn+ cations and H2O mole-
cules bind inside the cavities, or pores, of the Al-O-Si frame-
work (Fig. 21.34). Small neutral molecules, such as CO2, NH3,
and hydrocarbons (including aromatic compounds), can also
adsorb to the internal surfaces and we shall see that this partially
accounts for the utility of zeolites as catalysts.

Some zeolites for which M = H+ are very strong acids and
catalyse a variety of reactions that are of particular importance
to the petrochemical industry. Examples include the dehydra-
tion of methanol to form hydrocarbons such as gasoline and
other fuels:

x CH3OH fzeolitefg (CH2)x + x H2O

and the isomerization of m-xylene (7) to p-xylene (8). The cat-
alytically important form of these acidic zeolites may be either a
Brønsted acid (9) or a Lewis acid (10). Like enzymes, a zeolite
catalyst with a specific composition and structure is very 
selective toward certain reactants and products because only
molecules of certain sizes can enter and exit the pores in which
catalysis occurs. It is also possible that zeolites derive their selec-
tivity from the ability to bind and to stabilize only transition
states that fit properly in the pores. The analysis of the mechan-
ism of zeolyte catalysis is greatly facilitated by computer simu-
lation of microporous systems, which shows how molecules fit
in the pores, migrate through the connecting tunnels, and react
at the appropriate active sites.

Fig. 21.34 A framework representation of the general layout 
of the Si, Al, and O atoms in a zeolite material. Each vertex
corresponds to a Si or Al atom and each edge corresponds to the
approximate location of an O atom. Note the large central pore,
which can hold cations, water molecules, or other small
molecules.

Checklist of key ideas

1. Catalysts are substances that accelerate reactions but
undergo no net chemical change.

2. A homogeneous catalyst is a catalyst in the same phase as the
reaction mixture. Enzymes are homogeneous, biological
catalysts.

3. The Michaelis–Menten mechanism of enzyme kinetics
accounts for the dependence of rate on the concentration of
the substrate, v = vmax[S]0/([S]0 + KM).

4. A Lineweaver–Burk plot, based on 1/v = 1/vmax +
(KM/vmax)(1/[S]0), is used to determine the parameters that
occur in the Michaelis–Menten mechanism.

5. In competitive inhibition of an enzyme, the inhibitor binds
only to the active site of the enzyme and thereby inhibits the
attachment of the substrate.

6. In uncompetitive inhibition the inhibitor binds to a site of
the enzyme that is removed from the active site, but only if
the substrate is already present.
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7. In noncompetitive inhibition, the inhibitor binds to a site
other than the active site, and its presence reduces the ability
of the substrate to bind to the active site.

8. Adsorption is the attachment of molecules to a surface; the
substance that adsorbs is the adsorbate and the underlying
material is the adsorbent or substrate. The reverse of
adsorption is desorption.

9. Techniques for studying surface composition and structure
include scanning electron microscopy (SEM), scanning
tunnelling microscopy (STM), photoemission spectroscopy,
Auger electron spectroscopy (AES), and low energy electron
diffraction (LEED).

10. The fractional coverage, θ, is the ratio of the number of
occupied sites to the number of available sites.

11. Techniques for studying the rates of surface processes
include flash desorption, biosensor analysis, second
harmonic generation (SHG), gravimetry by using a quartz
crystal microbalance (QCM), and molecular beam reactive
scattering (MRS).

12. Physisorption is adsorption by a van der Waals interaction;
chemisorption is adsorption by formation of a chemical
(usually covalent) bond.

13. The Langmuir isotherm is a relation between the fractional
coverage and the partial pressure of the adsorbate: 
θ = Kp/(1 + Kp).

14. The isosteric enthalpy of adsorption is determined from a
plot of ln K against 1/T.

15. The BET isotherm, eqn 21.15, is an isotherm applicable
when multilayer adsorption is possible.

16. The sticking probability, s, is the proportion of collisions
with the surface that successfully lead to adsorption.

17. Desorption is an activated process; the desorption 
activation energy is measured by temperature programmed
desorption (TPD) or thermal desorption spectroscopy
(TDS).

18. In the Langmuir–Hinshelwood mechanism (LH
mechanism) of surface-catalysed reactions, the reaction
takes place by encounters between molecular fragments and
atoms adsorbed on the surface.

19. In the Eley–Rideal mechanism (ER mechanism) of a 
surface-catalysed reaction, a gas-phase molecule collides
with another molecule already adsorbed on the surface.

Further information

Further information 21.1 The BET isotherm

We suppose that at equilibrium a fraction θ0 of the surface sites are
unoccupied, a fraction θ1 is covered by a monolayer, a fraction θ2 is
covered by a bilayer, and so on. The number of adsorbed molecules is
therefore

N = Nsites(θ1 + 2θ2 + 3θ3 + . . .)

where Nsites is the total number of sites. We now follow the derivation
that led to the Langmuir isotherm (eqn 21.11) but allow for different
rates of desorption from the substrate and the various layers:

First layer: Rate of adsorption = Nka,0pθ0 Rate of desorption = Nkd,0θ1

At equilibrium ka,0pθ0 = kd,0θ1

Second layer: Rate of adsorption = Nka,1pθ1 Rate of desorption = Nkd,1θ2

At equilibrium ka,1pθ1 = kd,1θ2

Third layer: Rate of adsorption = Nka,2pθ2 Rate of desorption = Nkd,2θ3

At equilibrium ka,2pθ2 = kd,2θ3

and so on. We now suppose that, once a monolayer has been formed, all
the rate constants involving adsorption and desorption from the
physisorbed layers are the same, and write these equations as

ka,0pθ0 = kd,0θ1, so θ1 = (ka,0/kd,0)pθ0 = K0pθ0

ka,1pθ1 = kd,1θ2, so θ2 = (ka,1/kd,1)pθ1 = (ka,0/kd,0)(ka,1/kd,1)p2θ0

= K0K1p2θ0

ka,1pθ2 = kd,1θ3, so θ3 = (ka,1/kd,1)pθ2 = (ka,0/kd,0)(ka,1/kd,1)2p3θ0

= K0K1
2p3θ0

and so on, with K0 = ka,0 /kd,0 and K1 = ka,1/kd,1 the equilibrium constants
for adsorption to the substrate and an overlayer, respectively. Now,
because θ0 + θ1 + θ2 + . . . = 1, it follows that with

θ0 + K0pθ0 + K0K1p2θ0 + K0K1
2p3θ0 + . . .

= θ0 + K0pθ0{1 + K1p + K1
2p2 + . . .}

then, because this expression is equal to 1,

In a similar way, we can write the number of adsorbed species as

N = NsitesK0pθ0 + 2NsitesK0K1p2θ0 + . . .

= NsitesK0pθ0(1 + 2K1p + 3K1
2p2 + . . .)

By combining the last two expressions, we obtain
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The ratio N/Nsites is equal to the ratio V/Vmon, where V is the total
volume adsorbed and Vmon the volume adsorbed had there been
complete monolayer coverage. The term K1 is the equilibrium constant
for the ‘reaction’ in which the ‘reactant’ is a molecule physisorbed on 
to adsorbed layers and the ‘product’ is the molecule in the vapour. This
process is very much like the equilibrium M(g) 5 M(l), for which 

K = 1/p*, where p* is the vapour pressure of the liquid. Therefore, with
K1 = 1/p*, z = p/p*, and c = K0/K1, the last equation becomes

as in eqn 21.15.
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Discussion questions

21.1 Discuss the features, advantages, and limitations of the
Michaelis–Menten mechanism of enzyme action.

21.2 Prepare a report on the application of the experimental strategies
described in Chapter 19 to the study of enzyme-catalysed reactions.
Devote some attention to the following topics: (a) the determination of
reaction rates over a large timescale; (b) the determination of the rate
constants and equilibrium constant of binding of substrate to an
enzyme, and (c) the characterization of intermediates in a catalytic 
cycle. Your report should be similar in content and extent to one of the
Impact sections found throughout this text.

21.3 A plot of the rate of an enzyme-catalysed reaction against
temperature has a maximum, in an apparent deviation from the
behaviour predicted by the Arrhenius relation (eqn 20.1). Suggest a
molecular interpretation for this effect.

21.4 Distinguish between competitive, noncompetitive, and
uncompetitive inhibition of enzymes. Discuss how these modes of
inhibition may be detected experimentally.

21.5 Some enzymes are inhibited by high concentrations of their own
products. (a) Sketch a plot of reaction rate against concentration of
substrate for an enzyme that is prone to product inhibition.

21.6 (a) Distinguish between a step and a terrace. (b) Describe how steps
and terraces can be formed by dislocations.

21.7 Drawing from knowledge you have acquired through the text,
describe the advantages and limitations of each of the microscopy,
diffraction, and scattering techniques designated by the acronyms AFM,
FIM, LEED, SAM, SEM, and STM.

21.8 Distinguish between the following adsorption isotherms:
Langmuir, BET, Temkin, and Freundlich and indicate when and why
they are likely to be appropriate.

21.9 Describe the essential features of the Langmuir–Hinshelwood,
Eley–Rideal, and Mars van Krevelen mechanisms for surface-catalysed
reactions.

21.10 Account for the dependence of catalytic activity of a surface on the
strength of chemisorption, as shown in Fig. 21.25.

Exercises

21.1(a) Consider the base-catalysed reaction

(1) AH + B 6 BH+ + A− ka ka′, both fast

(2) A− + AH → product kb, slow

Deduce the rate law.

21.1(b) Consider the acid-catalysed reaction

(1) HA + H+ 6 HAH+ ka ka′, both fast

(2) HAH+ + B → BH+ + AH kb, slow

Deduce the rate law.

21.2(a) The enzyme-catalysed conversion of a substrate at 25°C has a
Michaelis constant of 0.046 mol dm−3. The rate of the reaction is 
1.04 × 10−3 mol dm−3 s−1 when the substrate concentration is 
0.105 mol dm−3. What is the maximum velocity of this reaction?

21.2(b) The enzyme-catalysed conversion of a substrate at 25°C has a
Michaelis constant of 0.032 mol dm−3. The rate of the reaction is
2.05 × 10−4 mol dm−3 s−1 when the substrate concentration is 
0.875 mol dm−3. What is the maximum velocity of this reaction?

21.3(a) The enzyme-catalysed conversion of a substrate at 25°C has a
Michaelis constant of 0.015 mol dm−3 and a maximum velocity of 4.25 ×
10−4 mol dm−3 s−1 when the enzyme concentration is 3.60 × 10−9 mol dm−3.
Calculate kcat and η. Is the enzyme ‘catalytically perfect’?

21.3(b) The enzyme-catalysed conversion of a substrate at 25°C has a
Michaelis constant of 9.0 × 105 mol dm−3 and a maximum velocity of
2.24 × 10−5 mol dm−3 s−1 when the enzyme concentration is 1.60 × 10−9

mol dm−3. Calculate kcat and η. Is the enzyme ‘catalytically perfect’?

21.4(a) Consider an enzyme-catalysed reaction that follows
Michaelis–Menten kinetics with KM = 3.0 × 10−3 mol dm−3. What
concentration of a competitive inhibitor characterized by KI = 2.0 × 10−5

mol dm−3 will reduce the rate of formation of product by 50 per cent
when the substrate concentration is held at 1.0 × 10−4 mol dm−3?

21.4(b) Consider an enzyme-catalysed reaction that follows Michaelis–
Menten kinetics with KM = 7.5 × 10−4 mol dm−3. What concentration 
of a competitive inhibitor characterized by KI = 5.6 × 10−4 mol dm−3

will reduce the rate of formation of product by 75 per cent when the
substrate concentration is held at 1.0 × 10−4 mol dm−3?

21.5(a) Calculate the frequency of molecular collisions per square
centimetre of surface in a vessel containing (a) hydrogen, (b) propane 
at 25°C when the pressure is (i) 100 Pa, (ii) 0.10 μTorr.

21.5(b) Calculate the frequency of molecular collisions per square
centimetre of surface in a vessel containing (a) nitrogen, (b) methane
at 25°C when the pressure is (i) 10.0 Pa, (ii) 0.150 μTorr.

21.6(a) What pressure of argon gas is required to produce a collision 
rate of 4.5 × 1020 s−1 at 425 K on a circular surface of diameter
1.5 mm?
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21.6(b) What pressure of nitrogen gas is required to produce a collision
rate of 5.00 × 1019 s−1 at 525 K on a circular surface of diameter 2.0 mm?

21.7(a) The LEED pattern from a clean unreconstructed (110) face of a
metal is shown below. Sketch the LEED pattern for a surface that was
reconstructed by doubling the vertical separation between the atoms.

l l l

l l l

l l l

l l l

l l l

21.7(b) The LEED pattern from a clean unreconstructed (110) face of a
metal is shown below. Sketch the LEED pattern for a surface that was
reconstructed by tripling the horizontal separation between the atoms.

l l l

l l l

l l l

21.8(a) A monolayer of N2 molecules is adsorbed on the surface of 
1.00 g of an Fe/Al2O3 catalyst at 77 K, the boiling point of liquid
nitrogen. Upon warming, the nitrogen occupies 3.86 cm3 at 0°C and
760 Torr. What is the surface area of the catalyst?

21.8(b) A monolayer of CO molecules is adsorbed on the surface of 
1.00 g of an Fe/Al2O3 catalyst at 77 K, the boiling point of liquid
nitrogen. Upon warming, the carbon monoxide occupies 3.75 cm3 at
0°C and 1.00 bar. What is the surface area of the catalyst?

21.9(a) The volume of oxygen gas at 0°C and 104 kPa adsorbed on the
surface of 1.00 g of a sample of silica at 0°C was 0.286 cm3 at 145.4 Torr
and 1.443 cm3 at 760 Torr. What is the value of Vmon?

21.9(b) The volume of gas at 20°C and 1.00 bar adsorbed on the surface
of 1.50 g of a sample of silica at 0°C was 1.42 cm3 at 56.4 kPa and 2.77 cm3

at 108 kPa. What is the value of Vmon?

21.10(a) The enthalpy of adsorption of CO on a surface is found to be 
−120 kJ mol−1. Estimate the mean lifetime of a CO molecule on the
surface at 400 K.

21.10(b) The enthalpy of adsorption of ammonia on a nickel surface is
found to be −155 kJ mol−1. Estimate the mean lifetime of an NH3
molecule on the surface at 500 K.

21.11(a) A certain solid sample adsorbs 0.44 mg of CO when the
pressure of the gas is 26.0 kPa and the temperature is 300 K. The mass of
gas adsorbed when the pressure is 3.0 kPa and the temperature is 300  K
is 0.19 mg. The Langmuir isotherm is known to describe the adsorption.
Find the fractional coverage of the surface at the two pressures.

21.11(b) A certain solid sample adsorbs 0.63 mg of CO when the
pressure of the gas is 36.0 kPa and the temperature is 300 K. The mass of
gas adsorbed when the pressure is 4.0 kPa and the temperature is 300 K
is 0.21 mg. The Langmuir isotherm is known to describe the adsorption.
Find the fractional coverage of the surface at the two pressures.

21.12(a) The adsorption of a gas is described by the Langmuir isotherm
with K = 0.75 kPa−1 at 25°C. Calculate the pressure at which the
fractional surface coverage is (a) 0.15, (b) 0.95.

21.12(b) The adsorption of a gas is described by the Langmuir isotherm
with K = 0.548 kPa−1 at 25°C. Calculate the pressure at which the
fractional surface coverage is (a) 0.20, (b) 0.75.

21.13(a) A solid in contact with a gas at 12 kPa and 25°C adsorbs 2.5 mg
of the gas and obeys the Langmuir isotherm. The enthalpy change when
1.00 mmol of the adsorbed gas is desorbed is +10.2 J. What is the
equilibrium pressure for the adsorption of 2.5 mg of gas at 40°C?

21.13(b) A solid in contact with a gas at 8.86 kPa and 25°C adsorbs 4.67 mg
of the gas and obeys the Langmuir isotherm. The enthalpy change when
1.00 mmol of the adsorbed gas is desorbed is +12.2 J. What is the
equilibrium pressure for the adsorption of the same mass of gas at 45°C?

21.14(a) Nitrogen gas adsorbed on charcoal to the extent of 
0.921 cm3 g−1 at 490 kPa and 190 K, but at 250 K the same amount of
adsorption was achieved only when the pressure was increased to 3.2
MPa. What is the enthalpy of adsorption of nitrogen on charcoal?

21.14(b) Nitrogen gas adsorbed on a surface to the extent of 1.242 cm3

g−1 at 350 kPa and 180 K, but at 240 K the same amount of adsorption
was achieved only when the pressure was increased to 1.02 MPa. What
is the enthalpy of adsorption of nitrogen on the surface?

21.15(a) In an experiment on the adsorption of oxygen on tungsten 
it was found that the same volume of oxygen was desorbed in 27 min 
at 1856 K and 2.0 min at 1978 K. What is the activation energy of
desorption? How long would it take for the same amount to desorb at
(a) 298 K, (b) 3000 K?

21.15(b) In an experiment on the adsorption of ethene on iron it was
found that the same volume of the gas was desorbed in 1856 s at 873 K
and 8.44 s at 1012 K. What is the activation energy of desorption? How
long would it take for the same amount of ethene to desorb at (a) 298 K,
(b) 1500 K?

21.16(a) The average time for which an oxygen atom remains adsorbed
to a tungsten surface is 0.36 s at 2548 K and 3.49 s at 2362 K. What is the
activation energy for chemisorption?

21.16(b) The average time for which a hydrogen atom remains adsorbed
on a manganese surface is 35 per cent shorter at 1000 K than at 600 K.
What is the activation energy for chemisorption?

21.17(a) For how long on average would an H atom remain on a surface
at 400 K if its desorption activation energy is (a) 15 kJ mol−1, (b) 150 kJ
mol−1? Take τ0 = 0.10 ps. For how long on average would the same
atoms remain at 1000 K?

21.17(b) For how long on average would an atom remain on a surface at
298 K if its desorption activation energy is (a) 20 kJ mol−1, (b) 200 kJ
mol−1? Take τ0 = 0.12 ps. For how long on average would the same
atoms remain at 800 K?

21.18(a) Hydrogen iodide is very strongly adsorbed on gold but only
slightly adsorbed on platinum. Assume the adsorption follows the
Langmuir isotherm and predict the order of the HI decomposition
reaction on each of the two metal surfaces.

21.18(b) Suppose it is known that ozone adsorbs on a particular surface
in accord with a Langmuir isotherm. How could you use the pressure
dependence of the fractional coverage to distinguish between
adsorption (a) without dissociation, (b) with dissociation into O + O2,
(c) with dissociation into O + O + O?
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Problems*

Numerical problems

21.1 The following results were obtained for the action of an ATPase on
ATP at 20°C, when the concentration of the ATPase was 20 nmol dm−3:

[ATP]/(μmol dm−3) 0.60 0.80 1.4 2.0 3.0

v/(μmol dm−3 s−1) 0.81 0.97 1.30 1.47 1.69

Determine the Michaelis constant, the maximum velocity of the
reaction, the turnover number, and the catalytic efficiency of the
enzyme.

21.2 There are different ways to represent and analyse data for 
enzyme-catalysed reactions. For example, in the Eadie–Hofstee plot,
v/[S]0 is plotted against v. Alternatively, in the Hanes plot, v/[S]0 is
plotted against [S]0. (a) Using the simple Michaelis–Menten mechanism,
derive relations between v/[S]0 and v and between v/[S]0 and [S]0. 
(b) Discuss how the values of KM and vmax are obtained from analysis 
of the Eadie–Hofstee and Hanes plots. (c) Determine the Michaelis
constant and the maximum velocity of the reaction from Problem 21.1
by using Eadie–Hofstee and Hanes plots to analyse the data.

21.3 In general, the catalytic efficiency of an enzyme depends on the 
pH of the medium in which it operates. One way to account for this
behaviour is to propose that the enzyme and the enzyme–substrate
complex are active only in specific protonation states. This proposition
can be summarized by the following mechanism:

EH + S 6 ESH ka, ka′

ESH → E + P kb

EH 5 E− + H+

EH2
+ 5 EH + H+

ESH 5 ES− + H+

ESH2 5 ESH + H+

in which only the EH and ESH forms are active. (a) For the mechanism
above, show that
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where vmax and KM correspond to the form EH of the enzyme. (b) For
pH values ranging from 0 to 14, plot v′max against pH for a hypothetical
reaction for which vmax = 1.0 × 10−6 mol dm−3 s−1, KES,b = 1.0 × 10−6 mol
dm−3, and KES,a = 1.0 × 10−8. Is there a pH at which vmax reaches a
maximum value? If so, determine the pH. (c) Redraw the plot in part 
(b) by using the same value of vmax, but KES,b = 1.0 × 10−4 mol dm−3 and
KES,a = 1.0 × 10−10 mol dm−3. Account for any differences between this
plot and the plot from part (b).

21.4 The enzyme carboxypeptidase catalyses the hydrolysis of
polypeptides and here we consider its inhibition. The following results
were obtained when the rate of the enzymolysis of carbobenzoxy-
glycyl-d-phenylalanine (CBGP) was monitored without inhibitor:

[CBGP]0/(10−2 mol dm−3) 1.25 3.84 5.81 7.13

Relative reaction rate 0.398 0.669 0.859 1.000

(All rates in this problem were measured with the same concentration of
enzyme and are relative to the rate measured when [CBGP]0 = 0.0713
mol dm−3 in the absence of inhibitor.) When 2.0 × 10−3 mol dm−3

phenylbutyrate ion was added to a solution containing the enzyme and
substrate, the following results were obtained:

[CBGP]0/(10−2 mol dm−3) 1.25 2.50 4.00 5.50

Relative reaction rate 0.172 0.301 0.344 0.548

In a separate experiment, the effect of 5.0 × 10−2 mol dm−3 benzoate ion
was monitored and the results were:

[CBGP]0/(10−2 mol dm−3) 1.75 2.50 5.00 10.00

Relative reaction rate 0.183 0.201 0.231 0.246

Determine the mode of inhibition of carboxypeptidase by the
phenylbutyrate ion and benzoate ion.

21.5 The movement of atoms and ions on a surface depends on their
ability to leave one position and stick to another, and therefore on the
energy changes that occur. As an illustration, consider a two-dimensional
square lattice of univalent positive and negative ions separated by 200 pm,
and consider a cation on the upper terrace of this array. Calculate, by
direct summation, its Coulombic interaction when it is in an empty
lattice point directly above an anion. Now consider a high step in the
same lattice, and let the cation move into the corner formed by the step
and the terrace. Calculate the Coulombic energy for this position, and
decide on the likely settling point for the cation.

21.6 In a study of the catalytic properties of a titanium surface it was
necessary to maintain the surface free from contamination. Calculate 
the collision frequency per square centimetre of surface made by O2
molecules at (a) 100 kPa, (b) 1.00 Pa and 300 K. Estimate the number 
of collisions made with a single surface atom in each second. The
conclusions underline the importance of working at very low pressures
(much lower than 1 Pa, in fact) in order to study the properties of
uncontaminated surfaces. Take the nearest-neighbour distance as 
291 pm.

21.7 Nickel is face-centred cubic with a unit cell of side 352 pm. What is
the number of atoms per square centimetre exposed on a surface formed
by (a) (100), (b) (110), (c) (111) planes? Calculate the frequency of

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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molecular collisions per surface atom in a vessel containing (a) hydrogen,
(b) propane at 25°C when the pressure is (i) 100 Pa, (ii) 0.10 μTorr.

21.8 The data below are for the chemisorption of hydrogen on copper
powder at 25°C. Confirm that they fit the Langmuir isotherm at low
coverages. Then find the value of K for the adsorption equilibrium and
the adsorption volume corresponding to complete coverage.

p/Pa 25 129 253 540 1000 1593

V/cm3 0.042 0.163 0.221 0.321 0.411 0.471

21.9 The data for the adsorption of ammonia on barium fluoride are
reported below. Confirm that they fit a BET isotherm and find values 
of c and Vmon.

(a) θ = 0°C, p* = 429.6 kPa:

p/kPa 14.0 37.6 65.6 79.2 82.7 100.7 106.4

V/cm3 11.1 13.5 14.9 16.0 15.5 17.3 16.5

(b) θ = 18.6°C, p* = 819.7 kPa:

p/kPa 5.3 8.4 14.4 29.2 62.1 74.0 80.1 102.0

V/cm3 9.2 9.8 10.3 11.3 12.9 13.1 13.4 14.1

21.10 The following data have been obtained for the adsorption of H2
on the surface of 1.00 g of copper at 0°C. The volume of H2 below is the
volume that the gas would occupy at STP (0°C and 1 atm).

p/atm 0.050 0.100 0.150 0.200 0.250

V/cm3 23.8 13.3 8.70 6.80 5.71

Determine the volume of H2 necessary to form a monolayer and estimate
the surface area of the copper sample. The density of liquid hydrogen is
0.708 g cm−3.

21.11 The adsorption of solutes on solids from liquids often follows a
Freundlich isotherm. Check the applicability of this isotherm to the
following data for the adsorption of acetic acid on charcoal at 25°C and
find the values of the parameters c1 and c2.

[acid]/(mol dm−3) 0.05 0.10 0.50 1.0 1.5

wa/g 0.04 0.06 0.12 0.16 0.19

wa is the mass adsorbed per gram of charcoal.

21.12 In some catalytic reactions the products may adsorb more 
strongly than the reacting gas. This is the case, for instance, in the
catalytic decomposition of ammonia on platinum at 1000°C. As a first
step in examining the kinetics of this type of process, show that the rate
of ammonia decomposition should follow

in the limit of very strong adsorption of hydrogen. Start by showing that,
when a gas J adsorbs very strongly and its pressure is pJ, the fraction of
uncovered sites is approximately 1/KpJ. Solve the rate equation for the
catalytic decomposition of NH3 on platinum and show that a plot of 
F(t) = (1/t) ln(p/p0) against G(t) = (p − p0)/t, where p is the pressure of
ammonia, should give a straight line from which kc can be determined.
Check the rate law on the basis of the data below, and find kc for the
reaction.

t/s 0 30 60 100 160 200 250

p/kPa 13.3 11.7 11.2 10.7 10.3 9.9 9.6

21.13‡ A. Akgerman and M. Zardkoohi (J. Chem. Eng. Data 41, 185
(1996)) examined the adsorption of phenol from aqueous solution on to
fly ash at 20°C. They fitted their observations to a Freundlich isotherm of
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the form cads = Kcsol
1/n, where cads is the concentration of adsorbed phenol

and csol is the concentration of aqueous phenol. Among the data
reported are the following:

csol/(mg g−1) 8.26 15.65 25.43 31.74 40.00

cads/(mg g−1) 4.41 9.2 35.2 52.0 67.2

Determine the constants K and n. What further information would be
necessary in order to express the data in terms of fractional coverage, θ?

21.14‡ C. Huang and W.P. Cheng (J. Colloid Interface Sci. 188, 270
(1997)) examined the adsorption of the hexacyanoferrate(III) ion,
[Fe(CN)6]3−, on γ-Al2O3 from aqueous solution. They modelled the
adsorption with a modified Langmuir isotherm, obtaining the following
values of K at pH = 6.5:

T/K 283 298 308 318

10−11K 2.642 2.078 1.286 1.085

Determine the isosteric enthalpy of adsorption, Δ ads H 7, at this pH. The
researchers also reported Δ adsS

7 = +146 J mol−1 K−1 under these
conditions. Determine Δ adsG

7.

21.15‡ M.-G. Olivier and R. Jadot (J. Chem. Eng. Data 42, 230 (1997))
studied the adsorption of butane on silica gel. They report the following
amounts of adsorption (in moles per kilogram of silica gel) at 303 K:

p/kPa 31.00 38.22 53.03 76.38 101.97

n/(mol kg−1) 1.00 1.17 1.54 2.04 2.49

p/kPa 130.47 165.06 182.41 205.75 219.91

n/(mol kg−1) 2.90 3.22 3.30 3.35 3.36

Fit these data to a Langmuir isotherm, and determine the value of n that
corresponds to complete coverage and the constant K.

21.16‡ The following data were obtained for the extent of adsorption, s,
of acetone on charcoal from an aqueous solution of molar
concentration, c, at 18°C.

c/(mmol dm−3) 15.0 23.0 42.0 84.0 165 390 800

s/(mmol acetone/g charcoal) 0.60 0.75 1.05 1.50 2.15 3.50 5.10

Which isotherm fits this data best: Langmuir, Freundlich, or Temkin?

Theoretical problems

21.17 Autocatalysis is the catalysis of a reaction by the products. For
example, for a reaction A → P it may be found that the rate law is 
v = kr[A][P] and the reaction rate is proportional to the concentration 
of P. The reaction gets started because there are usually other reaction
routes for the formation of some P initially, which then takes part in 
the autocatalytic reaction proper. (a) Integrate the rate equation for an
autocatalytic reaction of the form A → P, with rate law v = kr[A][P], 
and show that

where a = ([A]0 + [P]0)kr and b = [P]0/[A]0. Hint. Starting with the
expression v = −d[A]/dt = kr[A][P], write [A] = [A]0 − x, [P] = [P]0 + x
and then write the expression for the rate of change of either species in
terms of x. To integrate the resulting expression, use

(b) Plot [P]/[P]0 against at for several values of b. Discuss the effect of
autocatalysis on the shape of a plot of [P]/[P]0 against t by comparing
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your results with those for a first-order process, in which [P]/[P]0 =
1 − e−krt. (c) Show that for the autocatalytic process discussed in parts 
(a) and (b), the reaction rate reaches a maximum at tmax = −(1/a) ln b.
(d) An autocatalytic reaction A → P is observed to have the rate law
d[P]/dt = kr[A]2[P]. Solve the rate law for initial concentrations [A]0
and [P]0. Calculate the time at which the rate reaches a maximum. 
(e) Another reaction with the stoichiometry A → P has the rate law 
d[P]/dt = kr[A][P]2; integrate the rate law for initial concentrations 
[A]0 and [P]0. Calculate the time at which the rate reaches a maximum.

21.18 Many biological and biochemical processes involve autocatalytic
steps (Problem 21.17). In the SIR model of the spread and decline of
infectious diseases the population is divided into three classes; the
susceptibles, S, who can catch the disease, the infectives, I, who have 
the disease and can transmit it, and the removed class, R, who have 
either had the disease and recovered, are dead, are immune or isolated.
The model mechanism for this process implies the following rate laws:

What are the autocatalytic steps of this mechanism? Find the conditions
on the ratio a/r that decide whether the disease will spread (an epidemic)
or die out. Show that a constant population is built into this system,
namely that S + I + R = N, meaning that the timescales of births, deaths
by other causes, and migration are assumed large compared to that of
the spread of the disease.

21.19 Michaelis and Menten derived their rate law by assuming a rapid
pre-equilibrium of E, S, and ES. Derive the rate law in this manner, and
identify the conditions under which it becomes the same as that based 
on the steady-state approximation (eqn 21.2).

21.20 For many enzymes, the mechanism of action involves the
formation of two intermediates:

E + S → ES v = ka[E][S]

ES → E + S v = ka′ [ES]

ES → ES′ v = kb[ES]

ES′ → E + P v = kc[ES′]

Show that the rate of formation of product has the same form as that
shown in eqn 21.4a

but with vmax and KM given by

and

21.21 Some enzymes are inhibited by high concentrations of their own
substrates. (a) Show that when substrate inhibition is important the
reaction rate v is given by

where KI is the equilibrium constant for dissociation of the inhibited
enzyme–substrate complex. (b) What effect does substrate inhibition
have on a plot of 1/v against 1/[S]0?

21.22 Although the attractive van der Waals interaction between
individual molecules varies as R−6 the interaction of a molecule with a
nearby solid (a homogeneous collection of molecules) varies as R−3,
where R is its vertical distance above the surface. Confirm this assertion.
Calculate the interaction energy between an Ar atom and the surface of
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solid argon on the basis of a Lennard-Jones (6,12)-potential. Estimate
the equilibrium distance of an atom above the surface.

21.23 Show that, for the association part of the surface plasmon
resonance experiment in Fig. 21.31, R(t) = Req(1 − e−krt) and write an
expression for kr. Then, derive an expression for R(t) that applies to 
the dissociation part of the surface plasmon resonance experiment in
Fig. 21.31.

Applications to: chemical engineering 
and environmental science

21.24 The designers of a new industrial plant wanted to use a catalyst
code-named CR-1 in a step involving the fluorination of butadiene. As a
first step in the investigation they determined the form of the adsorption
isotherm. The volume of butadiene adsorbed per gram of CR-1 at 15°C
varied with pressure as given below. Is the Langmuir isotherm suitable at
this pressure?

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0

V/cm3 17.9 33.0 47.0 60.8 75.3 91.3

Investigate whether the BET isotherm gives a better description of the
adsorption of butadiene on CR-1. At 15°C, p*(butadiene) = 200 kPa.
Find Vmon and c.

21.25‡ In a study relevant to automobile catalytic converters, C.E.
Wartnaby et al. (J. Phys. Chem. 100, 12483 (1996)) measured the
enthalpy of adsorption of CO, NO, and O2 on initially clean platinum
(110) surfaces. They report ΔadsH

7 for NO to be −160 kJ mol−1. How 
much more strongly adsorbed is NO at 500°C than at 400°C?

21.26‡ The removal or recovery of volatile organic compounds (VOCs)
from exhaust gas streams is an important process in environmental
engineering. Activated carbon has long been used as an adsorbent in 
this process, but the presence of moisture in the stream reduces its
effectiveness. M.-S. Chou and J.-H. Chiou (J. Envir. Engrg. ASCE 123,
437(1997)) have studied the effect of moisture content on the adsorption
capacities of granular activated carbon (GAC) for normal hexane and
cyclohexane in air streams. From their data for dry streams containing
cyclohexane, shown in the table below, they conclude that GAC obeys 
a Langmuir-type model in which qVOC,RH=0 = abcVOC/(1 + bcVOC), 
where q = mVOC/mGAC, RH denotes relative humidity, a is the maximum
adsorption capacity, b is an affinity parameter, and p is the abundance
in parts per million (ppm). The following table gives values of qVOC,RH=0
for cyclohexane:

c/ppm 33.6°C 41.5°C 57.4°C 76.4°C 99°C

200 0.080 0.069 0.052 0.042 0.027

500 0.093 0.083 0.072 0.056 0.042

1000 0.101 0.088 0.076 0.063 0.045

2000 0.105 0.092 0.083 0.068 0.052

3000 0.112 0.102 0.087 0.072 0.058

(a) By linear regression of 1/qVOC,RH=0 against 1/cVOC, test the goodness
of fit and determine values of a and b. (b) The parameters a and b can be
related to ΔadsH, the enthalpy of adsorption, and ΔbH, the difference in
activation energy for adsorption and desorption of the VOC molecules,
through Arrhenius-type equations of the form a = kaexp(−ΔadsH/RT)
and b = kbexp(−ΔbH/RT). Test the goodness of fit of the data to these
equations and obtain values for ka, kb, ΔadsH, and ΔbH. (c) What
interpretation might you give to ka and kb?

21.27‡ M.-S. Chou and J.-H. Chiou (J. Envir. Engrg., ASCE 123,
437(1997)) have studied the effect of moisture content on the adsorption
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capacities of granular activated carbon (GAC, Norit PK 1-3) for the
volatile organic compounds (VOCs) normal hexane and cyclohexane 
in air streams. The following table shows the adsorption capacities 
(qwater = mwater/mGAC) of GAC for pure water from moist air streams as a
function of relative humidity (RH) in the absence of VOCs at 41.5°C.

RH 0.00 0.26 0.49 0.57 0.80 1.00

qwater 0.00 0.026 0.072 0.091 0.161 0.229

The authors conclude that the data at this and other temperatures obey a
Freundlich-type isotherm, qwater = k(RH)1/n. (a) Test this hypothesis for
their data at 41.5°C and determine the constants k and n. (b) Why might
VOCs obey the Langmuir model, but water the Freundlich model? (c)
When both water vapour and cyclohexane were present in the stream the
values given in the table below were determined for the ratio rVOC =
qVOC/qVOC,RH=0 at 41.5°C.

RH 0.00 0.10 0.25 0.40 0.53 0.76 0.81

rVOC 1.00 0.98 0.91 0.84 0.79 0.67 0.61

The authors propose that these data fit the equation rVOC = 1 − qwater. 
Test their proposal and determine values for k and n and compare to
those obtained in part (b) for pure water. Suggest reasons for any
differences.

21.28‡ The release of petroleum products by leaky underground storage
tanks is a serious threat to clean ground water. BTEX compounds
(benzene, toluene, ethylbenzene, and xylenes) are of primary concern
due to their ability to cause health problems at low concentrations. D.S.
Kershaw et al. (J. Geotech. Geoenvir. Engrg. 123, 324(1997)) have studied
the ability of ground tyre rubber to sorb (adsorb and absorb) benzene
and o-xylene. Though sorption involves more than surface interactions,
sorption data is usually found to fit one of the adsorption isotherms. 
In this study, the authors have tested how well their data fit the linear 
(q = Kceq), Freundlich (q = KFceq

1/n), and Langmuir (q = KLMceq/(1 + KLceq))
type isotherms, where q is the mass of solvent sorbed per gram of ground
rubber (in milligrams per gram), the Ks and M are empirical constants,
and ceq the equilibrium concentration of contaminant in solution (in
milligrams per litre). (a) Determine the units of the empirical constants.
(b) Determine which of the isotherms best fits the data in the table below
for the sorption of benzene on ground rubber.

ceq/(mg dm−3) 97.10 36.10 10.40 6.51 6.21 2.48

q/(mg g−1) 7.13 4.60 1.80 1.10 0.55 0.31

(c) Compare the sorption efficiency of ground rubber to that of
granulated activated charcoal, which for benzene has been shown to
obey the Freundlich isotherm in the form q = 1.0ceq

1.6 with coefficient of
determination R2 = 0.94.
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Physical properties of selected materials

r/(g cm−3 ) Tf /K Tb /K r/(g cm−3 ) Tf /K Tb /K
at 293 K† at 293 K†

Elements

Aluminium(s) 2.698 933.5 2740

Argon(g) 1.381 83.8 87.3

Boron(s) 2.340 2573 3931

Bromine(l) 3.123 265.9 331.9

Carbon(s, gr) 2.260 3700s

Carbon(s, d) 3.513

Chlorine(g) 1.507 172.2 239.2

Copper(s) 8.960 1357 2840

Fluorine(g) 1.108 53.5 85.0

Gold(s) 19.320 1338 3080

Helium(g) 0.125 4.22

Hydrogen(g) 0.071 14.0 20.3

Iodine(s) 4.930 386.7 457.5

Iron(s) 7.874 1808 3023

Krypton(g) 2.413 116.6 120.8

Lead(s) 11.350 600.6 2013

Lithium(s) 0.534 453.7 1620

Magnesium(s) 1.738 922.0 1363

Mercury(l) 13.546 234.3 629.7

Neon(g) 1.207 24.5 27.1

Nitrogen(g) 0.880 63.3 77.4

Oxygen(g) 1.140 54.8 90.2

Phosphorus(s, wh) 1.820 317.3 553

Potassium(s) 0.862 336.8 1047

Silver(s) 10.500 1235 2485

Sodium(s) 0.971 371.0 1156

Sulfur(s, α) 2.070 386.0 717.8

Uranium(s) 18.950 1406 4018

Xenon(g) 2.939 161.3 166.1

Zinc(s) 7.133 692.7 1180

d: decomposes; s: sublimes; Data: AIP, E, HCP, KL. † For gases, at their boiling points.

Inorganic compounds

CaCO3(s, calcite) 2.71 1612 1171d

CuSO4·5H2O(s) 2.284 383(–H2O) 423(–5H2O)

HBr(g) 2.77 184.3 206.4

HCl(g) 1.187 159.0 191.1

HI(g) 2.85 222.4 237.8

H2O(l) 0.997 273.2 373.2

D2O(l) 1.104 277.0 374.6

NH3(g) 0.817 195.4 238.8

KBr(s) 2.750 1003 1708

KCl(s) 1.984 1049 1773s

NaCl(s) 2.165 1074 1686

H2SO4(l) 1.841 283.5 611.2

Organic compounds

Acetaldehyde, CH3CHO(l) 0.788 152 293

Acetic acid, CH3COOH(l) 1.049 289.8 391

Acetone, (CH3)2CO(l) 0.787 178 329

Aniline, C6H5NH2(l) 1.026 267 457

Anthracene, C14H10(s) 1.243 490 615

Benzene, C6H6(l) 0.879 278.6 353.2

Carbon tetrachloride, CCl 4(l) 1.63 250 349.9

Chloroform, CHCl3(l) 1.499 209.6 334

Ethanol, C2H5OH(l) 0.789 156 351.4

Formaldehyde, HCHO(g) 181 254.0

Glucose, C6H12O6(s) 1.544 415

Methane, CH4(g) 90.6 111.6

Methanol, CH3OH(l) 0.791 179.2 337.6

Naphthalene, C10H8(s) 1.145 353.4 491

Octane, C8H18(l) 0.703 216.4 398.8

Phenol, C6H5OH(s) 1.073 314.1 455.0

Sucrose, C12H22O11(s) 1.588 457d

Part 1 Data section
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Masses and natural abundances of
selected nuclides

Nuclide m/mu Abundance/%

H 1H 1.0078 99.985
2H 2.0140 0.015

He 3He 3.0160 0.000 13
4He 4.0026 100

Li 6Li 6.0151 7.42
7Li 7.0160 92.58

B 10B 10.0129 19.78
11B 11.0093 80.22

C 12C 12* 98.89
13C 13.0034 1.11

N 14N 14.0031 99.63
15N 15.0001 0.37

O 16O 15.9949 99.76
17O 16.9991 0.037
18O 17.9992 0.204

F 19F 18.9984 100

P 31P 30.9738 100

S 32S 31.9721 95.0
33S 32.9715 0.76
34S 33.9679 4.22

Cl 35Cl 34.9688 75.53
37Cl 36.9651 24.4

Br 79Br 78.9183 50.54
81Br 80.9163 49.46

I 127I 126.9045 100

* Exact value.

Table 4.2 Effective nuclear charge, Zeff = Z − σ

H He

1s 1 1.6875

Li Be B C N O F Ne

1s 2.6906 3.6848 4.6795 5.6727 6.6651 7.6579 8.6501 9.6421

2s 1.2792 1.9120 2.5762 3.2166 3.8474 4.4916 5.1276 5.7584

2p 2.4214 3.1358 3.8340 4.4532 5.1000 5.7584

Na Mg Al Si P S Cl Ar

1s 10.6259 11.6089 12.5910 13.5745 14.5578 15.5409 16.5239 17.5075

2s 6.5714 7.3920 8.3736 9.0200 9.8250 10.6288 11.4304 12.2304

2p 6.8018 7.8258 8.9634 9.9450 10.9612 11.9770 12.9932 14.0082

3s 2.5074 3.3075 4.1172 4.9032 5.6418 6.3669 7.0683 7.7568

3p 4.0656 4.2852 4.8864 5.4819 6.1161 6.7641

Data: E. Clementi and D.L. Raimondi, Atomic screening constants from SCF functions.
IBM Res. Note NJ-27 (1963). J. Chem. Phys. 38, 2686 (1963).
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Table 4.4 Electron affinities, Eea/(kJ mol−1)

H He

72.8 −21

Li Be B C N O F Ne

59.8 ≤0 23 122.5 −7 141 322 −29

−844

Na Mg Al Si P S Cl Ar

52.9 ≤0 44 133.6 71.7 200.4 348.7 −35

−532

K Ca Ga Ge As Se Br Kr

48.3 2.37 36 116 77 195.0 324.5 −39

Rb Sr In Sn Sb Te I Xe

46.9 5.03 34 121 101 190.2 295.3 −41

Cs Ba Tl Pb Bi Po At Rn

45.5 13.95 30 35.2 101 186 270 −41

Data: E.

Table 4.3 Ionization energies, I /(kJ mol−1)

H He

1312.0 2372.3

5250.4

Li Be B C N O F Ne

513.3 899.4 800.6 1086.2 1402.3 1313.9 1681 2080.6

7298.0 1757.1 2427 2352 2856.1 3388.2 3374 3952.2

Na Mg Al Si P S Cl Ar

495.8 737.7 577.4 786.5 1011.7 999.6 1251.1 1520.4

4562.4 1450.7 1816.6 1577.1 1903.2 2251 2297 2665.2

2744.6 2912

K Ca Ga Ge As Se Br Kr

418.8 589.7 578.8 762.1 947.0 940.9 1139.9 1350.7

3051.4 1145 1979 1537 1798 2044 2104 2350

2963 2735

Rb Sr In Sn Sb Te I Xe

403.0 549.5 558.3 708.6 833.7 869.2 1008.4 1170.4

2632 1064.2 1820.6 1411.8 1794 1795 1845.9 2046

2704 2943.0 2443

Cs Ba Tl Pb Bi Po At Rn

375.5 502.8 589.3 715.5 703.2 812 930 1037

2420 965.1 1971.0 1450.4 1610

2878 3081.5 2466

Data: E.
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Table 5.2 Bond lengths, Re /pm

(a) Bond lengths in specific molecules

Br2 228.3

Cl2 198.75

CO 112.81

F2 141.78

H2
+ 106

H2 74.138

HBr 141.44

HCl 127.45

HF 91.680

HI 160.92

N2 109.76

O2 120.75

(b) Mean bond lengths from covalent radii*

H 37

C 77(1) N 74(1) O 66(1) F 64

67(2) 65(2) 57(2)

60(3)

Si 118 P 110 S 104(1) Cl 99

95(2)

Ge 122 As 121 Se 104 Br 114

Sb 141 Te 137 I 133

* Values are for single bonds except where indicated otherwise (values in parentheses). The length of an A-B
covalent bond (of given order) is the sum of the corresponding covalent radii.

Table 5.3a Bond dissociation enthalpies, ΔH 7(A-B)/(kJ mol−1) at 298 K*

Diatomic molecules

H-H 436 F-F 155 Cl-Cl 242 Br-Br 193 I-I 151

O=O 497 C=O 1076 N.N 945

H-O 428 H-F 565 H-Cl 431 H-Br 366 H-I 299

Polyatomic molecules

H-CH3 435 H-NH2 460 H-OH 492 H-C6H5 469

H3C-CH3 368 H2C=CH2 720 HC.CH 962

HO-CH3 377 Cl-CH3 352 Br-CH3 293 I-CH3 237

O=CO 531 HO-OH 213 O2N-NO2 54

* To a good approximation bond dissociation enthalpies and dissociation energies are related by ΔH 7 = De + 3–2 RT
with De = D0 + 1–2 $ω. For precise values of D0 for diatomic molecules, see Table 10.2.
Data: HCP, KL.
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Table 5.4 Pauling (italics) and Mulliken electronegativities

H He

2.20

3.06

Li Be B C N O F Ne

0.98 1.57 2.04 2.55 3.04 3.44 3.98

1.28 1.99 1.83 2.67 3.08 3.22 4.43 4.60

Na Mg Al Si P S Cl Ar

0.93 1.31 1.61 1.90 2.19 2.58 3.16

1.21 1.63 1.37 2.03 2.39 2.65 3.54 3.36

K Ca Ga Ge As Se Br Kr

0.82 1.00 1.81 2.01 2.18 2.55 2.96 3.0

1.03 1.30 1.34 1.95 2.26 2.51 3.24 2.98

Rb Sr In Sn Sb Te I Xe

0.82 0.95 1.78 1.96 2.05 2.10 2.66 2.6

0.99 1.21 1.30 1.83 2.06 2.34 2.88 2.59

Cs Ba Tl Pb Bi

0.79 0.89 2.04 2.33 2.02

Data: Pauling values: A.L. Allred, J. Inorg. Nucl. Chem. 17, 215 (1961); L.C. Allen and J.E. Huheey, ibid., 42,
1523 (1980). Mulliken values: L.C. Allen, J. Am. Chem. Soc. 111, 9003 (1989). The Mulliken values have been
scaled to the range of the Pauling values.

Table 5.3b Mean bond enthalpies, ΔH 7(A-B)/(kJ mol−1)*

H C N O F Cl Br I S P Si

H 436

C 412 348(i)

612(ii)

838(iii)

518(a)

N 388 305(i) 163(i)

613(ii) 409(ii)

890(iii) 946(iii)

O 463 360(i) 157 146(i)

743(ii) 497(ii)

F 565 484 270 185 155

Cl 431 338 200 203 254 242

Br 366 276 219 193

I 299 238 210 178 151

S 338 259 496 250 212 264

P 322 201

Si 318 374 466 226

* Mean bond enthalpies are such a crude measure of bond strength that they need not be distinguished from dissociation energies.
(i) Single bond, (ii) double bond, (iii) triple bond, (a) aromatic.
Data: HCP and L. Pauling, The nature of the chemical bond. Cornell University Press (1960).
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Table 8.1 Dipole moments (μ), polarizabilities (α), and polarizability volumes (α′)

m /(10−30 C m) m /D a ′/(10−30 m3) a /(10− 40 J−1 C2 m2)

Ar 0 0 1.66 1.85

C2H5OH 5.64 1.69

C6H5CH3 1.20 0.36

C6H6 0 0 10.4 11.6

CCl4 0 0 10.3 11.7

CH2Cl2 5.24 1.57 6.80 7.57

CH3Cl 6.24 1.87 4.53 5.04

CH3OH 5.70 1.71 3.23 3.59

CH4 0 0 2.60 2.89

CHCl3 3.37 1.01 8.50 9.46

CO 0.390 0.117 1.98 2.20

CO2 0 0 2.63 2.93

H2 0 0 0.819 0.911

H2O 6.17 1.85 1.48 1.65

HBr 2.67 0.80 3.61 4.01

HCl 3.60 1.08 2.63 2.93

He 0 0 0.20 0.22

HF 6.37 1.91 0.51 0.57

HI 1.40 0.42 5.45 6.06

N2 0 0 1.77 1.97

NH3 4.90 1.47 2.22 2.47

1,2-C6H4(CH3)2 2.07 0.62

Data: HCP and C.J.F. Böttcher and P. Bordewijk, Theory of electric polarization. Elsevier, Amsterdam (1978).

Table 8.4 Lennard-Jones (12,6)-potential parameters

(e/k)/K r0/pm

Ar 111.84 362.3

C2H2 209.11 463.5

C2H4 200.78 458.9

C2H6 216.12 478.2

C6H6 377.46 617.4

CCl4 378.86 624.1

Cl2 296.27 448.5

CO2 201.71 444.4

F2 104.29 357.1

Kr 154.87 389.5

N2 91.85 391.9

O2 113.27 365.4

Xe 213.96 426.0

Source: F. Cuadros, I. Cachadiña, and W. Ahamuda, Molec.
Engineering, 6, 319 (1996).
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Table 8.5 Second virial coefficients, B/(cm3 mol−1)

100 K 273 K 373 K 600 K

Air −167.3 −13.5 3.4 19.0

Ar −187.0 −21.7 −4.2 11.9

CH4 −53.6 −21.2 8.1

CO2 −142 −72.2 −12.4

H2 −2.0 13.7 15.6

He 11.4 12.0 11.3 10.4

Kr −62.9 −28.7 1.7

N2 −160.0 −10.5 6.2 21.7

Ne −6.0 10.4 12.3 13.8

O2 −197.5 −22.0 −3.7 12.9

Xe −153.7 −81.7 −19.6

Data: AIP, JL. The values relate to the expansion in eqn 8.22a of
Section 8.7a; convert to eqn 8.22b using B′ = B/RT.
For Ar at 273 K, C = 1200 cm6 mol−1.

Table 8.6 Boyle temperatures of gases

TB /K

Ar 411.5

CH4 510.0

CO2 714.8

H2 110.0

He 22.64

Kr 575.0

N2 327.2

Ne 122.1

O2 405.9

Xe 768.0

Data: AIP, KL.

Table 8.7 van der Waals coefficients

a /(atm dm6 mol−2 ) b /(10−2 dm3 mol−1) a /(atm dm6 mol−2 ) b/(10−2 dm3 mol−1)

Ar 1.337 3.20 H2S 4.484 4.34

C2H4 4.552 5.82 He 0.0341 2.38

C2H6 5.507 6.51 Kr 5.125 1.06

C6 H6 18.57 11.93 N2 1.352 3.87

CH4 2.273 4.31 Ne 0.205 1.67

Cl2 6.260 5.42 NH3 4.169 3.71

CO 1.453 3.95 O2 1.364 3.19

CO2 3.610 4.29 SO2 6.775 5.68

H2 0.2420 2.65 Xe 4.137 5.16

H2O 5.464 3.05

Data: HCP.
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Table 9.3 Ionic radii, r/pm†

Li+(4) Be2+(4) B3+(4) N3− O2−(6) F−(6)

59 27 12 171 140 133

Na+(6) Mg2+(6) Al3+(6) P3− S2−(6) Cl−(6)

102 72 53 212 184 181

K+(6) Ca2+(6) Ga3+(6) As3−(6) Se2−(6) Br−(6)

138 100 62 222 198 196

Rb+(6) Sr2+(6) In3+(6) Te2−(6) I−(6)

149 116 79 221 220

Cs+(6) Ba2+(6) Tl3+(6)

167 136 88

d-block elements (high-spin ions)

Sc3+(6) Ti4+(6) Cr3+(6) Mn3+(6) Fe2+(6) Co3+(6) Cu2+(6) Zn2+(6)

73 60 61 65 63 61 73 75

† Numbers in parentheses are the coordination numbers of the ions. Values for ions without a coordination number stated are estimates.
Data: R.D. Shannon and C.T. Prewitt, Acta Cryst. B25, 925 (1969).

Table 9.5 Magnetic susceptibilities at 298 K

c/10−6 cm/(10−10 m3 mol−1)

H2O(l) −9.02 −1.63

C6H6(l) −8.8 −7.8

C6H12(l) −10.2 −11.1

CCl4(l) −5.4 −5.2

NaCl(s) −16 −3.8

Cu(s) −9.7 −0.69

S(rhombic) −12.6 −1.95

Hg(l) −28.4 −4.21

Al(s) +20.7 +2.07

Pt(s) +267.3 +24.25

Na(s) +8.48 +2.01

K(s) +5.94 +2.61

CuSO4·5H2O(s) +167 +183

MnSO4·4H2O(s) +1859 +1835

NiSO4·7H2O(s) +355 +503

FeSO4(s) +3743 +1558

Source: Principally HCP, with χm = χVm = χρ/M.
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Table 10.2 Properties of diatomic molecules

§/cm−1 q /K ú/cm−1 qR /K Re /pm k /(N m−1) Do/(kJ mol −1) s

1H2
+ 2321.8 3341 29.8 42.9 106 160 255.8 2

1H2 4400.39 6332 60.864 87.6 74.138 574.9 432.1 2
2H2 3118.46 4487 30.442 43.8 74.154 577.0 439.6 2
1H19F 4138.32 5955 20.956 30.2 91.680 965.7 564.4 1
1H35Cl 2990.95 4304 10.593 15.2 127.45 516.3 427.7 1
1H81Br 2648.98 3812 8.465 12.2 141.44 411.5 362.7 1
1H127I 2308.09 3321 6.511 9.37 160.92 313.8 294.9 1
14N2 2358.07 3393 1.9987 2.88 109.76 2293.8 941.7 2
16O2 1580.36 2274 1.4457 2.08 120.75 1176.8 493.5 2
19F2 891.8 1283 0.8828 1.27 141.78 445.1 154.4 2
35Cl2 559.71 805 0.2441 0.351 198.75 322.7 239.3 2
12C16O 2170.21 3122 1.9313 2.78 112.81 1903.17 1071.8 1
79Br81Br 323.2 465 0.0809 10.116 283.3 245.9 190.2 1

Data: AIP.

Table 10.3 Typical vibrational
wavenumbers, #/cm−1

C-H stretch 2850–2960

C-H bend 1340–1465

C-C stretch, bend 700–1250

C=C stretch 1620 –1680

C.C stretch 2100–2260

O-H stretch 3590–3650

H-bonds 3200–3570

C=O stretch 1640–1780

C.N stretch 2215–2275

N-H stretch 3200–3500

C-F stretch 1000–1400

C-Cl stretch 600–800

C-Br stretch 500–600

C-I stretch 500

CO3
2− 1410–1450

NO3
− 1350–1420

NO2
− 1230–1250

SO 4
2− 1080–1130

Silicates 900–1100

Data: L.J. Bellamy, The infrared spectra of complex
molecules and Advances in infrared group
frequencies. Chapman and Hall.

Table 11.1 Colour, frequency, and energy of light

Colour l/nm n /(1014 Hz) §/(104 cm−1) E /eV E /(kJ mol−1)

Infrared >1000 <3.00 <1.00 <1.24 <120

Red 700 4.28 1.43 1.77 171

Orange 620 4.84 1.61 2.00 193

Yellow 580 5.17 1.72 2.14 206

Green 530 5.66 1.89 2.34 226

Blue 470 6.38 2.13 2.64 254

Violet 420 7.14 2.38 2.95 285

Near ultraviolet 300 10.0 3.33 4.15 400

Far ultraviolet <200 >15.0 >5.00 >6.20 >598

Data: J.G. Calvert and J.N. Pitts, Photochemistry. Wiley, New York (1966).



734 RESOURCE SECTION

Table 12.2 Nuclear spin properties

Nuclide Natural Spin I Magnetic g-value g /(107 T −1 s−1) NMR frequency at
abundance % moment m /mN 1 T, n /MHz

1n* 1–
2 −1.9130 −3.8260 −18.324 29.164

1H 99.9844 1–
2 2.792 85 5.5857 26.752 42.576

2H 0.0156 1 0.857 44 0.857 44 4.1067 6.536
3H* 1–

2 2.978 96 −4.2553 −20.380 45.414
10B 19.6 3 1.8006 0.6002 2.875 4.575
11B 80.4 3–

2 2.6886 1.7923 8.5841 13.663
13C 1.108 1–

2 0.7024 1.4046 6.7272 10.708
14N 99.635 1 0.403 56 0.403 56 1.9328 3.078
17O 0.037 5–

2 −1.893 79 −0.7572 −3.627 5.774
19F 100 1–

2 2.628 87 5.2567 25.177 40.077
31P 100 1–

2 1.1316 2.2634 10.840 17.251
33S 0.74 3–

2 0.6438 0.4289 2.054 3.272
35Cl 75.4 3–

2 0.8219 0.5479 2.624 4.176
37Cl 24.6 3–

2 0.6841 0.4561 2.184 3.476

* Radioactive.
μ is the magnetic moment of the spin state with the largest value of mI: μ = gI μNI and μN is the nuclear magneton 
(see inside front cover).
Data: KL and HCP.

Table 11.3 Absorption characteristics of some groups and molecules

Group §max /(104 cm−1) lmax /nm emax /(dm3 mol−1 cm−1)

C=C (π* ← π) 6.10 163 1.5 × 104

5.73 174 5.5 × 103

C=O (π* ← n) 3.7–3.5 270–290 10–20

-N=N- 2.9 350 15

>3.9 <260 Strong

-NO2 3.6 280 10

4.8 210 1.0 × 104

C6H5- 3.9 255 200

5.0 200 6.3 × 103

5.5 180 1.0 × 105

[Cu(OH2)6]2+(aq) 1.2 810 10

[Cu(NH3)4]2+(aq) 1.7 600 50

H2O (π* ← n) 6.0 167 7.0 × 103
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Table 12.3 Hyperfine coupling constants for atoms, a/mT

Nuclide Spin Isotropic Anisotropic 
coupling coupling

1H 1–
2 50.8(1s)

2H 1 7.8(1s)
13C 1–

2 113.0(2s) 6.6(2p)
14N 1 55.2(2s) 4.8(2p)
19F 1–

2 1720(2s) 108.4(2p)
31P 1–

2 364(3s) 20.6(3p)
35Cl 3–

2 168(3s) 10.0(3p)
37Cl 3–

2 140(3s) 8.4(3p)

Data: P.W. Atkins and M.C.R. Symons, The structure of inorganic
radicals. Elsevier, Amsterdam (1967).

Table 14.2 Temperature variation of molar heat capacities†

a b/(10−3 K−1) c /(105 K2 )

Monatomic gases

20.78 0 0

Other gases

Br2 37.32 0.50 −1.26

Cl2 37.03 0.67 −2.85

CO2 44.22 8.79 −8.62

F2 34.56 2.51 −3.51

H2 27.28 3.26 0.50

I2 37.40 0.59 −0.71

N2 28.58 3.77 −0.50

NH3 29.75 25.1 −1.55

O2 29.96 4.18 −1.67

Liquids (from melting to boiling)

C10H8, naphthalene 79.5 0.4075 0

I2 80.33 0 0

H2O 75.29 0 0

Solids

Al 20.67 12.38 0

C (graphite) 16.86 4.77 −8.54

C10H8, naphthalene −115.9 3.920 × 103 0

Cu 22.64 6.28 0

I2 40.12 49.79 0

NaCl 45.94 16.32 0

Pb 22.13 11.72 0.96

† For Cp,m /(J K−1 mol−1) = a + bT + c/T 2.
Source: LR.

Table 13.2 Rotatimal and vibrational temperatures: see Table 10.2

Table 13.3 Symmetry numbers: see Table 10.2
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Table 14.3 Standard enthalpies of fusion and vaporization at the transition temperature, Δtrs H 7/(kJ mol−1)

Tf /K Fusion Tb /K Vaporization Tf /K Fusion Tb /K Vaporization

Elements

Ag 1234 11.30 2436 250.6

Ar 83.81 1.188 87.29 6.506

Br2 265.9 10.57 332.4 29.45

Cl2 172.1 6.41 239.1 20.41

F2 53.6 0.26 85.0 3.16

H2 13.96 0.117 20.38 0.916

He 3.5 0.021 4.22 0.084

Hg 234.3 2.292 629.7 59.30

I2 386.8 15.52 458.4 41.80

N2 63.15 0.719 77.35 5.586

Na 371.0 2.601 1156 98.01

O2 54.36 0.444 90.18 6.820

Xe 161 2.30 165 12.6

K 336.4 2.35 1031 80.23

Data: AIP; s denotes sublimation.

Inorganic compounds

CO2 217.0 8.33 194.6 25.23s

CS2 161.2 4.39 319.4 26.74

H2O 273.15 6.008 373.15 40.656

44.016 at 298 K

H2S 187.6 2.377 212.8 18.67

H2SO4 283.5 2.56

NH3 195.4 5.652 239.7 23.35

Organic compounds

CH4 90.68 0.941 111.7 8.18

CCl4 250.3 2.47 349.9 30.00

C2H6 89.85 2.86 184.6 14.7

C6H6 278.61 10.59 353.2 30.8

C6H14 178 13.08 342.1 28.85

C10H8 354 18.80 490.9 51.51

CH3OH 175.2 3.16 337.2 35.27

37.99 at 298 K

C2H5OH 158.7 4.60 352 43.5

Table 14.5 Thermodynamic data for organic compounds at 298 K

M/(g mol−1) D f H 7/(kJ mol−1) Df G 7/(kJ mol−1) Sm
7 /(J K−1 mol−1)† C 7

p,m /(J K−1 mol−1) Dc H 7/(kJ mol−1)

C(s) (graphite) 12.011 0 0 5.740 8.527 −393.51

C(s) (diamond) 12.011 +1.895 +2.900 2.377 6.113 −395.40

CO2(g) 44.040 −393.51 −394.36 213.74 37.11

Hydrocarbons

CH4(g), methane 16.04 −74.81 −50.72 186.26 35.31 −890

CH3(g), methyl 15.04 +145.69 +147.92 194.2 38.70

C2H2(g), ethyne 26.04 +226.73 +209.20 200.94 43.93 −1300

C2H4(g), ethene 28.05 +52.26 +68.15 219.56 43.56 −1411

C2H6(g), ethane 30.07 −84.68 −32.82 229.60 52.63 −1560

C3H6(g), propene 42.08 +20.42 +62.78 267.05 63.89 −2058

C3H6(g), cyclopropane 42.08 +53.30 +104.45 237.55 55.94 −2091

C3H8(g), propane 44.10 −103.85 −23.49 269.91 73.5 −2220

C4H8(g), 1-butene 56.11 −0.13 +71.39 305.71 85.65 −2717

C4H8(g), cis-2-butene 56.11 −6.99 +65.95 300.94 78.91 −2710

C4H8(g), trans-2-butene 56.11 −11.17 +63.06 296.59 87.82 −2707

C4H10(g), butane 58.13 −126.15 −17.03 310.23 97.45 −2878

C5H12(g), pentane 72.15 −146.44 −8.20 348.40 120.2 −3537

C5H12(l) 72.15 −173.1

C6H6(l), benzene 78.12 +49.0 +124.3 173.3 136.1 −3268
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Hydrocarbons (Continued)

C6H6(g) 78.12 +82.93 +129.72 269.31 81.67 −3302

C6H12(l), cyclohexane 84.16 −156 +26.8 204.4 156.5 −3920

C6H14(l), hexane 86.18 −198.7 204.3 −4163

C6H5CH3(g), methylbenzene 
(toluene) 92.14 +50.0 +122.0 320.7 103.6 −3953

C7H16(l), heptane 100.21 −224.4 +1.0 328.6 224.3

C8H18(l), octane 114.23 −249.9 +6.4 361.1 −5471

C8H18(l), iso-octane 114.23 −255.1 −5461

C10H8(s), naphthalene 128.18 +78.53 −5157

Alcohols and phenols

CH3OH(l), methanol 32.04 −238.66 −166.27 126.8 81.6 −726

CH3OH(g) 32.04 −200.66 −161.96 239.81 43.89 −764

C2H5OH(l), ethanol 46.07 −277.69 −174.78 160.7 111.46 −1368

C2H5OH(g) 46.07 −235.10 −168.49 282.70 65.44 −1409

C6H5OH(s), phenol 94.12 −165.0 −50.9 146.0 −3054

Carboxylic acids, hydroxy acids, and esters

HCOOH(l), formic 46.03 −424.72 −361.35 128.95 99.04 −255

CH3COOH(l), acetic 60.05 −484.5 −389.9 159.8 124.3 −875

CH3COOH(aq) 60.05 −485.76 −396.46 178.7

CH3CO2
−(aq) 59.05 −486.01 −369.31 +86.6 −6.3

(COOH)2(s), oxalic 90.04 −827.2 117 −254

C6H5COOH(s), benzoic 122.13 −385.1 −245.3 167.6 146.8 −3227

CH3CH(OH)COOH(s), lactic 90.08 −694.0 −1344

CH3COOC2H5(l), ethyl acetate 88.11 −479.0 −332.7 259.4 170.1 −2231

Alkanals and alkanones

HCHO(g), methanal 30.03 −108.57 −102.53 218.77 35.40 −571

CH3CHO(l), ethanal 44.05 −192.30 −128.12 160.2 −1166

CH3CHO(g) 44.05 −166.19 −128.86 250.3 57.3 −1192

CH3COCH3(l), propanone 58.08 −248.1 −155.4 200.4 124.7 −1790

Sugars

C6H12O6(s), α-d-glucose 180.16 −1274 −2808

C6H12O6(s), β-d-glucose 180.16 −1268 −910 212

C6H12O6(s), β-d-fructose 180.16 −1266 −2810

C12H22O11(s), sucrose 342.30 −2222 −1543 360.2 −5645

Nitrogen compounds

CO(NH2)2(s), urea 60.06 −333.51 −197.33 104.60 93.14 −632

CH3NH2(g), methylamine 31.06 −22.97 +32.16 243.41 53.1 −1085

C6H5NH2(l), aniline 93.13 +31.1 −3393

CH2(NH2)COOH(s), glycine 75.07 −532.9 −373.4 103.5 99.2 −969

Data: NBS, TDOC. † Standard entropies of ions may be either positive or negative because the values are relative to the entropy of the hydrogen ion.

Table 14.5 (Continued)

M/(g mol−1) D f H 7/(kJ mol−1) D f G 7/(kJ mol−1) Sm
7 /(J K−1 mol−1)† C 7

p,m /(J K−1 mol−1) Dc H 7/(kJ mol−1)
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Table 14.6 Thermodynamic data for elements and inorganic compounds at 298 K

M /(g mol−1) D f H 7/(kJ mol −1) D f G 7/(kJ mol−1) Sm
7 /(J K−1 mol−1)† C 7

p , m /(J K−1 mol−1)

Aluminium (aluminum)

Al(s) 26.98 0 0 28.33 24.35

Al(l) 26.98 +10.56 +7.20 39.55 24.21

Al(g) 26.98 +326.4 +285.7 164.54 21.38

Al3+(g) 26.98 +5483.17

Al3+(aq) 26.98 −531 −485 −321.7

Al2O3(s, α) 101.96 −1675.7 −1582.3 50.92 79.04

AlCl3(s) 133.24 −704.2 −628.8 110.67 91.84

Argon

Ar(g) 39.95 0 0 154.84 20.786

Antimony

Sb(s) 121.75 0 0 45.69 25.23

SbH3(g) 124.77 +145.11 +147.75 232.78 41.05

Arsenic

As(s, α) 74.92 0 0 35.1 24.64

As(g) 74.92 +302.5 +261.0 174.21 20.79

As4(g) 299.69 +143.9 +92.4 314

AsH3(g) 77.95 +66.44 +68.93 222.78 38.07

Barium

Ba(s) 137.34 0 0 62.8 28.07

Ba(g) 137.34 +180 +146 170.24 20.79

Ba2+(aq) 137.34 −537.64 −560.77 +9.6

BaO(s) 153.34 −553.5 −525.1 70.43 47.78

BaCl2(s) 208.25 −858.6 −810.4 123.68 75.14

Beryllium

Be(s) 9.01 0 0 9.50 16.44

Be(g) 9.01 +324.3 +286.6 136.27 20.79

Bismuth

Bi(s) 208.98 0 0 56.74 25.52

Bi(g) 208.98 +207.1 +168.2 187.00 20.79

Bromine

Br2(l) 159.82 0 0 152.23 75.689

Br2(g) 159.82 +30.907 +3.110 245.46 36.02

Br(g) 79.91 +111.88 +82.396 175.02 20.786

Br−(g) 79.91 −219.07

Br−(aq) 79.91 −121.55 −103.96 +82.4 −141.8

HBr(g) 90.92 −36.40 −53.45 198.70 29.142

Cadmium

Cd(s, γ ) 112.40 0 0 51.76 25.98

Cd(g) 112.40 +112.01 +77.41 167.75 20.79

Cd2+(aq) 112.40 −75.90 −77.612 −73.2
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Table 14.6 (Continued)

M /(g mol−1) D f H 7/(kJ mol −1) D f G 7/(kJ mol−1) Sm
7 /(J K−1 mol−1)† C 7

p , m /(J K−1 mol−1)

Cadmium (Continued)

CdO(s) 128.40 −258.2 −228.4 54.8 43.43

CdCO3(s) 172.41 −750.6 −669.4 92.5

Caesium (cesium)

Cs(s) 132.91 0 0 85.23 32.17

Cs(g) 132.91 +76.06 +49.12 175.60 20.79

Cs+(aq) 132.91 −258.28 −292.02 +133.05 −10.5

Calcium

Ca(s) 40.08 0 0 41.42 25.31

Ca(g) 40.08 +178.2 +144.3 154.88 20.786

Ca2+(aq) 40.08 −542.83 −553.58 −53.1

CaO(s) 56.08 −635.09 −604.03 39.75 42.80

CaCO3(s) (calcite) 100.09 −1206.9 −1128.8 92.9 81.88

CaCO3(s) (aragonite) 100.09 −1207.1 −1127.8 88.7 81.25

CaF2(s) 78.08 −1219.6 −1167.3 68.87 67.03

CaCl2(s) 110.99 −795.8 −748.1 104.6 72.59

CaBr2(s) 199.90 −682.8 −663.6 130

Carbon (for ‘organic’ compounds of carbon, see Table 14.5)

C(s) (graphite) 12.011 0 0 5.740 8.527

C(s) (diamond) 12.011 +1.895 +2.900 2.377 6.113

C(g) 12.011 +716.68 +671.26 158.10 20.838

C2(g) 24.022 +831.90 +775.89 199.42 43.21

CO(g) 28.011 −110.53 −137.17 197.67 29.14

CO2(g) 44.010 −393.51 −394.36 213.74 37.11

CO2(aq) 44.010 −413.80 −385.98 117.6

H2CO3(aq) 62.03 −699.65 −623.08 187.4

HCO3
−(aq) 61.02 −691.99 −586.77 +91.2

CO3
2−(aq) 60.01 −677.14 −527.81 −56.9

CCl4(l) 153.82 −135.44 −65.21 216.40 131.75

CS2(l) 76.14 +89.70 +65.27 151.34 75.7

HCN(g) 27.03 +135.1 +124.7 201.78 35.86

HCN(l) 27.03 +108.87 +124.97 112.84 70.63

CN−(aq) 26.02 +150.6 +172.4 +94.1

Chlorine

Cl2(g) 70.91 0 0 223.07 33.91

Cl(g) 35.45 +121.68 +105.68 165.20 21.840

Cl−(g) 34.45 −233.13

Cl−(aq) 35.45 −167.16 −131.23 +56.5 −136.4

HCl(g) 36.46 −92.31 −95.30 186.91 29.12

HCl(aq) 36.46 −167.16 −131.23 56.5 −136.4

Chromium

Cr(s) 52.00 0 0 23.77 23.35

Cr(g) 52.00 +396.6 +351.8 174.50 20.79
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Table 14.6 (Continued)

M /(g mol−1) D f H 7/(kJ mol −1) D f G 7/(kJ mol−1) Sm
7 /(J K−1 mol−1)† C 7

p , m /(J K−1 mol−1)

Chromium (Continued)

CrO4
2−(aq) 115.99 −881.15 −727.75 +50.21

Cr2O7
2−(aq) 215.99 −1490.3 −1301.1 +261.9

Copper

Cu(s) 63.54 0 0 33.150 24.44

Cu(g) 63.54 +338.32 +298.58 166.38 20.79

Cu+(aq) 63.54 +71.67 +49.98 +40.6

Cu2+(aq) 63.54 +64.77 +65.49 −99.6

Cu2O(s) 143.08 −168.6 −146.0 93.14 63.64

CuO(s) 79.54 −157.3 −129.7 42.63 42.30

CuSO4(s) 159.60 −771.36 −661.8 109 100.0

CuSO4·H2O(s) 177.62 −1085.8 −918.11 146.0 134

CuSO4·5H2O(s) 249.68 −2279.7 −1879.7 300.4 280

Deuterium

D2(g) 4.028 0 0 144.96 29.20

HD(g) 3.022 +0.318 −1.464 143.80 29.196

D2O(g) 20.028 −249.20 −234.54 198.34 34.27

D2O(l) 20.028 −294.60 −243.44 75.94 84.35

HDO(g) 19.022 −245.30 −233.11 199.51 33.81

HDO(l) 19.022 −289.89 −241.86 79.29

Fluorine

F2(g) 38.00 0 0 202.78 31.30

F(g) 19.00 +78.99 +61.91 158.75 22.74

F−(aq) 19.00 −332.63 −278.79 −13.8 −106.7

HF(g) 20.01 −271.1 −273.2 173.78 29.13

Gold

Au(s) 196.97 0 0 47.40 25.42

Au(g) 196.97 +366.1 +326.3 180.50 20.79

Helium

He(g) 4.003 0 0 126.15 20.786

Hydrogen (see also deuterium)

H2(g) 2.016 0 0 130.684 28.824

H(g) 1.008 +217.97 +203.25 114.71 20.784

H+(aq) 1.008 0 0 0 0

H+(g) 1.008 +1536.20

H2O(s) 18.015 37.99

H2O(l) 18.015 −285.83 −237.13 69.91 75.291

H2O(g) 18.015 −241.82 −228.57 188.83 33.58

H2O2(l) 34.015 −187.78 −120.35 109.6 89.1

Iodine

I2(s) 253.81 0 0 116.135 54.44

I2(g) 253.81 +62.44 +19.33 260.69 36.90
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Table 14.6 (Continued)

M /(g mol−1) D f H 7/(kJ mol −1) D f G 7/(kJ mol−1) Sm
7 /(J K−1 mol−1)† C 7

p , m /(J K−1 mol−1)

Iodine (Continued)

I(g) 126.90 +106.84 +70.25 180.79 20.786

I−(aq) 126.90 −55.19 −51.57 +111.3 −142.3

HI(g) 127.91 +26.48 +1.70 206.59 29.158

Iron

Fe(s) 55.85 0 0 27.28 25.10

Fe(g) 55.85 +416.3 +370.7 180.49 25.68

Fe2+(aq) 55.85 −89.1 −78.90 −137.7

Fe3+(aq) 55.85 −48.5 −4.7 −315.9

Fe3O4(s) (magnetite) 231.54 −1118.4 −1015.4 146.4 143.43

Fe2O3(s) (haematite) 159.69 −824.2 −742.2 87.40 103.85

FeS(s, α) 87.91 −100.0 −100.4 60.29 50.54

FeS2(s) 119.98 −178.2 −166.9 52.93 62.17

Krypton

Kr(g) 83.80 0 0 164.08 20.786

Lead

Pb(s) 207.19 0 0 64.81 26.44

Pb(g) 207.19 +195.0 +161.9 175.37 20.79

Pb2+(aq) 207.19 −1.7 −24.43 +10.5

PbO(s, yellow) 223.19 −217.32 −187.89 68.70 45.77

PbO(s, red) 223.19 −218.99 −188.93 66.5 45.81

PbO2(s) 239.19 −277.4 −217.33 68.6 64.64

Lithium

Li(s) 6.94 0 0 29.12 24.77

Li(g) 6.94 +159.37 +126.66 138.77 20.79

Li+(aq) 6.94 −278.49 −293.31 +13.4 68.6

Magnesium

Mg(s) 24.31 0 0 32.68 24.89

Mg(g) 24.31 +147.70 +113.10 148.65 20.786

Mg2+(aq) 24.31 −466.85 −454.8 −138.1

MgO(s) 40.31 −601.70 −569.43 26.94 37.15

MgCO3(s) 84.32 −1095.8 −1012.1 65.7 75.52

MgCl2(s) 95.22 −641.32 −591.79 89.62 71.38

Mercury

Hg(l) 200.59 0 0 76.02 27.983

Hg(g) 200.59 +61.32 +31.82 174.96 20.786

Hg2+(aq) 200.59 +171.1 +164.40 −32.2

Hg2
2+(aq) 401.18 +172.4 +153.52 +84.5

HgO(s) 216.59 −90.83 −58.54 70.29 44.06

Hg2Cl2(s) 472.09 −265.22 −210.75 192.5 102

HgCl2(s) 271.50 −224.3 −178.6 146.0

HgS(s, black) 232.65 −53.6 −47.7 88.3
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Table 14.6 (Continued)

M /(g mol−1) D f H 7/(kJ mol −1) D f G 7/(kJ mol−1) Sm
7 /(J K−1 mol−1)† C 7

p , m /(J K−1 mol−1)

Neon

Ne(g) 20.18 0 0 146.33 20.786

Nitrogen

N2(g) 28.013 0 0 191.61 29.125

N(g) 14.007 +472.70 +455.56 153.30 20.786

NO(g) 30.01 +90.25 +86.55 210.76 29.844

N2O(g) 44.01 +82.05 +104.20 219.85 38.45

NO2(g) 46.01 +33.18 +51.31 240.06 37.20

N2O4(g) 92.1 +9.16 +97.89 304.29 77.28

N2O5(s) 108.01 −43.1 +113.9 178.2 143.1

N2O5(g) 108.01 +11.3 +115.1 355.7 84.5

HNO3(l) 63.01 −174.10 −80.71 155.60 109.87

HNO3(aq) 63.01 −207.36 −111.25 146.4 −86.6

NO3
−(aq) 62.01 −205.0 −108.74 +146.4 −86.6

NH3(g) 17.03 −46.11 −16.45 192.45 35.06

NH3(aq) 17.03 −80.29 −26.50 111.3

NH4
+(aq) 18.04 −132.51 −79.31 +113.4 79.9

NH2OH(s) 33.03 −114.2

HN3(l) 43.03 +264.0 +327.3 140.6 43.68

HN3(g) 43.03 +294.1 +328.1 238.97 98.87

N2H4(l) 32.05 +50.63 +149.43 121.21 139.3

NH4NO3(s) 80.04 −365.56 −183.87 151.08 84.1

NH4Cl(s) 53.49 −314.43 −202.87 94.6

Oxygen

O2(g) 31.999 0 0 205.138 29.355

O(g) 15.999 +249.17 +231.73 161.06 21.912

O3(g) 47.998 +142.7 +163.2 238.93 39.20

OH−(aq) 17.007 −229.99 −157.24 −10.75 −148.5

Phosphorus

P(s, wh) 30.97 0 0 41.09 23.840

P(g) 30.97 +314.64 +278.25 163.19 20.786

P2(g) 61.95 +144.3 +103.7 218.13 32.05

P4(g) 123.90 +58.91 +24.44 279.98 67.15

PH3(g) 34.00 +5.4 +13.4 210.23 37.11

PCl3(g) 137.33 −287.0 −267.8 311.78 71.84

PCl3(l) 137.33 −319.7 −272.3 217.1

PCl5(g) 208.24 −374.9 −305.0 364.6 112.8

PCl5(s) 208.24 −443.5

H3PO3(s) 82.00 −964.4

H3PO3(aq) 82.00 −964.8

H3PO4(s) 94.97 −1279.0 −1119.1 110.50 106.06

H3PO4(l) 94.97 −1266.9

H3PO4(aq) 94.97 −1277.4 −1018.7 −222



RESOURCE SECTION 743

Table 14.6 (Continued)

M /(g mol−1) D f H 7/(kJ mol −1) D f G 7/(kJ mol−1) Sm
7 /(J K−1 mol−1)† C 7

p , m /(J K−1 mol−1)

Phosphorus (Continued)

PO4
3−(aq) 94.97 −1277.4 −1018.7 −221.8

P4O10(s) 283.89 −2984.0 −2697.0 228.86 211.71

P4O6(s) 219.89 −1640.1

Potassium

K(s) 39.10 0 0 64.18 29.58

K(g) 39.10 +89.24 +60.59 160.336 20.786

K+(g) 39.10 +514.26

K+(aq) 39.10 −252.38 −283.27 +102.5 21.8

KOH(s) 56.11 −424.76 −379.08 78.9 64.9

KF(s) 58.10 −576.27 −537.75 66.57 49.04

KCl(s) 74.56 −436.75 −409.14 82.59 51.30

KBr(s) 119.01 −393.80 −380.66 95.90 52.30

Kl(s) 166.01 −327.90 −324.89 106.32 52.93

Silicon

Si(s) 28.09 0 0 18.83 20.00

Si(g) 28.09 +455.6 +411.3 167.97 22.25

SiO2(s, α) 60.09 −910.94 −856.64 41.84 44.43

Silver

Ag(s) 107.87 0 0 42.55 25.351

Ag(g) 107.87 +284.55 +245.65 173.00 20.79

Ag+(aq) 107.87 +105.58 +77.11 +72.68 21.8

AgBr(s) 187.78 −100.37 −96.90 107.1 52.38

AgCl(s) 143.32 −127.07 −109.79 96.2 50.79

Ag2O(s) 231.74 −31.05 −11.20 121.3 65.86

AgNO3(s) 169.88 −129.39 −33.41 140.92 93.05

Sodium

Na(s) 22.99 0 0 51.21 28.24

Na(g) 22.99 +107.32 +76.76 153.71 20.79

Na+(aq) 22.99 −240.12 −261.91 +59.0 46.4

NaOH(s) 40.00 −425.61 −379.49 64.46 59.54

NaCl(s) 58.44 −411.15 −384.14 72.13 50.50

NaBr(s) 102.90 −361.06 −348.98 86.82 51.38

NaI(s) 149.89 −287.78 −286.06 98.53 52.09

Sulfur

S(s, α) (rhombic) 32.06 0 0 31.80 22.64

S(s, β) (monoclinic) 32.06 +0.33 +0.1 32.6 23.6

S(g) 32.06 +278.81 +238.25 167.82 23.673

S2(g) 64.13 +128.37 +79.30 228.18 32.47

S2−(aq) 32.06 +33.1 +85.8 −14.6

SO2(g) 64.06 −296.83 −300.19 248.22 39.87

SO3(g) 80.06 −395.72 −371.06 256.76 50.67
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Table 14.6 (Continued)

M /(g mol−1) D f H 7/(kJ mol −1) D f G 7/(kJ mol−1) Sm
7 /(J K−1 mol−1)† C 7

p , m /(J K−1 mol−1)

Sulfur (Continued)

H2SO4(l) 98.08 −813.99 −690.00 156.90 138.9

H2SO4(aq) 98.08 −909.27 −744.53 20.1 −293

SO4
2−(aq) 96.06 −909.27 −744.53 +20.1 −293

HSO4
−(aq) 97.07 −887.34 −755.91 +131.8 −84

H2S(g) 34.08 −20.63 −33.56 205.79 34.23

H2S(aq) 34.08 −39.7 −27.83 121

HS−(aq) 33.072 −17.6 +12.08 +62.08

SF6(g) 146.05 −1209 −1105.3 291.82 97.28

Tin

Sn(s, β) 118.69 0 0 51.55 26.99

Sn(g) 118.69 +302.1 +267.3 168.49 20.26

Sn2+(aq) 118.69 −8.8 −27.2 −17

SnO(s) 134.69 −285.8 −256.9 56.5 44.31

SnO2(s) 150.69 −580.7 −519.6 52.3 52.59

Xenon

Xe(g) 131.30 0 0 169.68 20.786

Zinc

Zn(s) 65.37 0 0 41.63 25.40

Zn(g) 65.37 +130.73 +95.14 160.98 20.79

Zn2+(aq) 65.37 −153.89 −147.06 −112.1 46

ZnO(s) 81.37 −348.28 −318.30 43.64 40.25

Source: NBS. † Standard entropies of ions may be either positive or negative because the values are relative to the entropy of the hydrogen ion.

Table 14.7 Expansion coefficients, α, and isothermal
compressibilities, κT

a /(10 − 4 K−1) kT /(10 −6 atm−1)

Liquids

Benzene 12.4 92.1

Carbon tetrachloride 12.4 90.5

Ethanol 11.2 76.8

Mercury 1.82 38.7

Water 2.1 49.6

Solids

Copper 0.501 0.735

Diamond 0.030 0.187

Iron 0.354 0.589

Lead 0.861 2.21

The values refer to 20°C.
Data: AIP(α), KL(κT).

Table 14.8 Inversion temperatures, normal freezing and boiling
points, and Joule–Thomson coefficients at 1 atm and 298 K

TI /K Tf /K Tb /K m /(K atm−1)

Air 603 0.189 at 50°C

Argon 723 83.8 87.3

Carbon dioxide 1500 194.7s 1.11 at 300 K

Helium 40 4.22 −0.062

Hydrogen 202 14.0 20.3 −0.03

Krypton 1090 116.6 120.8

Methane 968 90.6 111.6

Neon 231 24.5 27.1

Nitrogen 621 63.3 77.4 0.27

Oxygen 764 54.8 90.2 0.31

s: sublimes.
Data: AIP, JL, and M.W. Zemansky, Heat and thermodynamics. McGraw-Hill, New
York (1957).
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Table 15.1 Standard entropies (and temperatures) of phase
transitions, Δ trsS

7/(J K−1 mol−1)

Fusion (at Tf ) Vaporization (at Tb)

Ar 14.17 (at 83.8 K) 74.53 (at 87.3 K)

Br2 39.76 (at 265.9 K) 88.61 (at 332.4 K)

C6H6 38.00 (at 278.6 K) 87.19 (at 353.2 K)

CH3COOH 40.4 (at 289.8 K) 61.9 (at 391.4 K)

CH3OH 18.03 (at 175.2 K) 104.6 (at 337.2 K)

Cl2 37.22 (at 172.1 K) 85.38 (at 239.0 K)

H2 8.38 (at 14.0 K) 44.96 (at 20.38  K)

H2O 22.00 (at 273.2 K) 109.1 (at 373.2 K)

H2S 12.67 (at 187.6 K) 87.75 (at 212.0 K)

He 4.8 (at 1.8 K and 30 bar) 19.9 (at 4.22 K)

N2 11.39 (at 63.2 K) 75.22 (at 77.4 K)

NH3 28.93 (at 195.4 K) 97.41 (at 239.73 K)

O2 8.17 (at 54.4 K) 75.63 (at 90.2 K)

Data: AIP.

Table 15.2 The standard enthalpies and entropies of vaporization of liquids at
their normal boiling point

D vap H 7/(kJ mol−1) qb /°C D vap S 7/(J K−1 mol−1)

Benzene 30.8 80.1 +87.2

Carbon disulfide 26.74 46.25 +83.7

Carbon tetrachloride 30.00 76.7 +85.8

Cyclohexane 30.1 80.7 +85.1

Decane 38.75 174 +86.7

Dimethyl ether 21.51 −23 +86

Ethanol 38.6 78.3 +110.0

Hydrogen sulfide 18.7 −60.4 +87.9

Mercury 59.3 356.6 +94.2

Methane 8.18 −161.5 +73.2

Methanol 35.21 65.0 +104.1

Water 40.7 100.0 +109.1

Data: JL.

Table 15.3 Standard Third-Law entropies at 298 K: see Tables 14.5 and 14.6

Table 15.4 Standard Gibbs energies of formation at 298 K: see Tables 14.5 and 14.6
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Table 16.1 Henry’s law constants for gases
at 298 K, K/(kPa kg mol−1)

Water Benzene

CH4 7.55 × 104 44.4 × 103

CO2 3.01 × 103 8.90 × 102

H2 1.28 × 105 2.79 × 104

N2 1.56 × 105 1.87 × 104

O2 7.92 × 104

Data: converted from R.J. Silbey and R.A. Alberty,
Physical chemistry. Wiley, New York (2001).

Table 16.4 Mean activity coefficients in water at 298 K

b /b 7 HCl KCl CaCl2 H2SO4 LaCl3 In2 (SO4 )3

0.001 0.966 0.966 0.888 0.830 0.790

0.005 0.929 0.927 0.789 0.639 0.636 0.16

0.01 0.905 0.902 0.732 0.544 0.560 0.11

0.05 0.830 0.816 0.584 0.340 0.388 0.035

0.10 0.798 0.770 0.524 0.266 0.356 0.025

0.50 0.769 0.652 0.510 0.155 0.303 0.014

1.00 0.811 0.607 0.725 0.131 0.387

2.00 1.011 0.577 1.554 0.125 0.954

Data: RS, HCP, and S. Glasstone, Introduction to electrochemistry. Van Nostrand (1942).
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Table 17.2 Standard potentials at 298 K. (a) In electrochemical order

Reduction half-reaction E 7/V Reduction half-reaction E 7/V

Strongly oxidizing Sn4+ + 2e− → Sn2+ +0.15

H4XeO6 + 2H+ + 2e− → XeO3 + 3H2O +3.0 NO3
− + H2O + 2e− → NO2

− + 2OH− +0.10

F2 + 2e− → 2F− +2.87 AgBr + e− → Ag + Br− +0.0713

O3 + 2H+ + 2e− → O2 + H2O +2.07 Ti4+ + e− → Ti3+ 0.00

S2O8
2− + 2e− → 2SO4

2− +2.05 2H+ + 2e− → H2 0, by definition

Ag 2+ + e− → Ag+ +1.98 Fe3+ + 3e− → Fe −0.04

Co3+ + e− → Co2+ +1.81 O2 + H2O + 2e− → HO2
− + OH− −0.08

H2O2 + 2H+ + 2e− → 2H2O +1.78 Pb2+ + 2e− → Pb −0.13

Au+ + e− → Au +1.69 In+ + e− → In −0.14

Pb4+ + 2e− → Pb2+ +1.67 Sn2+ + 2e− → Sn −0.14

2HClO + 2H+ + 2e− → Cl2 + 2H2O +1.63 AgI + e− → Ag + I− −0.15

Ce4+ + e− → Ce3+ +1.61 Ni2+ + 2e− → Ni −0.23

2HBrO + 2H+ + 2e− → Br2 + 2H2O +1.60 V3+ + e− → V2+ −0.26

MnO4
− + 8H+ + 5e− → Mn2+ + 4H2O +1.51 Co2+ + 2e− → Co −0.28

Mn3+ + e− → Mn2+ +1.51 In3+ + 3e− → In − 0.34

Au3+ + 3e− → Au +1.40 Tl+ + e− → Tl − 0.34

Cl2 + 2e− → 2Cl− +1.36 PbSO4 + 2e− → Pb + SO4
2− − 0.36

Cr2O7
2− + 14H+ + 6e− → 2Cr3+ + 7H2O +1.33 Ti3+ + e− → Ti2+ −0.37

O3 + H2O + 2e− → O2 + 2OH− +1.24 Cd2+ + 2e− → Cd −0.40

O2 + 4H+ + 4e− → 2H2O +1.23 In2+ + e− → In+ − 0.40

ClO4
− + 2H+ + 2e− → ClO3

− + H2O +1.23 Cr3+ + e− → Cr2+ −0.41

MnO2 + 4H+ + 2e− → Mn2+ + 2H2O +1.23 Fe2+ + 2e− → Fe − 0.44

Pt2+ + 2e− → Pt +1.20 In3+ + 2e− → In+ −0.44

Br2 + 2e− → 2Br− +1.09 S + 2e− → S2− −0.48

Pu4+ + e− → Pu3+ +0.97 In3+ + e− → In2+ −0.49

NO3
− + 4H+ + 3e− → NO + 2H2O +0.96 O2 + e− → O2

− −0.56

2Hg2+ + 2e− → Hg 2
2+ +0.92 U4+ + e− → U3+ −0.61

ClO− + H2O + 2e− → Cl− + 2OH− +0.89 Cr3+ + 3e− → Cr −0.74

Hg2+ + 2e− → Hg +0.86 Zn2+ + 2e− → Zn −0.76

NO3
− + 2H+ + e− → NO2 + H2O +0.80 Cd(OH)2 + 2e− → Cd + 2OH− −0.81

Ag+ + e− → Ag +0.80 2H2O + 2e− → H2 + 2OH− −0.83

Hg2
2+ + 2e− → 2Hg +0.79 Cr2+ + 2e− → Cr −0.91

AgF + e− → Ag + F− +0.78 Mn2+ + 2e− → Mn −1.18

Fe3+ + e− → Fe2+ +0.77 V2+ + 2e− → V −1.19

BrO− + H2O + 2e− → Br− + 2OH− +0.76 Ti2+ + 2e− → Ti −1.63

Hg2SO4 + 2e− → 2Hg + SO4
2− +0.62 Al3+ + 3e− → Al −1.66

MnO4
2− + 2H2O + 2e− → MnO2 + 4OH− +0.60 U3+ + 3e− → U −1.79

MnO4
− + e− → MnO4

2− +0.56 Be2+ + 2e− → Be −1.85

I2 + 2e− → 2I− +0.54 Sc3+ + 3e− → Sc −2.09

I3
− + 2e− → 3I− +0.53 Mg2+ + 2e− → Mg −2.36

Cu+ + e− → Cu +0.52 Ce3+ + 3e− → Ce −2.48

NiOOH + H2O + e− → Ni(OH)2 + OH− +0.49 La3+ + 3e− → La −2.52

Ag2CrO4 + 2e− → 2Ag + CrO4
2− +0.45 Na+ + e− → Na −2.71

O2 + 2H2O + 4e− → 4OH− +0.40 Ca2+ + 2e− → Ca −2.87

ClO4
− + H2O + 2e− → ClO3

− + 2OH− +0.36 Sr2+ + 2e− → Sr −2.89

[Fe(CN)6]3− + e− → [Fe(CN)6]4− +0.36 Ba2+ + 2e− → Ba −2.91

Cu2+ + 2e− → Cu +0.34 Ra2+ + 2e− → Ra −2.92

Hg2Cl2 + 2e− → 2Hg + 2Cl− +0.27 Cs+ + e− → Cs −2.92

AgCl + e− → Ag + Cl− +0.22 Rb+ + e− → Rb −2.93

Bi3+ + 3e− → Bi +0.20 K+ + e− → K −2.93

Cu2+ + e− → Cu+ +0.16 Li+ + e− → Li −3.05
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Table 17.2 Standard potentials at 298 K. (b) In alphabetical order

Reduction half-reaction E 7/V Reduction half-reaction E 7/V

Ag+ + e− → Ag +0.80 I2 + 2e− → 2I− +0.54

Ag2+ + e− → Ag+ +1.98 I−
3 + 2e− → 3I− +0.53

AgBr + e− → Ag + Br− +0.0713 In+ + e− → In −0.14

AgCl + e− → Ag + Cl− +0.22 In2+ + e− → In+ −0.40

Ag2CrO4 + 2e− → 2Ag + CrO4
2− +0.45 In3+ + 2e− → In+ −0.44

AgF + e− → Ag + F− +0.78 In3+ + 3e− → In −0.34

AgI + e− → Ag + I− −0.15 In3+ + e− → In2+ −0.49

Al3+ + 3e− → Al −1.66 K+ + e− → K −2.93

Au+ + e− → Au +1.69 La3+ + 3e− → La −2.52

Au3+ + 3e− → Au +1.40 Li+ + e− → Li −3.05

Ba2+ + 2e− → Ba −2.91 Mg2+ + 2e− → Mg −2.36

Be2+ + 2e− → Be −1.85 Mn2+ + 2e− → Mn −1.18

Bi3+ + 3e− → Bi +0.20 Mn3+ + e− → Mn2+ +1.51

Br2 + 2e− → 2Br− +1.09 MnO2 + 4H+ + 2e− → Mn2+ + 2H2O +1.23

BrO− + H2O + 2e− → Br− + 2OH− +0.76 MnO4
− + 8H+ + 5e− → Mn2+ + 4H2O +1.51

Ca2+ + 2e− → Ca −2.87 MnO4
− + e− → MnO4

2− +0.56

Cd(OH)2 + 2e− → Cd + 2OH− −0.81 MnO4
2 − + 2H2O + 2e− → MnO2 + 4OH− +0.60

Cd2+ + 2e− → Cd −0.40 Na+ + e− → Na −2.71

Ce3+ + 3e− → Ce −2.48 Ni2+ + 2e− → Ni −0.23

Ce4+ + e− → Ce3+ +1.61 NiOOH + H2O + e− → Ni(OH)2 + OH− +0.49

Cl2 + 2e− → 2Cl− +1.36 NO3
− + 2H+ + e− → NO2 + H2O +0.80

ClO− + H2O + 2e− → Cl− + 2OH− +0.89 NO3
− + 4H+ + 3e− → NO + 2H2O +0.96

ClO4
− + 2H+ + 2e− → ClO3

− + H2O +1.23 NO3
− + H2O + 2e− → NO2

− + 2OH− +0.10

ClO4
− + H2O + 2e− → ClO3

− + 2OH− +0.36 O2 + 2H2O + 4e− → 4OH− +0.40

Co2+ + 2e− → Co −0.28 O2 + 4H+ + 4e− → 2H2O +1.23

Co3+ + e− → Co2+ +1.81 O2 + e− → O2
− −0.56

Cr2+ + 2e− → Cr −0.91 O2 + H2O + 2e− → HO2
− + OH− −0.08

Cr2O7
2 − + 14H+ + 6e− → 2Cr3 + + 7H2O +1.33 O3 + 2H+ + 2e− → O2 + H2O +2.07

Cr3+ + 3e− → Cr −0.74 O3 + H2O + 2e− → O2 + 2OH− +1.24

Cr3+ + e− → Cr2+ −0.41 Pb2+ + 2e− → Pb −0.13

Cs+ + e− → Cs −2.92 Pb4+ + 2e− → Pb2+ +1.67

Cu+ + e− → Cu +0.52 PbSO4 + 2e− → Pb + SO4
2− −0.36

Cu2+ + 2e− → Cu +0.34 Pt2+ + 2e− → Pt +1.20

Cu2+ + e− → Cu+ +0.16 Pu4+ + e− → Pu3+ +0.97

F2 + 2e− → 2F− +2.87 Ra2+ + 2e− → Ra −2.92

Fe2+ + 2e− → Fe −0.44 Rb+ + e− → Rb −2.93

Fe3+ + 3e− → Fe −0.04 S + 2e− → S2− −0.48

Fe3+ + e− → Fe2+ +0.77 S2O8
2− + 2e− → 2SO4

2− +2.05

[Fe(CN)6]3− + e− → [Fe(CN)6]4− +0.36 Sc3+ + 3e− → Sc −2.09

2H+ + 2e− → H2 0, by definition Sn2+ + 2e− → Sn −0.14

2H2O + 2e− → H2 + 2OH− −0.83 Sn4+ + 2e− → Sn2+ +0.15

2HBrO + 2H+ + 2e− → Br2 + 2H2O +1.60 Sr2+ + 2e− → Sr −2.89

2HClO + 2H+ + 2e− → Cl2 + 2H2O +1.63 Ti2+ + 2e− → Ti −1.63

H2O2 + 2H+ + 2e− → 2H2O +1.78 Ti3+ + e− → Ti2+ −0.37

H4XeO6 + 2H+ + 2e− → XeO3 + 3H2O +3.0 Ti4+ + e− → Ti3+ 0.00

Hg2
2+ + 2e− → 2Hg +0.79 Tl+ + e− → Tl −0.34

Hg2Cl2 + 2e− → 2Hg + 2Cl− +0.27 U3+ + 3e− → U −1.79

Hg2+ + 2e− → Hg +0.86 U4+ + e− → U3+ −0.61

2Hg2+ + 2e− → Hg2
2+ +0.92 V2+ + 2e− → V −1.19

Hg2SO4 + 2e− → 2Hg + SO4
2− +0.62 V3+ + e− → V2+ −0.26

Zn2+ + 2e− → Zn −0.76
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Table 18.1 Collision cross-sections,
σ /nm2

Ar 0.36

C2H4 0.64

C6H6 0.88

CH4 0.46

Cl2 0.93

CO2 0.52

H2 0.27

He 0.21

N2 0.43

Ne 0.24

O2 0.40

SO2 0.58

Data: KL.

Table 18.2 Transport properties of gases at 1 atm

k/(J K−1 m−1 s−1) h/mP

273 K 273 K 293 K

Air 0.0241 173 182

Ar 0.0163 210 223

C2H4 0.0164 97 103

CH4 0.0302 103 110

Cl2 0.079 123 132

CO2 0.0145 136 147

H2 0.1682 84 88

He 0.1442 187 196

Kr 0.0087 234 250

N2 0.0240 166 176

Ne 0.0465 298 313

O2 0.0245 195 204

Xe 0.0052 212 228

Data: KL.

Table 18.5 Ionic mobilities in water at 298 K, 
u/(10−8 m2 s−1 V−1)

Cations Anions

Ag+ 6.24 Br− 8.09

Ca2+ 6.17 CH3CO2
− 4.24

Cu2+ 5.56 Cl− 7.91

H+ 36.23 CO3
2− 7.46

K+ 7.62 F− 5.70

Li+ 4.01 [Fe(CN)6]3− 10.5

Na+ 5.19 [Fe(CN)6]4 − 11.4

NH4
+ 7.63 I− 7.96

[N(CH3)4]+ 4.65 NO3
− 7.40

Rb+ 7.92 OH− 20.64

Zn2+ 5.47 SO4
2 − 8.29

Data: Principally Table 18.4 and u = λ /zF.

Table 18.4 Viscosities of liquids at 
298 K, η/(10−3 kg m−1 s−1)

Benzene 0.601

Carbon tetrachloride 0.880

Ethanol 1.06

Mercury 1.55

Methanol 0.553

Pentane 0.224

Sulfuric acid 27

Water† 0.891

† The viscosity of water over its entire liquid
range is represented with less than 1 per cent
error by the expression

log(η20 /η) = A /B,

A = 1.370 23(t − 20) + 8.36 × 10− 4(t − 20)2

B = 109 + t t = θ/°C

Convert kg m−1 s−1 to centipoise (cP) by
multiplying by 103 (so η ≈ 1 cP for water).
Data: AIP, KL.
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Table 18.6 Diffusion coefficients at 298 K, D/(10−9 m2 s−1)

Molecules in liquids Ions in water

I2 in hexane 4.05 H2 in CCl4(l) 9.75 K+ 1.96 Br− 2.08

in benzene 2.13 N2 in CCl4(l) 3.42 H+ 9.31 Cl− 2.03

CCl4 in heptane 3.17 O2 in CCl4(l) 3.82 Li+ 1.03 F− 1.46

Glycine in water 1.055 Ar in CCl4(l) 3.63 Na+ 1.33 I− 2.05

Dextrose in water 0.673 CH4 in CCl4(l) 2.89 OH− 5.03

Sucrose in water 0.5216 H2O in water 2.26

CH3OH in water 1.58

C2H5OH in water 1.24

Data: AIP.

Table 19.1 Kinetic data for first-order reactions

Phase q /°C kr /s−1 t1/2

2 N2O5 → 4 NO2 + O2 g 25 3.38 × 10−5 5.70 h

HNO3(l) 25 1.47 × 10−6 131 h

Br2(l) 25 4.27 × 10−5 4.51 h

C2H6 → 2 CH3 g 700 5.36 × 10−4 21.6 min

Cyclopropane → propene g 500 6.71 × 10− 4 17.2 min

CH3N2CH3 → C2H6 + N2 g 327 3.4 × 10− 4 34 min

Sucrose → glucose + fructose aq(H+) 25 6.0 × 10−5 3.2 h

g: High pressure gas-phase limit.
Data: Principally K.J. Laidler, Chemical kinetics. Harper & Row, New York (1987); M.J. Pilling and 
P.W. Seakins, Reaction kinetics. Oxford University Press (1995); J. Nicholas, Chemical kinetics.
Harper & Row, New York (1976). See also JL.

Table 19.2 Kinetic data for second-order reactions

Phase q /°C kr /(dm3 mol−1 s−1)

2 NOBr → 2 NO + Br2 g 10 0.80

2 NO2 → 2 NO + O2 g 300 0.54

H2 + I2 → 2 HI g 400 2.42 × 10−2

D2 + HCl → DH + DCl g 600 0.141

2 I → I2 g 23 7 × 109

hexane 50 1.8 × 1010

CH3Cl + CH3O− methanol 20 2.29 × 10−6

CH3Br + CH3O− methanol 20 9.23 × 10− 6

H+ + OH− → H2O water 25 1.35 × 1011

ice −10 8.6 × 1012

Data: Principally K.J. Laidler, Chemical kinetics. Harper & Row, New York (1987);
M.J. Pilling and P.W. Seakins, Reaction kinetics. Oxford University Press (1995); 
J. Nicholas, Chemical kinetics. Harper & Row, New York (1976).
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Table 20.1 Arrhenius parameters

First-order reactions A/s−1 E a /(kJ mol−1)

Cyclopropane → propene 1.58 × 1015 272

CH3NC → CH3CN 3.98 × 1013 160

cis-CHD=CHD → trans-CHD=CHD 3.16 × 1012 256

Cyclobutane → 2 C2H4 3.98 × 1013 261

C2H5I → C2H4 + HI 2.51 × 1017 209

C2H6 → 2 CH3 2.51 × 107 384

2 N2O5 → 4 NO2 + O2 4.94 × 1013 103.4

N2O → N2 + O 7.94 × 1011 250

C2H5 → C2H4 + H 1.0 × 1013 167

Second-order, gas-phase A /(dm3 mol−1 s−1) E a /(kJ mol−1)

O + N2 → NO + N 1 × 1011 315

OH + H2 → H2O + H 8 × 1010 42

Cl + H2 → HCl + H 8 × 1010 23

2 CH3 → C2H6 2 × 1010 ca. 0

NO + Cl2 → NOCl + Cl 4.0 × 109 85

SO + O2 → SO2 + O 3 × 108 27

CH3 + C2H6 → CH4 + C2H5 2 × 108 44

C6H5 + H2 → C6H6 + H 1 × 108 ca. 25

Second-order, solution A /(dm3 mol−1 s−1) E a /(kJ mol−1)

C2H5ONa + CH3I in ethanol 2.42 × 1011 81.6

C2H5Br + OH− in water 4.30 × 1011 89.5

C2H5I + C2H5O− in ethanol 1.49 × 1011 86.6

C2H5Br + OH− in ethanol 4.30 × 1011 89.5

CO2 + OH− in water 1.5 × 1010 38

CH3I + S2O3
2− in water 2.19 × 1012 78.7

Sucrose + H2O in acidic water 1.50 × 1015 107.9

(CH3)3CCl solvolysis

in water 7.1 × 1016 100

in methanol 2.3 × 1013 107

in ethanol 3.0 × 1013 112

in acetic acid 4.3 × 1013 111

in chloroform 1.4 × 104 45

C6H5NH2 + C6H5COCH2Br

in benzene 91 34

Data: Principally J. Nicholas, Chemical kinetics. Harper & Row, New York (1976) and 
A.A. Frost and R.G. Pearson, Kinetics and mechanism. Wiley, New York (1961).
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Table 20.2 Arrhenius parameters for gas-phase reactions

A /(dm3 mol−1 s−1)

Experiment Theory Ea /(kJ mol−1) P

2 NOCl → 2 NO + Cl2 9.4 × 109 5.9 × 1010 102.0 0.16

2 NO2 → 2 NO + O2 2.0 × 109 4.0 × 1010 111.0 5.0 × 10−2

2 ClO → Cl2 + O2 6.3 × 107 2.5 × 1010 0.0 2.5 × 10−3

H2 + C2H4 → C2H6 1.24 × 106 7.4 × 1011 180 1.7 × 10−6

K + Br2 → KBr + Br 1.0 × 1012 2.1 × 1011 0.0 4.8

Data: Principally M.J. Pilling and P.W. Seakins, Reaction kinetics. Oxford University Press (1995).

Table 20.3 Arrhenius parameters for reactions in solution. See Table 20.1

Table 21.1 Maximum observed enthalpies
of physisorption, ΔadH 7/(kJ mol−1)

C2H2 −38 H2 −84

C2H4 −34 H2O −59

CH4 −21 N2 −21

Cl2 −36 NH3 −38

CO −25 O2 −21

CO2 −25

Data: D.O. Haywood and B.M.W. Trapnell,
Chemisorption. Butterworth (1964).

Table 21.2 Enthalpies of chemisorption, ΔadH 7/(kJ mol−1)

Adsorbate Adsorbent (substrate)

Ti Ta Nb W Cr Mo Mn Fe Co Ni Rh Pt

H2 −188 −188 −167 −71 −134 −117

N2 −586 −293

O2 −720 −494 −293

CO −640 −192 −176

CO2 −682 −703 −552 −456 −339 −372 −222 −225 −146 −184

NH3 −301 −188 −155

C2H4 −577 −427 −427 −285 −243 −209

Data: D.O. Haywood and B.M.W. Trapnell, Chemisorption. Butterworth (1964).
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Observable Operator Representation*

Energy @ (hamiltonian)

Kinetic energy Êk

Potential energy W W = V(r) ×
Position (x-, y-, and z-components) X, õ, ü; in general Î Î = q ×
Radial distance Ï Ï = r ×

Linear momentum (x-, y-, z-components) Yx, Yy, Yz; in general Yq

Square of linear momentum Y2 = Yx
2 + Yy

2 + Yz
2 Y2 = −$2∇2

Electric dipole moment (x-, y-, z-components) Nx, Ny, Nz; in general Nq Nq = −eq ×

Orbital angular momentum (x-, y-, z-components) Zx, Zy, Zz; in general Zq and in general 

Square of magnitude of the orbital angular momentum Z 2 = Z x
2 + Z y

2 + Z z
2 Z 2 = −$2Λ2

Square of magnitude of the spin angular momentum S2, Sz –
and its z-component

* In the ‘position representation’, in which the position operators have a simple multiplicative form.

 
Ì Í È

$
= × = × ∇

i
rZ

$
z =

∂
∂i φ

Y
$

q q
=

∂
∂i

 
Ê

mk = − ∇
$2

2

2

 
@

$
W= − ∇ +

2
2

2m

C1 E h = 1
(1)

A 1

Cs = Ch E σh h = 2
(m)

A′ 1 1 x, y, Rz x2, y2,
z2, xy

A″ 1 −1 z, Rx, Ry yz, xz

Ci = S2 E i h = 2
(⁄)

Ag 1 1 Rx, Ry, Rz x2, y2, z2,
xy, xz, yz

Au 1 −1 x, y, z

Part 3 Character tables

The groups C1, Cs, Ci

Part 2 Common operators in quantum mechanics
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C4v, 4mm E C2 2C4 2σv 2σd h = 8

A1 1 1 1 1 1 z, z2, x2 + y2

A2 1 1 1 −1 −1 Rz

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy

E 2 −2 0 0 0 (x, y), (xz, yz) (Rx, Ry)

C5v E 2C5 2C5
2 5σv h = 10, a = 72°

A1 1 1 1 1 z, z2, x2 + y2

A2 1 1 1 −1 Rz

E1 2 2 cos α 2 cos 2α 0 (x, y), (xz, yz) (Rx, Ry)

E2 2 2 cos 2α 2 cos α 0 (xy, x2 − y2)

C6v, 6mm E C2 2C3 2C6 3σd 3σv h = 12

A1 1 1 1 1 1 1 z, z2, x2 + y2

A2 1 1 1 1 −1 −1 Rz

B1 1 −1 1 −1 −1 1

B2 1 −1 1 −1 1 −1

E1 2 −2 −1 1 0 0 (x, y), (xz, yz) (Rx, Ry)

E2 2 2 −1 −1 0 0 (xy, x2 − y2)

C2v, 2mm E C2 σv σ′v h = 4

A1 1 1 1 1 z, z2, x2, y2

A2 1 1 −1 −1 xy Rz

B1 1 −1 1 −1 x, xz Ry

B2 1 −1 −1 1 y, yz Rx

C3v, 3m E 2C3 3σv h = 6

A1 1 1 1 z, z2, x2 + y2

A2 1 1 −1 Rz

E 2 −1 0 (x, y), (xy, x2 − y2) (xz, yz) (Rx , Ry)

The groups Cnv
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C•v E 2Cφ† •σv h = •

A1(Σ+) 1 1 1 z, z2, x2 + y2

A2(Σ−) 1 1 −1 Rz

E1(Π) 2 2 cos φ 0 (x, y), (xz, yz) (Rx, Ry)

E2(Δ) 2 2 cos 2φ 0 (xy, x2 − y2)

† There is only one member of this class if φ = π.

D4, 422 E C2 2C4 2C ′2 2C 2″ h = 8

A1 1 1 1 1 1 z2, x2 + y2

A2 1 1 1 −1 −1 z Rz

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy

E 2 −2 0 0 0 (x, y), (xz, yz) (Rx, Ry)

D3, 32 E 2C3 3C ′2 h = 6

A1 1 1 1 z2, x2 + y2

A2 1 1 −1 z Rz

E 2 −1 0 (x, y), (xz, yz), (xy, x2 − y2) (Rx, Ry)

D2, 222 E C2
z C 2

y C 2
x h = 4

A1 1 1 1 1 x2, y2, z2

B1 1 1 −1 −1 z, xy Rz

B2 1 −1 1 −1 y, xz Ry

B3 1 −1 −1 1 x, yz Rx

The groups Dn

The groups Dnh

D3h, %2m E σh 2C3 2S3 3C ′2 3σv h = 12

A′1 1 1 1 1 1 1 z2, x2 + y2

A′2 1 1 1 1 −1 −1 Rz

A1″ 1 −1 1 −1 1 −1

A2″ 1 −1 1 −1 −1 1 z

E′ 2 2 −1 −1 0 0 (x, y), (xy, x2 − y2)

E″ 2 −2 −1 1 0 0 (xz, yz) (Rx, Ry)
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D•h E 2Cf … •σv i 2S• … •C ′2 h = •

A1g(Σg
+) 1 1 … 1 1 1 … 1 z2, x2 + y2

A1u (Σu
+) 1 1 … 1 −1 −1 … −1 z

A2g(Σg
−) 1 1 … −1 1 1 … −1 Rz

A2u(Σu
−) 1 1 … −1 −1 −1 … 1

E1g(Πg) 2 2 cos φ … 0 2 −2 cos φ … 0 (xz, yz) (Rx, Ry)

E1u(Πu) 2 2 cos φ … 0 −2 2 cos φ … 0 (x, y)

E2g(Δg) 2 2 cos 2φ … 0 2 2 cos 2φ … 0 (xy, x2 − y2)

E2u(Δu) 2 2 cos 2φ … 0 −2 −2 cos 2φ … 0

� � � � � � �

D5h E 2C5 2C5
2 5C2 σh 2S5 2S5

3 5σv h = 20 a = 72°

A′1 1 1 1 1 1 1 1 1 x2 + y2, z2

A′2 1 1 1 −1 1 1 1 −1 Rz

E′1 2 2 cos α 2 cos 2α 0 2 2 cos α 2 cos 2α 0 (x, y)

E′2 2 2 cos 2α 2 cos α 0 2 2 cos 2α 2 cos α 0 (x2 − y2, xy)

A″1 1 1 1 1 −1 −1 −1 −1

A″2 1 1 1 −1 −1 −1 −1 1 z

E″1 2 2 cos α 2 cos 2α 0 −2 −2 cos α −2 cos 2α 0 (xz, yz) (Rx, Ry)

E″2 2 2 cos 2α 2 cos α 0 −2 −2 cos 2α −2 cos α 0

D4h, 4/mmm E 2C4 C2 2C ′2 2C 2″ i 2S4 σh 2σv 2σd h = 16

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy

Eg 2 0 −2 0 0 2 0 −2 0 0 (xz, yz) (Rx, Ry)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z

B1u 1 −1 1 1 −1 −1 1 −1 −1 1

B2u 1 −1 1 −1 1 −1 1 −1 1 −1

Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y)



RESOURCE SECTION 757

I E 12C5 12C5
2 20C3 15C2 h = 60

A 1 1 1 1 1 x2 + y2 + z2

T1 3 1–
2(1 + ) 1–

2(1 − ) 0 −1 (x, y, z) (Rx, Ry, Rz)

T2 3 1–
2(1 − ) 1–

2(1 + ) 0 −1

G 4 −1 −1 1 0

H 5 0 0 −1 1 (2z2 − x2 − y2, x2 − y2, xy, yz, zx)

55

55

Oh (m3m) E 8C3 6C2 6C4 3C2 (= C 4
2) i 6S4 8S6 3σh 6σd h = 48

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 −1 −1 1 1 −1 1 1 −1

Eg 2 −1 0 0 2 2 0 −1 2 0 (2z2 − x2 − y2, x2 − y2)

T1g 3 0 −1 1 −1 3 1 0 −1 −1 (Rx, Ry, Rz)

T2g 3 0 1 −1 −1 3 −1 0 −1 1 (xy, yz, zx)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 −1 −1 1 −1 1 −1 −1 1

Eu 2 −1 0 0 2 −2 0 1 −2 0

T1u 3 0 −1 1 −1 −3 −1 0 1 1 (x, y, z)

T2u 3 0 1 −1 −1 −3 1 0 1 −1

Td, ∞3m E 8C3 3C2 6σd 6S4 h = 24

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 −1 −1

E 2 −1 2 0 0 (3z2 − r2, x2 − y2)

T1 3 0 −1 −1 1 (Rx, Ry, Rz)

T2 3 0 −1 1 −1 (x, y, z), (xy, xz, yz)

The cubic groups

The icosahedral group

Further information: P.W. Atkins, M.S. Child, and C.S.G. Phillips, Tables for group
theory. Oxford University Press (1970). In this source, which is available on the
web (see p. xi for more details), other character tables such as D2, D4, D2d, D3d, and
D5d can be found.



F6.11a 24.1 kJ, 28.8 °C

F7.1a 1.69 × 104 cm−1, 5.08 × 1014 Hz

F7.2a 2.26 × 108 m s−1

F7.3a 4.00 μm, 7.50 × 1013 Hz

F8.1a 1.45 × 10−6 m3

F8.2a 11.2 × 103 kg m−3

F8.3a m−3

F8.4a 207.1 cm−1

F8.5a 0.08206 atm dm3 K−1 mol−1

F8.6a 101.325 J

F8.7a (a) kg m s−2, (b) N

Chapter 1

E1.1a 3.37 × 10−19 J

E1.2a (a) 33 zJ, 20 kJ mol−1, (b) 3.013 × 10−34 J, 0.20 nJ mol−1

E1.3a (a) No kinetic energy and zero speed, (b) 0.452 a J, 996 km s−1

E1.4a 2.23 μm

E1.5a 7.35 × 105 m s−1

E1.6a 6.96 keV, 6.96 keV

E1.8a (a) 3.0 × 1019 s−1, (b) 7.4 × 1020 s−1

E1.9a (a) 3.3 × 10−29 m, (b) 1.3 × 10−36 m, (c) 99.7 pm

E1.10a 7.27 × 106 m s−1, 150 V

E1.11a 1.71 × 106 m s−1

E1.15a N =
1/2

E1.16a (1/2π) dφ

E1.17a

E1.19a −4

E1.20a (a) ik

E1.23a

E1.24a 0

E1.27a 52 pm

E1.28a (a) 1.1 × 10−28 m s−1, (b) 1 × 10−27 m

E1.29a (a) 0, (b) 0, (c) i$, (d) 2ix$, (e) nixn−1$

Chapter 2

E2.1a 3 × 1034 kg m s−1, 5 × 10−38 J

E2.2a (a) Aeikx, 5.1 × 109 m−1, (b) 5.1 × 1011 m−1

E2.3a (a) 1.8 × 10−19 J, 1.1 eV, 9.1 × 104 cm−1, 1.1 × 102 kJ mol−1, 
(b) 6.6 × 10−19 J, 4.1 eV, 3.3 × 104 cm−1, 4.0 × 102 kJ mol−1

E2.4a (a) 0.04, (b) 0

E2.5a 0, 

E2.6a

E2.7a x = , and 
5L

6

L

2

L

6

λC

81/2

h2

4L2

L

2

1

2

DEF
1

2π

ABC

Solutions to a) exercises

Fundamentals

F1.2a Example Element Ground-state Electronic 
Configuration

(a) Group 2 Ca, calcium [Ar]4s2

(b) Group 7 Mn, manganese [Ar]3d54s2

(c) Group 15 As, arsenic [Ar]3d104s24p3

F2.1a A single bond is a shared pair of electrons between adjacent atoms
within a molecule while a multiple bond involves the sharing of
either two pairs of electrons (a double bond) or three pairs of
electrons (a triple bond).

F2.6a (a) CO2 is a linear, nonpolar molecule, (b) SO2 is a bent, polar
molecule, (c) N2O is linear, polar molecule, (d) SF4 is a seesaw
molecule and it is a polar molecule

F2.7a In the order of increasing dipole moment: CO2, N2O, SF4, SO2

F3.3a (a) 0.543 mol, (b) 3.27 × 1023 molecules

F3.4a (a) 180 g, (b) 1.77 N

F3.5a 0.45 bar

F3.6a 0.44 atm

F3.7a (a) 1.47 × 105 Pa, (b) 1.47 bar

F3.8a T = 310.2 K

F3.9a θ/°C = × (θF/°F − 32) or θF/°F = × θ/°C + 32, θF = 173 °F

F3.10a 105 kPa

F3.11a S8

F3.12a 1.8 MPa

F3.13a 4.6 × 105 Pa, 6.9 × 105 Pa

F4.1a 27.2 K or 27.2 °C

F4.2a 128 J

F4.3a 2.4208 J K−1 g−1

F4.4a 75.3 J K−1 mol−1

F4.5a 2.48 kJ mol−1

F4.6a 1.824 J mol−1

F5.2a (a) 1.602 × 10−17, (b) 2.092 × 10−2

F5.4a 4.631 × 10−6

F5.7a 1.07

F5.8a 1.25

F5.9a 0.47 kJ

F5.10a (a) 1.38 kJ, (b) 4.56 kJ

F5.11a 12.47 J mol−1 K−1

F5.12a (a) 20.78 J mol−1 K−1, (b) 24.94 J mol−1 K−1

F6.1a (a) 9.81 m s−1, (b) 29.4 m s−1

F6.2a sterminal =

F6.4a E = kA2, E = Vmax = kA2

F6.6a 1.0$
F6.7a (a) 2.25 × 10−20 J, (b) 9.00 × 10−20 J

F6.8a 1.88 × 108 m s−1, 100 keV

F6.9a 1.15 × 10−18 J, 1.48 × 10−20 J

F6.10a −2.40 V

1
2

1
2

zeE

6πηR

9
5

5
9
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E2.8a 0.8

E2.9a 3.21 × 10−20 J

E2.10a 278 N m−1

E2.11a 2.63 μm

E2.12a 3.72 μm

E2.14a ±0.525α or ±1.65α
E2.16a 565 cm−1

E2.17a 0.056

E2.18a

E2.19a 0

E2.20a

E2.21a

E2.22a 0

E2.23a

Chapter 3
E3.1a (a) 3.6 × 10−19 J, 2.3 eV, 1.8 × 104 cm−1, 2.2 × 102 kJ mol−1, 

(b) 1.3 × 10−18 J, 8.3 eV, 6.7 × 104 cm−1, 8.0 × 102 kJ mol−1

E3.2a (a) 5.5 × 1014 s−1, 5.5 × 10−7 m, 550 nm, (b) 2.0 × 1015 s−1, 
1.5 × 10−7 m, 150 nm

E3.3a (a) 5.5 × 103 K, (b) 3.‹ × 103 K

E3.4a (a) 0.0016, (b) 0

E3.5a (1/4,1/6), (1/4,1/2), (1/4,5/6), (3/4,1/6), (3/4,1/2), (3/4,5/6)

E3.6a = 0, , 1 = 0, , , 1

E3.7a 0, 

E3.9a n1 = 1, n2 = 4

E3.10a 3

E3.11a 0.23 or 23 per cent

E3.12a 9.77 × 1010, 1.27 × 10−31 J, 25.8 pm

E3.14a 1.49 × 10−34 J s, 0 or ±$
E3.15a (a) 0.955 radians or 54.7°, (b) π/4 radians or 45°, (c) π/2 radians 

or 90°

E3.16a 7

E3.17a 2.04 × 10−22 J, 9.75 × 10−4 m = 0.975 mm, microwave

E3.18a 8.89 × 1010 m s−1

Chapter 4
E4.1a 9.118 × 10−6 cm, 1.216 × 10−5 cm

E4.2a 3.292 × 105 cm−1, 3.038 × 10−6 cm, 9.869 × 1013 s−1

E4.5a 14.0 eV

E4.6a 4

E4.7a (a) g = 1, (b) g = 4, (c) g = 16

E4.8a N =

E4.9a 4a0, r = 0

E4.10a 1.058 × 10−10 m

E4.11a 2E1s, −E1s, −4.3594 aJ, 2.1797 aJ

E4.12a , r* = (3 + )
a

2
5〈 〉r

a

Z2
06

s =

2

a0
3/2

h2

2L2

2

3

1

3

y

L

1

2

x

L

−mg2

2ω2

ε
2

ε
2

〈 〉
〈 〉

E
V

k =
3

2

E4.13a P2s = 4πr2 (1/4π) × (1/243) × (Z/a0)3 × (6 − 6 + ρ + ρ2)2 e−ρ, 
0.74 a0/Z, 4.19 a0/Z, 13.08 a0/Z

E4.14a xy plane, θ = , zy, θ = 0, xz, θ = 0

E4.15a (a) forbidden, (b) allowed, (c) allowed

E4.16a 0.999 999 944 × 680 nm

E4.17a (a) 27 ps, (b) 2.5 ps

E4.18a (a) 53 cm−1, (b) 0.53 cm−1

E4.21a Sc: [Ar]4s23d1

Ti: [Ar]4s23d2

V: [Ar]4s23d3

Cr: [Ar]4s23d4 or [Ar]4s13d5 (most probable)

Mn: [Ar]4s23d5

Fe: [Ar]4s23d6

Co: [Ar]4s23d7

Ni: [Ar]4s23d8

Cu: [Ar]4s23d9 or [Ar]4s13d10 (most probable)

Zn: [Ar]4s23d10

E4.22a [Kr]4d8, S = 1, 0, ms = −1, 0, 1, ms = 0

E4.23a (a) 5/2, 3/2, (b) 7/2, 5/2

E4.24a l = 3 or 2, l = 1 or 0

E4.25a 3, 2, 1

E4.26a L = 1, S = 1, J = 2

E4.27a , , and , 4, 2, 2

E4.28a 3D3, 3D2, 3D1, 1D2, 3D set of terms are the lower in energy

E4.29a (a) J = 1, 3 states, (b) J = 5/2, 3/2 respectively, 6 and 2 states
respectively, (c) J = 1, 3 states

E4.30a (a) 2S1/2, (b) 2D5/2, and 2D3/2

E4.31a (a) allowed, (b) forbidden, (c) allowed

Chapter 5
E5.4a N = 3−1/2, ψ = 3−1/2(s + 21/2p)

E5.5a (a) 1σg
2, b = 1, (b) 1σg

21σu
2, b = 0, (c) 1σg

21σu
21πu

4, b = 2

E5.6a (a) 1σ22σ21π43σ2, b = 3, (b) 1σ22σ23σ21π42π1, b = 2.5, 
(c) 1σ22σ21π43σ2, b = 3

E5.7a C2

E5.8a C2 and CN

E5.10a O2
+

E5.11a 2πg

E5.12a g, u, g, u, if v even, if odd u

E5.13a N =
1/2

E5.14a N = 1.12, ψ1 = 0.163A + 0.947B, b = 0.412, a = −1.02, 
ψ2 = −1.02A + 0.412B

E5.15a 4 × 105 m s−1

E5.19a (a) a2
2ue4

1ge
1
2u, 7α + 7β, (b) a2u

2e1g
3, 5α + 7β

E5.20a 7β, 0, 7β, 2β
E5.22a (a) 14α + 19.31368β, 14α + 19.44824β, (b) 12α + 16.61894β

Chapter 6
E6.5a f1ψa(1) = h1ψa(1) + Ja(1)ψa(1) = εaψa(1)

E6.7a FAA = EHe + c 2
Hea(HeHe |HeHe) + 2cHeacHa(HeHe |HeH) +

c 2
Ha{2(HeHe |HH) − (HeH |HeH)

FAB = ∫χHe(1)h1χHdτ1 + c 2
Hea(HeH |HeHe) + cHeacHa

{3(HeH |HeH) − (HeHe |HH)} + c 2
Ha(HeH |HH)

DEF
1

1 + 2λS + λ2

ABC

1

2

1

2

3

2

π
2
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E6.9a (a) 17 basis functions, (b) 28 basis functions, (c) 34 basis 
functions

E6.13a (a) 40 basis functions, (b) 58 basis functions

E6.14a cHa = , εa = ,

cHa =

E6.16a 13

E6.17a

E6.18a

E6.19a ∫Ψ2@(1)Ψ0dτ = c 2
Heac 2

Heb(HeHe |HeHe) + 2(c 2
Heac 2

HebcHb + cHeacHac 2
Heb)

(HeH |HeHe) + (c2
Heac 2

Hb + 2cHeacHacHebcHb + c 2
Hac 2

Heb) (HeH |HeH) +
2cHeacHacHebcHb (HH |HeHe) + 2(c 2

HacHebcHb + cHeacHac 2
Hb) (HH |HHe)

+ c 2
Hac 2

Hb(HH |HH)

E6.20a (b) G[ f ] = d(x3)/dx|x=1 = 3, (d) G[ f ] = ∫1
3
x3dx = 20

E6.21a 2{|ψa(r)|2 + |ψb(r)|2}

E6.23a (c) triple-zeta basis set, 6-311+G** basis set

Chapter 7
E7.1a identity E, C3 axis, three vertical mirror planes σv

E7.3a (a) R3, (b) C2v, (c) D3h, (d) D∞h

E7.4a (a) C2v, (b) C∞v, (c) C3v, (d) D2h

E7.5a (a) C2v, (b) C2h

E7.6a (a) Pryridine, (b) Nitroethane

E7.8a

E7.9a

E7.11a Integral must be zero

E7.12a Forbidden

E7.14a i, σh

E7.15a 3

E7.16a 2

E7.17a no orbits, dxy

E7.19a 2A1 + B1 + E

E7.20a (a) either E1u or A2u, (b) B3u (x-polarized), B2u (y-polarized), 
B1u (z-polarized)

Chapter 8

E8.1a CIF3, O3, H2O2

E8.2a 1.4 D

E8.3a 37 D, θ = 11.7°

E8.4a 1.07 × 103 kJ mol−1

D S( )3

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

=

−
−

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

D h( )σ =

−
−

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Ψ Ψ Ψ= + = +C C C Ca a

a a

a
0 0 1 1 0 1

1 1

2 2

ψ ψ
ψ ψ

ψα β

α β
( ) ( )

( ) ( )

αα β

α β
( ) ( )

( ) ( )

1 1

2 2

ψ
ψ ψ

a

b b

Ψ1
1 21 2

1 1

2 2
= ( / )

( ) ( )

( ) ( )
/ ψ ψ

ψ ψ
a a

b b

α β

α β

1

1

2

1 2/

+
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

β
α εHe a

αHe + αH − ({αHe − αH}2 + 4β2)1/2

2

1

1

2

1 2/

+
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

β
α εHe a

E8.5a

E8.6a 4.9 μD

E8.7a 0.086 J mol−1

E8.8a 28· kJ mol−1

E8.9a 1.24 bar, 1.24 bar

E8.10a 2.75 bar

E8.11a (a) 24 bar, (b) 22 bar

E8.12a 7.16 × 10−2 kg m5 s−2 mol−2, 2.26 × 10−5 m3 mol−1

E8.13a (a) 0.88, (b) 1.2 dm3 mol−1, attractive

E8.14a 140 atm

E8.15a 1.41 × 103 K

E8.16a 175 pm

E8.17a 0.46 × 10−4 m3 mol−1

E8.18a 0.66

Chapter 9
E9.1a centre of each edge

E9.2a V = abc sin β
E9.4a 229 ppm, 397 ppm, 115 ppm

E9.5a 10.1°, 14.4°, 17.7°

E9.6a 1.07°

E9.7a f Br− = 36

E9.8a 4.01 g cm−3

E9.9a 220 pm

E9.10a 8.16°, 4.82°, 11.75°

E9.11a face-centred cubic

E9.12a f

E9.13a 3f for h + k even and −f for h + k odd

E9.17a 6.1 km s−1

E9.18a 223 pm

E9.19a 0.9069

E9.20a (a) 0.5236, (b) 0.6902, (c) 0.7405

E9.21a (a) 74.9 pm, (b) 132 pm

E9.22a expansion

E9.23a 3500 kJ mol−1

E9.24a 0.0039

E9.25a 1.7 × 10−3 cm3

E9.27a 3.54 eV

E9.28a three unpaired spins

E9.29a −6.4 × 10−5 cm3 mol−1, −6.4 × 10−11 m3 mol−1

E9.30a 4.326, 5

E9.31a +1.6 × 10−8 m3 mol−1

E9.32a 6.0 K

Chapter 10
E10.1a 6.33 × 10−46 kg m2

E10.3a (a) asymmetric, (b) oblate symmetric, (c) spherical, (d) asymmetric

E10.4a 3.07 × 1011 Hz

E10.5a (a) 2.642 × 10−47 kg m2, (b) 127.4 pm

E10.6a 4.442 × 10−47 kg m2, 165.9 pm

E10.7a 106.5 pm, 115.6 pm

E10.8a 20 475 cm−1

E10.9a 198.9 pm

E10.10a (b) HCl, (d) CH3Cl, (e) CH2Cl2, (b) C∞v, (d) C3v, (e) C2h(trans),
C2v(cis)

 

6 4
1
2

0
5

l q

rπε
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Chapter 12
E12.1a s−1 T−1

E12.2a 9.133 × 10−35 J s, ±5.273 × 10−35 J s, ±0.9553 rad = ±54.74°

E12.3a 574 MHz

E12.4a −1.473 × 10−26 J × mI

E12.5a 165 M Hz

E12.6a (a) 3.98 × 10−25 J, (b) 6.11 × 10−26 J, (a)

E12.7a 162.5 T

E12.9a (a) 1 × 10−6, (b) 5.1 × 10−6, (c) 3.4 × 10−5

E12.10a 13

E12.11a 13, (a) independent, (b) 13

E12.12a (a) 11 μT, (b) 110 μT

E12.14a 0.39 ms, 2.6 × 103 s−1

E12.16a 753 MHz

E12.18a (a) If there is rapid rotation about the axis, the H nuclei are both
chemically and magnetically equivalent, (b) Since Jcis ≠ Jtrans, the H
nuclei are chemically but not magnetically equivalent

E12.19a 5.9 × 10−4 T, 20 μs

E12.20a (a) 2 × 102 T, (b) 10 mT

E12.21a 2.0022

E12.22a 2.3 mT, 2.002fi
E12.23a equal intensity, 330.2 mT, 332.2 mT, 332.8 mT, 334.8 mT

E12.25a (a) 332.3 mT, (b) 1.206 T

E12.26a I =

Chapter 13
E13.1a 21621600

E13.2a (a) 40320, (b) 5.63 × 103, (c) 3.99 × 104

E13.3a 1

E13.4a 524 K

E13.5a 7.43

E13.6a 35› K

E13.7a (a) (i) 8.23 × 10−12 m, 8.23 pm, (ii) 2.60 × 10−12 m, 2.60 pm, 
(b) (i) 1.79 × 1027, (ii) 5.67 × 1028

E13.8a 0.3574

E13.9a 72.5

E13.10a (a) 7.97 × 103, (b) 1.12 × 104

E13.11a 18 K

E13.12a 37 K

E13.13a 4.5 K

E13.14a (a) 1, (b) 2, (c) 2, (d) 12, (e) 3

E13.15a 660.6

E13.16a 4500 K

E13.17a 2.571

E13.18a 42.3

E13.19a 4.292, 0.0353 to 0.0377 to 1

E13.20a 8.16 × 10−22 J

E13.21a 18.5 K

E13.22a 25 K

E13.23a 4.5 K

E13.24a 4600 K

E13.25a 10500 K

E13.26a 6500 K

E13.27a 4.033 × 10−21 J

E13.28a (a) 0.71, (b) 0.996

E13.29a (a) He gas, (b) CO gas, (c) H2O vapour
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E10.11a (c) CH4 is inactive

E10.12a

E10.13a 16 N m−1

E10.14a 1.089 per cent

E10.15a 327.8 N m−1

E10.16a 967.0, 515.6, 411.8, 314.2

E10.17a 1580.38 cm−1, 7.644 × 10−3

E10.18a 2699.77 cm−1

E10.19a (b) HCl, (c) CO2, (d) H2O

E10.20a (a) 3, (b) 6, (c) 12

E10.21a 37

E10.22a Gq(v) = (v + )#q [10.46]

E10.23a (a) Nonlinear: all modes both infrared and Raman active, 
(b) Linear: the symmetric stretch is infrared inactive but 
Raman active

E10.24a Raman active

E10.25a 4A1 + A2 + 2B1 + 2B2

E10.26a A1, B1 and B2 are infrared active; all modes are Raman active.

E10.27a (a) 0.0469 J m−3 s, (b) 1.33 × 103 J m−3 s, (c) 4.50 × 10−16 J m−3 s 

E10.39a (b) 87.64 pm, 89.86 pm, 88.7 pm, 43.87 cm−1, 21.93 cm−1, 
1783.0 cm−1, 21.80 cm−1, 10.37 cm−1

Chapter 11
E11.1a 82.9 per cent

E11.2a 5.34 × 103 dm3 mol−1 cm−1

E11.3a 1.09 mmol dm−3

E11.4a 1.3 × 108 dm3 mol−1 cm−2

E11.5a 450 dm3 mol−1 cm−2

E11.6a 15· dm3 mol−1 cm−1, 23 per cent

E11.7a (a) 0.87 m, (b) 2.9

E11.8a 1σ1
g1π1

u

E11.9a 3, u

E11.10a (a) allowed, (b) allowed, (c) forbidden, (d) forbidden, (e) allowed

E11.11a

E11.12a

E11.13a

E11.14a

E11.15a 30.4 cm−1 < è′ < 40.5 cm−1, greater

E11.16a Δ0 = P − #, 14 × 103 cm−1

E11.17a

E11.18a e−1/16a

E11.20a 280 nm has the π*←n assignment, 189 nm has the π*←π
assignment

E11.22a lower, # ≈ 1800 cm−1

E11.24a λ = 60 cm (ν = 500 MHz)

E11.25a 20 ns, 70 MHz
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Chapter 14

E14.1a (a) R, 8.671 kJ mol−1, (b) 3R, 7.436 kJ mol−1, (c) 7R, 17.35 kJ mol−1

E14.3a 3.5 × 103 J needed, 5.7 × 102 J needed

E14.4a −75J

E14.5a (a) ΔU = ΔH = 0, 2.68 kJ, +2.68 kJ, (b) ΔU = ΔH = 0, −1.62 kJ,  
+1.62 kJ, (c) ΔU = ΔH = 0, w = 0, 0

E14.6a 30 J K−1 mol−1, 22 J K−1 mol−1

E14.7a 1.33 atm, +1.25 kJ, w = 0, +1.25 kJ

E14.8a 1.07 × 104 J, +10.7 kJ, −0.624 × 103 J, −0.624 kJ, +10.1 kJ

E14.9a +2.2 kJ, +2.2 kJ, +1.6 kJ

E14.10a (a) 0.236, (b) 0.193

E14.11a closer, closer

E14.12a 2.91 × 10−21 J

E14.13a 13⁄ K

E14.14a 0.0084fl m3, 25‡ K, −0.89 × 103 J

E14.15a −194 J

E14.16a 9.7 kPa

E14.17a 22.5 kJ, −1.6 kJ, 20.9 kJ

E14.18a −4564.7 kJ mol−1

E14.19a +53 kJ mol−1, −33 kJ mol−1

E14.20a −167 kJ mol−1

E14.21a −5152 kJ mol−1, 1.58 kJ K−1, +3.08 K

E14.22a (a) −114.40 kJ mol−1, −111.92 kJ mol−1, (b) −92.31 kJ mol−1, 
−241.82 kJ mol−1

E14.23a −1368 kJ mol−1

E14.24a (a) +131.29 kJ mol−1, +128.81 kJ mol−1, (b) +134.14 kJ mol−1,
+130.17 kJ mol−1

E14.26a −1892 kJ mol−1

E14.27a 0.71 K atm−1

E14.28a 50.6 mbar

E14.29a +13⁄ K, +7.52 × 103 J mol−1, −7.39 × 103 J mol−1

E14.30a 1.31 × 10−3 K−1

E14.31a 2.0 × 103 atm

E14.32a −7.2 J atm−1 mol−1, +8.1 kJ

Chapter 15

E15.1a not spontaneous

E15.2a I2(g)

E15.3a (a) 126 J K−1 mol−1, (b) 169 J K−1 mol−1

E15.4a T = 2.35 × 103 K

E15.5a 43.1, 22.36 K, 43.76 J K−1 mol−1

E15.6a 11.5 J K−1 mol−1

E15.7a 3.1 J K−1

E15.8a (a) 34.72 J mol−1 K−1, (b) 119.06 J mol−1 K−1

E15.9a (a) 12.73 J K−1 mol−1, (b) 66.94 J K−1 mol−1

E15.10a Tc = 191.2 K

E15.11a (a) 366 J K−1, (b) 309 J K−1

E15.12a 30.0 kJ mol−1

E15.13a 152.67 J K−1 mol−1

E15.15a 0, 0

E15.16a ΔH = 0, ΔHtot = 0, +2.7 J K−1

E15.17a (a) +2.9 J K−1, −2.9 J K−1, 0, (b) +2.9 J K−1, 0, +2.9 J K−1, 
(c) 0, 0, 0

E15.18a +87.8 J K−1 mol−1, −87.8 J K−1 mol−1

E15.19a ΔS = 92.2 J K−1

7

2

E15.20a (a) 9.13 J K−1 mol−1, (b) 13.4 J K−1 mol−1, (c) 14.9 J K−1 mol−1

E15.21a (a) −386.1 J K−1 mol−1, (b) +92.6 J K−1 mol−1, 
(c) −153.1 J K−1 mol−1

E15.22a (a) −521.5 kJ mol−1, (b) +25.8 kJ mol−1, (c) −178.7 kJ mol−1

E15.23a (a) −522.1 kJ mol−1, (b) +25.78 kJ mol−1, (c) −178.6 kJ mol−1

E15.24a −503.05 kJ mol−1

E15.25a −340 kJ mol−1

E15.26a 817.90 kJ mol−1

E15.27a −17 J

E15.28a −36.5 J K−1

E15.29a 10 kJ

E15.30a +10 kJ

E15.31a +11 kJ mol−1

E15.32a −13.8 kJ mol−1, −0.20 kJ mol−1

E15.33a (a) −6.42 kJ mol−1, (b) −14.0 kJ mol−1

Chapter 16

E16.3a μW(s) = μW(l), μE(s) = μE(l)

E16.4a −0.38 J mol−1

E16.5a −3 × 102 J mol−1

E16.6a 1.81 × 105 J mol−1

E16.7a 39°C

E16.8a +45 J K−1 mol−1, +1.59 × 104 J mol−1, +15.9 kJ mol−1

E16.9a +12487 J mol−1, +12.487 kJ mol−1

E16.10a 37°C

E16.11a (a) 1.1 × 103 g, 1.1 kg, (b) 2.0 × 104 g, 20 kg, (c) 1.4 g

E16.12a (a) 2.9‡ × 104 J mol−1, 29.‡ kJ mol−1, (b) 0.169 bar, 0.82 bar

E16.13a −0.35°C, 272.80 K

E16.14a −1.0› kJ, +3.5 J K−1

E16.15a −1.37 × 103 J mol−1 = −1.37 kJ mol−1, +4.6 J K−1 mol−1, ΔmixH = 0

E16.16a (a) , (b) 0.4624, 0.5376

E16.17a 6.4 × 103 kPa

E16.18a 0.268, 0.732, 58.6 kPa

E16.19a 2.0 × 102 kPa

E16.20a 85 g mol−1

E16.21a (a) 3.4 × 10−3 mol kg−1, (b) 3.4 × 10−2 mol kg−1

E16.22a 88.2 kg mol−1

E16.23a (a) 18 kg mol−1, (b) 20 kg mol−1, (c) 1.1

E16.24a 1.13, no phase separation

E16.25a 0.833, 0.9‹, 0.125, 1.25, 2.°, 1.25

E16.26a 0.498, 0.667, 1.24, 1.11

E16.27a 0.694

E16.28a 1.55

E16.29a (a) 8.75 g, (b) 9.35 g

E16.30a 0.0190, 0.72, 0.85

E16.31a 2.01

Chapter 17

E17.2a νHg2Cl2
= −1, νH2

= −1, νHCl = 2, νHg = 2 (Δng = −1)

E17.3a +12.3 kJ mol−1

E17.4a −11.20 kJ mol−1

E17.5a (a) −68.26 kJ mol−1, 9.2 × 1011, (b) −63.99 kJ mol−1, 1.3 × 109, 
−69.7 kJ mol−1

E17.6a −1108 kJ mol−1

E17.7a (b) 0.33, (c) 0.33, (d) +2.8 kJ mol−1

1
2
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E18.25a 4.01 × 10−8 m2 V−1 s−1, 5.19 × 10−8 m2 V−1 s−1, 7.62 × 10−8 m2 V−1 s−1

E18.26a 1.05 × 10−9 m2 s−1

E18.27a 6.2 × 103 s

E18.28a 420 pm

E18.29a 14.4 ps

E18.30a (a) 0.00 mol dm−3, (b) 0.0121 mol dm−3

E18.31a 381.5 nm

E18.32a 3.30 μm, 0.0308 μm

Chapter 19

E19.1a no change in pressure

E19.2a 8.1 mol dm−3 s−1, 2.7 mol dm−3 s−1, 2.7 mol dm−3 s−1, 
5.4 mol dm−3 s−1

E19.3a 1.3fi mol dm−3 s−1, 4.0fi mol dm−3 s−1, 2.7 mol dm−3 s−1, 
1.3fi mol dm−3 s−1

E19.4a dm3 mol−1 s−1, kr[A][B], 3kr[A][B]

E19.5a kr[A][B][C], dm6 mol−2 s−1

E19.6a (a) [kr] = dm3 mol−1 s−1, [kr] = dm6 mol−2 s−1, (b) [kr] = kPa−1 s−1,
[kr] = kPa−2 s−1

E19.7a second order

E19.8a n = 2

E19.9a 1.03 × 104 s, (a) 498 Torr, (b) 461 Torr

E19.10a (a) 16.¤ dm3 mol−1 h−1, 4.5 × 10−3 dm3 mol−1 s−1, (b) 5.1 × 103 s, 
2.1 × 103 s

E19.11a (a) 0.098 mol dm−3, (b) 0.050 mol dm−3

E19.12a 1.11 × 105 s, 1.28 days

E19.13a 4.0 × 1010 dm−3 mol s−1, 7.1 × 105 s−1, 1.28 × 104 dm3 mol−1 s−1

E19.14a (i) k2K1/2[A2]1/2[B], (ii) , 

k2K1/2[A2]1/2[B] or 2k1[A2] with more approximations

E19.15a 1.9 × 10−6 Pa−1 s−1, 1.9 MPa−1 s−1

E19.16a 251, 0.996

E19.17a 0.125

E19.18a 3.3 × 1018

E19.19a 0.52

E19.20a 0.56 mol dm−3

E19.21a 7.1 nm

Chapter 20

E20.1a 79 kJ mol−1, 1.8‚ × 1011 mol dm−3 s−1

E20.2a 35 kJ mol−1

E20.3a −3 kJ mol−1

E20.4a 1.13 × 1010 s−1, 1.62 × 1035 s−1 m−3, 1.7 per cent

E20.5a (a)(i) 1.04 × 10−3, (ii) 0.069, (b)(i) 1.19 × 10−15, (ii) 1.57 × 10−6

E20.6a (a)(i) 22%, (ii) 3%, (b)(i) 170%, (ii) 16%

E20.7a 1.03 × 10−5 m3 mol−1 s−1, 1.03 × 10−2 dm3 mol−1 s−1

E20.8a 4.fi × 107 m3 mol−1 s−1, 4.fi × 1010 dm3 mol−1 s−1

E20.9a (a) 6.61 × 106 m3 mol−1 s−1, 6.61 × 109 dm3 mol−1 s−1, 
(b) 3.0 × 107 m3 mol−1 s−1, 3.0 × 1010 dm3 mol−1 s−1

E20.10a 8.0 × 106 m3 mol−1 s−1 = 8.0 × 109 dm3 mol−1 s−1, 4.2 × 10−8 s

E20.11a 0.79 nm2, 1.16 × 10−3

E20.12a 1.81 × 108 mol dm−3 s−1

E20.13a +69.7 kJ mol−1, −25 J K−1 mol−1

E20.14a +73.4 kJ mol−1, +71.9 kJ mol−1
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E17.8a −30 kJ mol−1

E17.9a 3.70 × 10−3

E17.10a Kx is reduced by 67%

E17.11a 0.045, 1500 K

E17.12a +3.47 kJ mol−1, −14.8 J K−1 mol−1

E17.13a (a) +53 kJ mol−1, (b) −53 kJ mol−1

E17.14a 1110 K

E17.17a (a) Cd2+(aq) + 2Br−(aq) + 2 Ag(s) → Cd(s) + 2 AgBr(s), (c) −0.62 V

E17.18a ν E 7
cell/V ΔrG 7

cell/kJ mol−1

(a) 2 +1.56 −301

(b) 2 +0.40 −77

(c) 3 −1.10 +318

(d) 2 −0.62 +12‚

E17.19a (a) 6.4 × 109, (b) 8.9 ×1043

E17.20a −1.46 V

E17.21a Elemental mercury cannot spontaneously displace the zinc(II)
cation from solution under standard conditions.

E17.22a (a) 9.2 × 10−9 M, (b) 8.5 × 10−17

E17.23a −52 kJ mol−1, −58 J K−1 mol−1, −69 kJ mol−1

Chapter 18
E18.1a (a) 9.975, (b) 1

E18.2a 1904 m s−1, 478 m s−1

E18.3a 6.86 × 10−3

E18.4a 333 m s−1, 375 m s−1, 530 m s−1

E18.5a (a) 475 m s−1, (b) 184 nm, (c) 2.58 × 109 s−1

E18.6a 0.276 Pa

E18.7a 9.7 × 10−7 m

E18.8a 397 m s−1, (a) 5.0 × 1010 s−1, (b) 5.0 × 109 s−1, (c) 5.0 × 103 s−1

E18.9a 1.2 × 1021

E18.10a 537 s

E18.11a 16 mg

E18.12a 31· g mol−1

E18.13a 1.3 days

E18.14a 5.4 × 10−3 J K−1 m−1 s−1

E18.15a D/m2 s−1 J/mol m−2 s−1

1.04 43

1.04 × 10−5 4.3 × 10−4

1.04 × 10−7 4.3 × 10−6

E18.16a −0.055 J m−2 s−1

E18.17a 0.0562 nm2

E18.18a 10‹ W

E18.19a 0.142 nm2

E18.20a (a) 130 μP, (b) 130 μP, (c) 240 μP

E18.21a 16.8 J mol−1

E18.22a 7.63 × 10−3 S m2 mol−1

E18.23a 283 μm s−1

E18.24a 13.87 mS m2 mol−1
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E20.15a −91 J K−1 mol−1

E20.16a −74 J K−1 mol−1

E20.17a (a) −46 J K−1 mol−1, (b) +5.0 kJ mol−1, (c) +18.7 kJ mol−1

E20.18a 7.1 dm6 mol−2 min−1

E20.19a 4 × 10−21 J, 2 kJ mol−1

E20.20a 12.fi nm−1

Chapter 21

E21.1a

E21.2a 1.50 mmol dm−3 s−1

E21.3a 1.18 × 105 s−1, 7.9 × 106 dm3 mol−1 s−1

E21.4a 2.0 × 10−5 mol dm−3

k Kb
2

+

AH] [B]

BH ]

[

[

E21.5a (a)(i) 1.07 × 1021 cm2 s−1, (ii) 1.4 × 1014 cm2 s−1, 
(b)(i) 2.30 × 1020 cm2 s−1, (ii) 3.1 × 1013 cm2 s−1

E21.6a 0.13 bar

E21.8a 12 cm2

E21.9a 33.6 cm3

E21.10a chemisorption, 50 s

E21.11a 0.83, 0.36

E21.12a (a) 0.24 kPa, (b) 25 kPa

E21.13a 15 kPa

E21.14a −12.› kJ mol−1

E21.15a 65⁄ kJ mol−1, (a) 1.6 × 1097 min, (b) 2.8 × 10−6 min

E21.16a 61⁄ kJ mol−1

E21.17a (a) 9.1 ps, 0.60 ps, (b) 4.1 × 106 s, 6.6 μs

E21.18a (a) zeroth-order, (b) first-order



Solutions to odd-numbered problems

P2.27 (a) 3.30 × 10−19 J, (b) 4.98 × 10−14 s−1, 6.02 × 10−7 m = 602 nm, 
(c) lower, increases

P2.29 2.68 × 1014 s−1

Chapter 3
P3.1 8.6 × 10−31 J, 1.27 × 10−31 J

P3.3 1.6 × 10−6 m, 1.6 μm

P3.5 6.9 × 10−10 m, 0.69 nm

P3.7 (a) N = , (b) (−$, 1/4), (+$, 3/4), (c) , (d) , 

P3.9 1.53 × 10−3 m = 1.53 mm, ±$

P3.11 (a) $, (b) , (c) 4.004 × 10−23 J

P3.13 θ = 0 & π, θ = π/2, θ = 0, π/2, & π, θ = π/4 & 3π/4, θ = 0, π/2, & π,
θ = 0, π, 63.4°, & 116.6°, θ = 0, π/2, & π, θ = 0, π, 54.7°, & 125.3°, 
θ = 0, π/2, 8π,

P3.17

P3.19 (a) no uncertainty in Δlz, , (b) $, 

P3.23 (a) 0, 0, 0, (b) , 61/2$, (c) , 

P3.25 1

P3.27

P3.31

P3.33 (c) 

Chapter 4
P4.1 n2 → 6

P4.3 RLi2+ = 987 663 cm−1, 137 175 cm−1, 185 187 cm−1, 122.5 eV

P4.5 2P1/2 and 2P3/2, 2D3/2 and 2D5/2, 2D3/2

P4.7 3.3429 × 10−27 kg, 1.000272

P4.9 (a) 0.9 cm−1, (b) small

P4.11 (b) 4.115 × 105 cm−1, 2.430 × 10−6 cm, 1.234 × 1014 s−1, 

(c) 

P4.13 (a) 0.323, (b) 141 pm

P4.15 (a) ±106 pm, (b) r = ±1.76a0 /Z

P4.17 (b) , ρnode = 0 and ρnode = 4, 

ρnode = 0, (c) 

P4.19 r′ = 2.66a0

P4.21 (a) , (b) , (c) 

P4.23 Δl = ±1 and Δml = 0 or ±1

P4.27 60957.4 cm−1, 60954.7 cm−1, 329170 cm−1, 329155 cm−1

P4.29 (a) receding, 1.128 × 10−3 c, 3.381 × 105 ms−1

Z
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Chapter 1
P1.1 (a) 0.020, (b) 0.047, (c) 7 × 10−6, (d) 0.5, (e) 0.61

P1.3 a = π/21/5

P1.5 π
P1.7 origin

P1.9 i$

P1.11 (a) , (b) , 

(c) 

P1.17 (a) −1, (b) +1

P1.19

P1.21 (i) 3a0/2, 9a0
2/2, (ii) 5a0, 30a0

2

P1.27 496 nm, blue-green

Chapter 2
P2.1 1.24 × 10−39 J, 2.2 × 109, 1.8 × 10−30 J

P2.3 HI < HBr < HCl < NO < CO

P2.5 (a) , (b) , (c) 

P2.7 mgL

P2.9 (a) , (b) , (c) 

P2.11

P2.13 , 16ε(1 − ε)e−2κL

P2.15 (a) 

P2.17

P2.19 0, (2v2 + 2v + 1)α4

P2.21 (a) , 

(b) , , 

P2.23 , α
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Chapter 5

P5.1 1.87 × 106 J mol−1 = 1.87 MJ mol−1

P5.9 1.9 eV, 130 pm

P5.11 (b) 2.5a0 = 1.3 × 10−10 m, −0.555Eh = −15.1 eV, −0.565Eh = −15.4 eV,
0.055Eh = 1.5 eV, 0.065Eh = 1.8 eV

P5.13 , 

P5.15 (a) (b) 1.518β, 8.913 eV,

Species N #/cm−1 estimated β /eV

C2H4 2 61500 −3.813

C4H6 4 46080 −4.623

C6H8 6 39750 −5.538

C8H10 8 32900 −5.873

P5.21 all values of the internuclear distance

P5.23

P5.25 (a) , 

(b) 

P5.27 PN = xPN−1 − PN−2

P5.29 (a) α − β, α − β, and α + 2β, (b) −413 kJ mol−1, (c) −849 kJ mol−1,
3(α /2) − 212 kJ mol−1, 3α − 425 kJ mol−1

Chapter 6
P6.3

α
β

α α
α

β
α αA

A B
B

A B

+
−

−
−

2 2

,

α α α α β
α α

A B A B

A B

+
±

−
+

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟2 2

1
4 2

2

1 2

( )

/

E
J K

S

j

R
E

J K

S

j

RH H−
+
+

+ −
−
−

+
1 1

0 0,

( )
( ) ( )

α α
β

α α
β

α αO C
O C O C

− +
−

− +
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟1

12
1

42

2

2

2
,,
( )

4 2β
α αO C−

1

2
1

12 2

2
( ( )

( )
α α α α

β
α αO C O C

O C

+ ± − +
−

1,4-dichlorobenzene AM1 PM3 exp

R(C1C2)/pm 139.9 139.4 138.8

R(C2C3)/pm 139.3 138.9 138.8

R(CCl)/pm 169.9 168.5 173.9

∠C6C1C2 120.58 121.09

∠C1C2C3 119.71 119.450

ΔfH
7 / kJ mol−1 33.363 42.306 24.6(g)

P6.5 (a) Enthalpies of formation in kJ mol−1

Species Computed Experimental % error

C2H4 69.580 52.46694 32.6

C4H6 129.834 108.8 ± 0.79 19.3

111.9 ± 0.96 16.0

C6H8 188.523 168.0 ± 3 12.2

C8H10 246.848 295.9 16.6

P6.7 (b) The very small increase across the series in the 
experimental chemical shift of the para-13C strongly correlates 
with decrease in the magnitude of the negative atomic charge 
across the series.

P6.9 (a), (b), (d), and (e)

P6.11

P6.15 (a) ,

,

(b) ,

P6.19 H22 = 2∫ψb(1)h1ψb(1)dτ1 + {(AA |AA) − 4(AA |AB) + (AA |BB) +
2(AB |AB)},

H00 = 2EH + {(AA |AA) + 4(AA |AB) + (AA |BB) + 2(AB |AB)},

H02 = {(AA |AA) − (AA |BB)} = H20

P6.23 VXC(r) = Cρ(r)2/3

P6.25 (a) 3.5, (b) slope = −1.49, intercept = −1.95, (c) 1.12 × 10−2

Chapter 7
P7.1 (a) D3d, (b) D3d, C2v, (c) D2h, (d) D3, (e) D4d

P7.3 trans-CHCl=CHCl

P7.9 +1 or −1, 1, −1

P7.11 A1 + T2, s and p, (dxy, dyz, dzx)

P7.13 S4, C2, S4

P7.15 (a) 2A1 + A2 + 2B1 + 2B2, (b) A1 + 3E, (c) A1 + T1 + T2, 
(d) A2u + T1u + T2u

P7.17 4A1 + 2B1 + 3B2 + A2

P7.19 (a) 7A2 + 7B1, 

P7.21 there is no orbital of the central atom that forms a nonzero overlap
with the p1 combination so p1 is nonbonding

P7.23 (a) 1.12 × 10−2, (b) 11Au + 11Bg, (a + a′), (b + b′), . . . (k + k′)  

(a − a′),  (b − b′), . . . (k − k′)1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

( ) ( ) . . . ( )a a b b g g+ ′ , + ′ , , + ′

1
2

1
2

1
2

( ) ( ) . . . ( ),a a b b g g− ′ , − ′ , , − ′

5
3

1
2

1
2

1
2

ε
α α α α β

b =
+ + − +Li H Li H({ } ) /2 2 1 24

2

ε
α α α α β

a =
+ − − +Li H Li H({ } ) /2 2 1 24

2

ε
α α α α β

b =
+ + − +He H He H({ } ) /2 2 1 24

2

ε
α α α α β

a =
+ − − +He H He H({ } ) /2 2 1 24

2

ψ ψ ψ ψ
ψ ψ τ

0 0
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0
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∑ Enn
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0ψ

C2 C3

C5 C4

C1CI

C2

H

H C1

H

H

H

O H

CI

HH

HH(a) (b)

Ethanol AM1 PM3 exp

R(C1C2)/pm 151.2 151.8 153.0

R(C1O)/pm 142.0 141.0 142.5

R(C1H)/pm 112.4 110.8 110

R(C2H)/pm 111.6 109.7 109

R(OH)/pm 96.4 94.7 97.1

∠C2C1O 107.34 107.81 107.8

ΔfH
7 / kJ mol−1 −262.180 −237.881 −235.10(g)
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Chapter 8

P8.1 (a) 1.1 × 108 V m−1, (b) 4 × 109 V m−1, (c) 4 kV m−1

P8.5 2.4 nm

P8.7 196 pm

P8.9 0.123

P8.13 (a) 50.7 atm, (b) 35.1 atm, 0.693

P8.15 0.927, 0.208 dm3

P8.17 (a) −1.32 × 10−2 dm3 mol−1, (b) −1.51 × 10−2 dm3 mol−1, 
1.07 × 10−3 dm6 mol−2

P8.19 (a) αxy must equal zero, (b) 

P8.21

P8.29

P8.31 −1.8 × 10−27 J = −1.1 × 10−3 J mol−1

Chapter 9

P9.1 118 pm

P9.3 face-centred cubic, 408.55 pm, 10.507 g cm−3

P9.5 4.8 × 10−5 K−1, 1.6 × 10−5 K−1

P9.7 834 pm, 606 pm, 870 pm

P9.9 4

P9.11 −146 kJ mol−1

P9.13 0.127 × 10−6 m3 mol−1, 0.254 × 10−6 m3 mol−1, 0.423 × 10−6 m3 mol−1,
0.254 cm3 mol−1

P9.15

P9.21 0.907

P9.23 (a) no systematic absences, (b) alternation of intensity, whether 
h + k + l is odd or even, (c) all h + k + l odd lines are missing

P9.25 6.694

P9.27 (a) , (b) 

P9.31

(3N/8π)2/3(h2/2me), 3.1 eV

P9.37 , decreases, increases

P9.39 3.61 × 105 g mol−1

Chapter 10

P10.1 596 GHZ, 19.9 cm−1, 0.503 mm, 9.941 cm−1

P10.3 139.6 pm, 108.fi pm

P10.5 128.393 pm, 128.13 pm

P10.7 116.28 pm, 155.97 pm

P10.9 è0 = 10.433 cm−1, è1 = 10.126 cm−1

P10.11 14.35 m−1, 26, 15

P10.13 0.27877fi cm−1, 0.27690fi cm−1, 602.723 cm−1, 608.392 cm−1, 
D0 = 29 032 cm−1

P10.15 # = 2170.8 cm−1, xe# = 13.7 cm−1

P10.17 (a) 5.15 eV, (b) 5.20 eV
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P10.19 (a) 152 m−1, 2.72 × 10−4 kg s−2, 2.93 × 10−46 kg m2, 95.5 m−1, 
(b) 293 m−1, 0.96

P10.23 (a) 7, (b) C2h, C2v, C2

P10.25 mAR2 + mCR′2 − (mAR − mCR′)2

P10.27 DJK = 4.5 × 102 kHz, DJ = 56 kHz, B = 25.5360 GHz

P10.29 , 30, , 6

P10.31 2ëe /# −
P10.33 Δ0 = #O(J + 2) − #S(J − 2) = 8è0(J + ), Δ1 t = #O(J) − #S(J) = 8è1(J + )

Chapter 11

P11.1 33 μg dm−3

P11.3 2Σ+
g ← 2Σ+

u is allowed, transition to 2Πg would be forbidden

P11.7 , 1.3‚ × 106 dm3 mol−1 cm−2

P11.11 (a) 1.7 × 10−9 mol dm−3, (b) 6.0 × 102

P11.13 498 kg mol−1, 51.3 nm

P11.15 A = ε′[J]0 (1 − e−l/λ), A = εl[J] × (1 − l/2λ)

P11.21 (a) allowed, (b) forbidden

P11.23 (a) I0 × (1 − 10−ε[J]l), (b) φf I0 (#)ε[J]l

P11.25 4.4 × 103

P11.27 1.24 × 105 dm3 mol−1 cm−2

P11.29 3.1938 eV, 79.538 cm−1, 2034.3 cm−1, 2113.8 cm−1 = ,
1321 K, 10, 5.67 × 1028

Chapter 12

P12.3 400 × 106 Hz ± 8 Hz, 0.29 s

P12.5 (a) , (b) 

P12.7 (b) 580 − 79 cos φ + 395 cos 2φ
P12.9 2.8 × 1013 Hz

P12.11 6.9 mT, 2.1 mT

P12.13 0.10, 0.38, (a) 0.48, (b) 0.52, 3.8, 131°

P12.17 (a) Neither set of charges correlates well to the chemical shifts;
however some correlation is apparent, particularly for the 
Mulliken Charges.

P12.19 0

P12.21

P12.23 cos φ = B/4C

Chapter 13

P13.1 (a) 1, (b) most probable configurations are {2, 2, 0, 1, 0, 0} and 
{2, 1, 2, 0, 0, 0}

P13.5 0.030 K, 9.57

P13.7 not at equilibrium

P13.9 (a)(i) 5.000, (ii) 6.2622, (b)(i) 6.55 × 10−11, (ii) 0.1221

P13.11 1.209, 3.004

P13.13 (a) 1.049, (b) 1.548, (a) 0.953, (b) 0.645, (a) 0.044, (b) 0.230, 
(a) 0.002, (b) 0.083

P13.15 , 163 K, ln Nj = lnq −
j

kT
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P13.17 , = , 

P13.19 pV = NkT = nRT

Chapter 14

P14.1 1.6 m, 0.80 m, 2.8 m

P14.3 alternate form for the heat capacity equation fits the data slightly
better

P14.5 0.385, 0.0786, 0.0206

P14.7 4.2 J K−1 mol−1, 15 J K−1 mol−1

P14.9 28, 258 J mol−1 K−1

P14.11 , (a) −1.7 kJ, (b) −1.8 kJ, (c) −1.5 kJ

P14.13 −1267 kJ mol−1, +17.7 kJ mol−1, +116.0 kJ mol−1

P14.15 0.903, −73.7 kJ mol−1

P14.17 −994.30 kJ mol−1

P14.21 1889 kJ mol−1

P14.23

P14.25

P14.27

P14.29 (a) 87.55 K, 6330 K, (b) and (c) α = (K/(K + 4))1/2, 

2αCV,m(H) + (1 − α)CV,m(H2), , 

1.5R, 

P14.31 (a) qR = 19.899, ≥R = 19.558, and ”R = 576.536, 
(b) qR = 3.007, ≥R = 2.979, and ”R = 118.5

P14.37 ,

P14.39 nR

P14.41 (a) , , 

(b) −κT dp + α dT, 

P14.45

P14.47 (a) , (b) 

P14.49 (a) kF xf
2, (b) (i) (ii) 9.1 × 10−16 N, (iii) (iv) [(1 + νf) ln(1 + νf) +

(1 − νf) ln(1 − νf)], (iv) (v) kNT ln 2

P14.51 (a) −25 kJ, (b) 9.7 m, (c) 39 kJ, (d) 15 m

P14.53 (a) 29.9 K MPa−1, (b) −2.99 K

kNT
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/ Chapter 15
P15.3 10.‡ J K−1 mol−1

P15.5 (a) 50.7 J K−1, −11.5 J K−1, (b) +3.46 kJ, is indeterminate, 
(c) 3.46 × 103 J, indeterminate, (d) +39.2 J K−1, −39.2 J K−1

P15.7 Path (a) −2.74 kJ, 0, −2.74 kJ, +9.13 J K−1, 0, −9.13 J K−1, 
Path (b) −1.66 kJ, 0, +1.66 kJ, +9.13 J K−1, −5.53 J K−1, +3.60 J K−1

P15.9 +45.4 J K−1, +51.2 J K−1

P15.11 −21 K, +35.9 J K−1 mol−1

P15.13 (a) 63.88 J K−1 mol−1, (b) 66.08 J K−1 mol−1

P15.17 46.60 J K−1 mol−1, 46.60 J K−1 mol−1

P15.19 (a) −7 kJ mol−1, (b) +107 kJ mol−1

P15.21 199.4 J mol−1 K−1

P15.23 −21 kJ mol−1

P15.25 7.79 km

P15.29

P15.31 , 0.47, +33 J K−1, +33 J K−1, +33 J K−1, +33 J K−1

P15.35

P15.37 CpdT − αTV dp, −αTV Δp, −0.50 kJ

P15.39 (a) , (b) 5.41 J K−1 mol−1

P15.41 , NkT ln(1 − e−x)

P15.45 9.57 × 10−15 J K−1

P15.47 (a) +35 J K−1 mol−1, (b) 12 W m−3, 1.5 × 104 W m−3, 

(c) 0.46

P15.49 57.2 kJ mol−1, 85.6 kJ mol−1, 112.8 kJ mol−1

Chapter 16
P16.1 (a) yM = 0.36, (b) yM = 0.81

P16.7 (a) +1.84 × 103 Pa K−1, (b) 0.7 per cent

P16.9 (a) 322 K, (b) +7.32 × 104 J mol−1, +73.2 kJ mol−1

P16.11 1.25 × 105 g mol−1, 1.23 × 104 dm3 mol−1

P16.17 (a) V1 = Vm,1 + a0x2
2 + a1(3x1 − x2)x2

2, V2 = Vm,2 + a0x2
1 +

a1(x1 − 3x2)x2
1, (b) 75.63 cm3 mol−1, 99.06 cm3 mol−1

P16.23 363 K (90°C)

P16.27 GE is reasonably consistent with the model regular solution

P16.29 72.53 cm3 mol−1

P16.35 56 μg N2, 14 μg N2, 1.7 × 102 μg N2

P16.37 “molten globule” form is not stable

P16.39 (b) Tb = 112 K, (c) 8.07 kJ mol−1

P16.41 (a) g cm K−1 mol−1, (b) 84 784.0 g cm K−1 mol−1, 1.1 × 105 g mol−1, 
(d) B′ = 21.1 cm3 g−1, C ′ = 212 cm6 g−2, (e) 28 cm3 g−1, 196 cm6 g−2

Chapter 17
P17.1 (a) +4.48 kJ mol−1, (b) 0.101 atm

P17.3 0.02054

P17.5 3.89, 2.41

P17.7 (a) 1.24 × 10−9, (b) 1.29 × 10−8

P17.9 300 kJ mol−1
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mol glutamine
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P17.11 1.69 × 10−5

P17.13 0.007 mol H2, 0.107 mol I2, 0.786 mol HI

P17.15 76.8 kJ mol−1

P17.17 (a) and (b) perfect gas mixture: 156.5 bar, 81.8 bar, (a) and (b) van der 

Waals gas mixture: 132.5 bar, 73.7 bar, (c) confirm, 
P17.19 2.0

P17.21 +0.26843 V

P17.25 pKa = 6.736, B = 1.997 kg0.5 mol−0.5, k = −0.121 kg mol−1

P17.31 (a) KHill(Mb) = 20.0, KHill(Hb) = 35.0

P17.37 (b) +0.206 V

P17.39 (a) +1.23 V, (b) +1.11 V

P17.41 (iv) trihydrate

Chapter 18
P18.3 9.1

P18.5 18.9 s

P18.7 10.2 kJ mol−1

P18.9 12.78 mS m2 mol−1, 2.57 mS m2 (mol dm−1) −3/2

P18.11 12.6 mS m2 mol−1, 7.30 mS m2 (mol dm−1)−3/2, (a) 11.96 mS m2 mol−1,
(b) 119.6 mS m−1, (c) 172.5 Ω

P18.13 830 pm

P18.15 (50 kN cm−1 mol−1)x, (8.2 × 10−23 kN cm−1 molecule−1)x

P18.17 four, one to two

P18.19 (a) 0.00 mol dm−3, (b) 4.25 × 10−5 mol dm−3

P18.21

P18.23

P18.25 0.61, 61 per cent, 39 per cent, 0.533, 53 per cent, 47 per cent

P18.27

P18.29 η = AeEa/RT where A = ηref e
−Ea/RTref, 17.5 kJ mol−1 at 20°C to 

12.3 kJ mol−1 at 100°C

P18.33 (a) 0, (b) 0.016, (c) 0.054

P18.37 N1/2l

P18.39 (a) 7.2 × 1013 Pa, (b) ρk, (c) 1.1 × 102 TJ m−3, (d) 2.0 × 1010 Pa, 
(e) 2.9 × 109 Pa

P18.41 0.25 J cm−3

Chapter 19
P19.1 second order, kr = 0.059› dm3 mol−1 min−1, 2.94 g

P19.3 7.0 × 10−5 s−1, 7.3 × 10−5 dm3 mol−1 s−1

P19.5 55.4%

P19.7 first-order, 1.7 × 10−2 min−1

P19.9 first-order kinetics, 7.2 × 10−4 s−1

P19.11 steady-state approximation

P19.13 (a) 8kak′a [A]tot + (k′a)2, (c) 1.‡ × 107 s−1, 2.‡ × 109 dm3 mol−1 s−1, 
1.fl × 102

P19.15 (a) 6.9 ns, (b) 0.10⁄ ns−1

P19.17 1.98 × 109 dm3 mol−1 s−1
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P19.23 steady-state intermediate

P19.25

P19.27 , M1{kt[A]0(1 + kt[A]0)}1/2

P19.29 kr[·M][I]−1/2

P19.31

P19.33 (a) first-order, (b) 0.00765 min−1 = 0.459 h−1, (c) 1.51 h = 91 min

P19.35 6 × 10−14 mol dm−3 s−1, 4.4 × 108 s = 14 yr

P19.37 5.9 × 10−13 mol dm−3 s−1

Chapter 20
P20.1 9.70 × 104 J mol−1, 97.0 kJ mol−1

P20.3 +121.1 kJ mol−1, +247.0 J K−1 mol−1, 148.3 kJ mol−1

P20.5 6.7 × 10−3, 4.0 × 10−3 nm2, 4.0 × 10−21 m2

P20.7 Ea = 86.0 kJ mol−1, 83.9 kJ mol−1, +19.6 J K−1 mol−1, +79.0 kJ mol−1

P20.9 0.658 dm2 mol−1 min−1

P20.11 two univalent ions of the same sign

P20.13 +60.44 kJ mol−1, +62.9 kJ mol−1, −181 J K−1 mol−1, +114.7 kJ mol−1

P20.15 5.7 × 108 dm3 mol−1 s−1

P20.19 1.4 × 107, 900, 200, 1, 6.3 × 109 dm3 mol−1 s−1, 3.3 × 104 dm3 mol−1 s−1,
P = 2 × 10−7

P20.21 , (a) 2.7 × 10−15 m2 s−1, (b) 1.1 × 10−15 m2 s−1

P20.29 (a) 6.23 × 106 m3 mol−1 s−1, 6.23 × 109 dm3 mol−1 s−1, (b) 4 × 10−10 m, 
0.4 nm

P20.31 1.15 eV, 275 K

P20.35 (a) 2.1 × 10−16 mol dm−3 s−1, (b) 4.3 × 1011 kg or 430 Tg

Chapter 21
P21.1 2.31 μmol dm−3 s−1, 115 s−1, 115 s−1, 1.11 μmol dm−3, 

104 dm3 μmol−1 s−1

P21.3 (b) pH = 7.0

P21.5 (a) −0.11, (b) −0.51

P21.7 (a) 1.61 × 1015 cm−2, (b) 1.14 × 1015 cm−2, (c) 1.86 × 1015 cm−2

P21.9 (a) 165, 13.1 cm3, (b) 263, 12.5 cm3

P21.11 2.4, 0.16

P21.13 0.138 mg g−1, 0.58

P21.15 5.78 mol kg−1, 7.02 Pa−1

P21.17 (a) , (c) , 

(d) , 

(e) 

P21.19 Rate law based on rapid pre-equilibrium 

approximation, ka′ >> kb

P21.23 R = Req{1 − e−krt} where  kr = kona0, R = Reqe−krt where  kr = koff

P21.25 0.0247

P21.27 (a) k = 0.2289, n = 0.6180, (c) k = 0.5227, n = 0.7273
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(T) denotes a table in the Resource
section.

A

A2 spectrum 385
ab initio method 180, 181
absolute value 76
absorbance 339
absorption characteristics (T) 734
absorption spectroscopy 338
abundant-spin species 394
acceleration 8
acceleration of free fall 10
acceptable wavefunction 34
accommodation 703
achiral molecule 203
acid catalysis 694
actinoid 2
activated complex 669, 670
activated complex theory 670
activation-controlled reaction 667
activation energy

composite reaction 660
negative 660

activation enthalpy 461, 673
activation entropy 673
activation Gibbs energy 673

electron transfer 686
active site 694
active transport 612
activity 542

ion 544
activity coefficient 542

determination 578
additional work 499, 502
adiabat 460
adiabatic bomb calorimeter 449
adiabatic container 443
adiabatic expansion 457, 458, 490
adiabatic flame calorimeter 455
adiabatic process 459, 471

entropy change 489
ADP 563, 580
adsorbate 699
adsorbent 699
adsorption 699
adsorption isotherm 704
adsorption rate 702, 708
aerobic metabolism 651
aerosol 235
AES 700
AFM 60, 235, 702
Airy radius 326
alanine 204
alkali metal 2
alkaline earth metal 2

all-trans-retinal 350
allene 201
allowed transition 111, 343
alloy 285
α-helix 231
amount of substance 4
ampere 11, 13
amplitude 11
ångström 14
angular momentum 8, 82

commutator 91
magnitude 89
operator 85
orbital 104
quantization 83, 89
summary of properties 92
total 124, 125
vector model 91
vector representation 85
z-component 89, 104

angular velocity 8
anharmonic 317
anharmonicity constant 317
anion 2
anisotropic polarizability 309
anode 572
anti-Stokes radiation 308
antibonding orbital 145
antiferromagnetic phase 284
antifreeze 537
antioxidant 156
antiparallel β-sheet 232
antisymmetric stretch 322
antisymmetric wavefunction 117
approximation technique 67
area 19
argon-ion laser 361
argument 76
aromatic stability 160
array detector 339
Arrhenius equation 659
Arrhenius parameters 659, 664, 667,

(T) 751, (T) 752
ascorbic acid 156
asymmetric rotor 300, 302
asymptotic solution 102
atmosphere 323

temperature 323
atmosphere (unit) 4, 14
atmospheric ozone 648
atom 1, 99

configuration 1, 116
many-electron 99, 114
selection rule 111
term symbol 122

atomic force microscopy 60, 235, 702
atomic number 1

atomic orbital 1, 103
atomic weight 4
atomization, enthalpy of 461
ATP 563, 580, 650
attractive surface 683
Aufbau principle see building-up

principle
Auger effect 701
Auger electron spectroscopy 700
autocatalysis 720
autoprotolysis rate 634
avalanche photodiode 339
average molar mass 539
average value 7, 383, 438
Avogadro’s constant 4
Avogadro’s principle 4
AX energy levels 380
AX2 spectrum 381
AX3 spectrum 381
Axilrod–Teller formula 234
axis of improper rotation 198
axis of symmetry 197
azeotrope 524
azimuth 87

B

Balmer series 100
band formation 277
band gap 278
band head 346
band spectra 318
band width 278
bar 4, 14
barometric formula 437
barrier penetration 57
barrier transmission 59
base catalysis 694
base pairs 232
base-stacking 233
base unit 13
basis set 153, 157, 178, 205
bcc 270
Beer–Lambert law 339
benzene, MO description 160
Bernoulli trial 438
Berthelot equation of state 241
BET isotherm 706, 716
β-pleated sheet 232
β-sheet 232
bilayer 526
bimolecular reaction 635
binomial coefficient 438
binomial distribution 438
binomial expansion 424, 438
biochemical cascade 350
biological membrane 525

biological standard state 562
biosensor analysis 710
bipolaron 280
bivariant 548
black body 49
black-body radiation 49
block 2
block-diagonal form 206
blue shift 281
body-centred cubic 270
body-centred unit cell 256
Bohr frequency condition 26
Bohr magneton 131, 372
Bohr radius 102
boiling 519
boiling point (T) 725, (T) 744

elevation 536
boiling temperature 519
Boltzmann, L. 484
Boltzmann distribution 6, 414, 431,

485, 566
chemical equilibrium 566, 569

Boltzmann formula 484
Boltzmann’s constant 6
bond 137
bond dissociation energy 138, 150
bond dissociation enthalpy (T) 728
bond enthalpy 463, (T) 729
bond length (T) 728

determination 308
bond order 150
bond order correlations 150
bonding orbital 144
Born, M. 30, 504
Born equation 504, 511
Born interpretation 30
Born–Mayer equation 273
Born–Oppenheimer approximation

138, 330
boron trifluoride 201
boson 92, 116
bouncing ball 483
bound state, hydrogen atom 104
boundary condition 50, 54

cyclic 84
boundary surface 107, 143
Boyle temperature 240, (T) 731
Boyle’s law 4
bra 45
bracket notation 45
Bragg, W. and L. 260
Bragg’s law 261
branch 319, 346
Bravais lattice 256
breathing 556
Bremsstrahlung 259
Brillouin’s theorem 183

Index
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Brunauer, S. 706
buckminsterfullerene 202
building-up principle 119
bulk matter 3
bulk modulus 275
butadiene, MO description 159

C

caesium-chloride structure 270
cage effect 666
calamitic liquid crystal 246
calorie 9
calorimeter 449
calorimeter constant 449
calorimetry 449
camphor 251
candela 13
canonical distribution 429
canonical ensemble 429

symbols 431
canonical partition function 429
capillary technique 610
carbon dioxide

isotherm 239
phase diagram 520
vibrations 322

carbon dioxide laser 361
carbon nanotube 280
carbonyl group 348
Carnot cycle 490
carotene 56, 188, 649
CARS 326
casein 236
catalyst 693

properties 713
catalytic constant 696
catalytic efficiency 696
catalytic hydrogenation 714
catalytic oxidation 714
cathode 572
cation 2
cavity 356
CCD 339
ccp 269
CD spectra 349
cell, electrochemical 571
cell emf 573, 579
cell notation 573
cell potential 573, 579
cell reaction 573
Celsius scale 4
central potential 100
centre of symmetry 198
centrifugal distortion 305
centrifugal distortion constant 305
centrifugal effect 101
ceramic 285
cesium see caesium
chain carrier 642
chain polymerization 640, 641
chain reaction 641
chain relation 479

chain transfer 642
channel former 612
character 205
character table 205, (T) 753
characteristic rotational temperature

421
characteristic vibrational temperature

423
charge-coupled device 339
charge density 549
charge number 10
charge-transfer transition 347
Charles’s law 4
chemical bond 2
chemical equilibrium 558

Boltzmann distribution 566, 569
chemical exchange 386, 387
chemical kinetics 623
chemical potential 528

chemical equilibrium 559
general definition 528
significance 529
standard 532
variation with pressure 530
variation with temperature 529

chemical potential (band theory) 278
chemical quench flow method 625
chemical shift 376

electronegativity 378
typical 376

chemically equivalent nuclei 384
chemiluminescence 679
chemiosmotic theory 581
chemisorption 703
chemisorption ability 713
chiral molecule 203, 349
chlorophyll 649
chloroplast 30, 649
cholesteric phase 246
cholesterol 526
CHP system 576
chromatic aberration 349
chromatography 624
chromophore 346
chromosphere 115
CI 182
circular dichroism 349
circular polarization 12, 348
circularly polarized 12
circumstellar space 337
cis-retinal 350, 648
citric acid cycle 564, 649
Clapeyron equation 530
class 207
classical mechanics 7, 25
clathrate 526
Clausius–Clapeyron equation 531
Clausius inequality 492, 499
Clebsch–Gordan series 122
climate change 323
close packing 268
closed shell 117
closed system 442

CMC 237
CNDO 181
co-adsorption 711
coagulation 236
COBE 312
coefficient of performance 492
coefficient of thermal conductivity 599
coefficient of viscosity 600, 601, 616
co-factor (matrix) 169
coherence length 356
coherent anti-Stokes Raman

spectroscopy 326
coherent radiation 356
cohesive energy density 252
colatitude 87
colligative property 536
collision

elastic 592
reactive 679

collision cross-section 596, 661, (T) 749
collision density 661
collision diameter 596
collision flux 597, 700
collision frequency 596, 597
collision-induced emission 644
collision theory 661
collisional deactivation 114, 644
collisional lifetime 114
collision 596
colloid stability 236
colloid 235
colour 339, (T) 733
columnar mesophase 246
combination difference 319
combined heat and power system 576
combustion, enthalpy of 461, 462
commutator 43

angular momentum 91
commute 43
competitive inhibition 697
complementarity 41
complementary observable 41, 43
complete neglect of differential

overlap 181
complete shell 117
complex conjugate 31, 76
complex mode process 684
complex number 31, 76
complex plane 76
component 548

of vector 134
compound semiconductor 279
compressibility 275, 466, (T) 744
compression factor 238
Compton wavelength 94
computational chemistry 172
concentration cell 572
concentration profile 668
condensation 523, 641
condensed state 4
conductance 601
conducting polymer 280
conduction band 279

conductivity 602
thermal 599, 600, 615

cones 350
configuration

atom 1, 116
macromolecule 230
statistical 412

configuration integral 465
configuration interaction (CI) 182
configuration state function 182
confocal microscopy 354
confocal Raman microscopy 336
conformation 230
conformational conversion 386
conformational energy 463
conjugated hydrocarbon 157
conjugated polyene 57
consecutive reactions 635
consolute temperature 525
constant

anharmonicity 317
calorimeter 449
centrifugal distortion 305
critical 241
dielectric see relative permittivity
equilibrium 560
Faraday’s 550
force 8, 61, 315
gas 4, 6
Lamé 291
Madelung 272
Michaelis 695
normalization 32
Planck’s 26, 30
rate see rate constant
rotational 303
Rydberg 100, 105
scalar coupling 379, 382
spin–orbit coupling 400
time 630

constituent 548
constructive interference 12, 144
consumption, rate of 625
continuous distribution 440
continuum generation 360
continuum state 105
contour diagram (reaction) 681
contour length 617
contrast agent 394
convection 609
convective flux 609
convergent series 19
convolution theorem 296
cooling 492
Cooper pair 285
cooperative binding 586
cooperative transition 424
coordination 270
coordination number 270
core hamiltonian 174
Corey–Pauling rules 230
corona 115
correlation analysis 674
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correlation energy 183
correlation spectroscopy 396
correspondence principle 57
corticosteroid-binding globulin

(CBG) 190
Cosmic Background Explorer 312
cosmic ray 12
COSY 396
Coulomb integral 153
Coulomb interaction 511
Coulomb operator 174
Coulomb potential 10, 511

shielded 549
Coulomb potential energy 10, 511
covalent 2
covalent bond 137
covalent compound 2
covalent network solid 273
cracking 714
cream 236
Crick, F. 266
critical constant 241
critical isotherm 239
critical micelle concentration 237
critical point 519
critical pressure 520
critical solution temperature 525
critical temperature 285, 520
cross-peaks 396
cross-product 134
cross-relation 690
cross-section

collision 596, 661, (T) 749
differential scattering 242
reactive 662, 664
state-to-state 680

crossed-beam technique 248
crossed molecular beams 679
crystal diode 305
crystal structure 254, 268
crystal system 256
crystallinity 274
crystallographic point group 199
crystallography 266
CSF 182
cubic close-packed 269
cubic F 269
cubic group 202, (T) 757
cubic unit cell 256
cumulative reaction probability 684
Curie law 283
Curie temperature 284
current 11
current density 575
curvature 35
CW spectrometer 376
cyclic boundary condition 84
cytochrome 580
cytosol 564, 613

D

d block 120
d–d transition 343, 346

D lines 126
d-metal complex 347
d orbital 110
d orbital hybridization 142
Dalton’s law 4
Daniell cell 572
Davisson, C. 28
Davisson–Germer experiment 28
Davydov splitting 281
de Broglie, L. 28
de Broglie relation 28, 54
de Broglie wavelength 418
de Moivre’s relation 295
Debye, P. 221, 260, 476
Debye equation 251
Debye extrapolation 496
Debye formula 476
Debye–Hückel limiting law 545, 576
Debye–Hückel theory 545, 549
Debye length 549
Debye T3 law 496
Debye temperature 476
decomposition vapour pressure 562
defect, surface 699
definite integral 20
degeneracy 80, 207

rotational 304
and symmetry 80

degenerate orbital 110
degradation 350, 362
degree of conversion 425
degree of dissociation 568, 584
degree of freedom 548
degree of polymerization 641
delocalization energy 160
δ scale 375
density (T) 725
density functional theory 184
density of states 291
depolarization 325
depolarization ratio 325
depolarized line 325
derivative 18
derived unit 13
Derjaguin, B. 251
deshielded nucleus 376
desorption 699
desorption rate 708
destructive interference 12, 145
detection period 393
detector 313
determinant 168

secular 154
Slater 117, 174
tridiagonal 277

deuterium lamp 339
DFT 184
diagonal matrix 168
diagonal peaks 396
dialysis 537
diamagnetic 283, 377
diamagnetic contribution 377
diamond structure 273
diaphragm technique 610

diathermic container 443
diatomic helium 147
diatomic molecule (T) 733
diatomic molecule spectra 341
dielectric 504
dielectric constant see relative

permittivity
Dieterici equation of state 241
difference density 164
differential 50
differential equation 50, 636
differential overlap 181
differential scanning calorimeter 455,

457
differential scattering cross-section

242
differentiation 18
diffraction 28, 259, 268
diffraction grating 313
diffraction limit 326
diffraction order 313
diffraction pattern 259
diffractometer 260
diffusion 591, 598, 606

and curvature 608
and ionic mobility 607
and reaction 667, 668

diffusion coefficient 599, 600, 615, 
(T) 750

and ionic mobility 607
and molar conductivity 607
and viscosity 607

diffusion-controlled limit 667
diffusion equation 608, 667
dihedral plane 198
dilute-spin species 394
diode laser 363
dioxygen, electronic states 342
dipole 3, 221
dipole–charge interaction 224
dipole–dipole interaction 225, 247
dipole–dipole interaction (EPR) 402
dipole–induced dipole interaction 227
dipole moment 3, 221, (T) 730

induced 221, 226
measurement 306

Dirac bracket notation 45
direct method 265
direct mode process 684
direct product decomposition 212
discotic liquid crystal 246
dismutation 156
disorder 484
disperse phase 235
dispersing element 313, 339
dispersion 228, 484
dispersion interaction 228
disproportionation 642
dissociation 354

degree of 568, 584
dissociation energy 138, 150

determination 318
dissociation limit 354
distillation 523

distinguishable molecules 485
distribution of speeds 7, 593
divergent series 19
DNA 232

analysis 605
structure from X-rays 266

Dogonadze, R.R. 676
donor–acceptor pair 647
dopant 279
Doppler broadening 113
Doppler effect 113
dot product 134, 247, 372
double bond 2
double-zeta (DZ) basis set 178
drift speed 602, 607
droplet 236
drug design 189
DSC 455, 457
duality 29
Dubosq calorimeter 367
dust grain 312
dye laser 362

E

Eadie–Hofstee plot 719
Earth surface temperature 324
edible fat 714
effect

cage 666
centrifugal 101
Doppler 113
Joule–Thomson 468
kinetic isotope 73
kinetic salt 674
Meissner 285
photoelectric 26
relaxation 396
salting-in 557
salting-out 557
Stark 306

effective mass 315
effective nuclear charge 118, (T) 726
effective potential energy 101
effective transverse relaxation time

392
efficiency 490
effusion 591
Ehrenfest classification 548
eigenfunction 36
eigenvalue 35, 169
eigenvalue equation 35, 169
eigenvector 169
Einstein, A. 27
Einstein coefficient 329
Einstein formula (heat capacity) 476
Einstein relation 607
Einstein–Smoluchowski equation 611
Einstein temperature 476
elastic collision 592
elastic deformation 274
elastic limit 276
elastomer 274
electric conduction 591
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electric current 11
electric dipole 3, 221

see also dipole moment
electric field 11, 12, 225
electric field strength 10
electric potential 511
electrical conductivity temperature

dependence 279
electrical double layer 236
electrical heating 469
electrical power 11
electrical work 446
electroactive species 678
electrochemical cell 571
electrochemical series 578
electrode 571

varieties 571
electrode compartment 571
electrode concentration cell 572
electrode potential 576
electrokinetic potential 236
electrolysis 482
electrolyte 571, 601
electrolyte concentration cell 572
electrolytic cell 571
electromagnetic field 11, 12
electromagnetic radiation 349
electromagnetic spectrum 12
electromotive force 573, 579
electron, magnetic moment 371
electron affinity 120, (T) 727

periodicity 120
electron correlation 181
electron density 140, 262
electron diffraction 28, 268
electron gain 504

enthalpy of 461
electron in magnetic field 372
electron microscopy 29
electron pair 116
electron pair formation 139
electron paramagnetic resonance 373,

398
electron spin resonance 373, 403
electron transfer

between proteins 675
reaction 675

electronegativity 3, 152, (T) 729
electronic configuration 1, 116
electronic partition function 423
electronic spectroscopy 338
electronic structure 99
electronvolt 11, 14
electro-osmotic drag 576
electrophoresis 605
electrostatic potential surface 189
electrostatics 549
elementary reaction 634
Eley–Rideal mechanism 712
elpot surface 189
emf 573, 579
emission spectroscopy 338
Emmett, P. 706
emulsification 236

emulsion 235
enantiomeric pair 203
endergonic 563
endothermic process 443
energy 5, 9, 443

conformational 463
electron in magnetic field 372
harmonic oscillator 62
multipole interaction 224
nucleus in magnetic field 372
particle in a box 55
quantization 26, 100
rotational 302
zero-point 56, 62

energy density
cohesive 252
kinetic 622

energy dispersal 483
energy flux 598
energy level 5
energy pooling 644
ensemble 428
enthalpy 5, 454

variation with temperature 456
enthalpy of activation 461, 673
enthalpy of atomization 461
enthalpy of chemisorption 703, (T)

752
enthalpy of combustion 461, 462
enthalpy of electron gain 461
enthalpy of formation 461, 462, 463
enthalpy of fusion 461, (T) 736
enthalpy of hydration 461
enthalpy of ionization 461
enthalpy of mixing 461, 534
enthalpy of physisorption 703, (T)

752
enthalpy of reaction 461

from enthalpy of formation 463
measurement 570
temperature dependence 463

enthalpy of solution 461
enthalpy of sublimation 461
enthalpy of transition 461

notation 461
enthalpy of vaporization 461, (T) 736,

(T) 745
entropy 5, 484

Boltzmann formula 484
determination 496
excess 540
from Q 485
harmonic oscillator 486
measurement 496
partial molar 498
reaction 498
residual 498
statistical definition 484
thermodynamic definition 488
Third-Law 498
two-level system 487
units 485
variation with temperature 494
see also statistical entropy

entropy of activation 673
entropy change

adiabatic process 489
heating 494
perfect gas expansion 486, 488, 493
phase transition 493
surroundings 489

entropy of mixing 533
entropy of transition (T) 745
entropy of vaporization 494, (T) 745
enzyme 693, 694
epifluorescence 354
EPR 373, 398
EPR spectrometer 399
equation

Arrhenius 659
Born 504, 511
Born–Mayer 273
Clapeyron 530
Clausius–Clapeyron 531
Debye 251
differential 50, 636
diffusion 608, 667
eigenvalue 35, 169
Einstein–Smoluchowski 611
Eyring 671
fundamental 505, 528
generalized diffusion 609
Gibbs–Duhem 529
Gibbs–Helmholtz 508
Hartree–Fock 173
Karplus 382
Kohn–Sham 184
Margules 544
material balance 668
McConnell 401
Michaelis–Menten 695
Nernst 574
Nernst–Einstein 607
partial differential 50, 51
Poisson’s 550
Roothaan 175
Sackur–Tetrode 486
secular 153, 169
Stern–Volmer 645
Stokes–Einstein 607, 668
transcendental 541
van der Waals 240, 241
van ’t Hoff 538, 569, 705
virial 239, 241

equation of state 238
thermodynamic 506

equilibrium 5, 447
approach to 631
Boltzmann distribution 566, 569
chemical see chemical equilibrium
effect of compression 568
effect of temperature 569
mechanical 447
response to pressure 567
thermodynamic criterion 529

equilibrium bond length 138
equilibrium constant

contributions to 566

electrochemical prediction 578
from partition function 565
from standard Gibbs energy of

reaction 562
molecular interpretation 566
relation to rate constant 633
standard cell potential 574, 578
thermodynamic 561

equilibrium constant 560
equilibrium table 578
equipartition theorem 7, 426, 470
equivalent nuclei 381, 384
ER mechanism 712
error function 67
ESR 373, 403
essential symmetry 256
ethane 202
ethene 201

MO description 157
Euler chain relation 479
Euler’s formula 76
eutectic 525
evanescent wave 710
evolution period 392
exact differential 479, 489

criterion for 505
excess entropy 540
excess function 540
exchange–correlation energy 184
exchange–correlation potential 184
exchange current density 575
exchange operator 175
exchange process 386
excimer formation 644
exciplex 361
exciplex laser 361
excited state absorption 644
excited state decay 644
exciton 281
exciton band 281
exclusion principle 116
exclusion rule 324
exergonic 563
exocytosis 527
exothermic process 443
exp-6 potential 235
expansion coefficient 466, (T) 744
expansion work 445
expectation value 38, 438
exponential decay 629
extended Debye–Hückel law 546, 576
extension work 446
extensive property 4
extent of reaction 559, 626
extinction coefficient 339
extra work see additional work
extrinsic semiconductor 279
eye 349
Eyring equation 671

F

f block 120
face-centred cubic 269
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face-centred unit cell 256
factorial 19
far-field confocal microscopy 354
far infrared region 12
Faraday’s constant 550
fcc 269
FEMO theory 164
femtochemistry 672
femtosecond spectroscopy 672
Fermi contact interaction 383
Fermi–Dirac distribution 278
Fermi level 278
fermion 92, 116
ferrocene 199
ferromagnetism 284
fibre 274
Fick’s first law of diffusion 599, 606
Fick’s second law of diffusion 608
FID 389
field 11

electric 11, 12, 225
electromagnetic 11, 12
magnetic 11, 12

field-ionization microscopy 709
FIM 709
fine structure, atomic 126
fine structure (NMR) 379
finite barrier 59
first ionization energy 120
First Law of thermodynamics 5, 445
first-order correction 68
first-order differential equation 636
first-order phase transition 549
first-order reaction 627, 628

kinetic data (T) 750
first-order spectra 386
flash desorption 702
flash photolysis 625
flavin 187
flocculation 236
flow method 624
fluctuations 429
fluid 4
fluid mosaic model 527
fluorescence 351, 644

laser-induced 679
solvent effect 351

fluorescence lifetime 645
fluorescence microscopy 353
fluorescence quantum yield 645
fluorescence resonance energy

transfer 648
flux 598
Fock, V. 121, 174
Fock operator 174
forbidden transition 111, 126
force 4, 235

generalized 446
thermodynamic 606

force constant 8, 61, 315
force field 323
formation 503

enthalpy of 461, 462, 463
rate of 625

formula unit 2, 4
Förster, T. 647
Förster theory 647, 652
four-centre integral 178
four-circle diffractometer 260
four-level laser 355
Fourier series 293
Fourier synthesis 264
Fourier transform 264, 295
Fourier-transform NMR 387
Fourier transform spectrometer 313
Fourier transform technique 313
fractional coverage 702
fractional distillation 523
fractional saturation 586
fracture 276
framework representation 715
Franck–Condon factor 345
Franck–Condon principle 343, 351, 676
Franklin, R. 266
free-electron molecular orbital theory

164
free energy 502

see also Gibbs energy
free expansion 446
free-induction decay 389
free particle 53
freely jointed chain 477, 616
freeze quench method 625
freezing point, depression 536
freezing temperature 520
Frenkel exciton 281
frequency 8, 11
frequency-domain signal 389
frequency doubling 358
frequency factor 659
FRET 648
Freundlich isotherm 707
Friedrich, W. 259
frontier orbital 158
FT-NMR 387
fuel cell 575
full rotation group 202
functional 184
functional derivative 184
functional MRI 394
fundamental equation of

thermodynamics 505, 528
fundamental transition 317
fusion, enthalpy of 461, (T) 736

G

g subscript 146
g-value 372, 399
gain 359
galvanic cell 571
γ-ray region 12
gas 3, 237

kinetic model 591
gas constant 4, 6
gas laser 360
gas laws 4
gas solubility 556

gauss 372
Gaussian distribution 439
Gaussian distribution function 441
Gaussian function 63
Gaussian-type orbital (GTO) 179
gel 235
gel electrophoresis 605
general solution 50
generalized diffusion equation 609
generalized displacement 446
generalized force 446
genome 605
genomics 605
gerade symmetry 146
Gerlach, W. 90
Germer, L. 28
GFP 353
Gibbs–Duhem equation 529
Gibbs energy 5, 500

maximum non-expansion work
502

partial molar 545, 559
partition function and 485
perfect gas 509
properties 506
variation with pressure 507
variation with temperature 507

Gibbs energy of activation 673
electron transfer 686

Gibbs energy of formation 503
Gibbs energy of mixing 532

ideal solution 536
partial miscibility 540

Gibbs energy of reaction 559, 574
standard 503, 559, 574

Gibbs energy of solvation 511
Gibbs–Helmholtz equation 508
glancing angle 261
global warming 323
globar 313
‘glory effect’ 243
glucose oxidation 564, 580
glutathione 156
glycine 187, 204
glycolysis 564, 580
Gouy balance 283
gradient 136
Graham’s law of effusion 598
grand canonical ensemble 429
graphical representation, vector

operations 135
graphite structure 273
gravimetry 703
green fluorescent protein 353
greenhouse effect 323
gross selection rule 306
Grotrian diagram 113
Grotthuss mechanism 603
group 2, 196
group theory 196
GTO 179
guest 189
Gunn diode 305
Gunn oscillator 399

H

haemolysis 540
half-life 630

summary 632
half-reaction 571
Hall, G.G. 175
halogen 2
Hamilton, W. 34
hamiltonian

core 174
Hückel method 158
hydrogen molecule-ion 142

hamiltonian matrix 159
hamiltonian operator 34
Hanes plot 719
hard-sphere packing 270
hard-sphere potential 234
harmonic motion 61
harmonic oscillator 8, 62

classical 8
energy 62
entropy 486
partition function 415
penetration 66
wavefunction 63

harmonic wave 11
Harned cell 576
harpoon mechanism 665
Hartree, D.R. 121, 174
Hartree–Fock equations 173
Hartree–Fock limit 186
Hartree–Fock self-consistent field

(HF-SCF) 122, 175
hcp 269, 270
heat 443
heat at constant pressure 455
heat capacity 5, 450, 476

constant pressure 456
constant volume 450, 467
molar 5, 446, (T) 735
partition function 448
phase transition 549
relation between 467
relation between (perfect gas) 

457
rotational transitions 453
specific 5
variation with temperature 456, 

(T) 735
vibrational contribution 452

heat capacity ratio 472
heat engine 482

efficiency 490
heat and work, equivalence of 444
Heisenberg, W. 41
Heisenberg uncertainty principle 41
helium atom 116
helium–neon laser 360
helix 231
helix–coil transition 424, 657
helix scattering 266
Helmholtz energy 499

molecular interpretation 500
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Henry, W. 535
Henry’s law 535
Henry’s law constant (T) 746
Hermann–Mauguin system 199
Hermite polynomial 63
hermitian operator 36, 41
hermiticity 36, 46
hertz 11
Hess’s law 462
heterogeneity index 540
heterogeneous catalysis 711

rate law 712
heterogeneous catalyst 693
heterogeneous reaction rate 626
heteronuclear diatomic molecule,

MO description 142, 152
heteronuclear spin system 386
hexagonal unit cell 256
hexagonally close-packed (hcp) 269,

270
HF-SCF 122, 175
high-energy phosphate bond 563
high-temperature superconductor

285
highest occupied molecular orbital

158
Hinshelwood, C.N. 639
Hohenberg, P. 184
hole 82
HOMO 158
homogeneous catalyst 693
homogenized milk 236
homonuclear diatomic molecule

MO description 142, 146
molecular orbital diagram 147
VB description 138

homonuclear spin system 386
Hooke’s law 276
host 189
host–guest complexes 189
HTSC 285
Hückel, E. 157
Hückel approximations 157
Hückel method 157, 180
Hull, A. 260
Humphreys series 131
Hund’s maximum multiplicity rule

119
Hush, N.S. 676
hybrid orbital 140
hybridization 140
hybridization schemes 142
hydration, enthalpy of 461
hydrocarbon fuels 324
hydrodynamic flow 248
hydrodynamic radius 603
hydrogen atom

bound state 104
energies 102
wavefunction 102

hydrogen bond 229, 244
hydrogen electrode 576
hydrogen fluoride, MO description

152, 156

hydrogen ion
conduction by 603
enthalpy of formation 462
Gibbs energy of formation 503
standard entropy 498

hydrogen molecule
MO description 146
VB description 138

hydrogen molecule-ion 142
hydrogen/oxygen fuel cell 575
hydrogen peroxide 200

decomposition 156, 694
hydrogen storage 576
hydrogenation 713
hydrogenic atom 99
hydrogenic orbital, mean radius 107
hydronium ion 603
hydrophilic 235
hydrophobic 235
hydrophobic interaction 458, 527
hydrostatic pressure 537
hydrostatic stress 274
hyperfine coupling constant 400, (T)

735
hyperfine structure 400
hyperpolarizability 359
hypertonic 540
hypervalent 2
hypotonic 540

I

IC 354, 644
ice 521

phase diagram 521
residual entropy 498
structure 274, 521

icosahedral group 202, (T) 757
ideal–dilute solution 535
ideal gas see perfect gas
ideal solution 535

Gibbs energy of mixing 536
identity operation 198
impact parameter 242
improper rotation 198
incident beam flux 249
indefinite integral 20
independent migration of ions, law of

602
independent molecules 430
indicator diagram 446
indistinguishable molecules 485
INDO 181
induced-dipole–induced-dipole

interaction 228
induced dipole moment 221, 226
induced fit model 694
induced magnetic moment 284
induction period 636
inelastic neutron scattering 601
inexact differential 480
infectious disease kinetics 721
infinite temperature 416, 659
infrared active 316

infrared activity 328
infrared chemiluminescence 679
infrared inactive 316
infrared region 12
infrared spectra 330
infrared spectroscopy 313
inhibition 697
inhomogeneous broadening 392
initial condition 50
initiation step 642
inner transition metal 2
instantaneous configuration 412
insulator 276
integral 19, 295
integral protein 526
integrand 20
integrated absorption coefficient 341
integrated rate law 628

summary 632
integrated signal 377
integrating factor 481
integration 19, 50
integration by parts 20
intensive property 4
interference 12, 28, 144, 145
interferogram 314
interferometer 313
intermediate neglect of differential

overlap 181
intermolecular interaction 238
internal conversion 354, 644
internal energy 5, 444

from Q 429
general changes in 464
heat at constant volume 448
perfect gas 450
properties 505

internal pressure 465, 506
International system (point groups)

199
International System (units) 4, 13
interstellar cloud 312
intersystem crossing 352, 644
intrinsic semiconductor 279
inverse Fourier transform 295
inverse matrix 169
inversion operation 198
inversion recovery technique 392
inversion symmetry 146
inversion temperature 469, (T) 744
inverted region 679
ion 2

activity 544
Gibbs energy of formation 503
standard entropy 498

ion channel 527, 613
ion pump 527, 613
ionic atmosphere 236, 545
ionic bond 137
ionic compound 2
ionic mobility 602, 607, (T) 749
ionic radius (T) 732
ionic solid 270
ionic strength 545

ionization, enthalpy of 461
ionization energy 105, 120, (T) 727

spectroscopic measurement 105
irreducible representation 206
irrep 206
ISC 352, 644
isenthalpic process 467
isobaric calorimeter 455
isobestic point 369
isoelectric focusing 605
isoelectric point 236, 605
isolated system 443
isolation method 627
isoleucine 397
isopleth 522
isosteric enthalpy of adsorption 705
isotherm 239
isothermal compressibility 275, 466,

(T) 744
isothermal expansion 486, 488, 493
isothermal Joule–Thomson

coefficient 468
isothermal reversible expansion 447
isotonic 540
isotope 1
isotope abundance (T) 726
isotopomer 308
isotropic polarizability 309

J

Jablonski diagram 352
jj-coupling 124
Joule, J.P. 467
joule 5, 11, 13, 446
Joule–Thomson coefficient 467, (T)

744
Joule–Thomson effect 468

K

K-radiation 259
Karplus equation 382
Kassel, L.S. 665
Kassel form 666
Keesom interaction 226
kelvin 4, 13
Kelvin scale 4
Kelvin statement 482
Kerr lens 359
Kerr medium 359
ket 45
kinetic chain length 642
kinetic control 638
kinetic data (T) 750
kinetic energy 7, 9
kinetic energy density 622
kinetic energy operator 37
kinetic isotope effect 73
kinetic model of gas 7, 591
kinetic molecular theory 7, 591
kinetic salt effect 674
kinetic theory, transport properties

600
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Kirchhoff ’s law 464
klystron 305, 399
KMT see kinetic model
Knipping, P. 259
Knudsen method 598
Kohlrausch law 602
Kohn, W. 172, 184
Kohn–Sham equations 184
Kohn–Sham orbital 184
Koopmans’ theorem 151
Krafft temperature 237
Kronecker delta 46, 168
krypton-ion laser 361

L

Lagrange method 432
Laguerre polynomial 102
Lamb formula 377
λ line 521
Lamé constants 291
lamellar micelle 237
laminar flow 599
lamp 339
Landau, L. 251
Langmuir–Blodgett film 711
Langmuir–Hinshelwood mechanism

712
Langmuir isotherm 704
lanthanoid 2
laplacian 87, 136, 550
Laporte selection rule 343
Larmor frequency 372, 388
laser 358
laser action 355
laser-induced fluorescence 679
laser light scattering 368
laser radiation characteristics 309
lattice energy 272
lattice enthalpy 272
lattice point 255
law

Beer–Lambert 339
Boyle’s 4
Charles’s 4
of cosines 135, 143
Curie 283
Dalton’s 4
Debye–Hückel limiting 545, 576
Debye T 3 496
extended Debye–Hückel 546, 576
Fick’s first 599, 606
Fick’s second 608
First 5, 445
gas 4
Graham’s 598
Henry’s 535
Hess’s 462
Hooke’s 276
independent migration of ions 602
Kirchhoff ’s 464
Kohlrausch 602
limiting 4, 545, 576
motion 8

Newton’s second 8
Raoult’s 535
Rayleigh–Jeans 49
Second 5, 482
Stokes’ 602, 607
Third 497
Wien’s 49

LCAO-MO 143, 157, 212
symmetry considerations 213

LCAO-MO (solids) 277
LCD 247
Le Chatelier, H. 568
Le Chatelier’s principle 568
lead compound 189
LED 363
LEED 701
legendrian 87
Lennard-Jones parameters (T) 730
Lennard-Jones potential 235
lever rule 522
Levich, V.G. 676
levitation 285
Lewis, G.N. 137
Lewis structure 2
LFER 674
LH mechanism 712
lifetime 114

rotational state 323
lifetime broadening 114
ligand-field splitting parameter 

347
ligand-to-metal transition 347
light 81, 339, (T) 733
light-emitting diode 363
light harvesting 648
light harvesting complex 649
light scattering 368, 539
limiting law 4, 545, 576
limiting molar conductivity 602
Linde refrigerator 469
Lindemann, F. (Lord Cherwell) 639
Lindemann–Hinshelwood

mechanism 639, 660
line alternation 310
line broadening (NMR) 386
line intensity 375
line shape 113
linear combination 37, 138

degenerate orbital 110
linear combination of atomic orbitals

143, 157, 212
linear differential equation 50
linear free energy relation 674
linear momentum 8

particle in box 56
wavefunction 56

linear momentum operator 37
linear rotor 301, 302, 305
Lineweaver–Burk plot 696
lipid bilayer 612
lipid raft model 527
liposome 237
liquid 3

molecular motion 601

liquid crystal 246, 527
phase diagram 519

liquid crystal display 247
liquid junction potential 572
liquid–liquid phase diagram 524
liquid–solid phase diagram 525
liquid structure 244
liquid–vapour boundary 531
liquid viscosity 601
lithium atom 116
litre 14
LMCT 347
local contribution to shielding 377
lock-and-key model 694
London formula 228
London interaction 228
lone pair 2
long-range order 244
longitudinal relaxation time 390
Lorentzian function 406
low energy electron diffraction 701
low temperature 493
lower critical solution temperature

525
lowest occupied molecular orbital 158
LUMO 158
Lyman series 100
lyophilic 235
lyophobic 235
lyotropic liquid crystal 246
lyotropic mesomorph 237

M

Maclaurin series 19
macromolecule 220
macular pigment 349
Madelung constant 272
magic-angle spinning 398
magnetic field 11, 12
magnetic flux density 283
magnetic induction 282, 372
magnetic levitation 285
magnetic moment 282, 371
magnetic quantum number 87
magnetic resonance imaging 393
magnetic susceptibility 378, (T) 732
magnetically equivalent nuclei 384
magnetizability 283
magnetization 282
magnetization vector 387
magnetogyric ratio 125, 372
magnitude, of vector 134
MALDI 369
MALDI-TOF 369
many-body perturbation theory 183
many-electron atom 99, 114
Marcus, R.A. 647, 665, 676
Marcus cross-relation 690
Marcus theory 647, 676
Margules equation 544
Mars van Kreelen mechanism 714
MAS 398
mass 4

mass number 1
mass spectrometry 369
material balance equation 668
matrix 168
matrix addition 168
matrix algebra 168
matrix-assisted laser desorption/

ionization 369
matrix diagonalization 159
matrix element 46, 168
matrix multiplication 168
matter, nature of 92
matter flux 598
maximum multiplicity 119
maximum velocity 695
maximum work 500
Maxwell–Boltzmann distribution 7,

593
Maxwell construction 241
Maxwell distribution see

Maxwell–Boltzmann
distribution

Maxwell relation 506
MBE 280
McConnell equation 401
mean activity coefficient 545, (T) 746
mean bond enthalpy 463, (T) 729
mean cubic molar mass 540
mean displacement 66
mean distance diffused 610
mean energy 425, 429
mean free path 597
mean molar mass 539
mean radius, hydrogenic orbital 107
mean relative speed 595
mean rotational energy 427
mean speed 595
mean square displacement 66
mean square energy 451
mean square molar mass 539
mean translational energy 426
mean value 7, 383, 438
mean vibrational energy 427
mechanical equilibrium 447
mechanical property 274
mechanism of reaction 623
Meissner effect 285
melting, response to pressure 529
melting point (T) 725, (T) 744
melting temperature 520, 527
membrane

biological 525
formation 526
transport across 612

meridional scattering 266
meso-tartaric acid 200
mesophase 246
metal 2
metal extraction 571
metal-to-ligand transition 347
metallic conductor 276
metallic lustre 282
metalloid 2
metarhodopsin II 350
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metastable excited state 355
methane, VB description 140
method of initial rates 627
method of undetermined multipliers

432
mho 601
micelle 237
Michaelis constant 695
Michaelis–Menten equation 695
Michaelis–Menten mechanism 695
Michelson interferometer 313
microcanonical ensemble 429

symbols 431
microporous material 715
microwave background radiation 312
microwave region 12
microwave spectra 330
microwave spectroscopy 90
Mie potential 235
milk 236
Miller indices 257
MINDO 181
minimal basis set 178
mirror plane 198
Mitchell, P. 581
mitochondrion 564, 580
mixed inhibition 698
mixing

enthalpy of 461, 534
entropy of 533
role in equilibrium 560

MLCT 347
MNDO 181
MO 142
MO theory 137, 142
mobility 602
mobility on surface 709
mode locking 357
model

kinetic 7, 591
RRK 665, 686
RRKM 665
Zimm–Bragg 425
zipper 424

modified intermediate neglect of
differential overlap 181

modified neglect of differential
overlap 181

moduli 275
modulus 76
molality 535, 562
molar absorption coefficient 339
molar concentration 241
molar conductivity 602

and diffusion coefficient 607
molar heat capacity 5, 446, (T) 735
molar magnetic susceptibility 282
molar mass 4, 4, 539
molar partition function 564
molar volume 238
mole 4, 13
mole fraction 522, 562
molecular beam 242, 248, 679
molecular beam epitaxy 280

molecular beam reactive scattering
716

molecular cloud 312
molecular collision 596
molecular descriptor 190
molecular dynamics 245
molecular flow 248
molecular interaction 221, 238
molecular interpretation

equilibrium constant 566
heat and work 443

molecular modelling 463
molecular orbital 142
molecular orbital energy level

diagram 147
molecular orbital theory 137, 142
molecular partition function 415, 485
molecular potential energy curve 138

hydrogen molecule-ion 145
molecular recognition 189
molecular scattering 242
molecular solid 274
molecular spectroscopy 299
molecular speed, distribution of 7, 593
molecular vibration 315

symmetry 327
molecular weight 4

see also molar mass
molecularity 635
molecule 2
Møller–Plesset perturbation theory

(MPPT) 183
molten globule 557
moment of inertia 8, 82, 300
momentum flux 599
momentum operator 37
monochromatic source 313
monochromator 313
monoclinic unit cell 256
monodisperse 539
monolayer 702
monomer 229
monopole 224
Monte Carlo method 245
Morse potential energy 317
most probable radius 109
most probable speed 595
mouse cell 326
MPI 680
MPPT 183
MRI 393
MRS 716
Mulliken, Robert 152
Mulliken electronegativity 152, 

(T) 729
multi-walled nanotube 274
multiphoton ionization 680
multiphoton process 348
multiple integral 21
multiplicity 123, 341

maximum 119
multipole 224
multipole interaction energy 224
multivariate calculus 479

mutual termination 642
MWNT 274

N

n-fold improper rotation 198
n-fold rotation 197
n-pole 224
n-type semiconductivity 279
NADH 562
NADP 649, 650
nanocrystal 81
nanodevice 280
nanoparticle 188
nanoscience 59
nanotechnology 59
nanotube 273, 280
nanowire 60, 280
natural linewidth 114
Nd-YAG laser 362
NDDO 181
near field 353
near-field scanning optical

microscopy 353
near infrared region 12
nearly free-electron approximation 277
Néel temperature 284
negative temperature 477
neglect of diatomic differential

overlap 181
neighbouring group contribution

377, 378
nematic phase 246
neodymium laser 362
neon atom 119
Nernst–Einstein equation 607
Nernst equation 574
Nernst filament 313
Nernst heat theorem 497
network solid 273
neutron, spin 92
neutron diffraction 268
neutron magnetic scattering 268
neutron scattering 601
newton 13
Newtonian flow 599
Newton’s second law of motion 8
nitric oxide 156

electronic partition function 423
magnetism 292

nitrogen, VB description 139
nitrogen fixation 156
nitrogen laser 361
NMR 374

line intensity 375
spectrometer 374

noble gas 2
nodal plane 110
node 56
NOE 395
NOESY 397
non-Arrhenius behaviour 660, 712
non-competitive inhibition 698
non-expansion work 446

non-linear phenomena 358
nonmetal 2
nonradiative decay 350
normal boiling point 519
normal distribution function 441
normal freezing point 520
normal melting point 520
normal mode 321

group theory 328
infrared activity 328

normal transition temperature 494
normal Zeeman effect 131
normalization 32, 55, 155
normalization constant 32
notation, orbital 212
notational conventions 21
NSOM 353
nuclear g-factor 373
nuclear magnetic resonance 374

line intensity 375
spectrometer 374

nuclear magneton 373
nuclear model 1
nuclear Overhauser effect 395
nuclear Overhauser effect

spectroscopy 397
nuclear spin 372

nuclear constitution and 373
properties 373, (T) 734

nuclear spin quantum number 372
nuclear statistics 310
nucleation step 425
nucleic acid 232
nucleon 1
nucleon number 1
nuclide abundance (T) 726
nuclide mass (T) 726
number-average molar mass 539
nylon-66 274, 641

O

O branch 320
oblate 304
observable 34

complementary 41, 43
octahedral complex 347
octet 2
octupole 225
off-diagonal peaks 396
oil hydrogenation 714
one-component system 528
one-dimensional crystal 272
one-dimensional freely jointed chain

478
one-dimensional random walk 611
open system 442
operations

complex numbers 77
vectors 134

operator 34, (T) 753
angular momentum 85
Coulomb 174
exchange 175
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hermitian 36, 41
kinetic energy 37
linear momentum 37
momentum 37
position 36
potential energy 34

optical activity 348
optical density 340
optical Kerr effect 359
optically active 203
orbital

antibonding 145
atomic 1, 103
bonding 144
Gaussian-type 179
Slater-type 178

orbital angular momentum 104
total 122

orbital angular momentum quantum
number 87

orbital approximation 115, 173
orbital energy variation 150
orbital notation 212
order of differential equation 50
order–disorder transition 704
order of group 207
order of reaction 627
ordinary differential equation 50
Orion nebula 312
ortho-hydrogen 312, 421
orthogonal function 38, 55
orthogonal polynomial 63
orthogonality 38, 55
orthorhombic unit cell 256
osmometry 537
osmosis 537
osmotic pressure 537
osmotic virial coefficient 538
Otto cycle 515
overall order 627
Overbeek, J.T.G. 251
Overhauser effect spectroscopy 397
overlap, symmetry relation 212
overlap density 144
overlap integral 148, 210
overtone 318
oxidant 571
oxidation 571
oxidation number 2
oxidation state 2
oxidative phosphorylation 564, 580
oxidizing agent 571
oxygen

electronic states 342
molecular properties 342

ozone 648

P

p band 278
P branch 319
p–n junction 279
p orbital 109

real form 110

p-type semiconductivity 279
P680 649
P700 650
packing fraction 270
PAGE 605
pairwise distant directed Gaussian 181
para-hydrogen 312, 421
parabolic potential 62, 315
parallel band 323
parallel β-sheet 232
parallel spins 119
paramagnetic 283
paramagnetic contribution 377
paramagnetism 150, 284
parity 146, 341
parity selection rule 343
Parseval’s theorem 294
partial charge 152
partial derivative 12, 18, 479
partial differential equation 50, 51
partial fraction 631
partial molar entropy 498
partial molar Gibbs energy 545, 559
partial molar quantity 498
partial pressure 4
partial vapour pressure 534
partially miscible 540
partially miscible liquids 524
particle 7
particle in box 53

partition function 418
quantum number 55

particle on ring 82
particle in sphere 81
particle on sphere 86
particular solution 50
partition coefficient 612
partition function

canonical 429
contributions to 417
electronic 423
equally spaced levels 415
equilibrium constant from 565
factorization 418
Gibbs energy and 485
harmonic oscillator 415
heat capacity 448
molar 564
molecular 415, 485
particle in a box 418
polyatomic rotor 433
pressure from 508
rate constant 671
rotational 420, 488
standard molar 564
thermodynamic information 429
translational 418
two-level system 415
vibrational 422

pascal 4, 13
Pascal’s triangle 381
Paschen series 100
passive transport 612
patch clamp technique 613

patch electrode 613
Patterson synthesis 265
Pauli, W. 116
Pauli exclusion principle 116
Pauli principle 116, 310
Pauling electronegativity 152, (T) 729
PDDG 181
penetration 57, 66, 118
peptide link 230, 252, 424
peptizing agent 236
perfect elastomer 274
perfect gas 4, 7

enthalpy of mixing 534
entropy change 486, 488, 493
entropy of mixing 533
equilibria 559
Gibbs energy 509
Gibbs energy of mixing 532
internal energy 450
isothermal expansion 486, 488, 

493
statistical entropy 485
transport properties 598, 615

perfect gas law 4
period 2
periodic function 293
periodic table 2
periodicity 119
peripheral protein 526
permittivity 10, 221, 511
perpendicular band 323
persistence length 477
perturbation theory 67

polarizability 227
time-dependent 111, 128
time-independent 67, 69

phaeophytin 649
phase 518
phase (wave) 12
phase boundary 519, 530
phase diagram 518

carbon dioxide 520
helium 521
ice 521
liquid crystal 519
liquid–liquid 524
liquid–solid 525
water 521

phase encoding 393
phase gradient 394
phase problem 265
phase rule 548
phase-sensitive detection 113, 399
phase separation 524
phase transition 518, 548

entropy of 494
phenanthrene 218
phosphatidyl choline 525
phosphine decomposition 712
phospholipid 267, 525
phosphorescence 351, 352, 644
phosphorus pentachloride 201
photobleaching 368
photocatalyst 188

photochemical processes 643
photochemistry 643
photodiode 339
photoelectric effect 26
photoelectron 151
photoelectron spectroscopy 151, 700
photoemission spectroscopy 700
photoisomerization 350
photomultiplier tube 339
photon 27
photophosphorylation 650
photosphere 115
photosynthesis 648
photosystems I and II 649
photovoltaic cell detector 315
physical property (T) 725
physical quantity 13
physical state 3
physisorption 703
π bond 139
π-bond formation energy 160
π-electron binding energy 159
π orbital 148
π/2 pulse 388
π pulse 392
π*←n transition 348
π*←π transition 348
Planck, M. 30
Planck distribution 329
Planck’s constant 26, 30
plane-polarized 12, 348
plane separation 258
plasma 622, 710
plasmid 60
plasmon 710
plastic 274
plastic deformation 275
plastoquinone 650
PMT 339
Pockels cell 357
point dipole 223
point group 197
point group notation 199
Poisson distribution 439
Poisson’s equation 550
Poisson’s ratio 275
polar bond 3, 152
polar coordinates 76, 84
polar form 76
polar molecule 203, 221
polarizability 226, 309, (T) 730
polarizability volume 227, (T) 730
polarization 12
polarization (radiation) 348
polarization function 178
polarization mechanism 383, 402
polarized light 348
polarized line 325
polaron 280
polyacetylene 280
polyacrylamide gel electrophoresis

605
polyatomic molecule

MO description 157
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VB description 140
vibration 320

polyatomic rotor, partition function
433

polychromatic source 313
polydisperse 539
polydispersity index 540
polyelectrolyte 232
polyelectronic atom 99, 114
polyene 56, 57, 188
polymer 229
polymerization kinetics 640
polymorph 521
polynucleotide 232
polypeptide 230

helix–coil transition 657
polypeptide conformation transition

424
polytype 269
Pople, J.A. 172
population 6, 412, 486
population inversion 355
porphine 96, 219
position operator 36
positronium 131
postulates 30, 41
potassium–bromine reaction 665
potential difference 11
potential energy 9
potential energy operator 34
potential energy profile 669
potential energy surface 138, 680
powder diffraction pattern 263
powder diffractometer 260
power 11
power output (laser) 357
power series 19
precession 372, 388
precision-specified transition 364
precursor state 708
predissociation 354
pre-equilibrium 638
pre-exponential factor 659
prefixes for units 13
pressure 4

critical 520
hydrostatic 537
internal 465, 506
kinetic model 592
partition function and 508
units 4
variation with reaction 624
see also adiabatic process

pressure–composition diagram 522
pressure jump 633
primary absorption 644
primary process 643
primary quantum yield 644
primary structure 230
primitive unit cell 255, 256
principal axis 197, 304
principal moment of inertia 300
principal quantum number 1, 104
principle

Avogadro’s 4
building-up 119
equal a priori probabilities 412
equipartition 268
exclusion 116
Franck–Condon 343, 351, 676
Le Chatelier’s 568
Pauli 116, 310
uncertainty 41, 43
variation 153

principle of equal a priori
probabilities 412

probability amplitude 30
probability density 30, 53, 440
probability theory 438
probe 360
projection operator 213
projection reconstruction 393
prolate 304
promotion 140
propagation step 425
protein folding problem 230
proteome 605
proteomics 605
proton, spin 92
proton decoupling 394
pseudofirst-order reaction 627
pulse technique 387
pulsed-field electrophoresis 605
pump 359
pumping 355
pure shear 274
pyroelectric detector 315

Q

Q and q, relation between 430
Q branch 319, 320
Q-switching 356
QCM 703
QSAR 190
QSSA 636
quadrupole 225
quantitative structure–activity

relationships 190
quantization 5

angular momentum 83, 89
energy 26, 100
space 90

quantum dot 81
quantum mechanics 7, 25, 30
quantum number

angular momentum 87
magnetic 87
nuclear spin 372
orbital angular momentum 87
particle in a box 55
principal 1, 104
spin 91
spin magnetic 91
total angular momentum 124
total orbital angular momentum

122
total spin 123

quantum oscillation 243
quantum yield 644

primary 644
quartz crystal microbalance 703
quartz–tungsten–halogen lamp 339
quasi-steady-state approximation 

636
quaternary structure 230
quenching 645
quenching method 625
quinoline 200
quinone 187

R

R branch 319
radial distribution function

atom 108
liquid 244

radial velocity 132
radial wave equation 101
radial wavefunction 101
radiation, black-body 49
radiation source 313
radiative decay 350
radical chain reaction 642
radio region 12
radius

hydrodynamic 603
most probable 109
Stokes 603

radius ratio 271
radius-ratio rule 271
radius of shear 236
rainbow angle 244
rainbow scattering 244
Ramachandran plot 231
Raman activity 328
Raman spectra

polyatomic molecule 324
rotational 308, 330
vibrational 319, 332

Raman spectroscopy 308, 325
Ramsperger, H.C. 665
random coil 616
random walk 611
Raoult, F. 534
Raoult’s law 535
rate, surface process 707
rate of adsorption 702, 708
rate constant

diffusion-controlled 667
electron transfer 676
Kassel form 666
partition function 671
reaction 626
state-to-state 680

rate of consumption 625
rate of desorption 708
rate-determining step 638
rate of formation 625
rate law 626

heterogeneous catalysis 712
rate of reaction 625

Rayleigh–Jeans law 49
Rayleigh radiation 308
Rayleigh scattering 353, 368
RDS 638
reaction centre 649
reaction coordinate 669
reaction enthalpy 461

from enthalpy of formation 463
measurement 570 

temperature dependence 463
reaction entropy 498
reaction Gibbs energy 559, 574

standard 503, 559, 574
reaction mechanism 623
reaction order 627
reaction product imaging 680
reaction profile 670
reaction quotient 559, 561
reaction rate

collision theory 661
temperature dependence 658

reaction rate 625
reactive collision 679
reactive cross-section 662, 664
read gradient 394
real gas 238
real-time analysis 624
reciprocal identity 467
recursion relation 63
red shift 281
redox couple 571
redox reaction 571
reduced mass 100, 595
reduced representation 206
reducing agent 571
reductant 571
reduction 571
reference state 462
refinement, structure 265
reflected wave 58
reflection 198
reflection (X-ray) 261
reflection symmetry 342
reforming 714
refraction 11
refractive index 11, 359, 363
refrigeration 492
regular solution 540
relative motion 128
relative permittivity 10, 221, 511
relativistic effect 109
relaxation effect 396
relaxation method 633
relaxation time 390, 392
REMPI 680
reorganization energy 678
representation 205
representative matrix 205
repulsion 234
repulsive surface 683
residual entropy 498
resolution (microscopy) 29, 326, 353
resolution (spectroscopy) 306
resonance 2, 371
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resonance condition 373
resonance energy transfer 647, 652
resonance integral 153
resonance Raman spectroscopy 325
resonant mode (laser) 356
resonant multiphoton ionization 680
respiratory chain 564, 580
resultant vector 134
retinal 350, 648
retinol 350
reversible change 447
reversible expansion 447
rheology 274
rhodamine 6G 362
rhodopsin 350
rhombohedral unit cell 256
ribosome 694
ribozyme 694
Rice, O.K. 665
‘right-hand rule’ 135
rigid rotor 302
ring current 379
Rise–Ramsperger–Kassel model 665,

686
RNA 232, 694
rock-salt structure 271
rods and cones 350
Röntgen, W. 259
root mean square deviation 42
root mean square distance 610
root mean square separation 617
root mean square speed 592
Roothaan, C.C.J. 175
Roothaan equations 175
rotating frame 388
rotational constant 303
rotational energy level 302
rotational line intensity 308
rotational motion 8, 82
rotational Raman spectra 308, 330
rotational spectrum 307
rotational structure 346
rotational temperature 420
rotational term 303
rotational transitions 305
rotor 300
RRK model 665, 686
RRKM model 665
ruby glass 235
rule

exclusion 324
gross selection 306
Hund’s 119
lever 522
phase 548
radius-ratio 271
selection 111, 126, 215
specific selection 112, 306
Trouton’s 494

Russell–Saunders coupling 124
ruthenocene 199
Rydberg, J. 99
Rydberg atom 132
Rydberg constant 100, 105

S

s band 278
S branch 320
s orbital 106
Sackur–Tetrode equation 486
saddle point 681
SALC 213
salt bridge 571
salting-in effect 557
salting-out effect 557
SAM 701
saturable absorber 357
Sayre probability relation 265
scalar coupling constant 379, 382
scalar physical property 134
scalar product 134, 247, 372
scanning Auger electron microscopy

701
scanning electron microscopy 29
scanning probe microscopy (SPM) 60
scanning tunnelling microscopy

(STM) 60, 702
scattering factor 261
scattering theory 684
SCF 67, 112, 175
Scherrer, P. 260
Schoenflies system 199
Schrödinger equation

one-dimensional 33
particle on sphere 87
three-dimensional 33
time-dependent 33
time-independent 33
two-dimensional 33, 79
vibrating molecule 315

scuba diving 556
SDS-PAGE 605
second derivative 18
second harmonic generation 358, 707
second ionization energy 120
Second Law of thermodynamics 5, 482
second-order correction 68
second-order phase transition 549
second-order reaction 630

kinetic data (T) 750
second virial coefficient 239, (T) 731
secondary process 643
secondary structure 230
secular determinant 154
secular equation 153, 169
selection rule 330

atom 111
diatomic molecules 342
infrared 331
Laporte 343
many-electron atom 126
microwave transition 330
molecular vibration 316
parity 343
rotational 307, 330
rotational Raman 309, 330
symmetry considerations 215
vibrational Raman 319, 332

vibrations 330
selectivity filter 613
self-assembly 235
self-consistent field procedure 67,

122, 175
SEM 29
semiconductor 276, 279
semiempirical method 180
semipermeable membrane 537
separation of motion 128
separation of variables 51, 79, 315

atom 100
serine 189
shape-selective catalyst 712
SHE 576
shear 274
shear modulus 275
sheet 231
shell 106
SHG 358, 707
shielded Coulomb potential 549
shielded nuclear charge 118
shielding 118

electronegativity 378
local contribution 377

shielding constant
atom 118
NMR 375

short-range order 244
side-centred unit cell 256
siemens 601
σ bond 139
σ electron 144
σ orbital 143, 147
sign convention 445
signal enhancement (NOE) 396
similarity transformation 170
simple distillation 523
single bond 2
single-molecule spectroscopy 352
single-valued function 33
single-walled nanotube 273, 280
singlet–singlet energy transfer 644
singlet state 124
singly excited determinant 182
SIR model 721
SI 4, 13
Slater determinant 117, 174
Slater-type orbital (STO) 178
slice selection 393
slip plane 276
smectic phase 246
smoke 235
sodium D lines 126
sol 235
solar radiation 323
solid 3
solid–liquid boundary 520
solid-state NMR 397
solid–vapour boundary 531
solubility 190
solute activity 542
solution, enthalpy of 461
solvation, Gibbs energy of 511

solvent activity 542
solvent contribution 377, 379
sp hybridization 141
sp2 hybrid orbital 141
sp3 hybrid orbital 140
space group 197
space lattice 254
space quantization 90
span 209
spatial coherence 356
specific heat capacity 5
specific selection rule 112, 306
spectral linewidth 113
spectral regions 12
spectrometer 313, 338, 374, 399
spectroscopic transition 26
spectroscopy 26, 299
spectrum 26
speed 7, 8

distribution 7, 593
drift 602, 607
mean 595
mean relative 595
most probable 595
root mean square 592

speed of light 11
sphalerite 271
spherical harmonic 88
spherical polar coordinates 84, 87, 179
spherical rotor 301, 302, 303
spherical symmetry 106
spin 91

total 123
spin correlation 119
spin decoupling 394
spin density 401
spin echo 392
spin-hamiltonian 408
spin label 403
spin–lattice relaxation time 390
spin magnetic quantum number 91
spin–orbit coupling 125
spin–orbit coupling constant 400
spin packet 392
spin paired 116
spin probe 403
spin quantum number 91
spin relaxation 390
spin–spin coupling 383
spin–spin relaxation time 391
spin- 1–2 nucleus 374
spinorbital 173
split-valence (SV) basis set 178
SPM 60
spontaneity, criteria for 499
spontaneous 482
spontaneous cooling 492
spontaneous emission 329
SPR 710
square modulus 76
square wave 293
square well 79, 80
SQUID 283
stability parameter 424
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standard boiling point 520
standard cell potential 574, 578

determination 576
standard chemical potential 532
standard deviation 438
standard enthalpy change 460
standard enthalpy of formation 462
standard enthalpy of fusion 461
standard enthalpy of reaction 461
standard enthalpy of transition 461
standard enthalpy of vaporization

461, (T) 736, (T) 745
standard entropy 498
standard freezing point 520
standard Gibbs energy of formation

503
standard Gibbs energy of reaction

503, 559, 574
standard hydrogen electrode 576
standard molar partition function 564
standard potential 576, (T) 747

combining 576
equilibrium constant from 578

standard pressure 4
standard reaction enthalpy 461
standard reaction entropy 498
standard reaction Gibbs energy 503,

559, 574
standard state 460

biological 562
standard state summary 543
star 115
Stark effect 306
Stark modulation 305
state function 445

entropy 489
state-to-state cross-section 680
state-to-state dynamics 680
state-to-state reaction dynamics 680
statistical entropy 484, 493

perfect gas 485
statistical thermodynamics 411
statistics, nuclear 310
steady-state approximation 636, 667
stellar interior 115, 622
stellar structure 115, 622
step 699
stepwise polymerization 640
steric factor 664
steric requirement 661, 664
Stern, O. 90
Stern–Gerlach experiment 90
Stern–Volmer equation 645
Stern–Volmer plot 645
sticking probability 708
stimulated absorption 329
stimulated emission 329, 644
stimulated Raman spectroscopy 309
Stirling’s approximation 413
STM 60, 702
STO 178
stoichiometric coefficient 561
stoichiometric number 560
Stokes–Einstein equation 607, 668

Stokes formula 603
Stokes’ law 602, 607
Stokes radiation 308
Stokes radius 603
stopped-flow technique 624
strain 274
stress 274
strong electrolyte 602
strongly coupled spectra 386
structure-based design 189
structure factor 262
structure refinement 265
sublimation, enthalpy of 461
sublimation vapour pressure 519
subshell 1, 106
subshell energies 118
substance 4
substrate 694, 699
sulfur dioxide spectrum 343
Sun 622
supercoiled DNA 233
superconducting magnet 374
superconducting quantum

interference device 283
superconductor 276, 284
supercritical fluid 520
superfluid 521
superoxide ion 156
superposition 37, 138
superradiant 361
supersonic beam 248
supersonic nozzle 248
supertwist 247
surface composition 700
surface defect 699
surface growth 699
surface plasmon resonance 710
surface reconstruction 701
surface tension 237, 246
surfactant 236
surroundings 442

entropy change 489
susceptibility 378, (T) 732
SWNT 273, 280
symmetric rotor 301, 302, 304
symmetric stretch 322
symmetry, and degeneracy 80
symmetry-adapted linear

combination 213
symmetry axis 197
symmetry element 197
symmetry number 421
symmetry operation 197
symmetry species 206
synchrotron radiation 260, 267, 326
system 442

one-component 528
systematic absences 263
Système International 4, 13

T

T1-weighted image 394
T2-weighted image 394

T 3 law 496
Taylor expansion 19
Taylor series 19
TDS 709
Teller, E. 706
TEM 29
Temkin isotherm 707
temperature 4

characteristic rotational 421
characteristic vibrational 423
consolute 525
critical solution 525
Curie 284
Debye 476
Einstein 476
infinite 416, 659
Krafft 237
Néel 284
negative 477

temperature–composition diagram
523

temperature conversion 4
temperature-independent

paramagnetism 284
temperature jump 633
temperature programmed desorption

709
temperature scale, thermodynamic 4

492
temporal coherence 356
tensile strength 276
term, atomic 122
term symbol

atom 122
diatomic molecules 341

terrace 699
tertiary structure 230
tesla 372
tetrachloroaurate 201
tetragonal unit cell 256
tetrahedral group 202
tetraphenylmethane 202
theorem

convolution 296
equipartition 7, 426, 470
Koopmans’ 151
Nernst heat 497
Parseval’s 294
virial 66

theory
activated complex 670
Debye–Hückel 545, 549
Förster 647, 652
Marcus 647, 676
transition state 670

thermal conduction 591
thermal conductivity 599, 600, 615
thermal de Broglie wavelength 418
thermal desorption spectroscopy 709
thermal motion 443
thermal neutrons 268
thermal wavelength 418
thermochemistry 460
thermodynamic data

elements (T) 738
inorganic compounds (T) 738
organic compounds (T) 736

thermodynamic equation of state 506
thermodynamic equilibrium constant

561
thermodynamic force 606
thermodynamic function

electrochemical
determination 579

thermodynamic limit 429, 485
thermodynamic temperature scale 4,

492
thermodynamics 5, 442

First Law 5, 445
Second Law 5, 482
Third Law 497

thermogram 458
thermotropic liquid crystal 246
Third-Law entropy 498
Third Law of thermodynamics 497
Thomson, G. 28
Thomson, W. (Lord Kelvin) 467
three-level laser 355
tie line 522
tight-binding approximation 277
time constant 630
time-dependent perturbation theory

111, 128
time-dependent Schrödinger

equation 33
time-dependent wavefunction 30
time-domain signal 389
time-independent perturbation

theory 67, 69
time-independent Schrödinger

equation 33
time-independent wavefunction 30
time-of-flight spectrometer 369
time-resolved spectroscopy 359
time-resolved X-ray diffraction 267
TIP 284
titanium ion spectrum 347
titanium oxide 188
titanium sapphire laser 363
TMS 376
TOF 369
tonne 14
torque 9
torr 13
total angular momentum 124, 125
total angular momentum quantum

number 124
total energy 5, 7, 10
total orbital angular momentum

quantum number 122
total rate of absorption 329
total spin quantum number 123
TPD 709
trajectory 8, 10
trajectory on surface 681
trans-retinal 350
transcendental equation 541
transfer RNA 233
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transition 100, 111
charge-transfer 347
cooperative 424
enthalpy of 461
entropy of (T) 745
helix–coil 424, 657
polypeptide conformation 424
spectroscopic 26

transition dipole interaction 281
transition dipole moment 112, 281,

307, 343
symmetry considerations 215

transition metal 2, 120
transition rate 112
transition state 669, 670, 681
transition state theory 670
transition temperature 494, 518
translational motion 8, 53, 78
transmission coefficient 670
transmission electron microscopy 29
transmission probability 59
transmittance 339
transmitted wave 58
transport properties 591, (T) 749

kinetic theory 600
perfect gas 598, 615

transpose matrix 168
transverse relaxation time 391
trial wavefunction 153
triclinic unit cell 256
tridiagonal determinant 277
trihydrogen molecule ion 219
triple bond 2
triple point 492, 520
triple-zeta (TZ) basis set 178
triplet state 124, 352
triplet–triplet energy transfer 644
tRNA 233
Trouton’s rule 494
tryptophan 340
tunnelling 57, 66, 660, 677
turnover frequency 696
twisted nematic LCD 247
two-dimensional box 79
two-dimensional NMR 396
two-fluid model 522
two-level system 415, 426, 487
type I superconductor 285
type II superconductor 285

U

u subscript 146
ubiquitin (thermogram) 458
UHV 700
ultrafast techniques 672
ultrahigh vacuum technique 700
ultraviolet catastrophe 49
ultraviolet photoelectron

spectroscopy (UPS) 151, 700
ultraviolet region 12

unbound state 104
uncertainty principle 41, 43
uncompetitive inhibition 698
undetermined multipliers 432
ungerade symmetry 146
uniaxial stress 274
unimolecular reaction 635, 639
unique rate of reaction 626
unit 4, 13
unit cell 255
unit matrix 168
unit vector 134
upper critical solution temperature

525
UPS 151, 700
uric acid 156

V

vacuum permeability 283
vacuum permittivity 10, 511
vacuum ultraviolet region 12
valence band 279
valence-bond theory 137, 138
valence electron 118
valence shell 2
valence-shell electron pair repulsion

theory (VSEPR theory) 2
van der Waals, J.D. 240
van der Waals coefficients 240, (T) 731
van der Waals equation 240, 241

internal pressure 465
van der Waals interaction 220
van der Waals loops 241
van der Waals molecule 244
van ’t Hoff equation (equilibrium)

569, 705
van ’t Hoff equation (osmosis) 538
vanishing integral 210, 214
vaporization

enthalpy of 461, (T) 736, (T) 745
entropy of 494, (T) 745

vapour composition 523
vapour diffusion method 267
vapour pressure 519, 598

decomposition 562
effect of applied pressure 522
lowering 537
partial 534
variation with composition 535

variance 438, 548
variation principle 153
variation theory 67
VB theory 137, 138
vector 134
vector addition 134
vector algebra 134
vector diagram, spin paired 116
vector differentiation 136
vector model, angular momentum 91
vector multiplication 134
vector physical property 134

vector product 134
vector representation, angular

momentum 85
velocity 8
velocity selector 248, 596
vertical transition 344
Verwey, E. 251
vibration 315
vibration–rotation spectra 318
vibrational microscopy 326
vibrational modes 320
vibrational motion 61
vibrational partition function 422
vibrational progression 344
vibrational Raman spectra 319, 332
vibrational temperature 420, 423
vibrational term 316
vibrational wavenumber (T) 733
vibronic laser 363
vibronic transition 343
virial 239
virial coefficient 239
virial equation of state 239, 241
virial theorem 66
virtual orbital 181
viscosity 591, 599, 600, 601, 616, 

(T) 749
diffusion coefficient and 607

visible region 12
vision 349
vitamin C 156
vitamin E 156
volcano curve 713
volt 10
volume 4
volume magnetic susceptibility 282
von Laue, M. 259

W

Wannier exciton 281
water

conduction in 603
entropy of vaporization 494
phase diagram 521
radial distribution function 244
triple point 492, 520
vibrations 321
viscosity 601

Watson, J. 266
watt 11, 13
wave 11
wave equation 12
wave–particle duality 29
wavefunction 30

acceptability 33
acceptable 34
antisymmetric 117
constraints 33
harmonic oscillator 63
hydrogen 102
interpretation 30

linear momentum 56
particle in one-dimensional box 55
particle on rectangular surface 80
particle in three-dimensional box

81
radial 101
separation 100
trial 153

wavelength 11
wavenumber 12
wavepacket 41, 672
weak electrolyte 602
weight (configuration) 412
weight-average molar mass 539
wide-field epifluorescence method

354
Wien’s law 49
Wilkins, M. 266
work 9, 443

additional 499, 502
against constant pressure 446
electrical 446
expansion 445
extension 446
gas production 446
general expression 445
maximum 500
maximum non-expansion 502
non-expansion 446
surface expansion 446
varieties of 446

work function 27, 711
wrinkle, Nature’s abhorrence of 609

X

xanthophyll 349
xenon discharge lamp 339
XPS 700
X-ray 259
X-ray crystallography 266
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